Science.gov

Sample records for cell rbc membrane

  1. Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles.

    PubMed

    Luk, Brian T; Hu, Che-Ming Jack; Fang, Ronnie H; Dehaini, Diana; Carpenter, Cody; Gao, Weiwei; Zhang, Liangfang

    2014-03-01

    The unique structural features and stealth properties of a recently developed red blood cell membrane-cloaked nanoparticle (RBC-NP) platform raise curiosity over the interfacial interactions between natural cellular membranes and polymeric nanoparticle substrates. Herein, several interfacial aspects of the RBC-NPs are examined, including completeness of membrane coverage, membrane sidedness upon coating, and the effects of polymeric particles' surface charge and surface curvature on the membrane cloaking process. The study shows that RBC membranes completely cover negatively charged polymeric nanoparticles in a right-side-out manner and enhance the particles' colloidal stability. The membrane cloaking process is applicable to particle substrates with a diameter ranging from 65 to 340 nm. Additionally, the study reveals that both surface glycans on RBC membranes and the substrate properties play a significant role in driving and directing the membrane-particle assembly. These findings further the understanding of the dynamics between cellular membranes and nanoscale substrates and provide valuable information toward future development and characterization of cellular membrane-cloaked nanodevices. PMID:24463706

  2. Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanics

    PubMed Central

    Craiem, Damian; Magin, Richard L

    2011-01-01

    New lumped-element models of red blood cell mechanics can be constructed using fractional order generalizations of springs and dashpots. Such ‘spring-pots’ exhibit a fractional order viscoelastic behavior that captures a wide spectrum of experimental results through power-law expressions in both the time and frequency domains. The system dynamics is fully described by linear fractional order differential equations derived from first order stress–strain relationships using the tools of fractional calculus. Changes in the composition or structure of the membrane are conveniently expressed in the fractional order of the model system. This approach provides a concise way to describe and quantify the biomechanical behavior of membranes, cells and tissues. PMID:20090192

  3. A band 3-based macrocomplex of integral and peripheral proteins in the RBC membrane

    SciTech Connect

    Bruce, Lesley J.; Beckmann, Roland; Ribeiro, M. Leticia; Peters, Luanne L.; Chasis, Joel A.; Delaunay, Jean; Mohandas, Narla; Anstee, David J.; Tanner, Michael J.A.

    2003-06-18

    We have studied the membrane proteins of band 3 anion exchanger (AE1)-deficient mouse and human red blood cells. It has been shown previously that proteins of the band 3 complex are reduced or absent in these cells. In this study we show that proteins of the Rh complex are also greatly reduced (Rh-associated glycoprotein, Rh polypeptides, CD47, glycophorin B) or absent (LW). These observations suggest that the Rh complex is associated with the band 3 complex in healthy RBCs. Mouse band 3 RBCs differed from the human band 3-deficient RBCs in that they retained CD47. Aquaporin 1 was reduced, and its glycosylation was altered in mouse and human band 3-deficient RBCs. Proteins of the glycophorin complex, and other proteins with independent cytoskeletal interactions, were present in normal or increased amounts. To obtain direct evidence for the association of the band 3 and the Rh protein complexes in the RBC, we examined whether Rh complex proteins were coimmunoprecipitated with band 3 from membranes. RhAG and Rh were found to be efficiently coimmunoprecipitated with band 3 from deoxycholate-solubilized membranes. Results suggest that band 3 forms the core of a macrocomplex of integral and peripheral RBC membrane proteins. The presence of these proteins in a single structural Macrocomplex makes it likely that they have linked functional or regulatory roles. We speculate that this macrocomplex may function as an integrated CO2/O2 gas exchange unit (metabolon) in the erythrocyte.

  4. Spectrin Folding versus Unfolding Reactions and RBC Membrane Stiffness

    PubMed Central

    Zhu, Qiang; Asaro, Robert J.

    2008-01-01

    Spectrin (Sp), a key component of the erythrocyte membrane, is routinely stretched to near its fully folded contour length during cell deformations. Such dynamic loading may induce domain unfolding as suggested by recent experiments. Herein we develop a model to describe the folding/unfolding of spectrin during equilibrium or nonequilibrium extensions. In both cases, our model indicates that there exists a critical extension beyond which unfolding occurs. We further deploy this model, together with a three-dimensional model of the junctional complex in the erythrocyte membrane, to explore the effect of Sp unfolding on the membrane's mechanical properties, and on the thermal fluctuation of membrane-attached beads. At large deformations our results show a distinctive strain-induced unstiffening behavior, manifested in the slow decrease of the shear modulus, and accompanied by an increase in bead fluctuation. Bead fluctuation is also found to be influenced by mode switching, a phenomenon predicted by our three-dimensional model. The amount of stiffness reduction, however, is modest compared with that reported in experiments. A possible explanation for the discrepancy is the occurrence of spectrin head-to-head disassociation which is also included within our modeling framework and used to analyze bead motion as observed via experiment. PMID:18065469

  5. RBC indices

    MedlinePLUS

    ... concentration (MCHC); Mean corpuscular volume (MCV); Red blood cell indices ... RBCs transport hemoglobin which, in turn, transports oxygen. The ... cells. These RBC measures are used to diagnose types of anemia . ...

  6. ALTERATIONS OF RBC MEMBRANE PROTEINS IN DIABETIC PATIENTS WITH AND WITHOUT PERIODONTITIS.

    PubMed

    Gabunia, T; Turabelidze-Robaqidze, S; Sujashvili, R; Ioramashvili, I; Gogebashvili, N; Sanikidze, T

    2015-11-01

    The RBC membrane is considered as a key element in their rheology. The rheological properties of RBCs significantly depend on their membranes properties - deformability. The essential contribution of integral membrane proteins in establishing/maintaining membrane stability is due to their ability to anchor the membrane skeleton to the lipid bilayer, their capacity to bind and stabilize membrane lipids, and their ability to influence and regulate local membrane curvature. The goal of the research was investigation the alterations in RBC membrane protein component in diabetic patients with or without periodontitis. We examined peripheral blood samples from type-1 diabetic patients with and without variable severity periodontitis and healthy volunteers. Freshly drawn blood samples from type 1 diabetes with and without periodontitis were obtained from the Railway Hospital (Tbilisi, Georgia). The blood samples from healthy volunteers were obtained from the the Blood Bank of the Institute of Hematology and Transfusiology (Tbilisi, Georgia). Individuals often consume alcohol addicts, pregnant women and patients with other chronic diseases were excluded from the study. The study protocol was approved by Ethical Committee of the Dabid Aghmashenebeli University of Georgia. RBCs membrane proteins have been extracted from human heparinized blood and studied by electrophoresis method. In patients with diabetes type-1 decreased of RBCs membrane low molecular weight proteins (18-22 kDa) content was detected, whereas their electrophoretic mobility (and hence their charge) does not change significantly compared to the control. In patients with diabetes type-1, suffering from periodontitis RBCs membrane low molecular weight (45-29 kDa) and high molecular weight (200, 116, 97, 55 kDa) proteins content reduced as compared with those in diabetic patients not suffering from periodontitis. In this group the electrophoretic mobility of membrane proteins reduces (especially with increasing severity of periodontitis). Reducing the negative charge (apparently caused by a decrease in the carring negative charge glycophorin C and band 3 protein content) and high molecular fraction (weight of 200, 116, 97, 55 kDa) proteins (due to a low content of Band 4.1, band 4.2, band 3 proteins, adducin and ankyrin, actively involved in the regulation of RBCs mechanical stability, deformability and shape) in RBCs membrane in patients with diabetes type-1 suffering from periodontitis, contributes to violation of RBC-RBC interactions as well disorders of their deformability and may induce adhesion of RBCs to the endothelium and disorders of blood circulation. Thus in patients with diabet-1 suffered by periodontitis alterations of the content and the mobility of RBCs membrane proteins were detected (this alterations corelated with severity of periodontitis but was not related with patients sex and age). Changes in the protein composition of the RBCs membranes promote disorder of RBCs membrane deformability and their adherence to the endothelium, pathogenetically related to the disorders of the microcirculation. So that alterations of the content and the mobility of RBCs membrane proteins may be considered as a predictor of microcirculation disturbance during periodontitis. PMID:26656549

  7. Red Blood Cell Membrane-Cloaked Nanoparticles For Drug Delivery

    NASA Astrophysics Data System (ADS)

    Carpenter, Cody Westcott

    Herein we describe the development of the Red Blood Cell coated nanoparticle, RBC-NP. Purified natural erythrocyte membrane is used to coat drug-loaded poly(lacticco-glycolic acid) (PLGA). Synthetic PLGA co-polymer is biocompatible and biodegradable and has already received US FDA approval for drug-delivery and diagnostics. This work looks specifically at the retention of immunosuppressive proteins on RBC-NPs, right-sidedness of natural RBC membranes interfacing with synthetic polymer nanoparticles, sustained and retarded drug release of RBC-NPs as well as further surface modification of RBC-NPs for increased targeting of model cancer cell lines.

  8. Immunophenotypic parameters and RBC alloimmunization in children with sickle cell disease on chronic transfusion.

    PubMed

    Nickel, Robert S; Horan, John T; Fasano, Ross M; Meyer, Erin; Josephson, Cassandra D; Winkler, Anne M; Yee, Marianne E M; Kean, Leslie S; Hendrickson, Jeanne E

    2015-12-01

    Alloimmunization against red blood cell (RBC) antigens is a cause of morbidity and mortality in transfused patients with sickle cell disease (SCD). To investigate distinguishing characteristics of patients who develop RBC alloantibodies after transfusion (responders) versus those who do not (non-responders), a cross-sectional study of 90 children with SCD on chronic RBC transfusion therapy at a single institution was conducted in which 18 immune parameters (including T and B cell subsets) were tested via flow cytometry, and medical records were reviewed. RBC alloimmunization was present in 26/90 (29%) patients, with anti-E, K, and C among the most commonly detected alloantibodies despite prophylactic matching for these antigens at the study institution. In addition, RBC autoantibodies had been detected in 18/26 (69%) of alloimmunized versus 7/64 (11%) of non-alloimmunized patients (P < 0.0001). Alloimmunized patients were significantly older (median 13.0 years vs. 10.7 years, P = 0.010) and had more RBC unit exposures (median 148 U vs. 82 U, P = 0.020) than non-alloimmunized patients. Sex, age at initiation of chronic transfusion, splenectomy, stroke, and transfusion outside of the study institution were not significantly associated with RBC alloimmunization. Alloimmunized patients had a significantly increased percentage of CD4+ T memory cells compared to non-alloimmunized patients (57% vs. 49%, P = 0.0047), with no other significant differences in immune cell subsets or laboratory values detected between these groups. Additional research of RBC alloimmunization is needed to optimize transfusion therapy and to develop strategies to prevent alloimmunization. Am. J. Hematol. 90:1135-1141, 2015. © 2015 Wiley Periodicals, Inc. PMID:26361243

  9. RBC nuclear scan

    MedlinePLUS

    An RBC nuclear scan uses small amounts of radioactive material to mark (tag) red blood cells (RBCs). Your body is then ... scanner does not give off any radiation. Most nuclear scans (including an RBC scan) are not recommended ...

  10. Laser diffractometer of RBC suspension

    NASA Astrophysics Data System (ADS)

    Nemtsev, Igor Z.

    1996-05-01

    The original optical diagnostic device for measuring the RBC membrane permeability and RBC charge is considered in this message. A blood microsample drips in the mixer filled with a solution of NaCl. The resultant RBC suspension trickles down the pipe into the drain vessel. The flat thin cell is fitted into the pipe. The optical channel consists of He-Ne laser whose beam goes through the flat cell perpendicularly to its sides and scatters by the RBC flowing through the thin cell. The scattered light falls on a frosted screen put in the focal plane of a lens. As the RBC concentration is more than 0.1% of suspension volume, RBC form two flows moving along slightly heparinized sides of the thin cell due to repel each other electrostatically. The two flows orient each other so that RBC round bases are perpendicular to the sides of the flat cell due to RBC dipole momentum. In this case RBC viewed from the side will form on the screen a visible diffraction ellipse with axes lengths related in the initial time as 4:1. The measurement of the rate of the changes of the lengths of the axes of the diffraction ellipse due to osmos made it possible to develop a number of original optical diagnostic techniques approved by clinical practice. The method of measuring the membrane permeability was approbated clinically by examining blood samples (50 mcl) of 30 patients suffering from heavy poisoning by alcohol and barbiturates before and after detoxifying treatment and allowed the use the method developed for diagnosis the degree of poisoning and choosing the appropriate detoxifying rehabilitation. Unlike the ectacytometer where the shear stress between two planes is constant, the device offered has an area in the center of the cell with zero shear stress. It is the area where RBC should go with the increasing shear stress in the cell. The electric charge of RBC prevent them from going to the central plane, loosing mutual orientation, and can be measured.

  11. Diagnostic tool for red blood cell membrane disorders: Assessment of a new generation ektacytometer.

    PubMed

    Da Costa, Lydie; Suner, Ludovic; Galimand, Julie; Bonnel, Amandine; Pascreau, Tiffany; Couque, Nathalie; Fenneteau, Odile; Mohandas, Narla

    2016-01-01

    Inherited red blood cell (RBC) membrane disorders, such as hereditary spherocytosis, elliptocytosis and hereditary ovalocytosis, result from mutations in genes encoding various RBC membrane and skeletal proteins. The RBC membrane, a composite structure composed of a lipid bilayer linked to a spectrin/actin-based membrane skeleton, confers upon the RBC unique features of deformability and mechanical stability. The disease severity is primarily dependent on the extent of membrane surface area loss. RBC membrane disorders can be readily diagnosed by various laboratory approaches that include RBC cytology, flow cytometry, ektacytometry, electrophoresis of RBC membrane proteins and genetics. The reference technique for diagnosis of RBC membrane disorders is the osmotic gradient ektacytometry. However, in spite of its recognition as the reference technique, this technique is rarely used as a routine diagnosis tool for RBC membrane disorders due to its limited availability. This may soon change as a new generation of ektacytometer has been recently engineered. In this review, we describe the workflow of the samples shipped to our Hematology laboratory for RBC membrane disorder analysis and the data obtained for a large cohort of French patients presenting with RBC membrane disorders using a newly available version of the ektacytomer. PMID:26603718

  12. RBC Antibody Screen

    MedlinePLUS

    ... limited. Home Visit Global Sites Search Help? RBC Antibody Screen Share this page: Was this page helpful? ... Indirect Coombs Test; Indirect Anti-human Globulin Test; Antibody Screen Formal name: Red Blood Cell Antibody Screen ...

  13. Detection and characterization of red blood cell (RBC) aggregation with photoacoustics

    NASA Astrophysics Data System (ADS)

    Hysi, Eno; Saha, Ratan K.; Rui, Min; Kolios, Michael C.

    2012-02-01

    Red blood cells (RBCs) aggregate in the presence of increased plasma fibrinogen and low shear forces during blood flow. RBC aggregation has been observed in deep vein thrombosis, sepsis and diabetes. We propose using photoacoustics (PA) as a non-invasive imaging modality to detect RBC aggregation. The theoretical and experimental feasibility of PA for detecting and characterizing aggregation was assessed. A simulation study was performed to generate PA signals from non-aggregated and aggregated RBCs using a frequency domain approach and to study the PA signals' dependence on hematocrit and aggregate size. The effect of the finite bandwidth nature of transducers on the PA power spectra was also investigated. Experimental confirmation of theoretical results was conducted using porcine RBC samples exposed to 1064 nm optical wavelength using the Imagio Small Animal PA imaging system (Seno Medical Instruments, Inc., San Antonio, TX). Aggregation was induced with Dextran-70 (Sigma-Aldrich, St. Louis, MO) and the effect of hematocrit and aggregation level was investigated. The theoretical and experimental PA signal amplitude increased linearly with increasing hematocrit. The theoretical dominant frequency content of PA signals shifted towards lower frequencies (<30 MHz) and 9 dB enhancements in spectral power were observed as the size of aggregates increased compared to non-aggregating RBCs. Calibration of the PA spectra with the transducer response obtained from a 200 nm gold film was performed to remove system dependencies. Analysis of the spectral parameters from the calibrated spectra suggested that PA can assess the degree of aggregation at multiple hematocrit and aggregation levels.

  14. Disappearance of oxidative damage to red blood cell membranes in uremic patients following renal transplant.

    PubMed

    Taccone-Gallucci, M; Lubrano, R; Belli, A; Meloni, C; Morosetti, M; Meschini, L; Elli, M; Boffo, V; Pisani, F; Giardini, O

    1989-01-01

    Hemodialysis patients display increased oxidative damage to red blood cell (RBC) membranes, characterized by elevated levels of malonyldialdehyde (MDA), a short chain aldehyde produced by the oxidation of the polyunsaturated fatty acids (PUFA) in the RBC membranes. This is the result of a metabolic blockage of the pentose-phosphate shunt in uremic patients, which causes reduced detoxification of highly oxidative free radicals. The oxidative damage induces increased RBC rigidity and decreased RBC deformability, therefore favoring hemolysis. The aim of this work was to determine if a functioning renal graft would restore normal erythrocyte metabolism, reducing the oxidative damage. To this end, we have determined RBC MDA concentrations in 20 hemodialysis (HD) patients (RBC MDA 18.22 +/- 4.36 micrograms/ml packed RBC), 20 renal transplant (T) patients with well functioning grafts (serum creatinine less than 2 mg%) (RBC MDA 1.2 +/- 0.4 micrograms/ml packed RBC) (T vs. HD P less than 0.005) and 20 healthy controls (HC) (RBC MDA 1.44 +/- 0.6 micrograms/ml packed RBC) (HC vs. HD P less than 0.005; HC vs. T NS). Our findings show that a well-functioning renal graft restores normal RBC metabolism and eliminates the oxidative damage induced by uremia. PMID:2597526

  15. Accurate measurement of peripheral blood mononuclear cell concentration using image cytometry to eliminate RBC-induced counting error.

    PubMed

    Chan, Leo Li-Ying; Laverty, Daniel J; Smith, Tim; Nejad, Parham; Hei, Hillary; Gandhi, Roopali; Kuksin, Dmitry; Qiu, Jean

    2013-02-28

    Peripheral blood mononuclear cells (PBMCs) have been widely researched in the fields of immunology, infectious disease, oncology, transplantation, hematological malignancy, and vaccine development. Specifically, in immunology research, PBMCs have been utilized to monitor concentration, viability, proliferation, and cytokine production from immune cells, which are critical for both clinical trials and biomedical research. The viability and concentration of isolated PBMCs are traditionally measured by manual counting with trypan blue (TB) using a hemacytometer. One of the common issues of PBMC isolation is red blood cell (RBC) contamination. The RBC contamination can be dependent on the donor sample and/or technical skill level of the operator. RBC contamination in a PBMC sample can introduce error to the measured concentration, which can pass down to future experimental assays performed on these cells. To resolve this issue, RBC lysing protocol can be used to eliminate potential error caused by RBC contamination. In the recent years, a rapid fluorescence-based image cytometry system has been utilized for bright-field and fluorescence imaging analysis of cellular characteristics (Nexcelom Bioscience LLC, Lawrence, MA). The Cellometer image cytometry system has demonstrated the capability of automated concentration and viability detection in disposable counting chambers of unpurified mouse splenocytes and PBMCs stained with acridine orange (AO) and propidium iodide (PI) under fluorescence detection. In this work, we demonstrate the ability of Cellometer image cytometry system to accurately measure PBMC concentration, despite RBC contamination, by comparison of five different total PBMC counting methods: (1) manual counting of trypan blue-stained PBMCs in hemacytometer, (2) manual counting of PBMCs in bright-field images, (3) manual counting of acetic acid lysing of RBCs with TB-stained PBMCs, (4) automated counting of acetic acid lysing of RBCs with PI-stained PBMCs, and (5) AO/PI dual staining method. The results show comparable total PBMC counting among all five methods, which validate the AO/PI staining method for PBMC measurement in the image cytometry method. PMID:23201386

  16. Interaction of injectable neurotropic drugs with the red cell membrane.

    PubMed

    Reinhart, Walter H; Lubszky, Szabina; Thny, Sandra; Schulzki, Thomas

    2014-10-01

    The normal red blood cell (RBC) shape is a biconcave discocyte. An intercalation of a drug in the outer half of the membrane lipid bilayer leads to echinocytosis, an intercalation in the inner half to stomatocytosis. We have used the shape transforming capacity of RBCs as a model to analyse the membrane interaction potential of various neurotropic drugs. Chlorpromazine, clomipramine, citalopram, clonazepam, and diazepam induced a reversible stomatocytosis, phenytoin induced echinocytosis, while the anticonvulsants levetiracetam, valproic acid and phenobarbital had no effect. This diversity of RBC shape transformations suggests that the pharmacological action is not linked to the membrane interaction. We conclude that this simple RBC shape transformation assay could be a useful tool to screen for potential drug interactions with cell membranes. PMID:24997296

  17. Red blood cell metallothionein as an indicator of zinc status during pregnancy RBC metallothionein, zinc status and pregnancy

    PubMed Central

    Caulfield, Laura E.; Donangelo, Carmen M.; Chen, Ping; Junco, Jorge; Merialdi, Mario; Zavaleta, Nelly

    2008-01-01

    Objective to describe the levels and patterns of change in red blood cell (RBC) metallothionein (MT) during pregnancy and the neonate, and relate RBCMT to other indicators of zinc and iron status. Research Methods & Procedures As part of a double-masked controlled trial of prenatal zinc supplementation among 242 Peruvian pregnant women, we determined RBCMT at enrollment (1016 wk), 28 and 36 wk gestation, and in the cord blood at delivery in 158 women (86 who received daily supplements containing 60 mg iron and 250 ug folic acid, and 72 whose supplements also contained 25 mg zinc). In addition we measured plasma and urinary zinc concentrations, and hemoglobin and serum ferritin, and on a limited sample, we measured RBC zinc and placental MT. Results RBCMT increased during pregnancy, and levels in the cord blood approximated maternal values at 36 wk. Only RBC zinc at 36 wk differed by supplement type (P <0.05). Increases in RBCMT over pregnancy were however, related to early pregnancy RBC zinc and inversely with the decline in plasma zinc from baseline to 36 weeks gestation. Conclusion Changes in RBCMT throughout pregnancy were consistent with the hypothesized role of MT in regulating zinc homeostasis. RBCMT appears to not be responsive during pregnancy to changes in zinc status achieved with supplements. PMID:18602250

  18. Homologous RBC-derived vesicles as ultrasmall carriers of iron oxide for magnetic resonance imaging of stem cells

    NASA Astrophysics Data System (ADS)

    Chang, Microsugar; Hsiao, Jong-Kai; Yao, Ming; Chien, Li-Ying; Hsu, Szu-Chun; Ko, Bor-Sheng; Chen, Shin-Tai; Liu, Hon-Man; Chen, Yao-Chang; Yang, Chung-Shi; Huang, Dong-Ming

    2010-06-01

    Ultrasmall superparamagnetic iron oxide (USPIO) particles are very useful for cellular magnetic resonance imaging (MRI), which plays a key role in developing successful stem cell therapies. However, their low intracellular labeling efficiency, and biosafety concerns associated with their use, have limited their potential usage. In this study we develop a novel system composed of RBC-derived vesicles (RDVs) for efficient delivery of USPIO particles into human bone marrow mesenchymal stem cells (MSCs) for cellular MRI in vitro and in vivo. RDVs are highly biosafe to their autologous MSCs as manifested by cell viability, differentiation, and gene microarray assays. The data demonstrate the potential of RDVs as intracellular delivery vehicles for biomedical applications.

  19. Large Deformation Properties of Red Blood Cell Membrane Based on a Higher Order Gradient Quasi-continuum Model.

    PubMed

    Wang, X Y; Wang, J B; Qiu, B B; Hu, L F

    2015-12-01

    Based on the proposed higher order gradient quasi-continuum model, the numerical investigations of the basic mechanical properties and deformation behaviors of human red blood cell (RBC) membrane under large deformation at room temperature (i.e., 300 K) are carried out in the present paper. The results show that RBC membrane is a nonlinear hyperelastic material. The mechanical properties of RBC membrane is dominated by isotropic nature at the stage of initial deformation, however, its anisotropic material properties emerge clearly with the loading increasing. The out-of-plane wrinkling of RBC membrane upon shear loading can be reproduced numerically. With the use of the so-called higher order Cauchy-Born rule as the kinematic description, the bending stiffness of RBC membrane can be considered conveniently. PMID:25972107

  20. RBC count

    MedlinePLUS

    ... Dehydration (such as from severe diarrhea) Kidney tumor (renal cell carcinoma) Low blood oxygen level (hypoxia) Scarring ... failure (for example, from radiation, toxins, or tumor) Deficiency of a hormone called erythropoietin (caused by kidney ...

  1. Tissue distribution of blood group membrane proteins beyond red cells: evidence from cDNA libraries.

    PubMed

    Rojewski, Markus T; Schrezenmeier, Hubert; Flegel, Willy A

    2006-08-01

    The proteins of blood group systems are expressed on red blood cells (RBC) by definition. We searched nucleotide databases of human expressed sequence tags (EST) to collate the distribution of 22 distinct membrane proteins in cells and tissues other than RBC. The documented blood group genes are: MNS, Rh, Lutheran, Kell, Duffy, Kidd, Diego, Yt, Xg, Scianna, Dombrock, Colton, Landsteiner-Wiener, Kx, Gerbich, Cromer, Knops, Indian, Ok, Raph, John-Milton-Hagen and Gill. The genes were grouped according to their overall and their relative expression in embryo and adults. We describe the distribution of EST in cells, tissues and cell lines with a focus on non-RBC tissues. PMID:16956794

  2. Alterations in the red blood cell membrane proteome in alzheimer's subjects reflect disease-related changes and provide insight into altered cell morphology

    PubMed Central

    2010-01-01

    Background Our earlier studies have shown that red blood cell (RBC) morphology in Alzheimer's disease (AD) subjects was altered (> 15% of the RBCs were elongated as compared to 5.9% in normal controls (p < 0.0001)). These results suggested alterations in the RBC membrane architecture in AD subjects, possibly due to RBC-?-amyloid interactions and/or changes in the expression of membrane proteins. We hypothesized that the observed changes could be due to changes in the level of the protein components of the cytoskeleton and those linked to the RBC membrane. To examine this, we performed a proteomic analysis of RBC membrane proteins of AD subjects, and their age-matched controls using one pool of samples from each group, following their separation by SDS-PAGE, in-gel Tryptic digestion, LC-MS-MS of peptides generated, and a label-free approach of semi-quantitative analysis of their relative MS spectral intensities. Results The data suggest, (1) RBC shape/morphology changes in AD subjects are possibly attributed primarily to the changes (elevation or decrease) in the level of a series of membrane/cytoskeleton proteins involved in regulating the stability and elasticity of the RBC membrane, and (2) changes (elevation or decrease) in the level of a second series of proteins in the RBC membrane proteome reflect similar changes reported earlier by various investigators in AD or animal model of AD. Of particular interest, elevation of oxidative stress response proteins such as heat shock 90 kDa protein 1 alpha in AD subjects has been confirmed by western blot analysis in the RBC membrane proteome. Conclusions The results suggest that this study provides a potential link between the alterations in RBC membrane proteome in AD subjects and AD pathology. PMID:20199679

  3. Mechanical clearance of red blood cells by the human spleen: Potential therapeutic applications of a biomimetic RBC filtration method.

    PubMed

    Duez, J; Holleran, J P; Ndour, P A; Pionneau, C; Diakit, S; Roussel, C; Dussiot, M; Amireault, P; Avery, V M; Buffet, P A

    2015-08-01

    During their lifespan, circulating RBC are frequently checked for their deformability. This mechanical quality control operates essentially in the human spleen. RBC unable to squeeze though narrow splenic slits are retained and cleared from the blood circulation. Under physiological conditions this prevents microvessels from being clogged by senescent, rigid RBC. Retention of poorly deformable RBC is an important determinant of pathogenesis in malaria and may also impact the clinical benefit of transfusion. Modulating the splenic retention of RBC has already been proposed to support therapeutic approaches in these research fields. To this aim, the development of microplates for high throughput filtration of RBC through microsphere layers (microplate-based microsphiltration) has been undertaken. This review focuses on potential therapeutic applications provided by this technology in malaria chemotherapy and transfusion. PMID:26138907

  4. Transformation of membrane nanosurface of red blood cells under hemin action

    NASA Astrophysics Data System (ADS)

    Kozlova, Elena; Chernysh, Alexander; Moroz, Victor; Gudkova, Olga; Sergunova, Victoria; Kuzovlev, Artem

    2014-08-01

    Hemin is the product of hemoglobin oxidation. Some diseases may lead to a formation of hemin. The accumulation of hemin causes destruction of red blood cells (RBC) membranes. In this study the process of development of topological defects of RBC membranes within the size range from nanoscale to microscale levels is shown. The formation of the grain-like structures in the membrane (``grains'') with typical sizes of 120-200 nm was experimentally shown. The process of formation of ``grains'' was dependent on the hemin concentration and incubation time. The possible mechanism of membrane nanostructure alterations is proposed. The kinetic equations of formation and transformation of small and medium topological defects were analyzed. This research can be used to study the cell intoxication and analyze the action of various agents on RBC membranes.

  5. Composite fuel cell membranes

    DOEpatents

    Plowman, Keith R.; Rehg, Timothy J.; Davis, Larry W.; Carl, William P.; Cisar, Alan J.; Eastland, Charles S.

    1997-01-01

    A bilayer or trilayer composite ion exchange membrane suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  6. Composite fuel cell membranes

    DOEpatents

    Plowman, K.R.; Rehg, T.J.; Davis, L.W.; Carl, W.P.; Cisar, A.J.; Eastland, C.S.

    1997-08-05

    A bilayer or trilayer composite ion exchange membrane is described suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  7. Liposomes alter thermal phase behavior and composition of red blood cell membranes.

    PubMed

    Stoll, Christoph; Stadnick, Hart; Kollas, Oliver; Holovati, Jelena L; Glasmacher, Birgit; Acker, Jason P; Wolkers, Willem F

    2011-01-01

    Unilamellar liposomes composed of natural phospholipids provide a new promising class of protective agents for hypothermic storage, cryopreservation, or freeze-drying of red blood cells (RBCs). In this study, FTIR spectroscopy, MALDI-TOF MS, and colorimetric assays were used to investigate the effects of liposomes composed of a homologous series of linear saturated phosphatidylcholine phospholipids (18:0; 16:0; 14:0; 12:0) on RBC membranes. RBCs were incubated with liposomes at 37C and both the liposomal and the RBC fraction were analyzed after incubation. FTIR studies showed that liposomes composed of short acyl chain length lipids cause an increase in RBC membrane conformational disorder at suprazero temperatures, whereas long acyl chain length lipids were found to have little effects. The increased lipid conformational disorder in the RBC membranes coincided with a decrease in the cholesterol-to-phospholipid ratio. The opposite effects were found in the liposomes after incubation with RBCs. MALDI-TOF MS analysis showed the presence of short acyl chain length lipids (14:0 and 12:0) in RBC membranes after incubation, which was not observed after incubation with liposomes containing long acyl chain length lipids (18:0 and 16:0). Liposomes alter RBC membrane properties by cholesterol depletion and lipid addition. PMID:20883663

  8. Dynamic actin filaments control the mechanical behavior of the human red blood cell membrane.

    PubMed

    Gokhin, David S; Nowak, Roberta B; Khoory, Joseph A; Piedra, Alfonso de la; Ghiran, Ionita C; Fowler, Velia M

    2015-05-01

    Short, uniform-length actin filaments function as structural nodes in the spectrin-actin membrane skeleton to optimize the biomechanical properties of red blood cells (RBCs). Despite the widespread assumption that RBC actin filaments are not dynamic (i.e., do not exchange subunits with G-actin in the cytosol), this assumption has never been rigorously tested. Here we show that a subpopulation of human RBC actin filaments is indeed dynamic, based on rhodamine-actin incorporation into filaments in resealed ghosts and fluorescence recovery after photobleaching (FRAP) analysis of actin filament mobility in intact RBCs (~25-30% of total filaments). Cytochalasin-D inhibition of barbed-end exchange reduces rhodamine-actin incorporation and partially attenuates FRAP recovery, indicating functional interaction between actin subunit turnover at the single-filament level and mobility at the membrane-skeleton level. Moreover, perturbation of RBC actin filament assembly/disassembly with latrunculin-A or jasplakinolide induces an approximately twofold increase or ~60% decrease, respectively, in soluble actin, resulting in altered membrane deformability, as determined by alterations in RBC transit time in a microfluidic channel assay, as well as by abnormalities in spontaneous membrane oscillations (flickering). These experiments identify a heretofore-unrecognized but functionally important subpopulation of RBC actin filaments, whose properties and architecture directly control the biomechanical properties of the RBC membrane. PMID:25717184

  9. Dynamic actin filaments control the mechanical behavior of the human red blood cell membrane

    PubMed Central

    Gokhin, David S.; Nowak, Roberta B.; Khoory, Joseph A.; de la Piedra, Alfonso; Ghiran, Ionita C.; Fowler, Velia M.

