Science.gov

Sample records for cell noble metal

  1. Noble metals in oncology

    PubMed Central

    Markowska, Anna; Jaszczyńska-Nowinka, Karolina; Lubin, Jolanta; Markowska, Janina

    2015-01-01

    Worldwide research groups are searching for anticancer compounds, many of them are organometalic complexes having platinum group metals as their active centers. Most commonly used cytostatics from this group are cisplatin, carboplatin and oxaliplatin. Cisplatin was used fot the first time in 1978, from this time many platinum derivatives were created. In this review we present biological properties and probable future clinical use of platinum, gold, silver, iridium and ruthenium derivatives. Gold derivative Auranofin has been studied extensively. Action of silver nanoparticles on different cell lines was analysed. Iridium isotopes are commonly used in brachyterapy. Ruthenium compound new anti-tumour metastasis inhibitor (NAMI-A) is used in managing lung cancer metastases. Electroporation of another ruthenium based compound KP1339 was also studied. Most of described complexes have antiproliferative and proapoptotic properties. Further studies need to be made. Nevertheless noble metal based chemotherapheutics and compounds seem to be an interesting direction of research. PMID:26557773

  2. Noble metal ionic catalysts.

    PubMed

    Hegde, M S; Madras, Giridhar; Patil, K C

    2009-06-16

    Because of growing environmental concerns and increasingly stringent regulations governing auto emissions, new more efficient exhaust catalysts are needed to reduce the amount of pollutants released from internal combustion engines. To accomplish this goal, the major pollutants in exhaust-CO, NO(x), and unburned hydrocarbons-need to be fully converted to CO(2), N(2), and H(2)O. Most exhaust catalysts contain nanocrystalline noble metals (Pt, Pd, Rh) dispersed on oxide supports such as Al(2)O(3) or SiO(2) promoted by CeO(2). However, in conventional catalysts, only the surface atoms of the noble metal particles serve as adsorption sites, and even in 4-6 nm metal particles, only 1/4 to 1/5 of the total noble metal atoms are utilized for catalytic conversion. The complete dispersion of noble metals can be achieved only as ions within an oxide support. In this Account, we describe a novel solution to this dispersion problem: a new solution combustion method for synthesizing dispersed noble metal ionic catalysts. We have synthesized nanocrystalline, single-phase Ce(1-x)M(x)O(2-delta) and Ce(1-x-y)Ti(y)M(x)O(2-delta) (M = Pt, Pd, Rh; x = 0.01-0.02, delta approximately x, y = 0.15-0.25) oxides in fluorite structure. In these oxide catalysts, Pt(2+), Pd(2+), or Rh(3+) ions are substituted only to the extent of 1-2% of Ce(4+) ion. Lower-valent noble metal ion substitution in CeO(2) creates oxygen vacancies. Reducing molecules (CO, H(2), NH(3)) are adsorbed onto electron-deficient noble metal ions, while oxidizing (O(2), NO) molecules are absorbed onto electron-rich oxide ion vacancy sites. The rates of CO and hydrocarbon oxidation and NO(x) reduction (with >80% N(2) selectivity) are 15-30 times higher in the presence of these ionic catalysts than when the same amount of noble metal loaded on an oxide support is used. Catalysts with palladium ion dispersed in CeO(2) or Ce(1-x)Ti(x)O(2) were far superior to Pt or Rh ionic catalysts. Therefore, we have demonstrated that the

  3. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts

    PubMed Central

    Lu, Shanfu; Pan, Jing; Huang, Aibin; Zhuang, Lin; Lu, Juntao

    2008-01-01

    In recent decades, fuel cell technology has been undergoing revolutionary developments, with fundamental progress being the replacement of electrolyte solutions with polymer electrolytes, making the device more compact in size and higher in power density. Nowadays, acidic polymer electrolytes, typically Nafion, are widely used. Despite great success, fuel cells based on acidic polyelectrolyte still depend heavily on noble metal catalysts, predominantly platinum (Pt), thus increasing the cost and hampering the widespread application of fuel cells. Here, we report a type of polymer electrolyte fuel cells (PEFC) employing a hydroxide ion-conductive polymer, quaternary ammonium polysulphone, as alkaline electrolyte and nonprecious metals, chromium-decorated nickel and silver, as the catalyst for the negative and positive electrodes, respectively. In addition to the development of a high-performance alkaline polymer electrolyte particularly suitable for fuel cells, key progress has been achieved in catalyst tailoring: The surface electronic structure of nickel has been tuned to suppress selectively the surface oxidative passivation with retained activity toward hydrogen oxidation. This report of a H2–O2 PEFC completely free from noble metal catalysts in both the positive and negative electrodes represents an important advancement in the research and development of fuel cells.

  4. Fluorescent noble metal nanoclusters

    NASA Astrophysics Data System (ADS)

    Zheng, Jie

    Water-soluble fluorescent metallic clusters at sizes comparable to the Fermi wavelength of an electron (˜0.5 nm for gold and silver) were created and their photophysical properties were investigated at the bulk and single molecule levels. We employed biocompatible dendrimer and peptide to prepare a series of strong fluorescent gold and silver clusters with chemical or photo reduction methods. Facilitated by the well-defined dendrimer size, electrospray ionization mass spectrometry indicates that the fluorescent silver nanocluster size ranges from 2 to 8 Ag atoms. The correlation of emission energy with the number of atoms, N, in each gold nanocluster is quantitatively fit for the smallest nanoclusters with no adjustable parameters by the simple scaling relation of EFermi/N1/3, in which EFermi is the Fermi energy of bulk gold. The transition energy scaling inversely with cluster radius indicates that electronic structure can be well described with the spherical jellium model and further demonstrates that these nanomaterials are "multi-electron artificial atoms". Fluorescence from these small metal clusters can be considered protoplasmonic, molecular transitions of the free conduction electrons before the onset of collective dipole oscillations occurring when a continuous density of states is reached. In addition, very strong single molecular Stokes and anti-Stokes Raman enhancement by fluorescent silver clusters was observed. Pushing to larger sizes, we also created ˜2nm diameter glutathione encapsulated luminescent gold nanoparticles. Distinct from similarly sized but nonluminescent gold nanoparticles, these 2 nm gold nanoparticles show bright, long lifetime emission but no plasmon absorption. The emission might arise from charge transfer between gold atoms and the thiol ligand. Providing the "missing link" between atomic and nanoparticle behavior in noble metals, these highly fluorescent, water-soluble gold and silver nanoclusters offer complementary transition

  5. Environmentally Friendly Carbon-Preserving Recovery of Noble Metals From Supported Fuel Cell Catalysts.

    PubMed

    Latsuzbaia, R; Negro, E; Koper, G J M

    2015-06-01

    The dissolution of noble-metal catalysts under mild and carbon-preserving conditions offers the possibility of in situ regeneration of the catalyst nanoparticles in fuel cells or other applications. Here, we report on the complete dissolution of the fuel cell catalyst, platinum nanoparticles, under very mild conditions at room temperature in 0.1 M HClO4 and 0.1 M HCl by electrochemical potential cycling between 0.5-1.1 V at a scan rate of 50 mV s(-1) . Dissolution rates as high as 22.5 μg cm(-2) per cycle were achieved, which ensured a relatively short dissolution timescale of 3-5 h for a Pt loading of 0.35 mg cm(-2) on carbon. The influence of chloride ions and oxygen in the electrolyte on the dissolution was investigated, and a dissolution mechanism is proposed on the basis of the experimental observations and available literature results. During the dissolution process, the corrosion of the carbon support was minimal, as observed by X-ray photoelectron spectroscopy (XPS). PMID:25959077

  6. Noble metal/vanadium alloy catalyst and method for making

    SciTech Connect

    Jalan, V.M.

    1980-05-13

    A novel catalyst comprises an alloy of a noble metal and vanadium. The catalyst is particularly useful in an electrochemical cell cathode electrode. The method for making the alloy involves reacting a vanadium compound with sodium dithionite to form a sol of a finely dispersed vanadium sulfite complex, and then reacting noble metal particles with the complex in a reducing environment.

  7. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal... “Class II Special Controls Guidance Document: Dental Noble Metal Alloys.” The devices are exempt from...

  8. Platinum-coated non-noble metal-noble metal core-shell electrocatalysts

    DOEpatents

    Adzic, Radoslav; Zhang, Junliang; Mo, Yibo; Vukmirovic, Miomir

    2015-04-14

    Core-shell particles encapsulated by a thin film of a catalytically active metal are described. The particles are preferably nanoparticles comprising a non-noble core with a noble metal shell which preferably do not include Pt. The non-noble metal-noble metal core-shell nanoparticles are encapsulated by a catalytically active metal which is preferably Pt. The core-shell nanoparticles are preferably formed by prolonged elevated-temperature annealing of nanoparticle alloys in an inert environment. This causes the noble metal component to surface segregate and form an atomically thin shell. The Pt overlayer is formed by a process involving the underpotential deposition of a monolayer of a non-noble metal followed by immersion in a solution comprising a Pt salt. A thin Pt layer forms via the galvanic displacement of non-noble surface atoms by more noble Pt atoms in the salt. The overall process is a robust and cost-efficient method for forming Pt-coated non-noble metal-noble metal core-shell nanoparticles.

  9. Incorporation of noble metals into aerogels

    DOEpatents

    Hair, L.M.; Sanner, R.D.; Coronado, P.R.

    1998-12-22

    Aerogels or xerogels containing atomically dispersed noble metals for applications such as environmental remediation are disclosed. New noble metal precursors, such as Pt--Si or Pd(Si--P){sub 2}, have been created to bridge the incompatibility between noble metals and oxygen, followed by their incorporation into the aerogel or xerogel through sol-gel chemistry and processing. Applications include oxidation of hydrocarbons and reduction of nitrogen oxide species, complete oxidation of volatile organic carbon species, oxidative membranes for photocatalysis and partial oxidation for synthetic applications.

  10. Incorporation of noble metals into aerogels

    DOEpatents

    Hair, Lucy M.; Sanner, Robert D.; Coronado, Paul R.

    1998-01-01

    Aerogels or xerogels containing atomically dispersed noble metals for applications such environmental remediation. New noble metal precursors, such as Pt--Si or Pd(Si--P).sub.2, have been created to bridge the incompatibility between noble metals and oxygen, followed by their incorporation into the aerogel or xerogel through sol-gel chemistry and processing. Applications include oxidation of hydrocarbons and reduction of nitrogen oxide species, complete oxidation of volatile organic carbon species, oxidative membranes for photocatalysis and partial oxidation for synthetic applications.

  11. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver,...

  12. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver,...

  13. Recovery and use of fission product noble metals

    SciTech Connect

    Jensen, G.A.; Rohmann, C.A.; Perrigo, L.D.

    1980-06-01

    Noble metals in fission products are of strategic value. Market prices for noble metals are rising more rapidly than recovery costs. A promising concept has been developed for recovery of noble metals from fission product waste. Although the assessment was made only for the three noble metal fission products (Rh, Pd, Ru), there are other fission products and actinides which have potential value. (DLC)

  14. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver,...

  15. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver,...

  16. Noble metal superparticles and methods of preparation thereof

    DOEpatents

    Sun, Yugang; Hu, Yongxing

    2016-07-12

    A method comprises heating an aqueous solution of colloidal silver particles. A soluble noble metal halide salt is added to the aqueous solution which undergoes a redox reaction on a surface of the silver particles to form noble metal/silver halide SPs, noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs on the surface of the silver particles. The heat is maintained for a predetermined time to consume the silver particles and release the noble metal/silver halide SPs, the noble metal halide/silver halide SPs or the noble metal oxide/silver halide SPs into the aqueous solution. The aqueous solution is cooled. The noble metal/silver halide SPs, the noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs are separated from the aqueous solution. The method optionally includes adding a soluble halide salt to the aqueous solution.

  17. Synthesis of noble metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Bahadory, Mozhgan

    Improved methods were developed for the synthesis of noble metal nanoparticles. Laboratory experiments were designed for introducing of nanotechnology into the undergraduate curriculum. An optimal set of conditions for the synthesis of clear yellow colloidal silver was investigated. Silver nanoparticles were obtained by borohydride reduction of silver nitrate, a method which produces particles with average size of 12+/-2 nm, determined by Transmission Electron Microscopy (TEM). The plasmon absorbance is at 397 nm and the peak width at half maximum (PWHM) is 70-75 nm. The relationship between aggregation and optical properties was determined along with a method to protect the particles using polyvinylpyrrolidone (PVP). A laboratory experiment was designed in which students synthesize yellow colloidal silver, estimate particle size using visible spectroscopy, and study aggregation effects. The synthesis of the less stable copper nanoparticles is more difficult because copper nanopaticles are easily oxidized. Four methods were used for the synthesis of copper nanoparticles, including chemical reduction with sodium borohydride, sodium borohydride with potassium iodide, isopropyl alcohol with cetyltrimethylammonium bormide (CTAB) and reducing sugars. The latter method was also the basis for an undergraduate laboratory experiment. For each reaction, the dependence of stability of the copper nanoparticles on reagent concentrations, additives, relative amounts of reactants, and temperature is explored. Atomic force microscopy (AFM), TEM and UV-Visible Spectroscopy were used to characterize the copper nanoparticles. A laboratory experiment to produce copper nanoparticles from household chemicals was developed.

  18. Inert electrode containing metal oxides, copper and noble metal

    DOEpatents

    Ray, Siba P.; Woods, Robert W.; Dawless, Robert K.; Hosler, Robert B.

    2000-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  19. Inert electrode containing metal oxides, copper and noble metal

    DOEpatents

    Ray, Siba P.; Woods, Robert W.; Dawless, Robert K.; Hosler, Robert B.

    2001-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  20. Noble Metal Nanoparticles Applications in Cancer

    PubMed Central

    Conde, João; Doria, Gonçalo; Baptista, Pedro

    2012-01-01

    Nanotechnology has prompted new and improved materials for biomedical applications with particular emphasis in therapy and diagnostics. Special interest has been directed at providing enhanced molecular therapeutics for cancer, where conventional approaches do not effectively differentiate between cancerous and normal cells; that is, they lack specificity. This normally causes systemic toxicity and severe and adverse side effects with concomitant loss of quality of life. Because of their small size, nanoparticles can readily interact with biomolecules both at surface and inside cells, yielding better signals and target specificity for diagnostics and therapeutics. This way, a variety of nanoparticles with the possibility of diversified modification with biomolecules have been investigated for biomedical applications including their use in highly sensitive imaging assays, thermal ablation, and radiotherapy enhancement as well as drug and gene delivery and silencing. Here, we review the available noble metal nanoparticles for cancer therapy, with particular focus on those already being translated into clinical settings. PMID:22007307

  1. Noble Metal Nanoparticles for Biosensing Applications

    PubMed Central

    Doria, Gonçalo; Conde, João; Veigas, Bruno; Giestas, Leticia; Almeida, Carina; Assunção, Maria; Rosa, João; Baptista, Pedro V.

    2012-01-01

    In the last decade the use of nanomaterials has been having a great impact in biosensing. In particular, the unique properties of noble metal nanoparticles have allowed for the development of new biosensing platforms with enhanced capabilities in the specific detection of bioanalytes. Noble metal nanoparticles show unique physicochemical properties (such as ease of functionalization via simple chemistry and high surface-to-volume ratios) that allied with their unique spectral and optical properties have prompted the development of a plethora of biosensing platforms. Additionally, they also provide an additional or enhanced layer of application for commonly used techniques, such as fluorescence, infrared and Raman spectroscopy. Herein we review the use of noble metal nanoparticles for biosensing strategies—from synthesis and functionalization to integration in molecular diagnostics platforms, with special focus on those that have made their way into the diagnostics laboratory. PMID:22438731

  2. The Colour of the Noble Metals.

    ERIC Educational Resources Information Center

    Poole, R. T.

    1983-01-01

    Examines the physical basis for colors of noble metals (copper, silver, gold) developed from energy conservation/quantum mechanical view of free electron photoabsorption. Describes production of absorption edges produced by change in density of occupied valence electron states in the d-band, which allows stronger absorption in the visible photon…

  3. CONTROL ROD ALLOY CONTAINING NOBLE METAL ADDITIONS

    DOEpatents

    Anderson, W.K.; Ray, W.E.

    1960-05-01

    Silver-base alloys suitable for use in the fabrication of control rods for neutronic reactors are given. The alloy consists of from 0.5 wt.% to about 1.5 wt.% of a noble metal of platinum, ruthenium, rhodium, osmium, or palladium, up to 10 wt.% of cadmium, from 2 to 20 wt.% indium, the balance being silver.

  4. Strategic role of selected noble metal nanoparticles in medicine.

    PubMed

    Rai, Mahendra; Ingle, Avinash P; Birla, Sonal; Yadav, Alka; Santos, Carolina Alves Dos

    2016-09-01

    Noble metals and their compounds have been used as therapeutic agents from the ancient time in medicine for the treatment of various infections. Recently, much progress has been made in the field of nanobiotechnology towards the development of different kinds of nanomaterials with a wide range of applications. Among the metal nanoparticles, noble metal nanoparticles have demonstrated potential biomedical applications. Due to the small size, nanoparticles can easily interact with biomolecules both at surface and inside cells, yielding better signals and target specificity for diagnostics and therapeutics. Noble metal nanoparticles inspired the researchers due to their remarkable role in detection and treatment of dreadful diseases. In this review, we have attempted to focus on the biomedical applications of noble metal nanoparticles particularly, silver, gold, and platinum in diagnosis and treatment of dreaded diseases such as cancer, human immunodeficiency virus (HIV), tuberculosis (TB), and Parkinson disease. In addition, the role of silver nanoparticles (AgNPs) such as novel antimicrobials, gold nanoparticles (AuNPs) such as efficient drug carrier, uses of platinum nanoparticles (PtNPs) in bone allograft, dentistry, etc. have been critically reviewed. Moreover, the toxicity due to the use of metal nanoparticles and some unsolved challenges in the field have been discussed with their possible solutions. PMID:26089024

  5. Oxygen adsorption at noble metal/TiO2 junctions

    NASA Astrophysics Data System (ADS)

    Hossein-Babaei, F.; Alaei-Sheini, Navid; Lajvardi, Mehdi M.

    2016-03-01

    Electric conduction in titanium dioxide is known to be oxygen sensitive and the conductivity of a TiO2 ceramic body is determined mainly by the concentration of its naturally occurring oxygen vacancy. Recently, fabrications and electronic features of a number of noble metal/TiO2-based electronic devices, such as solar cells, UV detectors, gas sensors and memristive devices have been demonstrated. Here, we investigate the effect of oxygen adsorption at the noble metal/TiO2 junction in such devices, and show the potentials of these junctions in chemical sensor fabrication. The polycrystalline, poly-phase TiO2 layers are grown by the selective and controlled oxidation of titanium thin films vacuum deposited on silica substrates. Noble metal thin films are deposited on the oxide layers by physical vapor deposition. Current-voltage (I-V) diagrams of the fabricated devices are studied for Ag/, Au/, and Pt/TiO2 samples. The raw samples show no junction energy barrier. After a thermal annealing in air at 250° C, I-V diagrams change drastically. The annealed samples demonstrate highly non-linear I-V indicating the formation of high Schottky energy barriers at the noble metal/TiO2 junctions. The phenomenon is described based on the effect of the oxygen atoms adsorbed at the junction.

  6. Noble-Metal Nanocrystals with Controlled Facets for Electrocatalysis.

    PubMed

    Hong, Jong Wook; Kim, Yena; Kwon, Yongmin; Han, Sang Woo

    2016-08-19

    Noble-metal nanocrystals (NCs) show excellent catalytic performance for many important electrocatalysis reactions. The crystallographic properties of the facets by which the NCs are bound, closely associated with the shape of the NCs, have a profound influence on the electrocatalytic function of the NCs. To develop an efficient strategy for the synthesis of NCs with controlled facets as well as compositions, understanding of the growth mechanism of the NCs and their interaction with the chemical species involved in NC synthesis is quite important. Furthermore, understanding the facet-dependent catalytic properties of noble-metal NCs and the corresponding mechanisms for various electrocatalysis reactions will allow for the rational design of robust electrocatalysts. In this review, we summarize recently developed synthesis strategies for the preparation of mono- and bimetallic noble-metal NCs by classifying them by the type of facets through which they are enclosed and discuss the electrocatalytic applications of noble-metal NCs with controlled facets, especially for reactions associated with fuel-cell applications, such as the oxygen reduction reaction and fuel (methanol, ethanol, and formic acid) oxidation reactions. PMID:27258679

  7. Noble Metals Would Prevent Hydrogen Embrittlement

    NASA Technical Reports Server (NTRS)

    Paton, N. E.; Frandsen, J. D.

    1987-01-01

    According to proposal, addition of small amounts of noble metals makes iron- and nickel-based alloys less susceptible to embrittlement by hydrogen. Metallurgists demonstrated adding 0.6 to 1.0 percent by weight of Pd or Pt eliminates stress/corrosion cracking in type 4130 steel. Proposal based on assumption that similar levels (0.5 to 1.0 weight percent) of same elements effective against hydrogen embrittlement.

  8. Engineering noble metal nanomaterials for environmental applications

    NASA Astrophysics Data System (ADS)

    Li, Jingguo; Zhao, Tingting; Chen, Tiankai; Liu, Yanbiao; Ong, Choon Nam; Xie, Jianping

    2015-04-01

    Besides being valuable assets in our daily lives, noble metals (namely, gold, silver, and platinum) also feature many intriguing physical and chemical properties when their sizes are reduced to the nano- or even subnano-scale; such assets may significantly increase the values of the noble metals as functional materials for tackling important societal issues related to human health and the environment. Among which, designing/engineering of noble metal nanomaterials (NMNs) to address challenging issues in the environment has attracted recent interest in the community. In general, the use of NMNs for environmental applications is highly dependent on the physical and chemical properties of NMNs. Such properties can be readily controlled by tailoring the attributes of NMNs, including their size, shape, composition, and surface. In this feature article, we discuss recent progress in the rational design and engineering of NMNs with particular focus on their applications in the field of environmental sensing and catalysis. The development of functional NMNs for environmental applications is highly interdisciplinary, which requires concerted efforts from the communities of materials science, chemistry, engineering, and environmental science.

  9. Engineering noble metal nanomaterials for environmental applications.

    PubMed

    Li, Jingguo; Zhao, Tingting; Chen, Tiankai; Liu, Yanbiao; Ong, Choon Nam; Xie, Jianping

    2015-05-01

    Besides being valuable assets in our daily lives, noble metals (namely, gold, silver, and platinum) also feature many intriguing physical and chemical properties when their sizes are reduced to the nano- or even subnano-scale; such assets may significantly increase the values of the noble metals as functional materials for tackling important societal issues related to human health and the environment. Among which, designing/engineering of noble metal nanomaterials (NMNs) to address challenging issues in the environment has attracted recent interest in the community. In general, the use of NMNs for environmental applications is highly dependent on the physical and chemical properties of NMNs. Such properties can be readily controlled by tailoring the attributes of NMNs, including their size, shape, composition, and surface. In this feature article, we discuss recent progress in the rational design and engineering of NMNs with particular focus on their applications in the field of environmental sensing and catalysis. The development of functional NMNs for environmental applications is highly interdisciplinary, which requires concerted efforts from the communities of materials science, chemistry, engineering, and environmental science. PMID:25866322

  10. Non-noble metal based metallization systems

    NASA Technical Reports Server (NTRS)

    Garcia, A., III

    1983-01-01

    The results of efforts to produce a nonsilver metallization system for silicon photovoltaic cells are given. The system uses a metallization system based on molybdenum, tin, and titanium hydride. The initial work in this system was done using the MIDFILM process. The MIDFILM process attains a line resolution comparable to photoresist methods with a process related to screen printing. The surface to be processed is first coated with a thin layer of photopolymer material. Upon exposure to ultraviolet light through a suitable mask, the polymer in the non-pattern area crosslinks and becomes hard. The unexposed pattern areas remain tacky. The conductor material is then applied in the form of a dry mixture of metal which adheres to the tacky pattern area. The assemblage is then fired to ash the photopolymer and sinter the conductor powder.

  11. High temperature, oxidation resistant noble metal-Al alloy thermocouple

    NASA Technical Reports Server (NTRS)

    Smialek, James L. (Inventor); Gedwill, Michael G. (Inventor)

    1994-01-01

    A thermocouple is disclosed. The thermocouple is comprised of an electropositive leg formed of a noble metal-Al alloy and an electronegative leg electrically joined to form a thermocouple junction. The thermocouple provides for accurate and reproducible measurement of high temperatures (600 - 1300 C) in inert, oxidizing or reducing environments, gases, or vacuum. Furthermore, the thermocouple circumvents the need for expensive, strategic precious metals such as rhodium as a constituent component. Selective oxidation of rhodium is also thereby precluded.

  12. Selective Growth of Noble Gases at Metal/Oxide Interface.

    PubMed

    Takahashi, Keisuke; Oka, Hiroshi; Ohnuki, Somei

    2016-02-17

    The locations and roles of noble gases at an oxide/metal interface in oxide dispersed metal are theoretically and experimentally investigated. Oxide dispersed metal consisting of FCC Fe and Y2Hf2O7 (Y2Ti2O7) is synthesized by mechanical alloying under a saturated Ar gas environment. Transmission electron microscopy and density functional theory observes the strain field at the interface of FCC Fe {111} and Y2Hf2O7 {111} whose physical origin emerges from surface reconstruction due to charge transfer. Noble gases are experimentally observed at the oxide (Y2Ti2O7) site and calculations reveal that the noble gases segregate the interface and grow toward the oxide site. In general, the interface is defined as the trapping site for noble gases; however, transmission electron microscopy and density functional theory found evidence which shows that noble gases grow toward the oxide, contrary to the generally held idea that the interface is the final trapping site for noble gases. Furthermore, calculations show that the inclusion of He/Ar hardens the oxide, suggesting that material fractures could begin from the noble gas bubble within the oxides. Thus, experimental and theoretical results demonstrate that noble gases grow from the interface toward the oxide and that oxides behave as a trapping site for noble gases. PMID:26840881

  13. Electrochemical Synthesis of Nanostructured Noble Metal Films for Biosensing

    NASA Astrophysics Data System (ADS)

    Bhattarai, Jay K.

    electrochemical biosensing. We have also discovered a facile electrochemical method to synthesize novel plasmonic noble metal nanostructured films. Plasmonic noble metal nanostructures have promising applications in photovoltaic solar cells, cloaking, and molecular sensing. Here, we used plasmonic noble metal nanostructures as a transducer for biosensing using localized surface plasmon resonance (LSPR) spectroscopy, a label-free biosensing technique. The prepared nanostructured films are not only sensitive for detecting biomolecules, but are stable chemically and physically, and can be easily regenerated. We have compared the sensitivity of three different types of nanostructured films, namely; nanostructured gold film (NGF), nanostructured silver film (NSF), and NPG film, and discussed the advantages and disadvantages of the prepared structures. Finally, we report carbohydrate--lectin, lectin--protein, and layer-by-layer interactions of molecules using LSPR spectroscopy. We have also performed real-time interactions and concentration dependent studies to find the equilibrium dissociation constant of the interactions. The results from these experiments could contribute to the development of cheap and sensitive biosensors that can be used for diagnostic purposes.

  14. Inert anode containing base metal and noble metal useful for the electrolytic production of aluminum

    DOEpatents

    Ray, Siba P.; Liu, Xinghua

    2000-01-01

    An inert anode for production of metals such as aluminum is disclosed. The inert anode comprises a base metal selected from Cu and Ag, and at least one noble metal selected from Ag, Pd, Pt, Au, Rh, Ru, Ir and Os. The inert anode may optionally be formed of sintered particles having interior portions containing more base metal than noble metal and exterior portions containing more noble metal than base metal. In a preferred embodiment, the base metal comprises Cu, and the noble metal comprises Ag, Pd or a combination thereof.

  15. DWPF Hydrogen Generation Study-Form of Noble Metal SRAT Testing

    SciTech Connect

    Bannochie, C

    2005-09-01

    The Defense Waste Processing Facility, DWPF, has requested that the Savannah River National Laboratory, SRNL, investigate the factors that contribute to hydrogen generation to determine if current conservatism in setting the DWPF processing window can be reduced. A phased program has been undertaken to increase understanding of the factors that influence hydrogen generation in the DWPF Chemical Process Cell, CPC. The hydrogen generation in the CPC is primarily due to noble metal catalyzed decomposition of formic acid with a minor contribution from radiolytic processes. Noble metals have historically been added as trim chemicals to process simulations. The present study investigated the potential conservatism that might be present from adding the catalytic species as trim chemicals to the final sludge simulant versus co-precipitating the noble metals into the insoluble sludge solids matrix. Two sludge simulants were obtained, one with co-precipitated noble metals and one without noble metals. Co-precipitated noble metals were expected to better match real waste behavior than using trimmed noble metals during CPC simulations. Portions of both sludge simulants were held at 97 C for about eight hours to qualitatively simulate the effects of long term storage on particle morphology and speciation. The two original and two heat-treated sludge simulants were then used as feeds to Sludge Receipt and Adjustment Tank, SRAT, process simulations. Testing was done at relatively high acid stoichiometries, {approx}175%, and without mercury in order to ensure significant hydrogen generation. Hydrogen generation rates were monitored during processing to assess the impact of the form of noble metals. The following observations were made on the data: (1) Co-precipitated noble metal simulant processed similarly to trimmed noble metal simulant in most respects, such as nitrite to nitrate conversion, formate destruction, and pH, but differently with respect to hydrogen generation: (A

  16. Noble metal abundances in an Early Archean impact deposit.

    PubMed

    Kyte, F T; Zhou, L; Lowe, D R

    1992-01-01

    We report detailed analyses on the concentrations of the noble metals Pd, Os, Ir, Pt, and Au in an early Archean spherule bed (S4) of probable impact origin from the lower Fig Tree Group, Barberton Greenstone Belt, South Africa. Compared to other sedimentary deposits of known or suspected impact origin, some noble metals are present in exceptionally high concentrations. Noble metal abundances are fractionated relative to abundances in chondrites with ratios of Os/Ir, Pt/Ir, Pd/Ir, and Au/Ir at only 80, 80, 41, and 2% of these values in CI chondrites. Although an extraterrestrial source is favored for the noble metal enrichment, the most plausible cause of the fractionation is by regional hydrothermal/metasomatic alteration. PMID:11537203

  17. Noble metal abundances in an early Archean impact deposit

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.; Zhou, Lei; Lowe, Donald R.

    1992-01-01

    Detailed analyses are reported on the concentrations of the noble metals Pd, Os, Ir, Pt, and Au in an early Archean spherule bed (S4) of probably impact origin from the lower Fig Tree Group, Barberton Greenstone Belt, South Africa. Compared to other sedimentary deposits of known or suspected impact origin, some noble metals are present in exceptionally high concentrations. Noble metal abundances are fractionated relative to abundances in chondrites with ratios of Os/Ir, Pt/Ir, Pd/Ir, and Au/Ir at only 80, 80, 41, and 2 percent of these values on CI chondrites. Although an extraterrestrial source is favored for the noble metal enrichment, the most plausible cause of the fractionation is by regional hydrothermal/metasomatic alteration.

  18. DEVELOPMENT OF A NON-NOBLE METAL HYDROGEN PURIFICATION SYSTEM

    SciTech Connect

    Korinko, P; Kyle Brinkman, K; Thad Adams, T; George Rawls, G

    2008-11-25

    Development of advanced hydrogen separation membranes in support of hydrogen production processes such as coal gasification and as front end gas purifiers for fuel cell based system is paramount to the successful implementation of a national hydrogen economy. Current generation metallic hydrogen separation membranes are based on Pd-alloys. Although the technology has proven successful, at issue is the high cost of palladium. Evaluation of non-noble metal based dense metallic separation membranes is currently receiving national and international attention. The focus of the reported work was to develop a scaled reactor with a VNi-Ti alloy membrane to replace a production Pd-alloy tube-type purification/diffuser system.

  19. Thermal expansion of noble metals using improved lattice dynamical model

    NASA Astrophysics Data System (ADS)

    Kumar, Priyank; Bhatt, N. K.; Vyas, P. R.; Gohel, V. B.

    2013-06-01

    Isothermal bulk modulus and volume thermal expansion for noble metals have been studied on the basis of improved lattice dynamical model proposed by Pandya et al [Physica B 307, 138-149 (2001)]. The present study shows that for all three noble metals the approach gives satisfactory results, when they are compared with experimental findings. The present study thus confirms the use of improved model to study anharmonic property, and can be extended to study temperature dependent properties in high temperature range.

  20. Theoretical study of metal noble-gas positive ions

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.

    1989-01-01

    Theoretical calculations have been performed to determine the spectroscopic constant for the ground and selected low-lying electronic states of the transition-metal noble-gas ions Var(+), FeAr(+), CoAr(+), CuHe(+), CuAr(+), and CuKr(+). Analogous calculations have been performed for the ground states of the alkali noble-gas ions LiAr(+), LiKr(+), NaAr(+), and KAr(+) and the alkaline-earth noble-gas ion MgAr(+) to contrast the difference in binding energies between the simple and transition-metal noble-gas ions. The binding energies increase with increasing polarizability of the noble-gas ions, as expected for a charge-induced dipole bonding mechanism. It is found that the spectroscopic constants of the X 1Sigma(+) states of the alkali noble-gas ions are well described at the self-consistent field level. In contrast, the binding energies of the transition-metal noble-gas ions are substantially increased by electron correlation.

  1. Engineering interface and surface of noble metal nanoparticle nanotubes toward enhanced catalytic activity for fuel cell applications.

    PubMed

    Cui, Chun-Hua; Yu, Shu-Hong

    2013-07-16

    In order for fuel cells to have commercial viability as alternative fuel sources, researchers need to develop highly active and robust fuel cell electrocatalysts. In recent years, the focus has been on the design and synthesis of novel catalytic materials with controlled interface and surface structures. Another goal is to uncover potential catalytic activity and selectivity, as well as understand their fundamental catalytic mechanisms. Scientists have achieved great progress in the experimental and theoretical investigation due to the urgent demand for broad commercialization of fuel cells in automotive applications. However, there are still three main problems: cost, performance, and stability. To meet these targets, the catalyst needs to have multisynergic functions. In addition, the composition and structure changes of the catalysts during the reactions still need to be explored. Activity in catalytic nanomaterials is generally controlled by the size, shape, composition, and interface and surface engineering. As such, one-dimensional nanostructures such as nanowires and nanotubes are of special interest. However, these structures tend to lose the nanoparticle morphology and inhibit the use of catalysts in both fuel cell anodes and cathodes. In 2003, Rubinstein and co-workers proposed the idea of nanoparticle nanotubes (NNs), which combine the geometry of nanotubes and the morphology of nanoparticles. This concept gives both the high surface-to-volume ratio and the size effect, which are both appealing in electrocatalyst design. In this Account, we describe our developments in the construction of highly active NNs with unique surface and heterogeneous interface structures. We try to clarify enhanced activity and stability in catalytic systems by taking into account the activity impact factors. We briefly introduce material structural effects on the electrocatalytic reactivity including metal oxide/metal and metal/metal interfaces, dealloyed pure Pt, and mixed Pt

  2. Field Enhancement using Noble Metal Structures

    NASA Astrophysics Data System (ADS)

    Liu, Benliang

    Resonance may be one of the most fundamental rules of nature. Electromagnetic resonance at nanometer scale could produce a giant field enhancement at optical frequency, providing a way to measure and control the process of atoms and molecules at single molecule scale. For example, the giant field enhancement would provide single molecule sensitivity for Raman scattering, which provides unique tools in measuring the quantity in extremely low concentration. In addition, light-emitting diodes could have high brightness but low input power that would be revolutionary in the optoelectronic industry. Although light enhancement is promising in several key technology areas, there are several challenges remain to be tackled. In particular, since the field enhancement is so strongly geometry dependent that slight modification of the geometry can lead to large variations in the outcome, a thorough understanding in how the geometry of the structure affects the field enhancement and creating proper methods to fabricate these structures reproducibly is of most importance. This thesis is devoted to design, fabrication and characterization of field enhancement generated on the surface of noble metals such as silver or gold with 1D structure. The s-polarized field enhancement arising from one-dimensional metal gratings is designed and optimized by using Rigorous Coupling Wave Analysis (RCWA). After optimization, the strongest enhancement factor is found to be 9.7 for 514nm wavelength light. The theoretical results arc confirmed by angle-dependent reflectivity measurements and the experimental results are found to support the theory. A novel single slit structure employing surface plasmon polaritons (SPPs) for enhancing the electric field is studied. SPPs are first generated on a 50 nm thick metal film using attenuated total reflection coupling, and they are subsequently coupled to the cavity mode induced by the single slit. As a result, the field enhancement is found at least 3

  3. Noble Metal Aerogels—Synthesis, Characterization, and Application as Electrocatalysts

    PubMed Central

    2015-01-01

    Conspectus Metallic and catalytically active materials with high surface area and large porosity are a long-desired goal in both industry and academia. In this Account, we summarize the strategies for making a variety of self-supported noble metal aerogels consisting of extended metal backbone nanonetworks. We discuss their outstanding physical and chemical properties, including their three-dimensional network structure, the simple control over their composition, their large specific surface area, and their hierarchical porosity. Additionally, we show some initial results on their excellent performance as electrocatalysts combining both high catalytic activity and high durability for fuel cell reactions such as ethanol oxidation and the oxygen reduction reaction (ORR). Finally, we give some hints on the future challenges in the research area of metal aerogels. We believe that metal aerogels are a new, promising class of electrocatalysts for polymer electrolyte fuel cells (PEFCs) and will also open great opportunities for other electrochemical energy systems, catalysis, and sensors. The commercialization of PEFCs encounters three critical obstacles, viz., high cost, insufficient activity, and inadequate long-term durability. Besides others, the sluggish kinetics of the ORR and alcohol oxidation and insufficient catalyst stability are important reasons for these obstacles. Various approaches have been taken to overcome these obstacles, e.g., by controlling the catalyst particle size in an optimized range, forming multimetallic catalysts, controlling the surface compositions, shaping the catalysts into nanocrystals, and designing supportless catalysts with extended surfaces such as nanostructured thin films, nanotubes, and porous nanostructures. These efforts have produced plenty of excellent electrocatalysts, but the development of multisynergetic functional catalysts exhibiting low cost, high activity, and high durability still faces great challenges. In this

  4. Noble Metal Nanoparticle-loaded Mesoporous Oxide Microspheres for Catalysis

    NASA Astrophysics Data System (ADS)

    Jin, Zhao

    Noble metal nanoparticles/nanocrystals have attracted much attention as catalysts due to their unique characteristics, including high surface areas and well-controlled facets, which are not often possessed by their bulk counterparts. To avoid the loss of their catalytic activities brought about by their size and shape changes during catalytic reactions, noble metal nanoparticles/nanocrystals are usually dispersed and supported finely on solid oxide supports to prevent agglomeration, nanoparticle growth, and therefore the decrease in the total surface area. Moreover, metal oxide supports can also play important roles in catalytic reactions through the synergistic interactions with loaded metal nanoparticles/nanocrystals. In this thesis, I use ultrasonic aerosol spray to produce hybrid microspheres that are composed of noble metal nanoparticles/nanocrystals embedded in mesoporous metal oxide matrices. The mesoporous metal oxide structure allows for the fast diffusion of reactants and products as well as confining and supporting noble metal nanoparticles. I will first describe my studies on noble metal-loaded mesoporous oxide microspheres as catalysts. Three types of noble metals (Au, Pt, Pd) and three types of metal oxide substrates (TiO2, ZrO2, Al 2O3) were selected, because they are widely used for practical catalytic applications involved in environmental cleaning, pollution control, petrochemical, and pharmaceutical syntheses. By considering every possible combination of the noble metals and oxide substrates, nine types of catalyst samples were produced. I characterized the structures of these catalysts, including their sizes, morphologies, crystallinity, and porosities, and their catalytic performances by using a representative reduction reaction from nitrobenzene to aminobenzene. Comparison of the catalytic results reveals the effects of the different noble metals, their incorporation amounts, and oxide substrates on the catalytic abilities. For this particular

  5. [Polyacrylates of noble metals as potential antitumor drugs].

    PubMed

    Ostrovskaia, L A; Voronkov, M G; Korman, D B; Bliukhterova, N V; Fomina, M M; Rykova, V A; Abzaeva, K A; Zhilitskaia, L V

    2014-01-01

    The antitumor activity of polyacrylates of the noble metals containing argentum (argacryl), aurum (auracryl) and platinum (platacryl) has been studied using experimental murine solid tumor models (Lewis lung carcinoma and Acatol adenocarcinoma). It has been found that polyacrylates of the noble metals are capable of inhibiting tumor development by 50-90% compared to control. Auracryl that inhibites the growth of Lewis lung carcinoma and Acatol adenocarcinoma by 80 and 90%, respectively, compared to control is the most efficient among the tested compounds and can be recommended for the further profound preclinical studies. PMID:25707247

  6. Supported noble metals on hydrogen-treated TiO2 nanotube arrays as highly ordered electrodes for fuel cells.

    PubMed

    Zhang, Changkun; Yu, Hongmei; Li, Yongkun; Gao, Yuan; Zhao, Yun; Song, Wei; Shao, Zhigang; Yi, Baolian

    2013-04-01

    Hydrogen-treated TiO2 nanotube (H-TNT) arrays serve as highly ordered nanostructured electrode supports, which are able to significantly improve the electrochemical performance and durability of fuel cells. The electrical conductivity of H-TNTs increases by approximately one order of magnitude in comparison to air-treated TNTs. The increase in the number of oxygen vacancies and hydroxyl groups on the H-TNTs help to anchor a greater number of Pt atoms during Pt electrodeposition. The H-TNTs are pretreated by using a successive ion adsorption and reaction (SIAR) method that enhances the loading and dispersion of Pt catalysts when electrodeposited. In the SIAR method a Pd activator can be used to provide uniform nucleation sites for Pt and leads to increased Pt loading on the H-TNTs. Furthermore, fabricated Pt nanoparticles with a diameter of 3.4 nm are located uniformly around the pretreated H-TNT support. The as-prepared and highly ordered electrodes exhibit excellent stability during accelerated durability tests, particularly for the H-TNT-loaded Pt catalysts that have been annealed in ultrahigh purity H2 for a second time. There is minimal decrease in the electrochemical surface area of the as-prepared electrode after 1000 cycles compared to a 68 % decrease for the commercial JM 20 % Pt/C electrode after 800 cycles. X-ray photoelectron spectroscopy shows that after the H-TNT-loaded Pt catalysts are annealed in H2 for the second time, the strong metal-support interaction between the H-TNTs and the Pt catalysts enhances the electrochemical stability of the electrodes. Fuel-cell testing shows that the power density reaches a maximum of 500 mWcm(-2) when this highly ordered electrode is used as the anode. When used as the cathode in a fuel cell with extra-low Pt loading, the new electrode generates a specific power density of 2.68 kWg(Pt) (-1) . It is indicated that H-TNT arrays, which have highly ordered nanostructures, could be used as ordered electrode supports

  7. Measuring the noble metal and iodine composition of extracted noble metal phase from spent nuclear fuel using instrumental neutron activation analysis.

    PubMed

    Palomares, R I; Dayman, K J; Landsberger, S; Biegalski, S R; Soderquist, C Z; Casella, A J; Brady Raap, M C; Schwantes, J M

    2015-04-01

    Masses of noble metal and iodine nuclides in the metallic noble metal phase extracted from spent fuel are measured using instrumental neutron activation analysis. Nuclide presence is predicted using fission yield analysis, and radionuclides are identified and the masses quantified using neutron activation analysis. The nuclide compositions of noble metal phase derived from two dissolution methods, UO2 fuel dissolved in nitric acid and UO2 fuel dissolved in ammonium-carbonate and hydrogen-peroxide solution, are compared. PMID:25644079

  8. Size control of noble metal clusters and metallic heterostructures through the reduction kinetics of metal precursors

    NASA Astrophysics Data System (ADS)

    Sevonkaev, Igor V.; Herein, Daniel; Jeske, Gerald; Goia, Dan V.

    2014-07-01

    Eight precious metal salts/complexes were reduced in propylene glycol at temperatures ranging between 110 and 170 °C. We found that the reduction temperature and the size of precipitated metallic nanoparticles formed were significantly affected by the structure and reactivity of the metal precursors. The choice of noble metal precursor offers flexibility for designing, fabricating and controlling the size of metallic heterostructures with tunable properties.Eight precious metal salts/complexes were reduced in propylene glycol at temperatures ranging between 110 and 170 °C. We found that the reduction temperature and the size of precipitated metallic nanoparticles formed were significantly affected by the structure and reactivity of the metal precursors. The choice of noble metal precursor offers flexibility for designing, fabricating and controlling the size of metallic heterostructures with tunable properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03045a

  9. Sintering and ripening resistant noble metal nanostructures

    DOEpatents

    van Swol, Frank B; Song, Yujiang; Shelnutt, John A; Miller, James E; Challa, Sivakumar R

    2013-09-24

    Durable porous metal nanostructures comprising thin metal nanosheets that are metastable under some conditions that commonly produce rapid reduction in surface area due to sintering and/or Ostwald ripening. The invention further comprises the method for making such durable porous metal nanostructures. Durable, high-surface area nanostructures result from the formation of persistent durable holes or pores in metal nanosheets formed from dendritic nanosheets.

  10. Method for low temperature preparation of a noble metal alloy

    DOEpatents

    Even, Jr., William R.

    2002-01-01

    A method for producing fine, essentially contamination free, noble metal alloys is disclosed. The alloys comprise particles in a size range of 5 to 500 nm. The method comprises 1. A method for preparing a noble metal alloy at low temperature, the method comprising the steps of forming solution of organometallic compounds by dissolving the compounds into a quantity of a compatible solvent medium capable of solvating the organometallic, mixing a portion of each solution to provide a desired molarity ratio of ions in the mixed solution, adding a support material, rapidly quenching droplets of the mixed solution to initiate a solute-solvent phase separation as the solvent freezes, removing said liquid cryogen, collecting and freezing drying the frozen droplets to produce a dry powder, and finally reducing the powder to a metal by flowing dry hydrogen over the powder while warming the powder to a temperature of about 150.degree. C.

  11. Noble metal alloy complex nanostructures: controllable synthesis and their electrochemical property.

    PubMed

    Liu, Hui-ling; Nosheen, Farhat; Wang, Xun

    2015-05-21

    Noble metal nanocrystals have been extensively utilized as promising catalysts for chemical transformations and energy conversion. One of their significant applications lies in electrode materials in fuel cells (FCs) due to their superior electrocatalytic performance towards the reactions both on anode and cathode. Nowadays, tremendous efforts have been devoted to improve the catalytic performance and minimize the usage of precious metals. Constructing multicomponent noble metal nanocrystals with complex structures provides the opportunity to reach this goal due to their highly tunable compositions and morphologies, leading to the modification of the related electrochemical properties. In this review, we first highlight the recent advances in the controllable synthesis of noble metal alloy complex nanostructures including nanoframes/nanocages, branched structures, concave/convex structures, core-shell structures and ultrathin structures. Then the effects of the well-defined nanocrystals on the modified and improved electrochemical properties are outlined. Finally, we make a conclusion with the points on the challenges and perspectives of the controllable synthesis of noble metal alloy complex nanostructures and their electrocatalytic performance. PMID:25793455

  12. Noble metal-free hydrazine fuel cell catalysts: EPOC effect in competing chemical and electrochemical reaction pathways.

    PubMed

    Sanabria-Chinchilla, Jean; Asazawa, Koichiro; Sakamoto, Tomokazu; Yamada, Koji; Tanaka, Hirohisa; Strasser, Peter

    2011-04-13

    We report the discovery of a highly active Ni-Co alloy electrocatalyst for the oxidation of hydrazine (N(2)H(4)) and provide evidence for competing electrochemical (faradaic) and chemical (nonfaradaic) reaction pathways. The electrochemical conversion of hydrazine on catalytic surfaces in fuel cells is of great scientific and technological interest, because it offers multiple redox states, complex reaction pathways, and significantly more favorable energy and power densities compared to hydrogen fuel. Structure-reactivity relations of a Ni(60)Co(40) alloy electrocatalyst are presented with a 6-fold increase in catalytic N(2)H(4) oxidation activity over today's benchmark catalysts. We further study the mechanistic pathways of the catalytic N(2)H(4) conversion as function of the applied electrode potential using differentially pumped electrochemical mass spectrometry (DEMS). At positive overpotentials, N(2)H(4) is electrooxidized into nitrogen consuming hydroxide ions, which is the fuel cell-relevant faradaic reaction pathway. In parallel, N(2)H(4) decomposes chemically into molecular nitrogen and hydrogen over a broad range of electrode potentials. The electroless chemical decomposition rate was controlled by the electrode potential, suggesting a rare example of a liquid-phase electrochemical promotion effect of a chemical catalytic reaction ("EPOC"). The coexisting electrocatalytic (faradaic) and heterogeneous catalytic (electroless, nonfaradaic) reaction pathways have important implications for the efficiency of hydrazine fuel cells. PMID:21425793

  13. Noble Metal-Membrane Composites for Electrochemical Applications

    NASA Astrophysics Data System (ADS)

    Millet, Pierre

    1999-01-01

    Composite materials are a new class of materials that combine two or more separate components into a form suitable for structural applications. While each component retains its identity, the new composite material displays macroscopic properties superior to its parent constituents, particularly in terms of mechanical properties and economic value. Perhaps best known for their use in aerospace applications, advanced composites are also used by the automotive, biomedical, and sporting goods markets. In addition, these strong, stiff, lightweight materials are seeing increased use in the rehabilitation, repair, and retrofit of civil infrastructure, including, for example, as replacement bridge decks and wrapping for concrete columns. New composite materials presenting some interesting features which are not directly related to their mechanical properties are appearing. This is the case of noble metal-based polymeric composites, the preparation and characterization of which are considered in this article with regard to their electrochemical properties. These composites are of great practical interest because of potential applications in water electrolysis and H2-O2 fuel cells. Electrolyzers and fuel cells can be used for terrestrial transportation, oxygen generation in submarines, and energy conversion in spacecraft.

  14. Silicon nanocrystal-noble metal hybrid nanoparticles.

    PubMed

    Sugimoto, H; Fujii, M; Imakita, K

    2016-06-01

    We report a novel and facile self-limiting synthesis route of silicon nanocrystal (Si NC)-based colloidally stable semiconductor-metal (gold, silver and platinum) hybrid nanoparticles (NPs). For the formation of hybrid NPs, we employ ligand-free colloidal Si NCs with heavily boron (B) and phosphorus (P) doped shells. By simply mixing B and P codoped colloidal Si NCs with metal salts, hybrid NPs consisting of metal cores and Si NC shells are spontaneously formed. We demonstrate the synthesis of highly uniform and size controllable hybrid NPs. It is shown that codoped Si NCs act as a reducing agent for metal salts and also as a protecting layer to stop metal NP growth. The process is thus self-limiting. The development of a variety of Si NC-based hybrid NPs is a promising first step for the design of biocompatible multifunctional NPs with broad material choices for biosensing, bioimaging and solar energy conversion. PMID:27121127

  15. Preparation and Heat-Treatment of DWPF Simulants With and Without Co-Precipitated Noble Metals

    SciTech Connect

    Koopman, David C.:Eibling, Russel E

    2005-08-01

    The Savannah River National Laboratory is in the process of investigating factors suspected of impacting catalytic hydrogen generation in the Chemical Process Cell of the Defense Waste Processing Facility, DWPF. Noble metal catalyzed hydrogen generation in simulation work constrains the allowable acid addition operating window in DWPF. This constraint potentially impacts washing strategies during sludge batch preparation. It can also influence decisions related to the addition of secondary waste streams to a sludge batch. Noble metals have historically been added as trim chemicals to process simulations. The present study investigated the potential conservatism that might be present from adding the catalytic species as trim chemicals to the final sludge simulant versus co-precipitating the noble metals into the insoluble sludge solids matrix. Parallel preparations of two sludge simulants targeting the composition of Sludge Batch 3 were performed in order to evaluate the impact of the form of noble metals. Identical steps were used except that one simulant had dissolved palladium, rhodium, and ruthenium present during the precipitation of the insoluble solids. Noble metals were trimmed into the other stimulant prior to process tests. Portions of both sludge simulants were held at 97 C for about eight hours to qualitatively simulate the effects of long term storage on particle morphology and speciation. The simulants were used as feeds for Sludge Receipt and Adjustment Tank, SRAT, process simulations. The following conclusions were drawn from the simulant preparation work: (1) The first preparation of a waste slurry simulant with co-precipitated noble metals was successful, based on the data obtained. It appears that 99+% of the noble metals were retained in the simulant. (2) Better control of carbonate, hydroxide, and post-wash trim chemical additions is needed before the new method of simulant preparation will be as reproducible as the old method. (3) The two new

  16. Silicon nanocrystal-noble metal hybrid nanoparticles

    NASA Astrophysics Data System (ADS)

    Sugimoto, H.; Fujii, M.; Imakita, K.

    2016-05-01

    We report a novel and facile self-limiting synthesis route of silicon nanocrystal (Si NC)-based colloidally stable semiconductor-metal (gold, silver and platinum) hybrid nanoparticles (NPs). For the formation of hybrid NPs, we employ ligand-free colloidal Si NCs with heavily boron (B) and phosphorus (P) doped shells. By simply mixing B and P codoped colloidal Si NCs with metal salts, hybrid NPs consisting of metal cores and Si NC shells are spontaneously formed. We demonstrate the synthesis of highly uniform and size controllable hybrid NPs. It is shown that codoped Si NCs act as a reducing agent for metal salts and also as a protecting layer to stop metal NP growth. The process is thus self-limiting. The development of a variety of Si NC-based hybrid NPs is a promising first step for the design of biocompatible multifunctional NPs with broad material choices for biosensing, bioimaging and solar energy conversion.We report a novel and facile self-limiting synthesis route of silicon nanocrystal (Si NC)-based colloidally stable semiconductor-metal (gold, silver and platinum) hybrid nanoparticles (NPs). For the formation of hybrid NPs, we employ ligand-free colloidal Si NCs with heavily boron (B) and phosphorus (P) doped shells. By simply mixing B and P codoped colloidal Si NCs with metal salts, hybrid NPs consisting of metal cores and Si NC shells are spontaneously formed. We demonstrate the synthesis of highly uniform and size controllable hybrid NPs. It is shown that codoped Si NCs act as a reducing agent for metal salts and also as a protecting layer to stop metal NP growth. The process is thus self-limiting. The development of a variety of Si NC-based hybrid NPs is a promising first step for the design of biocompatible multifunctional NPs with broad material choices for biosensing, bioimaging and solar energy conversion. Electronic supplementary information (ESI) available: Additional TEM images and extinction spectra of Si-metal hybrid NPs are shown in Fig. S1

  17. Noble metal-free hydrogen evolution catalysts for water splitting.

    PubMed

    Zou, Xiaoxin; Zhang, Yu

    2015-08-01

    Sustainable hydrogen production is an essential prerequisite of a future hydrogen economy. Water electrolysis driven by renewable resource-derived electricity and direct solar-to-hydrogen conversion based on photochemical and photoelectrochemical water splitting are promising pathways for sustainable hydrogen production. All these techniques require, among many things, highly active noble metal-free hydrogen evolution catalysts to make the water splitting process more energy-efficient and economical. In this review, we highlight the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER). We review several important kinds of heterogeneous non-precious metal electrocatalysts, including metal sulfides, metal selenides, metal carbides, metal nitrides, metal phosphides, and heteroatom-doped nanocarbons. In the discussion, emphasis is given to the synthetic methods of these HER electrocatalysts, the strategies of performance improvement, and the structure/composition-catalytic activity relationship. We also summarize some important examples showing that non-Pt HER electrocatalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalysts. PMID:25886650

  18. Ultrafast Hot Carrier Scattering and Generation from Surface Plasmons in Noble Metals

    NASA Astrophysics Data System (ADS)

    Bernardi, Marco; Mustafa, Jamal; Neaton, Jeffrey B.; Louie, Steven G.

    2015-03-01

    Non-equilibrium ``hot''carriers in materials are challenging to study experimentally as they thermalize at subpicosecond time and nanometer length scale. Recent experiments employed hot carriers generated by light absorption or surface plasmon annihilation in noble metals (e.g., Au and Ag) for catalysis and solar cells. The energy distribution and transport of the generated hot carriers play a key role in these experiments. We present ab initio calculations of the energy distribution of hot carriers generated by surface plasmons in noble metals, and the relaxation time and mean free path of the hot carriers along different crystal directions within 5 eV of the Fermi energy. Our calculations show the interplay of the noble metal s and d bands in determining the damping rate of the plasmon and the mean free path of the hot carriers. The trends we find as a function of surface plasmon momentum and frequency allow us to define optimal experimental conditions for hot carrier generation and extraction. Our approach combines density functional theory, GW, and electron-phonon calculations. Our work provides microscopic insight into hot carriers in noble metals, and their ultrafast dynamics in the presence of surface plasmons.

  19. NOBLE METAL CHEMISTRY AND HYDROGEN GENERATION DURING SIMULATED DWPF MELTER FEED PREPARATION

    SciTech Connect

    Koopman, D

    2008-06-25

    Simulations of the Defense Waste Processing Facility (DWPF) Chemical Processing Cell vessels were performed with the primary purpose of producing melter feeds for the beaded frit program plus obtaining samples of simulated slurries containing high concentrations of noble metals for off-site analytical studies for the hydrogen program. Eight pairs of 22-L simulations were performed of the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles. These sixteen simulations did not contain mercury. Six pairs were trimmed with a single noble metal (Ag, Pd, Rh, or Ru). One pair had all four noble metals, and one pair had no noble metals. One supporting 4-L simulation was completed with Ru and Hg. Several other 4-L supporting tests with mercury have not yet been performed. This report covers the calculations performed on SRNL analytical and process data related to the noble metals and hydrogen generation. It was originally envisioned as a supporting document for the off-site analytical studies. Significant new findings were made, and many previous hypotheses and findings were given additional support as summarized below. The timing of hydrogen generation events was reproduced very well within each of the eight pairs of runs, e.g. the onset of hydrogen, peak in hydrogen, etc. occurred at nearly identical times. Peak generation rates and total SRAT masses of CO{sub 2} and oxides of nitrogen were reproduced well. Comparable measures for hydrogen were reproduced with more variability, but still reasonably well. The extent of the reproducibility of the results validates the conclusions that were drawn from the data.

  20. Preparation, Functionality, and Application of Metal Oxide-coated Noble Metal Nanoparticles.

    PubMed

    Liu, Shuhua; Regulacio, Michelle D; Tee, Si Yin; Khin, Yin Win; Teng, Choon Peng; Koh, Leng Duei; Guan, Guijian; Han, Ming-Yong

    2016-08-01

    With their remarkable properties and wide-ranging applications, nanostructures of noble metals and metal oxides have been receiving significantly increased attention in recent years. The desire to combine the properties of these two functional materials for specific applications has naturally prompted research in the design and synthesis of novel nanocomposites, consisting of both noble metal and metal-oxide components. In this review, particular attention is given to core-shell type metal oxide-coated noble metal nanostructures (i.e., metal@oxide), which display potential utility in applications, including photothermal therapy, catalytic conversions, photocatalysis, molecular sensing, and photovoltaics. Emerging research directions and areas are envisioned at the end to solicit more attention and work in this regard. PMID:27291595

  1. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts.

    PubMed

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S; Kumta, Prashant N

    2016-01-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations. PMID:27380719

  2. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    DOE PAGESBeta

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-07-06

    We report that identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Furthermore, we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM basedmore » systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.« less

  3. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    NASA Astrophysics Data System (ADS)

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-07-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.

  4. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    PubMed Central

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-01-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations. PMID:27380719

  5. Measuring the Noble Metal and Iodine Composition of Extracted Noble Metal Phase from Spent Nuclear Fuel Using Instrumental Neutron Activation Analysis

    SciTech Connect

    Palomares, R. I.; Dayman, Kenneth J.; Landsberger, Sheldon; Biegalski, Steven R.; Soderquist, Chuck Z.; Casella, Amanda J.; Brady Raap, Michaele C.; Schwantes, Jon M.

    2015-04-01

    Mass quantities of noble metal and iodine nuclides in the metallic noble metal phase extracted from spent fuel are measured using instrumental neutron activation analysis (NAA). Nuclide presence is predicted using fission yield analysis, and mass quantification is derived from standard gamma spectroscopy and radionuclide decay analysis. The nuclide compositions of noble metal phase derived from two dissolution methods, UO2 fuel dissolved in nitric acid and UO2 fuel dissolved in ammonium-carbonate and hydrogen-peroxide solution, are compared. Lastly, the implications of the rapid analytic speed of instrumental NAA are discussed in relation to potential nuclear forensics applications.

  6. Synthesis of graphitic nanostructures on noble metals

    NASA Astrophysics Data System (ADS)

    Parmentier, Amelie

    In this research, two subjects are studied: the growth of graphene from various catalysts with RF-CVD and the growth of graphitic nanostructures from gold-decorated graphene with RF-CVD. In the first topic, various catalysts are made with magnesium oxide and metal nanoparticles: iron, silver and gold. Using a radio-frequency generator, these catalysts are heated and placed in contact with three gases (argon, hydrogen and methane). By controlling various parameters, graphene synthesis can happen. The results are analyzed with Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Thermo-gravimetrical analysis (TGA), and X-ray diffraction (XRD). In the second topic, commercial graphene is functionalized and decorated with different sizes of gold nanoparticles (1.8nm, 5nm, 10nm and 50nm). Using the RF-CVD process, these samples are heated at different temperatures (500°C, 650°C and 800°C). Depending on the parameters, different kinds of graphitic nanostructures are synthesized. Results are analyzed with Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy.

  7. Noble Metal Arsenides and Gold Inclusions in Northwest Africa 8186

    NASA Technical Reports Server (NTRS)

    Srinivasan, P.; McCubbin, F. M.; Rahman, Z.; Keller, L. P.; Agee, C. B.

    2016-01-01

    CK carbonaceous chondrites are a highly thermally altered group of carbonaceous chondrites, experiencing temperatures ranging between approx.576-867 C. Additionally, the mineralogy of the CK chondrites record the highest overall oxygen fugacity of all chondrites, above the fayalite-magnetite-quartz (FMQ) buffer. Metallic Fe-Ni is extremely rare in CK chondrites, but magnetite and Fe,Ni sulfides are commonly observed. Noble metal-rich inclusions have previously been found in some magnetite and sulfide grains. These arsenides, tellurides, and sulfides, which contain varying amounts of Pt, Ru, Os, Te, As, Ir, and S, are thought to form either by condensation from a solar gas, or by exsolution during metamorphism on the chondritic parent body. Northwest Africa (NWA) 8186 is a highly metamorphosed CK chondrite. This meteorite is predominately composed of NiO-rich forsteritic olivine (Fo65), with lesser amounts of plagioclase (An52), augite (Fs11Wo49), magnetite (with exsolved titanomagnetite, hercynite, and titanohematite), monosulfide solid solution (with exsolved pentlandite), and the phosphate minerals Cl-apatite and merrillite. This meteorite contains coarse-grained, homogeneous silicates, and has 120deg triple junctions between mineral phases, which indicates a high degree of thermal metamorphism. The presence of NiO-rich olivine, oxides phases all bearing Fe3+, and the absence of metal, are consistent with an oxygen fugacity above the FMQ buffer. We also observed noble metal-rich phases within sulfide grains in NWA 8186, which are the primary focus of the present study.

  8. Reversibility of Noble Metal-Catalyzed Aprotic Li-O₂ Batteries.

    PubMed

    Ma, Shunchao; Wu, Yang; Wang, Jiawei; Zhang, Yelong; Zhang, Yantao; Yan, Xinxiu; Wei, Yang; Liu, Peng; Wang, Jiaping; Jiang, Kaili; Fan, Shoushan; Xu, Ye; Peng, Zhangquan

    2015-12-01

    The aprotic Li-O2 battery has attracted a great deal of interest because, theoretically, it can store far more energy than today's batteries. Toward unlocking the energy capabilities of this neotype energy storage system, noble metal-catalyzed high surface area carbon materials have been widely used as the O2 cathodes, and some of them exhibit excellent electrochemical performances in terms of round-trip efficiency and cycle life. However, whether these outstanding electrochemical performances are backed by the reversible formation/decomposition of Li2O2, i.e., the desired Li-O2 electrochemistry, remains unclear due to a lack of quantitative assays for the Li-O2 cells. Here, noble metal (Ru and Pd)-catalyzed carbon nanotube (CNT) fabrics, prepared by magnetron sputtering, have been used as the O2 cathode in aprotic Li-O2 batteries. The catalyzed Li-O2 cells exhibited considerably high round-trip efficiency and prolonged cycle life, which could match or even surpass some of the best literature results. However, a combined analysis using differential electrochemical mass spectrometry and Fourier transform infrared spectroscopy, revealed that these catalyzed Li-O2 cells (particularly those based on Pd-CNT cathodes) did not work according to the desired Li-O2 electrochemistry. Instead the presence of noble metal catalysts impaired the cells' reversibility, as evidenced by the decreased O2 recovery efficiency (the ratio of the amount of O2 evolved during recharge/that consumed in the preceding discharge) coupled with increased CO2 evolution during charging. The results reported here provide new insights into the O2 electrochemistry in the aprotic Li-O2 batteries containing noble metal catalysts and exemplified the importance of the quantitative assays for the Li-O2 reactions in the course of pursuing truly rechargeable Li-O2 batteries. PMID:26535791

  9. Noble Metals and Spinel Settling in High Level Waste Glass Melters

    SciTech Connect

    Sundaram, S. K.; Perez, Joseph M.

    2000-09-30

    In the continuing effort to support the Defense Waste Processing Facility (DWPF), the noble metals issue is addressed. There is an additional concern about the amount of noble metals expected to be present in the future batches that will be considered for vitrification in the DWPF. Several laboratory, as well as melter-scale, studies have been completed by various organizations (mainly PNNL, SRTC, and WVDP in the USA). This letter report statuses the noble metals issue and focuses at the settling of noble metals in melters.

  10. Photoresponse from noble metal nanoparticles-multi walled carbon nanotube composites

    SciTech Connect

    Scarselli, M.; Camilli, L.; Castrucci, P.; De Crescenzi, M.; Matthes, L.; Pulci, O.; Gatto, E.; Venanzi, M.

    2012-12-10

    In this Letter, we investigated the photo-response of multi wall carbon nanotube-based composites obtained from in situ thermal evaporation of noble metals (Au, Ag, and Cu) on the nanotube films. The metal deposition process produced discrete nanoparticles on the nanotube outer walls. The nanoparticle-carbon nanotube films were characterized by photo-electrochemical measurements in a standard three electrode cell. The photocurrent from the decorated carbon nanotubes remarkably increased with respect to that of bare multiwall tubes. With the aid of first-principle calculations, these results are discussed in terms of metal nanoparticle-nanotube interactions and electronic charge transfer at the interface.

  11. Distributions of noble metal Pd and Pt in mesoporous silica

    NASA Astrophysics Data System (ADS)

    Arbiol, J.; Cabot, A.; Morante, J. R.; Chen, Fanglin; Liu, Meilin

    2002-10-01

    Mesoporous silica nanostructures have been synthesized and loaded with Pd and Pt catalytic noble metals. It is found that Pd forms small nanoclusters (3-5 nm) on the surface of the mesoporous structure whereas Pt impregnation results in the inclusion of Pt nanostructures within the silica hexagonal pores (from nanoclusters to nanowires). It is observed that these materials have high catalytic properties for CO-CH4 combustion, even in a thick film form. In particular, results indicate that the Pt and Pd dispersed in mesoporous silica are catalytically active as a selective filter for gas sensors.

  12. Nanoparticles of noble metals in the supergene zone

    NASA Astrophysics Data System (ADS)

    Zhmodik, S. M.; Kalinin, Yu. A.; Roslyakov, N. A.; Mironov, A. G.; Mikhlin, Yu. L.; Belyanin, D. K.; Nemirovskaya, N. A.; Spiridonov, A. M.; Nesterenko, G. V.; Airiyants, E. V.; Moroz, T. N.; Bul'bak, T. A.

    2012-04-01

    Formation of noble metal nanoparticles is related to various geological processes in the supergene zone. Dispersed mineral phases appear during weathering of rocks with active participation of microorganisms, formation of soil, in aqueous medium and atmosphere. Invisible gold and other noble metals are incorporated into oxides, hydroxides, and sulfides, as well as in dispersed organic and inorganic carbonic matter. Sulfide minerals that occur in bedrocks and ores unaltered by exogenic processes and in cementation zone are among the main concentrators of noble metal nanoparticles. The ability of gold particles to disaggregate is well-known and creates problems in technological and analytical practice. When Au and PGE nanoparticles and clusters occur, these problems are augmented because of their unusual reactions and physicochemical properties. The studied gold, magnetite, titanomagnetite and pyrite microspherules from cementation zone and clay minerals of laterites in Republic of Guinea widen the knowledge of their abundance and inferred formation conditions, in particular, in the contemporary supergene zone. Morphology and composition of micrometer-sized Au mineral spherules were studied with SEM and laser microprobe. The newly formed segregations of secondary gold on the surface of its residual grains were also an object of investigation. The character of such overgrowths is the most indicative for nanoparticles. The newly formed Au particles provide evidence for redistribution of ultradispersed gold during weathering. There are serious prerequisites to state that microorganisms substantially control unusual nano-sized microspherical morphology of gold particles in the supergene zone. This is supported by experiments indicating active absorption of gold by microorganisms and direct evidence for participation of Ralstonia metallidurans bacteria in the formation of peculiar corroded bacteriomorphic surface of gold grains. In addition, the areas enriched in carbon

  13. The strong reactions of Lewis-base noble-metals with vanadium and other acidic transition metals

    SciTech Connect

    Ebbinghaus, B.B.

    1991-05-01

    The noble metals often thought of as unreactive solids,react strongly with nearly 40% of the elements in the periodictable: group IIIB-VB transition metals, lanthanides, theactinides, and group IIIA-IVA non-transition metals. These strong reactions arise from increased bonding/electron transfer fromnonbonding electrons d electron pairs on the noble metal tovacant orbitals on V, etc. This effect is a generalized Lewis acid-base interaction. The partial Gibbs energy of V in the noblemetals has been measured as a function of concentration at a temperature near 1000C. Thermodynamics of the intermetallics are determined by ternary oxide equilibria, ternary carbide equilibria, and the high-temperature galvanic cell technique. These experimental methods use equilibrated solid composite mixtures in which grains of V oxides or of V carbides are interspersed with grains of V-NM(noble-metal) alloys. In equilibrium the activity of V in the oxide or the carbide equals the activity in the alloy. Consequently, the thermodynamics available in the literature for the V oxides and V carbides are reviewed. Test runs on the galvanic cell were attempted. The V oxide electrode reacts with CaF[sub 2], ThO[sub 2], YDT(0.85ThO[sub 2]-0.15YO[sub 1.5]), and LDT(0.85ThO[sub 2]- 0.15LaO[sub 1.5]) to interfere with the measured data observed toward the beginning of a galvanic cell experiment are the most accurate. The interaction of vanadium at infinite dilution in the noble-metals was determined.