    2015-01-01

    Short, uniform-length actin filaments function as structural nodes in the spectrin-actin membrane skeleton to optimize the biomechanical properties of red blood cells (RBCs). Despite the widespread assumption that RBC actin filaments are not dynamic (i.e., do not exchange subunits with G-actin in the cytosol), this assumption has never been rigorously tested. Here we show that a subpopulation of human RBC actin filaments is indeed dynamic, based on rhodamine-actin incorporation into filaments in resealed ghosts and fluorescence recovery after photobleaching (FRAP) analysis of actin filament mobility in intact RBCs (?2530% of total filaments). Cytochalasin-D inhibition of barbed-end exchange reduces rhodamine-actin incorporation and partially attenuates FRAP recovery, indicating functional interaction between actin subunit turnover at the single-filament level and mobility at the membrane-skeleton level. Moreover, perturbation of RBC actin filament assembly/disassembly with latrunculin-A or jasplakinolide induces an approximately twofold increase or ?60% decrease, respectively, in soluble actin, resulting in altered membrane deformability, as determined by alterations in RBC transit time in a microfluidic channel assay, as well as by abnormalities in spontaneous membrane oscillations (flickering). These experiments identify a heretofore-unrecognized but functionally important subpopulation of RBC actin filaments, whose properties and architecture directly control the biomechanical properties of the RBC membrane. PMID:25717184

  10. RBC-NOS-Dependent S-Nitrosylation of Cytoskeletal Proteins Improves RBC Deformability

    PubMed Central

    Grau, Marijke; Pauly, Sebastian; Ali, Jamal; Walpurgis, Katja; Thevis, Mario; Bloch, Wilhelm; Suhr, Frank

    2013-01-01

    Background Red blood cells (RBC) possess a nitric oxide synthase (RBC-NOS) whose activation depends on the PI3-kinase/Akt kinase pathway. RBC-NOS-produced NO exhibits important biological functions like maintaining RBC deformability. Until now, the cellular target structure for NO, to exert its influence on RBC deformability, remains unknown. In the present study we analyzed the modification of RBC-NOS activity by pharmacological treatments, the resulting influence on RBC deformability and provide first evidence for possible target proteins of RBC-NOS-produced NO in the RBC cytoskeletal scaffold. Methods/Findings Blood from fifteen male subjects was incubated with the NOS substrate L-arginine to directly stimulate enzyme activity. Direct inhibition of enzyme activity was induced by L-N5-(1-Iminoethyl)-ornithin (L-NIO). Indirect stimulation and inhibition of RBC-NOS were achieved by applying insulin and wortmannin, respectively, substances known to affect PI3-kinase/Akt kinase pathway. The NO donor sodium nitroprusside (SNP) and the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) were additionally applied as NO positive and negative controls, respectively. Immunohistochemical staining was used to determine phosphorylation and thus activation of RBC-NOS. As a marker for NO synthesis nitrite was measured in plasma and RBCs using chemiluminescence detection. S-nitrosylation of erythrocyte proteins was determined by biotin switch assay and modified proteins were identified using LC-MS. RBC deformability was determined by ektacytometry. The data reveal that activated RBC-NOS leads to increased NO production, S-nitrosylation of RBC proteins and RBC deformability, whereas RBC-NOS inhibition resulted in contrary effects. Conclusion/Significance This study first-time provides strong evidence that RBC-NOS-produced NO modifies RBC deformability through direct S-nitrosylation of cytoskeleton proteins, most likely ?- and ?-spectrins. Our data, therefore, gain novel insights into biological functions of RBC-NOS by connecting impaired RBC deformability abilities to specific posttranslational modifications of RBC proteins. By identifying likely NO-target proteins in RBC, our results will stimulate new therapeutic approaches for patients with microvascular disorders. PMID:23424675

  11. Restoration of intracellular ATP production in banked red blood cells improves inducible ATP export and suppresses RBC-endothelial adhesion

    PubMed Central

    Kirby, Brett S.; Hanna, Gabi; Hendargo, Hansford C.

    2014-01-01

    Transfusion of banked red blood cells (RBCs) has been associated with poor cardiovascular outcomes. Storage-induced alterations in RBC glycolytic flux, attenuated ATP export, and microvascular adhesion of transfused RBCs in vivo could contribute, but the underlying mechanisms have not been tested. We tested the novel hypothesis that improving deoxygenation-induced metabolic flux and the associated intracellular ATP generation in stored RBCs (sRBCs) results in an increased extracellular ATP export and suppresses microvascular adhesion of RBCs to endothelium in vivo following transfusion. We show deficient intracellular ATP production and ATP export by human sRBCs during deoxygenation (impairments ?42% and 49%, respectively). sRBC pretreatment with a solution containing glycolytic intermediate/purine/phosphate precursors (i.e., PIPA) restored deoxygenation-induced intracellular ATP production and promoted extracellular ATP export (improvement ?120% and 50%, respectively). In a nude mouse model of transfusion, adhesion of human RBCs to the microvasculature in vivo was examined. Only 2% of fresh RBCs (fRBCs) transfused adhered to the vascular wall, compared with 16% of sRBCs transfused. PIPA pretreatment of sRBCs significantly reduced adhesion to just 5%. In hypoxia, adhesion of sRBCs transfused was significantly augmented (up to 21%), but not following transfusion of fRBCs or PIPA-treated sRBCs (3.5% or 6%). Enhancing the capacity for deoxygenation-induced glycolytic flux within sRBCs increases their ability to generate intracellular ATP, improves the inducible export of extracellular anti-adhesive ATP, and consequently suppresses adhesion of stored, transfused RBCs to the vascular wall in vivo. PMID:25305182

  12. Plant cell membranes

    SciTech Connect

    Packer, L.; Douce, R.

    1987-01-01

    The contents of this book are: Cells, Protoplasts, Vacuoles and Liposomes; Tonoplasts; Nuclei, Endolplasmic Reticulum, and Plasma Membrane; Peroxisomes; Plastids; Teneral Physical and Biochemical Methods; and Mitochondira.

  13. Electroporation of cell membranes.

    PubMed Central

    Tsong, T Y

    1991-01-01

    Electric pulses of intensity in kilovolts per centimeter and of duration in microseconds to milliseconds cause a temporary loss of the semipermeability of cell membranes, thus leading to ion leakage, escape of metabolites, and increased uptake by cells of drugs, molecular probes, and DNA. A generally accepted term describing this phenomenon is "electroporation." Other effects of a high-intensity electric field on cell membranes include membrane fusions, bleb formation, cell lysis... etc. Electroporation and its related phenomena reflect the basic bioelectrochemistry of cell membranes and are thus important for the study of membrane structure and function. These phenomena also occur in such events as electric injury, electrocution, and cardiac procedures involving electric shocks. Electroporation has found applications in: (a) introduction of plasmids or foreign DNA into living cells for gene transfections, (b) fusion of cells to prepare heterokaryons, hybridoma, hybrid embryos... etc., (c) insertion of proteins into cell membranes, (d) improving drug delivery and hence effectiveness in chemotherapy of cancerous cells, (e) constructing animal model by fusing human cells with animal tissues, (f) activation of membrane transporters and enzymes, and (g) alteration of genetic expression in living cells. A brief review of mechanistic studies of electroporation is given. PMID:1912274

  14. Rheological properties of RBC in the microcirculation of mammalian skeletal muscle. [red blood cells

    NASA Technical Reports Server (NTRS)

    Ehrenberg, M. H.

    1974-01-01

    In the investigation the established technique of direct microscopic viewing was combined with the use of a closed circuit television system and cinematography. The red cell flow patterns in all capillaries were found to be oscillatory with characteristic cycle frequencies and amplitudes for all concentrations of inspired oxygen greater than 8%. Generally, there was a transient decrease in mean flow rate with increasing severity of hypoxia, with a gradual return toward control values. Red cell flow patterns are discussed along with questions of red cell configuration.

  15. Membrane in cancer cells

    SciTech Connect

    Galeotti, T.; Cittadini, A.; Neri, G.; Scarpa, A.

    1988-01-01

    This book contains papers presented at a conference on membranes in cancer cells. Topics covered include Oncogenies, hormones, and free-radical processes in malignant transformation in vitro and Superoxide onion may trigger DNA strand breaks in human granulorytes by acting as a membrane target.

  16. Optical Trapping Techniques Applied to the Study of Cell Membranes

    NASA Astrophysics Data System (ADS)

    Morss, Andrew J.

    Optical tweezers allow for manipulating micron-sized objects using pN level optical forces. In this work, we use an optical trapping setup to aid in three separate experiments, all related to the physics of the cellular membrane. In the first experiment, in conjunction with Brian Henslee, we use optical tweezers to allow for precise positioning and control of cells in suspension to evaluate the cell size dependence of electroporation. Theory predicts that all cells porate at a transmembrane potential VTMof roughly 1 V. The Schwann equation predicts that the transmembrane potential depends linearly on the cell radius r, thus predicting that cells should porate at threshold electric fields that go as 1/r. The threshold field required to induce poration is determined by applying a low voltage pulse to the cell and then applying additional pulses of greater and greater magnitude, checking for poration at each step using propidium iodide dye. We find that, contrary to expectations, cells do not porate at a constant value of the transmembrane potential but at a constant value of the electric field which we find to be 692 V/cm for K562 cells. Delivering precise dosages of nanoparticles into cells is of importance for assessing toxicity of nanoparticles or for genetic research. In the second experiment, we conduct nano-electroporationa novel method of applying precise doses of transfection agents to cellsby using optical tweezers in conjunction with a confocal microscope to manipulate cells into contact with 100 nm wide nanochannels. This work was done in collaboration with Pouyan Boukany of Dr. Lee's group. The small cross sectional area of these nano channels means that the electric field within them is extremely large, 60 MV/m, which allows them to electrophoretically drive transfection agents into the cell. We find that nano electroporation results in excellent dose control (to within 10% in our experiments) compared to bulk electroporation. We also find that, unlike bulk electroporation, nano-electroporation directly injects nanoparticles, such as quantum dots, to the cell interior, bypassing the cell membrane without the need for endocytosis. The aging of RBC's can render them rigid, an issue for the survivability of transfusion patients. This rigidity can be assessed by examining the fluctuations in the cell membrane. In the third experiment, we use back focal plane detectionan interferometric detection scheme using an optical tweezers setupto measure the membrane fluctuations of RBC's and K562 cells. Membrane fluctuations have long been observed in RBC's and a well developed theory exists linking them to the cells internal viscosity ?, the membrane bending modulus k and the surface tension of the membrane ?. We use back focal plane detection to measure the effect of ascorbic acid treatment on RBC aging and find no improvement in cell flexibility. K562 cells differ from RBC's in that they possess an actin cortex which the membrane attaches to. We demonstrate that K562 cells exhibit as much as an order of magnitude more variation in their fluctuations than RBC's do.

  17. RBC deformability and amino acid concentrations after hypo-osmotic challenge may reflect chronic cell hydration status in healthy young men

    PubMed Central

    Stookey, Jodi D; Klein, Alexis; Hamer, Janice; Chi, Christine; Higa, Annie; Ng, Vivian; Arieff, Allen; Kuypers, Frans A; Larkin, Sandra; Perrier, Erica; Lang, Florian

    2013-01-01

    Biomarkers of chronic cell hydration status are needed to determine whether chronic hyperosmotic stress increases chronic disease risk in population-representative samples. In vitro, cells adapt to chronic hyperosmotic stress by upregulating protein breakdown to counter the osmotic gradient with higher intracellular amino acid concentrations. If cells are subsequently exposed to hypo-osmotic conditions, the adaptation results in excess cell swelling and/or efflux of free amino acids. This study explored whether increased red blood cell (RBC) swelling and/or plasma or urine amino acid concentrations after hypo-osmotic challenge might be informative about relative chronic hyperosmotic stress in free-living men. Five healthy men (20–25 years) with baseline total water intake below 2 L/day participated in an 8-week clinical study: four 2-week periods in a U-shaped A-B-C-A design. Intake of drinking water was increased by +0.8 ± 0.3 L/day in period 2, and +1.5 ± 0.3 L/day in period 3, and returned to baseline intake (0.4 ± 0.2 L/day) in period 4. Each week, fasting blood and urine were collected after a 750 mL bolus of drinking water, following overnight water restriction. The periods of higher water intake were associated with significant decreases in RBC deformability (index of cell swelling), plasma histidine, urine arginine, and urine glutamic acid. After 4 weeks of higher water intake, four out of five participants had ½ maximal RBC deformability below 400 mmol/kg; plasma histidine below 100 μmol/L; and/or undetectable urine arginine and urine glutamic acid concentrations. Work is warranted to pursue RBC deformability and amino acid concentrations after hypo-osmotic challenge as possible biomarkers of chronic cell hydration. PMID:24303184

  18. Membrane Cells for Brine Electrolysis.

    ERIC Educational Resources Information Center

    Tingle, M.

    1982-01-01

    Membrane cells were developed as alternatives to mercury and diaphragm cells for the electrolysis of brine. Compares the three types of cells, focusing on the advantages and disadvantages of membrane cells. (JN)

  19. IgG red blood cell autoantibodies in autoimmune hemolytic anemia bind to epitopes on red blood cell membrane band 3 glycoprotein

    SciTech Connect

    Victoria, E.J.; Pierce, S.W.; Branks, M.J.; Masouredis, S.P. )

    1990-01-01

    Red blood cell (RBC) autoantibodies from patients with IgG warm-type autoimmune hemolytic anemia were labeled with iodine 125 and their RBC binding behavior characterized. Epitope-bearing RBC membrane polypeptides were identified after autoantibody immunoprecipitation of labeled membranes and immunoblotting. Immunoaffinity isolation of labeled membrane proteins with 12 different IgG hemolytic autoantibodies with protein A-agarose revealed a major polypeptide at Mr 95 to 110 kd, which coelectrophoresed on sodium dodecylsulfate-polyacrylamide gel electrophoresis with a membrane component isolated with sheep IgG anti-band 3. Immunoprecipitation studies with chymotrypsinized RBCs resulted in the recovery of two labeled membrane polypeptides with molecular weights characteristically resulting from the chymotryptic fragmentation of band 3. Immunoblotting with sheep IgG anti-band 3 of the immunoprecipitated polypeptides confirmed that hemolytic autoantibody binding led to recovery of band 3 or its fragments. Two 125I-labeled IgG hemolytic autoantibodies showed binding behavior consistent with epitope localization on band 3. The labeled RBC autoantibodies bound immunospecifically to all types of human RBC tested, including those of rare Rh type (Rh-null, D--) at a site density of approximately 10(6) per RBC. The 125I-IgG in two labeled autoantibodies was 84% and 92% adsorbable by human and higher nonhuman primate RBCs. Antigen-negative animal RBC bound less than 10%, consistent with immunospecific RBC binding. IgG-1 was the major subclass in five autoantibodies tested; one of six fixed complement; and autoantibody IgG appeared polyclonal by isoelectric focusing. We conclude that IgG eluted from RBCs of patients with autoimmune hemolytic anemia consists predominantly of a single totally RBC-adsorbable antibody population that binds to antigenic determinants on band 3.

  20. Studies in red blood cell preservation. 2. Comparison of vesicle formation, morphology, and membrane lipids during storage in AS-1 and CPDA-1.

    PubMed

    Greenwalt, T J; Zehner Sostok, C; Dumaswala, U J

    1990-01-01

    The changes in morphology, the quantitative changes in membrane lipids and the shedding of exocytic vesicles by red blood cells (RBC) stored for 42 and 56 days in AS-1 and CPDA-1 were compared. RBC stored in AS-1 shed significantly less vesicle membrane cholesterol, phospholipid and protein and maintained better morphology scores. RBC membrane cholesterol remained higher after 56 days in AS-1 than in CPDA-1. The data suggest that during the first weeks of storage cholesterol is lost from the RBC membrane followed by a larger release of phospholipids accompanied by alterations in the phosphoinositides. The shedding of exocytic vesicles appears to be secondary to the changes in morphology resulting from the perturbation of the membrane lipids. PMID:2111063

  1. Red Blood Cell Membrane as a Biomimetic Nanocoating for Prolonged Circulation Time and Reduced Accelerated Blood Clearance.

    PubMed

    Rao, Lang; Bu, Lin-Lin; Xu, Jun-Hua; Cai, Bo; Yu, Guang-Tao; Yu, Xiaolei; He, Zhaobo; Huang, Qinqin; Li, Andrew; Guo, Shi-Shang; Zhang, Wen-Feng; Liu, Wei; Sun, Zhi-Jun; Wang, Hao; Wang, Tza-Huei; Zhao, Xing-Zhong

    2015-12-01

    For decades, poly(ethylene glycol) (PEG) has been widely incorporated into nanoparticles for evading immune clearance and improving the systematic circulation time. However, recent studies have reported a phenomenon known as "accelerated blood clearance (ABC)" where a second dose of PEGylated nanomaterials is rapidly cleared when given several days after the first dose. Herein, we demonstrate that natural red blood cell (RBC) membrane is a superior alternative to PEG. Biomimetic RBC membrane-coated Fe3 O4 nanoparticles (Fe3 O4 @RBC NPs) rely on CD47, which is a "don't eat me" marker on the RBC surface, to escape immune clearance through interactions with the signal regulatory protein-alpha (SIRP-?) receptor. Fe3 O4 @RBC NPs exhibit extended circulation time and show little change between the first and second doses, with no ABC suffered. In addition, the administration of Fe3 O4 @RBC NPs does not elicit immune responses on neither the cellular level (myeloid-derived suppressor cells (MDSCs)) nor the humoral level (immunoglobulin M and G (IgM and IgG)). Finally, the in vivo toxicity of these cell membrane-camouflaged nanoparticles is systematically investigated by blood biochemistry, hematology testing, and histology analysis. These findings are significant advancements toward solving the long-existing clinical challenges of developing biomaterials that are able to resist both immune response and rapid clearance. PMID:26488923

  2. Fuel cell membrane humidification

    DOEpatents

    Wilson, Mahlon S. (Los Alamos, NM)

    1999-01-01

    A polymer electrolyte membrane fuel cell assembly has an anode side and a cathode side separated by the membrane and generating electrical current by electrochemical reactions between a fuel gas and an oxidant. The anode side comprises a hydrophobic gas diffusion backing contacting one side of the membrane and having hydrophilic areas therein for providing liquid water directly to the one side of the membrane through the hydrophilic areas of the gas diffusion backing. In a preferred embodiment, the hydrophilic areas of the gas diffusion backing are formed by sewing a hydrophilic thread through the backing. Liquid water is distributed over the gas diffusion backing in distribution channels that are separate from the fuel distribution channels.

  3. Time-dependent surface adhesive force and morphology of RBC measured by AFM.

    PubMed

    Wu, Yangzhe; Hu, Yi; Cai, Jiye; Ma, Shuyuan; Wang, Xiaoping; Chen, Yong; Pan, Yunlong

    2009-04-01

    Atomic force microscopy (AFM) is a rapidly developing tool recently introduced into the evaluation of the age of bloodstains, potentially providing legal medical experts useful information for forensic investigation. In this study, the time-dependent, morphological changes of red blood cells (RBC) under three different conditions (including controlled, room-temperature condition, uncontrolled, outdoor-environmental condition, and controlled, low-temperature condition) were observed by AFM, as well as the cellular viscoelasticity via force-vs-distance curve measurements. Firstly, the data indicate that substrate types have different effects on cellular morphology of RBC. RBC presented the typical biconcave shape on mica, whereas either the biconcave shape or flattened shape was evident on glass. The mean volume of RBCs on mica was significantly larger than that of cells on glass. Surprisingly, the adhesive property of RBC membrane surfaces was substrate type-independent (the adhesive forces were statistically similar on glass and mica). With time lapse, the changes in cell volume and adhesive force of RBC under the controlled room-temperature condition were similar to those under the uncontrolled outdoor-environmental condition. Under the controlled low-temperature condition, however, the changes in cell volume occurred mainly due to the collapse of RBCs, and the curves of adhesive force showed the dramatic alternations in viscoelasticity of RBC. Taken together, the AFM detections on the time-dependent, substrate type-dependent, environment (temperature/humidity)-dependent changes in morphology and surface viscoelasticity of RBC imply a potential application of AFM in forensic medicine or investigations, e.g., estimating age of bloodstain or death time. PMID:19019689

  4. Inconsistencies in the red blood cell membrane proteome analysis: generation of a database for research and diagnostic applications.

    PubMed

    Heged?s, Tams; Chaubey, Pururawa Mayank; Vrady, Gyrgy; Szab, Edit; Sarank, Hajnalka; Hofstetter, Lia; Roschitzki, Bernd; Stieger, Bruno; Sarkadi, Balzs

    2015-01-01

    Based on recent results, the determination of the easily accessible red blood cell (RBC) membrane proteins may provide new diagnostic possibilities for assessing mutations, polymorphisms or regulatory alterations in diseases. However, the analysis of the current mass spectrometry-based proteomics datasets and other major databases indicates inconsistencies-the results show large scattering and only a limited overlap for the identified RBC membrane proteins. Here, we applied membrane-specific proteomics studies in human RBC, compared these results with the data in the literature, and generated a comprehensive and expandable database using all available data sources. The integrated web database now refers to proteomic, genetic and medical databases as well, and contains an unexpected large number of validated membrane proteins previously thought to be specific for other tissues and/or related to major human diseases. Since the determination of protein expression in RBC provides a method to indicate pathological alterations, our database should facilitate the development of RBC membrane biomarker platforms and provide a unique resource to aid related further research and diagnostics. PMID:26078478

  5. Inconsistencies in the red blood cell membrane proteome analysis: generation of a database for research and diagnostic applications

    PubMed Central

    Hegedűs, Tamás; Chaubey, Pururawa Mayank; Várady, György; Szabó, Edit; Sarankó, Hajnalka; Hofstetter, Lia; Roschitzki, Bernd; Sarkadi, Balázs

    2015-01-01

    Based on recent results, the determination of the easily accessible red blood cell (RBC) membrane proteins may provide new diagnostic possibilities for assessing mutations, polymorphisms or regulatory alterations in diseases. However, the analysis of the current mass spectrometry-based proteomics datasets and other major databases indicates inconsistencies—the results show large scattering and only a limited overlap for the identified RBC membrane proteins. Here, we applied membrane-specific proteomics studies in human RBC, compared these results with the data in the literature, and generated a comprehensive and expandable database using all available data sources. The integrated web database now refers to proteomic, genetic and medical databases as well, and contains an unexpected large number of validated membrane proteins previously thought to be specific for other tissues and/or related to major human diseases. Since the determination of protein expression in RBC provides a method to indicate pathological alterations, our database should facilitate the development of RBC membrane biomarker platforms and provide a unique resource to aid related further research and diagnostics. Database URL: http://rbcc.hegelab.org PMID:26078478

  6. The First Cell Membranes

    NASA Technical Reports Server (NTRS)

    Deamer, David; Dworkin, Jason P.; Sandford, Scott A.; Bernstein, Max P.; Allamandola, Louis J.

    2004-01-01

    Organic compounds are synthesized in the interstellar medium and can be delivered to planetary surfaces such as the early Earth, where they mix with endogenous organic mixtures. Some of these compounds are amphiphilic, having polar and non-polar groups on the same molecule. Amphiphilic compounds spontaneously self-assembly into more complex structures such as bimolecular layers, which in turn form closed membranous vesicles. The first forms of cellular life required self-assembled membranes that were likely to be available on the prebiotic Earth. Laboratory simulations show that such vesicles readily encapsulate functional macromolecules, including nucleic acids and polymerases. A goal of future investigations is to fabricate artificial cells as models of the origin of life.

  7. Two-dimensional strain-hardening membrane model for large deformation behavior of multiple red blood cells in high shear conditions

    PubMed Central

    2014-01-01

    Background Computational modeling of Red Blood Cell (RBC) flow contributes to the fundamental understanding of microhemodynamics and microcirculation. In order to construct theoretical RBC models, experimental studies on single RBC mechanics have presented a material description for RBC membranes based on their membrane shear, bending and area moduli. These properties have been directly employed in 3D continuum models of RBCs but practical flow analysis with 3D models have been limited by their computationally expensive nature. As such, various researchers have employed 2D models to efficiently and qualitatively study microvessel flows. Currently, the representation of RBC dynamics using 2D models is a limited methodology that breaks down at high shear rates due to excessive and unrealistic stretching. Methods We propose a localized scaling of the 2D elastic moduli such that it increases with RBC local membrane strain, thereby accounting for effects such as the Poisson effect and membrane local area incompressibility lost in the 2D simplification. Validation of our 2D Large Deformation (2D-LD) RBC model was achieved by comparing the predicted RBC deformation against the 3D model from literature for the case of a single RBC in simple shear flow under various shear rates (dimensionless shear rate G = 0.05, 0.1, 0.2, 0.5). The multi-cell flow of RBCs (38% Hematocrit) in a 20 μm width microchannel under varying shear rates (50, 150, 150 s-1) was then simulated with our proposed model and the popularly-employed 2D neo-Hookean model in order to evaluate the efficacy of our proposed 2D-LD model. Results The validation set indicated similar RBC deformation for both the 2D-LD and the 3D models across the studied shear rates, highlighting the robustness of our model. The multi-cell simulation indicated that the 2D neo-Hookean model predicts noodle-like RBC shapes at high shear rates (G = 0.5) whereas our 2D-LD model maintains sensible RBC deformations. Conclusion The ability of the 2D-LD model to limit RBC strain even at high shear rates enables this proposed model to be employed in practical simulations of high shear rate microfluidic flows such as blood separation channels. PMID:24885482

  8. Metabolomics of AS-1 RBC storage

    PubMed Central

    Roback, John D.; Josephson, Cassandra D.; Waller, Edmund K.; Newman, James L.; Karatela, Sulaiman; Uppal, Karan; Jones, Dean; Zimring, James C.; Dumont, Larry J.

    2014-01-01

    Background Population based investigations suggest that red blood cells (RBCs) are therapeutically effective when collected, processed and stored for up to 42 days under validated conditions prior to transfusion. However, some retrospective clinical studies have shown worse patient outcomes when transfused RBCs have been stored for the longest times. Furthermore, studies of RBC persistence in the circulation after transfusion have suggested that considerable donor-to-donor variability exists, and may affect transfusion efficacy. To understand the limitations of current blood storage technologies and to develop approaches to improve RBC storage and transfusion efficacy, we investigated the global metabolic alterations that occur when RBCs are stored in AS-1 (AS1-RBC). Methods Leukoreduced AS1-RBC units prepared from 9 volunteer research donors (12 total donated units) were serially sampled for metabolomics analysis over 42 days of refrigerated storage. Samples were tested by GC/MS and LC/MS/MS, and specific biochemical compounds were identified by comparison to a library of purified standards. Results Over three experiments, 185–264 defined metabolites were quantified in stored RBC samples. Kinetic changes in these biochemicals confirmed known alterations in glycolysis and other pathways previously identified in RBCs stored in SAGM (SAGM-RBC). Furthermore, we identified additional alterations not previously seen in SAGM-RBCs (e.g., stable pentose phosphate pathway flux, progressive decreases in oxidized glutathione), and we delineated changes occurring in other metabolic pathways not previously studied (e.g., S-adenosyl methionine cycle). These data are presented in the context of a detailed comparison with previous studies of SAGM-RBCs from human donors and murine AS1-RBCs. Conclusion Global metabolic profiling of AS1-RBCs revealed a number of biochemical alterations in stored blood that may affect RBC viability during storage as well as therapeutic effectiveness of stored RBCs in transfusion recipients. Significance These results provide future opportunities to more clearly pinpoint the metabolic defects during RBC storage, to identify biomarkers for donor screening and prerelease RBC testing, and to develop improved RBC storage solutions and methodologies. PMID:24636780

  9. Factors Influencing RBC Alloimmunization: Lessons Learned from Murine Models

    PubMed Central

    Ryder, Alex B.; Zimring, James C.; Hendrickson, Jeanne E.

    2014-01-01

    Summary Red blood cell (RBC) alloimmunization may occur following transfusion or pregnancy/delivery. Although observational human studies have described the immunogenicity of RBC antigens and the clinical significance of RBC alloantibodies, studies of factors influencing RBC alloimmunization in humans are inherently limited by the large number of independent variables involved. This manuscript reviews data generated in murine models that utilize transgenic donor mice, which express RBC-specific model or authentic human blood group antigens. Transfusion of RBCs from such donors into nontransgenic but otherwise genetically identical recipient mice allows for the investigation of individual donor or recipient-specific variables that may impact RBC alloimmunization. Potential donor-related variables include methods of blood product collection, processing and storage, donor-specific characteristics, RBC antigen-specific factors, and others. Potential recipient-related variables include genetic factors (MHC/HLA type and polymorphisms of immunoregulatory genes), immune activation status, phenotype of regulatory immune cell subsets, immune cell functional characteristics, prior antigen exposures, and others. Although murine models are not perfect surrogates for human biology, these models generate phenomenological and mechanistic hypotheses of RBC alloimmunization and lay the groundwork for follow-up human studies. Long-term goals include improving transfusion safety and minimizing the morbidity/mortality associated with RBC alloimmunization. PMID:25670928

  10. Generation of normal human red cell volume, hemoglobin content, and membrane area distributions by "birth" or regulation?

    PubMed

    Lew, V L; Raftos, J E; Sorette, M; Bookchin, R M; Mohandas, N

    1995-07-01

    Using flow cytometry and osmotic lysis measurements, we document here the means and coefficients of variation of the following red cell (RBC) properties: hemoglobin (Hb) content, volume, Hb concentration, and relative lytic tonicity distributions in populations of normal human RBCs, before and after density fractionation. The distributions showed a pattern characterized by much larger coefficients of variation of the Hb content and volume distributions than of the Hb concentration and relative lytic tonicity distributions. From analysis of the factors that determine those RBC properties, the patterns were interpreted as reflecting previously unrecognized statistical proportionalities between cell osmolyte content, Hb content, and membrane area. The possible origin of these statistical links was analyzed by considering alternative models with and without the participation of regulatory processes during cell maturation. A model was shown to be feasible in which mature RBC variability with proportional volume, area, and Hb content arises solely from cell size variability at the last erythroid cell division. PMID:7795242

  11. Fuel cell with ionization membrane

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2007-01-01

    A fuel cell is disclosed comprising an ionization membrane having at least one area through which gas is passed, and which ionizes the gas passing therethrough, and a cathode for receiving the ions generated by the ionization membrane. The ionization membrane may include one or more openings in the membrane with electrodes that are located closer than a mean free path of molecules within the gas to be ionized. Methods of manufacture are also provided.

  12. Evaluation of Red Cell Membrane Cytoskeletal Disorders Using a Flow Cytometric Method in South Iran

    PubMed Central

    Golafshan, Habib Alah; Ranjbaran, Reza; Kalantari, Tahereh; Moezzi, Leili; Karimi, Mehran; Behzad- Behbahani, Abbas; Aboualizadeh, Farzaneh; Sharifzadeh, Sedigheh

    2014-01-01

    Objective: The diagnosis of hereditary red blood cell (RBC) membrane disorders, and in particular hereditary spherocytosis (HS) and Southeast Asian ovalocytosis (SAO), is based on clinical history, RBC morphology, and other conventional tests such as osmotic fragility. However, there are some milder cases of these disorders that are difficult to diagnose. The application of eosin-5-maleimide (EMA) was evaluated for screening of RBC membrane defects along with some other anemias. We used EMA dye, which binds mostly to band 3 protein and to a lesser extent some other membrane proteins, for screening of some membrane defects such as HS. Materials and Methods: Fresh RBCs from hematologically normal controls and patients with HS, SAO, hereditary elliptocytosis, hereditary spherocytosis with pincered cells, severe iron deficiency, thalassemia minor, and autoimmune hemolytic anemia were stained with EMA dye and analyzed for mean fluorescent intensity (MFI) using a flow cytometer. Results: RBCs from patients with HS and iron deficiency showed a significant reduction in MFI compared to those from normal controls (p<0.0001 and p<0.001, respectively), while macrocytic RBCs showed a significant increase in MFI (p<0.01). A significant correlation was shown between mean corpuscular volume and MFI, with the exceptions of HS and thalassemia minor. Conclusion: Our results showed that the flow cytometric method could be a reliable diagnostic method for screening and confirmation, with higher sensitivity and specificity (95% and 93%, respectively) than conventional routine tests for HS patients prior to further specific membrane protein molecular tests. PMID:24764726

  13. The Effect of Alcohols on Red Blood Cell Mechanical Properties and Membrane Fluidity Depends on Their Molecular Size

    PubMed Central

    Sonmez, Melda; Ince, Huseyin Yavuz; Yalcin, Ozlem; Ajdanovi?, Vladimir; Spasojevi?, Ivan; Meiselman, Herbert J.; Baskurt, Oguz K.

    2013-01-01

    The role of membrane fluidity in determining red blood cell (RBC) deformability has been suggested by a number of studies. The present investigation evaluated alterations of RBC membrane fluidity, deformability and stability in the presence of four linear alcohols (methanol, ethanol, propanol and butanol) using ektacytometry and electron paramagnetic resonance (EPR) spectroscopy. All alcohols had a biphasic effect on deformability such that it increased then decreased with increasing concentration; the critical concentration for reversal was an inverse function of molecular size. EPR results showed biphasic changes of near-surface fluidity (i.e., increase then decrease) and a decreased fluidity of the lipid core; rank order of effectiveness was butanol > propanol > ethanol > methanol, with a significant correlation between near-surface fluidity and deformability (r = 0.697; p<0.01). The presence of alcohol enhanced the impairment of RBC deformability caused by subjecting cells to 100 Pa shear stress for 300 s, with significant differences from control being observed at higher concentrations of all four alcohols. The level of hemolysis was dependent on molecular size and concentration, whereas echinocytic shape transformation (i.e., biconcave disc to crenated morphology) was observed only for ethanol and propanol. These results are in accordance with available data obtained on model membranes. They document the presence of mechanical links between RBC deformability and near-surface membrane fluidity, chain length-dependence of the ability of alcohols to alter RBC mechanical behavior, and the biphasic response of RBC deformability and near-surface membrane fluidity to increasing alcohol concentrations. PMID:24086751

  14. Nature and nurture in atherosclerosis: The roles of acylcarnitine and cell membrane-fatty acid intermediates.

    PubMed

    Blair, Harry C; Sepulveda, Jorge; Papachristou, Dionysios J

    2016-03-01

    Macrophages recycle components of dead cells, including cell membranes. When quantities of lipids from cell membranes of dead cells exceed processing capacity, phospholipid and cholesterol debris accumulate as atheromas. Plasma lipid profiles, particularly HDL and LDL cholesterol, are important tools to monitor atherosclerosis risk. Membrane lipids are exported, as triglycerides or phospholipids, or as cholesterol or cholesterol esters, via lipoproteins for disposal, for re-use in cell membranes, or for fat storage. Alternative assays evaluate other aspects of lipid pathology. A key process underlying atherosclerosis is backup of macrophage fatty acid catabolism. This can be quantified by accumulation of acylcarnitine intermediates in extracellular fluid, a direct assay of adequacy of β-oxidation to deal with membrane fatty acid recycling. Further, membranes of somatic cells, such as red blood cells (RBC), incorporate fatty acids that reflect dietary intake. Changes in RBC lipid composition occur within days of ingesting modified fats. Since diets with high saturated fat content or artificial trans-fatty acids promote atherosclerosis, RBC lipid content shifts occur with atherosclerosis, and can show cellular adaptation to pathologically stiff membranes by increased long-chain doubly unsaturated fatty acid production. Additional metabolic changes with atherosclerosis of potential utility include inflammatory cytokine production, modified macrophage signaling pathways, and altered lipid-handling enzymes. Even after atherosclerotic lesions appear, approaches to minimize macrophage overload by reducing rate of fat metabolism are promising. These include preventive measures, and drugs including statins and the newer PCSK9 inhibitors. New cell-based biochemical and cytokine assays provide data to prevent or monitor atherosclerosis progression. PMID:26133667

  15. A study of the dynamic properties of the human red blood cell membrane using quasi-elastic light-scattering spectroscopy.

    PubMed Central

    Tishler, R B; Carlson, F D

    1993-01-01

    A quasi-elastic light-scattering (QELS) microscope spectrometer was used to study the dynamic properties of the membrane/cytoskeleton of individual human red blood cells (RBCs). QELS is a spectroscopic technique that measures intensity fluctuations of laser light scattered from a sample. The intensity fluctuations were analyzed using power spectra and the intensity autocorrelation function, g(2)(tau), which was approximated with a single exponential. The value of the correlation time, Tcorr, was used for comparing results. Motion of the RBC membrane/cytoskeleton was previously identified as the source of the QELS signal from the RBC (R. B. Tishler and F. D. Carlson, 1987. Biophys. J. 51:993-997), and additional data supporting that conclusion are presented. Similar results were obtained from anucleate mammalian RBCs that have structures similar to that of the human RBC, but not for morphologically distinct, nucleated RBCs. The effect of altering the physical properties of the cytoplasm and the membrane/cytoskeleton was also studied. Osmotically increasing the cytoplasmic viscosity led to significant increases in Tcorr. Increasing the membrane cholesterol content and increasing the intracellular calcium content both led to decreased deformability of the human RBC. In both cases, the modified cells with decreased deformability showed an increase in Tcorr, demonstrating that QELS could measure biochemically induced changes of the membrane/cytoskeleton. Physiological changes were measured in studies of age-separated RBC populations which showed that Tcorr was increased in the older, less deformable cells. PMID:8312494

  16. RBC micromotors carrying multiple cargos towards potential theranostic applications

    NASA Astrophysics Data System (ADS)

    Wu, Zhiguang; Esteban-Fernández de Ávila, Berta; Martín, Aída; Christianson, Caleb; Gao, Weiwei; Thamphiwatana, Soracha Kun; Escarpa, Alberto; He, Qiang; Zhang, Liangfang; Wang, Joseph

    2015-08-01

    Red blood cell (RBC)-based micromotors containing both therapeutic and diagnostic modalities are described as a means for potential theranostic applications. In this natural RBC-based multicargo-loaded micromotor system, quantum dots (QDs), anti-cancer drug doxorubicin (DOX), and magnetic nanoparticles (MNPs), were co-encapsulated into RBC micromotors. The fluorescent emission of both QDs and DOX provides direct visualization of their loading inside the RBC motors at two distinct wavelengths. The presence of MNPs within the RBCs allows for efficient magnetic guidance under ultrasound propulsion along with providing the potential for magnetic resonance imaging. The simultaneous encapsulation of the imaging nanoparticles and therapeutic payloads within the same RBC micromotor has a minimal effect upon its propulsion behavior. The ability of the RBC micromotors to transport imaging and therapeutic agents at high speed and spatial precision through a complex microchannel network is also demonstrated. Such ability to load and transport diagnostic imaging agents and therapeutic drugs within a single cell-based motor, in addition to a lower toxicity observed once the drug is encapsulated within the multicargo RBC motor, opens the door to the development of theranostic micromotors that may simultaneously treat and monitor diseases.Red blood cell (RBC)-based micromotors containing both therapeutic and diagnostic modalities are described as a means for potential theranostic applications. In this natural RBC-based multicargo-loaded micromotor system, quantum dots (QDs), anti-cancer drug doxorubicin (DOX), and magnetic nanoparticles (MNPs), were co-encapsulated into RBC micromotors. The fluorescent emission of both QDs and DOX provides direct visualization of their loading inside the RBC motors at two distinct wavelengths. The presence of MNPs within the RBCs allows for efficient magnetic guidance under ultrasound propulsion along with providing the potential for magnetic resonance imaging. The simultaneous encapsulation of the imaging nanoparticles and therapeutic payloads within the same RBC micromotor has a minimal effect upon its propulsion behavior. The ability of the RBC micromotors to transport imaging and therapeutic agents at high speed and spatial precision through a complex microchannel network is also demonstrated. Such ability to load and transport diagnostic imaging agents and therapeutic drugs within a single cell-based motor, in addition to a lower toxicity observed once the drug is encapsulated within the multicargo RBC motor, opens the door to the development of theranostic micromotors that may simultaneously treat and monitor diseases. Electronic supplementary information (ESI) available: Videos of the propulsion of the multicargo-loaded, RBC-based micromotors and more data are available in the ESI. See DOI: 10.1039/c5nr03730a

  17. Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy.

    PubMed

    Rappaz, Benjamin; Barbul, Alexander; Hoffmann, Annick; Boss, Daniel; Korenstein, Rafi; Depeursinge, Christian; Magistretti, Pierre J; Marquet, Pierre

    2009-01-01

    Red blood cell (RBC) membrane fluctuations provide important insights into cell states. We present a spatial analysis of red blood cell membrane fluctuations by using digital holographic microscopy (DHM). This interferometric and dye-free technique, possessing nanometric axial and microsecond temporal sensitivities enables to measure cell membrane fluctuations (CMF) on the whole cell surface. DHM acquisition is combined with a model which allows extracting the membrane fluctuation amplitude, while taking into account cell membrane topology. Uneven distribution of CMF amplitudes over the RBC surface is observed, showing maximal values in a ring corresponding to the highest points on the RBC torus as well as in some scattered areas in the inner region of the RBC. CMF amplitudes of 35.9+/-8.9 nm and 4.7+/-0.5 nm (averaged over the cell surface) were determined for normal and ethanol-fixed RBCs, respectively. PMID:19324576

  18. Studying red blood cell agglutination by measuring membrane viscosity with optical tweezers

    NASA Astrophysics Data System (ADS)

    Fernandes, Heloise P.; Fontes, Adriana; de Thomaz, Andr A.; Barbosa, Luiz C.; Barjas-Castro, Maria L.; Cesar, Carlos L.

    2007-09-01

    The red blood cell (RBC) viscoelastic membrane contains proteins and glycoproteins embedded in a fluid lipid bilayer that are responsible for cell agglutination. Manipulating RBCs rouleaux with a double optical tweezers, we observed that the cells slide easily one over the others but are strongly connected by their edges. An explanation for this behavior could be the fact that when the cells slide one over the others, proteins are dragged through the membrane. It confers to the movement a viscous characteristic that is dependent of the velocity between the RBCs and justifies why is so easy to slide them apart. Therefore, in a first step of this work, by measuring the force as a function of the relative velocity between two cells, we confirmed this assumption and used this viscous characteristic of the RBC rouleaux to determine the apparent membrane viscosity of the cell. As this behavior is related to the proteins interactions, we can use the apparent membrane viscosity to obtain a better understanding about cell agglutination. Methods related to cell agglutination induced by antigen-antibody interactions are the basis of most of tests used in transfusion centers. Then, in a second step of this work, we measured the apparent membrane viscosity using antibodies. We observed that this methodology is sensitive to different kinds of bindings between RBCs. Better comprehension of the forces and bindings between RBCs could improve the sensibility and specificity of the hemagglutination reactions and also guides the development of new potentiator substances.

  19. Investigating effects of nano-particles infiltration on mechanical properties of cell membrane using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, XiaoYue; Zhang, Yong; Zheng, Yue; Wang, Biao

    2012-06-01

    In this paper, we introduce our finding of the effects of C60 nanoparticles (NP) infiltration on mechanical properties of cell and its membrane. Atomic force microscopy (AFM) is used to perform indentation on both normal and C60 infiltrated red blood cells (RBC) to gain data of mechanical characteristics of the membrane. Our results show that the mechanical properties of human RBC membrane seem to be altered due to the presence of C60 NPs. The resistance and ultimate strength of the C60 infiltrated RBC membrane significantly decrease. We also explain the mechanism of how C60 NPs infiltration changes the mechanical properties of the cell membrane by predicting the structural change of the lipid bilayer caused by the C60 infiltration at molecular level and analyze the interactions among molecules in the lipid bilayer. The potential hazards and application of the change in mechanical characteristics of the RBCs membrane are also discussed. Nanotoxicity of C60 NPs may be significant for some biological cells.

  20. The Molecules of the Cell Membrane.

    ERIC Educational Resources Information Center

    Bretscher, Mark S.

    1985-01-01

    Cell membrane molecules form a simple, two-dimensional liquid controlling what enters and leaves the cell. Discusses cell membrane molecular architecture, plasma membranes, epithelial cells, cycles of endocytosis and exocytosis, and other topics. Indicates that some cells internalize, then recycle, membrane area equivalent to their entire surface…

  1. The Molecules of the Cell Membrane.

    ERIC Educational Resources Information Center

    Bretscher, Mark S.

    1985-01-01

    Cell membrane molecules form a simple, two-dimensional liquid controlling what enters and leaves the cell. Discusses cell membrane molecular architecture, plasma membranes, epithelial cells, cycles of endocytosis and exocytosis, and other topics. Indicates that some cells internalize, then recycle, membrane area equivalent to their entire surface

  2. Preliminary Evidence for Cell Membrane Amelioration in Children with Cystic Fibrosis by 5-MTHF and Vitamin B12 Supplementation: A Single Arm Trial

    PubMed Central

    Scambi, Cinzia; De Franceschi, Lucia; Guarini, Patrizia; Poli, Fabio; Siciliano, Angela; Pattini, Patrizia; Biondani, Andrea; La Verde, Valentina; Bortolami, Oscar; Turrini, Francesco; Carta, Franco; D'Orazio, Ciro; Assael, Baroukh M.; Faccini, Giovanni; Bambara, Lisa M.

    2009-01-01

    Background Cystic fibrosis (CF) is one of the most common fatal autosomal recessive disorders in the Caucasian population caused by mutations of gene for the cystic fibrosis transmembrane conductance regulator (CFTR). New experimental therapeutic strategies for CF propose a diet supplementation to affect the plasma membrane fluidity and to modulate amplified inflammatory response. The objective of this study was to evaluate the efficacy of 5-methyltetrahydrofolate (5-MTHF) and vitamin B12 supplementation for ameliorating cell plasma membrane features in pediatric patients with cystic fibrosis. Methodology and Principal Findings A single arm trial was conducted from April 2004 to March 2006 in an Italian CF care centre. 31 children with CF aged from 3 to 8 years old were enrolled. Exclusion criteria were diabetes, chronic infections of the airways and regular antibiotics intake. Children with CF were supplemented for 24 weeks with 5-methyltetrahydrofolate (5-MTHF, 7.5 mg /day) and vitamin B12 (0.5 mg/day). Red blood cells (RBCs) were used to investigate plasma membrane, since RBCs share lipid, protein composition and organization with other cell types. We evaluated RBCs membrane lipid composition, membrane protein oxidative damage, cation content, cation transport pathways, plasma and RBCs folate levels and plasma homocysteine levels at baseline and after 24 weeks of 5-MTHF and vitamin B12 supplementation. In CF children, 5-MTHF and vitamin B12 supplementation (i) increased plasma and RBC folate levels; (ii) decreased plasma homocysteine levels; (iii) modified RBC membrane phospholipid fatty acid composition; (iv) increased RBC K+ content; (v) reduced RBC membrane oxidative damage and HSP70 membrane association. Conclusion and Significance 5-MTHF and vitamin B12 supplementation might ameliorate RBC membrane features of children with CF. Trial Registration ClinicalTrials.gov NCT00730509 PMID:19277125

  3. Marathon Running Fails to Influence RBC Survival Rates in Iron-Replete Women.

    ERIC Educational Resources Information Center

    Steenkamp, Irene; And Others

    1986-01-01

    This study used radiolabeling to measure red blood cell (RBC) survival rates in six iron-replete female marathon runners, and urinary tests were conducted to search for secondary evidence of RBC damage. The hypothesized RBC fragmentation was not disclosed. (Author/MT)

  4. Re-evaluation of the water exchange lifetime value across red blood cell membrane.

    PubMed

    Gianolio, Eliana; Ferrauto, Giuseppe; Di Gregorio, Enza; Aime, Silvio

    2016-04-01

    The water exchange lifetime (τi) through red blood cell (RBC) membranes can be measured by analyzing the water protons bi-exponential T1 and T2 curves when RBCs are suspended in a medium supplemented with paramagnetic species. Since the seminal papers published in the early '70s of the previous century, paramagnetic Mn(2+) ions were used for doping the extracellular compartment in the RBCs suspension. The obtained τi values fall in the range of 9.8-14ms. Conversely, other physic-chemical measurements afforded longer τi values. Herein, it is shown that the replacement of Mn(2+) with the highly stable, hydrophilic Gd(III) complexes used as paramagnetic magnetic resonance imaging (MRI) contrast agents led to measure τi values of 19.1±0.65ms at 25°C. The observed difference is ascribed to the occurrence of enhanced permeability of RBC membrane in the presence of Mn(2+) ions. This view finds support from the observation that an analogous behavior was shown in the presence of other divalent cations, such Ca(2+) and Zn(2+) ions. A possible role of scramblase has been hypothesized. Finally, τi has been measured in presence of alcohols to show that the herein proposed method can detect minor changes in RBC membranes' stiffness upon the incorporation of aliphatic alcohols. PMID:26744230

  5. Abnormal membrane physical properties of red cells in McLeod syndrome.

    PubMed

    Ballas, S K; Bator, S M; Aubuchon, J P; Marsh, W L; Sharp, D E; Toy, E M

    1990-10-01

    McLeod red cells (RBCs) lack Kx antigens and have weak expression of the Kell antigens. Individuals who carry the McLeod phenotype have acanthocytic RBCs and a compensated hemolytic state. To elucidate the role of the protein on which the Kx antigens reside in maintaining membrane deformability, the rheologic properties of McLeod RBCs were determined by ektacytometry. RBCs were obtained from normal individuals and from four patients with McLeod syndrome. Osmotic gradient deformability profiles of McLeod RBCs showed decreased whole cell deformability. Resealed ghosts from McLeod RBCs also showed decreased deformability, partly because of the decreased cell surface area and partly because of an intrinsic membrane stiffness in this syndrome. For the measurement of membrane mechanical stability, resealed ghosts were subjected to constant high shear stress in the ektacytomer, and deformability was recorded continuously as the deformable ghosts fragmented into rigid spherical vesicles. Membranes from McLeod RBCs showed a noticeable increase in mechanical stability. Acquired causes of acanthocytosis, such as liver disease, did not cause the rheologic abnormalities observed in McLeod cells. Other abnormalities noted in McLeod RBCs were decreased RBC potassium content and an increased number of dense RBCs, as determined by centrifugation on a discontinuous density gradient. The data indicate that McLeod RBCs are rigid and have decreased surface area and that their membranes are intrinsically rigid with increased mechanical stability. These abnormalities may account for the reduced RBC survival observed in McLeod syndrome. The protein that carries the Kx surface antigen seems to be required for the maintenance of the normal physical function of RBC skeletal proteins. PMID:2219261

  6. Dielectric Breakdown of Cell Membranes

    PubMed Central

    Zimmermann, U.; Pilwat, G.; Riemann, F.

    1974-01-01

    With human and bovine red blood cells and Escherichia coli B, dielectric breakdown of cell membranes could be demonstrated using a Coulter Counter (AEG-Telefunken, Ulm, West Germany) with a hydrodynamic focusing orifice. In making measurements of the size distributions of red blood cells and bacteria versus increasing electric field strength and plotting the pulse heights versus the electric field strength, a sharp bend in the otherwise linear curve is observed due to the dielectric breakdown of the membranes. Solution of Laplace's equation for the electric field generated yields a value of about 1.6 V for the membrane potential at which dielectric breakdown occurs with modal volumes of red blood cells and bacteria. The same value is also calculated for red blood cells by applying the capacitor spring model of Crowley (1973. Biophys. J. 13:711). The corresponding electric field strength generated in the membrane at breakdown is of the order of 4 106 V/cm and, therefore, comparable with the breakdown voltages for bilayers of most oils. The critical detector voltage for breakdown depends on the volume of the cells. The volume-dependence predicted by Laplace theory with the assumption that the potential generated across the membrane is independent of volume, could be verified experimentally. Due to dielectric breakdown the red blood cells lose hemoglobin completely. This phenomenon was used to study dielectric breakdown of red blood cells in a homogeneous electric field between two flat platinum electrodes. The electric field was applied by discharging a high voltage storage capacitor via a spark gap. The calculated value of the membrane potential generated to produce dielectric breakdown in the homogeneous field is of the same order as found by means of the Coulter Counter. This indicates that mechanical rupture of the red blood cells by the hydrodynamic forces in the orifice of the Coulter Counter could also be excluded as a hemolysing mechanism. The detector voltage (or the electric field strength in the orifice) depends on the membrane composition (or the intrinsic membrane potential) as revealed by measuring the critical voltage in E. coli B harvested from the logarithmic and stationary growth phases. The critical detector voltage increased by about 30% for a given volume on reaching the stationary growth phase. PMID:4611517

  7. Spatially-Resolved Eigenmode Decomposition of Red Blood Cells Membrane Fluctuations Questions the Role of ATP in Flickering

    PubMed Central

    Boss, Daniel; Hoffmann, Annick; Rappaz, Benjamin; Depeursinge, Christian; Magistretti, Pierre J.; Van de Ville, Dimitri; Marquet, Pierre

    2012-01-01

    Red blood cells (RBCs) present unique reversible shape deformability, essential for both function and survival, resulting notably in cell membrane fluctuations (CMF). These CMF have been subject of many studies in order to obtain a better understanding of these remarkable biomechanical membrane properties altered in some pathological states including blood diseases. In particular the discussion over the thermal or metabolic origin of the CMF has led in the past to a large number of investigations and modeling. However, the origin of the CMF is still debated. In this article, we present an analysis of the CMF of RBCs by combining digital holographic microscopy (DHM) with an orthogonal subspace decomposition of the imaging data. These subspace components can be reliably identified and quantified as the eigenmode basis of CMF that minimizes the deformation energy of the RBC structure. By fitting the observed fluctuation modes with a theoretical dynamic model, we find that the CMF are mainly governed by the bending elasticity of the membrane and that shear and tension elasticities have only a marginal influence on the membrane fluctations of the discocyte RBC. Further, our experiments show that the role of ATP as a driving force of CMF is questionable. ATP, however, seems to be required to maintain the unique biomechanical properties of the RBC membrane that lead to thermally excited CMF. PMID:22899990

  8. Corrugated Membrane Fuel Cell Structures

    SciTech Connect

    Grot, Stephen President, Ion Power Inc.

    2013-09-30

    One of the most challenging aspects of traditional PEM fuel cell stacks is the difficulty achieving the platinum catalyst utilization target of 0.2 gPt/kWe set forth by the DOE. Good catalyst utilization can be achieved with state-of-the-art catalyst coated membranes (CCM) when low catalyst loadings (<0.3 mg/cm2) are used at a low current. However, when low platinum loadings are used, the peak power density is lower than conventional loadings, requiring a larger total active area and a larger bipolar plate. This results in a lower overall stack power density not meeting the DOE target. By corrugating the fuel cell membrane electrode structure, Ion Power?s goal is to realize both the Pt utilization targets as well as the power density targets of the DOE. This will be achieved by demonstrating a fuel cell single cell (50 cm2) with a twofold increase in the membrane active area over the geometric area of the cell by corrugating the MEA structure. The corrugating structure must be able to demonstrate the target properties of < 10 mOhm-cm2 electrical resistance at > 20 psi compressive strength over the active area, in combination with offering at least 80% of power density that can be achieved by using the same MEA in a flat plate structure. Corrugated membrane fuel cell structures also have the potential to meet DOE power density targets by essentially packaging more membrane area into the same fuel cell volume as compared to conventional stack constructions.

  9. Influence of a hyperlipidic diet on the composition of the non-membrane lipid pool of red blood cells of male and female rats

    PubMed Central

    Remesar, Xavier; Antelo, Arantxa; Llivina, Clàudia; Albà, Emma; Berdié, Lourdes; Agnelli, Silvia; Arriarán, Sofía; Fernández-López, José Antonio

    2015-01-01

    Background and objectives. Red blood cells (RBC) are continuously exposed to oxidative agents, affecting their membrane lipid function. However, the amount of lipid in RBCs is higher than the lipids of the cell membrane, and includes triacylglycerols, which are no membrane components. We assumed that the extra lipids originated from lipoproteins attached to the cell surface, and we intended to analyse whether the size and composition of this lipid pool were affected by sex or diet. Experimental design. Adult male and female Wistar rats were fed control or cafeteria diets. Packed blood cells and plasma lipids were extracted and analysed for fatty acids by methylation and GC-MS, taking care of not extracting membrane lipids. Results. The absence of ω3-PUFA in RBC extracts (but not in plasma) suggest that the lipids extracted were essentially those in the postulated lipid surface pool and not those in cell membrane. In cells’ extracts, there was a marked depletion of PUFA (and, in general, of insaturation). Fatty acid patterns were similar for all groups studied, with limited effects of sex and no effects of diet in RBC (but not in plasma) fatty acids. Presence of trans fatty acids was small but higher in RBC lipids, and could not be justified by dietary sources. Conclusions. The presence of a small layer of lipid on the RBC surface may limit oxidative damage to the cell outer structures, and help explain its role in the transport of lipophilic compounds. However, there may be other, so far uncovered, additional functions for this lipid pool. PMID:26213652

  10. Role of the membrane in the formation of heme degradation products in red blood cells

    PubMed Central

    Nagababu, Enika; Mohanty, Joy G.; Bhamidipaty, Surya; Ostera, Graciela R.; Rifkind, Joseph M.

    2010-01-01

    Aims Red blood cells (RBCs) have an extensive antioxidant system designed to eliminate the formation of reactive oxygen species (ROS). Nevertheless, RBC oxidant stress has been demonstrated by the formation of a fluorescent heme degradation product (ex.321 nm, em 465 nm) both in vitro and in vivo. We investigated the possibility that the observed heme degradation results from ROS generated on the membrane surface that are relatively inaccessible to the cellular antioxidants. Main Methods Membrane and cytosol were separated by centrifugation and the fluorescence intensity and emission maximum was measured. The effect on the maximum emission of adding oxidized and reduced hemoglobin to the fluorescent product formed when hemin is degraded by H2O2 was studied. Key findings 90% of the fluorescent heme degradation products in hemolysates are found on the membrane. Furthermore, these products are not transferred from the cytosol to the membrane and must, therefore, be formed on the membrane. We also showed that the elevated level of heme degradation in HbCC cells that is attributed to increased oxidative stress was found on the membrane. Significance These results suggest that, although ROS generated in the cytosol are neutralized by antioxidant enzymes, H2O2 generated by the membrane bound hemoglobin is not accessible to the cytostolic antioxidants and reacts to generate fluorescent heme degradation products. The formation of H2O2 on the membrane surface can explain the release of ROS from the RBC to other tissues and ROS damage to the membrane that can alter red cell function and lead to the removal of RBCs from circulation by macrophages. PMID:19958781

  11. Marked increase in rat red blood cell membrane protein glycosylation by one-month treatment with a cafeteria diet

    PubMed Central

    Oliva, Laia; Baron, Cristian; Fernndez-Lpez, Jos-Antonio; Remesar, Xavier

    2015-01-01

    Background and Objectives. Glucose, an aldose, spontaneously reacts with protein amino acids yielding glycosylated proteins. The compounds may reorganize to produce advanced glycosylation products, which regulatory importance is increasingly being recognized. Protein glycosylation is produced without the direct intervention of enzymes and results in the loss of function. Glycosylated plasma albumin, and glycosylated haemoglobin are currently used as index of mean plasma glucose levels, since higher glucose availability results in higher glycosylation rates. In this study we intended to detect the early changes in blood protein glycosylation elicited by an obesogenic diet. Experimental Design. Since albumin is in constant direct contact with plasma glucose, as are the red blood cell (RBC) membranes, we analyzed their degree or glycosylation in female and male rats, either fed a standard diet or subjected to a hyper-energetic self-selected cafeteria diet for 30 days. This model produces a small increase in basal glycaemia and a significant increase in body fat, leaving the animals in the initial stages of development of metabolic syndrome. We also measured the degree of glycosylation of hemoglobin, and the concentration of glucose in contact with this protein, that within the RBC. Glycosylation was measured by colorimetric estimation of the hydroxymethylfurfural liberated from glycosyl residues by incubation with oxalate. Results. Plasma glucose was higher in cafeteria diet and in male rats, both independent effects. However, there were no significant differences induced by sex or diet in either hemoglobin or plasma proteins. Purified RBC membranes showed a marked effect of diet: higher glycosylation in cafeteria rats, which was more marked in females (not in controls). In any case, the number of glycosyl residues per molecule were higher in hemoglobin than in plasma proteins (after correction for molecular weight). The detected levels of glucose in RBC were lower than those of plasma, even when expressed in molal units, and were practically nil in cafeteria-diet fed rats compared with controls; there was no effect of sex. Conclusions. RBC membrane glycosylation is a sensitive indicator of developing metabolic syndrome-related hyperglycemia, more sensitive than the general measurement of plasma or RBC protein glycosylation. The extensive glycosylation of blood proteins does not seem to be markedly affected by sex; and could be hardly justified from an assumedly sustained plasma hyperglycemia. The low levels of glucose found within RBC, especially in rats under the cafeteria diet, could hardly justify the extensive glycosylation of hemoglobin and the lack of differences with controls, which contained sizeable levels of intracellular glucose. Additional studies are needed to study the dynamics of glucose in vivo in the RBC to understand how such extensive protein glycosylation could take place. PMID:26213657

  12. Multifractal characterization of morphology of human red blood cells membrane skeleton.

    PubMed

    Ţălu, Ş; Stach, S; Kaczmarska, M; Fornal, M; Grodzicki, T; Pohorecki, W; Burda, K

    2016-04-01

    The purpose of this paper is to show applicability of multifractal analysis in investigations of the morphological changes of ultra-structures of red blood cells (RBCs) membrane skeleton measured using atomic force microscopy (AFM). Human RBCs obtained from healthy and hypertensive donors as well as healthy erythrocytes irradiated with neutrons (45 μGy) were studied. The membrane skeleton of the cells was imaged using AFM in a contact mode. Morphological characterization of the three-dimensional RBC surfaces was realized by a multifractal method. The nanometre scale study of human RBCs surface morphology revealed a multifractal geometry. The generalized dimensions Dq and the singularity spectrum f(α) provided quantitative values that characterize the local scale properties of their membrane skeleton organization. Surface characterization was made using areal ISO 25178-2: 2012 topography parameters in combination with AFM topography measurement. The surface structure of human RBCs is complex with hierarchical substructures resulting from the organization of the erythrocyte membrane skeleton. The analysed AFM images confirm a multifractal nature of the surface that could be useful in histology to quantify human RBC architectural changes associated with different disease states. In case of very precise measurements when the red cell surface is not wrinkled even very fine differences can be uncovered as was shown for the erythrocytes treated with a very low dose of ionizing radiation. PMID:27002485

  13. Transfusion of cell saver salvaged blood in neonates and infants undergoing open heart surgery significantly reduces RBC and coagulant product transfusions and donor exposures: results of a prospective, randomized, clinical trial

    PubMed Central

    Cholette, Jill M; Powers, Karen S; Alfieris, George M; Angona, Ronald; Henrichs, Kelly F; Masel, Debra; Swartz, Michael F; Daugherty, L. Eugene; Belmont, Kevin; Blumberg, Neil

    2013-01-01

    Objective To evaluate whether transfusion of cell saver salvaged, stored at the bedside for up to 24 hours, would decrease the number of post-operative allogeneic RBC transfusions and donor exposures, and possibly improve clinical outcomes. Design Prospective, randomized, controlled, clinical trial. Setting Pediatric cardiac intensive care unit. Patients Infants <20kg (n = 106) presenting for cardiac surgery with cardiopulmonary bypass. Interventions Subjects were randomized to a cell saver transfusion group where cell saver blood was available for transfusion up to 24 hours post-collection, or to a control group. Cell saver subjects received cell saver blood for volume replacement and/or RBC transfusions. Control subjects received crystalloid or albumin for volume replacement and RBCs for anemia. Blood product transfusions, donor exposures, and clinical outcomes were compared between groups. Measurements and Main Results Children randomized to the cell saver group had significantly fewer RBC transfusions (cell saver: 0.19 ± 0.44 v. control: 0.75 ± 1.2; p = 0.003) and coagulant product transfusions in the first 48 hours post-op (cell saver: 0.09 ± 0.45 v. control: 0.62 ± 1.4; p = 0.013), and significantly fewer donor exposures (cell saver: 0.60 ± 1.4 v. control: 2.3 ± 4.8; p =0.019). This difference persisted over the first week post-op, but did not reach statistical significance (cell saver: 0.64 ± 1.24 v. control: 1.1 ± 1.4; p =0.07). There were no significant clinical outcome differences. Conclusion Cell saver blood can be safely stored at the bedside for immediate transfusion for 24 hours post-collection. Administration of cell saver blood significantly reduces the number of RBC and coagulant product transfusions and donor exposures in the immediate post-operative period. Reduction of blood product transfusions has the potential to reduce transfusion-associated complications and decrease post-operative morbidity. Larger studies are needed to determine whether this transfusion strategy will improve clinical outcomes. PMID:23287903

  14. Defected red blood cell membranes and direct correlation with the uraemic milieu: the connection with the decreased red blood cell lifespan observed in haemodialysis patients

    NASA Astrophysics Data System (ADS)

    Stamopoulos, D.; Grapsa, E.; Manios, E.; Gogola, V.; Bakirtzi, N.

    2012-12-01

    Together with impaired production of erythropoietin and iron deficiency, the decreased lifespan of red blood cells (RBCs) is a main factor contributing to the chronic anaemia observed in haemodialysis (HD) patients. Atomic force microscopy is employed in this work to thoroughly survey the membrane of intact RBCs (iRBCs) of HD patients in comparison to those of healthy donors, aiming to obtain direct information on the structural status of RBCs that can be related to their decreased lifespan. We observed that the iRBC membrane of the HD patients is overpopulated with extended circular defects, termed orifices, that have typical dimension ranging between 0.2 and 1.0 ?m. The orifice indexthat is, the mean population of orifices per top membrane surfaceexhibits a pronounced relative increase of order 54 12% for the HD patients as compared to healthy donors. Interestingly, for the HD patients, the orifice index, which relates to the structural status of the RBC membrane, correlates strongly with urea concentration, which is a basic index of the uraemic milieu. Thus, these results indicate that the uraemic milieu downgrades the structural status of the RBC membrane, possibly triggering biochemical processes that result in their premature elimination from the circulation. This process could decrease the lifespan of RBCs, as observed in HD patients.

  15. Defected red blood cell membranes and direct correlation with the uraemic milieu: the connection with the decreased red blood cell lifespan observed in haemodialysis patients.

    PubMed

    Stamopoulos, D; Grapsa, E; Manios, E; Gogola, V; Bakirtzi, N

    2012-12-01

    Together with impaired production of erythropoietin and iron deficiency, the decreased lifespan of red blood cells (RBCs) is a main factor contributing to the chronic anaemia observed in haemodialysis (HD) patients. Atomic force microscopy is employed in this work to thoroughly survey the membrane of intact RBCs (iRBCs) of HD patients in comparison to those of healthy donors, aiming to obtain direct information on the structural status of RBCs that can be related to their decreased lifespan. We observed that the iRBC membrane of the HD patients is overpopulated with extended circular defects, termed 'orifices', that have typical dimension ranging between 0.2 and 1.0 ?m. The 'orifice' index-that is, the mean population of 'orifices' per top membrane surface-exhibits a pronounced relative increase of order 54 12% for the HD patients as compared to healthy donors. Interestingly, for the HD patients, the 'orifice' index, which relates to the structural status of the RBC membrane, correlates strongly with urea concentration, which is a basic index of the uraemic milieu. Thus, these results indicate that the uraemic milieu downgrades the structural status of the RBC membrane, possibly triggering biochemical processes that result in their premature elimination from the circulation. This process could decrease the lifespan of RBCs, as observed in HD patients. PMID:23124094

  16. Dielectrophoretic cell capture on polyester membranes.

    PubMed

    Hanke, Conni; Dittrich, Petra S; Reyes, Darwin R

    2012-04-01

    A new system for dielectrophoretic cell capture on permeable polyester membranes is presented. Conventional photolithographic techniques were used to fabricate gold microelectrodes on a polyester membrane. The characterization of the microelectrodes showed that there were no differences regarding roughness, permeability, and hydrophilicity of the membrane before and after processing. Finally, dielectrophoretic cell capture and viability in a microfluidic device was demonstrated on the patterned membrane. These membranes could ultimately be combined with multilayer microfluidic devices to form a powerful tool for studies of cell-cell interactions in coculture, whereby spatial separation of different cell types and/or microenvironments are required. PMID:22462623

  17. Following-up changes in red blood cell deformability and membrane stability in the presence of PTFE graft implanted into the femoral artery in a canine model

    NASA Astrophysics Data System (ADS)

    Toth, Csaba; Kiss, Ferenc; Klarik, Zoltan; Gergely, Eszter; Toth, Eniko; Peto, Katalin; Vanyolos, Erzsebet; Miko, Iren; Nemeth, Norbert

    2014-05-01

    It is known that a moderate mechanical stress can even improve the red blood cells' (RBC) micro-rheological characteristics, however, a more significant stress causes deterioration in the deformability. In this study, we aimed to investigate the effect of the presence of artificial graft on the RBC deformability and membrane stability in beagles. In the Control group only anesthesia was induced and in the postoperative (p.o.) period blood samplings were carried out. In the Grafted group under general anesthesia, the left femoral artery was isolated, from which a 3.5 cm segment was resected and a PTFE graft (O.D.: 3 mm) of equal in length was implanted into the gap. On the 1st, 3rd, 5th, 7th and 14th p.o. days blood was collected the cephalic veins and RBC deformability was determined ektacytometry (LoRRca MaxSis Osmoscan). Membrane stability test consisted of two deformability measurements before and after the cells were being exposed to mechanical stress (60 or 100 Pa for 300 seconds). Compared to the Control group and the baseline values the red blood cell deformability showed significant deterioration on the 3rd, 5th and mainly on the 7th postoperative day after the graft implantation. The membrane stability of erythrocyte revealed marked inter-group difference on the 3rd, 5th and 7th day: in the Grafted group the deformability decreased and during the membrane stability test smaller difference was observed between the states before and after shearing. We concluded that the presence of a PTFE graft in the femoral artery may cause changes in RBC deformability in the first p.o. week. RBC membrane stability investigation shows a lower elongation index profile for the grafted group and a narrowed alteration in the deformability curves due to mechanical stress.