  14. The strong reactions of Lewis-base noble-metals with vanadium and other acidic transition metals

    SciTech Connect

    Ebbinghaus, B.B.

    1991-05-01

    The noble metals often thought of as unreactive solids,react strongly with nearly 40% of the elements in the periodictable: group IIIB-VB transition metals, lanthanides, theactinides, and group IIIA-IVA non-transition metals. These strong reactions arise from increased bonding/electron transfer fromnonbonding electrons d electron pairs on the noble metal tovacant orbitals on V, etc. This effect is a generalized Lewis acid-base interaction. The partial Gibbs energy of V in the noblemetals has been measured as a function of concentration at a temperature near 1000C. Thermodynamics of the intermetallics are determined by ternary oxide equilibria, ternary carbide equilibria, and the high-temperature galvanic cell technique. These experimental methods use equilibrated solid composite mixtures in which grains of V oxides or of V carbides are interspersed with grains of V-NM(noble-metal) alloys. In equilibrium the activity of V in the oxide or the carbide equals the activity in the alloy. Consequently, the thermodynamics available in the literature for the V oxides and V carbides are reviewed. Test runs on the galvanic cell were attempted. The V oxide electrode reacts with CaF{sub 2}, ThO{sub 2}, YDT(0.85ThO{sub 2}-0.15YO{sub 1.5}), and LDT(0.85ThO{sub 2}- 0.15LaO{sub 1.5}) to interfere with the measured data observed toward the beginning of a galvanic cell experiment are the most accurate. The interaction of vanadium at infinite dilution in the noble-metals was determined.

  15. Functionalized magnetite particles for adsorption of colloidal noble metal nanoparticles.

    PubMed

    Lopes, Joana L; Marques, Karine L; Girão, Ana V; Pereira, Eduarda; Trindade, Tito

    2016-08-01

    Magnetite (inverse spinel type) particles have been surface-modified with siliceous shells enriched in dithiocarbamate groups. The deposition of colloidal noble metal nanoparticles (Au, Ag, Pt, Pd) onto the modified magnetites can be performed by treating the respective hydrosols with the magnetic sorbents, thus allowing their uptake from water under a magnetic gradient. In particular, for Au colloids, these magnetic particles are very efficient sorbents that we ascribe to the strong affinity of sulfur-containing groups at the magnetite surfaces for this metal. Considering the extensive use of Au colloids in laboratorial and industrial contexts, the approach described here might have an impact on the development of nanotechnologies to recover this precious metal. En route to these findings, we varied several operational parameters in order to investigate this strategy as a new bottom-up assembly method for producing plasmonic-magnetic nanoassemblies. PMID:27156089

  16. Photocatalytic water reduction with copper-based photosensitizers: a noble-metal-free system.

    PubMed

    Luo, Shu-Ping; Mejía, Esteban; Friedrich, Aleksej; Pazidis, Alexandra; Junge, Henrik; Surkus, Annette-Enrica; Jackstell, Ralf; Denurra, Stefania; Gladiali, Serafino; Lochbrunner, Stefan; Beller, Matthias

    2013-01-01

    Of noble descent: a fully noble-metal-free system for the photocatalytic reduction of water at room temperature has been developed. This system consists of Cu(I) complexes as photosensitizers and [Fe(3)(CO)(12)] as the water-reduction catalyst. The novel Cu-based photosensitizers are relatively inexpensive, readily available from commercial sources, and stable to ambient conditions, thus making them an attractive alternative to the widely used noble-metal based systems. PMID:23047871

  17. Noble Metal Arsenides and Gold Inclusions in Northwest Africa 8186

    NASA Technical Reports Server (NTRS)

    Srinivasan, P.; McCubbin, F. M.; Rahman, Z.; Keller, L. P.; Agee, C. B.

    2016-01-01

    CK carbonaceous chondrites are a highly thermally altered group of carbonaceous chondrites, experiencing temperatures ranging between approximately 576-867 degrees Centigrade. Additionally, the mineralogy of the CK chondrites record the highest overall oxygen fugacity of all chondrites, above the fayalite-magnetite-quartz (FMQ) buffer. Me-tallic Fe-Ni is extremely rare in CK chondrites, but magnetite and Fe,Ni sulfides are commonly observed. Noble metal-rich inclusions have previously been found in some magnetite and sulfide grains. These arsenides, tellurides, and sulfides, which contain varying amounts of Pt, Ru, Os, Te, As, Ir, and S, are thought to form either by condensation from a solar gas, or by exsolution during metamorphism on the chondritic parent body. Northwest Africa (NWA) 8186 is a highly metamorphosed CK chondrite. This meteorite is predominately composed of NiO-rich forsteritic olivine (Fo65), with lesser amounts of plagioclase (An52), augite (Fs11Wo49), magnetite (with exsolved titanomagnetite, hercynite, and titanohematite), monosulfide solid solution (with exsolved pentlandite), and the phosphate minerals Cl-apatite and merrillite. This meteorite contains coarse-grained, homogeneous silicates, and has 120-degree triple junctions between mineral phases, which indicates a high degree of thermal metamorphism. The presence of NiO-rich olivine, oxides phases all bearing Fe3 plus, and the absence of metal, are consistent with an oxygen fugacity above the FMQ buffer. We also observed noble metal-rich phases within sulfide grains in NWA 8186, which are the primary focus of the present study.

  18. Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials.

    PubMed

    Fan, Zhanxi; Zhang, Hua

    2016-01-01

    The functional properties of noble metal nanomaterials are determined by their size, shape, composition, architecture and crystal structure/phase. In recent years, the crystal phase control of noble metal nanomaterials has emerged as an efficient and versatile strategy to tune their properties. In this tutorial review, we will give an overview of the latest research progress in the crystal phase-controlled synthesis of noble metal nanomaterials. Moreover, the crystal phase-dependent chemical and physical properties (e.g. chemical stability, magnetic, electrical and optical properties) and catalytic applications (e.g. oxygen reduction reaction, and oxidation reactions of formic acid, methanol and carbon monoxide) of noble metal nanomaterials are also briefly introduced. Finally, based on the current research status of the crystal phase-controlled synthesis of noble metal nanomaterials, we will provide some perspectives on the challenges and opportunities in this emerging research field. PMID:26584059

  19. Process for Making a Noble Metal on Tin Oxide Catalyst

    NASA Technical Reports Server (NTRS)

    Davis, Patricia; Miller, Irvin; Upchurch, Billy

    2010-01-01

    To produce a noble metal-on-metal oxide catalyst on an inert, high-surface-area support material (that functions as a catalyst at approximately room temperature using chloride-free reagents), for use in a carbon dioxide laser, requires two steps: First, a commercially available, inert, high-surface-area support material (silica spheres) is coated with a thin layer of metal oxide, a monolayer equivalent. Very beneficial results have been obtained using nitric acid as an oxidizing agent because it leaves no residue. It is also helpful if the spheres are first deaerated by boiling in water to allow the entire surface to be coated. A metal, such as tin, is then dissolved in the oxidizing agent/support material mixture to yield, in the case of tin, metastannic acid. Although tin has proven especially beneficial for use in a closed-cycle CO2 laser, in general any metal with two valence states, such as most transition metals and antimony, may be used. The metastannic acid will be adsorbed onto the high-surface-area spheres, coating them. Any excess oxidizing agent is then evaporated, and the resulting metastannic acid-coated spheres are dried and calcined, whereby the metastannic acid becomes tin(IV) oxide. The second step is accomplished by preparing an aqueous mixture of the tin(IV) oxide-coated spheres, and a soluble, chloride-free salt of at least one catalyst metal. The catalyst metal may be selected from the group consisting of platinum, palladium, ruthenium, gold, and rhodium, or other platinum group metals. Extremely beneficial results have been obtained using chloride-free salts of platinum, palladium, or a combination thereof, such as tetraammineplatinum (II) hydroxide ([Pt(NH3)4] (OH)2), or tetraammine palladium nitrate ([Pd(NH3)4](NO3)2).

  20. Star-like copolymer stabilized noble-metal nanoparticle powders.

    PubMed

    Cao, Peng-Fei; Yan, Yun-Hui; Mangadlao, Joey Dacula; Rong, Li-Han; Advincula, Rigoberto

    2016-03-31

    The amphiphilic star-like copolymer polyethylenimine-block-poly(ε-caprolactone) (PEI-b-PCL) was utilized to transfer the pre-synthesized citrate-capped noble metal nanoparticles (NMNPs) from an aqueous layer to an organic layer without any additional reagents. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) were utilized to study the assembly of the polymers coated on the surface of the citrate-capped NMNPs. After removing the organic solvent, the polymer-coated NMNPs in powder form (PCP-NMNPs) were obtained. The excellent solubility of the PEI-b-PCL allows the PCP-NMNPs to be easily dispersed in most of the organic solvents without any significant aggregation. Moreover, the good thermal stability and long-term stability make PCP-NMNPs an excellent NMNP-containing hybrid system for different specific applications, such as surface coating, catalysis and thermoplastic processing of nanocomposite materials. PMID:26659728

  1. Noble metal ionic sites for catalytic hydrogen combustion: spectroscopic insights.

    PubMed

    Deshpande, Parag A; Madras, Giridhar

    2011-01-14

    A catalytic hydrogen combustion reaction was carried out over noble metal catalysts substituted in ZrO(2) and TiO(2) in ionic form. The catalysts were synthesized by the solution combustion technique. The compounds showed high activity and CO tolerance for the reaction. The activity of Pd and Pt ion substituted TiO(2) was comparable and was higher than Pd and Pt ion substituted ZrO(2). The mechanisms of the reaction over the two supports were proposed by making use of the X-ray photoelectron spectroscopy and FT infrared spectroscopic observations. The reaction over ZrO(2) supported catalysts was proposed to take place by the utilization of the surface hydroxyl groups while the reaction over TiO(2) supported catalysts was hypothesized to be a hybrid mechanism utilizing surface hydroxyl groups and the lattice oxygen. PMID:21060910

  2. Alloyed Noble Metal Nanoparticles with Tunable Optical Properties

    NASA Astrophysics Data System (ADS)

    Wessler, Garrett C.; Gong, Chen; Rebello de Sousa Dias, Mariama; Tailon, Joshua A.; Salamanca-Riba, Lourdes G.; Leite, Marina S.

    Noble metal nanoparticles (NPs) have been widely used in sensing, optics, and catalysis applications by taking advantage of surface plasmon resonance (SPR). This response is slightly tuned by varying the size and shape of the NPs; however, a method to obtain truly on-demand plasmonic responses is still lacking due to the intrinsic nature of a metal's dielectric function. Here, we fabricate size and composition controlled metal alloy NP arrays by deposit-and-anneal methods and through-template depositions. We control the composition of the metal NPs by co-sputtering and by alternating electron-beam evaporation of the Ag and Au targets. To characterize the NPs, macroscopic transmission measurements are combined with spectrally dependent near-field scanning optical microscopy to show the local optical properties around the NPs. By varying the atomic fraction of Ag and Au in the alloys, we modulate the optical properties of the NPs for different applications. For example, hot carrier plasmonic devices necessitate high absorption in the visible range, while photovoltaic applications require low absorption by the NPs.

  3. RISK REDUCTION VIA GREENER SYNTHESIS OF NOBLE METAL NANOSTRUCTURES AND NANOCOMPOSITES

    EPA Science Inventory

    Aqueous preparation of nanoparticles using vitamins B2 and C which can function both as reducing and capping agents are described. Bulk and shape-controlled synthesis of noble nanostructures via microwave (MW)-assisted spontaneous reduction of noble metal salts using a-D-glucose,...

  4. Noble metal/functionalized cellulose nanofiber composites for catalytic applications.

    PubMed

    Gopiraman, Mayakrishnan; Bang, Hyunsik; Yuan, Guohao; Yin, Chuan; Song, Kyung-Hun; Lee, Jung Soon; Chung, Ill Min; Karvembu, Ramasamy; Kim, Ick Soo

    2015-11-01

    In this study, cellulose acetate nanofibers (CANFs) with a mean diameter of 325 ± 2.0 nm were electrospun followed by deacetylation and functionalization to produce anionic cellulose nanofibers (f-CNFs). The noble metal nanoparticles (RuNPs and AgNPs) were successfully decorated on the f-CNFs by a simple wet reduction method using NaBH4 as a reducing agent. TEM and SEM images of the nanocomposites (RuNPs/CNFs and AgNPs/CNFs) confirmed that the very fine RuNPs or AgNPs were homogeneously dispersed on the surface of f-CNFs. The weight percentage of the Ru and Ag in the nanocomposites was found to be 13.29 wt% and 22.60 wt% respectively; as confirmed by SEM-EDS analysis. The metallic state of the Ru and Ag in the nanocomposites was confirmed by XPS and XRD analyses. The usefulness of these nanocomposites was realized from their superior catalytic activity. In the aerobic oxidation of benzyl alcohol to benzaldehyde, the RuNPs/CNFs system gave a better yield of 89% with 100% selectivity. Similarly, the AgNPs/CNFs produced an excellent yield of 99% (100% selectivity) in the aza-Michael reaction of 1-phenylpiperazine with acrylonitrile. Mechanism has been proposed for the catalytic systems. PMID:26256382

  5. Fluorescence enhancement in visible light: dielectric or noble metal?

    PubMed

    Sun, S; Wu, L; Bai, P; Png, C E

    2016-07-28

    A high permittivity dielectric gives the impression of outperforming plasmonic noble metal in visible light fluorescence enhancement primarily because of its small loss. Nonetheless, the performances of these two platforms in various situations remain obscure due to the different optical confinement mechanisms as well as the complexity in the fluorescence enhancement process. This study presents a comprehensive comparison between these two platforms based on nanoparticles (NPs) to evaluate their capability and applicability in fluorescence enhancement by taking into account the fluorescence excitation rate, the quantum yield, the fluorophore wavelengths and Stokes shifts as well as the far field intensity. In a low permittivity sensing medium (e.g. air), the dielectric NP can achieve comparable or higher fluorescence enhancement than the metal NP due to its decent NP-enhanced excitation rate and larger quantum yield. In a relatively high permittivity sensing medium (e.g. water), however, there is a significant decrement of the excitation rate of the dielectric NP as the permittivity contrast decreases, leading to a smaller fluorescence enhancement compared to the metallic counterpart. Combining the fluorescence enhancement and the far field intensity studies, we further conclude that for both dielectric and plasmonic NPs, the optimal situation occurs when the fluorescence excitation wavelength, the fluorescence emission wavelength and the electric-dipole-mode of the dielectric NP (or the plasmonic resonance of the metal NP) are the same and all fall in the low conductivity region of the NP material. We also find that the electric-dipole-mode of the dielectric NP performs better than the magnetic-dipole-mode for fluorescence enhancement applications because only the electric-dipole-mode can be strongly excited by the routinely used fluorescent dyes and quantum dots, which behave as electric dipoles by nature. PMID:27374052

  6. Fate of Noble Metals during the Pyroprocessing of Spent Nuclear Fuel

    SciTech Connect

    B.R. Westphal; D. Vaden; S.X. Li; G.L. Fredrickson; R.D. Mariani

    2009-09-01

    During the pyroprocessing of spent nuclear fuel by electrochemical techniques, fission products are separated as the fuel is oxidized at the anode and refined uranium is deposited at the cathode. Those fission products that are oxidized into the molten salt electrolyte are considered active metals while those that do not react are considered noble metals. The primary noble metals encountered during pyroprocessing are molybdenum, zirconium, ruthenium, rhodium, palladium, and technetium. Pyroprocessing of spent fuel to date has involved two distinctly different electrorefiner designs, in particular the anode to cathode configuration. For one electrorefiner, the anode and cathode collector are horizontally displaced such that uranium is transported across the electrolyte medium. As expected, the noble metal removal from the uranium during refining is very high, typically in excess of 99%. For the other electrorefiner, the anode and cathode collector are vertically collocated to maximize uranium throughput. This arrangement results in significantly less noble metals removal from the uranium during refining, typically no better than 20%. In addition to electrorefiner design, operating parameters can also influence the retention of noble metals, albeit at the cost of uranium recovery. Experiments performed to date have shown that as much as 100% of the noble metals can be retained by the cladding hulls while affecting the uranium recovery by only 6%. However, it is likely that commercial pyroprocessing of spent fuel will require the uranium recovery to be much closer to 100%. The above mentioned design and operational issues will likely be driven by the effects of noble metal contamination on fuel fabrication and performance. These effects will be presented in terms of thermal properties (expansion, conductivity, and fusion) and radioactivity considerations. Ultimately, the incorporation of minor amounts of noble metals from pyroprocessing into fast reactor metallic fuel

  7. Star-like copolymer stabilized noble-metal nanoparticle powders

    NASA Astrophysics Data System (ADS)

    Cao, Peng-Fei; Yan, Yun-Hui; Mangadlao, Joey Dacula; Rong, Li-Han; Advincula, Rigoberto

    2016-03-01

    The amphiphilic star-like copolymer polyethylenimine-block-poly(ε-caprolactone) (PEI-b-PCL) was utilized to transfer the pre-synthesized citrate-capped noble metal nanoparticles (NMNPs) from an aqueous layer to an organic layer without any additional reagents. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) were utilized to study the assembly of the polymers coated on the surface of the citrate-capped NMNPs. After removing the organic solvent, the polymer-coated NMNPs in powder form (PCP-NMNPs) were obtained. The excellent solubility of the PEI-b-PCL allows the PCP-NMNPs to be easily dispersed in most of the organic solvents without any significant aggregation. Moreover, the good thermal stability and long-term stability make PCP-NMNPs an excellent NMNP-containing hybrid system for different specific applications, such as surface coating, catalysis and thermoplastic processing of nanocomposite materials.The amphiphilic star-like copolymer polyethylenimine-block-poly(ε-caprolactone) (PEI-b-PCL) was utilized to transfer the pre-synthesized citrate-capped noble metal nanoparticles (NMNPs) from an aqueous layer to an organic layer without any additional reagents. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) were utilized to study the assembly of the polymers coated on the surface of the citrate-capped NMNPs. After removing the organic solvent, the polymer-coated NMNPs in powder form (PCP-NMNPs) were obtained. The excellent solubility of the PEI-b-PCL allows the PCP-NMNPs to be easily dispersed in most of the organic solvents without any significant aggregation. Moreover, the good thermal stability and long-term stability make PCP-NMNPs an excellent NMNP-containing hybrid system for different specific applications, such as surface coating, catalysis and thermoplastic processing of nanocomposite materials. Electronic supplementary information (ESI) available: Synthesis scheme and the 1H NMR spectrum of PEI

  8. Determination of noble metals in Savannah River Site high-level radioactive sludge

    SciTech Connect

    Coleman, C.J.; Kinard, W.F.; Bibler, N.E.; Bickford, D.F.; Ramsey, W.G.

    1990-01-01

    High-level radioactive sludge at the Savannah River Site (SRS) will be processed at the Defense Waste Processing Facility (DWPF) into durable borosilicate glass wasteforms. The sludges are analyzed for elemental content before processing to ensure compatibility with the glass-making processes. Noble metal fission products in sludge, can under certain conditions, cause problems in the glass melter. Therefore, reliable noble metal determinations are important. The scheme used to measure noble metals in SRS sludges consists of dissolving sludge with hot aqua regia followed by determinations with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and ICP-Mass Spectroscopy (ICP-MS) techniques. ICP-MS is the preferred method for measuring trace levels of noble metals in SRS radioactive waste because of superior sensitivity. Analytical results are presented for the two major types of SRS sludge.

  9. Determination of noble metals in Savannah River Site high-level radioactive sludge

    SciTech Connect

    Coleman, C.J.; Kinard, W.F.; Bibler, N.E.; Bickford, D.F.; Ramsey, W.G.

    1990-12-31

    High-level radioactive sludge at the Savannah River Site (SRS) will be processed at the Defense Waste Processing Facility (DWPF) into durable borosilicate glass wasteforms. The sludges are analyzed for elemental content before processing to ensure compatibility with the glass-making processes. Noble metal fission products in sludge, can under certain conditions, cause problems in the glass melter. Therefore, reliable noble metal determinations are important. The scheme used to measure noble metals in SRS sludges consists of dissolving sludge with hot aqua regia followed by determinations with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and ICP-Mass Spectroscopy (ICP-MS) techniques. ICP-MS is the preferred method for measuring trace levels of noble metals in SRS radioactive waste because of superior sensitivity. Analytical results are presented for the two major types of SRS sludge.

  10. CO oxidation studies over supported noble metal catalysts and single crystals: A review

    NASA Technical Reports Server (NTRS)

    Boecker, Dirk; Gonzalez, Richard D.

    1987-01-01

    The catalytic oxidation of CO over noble metal catalysts is reviewed. Results obtained on supported noble metal catalysts and single crystals both at high pressures and under UHV conditions are compared. The underlying causes which result in surface instabilities and multiple steady-state oscillations are considered, in particular, the occurrence of hot spots. CO islands of reactivity, surface oxide formation and phase transformations under oscillatory conditions are discussed.

  11. Study of performance characteristics of noble metal thermocouple materials to 2000 C

    NASA Technical Reports Server (NTRS)

    Freeze, P. D.; Thomas, D.; Edelman, S.; Stern, J.

    1972-01-01

    Three performance characteristics of noble metal thermocouples in various environments are discussed. Catalytic effects cause significant errors when noble metal thermocouple materials are exposed to air containing unburned gases in temperature ranges from 25 C to 1500 C. The thermoelectric stability of the iridium 40 rhodium to iridium thermocouple system at 2000 C in an oxidizing medium is described. The effects of large and small temperature gradients on the accuracy and stability of temperature measurements are analyzed.

  12. A new type of noble metal mineralization in the Northern Caucasus

    NASA Astrophysics Data System (ADS)

    Bogush, I. A.; Cherkashin, V. I.; Ryabov, G. V.; Abdullayev, M. Sh.

    2016-01-01

    The weathering crust of the Beden ultrabasite massif (the basin of Big Laba River) is identified and studied. Anomalously high contents of noble metals (Au, Pt, Pd) are revealed in the basal horizon of the Jurassic part of the weathering crust. For this reason we suspect an existence of a belt of noble metal miner-alization in the Paleozoic ultrabasites in the Peredovoi Range of the Northern Caucasus.

  13. Studies of noble-metal thermocouple stability at high temperatures

    NASA Technical Reports Server (NTRS)

    Freeze, P.; Thomas, D. B.

    1976-01-01

    Two investigatory studies on performance characteristics of noble-metal thermocouples are described. (1) thermoelectric stability as affected by preferential oxidation of iridium in the system iridium-40% rhodium versus iridium, and (2) the effects of temperature gradients on the emf stability of the systems platinum-13% rhodium versus platinum and iridium-40% rhodium versus iridium, operating in air. The stability investigation was carried out at three temperatures - 1700, 1850, and 2000 C - by comparing the output of the test thermocouple in air with the output of an identically constructed reference thermocouple in nitrogen. The results show that no calibration shift was observed producing a change in output greater than that corresponding to a 2.0% change in the indicated temperature for all samples tested. The investigation of gradient effects was carried out by subjecting test thermocouples to both severe and mild gradients for periods up to 200 hours. For the platinum system, the operating temperature was 1500 C with gradients of 1475 and 700 C/cm; for the iridium system, 2000 C with gradients of 700, 1500, and 1975 C/cm. Exposure to temperature gradients was found to introduce significant changes in calibration for both systems. In both investigations, the thermoelements were examined by means of electron-probe analysis and by metallographic methods to detect chemical and structural changes. Data and micrographs are presented.

  14. Recovery of Noble Metals and Technetium from Nuclear Waste

    SciTech Connect

    Moon, J.K.; Han, Y.J.; Lee, E.H.; Jung, C.H.; Lee, B.C.

    2006-07-01

    An adsorptive separation of Pd, Rh and Tc was tested by using simulated chemical solutions. Pd(NO{sub 3}){sub 2} and Rh(NO{sub 3}){sub 3} were used for the noble metal sources, and Re 203 after dissolving it in 0.5 M nitric acid was used for the technetium substitute, respectively. A felt type ACF (activated carbon fiber) after being pretreated with 1 M NaOH, and an EIR (extractant impregnated resin) which was prepared by impregnating Aliquat 336 onto Amberlite XAD-4 resin were evaluated on their adsorption equilibrium and kinetic performances. As the results, the ACF showed a high selectivity for the palladium ions over the rhodium and rhenium ions. On the other hand, the EIR was shown to be effective for separation of rhenium from the palladium-free two component system of rhenium and rhodium. Column tests were also performed to confirm the separation efficiency of palladium and rhenium using a jacketed glass column (diam. 11 x L 150). The ACF bed showed the complete separation of palladium from rhenium and rhodium. The breakthrough volume, when 1% of breakthrough is considered, was about 140 BV for palladium, while only a small amount of an adsorption of rhenium and rhodium were found in the column. Then the EIR column was applied to separate rhenium from rhodium and showed successful separation performance with about 122 BV of breakthrough volume. The palladium and rhenium with high purity were recovered effectively by eluting the beds with nitric acid. (authors)

  15. Epsilon Metal Waste Form for Immobilization of Noble Metals from Used Nuclear Fuel

    SciTech Connect

    Crum, Jarrod V.; Strachan, Denis M.; Rohatgi, Aashish; Zumhoff, Mac R.

    2013-10-01

    Epsilon metal (ε-metal), an alloy of Mo, Pd, Rh, Ru, and Tc, is being developed as a waste form to treat and immobilize the undissolved solids and dissolved noble metals from aqueous reprocessing of commercial used nuclear fuel. Epsilon metal is an attractive waste form for several reasons: increased durability relative to borosilicate glass, it can be fabricated without additives (100% waste loading), and in addition it also benefits borosilicate glass waste loading by eliminating noble metals from the glass and thus the processing problems related there insolubility in glass. This work focused on the processing aspects of the epsilon metal waste form development. Epsilon metal is comprised of refractory metals resulting in high reaction temperatures to form the alloy, expected to be 1500 - 2000°C making it a non-trivial phase to fabricate by traditional methods. Three commercially available advanced technologies were identified: spark-plasma sintering, microwave sintering, and hot isostatic pressing, and investigated as potential methods to fabricate this waste form. Results of these investigations are reported and compared in terms of bulk density, phase assemblage (X-ray diffraction and elemental analysis), and microstructure (scanning electron microscopy).

  16. Catalytic activity of noble metals for metal-assisted chemical etching of silicon

    NASA Astrophysics Data System (ADS)

    Yae, Shinji; Morii, Yuma; Fukumuro, Naoki; Matsuda, Hitoshi

    2012-06-01

    Metal-assisted chemical etching of silicon is an electroless method that can produce porous silicon by immersing metal-modified silicon in a hydrofluoric acid solution without electrical bias. We have been studying the metal-assisted hydrofluoric acid etching of silicon using dissolved oxygen as an oxidizing agent. Three major factors control the etching reaction and the porous silicon structure: photoillumination during etching, oxidizing agents, and metal particles. In this study, the influence of noble metal particles, silver, gold, platinum, and rhodium, on this etching is investigated under dark conditions: the absence of photogenerated charges in the silicon. The silicon dissolution is localized under the particles, and nanopores are formed whose diameters resemble the size of the metal nanoparticles. The etching rate of the silicon and the catalytic activity of the metals for the cathodic reduction of oxygen in the hydrofluoric acid solution increase in the order of silver, gold, platinum, and rhodium.

  17. Catalytic activity of noble metals for metal-assisted chemical etching of silicon

    PubMed Central

    2012-01-01

    Metal-assisted chemical etching of silicon is an electroless method that can produce porous silicon by immersing metal-modified silicon in a hydrofluoric acid solution without electrical bias. We have been studying the metal-assisted hydrofluoric acid etching of silicon using dissolved oxygen as an oxidizing agent. Three major factors control the etching reaction and the porous silicon structure: photoillumination during etching, oxidizing agents, and metal particles. In this study, the influence of noble metal particles, silver, gold, platinum, and rhodium, on this etching is investigated under dark conditions: the absence of photogenerated charges in the silicon. The silicon dissolution is localized under the particles, and nanopores are formed whose diameters resemble the size of the metal nanoparticles. The etching rate of the silicon and the catalytic activity of the metals for the cathodic reduction of oxygen in the hydrofluoric acid solution increase in the order of silver, gold, platinum, and rhodium. PMID:22738277

  18. Nanostructured elastomers: From smectic liquid crystals to noble metal nanocomposites

    NASA Astrophysics Data System (ADS)

    Lentz, Daniel M.

    Noble metal/polymer nanocomposites are a desirable and useful class of material due to their combination of the beneficial processibility and mechanical properties of polymers with the optical, electrical, barrier, and other engineering properties of metal nanoparticles. Potential applications of such materials include non-linear optical materials with gold nanoparticles or conductive polymer substrates with percolated silver nanoparticles. A processing approach has been developed whereby metal nanoparticles, especially silver and gold, can be infused into the surface of a thermoplastic elastomer following the melt processing operation. This reaction-diffusion approach (nanoinfusion) allows metal nanoparticles to be introduced at relatively low cost while avoiding the issues of thermal degradation, microphase separation, or agglomeration that can occur at elevated temperatures in the melt state. The nanoinfusion process involves immersion of a molded, cast, or extruded plastic article in an aqueous plasticizer solution (Bayer MaterialScience AURARTM Infusion Technology) containing a metal salt such as HAuCl4 or AgNO 3. Infusion of the metal salt into the plastic surface is achieved well below the melt-processing temperature due to plasticization of a thin surface layer of 10-500 microm. The metal salt is subsequently reduced to produce zero-valent metal nanoparticles by a second infusion of a reducing agent or a thermal or photochemical reduction process. The growth and agglomeration of the nanoparticles is arrested by the high viscosity of the polymer matrix, producing a stable nanocomposite. In order to examine how nanoparticle size distribution and concentration are affected by soak times in the salt and reducing agent solutions, combinatorial, high-throughput screening methods have been applied. Particle size distributions are characterized rapidly by small-angle x-ray scattering (SAXS) using a "dual gradient" nanoinfusion matrix. In addition, an improved

  19. A GREEN CHEMISTRY APPROACH TO PREPARATION OF CORE (FE OR CU)-SHELL (NOBLE METALS) NANOCOMPOSITES USING AQUEOUS ASCORBIC ACID

    EPA Science Inventory

    A greener method to fabricate novel core (Fe or Cu)-shell (noble metals) nanocomposites of transition metals such as Fe and Cu and noble metals such as Au, Pt, Pd, and Ag using aqueous ascorbic acid is described. Transition metal salts such as Cu and Fe were reduced using ascor...

  20. Effects of the atomic level shift in the Auger neutralization rates of noble metal surfaces

    PubMed Central

    Monreal, R.C.; Goebl, D.; Primetzhofer, D.; Bauer, P.

    2013-01-01

    In this work we compare characteristics of Auger neutralization of He+ ions at noble metal and free-electron metal surfaces. For noble metals, we find that the position of the energy level of He with respect to the Fermi level has a non-negligible influence on the values of the calculated Auger rates through the evaluation of the surface dielectric susceptibility. We conclude that even though our calculated rates are accurate, further theoretical effort is needed to obtain realistic values of the energy level of He in front of these surfaces. PMID:25843996

  1. Surface treatment of nanoporous silicon with noble metal ions and characterizations

    NASA Astrophysics Data System (ADS)

    Kanungo, J.; Maji, S.; Mandal, A. K.; Sen, S.; Bontempi, E.; Balamurugan, A. K.; Tyagi, A. K.; Uvdal, K.; Sinha, S.; Saha, H.; Basu, S.

    2010-04-01

    A very large surface to volume ratio of nanoporous silicon (PS) produces a high density of surface states, which are responsible for uncontrolled oxidation of the PS surface. Hence it disturbs the stability of the material and also creates difficulties in the formation of a reliable electrical contact. To passivate the surface states of the nanoporous silicon, noble metals (Pd, Ru, and Pt) were dispersed on the PS surface by an electroless chemical method. GIXRD (glancing incidence X-ray diffraction) proved the crystallinity of PS and the presence of noble metals on its surface. While FESEM (field emission scanning electron microscopy) showed the morphology, the EDX (energy dispersive X-ray) line scans and digital X-ray image mapping indicated the formation of the noble metal islands on the PS surface. Dynamic SIMS (secondary ion mass spectroscopy) further confirmed the presence of noble metals and other impurities near the surface of the modified PS. The variation of the surface roughness after the noble metal modification was exhibited by AFM (atomic force microscopy). The formation of a thin oxide layer on the modified PS surface was verified by XPS (X-ray photoelectron spectroscopy).

  2. Well-faceted noble-metal nanocrystals with nonconvex polyhedral shapes.

    PubMed

    Chen, Qiaoli; Jia, Yanyan; Xie, Shuifen; Xie, Zhaoxiong

    2016-06-01

    Precise engineering of noble-metal nanocrystals (NCs) is not only an important fundamental research topic, but also has great realistic significance in improving their performances required by the poor reserve and high cost of noble metals. Well-faceted noble-metal NCs with nonconvex polyhedral shapes could be promising candidates to optimize their performance and thus minimize their usage, as they may integrate a well-defined surface structure and a large surface area together, enabling them to have outstanding performance and high efficiency of atomic utilization. Moreover, undesirable aggregation and ripening phenomena could be avoided. This review provides a comprehensive summary of the unique characteristics and corresponding models of well-faceted nonconvex polyhedral noble-metal NCs by classifying the cases into four distinct types, namely the concave polyhedral structure, excavated polyhedral structure, branched structure and nanocage structure, respectively. Due to the complexity of nonconvex morphologies and the thermodynamic antipathy for the growth of nonconvex shaped NCs, we firstly demonstrate the structure characterization and synthetic methodology in detail. Subsequently, typical applications in electrocatalysis and plasmonic fields are presented to demonstrate the unique surface and morphological effects generated from the well-faceted nonconvex NCs. To promote further development in this field, the perspectives and challenges concerning well-faceted noble-metal NCs with nonconvex shapes are put forward in the end. PMID:27086861

  3. Nucleation and growth of noble metals on transition-metal di-tellurides

    NASA Astrophysics Data System (ADS)

    Hla, S. W.; Marinković, V.; Prodan, A.

    1997-04-01

    Transition-metal di-tellurides (α- and β-MoTe 2 and WTe 2) were used as substrates for nucleation and growth studies of noble metals. They represent a group of chemically closely related compounds with different surface topographies. Nucleation and growth of Ag and Au at room temperature were studied by means of UHV-STM, AFM and TEM. The results revealed that the growth and orientation of these metals are influenced by the topography of the substrate surfaces. Contrary to the growth on atomically flat α-MoTe 2, there is an enhanced diffusion and nucleation along the periodic surface troughs on β-MoTe 2 and WTe 2. The topography of their (001) surfaces is responsible for the orientation of metal (112) planes being parallel to the substrate surface.)

  4. Formation of noble metal nanocrystals in the presence of biomolecules

    NASA Astrophysics Data System (ADS)

    Burt, Justin Lockheart

    One of the most promising, yet least studied routes for producing biocompatible nanostructures involves synthesis in the presence of biomolecules. I hypothesized that globular proteins could provide a suitable framework to regulate the formation of noble metal nanocrystals. As proof of concept, I designed two novel synthesis protocols utilizing bovine serum albumin (BSA) protein to regulate the formation of gold nanocrystals. In the first case, the standard protocol for polyol reduction was modified by replacing ethylene glycol with glycerin, replacing synthetic polymers with BSA as protecting agent, and decreasing the reaction temperature. In the second case, the Brust-Schiffrin two-phase reduction was modified by replacing alkylthiols with BSA as protecting agent, which facilitated a strictly aqueous phase synthesis. Due to superior product yield and rapid reduction at room temperature, the aqueous protocol became the foundation for subsequent studies. I extended this approach to produce well-dispersed ˜2nm silver, gold, and platinum nanocrystals. Having demonstrated the feasibility of BSA-functionalized nanocrystals, some potential uses were explored. BSA-functionalized silver nanocrystals were employed in a broader study on the interaction of silver nanocrystals with HIV. BSA-functionalized gold nanocrystals were utilized for in vivo dosage of a contrast enhancing agent to bacteria. BSA-functionalized platinum nanocrystals were studied as hydrogenation catalysts. Since many intriguing uses for protein-functionalized nanocrystals involve incorporation into biosystems, I sought to enhance biocompatibility by using ascorbic acid as reducing agent. Initial experiments revealed elongated and branched nanocrystals. Such structures were not observed in previous synthesis protocols with BSA, so I hypothesized ascorbic acid was driving their formation. To test my assertion, I reduced ionic gold in an aqueous solution of ascorbic acid, thereby discovering a new method

  5. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals

    NASA Astrophysics Data System (ADS)

    Bernardi, Marco; Mustafa, Jamal; Neaton, Jeffrey B.; Louie, Steven G.

    2015-06-01

    Hot carriers (HC) generated by surface plasmon polaritons (SPPs) in noble metals are promising for application in optoelectronics, plasmonics and renewable energy. However, existing models fail to explain key quantitative details of SPP-to-HC conversion experiments. Here we develop a quantum mechanical framework and apply first-principles calculations to study the energy distribution and scattering processes of HCs generated by SPPs in Au and Ag. We find that the relative positions of the s and d bands of noble metals regulate the energy distribution and mean free path of the HCs, and that the electron-phonon interaction controls HC energy loss and transport. Our results prescribe optimal conditions for HC generation and extraction, and invalidate previously employed free-electron-like models. Our work combines density functional theory, GW and electron-phonon calculations to provide microscopic insight into HC generation and ultrafast dynamics in noble metals.

  6. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals.

    PubMed

    Bernardi, Marco; Mustafa, Jamal; Neaton, Jeffrey B; Louie, Steven G

    2015-01-01

    Hot carriers (HC) generated by surface plasmon polaritons (SPPs) in noble metals are promising for application in optoelectronics, plasmonics and renewable energy. However, existing models fail to explain key quantitative details of SPP-to-HC conversion experiments. Here we develop a quantum mechanical framework and apply first-principles calculations to study the energy distribution and scattering processes of HCs generated by SPPs in Au and Ag. We find that the relative positions of the s and d bands of noble metals regulate the energy distribution and mean free path of the HCs, and that the electron-phonon interaction controls HC energy loss and transport. Our results prescribe optimal conditions for HC generation and extraction, and invalidate previously employed free-electron-like models. Our work combines density functional theory, GW and electron-phonon calculations to provide microscopic insight into HC generation and ultrafast dynamics in noble metals. PMID:26033445

  7. Recent Advances in Shape-Controlled Synthesis of Noble Metal Nanoparticles by Radiolysis Route.

    PubMed

    Abedini, Alam; Bakar, Ahmad Ashrif A; Larki, Farhad; Menon, P Susthitha; Islam, Md Shabiul; Shaari, Sahbudin

    2016-12-01

    This paper focuses on the recent advances on radiolysis-assisted shape-controlled synthesis of noble metal nanostructures. The techniques and protocols for producing desirable shapes of noble metal nanoparticles are discussed through introducing the critical parameters which can influence the nucleation and growth mechanisms. Nucleation rate plays a vital role on the crystallinity of seeds while growth rate of different seeds' facets determines the final shape of resultant nanoparticles. Nucleation and growth rate both can be altered with factors such as absorbed dose, capping agents, and experimental environment condition to control the final shape. Remarkable physical and chemical properties of synthesized noble metal nanoparticles by controlled morphology have been systematically evaluated to fully explore their applications. PMID:27283051

  8. Functional Application of Noble Metal Nanoparticles In Situ Synthesized on Ramie Fibers

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Yao, Ya; Li, Jingliang; Qin, Si; Zhu, Haijin; Kaur, Jasjeet; Chen, Wu; Sun, Lu; Wang, Xungai

    2015-09-01

    Different functions were imparted to ramie fibers through treatment with noble metal nanoparticles including silver and gold nanoparticles. The in situ synthesis of silver and gold nanoparticles was achieved by heating in the presence of ramie fibers in the corresponding solutions of precursors. The unique optical property of synthesized noble metal nanoparticles, i.e., localized surface plasmon resonance, endowed ramie fibers with bright colors. Color strength (K/S) of fibers increased with heating temperature. Silver nanoparticles were obtained in alkaline solution, while acidic condition was conducive to gold nanoparticles. The optical properties of treated ramie fibers were investigated using UV-vis absorption spectroscopy. Scanning electron microscopy (SEM) was employed to observe the morphologies of silver and gold nanoparticles in situ synthesized on fibers. The ramie fibers treated with noble metal nanoparticles showed remarkable catalytic activity for reduction of 4-nitrophenol (4-NP) by sodium borohydride. Moreover, the silver nanoparticle treatment showed significant antibacterial property on ramie fibers.

  9. Recent Advances in Shape-Controlled Synthesis of Noble Metal Nanoparticles by Radiolysis Route

    NASA Astrophysics Data System (ADS)

    Abedini, Alam; Bakar, Ahmad Ashrif A.; Larki, Farhad; Menon, P. Susthitha; Islam, Md. Shabiul; Shaari, Sahbudin

    2016-06-01

    This paper focuses on the recent advances on radiolysis-assisted shape-controlled synthesis of noble metal nanostructures. The techniques and protocols for producing desirable shapes of noble metal nanoparticles are discussed through introducing the critical parameters which can influence the nucleation and growth mechanisms. Nucleation rate plays a vital role on the crystallinity of seeds while growth rate of different seeds' facets determines the final shape of resultant nanoparticles. Nucleation and growth rate both can be altered with factors such as absorbed dose, capping agents, and experimental environment condition to control the final shape. Remarkable physical and chemical properties of synthesized noble metal nanoparticles by controlled morphology have been systematically evaluated to fully explore their applications.

  10. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals

    PubMed Central

    Bernardi, Marco; Mustafa, Jamal; Neaton, Jeffrey B.; Louie, Steven G.

    2015-01-01

    Hot carriers (HC) generated by surface plasmon polaritons (SPPs) in noble metals are promising for application in optoelectronics, plasmonics and renewable energy. However, existing models fail to explain key quantitative details of SPP-to-HC conversion experiments. Here we develop a quantum mechanical framework and apply first-principles calculations to study the energy distribution and scattering processes of HCs generated by SPPs in Au and Ag. We find that the relative positions of the s and d bands of noble metals regulate the energy distribution and mean free path of the HCs, and that the electron–phonon interaction controls HC energy loss and transport. Our results prescribe optimal conditions for HC generation and extraction, and invalidate previously employed free-electron-like models. Our work combines density functional theory, GW and electron–phonon calculations to provide microscopic insight into HC generation and ultrafast dynamics in noble metals. PMID:26033445

  11. Nano-structured noble metal catalysts based on hexametallate architecture for the reforming of hydrocarbon fuels

    DOEpatents

    Gardner, Todd H.

    2015-09-15

    Nano-structured noble metal catalysts based on hexametallate lattices, of a spinel block type, and which are resistant to carbon deposition and metal sulfide formation are provided. The catalysts are designed for the reforming of hydrocarbon fuels to synthesis gas. The hexametallate lattices are doped with noble metals (Au, Pt, Rh, Ru) which are atomically dispersed as isolated sites throughout the lattice and take the place of hexametallate metal ions such as Cr, Ga, In, and/or Nb. Mirror cations in the crystal lattice are selected from alkali metals, alkaline earth metals, and the lanthanide metals, so as to reduce the acidity of the catalyst crystal lattice and enhance the desorption of carbon deposit forming moieties such as aromatics. The catalysts can be used at temperatures as high as 1000.degree. C. and pressures up to 30 atmospheres. A method for producing these catalysts and applications of their use also is provided.

  12. Vitrification of noble metals containing NCAW simulant with an engineering scale melter (ESM): Campaign report

    SciTech Connect

    Grunewald, W.; Roth, G.; Tobie, W.; Weisenburger, S.; Weiss, K.; Elliott, M.; Eyler, L.L.

    1996-03-01

    ESM has been designed as a 10th-scale model of the DWPF-type melter, currently the reference melter for nitrification of Hanford double shell tankwaste. ESM and related equipment have been integrated to the existing mockup vitrification plant VA-WAK at KfK. On June 2-July 10, 1992, a shakedown test using 2.61 m{sup 3} of NCAW (neutralized current acid waste) simulant without noble metals was performed. On July 11-Aug. 30, 1992, 14.23 m{sup 3} of the same simulant with nominal concentrations of Ru, Rh, and Pd were vitrified. Objective was to investigate the behavior of such a melter with respect to discharge of noble metals with routine glass pouring via glass overflow. Results indicate an accumulation of noble metals in the bottom area of the flat-bottomed ESM. About 65 wt% of the noble metals fed to the melter could be drained out, whereas 35 wt% accumulated in the melter, based on analysis of glass samples from glass pouring stream in to the canisters. After the melter was drained at the end of the campaign through a bottom drain valve, glass samples were taken from the residual bottom layer. The samples had significantly increased noble metals content (factor of 20-45 to target loading). They showed also a significant decrease of the specific electric resistance compared to bulk glass (factor of 10). A decrease of 10- 15% of the resistance between he power electrodes could be seen at the run end, but the total amount of noble metals accumulated was not yet sufficient enough to disturb the Joule heating of the glass tank severely.

  13. Solid polymer electrolyte composite membrane comprising a porous support and a solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide

    SciTech Connect

    Liu, Han; Mittelsteadt, Cortney K; Norman, Timothy J; Griffith, Arthur E; LaConti, Anthony B

    2015-02-24

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.

  14. Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies

    PubMed Central

    Cong, Shan; Yuan, Yinyin; Chen, Zhigang; Hou, Junyu; Yang, Mei; Su, Yanli; Zhang, Yongyi; Li, Liang; Li, Qingwen; Geng, Fengxia; Zhao, Zhigang

    2015-01-01

    Surface-enhanced Raman spectroscopy (SERS) represents a very powerful tool for the identification of molecular species, but unfortunately it has been essentially restricted to noble metal supports (Au, Ag and Cu). While the application of semiconductor materials as SERS substrate would enormously widen the range of uses for this technique, the detection sensitivity has been much inferior and the achievable SERS enhancement was rather limited, thereby greatly limiting the practical applications. Here we report the employment of non-stoichiometric tungsten oxide nanostructure, sea urchin-like W18O49 nanowire, as the substrate material, to magnify the substrate–analyte molecule interaction, leading to significant magnifications in Raman spectroscopic signature. The enrichment of surface oxygen vacancy could bring additional enhancements. The detection limit concentration was as low as 10−7 M and the maximum enhancement factor was 3.4 × 105, in the rank of the highest sensitivity, to our best knowledge, among semiconducting materials, even comparable to noble metals without ‘hot spots'. PMID:26183467

  15. Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies

    NASA Astrophysics Data System (ADS)

    Cong, Shan; Yuan, Yinyin; Chen, Zhigang; Hou, Junyu; Yang, Mei; Su, Yanli; Zhang, Yongyi; Li, Liang; Li, Qingwen; Geng, Fengxia; Zhao, Zhigang

    2015-07-01

    Surface-enhanced Raman spectroscopy (SERS) represents a very powerful tool for the identification of molecular species, but unfortunately it has been essentially restricted to noble metal supports (Au, Ag and Cu). While the application of semiconductor materials as SERS substrate would enormously widen the range of uses for this technique, the detection sensitivity has been much inferior and the achievable SERS enhancement was rather limited, thereby greatly limiting the practical applications. Here we report the employment of non-stoichiometric tungsten oxide nanostructure, sea urchin-like W18O49 nanowire, as the substrate material, to magnify the substrate-analyte molecule interaction, leading to significant magnifications in Raman spectroscopic signature. The enrichment of surface oxygen vacancy could bring additional enhancements. The detection limit concentration was as low as 10-7 M and the maximum enhancement factor was 3.4 × 105, in the rank of the highest sensitivity, to our best knowledge, among semiconducting materials, even comparable to noble metals without `hot spots'.

  16. The Behavior and Effects of the Noble Metals in the DWPF Melter System

    SciTech Connect

    Smith, M.E.; Bickford, D.F.

    1997-11-30

    Governments worldwide have committed to stabilization of high-level nuclear waste (HLW) by vitrification to a durable glass form for permanent disposal. All of these nuclear wastes contain the fission-product noble metals: ruthenium, rhodium, and palladium. SRS wastes also contain natural silver from iodine scrubbers. Closely associated with the noble metals are the fission products selenium and tellurium which are chemical analogs of sulfur and which combine with noble metals to influence their behavior and properties. Experience has shown that these melt insoluble metals and their compounds tend to settle to the floor of Joule-heated ceramic melters. In fact, almost all of the major research and production facilities have experienced some operational problem which can be associated with the presence of dense accumulations of these relatively conductive metals and/or their compounds. In most cases, these deposits have led to a loss of production capability, in some cases, to the point that melter operation could not continue. HLW nuclear waste vitrification facilities in the United States are the Department of Energy`s Defense Waste Processing Facility (DWPF) at the Savannah River Site, the planned Hanford Waste Vitrification Plant (HWVP) at the Hanford Site and the operating West Valley Demonstration Project (WVDP) at West Valley, NY. The Integrated DWPF Melter System (IDMS) is a vitrification test facility at the Savannah River Technology Center (SRTC). It was designed and constructed to provide an engineering-scale representation of the DWPF melter and its associated feed preparation and off-gas treatment systems. An extensive noble metals testing program was begun in 1990. The objectives of this task were to explore the effects of the noble metals on the DWPF melter feed preparation and waste vitrification processes. This report focuses on the vitrification portion of the test program.

  17. Ligand-Assisted Co-Assembly Approach toward Mesoporous Hybrid Catalysts of Transition-Metal Oxides and Noble Metals: Photochemical Water Splitting.

    PubMed

    Liu, Ben; Kuo, Chung-Hao; Chen, Jiejie; Luo, Zhu; Thanneeru, Srinivas; Li, Weikun; Song, Wenqiao; Biswas, Sourav; Suib, Steven L; He, Jie

    2015-07-27

    A bottom-up synthetic approach was developed for the preparation of mesoporous transition-metal-oxide/noble-metal hybrid catalysts through ligand-assisted co-assembly of amphiphilic block-copolymer micelles and polymer-tethered noble-metal nanoparticles (NPs). The synthetic approach offers a general and straightforward method to precisely tune the sizes and loadings of noble-metal NPs in metal oxides. This system thus provides a solid platform to clearly understand the role of noble-metal NPs in photochemical water splitting. The presence of trace amounts of metal NPs (≈0.1 wt %) can enhance the photocatalytic activity for water splitting up to a factor of four. The findings can conceivably be applied to other semiconductors/noble-metal catalysts, which may stand out as a new methodology to build highly efficient solar energy conversion systems. PMID:26073465

  18. Electrocatalytic oxidation of small organic molecules in acid medium: enhancement of activity of noble metal nanoparticles and their alloys by supporting or modifying them with metal oxides

    PubMed Central

    Kulesza, Pawel J.; Pieta, Izabela S.; Rutkowska, Iwona A.; Wadas, Anna; Marks, Diana; Klak, Karolina; Stobinski, Leszek; Cox, James A.

    2013-01-01

    Different approaches to enhancement of electrocatalytic activity of noble metal nanoparticles during oxidation of small organic molecules (namely potential fuels for low-temperature fuel cells such as methanol, ethanol and formic acid) are described. A physical approach to the increase of activity of catalytic nanoparticles (e.g. platinum or palladium) involves nanostructuring to obtain highly dispersed systems of high surface area. Recently, the feasibility of enhancing activity of noble metal systems through the formation of bimetallic (e.g. PtRu, PtSn, and PdAu) or even more complex (e.g. PtRuW, PtRuSn) alloys has been demonstrated. In addition to possible changes in the electronic properties of alloys, specific interactions between metals as well as chemical reactivity of the added components have been postulated. We address and emphasize here the possibility of utilization of noble metal and alloyed nanoparticles supported on robust but reactive high surface area metal oxides (e.g. WO3, MoO3, TiO2, ZrO2, V2O5, and CeO2) in oxidative electrocatalysis. This paper concerns the way in which certain inorganic oxides and oxo species can act effectively as supports for noble metal nanoparticles or their alloys during electrocatalytic oxidation of hydrogen and representative organic fuels. Among important issues are possible changes in the morphology and dispersion, as well as specific interactions leading to the improved chemisorptive and catalytic properties in addition to the feasibility of long time operation of the discussed systems. PMID:24443590

  19. Letter Report on the Issue of Noble Metals in the DWPF Melter

    SciTech Connect

    Hutson, N.D.

    2001-09-05

    This report presents some historical data from the radioactive operation of the DWPF melter. Some of the data seem to indication that the melter is displaying symptoms that may be linked to accumulation of noble metal or other conductive material on the melter floor. The complex and often competing effects of waste composition, glass pool temperatures, and operating conditions must also be considered.

  20. Carbonaceous adsorbents from caking coals for the extraction of noble metals

    SciTech Connect

    Kostomarova, M.A.; Surinova, S.I.

    1983-01-01

    The authors examine the sorption and mechanical properties of spherical adsorbents obtained from Kuzbass caking coal using an IGI method. An investigation has also been made of the sorption kinetics of gold and silver. It was found that spherical adsorbent pellets of this kind are capable of extracting noble metals from ore pulps. (1 ref.)

  1. Noble Metal Decoration and Alignment of Carbon Nanotubes in Carboxymethyl Cellulose

    EPA Science Inventory

    A facile microwave (MW) method is described that accomplishes alignment and decoration of noble metals on carbon nanotubes wrapped with carboxymethyl cellulose (CMC). Carbon nanotubes (CNTs) such as single-wall (SWNT), multi-wall (MWNT) and Buckminsterfullerene (C-60) were well ...

  2. Acid Strength and Bifunctional Catalytic Behavior of Alloys Comprised of Noble Metals and Oxophilic Metal Promoters

    SciTech Connect

    Hibbitts, David D.; Tan, Qiaohua; Neurock, Matthew

    2014-06-01

    The promotion of metal catalysts with partially oxidized oxophilic MOx species, such as ReOx-promoted Rh, has been demonstrated to produce Brønsted acid sites that can promote hydrogenolysis of oxygenate intermediates such as those found in biomass-derived species. A wide variety of alloy compositions and structures are examined in this work to investigate strongly acidic promoters by using DFT-calculated deprotonation energies (DPE) as a measure of acid strength. Sites with the highest acid strength had DPE less than 1100 kJ mol-1, similar to DPE values of heteropolyacids or acid-containing zeolites, and were found on alloys composed of an oxophilic metal (such as Re or W) with a noble metal (such as Rh or Pt). NH3 adsorbs more strongly to sites with increasing acid strength and the activation barriers for acid-catalyzed ring opening of a furan ring decrease with increasing acid strength, which was also shown to be stronger for OH acid sites bound to multiple oxophilic metal atoms in a three-fold configuration rather than OH sites adsorbed in an atop configuration on one oxophilic metal, indicating that small MOx clusters may yield sites with the highest acid strength.

  3. Techniques for the quantitative analysis of fission-product noble metals

    SciTech Connect

    Lautensleger, A.W.; Hara, F.T.

    1982-08-01

    Analytical procedures for the determination of ruthenium, rhodium, and palladium in precursor waste, solvent metal, and final glass waste forms have been developed. Two procedures for the analysis of noble metals in the calcine and glass waste forms are described in this report. The first is a fast and simple technique that combines inductively coupled argon plasma atomic emission spectrometry (ICP) and x-ray fluorescence techniques and can only be used on nonradioactive materials. The second procedure is based on a noble metal separation step, followed by an analysis using ICP. This second method is more complicated than the first, but it will work on radioactive materials. Also described is a procedure for the ICP analysis of noble metals in the solvent metal matrix. The only solvent metal addressed in this procedure is lead, but with minor changes the procedure could be applied to any of the solvent metals being considered in the Pacific Northwest Laboratory (PNL) extraction process. A brief explanation of atomic spectroscopy and the ICP analytical process, as well as of certain aspects of ICP performance (interelement spectral line interferences and certain matrix effects) is given.

  4. Noble metal nanodisks epitaxially formed on ZnO nanorods and their effect on photoluminescence

    NASA Astrophysics Data System (ADS)

    Chu, Sheng; Ren, Jingjian; Yan, Dong; Huang, Jian; Liu, Jianlin

    2012-07-01

    Triangular and hexagonal shaped noble metal (Au, Ag, Pt, Pd) nanodisks were synthesized on the top facets of ZnO nanorods via simple deposition-annealing method. Other metals (Ni, Cu, Cr, Pb, Al) only formed irregular shaped nanostructures on ZnO nanorods. The morphology, elemental composition, as well as growth mechanism of the metal nanodisks/ZnO nanorod composite materials were studied. The localized surface plasmon resonant effects from different metal nanodisks on the photoluminescence of ZnO nanorods were investigated. It was demonstrated that the carriers transfer between the metal nanodisks and ZnO can efficiently manipulate the photoluminescence intensities from the nanorods.

  5. Electrodeposited noble metal particles in polyelectrolyte multilayer matrix as electrocatalyst for oxygen reduction studied using SECM.

    PubMed

    Shen, Yan; Träuble, Markus; Wittstock, Gunther

    2008-07-01

    Taking the advantage of the stability and penetrability of polyelectrolyte films formed by layer-by-layer (LbL) deposition, noble metal particles of Pd and Pt were fabricated in a preformed polyeletrolyte multilayer film by galvanic deposition. The metal deposition occurred as metal particles and they were tested for their properties as electrocatalyst for oxygen reduction. Atomic force microscopy (AFM) was used to characterize the morphology of the particle films. The noble metal particles were investigated by cyclic voltammetry (CV) and scanning electrochemical microscopy (SECM) with respect to oxygen reduction. The results show that the electrocatalytic properties of the Pd particle film can be adjusted by the electrodeposition time. The hydrogen peroxide formed as an intermediate during electroreduction of dioxygen was conveniently measured in the SECM using the substrate-generation/tip-collection mode. The relevance of the main reduction pathways could be extracted from fitting the current transients to an analytical model. PMID:18563224

  6. Preliminary investigation of a technique to separate fission noble metals from fission product mixtures

    SciTech Connect

    Mellinger, G.B.; Jensen, G.A.

    1982-08-01

    A variation of the gold-ore fire assay technique was examined as a method for recovering Pd, Rh and Ru from fission products. The mixture of fission product oxides is combined with glass-forming chemicals, a metal oxide such as PbO (scavenging agent), and a reducing agent such as charcoal. When this mixture is melted, a metal button is formed which extracts the noble metals. The remainder cools to form a glass for nuclear waste storage. Recovery depended only on reduction of the scavenger oxide to metal. When such reduction was achieved, no difference in noble metal recovery efficiency was found among the scavengers studied (PbO, SnO, CuO, Bi/sub 2/O/sub 3/, Sb/sub 2/O/sub 3/). Not all reducing agents studied, however, were able to reduce all scavenger oxides to metal. Only graphite would reduce SnO and CuO and allow noble metal recovery. The scavenger oxides Sb/sub 2/O/sub 3/, Bi/sub 2/O/sub 3/, and PbO, however, were reduced by all of the reducing agents tested. Similar noble metal recovery was found with each. Lead oxide was found to be the most promising of the potential scavengers. It was reduced by all of the reducing agents tested, and its higher density may facilitate the separation. Use of lead oxide also appeared to have no deterimental effect on the glass quality. Charcoal was identified as the preferred reducing agent. As long as a separable metal phase was formed in the melt, noble metal recovery was not dependent on the amount of reducing agent and scavenger oxide. High glass viscosities inhibited separation of the molten scavenger, while low viscosities allowed volatile loss of RuO/sub 4/. A viscosity of approx. 20 poise at the processing temperature offered a good compromise between scavenger separation and Ru recovery. Glasses in which PbO was used as the scavenging agent were homogeneous in appearance. Resistance to leaching was close to that of certain waste glasses reported in the literature. 12 figures. 7 tables.

  7. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    NASA Astrophysics Data System (ADS)

    Liu, X. H.; Luo, H.; Qu, T. L.; Yang, K. Y.; Ding, Z. C.

    2015-10-01

    We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of 87Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the 87Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the 87Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system.

  8. Highly selective electrodeposition of sub-10 nm crystalline noble metallic nanorods inside vertically aligned multiwall carbon nanotubes.

    PubMed

    Wang, Xuyang; Wang, Ranran; Wu, Qiang; Zhang, Xiaohua; Yang, Zhaohui; Guo, Jun; Chen, Muzi; Tang, Minghua; Cheng, Yajun; Chu, Haibin

    2016-07-01

    In this paper crystalline noble metallic nanorods including Au and Ag with sub-10 nm diameter, are encapsulated within prealigned and open-ended multiwall carbon nanotubes (MWCNTs) through an electrodeposition method. As the external surface of CNTs has been insulated by the epoxy the CNT channel becomes the only path for the mass transport as well as the nanoreactor for the metal deposition. Highly crystallized Au and Ag2O nanorods parallel to the radial direction of CNTs are confirmed by high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy and x-ray powder diffraction spectroscopy. The Ag2O nanorods are formed by air oxidation on the Ag metals and show a single crystalline structure with (111) planes. The Au nanorods exhibit a complex crystalline structure including twin-crystal and lattice dislocation with (111) and (200) planes. These crystalline noble metallic nanostructures may have important applications for nanocatalysts for fuel cells as well as nanoelectronic and nanophotonic devices. This method is deemed to benefit the precise deposition of other crystalline nanostructures inside CNTs with a small diameter. PMID:27240546

  9. Highly selective electrodeposition of sub-10 nm crystalline noble metallic nanorods inside vertically aligned multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Xuyang; Wang, Ranran; Wu, Qiang; Zhang, Xiaohua; Yang, Zhaohui; Guo, Jun; Chen, Muzi; Tang, Minghua; Cheng, Yajun; Chu, Haibin

    2016-07-01

    In this paper crystalline noble metallic nanorods including Au and Ag with sub-10 nm diameter, are encapsulated within prealigned and open-ended multiwall carbon nanotubes (MWCNTs) through an electrodeposition method. As the external surface of CNTs has been insulated by the epoxy the CNT channel becomes the only path for the mass transport as well as the nanoreactor for the metal deposition. Highly crystallized Au and Ag2O nanorods parallel to the radial direction of CNTs are confirmed by high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy and x-ray powder diffraction spectroscopy. The Ag2O nanorods are formed by air oxidation on the Ag metals and show a single crystalline structure with (111) planes. The Au nanorods exhibit a complex crystalline structure including twin-crystal and lattice dislocation with (111) and (200) planes. These crystalline noble metallic nanostructures may have important applications for nanocatalysts for fuel cells as well as nanoelectronic and nanophotonic devices. This method is deemed to benefit the precise deposition of other crystalline nanostructures inside CNTs with a small diameter.

  10. Cálculo del esfuerzo ideal de metales nobles mediante primeros principios en la dirección <100>

    NASA Astrophysics Data System (ADS)

    Bautista-Hernández, A.; López-Fuentes, M.; Pacheco-Espejel, V.; Rivas-Silva, J. F.

    2005-04-01

    We present calculations of the ideal strength on the < 100 > direction for noble metals (Cu, Ag and Au), by means of first principles calculations. First, we obtain the structural parameters (cell parameters, bulk modulus) for each studied metal. We deform on the < 100 > direction calculating the total energy and the stress tensor through the Hellman-Feynman theorem, by the relaxation of the unit cell in the perpendicular directions to the deformation one. The calculated cell constants differ 1.3 % from experimental data. The maximum ideal strength are 29.6, 17 and 19 GPa for Cu, Ag and Au respectively. Meanwhile, the calculated elastic modulus are 106 (Cu), 71 (Ag), and 45 GPa (Au) and are in agreement with the experimental values for polycrystalline samples. The values of maximum strength are explained by the optimum volume values due to the atomic radius size for each element.

  11. Process for making a noble metal on tin oxide catalyst

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T. (Inventor); Davis, Patricia (Inventor); Miller, Irvin M. (Inventor)

    1989-01-01

    A quantity of reagent grade tin metal or compound, chloride-free, and high-surface-area silica spheres are placed in deionized water, followed by deaerating the mixture by boiling and adding an oxidizing agent, such as nitric acid. The nitric acid oxidizes the tin to metastannic acid which coats the spheres because the acid is absorbed on the substrate. The metastannic acid becomes tin oxide upon drying and calcining. The tin-oxide coated silica spheres are then placed in water and boiled. A chloride-free precious metal compound in aqueous solution is then added to the mixture containing the spheres, and the precious metal compound is reduced to a precious metal by use of a suitable reducing agent such as formic acid. Very beneficial results were obtained using the precious metal compound tetraammine platinum(II) hydroxide.

  12. A review of dry (CO2) reforming of methane over noble metal catalysts.

    PubMed

    Pakhare, Devendra; Spivey, James

    2014-11-21

    Dry (CO2) reforming of methane (DRM) is a well-studied reaction that is of both scientific and industrial importance. This reaction produces syngas that can be used to produce a wide range of products, such as higher alkanes and oxygenates by means of Fischer-Tropsch synthesis. DRM is inevitably accompanied by deactivation due to carbon deposition. DRM is also a highly endothermic reaction and requires operating temperatures of 800-1000 °C to attain high equilibrium conversion of CH4 and CO2 to H2 and CO and to minimize the thermodynamic driving force for carbon deposition. The most widely used catalysts for DRM are based on Ni. However, many of these catalysts undergo severe deactivation due to carbon deposition. Noble metals have also been studied and are typically found to be much more resistant to carbon deposition than Ni catalysts, but are generally uneconomical. Noble metals can also be used to promote the Ni catalysts in order to increase their resistance to deactivation. In order to design catalysts that minimize deactivation, it is necessary to understand the elementary steps involved in the activation and conversion of CH4 and CO2. This review will cover DRM literature for catalysts based on Rh, Ru, Pt, and Pd metals. This includes the effect of these noble metals on the kinetics, mechanism and deactivation of these catalysts. PMID:24504089

  13. Orbital control of Rashba spin orbit coupling in noble metal surfaces

    NASA Astrophysics Data System (ADS)

    Gong, Shi-Jing; Cai, Jia; Yao, Qun-Fang; Tong, Wen-Yi; Wan, Xiangang; Duan, Chun-Gang; Chu, J. H.

    2016-03-01

    Rashba spin orbit coupling (SOC) in noble metal surfaces is of great importance for the application of metal films in spintronic devices. By combining the density-functional theory calculations with our recently developed orbital selective external potential method, we investigate the Rashba SOC in the Shockley surface states of Au(111) and Ag(111). We find that the large Rashba SOC in the sp-character surface states of Au(111) is mainly contributed by the minor d-orbitals in the surface states. While for the sd-character surface states, although they are dominated by the d-orbitals, Rashba splitting is found to be rather small. Band structure analysis reveals that this is mainly because the sd-character surface states are well below the Fermi level and can be less influenced by the asymmetric surface potential. We demonstrate that the Rashba SOC in noble metal surfaces can be effectively manipulated by shifting the d-orbitals in the surface states, which can be physically implemented through surface decoration. Our investigation provides a deep understanding on Rashba SOC in noble metal surfaces and could be helpful to their applications in spintronic devices.

  14. Electrochemical synthesis of elongated noble metal nanoparticles, such as nanowires and nanorods, on high-surface area carbon supports

    SciTech Connect

    Adzic, Radoslav; Blyznakov, Stoyan; Vukmirovic, Miomir

    2015-08-04

    Elongated noble-metal nanoparticles and methods for their manufacture are disclosed. The method involves the formation of a plurality of elongated noble-metal nanoparticles by electrochemical deposition of the noble metal on a high surface area carbon support, such as carbon nanoparticles. Prior to electrochemical deposition, the carbon support may be functionalized by oxidation, thus making the manufacturing process simple and cost-effective. The generated elongated nanoparticles are covalently bound to the carbon support and can be used directly in electrocatalysis. The process provides elongated noble-metal nanoparticles with high catalytic activities and improved durability in combination with high catalyst utilization since the nanoparticles are deposited and covalently bound to the carbon support in their final position and will not change in forming an electrode assembly.

  15. Ligand-Free Noble Metal Nanocluster Catalysts on Carbon Supports via "Soft" Nitriding.

    PubMed

    Liu, Ben; Yao, Huiqin; Song, Wenqiao; Jin, Lei; Mosa, Islam M; Rusling, James F; Suib, Steven L; He, Jie

    2016-04-13

    We report a robust, universal "soft" nitriding method to grow in situ ligand-free ultrasmall noble metal nanocatalysts (UNMN; e.g., Au, Pd, and Pt) onto carbon. Using low-temperature urea pretreatment at 300 °C, soft nitriding enriches nitrogen-containing species on the surface of carbon supports and enhances the affinity of noble metal precursors onto these supports. We demonstrated sub-2-nm, ligand-free UNMNs grown in situ on seven different types of nitrided carbons with no organic ligands via chemical reduction or thermolysis. Ligand-free UNMNs supported on carbon showed superior electrocatalytic activity for methanol oxidation compared to counterparts with surface capping agents or larger nanocrystals on the same carbon supports. Our method is expected to provide guidelines for the preparation of ligand-free UNMNs on a variety of supports and, additionally, to broaden their applications in energy conversion and electrochemical catalysis. PMID:27014928

  16. Reactive Gas Environment Induced Structural Modification of Noble-Transition Metal Alloy Nanoparticles

    NASA Astrophysics Data System (ADS)

    Petkov, V.; Yang, L.; Yin, J.; Loukrakpam, R.; Shan, S.; Wanjala, B.; Luo, J.; Chapman, K. W.; Zhong, C. J.

    2012-09-01

    Noble-transition metal (noble=Pt,Au; transition=Co,Ni,Cu) alloy particles with sizes of about 5 nm have been studied by in situ high-energy x-ray diffraction while subjected to oxidizing (O2) and reducing (H2) gas atmospheres at elevated temperatures. The different gas atmospheres do not affect substantially the random alloy, face-centered-cubic structure type of the particles but do affect the way the metal atoms pack together. In an O2 atmosphere, atoms get extra separated from each other, whereas, in an H2 atmosphere, they come closer together. The effect is substantial, amounting to 0.1 Å difference in the first neighbor atomic distances, and concurs with a dramatic change of the particle catalytic properties. It is argued that such reactive gas induced “expansion shrinking” is a common phenomenon that may be employed for the engineering of “smart” nanoparticles responding advantageously to envisaged gas environments.

  17. Two types of noble metal mineralization in the Kaalamo massif (Karelia)

    NASA Astrophysics Data System (ADS)

    Ivashchenko, V. I.; Ruchyev, A. M.; Golubev, A. I.

    2016-05-01

    Noble metal mineralization of the syngenetic (Southern Kaalamo) and epigenetic (Surisuo) types are defined in the Kaalamo massif. The ƩPt, Pd, Au content is as high as 0.9-1.1 g/t. Syngenetic mineralization started at the late magmatic stage (at around 800°C) gradually evolving to cease during the hydrothermal-metasomatic stage (<271°C). Epigenetic mineralization was formed at temperatures ranging from 500 to <230°C in zones of intense shear deformations and low-temperature metasomatosis during the collisional stage of the Svecofennian tectono-magmatic cycle (approximately 1.85 Ga ago). Taking into consideration the geological position of the Kaalamo massif in the Raakhe-Ladoga metallogenic zone with widely developed intense shear dislocations, the epigenetic mineralization type seems to be more promising with respect to noble metals.

  18. Noble Metal Catalysts for Mercury Oxidation in Utility Flue Gas: Gold, Palladium and Platinum Formulations

    SciTech Connect

    Presto, A.A.; Granite, E.J

    2008-07-01

    The use of noble metals as catalysts for mercury oxidation in flue gas remains an area of active study. To date, field studies have focused on gold and palladium catalysts installed at pilot scale. In this article, we introduce bench-scale experimental results for gold, palladium and platinum catalysts tested in realistic simulated flue gas. Our initial results reveal some intriguing characteristics of catalytic mercury oxidation and provide insight for future research into this potentially important process.

  19. Decoration of diatom biosilica with noble metal and semiconductor nanoparticles (<10 nm): assembly, characterization, and applications.

    PubMed

    Jantschke, Anne; Herrmann, Anne-Kristin; Lesnyak, Vladimir; Eychmüller, Alexander; Brunner, Eike

    2012-01-01

    Diatom-templated noble metal (Ag, Pt, Au) and semiconductor (CdTe) nanoparticle arrays were synthesized by the attachment of prefabricated nanoparticles of defined size. Two different attachment techniques-layer-by-layer deposition and covalent linking-could successfully be applied. The synthesized arrays were shown to be useful for surface-enhanced Raman spectroscopy (SERS) of components, for catalysis, and for improved image quality in scanning electron microscopy (SEM). PMID:22102484

  20. Photocatalytic CO2 conversion over alkali modified TiO2 without loading noble metal cocatalyst.

    PubMed

    Meng, Xianguang; Ouyang, Shuxin; Kako, Tetsuya; Li, Peng; Yu, Qing; Wang, Tao; Ye, Jinhua

    2014-10-01

    Surface modification of TiO2 with NaOH promoted the chemisorption, activation and photocatalytic CO2 reduction. An optimized loading amount of NaOH kept a good balance between CO2 chemisorption quantity and BET surface area of TiO2. This noble metal free method provides a simple pathway for effective multiple H(+)/e(-) CO2 photoreduction. PMID:25130434

  1. Catalytic activities of noble metal atoms on WO3 (001): nitric oxide adsorption.

    PubMed

    Ren, Xiaoyan; Zhang, Shuai; Li, Chong; Li, Shunfang; Jia, Yu; Cho, Jun-Hyung

    2015-01-01

    Using first-principles density functional theory calculations within the generalized gradient approximation, we investigate the adsorption of NO molecule on a clean WO3(001) surface as well as on the noble metal atom (Cu, Ag, and Au)-deposited WO3(001) surfaces. We find that on a clean WO3 (001) surface, the NO molecule binds to the W atom with an adsorption energy (E ads) of -0.48 eV. On the Cu- and Ag-deposited WO3(001) surface where such noble metal atoms prefer to adsorb on the hollow site, the NO molecule also binds to the W atom with E ads = -1.69 and -1.41 eV, respectively. This relatively stronger bonding of NO to the W atom is found to be associated with the larger charge transfer of 0.43 e (Cu) and 0.33 e (Ag) from the surface to adsorbed NO. However, unlike the cases of Cu-WO3(001) and Ag-WO3(001), Au atoms prefer to adsorb on the top of W atom. On such an Au-WO3(001) complex, the NO molecule is found to form a bond to the Au atom with E ads = -1.32 eV. Because of a large electronegativity of Au atom, the adsorbed NO molecule captures the less electrons (0.04 e) from the surface compared to the Cu and Ag catalysts. Our findings not only provide useful information about the NO adsorption on a clean WO3(001) surface as well as on the noble metal atoms deposited WO3(001) surfaces but also shed light on a higher sensitive WO3 sensor for NO detection employing noble metal catalysts. PMID:25852357

  2. The role of van der Waals interactions in the adsorption of noble gases on metal surfaces

    SciTech Connect

    Chen, De-Li; Al-Saidi, W A; Johnson, J Karl

    2012-10-03

    Adsorption of noble gases on metal surfaces is determined by weak interactions. We applied two versions of the nonlocal van der Waals density functional (vdW-DF) to compute adsorption energies of Ar, Kr, and Xe on Pt(111), Pd(111), Cu(111), and Cu(110) metal surfaces. We have compared our results with data obtained using other density functional approaches, including the semiempirical vdW corrected DFT-D2. The vdW-DF results show considerable improvements in the description of adsorption energies and equilibrium distances over other DFTbased methods, giving good agreement with experiments. We have also calculated perpendicular vibrational energies for noble gases on the metal surfaces using vdWDF data and found excellent agreement with available experimental results. Our vdW-DF calculations show that adsorption of noble gases on low-coordination sites is energetically favored over high-coordination sites, but only by a few meV. Analysis of the 2-dimensional potential energy surface shows that the high-coordination sites are local maxima on the 2-dimensional potential energy surface and therefore unlikely to be observed in experiments, which provides an explanation of the experimental observations. The DFT-D2 approach with the standard parameterization was found to overestimate the dispersion interactions, and to give the wrong adsorption site preference for four of the nine systems we studied.

  3. Measuring and Predicting Fission Product Noble Metals in SRS HLW Sludges

    SciTech Connect

    Bibler, N

    2005-04-05

    The noble metals Ru, Rh, Pd, and Ag were produced in the Savannah River Site (SRS) reactors as products of the fission of U-235. Consequently they are in the High Level Waste (HLW) sludges that are currently being immobilized into a borosilicate glass in the Defense Waste Processing Facility (DWPF). The noble metals are a concern in the DWPF because they catalyze the decomposition of formic acid used in the process to produce the flammable gas hydrogen. As the concentration of these noble metals in the sludge increases, more hydrogen will be produced when this sludge is processed. In the SRS Tank Farm it takes approximately two years to prepare a sludge batch for processing in the DWPF. This length of time is necessary to mix the appropriate sludges, blend them to form a sludge batch and then wash it to enable processing in the DWPF. This means that the exact composition of a sludge batch is not known for {approx}two years. During this time, studies with simulated nonradioactive sludges must be performed to determine the desired DWPF processing parameters for the new sludge batch. Consequently, prediction of the noble metal concentrations is desirable to prepare appropriate simulated sludges for studies of the DWPF process for that sludge batch. These studies give a measure of the amount of hydrogen that will be produced when that sludge batch is processed. This report describes in detail the measurement of these noble metal concentrations in sludges and a way to predict their concentrations from an estimate of the lanthanum concentration in the sludge. Results for two sludges are presented in this report. These are Sludge Batch 3 (SB3) currently being processed by the DWPF and a sample of unwashed sludge from Tank 11 that will be part of Sludge Batch 4. The concentrations of the noble metals in HLW sludges are measured by using mass spectroscopy to determine concentrations of the isotopes that comprise each noble metal. For example, the noble metal Ru is comprised

  4. Visible light active TiO 2 films prepared by electron beam deposition of noble metals

    NASA Astrophysics Data System (ADS)

    Hou, Xing-Gang; Ma, Jun; Liu, An-Dong; Li, De-Jun; Huang, Mei-Dong; Deng, Xiang-Yun

    2010-03-01

    TiO 2 films prepared by sol-gel method were modified by electron beam deposition of noble metals (Pt, Pd, and Ag). Effects of noble metals on the chemical and surface characteristics of the films were studied using XPS, TEM and UV-Vis spectroscopy techniques. Photocatalytic activity of modified TiO 2 films was evaluated by studying the degradation of methyl orange dye solution under visible light UV irradiation. The result of TEM reveals that most of the surface area of TiO 2 is covered by tiny particles of noble metals with diameter less than 1 nm. Broad red shift of UV-Visible absorption band of modified photocatalysts was observed. The catalytic degradation of methyl orange in aqueous solutions under visible light illumination demonstrates a significant enhancement of photocatalytic activity of these films compared with the un-loaded films. The photocatalytic efficiency of modified TiO 2 films by this method is affected by the concentration of impregnating solution.

  5. Role of van der Waals forces in the diffraction of noble gases from metal surfaces

    NASA Astrophysics Data System (ADS)

    del Cueto, M.; Muzas, A. S.; Füchsel, G.; Gatti, F.; Martín, F.; Díaz, C.

    2016-02-01

    The role of van der Waals (vdW) forces in the description of scattering processes of noble gases from metal surfaces is currently under debate. Although features of the potential energy surface such as anticorrugation or adsorption energies are sometimes found to be well described by standard density functional theory (DFT), the performance of DFT to describe diffraction spectra may rely on the accuracy of the vdW functionals used. To analyze the precise role of these vdW forces in noble gas diffraction by metal surfaces, we have thoroughly studied the case of Ne/Ru(0001), for which accurate experimental results are available. We have carried out classical and quantum dynamics calculations by using DFT-based potentials that account for the effect of vdW interactions at different levels of accuracy. From the comparison of our results with experimental data, we conclude that the inclusion of vdW effects is crucial to properly describe diffraction of noble gases from metal surfaces. We show that among the vdW-DFT functionals available in the literature, not all of them can be used to accurately describe this process.

  6. Risk Reduction Via Greener Synthesis of Noble Metal Nanostructures and Nanocomposites

    NASA Astrophysics Data System (ADS)

    Nadagouda, M. N.; Varma, R. S.

    Aqueous preparation of nanoparticles using vitamins B2 and C which can function both as reducing and capping agents are described. Bulk and shape-controlled synthesis of noble nanostructures via microwave (MW)-assisted spontaneous reduction of noble metal salts using α-D-glucose, sucrose, and maltose has been achieved. The MW method also accomplishes the cross-linking reaction of poly (vinyl alcohol) (PVA) with metallic systems such as Pt, Cu, and In; bimetallic systems, namely Pt-In, Ag-Pt, Pt-Fe, Cu-Pd, Pt-Pd and Pd-Fe; and single-walled nanotubes (SWNT), multi-walled nanotubes (MWNT), and Buckmin-sterfullerene (C-60). The strategy is extended to the formation of biodegradable carboxymethyl cellulose (CMC) composite films with noble nanometals; such metal decoration and alignment of carbon nanotubes in CMC is possible using a MW approach. The MW approach also enables the shape-controlled bulk synthesis of Ag and Fe nanorods in poly (ethylene glycol) (PEG).

  7. Sol-flame synthesis: a general strategy to decorate nanowires with metal oxide/noble metal nanoparticles.

    PubMed

    Feng, Yunzhe; Cho, In Sun; Rao, Pratap M; Cai, Lili; Zheng, Xiaolin

    2013-03-13

    The hybrid structure of nanoparticle-decorated nanowires (NP@NW) combines the merits of large specific surface areas for NPs and anisotropic properties for NWs and is a desirable structure for applications including batteries, dye-sensitized solar cells, photoelectrochemical water splitting, and catalysis. Here, we report a novel sol-flame method to synthesize the NP@NW hybrid structure with two unique characteristics: (1) large loading of NPs per NW with the morphology of NP chains fanning radially from the NW core and (2) intimate contact between NPs and NWs. Both features are advantageous for the above applications that involve both surface reactions and charge transport processes. Moreover, the sol-flame method is simple and general, with which we have successfully decorated various NWs with binary/ternary metal oxide and even noble metal NPs. The unique aspects of the sol-flame method arise from the ultrafast heating rate and the high temperature of flame, which enables rapid solvent evaporation and combustion, and the combustion gaseous products blow out NPs as they nucleate, forming the NP chains around NWs. PMID:22494023

  8. Copper-modified covalent triazine frameworks as non-noble-metal electrocatalysts for oxygen reduction.

    PubMed

    Iwase, Kazuyuki; Yoshioka, Tatsuro; Nakanishi, Shuji; Hashimoto, Kazuhito; Kamiya, Kazuhide

    2015-09-14

    The electrochemical oxygen reduction reaction (ORR) is an important cathode reaction of various types of fuel cells. The development of electrocatalysts composed only of abundant elements is a key goal because currently only platinum is a suitable catalyst for ORR. Herein, we synthesized copper-modified covalent triazine frameworks (CTF) hybridized with carbon nanoparticles (Cu-CTF/CPs) as efficient electrocatalysts for the ORR in neutral solutions. The ORR onset potential of the synthesized Cu-CTF/CP was 810 mV versus the reversible hydrogen electrode (RHE; pH 7), the highest reported value at neutral pH for synthetic Cu-based electrocatalysts. Cu-CTF/CP also displayed higher stability than a Cu-based molecular complex at neutral pH during the ORR, a property that was likely as a result of the covalently cross-linked structure of CTF. This work may provide a new platform for the synthesis of durable non-noble-metal electrocatalysts for various target reactions. PMID:26227987

  9. Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals.

    PubMed

    Volonakis, George; Filip, Marina R; Haghighirad, Amir Abbas; Sakai, Nobuya; Wenger, Bernard; Snaith, Henry J; Giustino, Feliciano

    2016-04-01

    Lead-based halide perovskites are emerging as the most promising class of materials for next-generation optoelectronics; however, despite the enormous success of lead-halide perovskite solar cells, the issues of stability and toxicity are yet to be resolved. Here we report on the computational design and the experimental synthesis of a new family of Pb-free inorganic halide double perovskites based on bismuth or antimony and noble metals. Using first-principles calculations we show that this hitherto unknown family of perovskites exhibits very promising optoelectronic properties, such as tunable band gaps in the visible range and low carrier effective masses. Furthermore, we successfully synthesize the double perovskite Cs2BiAgCl6, perform structural refinement using single-crystal X-ray diffraction, and characterize its optical properties via optical absorption and photoluminescence measurements. This new perovskite belongs to the Fm3̅m space group and consists of BiCl6 and AgCl6 octahedra alternating in a rock-salt face-centered cubic structure. From UV-vis and photoluminescence measurements we obtain an indirect gap of 2.2 eV. PMID:26982118

  10. Noninvasive noble metal nanoparticle arrays for surface-enhanced Raman spectroscopy of proteins

    NASA Astrophysics Data System (ADS)

    Inya-Agha, Obianuju; Forster, Robert J.; Keyes, Tia E.

    2007-02-01

    Noble metal nanoparticles arrays are well established substrates for surface enhanced Raman spectroscopy (SERS). Their ability to enhance optical fields is based on the interaction of their surface valence electrons with incident electromagnetic radiation. In the array configuration, noble metal nanoparticles have been used to produce SER spectral enhancements of up to 10 8 orders of magnitude, making them useful for the trace analysis of physiologically relevant analytes such as proteins and peptides. Electrostatic interactions between proteins and metal surfaces result in the preferential adsorption of positively charged protein domains onto metal surfaces. This preferential interaction has the effect of disrupting the native conformation of the protein fold, with a concomitant loss of protein function. A major historic advantage of Raman microspectroscopy has been is its non-invasive nature; protein denaturation on the metal surfaces required for SER spectroscopy renders it a much more invasive technique. Further, part of the analytical power of Raman spectroscopy lies in its use as a secondary conformation probe. The protein structural loss which occurs on the metal surface results in secondary conformation readings which are not true to the actual native state of the analyte. This work presents a method for chemical fabrication of noble metal SERS arrays with surface immobilized layers which can protect protein native conformation without excessively mitigating the electromagnetic enhancements of spectra. Peptide analytes are used as model systems for proteins. Raman spectra of alpha lactalbumin on surfaces and when immobilized on these novel arrays are compared. We discuss the ability of the surface layer to protect protein structure whilst improving signal intensity.

  11. Noble metal (Pd, Ru, Rh, Pt, Au, Ag) doped graphene hybrids for electrocatalysis

    NASA Astrophysics Data System (ADS)

    Giovanni, Marcella; Poh, Hwee Ling; Ambrosi, Adriano; Zhao, Guanjia; Sofer, Zdeněk; Šaněk, Filip; Khezri, Bahareh; Webster, Richard D.; Pumera, Martin

    2012-07-01

    Metal decorated graphene materials are highly important for catalysis. In this work, noble metal doped-graphene hybrids were prepared by a simple and scalable method. The thermal reductions of metal doped-graphite oxide precursors were carried out in nitrogen and hydrogen atmospheres and the effects of these atmospheres as well as the metal components on the characteristics and catalytic capabilities of the hybrid materials were studied. The hybrids exfoliated in nitrogen atmosphere contained a higher amount of oxygen-containing groups and lower density of defects on their surfaces than hybrids exfoliated in hydrogen atmosphere. The metals significantly affected the electrochemical behavior and catalysis of compounds that are important in energy production and storage and in electrochemical sensing. Research in the field of energy storage and production, electrochemical sensing and biosensing as well as biomedical devices can take advantage of the properties and catalytic capabilities of the metal doped graphene hybrids.

  12. Simple and efficient separation of atomically precise noble metal clusters.

    PubMed

    Ghosh, Atanu; Hassinen, Jukka; Pulkkinen, Petri; Tenhu, Heikki; Ras, Robin H A; Pradeep, Thalappil

    2014-12-16

    There is an urgent need for accessible purification and separation strategies of atomically precise metal clusters in order to promote the study of their fundamental properties. Although the separation of mixtures of atomically precise gold clusters Au25L18, where L are thiolates, has been demonstrated by advanced separation techniques, we present here the first separation of metal clusters by thin-layer chromatography (TLC), which is simple yet surprisingly efficient. This method was successfully applied to a binary mixture of Au25L18 with different ligands, as well as to a binary mixture of different cluster cores, Au25 and Au144, protected with the same ligand. Importantly, TLC even enabled the challenging separation of a multicomponent mixture of mixed-monolayer-protected Au25 clusters with closely similar chemical ligand compositions. We anticipate that the realization of such simple yet efficient separation technique will progress the detailed investigation of cluster properties. PMID:25395064

  13. Noble Metal Immersion Spectroscopy of Silica Alcogels and Aerogels

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Sibille, Laurent; Cronise, Raymond J.; Noever, David A.

    1998-01-01

    We have fabricated aerogels containing gold and silver nanoparticles for gas catalysis applications. By applying the concept of an average or effective dielectric constant to the heterogeneous interlayer surrounding each particle, we extend the technique of immersion spectroscopy to porous or heterogeneous media. Specifically, we apply the predominant effective medium theories for the determination of the average fractional composition of each component in this inhomogeneous layer. Hence, the surface area of metal available for catalytic gas reaction is determined. The technique is satisfactory for statistically random metal particle distributions but needs further modification for aggregated or surfactant modified systems. Additionally, the kinetics suggest that collective particle interactions in coagulated clusters are perturbed during silica gelation resulting in a change in the aggregate geometry.

  14. Noble metals: a toxicological appraisal of potential new environmental contaminants.

    PubMed Central

    Brubaker, P E; Moran, J P; Bridbord, K; Hueter, F G

    1975-01-01

    The public health benefits expected by reducing known hazardous emissions from mobile sources should not be compromised by increasing levels of other potentially hazardous unregulated emissions. Catalytic converters are going to be used to meet the statutory requirements on carbon monoxide and hydrocarbon emissions from light duty motor vehicles. Platinum and palladium metals are the catalytic materials to be used in these emission control devices. Preliminary experimental evidence and analysis of the impact of these control devices on the future use and demand for platinum indicates that this metal may appear at detectable levels in the environment by the end of this decade. At the present time, platinum and palladium are not present in the public environment and represent potentially new environmental contaminants as a consequence of use of this new abatement control technology. There is relatively little information available to adequately assess the potential health hazards that may be associated with exposure to these metals and their compounds. Analysis of the environmental problems and concerns associated with possible new environmental contaminants are discussed. Limited estimates are made on community exposure by use of a meteorological dispersion model. Biodegradation potential and attention is also given to the limited toxicological information available. PMID:50939

  15. Unveiling nickelocene bonding to a noble metal surface

    NASA Astrophysics Data System (ADS)

    Bachellier, N.; Ormaza, M.; Faraggi, M.; Verlhac, B.; Vérot, M.; Le Bahers, T.; Bocquet, M.-L.; Limot, L.

    2016-05-01

    The manipulation of a molecular spin state in low-dimensional materials is central to molecular spintronics. The designs of hybrid devices incorporating magnetic metallocenes are very promising in this regard, but are hampered by the lack of data regarding their interaction with a metal. Here, we combine low-temperature scanning tunneling microscopy and density functional theory calculations to investigate a magnetic metallocene at the single-molecule level—nickelocene. We demonstrate that the chemical and electronic structures of nickelocene are preserved upon adsorption on a copper surface. Several bonding configurations to the surface are identified, ranging from the isolated molecule to molecular layers governed by van der Waals interactions.

  16. Electrochemical oxide film formation at noble metals as a surface-chemical process

    NASA Astrophysics Data System (ADS)

    Conway, B. E.

    1995-08-01

    The mechanisms of electrochemical oxide film formation at noble metals are described and exemplified by the cases of Pt and Au, especially in the light of recent experimentation by means of cyclic voltammetry, ellipsometry and vacuum surface-science studies using LEED and AES. Unlike the mechanisms of base-metal oxidation, e.g., in corrosion processes, anodic oxide film formation at noble metals proceeds by surface chemical processes involving, initially, sub-monolayer, through monolayer, formation of 2-dimensional {OH}/{O} arrays. During such 2-d processes, place-exchange between electrosorbed OH or O species on the surface, and Pt or Au atoms within the surface lattice, takes place leading to a quasi-2-d compact film which then grows ultimately to a multilayer hydrous oxide film, probably by continuing injection of ions of the substrate metal and their migration through the growing film under the influence of the field. The initial, sub-monolayer stage of electrosorption of OH involves competitive chemisorption by anions, e.g. HSO 4-, ClO 4-, Cl -, which inhibits onset of the first stage of surface oxidation. These processes are demonstrable in experiments on single-crystal surfaces. The combination of such anion effects with place-exchange during the extension of the film, leads to a general mechanism of noble metal oxide film formation. The formation of the oxide films can be examined in detail by recording the distinguishable stages in the film's electrochemical reduction in linear-sweep voltammetry which is sensitive down to {OH}/{O} fractional coverages as low as 0.5% and over time-scales down to 50μs in experiments on time-evolution and transformation of the states of the oxide films. By means of LEED, AES and STM or AFM experiments, the reconstructions and perturbations (e.g. generation of stepped terraces) which oxide films cause on singlecrystal surfaces can be followed.

  17. Bioactivity of noble metal nanoparticles decorated with biopolymers and their application in drug delivery.

    PubMed

    Rai, Mahendra; Ingle, Avinash P; Gupta, Indarchand; Brandelli, Adriano

    2015-12-30

    The unique properties of nanomaterials can be applied to solve different problems including new ways of drug delivery. Noble metal nanoparticles are most promising because they have been used for medicinal purposes since ancient time. It is evident from the past studies that the metallic nanoparticles are much more effective against various microorganisms when compared to their conventional counterparts. However, decoration of such nanoparticles with biomaterials add more advantages to their antimicrobial activity. Decoration of metal nanoparticles with biopolymers is a quite new area of research. Studies performed hitherto shown that nanoparticles of noble metals like silver, gold and platinum demonstrated better antibacterial, antifungal and antiviral activities when conjugated with biopolymers. The development of such technology has potential to develop materials that are more effective in the field of health science. Considering the importance and uniqueness of this concept, the present review aims to discuss the use of biopolymer-decorated metal nanoparticles for combating various diseases caused by microbial pathogens. Moreover, the nanotoxicity aspect has also been discussed. PMID:26520406

  18. Air- and water-resistant noble metal coated ferromagnetic cobalt nanorods.

    PubMed

    Lentijo-Mozo, Sergio; Tan, Reasmey P; Garcia-Marcelot, Cécile; Altantzis, Thomas; Fazzini, Pier-Francesco; Hungria, Teresa; Cormary, Benoit; Gallagher, James R; Miller, Jeffrey T; Martinez, Herve; Schrittwieser, Stefan; Schotter, Joerg; Respaud, Marc; Bals, Sara; Van Tendeloo, Gustaaf; Gatel, Christophe; Soulantica, Katerina

    2015-03-24

    Cobalt nanorods possess ideal magnetic properties for applications requiring magnetically hard nanoparticles. However, their exploitation is undermined by their sensitivity toward oxygen and water, which deteriorates their magnetic properties. The development of a continuous metal shell inert to oxidation could render them stable, opening perspectives not only for already identified applications but also for uses in which contact with air and/or aqueous media is inevitable. However, the direct growth of a conformal noble metal shell on magnetic metals is a challenge. Here, we show that prior treatment of Co nanorods with a tin coordination compound is the crucial step that enables the subsequent growth of a continuous noble metal shell on their surface, rendering them air- and water-resistant, while conserving the monocrystallity, metallicity and the magnetic properties of the Co core. Thus, the as-synthesized core-shell ferromagnetic nanorods combine high magnetization and strong uniaxial magnetic anisotropy, even after exposure to air and water, and hold promise for successful implementation in in vitro biodiagnostics requiring probes of high magnetization and anisotropic shape. PMID:25734760

  19. Thermodynamic aspects of dehydrogenation reactions on noble metal surfaces

    SciTech Connect

    Svane, K. L. Hammer, B.

    2014-11-07

    The reaction free energy for dehydrogenation of phenol, aniline, thiophenol, benzoic acid, and 1,4-benzenediol on the close packed copper, silver, and gold surfaces has been studied by density functional theory calculations. Dehydrogenation of thiophenol is found to be favourable on all three surfaces while aniline does not dehydrogenate on any of them. For phenol, benzenediol and benzoic acid dehydrogenation is favourable on copper and silver only, following the general trend of an increasing reaction free energy when going form gold to silver to copper. This trend can be correlated with the changes in bond lengths within the molecule upon dehydrogenation. While copper is able to replace hydrogen, leaving small changes in the bond lengths of the aromatic ring, the metal-molecule bond is weaker for silver and gold, resulting in a partial loss of aromaticity. This difference in bond strength leads to pronounced differences in adsorption geometries upon multiple dehydrogenations.

  20. Thermodynamic aspects of dehydrogenation reactions on noble metal surfaces

    NASA Astrophysics Data System (ADS)

    Svane, K. L.; Hammer, B.

    2014-11-01

    The reaction free energy for dehydrogenation of phenol, aniline, thiophenol, benzoic acid, and 1,4-benzenediol on the close packed copper, silver, and gold surfaces has been studied by density functional theory calculations. Dehydrogenation of thiophenol is found to be favourable on all three surfaces while aniline does not dehydrogenate on any of them. For phenol, benzenediol and benzoic acid dehydrogenation is favourable on copper and silver only, following the general trend of an increasing reaction free energy when going form gold to silver to copper. This trend can be correlated with the changes in bond lengths within the molecule upon dehydrogenation. While copper is able to replace hydrogen, leaving small changes in the bond lengths of the aromatic ring, the metal-molecule bond is weaker for silver and gold, resulting in a partial loss of aromaticity. This difference in bond strength leads to pronounced differences in adsorption geometries upon multiple dehydrogenations.

  1. Tuning of noble metal work function with organophosphonate nanolayers

    SciTech Connect

    Ramanath, Ganpati Kwan, Matthew; Chow, P. K.; Quintero, Y. Cardona; Ramprasad, R.; Mutin, P. H.

    2014-08-25

    We demonstrate that weak chemical interactions between untethered moieties in molecular nanolayers on metal surfaces can strongly influence the effective work function Φ{sub eff}. Electron spectroscopy shows that nanolayers of mercaptan-anchored organophosphonates on Au and Pt decrease Φ{sub eff}. The measured Φ{sub eff} shifts correlate with the chemical state of phosphonic acid moieties, and scale with molecular length. These results are contrary to predictions of ab initio calculations of monolayer-capped surfaces, but are consistent with calculations of bilayer-capped surfaces with face-to-face hydrogen-bonded phosphonic acid moieties. Our findings indicate that intra-layer bonding and layering in molecular nanolayers can be key to tailoring heterointerfacial electronic properties for applications.

  2. Thermodynamic aspects of dehydrogenation reactions on noble metal surfaces.

    PubMed

    Svane, K L; Hammer, B

    2014-11-01

    The reaction free energy for dehydrogenation of phenol, aniline, thiophenol, benzoic acid, and 1,4-benzenediol on the close packed copper, silver, and gold surfaces has been studied by density functional theory calculations. Dehydrogenation of thiophenol is found to be favourable on all three surfaces while aniline does not dehydrogenate on any of them. For phenol, benzenediol and benzoic acid dehydrogenation is favourable on copper and silver only, following the general trend of an increasing reaction free energy when going form gold to silver to copper. This trend can be correlated with the changes in bond lengths within the molecule upon dehydrogenation. While copper is able to replace hydrogen, leaving small changes in the bond lengths of the aromatic ring, the metal-molecule bond is weaker for silver and gold, resulting in a partial loss of aromaticity. This difference in bond strength leads to pronounced differences in adsorption geometries upon multiple dehydrogenations. PMID:25381535

  3. Ab Initio Electronic Relaxation Times and Transport in Noble Metals

    NASA Astrophysics Data System (ADS)

    Mustafa, Jamal I.; Bernardi, Marco; Neaton, Jeffrey B.; Louie, Steven G.

    Relaxation times employed to study electron transport in metals are typically assumed to be constants and obtained empirically using the Drude model. Here, we employ ab initio calculations to compute the electron-phonon relaxation times of Cu, Ag, and Au, and find that they vary significantly on the Fermi surface, spanning ~15 -45 fs. We compute room temperature resistivities in excellent agreement with experiment by combining GW bandstructures, Wannier-interpolated band velocities, and ab initio relaxation times. Our calculations are compared to other approximations used for the relaxation times. Additionally, an importance sampling scheme is introduced to speed up the convergence of resistivity and transport calculations by sampling directly points on the Fermi surface. This work was supported by NSF Grant No. DMR15-1508412 and U.S. DOE under Contract No. DE-AC02-05CH11231. Computational resources have been provided by DOE at LBNL's NERSC facility.

  4. A quantitative study of the intracellular concentration of graphene/noble metal nanoparticle composites and their cytotoxicity

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangyan; Dorn, Marco; Vogt, Jürgen; Spemann, Daniel; Yu, Wei; Mao, Zhengwei; Estrela-Lopis, Irina; Donath, Edwin; Gao, Changyou

    2014-07-01

    Noble-metal nanoparticles (NPs) especially prepared from gold and silver have been combined on the surface of graphene to obtain graphene-based nanocomposites for novel functions in enhanced performance in bio-imaging, cancer detection and therapy. However, little is known about their cellular uptake, especially the intracellular quantity which plays a critical role in determining their functions and safety. Therefore, we prepared covalently conjugated GO/Au and GO/Ag composites by immobilizing Au and Ag nanoparticles on GO sheets pre-functionalized with disulfide bonds, respectively. The cellular uptake of these composites was quantitatively studied by means of an ion beam microscope (IBM) to determine the metal content in human lung cancer cells (A549 cells) and liver hepatocellular carcinoma cells (HepG2 cells). The cell uptake was also studied by inductively coupled plasma mass spectrometry (ICP-MS), which is one of the most sensitive techniques being applied to cell suspensions, for comparison. Toxicity, one of the consequences of cellular uptake of GO based composites, was studied as well. The potential toxicity mechanism was also suggested based on the results of intracellular quantification of the nanomaterials.Noble-metal nanoparticles (NPs) especially prepared from gold and silver have been combined on the surface of graphene to obtain graphene-based nanocomposites for novel functions in enhanced performance in bio-imaging, cancer detection and therapy. However, little is known about their cellular uptake, especially the intracellular quantity which plays a critical role in determining their functions and safety. Therefore, we prepared covalently conjugated GO/Au and GO/Ag composites by immobilizing Au and Ag nanoparticles on GO sheets pre-functionalized with disulfide bonds, respectively. The cellular uptake of these composites was quantitatively studied by means of an ion beam microscope (IBM) to determine the metal content in human lung cancer cells (A

  5. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.

    PubMed

    Jain, Prashant K; Huang, Xiaohua; El-Sayed, Ivan H; El-Sayed, Mostafa A

    2008-12-01

    result of field coupling. A universal scaling model, relating the plasmon resonance frequency to the interparticle distance in terms of the particle size, becomes potentially useful for measuring nanoscale distances (and their changes) in biological systems. The strong plasmon absorption and photothermal conversion of gold nanoparticles has been exploited in cancer therapy through the selective localized photothermal heating of cancer cells. For nanorods or nanoshells, the LSPR can be tuned to the near-infrared region, making it possible to perform in vivo imaging and therapy. The examples of the applications of noble metal nanostructures provided herein can be readily generalized to other areas of biology and medicine because plasmonic nanomaterials exhibit great range, versatility, and systematic tunability of their optical attributes. PMID:18447366

  6. Solar noble gases revealed by closed system stepped etching of a metal separate from Fayetteville

    NASA Technical Reports Server (NTRS)

    Murer, CH.; Baur, H.; Signer, P.; Wieler, R.

    1993-01-01

    Solar He, Ne, and Ar in a Fe-Ni separate from the chondrite Fayetteville are analyzed by closed system stepped oxidation. We report here data of the first 15 steps comprising 55 percent of the total solar gases. He-4/Ar-36 and Ne-20/Ar-36 are quite constant at values about 20 percent below those of present day solar wind (SWC). In this, Fe-Ni differs from lunar ilmenites where He-4/Ar-36 and Ne-20/Ar-36 in the first steps are several times below SWC. Thus, metal retains SW-noble gases even better than ilmenite, almost without element fractionation. Nevertheless, the isotopic composition of SW-He, -Ne, and -Ar in the first steps of the metal sample are identical to those found in a recently irradiated lunar ilmenite, indicating that ilmenites and chondritic metal both contain isotopically unfractionated SW noble gases. A preliminary analysis of a smaller Fayetteville metal separate shows Ne from solar energetic particles (SEP-Ne) with Ne-20/Ne-22 less than or equal to 11.5.

  7. Defense by-products production and utilization program: noble metal recovery screening experiments

    SciTech Connect

    Hazelton, R.F.; Jensen, G.A.; Raney, P.J.

    1986-03-01

    Isotopes of the platinum metals (rutheium, rhodium, and palladium) are produced during uranium fuel fission in nuclear reactors. The strategic values of these noble metals warrant considering their recovery from spent fuel should the spent fuel be processed after reactor discharge. A program to evaluate methods for ruthenium, rhodium, and palladium recovery from spent fuel reprocessing liquids was conducted at Pacific Northwest Laboratory (PNL). The purpose of the work reported in this docuent was to evaluate several recovery processes revealed in the patent and technical literature. Beaker-scale screening tests were initiated for three potential recovery processes: precipitation during sugar denitration of nitric acid reprocessing solutions after plutonium-uranium solvent extraction, adsorption using nobe metal selective chelates on active carbon, and reduction forming solid noble metal deposits on an amine-borane reductive resin. Simulated reprocessing plant solutions representing typical nitric acid liquids from defense (PUREX) or commercial fuel reprocessing facilities were formulated and used for evaluation of the three processes. 9 refs., 3 figs., 9 tabs.

  8. Delivery of Highly Active Noble-Metal Nanoparticles into Microspherical Supports by an Aerosol-Spray Method.

    PubMed

    Kan, Erjie; Kuai, Long; Wang, Wenhai; Geng, Baoyou

    2015-09-14

    Noble metal nanoparticles (NPs) with 1-5 nm diameter obtained from NaHB4 reduction possess high catalytic activity. However, they are rarely used directly. This work presents a facile, versatile, and efficient aerosol-spray approach to deliver noble-metal NPs into metal oxide supports, while maintaining the size of the NPs and the ability to easily adjust the loading amount. In comparison with the conventional spray approach, the size of the loaded noble-metal nanoparticles can be significantly decreased. An investigation of the 4-nitrophenol hydrogenation reaction catalyzed by these materials suggests that the NPs/oxides catalysts have high activity and good endurance. For 1 % Au/CeO2 and Pd/Al2 O3 catalysts, the rate constants reach 2.03 and 1.46 min(-1) , which is much higher than many other reports with the same noble-metal loading scale. Besides, the thermal stability of catalysts can be significantly enhanced by modifying the supports. Therefore, this work contributes an efficient method as well as some guidance on how to produce highly active and stable supported noble-metal catalysts. PMID:26234910

  9. Assembly of Nanoions via Electrostatic Interactions: Ion-Like Behavior of Charged Noble Metal Nanoclusters

    PubMed Central

    Yao, Qiaofeng; Luo, Zhentao; Yuan, Xun; Yu, Yue; Zhang, Chao; Xie, Jianping; Lee, Jim Yang

    2014-01-01

    The assembly of ultrasmall metal nanoclusters (NCs) is of interest to both basic and applied research as it facilitates the determination of cluster structures and the customization of cluster physicochemical properties. Here we present a facile and general approach to assemble noble metal NCs by selectively inducing electrostatic interactions between negatively-charged metal NCs and divalent cations. The charged metal NCs, which have well-defined sizes, charges and structures; and behave similarly to multivalent anions, can be considered as nanoions. These nanoions exhibit step-like assembly behavior when interacting with the counter cations – assembly only occurs when the solubility product (Ksp) between the carboxylate ions on the NC surface and the divalent cations is exceeded. The assembly here is distinctively different from the random aggregation of colloidal particles by counter ions. The nanoions would assemble into fractal-like monodisperse spherical particles with a high order of regularity that mimic the assembly of ionic crystals. PMID:24457992

  10. Exploring methods for compositional and particle size analysis of noble metal nanoparticles in Daphnia magna.

    PubMed

    Krystek, Petra; Brandsma, Sicco; Leonards, Pim; de Boer, Jacob

    2016-01-15

    The identification and quantification of the bioaccumulation of noble metal engineered nanoparticles (ENPs) by aquatic organisms is of great relevance to understand the exposure and potential toxicity mechanisms of nanoscale materials. Four analytical scenarios were investigated in relation to various sized and composed noble metal (gold (Au), platinum (Pt) and silver (Ag)) ENPs during acute, short-term exposure of Daphnia (D.) magna. Next to the total elemental quantification of absorbed ENPs by D. magna, especially information on the size and particle distribution of ENPs in D. magna is of relevance. Dissolution of the exposed biological material prior to measurement by asymmetric flow field flow fractionation coupled to inductively coupled plasma mass spectrometry (AF4-ICPMS) is challenging because the ENPs must stay stable regarding to particle size and composition. Next to dissolution of exposed D. magna by tetra methyl ammonium hydroxide (TMAH), a new enzymatic dissolution approach was explored by using trypsin. The presence of various sized and composed ENPs has been confirmed by AF4-ICPMS but the chosen dissolution medium was crucial for the results. TMAH and trypsin led to comparable results for medium-sized (50nm) noble metals ENPs in exposed D. magna. But it was also shown that the dissolution of biological materials with smaller (<5nm) ENPs led to different results in particle size and elemental concentration depending on the selected dissolution medium. A significant uptake of Au and Pt ENPs by D. magna or adsorption to particles occurred because only 1-5% of the exposed ENPs remained in the exposure medium. PMID:26592609

  11. Method for localized deposition of noble metal catalysts with control of morphology

    DOEpatents

    Ricco, Antonio J.; Manginell, Ronald P.; Huber, Robert J.

    1998-01-01

    A combustible gas sensor that uses a resistively heated, noble metal-coated, micromachined polycrystalline Si filament to calorimetrically detect the presence and concentration of combustible gases. A thin catalytic Pt film was deposited by CVD from the precursor Pt(acac).sub.2 onto microfilaments resistively heated to approximately 500 .degree. C.; Pt deposits only on the hot filament. The filaments tested to date are 2 .mu.m thick .times.10 .mu.m wide .times.100, 250, 500, or 1000 .mu.m-long polycrystalline Si; some are overcoated with a 0.25 .mu.m-thick protective CVD Si.sub.3 N.sub.4 layer.

  12. Zeolitic BIF Crystal Directly Producing Noble-Metal Nanoparticles in Its Pores for Catalysis

    PubMed Central

    Zhang, Hai-Xia; Liu, Meng; Bu, Xianhui; Zhang, Jian

    2014-01-01

    As an integral part of a porous framework and uniformly distributed throughout the internal pore space, the high density of the exposed B–H bond in zeolite-like porous BIF-20 (BIF = Boron Imidazolate Framework) is shown here to effectively produce nanoparticles within its confined pore space. Small noble-metal nanoparticles (Ag or Au) are directly synthesized into its pores without the need for any external reducing agent or photochemical reactions, and the resulting Ag@BIF-20 (or Au@BIF-20) samples show high catalytic activities for the reduction of 4-nitrophenol. PMID:24473155

  13. Hydrothermal synthesis of nanosize phases based on non-ferrous and noble metals

    NASA Astrophysics Data System (ADS)

    Tupikova, E. N.; Platonov, I. A.; Lykova, T. N.

    2016-04-01

    Research is devoted to reactions of binary complexes containing noble (platinum, palladium) and non-ferrous (cobalt, chrome) metals. Reactions proceed under hydrothermal conditions by the autoclave technique. Initials complexes and products of autoclave thermolysis were characterized by the FT-IR spectroscopy, the transmission electron microscopy (TEM) and the energy-dispersive X-ray spectroscopy (EDX). Comparative catalytic experiments in the test reaction were conducted. The obtained results can form the basis of new methods of nanosize multicomponent phases synthesis under hydrothermal conditions.

  14. Noble-Metal-Free Molybdenum Disulfide Cocatalyst for Photocatalytic Hydrogen Production.

    PubMed

    Yuan, Yong-Jun; Lu, Hong-Wei; Yu, Zhen-Tao; Zou, Zhi-Gang

    2015-12-21

    Photocatalytic water splitting using powered semiconductors as photocatalysts represents a promising strategy for clean, low-cost, and environmentally friendly production of H2 utilizing solar energy. The loading of noble-metal cocatalysts on semiconductors can significantly enhance the solar-to-H2 conversion efficiency. However, the high cost and scarcity of noble metals counter their extensive utilization. Therefore, the use of alternative cocatalysts based on non-precious metal materials is pursued. Nanosized MoS2 cocatalysts have attracted considerable attention in the last decade as a viable alternative to improve solar-to-H2 conversion efficiency because of its superb catalytic activity, excellent stability, low cost, availability, environmental friendliness, and chemical inertness. In this perspective, the design, structures, synthesis, and application of MoS2 -based composite photocatalysts for solar H2 generation are summarized, compared, and discussed. Finally, this Review concludes with a summary and remarks on some challenges and opportunities for the future development of MoS2 -based photocatalysts. PMID:26586523

  15. Noble metal nanoparticles embedding into polymeric materials: From fundamentals to applications.

    PubMed

    Prakash, Jai; Pivin, J C; Swart, H C

    2015-12-01

    This review covers some key concepts related to embedding of the noble metal nanoparticles in polymer surfaces. The metal nanoparticles embedded into the polymer matrix can provide high-performance novel materials that find applications in modern nanotechnology. In particular, the origin of various processes that drive the embedding phenomenon, growth of the nanostructure at the surface, factors affecting the embedding including role of surface, interface energies and thermodynamic driving forces with emphasis on the fundamental and technological applications, under different conditions (annealing and ion beams) have been discussed. In addition to the conventional thermal process for embedding which includes the measure of fundamental polymer surface properties with relevant probing techniques, this review discusses the recent advances carried out in the understanding of embedding phenomenon starting from thin metal films to growth of the nanoparticles and embedded nanostructures using novel ion beam techniques. PMID:26584861

  16. Noble-metal Ag nanoparticle chains: annealing Ag/Bi superlattice nanowires in vacuum

    NASA Astrophysics Data System (ADS)

    Xu, Shao Hui; Fei, Guang Tao; You, Qiao; Gao, Xu Dong; Huo, Peng Cheng; De Zhang, Li

    2016-09-01

    One-dimensional noble-metal Ag nanoparticle chains have been prepared by electrodepositing Ag/Bi superlattice nanowires in a porous anodic alumina oxide (AAO) template and following an annealing process in vacuum. It is found that Bi, as a sacrificial metal, can be removed completely after annealing at 450 °C with a vacuum degree of 10‑5 Torr. The regulation of particle size, shape and interparticle spacing of Ag NP chains has been realized by adjusting the segment length of the Ag/Bi superlattice nanowires and the annealing condition. With an extension of the annealing time, it is observed that Ag particles display the transform trend from ellipsoid to sphere. Our findings could inspire further investigation on the design and fabrication of metal nanoparticle chains.

  17. Dithiocarbamate Self-Assembled Monolayers as Efficient Surface Modifiers for Low Work Function Noble Metals.

    PubMed

    Meyer, Dominik; Schäfer, Tobias; Schulz, Philip; Jung, Sebastian; Rittich, Julia; Mokros, Daniel; Segger, Ingolf; Maercks, Franziska; Effertz, Christian; Mazzarello, Riccardo; Wuttig, Matthias

    2016-09-01

    Tuning the work function of the electrode is one of the crucial steps to improve charge extraction in organic electronic devices. Here, we show that N,N-dialkyl dithiocarbamates (DTC) can be effectively employed to produce low work function noble metal electrodes. Work functions between 3.1 and 3.5 eV are observed for all metals investigated (Cu, Ag, and Au). Ultraviolet photoemission spectroscopy (UPS) reveals a maximum decrease in work function by 2.1 eV as compared to the bare metal surface. Electronic structure calculations elucidate how the complex interplay between intrinsic dipoles and dipoles induced by bond formation generates such large work function shifts. Subsequently, we quantify the improvement in contact resistance of organic thin film transistor devices with DTC coated source and drain electrodes. These findings demonstrate that DTC molecules can be employed as universal surface modifiers to produce stable electrodes for electron injection in high performance hybrid organic optoelectronics. PMID:27504721

  18. Noble-metal Ag nanoparticle chains: annealing Ag/Bi superlattice nanowires in vacuum.

    PubMed

    Xu, Shao Hui; Fei, Guang Tao; You, Qiao; Gao, Xu Dong; Huo, Peng Cheng; De Zhang, Li

    2016-09-16

    One-dimensional noble-metal Ag nanoparticle chains have been prepared by electrodepositing Ag/Bi superlattice nanowires in a porous anodic alumina oxide (AAO) template and following an annealing process in vacuum. It is found that Bi, as a sacrificial metal, can be removed completely after annealing at 450 °C with a vacuum degree of 10(-5) Torr. The regulation of particle size, shape and interparticle spacing of Ag NP chains has been realized by adjusting the segment length of the Ag/Bi superlattice nanowires and the annealing condition. With an extension of the annealing time, it is observed that Ag particles display the transform trend from ellipsoid to sphere. Our findings could inspire further investigation on the design and fabrication of metal nanoparticle chains. PMID:27487089

  19. Abiological catalysis by artificial haem proteins containing noble metals in place of iron.

    PubMed

    Key, Hanna M; Dydio, Paweł; Clark, Douglas S; Hartwig, John F

    2016-06-23

    Enzymes that contain metal ions--that is, metalloenzymes--possess the reactivity of a transition metal centre and the potential of molecular evolution to modulate the reactivity and substrate-selectivity of the system. By exploiting substrate promiscuity and protein engineering, the scope of reactions catalysed by native metalloenzymes has been expanded recently to include abiological transformations. However, this strategy is limited by the inherent reactivity of metal centres in native metalloenzymes. To overcome this limitation, artificial metalloproteins have been created by incorporating complete, noble-metal complexes within proteins lacking native metal sites. The interactions of the substrate with the protein in these systems are, however, distinct from those with the native protein because the metal complex occupies the substrate binding site. At the intersection of these approaches lies a third strategy, in which the native metal of a metalloenzyme is replaced with an abiological metal with reactivity different from that of the metal in a native protein. This strategy could create artificial enzymes for abiological catalysis within the natural substrate binding site of an enzyme that can be subjected to directed evolution. Here we report the formal replacement of iron in Fe-porphyrin IX (Fe-PIX) proteins with abiological, noble metals to create enzymes that catalyse reactions not catalysed by native Fe-enzymes or other metalloenzymes. In particular, we prepared modified myoglobins containing an Ir(Me) site that catalyse the functionalization of C-H bonds to form C-C bonds by carbene insertion and add carbenes to both β-substituted vinylarenes and unactivated aliphatic α-olefins. We conducted directed evolution of the Ir(Me)-myoglobin and generated mutants that form either enantiomer of the products of C-H insertion and catalyse the enantio- and diastereoselective cyclopropanation of unactivated olefins. The presented method of preparing artificial haem

  20. CO-oxidation catalysts: Low-temperature CO oxidation over Noble-Metal Reducible Oxide (NMRO) catalysts

    NASA Technical Reports Server (NTRS)

    Herz, Richard K.

    1990-01-01

    Oxidation of CO to CO2 is an important reaction technologically and environmentally and a complex and interesting reaction scientifically. In most cases, the reaction is carried out in order to remove CO as an environmental hazard. A major application of heterogeneous catalysts is catalytic oxidation of CO in the exhaust of combustion devices. The reaction over catalysts in exhaust gas is fast and often mass-transfer-limited since exhaust gases are hot and O2/CO ratios are high. The main challenges to catalyst designers are to control thermal sintering and chemical poisoning of the active materials. The effect of the noble metal on the oxide is discussed, followed by the effect of the oxide on the noble metal, the interaction of the noble metal and oxide to form unique catalytic sites, and the possible ways in which the CO oxidation reaction is catalyzed by the NMRO materials.

  1. Noble metals-compatible melter features development Phase 1: Establishing functional and design criteria and design concepts

    SciTech Connect

    Elmore, M.R.; Siemens, D.H.; Chapman, C.C.

    1996-03-01

    Premature failures have occurred in melters at Japan`s Tokai Mockup Facility and at the Federal Republic of Germany (FRG) PAMELA plant during processing of feeds with high levels of noble metals. Melter failure was due to the accumulation of an electrically conductive, noble metals-containing precipitates in the glass, that then resulted in short circuiting of the electrodes. A comparison was made of the anticipated Hanford Waste Vitrification Plant (HWVP) feed with the feeds processed in the FRG and Japanese melters. The evaluation showed that comparable levels of noble metals and other potential precipitate-forming components (e.g. Cr/Fe/Ni-spinels) exist in the HWVP feed. As a result, the HWVP project made a decision to modify the present reference melter design to include features to prevent the precipitation and accumulation or otherwise accommodate precipitated phases on a routine basis without loss of production capacity.

  2. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    SciTech Connect

    Liu, X. H.; Luo, H.; Qu, T. L. Yang, K. Y.; Ding, Z. C.

    2015-10-15

    We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of {sup 87}Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the {sup 87}Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the {sup 87}Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system.

  3. Noble metal nanoparticle-decorated TiO2 nanobelts for enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    He, Haiyan; Yang, Ping; Jia, Changchao; Miao, Yanping; Zhao, Jie; Du, Yingying

    2014-07-01

    TiO2 nanobelts have been fabricated through a hydrothermal method and subsequently sulfuric-acid-corrosion-treated for a rough surface. Noble metal nanoparticles such as Ag and Au were deposited on the coarse surface of TiO2 nanobelts via a coprecipitation procedure. Ag-TiO2 nanobelts were prepared in ethanolic solution contained silver nitrate (AgNO3) and sodium hydroxide (NaOH). Au-TiO2 nanobelts were obtained in chloroauric acid (HAuCl4) using sodium borohydride (NaBH4) as the reductant. It is confirmed by the results of XRD patterns together with the SEM images that the composite of noble metal and TiO2 nanobelts were obtained successfully and the Ag or Au nanoparticles were well-dispersed on the TiO2 nanobelts. Moreover, the as-prepared Ag and Au nanoparticle-decorated TiO2 nanobelts represent an enhanced photocatalytic activity compared with pure TiO2 nanobelts, which is due to the fact that the Ag and Au nanoparticles on the surface of TiO2 nanobelts act as sinks for the photogenerated electrons and promote the separation of the electrons and holes.

  4. A simple route to diverse noble metal-decorated iron oxide nanoparticles for catalysis.

    PubMed

    Walker, Joan M; Zaleski, Jeffrey M

    2016-01-21

    Developing facile synthetic routes to multifunctional nanoparticles combining the magnetic properties of iron oxides with the optical and catalytic utility of noble metal particles remains an important goal in realizing the potential of hybrid nanomaterials. To this end, we have developed a single route to noble metal-decorated magnetic nanoparticles (Fe3O4@SiO2-M; M = Au, Pd, Ag, and PtAg) and characterized them by HRTEM and STEM/EDX imaging to reveal their nanometer size (16 nm Fe3O4 and 1-5 nm M seeds) and uniformity. This represents one of the few examples of genuine multifunctional particles on the nanoscale. We show that these hybrid structures have excellent catalytic activity for the reduction of 4-nitrophenol (knorm = 2 × 10(7) s(-1) mol(Pd)(-1); 5 × 10(6) s(-1) mol(Au)(-1); 5 × 10(5) s(-1) mol(PtAg)(-1); 7 × 10(5) s(-1) mol(Ag)(-1)). These rates are the highest reported for nano-sized comparables, and are competitive with mesoparticles of similar composition. Due to their magnetic response, the particles are also suitable for magnetic recovery and maintain >99% conversion for at least four cycles. Using this synthetic route, Fe3O4@SiO2-M particles show great promise for further development as a precursor to complicated anisotropic materials or for applications ranging from nanocatalysis to biomedical sensing. PMID:26681072

  5. A simple approach for producing colloidal noble metal nanocrystals: Alternating voltage induced electrochemical synthesis

    NASA Astrophysics Data System (ADS)

    McCann, Kevin

    Intense research has been focused on developing bottom-up nanocrystal synthesis techniques to obtain nanocrystals with sophisticated compositions and enhanced perfomances. Three popular methods are: 1) the reduction of metal complex ions or molecules with selected reducing agents, 2) the decomposition of metal compounds at elevated temperatures, and 3) the electrochemical reduction of metal ions using specialized potentiostats. The first two require expensive metal salt precursors while the last requires specialized potentiostats and either employ a single sacrificial electrode or metal salt precursors. To resolve these issues, we have focused on a facile and generic approach to generate nanocrystals by an alternating voltage induced electrochemical synthesis (AVIES) method. Nanocrystals are produced when an alternating voltage is applied by a common laboratory transformer to two sacrificial electrodes that are inserted in an electrolyte solution containing capping ligands. This work focuses on the ability of the AVIES approach to synthesize Au, Pd, and Pt noble metal nanocrystals. The nanocrystals synthesized were found to be dependent on the electrolyte identity, capping ligand, applied voltage, reaction temperature. The ability of AVIES to produce alloyed nanocrystals starting with alloyed electrodes will be discussed. The AVIES approach requires neither expensive metal compounds nor specialized instruments, is environmentally benign, and can be easily adoptable to any research lab.

  6. Anchoring noble metal nanoparticles on CeO2 modified reduced graphene oxide nanosheets and their enhanced catalytic properties.

    PubMed

    Ji, Zhenyuan; Shen, Xiaoping; Xu, Yuling; Zhu, Guoxing; Chen, Kangmin

    2014-10-15

    The strategy of structurally integrating noble metal, metal oxide, and graphene is expected to offer prodigious opportunities toward emerging functions of graphene-based nanocomposites. In this study, we develop a facile two-step approach to disperse noble metal (Pt and Au) nanoparticles on the surface of CeO2 functionalized reduced graphene oxide (RGO) nanosheets. It is shown that Pt and Au with particle sizes of about 5 and 2nm are well dispersed on the surface of RGO/CeO2. The reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by NaBH4 was used as a model reaction to quantitatively evaluate the catalytic properties of the as-synthesized RGO/Pt/CeO2 and RGO/Au/CeO2 ternary nanocomposites. In such triple-component catalysts, CeO2 nanocrystals provide unique and critical roles for optimizing the catalytic performance of noble metallic Pt and Au, allowing them to express enhanced catalytic activities in comparison with RGO/Pt and RGO/Au catalysts. In addition, a possible mechanism for the enhanced catalytic activities of the RGO/Pt/CeO2 and RGO/Au/CeO2 ternary catalysts in the reduction of 4-NP is proposed. It is expected that our prepared graphene-based triple-component composites, which inherit peculiar properties of graphene, metal oxide, and noble metal, are attractive candidates for catalysis and other applications. PMID:25080384

  7. Self-assembled calixarene aligned patterning of noble metal nanoparticles on graphene.

    PubMed

    Chen, Xianjue; Vimalanathan, Kasturi; Zang, Wenzhe; Slattery, Ashley D; Boulos, Ramiz A; Gibson, Christopher T; Raston, Colin L

    2014-05-01

    Patterns of noble metal nanoparticles (NMNPs) of ruthenium and platinum are formed on p-phosphonic acid calix[8]arene stabilised graphene in water. This involves hydrogen gas induced reduction of metal ions absorbed on the stabilised graphene, with TEM revealing the patterns being comprised of domains of parallel arrays of NMNPs ∼7 nm apart. The domains are orientated in three directions on each graphene sheet at an angle of ∼60° or ∼120° with respect to each other. AFM of self-assembled p-phosphonic acid calix[8]arene on the surface of a highly ordered pyrolytic graphite (HOPG) revealed a similar pattern, implying that the orientation of the assembly of p-phosphonic acid calix[8]arene is governed by the hexagonal motif of graphite/graphene. PMID:24658459

  8. Noble metal nanoclusters and nanoparticles precede mineral formation in magmatic sulphide melts

    PubMed Central

    Helmy, Hassan M.; Ballhaus, Chris; Fonseca, Raúl O.C.; Wirth, Richard; Nagel, Thorsten; Tredoux, Marian

    2013-01-01

    In low temperature aqueous solutions, it has long been recognized by in situ experiments that many minerals are preceded by crystalline nanometre-sized particles and non-crystalline nanophases. For magmatic systems, nanometre-sized precursors have not yet been demonstrated to exist, although the suggestion has been around for some time. Here we demonstrate by high temperature quench experiments that platinum and arsenic self-organize to nanoparticles, well before the melt has reached a Pt–As concentration at which discrete Pt arsenide minerals become stable phases. If all highly siderophile elements associate to nanophases in undersaturated melts, the distribution of the noble metals between silicate, sulphide and metal melts will be controlled by the surface properties of nano-associations, more so than by the chemical properties of the elements. PMID:24008992

  9. Study on the Enhanced Contribution in Noble Metals from Positron Annihilation

    NASA Astrophysics Data System (ADS)

    Hamid, A. S.; Ahmed, M. M.; Abu-Elmagd, M. S. M.; Rizk, R. A. M.

    2007-02-01

    Our motivations in the current work were to inspect various enhancement formulae along with to classify the electronic structure of noble metals Cu, Ag and Au. The measurements were performed via the two dimensional angular correlation of annihilation radiation 2D-ACAR apparatus. The electron density in momentum space ρ(p) was reconstructed and it displayed the following features. Initially, the reciprocal lattice points underscored the calculations, and they revealed Fermi surface features. Additionally, enhanced anisotropy exposed nearby Fermi momentum. They attributed to enhancement of the electronic wave function at the position of the positron. Finally, the high momentum contributions, due to interaction of positron with core-like-state, conducted the electronic structure of the metals under investigations. From another viewpoint, the features of Fermi surface of Cu, Ag and Au showed an expected analogous behavior as multiply connected sphere inside the first Brillouin zone.

  10. First-principles study of the noble metal-doped BN layer

    SciTech Connect

    Zhou, Yungang; Yang, Ping; Sun, Xin; Wang, Zhiguo; Zu, Xiaotao T.; Gao, Fei

    2011-04-18

    Intriguing electronic and magnetic properties of BN layer with noble metal (Pd, Pt, Ag and Au) doping are obtained by first-principles calculations. Adsorbed Pd (or Pt) reduces the band gap of BN sheet owing to the induction of impurity states. The unpaired electrons in the Ag (or Au)-adsorbed and the Pd (or Pt)-substituted BN layers are polarized, and thus exhibit a magnetic moment of 1.0 µB, leading to these BN configurations to be magnetic semiconductors. The half-metallic feature of the Ag-substituted BN layer, along with the delocalization of spin states, renders this configuration an excellent spin filter material. Thus, these findings offer a unique opportunity for developing BN-based nanoscale devices.

  11. Synthesis Of Noble Metal Nanoparticle Composite Glasses Using Low Energy Ion Beam Mixing

    SciTech Connect

    Varma, Ranjana S.; Kothari, D. C.; Mahadkar, A. G.; Kulkarni, N. A.; Kanjilal, D.; Kumar, P.

    2010-12-01

    Carbon coated thin films of Cu or Au on fused silica glasses have been irradiated using 100 keV Ar{sup +} ions at different fluences ranging from 1x10{sup 13} to 1x10{sup 16} ion/cm{sup 2}. In this article, we explore a route to form noble metal nanoparticles in amorphous glass matrices without post irradiation annealing using low energy ion beam mixing where nuclear energy loss process is dominant. Optical and structural properties were studied using UV-Vis-NIR absorbance spectroscopy and Glancing angle X-ray Diffraction (GXRD). Results showed that Cu and Au nanoparticles are formed at higher fluence of 1x10{sup 16} ion/cm{sup 2} used in this work without annealing. The diameters of metal nanoparticles obtained from UV-Vis NIR and GXRD are in agreement.

  12. Noble metals in mid-ocean ridge volcanism: A significant fractionation of gold with respect to platinum group metals

    NASA Technical Reports Server (NTRS)

    Crocket, James H.

    1988-01-01

    Hydrothermal precipitates, black smoker particulate, and massive sulphide dredge samples from the Explorer Ridge on the Juan de Fuca Plate and the TAG hydrothermal area on the Mid-Atlantic Ridge were analyzed for selected noble metals including Au, Ir and Pd by radiochemical neutron activation analysis. The preliminary results indicate that gold contents may reach the ppm range although values in the neighborhood of 100 to 200 ppb are more typical. The platinum group elements (PGE) represented by Ir and Pd are typically less than 0.02 ppb and less than 2 ppb respectively. These abundances represent a significant enrichment of gold relative to the PGE in comparison with average noble metal abundances in mid-ocean ridge basalts (MORB). A partial explanation of this distinctive fractionation can be found in the concepts of sulfur-saturation of basic magma in mid-ocean ridge (MOR) settings, and the origin of MOR hydrothermal fluids. Experimental and petrological data suggest that MORBs are sulfur-saturated at the time of magma generation and that an immiscible sulfide component remains in the mantle residue. Hence, MORBs are noble metal-poor, particularly with respect to PGE. Consequently, black smoker fluids can be expected to reflect the low Ir and Pd contents of the rock column. The average Au content of MORB is 1.3 ppb, and so the rock column is not significantly enriched in Au. The generation of fluids which precipitate solids with 200 ppb Au is apparently dependent on highly efficient fluid chemistry to mobilize Au from the rock column, high Au solubility in seawater hydrothermal fluids and efficient precipitation mechanisms to coprecipitate Au on Fe, Zn and Cu sulfides. Significant differences in these parameters appear to be the ultimate cause of the strong Au-PGE fractionation in the MOR setting. It does not appear from the current data base that MOR hydrothermal fluids are significant contributors to the Ir enrichment seen in Cretaceous-Tertiary boundary

  13. The Effect of Novel Mercapto Silane Systems on Resin Bond Strength to Dental Noble Metal Alloys.

    PubMed

    Lee, Yangho; Kim, Kyo-Han; Kim, Young Kyung; Son, Jun Sik; Lee, Eunkyung; Kwon, Tae-Yub

    2015-07-01

    Self-assembled monolayers of thiols (RSH), which are key elements in nanoscience and nanotechnology, have been used to link a range of materials to planar gold surfaces or gold nanoparticles. In this study, the adhesive performance of mercapto silane systems to dental noble metal alloys was evaluated in vitro and compared with that of commercial dental primers. Dental gold-palladium-platinum (Au-Pd-Pt), gold-palladium-silver (Au-Pd-Ag), and palladium-silver (Pd-Ag) alloys were used as the bonding substrates after air-abrasion (sandblasting). One of the following primers was applied to each alloy: (1) no primer treatment (control), (2) three commer- cial primers: V-Primer, Metal Primer II, and M.L. Primer, and (3) two experimental silane primer systems: 2-step application with 3-mercaptopropyltrimethoxysilane (SPS) (1.0 wt%) and then 3-methacryloxypropyltrimethoxysilane (MPS) (1.0 wt%), and a silane blend consisting of SPS and MPS (both 1.0 wt%). Composite resin cylinders with a diameter of 2.38 mm were bonded to the surfaces and irradiated for 40 sec using a curing light. After storage in water at 37 °C for 24 h, all the bonded specimens were thermocycled 5000 times before the shear bond strength test. Regardless of the alloy type, the mercapto silane systems (both the 2-step and blend systems) consistently showed superior bonding performance than the commercial primers. Contact angle analysis of the primed surfaces indicated that higher resin bond strengths were produced on more hydrophilic alloy surfaces. These novel mercapto silane systems are a promising alternative for improving resin bonding to dental noble metal alloys. PMID:26373046

  14. Non-linear conductance in quantum point contacts of noble metals

    NASA Astrophysics Data System (ADS)

    Yoshida, Makoto; Takayanagi, Kunio

    2004-03-01

    We studied the non-linear property of the electronic conductance of the noble metal nanocontact. Specimens were cleaned by Ar ion sputtering in UHV(`2 ˜10|7[Pa]) at room temperature. Current vs voltage curves (I-V curves) were obtained, while the metal contact was stretched by STM. The bias voltage at the contact was changed within 2V (using the triangle wave voltage 3`5kHz). Au, Pt, Ag and Cu quantum point contacts showed non-linear I-V curves. These metallic contacts presented the quantized conductance of the quantum unit G0(=2e2/h). I-V curves are fitted to a cubic function ( IaV+cV3 ). The value of c/a does not depend on the zero-bias conductance value, a. However, c/a values depend on metals (c/a ; Au=0.58 0.02, Ag=0.33 0.02, Cu= 0.40 0.03). The present result indicates that metals of lower resistance (higher mobility) give lower values of c/a.

  15. Effect of Mercury-Noble Metal Interactions on SRAT Processing of SB3 Simulants (U)

    SciTech Connect

    Koopman, D. C.; Baich, M. A.

    2004-12-31

    Controlling hydrogen generation below the Defense Waste Processing Facility (DWPF) safety basis constrains the range of allowable acid additions in the DWPF Chemical Processing Cell. This range is evaluated in simulant tests at the Savannah River National Laboratory (SRNL). A minimum range of allowable acid additions is needed to provide operational flexibility and to handle typical uncertainties in process and analytical measurements used to set acid additions during processing. The range of allowable acid additions is a function of the composition of the feed to DWPF. Feed changes that lead to a smaller range of allowable acid additions have the potential to impact decisions related to wash endpoint control of DWPF feed composition and to the introduction of secondary waste streams into DWPF. A limited program was initiated in SRNL in 2001 to study the issue of hydrogen generation. The program was reinitiated at the end of fiscal year 2004. The primary motivation for the study is that a real potential exists to reduce the conservatism in the range of allowable acid additions in DWPF. Increasing the allowable range of acid additions can allow decisions on the sludge wash endpoint or the introduction of secondary waste streams to DWPF to be based on other constraints such as glass properties, organic carbon in the melter off-gas, etc. The initial phase of the study consisted of a review of site reports and off-site literature related to catalytic hydrogen generation from formic acid and/or formate salts by noble metals. Many things are already known about hydrogen generation during waste processing. This phase also included the development of an experimental program to improve the understanding of hydrogen generation. This phase is being documented in WSRC-TR-2002-00034. A number of areas were identified where an improved understanding would be beneficial. A phased approach was developed for new experimental studies related to hydrogen generation. The first phase

  16. Electric dipole polarizabilities at imaginary frequencies for hydrogen, the alkali-metal, alkaline-earth, and noble gas atoms

    SciTech Connect

    Derevianko, Andrei Porsev, Sergey G. Babb, James F.

    2010-05-15

    The electric dipole polarizabilities evaluated at imaginary frequencies for hydrogen, the alkali-metal atoms, the alkaline-earth atoms, and the noble gases are tabulated along with the resulting values of the atomic static polarizabilities, the atom-surface interaction constants, and the dispersion (or van der Waals) constants for the homonuclear and the heteronuclear diatomic combinations of the atoms.

  17. Charge transfer and formation of conducting C60 monolayers at C60/noble-metal interfaces

    NASA Astrophysics Data System (ADS)

    Nouchi, Ryo; Kanno, Ikuo

    2005-05-01

    The resistance of a conducting C60 monolayer formed on a polycrystalline Ag film was found to be 0.7±0.1kΩ by in situ resistance measurements. By another series of in situ resistance measurements, the surface scattering cross sections, whose magnitude represents the relative amount of transferred charge, were evaluated as 100Å2 for C60/Au, and 150Å2 for C60/Cu and C60/Ag systems. However, comparison with previous results obtained for monolayers formed on Au and Cu films showed that the resistances of conducting C60 monolayers do not show a simple dependence on the transferred charge. Atomic force microscopy measurements revealed that the grain size of the underlying noble metals also plays an important role.

  18. A simple route to diverse noble metal-decorated iron oxide nanoparticles for catalysis

    NASA Astrophysics Data System (ADS)

    Walker, Joan M.; Zaleski, Jeffrey M.

    2016-01-01

    Developing facile synthetic routes to multifunctional nanoparticles combining the magnetic properties of iron oxides with the optical and catalytic utility of noble metal particles remains an important goal in realizing the potential of hybrid nanomaterials. To this end, we have developed a single route to noble metal-decorated magnetic nanoparticles (Fe3O4@SiO2-M M = Au, Pd, Ag, and PtAg) and characterized them by HRTEM and STEM/EDX imaging to reveal their nanometer size (16 nm Fe3O4 and 1-5 nm M seeds) and uniformity. This represents one of the few examples of genuine multifunctional particles on the nanoscale. We show that these hybrid structures have excellent catalytic activity for the reduction of 4-nitrophenol (knorm = 2 × 107 s-1 mol(Pd)-1 5 × 106 s-1 mol(Au)-1 5 × 105 s-1 mol(PtAg)-1 7 × 105 s-1 mol(Ag)-1). These rates are the highest reported for nano-sized comparables, and are competitive with mesoparticles of similar composition. Due to their magnetic response, the particles are also suitable for magnetic recovery and maintain >99% conversion for at least four cycles. Using this synthetic route, Fe3O4@SiO2-M particles show great promise for further development as a precursor to complicated anisotropic materials or for applications ranging from nanocatalysis to biomedical sensing.Developing facile synthetic routes to multifunctional nanoparticles combining the magnetic properties of iron oxides with the optical and catalytic utility of noble metal particles remains an important goal in realizing the potential of hybrid nanomaterials. To this end, we have developed a single route to noble metal-decorated magnetic nanoparticles (Fe3O4@SiO2-M M = Au, Pd, Ag, and PtAg) and characterized them by HRTEM and STEM/EDX imaging to reveal their nanometer size (16 nm Fe3O4 and 1-5 nm M seeds) and uniformity. This represents one of the few examples of genuine multifunctional particles on the nanoscale. We show that these hybrid structures have excellent catalytic

  19. Visible-light-driven hydrogen production in a dye sensitized polyoxometalate system without noble metals

    NASA Astrophysics Data System (ADS)

    Liu, Xing; Li, Yuexiang; Peng, Shaoqin; Lai, Hua; Yi, Zhengji

    2016-05-01

    In this work, a noble-metal-free homogeneous system was constructed in one step with Keggin-type polyoxometalate (POM) SiW12O404- as a catalyst, Eosin Y as a photosensitizer, and triethanolamine (TEOA) as a sacrificial electron donor for water splitting to produce hydrogen under visible-light irradiation. A two-electron reduced heteropoly blue SiW12O406- is produced by photosensitization under visible-light irradiation. The effect of various component concentrations and POMs with different central atoms (PW12O403-, GeW12O404-, etc.) on hydrogen production was discussed. This simple system made of earth-abundant elements is expected to contribute toward the development of functional and efficient artificial photosynthetic system.