  18. Manufactured RBC--rivers of blood, or an oasis in the desert?

    PubMed

    Timmins, N E; Nielsen, L K

    2011-01-01

    Red blood cell (RBC) transfusion is an essential practice in modern medicine, one that is entirely dependent on the availability of donor blood. Constraints in donor supply have led to proposals that transfusible RBC could be manufactured from stem cells. While it is possible to generate small amounts of RBC in vitro, very large numbers of cells are required to be of clinical significance. We explore the challenges facing large scale manufacture of RBC and technological developments required for such a scenario to be realised. PMID:21609758

  19. Lateral organization of membranes and cell shapes.

    PubMed Central

    Markin, V S

    1981-01-01

    The relations among membrane structure, mechanical properties, and cell shape have been investigated. The fluid mosaic membrane models used contains several components that move freely in the membrane plane. These components interact with each other and determine properties of the membrane such as curvature and elasticity. A free energy equation is postulated for such a multicomponent membrane and the condition of free energy minimum is used to obtain differential equations relating the distribution of membrane components and the local membrane curvature. The force that moves membrane components along the membrane in a variable curvature field is calculated. A change in the intramembrane interactions can bring about phase separation or particle clustering. This, in turn, may strongly affect the local curvature. The numerical solution of the set of equations for the two dimensional case allows determination of the cell shape and the component distribution along the membrane. The model has been applied to describe certain erythrocytes shape transformations. PMID:7284547

  20. Fuel-Cell Structure Prevents Membrane Drying

    NASA Technical Reports Server (NTRS)

    Mcelroy, J.

    1986-01-01

    Embossed plates direct flows of reactants and coolant. Membrane-type fuel-cell battery has improved reactant flow and heat removal. Compact, lightweight battery produces high current and power without drying of membranes.

  1. Actinide transport across cell membranes.

    PubMed

    Bulman, R A; Griffin, R J

    1980-01-01

    Protactinium uptake into the normal liver does not exceed 3%, but when the phospholipid levels in the liver are elevated by administration of thioacetamide this uptake increases to 31%. Phosphatidic acid, which is absent from the normal liver, has been shown to extract protactinium into organic solvents. However, phosphatidylserine, a component of normal liver cell membranes, does not extract protactinium. It might be conjectured that this is why so little protactinium is taken up by the normal liver. The hypothesis is advanced that phosphatidylserine, which is known to complex plutonium, americium and curium, may regulate the uptake of these elements by liver. PMID:7373293

  2. Preparation and characterization of micro-cell membrane chromatographic column with silica-based porous layer open tubular capillary as cellular membrane carrier.

    PubMed

    Zhang, Fugeng; Zhao, Xinchao; Xu, Bei; Cheng, Shuai; Tang, Cheng; Duan, Hongquan; Xiao, Xuefeng; Du, Wuxun; Xu, Liang

    2016-04-01

    Cell membrane chromatography (CMC) is a powerful tool to study membrane protein interactions and to screen active compounds extracted from natural products. Unfortunately, a large amount of cells are typically required for column preparation in order to carry out analyses in an efficient manner. Micro-CMC (mCMC) has recently been developed by using a silica capillary as a membrane carrier. However, a reduced retention of analytes is generally associated with mCMC mostly due to a low ligand (cellular membrane) capacity. To solve this common problem, in this work a silica-based porous layer open tubular (PLOT) capillary was fabricated and, to the best of our knowledge, for the first time applied to mCMC. The mCMC column was prepared by physical adsorption of rabbit red blood cell (rRBC) membranes onto the inner surface of the PLOT capillary. The effects of the PLOT capillaries fabricated by different feed compositions, on the immobilization amount of cellular membranes (represented by the fluorescence intensity of the capillary immobilized with fluorescein isothiocyanate isomer-labeled cellular membranes) and on the dynamic binding capacity (DBC) of verapamil (VP, a widely used calcium antagonist which specific interacts with L-type calcium channel proteins located on cellular membrane of rRBC) have been systematically investigated. The fluorescence intensity of the mCMC column when combined with the PLOT capillary was found to be more than five times higher than the intensity using a bare capillary. This intriguing result indicates that the PLOT capillary exhibits a higher cellular membrane capacity. The DBC of VP in the PLOT column was found to be more than nine times higher than that in the bare capillary. An rRBC/CMC column was also prepared for comparative studies. As a result, mCMC provides similar chromatographic retention factors and stability with common CMC; however, the cellular membrane consumption for mCMC was found to be more than 460 times lower than that for CMC. Graphical Abstract Comparision of mCMC chromatograms and SEM images between bare capillary and PLOT capillary. PMID:26825341

  3. Chemical degradation mechanisms of membranes for alkaline membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Choe, Yoong-Kee; Henson, Neil J.; Kim, Yu Seung

    2015-12-01

    Chemical degradation mechanisms of membranes for alkaline membrane fuel cells have been investigated using density functional theory (DFT). We have elucidated that the aryl-ether moiety of membranes is one of the weakest site against attack of hydroxide ions. The results of DFT calculations for hydroxide initiated aryl-ether cleavage indicated that the aryl-ether cleavage occurred prior to degradation of cationic functional group. Such a weak nature of the aryl-ether group arises from the electron deficiency of the aryl group as well as the low bond dissociation energy. The DFT results suggests that removal of the aryl-ether group in the membrane should enhance the stability of membranes under alkaline conditions. In fact, an ether fee poly(phenylene) membrane exhibits excellent stability against the attack from hydroxide ions.

  4. A Stochastic Coarse-Grained Model of a Red Blood Cell

    NASA Astrophysics Data System (ADS)

    Pivkin, Igor; Karniadakis, George

    2007-11-01

    A Red blood cell (RBC) can be modeled as a fluid volume enclosed by a flexible membrane. The membrane consists of a lipid bilayer and a protein skeleton, which determine the deformation behavior of the RBC. We develop a rigorous coarse-graining procedure for modeling the RBC membrane. The model takes into account the bending energy, in-plane shear energy, and constraints of fixed surface area and fixed enclosed volume. The coarse-grained model is validated against available experimental data and in Dissipative Particle Dynamics (DPD) simulations of the RBC in microcirculation.

  5. Metabolomics of AS-5 RBC supernatants following routine storage

    PubMed Central

    DAlessandro, A.; Hansen, K. C.; Silliman, C. C.; Moore, E. E.; Kelher, M.; Banerjee, A.

    2015-01-01

    Background and Objectives The safety and efficacy of stored red blood cells (RBCs) transfusion has been long debated due to retrospective clinical evidence and laboratory results, indicating a potential correlation between increased morbidity and mortality following transfusion of RBC units stored longer than 14 days. We hypothesize that storage in Optisol additive solution-5 leads to a unique metabolomics profile in the supernatant of stored RBCs. Materials and Methods Whole blood was drawn from five healthy donors, RBC units were manufactured, and prestorage leucoreduced by filtration. Samples were taken on days 1 and 42, the cells removed, and mass spectrometry-based metabolomics was performed. Results The results confirmed the progressive impairment of RBC energy metabolism by day 42 with indirect markers of a parallel alteration of glutathione and NADPH homeostasis. Moreover, oxidized pro-inflammatory lipids accumulated by the end of storage. Conclusion The supernatants from stored RBCs may represent a burden to the transfused recipients from a metabolomics standpoint. PMID:25200932

  6. Plasmodium falciparum STEVOR Proteins Are Highly Expressed in Patient Isolates and Located in the Surface Membranes of Infected Red Blood Cells and the Apical Tips of Merozoites?

    PubMed Central

    Blythe, Jane E.; Yam, Xue Yan; Kuss, Claudia; Bozdech, Zbynek; Holder, Anthony A.; Marsh, Kevin; Langhorne, Jean; Preiser, Peter R.

    2008-01-01

    The human parasite Plasmodium falciparum has the potential to express a vast repertoire of variant proteins on the surface of the infected red blood cell (iRBC). Variation in the expression pattern of these proteins is linked to antigenic variation and thereby evasion of host antibody-mediated immunity. The genes in the stevor multigene family code for small variant antigens that are expressed in blood-stage parasites where they can be detected in membranous structures called Maurer's clefts (MC). Some studies have indicated that STEVOR protein may also be trafficked to the iRBC membrane. To address the location of STEVOR protein in more detail, we have analyzed expression in several cultured parasite lines and in parasites obtained directly from patients. We detected STEVOR expression in a higher proportion of parasites recently isolated from patients than in cultured parasite lines and show that STEVOR is trafficked in schizont-stage parasites from the MC to the RBC cytosol and the iRBC membrane. Furthermore, STEVOR protein is also detected at the apical end of merozoites. Importantly, we show that culture-adapted parasites do not require STEVOR for survival. These findings provide new insights into the role of the stevor multigene family during both the schizont and merozoite stages of the parasite and highlight the importance of studying freshly isolated parasites, rather than parasite lines maintained in culture, when investigating potential mediators of host-parasite interactions. PMID:18474651

  7. Influence of network topology on the elasticity of the red blood cell membrane skeleton.

    PubMed Central

    Hansen, J C; Skalak, R; Chien, S; Hoger, A

    1997-01-01

    A finite-element network model is used to investigate the influence of the topology of the red blood cell membrane skeleton on its macroscopic mechanical properties. Network topology is characterized by the number of spectrin oligomers per actin junction (phi a) and the number of spectrin dimers per self-association junction (phi s). If it is assumed that all associated spectrin is in tetrameric form, with six tetramers per actin junction (i.e., phi a = 6.0 and phi s = 2.0), then the topology of the skeleton may be modeled by a random Delaunay triangular network. Recent images of the RBC membrane skeleton suggest that the values for these topological parameters are in the range of 4.2 < phi a < 5.5 and 2.1 < phi s < 2.3. Model networks that simulate these realistic topologies exhibit values of the shear modulus that vary by more than an order of magnitude relative to triangular networks. This indicates that networks with relatively sparse nontriangular topologies may be needed to model the RBC membrane skeleton accurately. The model is also used to simulate skeletal alterations associated with hereditary spherocytosis and Southeast Asian ovalocytosis. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 11 FIGURE 12 FIGURE 13 FIGURE 14 PMID:9129841

  8. Rapid flow cytometric test using eosin-5-maleimide for diagnosis of red blood cell membrane disorders.

    PubMed

    Tachavanich, Kalaya; Tanphaichitr, Voravarn S; Utto, Wiyakan; Viprakasit, Vip

    2009-05-01

    Conventional diagnosis of hereditary red blood cell (RBC) membrane disorders, in particular hereditary spherocytosis (HS), is labor intensive, time consuming and requires at least 2 ml of blood, which might be impractical in neonatal period. We evaluated the use of eosin-5-maleimide (EMA), a dye that reacts covalently with lysine-430 on the first extracellular loop of band 3 protein, for rapid screening test of patients with HS and Southeast Asian Ovalocytosis (SAO). Fresh RBCs from 142 healthy controls, 50 HS, 17 SAO, 29 hereditary elliptocytosis, 5 autoimmune hemolytic anemia, 66 patients with beta-thalassemia/HbE, 31 cases with alpha-thalassemia (HbH disease) and 4 cases with pyruvate kinase deficiency were stained with EMA, and analyzed for their mean channel fluorescence (MCF) using a flow cytometer. RBCs from patients with HS and SAO expressed a greater degree of reduction in MCF compared to those from normal controls and other hemolytic diseases. These findings showed that the fluorescence flow cytometric-based method is a simple, sensitive and reliable diagnostic test for RBC membrane disorders using a small volume of blood, and results could be obtained within 2 hours. Such method could serve as a first line screening for the diagnosis of HS and SAO in routine hematology before further specific membrane protein electrophoresis and molecular diagnosis are employed. PMID:19842445

  9. Polymer electrolyte membrane assembly for fuel cells

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Kindler, Andrew (Inventor); Yavrouian, Andre (Inventor); Halpert, Gerald (Inventor)

    2000-01-01

    An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells.

  10. Polymer electrolyte membrane assembly for fuel cells

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Kindler, Andrew (Inventor); Yavrouian, Andre (Inventor); Halpert, Gerald (Inventor)

    2002-01-01

    An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells.

  11. Fuel cell ion-exchange membrane investigation

    NASA Technical Reports Server (NTRS)

    Toy, M. S.

    1972-01-01

    The present deficiencies in the fluorocarbon sulfonic acid membrane used as the solid polymer electrolyte in the H2/O2 fuel cell are studied. Considered are: Adhesives selection, elastomeric formulations, scavenger exploration, and membrane characterization. The significant data are interpreted and recommendations are given for both short and long range further investigations in two of the four major areas: membrane adhesives and membrane stabilization.

  12. Advanced composite polymer electrolyte fuel cell membranes

    SciTech Connect

    Wilson, M.S.; Zawodzinski, T.A.; Gottesfeld, S.; Kolde, J.A.; Bahar, B.

    1995-09-01

    A new type of reinforced composite perfluorinated polymer electrolyte membrane, GORE-SELECT{trademark} (W.L. Gore & Assoc.), is characterized and tested for fuel cell applications. Very thin membranes (5-20 {mu}m thick) are available. The combination of reinforcement and thinness provides high membrane, conductances (80 S/cm{sup 2} for a 12 {mu}m thick membrane at 25{degrees}C) and improved water distribution in the operating fuel cell without sacrificing longevity or durability. In contrast to nonreinforced perfluorinated membranes, the x-y dimensions of the GORE-SELECT membranes are relatively unaffected by the hydration state. This feature may be important from the viewpoints of membrane/electrode interface stability and fuel cell manufacturability.

  13. Advanced composite polymer electrolyte fuel cell membranes

    NASA Astrophysics Data System (ADS)

    Wilson, Mahlon S.; Zawodzinski, Thomas A.; Gottesfeld, Shimshon; Kolde, Jeffrey A.; Bahar, Bamdad

    A new type of reinforced composite perfluorinated polymer electrolyte membrane, GORE-SELECT(trademark) (W.L. Gore & Assoc.), is characterized and tested for fuel cell applications. Very thin membranes (5-20 microns thick) are available. The combination of reinforcement and thinness provides high membrane, conductances (80 S/cm(exp 2) for a 12-micron thick membrane at 25 degrees C) and improved water distribution in the operating fuel cell without sacrificing longevity or durability. In contrast to nonreinforced perfluorinated membranes, the x-y dimensions of the GORE-SELECT membranes are relatively unaffected by the hydration state. This feature may be important from the viewpoints of membrane/electrode interface stability and fuel cell manufacturability.

  14. ATP release from hypotonically stressed skate RBC: potential role in osmolyte channel regulation.

    PubMed

    Goldstein, Leon; Koomoa, Dana-Lynn; Musch, Mark W

    2003-04-01

    A variety of cells, including skate RBC, release osmolytes (e.g. taurine) when hypotonically swollen as part of a regulatory volume decrease. In this study we show that skate RBC also release ATP into the incubation medium under the same conditions. Furthermore extracellular ATP as well as other nucleotides likely to be released from the RBC, inhibit the hypotonically activated transport of taurine. Therefore, ATP and other nucleotides released from hypotonically stressed RBC have the potential to act as modulators of osmolyte release during hyposmotic stress. PMID:12658722

  15. Live cell imaging of membrane / cytoskeleton interactions and membrane topology

    NASA Astrophysics Data System (ADS)

    Chierico, Luca; Joseph, Adrian S.; Lewis, Andrew L.; Battaglia, Giuseppe

    2014-09-01

    We elucidate the interaction between actin and specific membrane components, using real time live cell imaging, by delivering probes that enable access to components, that cannot be accessed genetically. We initially investigated the close interplay between Phosphatidylinositol 4,5-bisphosphate (PIP2) and the F-actin network. We show that, during the early stage of cell adhesion, PIP2 forms domains within the filopodia membrane. We studied these domains alongside cell spreading and observed that these very closely follow the actin tread-milling. We show that this mechanism is associated with an active transport of PIP2 rich organelles from the cell perinuclear area to the edge, along actin fibers. Finally, mapping other phospholipids and membrane components we observed that the PIP2 domains formation is correlated with sphingosine and cholesterol rafts.

  16. Live cell imaging of membrane / cytoskeleton interactions and membrane topology

    PubMed Central

    Chierico, Luca; Joseph, Adrian S.; Lewis, Andrew L.; Battaglia, Giuseppe

    2014-01-01

    We elucidate the interaction between actin and specific membrane components, using real time live cell imaging, by delivering probes that enable access to components, that cannot be accessed genetically. We initially investigated the close interplay between Phosphatidylinositol 4,5-bisphosphate (PIP2) and the F-actin network. We show that, during the early stage of cell adhesion, PIP2 forms domains within the filopodia membrane. We studied these domains alongside cell spreading and observed that these very closely follow the actin tread-milling. We show that this mechanism is associated with an active transport of PIP2 rich organelles from the cell perinuclear area to the edge, along actin fibers. Finally, mapping other phospholipids and membrane components we observed that the PIP2 domains formation is correlated with sphingosine and cholesterol rafts. PMID:25205456

  17. Proton Exchange Membranes for Fuel Cells

    SciTech Connect

    Devanathan, Ramaswami

    2010-11-01

    Proton exchange membrane, also known as polymer electrolyte membrane, fuel cells (PEMFCs) offer the promise of efficient conversion of chemical energy of fuel, such as hydrogen or methanol, into electricity with minimal pollution. Their widespread use to power zero-emission automobiles as part of a hydrogen economy can contribute to enhanced energy security and reduction in greenhouse gas emissions. However, the commercial viability of PEMFC technology is hindered by high cost associated with the membrane electrode assembly (MEA) and poor membrane durability under prolonged operation at elevated temperature. Membranes for automotive fuel cell applications need to perform well over a period comparable to the life of an automotive engine and under heavy load cycling including start-stop cycling under sub-freezing conditions. The combination of elevated temperature, changes in humidity levels, physical stresses and harsh chemical environment contribute to membrane degradation. Perfluorinated sulfonic acid (PFSA)-based membranes, such as Nafion, have been the mainstay of PEMFC technology. Their limitations, in terms of cost and poor conductivity at low hydration, have led to continuing research into membranes that have good proton conductivity at elevated temperatures above 120 C and under low humidity conditions. Such membranes have the potential to avoid catalyst poisoning, simplify fuel cell design and reduce the cost of fuel cells. Hydrocarbon-based membranes are being developed as alternatives to PFSA membranes, but concerns about chemical and mechanical stability and durability remain. Novel anhydrous membranes based on polymer gels infused with protic ionic liquids have also been recently proposed, but considerable fundamental research is needed to understand proton transport in novel membranes and evaluate durability under fuel cell operating conditions. In order to advance this promising technology, it is essential to rationally design the next generation of PEMs based on an understanding of chemistry, membrane morphology and proton transport obtained from experiment, theory and computer simulation.

  18. Epiretinal membranes in sickle cell disease.

    PubMed Central

    Moriarty, B J; Acheson, R W; Serjeant, G R

    1987-01-01

    Epiretinal membranes at the macula were seen in 4% of the eyes of 355 patients with homozygous sickle cell (SS) disease and sickle cell haemoglobin-C (SC) disease under the age of 60 years. The presence of proliferative sickle retinopathy (PSR), the extent of involvement of PSR, and vitreous haemorrhage all constitute risk factors for the formation of epiretinal membranes. The occlusion of PSR lesions by treatment appears to reduce the risk of epiretinal membranes being formed. Images PMID:3620428

  19. Enhancing the safety of intraoperative RBC salvage.

    PubMed

    Bull, B S; Bull, M H

    1989-03-01

    Devices for intraoperative blood salvage remove plasma and, in theory, all of the cellular elements of blood except for rbcs. We have previously shown that complete white cell and platelet removal does not always occur and that the retained platelet-leukocyte deposit is potentially harmful (2). In this study we investigated the hydraulic conditions in the centrifuge bowl that allow activated platelets and leukocytes to adhere, the histology of the resulting cellular deposit, and the effects of reinfusing a saline extract of the deposit. Earlier work had suggested that the addition of calcium, of partially clotted blood, and of excessive saline should be avoided during intraoperative rbc salvage (2). The present observations explain, in part, why such measures would be expected to be beneficial. PMID:2926844

  20. Interaction of Defensins with Model Cell Membranes

    NASA Astrophysics Data System (ADS)

    Sanders, Lori K.; Schmidt, Nathan W.; Yang, Lihua; Mishra, Abhijit; Gordon, Vernita D.; Selsted, Michael E.; Wong, Gerard C. L.

    2009-03-01

    Antimicrobial peptides (AMPs) comprise a key component of innate immunity for a wide range of multicellular organisms. For many AMPs, activity comes from their ability to selectively disrupt and lyse bacterial cell membranes. There are a number of proposed models for this action, but the detailed molecular mechanism of selective membrane permeation remains unclear. Theta defensins are circularized peptides with a high degree of selectivity. We investigate the interaction of model bacterial and eukaryotic cell membranes with theta defensins RTD-1, BTD-7, and compare them to protegrin PG-1, a prototypical AMP, using synchrotron small angle x-ray scattering (SAXS). The relationship between membrane composition and peptide induced changes in membrane curvature and topology is examined. By comparing the membrane phase behavior induced by these different peptides we will discuss the importance of amino acid composition and placement on membrane rearrangement.

  1. Functional dynamics of cell surface membrane proteins

    NASA Astrophysics Data System (ADS)

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules.

  2. Dicarboxylic acids with limited numbers of hydrocarbons stabilize cell membrane and increase osmotic resistance in rat erythrocytes.

    PubMed

    Mineo, Hitoshi; Amita, Nozomi; Kawawake, Megumi; Higuchi, Ayaka

    2013-11-01

    We examined the effect of dicarboxylic acids having 0 to 6 hydrocarbons and their corresponding monocarboxylic or tricarboxylic acids in changing the osmotic fragility (OF) in rat red blood cells (RBCs). Malonic, succinic, glutaric and adipic acids, which are dicarboxylic acids with 1, 2, 3 and 4 straight hydrocarbons located between two carboxylic groups, decreased the OF in a concentration-dependent manner. Other long-chain dicarboxylic acids did not change the OF in rat RBCs. The benzoic acid derivatives, isophthalic and terephthalic acids, but not phthalic acid, decreased the OF in a concentration-dependent manner. Benzene-1,2,3-tricarboxylic acid, but not benzene-1,3,5-tricarboxylic acid, also decreased the OF in rat RBCs. On the other hand, monocarboxylic acids possessing 2 to 7 straight hydrocarbons and benzoic acid increased the OF in rat RBCs. In short-chain dicarboxylic acids, a limited number of hydrocarbons between the two carboxylic groups are thought to form a V- or U-shaped structure and interact with phospholipids in the RBC membrane. In benzene dicarboxylic and tricarboxylic acids, a part of benzene nucleus between the two carboxylic groups is thought to enter the plasma membrane and act on acyl-chain in phospholipids in the RBC membrane. For dicarboxylic and tricarboxylic acids, limited numbers of hydrocarbons in molecules are speculated to enter the RBC membrane with the hydrophilic carboxylic groups remaining outside, stabilizing the structure of the cell membrane and resulting in an increase in osmotic resistance in rat RBCs. PMID:23770357

  3. Automated tracking of temporal displacements of a red blood cell obtained by time-lapse digital holographic microscopy.

    PubMed

    Moon, Inkyu; Yi, Faliu; Rappaz, Benjamin

    2016-01-20

    Red blood cell (RBC) phase images that are numerically reconstructed by digital holographic microscopy (DHM) can describe the cell structure and dynamics information beneficial for a quantitative analysis of RBCs. However, RBCs investigated with time-lapse DHM undergo temporal displacements when their membranes are loosely attached to the substrate during sedimentation on a glass surface or due to the microscope drift. Therefore, we need to develop a tracking algorithm to localize the same RBC among RBC image sequences and dynamically monitor its biophysical cell parameters; this information is helpful for studies on RBC-related diseases and drug tests. Here, we propose a method, which is a combination of the mean-shift algorithm and Kalman filter, to track a single RBC and demonstrate that the optical path length of the single RBC can be continually extracted from the tracked RBC. The Kalman filter is utilized to predict the target RBC position in the next frame. Then, the mean-shift algorithm starts execution from the predicted location, and a robust kernel, which is adaptive to changes in the RBC scale, shape, and direction, is designed to improve the accuracy of the tracking. Finally, the tracked RBC is segmented and parameters such as the RBC location are extracted to update the Kalman filter and the kernel function for mean-shift tracking; the characteristics of the target RBC are dynamically observed. Experimental results show the feasibility of the proposed algorithm. PMID:26835962

  4. Red blood cell in simple shear flow

    NASA Astrophysics Data System (ADS)

    Chien, Wei; Hew, Yayu; Chen, Yeng-Long

    2013-03-01

    The dynamics of red blood cells (RBC) in blood flow is critical for oxygen transport, and it also influences inflammation (white blood cells), thrombosis (platelets), and circulatory tumor migration. The physical properties of a RBC can be captured by modeling RBC as lipid membrane linked to a cytoskeletal spectrin network that encapsulates cytoplasm rich in hemoglobin, with bi-concave equilibrium shape. Depending on the shear force, RBC elasticity, membrane viscosity, and cytoplasm viscosity, RBC can undergo tumbling, tank-treading, or oscillatory motion. We investigate the dynamic state diagram of RBC in shear and pressure-driven flow using a combined immersed boundary-lattice Boltzmann method with a multi-scale RBC model that accurately captures the experimentally established RBC force-deformation relation. It is found that the tumbling (TU) to tank-treading (TT) transition occurs as shear rate increases for cytoplasm/outer fluid viscosity ratio smaller than 0.67. The TU frequency is found to be half of the TT frequency, in agreement with experiment observations. Larger viscosity ratios lead to the disappearance of stable TT phase and unstable complex dynamics, including the oscillation of the symmetry axis of the bi-concave shape perpendicular to the flow direction. The dependence on RBC bending rigidity, shear modulus, the order of membrane spectrin network and fluid field in the unstable region will also be discussed.

  5. Interaction of detergent sclerosants with cell membranes.

    PubMed

    Parsi, Kurosh

    2015-06-01

    Commonly used detergent sclerosants including sodium tetradecyl sulphate (STS) and polidocanol (POL) are clinically used to induce endovascular fibrosis and vessel occlusion. They achieve this by lysing the endothelial lining of target vessels. These agents are surface active (surfactant) molecules that interfere with cell membranes. Surfactants have a striking similarity to the phospholipid molecules of the membrane lipid bilayer. By adsorbing at the cell membrane, surfactants disrupt the normal architecture of the lipid bilayer and reduce the surface tension. The outcome of this interaction is concentration dependent. At high enough concentrations, surfactants solubilise cell membranes resulting in cell lysis. At lower concentrations, these agents can induce a procoagulant negatively charged surface on the external aspect of the cell membrane. The interaction is also influenced by the ionic charge, molecular structure, pH and the chemical nature of the diluent (e.g. saline vs. water). The ionic charge of the surfactant molecule can influence the effect on plasma proteins and the protein contents of cell membranes. STS, an anionic detergent, denatures the tertiary complex of most proteins and in particular the clinically relevant clotting factors. By contrast, POL has no effect on proteins due to its non-ionic structure. These agents therefore exhibit remarkable differences in their interaction with lipid membranes, target cells and circulating proteins with potential implications in a range of clinical applications. PMID:24827732

  6. Role of CD44 in the differentiation of Th1 and Th2 cells: CD44-deficiency enhances the development of Th2 effectors in response to sheep RBC and chicken ovalbumin.

    PubMed

    Guan, Hongbing; Nagarkatti, Prakash S; Nagarkatti, Mitzi

    2009-07-01

    CD4 T cells can be primarily polarized to differentiate into Th1 or Th2 cells. CD44 is a marker of T cell activation and a property of long-lived memory cells and implicated in cell migration, activation, and differentiation. To date, whether CD44 has a role in regulating Th1-Th2 differentiation has not been determined. In this study, we compared Th1 and Th2 responses in wild-type and CD44-deficient mice in response to sheep RBC and chicken OVA, as well as examined Th1-Th2 differentiation in vivo and in vitro from CD44-sufficient and CD44-deficient naive CD4 T cells. We observed that deficiency of CD44 tended to inhibit Th1 while promoting Th2 differentiation. Furthermore, chimeric studies suggested that CD44 expression by CD4 T cells was essential for such Th2 bias. The regulation by CD44 occurred at the transcription level leading to up-regulated GATA3 and down-regulated T-bet expression in activated CD4 T cells. We also noted that CD44-deficiency could modify the state of dendritic cell subsets to induce a Th2-biased development. Results presented in this study demonstrate for the first time that CD44 participates in the regulation of Th1-Th2 differentiation. PMID:19542428

  7. Cell membrane array fabrication and assay technology

    PubMed Central

    Yamazaki, Victoria; Sirenko, Oksana; Schafer, Robert J; Nguyen, Luat; Gutsmann, Thomas; Brade, Lore; Groves, Jay T

    2005-01-01

    Background Microarray technology has been used extensively over the past 10 years for assessing gene expression, and has facilitated precise genetic profiling of everything from tumors to small molecule drugs. By contrast, arraying cell membranes in a manner which preserves their ability to mediate biochemical processes has been considerably more difficult. Results In this article, we describe a novel technology for generating cell membrane microarrays for performing high throughput biology. Our robotically-arrayed supported membranes are physiologically fluid, a critical property which differentiates this technology from other previous membrane systems and makes it useful for studying cellular processes on an industrialized scale. Membrane array elements consist of a solid substrate, above which resides a fluid supported lipid bilayer containing biologically-active molecules of interest. Incorporation of transmembrane proteins into the arrayed membranes enables the study of ligand/receptor binding, as well as interactions with live intact cells. The fluidity of these molecules in the planar lipid bilayer facilitates dimerization and other higher order interactions necessary for biological signaling events. In order to demonstrate the utility of our fluid membrane array technology to ligand/receptor studies, we investigated the multivalent binding of the cholera toxin B-subunit (CTB) to the membrane ganglioside GM1. We have also displayed a number of bona fide drug targets, including bacterial endotoxin (also referred to as lipopolysaccharide (LPS)) and membrane proteins important in T cell activation. Conclusion We have demonstrated the applicability of our fluid cell membrane array technology to both academic research applications and industrial drug discovery. Our technology facilitates the study of ligand/receptor interactions and cell-cell signaling, providing rich qualitative and quantitative information. PMID:15960850

  8. Red cell membrane: past, present, and future

    PubMed Central

    Gallagher, Patrick G.

    2008-01-01

    As a result of natural selection driven by severe forms of malaria, 1 in 6 humans in the world, more than 1 billion people, are affected by red cell abnormalities, making them the most common of the inherited disorders. The non-nucleated red cell is unique among human cell type in that the plasma membrane, its only structural component, accounts for all of its diverse antigenic, transport, and mechanical characteristics. Our current concept of the red cell membrane envisions it as a composite structure in which a membrane envelope composed of cholesterol and phospholipids is secured to an elastic network of skeletal proteins via transmembrane proteins. Structural and functional characterization of the many constituents of the red cell membrane, in conjunction with biophysical and physiologic studies, has led to detailed description of the way in which the remarkable mechanical properties and other important characteristics of the red cells arise, and of the manner in which they fail in disease states. Current studies in this very active and exciting field are continuing to produce new and unexpected revelations on the function of the red cell membrane and thus of the cell in health and disease, and shed new light on membrane function in other diverse cell types. PMID:18988878

  9. Membrane Stability during Biopreservation of Blood Cells.

    PubMed

    Stoll, Christoph; Wolkers, Willem F

    2011-01-01

    SUMMARY: Storage methods, which can be taken into consideration for red blood cells and platelets, include liquid storage, cryopreservation and freeze-drying. Red blood cells can be hypothermically stored at refrigerated temperatures, whereas platelets are chilling sensitive and therefore cannot be stored at temperatures below 20 C. Here we give an overview of available cryopreservation and freeze-drying procedures for blood cells and discuss the effects of these procedures on cells, particularly on cellular membranes. Cryopreservation and freeze-drying may result in chemical and structural modifications of cellular membranes. Membranes undergo phase and permeability changes during freezing and drying. Cryo- and lyoprotective agents prevent membrane damage by different mechanisms. Cryoprotective agents are preferentially excluded from membrane surfaces. They decrease the activation energy for water transport during freezing and control the rate of cellular dehydration. Lyoprotectants are thought to stabilize membranes during drying by forming direct hydrogen bonding interactions with phospholipid head groups. In addition, lyoprotectants can form a glassy state at room temperature. Recently liposomes have been investigated to stabilize blood cells during freezing and freeze-drying. Liposomes modify the composition of cellular membranes by lipid and cholesterol transfer, which can stabilize or destabilize the low temperature response of cells. PMID:21566710

  10. Proton conducting membrane for fuel cells

    DOEpatents

    Colombo, Daniel G.; Krumpelt, Michael; Myers, Deborah J.; Kopasz, John P.

    2007-03-27

    An ion conducting membrane comprising dendrimeric polymers covalently linked into a network structure. The dendrimeric polymers have acid functional terminal groups and may be covalently linked via linking compounds, cross-coupling reactions, or copolymerization reactions. The ion conducting membranes may be produced by various methods and used in fuel cells.

  11. Proton conducting membrane for fuel cells

    DOEpatents

    Colombo, Daniel G.; Krumpelt, Michael; Myers, Deborah J.; Kopasz, John P.

    2005-12-20

    An ion conducting membrane comprising dendrimeric polymers covalently linked into a network structure. The dendrimeric polymers have acid functional terminal groups and may be covalently linked via linking compounds, cross-coupling reactions, or copolymerization reactions. The ion conducting membranes may be produced by various methods and used in fuel cells.

  12. Emerging Role for Use of Liposomes in the Biopreservation of Red Blood Cells

    PubMed Central

    Holovati, Jelena L.; Acker, Jason P.

    2011-01-01

    Summary Biopreservation is the process of maintaining the integrity and functionality of cells held outside the native environment for extended storage times. The development of red blood cell (RBC) biopreservation techniques that maintain in vitro RBC viability and function represents the foundation of modern blood banking. The biopreservation of RBCs for clinical use can be categorized based on the techniques used to achieve biologic stability, including hypothermic storage and cryopreservation. This review will examine the emerging role of liposomes in the RBC biopreservation, including the incorporation of liposomes into RBC membranes as an effective approach for minimizing RBC hypothermic storage membrane lesion and use of liposomes as a permeabilization strategy for the intracellular accumulation of novel intracellular cryoprotectants. Integration of current biopreservation research with blood banking practices offers enormous potential for future improvements of safety and efficacy of RBC transfusion. PMID:21566711

  13. Membrane Elastic Properties and Cell Function

    PubMed Central

    Pontes, Bruno; Ayala, Yareni; Fonseca, Anna Carolina C.; Romão, Luciana F.; Amaral, Racκele F.; Salgado, Leonardo T.; Lima, Flavia R.; Farina, Marcos; Viana, Nathan B.; Moura-Neto, Vivaldo; Nussenzveig, H. Moysés

    2013-01-01

    Recent studies indicate that the cell membrane, interacting with its attached cytoskeleton, is an important regulator of cell function, exerting and responding to forces. We investigate this relationship by looking for connections between cell membrane elastic properties, especially surface tension and bending modulus, and cell function. Those properties are measured by pulling tethers from the cell membrane with optical tweezers. Their values are determined for all major cell types of the central nervous system, as well as for macrophage. Astrocytes and glioblastoma cells, which are considerably more dynamic than neurons, have substantially larger surface tensions. Resting microglia, which continually scan their environment through motility and protrusions, have the highest elastic constants, with values similar to those for resting macrophage. For both microglia and macrophage, we find a sharp softening of bending modulus between their resting and activated forms, which is very advantageous for their acquisition of phagocytic functions upon activation. We also determine the elastic constants of pure cell membrane, with no attached cytoskeleton. For all cell types, the presence of F-actin within tethers, contrary to conventional wisdom, is confirmed. Our findings suggest the existence of a close connection between membrane elastic constants and cell function. PMID:23844071

  14. Advanced membrane electrode assemblies for fuel cells

    DOEpatents

    Kim, Yu Seung; Pivovar, Bryan S

    2014-02-25

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  15. Advanced membrane electrode assemblies for fuel cells

    DOEpatents

    Kim, Yu Seung; Pivovar, Bryan S.

    2012-07-24

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  16. A novel bioactive membrane by cell electrospinning.

    PubMed

    Chen, Haiping; Liu, Yuanyuan; Hu, Qingxi

    2015-11-01

    Electrospinning permits fabrication of biodegradable matrices that can resemble the both scale and mechanical behavior of the native extracellular matrix. However, achieving high-cellular density and infiltration of cells within matrices with traditional technique remain challenging and time consuming. The cell electrospinning technique presented in this paper can mitigate the problems associated with these limitations. Cells encapsulated by the material in the cell electrospinning technique survived well and distributed homogenously within the nanofibrous membrane, and their vitality was improved to 133% after being cultured for 28 days. The electrospun nanofibrous membrane has a certain degradation property and favorable cell-membrane interaction that supports the active biocompatibility of the membrane. Its properties are helpful for supporting cell attachment and growth, maintaining phenotypic shape, and secreting an ample amount of extracellular matrix (ECM). This novel membrane may be a potential application within the field of tissue engineering. The ability of cell electrospinning to microintegrate cells into a biodegradable fibrous matrix embodies a novel tissue engineering approach that could be applied to fabricate a high cell density elastic tissue mimetic. PMID:26297530

  17. Effects of Poloxamer 188 on red blood cell membrane properties in sickle cell anaemia.

    PubMed

    Sandor, Barbara; Marin, Mickaël; Lapoumeroulie, Claudine; Rabaï, Miklos; Lefevre, Sophie D; Lemonne, Nathalie; El Nemer, Wassim; Mozar, Anaïs; Français, Olivier; Le Pioufle, Bruno; Connes, Philippe; Le Van Kim, Caroline

    2016-04-01

    Vaso-occlusive crisis (VOC) is the main acute complication in sickle cell anaemia (SS) and several clinical trials are investigating different drugs to improve the clinical severity of SS patients. A phase III study is currently exploring the profit of Velopoloxamer in SS during VOCs. We analysed, in-vitro, the effect of poloxamer (P188) on red blood cell (RBC) properties by investigating haemorheology, mechanical and adhesion functions using ektacytometry, microfluidics and dynamic adhesion approaches, respectively. We show that poloxamer significantly reduces blood viscosity, RBC aggregation and adhesion to endothelial cells, supporting the beneficial use of this molecule in SS therapy. PMID:26846309

  18. Durability of PEM Fuel Cell Membranes

    NASA Astrophysics Data System (ADS)

    Huang, Xinyu; Reifsnider, Ken

    Durability is still a critical limiting factor for the commercialization of polymer electrolyte membrane (PEM) fuel cells, a leading energy conversion technology for powering future hydrogen fueled automobiles, backup power systems (e.g., for base transceiver station of cellular networks), portable electronic devices, etc. Ionic conducting polymer (ionomer) electrolyte membranes are the critical enabling materials for the PEM fuel cells. They are also widely used as the central functional elements in hydrogen generation (e.g., electrolyzers), membrane cell for chlor-alkali production, etc. A perfluorosulfonic acid (PFSA) polymer with the trade name Nafion developed by DuPont is the most widely used PEM in chlor-alkali cells and PEM fuel cells. Similar PFSA membranes have been developed by Dow Chemical, Asahi Glass, and lately Solvay Solexis. Frequently, such membranes serve the dual function of reactant separation and selective ionic conduction between two otherwise separate compartments. For some applications, the compromise of the "separation" function via the degradation and mechanical failure of the electrolyte membrane can be the life-limiting factor; this is particularly the case for PEM in hydrogen/oxygen fuel cells.

  19. Lysophosphatidylcholine cell depolarization: increased membrane permeability for use in the determination of cell membrane potentials

    SciTech Connect

    Gallo, R.L.; Wersto, R.P.; Notter, R.H.; Finkelstein, J.N.

    1984-12-01

    Current techniques for the determination of cellular membrane potentials based on the uptake of a radiolabeled lipophilic cation, (3H)triphenylmethylphosphonium, and the cyanine dye, DiOC5(3), were analyzed in terms of the proportions of these probes which are accumulated due to potential-dependent and potential-independent forces. Measurements were made of probe uptake in two model systems: rabbit type II pneumocytes and human promyelocytic HL60 cells. For both cell types, the membrane potential-independent component of triphenylmethylphosphonium uptake was found to be a function of several variables, including the length of exposure of the cells to the transport facilitator tetraphenylboron, the concentration of tetraphenylboron, and the integrity of the cell membrane. To accurately determine the magnitude of the potential-independent component of probe uptake by type II and HL60 cells, the cell-permeabilizing agent lysophosphatidylcholine was used. The ability of lysophosphatidylcholine to depolarize cell membranes and accurately predict membrane potential-independent accumulation was found to be equal to or superior to several other techniques commonly used to achieve membrane depolarization (e.g. gramicidin, valinomycin plus high external potassium). Lysophosphatidylcholine cell treatment was found to be a simple, rapid, and accurate technique to increase cell membrane permeability and allow equilibration of intra- and extracellular ions. The method is shown to be useful for determining membrane potential-independent accumulation of both radiolabeled and fluorescent probes of membrane potential.

  20. Stretching Micropatterned Cells on a PDMS Membrane

    PubMed Central

    Carpi, Nicolas; Piel, Matthieu

    2014-01-01

    Mechanical forces exerted on cells and/or tissues play a major role in numerous processes. We have developed a device to stretch cells plated on a PolyDiMethylSiloxane (PDMS) membrane, compatible with imaging. This technique is reproducible and versatile. The PDMS membrane can be micropatterned in order to confine cells or tissues to a specific geometry. The first step is to print micropatterns onto the PDMS membrane with a deep UV technique. The PDMS membrane is then mounted on a mechanical stretcher. A chamber is bound on top of the membrane with biocompatible grease to allow gliding during the stretch. The cells are seeded and allowed to spread for several hours on the micropatterns. The sample can be stretched and unstretched multiple times with the use of a micrometric screw. It takes less than a minute to apply the stretch to its full extent (around 30%). The technique presented here does not include a motorized device, which is necessary for applying repeated stretch cycles quickly and/or computer controlled stretching, but this can be implemented. Stretching of cells or tissue can be of interest for questions related to cell forces, cell response to mechanical stress or tissue morphogenesis. This video presentation will show how to avoid typical problems that might arise when doing this type of seemingly simple experiment. PMID:24514571

  1. Fixed charge in the cell membrane

    PubMed Central

    Elul, R.

    1967-01-01

    1. Focal electric field was generated by passing a current of 5 10-7 to 1 10-5 A from a micropipette into the culture medium. Movement of cells at a distance of 5-50 ? from the electrode tip was observed. In case of cells embedded in the culture only local deformation of the membrane was observed. 2. The cell species explored included neurones, glia, muscle fibres, connective cells, malignant cells and erythrocytes. All cells responded in a similar manner to the electric field, and the current required was in the same range. 3. Cells were attracted to a positive micropipette and repelled from a negative one: the only exception was observed in certain malignant cells which moved in the opposite direction. 4. Movement and membrane deformation could be obtained with electrodes filled with various concentrated and isotonic solutions. The composition of the culture medium also had no qualitative influence on these effects. 5. Metabolic poisons or rupture of the cell membrane had no effect on the movement. Isolated membrane fragments showed movement similar to that of intact cells. 6. The possibility of artifacts due to proximity of the focal electrode is considered. It is shown that electro-osmosis cannot account for the present observations. Some other artifacts are also excluded. 7. It is proposed that the most satisfactory way to account for the present observations is by a membrane carrying negative fixed charge of the order of 25 103 e.s.u./cm2. Some physiological consequences of presence of negative charge in the membrane are briefly discussed. ImagesFig. 1Fig. 2Fig. 3 PMID:6040152

  2. Binding of human myeloperoxidase to red blood cells: Molecular targets and biophysical consequences at the plasma membrane level.

    PubMed

    Gorudko, Irina V; Sokolov, Alexey V; Shamova, Ekaterina V; Grigorieva, Daria V; Mironova, Elena V; Kudryavtsev, Igor V; Gusev, Sergey A; Gusev, Alexander A; Chekanov, Andrey V; Vasilyev, Vadim B; Cherenkevich, Sergey N; Panasenko, Oleg M; Timoshenko, Alexander V

    2016-02-01

    Myeloperoxidase (MPO) is an oxidant-producing enzyme that can also bind to cellular surface proteins. We found that band 3 protein and glycophorins A and B were the key MPO-binding targets of human red blood cells (RBCs). The interaction of MPO with RBC proteins was mostly electrostatic in nature because it was inhibited by desialation, exogenic sialic acid, high ionic strength, and extreme pH. In addition, MPO failed to interfere with the lectin-induced agglutination of RBCs, suggesting a minor role of glycan-recognizing mechanisms in MPO binding. Multiple biophysical properties of RBCs were altered in the presence of native (i.e., not hypochlorous acid-damaged) MPO. These changes included transmembrane potential, availability of intracellular Ca(2+), and lipid organization in the plasma membrane. MPO-treated erythrocytes became larger in size, structurally more rigid, and hypersensitive to acidic and osmotic hemolysis. Furthermore, we found a significant correlation between the plasma MPO concentration and RBC rigidity index in type-2 diabetes patients with coronary heart disease. These findings suggest that MPO functions as a mediator of novel regulatory mechanism in microcirculation, indicating the influence of MPO-induced abnormalities on RBC deformability under pathological stress conditions. PMID:26714302

  3. Fuel cell subassemblies incorporating subgasketed thrifted membranes

    DOEpatents

    Iverson, Eric J.; Pierpont, Daniel M.; Yandrasits, Michael A.; Hamrock, Steven J.; Obradovich, Stephan J.; Peterson, Donald G.

    2013-03-01

    A fuel cell roll good subassembly is described that includes a plurality of individual electrolyte membranes. One or more first subgaskets are attached to the individual electrolyte membranes. Each of the first subgaskets has at least one aperture and the first subgaskets are arranged so the center regions of the individual electrolyte membranes are exposed through the apertures of the first subgaskets. A second subgasket comprises a web having a plurality of apertures. The second subgasket web is attached to the one or more first subgaskets so the center regions of the individual electrolyte membranes are exposed through the apertures of the second subgasket web. The second subgasket web may have little or no adhesive on the subgasket surface facing the electrolyte membrane.

  4. Fuel cell subassemblies incorporating subgasketed thrifted membranes

    DOEpatents

    Iverson, Eric J; Pierpont, Daniel M; Yandrasits, Michael A; Hamrock, Steven J; Obradovich, Stephan J; Peterson, Donald G

    2014-01-28

    A fuel cell roll good subassembly is described that includes a plurality of individual electrolyte membranes. One or more first subgaskets are attached to the individual electrolyte membranes. Each of the first subgaskets has at least one aperture and the first subgaskets are arranged so the center regions of the individual electrolyte membranes are exposed through the apertures of the first subgaskets. A second subgasket comprises a web having a plurality of apertures. The second subgasket web is attached to the one or more first subgaskets so the center regions of the individual electrolyte membranes are exposed through the apertures of the second subgasket web. The second subgasket web may have little or no adhesive on the subgasket surface facing the electrolyte membrane.

  5. Engineering supported membranes for cell biology

    PubMed Central

    Yu, Cheng-han

    2010-01-01

    Cell membranes exhibit multiple layers of complexity, ranging from their specific molecular content to their emergent mechanical properties and dynamic spatial organization. Both compositional and geometrical organizations of membrane components are known to play important roles in life processes, including signal transduction. Supported membranes, comprised of a bilayer assembly of phospholipids on the solid substrate, have been productively served as model systems to study wide range problems in cell biology. Because lateral mobility of membrane components is readily preserved, supported lipid membranes with signaling molecules can be utilized to effectively trigger various intercellular reactions. The spatial organization and mechanical deformation of supported membranes can also be manipulated by patterning underlying substrates with modern micro- and nano-fabrication techniques. This article focuses on various applications and methods to spatially patterned biomembranes by means of curvature modulations and spatial reorganizations, and utilizing them to interface with live cells. The integration of biological components into synthetic devices provides a unique approach to investigate molecular mechanisms in cell biology. PMID:20559751

  6. Cell membrane softening in human breast and cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Händel, Chris; Schmidt, B. U. Sebastian; Schiller, Jürgen; Dietrich, Undine; Möhn, Till; Kießling, Tobias R.; Pawlizak, Steve; Fritsch, Anatol W.; Horn, Lars-Christian; Briest, Susanne; Höckel, Michael; Zink, Mareike; Käs, Josef A.

    2015-08-01

    Biomechanical properties are key to many cellular functions such as cell division and cell motility and thus are crucial in the development and understanding of several diseases, for instance cancer. The mechanics of the cellular cytoskeleton have been extensively characterized in cells and artificial systems. The rigidity of the plasma membrane, with the exception of red blood cells, is unknown and membrane rigidity measurements only exist for vesicles composed of a few synthetic lipids. In this study, thermal fluctuations of giant plasma membrane vesicles (GPMVs) directly derived from the plasma membranes of primary breast and cervical cells, as well as breast cell lines, are analyzed. Cell blebs or GPMVs were studied via thermal membrane fluctuations and mass spectrometry. It will be shown that cancer cell membranes are significantly softer than their non-malignant counterparts. This can be attributed to a loss of fluid raft forming lipids in malignant cells. These results indicate that the reduction of membrane rigidity promotes aggressive blebbing motion in invasive cancer cells.

  7. Erythrocyte membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy.

    PubMed

    Piao, Ji-Gang; Wang, Limin; Gao, Feng; You, Ye-Zi; Xiong, Yujie; Yang, Lihua

    2014-10-28

    Gold nanocages (AuNCs), which have tunable near-infrared (NIR) absorption and intrinsically high photothermal conversion efficiency, have been actively investigated as photothermal conversion agents for photothermal therapy (PTT). The short blood circulation lifetime of AuNCs, however, limits their tumor uptake and thus in vivo applications. Here we show that such a limitation can be overcome by cloaking AuNCs with red blood cell (RBC) membranes, a natural stealth coating. The fusion of RBC membranes over AuNC surface does not alter the unique porous and hollow structures of AuNCs, and the resulting RBC-membrane-coated AuNCs (RBC-AuNCs) exhibit good colloidal stability. Upon NIR laser irradiation, the RBC-AuNCs demonstrate in vitro photothermal effects and selectively ablate cancerous cells within the irradiation zone as do the pristine biopolymer-stealth-coated AuNCs. Moreover, the RBC-AuNCs exhibit significantly enhanced in vivo blood retention and circulation lifetime compared to the biopolymer-stealth-coated counterparts, as demonstrated using a mouse model. With integrated advantages of photothermal effects from AuNCs and long blood circulation lifetime from RBCs, the RBC-AuNCs demonstrate drastically enhanced tumor uptake when administered systematically, and mice that received PPT cancer treatment modulated by RBC-AuNCs achieve 100% survival over a span of 45 days. Taken together, our results indicate that the long circulating RBC-AuNCs may facilitate the in vivo applications of AuNCs, and the RBC-membrane stealth coating technique may pave the way to improved efficacy of PPT modulated by noble metal nanoparticles. PMID:25286086

  8. Change dynamics of RBC morphology after injection glucose for diabetes by diffraction phase microscope

    NASA Astrophysics Data System (ADS)

    Talaykova, N. A.; Kalyanov, A. L.; Lychagov, V. V.; Ryabukho, V. P.; Malinova, L. I.

    2013-11-01

    Experimental setup of diffraction phase microscope (DPM) with double low-coherence lighting system is presented in the paper. Algorithm of interference picture processing and optical thickness, height, volume and mean cells volume (MCV) of RBC calculating is shown. We demonstrate results of experiments with blood smears and ability of the method to calculate 3D model of the biological cells shape. Investigation change dynamics of RBC morphology after injection glucose for diabetes by DPM is shown in the paper.

  9. Drag reducing polymers improve tissue perfusion via modification of the RBC traffic in microvessels.

    PubMed

    Marhefka, J N; Zhao, R; Wu, Z J; Velankar, S S; Antaki, J F; Kameneva, M V

    2009-01-01

    This paper reports a novel, physiologically significant, microfluidic phenomenon generated by nanomolar concentrations of drag-reducing polymers (DRP) dissolved in flowing blood, which may explain previously demonstrated beneficial effects of DRP on tissue perfusion. In microfluidic systems used in this study, DRP additives were found to significantly modify traffic of red blood cells (RBC) into microchannel branches as well as reduce the near-wall cell-free layer, which normally is found in microvessels with a diameter smaller than 0.3 mm. The reduction in plasma layer size led to attenuation of the so-called "plasma skimming" effect at microchannel bifurcations, increasing the number of RBC entering branches. In vivo, these changes in RBC traffic may facilitate gas transport by increasing the near vessel wall concentration of RBC and capillary hematocrit. In addition, an increase in near-wall viscosity due to the redirection of RBC in this region may potentially decrease vascular resistance as a result of increased wall shear stress, which promotes endothelium mediated vasodilation. These microcirculatory phenomena can explain the previously reported beneficial effects of DRP on hemodynamics in vivo observed in many animal studies. We also report here our finding that DRP additives reduce flow separations at microchannel expansions, deflecting RBC closer to the wall and eliminating the plasma recirculation zone. Although the exact mechanism of the DRP effects on RBC traffic in microchannels is yet to be elucidated, these findings may further DRP progress toward clinical use. PMID:19721190

  10. Inhibition of phagocytic recognition of anti-D opsonized Rh D+ RBC by polymer-mediated immunocamouflage.

    PubMed

    Li, Li; Noumsi, Ghislain T; Kwok, Yin Yu Eunice; Moulds, Joann M; Scott, Mark D

    2015-12-01

    The Rh D antigen posed both a significant clinical risk and inventory supply issue in transfusion medicine. The successful development of the immunocamouflaged RBC has the potential to address both the risk of acute anti-D transfusion reactions and to improve D- blood inventory in geographic locations where D- blood is rare (e.g., China). The immunocamouflage of RBC was mediated by the covalent grafting of methoxy(polyethylene glycol) to the cell membrane thereby obscuring the D protein from the immune system. To determine the potential efficacy of mPEG-D+ RBC in D- recipients, anti-D alloantibodies from previously alloimmunized individuals were utilized. The effects of polymer chain size (2-30 kDa) and grafting concentration (0-4 mM) on antibody binding and erythrophagocytosis were determined using the clinically validated monocyte monolayer assay (MMA) and flow cytometry. The immunocamouflage of D was polymer size and grafting concentration dependent as determined using human anti-D alloantibodies (both pooled [RhoGAM] and single donors). Importantly, the 20 kDa polymer provided excellent immunocamouflage of D and reached a clinically significant level of protection, as measured by the MMA, at grafting concentrations of ?1.5 mM. These findings further support the potential use of immunocamouflaged RBC to reduce the risk of acute transfusion reactions following administration of D+ blood to D- recipients in situations where D- units are unavailable or supply is geographically constrained. Am. J. Hematol. 90:1165-1170, 2015. 2015 Wiley Periodicals, Inc. PMID:26440218

  11. Use of mouse models to study the mechanisms and consequences of RBC clearance

    PubMed Central

    Hod, E. A.; Arinsburg, S. A.; Francis, R. O.; Hendrickson, J. E.; Zimring, J. C.; Spitalnik, S. L.

    2013-01-01

    Mice provide tractable animal models for studying the pathophysiology of various human disorders. This review discusses the use of mouse models for understanding red-blood-cell (RBC) clearance. These models provide important insights into the pathophysiology of various clinically relevant entities, such as autoimmune haemolytic anaemia, haemolytic transfusion reactions, other complications of RBC transfusions and immunomodulation by Rh immune globulin therapy. Mouse models of both antibody- and non-antibody-mediated RBC clearance are reviewed. Approaches for exploring unanswered questions in transfusion medicine using these models are also discussed. PMID:20345515

  12. Alternate Fuel Cell Membranes for Energy Independence

    SciTech Connect

    Storey, Robson, F.; Mauritz, Kenneth, A.; Patton, Derek, L.; Savin, Daniel, A.

    2012-12-18

    The overall objective of this project was the development and evaluation of novel hydrocarbon fuel cell (FC) membranes that possess high temperature performance and long term chemical/mechanical durability in proton exchange membrane (PEM) fuel cells (FC). The major research theme was synthesis of aromatic hydrocarbon polymers of the poly(arylene ether sulfone) (PAES) type containing sulfonic acid groups tethered to the backbone via perfluorinated alkylene linkages and in some cases also directly attached to the phenylene groups along the backbone. Other research themes were the use of nitrogen-based heterocyclics instead of acid groups for proton conduction, which provides high temperature, low relative humidity membranes with high mechanical/thermal/chemical stability and pendant moieties that exhibit high proton conductivities in the absence of water, and synthesis of block copolymers consisting of a proton conducting block coupled to poly(perfluorinated propylene oxide) (PFPO) blocks. Accomplishments of the project were as follows: 1) establishment of a vertically integrated program of synthesis, characterization, and evaluation of FC membranes, 2) establishment of benchmark membrane performance data based on Nafion for comparison to experimental membrane performance, 3) development of a new perfluoroalkyl sulfonate monomer, N,N-diisopropylethylammonium 2,2-bis(p-hydroxyphenyl) pentafluoropropanesulfonate (HPPS), 4) synthesis of random and block copolymer membranes from HPPS, 5) synthesis of block copolymer membranes containing high-acid-concentration hydrophilic blocks consisting of HPPS and 3,3'-disulfonate-4,4'-dichlorodiphenylsulfone (sDCDPS), 6) development of synthetic routes to aromatic polymer backbones containing pendent 1H-1,2,3-triazole moieties, 7) development of coupling strategies to create phase-separated block copolymers between hydrophilic sulfonated prepolymers and commodity polymers such as PFPO, 8) establishment of basic performance properties of experimental membranes, 9) fabrication and FC performance testing of membrane electrode assemblies (MEA) from experimental membranes, and 10) measurement of ex situ and in situ membrane durability of experimental membranes. Although none of the experimental hydrocarbon membranes that issued from the project displayed proton conductivities that met DOE requirements, the project contributed to our basic understanding of membrane structure-property relationships in a number of key respects. An important finding of the benchmark studies is that physical degradation associated with humidity and temperature variations in the FC tend to open new fuel crossover pathways and act synergistically with chemical degradation to accelerate overall membrane degradation. Thus, for long term membrane survival and efficient fuel utilization, membranes must withstand internal stresses due to humidity and temperature changes. In this respect, rigid aromatic hydrocarbon fuel cell membranes, e.g. PAES, offer an advantage over un-modified Nafion membranes. The benchmark studies also showed that broadband dielectric spectroscopy is a potentially powerful tool in assessing shifts in the fundamental macromolecular dynamics caused by Nafion chemical degradation, and thus, this technique is of relevance in interrogating proton exchange membrane durability in fuel cells and macromolecular dynamics as coupled to proton migration, which is of fundamental relevance in proton exchange membranes in fuel cells. A key finding from the hydrocarbon membrane synthesis effort was that rigid aromatic polymers containing isolated ion exchange groups tethered tightly to the backbone (short tether), such as HPPS, provide excellent mechanical and durability properties but do not provide sufficient conductivity, in either random or block configuration, when used as the sole ion exchange monomer. However, we continue to hypothesize that longer tethers, and tethered groups spaced more closely within the hydrophilic chain elements of the polymer, will yield highly conductive materials with excellent mechanical properties. Another key finding is the superior performance of PAES membranes upon being subjected to open circuit voltage (OCV) testing. Throughout the course of the experiment, OCV for the PAES not only stayed higher but also decayed at a much lower rate, which is attributed to better dimensional stability and improved mechanical and gas barrier properties. The rigid backbone reinforcement of PAES adds gas diffusion tortuosity that restricts membrane degradation and OCV loss due to reduced fuel crossover. The overall results of creep, contractile stress and mechanical tensile tests confirm the conclusion that degraded MEAs of PAES membrane can handle stress and are more likely to be more durable in a fuel cell, even after subjected to 62h of OCV degradation.

  13. Cell or Cell Membrane-Based Drug Delivery Systems

    PubMed Central

    Tan, Songwei; Wu, Tingting; Zhang, Dan; Zhang, Zhiping

    2015-01-01

    Natural cells have been explored as drug carriers for a long period. They have received growing interest as a promising drug delivery system (DDS) until recently along with the development of biology and medical science. The synthetic materials, either organic or inorganic, are found to be with more or less immunogenicity and/or toxicity. The cells and extracellular vesicles (EVs), are endogenous and thought to be much safer and friendlier. Furthermore, in view of their host attributes, they may achieve different biological effects and/or targeting specificity, which can meet the needs of personalized medicine as the next generation of DDS. In this review, we summarized the recent progress in cell or cell membrane-based DDS and their fabrication processes, unique properties and applications, including the whole cells, EVs and cell membrane coated nanoparticles. We expect the continuing development of this cell or cell membrane-based DDS will promote their clinic applications. PMID:26000058

  14. Pattern formation in cell membrane adhesion

    NASA Astrophysics Data System (ADS)

    Discher, Dennis; Hategan, A.; Sengupta, K.; Sackmann, E.

    2004-03-01

    Strong adhesion of highly active cells often nucleates focal adhesions or related structures that are, over time, reinforced by cytoskeleton (actin, etc.). Red cells lack such complex adhesion systems, but they are shown here to also exhibit complex spatial patterns within an adhesive contact zone. While strong adhesion and spreading of the red cell to a dense poly-L-lysine surface appears complete in < 1 s by reflective interference microscopy, over longer times of 10-15 min or more distinct patterns in fluorescently labeled membrane components emerge. The fluorescent lipid Fl-PE (fluorescein phosphoethanolamine), in particular, is seen to diffuse and reorganize (eg. worm-like domains of <500 nm) within the contact zone, independent of whether the cell is intact or ruptured. Lipid patterns are accompanied by visible perturbations in band 3 distribution and weaker perturbations in membrane skeleton actin. Although fluorescent poly-L-lysine is shown to be uniform under cells, pressing down on the membrane quenches the lipid patterns and reveals the topographical basis for pattern formation. Regions of strong contact are thus separated by regions where the membrane is more distant from the surface.

  15. Hypercompliant Apical Membranes of Bladder Umbrella Cells

    PubMed Central

    Mathai, John C.; Zhou, Enhua H.; Yu, Weiqun; Kim, Jae Hun; Zhou, Ge; Liao, Yi; Sun, Tung-Tien; Fredberg, Jeffrey J.; Zeidel, Mark L.

    2014-01-01

    Urinary bladder undergoes dramatic volume changes during filling and voiding cycles. In the bladder the luminal surface of terminally differentiated urothelial umbrella cells is almost completely covered by plaques. These plaques (500 to 1000 nm) are made of a family of proteins called uroplakins that are known to form a tight barrier to prevent leakage of water and solutes. Electron micrographs from previous studies show these plaques to be interconnected by hinge regions to form structures that appear rigid, but these same structures must accommodate large changes in cell shape during voiding and filling cycles. To resolve this paradox, we measured the stiffness of the intact, living urothelial apical membrane and found it to be highly deformable, even more so than the red blood cell membrane. The intermediate cells underlying the umbrella cells do not have uroplakins but their membranes are an order of magnitude stiffer. Using uroplakin knockout mouse models we show that cell compliance is conferred by uroplakins. This hypercompliance may be essential for the maintenance of barrier function under dramatic cell deformation during filling and voiding of the bladder. PMID:25229135

  16. Modeling and simulation of microfluid effects on deformation behavior of a red blood cell in a capillary.

    PubMed

    Ye, Ting; Li, Hua; Lam, K Y

    2010-12-01

    A modified SIMPER algorithm is developed for analysis of microfluid effects on the motion and deformation of a red blood cell (RBC) in a capillary. With consideration of very small Reynolds number in microfluidics, this algorithm not only speeds up the convergence of the momentum equations by combining the advantages of the SIMPLEC and SIMPLER algorithms together, but also satisfies the continuity equation with higher accuracy by integrating a fine adjustment technique. In order to validate the modified SIMPLER algorithm, the behavior of RBC in a capillary is simulated at different velocities. When the mean RBC velocity is 0.1mm/s, the RBC exhibits a characteristic parachute shape in the steady state, which agrees well with the numerical results previously reported. Apart from that, a quantitative validation with the experimental data is performed by examining the relationship between the mean velocity and deformation index of the RBC, showing an excellent agreement. The effects of crucial parameters are investigated systematically on the motion and deformation of the RBC, including the RBC radius, elastic modulus and bending stiffness of RBC membrane, initial velocity of suspending fluid, as well as the density and viscosity ratios of the suspending fluid to RBC. The simulation results demonstrate that all of the parameters have influences on the RBC behavior by changing the interaction between the RBC and suspending fluid. PMID:20643152

  17. Membrane electrode assembly for a fuel cell

    NASA Technical Reports Server (NTRS)

    Prakash, Surya (Inventor); Narayanan, Sekharipuram R. (Inventor); Atti, Anthony (Inventor); Olah, George (Inventor); Smart, Marshall C. (Inventor)

    2006-01-01

    A catalyst ink for a fuel cell including a catalytic material and poly(vinylidene fluoride). The ink may be applied to a substrate to form an electrode, or bonded with other electrode layers to form a membrane electrode assembly (MEA).

  18. New membranes for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Jrissen, L.; Gogel, V.; Kerres, J.; Garche, J.

    The performance of direct methanol fuel cells (DMFC) is limited by the cross-over of methanol through the electrolyte. Electrolyte membranes prepared by blending of sulfonated arylene main-chain polymers like sulfonated PEEK Victrex (sPEEK) or sulfonated PSU Udel (sPSU) with basic polymers like poly(4-vinylpyridine) (P4VP) or polybenzimidazole (PBI) show excellent chemical and thermal stability, good proton-conductivity, and good performance in H 2 PEM fuel cells. Furthermore, these materials have potentially lower methanol cross-over when compared to standard Nafion-type membranes. In this work, membrane electrode assemblies (MEAs) have been prepared from such membranes according to the thin-film method. The catalyst layer was spray-coated directly on the heated membrane using an ink consisting of an aqueous suspension of catalyst powder and Nafion solution. Unsupported catalysts were used for anode and cathode. A rather high catalyst loading was chosen in order to minimize the effects of limited catalyst utilization due to flooding conditions at both electrodes.

  19. How membrane structures control T cell signaling.

    PubMed Central

    Klammt, Christian; Lillemeier, Bjrn F.