  20. Highly Sensitive and Reproducible SERS Performance from Uniform Film Assembled by Magnetic Noble Metal Composite Microspheres.

    PubMed

    Niu, Chunyu; Zou, Bingfang; Wang, Yongqiang; Cheng, Lin; Zheng, Haihong; Zhou, Shaomin

    2016-01-26

    To realize highly sensitive and reproducible SERS performance, a new route was put forward to construct uniform SERS film by using magnetic composite microspheres. In the experiment, monodisperse Fe3O4@SiO2@Ag microspheres with hierarchical surface were developed and used as building block of SERS substrate, which not only realized fast capturing analyte through dispersion and collection under external magnet but also could be built into uniform film through magnetically induced self-assembly. By using R6G as probe molecule, the as-obtained uniform film exhibited great improvement on SERS performance in both sensitivity and reproducibility when compared with nonuniform film, demonstrating the perfect integration of high sensitivity of hierarchal noble metal microspheres and high reproducibility of ordered microspheres array. Furthermore, the as-obtained product was used to detect pesticide thiram and also exhibited excellent SERS performance for trace detection. PMID:26731200

  1. Characterization of small noble metal electrodes by voltammetry and energy dispersive x ray analysis

    NASA Astrophysics Data System (ADS)

    Strein, Timothy G.; Ewing, Andrew G.

    1993-01-01

    Construction and characterization of platinum and gold electrodes with total structural diameters of 1-2 micrometers is described. These small voltammetric probes have been constructed by direct electroreduction of noble metals onto the tips of etched carbon fiber microdisk electrodes. Voltammetry, electron microscopy, energy-dispersive x-ray analysis, and pulsed amperometric detection have been used to characterize these electrodes. Dopamine concentrations have been determined over a range of 10(exp -4) to 10(exp -3) M in the biological buffer system which contains 25 mM glucose, a compound known to adsorb strongly to electrodes. Amperometric monitoring at a constant potential with these small results in signal decay of 20% to 40% in a ten minute experiment. Pulsed amperometric detection minimizes electrode fouling, resulting in 5% or less signal decay over the same ten minute period.

  2. Elucidation of noble metal/formic acid chemistry during DWPF feed preparation

    SciTech Connect

    Landon, L.F.

    1991-01-01

    Eleven reports are included: evaluation of noble metal compounds as catalysts for aerobic decomposition of formic acid; reaction of NaNO[sub 3] and NaNO[sub 2] with formic acid under argon; effects of Ru, Rh, Pd chlorides on formic acid decomposition in presence of IDMS (pH=11.0) sludge; effects of additives on catalysts on decomposition of formic acid to hydrogen; Rh-catalyzed decomposition of formic acid; the question of whether this decomposition can be heterogeneous catalysis; inhibition of this reaction by additives; nitrilotriacetic acid inhibitor; uses of gelatin and other water soluble polymers to control flocculation rate; comparison of catalytic activities of Rh, Ru, Pd in Purex and HM sludges; experiments on homogeneous vs heterogeneous nature of Rh catalyst. Figs, refs, tabs.

  3. Elucidation of noble metal/formic acid chemistry during DWPF feed preparation. Revision 1

    SciTech Connect

    Landon, L.F.

    1991-12-31

    Eleven reports are included: evaluation of noble metal compounds as catalysts for aerobic decomposition of formic acid; reaction of NaNO{sub 3} and NaNO{sub 2} with formic acid under argon; effects of Ru, Rh, Pd chlorides on formic acid decomposition in presence of IDMS (pH=11.0) sludge; effects of additives on catalysts on decomposition of formic acid to hydrogen; Rh-catalyzed decomposition of formic acid; the question of whether this decomposition can be heterogeneous catalysis; inhibition of this reaction by additives; nitrilotriacetic acid inhibitor; uses of gelatin and other water soluble polymers to control flocculation rate; comparison of catalytic activities of Rh, Ru, Pd in Purex and HM sludges; experiments on homogeneous vs heterogeneous nature of Rh catalyst. Figs, refs, tabs.

  4. Structure and optical properties of noble metal and oxide nanoparticles dispersed in various polysaccharide biopolymers

    NASA Astrophysics Data System (ADS)

    Djoković, V.; Božanic, D. K.; Vodnik, V. V.; Krsmanović, R. M.; Trandafilovic, L. V.; Dimitrijević-Branković, S.

    2011-10-01

    We present the results on the structure and the optical properties of noble metal (Ag, Au) and oxide (ZnO) nanoparticles synthesized by various methods in different polysaccharide matrices such as chitosan, glycogen, alginate and starch. The structure of the obtained nanoparticles was studied in detail with microscopic techniques (TEM, SEM), while the XPS spectroscopy was used to investigate the effects at the nanoparticle-biomolecule interfaces. The antimicrobial activity of the nanocomposite films with Ag nanoparticles was tested against the Staphylococcus aureus, Escherichia coli and Candida albicans pathogens. In addition, we will present the results on the structure and optical properties of the tryptophan amino acid functionalized silver nanoparticles dispersed in water soluble polymer matrices.

  5. Hot-Electron Intraband Luminescence from Single Hot Spots in Noble-Metal Nanoparticle Films.

    PubMed

    Haug, Tobias; Klemm, Philippe; Bange, Sebastian; Lupton, John M

    2015-08-01

    Disordered noble-metal nanoparticle films exhibit highly localized and stable nonlinear light emission from subdiffraction regions upon illumination by near-infrared femtosecond pulses. Such hot spot emission spans a continuum in the visible and near-infrared spectral range. Strong plasmonic enhancement of light-matter interaction and the resulting complexity of experimental observations have prevented the development of a universal understanding of the origin of light emission. Here, we study the dependence of emission spectra on excitation irradiance and provide the most direct evidence yet that the continuum emission observed from both silver and gold nanoparticle aggregate surfaces is caused by recombination of hot electrons within the conduction band. The electron gas in the emitting particles, which is effectively decoupled from the lattice temperature for the duration of emission, reaches temperatures of several thousand Kelvin and acts as a subdiffraction incandescent light source on subpicosecond time scales. PMID:26296132

  6. Hot-Electron Intraband Luminescence from Single Hot Spots in Noble-Metal Nanoparticle Films

    NASA Astrophysics Data System (ADS)

    Haug, Tobias; Klemm, Philippe; Bange, Sebastian; Lupton, John M.

    2015-08-01

    Disordered noble-metal nanoparticle films exhibit highly localized and stable nonlinear light emission from subdiffraction regions upon illumination by near-infrared femtosecond pulses. Such hot spot emission spans a continuum in the visible and near-infrared spectral range. Strong plasmonic enhancement of light-matter interaction and the resulting complexity of experimental observations have prevented the development of a universal understanding of the origin of light emission. Here, we study the dependence of emission spectra on excitation irradiance and provide the most direct evidence yet that the continuum emission observed from both silver and gold nanoparticle aggregate surfaces is caused by recombination of hot electrons within the conduction band. The electron gas in the emitting particles, which is effectively decoupled from the lattice temperature for the duration of emission, reaches temperatures of several thousand Kelvin and acts as a subdiffraction incandescent light source on subpicosecond time scales.

  7. High density decoration of noble metal nanoparticles on polydopamine-functionalized molybdenum disulphide.

    PubMed

    Hussain, Muhammad Asif; Yang, MinHo; Lee, Tae Jae; Kim, Jung Won; Choi, Bong Gill

    2015-08-01

    Here, we report a highly stable colloidal suspension of nanoparticles (i.e., Pt and Au)-deposited MoS2 sheets, in which polydopamine (PD) serves as surface functional groups. The adoption of polydopamine coating onto the MoS2 surface enables homogeneous deposition of nanoparticles in an aqueous solution. As-synthesized nanohybrids are thoroughly characterized by transmission electron microscopy (TEM), Raman spectroscopy, and X-ray diffraction (XRD) measurement. These intensive investigations reveal that noble metal nanocrystals are uniformly distributed on the surface of ultrathin MoS2 sheets (∼4 layers). Moreover, as-prepared Au/PD/MoS2 nanohybrids can be applied as a heterogeneous catalyst for reduction of 4-nitrophenol to 4-aminophenol, and they exhibit an excellent catalytic activity. PMID:25898116

  8. Incipient hydrous oxide species as inhibitors of reduction processes at noble metal electrode

    SciTech Connect

    Burke, L.D.; O'Sullivan, J.F.; O'Dwyer, K.J.; Scannell, R.A.; Ahern, M.J.G.; McCarthy, M.M. )

    1990-08-01

    Evidence is presented to illustrate the important role of hydrous oxide in noble metal electrocatalysis. It was demonstrated, for instance, that in the case of gold in acid the onset/termination potential, under potential sweep conditions, for hydrazine oxidation and persulfate or iodate reduction occurred at the end of the hydrous oxide reduction peak (recorded for a thick film growth grown by potential multicycling); there was also a maximum in the faradaic ac response for gold in acid in the same region. Both gold and platinum were investigated in acid and base electrolytes. In some cases a range of potential, rather than a discrete value, was found to be involved, different species react with (or are inhibited by) different types (or coverages) of these submonolayer species. In some, possibly electrocatalytically nondemanding, reduction reactions the hydrous oxide seemed to have little effect.

  9. Deposition behavior of UO2 and noble-metal elements in oxide-electrowinning reprocessing

    NASA Astrophysics Data System (ADS)

    Kosugi, K.; Fukushima, M.; Myochin, M.; Mizuguchi, K.; Oomori, T.

    2005-02-01

    As a candidate process for future reprocessing technology of nuclear spent fuel, oxide-electrowinning method has been studied. In this method, the uranium is collected on the cathode in the form of UO2 by electrolysis in the molten chloride. Thereby, the noble metal (NM) elements accompany the uranium deposition, because of very close redox potential between NM elements and UO2. To clarify the electrolysis behavior of the uranium and NM elements in the low-current-density electrolysis, the laboratory scale experiments were performed under various conditions of cathode current density and solutes concentration in the chloride melt, and the separation efficiency and the morphology of the deposition were investigated. It was found that the separation of Pd from uranium was more difficult than that of Rh. The presence of U4+ greatly influenced current efficiency of the electrolysis process.

  10. Synthesis and characterization of ZnO nanostructures on noble-metal coated substrates

    NASA Astrophysics Data System (ADS)

    Dikovska, A. Og.; Atanasova, G. B.; Avdeev, G. V.; Nedyalkov, N. N.

    2016-06-01

    In this work, ZnO nanostructures were fabricated on noble-metal (Au, Ag and Au-Ag alloys) coated silicon substrates by applying pulsed laser deposition. The samples were prepared at a substrate temperature of 550 °C, an oxygen pressure of 5 Pa, and a laser fluence of 2 J cm-2 - process parameters usually used for deposition of smooth and dense thin films. The metal layer's role is substantial for the preparation of nanostructures. Heating of the substrate changed the morphology of the metal layer and, subsequently, nanoparticles were formed. The use of different metal particles resulted in different morphologies and properties of the ZnO nanostructures synthesized. The morphology of the ZnO nanostructures was related to the Au-Ag alloy's content of the catalyst layer. It was found that the morphology of the ZnO nanostructures evolved from nanorods to nanobelts as the ratio of Au/Ag in the alloy catalyst was varied. The use of a small quantity of Ag in the Au-Ag catalyst (Au3Ag) layer resulted predominantly in the deposition of ZnO nanorods. A higher Ag content in the catalyst alloy (AuAg2) layer resulted in the growth of a dense structure of ZnO nanobelts.

  11. Measurement of the Inhomogeneity in Type B and Land-Jewell Noble-Metal Thermocouples

    NASA Astrophysics Data System (ADS)

    Webster, E. S.; Greenen, A.; Pearce, J.

    2016-07-01

    Inhomogeneity is the largest contributor to uncertainty in temperature measurements made with thermocouples, and the knowledge of inhomogeneity is essential if low-uncertainty measurements are required. Inhomogeneity is a particular problem for long-term applications at temperatures near or above 1500 ^{circ }hbox {C}, where pairs of alloyed noble-metal thermocouples must be used and the alloy components and potential contaminants become very mobile and cause large deviations in the Seebeck coefficient. While changes in inhomogeneity are a known and well-studied problem in noble-metal alloys at temperatures below 1100 ^{circ }hbox {C}, the effects are not well quantified at higher temperatures. This paper reports the first detailed measurements of inhomogeneity in a number of Type B and Land-Jewell thermocouples exposed to either short-term calibration up to 1600 ^{circ }hbox {C} or long-term in situ measurements for a period of approximately 3000 h at 1600 ^{circ }hbox {C}. The inhomogeneity is measured in a high-resolution scanner operating over the range from 600 ^{circ }hbox {C} to 900 ^{circ }hbox {C}. The results show that drifts of between 0.2 % and 0.6 % can be expected for reversible crystallographic and oxidation effects, whereas drift caused by irreversible contamination effects can be expected to be between 0.6 % and 1.1 %. It is also shown that the deviations in emfs caused by irreversible homogeneities in these thermocouples scale approximately linearly with temperature. This scalability allows uncertainties assessed at one temperature, to be extrapolated to other temperatures. Additionally it is shown that a preconditioning anneal at 1100 ^{circ }hbox {C} should be applied both before and after calibration to remove undesirable crystallographic and rhodium-oxidation effects.

  12. The effect of ceramic supports on partial oxidation of hydrocarbons over noble metal coated monoliths

    SciTech Connect

    Bodke, A.S.; Bharadwaj, S.S.; Schmidt, L.D.

    1998-10-01

    Support effects on the production of synthesis gas and olefins by the partial oxidation of light hydrocarbons has been examined on noble metal catalysts at contact times of {approximately}5 ms. The authors consider the effect of the following parameters on selectivities and conversions: adding a washcoat, varying pore size, ceramic support material, and loading of noble metal. In oxidation of methane on rhodium-coated monoliths, maximum hydrogen selectivity improves from 89 to 95% on the addition of a washcoat. It is also a strong function of the catalyst pore size, changing from 83% on a catalyst with 20 ppi (pores per inch) to 93% on a catalyst with 80 ppi. It varies from 86 to 91% on adding a washcoat and changes from 70 to 95% on changing the pore size. In the oxidation of ethane on platinum-coated monoliths, the addition of a washcoat reduces ethylene selectivity from 63 to 35%, while changing the pore size results in minor variations. On different ceramic supports, the ethylene selectivity varies from 60 to 64% with mullite giving the best results. The authors find that washcoat addition, decreasing pore size, and replacement of zirconia for alumina as the support material increase syngas selectivity and reduce olefin selectivity irrespective of the fuel, catalyst, or amount of diluent used. Most of these results can be explained on the basis of differences in mass transfer rates to the catalytic site between catalysts of different support geometries. It is argued that homogeneous reactions play a minor role in these short contact time processes.

  13. New technique for the determination of trace noble metal content in geological and process materials

    NASA Astrophysics Data System (ADS)

    Mitkin, V. N.; Zayakina, S. B.; Anoshin, G. N.

    2003-02-01

    A new two-step sample preparation technique is proposed for the instrumental determination of trace quantities of noble metals (NM) in refractory geological and process materials. The decomposition procedure is based on the oxidizing fluorination of samples with subsequent sulfatization (OFS) of the sample melt or cake. Fluorination of samples is accomplished using a mixture of KHF 2+KBrF 4 or KHF 2+BrF 3 depending on the ratio of sample mass to oxidizing mixture. Both cakes and melts can result using this procedure. Sulfatization of resulting fluorides is completed using concentrated sulfuric acid heated to 550 °C. Validation studies using certified geostandard reference materials (GSO VP-2, ZH-3, Matte RTP, HO-1, SARM-7) have shown that the proposed method is fast, convenient and most often produces non-hygroscopic homogeneous residues suitable for analysis by atomic absorption spectrometry (AAS) and atomic emission spectrometry (AES). Results obtained for NM concentrations in reference materials agreed with certified concentration ranges and results obtained using other methods of analysis. The OFS procedure combined with direct current plasma d.c. plasma AES achieved the following limits of detection (LOD) for the noble metals: Ag, Au, Pd, 1-2×10 -6; Pt, 5×10 -6; and Ru, Rh, Ir, Os, 1-3×10 -7 wt.%. Using graphite furnace AAS (GFAAS) combined extraction pre-concentration the following LODs for NMs were achieved: Pt, Ru, 1×10 -6; Pd, Rh, 1×10 -7; and Au, Ag, 1-2×10 -8 wt.%. The relative standard deviation for NM determinations ( Sr) was dependent on NM concentration and sample type, but commonly was in the range of 3-15% for d.c. plasma AES and 5-30% for GFAAS.

  14. Conversion of ion-exchange resins, catalysts and sludges to glass with optional noble metal recovery using the GMODS process

    SciTech Connect

    Forsberg, C.W.; Beahm, E.C.

    1996-11-01

    Chemical processing and cleanup of waste streams (air and water) typically result in products, clean air, clean water, and concentrated hazardous residues (ion exchange resins, catalysts, sludges, etc.). Typically, these streams contain significant quantities of complex organics. For disposal, it is desirable to destroy the organics and immobilize any heavy metals or radioactive components into stable waste forms. If there are noble metals in the residues, it is desirable to recover these for reuse. The Glass Material Oxidation and Dissolution System (GMODS) is a new process that directly converts radioactive and hazardous chemical wastes to borosilicate glass. GMODS oxidizes organics with the residue converted to glass; converts metals, ceramics, and amorphous solids to glass; converts halides (eg chlorides) to borosilicate glass and a secondary sodium halide stream; and recovers noble metals. GMODS has been demonstrated on a small laboratory scale (hundreds of grams), and the equipment needed for larger masses has been identified.

  15. Magnetic properties of ZnS doped with noble metals (X = Ru, Rh, Pd, and Ag)

    NASA Astrophysics Data System (ADS)

    Tan, Zhiyun; Xiao, Wenzhi; Wang, Lingling; Yang, Youchang

    2012-12-01

    Density functional theory calculations are carried out to study the electronic structures and magnetic properties in zinc-blende structure ZnS doped with nonmagnetic noble metals (X = Ru, Rh, Pd, and Ag). Results show robust magnetic ground states for X-doped ZnS. The total magnetic moments are about 2.0, 3.0, and 2.0 μB per supercell for the Ru-, Rh-, and Pd-doped ZnS, respectively. As the atomic number of X element increases, the local magnetic moment tends toward delocalize and the hybridization between X-4d and S-3p states become stronger. This trend is strongly related to the difference in electronegativity between the substitutional X and the cation in the ZnS host. For Ag-doped ZnS, both non-spin- and spin-polarized calculations yield nearly equal total energy. The substitution of Zn in ZnS parent material by the nonmagnetic 4d transition-metals may lead to half-metallic ferromagnetism which stems from the hybridization between X-4d and S-3p states and could be attributed to a double-exchange mechanism. Curie temperature values are estimated using mean-field approximation.

  16. Fundamental study of nanostructured electro-catalysts with reduced noble metal content for PEM based water electrolysis

    NASA Astrophysics Data System (ADS)

    Kadakia, Sandeep Karan

    Identification and development of non-noble metal based electro-catalysts or electro-catalysts with significant reduction of expensive noble metal contents (E.g. IrO2, Pt) with comparable electrochemical performance as the standard noble metal/metal oxide for proton exchange membrane (PEM) based water electrolysis would constitute a major breakthrough in the generation of hydrogen by water electrolysis. Accomplishing such a system would not only result reduction of the overall capital costs of PEM based water electrolyzers, but also help attain the targeted hydrogen production cost [< $ 3.0 / gallon gasoline equivalent (gge)] comparable to conventional liquid fuels. In line with these goals, it was demonstrated that fluorine doped IrO 2 thin films and nanostructured high surface area powders display remarkably higher electrochemical activity, and comparable durability as pure IrO 2 electro-catalyst for the oxygen evolution reaction (OER) in PEM based water electrolysis. Furthermore, corrosion resistant SnO2 and NbO 2 support has been doped with F and coupled with IrO2 or RuO2 for use as an OER electro-catalyst. A solid solution of SnO 2:F or NbO2:F with only 20 - 30 mol.% IrO2 or RuO2 yielding a rutile structure in the form of thin films and bulk nanoparticles displays similar electrochemical activity and stability as pure IrO2/RuO2. This would lead to more than 70 mol.% reduction in the noble metal oxide content. Novel nanostructured ternary (Ir,Sn,Nb)O 2 thin films of different compositions have also been studied. It has been shown that (Ir0.40Sn0.30Nb 0.30)O2 shows similar electrochemical activity and enhanced chemical robustness as compared to pure IrO2. F doping of the ternary (Ir,Sn,Nb)O2 catalyst helps in further decreasing the noble metal oxide content of the catalyst. As a result, these reduced noble metal oxide catalyst systems would potentially be preferred as OER electro-catalysts for PEM electrolysis. The excellent performance of the catalysts coupled

  17. A System for High-Temperature Homogeneity Scanning of Noble-Metal Thermocouples

    NASA Astrophysics Data System (ADS)

    Webster, E.; Mason, R.; Greenen, A.; Pearce, J.

    2015-11-01

    Noble-metal thermocouples are amongst the most widely used thermocouples for high-temperature process measurement and as references. Although they are less susceptible to inhomogeneity effects than the more-common base-metal thermocouples, inhomogeneity is still the major source of uncertainty. Currently, most estimates of the uncertainty due to inhomogeneity are based on thermocouple specifications or historical performance of similar thermocouples. It is not common for the inhomogeneity to be measured directly, in part because there is no accepted method for measuring the inhomogeneities, and in part because there is no conclusive evidence linking the magnitude of inhomogeneities determined at the scanning temperature to the effects of the same inhomogeneities at other temperatures. This paper describes an inhomogeneity scanner able to be fitted to sodium heat-pipe furnaces to operate between 600°C and 1000°C. Comparison of scans made at 100°C demonstrates the scalability of some types of inhomogeneity in Type S and R thermocouples. It is concluded that for Type R and S thermocouples, a robust uncertainty assessment can be obtained from a scan made at a single temperature.

  18. Thermalization time of noble metal nanoparticles: effects of the electron density profile

    NASA Astrophysics Data System (ADS)

    López-Bastidas, C.

    2012-02-01

    The lack of d-electron screening in the s-electron spill-out region at the surface of Ag nanoparticles increases the electron-electron interaction in this region compared to the bulk. Therefore when comparing the electron-electron interaction contribution to the thermalization time of nanoparticles of varying radius, smaller particles thermalize faster due to the increased surface to bulk ratio. One aspect which has not been addressed is the effect of the spatial distribution of charge at the surface of the nanoparticle. In this work it is shown that the size dependence of the thermalization time is very sensitive to the surface density profile. The electron thermalization time of conduction electrons in noble metal nanoparticles as a function of the radius is calculated. The sensitivity of the scattering rate to the spatial distribution of charge at the surface of the nanostructure is analyzed using several model surface profiles. The change in surface charge distribution via charging or coating of the nanospheres is shown to be a tool for control and probing of the ultra-fast electron-electron dynamics in metallic nanoparticles.

  19. Noble-transition metal nanoparticle breathing in a reactive gas atmosphere.

    PubMed

    Petkov, Valeri; Shan, Shiyao; Chupas, Peter; Yin, Jun; Yang, Lefu; Luo, Jin; Zhong, Chuan-Jian

    2013-08-21

    In situ high-energy X-ray diffraction coupled to atomic pair distribution function analysis is used to obtain fundamental insight into the effect of the reactive gas environment on the atomic-scale structure of metallic particles less than 10 nm in size. To substantiate our recent discovery we investigate a wide range of noble-transition metal nanoparticles and confirm that they expand and contract radially when treated in oxidizing (O2) and reducing (H2) atmospheres, respectively. The results are confirmed by supplementary XAFS experiments. Using computer simulations guided by the experimental diffraction data we quantify the effect in terms of both relative lattice strain and absolute atomic displacements. In particular, we show that the effect leads to a small percent of extra surface strain corresponding to several tenths of Ångström displacements of the atoms at the outmost layer of the particles. The effect then gradually decays to zero within 4 atomic layers inside the particles. We also show that, reminiscent of a breathing type structural transformation, the effect is reproducible and reversible. We argue that because of its significance and widespread occurrence the effect should be taken into account in nanoparticle research. PMID:23828235

  20. Solar wind noble gases and nitrogen in metal from lunar soil 68501

    NASA Technical Reports Server (NTRS)

    Becker, Richard H.; Pepin, Robert O.

    1994-01-01

    Noble gases and N were analyzed in handpicked metal separates from lunar soil 68501 by a combination of step-wise combustions and pyrolyses. Helium and Ne were found to be unfractionated with respect to one another when normalized to solar abundances, for both the bulk sample and for all but the highest temperature steps. However, they are depleted relative to Ar, Kr and Xe by at least a factor of 5. The heavier gases exhibit mass-dependent fractionation relative to solar system abundance ratios but appear unfractionated, both in the bulk metal and in early temperature steps, when compared to relative abundances derived from lunar ilmenite 71501 by chemical etching, recently put forward as representing the abundance ratios in solar wind. Estimates of the contribution of solar energetic particles (SEP) to the originally implanted solar gases, derived from a basic interpretation of He and Ne isotopes, yield values of about 10%. Analysis of the Ar isotopes requires a minimum of 20% SEP, and Kr isotopes, using our preferred composition for solar wind Kr, yield a result that overlaps both these values. It is possible to reconcile the data from these gases if significant loss of solar wind Ar, Kr and presumably Xe has occurred relative to the SEP component, most likely by erosive processes that are mass independent, although mass-dependent losses (Ar greater than Kr greater than Xe) cannot be excluded. If such losses did occur, the SEP contribution to the solar implanted gases must have been no more than a few percent. Nitrogen is a mixture of indigenous meteoritic N, whose isotopic composition is inferred to be relatively light, and implanted solar N, which has probably undergone diffusive redistribution and fractionation. If the heavy noble gases have not undergone diffusive loss, then N/Ar in the solar wind can be inferred to be at least several times the accepted solar ratio. The solar wind N appears, even after correction for fractionation effects, to have a minimum

  1. Noble metal based plasmonic nanomaterials and their application for bio-imaging and photothermal therapy

    NASA Astrophysics Data System (ADS)

    Zhu, Dewei

    During the past two decades, researchers have gained more and more insight into the manipulation of nanomaterials to create useful technologies. Numerous classes of nanomaterials have been produced and studied based upon their intriguing chemical and physical properties and their potential applications in diverse fields, ranging from electronics to renewable energy and biomedicine. In this dissertation, we describe the synthesis and potential biomedical applications of several types of noble metal-based nanomaterials in which we control size, shape, and coupling to other materials to tune their localized surface plasmon resonance (LSPR) interaction with light. We demonstrate the application of these novel nanostructures as contrast agents for photoacoustic imaging and as photosensitizers for photothermal therapy. Chapter one first presents protocols for producing monodisperse spherical nanoparticles of gold and silver. The diameter of the nanospheres can be adjusted from less than 2 nm to greater than 10 nm by controlling the reaction conditions, including ligands that cap the nanosphere surfaces, reaction time, and reaction temperature. Next, we describe the synthesis of multi-branched Au nanocrystals with predominantly tripodal, tetrapodal and star-shaped morphologies. We demonstrate tuning of the LSPR energy in these materials by changing the branch length. In the third part of this chapter, we present a novel method for coupling heavily-doped p-type copper selenide (Cu2-xSe) NPs with Au NPs by seeded nanocrystal growth to form a new type of semiconductor-metal heterogeneous nanostructure. This new class of plasmonic nanomaterials can simultaneously exhibit two types of LSPR in a single system, producing a broad optical absorbance that is nearly flat across the near infrared (NIR) spectral region (750-1150nm), along with a small shoulder at 566 nm that originates from the Au NP. We conclude this first chapter by demonstrating the use of self-doped copper sulfide

  2. Effect of residual gases in high vacuum on the energy-level alignment at noble metal/organic interfaces

    SciTech Connect

    Helander, M. G.; Wang, Z. B.; Lu, Z. H.

    2011-10-31

    The energy-level alignment at metal/organic interfaces has traditionally been studied using ultraviolet photoelectron spectroscopy (UPS) in ultra-high vacuum (UHV). However, since most devices are fabricated in high vacuum (HV), these studies do not accurately reflect the interfaces in real devices. We demonstrate, using UPS measurements of samples prepared in HV and UHV and current-voltage measurements of devices prepared in HV, that the small amounts of residual gases that are adsorbed on the surface of clean Cu, Ag, and Au (i.e., the noble metals) in HV can significantly alter the energy-level alignment at metal/organic interfaces.

  3. Corrosion potential behavior in high-temperature water of noble metal-doped alloy coatings deposited by underwater thermal spraying

    SciTech Connect

    Kim, Y.J.; Andresen, P.L.; Gray, D.M.; Lau, Y.C.; Offer, H.P.

    1996-06-01

    Intergranular stress corrosion cracking (IGSCC) of sensitized stainless steel (SS) components in boiling water reactors (BWR) is a major concern. The SCC susceptibility of structural materials in high-temperature water is affected by the electrochemical corrosion potential (ECP). The ECP of type 304 stainless steel coated under water by hyper-velocity oxy-fuel (HVOF) and plasma-spray (PS) techniques using noble metal-doped powders was measured to evaluate the catalytic behavior in high-temperature water under various water chemistry conditions. Thermal-spray coatings of noble metal-doped powders exhibited catalytic behavior for the recombination of oxygen and hydrogen in high-temperature water, which caused ECP to decrease well below a critical value of {minus}230 mV{sub SHE} for intergranular stress corrosion cracking protection in water. This was observed in water containing various amounts of oxygen and hydrogen peroxide when stoichiometric excess hydrogen was present.

  4. Nature of graphitization and noble metal mineralization in metamorphic rocks of the northern Khanka Terrane, Primorye

    NASA Astrophysics Data System (ADS)

    Khanchuk, A. I.; Plyusnina, L. P.; Ruslan, A. V.; Likhoidov, G. G.; Barinov, N. N.

    2013-07-01

    Elevated contents of noble metals (NM) have been established in the Riphean-Cambrian graphite-bearing complexes of the northern Khanka Terrane, which metamorphosed under conditions of greenschist to granulite facies. At the previously known graphite deposits of the Turgenevo-Tamga group, NM comprise (ppm): Pt (0.04-62.13), Au (0.021-26), Ag (0.56-4.41), Pd (0.003-5.67), Ru (0.007-0.2), Rh (0.001-0.74), Ir (0.002-0.55), and Os (0.011-0.09). Analyses of graphitized rocks carried out with various methods (IMS, INAA, AAS, AES, fire assay) reveal a wide scatter of the results related to the specifics of sample preparation, in particular, due to a significant loss of NM by thermal oxidation decomposition. Analysis of a low-soluble graphite residue obtained by treatment of graphitized rocks allowed us to establish genetic links between NM mineralization and carbonic alteration of various igneous, granulite- and amphibolitefacies metamorphic rocks, which occur over a vast area. The nonuniform distribution of graphite and NM in rocks, their fine dispersivity, and compositional variability of NM indicate that their origin is related largely to endogenic processes with the participation of deep reduced fluids. In greenschist-facies rocks, fluorine, bromine, and iodine are associated both with ore minerals and graphite, providing evidence for transport of NM by halogene- and carbon-bearing fluids. The inhomogeneous distribution of metals in graphite, microglobular structure, and carbon isotopic composition are the guides for its gas-condensate crystallization. At the same time, thermal analysis and Raman spectroscopy show that graphite formed by metamorphism of carbonaceous matter contained in sedimentary rocks also occurs. It is concluded that the predominant mass of NM is of fluid-magmatic origin with the participation of exogenic and metamorphic sources of metals.

  5. Bond Strength of Resin Cements to Noble and Base Metal Alloys with Different Surface Treatments

    PubMed Central

    Raeisosadat, Farkhondeh; Ghavam, Maryam; Hasani Tabatabaei, Masoomeh; Arami, Sakineh; Sedaghati, Maedeh

    2014-01-01

    Objectives: The bond strength of resin cements to metal alloys depends on the type of the metal, conditioning methods and the adhesive resins used. The purpose of this study was to evaluate the bond strength of resin cements to base and noble metal alloys after sand blasting or application of silano-pen. Materials and Method: Cylinders of light cured Z 250 composite were cemented to “Degubond 4” (Au Pd) and “Verabond” (Ni Cr) alloys by either RelyX Unicem or Panavia F2, after sandblasting or treating the alloys with Silano-Pen. The shear bond strengths were evaluated. Data were analyzed by three-way ANOVA and t tests at a significance level of P<0.05. Results: When the alloys were treated by Silano-Pen, RelyX Unicem showed a higher bond strength for Degubond 4 (P=0.021) and Verabond (P< 0.001). No significant difference was observed in the bond strength of Panavia F2 to the alloys after either of surface treatments, Degubond 4 (P=0.291) and Verabond (P=0.899). Panavia F2 showed a higher bond strength to sandblasted Verabond compared to RelyX Unicem (P=0.003). The bond strength of RelyX Unicem was significantly higher to Silano-Pen treated Verabond (P=0.011). The bond strength of the cements to sandblasted Degubond 4 showed no significant difference (P=0.59). RelyX Unicem had a higher bond strength to Silano-Pen treated Degubond 4 (P=0.035). Conclusion: The bond strength of resin cements to Verabond alloy was significantly higher than Degubond 4. RelyX Unicem had a higher bond strength to Silano-Pen treated alloys. Surface treatments of the alloys did not affect the bond strength of Panavia F2. PMID:25628687

  6. Ab initio investigation of the oxygen reduction reaction activity on noble metal (Pt, Au, Pd), Pt3M (M = Fe, Co, Ni, Cu) and Pd3M (M = Fe, Co, Ni, Cu) alloy surfaces, for Lisbnd O2 cells

    NASA Astrophysics Data System (ADS)

    Sankarasubramanian, Shrihari; Singh, Nikhilendra; Mizuno, Fuminori; Prakash, Jai

    2016-07-01

    First principles, density functional theory (DFT) modelling of the oxygen reduction reaction (ORR) on noble metal (Pt, Au, Pd), Pt3M (M = Fe, Co, Ni, Cu) and Pd3M (M = Fe, Co, Ni, Cu) alloy surfaces, was carried out. Periodic models of close-packed (111) surfaces were constructed, their geometry was optimized and the most stable geometric surface configuration was identified. The correlation between the intermediate species binding energy and the favored reaction pathway from amongst 1e-, 2e-, and 4e- mechanisms were studied by calculating the binding energies of a 1/4 monolayer of O, O2, LiO, LiO2, Li2O2, and Li2O on various sites and orientations. The reaction free energies (ΔGrxn) were calculated and used to compute the catalytic activity of the surfaces using molecular kinetics theory. Plots of the catalytic activity vs. Oxygen binding energy (EBinding (O)) showed a typical "volcano" profile. The insights gained from this study can be used to guide the choice of cathode catalysts in Lisbnd O2 cells.

  7. Noble metal based plasmonic nanomaterials and their application for bio-imaging and photothermal therapy

    NASA Astrophysics Data System (ADS)

    Zhu, Dewei

    During the past two decades, researchers have gained more and more insight into the manipulation of nanomaterials to create useful technologies. Numerous classes of nanomaterials have been produced and studied based upon their intriguing chemical and physical properties and their potential applications in diverse fields, ranging from electronics to renewable energy and biomedicine. In this dissertation, we describe the synthesis and potential biomedical applications of several types of noble metal-based nanomaterials in which we control size, shape, and coupling to other materials to tune their localized surface plasmon resonance (LSPR) interaction with light. We demonstrate the application of these novel nanostructures as contrast agents for photoacoustic imaging and as photosensitizers for photothermal therapy. Chapter one first presents protocols for producing monodisperse spherical nanoparticles of gold and silver. The diameter of the nanospheres can be adjusted from less than 2 nm to greater than 10 nm by controlling the reaction conditions, including ligands that cap the nanosphere surfaces, reaction time, and reaction temperature. Next, we describe the synthesis of multi-branched Au nanocrystals with predominantly tripodal, tetrapodal and star-shaped morphologies. We demonstrate tuning of the LSPR energy in these materials by changing the branch length. In the third part of this chapter, we present a novel method for coupling heavily-doped p-type copper selenide (Cu2-xSe) NPs with Au NPs by seeded nanocrystal growth to form a new type of semiconductor-metal heterogeneous nanostructure. This new class of plasmonic nanomaterials can simultaneously exhibit two types of LSPR in a single system, producing a broad optical absorbance that is nearly flat across the near infrared (NIR) spectral region (750-1150nm), along with a small shoulder at 566 nm that originates from the Au NP. We conclude this first chapter by demonstrating the use of self-doped copper sulfide

  8. Quasi-noble-metal graphene quantum dots deposited stannic oxide with oxygen vacancies: Synthesis and enhanced photocatalytic properties.

    PubMed

    Quan, Bin; Liu, Wei; Liu, Yousong; Zheng, Ying; Yang, Guangcheng; Ji, Guangbin

    2016-11-01

    Quasi-noble-metal graphene quantum dots (GQDs) deposited stannic oxide (SnO2) with oxygen vacancies (VOs) were prepared by simply sintering SnO2 and citric acid (CA) together. The redox process between SnO2 and GQDs shows the formation of oxygen vacancy states below the conduction band of stannic oxide. The produced VOs obviously extend the optical absorption region of SnO2 to the visible-light region. Meanwhile, GQDs can effectively improve the charge-separation efficiency via a quasi function like noble metal and promote the visible-light response to some degree. In addition, the samples calcinated at 450°C reveals the best performance because of its relatively high concentrations of VOs. What is more, the possible degradation mechanism has been inferred as extended visible-light response as well as raised charge-separation efficiency has also been put forward. Our work may offer a simple strategy to combine the defect modulation and noble metal deposition simultaneously for efficient photocatalysis. PMID:27450887

  9. Structural Stability and Performance of Noble Metal-Free SnO2-Based Gas Sensors

    PubMed Central

    Tricoli, Antonio

    2012-01-01

    The structural stability of pure SnO2 nanoparticles and highly sensitive SnO2-SiO2 nanocomposites (0–15 SiO2 wt%) has been investigated for conditions relevant to their utilization as chemoresistive gas sensors. Thermal stabilization by SiO2 co-synthesis has been investigated at up to 600 °C determining regimes of crystal size stability as a function of SiO2-content. For operation up to 400 °C, thermally stable crystal sizes of ca. 24 and 11 nm were identified for SnO2 nanoparticles and 1.4 wt% SnO2-SiO2 nanocomposites, respectively. The effect of crystal growth during operation (TO = 320 °C) on the sensor response to ethanol has been reported, revealing possible long-term destabilization mechanisms. In particular, crystal growth and sintering-neck formation were discussed with respect to their potential to change the sensor response and calibration. Furthermore, the effect of SiO2 cosynthesis on the cross-sensitivity to humidity of these noble metal-free SnO2-based gas sensors was assessed. PMID:25585712

  10. Sedimentation behavior of noble metal particles in simulated high-level waste borosilicate glasses

    SciTech Connect

    Nakajima, M.; Ohyama, K.; Morikawa, Y.; Miyauchi, A.; Yamashita, T.; Komamine, S.; Ochi, E.

    2013-07-01

    Solubility of noble metal elements (NME) in the melted borosilicate glass is much smaller than its normal concentration of the high level liquid waste. Thus most of NME show small particles in the melted glass and tend to sediment in the bottom region of the vitrification melter due to their higher density than that of glass. Experiments of the sedimentation of NME particles in the melted glass were carried out under static condition. Three conditions of initial NME concentration (1.1, 3.0, 6.1 wt % with an equivalent for each oxide) in the simulated glass were set and held at 1100 C. degrees up to 2880 hours. The specimen with 1.1 wt % initial NME concentration indicated zone settling, and the settling rate of the interface is constant: 2.4 mm/h. This sedimentation behavior is the type of rapid settling. Following the rapid settling, the settling rate goes gradually slower; this is the type of compressive settling. The specimens with 3.0 wt % and 6.1 wt % initial NME concentration showed compression settling from the beginning. From the settling curve of the interface, the maximum concentration of NME in sediment was estimated to be around 23- 26 wt %. Growth of NME particles was observed by holding at 1100 C. degrees for up to 2880 hours. The viscosity becomes higher as NME concentration increases and the dependence on shear rate becomes simultaneously stronger. The effect of the particle growth to viscosity appears to be not significant.

  11. Fabrication of Mo pyramidal-shape single atom tips covered by a noble metal

    NASA Astrophysics Data System (ADS)

    Lin, Rung-Jiun; Chen, Yi-Ju; Chen, Hsiao-Chi; Fu, Tsu-Yi

    2014-08-01

    The effect of annealing temperature on the faceting phenomena has been studied for pure molybdenum (Mo) and Mo tips covered with palladium (Pd), platinum (Pt), rhodium (Rh), or iridium (Ir) by field ion microscopy (FIM). For these Mo samples, three {2 1 1} facets were found to expand to {1 1 1} facets and form pyramidal structures after annealing at the temperature of 1100-1300 K. The pyramidal single atom tips (SATs) were formed on Pd-, Pt- and Rh-covered Mo tips. Two types of pyramidal structure, stacked by either 1, 3, 10 or 1, 6, 15 atoms for the top three layers were found. However, no SATs were found on pure Mo and Ir-covered tips. This indicates that noble metal adsorption, which can increase the difference of surface-free-energy anisotropy, indeed benefits the formation of SATs on Mo systems. Additionally, an SAT cannot be obtained for the Ir-covered Mo systems, because Ir is easily alloyed with Mo.

  12. Spin-Orbit Effects in the Quasiparticle Bandstructure of Noble Metals

    NASA Astrophysics Data System (ADS)

    Mustafa, Jamal; Louie, Steven

    2014-03-01

    Applications of the GW approximation to the electron self-energy have proven quite successful for calculating the quasiparticle properties of materials. We find that for the noble metals, in line with previous work in such calculations, the semicore states need to be taken into account. We show that, with these semicore states, a large cutoff must be used to describe the screening and, in turn, a large number of empty states must be included. Taking all of this into account, and carefully checking convergence, shows G0W0 can describe experimental results from angle-resolved photoemission spectroscopy quite well when the effects of spin-orbit coupling is also included. We compare our results to recent self-consistent GW calculations on gold. This work was supported by NSF grant No. DMR10-1006184 and U.S. DOE under Contract No. DE-AC02-05CH11231. Computational resources have been provided by DOE at LBNL's NERSC facility.

  13. Enhancing spectral shifts of plasmon-coupled noble metal nanoparticles for sensing applications.

    PubMed

    Göeken, Kristian L; Subramaniam, Vinod; Gill, Ron

    2015-01-01

    Noble metal nanoparticles possess very large scattering cross-sections, which make them useful as tags in biosensing assays with the potential to detect even single binding events. In this study, we investigated the effects of nanoparticle size on the shift in the light scattering spectrum following formation of Au-Au, Ag-Ag or Ag-Au dimers using FDTD simulations. We discuss the use of a color camera to detect these spectral changes for application in a target-induced dimerization sensing assay. Dimerization of Au nanoparticles induced a larger shift in color compared to Ag nanoparticles. Heterodimers composed of 60 nm Ag and 40 nm Au demonstrated an even larger spectral shift and color response compared to the best homodimer pair (80-40 nm Au). The increased spectral shift of the Ag-Au heterodimer was subsequently observed experimentally for the DNA-induced dimerization of nanoparticles, showing that careful selection of nanoparticle size and composition can significantly enhance recognition of nanoparticle dimerization events for use in (color) sensing assays. PMID:25406679

  14. A noble-metal-free system for photocatalytic hydrogen production from water.

    PubMed

    Mejía, Esteban; Luo, Shu-Ping; Karnahl, Michael; Friedrich, Aleksej; Tschierlei, Stefanie; Surkus, Annette-Enrica; Junge, Henrik; Gladiali, Serafino; Lochbrunner, Stefan; Beller, Matthias

    2013-11-18

    A series of heteroleptic copper(I) complexes with bidentate PP and NN chelate ligands was prepared and successfully applied as photosensitizers in the light-driven production of hydrogen, by using [Fe3(CO)12] as a water-reduction catalyst (WRC). These systems efficiently reduces protons from water/THF/triethylamine mixtures, in which the amine serves as a sacrificial electron donor (SR). Turnover numbers (for H) up to 1330 were obtained with these fully noble-metal-free systems. The new complexes were electrochemically and photophysically characterized. They exhibited a correlation between the lifetimes of the MLCT excited state and their efficiency as photosensitizers in proton-reduction systems. Within these experiments, considerably long excited-state lifetimes of up to 54 μs were observed. Quenching studies with the SR, in the presence and absence of the WRC, showed that intramolecular deactivation was more efficient in the former case, thus suggesting the predominance of an oxidative quenching pathway. PMID:24123302

  15. Catalytic conversion of CHx and CO2 on non-noble metallic impurities in graphene.

    PubMed

    Tang, Yanan; Liu, Zhiyong; Chen, Weiguang; Ma, Dongwei; Chang, Shanshan; Dai, Xianqi

    2016-06-22

    Density functional theory (DFT) was applied to investigate the geometric, electronic, and magnetic properties of CHx (x = 0, 1, 2, 3, 4) species on non-noble metal embedded graphene (NNM-graphene). It was found that the different stabilities of CHx species can modify the electronic structures and magnetic properties of NNM-graphene systems. The carbonaceous reforming reactions include conversion of CHx (x = 0, 1, 2 and 3) species by hydrogen molecules (H2) to form CHx+2 species or oxidation of C atoms by oxygen molecules to form CO2. In the hydrogenation reactions, deposited C atoms can be converted easily into CHx species overcoming small energy barriers. In comparison, coadsorption of C and O2 to generate CO2 encounters relatively larger energy barriers on the NNM-graphene. Hence, the coadsorption of CHx and H2 as the starting state is energetically more favorable and formation of CHx species can reduce amounts of carbon deposition. Among the NNM-graphene substrates studied, moderate adsorption energies and low reaction barriers of CHx species are more likely to occur on the Co-graphene surface, thus the hydrogenation reaction is able to inhibit carbon deposition on the NNM-graphene surface while maintaining high activity. PMID:27296782

  16. Ab initio study of the trapping of polonium on noble metals

    NASA Astrophysics Data System (ADS)

    Rijpstra, Kim; Van Yperen-De Deyne, Andy; Maugeri, Emilio Andrea; Neuhausen, Jörg; Waroquier, Michel; Van Speybroeck, Veronique; Cottenier, Stefaan

    2016-04-01

    In the future MYRRHA reactor, lead bismuth eutectic (LBE) will be used both as coolant and as spallation target. Due to the high neutron flux a small fraction of the bismuth will transmute to radiotoxic 210Po. Part of this radiotoxic element will evaporate into the gas above the coolant. Extracting it from the gas phase is necessary to ensure a safe handling of the reactor. An issue in the development of suitable filters is the lack of accurate knowledge on the chemical interaction between a candidate filter material and either elemental polonium or polonium containing molecules. Experimental work on this topic is complicated by the high radiotoxicity of polonium. Therefore, we present in this paper a first-principles study on the adsorption of polonium on noble metals as filter materials. The adsorption of monoatomic Po is considered on the candidate filter materials palladium, platinum, silver and gold. The case of the gold filter is looked upon in more detail by examining how bismuth pollution affects its capability to capture polonium and by studying the adsorption of the heavy diatomic molecules Po2, PoBi and PoPb on this gold filter.

  17. Hydrocracking naphthas using mildly steamed, noble metal-containing zeolite beta

    SciTech Connect

    Hickey, K.J. Jr.; Morrison, R.A.

    1989-03-14

    A method is described for hydrocracking a naphtha which comprises contacting the naphtha with a noble metal-containing zeolite beta naphtha hydrocracking catalyst at a pressure of about 0 to about 2000 psig, a temperature of about 400/sup 0/ to about 650/sup 0/F, a hydrogen or hydrocarbon molar ratio of about 0.1 to 1 to about 15 to 1 and a weight hourly space velocity of about 0.5 to about 20. Naphtha hydrocracking activity of the catalyst is enhanced by mild steaming of the zeolite beta catalyst prior to the contacting, the mild steaming being accomplished by steaming the zeolite catalyst in its fresh state under controlled conditions of temperature, time and steam partial pressure so as to initially increase the alpha activity of the catalyst and produce a steamed catalyst having a peak alpha activity, and subsequently reduce the alpha activity from the peak alpha activity to an alpha activity substantially the same as the alpha activity of the fresh catalyst and no more than 25% below the initial alpha activity of the fresh catalyst.

  18. Recent Advances in the Field of Bionanotechnology: An Insight into Optoelectric Bacteriorhodopsin, Quantum Dots, and Noble Metal Nanoclusters

    PubMed Central

    Knoblauch, Christopher; Griep, Mark; Friedrich, Craig

    2014-01-01

    Molecular sensors and molecular electronics are a major component of a recent research area known as bionanotechnology, which merges biology with nanotechnology. This new class of biosensors and bioelectronics has been a subject of intense research over the past decade and has found application in a wide variety of fields. The unique characteristics of these biomolecular transduction systems has been utilized in applications ranging from solar cells and single-electron transistors (SETs) to fluorescent sensors capable of sensitive and selective detection of a wide variety of targets, both organic and inorganic. This review will discuss three major systems in the area of molecular sensors and electronics and their application in unique technological innovations. Firstly, the synthesis of optoelectric bacteriorhodopsin (bR) and its application in the field of molecular sensors and electronics will be discussed. Next, this article will discuss recent advances in the synthesis and application of semiconductor quantum dots (QDs). Finally, this article will conclude with a review of the new and exciting field of noble metal nanoclusters and their application in the creation of a new class of fluorescent sensors. PMID:25340449

  19. Graphene-based non-noble-metal Co/N/C catalyst for oxygen reduction reaction in alkaline solution

    NASA Astrophysics Data System (ADS)

    Niu, Kexing; Yang, Baoping; Cui, Jinfeng; Jin, Jutao; Fu, Xiaogang; Zhao, Qiuping; Zhang, Junyan

    2013-12-01

    This study develops a promising catalyst for oxygen reduction reaction (ORR) via a simple two-step heat treatment of a mixture of cobalt(II) nitrate hexahydrate (Co(NO3)2·6H2O), polyethyleneimine (PEI), and graphene oxide (GO), firstly in argon atmosphere and then in ammonia atmosphere. X-ray photoemission spectroscopy (XPS) result reveals that the catalyst has pyridinic N-dominant (46% atomic concentration among all N components) on the surface. The kinetics measurement of the catalyst in 0.1 M KOH solution using a rotating disk electrode (RDE) reveals that the catalyst (Co/N/rGO(NH3)) has high activity. Furthermore, the number of electrons exchanged during the ORR with the catalyst is determined to be ˜3.9, suggesting that the ORR is dominated by a 4e- reduction of O2 to H2O. The catalyst has good stability, and its performance is superior to the commercial Pt/C(20%) catalyst in alkaline condition, making the material a promising substitute to noble metal ORR electrocatalyst on the cathode side of fuel cells.

  20. Rational design of binder-free noble metal/metal oxide arrays with nanocauliflower structure for wide linear range nonenzymatic glucose detection

    PubMed Central

    Li, Zhenzhen; Xin, Yanmei; Zhang, Zhonghai; Wu, Hongjun; Wang, Peng

    2015-01-01

    One-dimensional nanocomposites of metal-oxide and noble metal were expected to present superior performance for nonenzymatic glucose detection due to its good conductivity and high catalytic activity inherited from noble metal and metal oxide respectively. As a proof of concept, we synthesized gold and copper oxide (Au/CuO) composite with unique one-dimensional nanocauliflowers structure. Due to the nature of the synthesis method, no any foreign binder was needed in keeping either Au or CuO in place. To the best of our knowledge, this is the first attempt in combining metal oxide and noble metal in a binder-free style for fabricating nonenzymatic glucose sensor. The Au/CuO nanocauliflowers with large electrochemical active surface and high electrolyte contact area would promise a wide linear range and high sensitive detection of glucose with good stability and reproducibility due to its good electrical conductivity of Au and high electrocatalytic activity of CuO. PMID:26068705

  1. Rational design of binder-free noble metal/metal oxide arrays with nanocauliflower structure for wide linear range nonenzymatic glucose detection.

    PubMed

    Li, Zhenzhen; Xin, Yanmei; Zhang, Zhonghai; Wu, Hongjun; Wang, Peng

    2015-01-01

    One-dimensional nanocomposites of metal-oxide and noble metal were expected to present superior performance for nonenzymatic glucose detection due to its good conductivity and high catalytic activity inherited from noble metal and metal oxide respectively. As a proof of concept, we synthesized gold and copper oxide (Au/CuO) composite with unique one-dimensional nanocauliflowers structure. Due to the nature of the synthesis method, no any foreign binder was needed in keeping either Au or CuO in place. To the best of our knowledge, this is the first attempt in combining metal oxide and noble metal in a binder-free style for fabricating nonenzymatic glucose sensor. The Au/CuO nanocauliflowers with large electrochemical active surface and high electrolyte contact area would promise a wide linear range and high sensitive detection of glucose with good stability and reproducibility due to its good electrical conductivity of Au and high electrocatalytic activity of CuO. PMID:26068705

  2. Non-noble electrocatalysts for alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Sarangapani, S.; Lessner, P.; Manoukian, M.; Giner, J.

    1989-01-01

    Carbons activated with macrocyclics have attracted increasing attention as alternative electrocatalysts for oxygen reduction. Initial activity of these catalysts is good, but performance declines rapidly. Pyrolyzing the macrocyclic on the carbon support leads to enhanced stability and the catalysts retain good activity. The approach described is designed to develop bulk doped catalysts with similar structures to pyrolyzed macrocyclic catalysts. The transition metal and coordinated ligands are dispersed throughout the bulk of the conductive carbon skeleton. Two approaches to realizing this concept are being pursued, both involving the doping of carbon precursors. In one approach, the precursor is a solid phase carbon-containing ion-exchange resin. The precursor is doped with a transition metal and/or nitrogen, and the resulting mixture is pyrolyzed. In the other approach, the precursor is a gas-phase hydrocarbon. This is introduced with a transition metal species and nitrogen species into a reactor and pyrolyzed. Several studies have been conducted to determine if there is a synergistic effect between the transition metal and nitrogen and the effect of different methods of introducing the metal-nitrogen (M-N) coordination on performance. One approach was to introduce the metal and nitrogen separately, for example, by sequentially doping FeCl3 and NH4OH into the resin. Catalysts were prepared from an undoped ion-exchange resin, a resin doped only with N, a resin doped only with Fe, and a resin doped with both Fe and N. Introduction of nitrogen alone has no beneficial effect on the performance of the catalysts. The introduction of the Fe alone significantly improves the performance in both the high and low current density regions. When both Fe and N are introduced, the performance at lower current densities (catalytic activity) is increased beyond that of the Fe-doped carbon, but the performance at higher current densities is similar to the carbon containing only Fe

  3. Noble metal nanoparticle-induced oxidative stress modulates tumor associated macrophages (TAMs) from an M2 to M1 phenotype: An in vitro approach.

    PubMed

    Pal, Ramkrishna; Chakraborty, Biswajit; Nath, Anupam; Singh, Leichombam Mohindro; Ali, Mohammed; Rahman, Dewan Shahidur; Ghosh, Sujit Kumar; Basu, Abhishek; Bhattacharya, Sudin; Baral, Rathindranath; Sengupta, Mahuya

    2016-09-01

    Diagnosis of cancer and photothermal therapy using optoelectronic properties of noble metal nanoparticles (NPs) has established a new therapeutic approach for treating cancer. Here we address the intrinsic properties of noble metal NPs (gold and silver) as well as the mechanism of their potential antitumor activity. For this, the study addresses the functional characterization of tumor associated macrophages (TAMs) isolated from murine fibrosarcoma induced by a chemical carcinogen, 3-methylcholanthrene (MCA). We have previously shown antitumor activity of both gold nanoparticles (AuNPs) and silver nanoparticle (AgNPs) in vivo in a murine fibrosarcoma model. In the present study, it has been seen that AuNPs and AgNPs modulate the reactive oxygen species (ROS) and reactive nitrogen species (RNS) production, suppressing the antioxidant system of cells (TAMs). Moreover, the antioxidant-mimetic action of these NPs maintain the ROS and RNS levels in TAMs which act as second messengers to activate the proinflammatory signaling cascades. Thus, while there is a downregulation of tumor necrosis factor-α (TNF-α) and Interleukin-10 (IL-10) in the TAMs, the proinflammatory cytokine Interleukin-12 (IL-12) is upregulated resulting in a polarization of TAMs from M2 (anti-inflammatory) to M1 (pro-inflammatory) nature. PMID:27344639

  4. Noble metals (Ag, Au) nanoparticles addition effects on superconducting properties of CuTl-1223 phase

    NASA Astrophysics Data System (ADS)

    Jabbar, Abdul; Mumtaz, Muhammad; Nadeem, Kashif

    2015-03-01

    Low anisotropic (Cu0.5Tl0.5) Ba2Ca2Cu3O10 - δ (CuTl-1223) high temperature superconducting phase was synthesized by solid-state reaction, silver (Ag) nanoparticles were prepared by sol-gel method and gold (Au) nanoparticles were extracted from colloidal solution. We added Ag and Au nanoparticles in CuTl-1223 matrix separately with same concentration during the final sintering process to get (M)x/CuTl-1223; M = Ag nanoparticles or Au nanoparticles (x = 0 and 1.0 wt.%) nano-superconductor composites. We investigated and compared the effects of these noble metals nanoparticles addition on structural, morphological and superconducting transport properties of CuTl-1223 phase. The crystal structure of the host CuTl-1223 superconducting phase was not affected significantly after the addition of these nanoparticles. The enhancement of superconducting properties was observed after the addition of both Ag and Au nanoparticles, which is most probably due to improved inter-grains weak-links and reduction of defects such as oxygen deficiencies, etc. The reduction of normal state room temperature resistivity is the finger prints of the reduction of barriers and facilitation to the carriers transport across the inter-crystallite sites due to improved inter-grains weak-links. The greater improvement of superconducting properties in Ag nanoparticles added samples is attributed to the higher conductivity of silver as compared to gold, which also suits for practical applications due to lower cost and easy synthesis of Ag nanoparticles as compared to Au nanoparticles.

  5. Structure Determination of Noble Metal Clusters by Trapped Ion Electron Diffraction

    NASA Astrophysics Data System (ADS)

    Schooss, Detlef

    2006-03-01

    The structures of noble metal cluster ions have been studied by the recently developed technique of trapped ion electron diffraction (TIED)^1. In brief, cluster ions are generated by a magnetron sputter source and injected into a cooled (95 K) quadrupole ion trap. After mass selection and thermalization, the trapped ions are irradiated with a 40 keV electron beam. The resulting diffraction pattern is integrated with a CCD detector. The assignment of the structural motif is done via a comparison of the experimental and simulated scattering function, calculated from density functional theory structure calculations. The structures of mass selected silver cluster cations Ag19^+, Ag38^+, Ag55^+, Ag59^+, Ag75^+ and Ag79^+ have been investigated^2. The resulting experimental data are best described by structures based on the icosahedral motif, while closed packed structures could be ruled out. Additionally, we present a comparison of the structures of Cu20^+/-, Ag20^+/- and Au20^+/-. Our findings show unambiguously that the structure of Au20^- is predominantly given by a tetrahedron in agreement with the results of L.S. Wang et al.^3 In contrast, structures of Ag20^- and Cu20^- based on the icosahedral motif agree best with the experimental data. Small structural differences between the charge states are observed. The possibilities and limitations of the TIED method are discussed. (1) M. Maier-Borst, D. B. Cameron, M. Rokni, and J. H. Parks, Physical Review A 59 (5), R3162 (1999); S. Krückeberg, D. Schooss, M. Maier-Borst, and J. H. Parks, Physical Review Letters 85 (21), 4494 (2000). (2) D. Schooss, M.N. Blom, B. v. Issendorff, J. H. Parks, and M.M. Kappes, Nano Letters 5 (10), 1972 (2005). (3) J. Li, X. Li, H. J. Zhai, and L. S. Wang, Science 299, 864 (2003)

  6. Enantioselectivity of (321) chiral noble metal surfaces: A density functional theory study of lactate adsorption

    SciTech Connect

    Franke, J.-H.; Kosov, D. S.

    2013-12-14

    The adsorption of the chiral molecule lactate on the intrinsically chiral noble metal surfaces Pt(321), Au(321), and Ag(321) is studied by density functional theory calculations. We use the oPBE-vdW functional which includes van der Waals forces on an ab initio level. It is shown that the molecule binds via its carboxyl and the hydroxyl oxygen atoms to the surface. The binding energy is larger on Pt(321) and Ag(321) than on Au(321). An analysis of the contributions to the binding energy of the different molecular functional groups reveals that the deprotonated carboxyl group contributes most to the binding energy, with a much smaller contribution of the hydroxyl group. The Pt(321) surface shows considerable enantioselectivity of 0.06 eV. On Au(321) and Ag(321) it is much smaller if not vanishing. The chiral selectivity of the Pt(321) surface can be explained by two factors. First, it derives from the difference in van der Waals attraction of L- and D-lactate to the surface that we trace to differences in the binding energy of the methyl group. Second, the multi-point binding pattern for lactate on the Pt(321) surface is sterically more sensitive to surface chirality and also leads to large binding energy contributions of the hydroxyl group. We also calculate the charge transfer to the molecule and the work function to gauge changes in electronic structure of the adsorbed molecule. The work function is lowered by 0.8 eV on Pt(321) with much smaller changes on Au(321) and Ag(321)

  7. Enantioselectivity of (321) chiral noble metal surfaces: a density functional theory study of lactate adsorption.

    PubMed

    Franke, J-H; Kosov, D S

    2013-12-14

    The adsorption of the chiral molecule lactate on the intrinsically chiral noble metal surfaces Pt(321), Au(321), and Ag(321) is studied by density functional theory calculations. We use the oPBE-vdW functional which includes van der Waals forces on an ab initio level. It is shown that the molecule binds via its carboxyl and the hydroxyl oxygen atoms to the surface. The binding energy is larger on Pt(321) and Ag(321) than on Au(321). An analysis of the contributions to the binding energy of the different molecular functional groups reveals that the deprotonated carboxyl group contributes most to the binding energy, with a much smaller contribution of the hydroxyl group. The Pt(321) surface shows considerable enantioselectivity of 0.06 eV. On Au(321) and Ag(321) it is much smaller if not vanishing. The chiral selectivity of the Pt(321) surface can be explained by two factors. First, it derives from the difference in van der Waals attraction of L- and D-lactate to the surface that we trace to differences in the binding energy of the methyl group. Second, the multi-point binding pattern for lactate on the Pt(321) surface is sterically more sensitive to surface chirality and also leads to large binding energy contributions of the hydroxyl group. We also calculate the charge transfer to the molecule and the work function to gauge changes in electronic structure of the adsorbed molecule. The work function is lowered by 0.8 eV on Pt(321) with much smaller changes on Au(321) and Ag(321). PMID:24329084

  8. Synthesis, characterization and application of noble-metal nanoparticles and their Langmuir films

    NASA Astrophysics Data System (ADS)

    Sun, Yuan

    Noble-metal nanoparticles and their Langmuir films have attracted remarkable research interest due to their unique properties and potential applications in catalysis, hydrogen storage materials, and optical, magnetic and electronic devices. The properties of nanoparticles are affected not only by the size, but also by the shape. In this dissertation, highly crystalline rectangular palladium nanoparticles have been successfully synthesized via the reduction of K2PdCl 4 by ascorbic acid in the presence of a surfactant cetyltrimethylammonium bromide under room temperature. Trisodium citrate is a key factor for high yield of nanocubes and nanorods. The average length and aspect ratio of the nanorods can be tuned by varying the concentration of trisodium citrate. These rectangular nanoparticles were stable for months as colloids. However, after being exposed to air for about 100 days, the dry nanoparticles on TEM grids were oxidized to form shells of 1.6--3.8 nm thick covering the nanoparticle surfaces. This procedure is conducted under room temperature and requires no seed-mediated growth or nanoporous rigid template so that it is easier and more practical for large-scale synthesis. Alkanethiolate palladium nanoparticles can be synthesized by two routes: a one-phase method and a two-phase method. In order to understand the electronic and chemical properties of dodecanethiolate palladium nanoparticles, a systematic comparison between the particles obtained by these two synthetic techniques was conducted. From transmission electron microscopy (TEM) we determined that the particle sizes were 46 +/- 10 A and 20 +/- 5 A for the 1- and 2-phase particles, respectively. Electron diffraction confirmed that their structure was face-centered cubic (FCC). High-resolution TEM (HRTEM) showed that the 1-phase particles had an ordered core surrounded by a disordered shell structure while the 2-phase particles appeared to be crystalline throughout. The particles were also analyzed with

  9. Strategies and applications of combinatorial methods and high throughput screening to the discovery of non-noble metal catalyst

    NASA Astrophysics Data System (ADS)

    Bricker, Maureen L.; Sachtler, J. W. Adriaan; Gillespie, Ralph D.; McGonegal, Charles P.; Vega, Honorio; Bem, Dave S.; Holmgren, Jennifer S.

    2004-02-01

    The integrated End-to-End™ combinatorial process for catalyst preparation and screening, with emphasis on its capability to vary both process and compositional parameters will be demonstrated. Additionally, each step of the combinatorial screening process has been validated against results from traditional screening methods. The greatest challenge of all has been the adherence to the core concepts of the combinatorial approach. Catalyst libraries have been made and tested for naphthalene dehydrogenation chemistry. The preparation of these libraries has included the application of high throughput techniques for: metal impregnation; catalyst finishing; catalyst screening. The catalyst screening system has been used to find a non-noble metal catalyst system that can replace Pt in dehydrogenation applications in the petroleum industry. A proprietary catalytic composition was developed for the dehydrogenation of methylcyclohexane (MCH) to toluene starting with four non-noble metals of different proportions and four different supports (alumina, titania, zirconia and silica) prepared in different ways and applying a statistical design of experiments. These data demonstrate that all steps of catalyst preparation and screening are performed in a rapid, useful, high throughput manner. Data will be presented from the catalyst screening efforts will demonstrate that optimized metal composition is dependent on the support type.

  10. Localized surface plasmon mediated photochemistry and charge transfer in noble metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Wu, Xiaomu

    This thesis addresses the fundamental physical and chemical processes of localized surface plasmon mediated photochemistry and charge transfer in noble metal nanoparticles. The first chapter introduces the theory and application of surface plasmons. It includes a discussion of propagating and localized surface plasmons, plasmon decay dynamics, factors governing plasmon excitation of metal nanoparticles, near-field enhanced photochemistry and plasmon mediated charge transfer. The second chapter presents a photovoltage mechanism for room light conversion of citrate stabilized silver nanocrystal seeds to large nanoprisms. The process relies on the excitation of silver surface plasmons and requires citrate and oxygen. The transformation rate is first-order in seed concentration. The mechanism involves oxidative etching of seeds and subsequent photoreduction of aqueous silver ions preferentially onto silver prisms that have a cathodic photovoltage resulting from plasmon hot hole citrate photo- oxidation. This idea also explains several previously reported experiments including single and dual wavelength irradiation and the core/shell synthesis of silver layers on gold seeds. The third chapter explores the photo-driven growth of citrate stabilized silver nanoparticles. Under plasmon excitation, particles that absorb/scatter light weakly reduce dioxygen and lose silver ions, whereas particles with resonant plasmons build up a high photovoltage due to citrate photo-oxidation and reduce silver ions. Overall, growth is favored for on-resonant particles. Compared to the borohydride reduction method, more monodisperse, round 10-20 nm diameter silver nanoparticles are obtained by plasmon mediated approaches. Adding a trace amount of potassium chloride can speed up the growth and inhibit the formation of Ag aggregates. The fourth chapter investigates the plasmon induced photochemical charge separation in gold nanoparticles on a transparent indium tin oxide (ITO) substrate

  11. Optimization of Single and Bimetallic Noble Metal Catalysts by Strong Electrostatic Adsorption

    NASA Astrophysics Data System (ADS)

    Barnes, Sean E.

    Heterogeneous catalysts are used in over 90% of chemical processes today. These small metal particles maximize the number of active sites present, which leads to cheaper, more effective catalysts. However, the preparation of heterogeneous catalysts is still a "dark art". An alternate to dry impregnation is the method of Strong Electrostatic Adsorption (SEA). In this method the surface hydroxyl groups of the support can either protonate or deprotonate depending on the pH of the contacting solution. These surface groups then can then attract oppositely charged metal precursors. Preparation of catalysts by SEA leads to the anchoring of small, well dispersed, highly active metal particles. The aim of this work is to optimize the preparation via SEA of various supported catalysts systems, particularly Pt/carbon, Au supported on a variety of materials, and Au-Pd/carbon. Carbon supported metal catalysts are becoming increasingly important not just as electro catalyst in fuel cells, but for many aqueous phase biomass conversion reactions.

  12. NOBLE GASES

    EPA Science Inventory

    The Noble Gases symposium, on which this report is based, provided comprehensive coverage of the noble gases. The coverage included, but was not limited to, the properties, biokinetics, bioeffects, production and release to the environment, detection techniques, standards, and ap...

  13. Ice-templated synthesis of multifunctional three dimensional graphene/noble metal nanocomposites and their mechanical, electrical, catalytic, and electromagnetic shielding properties

    PubMed Central

    Sahoo, P. K.; Aepuru, Radhamanohar; Panda, Himanshu Sekhar; Bahadur, D.