    2012-01-01

    Genetic and biochemical studies have identified a large number of molecules involved in T cell signaling. They have provided us with a comprehensive understanding of proteinprotein interactions and protein modifications that take place upon antigen recognition. Diffraction limited fluorescence microscopy has been used to study the distribution of signaling molecules on a cellular level. Specifically, the discovery of microclusters and the immunological synapse demonstrates that T cell signaling cascades utilizes spatial association and segregation. Recent advancements in live cell imaging have allowed us to visualize the spatio-temporal mechanisms of T cell signaling at nanometer scale resolution. This led to the discovery that proteins are organized in distinct membrane domains prior and during T cell activation. Evidently, plasma membrane structures and signaling molecule distributions at all length scales (molecular to cellular) are intrinsic to the mechanisms that govern signaling initiation, transduction, and inhibition. Here we provide an overview of possible plasma membrane models, molecular assemblies that have been described to date, how they can be visualized and how they might contribute to T cell signaling. PMID:23055999

  20. Selectivity of Direct Methanol Fuel Cell Membranes

    PubMed Central

    Aricò, Antonino S.; Sebastian, David; Schuster, Michael; Bauer, Bernd; D’Urso, Claudia; Lufrano, Francesco; Baglio, Vincenzo

    2015-01-01

    Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion® were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK), new generation perfluorosulfonic acid (PFSA) systems, and composite zirconium phosphate–PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA) was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC). The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA) was higher than the benchmark Nafion® 115-based MEA (77 mW·cm−2 vs. 64 mW·cm−2). This result was due to a lower methanol crossover (47 mA·cm−2 equivalent current density for s-PEEK vs. 120 mA·cm−2 for Nafion® 115 at 60 °C as recorded at OCV with 2 M methanol) and a suitable area specific resistance (0.15 Ohm cm2 for s-PEEK vs. 0.22 Ohm cm2 for Nafion® 115). PMID:26610582

  1. Selectivity of Direct Methanol Fuel Cell Membranes.

    PubMed

    Aricò, Antonino S; Sebastian, David; Schuster, Michael; Bauer, Bernd; D'Urso, Claudia; Lufrano, Francesco; Baglio, Vincenzo

    2015-01-01

    Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion(®) were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK), new generation perfluorosulfonic acid (PFSA) systems, and composite zirconium phosphate-PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA) was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC). The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA) was higher than the benchmark Nafion(®) 115-based MEA (77 mW·cm(-2) vs. 64 mW·cm(-2)). This result was due to a lower methanol crossover (47 mA·cm(-2) equivalent current density for s-PEEK vs. 120 mA·cm(-2) for Nafion(®) 115 at 60 °C as recorded at OCV with 2 M methanol) and a suitable area specific resistance (0.15 Ohm cm² for s-PEEK vs. 0.22 Ohm cm² for Nafion(®) 115). PMID:26610582

  2. Rapid Rather than Gradual Weight Reduction Impairs Hemorheological Parameters of Taekwondo Athletes through Reduction in RBC-NOS Activation

    PubMed Central

    Yang, Woo Hwi; Heine, Oliver; Pauly, Sebastian; Kim, Pilsang; Bloch, Wilhelm; Mester, Joachim; Grau, Marijke

    2015-01-01

    Purpose Rapid weight reduction is part of the pre-competition routine and has been shown to negatively affect psychological and physiological performance of Taekwondo (TKD) athletes. This is caused by a reduction of the body water and an electrolyte imbalance. So far, it is unknown whether weight reduction also affects hemorheological properties and hemorheology-influencing nitric oxide (NO) signaling, important for oxygen supply to the muscles and organs. Methods For this purpose, ten male TKD athletes reduced their body weight by 5% within four days (rapid weight reduction, RWR). After a recovery phase, athletes reduced body weight by 5% within four weeks (gradual weight reduction, GWR). Each intervention was preceded by two baseline measurements and followed by a simulated competition. Basal blood parameters (red blood cell (RBC) count, hemoglobin concentration, hematocrit, mean corpuscular volume, mean cellular hemoglobin and mean cellular hemoglobin concentration), RBC-NO synthase activation, RBC nitrite as marker for NO synthesis, RBC deformability and aggregation parameters were determined on a total of eight investigation days. Results Basal blood parameters were not affected by the two interventions. In contrast to GWR, RWR decreased activation of RBC-NO synthase, RBC nitrite, respective NO concentration and RBC deformability. Additionally, RWR increased RBC aggregation and disaggregation threshold. Conclusion The results point out that a rapid weight reduction negatively affects hemorheological parameters and NO signaling in RBC which might limit performance capacity. Thus, GWR should be preferred to achieve the desired weight prior to a competition to avoid these negative effects. PMID:25875585

  3. Determination of cell membrane permeability in concentrated cell ensembles.

    PubMed Central

    Ochoa, J A; Whitaker, S; Stroeve, P

    1987-01-01

    The method of volume averaging is used to analyze the process of diffusion in concentrated cell ensembles in which significant resistance to mass transfer is caused by the cellular membrane. A general closure scheme is given that allows for direct theoretical prediction of effective diffusivities for any cellular geometry. Numerical results are presented for the classical parallelepiped arrangement used to model cellular systems, and these results are used in conjunction with experimental studies of concentrated cell ensembles to determine membrane permeabilities for solute diffusion in several cellular systems. Membrane permeabilities are compared with predictions from other models of diffusion in cellular systems. PMID:3427185

  4. Aging of cell membranes: facts and theories.

    PubMed

    Zs-Nagy, Imre

    2014-01-01

    This chapter is intended to outline the main results of a research trend realized by the author during the last 45 years, focused on the main role played by the cell membrane in the aging process. It is a very wide field; therefore, the reader cannot expect in this limited space a detailed description, but will be given a wide, interdisciplinary insight into the main facts and theories regarding cellular aging. The central idea described here is the concept called the membrane hypothesis of aging (MHA). The history, the chemical roots, physicochemical facts, biophysical processes, as well as the obligatory biochemical consequences are all touched in by indicating the most important sources of detailed knowledge for those who are more interested in the basic biology of the aging process. This chapter covers also the available anti-aging interventions on the cell membrane by means of the centrophenoxine treatment based on the MHA. It also briefly interprets the possibilities of a just developing anti-aging method by using the recombinant human growth hormone, essential basis of which is the species specificity, and the general presence of receptors of this hormone in the plasma membrane of all types of cells. PMID:24862015

  5. Catalytic membranes for fuel cells

    DOEpatents

    Liu, Di-Jia (Naperville, IL); Yang, Junbing (Bolingbrook, IL); Wang, Xiaoping (Naperville, IL)

    2011-04-19

    A fuel cell of the present invention comprises a cathode and an anode, one or both of the anode and the cathode including a catalyst comprising a bundle of longitudinally aligned graphitic carbon nanotubes including a catalytically active transition metal incorporated longitudinally and atomically distributed throughout the graphitic carbon walls of said nanotubes. The nanotubes also include nitrogen atoms and/or ions chemically bonded to the graphitic carbon and to the transition metal. Preferably, the transition metal comprises at least one metal selected from the group consisting of Fe, Co, Ni, Mn, and Cr.

  6. Membrane protein expression: no cells required.

    PubMed

    Katzen, Federico; Peterson, Todd C; Kudlicki, Wieslaw

    2009-08-01

    Structural and functional studies of membrane proteins have been severely hampered by difficulties in producing sufficient quantities of properly folded protein products. It is well established that cell-based expression of membrane proteins is generally problematic and frequently results in low yield, cell toxicity, protein aggregation and misfolding. Owing to its inherent open nature, cell-free protein expression has become a highly promising tool for the fast and efficient production of these difficult-to-express proteins. Here we review the most recent advances in this field, underscoring the potentials and weaknesses of the newly developed approaches and place specific emphasis on the use of nanolipoprotein particles (NLPs or nanodiscs). PMID:19616329

  7. Membrane proteome analysis of glioblastoma cell invasion.

    PubMed

    Mallawaaratchy, Duthika M; Buckland, Michael E; McDonald, Kerrie L; Li, Cheryl C Y; Ly, Linda; Sykes, Erin K; Christopherson, Richard I; Kaufman, Kimberley L

    2015-05-01

    Glioblastoma multiforme (GBM) tumor invasion is facilitated by cell migration and degradation of the extracellular matrix. Invadopodia are actin-rich structures that protrude from the plasma membrane in direct contact with the extracellular matrix and are proposed to participate in epithelial-mesenchymal transition. We characterized the invasiveness of 9 established GBM cell lines using an invadopodia assay and performed quantitative mass spectrometry-based proteomic analyses on enriched membrane fractions. All GBM cells produced invadopodia, with a 65% difference between the most invasive cell line (U87MG) and the least invasive cell line (LN229) (p = 0.0001). Overall, 1,141 proteins were identified in the GBM membrane proteome; the levels of 49 proteins correlated with cell invasiveness. Ingenuity Pathway Analysis predicted activation "cell movement" (z-score = 2.608, p = 3.94E(-04)) in more invasive cells and generated a network of invasion-associated proteins with direct links to key regulators of invadopodia formation. Gene expression data relating to the invasion-associated proteins ITGA5 (integrin α5), CD97, and ANXA1 (annexin A1) showed prognostic significance in independent GBM cohorts. Fluorescence microscopy demonstrated ITGA5, CD97, and ANXA1 localization in invadopodia assays, and small interfering RNA knockdown of ITGA5 reduced invadopodia formation in U87MG cells. Thus, invasion-associated proteins, including ITGA5, may prove to be useful anti-invasive targets; volociximab, a therapeutic antibody against integrin α5β1, may be useful for treatment of patients with GBM. PMID:25853691

  8. Interaction of peptides with cell membranes: insights from molecular modeling.

    PubMed

    Li, Zhen-Lu; Ding, Hong-Ming; Ma, Yu-Qiang

    2016-03-01

    The investigation of the interaction of peptides with cell membranes is the focus of active research. It can enhance the understanding of basic membrane functions such as membrane transport, fusion, and signaling processes, and it may shed light on potential applications of peptides in biomedicine. In this review, we will present current advances in computational studies on the interaction of different types of peptides with the cell membrane. Depending on the properties of the peptide, membrane, and external environment, the peptide-membrane interaction shows a variety of different forms. Here, on the basis of recent computational progress, we will discuss how different peptides could initiate membrane pores, translocate across the membrane, induce membrane endocytosis, produce membrane curvature, form fibrils on the membrane surface, as well as interact with functional membrane proteins. Finally, we will present a conclusion summarizing recent progress and providing some specific insights into future developments in this field. PMID:26828575

  9. Interaction of peptides with cell membranes: insights from molecular modeling

    NASA Astrophysics Data System (ADS)

    Li, Zhen-lu; Ding, Hong-ming; Ma, Yu-qiang

    2016-03-01

    The investigation of the interaction of peptides with cell membranes is the focus of active research. It can enhance the understanding of basic membrane functions such as membrane transport, fusion, and signaling processes, and it may shed light on potential applications of peptides in biomedicine. In this review, we will present current advances in computational studies on the interaction of different types of peptides with the cell membrane. Depending on the properties of the peptide, membrane, and external environment, the peptide–membrane interaction shows a variety of different forms. Here, on the basis of recent computational progress, we will discuss how different peptides could initiate membrane pores, translocate across the membrane, induce membrane endocytosis, produce membrane curvature, form fibrils on the membrane surface, as well as interact with functional membrane proteins. Finally, we will present a conclusion summarizing recent progress and providing some specific insights into future developments in this field.

  10. Interactions of Model Cell Membranes with Nanoparticles

    NASA Astrophysics Data System (ADS)

    D'Angelo, S. M.; Camesano, T. A.; Nagarajan, R.

    2011-12-01

    The same properties that give nanoparticles their enhanced function, such as high surface area, small size, and better conductivity, can also alter the cytotoxicity of nanomaterials. Ultimately, many of these nanomaterials will be released into the environment, and can cause cytotoxic effects to environmental bacteria, aquatic organisms, and humans. Previous results from our laboratory suggest that nanoparticles can have a detrimental effect on cells, depending on nanoparticle size. It is our goal to characterize the properties of nanomaterials that can result in membrane destabilization. We tested the effects of nanoparticle size and chemical functionalization on nanoparticle-membrane interactions. Gold nanoparticles at 2, 5,10, and 80 nm were investigated, with a concentration of 1.1x1010 particles/mL. Model cell membranes were constructed of of L-?-phosphatidylcholine (egg PC), which has negatively charged lipid headgroups. A quartz crystal microbalance with dissipation (QCM-D) was used to measure frequency changes at different overtones, which were related to mass changes corresponding to nanoparticle interaction with the model membrane. In QCM-D, a lipid bilayer is constructed on a silicon dioxide crystal. The crystals, oscillate at different harmonic frequencies depending upon changes in mass or energy dissipation. When mass is added to the crystal surface, such as through addition of a lipid vesicle solution, the frequency change decreases. By monitoring the frequency and dissipation, we could verify that a supported lipid bilayer (SLB) formed on the silica surface. After formation of the SLB, the nanoparticles can be added to the system, and the changes in frequency and dissipation are monitored in order to build a mechanistic understanding of nanoparticle-cell membrane interactions. For all of the smaller nanoparticles (2, 5, and 10 nm), nanoparticle addition caused a loss of mass from the lipid bilayer, which appears to be due to the formation of holes or pores in the cell membrane. The dissipation changes were small, which indicates that even with the membrane destabilization that occurs, the overall structure of the bilayer is not greatly perturbed. For the 80 nm nanoparticles, we initially saw the same pattern as the smaller nanoparticles with a mass loss from the membrane, but eventually we saw a large decrease in frequency, representing an increase in mass. This addition of mass may be attributed to adsorption of the gold nanoparticles onto the bilayer. The 80 nm particles also created a change in the energy dissipation, which suggests that the formation of the bilayer was altered with the adsorbed particles. This study suggests that nanoparticle size controls the mechanism by which nanoparticles interact with model cell membranes. We are extending this work to other types of gold nanoparticles. We are interested in examining the role of nanoparticle hydrophobicity and type of chemical functionalization on the interactions of the nanoparticle with a model membrane. We are also conducting studies on environmental bacteria, to correlate the mechanisms of nanoparticle cytoxicity with killing data on bacterial cells.

  11. Sputter-deposited fuel cell membranes and electrodes

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Chun, William (Inventor); Ruiz, Ron P. (Inventor); Valdez, Thomas I. (Inventor)

    2001-01-01

    A method for preparing a membrane for use in a fuel cell membrane electrode assembly includes the steps of providing an electrolyte membrane, and sputter-depositing a catalyst onto the electrolyte membrane. The sputter-deposited catalyst may be applied to multiple sides of the electrolyte membrane. A method for forming an electrode for use in a fuel cell membrane electrode assembly includes the steps of obtaining a catalyst, obtaining a backing, and sputter-depositing the catalyst onto the backing. The membranes and electrodes are useful for assembling fuel cells that include an anode electrode, a cathode electrode, a fuel supply, and an electrolyte membrane, wherein the electrolyte membrane includes a sputter-deposited catalyst, and the sputter-deposited catalyst is effective for sustaining a voltage across a membrane electrode assembly in the fuel cell.

  12. Dynamics of photoinduced cell plasma membrane injury.

    PubMed Central

    Thorpe, W P; Toner, M; Ezzell, R M; Tompkins, R G; Yarmush, M L

    1995-01-01

    We have developed a video microscopy system designed for real-time measurement of single cell damage during photolysis under well defined physicochemical and photophysical conditions. Melanoma cells cultured in vitro were treated with the photosensitizer (PS), tin chlorin e6 (SnCe6) or immunoconjugate (SnCe6 conjugated to a anti-ICAM monoclonal antibody), and illuminated with a 10 mW He/Ne laser at a 630 nm wavelength. Cell membrane integrity was assessed using the vital dye calcein-AM. In experiments in which the laser power density and PS concentration were varied, it was determined that the time lag before cell rupture was inversely proportional to the estimated singlet oxygen flux to the cell surface. Microscopic examination of the lytic event indicated that photo-induced lysis was caused by a point rupture of the plasma membrane. The on-line nature of this microscopy system offers an opportunity to monitor the dynamics of the cell damage process and to gain insights into the mechanism governing photolytic cell injury processes. Images FIGURE 2 FIGURE 3 FIGURE 6 FIGURE 7 PMID:7612864

  13. Fuel cell membranes and crossover prevention

    DOEpatents

    Masel, Richard I.; York, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2009-08-04

    A membrane electrode assembly for use with a direct organic fuel cell containing a formic acid fuel includes a solid polymer electrolyte having first and second surfaces, an anode on the first surface and a cathode on the second surface and electrically linked to the anode. The solid polymer electrolyte has a thickness t:.gtoreq..times..times..times..times. ##EQU00001## where C.sub.f is the formic acid fuel concentration over the anode, D.sub.f is the effective diffusivity of the fuel in the solid polymer electrolyte, K.sub.f is the equilibrium constant for partition coefficient for the fuel into the solid polymer electrolyte membrane, I is Faraday's constant n.sub.f is the number of electrons released when 1 molecule of the fuel is oxidized, and j.sub.f.sup.c is an empirically determined crossover rate of fuel above which the fuel cell does not operate.

  14. Quality improvements of cell membrane chromatographic column.

    PubMed

    Ding, Xuan; Chen, Xiaofei; Cao, Yan; Jia, Dan; Wang, Dongyao; Zhu, Zhenyu; Zhang, Juping; Hong, Zhanying; Chai, Yifeng

    2014-09-12

    Cell Membrane Chromatography (CMC) is a biological affinity chromatographic method using a silica stationary phase covered with specific cell membrane. However, its short life span and poor quality control was highlighted in a lot of research articles. In this study, special attention has been paid to the disruption, cell load and packing procedure in order to improve the quality of the CMC columns. Hereto, two newly established CMC models, HSC-T6/CMC and SMMC-7721/CMC have been developed and used in this research project. The optimization of the abovementioned parameters resulted in a better reproducibility of the retention time of the compound GFT (RSD<10%) and improved significantly the quality of the CMC columns. 3.510(7)cells were the optimal cell load for the preparation of the CMC columns, the disruption condition was optimized to 5 cycles (400W and 20s interval per cycle) by an ultrasonic processor reducing the total time of cell disruption to 1.5min and the packing flow rate was optimized by applying a linear gradient program. Additionally, 4% paraformaldehyde (PFA) was employed to improve the column quality and prolong the column life span. The results showed that the retention time was longer with PFA treated columns than the ones obtained with the control groups. PMID:25115453

  15. Membrane catalyst layer for fuel cells

    DOEpatents

    Wilson, Mahlon S. (Los Alamos, NM)

    1993-01-01

    A gas reaction fuel cell incorporates a thin catalyst layer between a solid polymer electrolyte (SPE) membrane and a porous electrode backing. The catalyst layer is preferably less than about 10 .mu.m in thickness with a carbon supported platinum catalyst loading less than about 0.35 mgPt/cm.sup.2. The film is formed as an ink that is spread and cured on a film release blank. The cured film is then transferred to the SPE membrane and hot pressed into the surface to form a catalyst layer having a controlled thickness and catalyst distribution. Alternatively, the catalyst layer is formed by applying a Na.sup.+ form of a perfluorosulfonate ionomer directly to the membrane, drying the film at a high temperature, and then converting the film back to the protonated form of the ionomer. The layer has adequate gas permeability so that cell performance is not affected and has a density and particle distribution effective to optimize proton access to the catalyst and electronic continuity for electron flow from the half-cell reaction occurring at the catalyst.

  16. Bioluminescence Assay for Detecting Cell Surface Membrane Protein Expression

    PubMed Central

    Kato, Mieko; Chiba, Tomoki; Li, Min

    2011-01-01

    Abstract We have developed a method to measure the amounts of cell surface-expressed membrane proteins with bioluminescence. Dinoflagellate luciferase was expressed on the surface of a mammalian cell as a chimeric fusion protein with a membrane protein of interest. Using a membrane-impermeable substrate to quantify the membrane-displayed luciferase, the expression of the membrane protein on the cell surface was determined. By inclusion of a quenching step for the luminescent activity of luciferase on the cell surface, we were able to monitor the membrane protein expression kinetics by measuring the luminescence recovery from the cell surface after quenching. The reported methods provide a convenient way to monitor the kinetics of expression and transport of membrane proteins to the cell surface. It is applicable to the high-throughput analysis of drugs or drug candidates concerning their effects on membrane protein expression. PMID:20836709

  17. Role of membrane biophysics in Alzheimer'srelated cell pathways

    PubMed Central

    Zhu, Donghui; Bungart, Brittani L.; Yang, Xiaoguang; Zhumadilov, Zhaxybay; Lee, James C-M.; Askarova, Sholpan

    2015-01-01

    Cellular membrane alterations are commonly observed in many diseases, including Alzheimer's disease (AD). Membrane biophysical properties, such as membrane molecular order, membrane fluidity, organization of lipid rafts, and adhesion between membrane and cytoskeleton, play an important role in various cellular activities and functions. While membrane biophysics impacts a broad range of cellular pathways, this review addresses the role of membrane biophysics in amyloid-? peptide aggregation, A?-induced oxidative pathways, amyloid precursor protein processing, and cerebral endothelial functions in AD. Understanding the mechanism(s) underlying the effects of cell membrane properties on cellular processes should shed light on the development of new preventive and therapeutic strategies for this devastating disease. PMID:26074758

  18. Focus on the physics of the cell membrane

    NASA Astrophysics Data System (ADS)

    Bassereau, Patricia; Phillips, Rob; Schwille, Petra

    2012-05-01

    This focus issue on membrane biophysics presents a collection of papers illustrating new developments in modern biophysical research on cell membranes. The work described here addresses questions from a broad range of areas, including cell adhesion, membrane trafficking and activation of cells of the immune system. It also presents recent views on membrane mechanics, the effect of electric fields, as well as on the interplay of mechanics and chemistry and organization at many different scales.

  19. Different activities of the reovirus FAST proteins and influenza hemagglutinin in cell-cell fusion assays and in response to membrane curvature agents

    SciTech Connect

    Clancy, Eileen K.; Barry, Chris; Ciechonska, Marta; Duncan, Roy

    2010-02-05

    The reovirus fusion-associated small transmembrane (FAST) proteins evolved to induce cell-cell, rather than virus-cell, membrane fusion. It is unclear whether the FAST protein fusion reaction proceeds in the same manner as the enveloped virus fusion proteins. We now show that fluorescence-based cell-cell and cell-RBC hemifusion assays are unsuited for detecting lipid mixing in the absence of content mixing during FAST protein-mediated membrane fusion. Furthermore, membrane curvature agents that inhibit hemifusion or promote pore formation mediated by influenza hemagglutinin had no effect on p14-induced cell-cell fusion, even under conditions of limiting p14 concentrations. Standard assays used to detect fusion intermediates induced by enveloped virus fusion proteins are therefore not applicable to the FAST proteins. These results suggest the possibility that the nature of the fusion intermediates or the mechanisms used to transit through the various stages of the fusion reaction may differ between these distinct classes of viral fusogens.

  20. Computational analysis of dynamic interaction of two red blood cells in a capillary.

    PubMed

    Li, Hua; Ye, Ting; Lam, K Y

    2014-07-01

    The dynamic interaction of two red blood cells (RBCs) in a capillary is investigated computationally by the two-fluid model, including their deformable motion and interaction. For characterization of the deformation, the RBC membrane is treated as a curved two-dimensional shell with finite thickness by the shell model, and allowed to undergo the stretching strain and bending deformation. Moreover, a Morse potential is adopted to model the intercellular interaction for the aggregation behavior, which is characterized as the weak attraction at far distance and strong repulsion at near distance. For validation of the present technique, the dynamic interaction of two RBCs in static blood plasma is simulated firstly, where the RBCs aggregate slowly until a balanced configuration is achieved between the deformation and aggregation forces. The balanced configuration is in good agreement with the results reported previously. Three important effects on the dynamic behavior of RBCs are then analyzed, and they are the initial RBC shape, RBC deformability, and the intercellular interaction strength. It is found that the RBC is less deformed into a well-known parachute shape when the initial RBC shape is larger. Similarly, if the elastic shear modulus and bending stiffness of RBC membrane increase, the RBC resistance to deformation becomes higher, such that the RBC is less deformed. The simulation results also demonstrate that the RBC deformability strongly depends on the intercellular interaction strength. The RBCs deform more easily as the intercellular interaction strength increases. PMID:24590262

  1. Fuel cell membrane hydration and fluid metering

    DOEpatents

    Jones, Daniel O.; Walsh, Michael M.

    2003-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  2. Fuel cell membrane hydration and fluid metering

    DOEpatents

    Jones, Daniel O.; Walsh, Michael M.

    1999-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  3. Membrane Purification Cell for Aluminum Recycling

    SciTech Connect

    David DeYoung; James Wiswall; Cong Wang

    2011-11-29

    Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2.8 wt.% Si-0.7 wt.% Fe-0.8 wt.% Mn),. Purification factors (defined as the initial impurity concentration divided by the final impurity concentration) of greater than 20 were achieved for silicon, iron, copper, and manganese. Cell performance was measured using its current and voltage characteristics and composition analysis of the anode, cathode, and electrolytes. The various cells were autopsied as part of the study. Three electrolyte systems tested were: LiCl-10 wt. % AlCl3, LiCl-10 wt. % AlCl3-5 wt.% AlF3 and LiF-10 wt.% AlF3. An extended four-day run with the LiCl-10 wt.% AlCl3-5 wt.% AlF3 electrolyte system was stable for the entire duration of the experiment, running at energy requirements about one third of the Hoopes and the conventional Hall-Heroult process. Three different anode membranes were investigated with respect to their purification performance and survivability: a woven graphite cloth with 0.05 cm nominal thickness & > 90 % porosity, a drilled rigid membrane with nominal porosity of 33%, and another drilled rigid graphite membrane with increased thickness. The latter rigid drilled graphite was selected as the most promising membrane design. The economic viability of the membrane cell to purify scrap is sensitive to primary & scrap aluminum prices, and the cost of electricity. In particular, it is sensitive to the differential between scrap and primary aluminum price which is highly variable and dependent on the scrap source. In order to be economically viable, any scrap post-processing technology in the U.S. market must have a total operating cost well below the scrap price differential of $0.20-$0.40 per lb to the London Metal Exchange (LME), a margin of 65%-85% of the LME price. The cost to operate the membrane cell is estimated to be < $0.24/lb of purified aluminum. The energy cost is estimated to be $0.05/lb of purified aluminum with the remaining costs being repair and maintenance, electrolyte, labor, taxes and depreciation. The bench-scale work on membrane purification cell process has demonstrated technological advantages and substantial energy and investment savings against other electrolytic processes. However, in order to realize commercial reality, the following items need to be fully investigated: 1. Further evaluation of a pure fluoride electrolyte. 2. Investigate alternative non conductive, more mechanically robust and chemically inert membrane candidates. 3. Optimized membrane cell design to understand contribution of fluid flow patterns and the mass transfer conditions. 4. Improve current efficiency and total metallic aluminum recovery from the cell. All Tasks and Milestones were completed successfully.

  4. Three-dimensional analysis of morphological changes in the malaria parasite infected red blood cell by serial block-face scanning electron microscopy.

    PubMed

    Sakaguchi, Miako; Miyazaki, Naoyuki; Fujioka, Hisashi; Kaneko, Osamu; Murata, Kazuyoshi

    2016-03-01

    The human malaria parasite, Plasmodium falciparum, exhibits morphological changes during the blood stage cycle in vertebrate hosts. Here, we used serial block-face scanning electron microscopy (SBF-SEM) to visualize the entire structures of P. falciparum-infected red blood cells (iRBCs) and to examine their morphological and volumetric changes at different stages. During developmental stages, the parasite forms Maurer's clefts and vesicles in the iRBC cytoplasm and knobs on the iRBC surface, and extensively remodels the iRBC structure for proliferation of the parasite. In our observations, the Maurer's clefts and vesicles in the P. falciparum-iRBCs, resembling the so-called tubovesicular network (TVN), were not connected to each other, and continuous membrane networks were not observed between the parasitophorous vacuole membrane (PVM) and the iRBC cytoplasmic membrane. In the volumetric analysis, the iRBC volume initially increased and then decreased to the end of the blood stage cycle. This suggests that it is necessary to absorb a substantial amount of nutrients from outside the iRBC during the initial stage, but to release waste materials from inside the iRBC at the multinucleate stage. Transportation of the materials may be through the iRBC membrane, rather than a special structure formed by the parasite, because there is no direct connection between the iRBC membrane and the parasite. These results provide new insights as to how the malaria parasite grows in the iRBC and remodels iRBC structure during developmental stages; these observation can serve as a baseline for further experiments on the effects of therapeutic agents on malaria. PMID:26772147

  5. Polymer synthesis toward fuel cell membrane materials

    NASA Astrophysics Data System (ADS)

    Rebeck, Nathaniel T.

    Fuel cells are a promising technology that will be part of the future energy landscape. New membranes for alkaline and proton exchange membrane fuel cells are needed to improve the performance, simplify the system, and reduce cost. Polymer chemistry can be applied to develop new polymers and to assemble polymers into improved membranes that need less water, have increased performance and are less expensive, thereby removing the deficiencies of current membranes. Nucleophilic aromatic substitution polymerization typically produces thermally stable engineering polymers that can be easily functionalized. New functional monomers were developed to explore new routes to novel functional polymers. Sulfonamides were discovered as new activating groups for polymerization of high molecular weight thermooxidatively stable materials with sulfonic acid latent functionality. While the sulfonamide functional polymers could be produced, the sulfonamide group proved to be too stable to convert into a sulfonic acid after reaction. The reactivity of 2-aminophenol was investigated to search for a new class of ion conducting polymer materials. Both the amine and the phenol groups are found to be reactive in a nucleophilic aromatic substitution, however not to the extent to allow the formation of high molecular weight polymer materials. Layer-by-layer films were assembled from aqueous solutions of poly(styrene sulfonate) and trimethylammonium functionalized poly(phenylene oxide). The deposition conditions were adjusted to increase the free charge carrier content, and chloride conductivites reached almost 30 mS/cm for the best films. Block and random poly(phenylene oxide) copolymers were produced from 2,6-dimethylphenol and 2,6-diphenylphenol and the methyl substituted repeat units were functionalized with trimethylammonium bromide. The block copolymers displayed bromide conductivities up to 26 mS/cm and outperformed the random copolymers, indicating that morphology has an effect on ion transport.

  6. Active organization of membrane constituents in living cells.

    PubMed

    Rao, Madan; Mayor, Satyajit

    2014-08-01

    A search for organizing principles underlying molecular patterning at the cell surface and its regulation over different scales is necessary. This is important for understanding how the cell builds membrane bound organelles that emanate from it and for how the cell interacts with its physical and chemical milieu. This requires a broad framework to rationalize the mass of accumulated data about the spatial localization and dynamics of its constituents, and their physical and chemical environment. Lateral heterogeneities in the organization of membrane components of a living cell appear to be a hallmark of how a cell addresses sorting and signaling functions. Here we explore two classes of mechanisms of segregation of membrane components in the plasma membrane. We suggest that viewing the membrane as a passive, thermally equilibrated system is unlikely to provide an adequate framework to understand the mechanisms of membrane component segregation in vivo. Instead the surface of living cells behaves as an active membrane composite. PMID:24975942

  7. Membrane tension feedback on shape and motility of eukaryotic cells

    NASA Astrophysics Data System (ADS)

    Winkler, Benjamin; Aranson, Igor S.; Ziebert, Falko

    2016-04-01

    In the framework of a phase field model of a single cell crawling on a substrate, we investigate how the properties of the cell membrane affect the shape and motility of the cell. Since the membrane influences the cell dynamics on multiple levels and provides a nontrivial feedback, we consider the following fundamental interactions: (i) the reduction of the actin polymerization rate by membrane tension; (ii) area conservation of the cell's two-dimensional cross-section vs. conservation of the circumference (i.e. membrane inextensibility); and (iii) the contribution from the membrane's bending energy to the shape and integrity of the cell. As in experiments, we investigate two pertinent observables - the cell's velocity and its aspect ratio. We find that the most important effect is the feedback of membrane tension on the actin polymerization. Bending rigidity has only minor effects, visible mostly in dynamic reshaping events, as exemplified by collisions of the cell with an obstacle.

  8. Microfabrication of High-Resolution Porous Membranes for Cell Culture.

    PubMed

    Kim, Monica Y; Li, David Jiang; Pham, Long K; Wong, Brandon G; Hui, Elliot E

    2014-02-15

    Microporous membranes are widely utilized in cell biology to study cell-cell signaling and cell migration. However, the thickness and low porosity of commercial track-etched membranes limit the quality of cell imaging and the degree of cell-cell contact that can be achieved on such devices. We employ photolithography-based microfabrication to achieve porous membranes with pore diameter as small as 0.9 ?m, up to 40% porosity, and less than 5% variation in pore size. Through the use of a soap release layer, membranes as thin as 1 ?m can be achieved. The thin membranes minimally disrupt contrast enhancement optics, thus allowing good quality imaging of unlabeled cells under white light, unlike commercial membranes. In addition, the polymer membrane materials display low autofluorescence even after patterning, facilitating high quality fluorescence microscopy. Finally, confocal imaging suggests that substantial cell-cell contact is possible through the pores of these thin membranes. This membrane technology can enhance existing uses of porous membranes in cell biology as well as enable new types of experiments. PMID:24567663

  9. Microfabrication of High-Resolution Porous Membranes for Cell Culture

    PubMed Central

    Kim, Monica Y.; Li, David Jiang; Pham, Long K.; Wong, Brandon G.

    2014-01-01

    Microporous membranes are widely utilized in cell biology to study cell-cell signaling and cell migration. However, the thickness and low porosity of commercial track-etched membranes limit the quality of cell imaging and the degree of cell-cell contact that can be achieved on such devices. We employ photolithography-based microfabrication to achieve porous membranes with pore diameter as small as 0.9 μm, up to 40% porosity, and less than 5% variation in pore size. Through the use of a soap release layer, membranes as thin as 1 μm can be achieved. The thin membranes minimally disrupt contrast enhancement optics, thus allowing good quality imaging of unlabeled cells under white light, unlike commercial membranes. In addition, the polymer membrane materials display low autofluorescence even after patterning, facilitating high quality fluorescence microscopy. Finally, confocal imaging suggests that substantial cell-cell contact is possible through the pores of these thin membranes. This membrane technology can enhance existing uses of porous membranes in cell biology as well as enable new types of experiments. PMID:24567663

  10. Membrane rafts of the human red blood cell.

    PubMed

    Ciana, Annarita; Achilli, Cesare; Minetti, Giampaolo

    2014-01-01

    The cell type of election for the study of cell membranes, the mammalian non-nucleated erythrocyte, has been scarcely considered in the research of membrane rafts of the plasma membrane. However, detergent-resistant-membranes (DRM) were actually first described in human erythrocytes, as a fraction resisting solubilization by the nonionic detergent Triton X-100. These DRMs were insoluble entities of high density, easily pelleted by centrifugation, as opposed to the now accepted concept of lipid raft-like membrane fractions as material floating in low-density regions of sucrose gradients. The present article reviews the available literature on membrane rafts/DRMs in human erythrocytes from an historical point of view, describing the experiments that provided the solution to the above described discrepancy and suggesting possible avenue of research in the field of membrane rafts that, moving from the most studied model of living cell membrane, the erythrocyte's, could be relevant also for other cell types. PMID:24720522

  11. Potential electron mediators to extract electron energies of RBC glycolysis for prolonged in vivo functional lifetime of hemoglobin vesicles.