    2015-01-01

    In-situ homogeneous dispersion of noble metals in three-dimensional graphene sheets is a key tactic for producing macroscopic architecture, which is desirable for practical applications, such as electromagnetic interference shielding and catalyst. We report a one-step greener approach for developing porous architecture of 3D-graphene/noble metal (Pt and Ag) nanocomposite monoliths. The resulting graphene/noble metal nanocomposites exhibit a combination of ultralow density, excellent elasticity, and good electrical conductivity. Moreover, in order to illuminate the advantages of the 3D-graphene/noble metal nanocomposites, their electromagnetic interference (EMI) shielding and electrocatalytic performance are further investigated. The as-synthesized 3D-graphene/noble metal nanocomposites exhibit excellent EMI shielding effectiveness when compared to bare graphene; the effectiveness has an average of 28 dB in the 8.2–12.4 GHz X-band range. In the electro-oxidation of methanol, the 3D-graphene/Pt nanocomposite also exhibits significantly enhanced electrocatalytic performance and stability than compared to reduced graphene oxide/Pt and commercial Pt/C. PMID:26638827

  14. Ice-templated synthesis of multifunctional three dimensional graphene/noble metal nanocomposites and their mechanical, electrical, catalytic, and electromagnetic shielding properties.

    PubMed

    Sahoo, P K; Aepuru, Radhamanohar; Panda, Himanshu Sekhar; Bahadur, D

    2015-01-01

    In-situ homogeneous dispersion of noble metals in three-dimensional graphene sheets is a key tactic for producing macroscopic architecture, which is desirable for practical applications, such as electromagnetic interference shielding and catalyst. We report a one-step greener approach for developing porous architecture of 3D-graphene/noble metal (Pt and Ag) nanocomposite monoliths. The resulting graphene/noble metal nanocomposites exhibit a combination of ultralow density, excellent elasticity, and good electrical conductivity. Moreover, in order to illuminate the advantages of the 3D-graphene/noble metal nanocomposites, their electromagnetic interference (EMI) shielding and electrocatalytic performance are further investigated. The as-synthesized 3D-graphene/noble metal nanocomposites exhibit excellent EMI shielding effectiveness when compared to bare graphene; the effectiveness has an average of 28 dB in the 8.2-12.4 GHz X-band range. In the electro-oxidation of methanol, the 3D-graphene/Pt nanocomposite also exhibits significantly enhanced electrocatalytic performance and stability than compared to reduced graphene oxide/Pt and commercial Pt/C. PMID:26638827

  15. Ice-templated synthesis of multifunctional three dimensional graphene/noble metal nanocomposites and their mechanical, electrical, catalytic, and electromagnetic shielding properties

    NASA Astrophysics Data System (ADS)

    Sahoo, P. K.; Aepuru, Radhamanohar; Panda, Himanshu Sekhar; Bahadur, D.

    2015-12-01

    In-situ homogeneous dispersion of noble metals in three-dimensional graphene sheets is a key tactic for producing macroscopic architecture, which is desirable for practical applications, such as electromagnetic interference shielding and catalyst. We report a one-step greener approach for developing porous architecture of 3D-graphene/noble metal (Pt and Ag) nanocomposite monoliths. The resulting graphene/noble metal nanocomposites exhibit a combination of ultralow density, excellent elasticity, and good electrical conductivity. Moreover, in order to illuminate the advantages of the 3D-graphene/noble metal nanocomposites, their electromagnetic interference (EMI) shielding and electrocatalytic performance are further investigated. The as-synthesized 3D-graphene/noble metal nanocomposites exhibit excellent EMI shielding effectiveness when compared to bare graphene; the effectiveness has an average of 28 dB in the 8.2-12.4 GHz X-band range. In the electro-oxidation of methanol, the 3D-graphene/Pt nanocomposite also exhibits significantly enhanced electrocatalytic performance and stability than compared to reduced graphene oxide/Pt and commercial Pt/C.

  16. One-step facile synthesis of noble metal nanocrystals with tunable morphology in a nematic liquid crystalline medium

    NASA Astrophysics Data System (ADS)

    Dan, Kaustabh; Satpati, Biswarup; Datta, Alokmay

    2016-05-01

    The present study describes in-situ synthesis of noble metal nano structures (MNCs) (Au and Ag) within a nematic liquid crystalline medium MBBA [N-(4-methoxybenzylidene)-4-butylaniline] without using any seed mediated growth protocol or without using any external stabilizing or reducing agent. Detailed Transmission Electron Microscopy (TEM) study indicates that apart from Kinetic based mechanism, the thermodynamical parameters also influence greatly the morphological evolution of these MNCs. The MNCs are of diverse shapes including nano prisms, hexagons, urchins, cubes, and rods which depend on the time of reaction and the choice of nanoparticle precursor.

  17. Fabrication and Performance of Noble Metal Promoted Birnessite Catalysts for Complete Oxidation of Formaldehyde at Low Temperatures.

    PubMed

    Liu, Linlin; Tian, Hua; He, Junhui; Wang, Donghui; Ma, Chunyan; Yang, Qiaowen

    2015-04-01

    Noble metal (Au, Ag, Pd and Pt) promoted birnessite (Bir) catalysts were successfully prepared and tested for catalytic oxidation of formaldehyde (HCHO). The catalysts were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), hydrogen temperature programmed reduction (H2-TPR), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and N2 adsorption-desorption. The activities of noble metal (Au, Ag, Pd and Pt) promoted birnessite catalysts follow the order of 1.0Pt/Bir > 1.0Pd/Bir > Bir > 1.0Ag/Bir > 1.0Au/Bir, revealing that the loading of Pd and Pt improves the catalytic activity of birnessite, but the loading of Ag and Au slightly decreases the catalytic activity of birnessite. Effects of the Pt loading amount were also investigated on the activity of Pt/Bir catalysts for HCHO oxidation. Pt/Bir with a Pt loading of 1.5 wt% (1.5 Pt/Bir), which has the best reduction properties, was found to be the most efficient catalyst. Over this catalyst, HCHO could be completely oxidized into CO2 and H2O at 70°. 1.5 Pt/Bir also shows good catalytic stability under the HCHO oxidation atmosphere. The differences in the catalytic activity of these materials are largely attributed to their reducibility as well as the dispersion of metal nanoparticles, but are not directly related to their specific surface areas. PMID:26353510

  18. Efficient photorecovery of noble metals from solution using a γ-SiW10O36/surfactant hybrid photocatalyst.

    PubMed

    Kida, Tetsuya; Matsufuji, Hiromasa; Yuasa, Masayoshi; Shimanoe, Kengo

    2013-02-19

    In recent years, the recovery of noble metals from waste has become very important because of their scarcity and increasing consumption. In this study, we attempt the photochemical recovery of noble metals from solutions using inorganic-organic hybrid photocatalysts. These catalysts are based on polyoxometalates such as PMo(12)O(40)(3-), SiW(12)O(40)(4-), and γ-SiW(10)O(36)(8-) coupled with a cationic surfactant, dimethyldioctadecylammonium (DODA). The three different photocatalysts dissolved in chloroform were successful in photoreducing gold ions dissolved in water in a two-phase (chloroform/water) system under UV irradiation (λ < 475 nm). The γ-SiW(10)O(36)/DODA photocatalyst exhibited the best activity and recovered gold from solution efficiently. It was suggested that one-electron reduced γ-SiW(10)O(36)(9-) formed by the UV irradiation reduced gold ions. As a result, large two-dimensional particles (gold nanosheets) were produced using the γ-SiW(10)O(36)/DODA photocatalyst, indicating that the reduction of gold ions occurred at the interface between chloroform and water. The γ-SiW(10)O(36)/DODA photocatalyst was able to recover metals such as platinum, silver, palladium, and copper from deaerated solutions. The selective recovery of gold is possible by controlling pH and oxygen concentration in the reaction system. PMID:23323882

  19. Influence of the preparation method on the surface characteristics and activity of boron-nitride-supported noble metal catalysts.

    PubMed

    Postole, Georgeta; Gervasini, Antonella; Guimon, Claude; Auroux, Aline; Bonnetot, Bernard

    2006-06-29

    In this article, we report how variations in the preparation method of boron-nitride-supported noble metal catalysts may influence the surface characteristics of the active phase and consequently the potential applications as catalysts for oxidation reactions. The deposition and the dispersion of the active phase are strongly influenced by the preparation process and in particular by the protic or aprotic solvent used as the dispersing phase; in this study, benzene, glyme, water, tetrahydrofuran, diglyme, 2-propanol, and glycol have been investigated. Characterization techniques, such as Brunauer-Emmett-Teller, X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis, have been used to study the influence of the choice of a solvent phase on the particle size and dispersion of the metal deposited on the BN support. The modifications undergone by the support during the deposition of palladium in different solvents have also been studied. Through the use of the same deposition procedure, different noble metal coatings (Pt, Pd, Au, and Ag) have been prepared. The acidic and redox characteristics of the resulting samples were characterized by temperature-programmed reduction and adsorption microcalorimetry. The catalytic performances of these materials were tested in the total oxidation of methane in lean conditions (excess oxygen and presence of water). PMID:16800586

  20. Expeditious synthesis of noble metal nanoparticles using Vitamin B12 under microwave irradiation

    EPA Science Inventory

    A greener synthesis protocol for noble nanometals is developed using vitamin B12 as a reducing and capping agent in conjunction with the use of microwaves. Successful assembly of nanoparticles or microparticles with varied shapes and sizes have been demonstrated. The synthesized ...

  1. Semiconductor and noble metal surface process characterization using electrochemical and optical methods

    NASA Astrophysics Data System (ADS)

    Srinivasan, Ramanathan

    Surface electrochemical processes are of importance in semiconductor manufacturing and electrochemical deposition. In this work, surface processes of noble metals are investigated by electrochemical and optical methods and the interpretations of the results are discussed. The specific adsorption of thiosulfate ions on polycrystalline silver electrode was studied by differential capacitance measurements using impedance analysis and the adsorption isotherm was found to be best explained by image dipole formation. The apparant dipole strength was determined to be 0.72 D. The determination of kinetics of galvanic deposition of gold on to silicon (111) was studied mainly by surface second harmonic generation (SHG). The results of SHG experiments along with atomic force microscopy (AFM) images indicate formation of clusters on the surface of silicon. The surface plasmon resonance of gold clusters causes strong enhancement of SHG and later, the growth of the clusters cause the drop in signal. By adding KF and HCl, the equilibria of HF dissociation were suitably altered and it was found that HF and not HF2- is the kinetically active species. Rutherford backscattering (RBS) measurements indicate that Au deposition is rate-limited by diffusion, while the SHG measurements indicate that Au cluster growth is rate-limited by either a surface reaction involving a fluoride-containing species or electron transfer. The reaction order for Au cluster growth with respect to HF is approximately ½, and the reaction order for Au cluster growth with respect to Au(CN)2- is near zero in the concentration range 10-4--10-5 M. The development and characteristics of a stable, high plating rate bath for electroless deposition of silver from silver cyanide and alkaline formaldehyde is described in the third chapter. Cyclic voltammograms indicate that the silver is passivated by cyanide ions which decrease the rate of silver reduction and hence the plating rate. Stirring the solution decreases the

  2. Reaction pathways of biomass-derived oxygenates on noble metal surfaces

    NASA Astrophysics Data System (ADS)

    McManus, Jesse R.

    As the global demand for energy continues to rise, the environmental concerns associated with increased fossil fuel consumption have motivated the use of biomass as an alternative, carbon-renewable energy feedstock. Controlling reactive chemistry of the sugars that comprise biomass through the use of catalysis becomes essential in effectively producing green fuels and value-added chemicals. Recent work on biomass conversion catalysts have demonstrated the efficacy of noble metal catalyst systems for the reforming of biomass to hydrogen fuel, and the hydrodeoxygenation of biomass-derived compounds to value-added chemicals. In particular, Pt and Pd surfaces have shown considerable promise as reforming catalysts in preliminary aqueous phase reforming studies. It becomes important to understand the mechanisms by which these molecules react on the catalyst surfaces in order to determine structure-activity relationships and bond scission energetics as to provide a framework for engineering more active and selective catalysts. Fundamental surface science techniques provide the tools to do this; however, work in this field has been so far limited to simple model molecules like ethanol and ethylene glycol. Herein, temperature programmed desorption and high resolution electron energy loss spectroscopy are utilized in an ultra-high vacuum surface science study of the biomass-derived sugar glucose on Pt and Pd single crystal catalysts. Overall, it was determined that the aldehyde function of a ring-open glucose molecule plays an integral part in the initial bonding and reforming reaction pathway, pointing to the use of aldoses glycolaldehyde and glyceraldehyde as the most appropriate model compounds for future studies. Furthermore, the addition of adatom Zn to a Pt(111) surface was found to significantly decrease the C-H and C-C bond scission activity in aldehyde containing compounds, resulting in a preferred deoxygenation pathway in opposition to the decarbonylation pathway

  3. Size-Controlled Formation of Noble-Metal Nanoparticles in Aqueous Solution with a Thiol-Free Tripeptide.

    PubMed

    Corra, Stefano; Lewandowska, Urszula; Benetti, Edmondo M; Wennemers, Helma

    2016-07-18

    A combinatorial screening revealed the peptide H-His-d-Leu-d-Asp-NH2 (1) as an additive for the generation of monodisperse, water-soluble palladium nanoparticles with average diameters of 3 nm and stabilities of over 9 months. The tripeptide proved to be also applicable for the size-controlled formation of other noble-metal nanoparticles (Pt and Au). Studies with close analogues of peptide 1 revealed a specific role of each of the three amino acids for the formation and stabilization of the nanoparticles. These data combined with microscopic and spectroscopic analyses provided insight into the structure of the self-assembled peptidic monolayer around the metal core. The results open interesting prospects for the development of functionalized metal nanoparticles. PMID:27098442

  4. Estimates of the relative magnitudes of the isotropic and anisotropic magnetic-dipole hyperfine interactions in alkali-metal-noble-gas systems

    NASA Astrophysics Data System (ADS)

    Walter, D. K.; Happer, W.; Walker, T. G.

    1998-11-01

    We present a detailed theoretical analysis of the noble-gas nuclear-spin relaxation due to the anisotropic magnetic-dipole hyperfine interaction between the noble-gas nucleus and alkali-metal valence electron vis à vis the already well-understood (spin-conserving) isotropic magnetic-dipole hyperfine interaction in alkali-metal-noble-gas systems. We find that, for all pairs in which the noble gas is not helium, the predicted spin-relaxation rate from the anisotropic interaction does not exceed 2.5% of the rate from the isotropic interaction, thereby not appreciably limiting the maximum noble-gas nuclear polarization attainable via spin-exchange collisions with polarized alkali-metal atoms. For alkali-metal-helium pairs, we predict that the anisotropic interaction has a slightly larger relative effect, perhaps limiting the nuclear polarization to ~95% of the electronic polarization in the Rb-3He system; however, our confidence in the helium results is limited by a lack of knowledge of the interatomic potentials necessary for the calculation.

  5. Catalytic pyrolysis of wheat bran for hydrocarbons production in the presence of zeolites and noble-metals by using TGA-FTIR method.

    PubMed

    Lazdovica, K; Liepina, L; Kampars, V

    2016-05-01

    Pyrolysis of wheat bran with or without catalysts was investigated using TGA-FTIR method in order to determine the influence of zeolite and noble metal catalysts on the evolution profile and relative yield of the volatile compounds. The addition of all catalysts decreased the volatile matter of wheat bran from 76.3% to 75.9%, 73.9%, 73.5%, 69.7% and increased the solid residue from 18.0% to 18.4%, 20.4%, 20.8%, 24.6% under the catalyst of ZSM-5, 5% Pd/C, MCM-41, and 5% Pt/C. Noble-metal catalysts had higher activity for deoxygenation of compounds containing carbonyl, carboxyl, and hydroxyl groups than zeolites. Degradation of nitrogen containing compounds atom proceeded better in presence of zeolites. Noble-metal catalysts promoted formation of aromatics and changed the profiles of evolved compounds whereas zeolites advanced formation of aliphatics and olefins. PMID:26874441

  6. Incorporation of Fines and Noble Metals into HLW Borosilicate Glass: Industrial Responses to a Challenging Issue - 13056

    SciTech Connect

    Chauvin, E.; Chouard, N.; Prod'homme, A.; Boudot, E.; Gruber, Ph.; Pinet, O.; Grosman, R.

    2013-07-01

    During the early stages of spent fuel reprocessing, the fuel rods are cut and dissolved to separate the solid metallic parts of the rods (cladding and end pieces) from the radioactive nitric acid solution containing uranium, plutonium, minor actinides and fission products (FP). This solution contains small, solid particles produced during the shearing process. These small particles, known as 'fines', are then separated from the liquid by centrifugation. At the La Hague plant in France, the fines solution is transferred to the vitrification facilities to be incorporated into borosilicate glass along with the highly radioactive FP solution. These fines are also composed of Zr, Mo and other noble metals (i.e. Ru, Pd, Rh, etc.) that are added before vitrification to the the FP solution that already contained noble metals. As noble metals has the potential to modify the glass properties (including viscosity, electrical conductivity, etc.) and to be affected by sedimentation inside the melter, their behavior in borosilicate glass has been studied in depth over the years by the AREVA and CEA teams which are now working together in the Joint Vitrification Laboratory (LCV). At La Hague, the R7 vitrification facility started operation in 1989 using induction-heated metallic melter technology and was quickly followed by the T7 vitrification facility in 1992. Incorporating the fines into glass has been a challenge since operation began, and has given rise to several R and D studies resulting in a number of technological enhancements to improve the mixing capability of the melters (multiple bubbling technology and mechanical stirring in the mid-90's). Nowadays, the incorporation of fines into R7T7 glass is well understood and process adaptations are deployed in the La Hague facilities to increase the operating flexibility of the melters. The paper will briefly describe the fines production mechanisms, give details of the resulting fines characteristics, explain how the metallic

  7. On the effects of fission product noble metal inclusions on the kinetics of radiation induced dissolution of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Trummer, Martin; Nilsson, Sara; Jonsson, Mats

    2008-08-01

    Radiation induced oxidative dissolution of UO 2 is a key process for the safety assessment of future geological repositories for spent nuclear fuel. This process is expected to govern the rate of radionuclide release to the biosphere. In this work, we have studied the catalytic effects of fission product noble metal inclusions on the kinetics of radiation induced dissolution of spent nuclear fuel. The experimental studies were performed using UO 2 pellets containing 0%, 0.1%, 1% and 3% Pd as a model for spent nuclear fuel. H 2O 2 was used as a model for radiolytical oxidants (previous studies have shown that H 2O 2 is the most important oxidant in such systems). The pellets were immersed in aqueous solution containing H 2O 2 and HCO3- and the consumption of H 2O 2 and the dissolution of uranium were analyzed as a function of H 2 pressure (0-40 bar). The noble metal inclusions were found to catalyze oxidation of UO 2 as well as reduction of surface bound oxidized UO 2 by H 2. In both cases the rate of the process increases with increasing Pd content. The reduction process was found to be close to diffusion controlled. This process can fully account for the inhibiting effect of H 2 observed in several studies on spent nuclear fuel dissolution.

  8. Synthesis and characterization of fluorescence-labelled silica core-shell and noble metal-decorated ceria nanoparticles

    PubMed Central

    Rennhak, Markus; Reller, Armin

    2014-01-01

    Summary The present review article covers work done in the cluster NPBIOMEM in the DFG priority programme SPP 1313 and focuses on synthesis and characterization of fluorescent silica and ceria nanoparticles. Synthetic methods for labelling of silica and polyorganosiloxane/silica core–shell nanoparticles with perylenediimide derivatives are described, as well as the modification of the shell with thiol groups. Photometric methods for the determination of the number of thiol groups and an estimate for the number of fluorescent molecules per nanoparticles, including a scattering correction, have been developed. Ceria nanoparticles decorated with noble metals (Pt, Pd, Rh) are models for the decomposition products of automobile catalytic converters which appear in the exhaust gases and finally interact with biological systems including humans. The control of the degree of agglomeration of small ceria nanoparticles is the basis for their synthesis. Almost monodisperse agglomerates (40 ± 4–260 ± 40 nm diameter) can be prepared and decorated with noble metal nanoparticles (2–5 nm diameter). Fluorescence labelling with ATTO 647N gave the model particles which are now under biophysical investigation. PMID:25671137

  9. Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties.

    PubMed

    Zaleska-Medynska, Adriana; Marchelek, Martyna; Diak, Magdalena; Grabowska, Ewelina

    2016-03-01

    Nanoparticles composed of two different metal elements show novel electronic, optical, catalytic or photocatalytic properties from monometallic nanoparticles. Bimetallic nanoparticles could show not only the combination of the properties related to the presence of two individual metals, but also new properties due to a synergy between two metals. The structure of bimetallic nanoparticles can be oriented in random alloy, alloy with an intermetallic compound, cluster-in-cluster or core-shell structures and is strictly dependent on the relative strengths of metal-metal bond, surface energies of bulk elements, relative atomic sizes, preparation method and conditions, etc. In this review, selected properties, such as structure, optical, catalytic and photocatalytic of noble metals-based bimetallic nanoparticles, are discussed together with preparation routes. The effects of preparation method conditions as well as metal properties on the final structure of bimetallic nanoparticles (from alloy to core-shell structure) are followed. The role of bimetallic nanoparticles in heterogeneous catalysis and photocatalysis are discussed. Furthermore, structure and optical characteristics of bimetallic nanoparticles are described in relation to the some features of monometallic NPs. Such a complex approach allows to systematize knowledge and to identify the future direction of research. PMID:26805520

  10. IMPACT OF NOBLE METALS AND MERCURY ON HYDROGEN GENERATION DURING HIGH LEVEL WASTE PRETREATMENT AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Stone, M; Tommy Edwards, T; David Koopman, D

    2009-03-03

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies radioactive High Level Waste (HLW) for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. HLW consists of insoluble metal hydroxides (primarily iron, aluminum, calcium, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, and sulfate). The pretreatment process in the Chemical Processing Cell (CPC) consists of two process tanks, the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) as well as a melter feed tank. During SRAT processing, nitric and formic acids are added to the sludge to lower pH, destroy nitrite and carbonate ions, and reduce mercury and manganese. During the SME cycle, glass formers are added, and the batch is concentrated to the final solids target prior to vitrification. During these processes, hydrogen can be produced by catalytic decomposition of excess formic acid. The waste contains silver, palladium, rhodium, ruthenium, and mercury, but silver and palladium have been shown to be insignificant factors in catalytic hydrogen generation during the DWPF process. A full factorial experimental design was developed to ensure that the existence of statistically significant two-way interactions could be determined without confounding of the main effects with the two-way interaction effects. Rh ranged from 0.0026-0.013% and Ru ranged from 0.010-0.050% in the dried sludge solids, while initial Hg ranged from 0.5-2.5 wt%, as shown in Table 1. The nominal matrix design consisted of twelve SRAT cycles. Testing included: a three factor (Rh, Ru, and Hg) study at two levels per factor (eight runs), three duplicate midpoint runs, and one additional replicate run to assess reproducibility away from the midpoint. Midpoint testing was used to identify potential quadratic effects from the three factors. A single sludge

  11. A highly efficient noble metal free photocatalytic hydrogen evolution system containing MoP and CdS quantum dots

    NASA Astrophysics Data System (ADS)

    Yin, Shengming; Han, Jianyu; Zou, Yinjun; Zhou, Tianhua; Xu, Rong

    2016-07-01

    We report the construction of a highly efficient noble metal free photocatalytic hydrogen (H2) evolution system using CdS quantum dots as the light absorber and metallic MoP as the cocatalyst. MoP can be prepared by a facile temperature programmed reduction method and small clusters of MoP nanoparticles sized 10-30 nm were obtained by probe ultrasonication. The effect of synthesis conditions on the electrocatalytic and photocatalytic H2 evolution activity of MoP was investigated. The highest H2 evolution rate of 1100 μmol h-1 can be achieved by the optimized system under visible light (λ >= 420 nm), which is comparable to that when Pt was used as the cocatalyst. A high quantum efficiency of 45% is obtained at 460 nm irradiation.We report the construction of a highly efficient noble metal free photocatalytic hydrogen (H2) evolution system using CdS quantum dots as the light absorber and metallic MoP as the cocatalyst. MoP can be prepared by a facile temperature programmed reduction method and small clusters of MoP nanoparticles sized 10-30 nm were obtained by probe ultrasonication. The effect of synthesis conditions on the electrocatalytic and photocatalytic H2 evolution activity of MoP was investigated. The highest H2 evolution rate of 1100 μmol h-1 can be achieved by the optimized system under visible light (λ >= 420 nm), which is comparable to that when Pt was used as the cocatalyst. A high quantum efficiency of 45% is obtained at 460 nm irradiation. Electronic supplementary information (ESI) available: SEM image with EDS, XPS survey spectrum, XRD and TEM images of MoP samples prepared under different conditions; XRD, TEM, UV-vis and photoluminescence spectra of CdS QDs; H2 evolution activity comparison for different MoP/CdS samples; the effect of pH value on H2 evolution activity of a MoP/CdS system; the XPS spectrum of MoP/CdS after photoreaction; table of literature studies on H2 evolution activity by different noble metal free photocatalytic systems

  12. Composition of solar wind noble gases released by surface oxidation of a metal separate from the Weston meteorite

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Pepin, R. O.

    1991-01-01

    The paper reports on a set of experiments intended to test the feasibility of determining elemental and isotopic ratios of the noble gases and nitrogen in the solar wind in metal separates from gas-rich ordinary chondrites. Helium, neon, and argon show clear evidence of a solar wind signature, while no solar component could be identified for xenon and nitrogen. Helium, neon, and argon elemental isotopic ratios appear to depend on depth within the metal grains. The ratios derived indicate that the Weston meteorite did not acquire its solar wind gases from a recent exposure to solar wind, but more probably at a time in the past similar to or even earlier than the exposure time of Apollo 17 breccias. The Ar-36/Ar-38 ratio, in tandem with other recent determinations of this value, indicates that the solar and terrestrial values can no longer be assumed to be equivalent.

  13. The geochemical behavior of refractory noble metals and lithophile trace elements in refractory inclusions in carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Fegley, B.; Kornacki, A. S.

    1984-05-01

    Recent models of Ca, Al-rich (CAI) inclusion petrogenesis, and the recent availability of thermodynamic data have led to the reexamination of the geochemical behavior of the refractory noble metals (RNM) and several lithophile refractory trace elements in CAI's in the context of distillation models. Here, pertinent chemical and mineralogical properties of the various classes of refractory inclusions are reviewed, and calculations of the stability of LRTE-RNM alloys and several LRTE oxides under nebular conditions are presented. The calculations, observations and experimental results are applied to a new model of the origin of refractory metal nuggets, and a specific mechanism is identified for producing Group II chemical patterns in a cold star nebula by fractionating interstellar dust at low temperature on the basis of physical differences between different populations of pre-solar grains.

  14. Alumina-supported noble metal catalysts for destructive oxidation of organic pollutants in effluent from a softwood kraft pulp mill

    SciTech Connect

    Zhang, Q.; Chuang, K.T.

    1998-08-01

    The effectiveness of alumina-supported noble metal catalysts for the destructive oxidation of organic pollutants in effluent from a softwood kraft pulp mill was evaluated in a slurry reactor at 463 K and an oxygen pressure of 1.5 MPa. The effects of catalyst preparation procedures, such as metal loading, calcination, or reduction treatment on the catalytic activities, were also tested. Alumina-supported palladium catalysts were found to be more effective than supported manganese, iron, or platinum catalysts. The rate of oxidation over Pd/alumina catalyst was significantly higher than that of the uncatalyzed reaction. Adding Ce on the alumina support was found to promote the activity of alumina-supported Pt catalyst but inhibit the activity of alumina-supported Pd catalyst. The reaction mechanisms for the catalytic wet oxidation process and the roles of Ce on catalytic activity for destructive oxidation of organic pollutants in wastewater are discussed.

  15. The geochemical behavior of refractory noble metals and lithophile trace elements in refractory inclusions in carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Fegley, B., Jr.; Kornacki, A. S.

    1984-01-01

    Recent models of Ca, Al-rich (CAI) inclusion petrogenesis, and the recent availability of thermodynamic data have led to the reexamination of the geochemical behavior of the refractory noble metals (RNM) and several lithophile refractory trace elements in CAI's in the context of distillation models. Here, pertinent chemical and mineralogical properties of the various classes of refractory inclusions are reviewed, and calculations of the stability of LRTE-RNM alloys and several LRTE oxides under nebular conditions are presented. The calculations, observations and experimental results are applied to a new model of the origin of refractory metal nuggets, and a specific mechanism is identified for producing Group II chemical patterns in a cold star nebula by fractionating interstellar dust at low temperature on the basis of physical differences between different populations of pre-solar grains.

  16. A highly efficient noble metal free photocatalytic hydrogen evolution system containing MoP and CdS quantum dots.

    PubMed

    Yin, Shengming; Han, Jianyu; Zou, Yinjun; Zhou, Tianhua; Xu, Rong

    2016-08-14

    We report the construction of a highly efficient noble metal free photocatalytic hydrogen (H2) evolution system using CdS quantum dots as the light absorber and metallic MoP as the cocatalyst. MoP can be prepared by a facile temperature programmed reduction method and small clusters of MoP nanoparticles sized 10-30 nm were obtained by probe ultrasonication. The effect of synthesis conditions on the electrocatalytic and photocatalytic H2 evolution activity of MoP was investigated. The highest H2 evolution rate of 1100 μmol h(-1) can be achieved by the optimized system under visible light (λ≥ 420 nm), which is comparable to that when Pt was used as the cocatalyst. A high quantum efficiency of 45% is obtained at 460 nm irradiation. PMID:27406067

  17. Noble-metal-free BODIPY-cobaloxime photocatalysts for visible-light-driven hydrogen production.

    PubMed

    Luo, Geng-Geng; Fang, Kai; Wu, Ji-Huai; Dai, Jing-Cao; Zhao, Qing-Hua

    2014-11-21

    In this study a series of supramolecular BODIPY-cobaloxime systems Co-Bn (n = 1-4): [{Co(dmgH)2Cl}{4,4-difluoro-8-(4-pyridyl)-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene}] (Co-B1), [{Co(dmgH)2Cl}{4,4-difluoro-8-(4-pyridyl)-1,3,5,7-tetramethyl-2,6-diiodo-4-bora-3a,4a-diaza-s-indacene}] (Co-B2), [{Co(dmgH)2Cl}{4,4-difluoro-8-(3-pyridyl)-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene}] (Co-B3), and [{Co(dmgH)2Cl}{4,4-difluoro-8-(3-pyridyl)-1,3,5,7-tetramethyl-2,6-diiodo-4-bora-3a,4a-diaza-s-indacene}] (Co-B4) (BODIPY = boron dipyrromethene, dmgH = dimethylglyoxime) have been synthesized by replacing one axial chlorine of cobaloxime moieties with the pyridine residues of BODIPYs, and structurally characterized. Absorption spectra show that the optical properties of the BODIPY-cobaloximes are essentially the sum of their constituent components, indicating weak interactions between the cobaloxime units and BODIPY chromophores in the ground state. If any, electronic communications may take place through the intramolecular electron transfer across their orthogonal structures. The possibility of intramolecular electron transfer is further supported by the results of the density functional theory (DFT) calculations at UB3LYP/LANL2DZ levels on Co-B2˙(-) and Co-B4˙(-), which show that the highest occupied molecular orbitals (HOMOs) possess predominantly BODIPY character, while the lowest unoccupied molecular orbitals (LUMOs) are located on the cobalt centers. The HOMO → LUMO transition is an electron-transfer process (BODIPY˙(-) radical anions → cobaloxime fragments). In view of the possible occurrence of electron transfer, these noble-metal-free BODIPY-cobaloximes are studied as single-component homogeneous photocatalysts for H2 generation in aqueous media. Under optimized conditions, the 2,6-diiodo BODIPY-sensitized cobaloxime Co-B4 that contains a meta-pyridyl at the 8-position of BODIPY presents excellent H2 photoproduction catalytic activity with a

  18. Experimental partitioning of Zr, Ti, and Nb between silicate liquid and a complex noble metal alloy and the partitioning of Ti between perovskite and platinum metal

    NASA Technical Reports Server (NTRS)

    Jurewicz, Stephen R.; Jones, John H.

    1993-01-01

    El Goresy et al.'s observation of Nb, Zr, and Ta in refractory platinum metal nuggets (RPMN's) from Ca-Al-rich inclusions (CAI's) in the Allende meteorite led them to propose that these lithophile elements alloyed in the metallic state with noble metals in the early solar nebula. However, Grossman pointed out that the thermodynamic stability of Zr in the oxide phase is vastly greater than metallic Zr at estimated solar nebula conditions. Jones and Burnett suggested this discrepancy may be explained by the very non-ideal behavior of some lithophile transition elements in noble metal solutions and/or intermetallic compounds. Subsequently, Fegley and Kornacki used thermodynamic data taken from the literature to predict the stability of several of these intermetallic compounds at estimated solar nebula conditions. Palme and Schmitt and Treiman et al. conducted experiments to quantify the partitioning behavior of certain lithophile elements between silicate liquid and Pt-metal. Although their results were somewhat variable, they did suggest that Zr partition coefficients were too small to explain the observed 'percent' levels in some RPMN's. Palme and Schmitt also observed large partition coefficients for Nb and Ta. No intermetallic phases were identified. Following the work of Treiman et al., Jurewicz and Jones performed experiments to examine Zr, Nb, and Ti partitioning near solar nebula conditions. Their results showed that Zr, Nb, and Ti all have an affinity for the platinum metal, with Nb and Ti having a very strong preference for the metal. The intermetallic phases (Zr,Fe)Pt3, (Nb,Fe)Pt3, and (Ti,Fe)Pt3 were identified. Curiously, although both experiments and calculations indicate that Ti should partition strongly into Pt-metal (possibly as TiPt3), no Ti has ever been observed in any RPMN's. Fegley and Kornacki also noticed this discrepancy and hypothesized that the Ti was stabilized in perovskite which is a common phase in Allende CAI's.

  19. Non-Noble-Metal Nanoparticle Supported on Metal-Organic Framework as an Efficient and Durable Catalyst for Promoting H2 Production from Ammonia Borane under Visible Light Irradiation.

    PubMed

    Wen, Meicheng; Cui, Yiwen; Kuwahara, Yasutaka; Mori, Kohsuke; Yamashita, Hiromi

    2016-08-24

    In this work, we propose a straightforward method to enhance the catalytic activity of AB dehydrogenation by using non-noble-metal nanoparticle supported on chromium-based metal-organic framework (MIL-101). It was demonstrated to be effective for hydrogen generation from ammonia borane under assistance of visible light irradiation as a noble-metal-free catalyst. The catalytic activity of metal nanoparticles supported on MIL-101 under visible light irradiation is remarkably higher than that without light irradiation. The TOFs of Cu/MIL-101, Co/MIL-101, and Ni/MIL-101 are 1693, 1571, and 3238 h(-1), respectively. The enhanced activity of catalysts can be primarily attributed to the cooperative promoting effects from both non-noble-metal nanoparticles and photoactive metal-organic framework in activating the ammonia borane molecule and strong ability in the photocatalytic production of hydroxyl radicals, superoxide anions, and electron-rich non-noble-metal nanoparticle. This work sheds light on the exploration of active non-noble metals supported on photoactive porous materials for achieving high catalytic activity of various redox reactions under visible light irradiation. PMID:27478964

  20. The potential of operando XAFS for determining the role and structure of noble metal additives in metal oxide based gas sensors

    NASA Astrophysics Data System (ADS)

    Grunwaldt, Jan-Dierk; Hübner, Michael; Koziej, Dorota; Barsan, Nicolae; Weimar, Udo

    2013-04-01

    Noble metal additives significantly improve the performance of SnO2 based sensors. Recently, it has been found that X-ray absorption spectroscopy is an excellent tool to identify their structure under sensing conditions, despite of the low concentrations and the rather thin (50 μm) and highly porous layers. For this purpose a new in situ approach has been established and here we highlight the potential with an overview on the results of Pd-, Pt-, and Au-additives in SnO2-based sensors at work. Emphasis was laid on recording the structure (by XANES and EXAFS) and performance at the same time. In contrast to earlier studies, Pd- and Pt-additives were observed to be in oxidized and finely dispersed state under sensing conditions excluding a spillover from metallic noble metal particles. However, Au was mainly present as metallic particles in the sensing SnO2-layer. For the Pt- and Au-doped SnO2-layers high energy-resolved fluorescence detected X-ray absorption spectra (HERFD-XAS) were recorded not only to minimize the lifetime-broadening but also to eliminate the Au- and Pt-fluorescence effectively and to record range-extended EXAFS.

  1. Jingle-bell-shaped ferrite hollow sphere with a noble metal core: Simple synthesis and their magnetic and antibacterial properties

    SciTech Connect

    Li Siheng; Wang Enbo Tian Chungui; Mao Baodong; Kang Zhenhui; Li Qiuyu; Sun Guoying

    2008-07-15

    In this paper, a simple strategy is developed for rational fabrication of a class of jingle-bell-shaped hollow structured nanomaterials marked as Ag(MFe{sub 2}O{sub 4}) (M=Ni, Co, Mg, Zn), consisting of ferrite hollow shells and metal nanoparticle cores, using highly uniform colloidal Ag(C) microspheres as template. The final composites were obtained by direct adsorption of metal cations Fe{sup 3+} and M{sup 2+} on the surface of the Ag(C) spheres followed by calcination process to remove the middle carbon shell and transform the metal ions into pure phase ferrites. The as-prepared composites were characterized by X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray analysis (EDX), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis spectroscopy and SQUID magnetometer. The results showed that the composites possess the magnetic property of the ferrite shell and the optical together with antibacterial property of the Ag core. - Graphical abstract: MFe{sub 2}O{sub 4} (M=Ni, Co, Mg, Zn) hollow spheres with a noble metal nanoparticle core were successfully prepared by using colloidal metal(C) core-shell spheres as templates with no need of surface modification. The shell thickness and magnetic properties of the ferrite hollow spheres could be controlled by varying the synthetic parameters.

  2. Electronic and Magnetic Properties of Encapsulated MoS2 Quantum Dots: The Case of Noble Metal Nanoparticle Dopants.

    PubMed

    Loh, Guan Chee

    2016-04-18

    With the rise of 2D materials, such as graphene and transition metal dichalcogenides, as viable materials for numerous experimental applications, it becomes more necessary to maintain fine control of their properties. One expedient and efficacious technique to regulate their properties is surface functionalization. In this study, DFT calculations are performed on triangular MoS2 quantum dots (QDs) either partially or completely doped with nanoparticles (NPs) of the noble metals Au, Ag, and Pt. The effects of these dopants on the geometry, electronic properties, magnetic properties, and chemical bonding of the QDs are investigated. The calculations show that the structural stability of the QDs is reduced by Au or Ag dopants, whereas Pt dopants have a contrasting effect. The NPs diminish the metallicity of the QD, the extent of which is contingent on the number of NPs adsorbed on the QD. However, these NPs exert distinctly disparate charge transfer effects-Ag NPs n-dope the QDs, whereas Au and Pt NPs either n- or p-dope. The molecular electrostatic potential maps of the occupied states show that metallic states are removed from the doping sites. Notwithstanding the decrease of magnetization in all three types of hybrid QD, the distribution of spin density in the Pt-doped QD is inherently different from that in the other QDs. Bond analyses using the quantum theory of atoms in molecules and the crystal orbital Hamilton population suggest that bonds between the Pt NPs and the QDs are the most covalent and the strongest, followed by the Au-QD bonds, and then Ag-QD bonds. The versatility of these hybrid QDs is further examined by applying an external electric field in the three orthogonal orientations, and comparing their properties with those in the absence of the electric field. There are two primary observations: 1) dopants at the tail, head and tail, and in the fully encased configuration are most effective in modifying the distribution of metallic states if the

  3. Noble alloys in dentistry.

    PubMed

    Gettleman, L

    1991-04-01

    Noble metals used for dental castings continue to consist of alloys of gold, palladium, and silver (not a noble metal), with smaller amounts of iridium, ruthenium, and platinum. The majority are used as a backing for ceramic baking, with the rest used as inlays, onlays, and unveneered crowns. Base metal alloys, principally made of nickel, chromium, and beryllium have gained widespread usage, especially in the United States, due to their lower cost and higher mechanical properties. The current literature, for the most part, cites the use of noble alloys as controls for trials of alternative materials. Direct gold (gold foil) still retains a following and a number of new patents were founded. PMID:1777669

  4. Synthesis of metal-metal oxide catalysts and electrocatalysts using a metal cation adsorption/reduction and adatom replacement by more noble ones

    DOEpatents

    Adzic, Radoslav; Vukmirovic, Miomir; Sasaki, Kotaro

    2010-04-27

    The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen. The invention also relates to methods of making the metal-metal oxide composites.

  5. Evaluation of HWVP feed preparation chemistry for an NCAW simulant -- Fiscal year 1993: Effect of noble metals concentration on offgas generation and ammonia formation

    SciTech Connect

    Patello, G.K.; Wiemers, K.D.; Bell, R.D.; Smith, H.D.; Williford, R.E.; Clemmer, R.G.

    1995-03-01

    The High-Level Waste Vitrification Program is developing technology for the Department of Energy to immobilize high-level and transuranic wastes as glass for permanent disposal. Pacific Northwest Laboratory (PNL) is conducting laboratory-scale melter feed preparation studies using a HWVP simulated waste slurry, Neutralized Current Acid Waste (NCAW). A FY 1993 laboratory-scale study focused on the effects of noble metals (Pd, Rh, and Ru) on feed preparation offgas generation and NH{sub 3} production. The noble metals catalyze H{sub 2} and NH{sub 3} production, which leads to safety concerns. The information gained from this study is intended to be used for technology development in pilot scale testing and design of the Hanford High-Level Waste Vitrification Facility. Six laboratory-scale feed preparation tests were performed as part of the FY 1993 testing activities using nonradioactive NCAW simulant. Tests were performed with 10%, 25%, 50% of nominal noble metals content. Also tested were 25% of the nominal Rh and a repeat of 25% nominal noble metals. The results of the test activities are described. 6 refs., 28 figs., 12 tabs.

  6. Noble metal catalyzed aqueous phase hydrogenation and hydrodeoxygenation of lignin-derived pyrolysis oil and related model compounds.

    PubMed

    Mu, Wei; Ben, Haoxi; Du, Xiaotang; Zhang, Xiaodan; Hu, Fan; Liu, Wei; Ragauskas, Arthur J; Deng, Yulin

    2014-12-01

    Aqueous phase hydrodeoxygenation of lignin pyrolysis oil and related model compounds were investigated using four noble metals supported on activated carbon. The hydrodeoxygenation of guaiacol has three major reaction pathways and the demethylation reaction, mainly catalyzed by Pd, Pt and Rh, produces catechol as the products. The presence of catechol and guaiacol in the reaction is responsible for the coke formation and the catalysts deactivation. As expected, there was a significant decrease in the specific surface area of Pd, Pt and Rh catalysts during the catalytic reaction because of the coke deposition. In contrast, no catechol was produced from guaiacol when Ru was used so a completely hydrogenation was accomplished. The lignin pyrolysis oil upgrading with Pt and Ru catalysts further validated the reaction mechanism deduced from model compounds. Fully hydrogenated bio-oil was produced with Ru catalyst. PMID:25280108

  7. Chemical sensing with nanoparticles as optical reporters: from noble metal nanoparticles to quantum dots and upconverting nanoparticles.

    PubMed

    Deng, Wei; Goldys, Ewa M

    2014-11-01

    A wide variety of biological and medical analyses are based on the use of optical signals to report specific molecular events. Thanks to advances in nanotechnology, various nanostructures have been extensively used as optical reporters in bio- and chemical assays. This review describes recent progress in chemical sensing using noble metal nanoparticles (gold and silver), quantum dots and upconverting nanoparticles. It provides insights into various nanoparticle-based sensing strategies including fluorescence/luminescence resonance energy transfer nanoprobes as well as activatable probes sensitive to specific changes in the biological environment. Finally we list some research challenges to be overcome in order to accelerate the development of applications of nanoparticle bio- and chemical sensors. PMID:25170528

  8. Investigation of noble metal substrates and buffer layers for BiSrCaCuO thin films

    NASA Astrophysics Data System (ADS)

    Matthiesen, M. M.; Rubin, L. M.; Williams, K. E.; Rudman, D. A.

    Noble metal buffer layers and substrates for Bi2Sr2CaCu2O8 (BSCCO) films were investigated using bulk ceramic processing and thin-film techniques. Highly oriented, superconducting BSCCO films were fabricated on polycrystalline Ag substrates and on Ag/MgO and Ag/YSZ structures. Such films could not be produced on Au or Pt substrates under any annealing conditions. In addition, superconducting BSCCO films could not be produced on Ag/Al2O3, Ag/SiO2/Si, or Ag/(Haynes 230 alloy) structures using high annealing temperatures (870 C). However, oriented although poorly connected, superconducting BSCCO films were fabricated on Ag/Al2O3 structures by using lower annealing temperatures (820 C). Once lower processing temperatures are optimized, Ag may be usable as a buffer layer for BSCCO films.

  9. Non-noble metal Cu-loaded TiO2 for enhanced photocatalytic H2 production.

    PubMed

    Foo, Wei Jian; Zhang, Chun; Ho, Ghim Wei

    2013-01-21

    Here we have demonstrated the preparation of high-quality, monodispersed and tunable phases of Cu nanoparticles. Structural and chemical composition studies depict the evolution of Cu-Cu(2)O-CuO nanoparticles at various process stages. The loading of Cu and Cu oxide nanoparticles on TiO(2) catalyst has enhanced the photocatalytic H(2) production. Comparatively, H(2) treatment produces well-dispersed Cu nanoparticles with thin oxide shells that show the highest H(2) production amongst the samples. The relatively higher photocatalytic performance is deemed to result from reduced structural defects, higher surface area and dispersivity as well as favorable charge transfer, which inhibits recombination. The Cu nanoparticles are shown to be a promising alternative to noble metal-loaded TiO(2) catalyst systems due to their low cost and high performance in photocatalytic applications. PMID:23228941

  10. Non-noble metal Cu-loaded TiO2 for enhanced photocatalytic H2 production

    NASA Astrophysics Data System (ADS)

    Foo, Wei Jian; Zhang, Chun; Ho, Ghim Wei

    2012-12-01

    Here we have demonstrated the preparation of high-quality, monodispersed and tunable phases of Cu nanoparticles. Structural and chemical composition studies depict the evolution of Cu-Cu2O-CuO nanoparticles at various process stages. The loading of Cu and Cu oxide nanoparticles on TiO2 catalyst has enhanced the photocatalytic H2 production. Comparatively, H2 treatment produces well-dispersed Cu nanoparticles with thin oxide shells that show the highest H2 production amongst the samples. The relatively higher photocatalytic performance is deemed to result from reduced structural defects, higher surface area and dispersivity as well as favorable charge transfer, which inhibits recombination. The Cu nanoparticles are shown to be a promising alternative to noble metal-loaded TiO2 catalyst systems due to their low cost and high performance in photocatalytic applications.

  11. A sensitive localized surface plasmon resonance sensor for determining mercury(II) ion using noble metal nanoparticles as probe

    NASA Astrophysics Data System (ADS)

    Bi, Ning; Chen, Yanhua; Qi, Haibo; Zheng, Xia; Chen, Yang; Liao, Xue; Zhang, Hanqi; Tian, Yuan

    2012-09-01

    The noble metal nanoparticles (NPs), including gold nanorods (AuNRs), gold nanospheres (AuNSs) and silver nanoplates (AgNPTs), were synthesized and Tween 20 stabilized NPs (Tween 20-NPs) were used as the probes for determining Hg2+. Hg2+ was determined based on the strong affinity between Au (Ag) and Hg. Hg2+ was reduced to Hg in the presence of sodium borohydride. Hg interacts with the NPs and the diameter of the NPs decreases with the increase of Hg2+ concentration, which causes the shift in absorption peak of Tween 20-NPs. The peak shifts are linearly related to Hg2+ concentrations. Compared with AuNSs and AgNPTs, when the AuNRs was used, the sensitivity for determining Hg2+ was higher. The developed method shows a good selectivity for Hg2+ and can be applied to the determination of Hg2+ in water samples.

  12. A Noble-Metal-Free Nickel(II) Polypyridyl Catalyst for Visible-Light-Driven Hydrogen Production from Water.

    PubMed

    Yuan, Yong-Jun; Lu, Hong-Wei; Tu, Ji-Ren; Fang, Yong; Yu, Zhen-Tao; Fan, Xiao-Xing; Zou, Zhi-Gang

    2015-10-01

    The complex [Ni(bpy)3](2+) (bpy=2,2'-bipyridine) is an active catalyst for visible-light-driven H2 production from water when employed with [Ir(dfppy)2 (Hdcbpy)] [dfppy=2-(3,4-difluorophenyl)pyridine, Hdcbpy=4-carboxy-2,2'-bipyridine-4'-carboxylate] as the photosensitizer and triethanolamine as the sacrificial electron donor. The highest turnover number of 520 with respect to the nickel(II) catalyst is obtained in a 8:2 acetonitrile/water solution at pH 9. The H2 -evolution system is more stable after the addition of an extra free bpy ligand, owing to faster catalyst regeneration. The photocatalytic results demonstrate that the nickel(II) polypyridyl catalyst can act as a more effective catalyst than the commonly utilized [Co(bpy)3 ](2+). This study may offer a new paradigm for constructing simple and noble-metal-free catalysts for photocatalytic hydrogen production. PMID:26264140

  13. General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Yuwen, Lihui; Xu, Fei; Xue, Bing; Luo, Zhimin; Zhang, Qi; Bao, Biqing; Su, Shao; Weng, Lixing; Huang, Wei; Wang, Lianhui

    2014-05-01

    A general and facile method for water-dispersed noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets (NM-MoS2 NSs) has been developed. By using sodium carboxymethyl cellulose as a stabilizer, well-dispersed NM-MoS2 NSs with homogeneously deposited noble metal nanocrystals (NM NCs) can be synthesized in aqueous solutions. Due to the transition from the semiconducting 2H phase to the metallic 1T phase, the chemically exfoliated MoS2 (ce-MoS2) NSs have improved electrochemical activity. The partially metallic nature of the ce-MoS2 NSs and the catalytic activity of the NM NCs synergistically make NM-MoS2 NSs a potential electrochemical catalyst. For the first time, Pd-MoS2 NSs were used as an electrocatalyst for methanol oxidation in alkaline media. The results showed that Pd-MoS2 NSs have enhanced catalytic activity with 2.8-fold anodic peak current mass density compared to a commercial Pd/C catalyst, suggesting potential for application in direct methanol fuel cells (DMFCs).A general and facile method for water-dispersed noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets (NM-MoS2 NSs) has been developed. By using sodium carboxymethyl cellulose as a stabilizer, well-dispersed NM-MoS2 NSs with homogeneously deposited noble metal nanocrystals (NM NCs) can be synthesized in aqueous solutions. Due to the transition from the semiconducting 2H phase to the metallic 1T phase, the chemically exfoliated MoS2 (ce-MoS2) NSs have improved electrochemical activity. The partially metallic nature of the ce-MoS2 NSs and the catalytic activity of the NM NCs synergistically make NM-MoS2 NSs a potential electrochemical catalyst. For the first time, Pd-MoS2 NSs were used as an electrocatalyst for methanol oxidation in alkaline media. The results showed that Pd-MoS2 NSs have enhanced catalytic activity with 2.8-fold anodic peak current mass density compared to a commercial Pd/C catalyst, suggesting potential for application in direct methanol fuel cells (DMFCs

  14. Comparative study of the structural and electrochemical properties of noble metal inclusions in a UO2 matrix

    NASA Astrophysics Data System (ADS)

    Stumpf, S.; Petersmann, T.; Seibert, A.; Gouder, T.; Huber, F.; Brendebach, B.; Denecke, M. A.

    2010-03-01

    The intention of the presented study is to elucidate the influence of noble metal inclusions (fission products) on the structure as well as on the electrochemical properties of spent nuclear fuel (SNF). To this aim, thin UO2 films doped with metal inclusions such as Pd, Mo and Au are prepared by sputter deposition. The films are characterized by spectroscopic (XPS, EXAFS, XRD) as well as by microscopic (AFM, SEM) methods. In a next step the electrochemical properties of these model systems are comparatively investigated by cyclo voltammetry (CV). The sputter technique in combination with the heating treatment of the films allows the formation of a crystalline UO2 matrix as it is found in SNF. The co-deposition with Au results in the dispersion of the pure metal in the oxide matrix. Pd as well as Mo are oxidized due to the deposition at RT. Heating the films involves a further oxidation of MoO2 to MoO3. By contrast Pd agglomerates and forms metallic -phases as it is found in SNF. Electrochemical investigations of the UO2-Pd samples indicate an inhibiting influence of Pd on the oxidative dissolution of UO2. When it comes to the formation of secondary phases under reducing conditions such influence is passivated. The precipitates finally dominate the overall redox behaviour of the model system.

  15. Noble Hybrid Nanostructures as Efficient Anti-Proliferative Platforms for Human Breast Cancer Cell.

    PubMed

    Tavangar, Amirhossein; Premnath, Priyatha; Tan, Bo; Venkatakrishnan, Krishnan

    2016-04-27

    Nanomaterials have proven to possess great potential in biomaterials research. Recently, they have suggested considerable promise in cancer diagnosis and therapy. Among others, silicon (Si) nanomaterials have been extensively employed for various biomedical applications; however, the utilization of Si for cancer therapy has been limited to nanoparticles, and its potential as anticancer substrates has not been fully explored. Noble nanoparticles have also received considerable attention owing to unique anticancer properties to improve the efficiency of biomaterials for numerous biological applications. Nevertheless, immobilization and control over delivery of the nanoparticles have been challenge. Here, we develop hybrid nanoplatforms to efficiently hamper breast cancer cell adhesion and proliferation. Platforms are synthesized by femtosecond laser processing of Si into multiphase nanostructures, followed by sputter-coating with gold (Au)/gold-palladium (Au-Pd) nanoparticles. The performance of the developed platforms was then examined by exploring the response of normal fibroblast and metastatic breast cancer cells. Our results from the quantitative and qualitative analyses show a dramatic decrease in the number of breast cancer cells on the hybrid platform compared to untreated substrates. Whereas, fibroblast cells form stable adhesion with stretched and elongated cytoskeleton and actin filaments. The hybrid platforms perform as dual-acting cytophobic/cytostatic stages where Si nanostructures depress breast cancer cell adhesion while immobilized Au/Au-Pd nanoparticles are gradually released to affect any surviving cell on the nanostructures. The nanoparticles are believed to be taken up by breast cancer cells via endocytosis, which subsequently alter the cell nucleus and may cause cell death. The findings suggest that the density of nanostructures and concentration of coated nanoparticles play critical roles on cytophobic/cytostatic properties of the platforms on

  16. Application of potassium tetrafluorobromate to the rapid decomposition and determination of noble metals in chromites and related materials

    NASA Astrophysics Data System (ADS)

    Mitkin, V. N.; Zayakina, S. B.; Tsimbalist, V. G.; Galizky, A. A.

    2003-02-01

    Described is an effective new procedure for the preparation of chromites and other geological materials for the determination of the noble metals (NM). The procedure is based on the use of a mixture of KBrF 4 and KHF 2 obtained in situ by adding liquid BrF 3 to a mixture of KHF 2 and sample powder. South African Geostandards SARM-7 platinum ore from the Merensky Reef and SARM-65, a platinum-bearing chromite ore, were used for method development. Following fluorinative decomposition of samples, a homogeneous product is obtained which is suitable for instrumental analysis using either atomic absorption or emission spectrometry techniques. Sulfatization of fusion product using H 2SO 4 produces a non-hygroscopic material, which can be easily powdered and sampled directly into the argon plasma. Solution-based analytical techniques can be applied directly after fluorinative decomposition and conversion of resulting fluorides into chlorides by HCl treatment. The proposed new method, combined with spectrometric emission analysis of powders using a double-jet plasmatron dc plasma atomic emission spectrometry (AES) instrument achieved the following limits of detection (LOD) for the noble metals: Ag, Au and Pd: 1-2×10 -2 g/ton; Pt: 5×10 -2 g/ton; Ru, Rh, Ir and Os: 1-3×10 -3 g/ton. Graphic furnace atomic absorption spectrometry (GFAAS) with preliminary extraction, LODs for NMs were: Pt and Ru: 1×10 -2; Pd and Rh: 1×10 -3; Au and Ag: 1-2×10 -4 g/ton. The relative standard deviation of NM determinations was dependent on concentration and sample type but commonly was in the range of 3-15% dc plasma AES and 5-30% for extraction GFAAS.

  17. Formation of Metal Selenide and Metal-Selenium Nanoparticles using Distinct Reactivity between Selenium and Noble Metals.

    PubMed

    Park, Se Ho; Choi, Ji Yong; Lee, Young Hwan; Park, Joon T; Song, Hyunjoon

    2015-07-01

    Small Se nanoparticles with a diameter of ≈20 nm were generated by the reduction of selenium chloride with NaBH4 at -10 °C. The reaction with Ag at 60 °C yielded stable Ag2 Se nanoparticles, which subsequently were transformed into M-Se nanoparticles (M=Cd, Zn, Pb) through cation exchange reactions with corresponding ions. The reaction with Pt formed Pt layers that were evenly coated on the surface of the Se nanoparticles, and the dissolution of the Se cores with hydrazine generated uniform Pt hollow nanoparticles. The reaction with Au generated tiny Au clusters on the Se surface, and eventually formed acorn-shaped Au-Se nanoparticles through heat treatment. These results indicate that small Se nanoparticles with diameters of ≈20 nm can be used as a versatile platform for the synthesis of metal selenide and metal-selenium hybrid nanoparticles with complex structures. PMID:25883010

  18. Metal-support interactions in zeolite-supported noble metals: influence of metal crystallites on the support acidity.

    PubMed

    Kubicka, David; Kumar, Narendra; Venäläinen, Tapani; Karhu, Hannu; Kubicková, Iva; Osterholm, Heidi; Murzin, Dmitry Yu

    2006-03-16

    The metal-support interactions on a series of catalysts of different acidities, including platinum-modified zeolites and H-MCM-41, are investigated by means of XPS, CO and pyridine adsorption, and a model reaction (ring opening of decalin). The electronic properties of Pt are influenced by the acidity of the support, and the alteration of Pt properties increases with increasing acidity of the support, as can be seen from the changes in the Pt binding energy and stretching frequency of adsorbed CO. At the same time, the presence of platinum affects the acidic properties of the supports by reducing the strength of the acid sites. This is observed directly as the changes in desorption of pyridine from the acid sites and indirectly as the suppression of cracking reactions during the ring opening of decalin on the Pt-modified catalysts. The observed results are discussed in terms of the interatomic potential model. PMID:16526734

  19. Noble-metal minerals in ores of the black-shale type in the Voronezh Crystalline Massif, central Russia

    NASA Astrophysics Data System (ADS)

    Chernyshov, N. M.

    2009-12-01

    High-carbonaceous stratified formations and related metasomatic rocks of global abundance are among highly promising sources of gold and platinum-group metals (PGMs) in the 21st century. The Au-PGM mineralization of the black-shale type hosted in the Early Karelian Kursk and Oskol groups in central Russia is characterized by complex multicomponent and polymineralic composition (more than 60 ore minerals, including more than 20 Au and PGM phases) and diverse speciation of noble metals in form of (1) native elements (gold, palladium, platinum, osmium, silver); (2) metallic solid solutions and intermetallic compounds (Pt-bearing palladium, Fe-bearing platinum, gold-platinum-palladium, osmiridium, rutheniridosmin, platiridosmin, platosmiridium, Hg-Te-Ag-bearing gold, gold-silver amalgam, arquerite, palladium stannide (unnamed mineral), platinum-palladium-gold-silver-tin); (3) PGM, Au, and Ag sulfoarsenides, tellurides, antimonides, selenides, and sulfosalts (sperrylite, irarsite, hessite, Pd and Pt selenide (unnamed mineral)), testibiopalladinite, Pd antimonide (unnamed mineral), etc.; and (4) impurities in ore-forming sulfides, sulfoarsenides, tellurides, antimonides, and selenides. The chemical analyses of PGM and Au minerals are presented, and their morphology and microstructure are considered.

  20. Optical properties of MgF2 nano-composite films dispersed with noble metal nanoparticles synthesized by sol-gel method

    NASA Astrophysics Data System (ADS)

    Wakaki, Moriaki; Soujima, Nobuaki; Shibuya, Takehisa

    2015-03-01

    Porous MgF2 films synthesized by a sol-gel method exhibit the lowest refractive index among the dielectric optical materials and are the most useful materials for the anti-reflection coatings. On the other hand, surface plasmon resonance (SPR) absorptions of noble metal nanoparticles in various solid matrices have been extensively studied. New functional materials like a SERS (Surface Enhanced Raman Spectroscopy) tips are expected by synthesizing composite materials between porous MgF2 films featured by the network of MgF2 nanoparticles and noble metal nanoparticles introduced within the network. In this study, fundamental physical properties including morphology and optical properties are characterized for these materials to make clear the potential of the composite system. Composite materials of MgF2 films dispersed with noble metal (Ag, Au) nanoparticles were prepared using the sol-gel technique with various annealing temperatures and densities of noble metal nanoparticles. The structural morphology was analyzed by an X-ray diffractometer (XRD) and a scanning electron microscope (SEM). The size and shape distributions of the metal nanoparticles were observed using a transmission electron microscope (TEM). The optical properties of fabricated composite films were characterized by UV-Vis-NIR and FT-IR spectrophotometers. The absorption spectra due to the surface plasmon resonance (SPR) of the metal nanoparticles were analyzed using the dielectric function considering the effective medium approximation, typically Maxwell-Garnett model. The Raman scattering spectra were also studied to check the enhancement effect of specimen dropped on the MgF2: Ag nano-composite films deposited on Si substrate. Enhancement of the Raman intensity of pyridine solution specimen was observed.

  1. A thermodynamic model for noble metal alloy inclusions in nuclear fuel rods and application to the study of loss-of-coolant accidents

    NASA Astrophysics Data System (ADS)

    Kaye, Matthew Haigh

    Metal alloy inclusions comprised of Mo, Pd, Rh, Ru, and Tc (the so-called "noble" metals) develop in CANDU fuel pellets as a result of fission. The thermochemical behaviour of this alloy system during severe accident conditions is of interest in connection with computations of loss of volatile compounds of these elements by reaction with steam-hydrogen gas mixtures that develop in the system as a result of water reacting with the Zircalloy cladding. This treatment focuses on the development of thermodynamic models for the Mo-Pd-Rh-Ru-Tc quinary system. A reasonable prediction was made by modelling the ten binary phase diagrams, five of these evaluations being original to this work. This process provides a complete treatment for the five solution phases (vapour, liquid, bcc-solid, fcc-solid, and cph-solid) in this alloy system, as well as self-consistent Gibbs energies of formation for the Mo 5Ru3 intermetallic phase, and two intermediate phases in the Mo-Tc system. The resulting collection of properties, when treated by Gibbs energy minimization, permits phase equilibria to be computed for specified temperatures and compositions. Experimental work in support of this treatment has been performed. Measurements of the solidus and liquidus temperatures for Pd-Rh alloys were made using differential thermal analysis. These measurements confirm that the liquid solution exhibits positive deviation from Raoult's law. Experimental work as a visiting research engineer at AECL (Chalk River) was performed using a custom developed Knudsen cell/mass spectrometer. The Pd partial pressure was measured above multi-component alloys of known composition over a range of temperatures. These are correlated to predicted activities of Pd from the developed thermodynamic model in the multi-component alloy. The thermodynamic treatment developed for the noble metal alloy inclusions has been combined with considerable other data and applied to selected loss-of-coolant-accident scenarios to

  2. Base-free non-noble-metal-catalyzed hydrogen generation from formic acid: scope and mechanistic insights.

    PubMed

    Mellmann, Dörthe; Barsch, Enrico; Bauer, Matthias; Grabow, Kathleen; Boddien, Albert; Kammer, Anja; Sponholz, Peter; Bentrup, Ursula; Jackstell, Ralf; Junge, Henrik; Laurenczy, Gábor; Ludwig, Ralf; Beller, Matthias

    2014-10-13

    The iron-catalyzed dehydrogenation of formic acid has been studied both experimentally and mechanistically. The most active catalysts were generated in situ from cationic Fe(II) /Fe(III) precursors and tris[2-(diphenylphosphino)ethyl]phosphine (1, PP3 ). In contrast to most known noble-metal catalysts used for this transformation, no additional base was necessary. The activity of the iron catalyst depended highly on the solvent used, the presence of halide ions, the water content, and the ligand-to-metal ratio. The optimal catalytic performance was achieved by using [FeH(PP3 )]BF4 /PP3 in propylene carbonate in the presence of traces of water. With the exception of fluoride, the presence of halide ions in solution inhibited the catalytic activity. IR, Raman, UV/Vis, and EXAFS/XANES analyses gave detailed insights into the mechanism of hydrogen generation from formic acid at low temperature, supported by DFT calculations. In situ transmission FTIR measurements revealed the formation of an active iron formate species by the band observed at 1543 cm(-1) , which could be correlated with the evolution of gas. This active species was deactivated in the presence of chloride ions due to the formation of a chloro species (UV/Vis, Raman, IR, and XAS). In addition, XAS measurements demonstrated the importance of the solvent for the coordination of the PP3 ligand. PMID:25196789

  3. Combined Photothermal and Surface-Enhanced Raman Spectroscopy Effect from Spiky Noble Metal Nanoparticles Wrapped within Graphene-Polymer Layers: Using Layer-by-layer Modified Reduced Graphene Oxide as Reactive Precursors.

    PubMed

    Li, Xiangming; Zhang, Yihe; Wu, Yaling; Duan, Yang; Luan, Xinglong; Zhang, Qian; An, Qi

    2015-09-01

    To fabricate functionally integrated hybrid nanoparticles holds high importance in biomedical applications and is still a challenging task. In this study, we report the first reduced graphene oxide (rGO)-nobel metal hybrid particles that present simultaneously the photothermal and surface-enhanced Raman spectroscopy (SERS) effect from the inorganic part and drug loading, dispersibility, and controllability features from LbL polyelectrolyte multilayers. The hybrid particles where spiky noble metal particles were wrapped within rGO-polyelectrolyte layers were prepared by a facile and controllable method. rGO template modified using polyethylenimine (PEI) and poly(acrylic acid) (PAA) via layer-by-layer technology served as the reactive precursors, and the morphologies of the particles could be facilely controlled via controlling the number of bilayers around the rGO template. The hybrid particle presented low cytotoxicity. After loading doxorubicin hydrochloride, the particles effectively induced cell death, and photothermal treatment further decreased cell viability. rGO-Ag hybrid particles could be prepared similarly. We expect the reported method provides an effective strategy to prepare rGO-noble metal hybrid nanoparticles that find potential biomedical applications. PMID:26269466

  4. Rational Design of Biomolecular Templates for Synthesizing Multifunctional Noble Metal Nanoclusters toward Personalized Theranostic Applications.

    PubMed

    Yu, Yong; Mok, Beverly Y L; Loh, Xian Jun; Tan, Yen Nee

    2016-08-01

    Biomolecule-templated or biotemplated metal nanoclusters (NCs) are ultrasmall (<2 nm) metal (Au, Ag) particles stabilized by a certain type of biomolecular template (e.g., peptides, proteins, and DNA). Due to their unique physiochemical properties, biotemplated metal NCs have been widely used in sensing, imaging, delivery and therapy. The overwhelming applications in these individual areas imply the great promise of harnessing biotemplated metal NCs in more advanced biomedical aspects such as theranostics. Although applications of biotemplated metal NCs as theranostic agents are trending, the rational design of biomolecular templates suitable for the synthesis of multifunctional metal NCs for theranostics is comparatively underexplored. This progress report first identifies the essential attributes of biotemplated metal NCs for theranostics by reviewing the state-of-art applications in each of the four modalities of theranostics, namely sensing, imaging, delivery and therapy. To achieve high efficacy in these modalities, we elucidate the design principles underlying the use of biomolecules (proteins, peptides and nucleic acids) to control the NC size, emission color and surface chemistries for post-functionalization of therapeutic moieties. We then propose a unified strategy to engineer biomolecular templates that combine all these modalities to produce multifunctional biotemplated metal NCs that can serve as the next-generation personalized theranostic agents. PMID:27377035

  5. Study on the Catalytic Activity of Noble Metal Nanoparticles on Reduced Graphene Oxide for Oxygen Evolution Reactions in Lithium-Air Batteries.

    PubMed

    Jeong, Yo Sub; Park, Jin-Bum; Jung, Hun-Gi; Kim, Jooho; Luo, Xiangyi; Lu, Jun; Curtiss, Larry; Amine, Khalil; Sun, Yang-Kook; Scrosati, Bruno; Lee, Yun Jung

    2015-07-01

    Among many challenges present in Li-air batteries, one of the main reasons of low efficiency is the high charge overpotential due to the slow oxygen evolution reaction (OER). Here, we present systematic evaluation of Pt, Pd, and Ru nanoparticles supported on rGO as OER electrocatalysts in Li-air cell cathodes with LiCF3SO3-tetra(ethylene glycol) dimethyl ether (TEGDME) salt-electrolyte system. All of the noble metals explored could lower the charge overpotentials, and among them, Ru-rGO hybrids exhibited the most stable cycling performance and the lowest charge overpotentials. Role of Ru nanoparticles in boosting oxidation kinetics of the discharge products were investigated. Apparent behavior of Ru nanoparticles was different from the conventional electrocatalysts that lower activation barrier through electron transfer, because the major contribution of Ru nanoparticles in lowering charge overpotential is to control the nature of the discharge products. Ru nanoparticles facilitated thin film-like or nanoparticulate Li2O2 formation during oxygen reduction reaction (ORR), which decomposes at lower potentials during charge, although the conventional role as electrocatalysts during OER cannot be ruled out. Pt-and Pd-rGO hybrids showed fluctuating potential profiles during the cycling. Although Pt- and Pd-rGO decomposed the electrolyte after electrochemical cycling, no electrolyte instability was observed with Ru-rGO hybrids. This study provides the possibility of screening selective electrocatalysts for Li-air cells while maintaining electrolyte stability. PMID:26115340

  6. Metal halogen electrochemical cell

    DOEpatents

    Bellows, Richard J.; Kantner, Edward

    1988-08-23

    It has now been discovered that reduction in the coulombic efficiency of metal halogen cells can be minimized if the microporous separator employed in such cells is selected from one which is preferably wet by the aqueous electrolyte and is not wet substantially by the cathodic halogen.

  7. Development of new generation of perovskite based noble metal/semiconductor photocatalysts for visible-light-driven hydrogen production

    NASA Astrophysics Data System (ADS)

    Shen, Peichuan

    described in this dissertation. Noble metal nanoparticles have been proved to be effective co-catalysts due to their unique physical and chemical properties. Au and Pt nanoparticles with different sizes were synthesized and deposited on CdS. Sub-nanometer Au and Pt were found to be promising co-catalysts for photocatalytic hydrogen production reaction. Specifically, sub-nm Au and sub-nm Pt nanoparticles were found to enhance the photocatalytic activity in hydrogen production of CdS by 35 and 15 times respectively. Other noble metal co-catalysts, such as Ru, Pd and Rh were also deposited on CdS and their photocatalytic activities were investigated. Additionally, a novel chamber for photocatalytic reactions was developed as a part of this dissertation. The reaction chamber has several unique features allowing different reactions and measurements. The reactor was proved to be suitable for future projects in photocatalysis such as photocatalytic CO2 conversion into hydrocarbons.

  8. GREENER PRODUCTION OF NOBLE METAL NANOSTRUCTURES AND NANOCOMPOSITES: RISK REDUCTION AND APPLICATIONS

    EPA Science Inventory

    The synthesis of nanometal/nano metal oxide/nanostructured polymer and their stabilization (through dispersant, biodegradable polymer) involves the use of natural renewable resources such plant material extract, biodegradable polymers, sugars, vitamins and finally efficient and s...

  9. Release of Implanted Noble Gases from Metallic Glass Vitreloy During Pyrolysis

    NASA Technical Reports Server (NTRS)

    Meshik, A. P.; Hohenberg, C. M.; Burnett, D. S.; Woolum, D. S.

    2000-01-01

    Vitreloy, a metallic vitreous glass, was examined as a potential target material for the Genesis Mission solar wind collector. Stepped pyrolysis revealed that He and Ne implanted in Vitreloy were efficiently re-trapped during phase transitions.

  10. A hybrid of titanium nitride and nitrogen-doped amorphous carbon supported on SiC as a noble metal-free electrocatalyst for oxygen reduction reaction.

    PubMed

    Jia, Yingdan; Wang, Yanhui; Dong, Liang; Huang, Junjie; Zhang, Yan; Su, Jing; Zang, Jianbing

    2015-02-14

    A novel noble metal-free catalyst, with nitrogen-doped amorphous carbon and titanium nitride particles supported on SiC (NC-TiN/SiC), was synthesized. The NC-TiN/SiC catalyst exhibited excellent oxygen reduction reaction activities as well as superior stability and methanol tolerance. The catalytic activities were attributed to the synergistic effect of TiN and NC. PMID:25574526

  11. Method and electrochemical cell for synthesis and treatment of metal monolayer electrocatalysts metal, carbon, and oxide nanoparticles ion batch, or in continuous fashion

    DOEpatents

    Adzic, Radoslav; Zhang, Junliang; Sasaki, Kotaro

    2015-04-28

    An apparatus and method for synthesis and treatment of electrocatalyst particles in batch or continuous fashion is provided. In one embodiment, the apparatus comprises a sonication bath and a two-compartment chamber submerged in the sonication bath. The upper and lower compartments are separated by a microporous material surface. The upper compartment comprises a cover and a working electrode (WE) connected to a Pt foil contact, with the foil contact connected to the microporous material. The upper chamber further comprises reference counter electrodes. The lower compartment comprises an electrochemical cell containing a solution of metal ions. In one embodiment, the method for synthesis of electrocatalysts comprises introducing a plurality of particles into the apparatus and applying sonication and an electrical potential to the microporous material connected to the WE. After the non-noble metal ions are deposited onto the particles, the non-noble metal ions are displaced by noble-metal ions by galvanic displacement.

  12. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method.

    PubMed

    Lin, Min; Wang, Yunqing; Sun, Xiuyan; Wang, Wenhai; Chen, Lingxin

    2015-04-15

    The Raman enhancing ability of noble metal nanoparticles (NPs) is an important factor for surface enhanced Raman scattering (SERS) substrate screening, which is generally evaluated by simply mixing as-prepared NPs with Raman reporters for Raman signal measurements. This method usually leads to incredible results because of the NP surface coverage nonuniformity and reporter-induced NP aggregation. Moreover, it cannot realize in situ, continuous SERS characterization. Herein, we proposed a dynamic SERS monitoring strategy for NPs with precisely tuned structures based on a simplified spatially confined NP growth method. Gold nanorod (AuNR) seed NPs were coated with a mesoporous silica (mSiO2) shell. The permeability of mSiO2 for both reactive species and Raman reporters rendered the silver overcoating reaction and SERS indication of NP growth. Additionally, the mSiO2 coating ensured monodisperse NP growth in a Raman reporter-rich reaction system. Moreover, "elastic" features of mSiO2 were observed for the first time, which is crucial for holding the growing NP without breakage. This feature makes the mSiO2 coating adhere to metal NPs throughout the growing process, providing a stable Raman reporter distribution microenvironment near the NPs and ensuring that the substrate's SERS ability comparison is accurate. Three types of NPs, i.e., core-shell Au@AgNR@mSiO2, Au@AuNR@mSiO2, and yolk-shell Au@void@AuNR@mSiO2 NPs, were synthesized via core-shell overgrowth and galvanic replacement methods, showing the versatility of the approach. The living cell SERS labeling ability of Au@AgNR@mSiO2-based tags was also demonstrated. This strategy addresses the problems of multiple batch NP preparation, aggregation, and surface adsorption differentiation, which is a breakthrough for the dynamic comparison of SERS ability of metal NPs with precisely tuned structures and optical properties. PMID:25815901

  13. Intriguing structures and magic sizes of heavy noble metal nanoclusters around size 55 governed by relativistic effect and covalent bonding.

    PubMed

    Zhao, X J; Xue, X L; Guo, Z X; Jia, Yu; Li, S F; Zhang, Zhenyu; Gao, Y F

    2015-11-01

    Nanoclusters usually display exotic physical and chemical properties due to their intriguing geometric structures in contrast to their bulk counterparts. By means of first-principles calculations within density functional theory, we find that heavy noble metal PtN nanoclusters around the size N = 55 begin to prefer an open configuration, rather than previously reported close-packed icosahedron or core-shell structures. Particularly, for PtN, the widely supposed icosahedronal magic cluster is changed to a three-atomic-layered structure with D6h symmetry, which can be well addressed by our recently established generalized Wulff construction principle (GWCP). However, the magic number of PtN clusters around 55 is shifted to a new odd number of 57. The high symmetric three-layered Pt57 motif is mainly stabilized by the enhanced covalent bonding contributed by both spin-orbital coupling effect and the open d orbital (5d(9)6s(1)) of Pt, which result in a delicate balance between the enhanced Pt-Pt covalent bonding of the interlayers and negligible d dangling bonds on the cluster edges. These findings about PtN clusters are also applicable to IrN clusters, but qualitatively different from their earlier neighboring element Os and their later neighboring element Au. The magic numbers for Os and Au are even, being 56 and 58, respectively. The findings of the new odd magic number 57 are the important supplementary of the recently established GWCP. PMID:26547165

  14. Optimal control of light propagation and exciton transfer in arrays of molecular-like noble-metal clusters

    NASA Astrophysics Data System (ADS)

    Lisinetskaya, Polina G.; Mitrić, Roland

    2015-03-01

    We demonstrate theoretically the possibility of optimal control of light propagation and exciton transfer in arrays constructed of subnanometer sized noble-metal clusters by using phase-shaped laser pulses and analyze the mechanism underlying this process. The theoretical approach for simulation of light propagation in the arrays is based on the numerical solution of the coupled time-dependent Schrödinger equation and the classical electric field propagation in an iterative self-consistent manner. The electronic eigenstates of individual clusters and the dipole couplings are obtained from ab initio TDDFT calculations. The total electric field is propagated along the array by coupling an external excitation electric field with the electric fields produced by all clusters. A genetic algorithm is used to determine optimal pulse shapes which drive the excitation in a desired direction. The described theoretical approach is applied to control the light propagation and exciton transfer dynamics into a T-shaped structure built of seven Ag8 clusters. We demonstrate that a selective switching of light localization is possible in ˜5 nm sized cluster arrays which might serve as a building block for plasmonic devices with an ultrafast operation regime.

  15. Intriguing structures and magic sizes of heavy noble metal nanoclusters around size 55 governed by relativistic effect and covalent bonding

    NASA Astrophysics Data System (ADS)

    Zhao, X. J.; Xue, X. L.; Guo, Z. X.; Jia, Yu; Li, S. F.; Zhang, Zhenyu; Gao, Y. F.

    2015-11-01

    Nanoclusters usually display exotic physical and chemical properties due to their intriguing geometric structures in contrast to their bulk counterparts. By means of first-principles calculations within density functional theory, we find that heavy noble metal PtN nanoclusters around the size N = 55 begin to prefer an open configuration, rather than previously reported close-packed icosahedron or core-shell structures. Particularly, for PtN, the widely supposed icosahedronal magic cluster is changed to a three-atomic-layered structure with D6h symmetry, which can be well addressed by our recently established generalized Wulff construction principle (GWCP). However, the magic number of PtN clusters around 55 is shifted to a new odd number of 57. The high symmetric three-layered Pt57 motif is mainly stabilized by the enhanced covalent bonding contributed by both spin-orbital coupling effect and the open d orbital (5d96s1) of Pt, which result in a delicate balance between the enhanced Pt-Pt covalent bonding of the interlayers and negligible d dangling bonds on the cluster edges. These findings about PtN clusters are also applicable to IrN clusters, but qualitatively different from their earlier neighboring element Os and their later neighboring element Au. The magic numbers for Os and Au are even, being 56 and 58, respectively. The findings of the new odd magic number 57 are the important supplementary of the recently established GWCP.

  16. Striving toward noble-metal-free photocatalytic water splitting: The hydrogenated-graphene-TiO2 prototype

    DOE PAGESBeta

    Nguyen-Phan, Thuy -Duong; Luo, Si; Liu, Zongyuan; Gamalski, Andrew D.; Tao, Jing; Xu, Wenqian; Stach, Eric A.; Polyansky, Dmitry E.; Senanayake, Sanjaya D.; Fujita, Etsuko; et al

    2015-08-20

    Graphane, graphone and hydrogenated graphene (HG) have been extensively studied in recent years due to their interesting properties and potential use in commercial and industrial applications. The present study reports investigation of hydrogenated graphene/TiO2-x (HGT) nanocomposites as photocatalysts for H2 and O2 production from water without the assistance of a noble metal co-catalyst. By combination of several techniques, the morphologies, bulk/atomic structure and electronic properties of all the powders were exhaustively interrogated. Hydrogenation treatment efficiently reduces TiO2 nanoparticles, while the graphene oxide sheets undergo the topotactic transformation from a graphene-like structure to a mixture of graphitic and turbostratic carbon (amorphous/disordered)more » upon altering the calcination atmosphere from a mildly reducing to a H2-abundant environment. Remarkably, the hydrogenated graphene-TiO2-x composite that results upon H2-rich reduction exhibits the highest photocatalytic H2 evolution performance equivalent to low loading of Pt (~0.12 wt%), whereas the addition of HG suppresses the O2 production. As a result, we propose that such an enhancement can be attributed to a combination of factors including the introduction of oxygen vacancies and Ti3+ states, retarding the recombination of charge carriers and thus, facilitating the charge transfer from TiO2-x to the carbonaceous sheet.« less

  17. Self-Supported Cu-Based Nanowire Arrays as Noble-Metal-Free Electrocatalysts for Oxygen Evolution.

    PubMed

    Hou, Chun-Chao; Fu, Wen-Fu; Chen, Yong

    2016-08-23

    Crystalline Cu-based nanowire arrays (NWAs) including Cu(OH)2 , CuO, Cu2 O, and CuOx are facilely grown on Cu foil and are found to act as highly efficient, low-cost, and robust electrocatalysts for the oxygen evolution reaction (OER). Impressively, this noble-metal-free 3 D Cu(OH)2 -NWAs/Cu foil electrode shows the highest catalytic activity with a Tafel slope of 86 mV dec(-1) , an overpotential (η) of about 530 mV at ∼10 mA cm(-2) (controlled-potential electrolysis method without iR correction) and almost 100 % Faradic efficiency, paralleling the performance of the state-of-the-art RuO2 OER catalyst in 0.1 m NaOH solution (pH 12.8). To the best of our knowledge, this work represents one of the best results ever reported on Cu-based OER systems. PMID:27440473

  18. Morphological Evolution of Noble Metal Nanoparticles in Chloroform: Mechanism of Switching on/off by Protic Species

    PubMed Central

    Douglas-Gallardo, O. A.; Gomez, C. G.; Macchione, M. A.; Cometto, F. P.; Coronado, E. A.; Macagno, V. A.; Pérez, M. A.

    2015-01-01

    The morphological stability/morphological reshaping of noble metal nanoparticles are studied experimentally in order to unravel the chemical mechanisms lying beneath. Gold and silver nanoparticles (AuNPs and AgNPs, respectively) formed in chloroformic environment are used, as model synthetic systems, to study phenomena of morphological change. The morphological evolution of NPs that follows their formation, is characterized by spectroscopy (UV-Visible, Raman and FTIR) and TEM (Transmission Electron Microscopy). The change of NP morphology involves the increase of the average NP size and the broadening of size distribution, in a close resemblance with the effect characteristically obtained from the Ostwald ripening. The effect of the poor solvating properties of chloroform in stabilizing small charged species (H+, Ag+, Au+) as well as the principle of electroneutrality of matter are analyzed in order to formulate a feasible reaction scheme consisting of a three-step processes: the generation of soluble intermediary species by corrosion of nanoparticles, the diffusion of intermediary species from one nanoparticle to another, and the re-deposition process involving the reduction of intermediary species. This basic reaction scheme is used as hypothesis to plan and perform experiments, which reveal that molecular oxygen dissolved in the dispersive medium can drive NP corrosion, however, protic species are also required as co-reactant. The polarity of the hydrogen bond and the ligand properties of the anions produced by deprotonation are feature of the protic species that enable/disable the corrosion and, in turn, the NP morphological evolution. PMID:26889378

  19. Pulsed laser deposited indium tin oxides as alternatives to noble metals in the near-infrared region

    NASA Astrophysics Data System (ADS)

    Fang, Xu; Mak, C. L.; Zhang, Shiyu; Wang, Zhewei; Yuan, Wenjia; Ye, Hui

    2016-06-01

    Transparent conductive indium tin oxide thin films with thickness around 200 nm were deposited on glass substrates by pulsed laser deposition technology. The microstructure and the electrical and optical properties of the ITO films deposited under different oxygen pressures and substrate temperatures were systematically investigated. Distinct different x-ray diffraction patterns revealed that the crystallinity of ITO films was highly influenced by deposition conditions. The highest carrier concentration of the ITO films was obtained as 1.34  ×  1021 cm‑3 with the lowest corresponding resistivity of 2.41  ×  10‑4 Ω cm. Spectroscopic ellipsometry was applied to retrieve the dielectric permittivity of the ITO films to estimate their potential as plasmonic materials in the near-infrared region. The crossover wavelength (the wavelength where the real part of the permittivity changes from positive to negative) of the ITO films exhibited high dependence on the deposition conditions and was optimized to as low as 1270 nm. Compared with noble metals (silver or gold etc), the lower imaginary part of the permittivity (<3) of ITO films suggests the potential application of ITO in the near-infrared range.

  20. Pulsed laser deposited indium tin oxides as alternatives to noble metals in the near-infrared region.

    PubMed

    Fang, Xu; Mak, C L; Zhang, Shiyu; Wang, Zhewei; Yuan, Wenjia; Ye, Hui

    2016-06-01

    Transparent conductive indium tin oxide thin films with thickness around 200 nm were deposited on glass substrates by pulsed laser deposition technology. The microstructure and the electrical and optical properties of the ITO films deposited under different oxygen pressures and substrate temperatures were systematically investigated. Distinct different x-ray diffraction patterns revealed that the crystallinity of ITO films was highly influenced by deposition conditions. The highest carrier concentration of the ITO films was obtained as 1.34  ×  10(21) cm(-3) with the lowest corresponding resistivity of 2.41  ×  10(-4) Ω cm. Spectroscopic ellipsometry was applied to retrieve the dielectric permittivity of the ITO films to estimate their potential as plasmonic materials in the near-infrared region. The crossover wavelength (the wavelength where the real part of the permittivity changes from positive to negative) of the ITO films exhibited high dependence on the deposition conditions and was optimized to as low as 1270 nm. Compared with noble metals (silver or gold etc), the lower imaginary part of the permittivity (<3) of ITO films suggests the potential application of ITO in the near-infrared range. PMID:27054885

  1. Long-ranged magnetic proximity effects in noble metal-doped cobalt probed with spin-dependent tunnelling

    NASA Astrophysics Data System (ADS)

    Gabureac, M. S.; MacLaren, D. A.; Courtois, H.; Marrows, C. H.

    2014-04-01

    We inserted non-magnetic layers of Au and Cu into sputtered AlO_{x}-based magnetic tunnel junctions and Meservey-Tedrow junctions in order to study their effect on tunnelling magnetoresistance (TMR) and spin polarization (TSP). When either Au or Cu are inserted into a Co/AlO_{x} interface, we find that TMR and TSP remain finite and measurable for thicknesses up to several nanometres. High-resolution transmission electron microscopy shows that the Cu and Au interface layers are fully continuous when their thickness exceeds ~3nm, implying that spin-polarized carriers penetrate the interface noble metal to distances exceeding this value. A power law model based on exchange scattering is found to fit the data better than a phenomenological exponential decay. The discrepancy between these length scales and the much shorter ones reported from x-ray magnetic circular dichroism studies of magnetic proximitization is ascribed to the fact that our tunnelling transport measurements selectively probe s-like electrons close to the Fermi level. When a 0.1 nm thick Cu or Au layer is inserted within the Co, we find that the suppression of TMR and TSP is restored on a length scale of lesssim1nm, indicating that this is a sufficient quantity of Co to form a fully spin-polarized band structure at the interface with the tunnel barrier.

  2. Synthesis and mechanistic study of stable water-soluble noble metal nanostructures

    NASA Astrophysics Data System (ADS)

    Cai, Ling-Jian; Wang, Min; Hu, Yang; Qian, Dong-Jin; Chen, Meng

    2011-07-01

    Sodium salt of poly(4-styrenesulfonic acid-co-maleic acid) (PSSMA) has been employed to prepare a series of stable nanosized metal colloids such as silver, gold, palladium, platinum, and silver-gold alloy nanostructures. All of the as-synthesized products are very stable in water. The metal nanostructures have been directly confirmed by ultraviolet-visible spectroscopy, transmission electron microscopy (TEM), high-resolution TEM, and selected area electron diffraction (SAED), and also characterized by techniques such as Fourier transform infrared spectroscopy (FT-IR) and 1H NMR. Intensive study has found that the metal ions are most probably reduced by organic radicals, generated from the thermal degradation of PSSMA.

  3. Hemoglobin-carbon nanotube derived noble-metal-free Fe5C2-based catalyst for highly efficient oxygen reduction reaction

    PubMed Central

    Vij, Varun; Tiwari, Jitendra N.; Lee, Wang-Geun; Yoon, Taeseung; Kim, Kwang S.

    2016-01-01

    High performance non-precious cathodic catalysts for oxygen reduction reaction (ORR) are vital for the development of energy materials and devices. Here, we report an noble metal free, Fe5C2 nanoparticles-studded sp2 carbon supported mesoporous material (CNTHb-700) as cathodic catalyst for ORR, which was prepared by pyrolizing the hybrid adduct of single walled carbon nanotubes (CNT) and lyophilized hemoglobin (Hb) at 700 °C. The catalyst shows onset potentials of 0.92 V in 0.1 M HClO4 and in 0.1 M KOH which are as good as commercial Pt/C catalyst, giving very high current density of 6.34 and 6.69 mA cm−2 at 0.55 V vs. reversible hydrogen electrode (RHE), respectively. This catalyst has been confirmed to follow 4-electron mechanism for ORR and shows high electrochemical stability in both acidic and basic media. Catalyst CNTHb-700 possesses much higher tolerance towards methanol than the commercial Pt/C catalyst. Highly efficient catalytic properties of CNTHb-700 could lead to fundamental understanding of utilization of biomolecules in ORR and materialization of proton exchange membrane fuel cells for clean energy production. PMID:26839148

  4. Hemoglobin-carbon nanotube derived noble-metal-free Fe5C2-based catalyst for highly efficient oxygen reduction reaction.

    PubMed

    Vij, Varun; Tiwari, Jitendra N; Lee, Wang-Geun; Yoon, Taeseung; Kim, Kwang S

    2016-01-01

    High performance non-precious cathodic catalysts for oxygen reduction reaction (ORR) are vital for the development of energy materials and devices. Here, we report an noble metal free, Fe5C2 nanoparticles-studded sp(2) carbon supported mesoporous material (CNTHb-700) as cathodic catalyst for ORR, which was prepared by pyrolizing the hybrid adduct of single walled carbon nanotubes (CNT) and lyophilized hemoglobin (Hb) at 700 °C. The catalyst shows onset potentials of 0.92 V in 0.1 M HClO4 and in 0.1 M KOH which are as good as commercial Pt/C catalyst, giving very high current density of 6.34 and 6.69 mA cm(-2) at 0.55 V vs. reversible hydrogen electrode (RHE), respectively. This catalyst has been confirmed to follow 4-electron mechanism for ORR and shows high electrochemical stability in both acidic and basic media. Catalyst CNTHb-700 possesses much higher tolerance towards methanol than the commercial Pt/C catalyst. Highly efficient catalytic properties of CNTHb-700 could lead to fundamental understanding of utilization of biomolecules in ORR and materialization of proton exchange membrane fuel cells for clean energy production. PMID:26839148

  5. Hemoglobin-carbon nanotube derived noble-metal-free Fe5C2-based catalyst for highly efficient oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Vij, Varun; Tiwari, Jitendra N.; Lee, Wang-Geun; Yoon, Taeseung; Kim, Kwang S.

    2016-02-01

    High performance non-precious cathodic catalysts for oxygen reduction reaction (ORR) are vital for the development of energy materials and devices. Here, we report an noble metal free, Fe5C2 nanoparticles-studded sp2 carbon supported mesoporous material (CNTHb-700) as cathodic catalyst for ORR, which was prepared by pyrolizing the hybrid adduct of single walled carbon nanotubes (CNT) and lyophilized hemoglobin (Hb) at 700 °C. The catalyst shows onset potentials of 0.92 V in 0.1 M HClO4 and in 0.1 M KOH which are as good as commercial Pt/C catalyst, giving very high current density of 6.34 and 6.69 mA cm-2 at 0.55 V vs. reversible hydrogen electrode (RHE), respectively. This catalyst has been confirmed to follow 4-electron mechanism for ORR and shows high electrochemical stability in both acidic and basic media. Catalyst CNTHb-700 possesses much higher tolerance towards methanol than the commercial Pt/C catalyst. Highly efficient catalytic properties of CNTHb-700 could lead to fundamental understanding of utilization of biomolecules in ORR and materialization of proton exchange membrane fuel cells for clean energy production.

  6. Organic phase synthesis of noble metal-zinc chalcogenide core-shell nanostructures.

    PubMed

    Kumar, Prashant; Diab, Mahmud; Flomin, Kobi; Rukenstein, Pazit; Mokari, Taleb

    2016-10-15

    Multi-component nanostructures have been attracting tremendous attention due to their ability to form novel materials with unique chemical, optical and physical properties. Development of hybrid nanostructures that are composed of metal-semiconductor components using a simple approach is of interest. Herein, we report a robust and general organic phase synthesis of metal (Au or Ag)-Zinc chalcogenide (ZnS or ZnSe) core-shell nanostructures. This synthetic protocol also enabled the growth of more compositionally complex nanostructures of Au-ZnSxSe1-x alloys and Au-ZnS-ZnSe core-shell-shell. The optical and structural properties of these hybrid nanostructures are also presented. PMID:27428852

  7. Non-noble metal vanadium phosphites with broad absorption for photocatalytic hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Song, Jun-Ling; Zhang, Jian-Han; Mao, Jiang-Gao

    2016-05-01

    We reported the synthesis and crystal structures of alkali metal and alkali-earth metal phosphite, namely, CsV2(H3O)(HPO3)4 (1), and Ba3V2(HPO3)6 (2). Both compounds were prepared by hydrothermal reactions and feature unique new structures. They both exhibit 3D complicated frameworks based on VO6 octahedra which are connected by HPO3 tetrahedra via corner-sharing. Alkali or alkali earth metal cations are filled in the different channels of the frameworks. Topological analysis shows that the framework of CsV2(H3O) (HPO3)4 (1) is a new 3,3,3,4,5-connected network with the Schläfli symbol of {4.62}2{42.66.82}{63}{65.8}. The investigations of X-ray photoelectron spectroscopy (XPS) and magnetic measurement on CsV2(H3O)(HPO3)4 suggest a +3 oxidation state of the vanadium ions in compound 1. Photocatalytic performance was evaluated by photocatalytic H2 evolution and degradation of methylene blue, which shows that both compounds exhibit activity under visible-light irradiation. IR spectrum, UV-vis-NIR spectrum and thermogravimetric analysis (TGA) of compounds were also investigated.

  8. One-Pot Synthesis of Monodisperse Noble Metal @ Resorcinol-Formaldehyde (M@RF) and M@Carbon Core-Shell Nanostructure and Their Catalytic Applications.

    PubMed

    Yang, Peipei; Xu, Yong; Chen, Lei; Wang, Xuchun; Zhang, Qiao

    2015-10-27

    We demonstrate that noble metal @ RF core-shell nanostructures can be obtained through a facile one-pot synthesis approach in the absence of any additional surfactants. Monodisperse metal@RF core-shell nanostructures can be produced within 1 h on a large scale. Both the core size and shell thickness can be readily tuned by altering the reaction parameters. Systematic studies reveal that resorcinol could have several functions: it could act as a reactant to form RF resin, and it also could passivate the surface of metallic nanoparticles to prevent them from aggregating. Additionally, for the first time, our results suggest that resorcinol may act as a reducing agent that can reduce metal salts to form metal nanoparticles. The core-shell nanoparticles can be carbonized into M@carbon nanostructures, which have shown great performance in the catalytic hydrogenation of chlorobenzene. This work not only will help to achieve the controllable synthesis of noble metal@RF resin and M@carbon core-shell nanostructures but also will promote research into other RF-based nanostructures and their catalytic applications. PMID:26434608

  9. Decoration of size-tunable CuO nanodots on TiO2 nanocrystals for noble metal-free photocatalytic H2 production

    NASA Astrophysics Data System (ADS)

    Moon, Geon Dae; Joo, Ji Bong; Lee, Ilkeun; Yin, Yadong

    2014-09-01

    We report a simple yet effective approach for the decoration of the TiO2 nanocrystal surface with size-tunable CuO nanodots for high-performance noble metal-free photocatalytic H2 production. Modification with polyacrylic acid enables the surface of TiO2 nanocrystals to be selectively deposited with Cu(OH)2 nanodots, which can be subsequently converted to CuO through dehydration without changing their morphologies. UV irradiation of the nanocomposite solution in the presence of a hole scavenger produces photogenerated electrons which reduce CuO to metallic Cu nanodots, making them effective co-catalysts in a role similar to Pt for promoting photocatalytic H2 production. Due to the considerably high work function of Cu, the formation of a metal-semiconductor Schottky junction induces efficient charge separation and transfer. As a result, the TiO2 nanocrystals decorated with an optimal amount of CuO nanodots (1.7 wt%) could reach ~50% of the photocatalytic activity achievable by the Pt-TiO2 counterparts (1 wt%), clearly demonstrating the great potential of such composite catalysts for efficient noble metal-free photocatalytic H2 production.We report a simple yet effective approach for the decoration of the TiO2 nanocrystal surface with size-tunable CuO nanodots for high-performance noble metal-free photocatalytic H2 production. Modification with polyacrylic acid enables the surface of TiO2 nanocrystals to be selectively deposited with Cu(OH)2 nanodots, which can be subsequently converted to CuO through dehydration without changing their morphologies. UV irradiation of the nanocomposite solution in the presence of a hole scavenger produces photogenerated electrons which reduce CuO to metallic Cu nanodots, making them effective co-catalysts in a role similar to Pt for promoting photocatalytic H2 production. Due to the considerably high work function of Cu, the formation of a metal-semiconductor Schottky junction induces efficient charge separation and transfer. As a

  10. Closed cell metal foam method

    DOEpatents

    Patten, James W.

    1978-01-01

    Foamed metals and metal alloys which have a closed cellular structure are prepared by heating a metal body containing entrapped inert gas uniformly distributed throughout to a temperature above the melting point of the metal and maintaining the body at this temperature a period of time sufficient to permit the entrapped gas to expand, forming individual cells within the molten metal, thus expanding and foaming the molten metal. After cell formation has reached the desired amount, the foamed molten metal body is cooled to below the melting temperature of the metal. The void area or density of the foamed metal is controlled by predetermining the amount of inert gas entrapped in the metal body and by the period of time the metal body is maintained in the molten state. This method is useful for preparing foamed metals and metal alloys from any metal or other material of which a body containing entrapped inert gas can be prepared.

  11. Supported noble metal catalysts in the catalytic wet air oxidation of industrial wastewaters and sewage sludges.

    PubMed

    Besson, M; Descorme, C; Bernardi, M; Gallezot, P; di Gregorio, F; Grosjean, N; Minh, D Pham; Pintar, A

    2010-12-01

    This paper reviews some catalytic wet air oxidation (CWAO) investigations of industrial wastewaters over platinum and ruthenium catalysts supported on TiO2 and ZrO2 formulated to be active and resistant to leaching, with particular focus on the stability of the catalyst. Catalyst recycling experiments were performed in batch reactors and long-term stability tests were conducted in trickle-bed reactors. The catalyst did not leach upon treatment of Kraft bleaching plant and olive oil mill effluents, and could be either recycled or used for long periods of time in continuous reactors. Conversely, these catalysts were rapidly leached when used to treat effluents from the production of polymeric membranes containing N,N-dimethylformamide. The intermediate formation of amines, such as dimethylamine and methylamine with a high complexing capacity for the metal, was shown to be responsible for the metal leaching. These heterogeneous catalysts also deactivated upon CWAO of sewage sludges due to the adsorption of the solid organic matter. Pre-sonication of the sludge to disintegrate the flocs and improve solubility was inefficient. PMID:21214003

  12. Thermo-electrochemical selective growth of ZnO nanorods on any noble metal electrodes

    NASA Astrophysics Data System (ADS)

    You, Xueqiu; Park, Jungil; Choi, Jae-hoon; Pak, James Jungho

    2010-10-01

    Selective growth of ZnO nanorods has been successfully performed on the patterned Au/Ti metal electrode regions on a glass substrate by using a seeded thermo-electrochemical method in an acidic growth solution. The selective growth mechanism of the thermo-electrochemical method was proposed by using a series of chemical reactions for the first time. The thermo-electrochemical selective ZnO growth was performed on the cathode electrode at a temperature below 90 °C. A ZnO seed layer was precoated and selectively etched away from the non-metal regions in order to create the patterned selective nucleation sites on which the precursors are transferred and crystallized into ZnO nanorods. Both the dimensions and the placements of the ZnO nanorods have been simultaneously controlled. Energy dispersive X-ray spectrometry showed that the selectively grown ZnO nanorods consist of only Zn and O, indicating that the selectively grown ZnO nanorods are pure and contamination free. XRD and electron diffraction patterns revealed that the obtained ZnO nanorods have a wurtzite single-crystal structure.

  13. Noble Gases

    NASA Astrophysics Data System (ADS)

    Podosek, F. A.

    2003-12-01

    The noble gases are the group of elements - helium, neon, argon, krypton, xenon - in the rightmost column of the periodic table of the elements, those which have "filled" outermost shells of electrons (two for helium, eight for the others). This configuration of electrons results in a neutral atom that has relatively low electron affinity and relatively high ionization energy. In consequence, in most natural circumstances these elements do not form chemical compounds, whence they are called "noble." Similarly, much more so than other elements in most circumstances, they partition strongly into a gas phase (as monatomic gas), so that they are called the "noble gases" (also, "inert gases"). (It should be noted, of course, that there is a sixth noble gas, radon, but all isotopes of radon are radioactive, with maximum half-life a few days, so that radon occurs in nature only because of recent production in the U-Th decay chains. The factors that govern the distribution of radon isotopes are thus quite different from those for the five gases cited. There are interesting stories about radon, but they are very different from those about the first five noble gases, and are thus outside the scope of this chapter.)In the nuclear fires in which the elements are forged, the creation and destruction of a given nuclear species depends on its nuclear properties, not on whether it will have a filled outermost shell when things cool off and nuclei begin to gather electrons. The numerology of nuclear physics is different from that of chemistry, so that in the cosmos at large there is nothing systematically special about the abundances of the noble gases as compared to other elements. We live in a very nonrepresentative part of the cosmos, however. As is discussed elsewhere in this volume, the outstanding generalization about the geo-/cosmochemistry of the terrestrial planets is that at some point thermodynamic conditions dictated phase separation of solids from gases, and that the

  14. Intriguing structures and magic sizes of heavy noble metal nanoclusters around size 55 governed by relativistic effect and covalent bonding

    SciTech Connect

    Zhao, X. J.; Xue, X. L.; Jia, Yu; Guo, Z. X.; Li, S. F.; Zhang, Zhenyu; Gao, Y. F.

    2015-11-07

    Nanoclusters usually display exotic physical and chemical properties due to their intriguing geometric structures in contrast to their bulk counterparts. By means of first-principles calculations within density functional theory, we find that heavy noble metal Pt{sub N} nanoclusters around the size N = 55 begin to prefer an open configuration, rather than previously reported close-packed icosahedron or core-shell structures. Particularly, for Pt{sub N}, the widely supposed icosahedronal magic cluster is changed to a three-atomic-layered structure with D{sub 6h} symmetry, which can be well addressed by our recently established generalized Wulff construction principle (GWCP). However, the magic number of Pt{sub N} clusters around 55 is shifted to a new odd number of 57. The high symmetric three-layered Pt{sub 57} motif is mainly stabilized by the enhanced covalent bonding contributed by both spin-orbital coupling effect and the open d orbital (5d{sup 9}6s{sup 1}) of Pt, which result in a delicate balance between the enhanced Pt–Pt covalent bonding of the interlayers and negligible d dangling bonds on the cluster edges. These findings about Pt{sub N} clusters are also applicable to Ir{sub N} clusters, but qualitatively different from their earlier neighboring element Os and their later neighboring element Au. The magic numbers for Os and Au are even, being 56 and 58, respectively. The findings of the new odd magic number 57 are the important supplementary of the recently established GWCP.

  15. Gas-phase generation of noble metal-tipped NiO nanorods by rapid thermal oxidation

    NASA Astrophysics Data System (ADS)

    Koga, Kenji; Hirasawa, Makoto

    2014-12-01

    The thermal oxidation of alloy nanoparticles (NPs) composed of nickel and a noble metal was investigated by high-resolution electron microscopic observations of the NPs oxidized in a gas phase under different oxidation conditions. When Ni0.8Au0.2 NPs were heated with oxygen from room temperature, oxidation progressed to form Au-NiO core-shell structures, however, the Au core spilled out by breaking the NiO shell at high temperatures. In contrast, when the alloy NPs were subjected to rapid thermal oxidation, which was enabled by heating the NPs at high temperatures (≥500 °C) and then abruptly exposed to oxygen, oxidation advanced anisotropically such that a NiO island protruded and built up to form a NiO nanorod. This resulted in the formation of Au-tipped NiO nanorods in which a hemispherical Au tip bonded to a NiO nanorod via a Au {111}/NiO{100} interface. We found that the relative sizes of Au and NiO in Au-tipped NiO nanorods were easily and widely controlled by changing the Au mole fraction (0.05-0.8) of the alloy NPs. Similarly, rapid thermal oxidation of Ni-Pt NPs generated Pt-tipped NiO nanorods in which a spherical Pt tip was half-embedded in a NiO nanorod. The present gas-phase approach has great potential for fabricating functional asymmetric hybrid nanostructures in clean conditions.

  16. Intriguing structures and magic sizes of heavy noble metal nanoclusters around size 55 governed by relativistic effect and covalent bonding

    SciTech Connect

    Zhao, X. J.; Xue, X. L.; Guo, Z. X.; Jia, Yu; Li, S. F.; Zhang, Zhenyu; Gao, Y. F.

    2015-11-02

    Nanoclusters usually display exotic physical and chemical properties due to their intriguing geometric structures in contrast to their bulk counterparts. By means of first-principles calculations within density functional theory, we find that heavy noble metal PtN nanoclusters around the size N = 55 begin to prefer an open configuration, rather than previously reported close-packed icosahedron or core-shell structures. Particularly, for PtN, the widely supposed icosahedronal magic cluster is changed to a three-atomic-layered structure with D6h symmetry, which can be well addressed by our recently established generalized Wulff construction principle (GWCP). But, the magic number of PtN clusters around 55 is shifted to a new odd number of 57. The high symmetric three-layered Pt-57 motif is mainly stabilized by the enhanced covalent bonding contributed by both spin-orbital coupling effect and the open d orbital (5d96s1) of Pt, which result in a delicate balance between the enhanced Pt-Pt covalent bonding of the interlayers and negligible d dangling bonds on the cluster edges. Our findings about PtN clusters are also applicable to IrN clusters, but qualitatively different from their earlier neighboring element Os and their later neighboring element Au. The magic numbers for Os and Au are even, being 56 and 58, respectively. Finally, the findings of the new odd magic number 57 are the important supplementary of the recently established GWCP.

  17. Intriguing structures and magic sizes of heavy noble metal nanoclusters around size 55 governed by relativistic effect and covalent bonding

    DOE PAGESBeta

    Zhao, X. J.; Xue, X. L.; Guo, Z. X.; Jia, Yu; Li, S. F.; Zhang, Zhenyu; Gao, Y. F.

    2015-11-02

    Nanoclusters usually display exotic physical and chemical properties due to their intriguing geometric structures in contrast to their bulk counterparts. By means of first-principles calculations within density functional theory, we find that heavy noble metal PtN nanoclusters around the size N = 55 begin to prefer an open configuration, rather than previously reported close-packed icosahedron or core-shell structures. Particularly, for PtN, the widely supposed icosahedronal magic cluster is changed to a three-atomic-layered structure with D6h symmetry, which can be well addressed by our recently established generalized Wulff construction principle (GWCP). But, the magic number of PtN clusters around 55 ismore » shifted to a new odd number of 57. The high symmetric three-layered Pt-57 motif is mainly stabilized by the enhanced covalent bonding contributed by both spin-orbital coupling effect and the open d orbital (5d96s1) of Pt, which result in a delicate balance between the enhanced Pt-Pt covalent bonding of the interlayers and negligible d dangling bonds on the cluster edges. Our findings about PtN clusters are also applicable to IrN clusters, but qualitatively different from their earlier neighboring element Os and their later neighboring element Au. The magic numbers for Os and Au are even, being 56 and 58, respectively. Finally, the findings of the new odd magic number 57 are the important supplementary of the recently established GWCP.« less

  18. Striving toward noble-metal-free photocatalytic water splitting: The hydrogenated-graphene-TiO2 prototype

    SciTech Connect

    Nguyen-Phan, Thuy -Duong; Luo, Si; Liu, Zongyuan; Gamalski, Andrew D.; Tao, Jing; Xu, Wenqian; Stach, Eric A.; Polyansky, Dmitry E.; Senanayake, Sanjaya D.; Fujita, Etsuko; Rodriguez, Jose A.

    2015-08-20

    Graphane, graphone and hydrogenated graphene (HG) have been extensively studied in recent years due to their interesting properties and potential use in commercial and industrial applications. The present study reports investigation of hydrogenated graphene/TiO2-x (HGT) nanocomposites as photocatalysts for H2 and O2 production from water without the assistance of a noble metal co-catalyst. By combination of several techniques, the morphologies, bulk/atomic structure and electronic properties of all the powders were exhaustively interrogated. Hydrogenation treatment efficiently reduces TiO2 nanoparticles, while the graphene oxide sheets undergo the topotactic transformation from a graphene-like structure to a mixture of graphitic and turbostratic carbon (amorphous/disordered) upon altering the calcination atmosphere from a mildly reducing to a H2-abundant environment. Remarkably, the hydrogenated graphene-TiO2-x composite that results upon H2-rich reduction exhibits the highest photocatalytic H2 evolution performance equivalent to low loading of Pt (~0.12 wt%), whereas the addition of HG suppresses the O2 production. As a result, we propose that such an enhancement can be attributed to a combination of factors including the introduction of oxygen vacancies and Ti3+ states, retarding the recombination of charge carriers and thus, facilitating the charge transfer from TiO2-x to the carbonaceous sheet.

  19. EFFECTS OF ALTERNATE ANTIFOAM AGENTS, NOBLE METALS, MIXING SYSTEMS AND MASS TRANSFER ON GAS HOLDUP AND RELEASE FROM NONNEWTONIAN SLURRIES

    SciTech Connect

    Guerrero, H; Mark Fowley, M; Charles Crawford, C; Michael Restivo, M; Robert Leishear, R

    2007-12-24

    Gas holdup tests performed in a small-scale mechanically-agitated mixing system at the Savannah River National Laboratory (SRNL) were reported in 2006. The tests were for a simulant of waste from the Hanford Tank 241-AZ-101 and featured additions of DOW Corning Q2-3183A Antifoam agent. Results indicated that this antifoam agent (AFA) increased gas holdup in the waste simulant by about a factor of four and, counter intuitively, that the holdup increased as the simulant shear strength decreased (apparent viscosity decreased). These results raised questions about how the AFA might affect gas holdup in Hanford Waste Treatment and Immobilization Plant (WTP) vessels mixed by air sparging and pulse-jet mixers (PJMs). And whether the WTP air supply system being designed would have the capacity to handle a demand for increased airflow to operate the sparger-PJM mixing systems should the AFA increase retention of the radiochemically generated flammable gases in the waste by making the gas bubbles smaller and less mobile, or decrease the size of sparger bubbles making them mix less effectively for a given airflow rate. A new testing program was developed to assess the potential effects of adding the DOW Corning Q2-3183A AFA to WTP waste streams by first confirming the results of the work reported in 2006 by Stewart et al. and then determining if the AFA in fact causes such increased gas holdup in a prototypic sparger-PJM mixing system, or if the increased holdup is just a feature of the small-scale agitation system. Other elements of the new program include evaluating effects other variables could have on gas holdup in systems with AFA additions such as catalysis from trace noble metals in the waste, determining mass transfer coefficients for the AZ-101 waste simulant, and determining whether other AFA compositions such as Dow Corning 1520-US could also increase gas holdup in Hanford waste. This new testing program was split into two investigations, prototypic sparger

  20. Formation, Characteristics and Electrocatalytic Properties of Nanoporous Metals Formed by Dealloying of Ternary-Noble Alloys

    NASA Astrophysics Data System (ADS)

    Vega Zuniga, Adrian A.

    Nanoporous metals formed by electrochemical dealloying of silver from Ag-Au-Pt alloys, with 77 at.% silver and platinum contents of 1, 2 and 3 at.%, have been studied. The presence of platinum, which is immobile relative to gold, refine the ligament size and stabilized the nanostructure against coarsening, even under experimental conditions that would be expected to promote coarsening (e.g., exposure to high temperature, longer dealloying times). By adding only 1 at.% Pt to the alloy precursor, the ligament/pore size was reduced by 50% with respect to that in nanoporous gold (NPG), which was formed on a Ag-Au alloy with the same silver content as ternary alloys. A further decrease in the ligament size was observed by increasing the platinum content of the precursor; however, most of the improvement occurred with 1 at.% Pt. The adsorbate-induced surface segregation of platinum was also investigated for these nanoporous metals. By exposing freshly-dealloyed nanostructures to moderate temperatures in the presence of air, platinum segregated to the ligament surface; in contrast, in an inert atmosphere (Ar-H 2), platinum mostly reverted to the bulk of the ligaments. This thermally activated process was thermodynamically driven by the interaction between platinum and oxygen; however, at the desorption temperature of oxygen, platinum de-segregated from the surface. Moreover, the co-segregation of platinum and oxygen hindered the thermal coarsening of the ligaments. Finally, the electrocatalytic abilities of these nanostructures were studied towards methanol and ethanol electro-oxidation, in alkaline and acidic media, showing significantly improved response in comparison to that observed in NPG. The synergistic effect between gold and platinum atoms and the smaller feature size of the nanostructures were directly associated with this behaviour. In alkaline electrolyte, the nanostructure formed on the alloy with 1 at.% Pt showed higher catalytic response than the other two

  1. Analysis of the Noble Metals on Silicon Wafers by Chemical Collection and ICPMS

    NASA Astrophysics Data System (ADS)

    Fontaine, H.; Hureau, D.; Groz, M.; Despois, D.; Louis, C.

    2011-11-01

    The measurement of Ag, Pt and Au on wafer surfaces was addressed by a liquid phase chemical collection coupled to ICPMS analysis. Three chemistries were evaluated from intentionally contaminated wafers in the E12 to E15 at/cm2 concentration range. Different modes of voluntary wafer contamination allowed us to consider both the chemical form of the contaminant (i.e. ionic and metal forms) and its localization (i.e. on the surface and included in the oxide layer). Diluted HNO3 was used for Ag collection on the wafer surface allowing a collection efficiency (CE) higher than 90%. Regarding Pt and Au, diluted aqua regia and diluted HF/aqua regia were used. The first solution leads to a good collection of Au and Pt on the wafer surface (CE >90%) and is inefficient for contamination included in the oxide layer while the second one addresses the two cases with collection rates higher than 94%. Finally, detection limits of few E10 at/cm2 were determined showing the relevance of the technique implemented.

  2. The energy barrier at noble metal/TiO{sub 2} junctions

    SciTech Connect

    Hossein-Babaei, F. E-mail: fhbabaei@yahoo.com; Lajvardi, Mehdi M. Alaei-Sheini, Navid

    2015-02-23

    Nobel metal/TiO{sub 2} structures are used as catalysts in chemical reactors, active components in TiO{sub 2}-based electronic devices, and connections between such devices and the outside circuitry. Here, we investigate the energy barrier at the junctions between vacuum-deposited Ag, Au, and Pt thin films and TiO{sub 2} layers by recording their electrical current vs. voltage diagrams and spectra of optical responses. Deposited Au/, Pt/, and Ag/TiO{sub 2} behave like contacts with zero junction energy barriers, but the thermal annealing of the reverse-biased devices for an hour at 523 K in air converts them to Schottky diodes with high junction energy barriers, decreasing their reverse electric currents up to 10{sup 6} times. Similar thermal processing in vacuum or pure argon proved ineffective. The highest energy barrier and the lowest reverse current among the devices examined belong to the annealed Ag/TiO{sub 2} contacts. The observed electronic features are described based on the physicochemical parameters of the constituting materials. The formation of higher junction barriers with rutile than with anatase is demonstrated.

  3. Vacancy formation enthalpy of filled d-band noble metals by hybrid functionals

    NASA Astrophysics Data System (ADS)

    Xing, Weiwei; Liu, Peitao; Cheng, Xiyue; Niu, Haiyang; Ma, Hui; Li, Dianzhong; Li, Yiyi; Chen, Xing-Qiu

    2014-10-01

    First-principles determination of the vacancy formation enthalpies has been long-term believed to be highly successful for metals. However, a widely known fact is that the various conventional density functional theory (DFT) calculations with the typical semilocal approximations show apparent failures to yield accurate enthalpies of Ag and Au. Recently, the previously commonly assumed linear Arrhenius extrapolation to determine the vacancy formation enthalpies at T =0 K from the high-temperature measured concentration of thermally created vacancies has been demonstrated to have to be replaced by the non-Arrhenius local Grüneisen theory (LGT) [A. Glensk, B. Grabowski, T. Hickel, and J. Neugebauer, Phys. Rev. X 4, 011018 (2014), 10.1103/PhysRevX.4.011018]. The large discrepancies between the conventional DFT-PBE data and the unrevised experimental vacancy formation enthalpies disappear for Cu and Al. Even by following the same LGT revisions for Ag, the large discrepancies still remain substantial at T =0 K. Here, we show that the hybrid functional (HSE), by including nonlocal exchange interactions to extend the conventional DFT method, can further correct these substantial failures. Upon a comparison of the experimental valence-band spectra for Cu, Ag, and Au, we have determined the HSE exchange-correlated mixing parameters α of 0.1, 0.25, and 0.4, and further derived the HSE enthalpies of vacancy formation of 1.09, 0.94, and 0.72 eV, respectively; in nice agreement with available LGT-revised experimental data. Our HSE results shed light on how to improve the theoretical predictions to accurately determine the defect formation energies and related thermodynamical properties.

  4. Thermal metamorphism of mantle chromites and the stability of noble-metal nanoparticles

    NASA Astrophysics Data System (ADS)

    González-Jiménez, José M.; Reich, Martin; Camprubí, Antoni; Gervilla, Fernando; Griffin, William L.; Colás, Vanessa; O'Reilly, Suzanne Y.; Proenza, Joaquín A.; Pearson, Norman J.; Centeno-García, Elena

    2015-08-01

    The Loma Baya complex in south-western Mexico is a volume of chromitite-bearing oceanic mantle that records a complex metamorphic history, defined by a first stage of hydrous metamorphism overprinted by a short-lived thermal event associated with an Eocene granite intrusion. During the hydrous metamorphism, the primary magmatic chromite-olivine assemblage was replaced by a secondary, porous intergrowth of Fe2+-rich chromite and chlorite. The heat supplied by an Eocene-age granite intrusion reversed the hydration reaction, producing chromite rims with perfectly developed crystal faces. This third-generation chromite is in equilibrium with highly magnesian (neoformed) olivine and defines a chemical trend analogous to the original magmatic one. The preservation of both reactions in the Loma Baya chromitite provides compelling evidence that the hydration of chromite can be reversed by either prograde metamorphism or any heating event, confirming previous thermodynamic predictions. Understanding these complex features is of particular interest due to the fact that changes in temperature and variable degrees of fluid/rock interaction during metamorphism and intrusion have also significantly affected the chromite-hosted IPGE carrier phases. Here, we propose that the metamorphic fluids involved in the hydrous metamorphism have caused the desulphurization of laurite RuS2, releasing minute particles of Ru-Os-Ir alloys <50 nm in diameter. The following short-lived thermal event that promoted dehydration in the chromitite had the opposite effect on nanoparticle stability, producing a significant coarsening of metal nanoparticles to dimensions larger than a micron. Based on such observations, we argue that IPGE nanoparticles can be exsolved and grown (or coarsen) from sulphide matrices during prograde metamorphism or heating and not exclusively upon cooling under magmatic conditions as it has been previously suggested. These results provide new insights on the relevant role of

  5. Quantum mechanical origin of the plasmonic properties of noble metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Guidez, Emilie Brigitte

    Small silver and gold clusters (less than 2 nm) display a discrete absorption spectrum characteristic of molecular systems whereas larger particles display a strong, broad absorption band in the visible. The latter feature is due to the surface plasmon resonance, which is commonly explained by the collective dipolar motion of free electrons across the particle, creating charged surface states. The evolution between molecular properties and plasmon is investigated. Time-dependent density functional theory (TDDFT) calculations are performed to study the absorption spectrum of cluster-size silver and gold nanorods. The absorption spectrum of these silver nanorods exhibits high-intensity longitudinal and transverse modes (along the long and short axis of the nanorod respectively), similar to the plasmons observed experimentally for larger nanoparticles. These plasmon modes result from a constructive addition of the dipole moments of nearly degenerate single-particle excitations. The number of single-particle transitions involved increases with increasing system size, due to the growing density of states available. Gold nanorods exhibit a broader absorption spectrum than their silver counterpart due to enhanced relativistic effects, affecting the onset of the longitudinal plasmon mode. The high-energy, high-intensity beta-peak of acenes also results from a constructive addition of single-particle transitions and I show that it can be assigned to a plasmon. I also show that the plasmon modes of both acenes and metallic nanoparticles can be described with a simple configuration interaction (CI) interpretation. The evolution between molecular absorption spectrum and plasmon is also investigated by computing the density of states of spherical thiolate-protected gold clusters using a charge-perturbed particle-in-a-sphere model. The electronic structure obtained with this model gives good qualitative agreement with DFT calculations at a fraction of the cost. The progressive

  6. Dose-dependent surface endothelialization and biocompatibility of polyurethane noble metal nanocomposites.

    PubMed

    Hess, Christian; Schwenke, Andreas; Wagener, Philipp; Franzka, Steffen; Laszlo Sajti, Csaba; Pflaum, Michael; Wiegmann, Bettina; Haverich, Axel; Barcikowski, Stephan

    2014-06-01

    Surface pre-endothelialization is a promising approach to improve the hemocompatibility of implants, medical devices, and artificial organs. To promote the adhesive property of thermoplastic polyurethane (TPU) for endothelial cells (ECs), up to 1 wt % of gold (Au) or platinum (Pt) nanoparticles, fabricated by pulsed laser ablation in polymer solution, were embedded into the polymer matrix. The analysis of these nanocomposites showed a homogenous dispersion of the nanoparticles, with average diameters of 7 nm for Au or 9 nm for Pt. A dose-dependent effect was found when ECs were seeded onto nanocomposites comprising different nanoparticle concentrations, resulting in a fivefold improvement of proliferation at 0.1 wt % nanoparticle load. This effect was associated with a nanoparticle concentration-dependent hydrophilicity and negative charge of the nanocomposite. In dynamic flow tests, nanocomposites containing 0.1 wt % Au or Pt nanoparticles allowed for the generation of a confluent and resistant EC layer. Real-time polymerase chain reaction quantification of specific markers for EC activation indicated that ECs cultivated on nanocomposites remain in an inactivated, nonthrombogenic and noninflammatory state; however, maintain the ability to trigger an inflammatory response upon stimulation. These findings were confirmed by a platelet and leukocyte adhesion assay. The results of this study suggest the possible applicability of TPU nanocomposites, containing 0.1 wt % Au or Pt nanoparticles, for the generation of pre-endothelialized surfaces of medical devices. PMID:23852964

  7. Electrochemical detection of arsenic(III) completely free from noble metal: Fe3O4 microspheres-room temperature ionic liquid composite showing better performance than gold.

    PubMed

    Gao, Chao; Yu, Xin-Yao; Xiong, Shi-Quan; Liu, Jin-Huai; Huang, Xing-Jiu

    2013-03-01

    In recent decades, electrochemical detection of arsenic(III) has been undergoing revolutionary developments with higher sensitivity and lower detection limit. Despite great success, electrochemical detection of As(III) still depends heavily on noble metals (predominantly Au) in a strong acid condition, thus increasing the cost and hampering the widespread application. Here, we report a disposable platform completely free from noble metals for electrochemical detection of As(III) in drinking water under nearly neutral condition by square wave anodic stripping voltammetry. By combining the high adsorptivity of Fe3O4 microspheres toward As(III) and the advantages of room temperature ionic liquid (RTIL), the Fe3O4-RTIL composite modified screen-printed carbon electrode (SPCE) showed even better electrochemical performance than commonly used noble metals. Several ionic liquids with different viscosities and surface tensions were found to have a different effect on the voltammetric behavior toward As(III). Under the optimized conditions, the Fe3O4-RTIL composites offered direct detection of As(III) within the desirable range (10 ppb) in drinking water as specified by the World Health Organization (WHO), with a detection limit (3σ method) of 8 × 10(-4) ppb. The obtained sensitivity was 4.91 μA ppb(-1), which is the highest as far as we know. In addition, a possible mechanism for As(III) preconcentration based on adsorption has been proposed and supported by designed experiments. Finally, this platform was successfully applied to analyzing a real sample collected from Inner Mongolia, China. PMID:23374085

  8. In Situ Studies of Surface Mobility on Noble Metal Model Catalysts Using STM and XPS at Ambient Pressure

    SciTech Connect

    Butcher, Derek Robert

    2010-06-01

    High Pressure Scanning Tunneling Microscopy (HP-STM) and Ambient Pressure X-ray Photoelectron Spectroscopy were used to study the structural properties and catalytic behavior of noble metal surfaces at high pressure. HP-STM was used to study the structural rearrangement of the top most atomic surface layer of the metal surfaces in response to changes in gas pressure and reactive conditions. AP-XPS was applied to single crystal and nanoparticle systems to monitor changes in the chemical composition of the surface layer in response to changing gas conditions. STM studies on the Pt(100) crystal face showed the lifting of the Pt(100)-hex surface reconstruction in the presence of CO, H2, and Benzene. The gas adsorption and subsequent charge transfer relieves the surface strain caused by the low coordination number of the (100) surface atoms allowing the formation of a (1 x 1) surface structure commensurate with the bulk terminated crystal structure. The surface phase change causes a transformation of the surface layer from hexagonal packing geometry to a four-fold symmetric surface which is rich in atomic defects. Lifting the hex reconstruction at room temperature resulted in a surface structure decorated with 2-3 nm Pt adatom islands with a high density of step edge sites. Annealing the surface at a modest temperature (150 C) in the presence of a high pressure of CO or H2 increased the surface diffusion of the Pt atoms causing the adatom islands to aggregate reducing the surface concentration of low coordination defect sites. Ethylene hydrogenation was studied on the Pt(100) surface using HP-STM. At low pressure, the lifting of the hex reconstruction was observed in the STM images. Increasing the ethylene pressure to 1 Torr, was found to regenerate the hexagonally symmetric reconstructed phase. At room temperature ethylene undergoes a structural rearrangement to form ethylidyne. Ethylidyne preferentially binds at the three-fold hollow sites, which

  9. Effect of promoter and noble metals and suspension pH on catalytic nitrate reduction by bimetallic nanoscale Fe(0) catalysts.

    PubMed

    Bae, Sungjun; Hamid, Shanawar; Jung, Junyoung; Sihn, Youngho; Lee, Woojin

    2016-05-01

    Experiments were conducted to investigate the effect of experimental factors (types of promotor and noble metals, H2 injection, and suspension pH) on catalytic nitrate reduction by bimetallic catalysts supported by nanoscale zero-valent iron (NZVI). NZVI without H2 injection showed 71% of nitrate reduction in 1 h. Cu/NZVI showed the almost complete nitrate reduction (96%) in 1 h, while 67% of nitrate was reduced by Ni/NZVI. The presence of noble metals (Pd and Pt) on Cu/NZVI without H2 injection resulted in the decrease of removal efficiency to 89% and 84%, respectively, due probably to the electron loss of NZVI for formation of metallic Pd and Pt. H2 injection into Cu-Pd/NZVI suspension significantly improved both catalytic nitrate reduction (>97% in 30 min) and N2 selectivity (18%), indicating that adsorbed H on active Pd sites played an important role for the enhanced nitrate reduction and N2 selectivity. The rapid passivation of NZVI surface resulted in a dramatic decrease in nitrate reduction (79-28%) with an increase in N2 selectivity (8-66%) as the suspension pH increased from 8 to 10. PMID:26512419

  10. Metallization problems with concentrator cells

    NASA Technical Reports Server (NTRS)

    Iles, P. A.

    1983-01-01

    Cells used with concentrators have similar contact requirements to other cells, but operation at high intensity imposes more than the usual demands on the metallization. Overall contact requirements are listed and concentrator cell requirements are discussed.

  11. Dental devices; dental noble metal alloys and dental base metal alloys; designation of special controls. Final rule.

    PubMed

    2004-08-23

    The Food and Drug Administration is amending the identification and classification regulations of gold-based alloys and precious metal alloys for clinical use and base alloys devices in order to designate a special control for these devices. FDA is also exempting these devices from premarket notification requirements. The agency is taking this action on its own initiative. This action is being taken under the Federal Food, Drug, and Cosmetic Act (the act), as amended by the Safe Medical Devices Act of 1990 (SMDA), and the Food and Drug Administration Modernization Act of 1997 (FDAMA). Elsewhere in this issue of the Federal Register, FDA is announcing the availability of the draft guidance documents that would serve as special controls for these devices. PMID:15329980

  12. PARAMETRIC EFFECTS OF ANTI-FOAM COMPOSITION, SIMULANT PROPERTIES AND NOBLE METALS ON THE GAS HOLDUP AND RELEASE OF A NON-NEWTONIAN WASTE SLURRY SIMULANT

    SciTech Connect

    Guerrero, H; Charles Crawford, C; Mark Fowley, M

    2008-08-07

    Gas holdup tests were performed in bench-scale and small-scale mechanically-agitated mixing systems at the Savannah River National Laboratory (SRNL) for a simulant of waste from the Hanford Tank 241-AZ-101. These featured additions of DOW Corning Q2-3183A anti-foam agent. Results indicated that this anti-foam agent (AFA) increased gas holdup in the waste simulant by about a factor of four and, counter-intuitively, that the holdup increased as the non-newtonian simulant shear strength decreased (apparent viscosity decreased). Such results raised the potential of increased flammable gas retention in Hanford Waste Treatment and Immobilization Plant (WTP) vessels mixed by air sparging and pulse-jet mixers (PJMs) during a Design Basis Event (DBE). Additional testing was performed to determine the effects of simulant properties, composition of alternate AFAs, and presence of trace noble metals. Key results are that: (1) Increased gas holdup resulting from addition of Q2-3183A is due to a decrease in surface tension that supports small bubbles which have low rise velocities. (2) Dow Corning 1520-US AFA shows it to be a viable replacement to Dow Corning Q2-3183A AFA. This alternative AFA, however, requires significantly higher dosage for the same anti-foam function. (3) Addition of noble metals to the AZ-101 waste simulant does not produce a catalytic gas retention effect with the AFA.

  13. Mono- and bimetallic Rh and Pt NSR-catalysts prepared by controlled deposition of noble metals on support or storage component

    PubMed Central

    Büchel, Robert; Pratsinis, Sotiris E.; Baiker, Alfons

    2013-01-01

    Mono- and bimetallic Rh and Pt based NOx storage-reduction (NSR) catalysts, where the noble metals were deposited on the Al2O3 support or BaCO3 storage component, have been prepared using a twin flame spray pyrolysis setup. The catalysts were characterized by nitrogen adsorption, CO chemisorption combined with diffuse reflectance infrared Fourier transform spectroscopy, X-ray diffraction, and scanning transmission electron microscopy combined with energy dispersive X-ray spectroscopy. The NSR performance of the catalysts was investigated by fuel lean/rich cycling in the absence and presence of SO2 (25 ppm) as well as after H2 desulfation at 750 °C. The performance increased when Rh was located on BaCO3 enabling good catalyst regeneration during the fuel rich phase. Best performance was observed for bimetallic catalysts where the noble metals were separated, with Pt on Al2O3 and Rh on BaCO3. The Rh-containing catalysts generally showed much higher tolerance to SO2 during fuel rich conditions and lost only little activity during thermal aging at 750 °C. PMID:23741085

  14. A facile and general preparation of high-performance noble-metal-based free-standing nanomembranes by a reagentless interfacial self-assembly strategy

    NASA Astrophysics Data System (ADS)

    Wu, Haoxi; He, Haili; Zhai, Yujuan; Li, Haijuan; Lai, Jianping; Jin, Yongdong

    2012-10-01

    As a simple and flexible 2D platform, the water-air interface is envisioned as an environmentally-friendly approach to prepare ultrathin free-standing nanomembranes (FNMs) of monolayered nanoparticles of interest via interfacial self-assembly. However, attempts so far have been rather rare due to the lack of efficient methods. In this article, we report on a facile and general strategy for fabrication of a family of noble metal-based FNMs by a simple and reagentless interfacial self-assembly tactics to prepare functional (plasmonic or catalytic) FNMs, such as Au, Ag, Pd, Pt-FNMs and their bimetallic hybrids, Ag/Au-FNMs and Pd/Pt-FNMs. The organic solvent-free process, varying somewhat from metal to metal only in precursors, reducing agents and dosage of reagents used, is found to be a general phenomenon and ligand-independent (irrespective of the monolayer quality of the resulting FNMs), allowing the growth of high-quality noble metal-based FNMs with well-defined nanoparticulate and monolayer morphology as large as several square centimeters. Heat treatment (boiling) is performed to accelerate the formation of FNMs within 15 min. More significantly, the as-prepared plasmonic Au-FNMs acting as a SERS substrate show a superior activity; whereas the resulting catalytic Pd-FNMs, except for their excellent ethanol electrooxidation performance, exhibit higher electrocatalytic activity for formic acid oxidation than commercial catalysts.As a simple and flexible 2D platform, the water-air interface is envisioned as an environmentally-friendly approach to prepare ultrathin free-standing nanomembranes (FNMs) of monolayered nanoparticles of interest via interfacial self-assembly. However, attempts so far have been rather rare due to the lack of efficient methods. In this article, we report on a facile and general strategy for fabrication of a family of noble metal-based FNMs by a simple and reagentless interfacial self-assembly tactics to prepare functional (plasmonic or

  15. Demonstration of neutron detection utilizing open cell foam and noble gas scintillation

    SciTech Connect

    Lavelle, C. M. Miller, E. C.; Coplan, M.; Thompson, Alan K.; Vest, Robert E.; Yue, A. T.; Kowler, A. L.; Koeth, T.; Al-Sheikhly, M.; Clark, Charles W.

    2015-03-02

    We present results demonstrating neutron detection via a closely spaced converter structure coupled to low pressure noble gas scintillation instrumented by a single photo-multiplier tube (PMT). The converter is dispersed throughout the gas volume using a reticulated vitreous carbon foam coated with boron carbide (B{sub 4}C). A calibrated cold neutron beam is used to measure the neutron detection properties, using a thin film of enriched {sup 10}B as a reference standard. Monte Carlo computations of the ion energy deposition are discussed, including treatment of the foam random network. Results from this study indicate that the foam shadows a significant portion of the scintillation light from the PMT. The high scintillation yield of Xe appears to overcome the light loss, facilitating neutron detection and presenting interesting opportunities for neutron detector design.

  16. Noble Gases in the Earth's Core?

    NASA Astrophysics Data System (ADS)

    Jephcoat, A. P.; Bouhifd, M. A.; Heber, V.; Kelley, S. P.

    2004-12-01

    Chemical inertness, surface volatility and low abundance have made the noble gases a unique trace elemental and isotopic system for constraining the formation and evolution of the solid Earth and its atmosphere. This geochemical role parallels extensive physical-property measurements on the condensed rare gases alone at the pressures equivalent to those of the Earth's deep mantle and core from diamond-anvil cell (DAC) experiments. Traditional geochemical approaches to the processes of planetary evolution have involved crystal-melt partitioning at low pressures relevant more to near-surface degassing. The degree of compatibility has fluctuated among different studies and largely rests with the conclusion that, for common upper mantle phases, the noble gases are highly incompatible. But the long-known high 3He/4He ratios for some ocean-island basalts and more recent observations for some of the rare gases (Ne, Ar and possibly Xe) that there is a solar component emanating from the Earth, continue to raise questions on the source reservoir as well as on accretionary and incorporation processes. Changes in models of mantle convection style have made it harder to rely on the deep mantle as a reservoir, and the core has remained a particularly unfavourable location either because of difficulty in constructing a retention mechanism during planetary accretion or simply because of lack of data: Partitioning studies at pressure are rare and complicated by the difficulty in reproducing not only absolute concentrations, but confinement of gas in high-pressure apparatus and post-run analysis. We have investigated noble gas solubility in silicate liquids at high pressures in a DAC (relevant to a magma-ocean model of the early Earth) that suggests that the detailed composition and structure of silicate liquids may act as an important control on the level of incompatibility. The long-held idea of partial melting as a single-stage, efficient process for extracting noble gases from

  17. Noble-metal-free carbon nanotube-Cd0.1Zn0.9S composites for high visible-light photocatalytic H2-production performance.

    PubMed

    Yu, Jiaguo; Yang, Bin; Cheng, Bei

    2012-04-21

    Visible light photocatalytic H(2) production from water splitting using solar light is of great importance from the viewpoint of solar energy conversion and storage. In this study, a novel visible-light-driven photocatalyst multiwalled carbon nanotube modified Cd(0.1)Zn(0.9)S solid solution (CNT/Cd(0.1)Zn(0.9)S) was prepared by a simple hydrothermal method. The prepared samples exhibited enhanced photocatalytic H(2)-production activity under visible light. CNT content had a great influence on photocatalytic activity and an optimum amount of CNT was determined to be ca. 0.25 wt%, at which the CNT/Cd(0.1)Zn(0.9)S displayed the highest photocatalytic activity under visible light, giving an H(2)-production rate of 78.2 μmol h(-1) with an apparent quantum efficiency (QE) of 7.9% at 420 nm, even without any noble metal cocatalysts, exceeding that of pure Cd(0.1)Zn(0.9)S by more than 3.3 times. The enhanced photocatalytic activity was due to CNT as an excellent electron acceptor and transporter, thus reducing the recombination of charge carriers and enhancing the photocatalytic activity. Furthermore, the prepared sample was photostable and no photocorrosion was observed after photocatalytic recycling. Our findings demonstrated that CNT/Cd(0.1)Zn(0.9)S composites were a promising candidate for the development of high-performance photocatalysts in photocatalytic H(2) production. This work not only shows a possibility for the utilization of low cost CNT as a substitute for noble metals (such as Pt) in the photocatalytic H(2)-production but also for the first time shows a significant enhancement in the H(2)-production activity by using metal-free carbon materials as effective co-catalysts. PMID:22422167

  18. Synthesis, characterization and photocatalytic activity of noble metal-modified TiO2 nanosheets with exposed {0 0 1} facets

    NASA Astrophysics Data System (ADS)

    Diak, Magdalena; Grabowska, Ewelina; Zaleska, Adriana

    2015-08-01

    Pt, Pd, Ag and Au nanoparticles were photodeposited on the {0 0 1} crystal facets of the TiO2 anatase nanosheets. Morphological and surface characterization of the samples as well as photocatalytic activity were studied. The influence of metal precursor concentration used during photodeposition (0.05-0.5%) on size of formed metal nanoparticles together with UV and vis-mediated activity of Pt, Pd, Ag or Au-TiO2 was investigated. Generally, samples obtained by photodeposition of noble metal nanoparticles using their 0.2% precursor solutions revealed highest activity in phenol degradation reaction under visible light (λ > 420 nm). The photoactivity of the as-prepared samples with respect to the modified metal species was ordered Ag≅Pd > Au > Pt. TEM analysis showed that photodeposited metal nanoparticles appeared only on {0 0 1} facets of TiO2. The average degradation rate of phenol in the presence of Pd and Ag-TiO2 was 0.5 μmol dm-3 min-1 after 60 min of irradiation under visible light, and was five times higher than that of pure TiO2 nanosheets.

  19. Coated metal fiber coalescing cell

    SciTech Connect

    Rutz, W.D.; Swain, R.J.

    1980-12-23

    A cell is described for coalescing oil droplets dispersed in a water emulsion including an elongated perforated tube core into which the emulsion is injected, layers of oleophilic plastic covered metal mat wound about the core through which the emulsion is forced to pass, the fibers of the metal mat being covered by oleophilic plastic such as vinyl, acrylic, polypropylene, polyethylene, polyvinyl chloride, the metal being in the form of layers of expanded metal or metal fibers, either aluminum or stainless steel. In manufacturing the cell a helix wound wire is formed around the cylindrical plastic coated metal to retain it in place and resist pressure drop of fluid flowing through the metal fibers. In addition, the preferred arrangement includes the use of an outer sleeve formed of a mat of fibrous material such as polyester fibers, acrylic fibers, modacrylic fibers and mixtures thereof.