    PubMed

    Kettisen, Karin; Blow, Leif; Sakai, Hiromi

    2015-04-15

    Developing a functional blood substitute as an alternative to donated blood for clinical use is believed to relieve present and future blood shortages, and to reduce the risks of infection and blood type mismatching. Hemoglobin vesicle (HbV) encapsulates a purified and concentrated human-derived Hb solution in a phospholipid vesicle (liposome). The in vivo safety and efficacy of HbV as a transfusion alternative have been clarified. Auto-oxidation of ferrous Hb in HbV gradually increases the level of ferric methemoglobin (metHb) and impairs the oxygen transport capabilities. The extension of the functional half-life of HbV has recently been proposed using an electron mediator, methylene blue (MB), which acts as a shuttle between red blood cells (RBC) and HbV. MB transfers electron energies of NAD(P)H, produced by RBC glycolysis, to metHb in HbV. Work presented here focuses on screening of 15 potential electron mediators, with appropriate redox potential and water solubility, for electron transfer from RBC to HbV. The results are assessed with regard to the chemical properties of the candidates. The compounds examined in this study were dimethyl methylene blue (DMB), methylene green, azure A, azure B, azure C, toluidine blue (TDB), thionin acetate, phenazine methosulfate, brilliant cresyl blue, cresyl violet, gallocyanine, toluylene blue, indigo carmine, indigotetrasulfonate, and MB. Six candidates were found to be unsuitable because of their insufficient diffusion across membranes, or overly high or nonexistent reactivity with relevant biomolecules. However, 9 displayed favorable metHb reduction. Among the suitable candidates, phenothiazines DMB and TDB exhibited effectiveness like MB did. In comparison to MB, they showed faster reduction by electron-donating NAD(P)H, coupled with showing a lower rate of reoxidation in the presence of molecular oxygen. Ascertaining the best electron mediator can provide a pathway for extending the lifetime and efficiency of potential blood substitutes. PMID:25734688

  12. Polybenzimidazole-multiwall carbon nanotubes composite membranes for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Guerrero Moreno, Nayibe; Gervasio, Dominic; Godnez Garca, Andrs; Prez Robles, Juan Francisco

    2015-12-01

    Polymer membranes are prepared as a composite of polybenzimidazole and non-functionalized multiwall carbon nanotubes (PBI-CNT) and polybenzimidazole (PBI) only. Each is doped with H3PO4 (PA) and used as a proton exchange membrane (PEM) as the electrolyte in a fuel cell. The proton conductivities at 180C for the doped PBI membrane (PBIPA) and the doped PBI-CNT membrane (PBICNTPA) are 6.3נ10-2 and 7.4נ10-2Scm-1 respectively. A single fuel cell having these membranes as electrolyte has a Pt catalyzed hydrogen gas fed anode and a similar oxygen cathode without humidification of feed gases; the cell with the PBICNTPA membrane has higher open circuit voltage (0.96V) than that with a PBIPA membrane (0.8V) at 180C. The mechanical stability of the membrane improves with CNTs addition. The tensile strength of the composite PBI-CNT membrane with 1wt.% CNTs loading is 32% higher and the Young's Modulus is 147% higher than the values for a membrane of PBI alone. The improvement in conductivity and mechanical properties in the composite membrane due to the CNT addition indicates that a PBI-CNT membrane is a good alternative as a membrane electrolyte in a PEMFC.

  13. Insufficient Nitric Oxide Bio-Availability (INOBA): An hypothesis to explain adverse effects of RBC transfusion

    PubMed Central

    Roback, John D.; Neuman, Robert B.; Quyyumi, Arshed; Sutliff, Roy

    2016-01-01

    While transfusion of red blood cells (RBCs) is effective at preventing morbidity and mortality in anemic patients, studies have indicated that some RBC components have functional defects (“RBC storage lesions”) that may actually cause adverse events when transfused. For example, in some studies patients transfused with RBCs stored >14 days have had statistically worse outcomes than those receiving “fresher” RBC units. Recipient-specific factors may also contribute to the occurrence of these adverse events. Unfortunately, these events have been difficult to investigate because up to now they have existed primarily as “statistical occurrences” of increased morbidity and mortality in large data sets. There are currently no clinical or laboratory methods to detect or study them in individual transfusion recipients. Herein, we propose a unifying hypothesis, centered on Insufficient NO Bio-Availability (INOBA), to explain the increased morbidity and mortality observed in some patients following RBC transfusion. In this model, variables associated with RBC units (storage time; 2,3-DPG concentration) and transfusion recipients (endothelial dysfunction) collectively lead to changes in NO levels in vascular beds. Under certain circumstances, these variables are “aligned” such that NO concentrations are markedly reduced, leading to vasoconstriction, decreased local blood flow and insufficient O2 delivery to end organs. Under these circumstances, the likelihood of morbidity and mortality escalates. If the key tenets of the INOBA hypothesis are confirmed, it may lead to improved transfusion methodologies including altered RBC storage/processing conditions, novel transfusion recipient screening methods, and improved RBC/recipient matching. PMID:21496047

  14. The relevance of membrane models to understand nanoparticles-cell membrane interactions.

    PubMed

    Rascol, Estelle; Devoisselle, Jean-Marie; Chopineau, Joël

    2016-02-25

    Over the past two decades, numerous types of nanoparticles (NPs) have been developed for medical applications; however only a few nanomedicines are actually available on the market. One reason is the lack of understanding and data concerning the NP fate and their behavior upon contact with biological media and cell membranes. Biomimetic membrane models are interesting tools to approach and understand NPs-cell membrane interactions. The use of these models permits one to control physical and chemical parameters and to rapidly compare membrane types and the influence of different media conditions. The interactions between NPs and cell membranes can be qualified and quantified using analytical and modeling methods. In this review, the major studies concerning NPs-cell membrane models and associated methods are described. The advantages and drawbacks for each method are compared for the different models. The key mechanisms of interactions between NPs and cell membranes are revealed using cell membrane models and are interrogated in comparison with the NP behavior in cellulo or in vivo. Investigating the interactions between NPs and cell membrane models is now proposed as an intermediate step between physicochemical characterization of NPs and biological assays. PMID:26868717

  15. The relevance of membrane models to understand nanoparticles-cell membrane interactions

    NASA Astrophysics Data System (ADS)

    Rascol, Estelle; Devoisselle, Jean-Marie; Chopineau, Joël

    2016-02-01

    Over the past two decades, numerous types of nanoparticles (NPs) have been developed for medical applications; however only a few nanomedicines are actually available on the market. One reason is the lack of understanding and data concerning the NP fate and their behavior upon contact with biological media and cell membranes. Biomimetic membrane models are interesting tools to approach and understand NPs-cell membrane interactions. The use of these models permits one to control physical and chemical parameters and to rapidly compare membrane types and the influence of different media conditions. The interactions between NPs and cell membranes can be qualified and quantified using analytical and modeling methods. In this review, the major studies concerning NPs-cell membrane models and associated methods are described. The advantages and drawbacks for each method are compared for the different models. The key mechanisms of interactions between NPs and cell membranes are revealed using cell membrane models and are interrogated in comparison with the NP behavior in cellulo or in vivo. Investigating the interactions between NPs and cell membrane models is now proposed as an intermediate step between physicochemical characterization of NPs and biological assays.

  16. The membrane proteome of the mouse lens fiber cell

    PubMed Central

    Wilmarth, Phillip A.; David, Larry L.

    2009-01-01

    Purpose Fiber cells of the ocular lens are bounded by a highly specialized plasma membrane. Despite the pivotal role that membrane proteins play in the physiology and pathophysiology of the lens, our knowledge of the structure and composition of the fiber cell plasma membrane remains fragmentary. In the current study, we utilized mass spectrometry-based shotgun proteomics to provide a comprehensive survey of the mouse lens fiber cell membrane proteome. Methods Membranes were purified from young mouse lenses and subjected to MudPIT (Multidimensional protein identification technology) analysis. The resulting proteomic data were analyzed further by reference to publically available microarray databases. Results More than 200 membrane proteins were identified by MudPIT, including Type I, Type II, Type III (multi-pass), lipid-anchored, and GPI-anchored membrane proteins, in addition to membrane-associated cytoskeletal elements and extracellular matrix components. The membrane proteins of highest apparent abundance included Mip, Lim2, and the lens-specific connexin proteins Gja3, Gja8, and Gje1. Significantly, many proteins previously unsuspected in the lens were also detected, including proteins with roles in cell adhesion, solute transport, and cell signaling. Conclusions The MudPIT technique constitutes a powerful technique for the analysis of the lens membrane proteome and provides valuable insights into the composition of the lens fiber cell unit membrane. PMID:19956408

  17. In vivo crossmatching with Tc-99m-RBC's and In-111-oxine-RBC's

    SciTech Connect

    Marcus, C.S.; Myhre, B.A.; Angulo, M.C.; Salk, R.D.; Essex, C.E.

    1984-01-01

    In vitro crossmatching techniques are often inadequate for patients who have received multiple prior transfusions. These patients usually have multiple antibodies to minor blood groups, not all of which are necessarily important to vivo. It becomes increasingly difficult to obtain appropriate units for transfusion, and often units are used with hopes that a minor group antibody will not be significantly active in vivo. If a transfusion reaction occurs, the unit is stopped. The authors have developed and successfully tested a method whereby 1.5 to 3c of potential donor RBC's are labeled with 25-50 ..mu..Ci of Tc-99m using the BNL kits. After injection, samples are drawn at 10, 20, 60, and 120 minutes and the RBC survival is measured. If it is desirable to test 2 units simultaneously, the authors use 400 ..mu..Ci Tc-99m to label an RBC aliquot of one unit and 25 ..mu..Ci In-111-oxine to label the other; both labeled aliquots are injected together. The method is simple and reliable. In addition to assessing compatibility, the authors may also estimate the % viability of transfused, compatible RBC's by starting with 400 ..mu..Ci of Tc-99m and multiplying % survival at 24 hours by 1.2. For 24 hr. survival measurements of IN-111-oxine-RBC's, 25 ..mu..Ci is adequate and no multiplication factor is necessary. The authors have performed 13 in vivo crossmatches, 4 of which were double, in 6 patients. One documented mild transfusion reaction occurred. There were no false positive or false negative results.

  18. Reassessing ecdysteroidogenic cells from the cell membrane receptors' perspective.

    PubMed

    Alexandratos, Alexandros; Moulos, Panagiotis; Nellas, Ioannis; Mavridis, Konstantinos; Dedos, Skarlatos G

    2016-01-01

    Ecdysteroids secreted by the prothoracic gland (PG) cells of insects control the developmental timing of their immature life stages. These cells have been historically considered as carrying out a single function in insects, namely the biochemical conversion of cholesterol to ecdysteroids and their secretion. A growing body of evidence shows that PG cells receive multiple cues during insect development so we tested the hypothesis that they carry out more than just one function in insects. We characterised the molecular nature and developmental profiles of cell membrane receptors in PG cells of Bombyx mori during the final larval stage and determined what receptors decode nutritional, developmental and physiological signals. Through iterative approaches we identified a complex repertoire of cell membrane receptors that are expressed in intricate patterns and activate previously unidentified signal transduction cascades in PG cells. The expression patterns of some of these receptors explain precisely the mechanisms that are known to control ecdysteroidogenesis. However, the presence of receptors for the notch, hedgehog and wingless signalling pathways and the expression of innate immunity-related receptors such as phagocytosis receptors, receptors for microbial ligands and Toll-like receptors call for a re-evaluation of the role these cells play in insects. PMID:26847502

  19. Reassessing ecdysteroidogenic cells from the cell membrane receptors’ perspective

    PubMed Central

    Alexandratos, Alexandros; Moulos, Panagiotis; Nellas, Ioannis; Mavridis, Konstantinos; Dedos, Skarlatos G.

    2016-01-01

    Ecdysteroids secreted by the prothoracic gland (PG) cells of insects control the developmental timing of their immature life stages. These cells have been historically considered as carrying out a single function in insects, namely the biochemical conversion of cholesterol to ecdysteroids and their secretion. A growing body of evidence shows that PG cells receive multiple cues during insect development so we tested the hypothesis that they carry out more than just one function in insects. We characterised the molecular nature and developmental profiles of cell membrane receptors in PG cells of Bombyx mori during the final larval stage and determined what receptors decode nutritional, developmental and physiological signals. Through iterative approaches we identified a complex repertoire of cell membrane receptors that are expressed in intricate patterns and activate previously unidentified signal transduction cascades in PG cells. The expression patterns of some of these receptors explain precisely the mechanisms that are known to control ecdysteroidogenesis. However, the presence of receptors for the notch, hedgehog and wingless signalling pathways and the expression of innate immunity-related receptors such as phagocytosis receptors, receptors for microbial ligands and Toll-like receptors call for a re-evaluation of the role these cells play in insects. PMID:26847502

  20. Changes in platelet function following cold storage of RBC suspensions

    PubMed Central

    Dang, Qian-Li; Li, Jian-Gang; Sun, Yang; Jin, Zhan-Kui; Gao, Ying; Xu, Cui-Xiang; Chen, Ping; Ma, Ting; Yang, Jiang-Cun

    2015-01-01

    Objective: To provide a basis for the cold-storage of human platelets as a way to assess changes in platelet function. Methods: Red blood cell suspensions (11 U and 50 U) were randomly selected at different storage times (3-28 days) and evidence of platelet activation (CD62P) and thromboelastography (TEG) reaction times were investigated. Results: After 21 days of storage at 4C, a large number of activated platelets (PAC1+62P+, PAC1-62P+) within the red blood cell suspension (RBCs) retained their function and had TEG-maximum amplitude (TEG-MA) indices in the normal range. Conclusion: We report that platelets in RBC suspensions retain high activity when stored at 4C for 21 days. The results provide important information for studies that involve storing platelets under cold conditions. PMID:26770402

  1. Comparison of in vitro RBC labeling with the UltraTag RBC kit versus in vivo labeling

    SciTech Connect

    Patrick, S.T.; Glowniak, J.V.; Turner, F.E.; Robbins, M.S.; Wolfangel, R.G. )

    1991-02-01

    This study compared cardiac-gated equilibrium blood-pool imaging studies using in vitro technetium-99m- (99mTc) labeled red blood cells (RBCs) prepared with the UltraTag RBC kit to in vivo labeling with stannous (pyro- and trimeta-) phosphates. The in vitro labeling procedure takes approximately 25 min and does not require centrifugation to separate free from bound 99mTc. Imaging studies were performed in 30 patients using the in vitro labeling procedure and in 30 patients with in vivo labeling. Regions of interest were placed over the center of the left ventricle, inferior and lateral to the left ventricle (background), and over the right midlung. The mean +/- s.e. in vitro RBC labeling efficiency was 98.5 +/- 0.2%. The heart-to-background ratios were significantly higher with in vitro labeling. The heart-to-background ratios, averaged among two blinded reviewers, were 4.6 and 3.4 for the in vitro and in vivo methods, respectively. The heart-to-lung ratio was generally higher with the in vitro procedure (3.6) than that observed with the in vivo method (3.2) but failed to attain statistical significance (p = 0.059). These results demonstrate the superiority of the in vitro labeling procedure over in vivo labeling for gated equilibrium blood-pool imaging.

  2. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Haryadi, Sugianto, D.; Ristopan, E.

    2015-12-01

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm-1 and 3300 cm-1 respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10-2 S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  3. Nonhumidified High-Temperature Membranes Developed for Proton Exchange Membrane Fuel Cells

    NASA Technical Reports Server (NTRS)

    Kinder, James D.

    2005-01-01

    Fuel cells are being considered for a wide variety of aerospace applications. One of the most versatile types of fuel cells is the proton-exchange-membrane (PEM) fuel cell. PEM fuel cells can be easily scaled to meet the power and space requirements of a specific application. For example, small 100-W PEM fuel cells are being considered for personal power for extravehicular activity suit applications, whereas larger PEM fuel cells are being designed for primary power in airplanes and in uninhabited air vehicles. Typically, PEM fuel cells operate at temperatures up to 80 C. To increase the efficiency and power density of the fuel cell system, researchers are pursuing methods to extend the operating temperature of the PEM fuel cell to 180 C. The most widely used membranes in PEM fuel cells are Nafion 112 and Nafion 117--sulfonated perfluorinated polyethers that were developed by DuPont. In addition to their relatively high cost, the properties of these membranes limit their use in a PEM fuel cell to around 80 C. The proton conductivity of Nafion membranes significantly decreases above 80 C because the membrane dehydrates. The useful operating range of Nafion-based PEM fuel cells can be extended to over 100 C if ancillary equipment, such as compressors and humidifiers, is added to maintain moisture levels within the membrane. However, the addition of these components reduces the power density and increases the complexity of the fuel cell system.

  4. Physical principles of membrane remodelling during cell mechanoadaptation

    NASA Astrophysics Data System (ADS)

    Kosmalska, Anita Joanna; Casares, Laura; Elosegui-Artola, Alberto; Thottacherry, Joseph Jose; Moreno-Vicente, Roberto; Gonzlez-Tarrag, Vctor; Del Pozo, Miguel ngel; Mayor, Satyajit; Arroyo, Marino; Navajas, Daniel; Trepat, Xavier; Gauthier, Nils C.; Roca-Cusachs, Pere

    2015-06-01

    Biological processes in any physiological environment involve changes in cell shape, which must be accommodated by their physical envelope--the bilayer membrane. However, the fundamental biophysical principles by which the cell membrane allows for and responds to shape changes remain unclear. Here we show that the 3D remodelling of the membrane in response to a broad diversity of physiological perturbations can be explained by a purely mechanical process. This process is passive, local, almost instantaneous, before any active remodelling and generates different types of membrane invaginations that can repeatedly store and release large fractions of the cell membrane. We further demonstrate that the shape of those invaginations is determined by the minimum elastic and adhesive energy required to store both membrane area and liquid volume at the cell-substrate interface. Once formed, cells reabsorb the invaginations through an active process with duration of the order of minutes.

  5. Physical principles of membrane remodelling during cell mechanoadaptation.

    PubMed

    Kosmalska, Anita Joanna; Casares, Laura; Elosegui-Artola, Alberto; Thottacherry, Joseph Jose; Moreno-Vicente, Roberto; Gonzlez-Tarrag, Vctor; del Pozo, Miguel ngel; Mayor, Satyajit; Arroyo, Marino; Navajas, Daniel; Trepat, Xavier; Gauthier, Nils C; Roca-Cusachs, Pere

    2015-01-01

    Biological processes in any physiological environment involve changes in cell shape, which must be accommodated by their physical envelope--the bilayer membrane. However, the fundamental biophysical principles by which the cell membrane allows for and responds to shape changes remain unclear. Here we show that the 3D remodelling of the membrane in response to a broad diversity of physiological perturbations can be explained by a purely mechanical process. This process is passive, local, almost instantaneous, before any active remodelling and generates different types of membrane invaginations that can repeatedly store and release large fractions of the cell membrane. We further demonstrate that the shape of those invaginations is determined by the minimum elastic and adhesive energy required to store both membrane area and liquid volume at the cell-substrate interface. Once formed, cells reabsorb the invaginations through an active process with duration of the order of minutes. PMID:26073653

  6. Physical principles of membrane remodelling during cell mechanoadaptation

    PubMed Central

    Kosmalska, Anita Joanna; Casares, Laura; Elosegui-Artola, Alberto; Thottacherry, Joseph Jose; Moreno-Vicente, Roberto; Gonzlez-Tarrag, Vctor; del Pozo, Miguel ngel; Mayor, Satyajit; Arroyo, Marino; Navajas, Daniel; Trepat, Xavier; Gauthier, Nils C.; Roca-Cusachs, Pere

    2015-01-01

    Biological processes in any physiological environment involve changes in cell shape, which must be accommodated by their physical envelopethe bilayer membrane. However, the fundamental biophysical principles by which the cell membrane allows for and responds to shape changes remain unclear. Here we show that the 3D remodelling of the membrane in response to a broad diversity of physiological perturbations can be explained by a purely mechanical process. This process is passive, local, almost instantaneous, before any active remodelling and generates different types of membrane invaginations that can repeatedly store and release large fractions of the cell membrane. We further demonstrate that the shape of those invaginations is determined by the minimum elastic and adhesive energy required to store both membrane area and liquid volume at the cellsubstrate interface. Once formed, cells reabsorb the invaginations through an active process with duration of the order of minutes. PMID:26073653

  7. Selective effect of cell membrane on synaptic neurotransmission

    PubMed Central

    Postila, Pekka A.; Vattulainen, Ilpo; Róg, Tomasz

    2016-01-01

    Atomistic molecular dynamics simulations were performed with 13 non-peptidic neurotransmitters (NTs) in three different membrane environments. The results provide compelling evidence that NTs are divided into membrane-binding and membrane-nonbinding molecules. NTs adhere to the postsynaptic membrane surface whenever the ligand-binding sites of their synaptic receptors are buried in the lipid bilayer. In contrast, NTs that have extracellular ligand-binding sites do not have a similar tendency to adhere to the membrane surface. This finding is a seemingly simple yet important addition to the paradigm of neurotransmission, essentially dividing it into membrane-independent and membrane-dependent mechanisms. Moreover, the simulations also indicate that the lipid composition especially in terms of charged lipids can affect the membrane partitioning of NTs. The revised paradigm, highlighting the importance of cell membrane and specific lipids for neurotransmission, should to be of interest to neuroscientists, drug industry and the general public alike. PMID:26782980

  8. Selective effect of cell membrane on synaptic neurotransmission

    NASA Astrophysics Data System (ADS)

    Postila, Pekka A.; Vattulainen, Ilpo; Róg, Tomasz

    2016-01-01

    Atomistic molecular dynamics simulations were performed with 13 non-peptidic neurotransmitters (NTs) in three different membrane environments. The results provide compelling evidence that NTs are divided into membrane-binding and membrane-nonbinding molecules. NTs adhere to the postsynaptic membrane surface whenever the ligand-binding sites of their synaptic receptors are buried in the lipid bilayer. In contrast, NTs that have extracellular ligand-binding sites do not have a similar tendency to adhere to the membrane surface. This finding is a seemingly simple yet important addition to the paradigm of neurotransmission, essentially dividing it into membrane-independent and membrane-dependent mechanisms. Moreover, the simulations also indicate that the lipid composition especially in terms of charged lipids can affect the membrane partitioning of NTs. The revised paradigm, highlighting the importance of cell membrane and specific lipids for neurotransmission, should to be of interest to neuroscientists, drug industry and the general public alike.

  9. The application of Dow Chemical's perfluorinated membranes in proton-exchange membrane fuel cells

    NASA Technical Reports Server (NTRS)

    Eisman, G. A.

    1989-01-01

    Dow Chemical's research activities in fuel cells revolve around the development of perfluorosulfonic acid membranes useful as the proton transport medium and separator. Some of the performance characteristics which are typical for such membranes are outlined. The results of tests utilizing a new experimental membrane useful in proton-exchange membrane fuel cells are presented. The high voltage at low current densities can lead to higher system efficiencies while, at the same time, not sacrificing other critical properties pertinent to membrane fuel cell operation. A series of tests to determine response times indicated that on-off cycles are on the order of 80 milliseconds to reach 90 percent of full power. The IR free voltage at 100 amps/sq ft was determined and the results indicating a membrane/electrode package resistance to be .15 ohm-sq cm at 100 amps/sq ft.

  10. Sialoglycosylation of RBC in Visceral Leishmaniasis Leads to Enhanced Oxidative Stress, Calpain-Induced Fragmentation of Spectrin and Hemolysis

    PubMed Central

    Samanta, Sajal; Ghoshal, Angana; Bhattacharya, Kaushik; Saha, Bibhuti; Walden, Peter; Mandal, Chitra

    2012-01-01

    Visceral leishmaniasis (VL) caused by the intracellular parasite Leishmania donovani accounts for an estimated 12 million cases of human infection. It is almost always associated with anemia, which severely complicates the disease course. However, the pathological processes leading to anemia in VL have thus far not been adequately characterized to date. In studying the glycosylation patterns of peripheral blood cells we found that the red blood cells (RBC) of VL patients (RBCVL) express eight 9-O-acetylated sialoglycoproteins (9-O-AcSGPs) that are not detected in the RBC of healthy individuals (RBCN). At the same time, the patients had high titers of anti-9-O-AcSGP IgG antibodies in their sera. These two conditions appear to be linked and related to the anemic state of the patients, as exposure of RBCVL but not RBCN to anti-9-O-AcSGPs antibodies purified from patient sera triggered a series of responses. These included calcium influx via the P/Q-type but not L-type channels, activation of calpain I, proteolysis of spectrin, enhanced oxidative stress, lipid peroxidation, externalization of phosphatidyl serine with enhanced erythrophagocytosis, enhanced membrane fragility and, finally, hemolysis. Taken together, this study suggests that the enhanced hemolysis is linked to an impairment of membrane integrity in RBCVL which is mediated by ligand-specific interaction of surface 9-O-AcSGPs. This affords a potential explanation for the structural and functional features of RBCVL which are involved in the hemolysis related to the anemia which develops in VL patients. PMID:22860118

  11. Polymer-electrolyte membrane, electrochemical fuel cell, and related method

    DOEpatents

    Krishnan, Lakshmi; Yeager, Gary William; Soloveichik, Grigorii Lev

    2014-12-09

    A polymer-electrolyte membrane is presented. The polymer-electrolyte membrane comprises an acid-functional polymer, and an additive incorporated in at least a portion of the membrane. The additive comprises a fluorinated cycloaliphatic additive, a hydrophobic cycloaliphatic additive, or combinations thereof, wherein the additive has a boiling point greater than about 120.degree. C. An electrochemical fuel cell including the polymer-electrolyte membrane, and a related method, are also presented.

  12. Membrane fouling in microfiltration used for cell harvesting

    NASA Astrophysics Data System (ADS)

    Kaghazchi, Tahereh; Zokaee, Farzin; Zare, Abbas

    2001-03-01

    In the present study the membrane fouling in microfiltration used for cell harvesting in a deadend system has been investigated. Experimental results were analysed in terms of existing membrane filtration models and membrane resistances. The cake filtration model (CFM) and standard blocking model (SBM) have been considered in this study. Various membrane resistances were determined at different processing time, feed concentration and stirring speed. Resistances to permeation in this system include filter medium, pore blocking, adsorption, cake layer and concentration polarization.

  13. Roles of membrane trafficking in plant cell wall dynamics

    PubMed Central

    Ebine, Kazuo; Ueda, Takashi

    2015-01-01

    The cell wall is one of the characteristic components of plant cells. The cell wall composition differs among cell types and is modified in response to various environmental conditions. To properly generate and modify the cell wall, many proteins are transported to the plasma membrane or extracellular space through membrane trafficking, which is one of the key protein transport mechanisms in eukaryotic cells. Given the diverse composition and functions of the cell wall in plants, the transport of the cell wall components and proteins that are involved in cell wall-related events could be specialized for each cell type, i.e., the machinery for cell wall biogenesis, modification, and maintenance could be transported via different trafficking pathways. In this review, we summarize the recent progress in the current understanding of the roles and mechanisms of membrane trafficking in plant cells and focus on the biogenesis and regulation of the cell wall. PMID:26539200

  14. Conductivity Measurements of Synthesized Heteropoly Acid Membranes for Proton Exchange Membrane Fuel Cells

    SciTech Connect

    Record, K.A.; Haley, B.T.; Turner, J.

    2006-01-01

    Fuel cell technology is receiving attention due to its potential to be a pollution free method of electricity production when using renewably produced hydrogen as fuel. In a Proton Exchange Membrane (PEM) fuel cell H2 and O2 react at separate electrodes, producing electricity, thermal energy, and water. A key component of the PEM fuel cell is the membrane that separates the electrodes. DuPont’s Nafion® is the most commonly used membrane in PEM fuel cells; however, fuel cell dehydration at temperatures near 100°C, resulting in poor conductivity, is a major hindrance to fuel cell performance. Recent studies incorporating heteropoly acids (HPAs) into membranes have shown an increase in conductivity and thus improvement in performance. HPAs are inorganic materials with known high proton conductivities. The primary objective of this work is to measure the conductivity of Nafion, X-Ionomer membranes, and National Renewable Energy Laboratory (NREL) Developed Membranes that are doped with different HPAs at different concentrations. Four-point conductivity measurements using a third generation BekkTech conductivity test cell are used to determine membrane conductivity. The effect of multiple temperature and humidification levels is also examined. While the classic commercial membrane, Nafion, has a conductivity of approximately 0.10 S/cm, measurements for membranes in this study range from 0.0030 – 0.58 S/cm, depending on membrane type, structure of the HPA, and the relative humidity. In general, the X-ionomer with H6P2W21O71 HPA gave the highest conductivity and the Nafion with the 12-phosphotungstic (PW12) HPA gave the lowest. The NREL composite membranes had conductivities on the order of 0.0013 – 0.025 S/cm.

  15. Microconfined flow behavior of red blood cells.

    PubMed

    Tomaiuolo, Giovanna; Lanotte, Luca; D'Apolito, Rosa; Cassinese, Antonio; Guido, Stefano

    2016-01-01

    Red blood cells (RBCs) perform essential functions in human body, such as gas exchange between blood and tissues, thanks to their ability to deform and flow in the microvascular network. The high RBC deformability is mainly due to the viscoelastic properties of the cell membrane. Since an impaired RBC deformability could be found in some diseases, such as malaria, sickle cell anemia, diabetes and hereditary disorders, there is the need to provide further insight into measurement of RBC deformability in a physiologically relevant flow field. Here, RBCs deformability has been studied in terms of the minimum apparent plasma-layer thickness by using high-speed video microscopy of RBCs flowing in cylindrical glass capillaries. An in vitro systematic microfluidic investigation of RBCs in micro-confined conditions has been performed, resulting in the determination of the RBCs time recovery constant, RBC volume and surface area and RBC membrane shear elastic modulus and surface viscosity. It has been noticed that the deformability of RBCs induces cells aggregation during flow in microcapillaries, allowing the formation of clusters of cells. Overall, our results provide a novel technique to estimate RBC deformability and also RBCs collective behavior, which can be used for the analysis of pathological RBCs, for which reliable quantitative methods are still lacking. PMID:26071649

  16. Membrane tension and cytoskeleton organization in cell motility

    NASA Astrophysics Data System (ADS)

    Sens, Pierre; Plastino, Julie

    2015-07-01

    Cell membrane shape changes are important for many aspects of normal biological function, such as tissue development, wound healing and cell division and motility. Various disease states are associated with deregulation of how cells move and change shape, including notably tumor initiation and cancer cell metastasis. Cell motility is powered, in large part, by the controlled assembly and disassembly of the actin cytoskeleton. Much of this dynamic happens in close proximity to the plasma membrane due to the fact that actin assembly factors are membrane-bound, and thus actin filaments are generally oriented such that their growth occurs against or near the membrane. For a long time, the membrane was viewed as a relatively passive scaffold for signaling. However, results from the last five years show that this is not the whole picture, and that the dynamics of the actin cytoskeleton are intimately linked to the mechanics of the cell membrane. In this review, we summarize recent findings concerning the role of plasma membrane mechanics in cell cytoskeleton dynamics and architecture, showing that the cell membrane is not just an envelope or a barrier for actin assembly, but is a master regulator controlling cytoskeleton dynamics and cell polarity.

  17. Anatomy of the red cell membrane skeleton: unanswered questions.

    PubMed

    Lux, Samuel E

    2016-01-14

    The red cell membrane skeleton is a pseudohexagonal meshwork of spectrin, actin, protein 4.1R, ankyrin, and actin-associated proteins that laminates the inner membrane surface and attaches to the overlying lipid bilayer via band 3-containing multiprotein complexes at the ankyrin- and actin-binding ends of spectrin. The membrane skeleton strengthens the lipid bilayer and endows the membrane with the durability and flexibility to survive in the circulation. In the 36 years since the first primitive model of the red cell skeleton was proposed, many additional proteins have been discovered, and their structures and interactions have been defined. However, almost nothing is known of the skeleton's physiology, and myriad questions about its structure remain, including questions concerning the structure of spectrin in situ, the way spectrin and other proteins bind to actin, how the membrane is assembled, the dynamics of the skeleton when the membrane is deformed or perturbed by parasites, the role lipids play, and variations in membrane structure in unique regions like lipid rafts. This knowledge is important because the red cell membrane skeleton is the model for spectrin-based membrane skeletons in all cells, and because defects in the red cell membrane skeleton underlie multiple hemolytic anemias. PMID:26537302

  18. Electron-beam direct processing on living cell membrane

    SciTech Connect

    Hoshino, Takayuki; Morishima, Keisuke

    2011-10-24

    We demonstrated a direct processing on a living Hep G2 cell membrane in conventional cultivation conditions using an electron beam. Electron beam-induced deposition from liquid precursor 3,4-ethylenedioxythiophene and ablation was performed on the living cells. The 2.5-10 keV electron beam which was irradiated through a 100-nm-thick SiN nanomembrane could induce a deposition pattern and a ablation on a living cell membrane. This electron beam direct processing can provide simple in-situ cell surface modification for an analytical method of living cell membrane dynamic.

  19. Hemoglobin s polymerization and red cell membrane changes.

    PubMed

    Kuypers, Frans A

    2014-04-01

    Different pathways lead from the simple point mutation in hemoglobin to the membrane changes that characterize the altered interaction of the sickle red blood cell with its environment, including endothelial cells, white blood cells, and platelets. Polymerization and oxidation-induced damage to both lipid and protein components of the red cell membrane, as well as the generation of bioreactive membrane material (microparticles), has a profound effect on all tissues and organs, and defines the vasculopathy of the patient with sickle cell disease. PMID:24589260

  20. Effect of EMP fields on cell membrane potentials

    SciTech Connect

    Gailey, P.C.; Easterly, C.E.

    1993-06-01

    A simple model is presented for cell membrane potentials induced during exposure to electromagnetic pulse (EMP). Using calculated values of internal electric field strength induced during EMP exposure, the model predicts that cell membrane potentials of about 100 mV may be induced for time frames on the order of 10 ns. Possible biological effects of these potentials including electroporation area discussed.