  20. Photochemical synthesis of noble metal (Ag, Pd, Au, Pt) on graphene/ZnO multihybrid nanoarchitectures as electrocatalysis for H2O2 reduction.

    PubMed

    Gu, Hui; Yang, Yan; Tian, Jixiang; Shi, Guoyue

    2013-07-24

    For the first time, a series of noble metal (Ag, Au, Pd, and Pt) nanoparticles (NPs) based on new functional graphene were successfully achieved via UV-assisted photocatalytic reduction by ZnO nanorods. The whole preparation strategy for constructing noble metal deposited graphene sheets/ZnO (GS/ZnO) was elucidated in detail in this work. First, graphene oxide based two-dimensional carbon nanostructures served as a support to disperse ZnO nanorods through a hydrothermal route. The ZnO nanorods were self-assembled onto the surface of graphene sheets, forming GS/ZnO nanocomposite, and the graphene oxide was reduced, yielding reduced graphene sheets in this synthetic procedure. Second, the GS/ZnO films were further employed as supporting materials for the dispersion of metal nanoparticles. Photogenerated electrons from UV-irradiated ZnO were transported across GS to stepwise and respectively reduce v μL metal ions (Ag(+), Pd(2+), AuCl4(-), PtCl6(2-), 20 mg/mL) into metal (Ag, Pd, Au, Pt) NPs at a location distinct from the ZnO anchored site, forming five graphene-based hybrid nanocomposites designated as GS/ZnO, GS/ZnO@Agv, GS/ZnO@Pdv, GS/ZnO@Auv, GS/ZnO@Ptv, respectively. The obtained mutihybrid nanoarchitectured materials were clearly characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). According to the diameters and distribution, the four metal NPs on GS/ZnO were divided into two categories: Ag&Au and Pd&Pt. Their difference was rooted in the rival abilities of gathering electron between graphene and different metal islands in the photochemical reduction process. The electrochemical behaviors of the five resultant hybrid nanocomposites were investigated in H2O2 as well as in potassium ferricyanide (Fe(CN)6(3-/4-)) and displayed distinct electrocatalytic activity. PMID:23790187

  1. Noble gases in meteorites and terrestrial planets

    NASA Technical Reports Server (NTRS)

    Wacker, J. F.

    1985-01-01

    Terrestrial planets and chondrites have noble gas platforms that are sufficiently alike, especially Ne/Ar, that they may have acquired their noble gases by similar processes. Meteorites presumably obtained their noble gases during formation in the solar nebula. Adsorption onto C - the major gas carrier in chondrites - is the likely mechanism for trapping noble gases; recent laboratory simulations support this hypothesis. The story is more complex for planets. An attractive possibility is that the planets acquired their noble gases in a late accreting veneer of chondritic material. In chondrites, noble gases correlate with C, N, H, and volatile metals; by Occam's Razor, we would expect a similar coupling in planets. Indeed, the Earth's crust and mantle contain chondritic like trace volatiles and PL group metals, respectively and the Earth's oceans resemble C chondrites in their enrichment of D (8X vs 8-10X of the galactic D/H ratio). Models have been proposed to explain some of the specific noble gas patterns in planets. These include: (1) noble gases may have been directly trapped by preplanetary material instead of arriving in a veneer; (2) for Venus, irradiation of preplanetary material, followed by diffusive loss of Ne, could explain the high concentration of AR-36; (3) the Earth and Venus may have initially had similar abundances of noble gases, but the Earth lost its share during the Moon forming event; (4) noble gases could have been captured by planetestimals, possibly leading to gravitational fractionation, particularly of Xe isotopes and (5) noble gases may have been dissolved in the hot outer portion of the Earth during contact with a primordial atmosphere.

  2. General synthetic approach to heterostructured nanocrystals based on noble metals and I-VI, II-VI, and I-III-VI metal chalcogenides.

    PubMed

    Liu, Minghui; Zeng, Hua Chun

    2014-08-19

    Solid metal precursors (alloys or monometals) can serve both as a starting template and as a source material for chemical transformation to metal chalcogenides. Herein, we develop a simple solution-based strategy to obtain highly monodisperse noble-metal-based heterostructured nanocrystals from such precursor seeds. By utilizing chemical and structural inhomogeneity of these metal seeds, in this work, we have synthesized a total of five I-VI (Ag2S, Ag2Se, Ag3AuS2, Ag3AuSe2, and Cu9S5), three II-VI (CdS, CdSe, and CuSe), and four I-III-VI (AgInS2, AgInSe2, CuInS2, and CuInSe2) chalcogenides, together with their fifteen associated heterodimers (Au-Ag2S, Au-Ag2Se, Au-Ag3AuS2, Au-Ag3AuSe2, Au-AgInS2, Au-AgInSe2, Au-CdS, Au-CdSe, Ag-Ag2S, Ag-AgInS2, Au-Cu9S5, Au-CuInS2, Au-CuSe, Au-CuInSe2, and Pt-AgInS2) to affirm the process generality. Briefly, by adding elemental sulfur or selenium to AuAg alloy seeds and tuning the reaction conditions, we can readily obtain phase-pure Au-Ag2S, Au-Ag2Se, Au-Ag3AuS2, and Au-Ag3AuSe2 heterostructures. Similarly, we can also fabricate Au-AgInS2 and Au-AgInSe2 heterostructures from the AuAg seeds by adding sulfur/selenium and indium precursors. Furthermore, by partial or full conversion of Ag seeds, we can prepare both single-phase Ag chalcogenide nanocrystals and Ag-based heterostructures. To demonstrate wide applicability of this strategy, we have also synthesized Au-based binary and ternary Cu chalcogenide (Au-Cu9S5, Au-CuSe, Au-CuInS2, and Au-CuInSe2) heterostructures from alloy seeds of AuCu and Pt chalcogenides (e.g., Pt-AgInS2) from alloy seeds of PtAg. The structure and composition of the above products have been confirmed with X-ray diffraction, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and energy-dispersive X-ray spectroscopy methods. A kinetic investigation of the formation mechanism of these heterostructures is brought forward using Au-AgInS2 and Ag-CuInS2 as model examples. PMID

  3. A one-pot protocol for synthesis of non-noble metal-based core-shell nanoparticles under ambient conditions: toward highly active and cost-effective catalysts for hydrolytic dehydrogenation of NH3BH3.

    PubMed

    Jiang, Hai-Long; Akita, Tomoki; Xu, Qiang

    2011-10-21

    A one-pot synthesis of non-noble transition metal-based core-shell nanoparticles (NPs) has been developed under ambient conditions. The obtained Cu@M (M = Co, Fe, Ni) NPs exhibit superior catalytic activity for hydrolytic dehydrogenation of NH(3)BH(3), compared to the alloy and monometallic counterparts. PMID:21909589

  4. Genesis Noble Gas Measurements

    NASA Technical Reports Server (NTRS)

    Hohenberg, Charles M.

    2005-01-01

    The original thrust of our Genesis funding was to extend and refine the noble gas analytical capabilities of this laboratory to improve the precision and accuracy of noble gas measurements in order to optimize the scientific return from the Genesis Mission. This process involved both instrumental improvement (supplemented by a SRLIDAP instrument grant) and refinement of technique. The Genesis landing mishap shifted our emphasis to the irregular aluminum heat shield material from the flat collector wafers. This has required redesign of our laser extraction cells to accommodate the longer focal lengths required for laser extraction from non-flat surfaces. Extraction of noble gases from solid aluminum surfaces, rather than thin coatings on transparent substrates has required refinement of controlled-depth laser ablation techniques. Both of these bring new problems, both with potentially higher blanks form larger laser cells and the larger quantities of evaporated aluminum which can coat the sapphire entrance ports. This is mainly a problem for the heavy noble gases where larger extraction areas are required, necessitating the new aluminum vapor containment techniques described below. With the Genesis Mission came three new multiple multiplier noble gas mass spectrometers to this laboratory, one built solely by us (Supergnome-M), one built in collaboration with Nu-Instruments (Noblesse), and one built in collaboration with GVI (Helix). All of these have multiple multiplier detection sections with the Nu-Instruments using a pair of electrostatic quad lenses for isotope spacing and the other two using mechanically adjustable positions for the electron multipliers. The Supergnome-M and Noblesse are installed and running. The GVI instrument was delivered a year late (in March 2005) and is yet to be installed by GVI. As with all new instruments there were some initial development issues, some of which are still outstanding. The most serious of these are performance issues

  5. Surface Functionalization of g-C3 N4 : Molecular-Level Design of Noble-Metal-Free Hydrogen Evolution Photocatalysts.

    PubMed

    Chen, Yin; Lin, Bin; Yu, Weili; Yang, Yong; Bashir, Shahid M; Wang, Hong; Takanabe, Kazuhiro; Idriss, Hicham; Basset, Jean-Marie

    2015-07-13

    A stable noble-metal-free hydrogen evolution photocatalyst based on graphite carbon nitride (g-C3 N4 ) was developed by a molecular-level design strategy. Surface functionalization was successfully conducted to introduce a single nickel active site onto the surface of the semiconducting g-C3 N4 . This catalyst family (with less than 0.1 wt % of Ni) has been found to produce hydrogen with a rate near to the value obtained by using 3 wt % platinum as co-catalyst. This new catalyst also exhibits very good stability under hydrogen evolution conditions, without any evidence of deactivation after 24 h. PMID:26073972

  6. Fabrication of silicon nanowire arrays by macroscopic galvanic cell-driven metal catalyzed electroless etching in aerated HF solution.

    PubMed

    Liu, Lin; Peng, Kui-Qing; Hu, Ya; Wu, Xiao-Ling; Lee, Shuit-Tong

    2014-03-01

    Macroscopic galvanic cell-driven metal catalyzed electroless etching (MCEE) of silicon in aqueous hydrofluoric acid (HF) solution is devised to fabricate silicon nanowire (SiNW) arrays with dissolved oxygen acting as the one and only oxidizing agent. The key aspect of this strategy is the use of a graphite or other noble metal electrode that is electrically coupled with silicon substrate. PMID:24323873

  7. Van Der Waals-Corrected Density Functional Theory Simulation of Adsorption Processes on Noble-Metal Surfaces: Xe on Ag(111), Au(111), and Cu(111)

    NASA Astrophysics Data System (ADS)

    Silvestrelli, Pier Luigi; Ambrosetti, Alberto

    2016-02-01

    The DFT/vdW-WF2s1 method based on the generation of localized Wannier functions, recently developed to include the van der Waals interactions in the density functional theory and describe adsorption processes on metal surfaces by taking metal-screening effects into account, is applied to the case of the interaction of Xe with noble-metal surfaces, namely Ag(111), Au(111), and Cu(111). The study is also repeated by adopting the DFT/vdW-QHO-WF variant relying on the quantum harmonic oscillator model which describes well many body effects. Comparison of the computed equilibrium binding energies and distances, and the C_3 coefficients characterizing the adatom-surface van der Waals interactions, with available experimental and theoretical reference data shows that the methods perform well and elucidates the importance of properly including screening effects. The results are also compared with those obtained by other vdW-corrected DFT schemes, including PBE-D, vdW-DF, vdW-DF2, rVV10, and by the simpler local density approximation and semi-local (PBE) generalized gradient approximation approaches.

  8. An ab initio study of 5d noble metal nitrides: OsN 2, IrN 2, PtN 2 and AuN 2

    NASA Astrophysics Data System (ADS)

    Chen, W.; Tse, J. S.; Jiang, J. Z.

    2010-01-01

    The crystal structure, phonon stability, elasticity and electronic properties of four noble metal nitrides (PtN 2, IrN 2, OsN 2 and AuN 2) with three structural types (pyrite, marcasite and CoSb 2 structure) were studied by first principles calculations. In agreement with experiments and previous theoretical predictions, it is found that the most stable structure for OsN 2 is marcasite, for PtN 2 is pyrite, and for IrN 2 is the CoSb 2 structure. It is found that these three compounds are thermodynamically metastable with respect to solid N 2 and the metal at zero pressure. The structures are mechanically and dynamically stable. The lowest energy structure of AuN 2 is the CoSb 2 structure. The formation energy of AuN 2 is found to be very high compared to the other three nitrides studied here. This underlies the experimental difficulty in the synthesis of this compound. OsN 2 is found to be metallic, while IrN 2 and PtN 2 are both semiconductors.

  9. Subshell-resolved photoionization in the reciprocal space: Metal and noble gas atoms in a fullerene cage

    NASA Astrophysics Data System (ADS)

    McCune, Matt; Madjet, Mohamed; Chakraborty, Himadri

    2009-05-01

    Theory has predicted oscillations in the photoionization cross section of various atoms trapped in C60. Most of the studies however modeled the confining shell by a simplistic one-active-electron potential. We recently established a method that treats the C60 electrons in a sophisticated multi-electron frame based on the density functional theory [1]. Using this method, we perform calculations for noble gas atoms in C60. In the past, the free C60 photo cross section, which also shows oscillations, was analyzed by a Fourier-transform technique to determine the origin of the oscillation [2] and its dependence on the electron's rotational motion [3]. In the present work, we employ the Fourier analysis to unravel the interplay between specific ionization modes that induces oscillations in the cross section of a confined atom. The quality of oscillations is found to strongly differ from the outermost to an inner subshell. [1] Madjet et al., J. Phys. B 41, 105101 (2008); [2] Ruedel et al., Phys. Rev. Letts. 89, 125503 (2002); [3] McCune et al., J. Phys. B FTC 41, 201003 (2008).

  10. Cohesive properties of noble metals by van der Waals-corrected density functional theory: Au, Ag, and Cu as case studies

    NASA Astrophysics Data System (ADS)

    Ambrosetti, Alberto; Silvestrelli, Pier Luigi

    2016-07-01

    The cohesive energy, equilibrium lattice constant, and bulk modulus of Au, Ag, and Cu noble metals are computed by different van der Waals (vdW)-corrected density functional theory (DFT) methods, including vdW-DF, vdW-DF2, vdW-DF-cx, rVV10, and PBE-D. Two specifically designed methods are also developed in order to effectively include dynamical screening effects: the DFT/vdW-WF2p method, based on the generation of maximally localized Wannier functions, and the RPAp scheme (in two variants), based on a single-oscillator model of the localized electron response. Comparison with results obtained without explicit inclusion of van der Waals effects, such as with the local density approximation (LDA), PBE, PBEsol, or the hybrid PBE0 functional, elucidates the importance of a suitable description of screened van der Waals interactions even in the case of strong metal bonding. Many-body effects are also quantitatively evaluated within the RPAp approach.

  11. Poly(vinyl pyrrolidone): a dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions.

    PubMed

    Xiong, Yujie; Washio, Isao; Chen, Jingyi; Cai, Honggang; Li, Zhi-Yuan; Xia, Younan

    2006-09-26

    Poly(vinyl pyrrolidone) (PVP) has been extensively used in the solution-phase synthesis of many types of colloidal particles, where it is mainly considered as a steric stabilizer or capping agent with a major role to protect the product from agglomeration. In a recent study, we discovered that the hydroxyl end groups of PVP could also serve as a very mild reductant for kinetically controlled synthesis of Ag nanoplates with yields as high as 75%. Here we further demonstrate that hydroxyl-terminated PVP is also a well-suited reductant for the aqueous synthesis of circular, triangular, and hexagonal nanoplates made of other noble metals including Pd, Au, and Pt. The reduction kinetics of a metal salt by the hydroxyl end groups of PVP can be maneuvered in at least two different ways to facilitate the evolution of plate morphology: (i) by adjusting the molar ratio of PVP to the salt precursor and (ii) by altering the molecular weight of PVP. Unlike previously reported studies of Ag and Au thin plates, light was found to have a negligible role in the present synthesis. PMID:16981776

  12. Interaction of ionic liquids with noble metal surfaces: structure formation and stability of [OMIM][TFSA] and [EMIM][TFSA] on Au(111) and Ag(111).

    PubMed

    Uhl, Benedikt; Huang, Hsinhui; Alwast, Dorothea; Buchner, Florian; Behm, R Jürgen

    2015-10-01

    Aiming at a comprehensive understanding of the interaction of ionic liquids (ILs) with metal surfaces we have investigated the adsorption of two closely related ILs, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [EMIM][TFSA] and 1-methyl-3-octylimidazolium bis(trifluoromethylsulfonyl)imide [OMIM][TFSA], with two noble metal surfaces, Au(111) and Ag(111), under ultrahigh vacuum (UHV) conditions using scanning tunneling microscopy (STM). At room temperature, the ILs form a 2D liquid on either of the two surfaces, while at lower temperatures they condense into two-dimensional (2D) islands which exhibit ordered structures or a short-range ordered 2D glass structure. Comparison of the adlayer structures formed in the different adsorption systems and also with those determined recently for n-butyl-n-methylpyrrolidinium [TFSA](-) adlayers on Ag(111) and Au(111) (B. Uhl et al., Beilstein J. Nanotechnol., 2013, 4, 903) gains detailed insight into the adsorption geometry of the IL ions on the surface. The close similarity of the adlayer structures indicates that (i) the structure formation is dominated by the tendency to optimize the anion adsorption geometry, and that (ii) also in the present systems the cation adsorbs with the alkyl chain pointing up from the surface. PMID:26305417

  13. A Comparison between Shear Bond Strength of VMK Master Porcelain with Three Base-metal Alloys (Ni-cr-T3, VeraBond, Super Cast) and One Noble Alloy (X-33) in Metal-ceramic Restorations

    PubMed Central

    Ahmadzadeh, A; Neshati, A; Mousavi, N; Epakchi, S; Dabaghi Tabriz, F; Sarbazi, AH

    2013-01-01

    Statement of Problem: The increase in the use of metal-ceramic restorations and a high prevalence of porcelain chipping entails introducing an alloy which is more compatible with porcelain and causes a stronger bond between the two. This study is to compare shear bond strength of three base-metal alloys and one noble alloy with the commonly used VMK Master Porcelain. Materials and Method: Three different groups of base-metal alloys (Ni-cr-T3, Super Cast, and VeraBond) and one group of noble alloy (X-33) were selected. Each group consisted of 15 alloy samples. All groups went through the casting process and change from wax pattern into metal disks. The VMK Master Porcelain was then fired on each group. All the specimens were put in the UTM; a shear force was loaded until a fracture occurred and the fracture force was consequently recorded. The data were analyzed by SPSS Version 16 and One-Way ANOVA was run to compare the shear strength between the groups. Furthermore, the groups were compared two-by-two by adopting Tukey test. Results: The findings of this study revealed shear bond strength of Ni-Cr-T3 alloy was higher than the three other alloys (94 MPa or 330 N). Super Cast alloy had the second greatest shear bond strength (80. 87Mpa or 283.87 N). Both VeraBond (69.66 MPa or 245 N) and x-33 alloys (66.53 MPa or 234 N) took the third place. Conclusion: Ni-Cr-T3 with VMK Master Porcelain has the greatest shear bond strength. Therefore, employment of this low-cost alloy is recommended in metal-ceramic restorations. PMID:24724144

  14. Redox preparation of mixed-valence cobalt manganese oxide nanostructured materials: highly efficient noble metal-free electrocatalysts for sensing hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Kuo, Cheng-Chi; Lan, Wen-Jie; Chen, Chun-Hu

    2013-12-01

    High-performance hydrogen peroxide sensors provide valuable signals of biological interactions, disorders, and developing of diseases. Low-cost metal oxides are promising alternatives but suffer from low conductivity and sensing activity. Multi-component metal oxides are excellent candidates to accomplish these challenges, but the composition inhomogeneity is difficult to manage with conventional material preparation. We demonstrated redox preparation strategies to successfully synthesize highly homogeneous, noble metal-free H2O2 sensors of spinel nanostructured cobalt manganese oxides with enhanced conductivity, multiple mixed-valence features, and efficient H2O2 sensing activities. The designed redox reactions accompanied with material nucleation/formation are the key factors for compositional homogeneity. High conductivity (1.5 × 10-2 S cm-1) and H2O2 sensing activity (12 times higher than commercial Co3O4) were achieved due to the homogeneous multiple mixed-valence systems of Co(ii)/(iii) and Mn(iii)/(iv). A wide linear detection range (from 0.1 to 25 mM) with a detection limit of 15 μM was observed. Manganese species assist the formation of large surface area nanostructures, enhancing the H2O2 reduction activities, and inhibit the sensing interference. The material controls of hierarchical nanostructures, elemental compositions, porosity, and electrochemical performances are highly associated with the reaction temperatures. The temperature-dependent properties and nanostructure formation mechanisms based on a reaction rate competition are proposed.High-performance hydrogen peroxide sensors provide valuable signals of biological interactions, disorders, and developing of diseases. Low-cost metal oxides are promising alternatives but suffer from low conductivity and sensing activity. Multi-component metal oxides are excellent candidates to accomplish these challenges, but the composition inhomogeneity is difficult to manage with conventional material

  15. Mo2 C as Non-Noble Metal Co-Catalyst in Mo2 C/CdS Composite for Enhanced Photocatalytic H2 Evolution under Visible Light Irradiation.

    PubMed

    Ma, Baojun; Xu, Haojie; Lin, Keying; Li, Jie; Zhan, Haijuan; Liu, Wanyi; Li, Can

    2016-04-21

    Co-catalysts are a major factor to enhance photocatalytic H2 activity; they are mainly composed of expensive noble metals. Here, we reported a new non-noble-metal co-catalyst Mo2 C that efficiently improves the photocatalytic H2 evolution of CdS under visible light irradiation. Mo2 C is prepared by temperature-programmed reaction with molybdenum oxide as precursor, and the Mo2 C/CdS composite is prepared by deposition of CdS on Mo2 C. The optimum composite 2.0 % Mo2 C/CdS shows a high H2 evolution rate of 161 μmol h(-1) , which is ten times higher than that of CdS alone and 2.3 times higher than the optimum for 1.0 % Pt/CdS. Moreover, the Mo2 C/CdS is stable for 50 h. This study presents a new low-cost non-noble-metal co-catalyst as a photocatalyst to achieve highly efficient H2 evolution. PMID:26934039

  16. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Study of Thermodynamics of Liquid Noble-Metals Alloys Through a Pseudopotential Theory

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2010-09-01

    The Gibbs-Bogoliubov (GB) inequality is applied to investigate the thermodynamic properties of some equiatomic noble metal alloys in liquid phase such as Au-Cu, Ag-Cu, and Ag-Au using well recognized pseudopotential formalism. For description of the structure, well known Percus-Yevick (PY) hard sphere model is used as a reference system. By applying a variation method the best hard core diameters have been found which correspond to minimum free energy. With this procedure the thermodynamic properties such as entropy and heat of mixing have been computed. The influence of local field correction function viz; Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F), and Sarkar et al. (S) is also investigated. The computed results of the excess entropy compares favourably in the case of liquid alloys while the agreement with experiment is poor in the case of heats of mixing. This may be due to the sensitivity of the heats of mixing with the potential parameters and the dielectric function.

  17. A first principles study of noble metal-doped silicon nanocrystals Sin-1M (n = 75 and 150 and M = Cu, Ag, Au)

    NASA Astrophysics Data System (ADS)

    Mayfield, Cedric; Huda, Muhammad

    2010-10-01

    Silicon nano-structures can have important roles in many useful applications, such as in nano-scale energy conversion materials, as nano-detectors of gas particles or as thermoelectric materials. To achieve efficient performance of these nano-devices, electronically tailored nano-materials are needed. For this a thorough understanding of both doped and undoped nano-structures is essential. Here we will present results of our first principles spin polarized electronic structure calculations of noble metal atom doped silicon nanocrystals using a hybrid density functional theory method (B3LYP-DFT) and a LanL2DZ basis set. The nanocrystals are used here as a test group, and are based on three different isomers of bulk silicon: diamond, wurtzite, and BC8. Geometry optimizations of the pure Sin nanocrystals were performed for spin magnetic moments of s=0 μB and s=2 μB for each isomer. Then the substitutional doping of M atom was done separately at the inside and at the surface of the nanocrystals. The doped nanocrystals' geometries were also optimized for spin magnetic moments s=1 μB and s=3 μB. For the bigger nanocrystals, the energy differences between the two spin states are very small. Binding energies and HOMO-LUMO gaps were calculated and a comparative analysis of the pure and doped silicon nanocrystals will be presented.

  18. Synthesis and characterization of a Noble metal Enhanced Optical Nanohybrid (NEON): a high brightness detection platform based on a dye-doped silica nanoparticle.

    PubMed

    Roy, Shibsekhar; Dixit, Chandra K; Woolley, Robert; O'Kennedy, Richard; McDonagh, Colette

    2012-05-29

    A highly bright and photostable, fluorescent nanohybrid particle is presented which consists of gold nanoparticles (GNPs) embedded in dye-doped silica in a core-shell configuration. The dye used is the near-infrared emitting 4,5-benzo-5'-(iodoacetaminomethyl)-1',3,3,3',3'-pentamethyl-1-(4-sulfobutyl) indodicarbo cyanine. The nanohybrid architecture comprises a GNP core which is separated from a layer of dye molecules by a 15 nm buffer layer and has an outer protective, undoped silica shell. Using this architecture, a brightness factor of 550 has been achieved compared to the free dye. This hybrid system, referred to as Noble metal Enhanced Optical Nanohybrid (NEON) in this paper, is the first nanohybrid construct to our knowledge which demonstrates such tunable fluorescence property. NEON has enhanced photostability compared to the free dye and compared to a control particle without GNPs. Furthermore, the NEON particle, when used as a fluorescent label in a model bioassay, shows improved performance over assays using a conventional single dye molecule label. PMID:22568772

  19. Economic Hydrophobicity Triggering of CO2 Photoreduction for Selective CH4 Generation on Noble-Metal-Free TiO2-SiO2.

    PubMed

    Dong, Chunyang; Xing, Mingyang; Zhang, Jinlong

    2016-08-01

    On the basis of the fact that the competitive adsorption between CO2 and H2O on the catalyst plays an important role in the CO2 photoreduction process, here we develop an economic NH4F-induced hydrophobic modification strategy to enhance the CO2 competitive adsorption on the mesoporous TiO2-SiO2 composite surface via a simple solvothermal method. After the hydrophobic modification, the CO2 photoreduction for the selective generation of CH4 over the noble-metal-free TiO2-SiO2 composite can be greatly enhanced (2.42 vs 0.10 μmol/g in 4h). The enhanced CO2 photoreduction efficiency is assigned to the rational hydrophobic modification on TiO2-SiO2 surface by replacing Si-OH to hydrophobic Si-F bonds, which will improve the CO2 competitive adsorption and trigger the eight-electron CO2 photoreduction on the reaction kinetics. PMID:27415144

  20. Free MoS2 Nanoflowers Grown on Graphene by Microwave-Assisted Synthesis as Highly Efficient Non-Noble-Metal Electrocatalysts for the Hydrogen Evolution Reaction.

    PubMed

    Cao, Jiamu; Zhang, Xuelin; Zhang, Yufeng; Zhou, Jing; Chen, Yinuo; Liu, Xiaowei

    2016-01-01

    Advanced approaches to preparing non-noble-metal electrocatalysts for the hydrogen evolution reaction (HER) are considered to be a significant breakthrough in promoting the exploration of renewable resources. In this work, a hybrid material of MoS2 nanoflowers (NFs) on reduced graphene oxide (rGO) was synthesized as a HER catalyst via an environmentally friendly, efficient approach that is also suitable for mass production. Small-sized MoS2 NFs with a diameter of ca. 190 nm and an abundance of exposed edges were prepared by a hydrothermal method and were subsequently supported on rGO by microwave-assisted synthesis. The results show that MoS2 NFs were distributed uniformly on the remarkably reduced GO and preserved the outstanding original structural features perfectly. Electrochemical tests show that the as-prepared hybrid material exhibited excellent HER activity, with a small Tafel slope of 80 mV/decade and a low overpotential of 170 mV. PMID:27556402

  1. Barrierless growth of precursor-free, ultrafast laser-fragmented noble metal nanoparticles by colloidal atom clusters - A kinetic in situ study.

    PubMed

    Jendrzej, Sandra; Gökce, Bilal; Amendola, Vincenzo; Barcikowski, Stephan

    2016-02-01

    Unintended post-synthesis growth of noble metal colloids caused by excess amounts of reactants or highly reactive atom clusters represents a fundamental problem in colloidal chemistry, affecting product stability or purity. Hence, quantified kinetics could allow defining nanoparticle size determination in dependence of the time. Here, we investigate in situ the growth kinetics of ps pulsed laser-fragmented platinum nanoparticles in presence of naked atom clusters in water without any influence of reducing agents or surfactants. The nanoparticle growth is investigated for platinum covering a time scale of minutes to 50days after nanoparticle generation, it is also supplemented by results obtained from gold and palladium. Since a minimum atom cluster concentration is exceeded, a significant growth is determined by time resolved UV/Vis spectroscopy, analytical disc centrifugation, zeta potential measurement and transmission electron microscopy. We suggest a decrease of atom cluster concentration over time, since nanoparticles grow at the expense of atom clusters. The growth mechanism during early phase (<1day) of laser-synthesized colloid is kinetically modeled by rapid barrierless coalescence. The prolonged slow nanoparticle growth is kinetically modeled by a combination of coalescence and Lifshitz-Slyozov-Wagner kinetic for Ostwald ripening, validated experimentally by the temperature dependence of Pt nanoparticle size and growth quenching by Iodide anions. PMID:26555960

  2. Free MoS2 Nanoflowers Grown on Graphene by Microwave-Assisted Synthesis as Highly Efficient Non-Noble-Metal Electrocatalysts for the Hydrogen Evolution Reaction

    PubMed Central

    Cao, Jiamu; Zhang, Xuelin; Zhang, Yufeng; Zhou, Jing; Chen, Yinuo; Liu, Xiaowei

    2016-01-01

    Advanced approaches to preparing non-noble-metal electrocatalysts for the hydrogen evolution reaction (HER) are considered to be a significant breakthrough in promoting the exploration of renewable resources. In this work, a hybrid material of MoS2 nanoflowers (NFs) on reduced graphene oxide (rGO) was synthesized as a HER catalyst via an environmentally friendly, efficient approach that is also suitable for mass production. Small-sized MoS2 NFs with a diameter of ca. 190 nm and an abundance of exposed edges were prepared by a hydrothermal method and were subsequently supported on rGO by microwave-assisted synthesis. The results show that MoS2 NFs were distributed uniformly on the remarkably reduced GO and preserved the outstanding original structural features perfectly. Electrochemical tests show that the as-prepared hybrid material exhibited excellent HER activity, with a small Tafel slope of 80 mV/decade and a low overpotential of 170 mV. PMID:27556402

  3. Sub-0.5 nm equivalent oxide thickness scaling for Si-doped Zr1-xHfxO2 thin film without using noble metal electrode.

    PubMed

    Ahn, Ji-Hoon; Kwon, Se-Hun

    2015-07-22

    The dielectric properties of the Si-doped Zr1-xHfxO2 thin films were investigated over a broad compositional range with the goal of improving their properties for use as DRAM capacitor materials. The Si-doped Zr1-xHfxO2 thin films were deposited on TiN bottom electrodes by atomic layer deposition using a TEMA-Zr/TEMA-Hf mixture precursor for deposition of Zr1-xHfxO2 film and Tris-EMASiH as a Si precursor. The Si stabilizer increased the tetragonality and the dielectric constant; however, at high fractions of Si, the crystal structure degraded to amorphous and the dielectric constant decreased. Doping with Si exhibited a larger influence on the dielectric constant at higher Hf content. A Si-doped Hf-rich Zr1-xHfxO2 thin film, with tetragonal structure, exhibited a dielectric constant of about 50. This is the highest value among all reported results for Zr and Hf oxide systems, and equivalent oxide thickness (EOT) value of under 0.5 nm could be obtained with a leakage current of under 10(-7) A·cm(-2), which is the lowest EOT value ever reported for a DRAM storage capacitor system without using a noble-metal-based electrode. PMID:26125098

  4. Non-noble catalysts and catalyst supports for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Mcalister, A. J.

    1981-01-01

    Tungsten carbide, which is active for hydrogen oxidation, is CO tolerant and has a hexagonal structure is discussed. Titanium carbide is inactive and has a cubic structure. Four different samples of the cubic alloys W sub x-1Ti sub XC sub 1-y were found to be active and CO tolerant. When the activities of these cubic alloys are weighted by the reciprocal of the square to those of highly forms of WC. They offer important insight into the nature of the active sites on W-C anode catalysts for use in phosphoric acid fuel cells.

  5. Non-noble catalysts and catalyst supports for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Mcalister, A. J.

    1981-01-01

    Four different samples of the cubic alloys W sub x-1 Ti sub x C sub 1-y were prepared and found to be active and CO tolerant. When the activities of these cubic alloys were weighted by the reciprocal of the square of the W exchange, they displayed magnitudes and dependence on bulk C deficiency comparable to those of highly active forms of WC. It is concluded that they may offer important insight into the nature of the active sites on, and means for improving the performance of, W-C anode catalysts for use in phosphoric acid fuel cells.

  6. Non-noble catalysts and catalyst supports for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Mcalister, A. J.

    1980-01-01

    Tungsten carbide, which is known to be active for hydrogen oxidation and CO tolerant has a hexagonal structure. Titanium carbide is inactive and has a cubic structure. Four different samples of the cubic alloys Wx-1TixC were prepared and found to be active and CO tolerant. These alloys are of interest as possible phosphoric acid fuel cell catalysts. They also are of interest as opportunities to study the activity of W in a different crystalline environment and to correlate the activities of the surface sites with surface composition.

  7. The study on the application of solid-state method for synthesizing the polyaniline/noble metal (Au or Pt) hybrid materials.

    PubMed

    Jamal, Ruxangul; Xu, Feng; Shao, Weiwei; Abdiryim, Tursun

    2013-01-01

    The solid-state method was applied for synthesizing polyaniline (PANI)/noble metal hybrid materials with the presence of HAuCl4·4H2O or H2PtCl6·6H2O in the reaction medium. The structure, morphology, and electrochemical activity of the composites were characterized by Fourier transform infrared (FTIR) spectra, UV-visible (vis) absorption spectra, energy dispersive spectrum (EDS), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and cyclic voltammetry. The results from FTIR and UV-vis spectra showed that the oxidation degree and doping level of the PANI in composites can be influenced by HAuCl4·4H2O and H2PtCl6·6H2O. The EDS data demonstrated that the composites contain a certain amount of Au (or Pt) element. XRD analysis indicated the presence of crystalline-state Au particles in PANI matrix prepared from the presence of HAuCl4·4H2O and revealed that the H2PtCl6·6H2O cannot be converted into metal Pt. The TEM and SEM images implied that the Au particles did exist in the polymer matrix with the size of about 20 nm. The enzymeless H2O2 sensor constructed with PANI/Au composite from the presence of HAuCl4·4H2O showed a short response time (within 5 s) and displayed an excellent performance in wide linear range. PMID:23452667

  8. Theory of plasmon-enhanced high-order harmonic generation in the vicinity of metal nanostructures in noble gases

    SciTech Connect

    Husakou, A.; Im, S.-J.; Herrmann, J.

    2011-04-15

    We present a semiclassical model for plasmon-enhanced high-order harmonic generation (HHG) in the vicinity of metal nanostructures. We show that, besides the field enhancement, both the inhomogeneity of the enhanced local fields and electron absorption by the metal surface play an important role in the HHG process and lead to the generation of even harmonics and a significantly increased cutoff. For the examples of silver-coated nanocones and bowtie antennas, we predict that the required intensity reduces by up to three orders of magnitude due to plasmonic field enhancement. The study of the enhanced high-order harmonic generation is connected with a finite-element simulation of the electric field enhancement due to the excitation of the plasmonic modes.

  9. Catalytic Reduction of Noble Metal Salts by Sodium Hypophosphite Promoted by the Film Poly-(p-Allyl Ether Benzenesulfonic Acid).

    PubMed

    Costa, M I C F; Steter, J R; Purgato, F L S; Romero, J R

    2011-01-01

    Glassy carbon electrodes were coated with the film poly-(p-allyl ether benzenesulfonic acid) by an anodic procedure. Nickel, platinum, and palladium ions were introduced into the film by ion exchange of H(+) with the corresponding salts. These ions were catalytically reduced to their corresponding metals using the known electroless reducing agent sodium hypophosphite. Scanning electron microcopy and energy dispersive X-ray spectroscopy were carried out to demonstrate the occurrence of the catalytic process. To compare this method with another one carried out in our laboratory, the electrocatalytic reduction of H(+) was studied using the same modified electrodes. A suggested mechanism for the catalysis is proposed. PMID:24052832

  10. Catalytic Reduction of Noble Metal Salts by Sodium Hypophosphite Promoted by the Film Poly-(p-Allyl Ether Benzenesulfonic Acid)

    PubMed Central

    Costa, M. I. C. F.; Steter, J. R.; Purgato, F. L. S.; Romero, J. R.

    2011-01-01

    Glassy carbon electrodes were coated with the film poly-(p-allyl ether benzenesulfonic acid) by an anodic procedure. Nickel, platinum, and palladium ions were introduced into the film by ion exchange of H+ with the corresponding salts. These ions were catalytically reduced to their corresponding metals using the known electroless reducing agent sodium hypophosphite. Scanning electron microcopy and energy dispersive X-ray spectroscopy were carried out to demonstrate the occurrence of the catalytic process. To compare this method with another one carried out in our laboratory, the electrocatalytic reduction of H+ was studied using the same modified electrodes. A suggested mechanism for the catalysis is proposed. PMID:24052832

  11. Noble gas magnetic resonator

    DOEpatents

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  12. A Versatile Self-Assembly Strategy for the Synthesis of Shape-Selected Colloidal Noble Metal Nanoparticle Heterodimers

    PubMed Central

    2014-01-01

    The self-assembly of individual nanoparticles into dimers—so-called heterodimers—is relevant for a broad range of applications, in particular in the vibrant field of nanoplasmonics and nanooptics. In this paper we report the synthesis and characterization of material- and shape-selected nanoparticle heterodimers assembled from individual particles via electrostatic interaction. The versatility of the synthetic strategy is shown by assembling combinations of metal particles of different shapes, sizes, and metal compositions like a gold sphere (90 nm) with either a gold cube (35 nm), gold rhombic dodecahedron (50 nm), palladium truncated cube (120 nm), palladium rhombic dodecahedron (110 nm), palladium octahedron (130 nm), or palladium cubes (25 and 70 nm) as well as a silver sphere (90 nm) with palladium cubes (25 and 70 nm). The obtained heterodimer combinations are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), scanning transmission electron microscopy–energy dispersive X-ray spectroscopy (STEM-EDX), dynamic light scattering (DLS), and zeta-potential measurements. We describe the optimal experimental conditions to achieve the highest yield of heterodimers compared to other aggregates. The experimental results have been rationalized using theoretical modeling. A proof-of-principle experiment where individual Au–Pd heterodimers are exploited for indirect plasmonic sensing of hydrogen finally illustrates the potential of these structures to probe catalytic processes at the single particle level. PMID:24580549

  13. Noble metal alloy clusters in the gas phase derived from protein templates: unusual recognition of palladium by gold.

    PubMed

    Baksi, Ananya; Pradeep, T

    2013-12-21

    Matrix assisted laser desorption ionization of a mixture of gold and palladium adducts of the protein lysozyme (Lyz) produces naked alloy clusters of the type Au24Pd(+) in the gas phase. While a lysozyme-Au adduct forms Au18(+), Au25(+), Au38(+) and Au102(+) ions in the gas phase, lysozyme-Pd alone does not form any analogous cluster. Addition of various transition metal ions (Ag(+), Pt(2+), Pd(2+), Cu(2+), Fe(2+), Ni(2+) and Cr(3+)) in the adducts contributes to drastic changes in the mass spectrum, but only palladium forms alloys in the gas phase. Besides alloy formation, palladium enhances the formation of specific single component clusters such as Au38(+). While other metal ions like Cu(2+) help forming Au25(+) selectively, Fe(2+) catalyzes the formation of Au25(+) over all other clusters. Gas phase cluster formation occurs from protein adducts where Au is in the 1+ state while Pd is in the 2+ state. The creation of alloys in the gas phase is not affected whether a physical mixture of Au and Pd adducts or a Au and Pd co-adduct is used as the precursor. The formation of Au cores and AuPd alloy cores of the kind comparable to monolayer protected clusters implies that naked clusters themselves may be nucleated in solution. PMID:24146135

  14. Comparison of the performance of activated carbon-supported noble metal catalysts in the hydrogenolysis of CCl{sub 2}F{sub 2}

    SciTech Connect

    Wiersma, A.; Sandt, E.J.A.X. van de; Hollander, M.A. den; Bekkum, H. van; Makkee, M.; Moulijn, J.A.

    1998-07-01

    The hydrogenolysis of CCl{sub 2}F{sub 2} over 1 wt% palladium, platinum, rhodium, ruthenium, iridium, and rhenium on activated carbon has been studied in a micro-flow reactor, in a temperature range of 450--540 K, H{sub 2}/CCl{sub 2}F{sub 2} feed ratios between 1.5 and 6, a pressure of 0.4 MPa, and a WHSV of 1 g/(g{center_dot}h). The main products of the reaction for all investigated catalysts were CHClF{sub 2}, CH{sub 2}F{sub 2}, and methane. According to their performance, the catalysts could be divided into four groups: rhenium showing no conversion of CCl{sub 2}F{sub 2}, palladium with a high selectivity for CH{sub 2}F{sub 2}, iridium and ruthenium with a high selectivity for CHClF{sub 2}, and platinum and rhodium with moderate selectivity for CHClF{sub 2} and CH{sub 2}F{sub 2}. The adsorption of chlorine on the metal surface plays an important role in the selectivity. Strong chlorine adsorption leads to a higher selectivity for CHClF{sub 2}. These results are consistent with a reaction mechanism in which difluorocarbene is the key intermediate. Apparently, the same kinetic network applies to all metals studied. The performance of the catalysts changed as a function of time on stream. Palladium, rhodium, and especially ruthenium deactivated during reaction, whereas the activity of iridium and platinum increased. This can be explained by two opposite effects. On the one hand, the dispersion of all catalysts increased during reaction, which can explain an increase in activity as a function of time on stream. Apparently, CCl{sub 2}F{sub 2} hydrogenolysis conditions are suitable for dispersing noble metal catalysts on activated carbon. On the other hand, deactivation takes place by the adsorption of chlorine and deposits of heavy halogenated products.

  15. Noble metal alloy clusters in the gas phase derived from protein templates: unusual recognition of palladium by gold

    NASA Astrophysics Data System (ADS)

    Baksi, Ananya; Pradeep, T.

    2013-11-01

    Matrix assisted laser desorption ionization of a mixture of gold and palladium adducts of the protein lysozyme (Lyz) produces naked alloy clusters of the type Au24Pd+ in the gas phase. While a lysozyme-Au adduct forms Au18+, Au25+, Au38+ and Au102+ ions in the gas phase, lysozyme-Pd alone does not form any analogous cluster. Addition of various transition metal ions (Ag+, Pt2+, Pd2+, Cu2+, Fe2+, Ni2+ and Cr3+) in the adducts contributes to drastic changes in the mass spectrum, but only palladium forms alloys in the gas phase. Besides alloy formation, palladium enhances the formation of specific single component clusters such as Au38+. While other metal ions like Cu2+ help forming Au25+ selectively, Fe2+ catalyzes the formation of Au25+ over all other clusters. Gas phase cluster formation occurs from protein adducts where Au is in the 1+ state while Pd is in the 2+ state. The creation of alloys in the gas phase is not affected whether a physical mixture of Au and Pd adducts or a Au and Pd co-adduct is used as the precursor. The formation of Au cores and AuPd alloy cores of the kind comparable to monolayer protected clusters implies that naked clusters themselves may be nucleated in solution.Matrix assisted laser desorption ionization of a mixture of gold and palladium adducts of the protein lysozyme (Lyz) produces naked alloy clusters of the type Au24Pd+ in the gas phase. While a lysozyme-Au adduct forms Au18+, Au25+, Au38+ and Au102+ ions in the gas phase, lysozyme-Pd alone does not form any analogous cluster. Addition of various transition metal ions (Ag+, Pt2+, Pd2+, Cu2+, Fe2+, Ni2+ and Cr3+) in the adducts contributes to drastic changes in the mass spectrum, but only palladium forms alloys in the gas phase. Besides alloy formation, palladium enhances the formation of specific single component clusters such as Au38+. While other metal ions like Cu2+ help forming Au25+ selectively, Fe2+ catalyzes the formation of Au25+ over all other clusters. Gas phase cluster

  16. Highly porous nanocomposites based on TiO2-noble metal particles for sensitive detection of water pollutants by SERS

    NASA Astrophysics Data System (ADS)

    Baia, M.; Melinte, G.; Barbu-Tudoran, L.; Diamandescu, L.; Iancu, V.; Cosoveanu, V.; Danciu, V.; Baia, L.

    2011-07-01

    Highly porous nanocomposites based on TiO2 aerogel and silver colloidal particles were prepared by different methods in order to study their capacity to detect pollutant species adsorbed on metallic nanoparticles surface from aqueous solution. The efficiency of the obtained composites to detect contaminants from water by means of SERS was evaluated using acrylamide and crystal violet as test molecules. It was found that the detection limits depend both on pollutant and composite type, and were determined to be in the range of 10-1-10-4 M for acrylamide and around 10-5 M for the dye molecule. These results prove the potential of the prepared porous composites for further use in the development of new SERS-based sensors devices.

  17. The Thermochemical Stability of Ionic Noble Gas Compounds.

    ERIC Educational Resources Information Center

    Purser, Gordon H.

    1988-01-01

    Presents calculations that suggest stoichiometric, ionic, and noble gas-metal compounds may be stable. Bases calculations on estimated values of electron affinity, anionic radius for the noble gases and for the Born exponents of resulting crystals. Suggests the desirability of experiments designed to prepare compounds containing anionic,…

  18. Mixed close packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction

    SciTech Connect

    Cao, Bingfei; Veith, Gabriel M; Neuefeind, Joerg C; Adzic, Radoslav R.; Khalifah, P.

    2013-01-01

    A two-step solid-state reaction for preparing cobalt molybdenum nitride with a nanoscale morphology has been used to produce a highly active and stable electrocatalyst for the hydrogen evolution reaction (HER) under acidic conditions that achieves an iRcorrected current density of 10 mA cm 2 at 0.20 V vs RHE at low catalyst loadings of 0.24 mg/cm2 in rotating disk experiments under a H2 atmosphere. Neutron powder diffraction and pair distribution function (PDF) studies have been used to overcome the insensitivity of X-ray diffraction data to different transition-metal nitride structural polytypes and show that this cobalt molybdenum nitride crystallizes in space group P63/mmc with lattice parameters of a = 2.85176(2) and c = 10.9862(3) and a formula of Co0.6Mo1.4N2. This space group results from the four-layered stacking sequence of a mixed close-packed structure with alternating layers of transition metals in octahedral and trigonal prismatic coordination and is a structure type for which HER activity has not previously been reported. Based on the accurate bond distances obtained from time-of-flight neutron diffraction data, it is determined that the octahedral sites contain a mixture of divalent Co and trivalent Mo, while the trigonal prismatic sites contain Mo in a higher oxidation state. X-ray photoelectron spectroscopy (XPS) studies confirm that at the sample surface nitrogen is present and N H moieties are abundant.

  19. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction.

    PubMed

    Cao, Bingfei; Veith, Gabriel M; Neuefeind, Joerg C; Adzic, Radoslav R; Khalifah, Peter G

    2013-12-26

    A two-step solid-state reaction for preparing cobalt molybdenum nitride with a nanoscale morphology has been used to produce a highly active and stable electrocatalyst for the hydrogen evolution reaction (HER) under acidic conditions that achieves an iR-corrected current density of 10 mA cm(-2) at -0.20 V vs RHE at low catalyst loadings of 0.24 mg/cm(2) in rotating disk experiments under a H2 atmosphere. Neutron powder diffraction and pair distribution function (PDF) studies have been used to overcome the insensitivity of X-ray diffraction data to different transition-metal nitride structural polytypes and show that this cobalt molybdenum nitride crystallizes in space group P63/mmc with lattice parameters of a = 2.85176(2) Å and c = 10.9862(3) Å and a formula of Co0.6Mo1.4N2. This space group results from the four-layered stacking sequence of a mixed close-packed structure with alternating layers of transition metals in octahedral and trigonal prismatic coordination and is a structure type for which HER activity has not previously been reported. Based on the accurate bond distances obtained from time-of-flight neutron diffraction data, it is determined that the octahedral sites contain a mixture of divalent Co and trivalent Mo, while the trigonal prismatic sites contain Mo in a higher oxidation state. X-ray photoelectron spectroscopy (XPS) studies confirm that at the sample surface nitrogen is present and N-H moieties are abundant. PMID:24175858

  20. Investigation of the new sorption preconcentration systems for determination of noble metals in rocks by inductively coupled plasma-mass spectrometry.

    PubMed

    Dubenskiy, A S; Seregina, I F; Blinnikova, Z K; Tsyurupa, M P; Pavlova, L A; Davankov, V A; Bolshov, M A

    2016-06-01

    The reversible sorption preconcentration of noble metals (NMs) prior to their determination by inductively coupled plasma-mass spectrometry (ICP-MS) was investigated. Six new hypercrosslinked polystyrene sorbents were tested. The dependence of the degree of NMs sorption on the average degree of polymer network crosslinking and pore diameters was investigated. It was found that sorbents HP-100/6, HP-300/6 and HP-500/6 have low efficiency of NMs chlorocomplexes extraction. Among Stirosorb sorbents (Stirosorb-2, Stirosorb-514 and Stirosorb-584) the highest efficiency of the extraction of NMs' chlorocomplexes has Stirosorb-514. Tributylamine (TBA), N-methylbenzylamine (MBA), N,N-dimethylbenzylamine (DMBA), N,N-dibenzylmetylamine (DBMA) were studied as the reagents for extraction of Ru, Rh, Pd, Ir, Pt and Au chlorocomplexes from hydrochloric acid solutions in the form of ion associates by reversed-phase mechanism. The reversible quantitative extraction of Ru, Pd, Pt and Au in system Stirosorb-514 - TBA - 1M HCl in ethanol as eluent was achieved. It was found that resulting eluates do not contain matrix components which may cause spectral interferences on the stage of NMs determination by ICP-MS. The found scheme of NMs reversible sorption was validated by the analysis of certified reference materials of basic and ultrabasic rocks GPt-5, GPt-6 and SARM-7. Good agreement between the measured NMs concentrations and the certified values was demonstrated. The achieved limits of detection for Ru, Pd, Pt and Au vary within 10(-8)-10(-7)wt% range. PMID:27130114

  1. Hybrid Coordination Networks Constructed from ɛ-Keggin-Type Polyoxometalates and Rigid Imidazole-Based Bridging Ligands as New Carriers for Noble-Metal Catalysts.

    PubMed

    Yang, Xiao-Jian; Sun, Meng; Zang, Hong-Ying; Ma, Yuan-Yuan; Feng, Xiao-Jia; Tan, Hua-Qiao; Wang, Yong-Hui; Li, Yang-Guang

    2016-03-18

    Three hybrid coordination networks that were constructed from ɛ-Keggin polyoxometalate building units and imidazole-based bridging ligands were prepared under hydrothermal conditions, that is, H[(Hbimb)2 (bimb){Zn4 PMo(V8) Mo(VI) 4O40}]⋅6 H2O(1), [Zn(Hbimbp)(bimbp)3 {Zn4 PMo(V8) Mo(VI) 4O40}]⋅DMF⋅3.5 H2O(2), and H[Zn2 (timb)2 (bimba)2 Cl2 {Zn4 PMo(V8) Mo(VI) 4O40}]⋅7 H2O(3) (bimb=1,4-bis(1-imidazolyl)benzene, bimbp=4,4'-bis(imidazolyl)biphenyl, timb=1,3,5-tris(1-imidazolyl)benzene, bimba=3,5-bis(1-imidazolyl)benzenamine). All three compounds were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, and single-crystal X-ray diffraction. The mixed valence of the Mo centers was analyzed by XPS spectroscopy and bond-valence sum calculations. In all three compounds, the ɛ-Keggin polyoxometalate (POM) units acted as nodes that were connected by rigid imidazole-based bridging ligands to form hybrid coordination networks. In compound 1, 1D zigzag chains extended to form a 3D supramolecular architecture through intermolecular hydrogen-bonding interactions. Compound 2 consisted of 2D curved sheets, whilst compound 3 contained chiral 2D networks. Because of the intrinsic reducing properties of ɛ-Keggin POM species, noble-metal nanoparticles were loaded onto these POM-based coordination networks. Thus, compounds 1-3 were successfully loaded with Ag nanoparticles, and the corresponding composite materials exhibited high catalytic activities for the reduction of 4-nitrophenol. PMID:26807960

  2. Determination of plasma frequency, damping constant, and size distribution from the complex dielectric function of noble metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Mendoza Herrera, Luis J.; Arboleda, David Muñetón; Schinca, Daniel C.; Scaffardi, Lucía B.

    2014-12-01

    This paper develops a novel method for simultaneously determining the plasma frequency ωP and the damping constant γfr e e in the bulk damped oscillator Drude model, based on experimentally measured real and imaginary parts of the metal refractive index in the IR wavelength range, lifting the usual approximation that restricts frequency values to the UV-deep UV region. Our method was applied to gold, silver, and copper, improving the relative uncertainties in the final values for ωp (0.5%-1.6%) and for γfr e e (3%-8%), which are smaller than those reported in the literature. These small uncertainties in ωp and γfr e e determination yield a much better fit of the experimental complex dielectric function. For the case of nanoparticles (Nps), a series expansion of the Drude expression (which includes ωp and γfr e e determined using our method) enables size-dependent dielectric function to be written as the sum of three terms: the experimental bulk dielectric function plus two size corrective terms, one for free electron, and the other for bound-electron contributions. Finally, size distribution of nanometric and subnanometric gold Nps in colloidal suspension was determined through fitting its experimental optical extinction spectrum using Mie theory based on the previously determined dielectric function. Results are compared with size histogram obtained from Transmission Electron Microscopy (TEM).

  3. Determination of plasma frequency, damping constant, and size distribution from the complex dielectric function of noble metal nanoparticles

    SciTech Connect

    Mendoza Herrera, Luis J.; Arboleda, David Muñetón; Schinca, Daniel C.; Scaffardi, Lucía B.

    2014-12-21

    This paper develops a novel method for simultaneously determining the plasma frequency ω{sub P}   and the damping constant γ{sub free} in the bulk damped oscillator Drude model, based on experimentally measured real and imaginary parts of the metal refractive index in the IR wavelength range, lifting the usual approximation that restricts frequency values to the UV-deep UV region. Our method was applied to gold, silver, and copper, improving the relative uncertainties in the final values for ω{sub p} (0.5%–1.6%) and for γ{sub free} (3%–8%), which are smaller than those reported in the literature. These small uncertainties in ω{sub p} and γ{sub free} determination yield a much better fit of the experimental complex dielectric function. For the case of nanoparticles (Nps), a series expansion of the Drude expression (which includes ω{sub p} and γ{sub free} determined using our method) enables size-dependent dielectric function to be written as the sum of three terms: the experimental bulk dielectric function plus two size corrective terms, one for free electron, and the other for bound-electron contributions. Finally, size distribution of nanometric and subnanometric gold Nps in colloidal suspension was determined through fitting its experimental optical extinction spectrum using Mie theory based on the previously determined dielectric function. Results are compared with size histogram obtained from Transmission Electron Microscopy (TEM)

  4. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting

    PubMed Central

    Wang, Haotian; Lee, Hyun-Wook; Deng, Yong; Lu, Zhiyi; Hsu, Po-Chun; Liu, Yayuan; Lin, Dingchang; Cui, Yi

    2015-01-01

    Developing earth-abundant, active and stable electrocatalysts which operate in the same electrolyte for water splitting, including oxygen evolution reaction and hydrogen evolution reaction, is important for many renewable energy conversion processes. Here we demonstrate the improvement of catalytic activity when transition metal oxide (iron, cobalt, nickel oxides and their mixed oxides) nanoparticles (∼20 nm) are electrochemically transformed into ultra-small diameter (2–5 nm) nanoparticles through lithium-induced conversion reactions. Different from most traditional chemical syntheses, this method maintains excellent electrical interconnection among nanoparticles and results in large surface areas and many catalytically active sites. We demonstrate that lithium-induced ultra-small NiFeOx nanoparticles are active bifunctional catalysts exhibiting high activity and stability for overall water splitting in base. We achieve 10 mA cm−2 water-splitting current at only 1.51 V for over 200 h without degradation in a two-electrode configuration and 1 M KOH, better than the combination of iridium and platinum as benchmark catalysts. PMID:26099250

  5. Nickel pyridinethiolate complexes as catalysts for the light-driven production of hydrogen from aqueous solutions in noble-metal-free systems.

    PubMed

    Han, Zhiji; Shen, Luxi; Brennessel, William W; Holland, Patrick L; Eisenberg, Richard

    2013-10-01

    A series of mononuclear nickel(II) thiolate complexes (Et4N)Ni(X-pyS)3 (Et4N = tetraethylammonium; X = 5-H (1a), 5-Cl (1b), 5-CF3 (1c), 6-CH3 (1d); pyS = pyridine-2-thiolate), Ni(pySH)4(NO3)2 (2), (Et4N)Ni(4,6-Y2-pymS)3 (Y = H (3a), CH3 (3b); pymS = pyrimidine-2-thiolate), and Ni(4,4'-Z-2,2'-bpy)(pyS)2 (Z = H (4a), CH3 (4b), OCH3 (4c); bpy = bipyridine) have been synthesized in high yield and characterized. X-ray diffraction studies show that 2 is square planar, while the other complexes possess tris-chelated distorted-octahedral geometries. All of the complexes are active catalysts for both the photocatalytic and electrocatalytic production of hydrogen in 1/1 EtOH/H2O. When coupled with fluorescein (Fl) as the photosensitizer (PS) and triethylamine (TEA) as the sacrificial electron donor, these complexes exhibit activity for light-driven hydrogen generation that correlates with ligand electron donor ability. Complex 4c achieves over 7300 turnovers of H2 in 30 h, which is among the highest reported for a molecular noble metal-free system. The initial photochemical step is reductive quenching of Fl* by TEA because of the latter's greater concentration. When system concentrations are modified so that oxidative quenching of Fl* by catalyst becomes more dominant, system durability increases, with a system lifetime of over 60 h. System variations and cyclic voltammetry experiments are consistent with a CECE mechanism that is common to electrocatalytic and photocatalytic hydrogen production. This mechanism involves initial protonation of the catalyst followed by reduction and then additional protonation and reduction steps to give a key Ni-H(-)/N-H(+) intermediate that forms the H-H bond in the turnover-limiting step of the catalytic cycle. A key to the activity of these catalysts is the reversible dechelation and protonation of the pyridine N atoms, which enable an internal heterocoupling of a metal hydride and an N-bound proton to produce H2. PMID:24004329

  6. Laser-assisted solar cell metallization processing

    NASA Technical Reports Server (NTRS)

    Dutta, S.

    1984-01-01

    Laser assisted processing techniques utilized to produce the fine line, thin metal grid structures that are required to fabricate high efficiency solar cells are investigated. The tasks comprising these investigations are summarized. Metal deposition experiments are carried out utilizing laser assisted pyrolysis of a variety of metal bearing polymer films and metalloorganic inks spun onto silicon substrates. Laser decomposition of spun on silver neodecanoate ink yields very promising results. Solar cell comb metallization patterns are written using this technique.

  7. MICROWAVE-ASSISTED SYNTHESIS OF NOBLE NANOSTRUCTURES

    EPA Science Inventory

    Microwave-assisted (MW) spontaneous reduction of noble metal salts, silver (Ag), gold (Au), platinum (Pt) and palladium (Pd) is reported using sugar solutions such as -D glucose, sucrose and maltose, etc. to generate nanomaterials. These MW-assisted reactions, conducted in aqueo...

  8. Hydrodesulfurization and hydrogenation reactions on noble metal catalysts. 1. Elucidation of the behavior of sulfur on alumina-supported platinum and palladium using the {sub 35}S radioisotope tracer method

    SciTech Connect

    Kabe, Toshiaki; Qian, Weihua; Hirai, Yosiki; Li, Li; Ishihara, Atsushi

    2000-02-15

    Hydrodesulfurization (HDS) reactions of {sup 35}S-radioisotope-labeled dibensothiophene (DBT) were carried out over a series of {gamma}-Al{sub 2}O{sub 3}-supported noble-metal-containing catalysts at 5.00 MPa and at 260 and 280 C. The amount of sulfur (S{sub TOTAL}) accommodated on the catalyst and the amount of labile sulfur (S{sub 0}) participating in the reaction were determined using a direct method, the {sup 35}S radioisotope pulse tracer method, which has recently been developed by the authors. It was observed that both S{sub TOTAL} and S{sub 0} increased linearly with an increase in active metal loading. At the same time, it was found that the sulfided test noble metal catalysts corresponded to a S/Pt (Pd) ratio of 0.25 and that almost all the labile sulfur on these catalysts was mobile in the HDS reaction. Further, the activities of both HDS and hydrogenation reactions over the bimetallic catalyst (Pt-Pd) were higher than those of the monometallic catalysts tested together, whereas the synergetic effects observed on the Pt-Pd catalyst were not as significant as in typical Co-Mo catalyst cases.

  9. Laser-assisted solar cell metallization processing

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.; Gupta, S.; Mcmullin, P. G.; Palaschak, P. A.

    1985-01-01

    Laser-assisted processing techniques for producing high-quality solar cell metallization patterns are being investigated, developed, and characterized. The tasks comprising these investigations are outlined.

  10. Three-Electrode Metal Oxide Reduction Cell

    DOEpatents

    Dees, Dennis W.; Ackerman, John P.

    2005-06-28

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  11. Three-electrode metal oxide reduction cell

    DOEpatents

    Dees, Dennis W.; Ackerman, John P.

    2008-08-12

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  12. Planetary noble gases

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin

    1993-01-01

    An overview of the history and current status of research on planetary noble gases is presented. The discovery that neon and argon are vastly more abundant on Venus than on earth points to the solar wind rather than condensation as the fundamental process for placing noble gases in the atmospheres of the terrestrial planets; however, solar wind implantation may not be able to fully reproduce the observed gradient, nor does it obviously account for similar planetary Ne/Ar ratios and dissimilar planetary Ar/Kr ratios. More recent studies have emphasized escape rather than accretion. Hydrodynamic escape, which is fractionating, readily accounts for the difference between atmospheric neon and isotopically light mantle neon. Atmospheric cratering, which is nearly nonfractionating, can account for the extreme scarcity of nonradiogenic noble gases (and other volatiles) on Mars.

  13. Noble metal (Ru{sup III}, Pd{sup II}, Pt{sup II}) substituted {open_quotes}sandwich{close_quotes} type polyoxometalates: Preparation, characterization, and catalytic activity in oxidations of alkanes and alkenes by peroxides

    SciTech Connect

    Neumann, R.; Khenkin, A.M.

    1995-11-08

    The polyoxometalates substituted with noble metals, Pd(II), Pt(II) and Ru(III), K{sub 12}([WZnPd{sup II}{sub 2}(H{sub 2}O){sub 2}](ZnW{sub 9}O{sub 34}){sub 2}){center_dot}38H{sub 2}O, K{sub 12}[WZnPt{sup II}{sub 2}(H{sub 2}O){sub 2}][(ZnW{sub 9}O{sub 34}){sub 2}]{center_dot}36H{sub 2}O, and Na{sub 11}[WZnRu{sup III}{sub 2}(OH)(H{sub 2}O)][(ZnW{sub 9}O{sub 34}){sub 2}]{center_dot}42H{sub 2}O, were prepared by exchange of labile zinc atoms with noble metal atoms from the isostructural starting material, N{sub 12}-[WZn{sub 3}(H{sub 2}O){sub 2}][(ZnW{sub 9}O{sub 34}){sub 2}]{center_dot}46H{sub 2}O. Magnetic susceptibility studies as a function of temperature provide convincing evidence of two ruthenium (III) centers with no magnetic interaction between them. The catalytic activity of these compounds was tested for the oxidation of alkenes and alkanes using aqueous 30% hydrogen peroxide and 70% tert-butyl hydroperoxide as oxidants. The alkene oxidation proceeded in high reactivity and moderate selectivity to the epoxide product using 30% H{sub 2}O{sub 2}. Kinetic profiles as well as UV-vis and IR spectra before, during and after the reaction indicate that the catalysts are stable throughout the reaction. Formation of epoxides rather than ketonization in the reaction of terminal alkenes as well as low reactivity with iodosobenzene indicates that the reaction is tungsten centered and not noble metal centered. Oxidation of alkenes with tert-butyl hydroperoxide gave mostly allylic oxidation and/or addition of tert-butyl alcohol to the double bond. Oxidation of cyclic alkanes such as cyclohexane and adamantane was successful with tert-butyl hydroperoxide with catalytic activity 10 times higher than previously found for transition metal substituted Keggin compounds. Ratios of hydroxylation of adamantane at tertiary vs secondary positions indicates different active species in the palladium-, platinum-, and ruthenium substituted-polyoxometalates.

  14. The Noble Savage.

    ERIC Educational Resources Information Center

    Greer, Sandy

    1993-01-01

    Traces the history of the "noble savage" concept, from the romantic view of the fifteenth through eighteenth centuries of American Indians as holdovers from the "golden age," to current media images of the medicine man or the Indian princess. Discusses how this patronizing stereotype continues to undermine Indian identity. (SV)

  15. Several new catalysts for reduction of oxygen in fuel cells

    NASA Technical Reports Server (NTRS)

    Cattabriga, R. A.; Cohn, E. M.; Giner, J. D.; Makrides, A. C.; Swette, L. L.

    1970-01-01

    Test results prove nickel carbide or nitride, nickel-cobalt carbide, titanium carbide or nitride, and intermetallic compounds of the transition or noble metals to be efficient electrocatalysts for oxygen reduction in alkaline electrolytes in low temperature fuel cells.

  16. Laser-assisted solar cell metallization processing

    NASA Technical Reports Server (NTRS)

    Dutta, S.

    1984-01-01

    Laser-assisted processing techniques utilized to produce the fine line, thin metal grid structures that are required to fabricate high efficiency solar cells are examined. Two basic techniques for metal deposition are investigated; (1) photochemical decomposition of liquid or gas phase organometallic compounds utilizing either a focused, CW ultraviolet laser (System 1) or a mask and ultraviolet flood illumination, such as that provided by a repetitively pulsed, defocused excimer laser (System 2), for pattern definition, and (2) thermal deposition of metals from organometallic solutions or vapors utilizing a focused, CW laser beam as a local heat source to draw the metallization pattern.

  17. Transition metals activate TFEB in overexpressing cells

    PubMed Central

    Peña, Karina A.; Kiselyov, Kirill

    2015-01-01

    Transition metal toxicity is an important factor in the pathogenesis of numerous human disorders, including neurodegenerative diseases. Lysosomes have emerged as important factors in transition metal toxicity because they handle transition metals via endocytosis, autophagy, absorption from the cytoplasm and exocytosis. Transcription factor EB (TFEB) regulates lysosomal biogenesis and the expression of lysosomal proteins in response to lysosomal and/or metabolic stresses. Since transition metals cause lysosomal dysfunction, we proposed that TFEB may be activated to drive gene expression in response to transition metal exposure and that such activation may influence transition metal toxicity. We found that transition metals copper (Cu) and iron (Fe) activate recombinant TFEB and stimulate the expression of TFEB-dependent genes in TFEB-overexpressing cells. In cells that show robust lysosomal exocytosis, TFEB was cytoprotective at moderate levels of Cu exposure, decreasing oxidative stress as reported by the expression of heme oxygenase-1 (HMOX1) gene. However, at high levels of Cu exposure, particularly in cells with low levels of lysosomal exocytosis, activation of overexpressed TFEB was toxic, increasing oxidative stress and mitochondrial damage. Based on these data, we conclude that TFEB-driven gene network is a component of the cellular response to transition metals. These data suggest limitations and disadvantages of TFEB overexpression as a therapeutic approach. PMID:26251447

  18. The metal interconnected cascade solar cell

    SciTech Connect

    LaRue, R.A.; Borden, P.G.; Dietze, W.T.; Gregory, P.E.; Ludowise, M.J.

    1982-09-01

    A cascade cell employing a new type of interconnect is described. It uses a groove etch and metallization process to connect the base of the top cell to the emitter of the bottom cell. The best cell yielded 21.3% efficiency under conditions of AM3, 130 suns, 50/sup 0/C, with the result not corrected for grid coverage. Other features include a 1.2-micron thick 1.82-eV ALGaAs top cell with a BSF under the base and an n/p heteroface GaAs bottom cell that is stable during top cell growth.

  19. Direct Detection: Liquid Nobles

    NASA Astrophysics Data System (ADS)

    Akerib, Daniel S.

    2016-05-01

    Over the past decade, detectors based on liquid noble elements have been at the frontier in the search for WIMP dark matter. They have been shown to powerfully combine low threshold, low background, recoil ID, large mass and self shielding, leading to unprecedented sensitivity to WIMP-nuclear recoil scatters. I will review the current suite of technologies and results to date, and provide an outlook for the coming years.

  20. Cosmogenic noble gas paleothermometry

    NASA Astrophysics Data System (ADS)

    Tremblay, Marissa M.; Shuster, David L.; Balco, Greg

    2014-08-01

    We present a theoretical basis for reconstructing paleotemperatures from the open-system behavior of cosmogenic noble gases produced in minerals at Earth's surface. Experimentally-determined diffusion kinetics predicts diffusive loss of cosmogenic 3He and 21Ne from common minerals like quartz and feldspars at ambient temperatures; incomplete retention has also been observed empirically in field studies. We show that the theory of simultaneous production and diffusion that applies to radiogenic noble gases in minerals-the basis of thermochronology-can also be applied to cosmogenic noble gases to reconstruct past surface temperatures on Earth. We use published diffusion kinetics and production rates for 3He in quartz and 21Ne in orthoclase to demonstrate the resolving power of cosmogenic noble gas paleothermometry with respect to exposure duration, temperature, and diffusion domain size. Calculations indicate that, when paired with a quantitatively retained cosmogenic nuclide such as 21Ne or 10Be, observations of cosmogenic 3He in quartz can constrain temperatures during surface exposure in polar and high altitude environments. Likewise, 21Ne retention in feldspars is sensitive to temperatures at lower latitudes and elevations, expanding the potential geographic applicability of this technique to most latitudes. As an example, we present paired measurements of 3He and 10Be in quartz from a suite of Antarctic sandstone erratics to test whether the abundances of cosmogenic 3He agree with what is predicted from first principles and laboratory-determined diffusion kinetics. We find that the amounts of cosmogenic 3He present in these samples are consistent with the known mean annual temperature (MAT) for this region of Antarctica between -25 and -30 °C. These results demonstrate the method's ability to record paleotemperatures through geologic time.

  1. Electrocatalyst for alcohol oxidation at fuel cell anodes

    DOEpatents

    Adzic, Radoslav; Kowal, Andrzej

    2011-11-02

    In some embodiments a ternary electrocatalyst is provided. The electrocatalyst can be used in an anode for oxidizing alcohol in a fuel cell. In some embodiments, the ternary electrocatalyst may include a noble metal particle having a surface decorated with clusters of SnO.sub.2 and Rh. The noble metal particles may include platinum, palladium, ruthenium, iridium, gold, and combinations thereof. In some embodiments, the ternary electrocatalyst includes SnO.sub.2 particles having a surface decorated with clusters of a noble metal and Rh. Some ternary electrocatalysts include noble metal particles with clusters of SnO.sub.2 and Rh at their surfaces. In some embodiments the electrocatalyst particle cores are nanoparticles. Some embodiments of the invention provide a fuel cell including an anode incorporating the ternary electrocatalyst. In some aspects a method of using ternary electrocatalysts of Pt, Rh, and SnO.sub.2 to oxidize an alcohol in a fuel cell is described.

  2. Development of nickel-metal hydride cell

    NASA Technical Reports Server (NTRS)

    Kuwajima, Saburo; Kamimori, Nolimits; Nakatani, Kensuke; Yano, Yoshiaki

    1993-01-01

    National Space Development Agency of Japan (NASDA) has conducted the research and development (R&D) of battery cells for space use. A new R&D program about a Nickel-Metal Hydride (Ni-MH) cell for space use from this year, based on good results in evaluations of commercial Ni-MH cells in Tsukuba Space Center (TKSC), was started. The results of those commercial Ni-MH cell's evaluations and recent status about the development of Ni-MH cells for space use are described.

  3. Integrating Sphere Alkali-Metal Vapor Cells

    NASA Astrophysics Data System (ADS)

    McGuyer, Bart; Ben-Kish, Amit; Jau, Yuan-Yu; Happer, William

    2010-03-01

    An integrating sphere is an optical multi-pass cavity that uses diffuse reflection to increase the optical path length. Typically applied in photometry and radiometry, integrating spheres have previously been used to detect trace gases and to cool and trap alkali-metal atoms. Here, we investigate the potential for integrating spheres to enhance optical absorption in optically thin alkali-metal vapor cells. In particular, we consider the importance of dielectric effects due to a glass container for the alkali-metal vapor. Potential applications include miniature atomic clocks and magnetometers, where multi-passing could reduce the operating temperature and power consumption.

  4. Fuel cells and the theory of metals.

    NASA Technical Reports Server (NTRS)

    Bocciarelli, C. V.

    1972-01-01

    Metal theory is used to study the role of metal catalysts in electrocatalysis, with particular reference to alkaline hydrogen-oxygen fuel cells. Use is made of a simple model, analogous to that used to interpret field emission in vacuum. Theoretical values for all the quantities in the Tafel equation are obtained in terms of bulk properties of the metal catalysts (such as free electron densities and Fermi level). The reasons why some processes are reversible (H-electrodes) and some irreversible (O-electrodes) are identified. Selection rules for desirable properties of catalytic materials are established.

  5. Platinum-ruthenium-palladium alloys for use as a fuel cell catalyst

    DOEpatents

    Gorer, Alexander

    2002-01-01

    A noble metal alloy composition for a fuel cell catalyst, a ternary alloy composition containing platinum, ruthenium and palladium. The alloy shows increased activity as compared to well-known catalysts.

  6. Solar cell having improved front surface metallization

    SciTech Connect

    Lillington, D.R.; Mardesich, N.; Dill, H.G.; Garlick, G.F.J.

    1987-09-15

    This patent describes a solar cell comprising: a first layer of gallium arsenide semiconductor material of an N+ conductivity; a second layer of gallium arsenide semiconductor material of an N conductivity overlying the first layer; a third layer of gallium arsenide semiconductor material of a P conductivity overlying the N conductivity layer and forming a P-N junction therebetween. A layer of aluminium gallium arsenide semiconductor material of a p conductivity overlying the front major surface of the P conductivity third layer and having an exposed surface essentially parallel to the front major surface and at least one edge; a plurality of metallic contact lines made of a first metal alloy composition and being spaced apart by a first predetermined distance traversing the exposed surface and extending through the aluminium gallium arsenide layer to the front major surface and making electrical contact to the third layer; a plurality of longitudinally disposed metallic grid lines made of a second metal alloy composition and being spaced apart by a second predetermined distance located on the exposed surface of the aluminium gallium arsenide layer and which cross the metallic contact lines and make electrical contact to the metallic lines; a flat metallic strip disposed on the aluminium gallium arsenide layer exposed surface near the edge, the strip electrically coupling the metallic grid lines to one another; and a back contact located on the back major surface.

  7. PD/MG BIMETALLIC CORROSION CELLS FOR DECHLORINATING PCBS

    EPA Science Inventory

    Two dissimilar metals immersed in a conducting solution develop different corrosion potentials forming a bimetallic corrosion cell. Enhanced corrosion of an active metal like Mg combined with catalytic hydrogenation properties of a noble metal like Pd in such bimetallic cells can...

  8. Static impedance behavior of programmable metallization cells

    NASA Astrophysics Data System (ADS)

    Rajabi, S.; Saremi, M.; Barnaby, H. J.; Edwards, A.; Kozicki, M. N.; Mitkova, M.; Mahalanabis, D.; Gonzalez-Velo, Y.; Mahmud, A.

    2015-04-01

    Programmable metallization cell (PMC) devices work by growing and dissolving a conducting metallic bridge across a chalcogenide glass (ChG) solid electrolyte, which changes the resistance of the cell. PMC operation relies on the incorporation of metal ions in the ChG films via photo-doping to lower the off-state resistance and stabilize resistive switching, and subsequent transport of these ions by electric fields induced from an externally applied bias. In this paper, the static on- and off-state resistance of a PMC device composed of a layered (Ag-rich/Ag-poor) Ge30Se70 ChG film with active Ag and inert Ni electrodes is characterized and modeled using three dimensional simulation code. Calibrating the model to experimental data enables the extraction of device parameters such as material bandgaps, workfunctions, density of states, carrier mobilities, dielectric constants, and affinities.

  9. Apparatus for the electrolytic production of metals

    DOEpatents

    Sadoway, Donald R.

    1993-01-01

    Improved electrolytic cells for producing metals by the electrolytic reduction of a compound dissolved in a molten electrolyte are disclosed. In the improved cells, at least one electrode includes a protective layer comprising an oxide of the cell product metal formed upon an alloy of the cell product metal and a more noble metal. In the case of an aluminum reduction cell, the electrode can comprise an alloy of aluminum with copper, nickel, iron, or combinations thereof, upon which is formed an aluminum oxide protective layer.

  10. Metal electrode for amorphous silicon solar cells

    DOEpatents

    Williams, Richard

    1983-01-01

    An amorphous silicon solar cell having an N-type region wherein the contact to the N-type region is composed of a material having a work function of about 3.7 electron volts or less. Suitable materials include strontium, barium and magnesium and rare earth metals such as gadolinium and yttrium.

  11. 77 FR 70159 - Marble River, LLC v. Noble Clinton Windpark I, LLC, Noble Ellenburg Windpark, LLC, Noble...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-23

    ... Energy Regulatory Commission Marble River, LLC v. Noble Clinton Windpark I, LLC, Noble Ellenburg Windpark..., Marble River, LLC (Marble River or Complainant) filed a formal complaint against Noble Clinton Windpark I... pay Marble River for headroom created by common system upgrade facilities that benefit Noble and...

  12. A noble and single source precursor for the synthesis of metal-rich sulphides embedded in an N-doped carbon framework for highly active OER electrocatalysts.

    PubMed

    Barman, Barun Kumar; Nanda, Karuna Kar

    2016-04-12

    Here, we demonstrate a green and environment-friendly pyrolysis route for the synthesis of metal-rich sulphide embedded in an N-doped carbon (NC) framework in the absence of sulphide ions (S(2-)). The metal-chelate complex (tris(ethylenediamine) metal(ii) sulfate) serves as a new and single source precursor for the synthesis of earth abundant and non-precious hybrid structures such as metal-rich sulphides Co9S8@NC and Ni3S2@NC when M(II) = Co(2+) and Ni(2+) and counter sulphate (SO4(2-)) ions are the source of S. Both the hybrids show superior OER activity as compared to commercial RuO2. PMID:26999042

  13. Formation of a quasi-solid structure by intercalated noble gas atoms in pores of Cu(I)-MFU-4l metal-organic framework.

    PubMed

    Magdysyuk, Oxana V; Denysenko, Dmytro; Weinrauch, Ingrid; Volkmer, Dirk; Hirscher, Michael; Dinnebier, Robert E

    2015-01-14

    The primary adsorption sites for Kr and Xe within the large-pore metal-organic framework Cu(I)-MFU-4l have been investigated by high-resolution synchrotron powder diffraction, revealing an enormous number of adsorption sites: in total, 10 crystallographically different positions for Xe and 8 positions for Kr were localized, the first five of which are located near metal atoms and the organic linker, and the remaining sites form a second adsorption layer in the pores. PMID:25418446

  14. Towards a Noble Gas Oscillator

    NASA Astrophysics Data System (ADS)

    Korver, Anna; Walker, Thad

    2014-05-01

    Noble gas NMR detected by alkali co-magnetometers has the potential for measurement of precession frequencies at the pHz level. This is done by eliminating the dominant known sources of systematic errors: alkali frequency shifts and quadrupole shifts. We present results of successful synchronous pumping of noble gas nuclei and measurements of alkali co-magnetometer sensitivity levels that project a 131-Xe noise level of 100 nHz /√{ Hz} . Future dual noble-gas co-magnetometry promises to improve the noise level by a factor of 10 or more. This research is supported by the NSF and Northrop-Grumman Corp.

  15. Noble gases in the moon

    NASA Technical Reports Server (NTRS)

    Manuel, O. K.; Srinivasan, B.; Hennecke, E. W.; Sinclair, D. E.

    1972-01-01

    The abundance and isotopic composition of helium, neon, argon, krypton, and xenon which were released by stepwise heating of lunar fines (15601.64) and (15271.65) were measured spectrometrically. The results of a composition of noble gases released from the lunar fines with noble gases in meteorites and in the earth are presented along with the isotopic composition of noble gases in lunar fines, in meteorites, and in the atmosphere. A study of two isotopically distinct components of trapped xenon in carbonaceous chondrites is also included.

  16. Lateral Programmable Metallization Cell Devices And Applications

    NASA Astrophysics Data System (ADS)

    Ren, Minghan

    2011-12-01

    Programmable Metallization Cell (PMC) is a technology platform which utilizes mass transport in solid or liquid electrolyte coupled with electrochemical (redox) reactions to form or remove nanoscale metallic electrodeposits on or in the electrolyte. The ability to redistribute metal mass and form metallic nanostructure in or on a structure in situ, via the application of a bias on laterally placed electrodes, creates a large number of promising applications. A novel PMC-based lateral microwave switch was fabricated and characterized for use in microwave systems. It has demonstrated low insertion loss, high isolation, low voltage operation, low power and low energy consumption, and excellent linearity. Due to its non-volatile nature the switch operates with fewer biases and its simple planar geometry makes possible innovative device structures which can be potentially integrated into microwave power distribution circuits. PMC technology is also used to develop lateral dendritic metal electrodes. A lateral metallic dendritic network can be grown in a solid electrolyte (GeSe) or electrodeposited on SiO2 or Si using a water-mediated method. These dendritic electrodes grown in a solid electrolyte (GeSe) can be used to lower resistances for applications like self-healing interconnects despite its relatively low light transparency; while the dendritic electrodes grown using water-mediated method can be potentially integrated into solar cell applications, like replacing conventional Ag screen-printed top electrodes as they not only reduce resistances but also are highly transparent. This research effort also laid a solid foundation for developing dendritic plasmonic structures. A PMC-based lateral dendritic plasmonic structure is a device that has metallic dendritic networks grown electrochemically on SiO2 with a thin layer of surface metal nanoparticles in liquid electrolyte. These structures increase the distribution of particle sizes by connecting pre-deposited Ag

  17. Carbonates-based noble metal-free lean NOx trap catalysts MOx-K2CO3/K2Ti8O17 (M = Ce, Fe, Cu, Co) with superior catalytic performance

    NASA Astrophysics Data System (ADS)

    Zhang, Yuxia; You, Rui; Liu, Dongsheng; Liu, Cheng; Li, Xingang; Tian, Ye; Jiang, Zheng; Zhang, Shuo; Huang, Yuying; Zha, Yuqing; Meng, Ming

    2015-12-01

    A series of base metal-based lean NOx trap (LNT) catalysts MOx-K2CO3/K2Ti8O17 (M = Ce, Fe, Cu, Co) were synthesized by successive impregnations and employed for the storage and reduction of NOx in the emissions of lean-burn engines at 350 °C. The XRD and XANES/EXAFS results reveal that the active phases in the corresponding catalysts exist as CeO2, Fe2O3, CuO and Co3O4, respectively. Among all the catalysts, CoOx-K2CO3/K2Ti8O17 exhibits the best performance, which cannot only trap the NOx quickly and completely at lean condition, giving the highest storage capacity (3.32 mmol/g) reported so far, but also reduce the NOx at rich condition, showing a NOx reduction percentage as high as 99.0%. Meanwhile, this catalyst displays an ultralow NOx to N2O selectivity (0.3%) during NOx reduction. The excellent performance of CoOx-K2CO3/K2Ti8O17 results from its largest amount of surface active oxygen species as revealed by XPS, O2-TPD and NO-TPD. HRTEM, FT-IR and CO2-TPD results illustrate that several kinds of K species such as sbnd OK groups, K2O, surface carbonates and bulk or bulk-like carbonates coexist in the catalysts. Based upon the in situ DRIFTS results, the participation of K2CO3 in NOx storage is confirmed, and the predominant NOx storage species is revealed as bidentate nitrites formed via multiple kinetic pathways. The low cost and high catalytic performance of the CoOx-based LNT catalyst make it most promising for the substitution of noble metal-based LNT catalysts.

  18. Process for recycling components of a PEM fuel cell membrane electrode assembly

    DOEpatents

    Shore, Lawrence

    2012-02-28

    The membrane electrode assembly (MEA) of a PEM fuel cell can be recycled by contacting the MEA with a lower alkyl alcohol solvent which separates the membrane from the anode and cathode layers of the assembly. The resulting solution containing both the polymer membrane and supported noble metal catalysts can be heated under mild conditions to disperse the polymer membrane as particles and the supported noble metal catalysts and polymer membrane particles separated by known filtration means.

  19. Density functional theoretical study of pentacene/noble metal interfaces with van der Waals corrections: Vacuum level shifts and electronic structures

    NASA Astrophysics Data System (ADS)

    Toyoda, Kenji; Hamada, Ikutaro; Lee, Kyuho; Yanagisawa, Susumu; Morikawa, Yoshitada

    2010-04-01

    In order to clarify factors determining the interface dipole, we have studied the electronic structures of pentacene adsorbed on Cu(111), Ag(111), and Au(111) by using first-principles density functional theoretical calculations. In the structural optimization, a semiempirical van der Waals (vdW) approach [S. Grimme, J. Comput. Chem. 27, 1787 (2006)] is employed to include long-range vdW interactions and is shown to reproduce pentacene-metal distances quite accurately. The pentacene-metal distances for Cu, Ag, and Au are evaluated to be 0.24, 0.29, and 0.32 nm, respectively, and work function changes calculated by using the theoretically optimized adsorption geometries are in good agreement with the experimental values, indicating the validity of the present approach in the prediction of the interface dipole at metal/organic interfaces. We examined systematically how the geometric factors, especially the pentacene-substrate distance ( Z C ) , and the electronic properties of the metal substrates contribute to the interface dipole. We found that at Z C ≥ 0.35 nm , the work function changes ( Δ ϕ 's) do not depend on the substrate work function ( ϕ m ) , indicating that the interface level alignment is nearly in the Schottky limit, whereas at Z C ≤ 0.25 nm , Δ ϕ 's vary nearly linearly with ϕ m , and the interface level alignment is in the Bardeen limit. Our results indicate the importance of both the geometric and the electronic factors in predicting the interface dipoles. The calculated electronic structure shows that on Au, the long-range vdW interaction dominates the pentacene-substrate interaction, whereas on Cu and Ag, the chemical hybridization contributes to the interaction.

  20. Understanding the adsorption of CuPc and ZnPc on noble metal surfaces by combining quantum-mechanical modelling and photoelectron spectroscopy.

    PubMed

    Huang, Yu Li; Wruss, Elisabeth; Egger, David A; Kera, Satoshi; Ueno, Nobuo; Saidi, Wissam A; Bucko, Tomas; Wee, Andrew T S; Zojer, Egbert

    2014-01-01

    Phthalocyanines are an important class of organic semiconductors and, thus, their interfaces with metals are both of fundamental and practical relevance. In the present contribution we provide a combined theoretical and experimental study, in which we show that state-of-the-art quantum-mechanical simulations are nowadays capable of treating most properties of such interfaces in a quantitatively reliable manner. This is shown for Cu-phthalocyanine (CuPc) and Zn-phthalocyanine (ZnPc) on Au(111) and Ag(111) surfaces. Using a recently developed approach for efficiently treating van der Waals (vdW) interactions at metal/organic interfaces, we calculate adsorption geometries in excellent agreement with experiments. With these geometries available, we are then able to accurately describe the interfacial electronic structure arising from molecular adsorption. We find that bonding is dominated by vdW forces for all studied interfaces. Concomitantly, charge rearrangements on Au(111) are exclusively due to Pauli pushback. On Ag(111), we additionally observe charge transfer from the metal to one of the spin-channels associated with the lowest unoccupied π-states of the molecules. Comparing the interfacial density of states with our ultraviolet photoelectron spectroscopy (UPS) experiments, we find that the use of a hybrid functionals is necessary to obtain the correct order of the electronic states. PMID:24609018

  1. [Studies on high temperature oxidation of noble metal alloys for dental use (I). Formation of oxide layers and oxidation rate (author's transl)].

    PubMed

    Ohno, H

    1976-11-01

    Eight commercial and two experimental alloys were examined. The cast specimens were polished metallographically and oxidized at 700 degrees and 800 degrees C in air. An electron probe X-ray microanalyser and a microthermobalance were employed to investigate the oxidation behavior of the alloys. The results obtained were as follows: 1. The copper in the alloys was selectively oxidized and the scales formed on the alloys consisted of two layers, CuO overlying Cu2O. 2. The oxide particles in the internal oxidation zone (subscale) on the alloys containing only Cu as the base metal were Cu2O and on the alloys containing Zn, Cd, and Ni with Cu were ZnO, CdO, and NiO, respectively. 3. The size of the ZnO and CdO particles in the subscale increased with the penetration into the specimen. 4. The ZnO particles in the metal-subscale interface showed preferential precipitation at the grain boundaries. 5. When the oxide particles in the subscale did not develop remarkably, the oxidation rate at constant temperature conformed with the parabolic law. 6. In the 18 carat gold alloy, the oxidation rate at 800 degrees C was about 10 times that at 700 degrees C. 7. Owing to preferential oxidation of the Cu in the alloys, Cu concentration in the outer layer of the metal decreased remarkably and Au, Pt, Ag and Pd concentration increased. PMID:1069823

  2. Laser-assisted solar-cell metallization processing

    NASA Technical Reports Server (NTRS)

    Dutta, S.

    1984-01-01

    A photolytic metal deposition system using a focused continuous wave ultraviolet laser, a photolytic metal deposition system using a mask and ultraviolet flood illumination, and a pyrolytic metal deposition system using a focused continuous wave laser were studied. Fabrication of solar cells, as well as characterization to determine the effects of transient heat on solar cell junctions were investigated.

  3. Application of chitosan and its N-heterocyclic derivatives for preconcentration of noble metal ions and their determination using atomic absorption spectrometry.

    PubMed

    Azarova, Yu A; Pestov, A V; Ustinov, A Yu; Bratskaya, S Yu

    2015-12-10

    Chitosan and its N-heterocyclic derivatives N-2-(2-pyridyl)ethylchitosan (2-PEC), N-2-(4-pyridyl) ethylchitosan (4-PEC), and N-(5-methyl-4-imidazolyl) methylchitosan (IMC) have been applied in group preconcentration of gold, platinum, and palladium for subsequent determination by atomic absorption spectroscopy (AAS) in solutions with high background concentrations of iron and sodium ions. It has been shown that the sorption mechanism, which was elucidated by XPS, significantly influences the sorption capacity of materials, the efficiency of metal ions elution after preconcentration, and, as a result, the accuracy of metal determination by AAS. We have shown that native chitosan was not suitable for preconcentration of Au(III), if the elution step was used as a part of the analysis scheme. The group preconcentration of Au(III), Pd(II), and Pt(IV) with subsequent quantitative elution using 0.1M HCl/1M thiourea solution was possible only on IMC and 4-PEC. Application of IMC for analysis of the national standard quartz ore sample proved that gold could be accurately determined after preconcentration/elution with the recovery above 80%. PMID:26428172

  4. Laser-assisted solar cell metallization processing

    NASA Technical Reports Server (NTRS)

    Meier, D. L.

    1986-01-01

    The status of the laser-assisted solar cell metallization processing is described. Metallo-organic silver films were spun-on by argon ion laser beam pyrolysis. The metallo-organic decomposition (MOD) film was spun-on an evaporated Ti/Pd film to produce tood adhesion. In a maskless process, the argon ion laser writes the contact pattern. The film is then built up to obtain the required conductivity using conventional silverplating process. The Ti/Pd film in the field is chemically etched using the plated silver film as the mask. The width of the contact pattern is determined by the power of the laser. Widths as thin as 20 microns were obtained using 0.66 W of laser power. Cells fabricated with the 50 micron line widths of 4 ohm-cm floating zone (Fz) silicon-produced efficiencies of 16.6% (no passivation) which were equivalent to the best cells using conventional metallization/lithography and no passivation.

  5. The light-matter interaction of a single semiconducting AlGaN nanowire and noble metal Au nanoparticles in the sub-diffraction limit.

    PubMed

    Sivadasan, A K; Madapu, Kishore K; Dhara, Sandip

    2016-08-24

    Near field scanning optical microscopy (NSOM) is not only a tool for imaging of sub-diffraction limited objects but also a prominent characteristic tool for understanding the intrinsic properties of nanostructures. In order to understand light-matter interactions in the near field regime using a NSOM technique with an excitation of 532 nm (2.33 eV), we selected an isolated single semiconducting AlGaN nanowire (NW) of diameter ∼120 nm grown via a vapor liquid solid (VLS) mechanism along with a metallic Au nanoparticle (NP) catalyst. The role of electronic transitions from different native defect related energy states of AlGaN is discussed in understanding the NSOM images for the semiconducting NW. The effect of strong surface plasmon resonance absorption of an excitation laser on the NSOM images for Au NPs, involved in the VLS growth mechanism of NWs, is also observed. PMID:27511614

  6. Reducing the Cost and Preserving the Reactivity in Noble-Metal-Based Catalysts: Oxidation of CO by Pt and Al-Pt Alloy Clusters Supported on Graphene.

    PubMed

    Koizumi, Kenichi; Nobusada, Katsuyuki; Boero, Mauro

    2016-04-01

    The oxidation mechanisms of CO to CO2 on graphene-supported Pt and Pt-Al alloy clusters are elucidated by reactive dynamical simulations. The general mechanism evidenced is a Langmuir-Hinshelwood (LH) pathway in which O2 is adsorbed on the cluster prior to the CO oxidation. The adsorbed O2 dissociates into two atomic oxygen atoms thus promoting the CO oxidation. Auxiliary simulations on alloy clusters in which other metals (Al, Co, Cr, Cu, Fe, Ni) replace a Pt atom have pointed to the aluminum doped cluster as a special case. In the nanoalloy, the reaction mechanism for CO oxidation is still a LH pathway with an activation barrier sufficiently low to be overcome at room temperature, thus preserving the catalyst efficiency. This provides a generalizable strategy for the design of efficient, yet sustainable, Pt-based catalysts at reduced cost. PMID:26878836

  7. On the mechanisms of cation injection in conducting bridge memories: The case of HfO2 in contact with noble metal anodes (Au, Cu, Ag)

    NASA Astrophysics Data System (ADS)

    Saadi, M.; Gonon, P.; Vallée, C.; Mannequin, C.; Grampeix, H.; Jalaguier, E.; Jomni, F.; Bsiesy, A.

    2016-03-01

    Resistance switching is studied in HfO2 as a function of the anode metal (Au, Cu, and Ag) in view of its application to resistive memories (resistive random access memories, RRAM). Current-voltage (I-V) and current-time (I-t) characteristics are presented. For Au anodes, resistance transition is controlled by oxygen vacancies (oxygen-based resistive random access memory, OxRRAM). For Ag anodes, resistance switching is governed by cation injection (Conducting Bridge random access memory, CBRAM). Cu anodes lead to an intermediate case. I-t experiments are shown to be a valuable tool to distinguish between OxRRAM and CBRAM behaviors. A model is proposed to explain the high-to-low resistance transition in CBRAMs. The model is based on the theory of low-temperature oxidation of metals (Cabrera-Mott theory). Upon electron injection, oxygen vacancies and oxygen ions are generated in the oxide. Oxygen ions are drifted to the anode, and an interfacial oxide is formed at the HfO2/anode interface. If oxygen ion mobility is low in the interfacial oxide, a negative space charge builds-up at the HfO2/oxide interface. This negative space charge is the source of a strong electric field across the interfacial oxide thickness, which pulls out cations from the anode (CBRAM case). Inversely, if oxygen ions migration through the interfacial oxide is important (or if the anode does not oxidize such as Au), bulk oxygen vacancies govern resistance transition (OxRRAM case).

  8. Absence of Structural Impact of Noble Nanoparticles on P3HT:PCBM Blends for Plasmon-Enhanced Bulk-Heterojunction Organic Solar Cells Probed by Synchrotron GI-XRD.

    PubMed

    Lilliu, Samuele; Alsari, Mejd; Bikondoa, Oier; Emyr Macdonald, J; Dahlem, Marcus S

    2015-01-01

    The incorporation of noble metal nanoparticles, displaying localized surface plasmon resonance, in the active area of donor-acceptor bulk-heterojunction organic photovoltaic devices is an industrially compatible light trapping strategy, able to guarantee better absorption of the incident photons and give an efficiency improvement between 12% and 38%. In the present work, we investigate the effect of Au and Ag nanoparticles blended with P3HT: PCBM on the P3HT crystallization dynamics by synchrotron grazing incidence X-ray diffraction. We conclude that the presence of (1) 80 nm Au, (2) mix of 5 nm, 50 nm, 80 nm Au, (3) 40 nm Ag, and (4) 10 nm, 40 nm, 60 nm Ag colloidal nanoparticles, at different concentrations below 0.3 wt% for Au and below 0.1% for Ag in P3HT: PCBM blends, does not affect the behaviour of the blends themselves. PMID:26030351

  9. Precious Metal Recovery from Fuel Cell MEA's

    SciTech Connect

    Lawrence Shore

    2004-04-25

    In 2003, Engelhard Corporation received a DOE award to develop a cost-effective, environmentally friendly approach to recover Pt from fuel cell membrane electrode assemblies (MEA’s). The most important precious metal used in fuel cells is platinum, but ruthenium is also added to the anode electrocatalyst if CO is present in the hydrogen stream. As part of the project, a large number of measurements of Pt and Ru need to be made. A low-cost approach to measuring Pt is using the industry standard spectrophotometric measurement of Pt complexed with stannous chloride. The interference of Ru can be eliminated by reading the Pt absorbance at 450 nm. Spectrophotometric methods for measuring Ru, while reported in the literature, are not as robust. This paper will discuss the options for measuring Pt and Ru using the method of UV-VIS spectrophotometry

  10. Modeling the Noble Metal/TiO2 (110) Interface with Hybrid DFT Functionals: A Periodic Electrostatic Embedded Cluster Model Study

    SciTech Connect

    Ammal, Salai Cheettu; Heyden, Andreas

    2010-10-26

    The interaction of Aun and Ptn (n=2,3) clusters with the stoichiometric and partially reduced rutile TiO2 (110) surfaces has been investigated using periodic slab and periodic electrostatic embedded cluster models. Compared to Au clusters, Pt clusters interact strongly with both stoichiometric and reduced TiO2 (110) surfaces and are able to enhance the reducibility of the TiO2 (110) surface, i.e., reduce the oxygen vacancy formation energy. The focus of this study is the effect of Hartree–Fock exchange on the description of the strength of chemical bonds at the interface of Au/Pt clusters and the TiO2 (110) surface. Hartree–Fock exchange helps describing the changes in the electronic structures due to metal cluster adsorption as well as their effect on the reducibility of the TiO2 surface. Finally, the performance of periodic embedded cluster models has been assessed by calculating the Pt adsorption and oxygen vacancy formation energies. Cluster models, together with hybrid PBE0 functional, are able to efficiently compute reasonable electronic structures of the reduced TiO2 surface and predict charge localization at surface oxygen vacancies, in agreement with the experimental data, that significantly affect computed adsorption and reaction energies.

  11. Comparing Ullmann Coupling on Noble Metal Surfaces: On-Surface Polymerization of 1,3,6,8-Tetrabromopyrene on Cu(111) and Au(111).

    PubMed

    Pham, Tuan Anh; Song, Fei; Nguyen, Manh-Thuong; Li, Zheshen; Studener, Florian; Stöhr, Meike

    2016-04-18

    The on-surface polymerization of 1,3,6,8-tetrabromopyrene (Br4 Py) on Cu(111) and Au(111) surfaces under ultrahigh vacuum conditions was investigated by a combination of scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations. Deposition of Br4 Py on Cu(111) held at 300 K resulted in a spontaneous debromination reaction, generating the formation of a branched coordination polymer network stabilized by C-Cu-C bonds. After annealing at 473 K, the C-Cu-C bonds were converted to covalent C-C bonds, leading to the formation of a covalently linked molecular network of short oligomers. In contrast, highly ordered self-assembled two-dimensional (2D) patterns stabilized by both Br-Br halogen and Br-H hydrogen bonds were observed upon deposition of Br4 Py on Au(111) held at 300 K. Subsequent annealing of the sample at 473 K led to a dissociation of the C-Br bonds and the formation of disordered metal-coordinated molecular networks. Further annealing at 573 K resulted in the formation of covalently linked disordered networks. Importantly, we found that the chosen substrate not only plays an important role as catalyst for the Ullmann reaction, but also influences the formation of different types of intermolecular bonds and thus, determines the final polymer network morphology. DFT calculations further support our experimental findings obtained by STM and XPS and add complementary information on the reaction pathway of Br4 Py on the different substrates. PMID:26879625

  12. Testing Metal Chlorides For Use In Sodium-Cell Cathodes

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Attia, Alan I.; Halpert, Gerald

    1992-01-01

    Cyclic voltammetric curves of transition-metal wires in molten NaAlCl4 electrolyte used to eliminate suitability of transition metals as cathodes in sodium cells. Cyclic voltammetry used in conjunction with measurement of galvanostatic polarization curves determines whether given metal chloride suitable as cathode material in such cell. Cells useful in such high-energy-density and high-power-density applications as leveling loads on electric-power plants, supplying power to electric ground vehicles, and aerospace applications.

  13. The Fundamental Role of Nano-Scale Oxide Films in the Oxidation of Hydrogen and the Reduction of Oxygen on Noble Metal Electrocatalysts

    SciTech Connect

    Digby Macdonald

    2005-04-15

    The derivation of successful fuel cell technologies requires the development of more effective, cheaper, and poison-resistant electrocatalysts for both the anode (H{sub 2} oxidation in the presence of small amounts of CO from the reforming of carbonaceous fuels) and the cathode (reduction of oxygen in the presence of carried-over fuel). The proposed work is tightly focused on one specific aspect of electrocatalysis; the fundamental role(s) played by nanoscale (1-2 nm thick) oxide (''passive'') films that form on the electrocatalyst surfaces above substrate-dependent, critical potentials, on charge transfer reactions, particularly at elevated temperatures (25 C < T < 200 C). Once the role(s) of these films is (are) adequately understood, we will then use this information to specify, at the molecular level, optimal properties of the passive layer for the efficient electrocatalysis of the oxygen reduction reaction.

  14. Metal decoration of exfoliated graphite nanoplatelets (xGnP) for fuel cell application

    NASA Astrophysics Data System (ADS)

    Do, In-Hwan

    The synthesis and characterization of metal particles at nanometer length scale has been the object of much research in modern nanotechnology due to their great impact on new nanoscale scientific and technological applications. Nanoscale metal particles possess unique optical, thermal, electronic, magnetic properties and chemical reactivity since the size of the resulting materials is on the same order as the fundamental interaction distances that give rise to physical properties and thus shows the quantum size effect which is not observed in their bulky status. Therefore, an effective synthetic method is required to obtain uniform small metal powders with controlled size and a narrow size distribution and also to produce nanocomposites consisting of either metals or metal oxides supported on carbons or metals dispersed on metal oxides for a variety of applications in chemical industries, automobiles, energy and power generating devices, hydrogen economy as well as for sensors. On the other hand, although their excellent mechanical, thermal and electrical conductivity, excellent corrosion and oxidation resistance, and low impurity levels which are required as a breakthrough material to increase performance of next generation energy devices, exfoliated graphite nanoplatelet (xGnP) has not been studied as deeply as recent new nano structured carbon materials such as single wall carbon nanotubes (SWNT), multi-wall carbon nanotubes (MWNT), carbon nanohorn (CNH), graphite nanofiber (GNF), and fullerenes. In addition, xGnP is much cost-effective compared to other carbon nanostructures. Hence, it is interesting to evaluate the applicability of xGnP as a support material for fuel cell which is one of promising energy devices for the future. In this research, a new simple, efficient and economic way is presented for the synthesis of noble metal nanoparticles such as Pt, Ru, Pd, etc and their deposition on various carbon supports and metal oxides via microwave heating in the

  15. Opacity and conductivity measurements in noble gases at conditions of planetary and stellar interiors.

    PubMed

    McWilliams, R Stewart; Dalton, D Allen; Konôpková, Zuzana; Mahmood, Mohammad F; Goncharov, Alexander F

    2015-06-30

    The noble gases are elements of broad importance across science and technology and are primary constituents of planetary and stellar atmospheres, where they segregate into droplets or layers that affect the thermal, chemical, and structural evolution of their host body. We have measured the optical properties of noble gases at relevant high pressures and temperatures in the laser-heated diamond anvil cell, observing insulator-to-conductor transformations in dense helium, neon, argon, and xenon at 4,000-15,000 K and pressures of 15-52 GPa. The thermal activation and frequency dependence of conduction reveal an optical character dominated by electrons of low mobility, as in an amorphous semiconductor or poor metal, rather than free electrons as is often assumed for such wide band gap insulators at high temperatures. White dwarf stars having helium outer atmospheres cool slower and may have different color than if atmospheric opacity were controlled by free electrons. Helium rain in Jupiter and Saturn becomes conducting at conditions well correlated with its increased solubility in metallic hydrogen, whereas a deep layer of insulating neon may inhibit core erosion in Saturn. PMID:26080401

  16. Opacity and conductivity measurements in noble gases at conditions of planetary and stellar interiors

    PubMed Central

    McWilliams, R. Stewart; Dalton, D. Allen; Konôpková, Zuzana; Mahmood, Mohammad F.; Goncharov, Alexander F.

    2015-01-01

    The noble gases are elements of broad importance across science and technology and are primary constituents of planetary and stellar atmospheres, where they segregate into droplets or layers that affect the thermal, chemical, and structural evolution of their host body. We have measured the optical properties of noble gases at relevant high pressures and temperatures in the laser-heated diamond anvil cell, observing insulator-to-conductor transformations in dense helium, neon, argon, and xenon at 4,000–15,000 K and pressures of 15–52 GPa. The thermal activation and frequency dependence of conduction reveal an optical character dominated by electrons of low mobility, as in an amorphous semiconductor or poor metal, rather than free electrons as is often assumed for such wide band gap insulators at high temperatures. White dwarf stars having helium outer atmospheres cool slower and may have different color than if atmospheric opacity were controlled by free electrons. Helium rain in Jupiter and Saturn becomes conducting at conditions well correlated with its increased solubility in metallic hydrogen, whereas a deep layer of insulating neon may inhibit core erosion in Saturn. PMID:26080401

  17. Noble gas trapping by laboratory carbon condensates

    NASA Technical Reports Server (NTRS)

    Niemeyer, S.; Marti, K.

    1982-01-01

    Trapping of noble gases by carbon-rich matter was investigated by synthesizing carbon condensates in a noble gas atmosphere. Laser evaporation of a solid carbon target yielded submicron grains which proved to be efficient noble gas trappers (Xe distribution coefficients up to 13 cu cm STP/g-atm). The carbon condensates are better noble gas trappers than previously reported synthetic samples, except one, but coefficients inferred for meteoritic acid-residues are still orders of magnitude higher. The trapped noble gases are loosely bound and elementally strongly fractionated, but isotopic fractionations were not detected. Although this experiment does not simulate nebular conditions, the results support the evidence that carbon-rich phases in meteorites may be carriers of noble gases from early solar system reservoirs. The trapped elemental noble gas fractionations are remarkably similar to both those inferred for meteorites and those of planetary atmospheres for earth, Mars and Venus.

  18. Electrochemical cell utilizing molten alkali metal electrode-reactant

    DOEpatents

    Virkar, Anil V.; Miller, Gerald R.

    1983-11-04

    An improved electrochemical cell comprising an additive-modified molten alkali metal electrode-reactant and/or electrolyte is disclosed. Various electrochemical cells employing a molten alkali metal, e.g., sodium, electrode in contact with a cationically conductive ceramic membrane experience a lower resistance and a lower temperature coefficient of resistance whenever small amounts of selenium are present at the interface of the electrolyte and the molten alkali metal. Further, cells having small amounts of selenium present at the electrolyte-molten metal interface exhibit less degradation of the electrolyte under long term cycling conditions.

  19. Self-discharge in bimetallic cells containing alkali metal

    NASA Technical Reports Server (NTRS)

    Foster, M. S.; Hesson, J. C.; Shimotake, H.

    1969-01-01

    Theoretical analysis of thermally regenerative bimetallic cells with alkali metal anodes shows a relation between the current drawn and the rate of discharge under open-circuit conditions. The self-discharge rate of the cell is due to the dissolution and ionization of alkali metal atoms in the fused-salt electrolyte

  20. Cell Surface-based Sensing with Metallic Nanoparticles

    PubMed Central

    Jiang, Ziwen; Rotello, Vincent M.

    2015-01-01

    Metallic nanoparticles provide versatile scaffolds for biosensing applications. In this review, we focus on the use of metallic nanoparticles for cell surface sensings. Examples of the use of both specific recognition and array-based “chemical nose” approaches to cell surface sensing will be discussed. PMID:25853985

  1. A new method of metallization for silicon solar cells

    NASA Technical Reports Server (NTRS)

    Macha, M.

    1979-01-01

    The new metallization process based on Mo-Sn system was studied. The reaction mechanism of MoO3 and its mixture with Sn was examined. The basic ink composition was modified in order to obtain a low ohmic contact to the cell. The electrical characteristics of the cells were comparable with the existing metallization processes. However, in comparison with the standard processes using silver as the contacting metal, the saving obtained by the use of the new process was substantial.

  2. Low-field MRI of laser polarized noble gas.

    PubMed

    Tseng, C H; Wong, G P; Pomeroy, V R; Mair, R W; Hinton, D P; Hoffmann, D; Stoner, R E; Hersman, F W; Cory, D G; Walsworth, R L

    1998-10-26

    NMR images of laser polarized 3He gas were obtained at 21 G using a simple, homebuilt instrument. At such low fields magnetic resonance imaging (MRI) of thermally polarized samples (e.g., water) is not practical. Low-field noble gas MRI has novel scientific, engineering, and medical applications. Examples include portable systems for diagnosis of lung disease, as well as imaging of voids in porous media and within metallic systems. PMID:11543589

  3. Low-field MRI of laser polarized noble gas

    NASA Technical Reports Server (NTRS)

    Tseng, C. H.; Wong, G. P.; Pomeroy, V. R.; Mair, R. W.; Hinton, D. P.; Hoffmann, D.; Stoner, R. E.; Hersman, F. W.; Cory, D. G.; Walsworth, R. L.

    1998-01-01

    NMR images of laser polarized 3He gas were obtained at 21 G using a simple, homebuilt instrument. At such low fields magnetic resonance imaging (MRI) of thermally polarized samples (e.g., water) is not practical. Low-field noble gas MRI has novel scientific, engineering, and medical applications. Examples include portable systems for diagnosis of lung disease, as well as imaging of voids in porous media and within metallic systems.

  4. PROCESS FOR REMOVING NOBLE METALS FROM URANIUM

    DOEpatents

    Knighton, J.B.

    1961-01-31

    A pyrometallurgical method is given for purifying uranium containing ruthenium and palladium. The uranium is disintegrated and oxidized by exposure to air and then the ruthenium and palladium are extracted from the uranium with molten zinc.

  5. MOCVD of multimetal and noble metal films

    NASA Astrophysics Data System (ADS)

    Endle, James Patrick

    2000-11-01

    Carbon content in TiN films produced with tetrakis(dimethylamino)titanium (TDMAT) and methylhydrazine or dimethylhydrazine can be controlled at or below 10% with a N/Ti ratio of ˜1.3 at growth temperatures between 573 and 723 K. Post-dosing either hydrazine on a CVD TiN film results in additional N-Ti bonds, indicating a surface reaction between the two precursors occurs. Co-dosing hydrazine-like compounds with larger alkyl ligands than methyl resulted in additional carbon incorporation in the TiN film. A growth system, consisting of a load lock and growth chamber, and a precursor pyrolysis system were designed and built to study metalorganic chemical vapor deposition. Addition of a bubbler and a direct liquid injection system allowed for the vaporization of solid and liquid precursors and solutions of multiple precursors. A precursor pyrolysis system was designed for high and low vapor pressure precursors and high carrier gas flow rates. The systems were used to study (Al,Ti)N and Ir film growth. (Al,Ti)N was used as a template to study the incorporation of elements into a multimetal chemical vapor deposited film using NH3 and a DLI solution of TDMAT and the tris(dimethylarnino)alane dimer (TDMAA) in toluene-NH 3 significantly decreases the decomposition temperature of both precursors. Carbon was reduced by increasing the NH3 partial pressure, and the Al incorporation was increased by increasing the TDMAA/TDMAT ratio in the DLI solution. Exposure to ambient resulted in significant oxygen incorporation and the removal of carbon and nitrogen from the (AI,Ti)N film. Conformal (AI,Ti)N films were produced at 450 K in the presence of NH3 and at 550 K without NH3. The role of O2 in Ir film growth was studied with the newly designed equipment. O2 significantly decreases the decomposition temperature of (MeCp)Ir(COD) below 425 K by preventing a carbonaceous build-up on the iridium film. By decreasing the oxygen partial pressure, the island nucleation and coalescence times were significantly increased, and step coverage and roughness were improved. The iridium crystal orientation was nearly random on the SiO2 substrate and strongly (111) oriented on the TiN(111) substrate. Conformal films (step coverage ≈ 1) were produced at 550 K on both substrates.

  6. Molybdenum-tin as a solar cell metallization system

    NASA Astrophysics Data System (ADS)

    Boyd, D. W.; Radics, C.

    The operations of solar cell manufacture are briefly examined. The formation of reliable, ohmic, low-loss, and low-cost metal contacts on solar cells is a critical process step in cell manufacturing. In a commonly used process, low-cost metallization is achieved by screen printing a metal powder-glass frit ink on the surface of the Si surface and the conductive metal powder. A technique utilizing a molybdenum-tin alloy for the metal contacts appears to lower the cost of materials and to reduce process complexity. The ink used in this system is formulated from MoO3 with Sn powder and a trace amount of titanium resonate. Resistive losses of the resulting contacts are low because the ink contains no frit. The MoO3 is finally melted and reduced in forming gas (N2+H2) to Mo metal. The resulting Mo is highly reactive which facilitates the Mo-Si bonding.

  7. Molybdenum-tin as a solar cell metallization system

    NASA Technical Reports Server (NTRS)

    Boyd, D. W.; Radics, C.

    1981-01-01

    The operations of solar cell manufacture are briefly examined. The formation of reliable, ohmic, low-loss, and low-cost metal contacts on solar cells is a critical process step in cell manufacturing. In a commonly used process, low-cost metallization is achieved by screen printing a metal powder-glass frit ink on the surface of the Si surface and the conductive metal powder. A technique utilizing a molybdenum-tin alloy for the metal contacts appears to lower the cost of materials and to reduce process complexity. The ink used in this system is formulated from MoO3 with Sn powder and a trace amount of titanium resonate. Resistive losses of the resulting contacts are low because the ink contains no frit. The MoO3 is finally melted and reduced in forming gas (N2+H2) to Mo metal. The resulting Mo is highly reactive which facilitates the Mo-Si bonding.

  8. Cell surface engineering of microorganisms towards adsorption of heavy metals.

    PubMed

    Li, Peng-Song; Tao, Hu-Chun

    2015-06-01

    Heavy metal contamination has become a worldwide environmental concern due to its toxicity, non-degradability and food-chain bioaccumulation. Conventional physical and chemical treatment methods for heavy metal removal have disadvantages such as cost-intensiveness, incomplete removal, secondary pollution and the lack of metal specificity. Microbial biomass-based biosorption is one of the approaches gaining increasing attention because it is effective, cheap, and environmental friendly and can work well at low concentrations. To enhance the adsorption properties of microbial cells to heavy metal ions, the cell surface display of various metal-binding proteins/peptides have been performed using a cell surface engineering approach. The surface engineering of Gram-negative bacteria, Gram-positive bacteria and yeast towards the adsorption of heavy metals are reviewed in this article. The problems and future perspectives of this technology are discussed. PMID:23915280

  9. Determination of natural in vivo noble-gas concentrations in human blood.

    PubMed

    Tomonaga, Yama; Brennwald, Matthias S; Livingstone, David M; Tomonaga, Geneviève; Kipfer, Rolf

    2014-01-01

    Although the naturally occurring atmospheric noble gases He, Ne, Ar, Kr, and Xe possess great potential as tracers for studying gas exchange in living beings, no direct analytical technique exists for simultaneously determining the absolute concentrations of these noble gases in body fluids in vivo. In this study, using human blood as an example, the absolute concentrations of all stable atmospheric noble gases were measured simultaneously by combining and adapting two analytical methods recently developed for geochemical research purposes. The partition coefficients determined between blood and air, and between blood plasma and red blood cells, agree with values from the literature. While the noble-gas concentrations in the plasma agree rather well with the expected solubility equilibrium concentrations for air-saturated water, the red blood cells are characterized by a distinct supersaturation pattern, in which the gas excess increases in proportion to the atomic mass of the noble-gas species, indicating adsorption on to the red blood cells. This study shows that the absolute concentrations of noble gases in body fluids can be easily measured using geochemical techniques that rely only on standard materials and equipment, and for which the underlying concepts are already well established in the field of noble-gas geochemistry. PMID:24811123

  10. Determination of Natural In Vivo Noble-Gas Concentrations in Human Blood

    PubMed Central

    Tomonaga, Yama; Brennwald, Matthias S.; Livingstone, David M.; Tomonaga, Geneviève; Kipfer, Rolf

    2014-01-01

    Although the naturally occurring atmospheric noble gases He, Ne, Ar, Kr, and Xe possess great potential as tracers for studying gas exchange in living beings, no direct analytical technique exists for simultaneously determining the absolute concentrations of these noble gases in body fluids in vivo. In this study, using human blood as an example, the absolute concentrations of all stable atmospheric noble gases were measured simultaneously by combining and adapting two analytical methods recently developed for geochemical research purposes. The partition coefficients determined between blood and air, and between blood plasma and red blood cells, agree with values from the literature. While the noble-gas concentrations in the plasma agree rather well with the expected solubility equilibrium concentrations for air-saturated water, the red blood cells are characterized by a distinct supersaturation pattern, in which the gas excess increases in proportion to the atomic mass of the noble-gas species, indicating adsorption on to the red blood cells. This study shows that the absolute concentrations of noble gases in body fluids can be easily measured using geochemical techniques that rely only on standard materials and equipment, and for which the underlying concepts are already well established in the field of noble-gas geochemistry. PMID:24811123

  11. Development of an all-metal thick film cost affective metallization system for solar cells

    NASA Technical Reports Server (NTRS)

    Ross, B.

    1981-01-01

    An economical thick film solar cell contact for high volume production of low cost silicon solar array modules was investigated. All metal screenable pastes using base metals were studied. Solar cells with junction depths varying by a factor of 3.3, with and without a deposited oxide coating were used. Cells were screened and fired by a two step firing process. Adhesion and metallurgical results are unsatisfactory. No electrical information is obtained due to inadequate contact adhesion.

  12. Electrocatalyst advances for hydrogen oxidation in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stonehart, P.

    1984-01-01

    The important considerations that presently exist for achieving commercial acceptance of fuel cells are centered on cost (which translates to efficiency) and lifetime. This paper addresses the questions of electrocatalyst utilization within porous electrode structures and the preparation of low-cost noble metal electrocatalyst combinations with extreme dispersions of the metal. Now that electrocatalyst particles can be prepared with dimensions of 10 A, either singly or in alloy combinations, a very large percentage of the noble metal atoms in a crystallite are available for reaction. The cost savings for such electrocatalysts in the present commercially driven environment are considerable.

  13. Fuel cell with metal screen flow-field

    DOEpatents

    Wilson, Mahlon S.; Zawodzinski, Christine

    2001-01-01

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.

  14. Fuel cell with metal screen flow-field

    DOEpatents

    Wilson, M.S.; Zawodzinski, C.

    1998-08-25

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field there between for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells. 11 figs.

  15. Fuel cell with metal screen flow-field

    DOEpatents

    Wilson, Mahlon S.; Zawodzinski, Christine

    1998-01-01

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.

  16. A metal-organic framework-derived bifunctional oxygen electrocatalyst

    NASA Astrophysics Data System (ADS)

    Xia, Bao Yu; Yan, Ya; Li, Nan; Wu, Hao Bin; Lou, Xiong Wen (David); Wang, Xin

    2016-01-01

    Oxygen electrocatalysis is of great importance for many energy storage and conversion technologies, including fuel cells, metal-air batteries and water electrolysis. Replacing noble metal-based electrocatalysts with highly efficient and inexpensive non-noble metal-based oxygen electrocatalysts is critical for the practical applications of these technologies. Here we report a general approach for the synthesis of hollow frameworks of nitrogen-doped carbon nanotubes derived from metal-organic frameworks, which exhibit higher electrocatalytic activity and stability for oxygen reduction and evolution than commercial Pt/C electrocatalysts. The remarkable electrochemical properties are mainly attributed to the synergistic effect from chemical compositions and the robust hollow structure composed of interconnected crystalline nitrogen-doped carbon nanotubes. The presented strategy for controlled design and synthesis of metal-organic framework-derived functional nanomaterials offers prospects in developing highly active electrocatalysts in electrochemical energy devices.

  17. Development of an all-metal thick film cost effective metallization system for solar cells

    NASA Technical Reports Server (NTRS)

    Ross, B.; Parker, J.

    1983-01-01

    Improved thick film solar cell contacts for the high volume production of low cost silicon solar arrays are needed. All metal screenable pastes made from economical base metals and suitable for application to low to high conductivity silicon were examined. Silver fluoride containing copper pastes and fluorocarbon containing copper pastes were discussed. The effect of hydrogen on the adhesion of metals to silicon was investigated. A cost analysis of various paste materials is provided.

  18. Stabilizing metal components in electrodes of electrochemical cells

    DOEpatents

    Spengler, Charles J.; Ruka, Roswell J.

    1989-01-01

    Disclosed is a method of reducing the removal or transfer into a gas phase of a current carrying metal in an apparatus, such as an electrochemical cell 2 having a porous fuel electrode 6 containing metal particles 11, where the metal is subject to removal or transfer into a gaseous phase, the method characterized in that (1) a metal organic compound that decomposes to form an electronically conducting oxide coating when heated is applied to the metal and porous electrode, and (2) the compound on the metal is then heated to a temperature sufficient to decompose the compound into an oxide coating 13 by increasing the temperature at a rate that is longer than 1 hour between room temperature and 600.degree. C., resulting in at least one continuous layer 13, 14 of the oxide coating on the metal.

  19. Back contact to film silicon on metal for photovoltaic cells

    DOEpatents

    Branz, Howard M.; Teplin, Charles; Stradins, Pauls

    2013-06-18

    A crystal oriented metal back contact for solar cells is disclosed herein. In one embodiment, a photovoltaic device and methods for making the photovoltaic device are disclosed. The photovoltaic device includes a metal substrate with a crystalline orientation and a heteroepitaxial crystal silicon layer having the same crystal orientation of the metal substrate. A heteroepitaxial buffer layer having the crystal orientation of the metal substrate is positioned between the substrate and the crystal silicon layer to reduce diffusion of metal from the metal foil into the crystal silicon layer and provide chemical compatibility with the heteroepitaxial crystal silicon layer. Additionally, the buffer layer includes one or more electrically conductive pathways to electrically couple the crystal silicon layer and the metal substrate.

  20. Environmental tests of metallization systems for terrestrial photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Alexander, P., Jr.

    1985-01-01

    Seven different solar cell metallization systems were subjected to temperature cycling tests and humidity tests. Temperature cycling excursions were -50 deg C to 150 deg C per cycle. Humidity conditions were 70 deg C at 98% relative humidity. The seven metallization systems were: Ti/Ag, Ti/Pd/Ag, Ti/Pd/Cu, Ni/Cu, Pd/Ni/Solder, Cr/Pd/Ag, and thick film Ag. All metallization systems showed a slight to moderate decrease in cell efficiencies after subjection to 1000 temperature cycles. Six of the seven metallization systems also evidenced slight increases in cell efficiencies after moderate numbers of cycles, generally less than 100 cycles. The copper based systems showed the largest decrease in cell efficiencies after temperature cycling. All metallization systems showed moderate to large decreases in cell efficiencies after 123 days of humidity exposure. The copper based systems again showed the largest decrease in cell efficiencies after humidity exposure. Graphs of the environmental exposures versus cell efficiencies are presented for each metallization system, as well as environmental exposures versus fill factors or series resistance.

  1. FIB/SEM cell sectioning for intracellular metal granules characterization

    NASA Astrophysics Data System (ADS)

    Milani, Marziale; Brundu, Claudia; Santisi, Grazia; Savoia, Claudio; Tatti, Francesco

    2009-05-01

    Focused Ion Beams (FIBs) provide a cross-sectioning tool for submicron dissection of cells and subcellular structures. In combination with Scanning Electron Microscope (SEM), FIB provides complementary morphological information, that can be further completed by EDX (Energy Dispersive X-ray Spectroscopy). This study focus onto intracellular microstructures, particularly onto metal granules (typically Zn, Cu and Fe) and on the possibility of sectioning digestive gland cells of the terrestrial isopod P. scaber making the granules available for a compositional analysis with EDX. Qualitative and quantitative analysis of metal granules size, amount and distribution are performed. Information is made available of the cellular storing pattern and, indirectly, metal metabolism. The extension to human level is of utmost interest since some pathologies of relevance are metal related. Apart from the common metal-overload-diseases (hereditary hemochromatosis, Wilson's and Menkes disease) it has been demonstrated that metal in excess can influence carcinogenesis in liver, kidney and breast. Therefore protocols will be established for the observation of mammal cells to improve our knowledge about the intracellular metal amount and distribution both in healthy cells and in those affected by primary or secondary metal overload or depletion.

  2. Positive electrode current collector for liquid metal cells

    DOEpatents

    Shimotake, Hiroshi; Bartholme, Louis G.

    1984-01-01

    A current collector for the positive electrode of an electrochemical cell with a positive electrode including a sulfide. The cell also has a negative electrode and a molten salt electrolyte including halides of a metal selected from the alkali metals and the alkaline earth metals in contact with both the positive and negative electrodes. The current collector has a base metal of copper, silver, gold, aluminum or alloys thereof with a coating thereon of iron, nickel, chromium or alloys thereof. The current collector when subjected to cell voltage forms a sulfur-containing compound on the surface thereby substantially protecting the current collector from further attack by sulfur ions during cell operation. Both electroless and electrolytic processes may be used to deposit coatings.

  3. Positive-electrode current collector for liquid-metal cells

    DOEpatents

    Shimotake, H.; Bartholme, L.G.

    1982-09-27

    A current collector for the positive electrode of an electrochemical cell with a positive electrode including a sulfide. The cell also has a negative electrode and a molten salt electrolyte including halides of a metal selected from the alkali metals and the alkaline earth metals in contact with both the positive and negative electrodes. The current collector has a base metal of copper, silver, gold, aluminum or alloys thereof with a coating thereon of iron, nickel, chromium or alloys thereof. The current collector when subjected to cell voltage forms a sulfur-containing compound on the surface thereby substantially protecting the current collector from further attack by sulfur ions during cell operation. Both electroless and electrolytic processes may be used to deposit coatings.

  4. Highly Dispersed Metal Catalyst for Fuel Cell Electrodes

    SciTech Connect

    2009-03-01

    This factsheet describes a study that will bring industrial catalyst experience to fuel cell research. Specifically, industrial catalysts, such as those used in platforming, utilize precious metal platinum as an active component in a finely dispersed form.

  5. Metal-air cell with ion exchange material

    SciTech Connect

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2015-08-25

    Embodiments of the invention are related to anion exchange membranes used in electrochemical metal-air cells in which the membranes function as the electrolyte material, or are used in conjunction with electrolytes such as ionic liquid electrolytes.

  6. Electrocatalyst for alcohol oxidation in fuel cells

    DOEpatents

    Adzic, Radoslav R.; Marinkovic, Nebojsa S.

    2001-01-01

    Binary and ternary electrocatalysts are provided for oxidizing alcohol in a fuel cell. The binary electrocatalyst includes 1) a substrate selected from the group consisting of NiWO.sub.4 or CoWO.sub.4 or a combination thereof, and 2) Group VIII noble metal catalyst supported on the substrate. The ternary electrocatalyst includes 1) a substrate as described above, and 2) a catalyst comprising Group VIII noble metal, and ruthenium oxide or molybdenum oxide or a combination thereof, said catalyst being supported on said substrate.

  7. Effects of metal ions on fibroblasts and spiral ganglion cells.

    PubMed

    Paasche, G; Ceschi, P; Löbler, M; Rösl, C; Gomes, P; Hahn, A; Rohm, H W; Sternberg, K; Lenarz, T; Schmitz, K-P; Barcikowski, S; Stöver, T

    2011-04-01

    Degeneration of spiral ganglion cells (SGC) after deafness and fibrous tissue growth around the electrode carrier after cochlear implantation are two of the major challenges in current cochlear implant research. Metal ions are known to possess antimicrobial and antiproliferative potential. The use of metal ions could therefore provide a way to reduce tissue growth around the electrode array after cochlear implantation. Here, we report on in vitro experiments with different concentrations of metal salts with antiproliferative and toxic effects on fibroblasts, PC-12 cells, and freshly isolated spiral ganglion cells, the target cells for electrical stimulation by a cochlear implant. Standard cell lines (NIH/3T3 and L-929 fibroblasts and PC-12 cells) and freshly isolated SGC were incubated with concentrations of metal ions between 0.3 μmol/liter and 10 mmol/liter for 48 hr. Cell survival was investigated by neutral red uptake, CellQuantiBlue assay, or counting of stained surviving neurons. Silver ions exhibited distinct thresholds for proliferating and confluent cells. For zinc ions, the effective concentration was lower for fibroblasts than for PC-12 cells. SGC showed comparable thresholds for reduced cell survival not only for silver and zinc ions but also for copper(II) ions, indicating that these ions might be promising for reducing tissue growth on the surface of CI electrode arrays. These effects were also observed when combinations of two of these ions were investigated. PMID:21312225

  8. Electrochemical cell having an alkali-metal-nitrate electrode

    DOEpatents

    Roche, M.F.; Preto, S.K.

    1982-06-04

    A power-producing secondary electrochemical cell includes a molten alkali metal as the negative-electrode material and a molten-nitrate salt as the positive-electrode material. The molten material in the respective electrodes are separated by a solid barrier of alkali-metal-ion conducting material. A typical cell includes active materials of molten sodium separated from molten sodium nitrate and other nitrates in mixture by a layer of sodium ..beta..'' alumina.

  9. XFM of ``Trace Metals'' in Cultured Cells: Framing the Picture

    NASA Astrophysics Data System (ADS)

    Wolford, J.; Chishti, Y.; Ward, J.; Vogt, S.; Finney, L.

    2011-09-01

    Encouraged by our recent x-ray fluorescence microprobe analysis revealing subcellular metal relocation in two special cell types, we are working to identify the role of zinc and copper in these cells. In verifying that metal ion dynamics are not artifactual, particularly where some samples have been chemically fixed, a comparison of our past results with samples studied with cryofixation and immunofluorescence add validation to our previous findings. Our work demonstrating cryofixation in human microvascular endothelial cells and metallothionein immunofluorescence in stem cells is presented.

  10. Noble Gas Temperature Proxy for Climate Change

    EPA Science Inventory

    Noble gases in groundwater appear to offer a practical approach for quantitatively determining past surface air temperatures over recharge areas for any watershed. The noble gas temperature (NGT) proxy should then permit a paleothermometry of a region over time. This terrestria...

  11. Metal catalyst technique for texturing silicon solar cells

    DOEpatents

    Ruby, Douglas S.; Zaidi, Saleem H.

    2001-01-01

    Textured silicon solar cells and techniques for their manufacture utilizing metal sources to catalyze formation of randomly distributed surface features such as nanoscale pyramidal and columnar structures. These structures include dimensions smaller than the wavelength of incident light, thereby resulting in a highly effective anti-reflective surface. According to the invention, metal sources present in a reactive ion etching chamber permit impurities (e.g. metal particles) to be introduced into a reactive ion etch plasma resulting in deposition of micro-masks on the surface of a substrate to be etched. Separate embodiments are disclosed including one in which the metal source includes one or more metal-coated substrates strategically positioned relative to the surface to be textured, and another in which the walls of the reaction chamber are pre-conditioned with a thin coating of metal catalyst material.

  12. Recycled Cell Phones - A Treasure Trove of Valuable Metals

    USGS Publications Warehouse

    Sullivan, Daniel E.

    2006-01-01

    This U.S. Geological Survey (USGS) Fact Sheet examines the potential value of recycling the metals found in obsolete cell phones. Cell phones seem ubiquitous in the United States and commonplace throughout most of the world. There were approximately 1 billion cell phones in use worldwide in 2002. In the United States, the number of cell phone subscribers increased from 340,000 in 1985 to 180 million in 2004. Worldwide, cell phone sales have increased from slightly more than 100 million units per year in 1997 to an estimated 779 million units per year in 2005. Cell phone sales are projected to exceed 1 billion units per year in 2009, with an estimated 2.6 billion cell phones in use by the end of that year. The U.S. Environmental Protection Agency estimated that, by 2005, as many as 130 million cell phones would be retired annually in the United States. The nonprofit organization INFORM, Inc., anticipated that, by 2005, a total of 500 million obsolete cell phones would have accumulated in consumers' desk drawers, store rooms, or other storage, awaiting disposal. Typically, cell phones are used for only 1 1/2 years before being replaced. Less than 1 percent of the millions of cell phones retired and discarded annually are recycled. When large numbers of cell phones become obsolete, large quantities of valuable metals end up either in storage or in landfills. The amount of metals potentially recoverable would make a significant addition to total metals recovered from recycling in the United States and would supplement virgin metals derived from mining.

  13. Experimental Determination of the Partitioning Behavior of Noble Gases Between Carbonate and Silicate Liquids

    NASA Astrophysics Data System (ADS)

    Burnard, P.; Koga, K. T.

    2010-12-01

    weeks) between quench and analysis. The second stage was designed to extract noble gases by thermal decarbonation of the carbonate glass. The metal of the capsule itself was also measured, but this never contained any noble gas above blank levels. Our preliminary results show that the noble gases do not preferentially partition into carbonate liquids compared to silicate liquids: DHe(carbonate/silicate)=0.3-1.4 and DAr(carbonate/silicate)=0.15-0.17 (at 1 GPa) In a two phase carbonate - silicate system, the noble gases will essentially reside in the silicate portion of the system (particularly given that carbonatite liquids will represent a small volume fraction of the two phase magma). This partitioning behavior could nevertheless separate - decouple - noble gas isotope systematics from lithophile isotopes (Sr, Nd, Pb etc) as a significant fraction of these elements could partition into the carbonate phase while noble gases remain in the silicate portion of the magma. Further work investigating pressure, temperature and compositional effects on the noble gas partition coefficients is planned. References 1. Burnard, P., Toplis, M. J. and Medynski, S. (2010) Geochim. Cosmochim. Acta 74: 1672-1683.

  14. Nobel metal alloyed thin-films with optical properties on demand

    NASA Astrophysics Data System (ADS)

    Gong, Chen; Leite, Marina S.

    Metallic materials with tunable optical responses can enable the unprecedented control of optoelectronic and nanophotonic devices with enhanced performance, such as thin-film solar cells, metamaterials and metasurfaces for tunable absorbers and optical filters, among others. Here we present the alloying of noble metals, Ag, Au and Cu, to develop a novel class of material with optical response not achieved by pure metals. We fabricate binary mixtures with controlled chemical composition by co-sputtering. Ellipsometry and surface plasmon polariton coupling angle measurements are in excellent agreement when determining the real part of the dielectric function (ɛ1). Surprisingly, in some cases, a mixture provides a material with higher surface plasmon polariton quality factor than the corresponding pure metals. Our approach paves the way to implement metallic nanostructures with tunable absorption/transmission, overcoming the current limitation of the dielectric function of noble metals.

  15. Sorption of heavy metals by prepared bacterial cell surfaces

    SciTech Connect

    Churchill, S.A.; Walters, J.V.; Churchill, P.F.

    1995-10-01

    Prepared biomass from two Gram-negative and one Gram-positive bacterial strains was examined for single, binary, and quaternary mixtures of polyvalent metal cation binding to cell surfaces. The biosorption of {sub 24}Cr{sup 3+}, {sub 27}Co{sup 2+}, {sub 28}Ni{sup 2+}, and {sub 29}Cu{sup 2+} for each bacterial cell type was evaluated using a batch equilibrium method. The binding of each metal by all three bacterial cells could be described by the Freundlich sorption model. The isotherm binding constants suggest that E. coli cells are the most efficient at binding copper, chromium, and nickel; and M. luteus adsorbs cobalt most efficiently. The K-values for copper bound to P. aeruginosa and E. coli are > 2-fold and > 8-fold greater, respectively, than previous reported for intact cells. The general metal-affinity series observed was Cr{sup 3+} > Cu{sup 2+} > Ni{sup 2+} > Co{sup 2+}. There was a marked lower affinity of all biosorbents for Co{sup 2+} and Ni{sup 2+}. M. luteus and E. coli had a strong preference for Co{sup 2+} over Ni{sup 2+}. Metal-binding enhancement could be ascribed to increased cell barrier surface porosity to metal-bearing solutions.

  16. Metal oxide films on metal

    DOEpatents

    Wu, Xin D.; Tiwari, Prabhat

    1995-01-01

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  17. Practical anti-reflection coating for metal semiconductor solar cells

    NASA Technical Reports Server (NTRS)

    Yeh, Y.-C. M.; Stirn, R. J.

    1975-01-01

    The metal-semiconductor solar cell is a possible candidate for converting solar to electrical energy for terrestrial application. A method is given for obtaining optical parameters of practical antireflection coatings for the metal-semiconductor solar cell. This method utilizes the measured refractive index obtained from ellipsometry since the surface to be AR coated has a multilayer structure. Both the experimental results and theoretical calculation of optical parameters for Ta2O5 antireflection coatings on Au-GaAs and Au-GaAs(0.78)P(0.22) solar cells are presented for comparison.

  18. Monitoring metal concentrations in tissues and single cells using ultramicrosensors.

    PubMed Central

    Malinski, T; Grunfeld, S; Taha, Z; Tomboulian, P

    1994-01-01

    Intercellular and extracellular metal concentrations were measured using carbon fiber ultramicrosensors plated with mercury or with polymeric porphyrinic p-type semiconductors. Concentrations of unbound nickel and lead ions were studied within individual BC3H-1 myocytes, and H4-11-C3 rat hepatoma cells. Unbound ions are predominantly solvated inorganic ions not coordinated to biological cellular components. Fabrication of ultramicrosensors appropriate for the cells under investigation is described, including procedures for sharpening and waxing the microsensors in order to control the shape, area, and dimensions of the electroactive surface. Metal ion movement through cell membranes and intracellular ion diffusion in aorta tissue were studied. Images Figure 2. PMID:7843090

  19. Nanodisperse transition metal electrodes (NTME) for electrochemical cells

    DOEpatents

    Striebel, Kathryn A.; Wen, Shi-Jie

    2000-01-01

    Disclosed are transition metal electrodes for electrochemical cells using gel-state and solid-state polymers. The electrodes are suitable for use in primary and secondary cells. The electrodes (either negative electrode or positive electrode) are characterized by uniform dispersion of the transition metal at the nanoscale in the polymer. The transition metal moiety is structurally amorphous, so no capacity fade should occur due to lattice expansion/contraction mechanisms. The small grain size, amorphous structure and homogeneous distribution provide improved charge/discharge cycling performance, and a higher initial discharge rate capability. The cells can be cycled at high current densities, limited only by the electrolyte conductivity. A method of making the electrodes (positive and negative), and their usage in electrochemical cells are disclosed.

  20. Nanodisperse transition metal electrodes (NTME) for electrochemical cells

    SciTech Connect

    Striebel, Kathryn A.; Wen, Shi-Jie

    1998-12-01

    Disclosed are transition metal electrodes for electrochemical cells using gel-state and solid-state polymers. The electrodes are suitable for use in primary and secondary cells. The electrodes (either negative electrode or positive electrode) are characterized by uniform dispersion of the transition metal at the nanoscale in the polymer. The transition metal moiety is structurally amorphous, so no capacity fade should occur due to lattice expansion/contraction mechanisms. The small grain size, amorphous structure and homogeneous distribution provide improved charge/discharge cycling performance, and a higher initial discharge rate capability. The cells can be cycled at high current densities, limited only by the electrolyte conductivity. A method of making the electrodes (positive and negative), and their usage in electrochemical cells are disclosed.