  1. Red Blood Cell Membrane Dynamics during Malaria Parasite Egress

    PubMed Central

    Callan-Jones, Andrew; AlbarranArriagada, OctavioEduardo; Massiera, Gladys; Lorman, Vladimir; Abkarian, Manouk

    2012-01-01

    Precisely how malaria parasites exit from infected red blood cells to further spread the disease remains poorly understood. It has been shown recently, however, that these parasites exploit the elasticity of the cell membrane to enable their egress. Based on this work, showing that parasites modify the membranes spontaneous curvature, initiating pore opening and outward membrane curling, we develop a model of the dynamics of the red blood cell membrane leading to complete parasite egress. As a result of the three-dimensional, axisymmetric nature of the problem, we find that the membrane dynamics involve two modes of elastic-energy release: 1), at short times after pore opening, the free edge of the membrane curls into a toroidal rim attached to a membrane cap of roughly fixed radius; and 2), at longer times, the rim radius is fixed, and lipids in the cap flow into the rim. We compare our model with the experimental data of Abkarian and co-workers and obtain an estimate of the induced spontaneous curvature and the membrane viscosity, which control the timescale of parasite release. Finally, eversion of the membrane cap, which liberates the remaining parasites, is driven by the spontaneous curvature and is found to be associated with a breaking of the axisymmetry of the membrane. PMID:23260049

  2. Finite element analysis of microelectrotension of cell membranes

    PubMed Central

    Bae, Chilman

    2011-01-01

    Electric fields can be focused by micropipette-based electrodes to induce stresses on cell membranes leading to tension and poration. To date, however, these membrane stress distributions have not been quantified. In this study, we determine membrane tension, stress, and strain distributions in the vicinity of a microelectrode using finite element analysis of a multiscale electro-mechanical model of pipette, media, membrane, actin cortex, and cytoplasm. Electric field forces are coupled to membranes using the Maxwell stress tensor and membrane electrocompression theory. Results suggest that micropipette electrodes provide a new non-contact method to deliver physiological stresses directly to membranes in a focused and controlled manner, thus providing the quantitative foundation for micreoelectrotension, a new technique for membrane mechanobiology. PMID:17657517

  3. Membrane nanowaves in single and collective cell migration.

    PubMed

    Zouani, Omar F; Gocheva, Veronika; Durrieu, Marie-Christine

    2014-01-01

    We report the characterization of three-dimensional membrane waves for migrating single and collective cells and describe their propagation using wide-field optical profiling technique with nanometer resolution. We reveal the existence of small and large membrane waves the amplitudes of which are in the range of ? 3-7 nm to ? 16-25 nm respectively, through the cell. For migrating single-cells, the amplitude of these waves is about 30 nm near the cell edge. Two or more different directions of propagation of the membrane nanowaves inside the same cell can be observed. After increasing the migration velocity by BMP-2 treatment, only one wave direction of propagation exists with an increase in the average amplitude (more than 80 nm near the cell edge). Furthermore for collective-cell migration, these membrane nanowaves are attenuated on the leader cells and poor transmission of these nanowaves to follower cells was observed. After BMP-2 treatment, the membrane nanowaves are transmitted from the leader cell to several rows of follower cells. Surprisingly, the vast majority of the observed membrane nanowaves is shared between the adjacent cells. These results give a new view on how single and collective-cells modulate their motility. This work has significant implications for the therapeutic use of BMPs for the regeneration of skin tissue. PMID:24846182

  4. Membrane Nanowaves in Single and Collective Cell Migration

    PubMed Central

    Zouani, Omar F.; Gocheva, Veronika; Durrieu, Marie-Christine

    2014-01-01

    We report the characterization of three-dimensional membrane waves for migrating single and collective cells and describe their propagation using wide-field optical profiling technique with nanometer resolution. We reveal the existence of small and large membrane waves the amplitudes of which are in the range of ?37 nm to ?1625 nm respectively, through the cell. For migrating single-cells, the amplitude of these waves is about 30 nm near the cell edge. Two or more different directions of propagation of the membrane nanowaves inside the same cell can be observed. After increasing the migration velocity by BMP-2 treatment, only one wave direction of propagation exists with an increase in the average amplitude (more than 80 nm near the cell edge). Furthermore for collective-cell migration, these membrane nanowaves are attenuated on the leader cells and poor transmission of these nanowaves to follower cells was observed. After BMP-2 treatment, the membrane nanowaves are transmitted from the leader cell to several rows of follower cells. Surprisingly, the vast majority of the observed membrane nanowaves is shared between the adjacent cells. These results give a new view on how single and collective-cells modulate their motility. This work has significant implications for the therapeutic use of BMPs for the regeneration of skin tissue. PMID:24846182

  5. The Cytoplasmic Region of Plasmodium falciparum SURFIN4.2 Is Required for Transport from Maurers Clefts to the Red Blood Cell Surface

    PubMed Central

    Kagaya, Wataru; Miyazaki, Shinya; Yahata, Kazuhide; Ohta, Nobuo; Kaneko, Osamu

    2015-01-01

    Background: Plasmodium, the causative agent of malaria, exports many proteins to the surface of the infected red blood cell (iRBC) in order to modify it toward a structure more suitable for parasite development and survival. One such exported protein, SURFIN4.2, from the parasite of human malignant malaria, P. falciparum, was identified in the trypsin-cleaved protein fraction from the iRBC surface, and is thereby inferred to be exposed on the iRBC surface. SURFIN4.2 also localize to Maurers cleftsparasite-derived membranous structures established in the RBC cytoplasm and tethered to the RBC membraneand their role in trafficking suggests that they are a pathway for SURFIN4.2 transport to the iRBC surface. It has not been determined the participation of protein domains and motifs within SURFIN4.2 in transport from Maurers clefts to the iRBC surface; and herein we examined if the SURFIN4.2 intracellular region containing tryptophan-rich (WR) domain is required for its exposure on the iRBC surface. Results: We generated two transgenic parasite lines which express modified SURFIN4.2, with or without a part of the intracellular region. Both recombinant SURFIN4.2 proteins were exported to Maurers clefts. However, only SURFIN4.2 possessing the intracellular region was efficiently cleaved by surface treatment of iRBC with proteinase K. Conclusions: These results indicate that SURFIN4.2 is exposed on the iRBC surface and that the intracellular region containing WR domain plays a role on the transport from Maurers clefts to the iRBC membrane. PMID:26865830

  6. Cell membrane thermal gradients induced by electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Garner, Allen L.; Deminsky, Maxim; Bogdan Neculaes, V.; Chashihin, V.; Knizhnik, Andrey; Potapkin, Boris

    2013-06-01

    While electromagnetic fields induce structural changes in cell membranes, particularly electroporation, much remains to be understood about membrane level temperature gradients. For instance, microwaves induce cell membrane temperature gradients (?T) and bioeffects with little bulk temperature change. Recent calculations suggest that nanosecond pulsed electric fields (nsPEFs) may also induce such gradients that may additionally impact the electroporation threshold. Here, we analytically and numerically calculate the induced ?T as a function of pulse duration and pulse repetition rate. We relate ?T to the thermally induced cell membrane electric field (Em) by assuming the membrane behaves as a thermoelectric such that Em ?T. Focusing initially on applying nsPEFs to a uniform membrane, we show that reducing pulse duration and increasing pulse repetition rate (or using higher frequency for alternating current (AC) fields) maximizes the magnitude and duration of ?T and, concomitantly, Em. The maximum ?T initially occurs at the interface between the cell membrane and extracellular fluid before becoming uniform across the membrane, potentially enabling initial molecular penetration and subsequent transport across the membrane. These results, which are equally applicable to AC fields, motivate further studies to elucidate thermoelectric behavior in a model membrane system and the coupling of the Em induced by ?T with that created directly by the applied field.

  7. Favorable effect of in-situ generated platinum in the membrane on fuel cell membrane durability

    NASA Astrophysics Data System (ADS)

    Macauley, Natalia; Wong, Ka Hung; Watson, Mark; Kjeang, Erik

    2015-12-01

    The overall lifetime of polymer electrolyte fuel cells is often determined by the membrane durability. Platinum, which may dissolve from the catalyst layers during fuel cell operation and deposit in the membrane, has been shown to have both positive and negative effects on membrane stability. In the present work, we analyze what specific conditions are required in order to reach a favorable, membrane stabilizing effect with the controlled use of platinum in the membrane. Using accelerated membrane durability testing, field operated membrane samples, and electron microscopy, we demonstrate that a high platinum concentration with specific particle shapes and sizes is essential for enhanced membrane stability. Specifically, star shaped and dendritic particles with high particle density and high surface area are shown to be preferable. These particles contain high levels of Pt(111) and are expected to have high catalytic activity toward peroxide quenching and crossover gas consumption, thereby mitigating chemical membrane degradation. On the other hand, small, dispersed cubic particles are found to have no effect or the opposite, negative effect on membrane stability.

  8. Phosphorylation and activation of the plasma membrane Na+/H+ exchanger (NHE1) during osmotic cell shrinkage.

    PubMed

    Rigor, Robert R; Damoc, Catalina; Phinney, Brett S; Cala, Peter M

    2011-01-01

    The Na(+)/H(+)Exchanger isoform 1 (NHE1) is a highly versatile, broadly distributed and precisely controlled transport protein that mediates volume and pH regulation in most cell types. NHE1 phosphorylation contributes to Na(+)/H(+) exchange activity in response to phorbol esters, growth factors or protein phosphatase inhibitors, but has not been observed during activation by osmotic cell shrinkage (OCS). We examined the role of NHE1 phosphorylation during activation by OCS, using an ideal model system, the Amphiuma tridactylum red blood cell (atRBC). Na(+)/H(+) exchange in atRBCs is mediated by an NHE1 homolog (atNHE1) that is 79% identical to human NHE1 at the amino acid level. NHE1 activity in atRBCs is exceptionally robust in that transport activity can increase more than 2 orders of magnitude from rest to full activation. Michaelis-Menten transport kinetics indicates that either OCS or treatment with the phosphatase inhibitor calyculin-A (CLA) increase Na(+) transport capacity without affecting transport affinity (K(m)=44 mM) in atRBCs. CLA and OCS act non-additively to activate atNHE1, indicating convergent, phosphorylation-dependent signaling in atNHE1 activation. In situ(32)P labeling and immunoprecipitation demonstrates that the net phosphorylation of atNHE1 is increased 4-fold during OCS coinciding with a more than 2-order increase in Na(+) transport activity. This is the first reported evidence of increased NHE1 phosphorylation during OCS in any vertebrate cell type. Finally, liquid chromatography and mass spectrometry (LC-MS/MS) analysis of atNHE1 immunoprecipitated from atRBC membranes reveals 9 phosphorylated serine/threonine residues, suggesting that activation of atNHE1 involves multiple phosphorylation and/or dephosphorylation events. PMID:22216214

  9. Phosphorylation and Activation of the Plasma Membrane Na+/H+ Exchanger (NHE1) during Osmotic Cell Shrinkage

    PubMed Central

    Rigor, Robert R.; Damoc, Catalina; Phinney, Brett S.; Cala, Peter M.

    2011-01-01

    The Na+/H+ Exchanger isoform 1 (NHE1) is a highly versatile, broadly distributed and precisely controlled transport protein that mediates volume and pH regulation in most cell types. NHE1 phosphorylation contributes to Na+/H+ exchange activity in response to phorbol esters, growth factors or protein phosphatase inhibitors, but has not been observed during activation by osmotic cell shrinkage (OCS). We examined the role of NHE1 phosphorylation during activation by OCS, using an ideal model system, the Amphiuma tridactylum red blood cell (atRBC). Na+/H+ exchange in atRBCs is mediated by an NHE1 homolog (atNHE1) that is 79% identical to human NHE1 at the amino acid level. NHE1 activity in atRBCs is exceptionally robust in that transport activity can increase more than 2 orders of magnitude from rest to full activation. Michaelis-Menten transport kinetics indicates that either OCS or treatment with the phosphatase inhibitor calyculin-A (CLA) increase Na+ transport capacity without affecting transport affinity (Km?=?44 mM) in atRBCs. CLA and OCS act non-additively to activate atNHE1, indicating convergent, phosphorylation-dependent signaling in atNHE1 activation. In situ 32P labeling and immunoprecipitation demonstrates that the net phosphorylation of atNHE1 is increased 4-fold during OCS coinciding with a more than 2-order increase in Na+ transport activity. This is the first reported evidence of increased NHE1 phosphorylation during OCS in any vertebrate cell type. Finally, liquid chromatography and mass spectrometry (LC-MS/MS) analysis of atNHE1 immunoprecipitated from atRBC membranes reveals 9 phosphorylated serine/threonine residues, suggesting that activation of atNHE1 involves multiple phosphorylation and/or dephosphorylation events. PMID:22216214

  10. Toxic effects of Litsea elliptica Blume essential oil on red blood cells of Sprague-Dawley rats*

    PubMed Central

    Taib, Izatus Shima; Budin, Siti Balkis; Siti Nor Ain, Seri Maseran; Mohamed, Jamaludin; Louis, Santhana Raj; Das, Srijit; Sallehudin, Sulaiman; Rajab, Nor Fadilah; Hidayatulfathi, Othman

    2009-01-01

    Litsea elliptica Blume leaves have been traditionally used as medicinal herbs because of its antimutagenicity, chemopreventative and insecticidal properties. In this study, the toxic effects of L. elliptica essential oil against Sprague-Dawley rats red blood cells (RBCs) were evaluated. L. elliptica essential oil was given by oral gavage 5 times per week for 3 treated groups in the doses of 125, 250, and 500 mg/(kg body weight), respectively, and the control group received distilled water. Full blood count, RBC osmotic fragility, RBC morphological changes, and RBC membrane lipid were analyzed 28 d after the treatment. Although L. elliptica essential oil administration had significantly different effects on hemoglobin (Hb), mean cell hemoglobin concentration (MCHC), mean cell volume (MCV), and mean cell hemoglobin (MCH) in the experimental groups as compared to the control group (P<0.05), the values were still within the normal range. L. elliptica induced morphological changes of RBC into the form of echinocyte. The percentage of echinocyte increased significantly among the treated groups in a dose-response manner (P<0.001). The concentrations of RBC membrane phospholipids and cholesterol of all treated groups were significantly lower than those of control group (P<0.001). However, the RBC membrane osmotic fragility and total proteins of RBC membrane findings did not differ significantly between control and treated groups (P>0.05). It is concluded that structural changes in the RBC membrane due to L. elliptica essential oil administration did not cause severe membrane damage. PMID:19882755

  11. Characterization of a graphene oxide membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Bayer, T.; Bishop, S. R.; Nishihara, M.; Sasaki, K.; Lyth, S. M.

    2014-12-01

    The electrical, mechanical, and compositional characterization of a graphene oxide membrane is presented, and its application as an electrolyte material in a polymer electrolyte membrane fuel cell is explored. Self-supporting graphene oxide membranes were prepared by a simple vacuum filtration process and, for the first time, characterized as the electrolyte in a fuel cell operating in an elevated temperature range (30-80 C), with a maximum power density of 34 mW cm-2, approaching that of a Nafion electrolyte based cell prepared and tested under similar conditions. Evidence for partial membrane reduction was found at higher temperatures and is believed to originate from more easily released, higher energy oxide groups, such as epoxides. We also discuss the morphology, the mechanical properties, chemical composition, and electrical conductivity of the graphene oxide membranes, with comparisons made to conventional Nafion membranes.

  12. Studying the Nucleated Mammalian Cell Membrane by Single Molecule Approaches

    PubMed Central

    Wang, Feng; Wu, Jiazhen; Gao, Jing; Liu, Shuheng; Jiang, Junguang; Jiang, Shibo; Wang, Hongda

    2014-01-01

    The cell membrane plays a key role in compartmentalization, nutrient transportation and signal transduction, while the pattern of protein distribution at both cytoplasmic and ectoplasmic sides of the cell membrane remains elusive. Using a combination of single-molecule techniques, including atomic force microscopy (AFM), single molecule force spectroscopy (SMFS) and stochastic optical reconstruction microscopy (STORM), to study the structure of nucleated cell membranes, we found that (1) proteins at the ectoplasmic side of the cell membrane form a dense protein layer (4 nm) on top of a lipid bilayer; (2) proteins aggregate to form islands evenly dispersed at the cytoplasmic side of the cell membrane with a height of about 1012 nm; (3) cholesterol-enriched domains exist within the cell membrane; (4) carbohydrates stay in microdomains at the ectoplasmic side; and (5) exposed amino groups are asymmetrically distributed on both sides. Based on these observations, we proposed a Protein Layer-Lipid-Protein Island (PLLPI) model, to provide a better understanding of cell membrane structure, membrane trafficking and viral fusion mechanisms. PMID:24806512

  13. Rotating Biological Contractors (RBC's). Instructor's Guide. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Zickefoose, Charles S.

    This two-lesson unit on rotating biological contactors (RBC's) is designed to be used with students who have had some experience in wastewater treatment and a basic understanding of biological treatment. The first lesson provides information on the concepts and components of RBC treatment systems. The second lesson focuses on design operation and

  14. Rotating Biological Contactors (RBC's). Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Zickefoose, Charles S.

    This student manual provides the textual material for a unit on rotating biological contactors (RBC's). Topic areas considered include: (1) flow patterns of water through RBC installations; (2) basic concepts (shaft and stage); (3) characteristics of biomass; (4) mechanical features (bearings, mechanical drive systems, and air drive systems); (5)…

  15. Radiation-Grafted Polymer Electrolyte Membranes for Water Electrolysis Cells: Evaluation of Key Membrane Properties.

    PubMed

    Albert, Albert; Barnett, Alejandro O; Thomassen, Magnus S; Schmidt, Thomas J; Gubler, Lorenz

    2015-10-14

    Radiation-grafted membranes can be considered an alternative to perfluorosulfonic acid (PFSA) membranes, such as Nafion, in a solid polymer electrolyte electrolyzer. Styrene, acrylonitrile, and 1,3-diisopropenylbenzene monomers are cografted into preirradiated 50 ?m ethylene tetrafluoroethylene (ETFE) base film, followed by sulfonation to introduce proton exchange sites to the obtained grafted films. The incorporation of grafts throughout the thickness is demonstrated by scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analysis of the membrane cross-sections. The membranes are analyzed in terms of grafting kinetics, ion-exchange capacity (IEC), and water uptake. The key properties of radiation-grafted membranes and Nafion, such as gas crossover, area resistance, and mechanical properties, are evaluated and compared. The plot of hydrogen crossover versus area resistance of the membranes results in a property map that indicates the target areas for membrane development for electrolyzer applications. Tensile tests are performed to assess the mechanical properties of the membranes. Finally, these three properties are combined to establish a figure of merit, which indicates that radiation-grafted membranes obtained in the present study are promising candidates with properties superior to those of Nafion membranes. A water electrolysis cell test is performed as proof of principle, including a comparison to a commercial membrane electrode assembly (MEA). PMID:26393461

  16. In-situ membrane hydration measurement of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Lai, Yeh-Hung; Fly, Gerald W.; Clapham, Shawn

    2015-01-01

    Achieving proper membrane hydration control is one of the most critical aspects of PEM fuel cell development. This article describes the development and application of a novel 50 cm2 fuel cell device to study the in-situ membrane hydration by measuring the through-thickness membrane swelling via an array of linear variable differential transducers. Using this setup either as an air/air (dummy) cell or as a hydrogen/air (operating) cell, we performed a series of hydration and dehydration experiments by cycling the RH of the inlet gas streams at 80 C. From the linear relationship between the under-the-land swelling and the over-the-channel water content, the mechanical constraint within the fuel cell assembly can suppress the membrane water uptake by 11%-18%. The results from the air/air humidity cycling test show that the membrane can equilibrate within 120 s for all RH conditions and that membrane can reach full hydration at a RH higher than 140% in spite of the use of a liquid water impermeable Carbel MP30Z microporous layer. This result confirms that the U.S. DOE's humidity cycling mechanical durability protocol induces sufficient humidity swings to maximize hygrothermal mechanical stresses. This study shows that the novel experimental technique can provide a robust and accurate means to study the in-situ hydration of thin membranes subject to a wide range of fuel cell conditions.

  17. Membranous basal cell adenoma arising in the eyelid

    PubMed Central

    Huang, Yong; Yang, Min; Ding, Jianhui

    2014-01-01

    Basal cell adenoma (BCA) is a specific entity that lacks the myxochondroid stromal component of pleomorphic adenoma. Membranous basal cell adenoma is a rare variant of BCA, which is characteristic by abundant eosinophilicextracellular hyaline material deposited either inside or at the periphery of the epithelial islands. Herin we describe the first case of membranous BCA arising in the upper eyelid in a 38-year-old woman. A well-demarcated nodule arising in the eyelid was composed of isomorphic basaloid cells organized with a prominent basal cell layer and distinct basement membrane-like material. Immunohistochemically, S100 protein and p63 highlighted the basal aspect of the peripheral epithelial cells, while CK7 expressed on the luminal cells. A diagnosis of membranous basal cell adenoma of the eyelid was made. At follow-up for 2 years and 3 months later, there was no evidence of recurrence. Further pathological characteristics of this disease are discussed. PMID:25120843

  18. Predicting dynamics and rheology of blood flow: A comparative study of multiscale and low-dimensional models of red blood cells.

    PubMed

    Pan, Wenxiao; Fedosov, Dmitry A; Caswell, Bruce; Karniadakis, George Em

    2011-09-01

    We compare the predictive capability of two mathematical models for red blood cells (RBCs) focusing on blood flow in capillaries and arterioles. Both RBC models as well as their corresponding blood flows are based on the dissipative particle dynamics (DPD) method, a coarse-grained molecular dynamics approach. The first model employs a multiscale description of the RBC (MS-RBC), with its membrane represented by hundreds or even thousands of DPD-particles connected by springs into a triangular network in combination with out-of-plane elastic bending resistance. Extra dissipation within the network accounts for membrane viscosity, while the characteristic biconcave RBC shape is achieved by imposition of constraints for constant membrane area and constant cell volume. The second model is based on a low-dimensional description (LD-RBC) constructed as a closed torus-like ring of only 10 large DPD colloidal particles. They are connected into a ring by worm-like chain (WLC) springs combined with bending resistance. The LD-RBC model can be fitted to represent the entire range of nonlinear elastic deformations as measured by optical-tweezers for healthy and for infected RBCs in malaria. MS-RBCs suspensions model the dynamics and rheology of blood flow accurately for any vessel size but this approach is computationally expensive for vessel diameters above 100?m. Surprisingly, the much more economical suspensions of LD-RBCs also capture the blood flow dynamics and rheology accurately except for small-size vessels comparable to RBC diameter. In particular, the LD-RBC suspensions are shown to properly capture the experimental data for the apparent viscosity of blood and its cell-free layer (CFL) in tube flow. Taken together, these findings suggest a hierarchical approach in modeling blood flow in the arterial tree, whereby the MS-RBC model should be employed for capillaries and arterioles below 100?m, the LD-RBC model for arterioles, and the continuum description for arteries. PMID:21640731

  19. Predicting dynamics and rheology of blood flow: A comparative study of multiscale and low-dimensional models of red blood cells

    SciTech Connect

    Pan, Wenxiao; Fedosov, Dmitry A.; Caswell, Bruce; Karniadakis, George E.

    2011-05-27

    In this work we compare the predictive capability of two mathematical models for red blood cells (RBCs) focusing on blood flow in capillaries and arterioles. Both RBC models as well as their corresponding blood flows are based on the dissipative particle dynamics (DPD) method, a coarse-grained molecular dynamics approach. The first model employs a multiscale description of the RBC (MS-RBC), with its membrane represented by hundreds or even thousands of DPD-particles connected by springs into a triangular network in combination with out-of-plane elastic bending resistance. Extra dissipation within the network accounts for membrane viscosity, while the characteristic biconcave RBC shape is achieved by imposition of constraints for constant membrane area and constant cell volume. The second model is based on a low-dimensional description (LD-RBC) constructed as a closed torus-like ring of only 10 large DPD colloidal particles. They are connected into a ring by worm-like chain (WLC) springs combined with bending resistance. The LD-RBC model can be fitted to represent the entire range of nonlinear elastic deformations as measured by optical-tweezers for healthy and for infected RBCs in malaria. MS-RBCs suspensions model the dynamics and rheology of blood flow accurately for any size vessel but this approach is computationally expensive above 100 microns. Surprisingly, the much more economical suspensions of LD-RBCs also capture the blood flow dynamics and rheology accurately except for vessels with sizes comparable to RBC diameter. In particular, the LD-RBC suspensions are shown to properly capture the experimental data for the apparent viscosity of blood and its cell-free layer (CFL) in tube flow. Taken together, these findings suggest a hierarchical approach in modeling blood flow in the arterial tree, whereby the MS-RBC model should be employed for capillaries and arterioles below 100 microns, the LD-RBC model for arterioles, and the continuum description for arteries.

  20. Cell membrane potentials induced during exposure to EMP fields

    SciTech Connect

    Gailey, P.C.; Easterly, C.E.

    1994-09-01

    Internal current densities and electric fields induced in the human body during exposure to EMP fields are reviewed and used to predict resulting cell membrane potentials. Using several different approaches, membrane potentials of about 100 mV are predicted. These values are comparable to the static membrane potentials maintained by cells as a part of normal physiological function, but the EMP-induced potentials persist for only about 10 ns. Possible biological implications of EMP-induced membrane potentials including conformational changes and electroporation are discussed.

  1. Coherence properties of red blood cell membrane motions

    NASA Astrophysics Data System (ADS)

    Popescu, Gabriel; Park, Yongkeun; Dasari, Ramachandra R.; Badizadegan, Kamran; Feld, Michael S.

    2007-09-01

    We use a highly sensitive, noncontact, optical interferometric technique to quantify the red blood cell membrane fluctuations at the nanometer and millisecond scales. The results reveal significant properties of both temporal and spatial coherence associated with the membrane dynamics. We show that these correlations can be accounted for by the viscoelastic properties of the cell membrane. From this measurement, we extract the loss and storage moduli associated with the membrane and find a crossover frequency at which the buffer viscosity seems to become dominant.

  2. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells.

    PubMed

    Stingaciu, Laura-Roxana; O'Neill, Hugh; Liberton, Michelle; Urban, Volker S; Pakrasi, Himadri B; Ohl, Michael

    2016-01-01

    Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been widely investigated. However, there is limited knowledge about the internal dynamics of these membranes in terms of their flexibility and motion during the photosynthetic process. We present a direct observation of thylakoid membrane undulatory motion in vivo and show a connection between membrane mobility and photosynthetic activity. High-resolution inelastic neutron scattering experiments on the cyanobacterium Synechocystis sp. PCC 6803 assessed the flexibility of cyanobacterial thylakoid membrane sheets and the dependence of the membranes on illumination conditions. We observed softer thylakoid membranes in the dark that have three-to four fold excess mobility compared to membranes under high light conditions. Our analysis indicates that electron transfer between photosynthetic reaction centers and the associated electrochemical proton gradient across the thylakoid membrane result in a significant driving force for excess membrane dynamics. These observations provide a deeper understanding of the relationship between photosynthesis and cellular architecture. PMID:26790980

  3. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells

    PubMed Central

    Stingaciu, Laura-Roxana; O’Neill, Hugh; Liberton, Michelle; Urban, Volker S.; Pakrasi, Himadri B.; Ohl, Michael

    2016-01-01

    Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been widely investigated. However, there is limited knowledge about the internal dynamics of these membranes in terms of their flexibility and motion during the photosynthetic process. We present a direct observation of thylakoid membrane undulatory motion in vivo and show a connection between membrane mobility and photosynthetic activity. High-resolution inelastic neutron scattering experiments on the cyanobacterium Synechocystis sp. PCC 6803 assessed the flexibility of cyanobacterial thylakoid membrane sheets and the dependence of the membranes on illumination conditions. We observed softer thylakoid membranes in the dark that have three-to four fold excess mobility compared to membranes under high light conditions. Our analysis indicates that electron transfer between photosynthetic reaction centers and the associated electrochemical proton gradient across the thylakoid membrane result in a significant driving force for excess membrane dynamics. These observations provide a deeper understanding of the relationship between photosynthesis and cellular architecture. PMID:26790980

  4. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells

    NASA Astrophysics Data System (ADS)

    Stingaciu, Laura-Roxana; O’Neill, Hugh; Liberton, Michelle; Urban, Volker S.; Pakrasi, Himadri B.; Ohl, Michael

    2016-01-01

    Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been widely investigated. However, there is limited knowledge about the internal dynamics of these membranes in terms of their flexibility and motion during the photosynthetic process. We present a direct observation of thylakoid membrane undulatory motion in vivo and show a connection between membrane mobility and photosynthetic activity. High-resolution inelastic neutron scattering experiments on the cyanobacterium Synechocystis sp. PCC 6803 assessed the flexibility of cyanobacterial thylakoid membrane sheets and the dependence of the membranes on illumination conditions. We observed softer thylakoid membranes in the dark that have three-to four fold excess mobility compared to membranes under high light conditions. Our analysis indicates that electron transfer between photosynthetic reaction centers and the associated electrochemical proton gradient across the thylakoid membrane result in a significant driving force for excess membrane dynamics. These observations provide a deeper understanding of the relationship between photosynthesis and cellular architecture.

  5. Proteomics and Phosphoproteomics Analysis of Human Lens Fiber Cell Membranes

    PubMed Central

    Wang, Zhen; Han, Jun; David, Larry L.; Schey, Kevin L.

    2013-01-01

    Purpose. The human lens fiber cell insoluble membrane fraction contains important membrane proteins, cytoskeletal proteins, and cytosolic proteins that are strongly associated with the membrane. The purpose of this study was to characterize the lens fiber cell membrane proteome and phosphoproteome from human lenses. Methods. HPLC-mass spectrometrybased multidimensional protein identification technology (MudPIT), without or with phosphopeptide enrichment, was applied to study the proteome and phosphoproteome of lens fiber cell membranes, respectively. Results. In total, 951 proteins were identified, including 379 integral membrane and membrane-associated proteins. Enriched gene categories and pathways based on the proteomic analysis include carbohydrate metabolism (glycolysis/gluconeogenesis, pentose phosphate pathway, pyruvate metabolism), proteasome, cell-cell signaling and communication (GTP binding, gap junction, focal adhesion), glutathione metabolism, and actin regulation. The combination of TiO2 phosphopeptide enrichment and MudPIT analysis revealed 855 phosphorylation sites on 271 proteins, including 455 phosphorylation sites that have not been previously identified. PKA, PKC, CKII, p38MAPK, and RSK are predicted as the major kinases for phosphorylation on the sites identified in the human lens membrane fraction. Conclusions. The results presented herein significantly expand the characterized proteome and phosphoproteome of the human lens fiber cell and provide a valuable reference for future research in studies of lens development and disease. PMID:23349431

  6. Influence of Pre-Storage Irradiation on the Oxidative Stress Markers, Membrane Integrity, Size and Shape of the Cold Stored Red Blood Cells

    PubMed Central

    Antosik, Adam; Czubak, Kamila; Gajek, Arkadiusz; Marczak, Agnieszka; Glowacki, Rafal; Borowczyk, Kamila; Zbikowska, Halina Malgorzata

    2015-01-01

    Background To investigate the extent of oxidative damage and changes in morphology of manually isolated red blood cells (RBCs) from whole blood, cold stored (up to 20 days) in polystyrene tubes and subjected to pre-storage irradiation (50 Gy) and to compare the properties of SAGM-preserved RBCs stored under experimental conditions (polystyrene tubes) with RBCs from standard blood bag storage. Methods The percentage of hemolysis as well as the extracellular activity of LDH, thiobarbituric acid-reactive substances, reduced glutathione (GSH), and total antioxidant capacity (TAC) were measured. Changes in the topology of RBC membrane, shape, and size were evaluated by flow cytometry and judged against microscopy images. Results Irradiation caused significant LDH release as well as increased hemolysis and lipid peroxidation, GSH depletion, and reduction of TAC. Prolonged storage of irradiated RBCs resulted in phosphatidylserine exposure on the cell surface. By day 20, approximately 60% of RBCs displayed non-discoid shape. We did not notice significant differences in percentage of altered cells and cell volume between RBCs exposed to irradiation and those not exposed. Conclusion Irradiation of RBC transfusion units with a dose of 50 Gy should be avoided. For research purposes such as studying the role of antioxidants, storage of small volumes of RBCs derived from the same donor would be more useful, cheaper, and blood-saving. PMID:26195927

  7. Cell Membranes Under Hydrostatic Pressure Subjected to Micro-Injection

    NASA Astrophysics Data System (ADS)

    Vassilev, Vassil M.; Kostadinov, Kostadin G.; Mladenov, Ivalo M.; Shulev, Assen A.; Stoilov, Georgi I.; Djondjorov, Peter A.

    2011-04-01

    The work is concerned with the determination of the mechanical behaviour of cell membranes under uniform hydrostatic pressure subject to micro-injections. For that purpose, assuming that the shape of the deformed cell membrane is axisymmetric a variational statement of the problem is developed on the ground of the so-called spontaneous curvature model. In this setting, the cell membrane is regarded as an axisymmetric surface in the three-dimensional Euclidean space providing a stationary value of the shape energy functional under the constraint of fixed total area and fixed enclosed volume. The corresponding Euler-Lagrange equations and natural boundary conditions are derived, analyzed and used to express the forces and moments in the membrane. Several examples of such surfaces representing possible shapes of cell membranes under pressure subjected to micro injection are determined numerically.

  8. Development and characterization of proton conductive membranes and membrane electrode assemblies for fuel cells

    NASA Astrophysics Data System (ADS)

    Jiang, Ruichun

    Polymer electrolyte membrane fuel cells (PEMFCs), including hydrogen fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs), are considered as attractive electrical power sources. However, there are some technical obstacles that impede the commercialization of PEMFCs. For instance, in H 2-PEMFCs, carbon monoxide (CO) poisoning of the anode catalyst causes serious performance loss; in DMFCs, methanol crossover through the membrane reduces the overall fuel cell efficiency. This work focused on: (1) developing high performance membrane electrode assemblies (MEAs) and investigating their behavior at higher temperature H2-PEMFC with H2+CO as the fuel; (2) improving DMFCs efficiency by preparing low methanol crossover/good proton conductivity membranes based on NafionRTM matrix; (3) synthesizing and modifying low cost sulfonated hydrocarbon (SPEEK) membranes for both H2-PEMFCs and DMFCs applications. High performance membrane electrode assemblies (MEAs) with composite NafionRTM-TeflonRTM-Zr(HPO 4)2 membranes were prepared, optimized and characterized at higher temperature (> 100C)/lower relative humidity (< 100% RH) condition, using H2 or H2+CO as the fuel. Effects of CO concentration, temperature, relative humidity to the CO poisoning on H 2-PEMFC were studied by applying various electrochemical techniques. The electrochemical oxidation mechanism of H2/CO in higher temperature PEMFC was investigated and simulated. Two type of membranes based on NafionRTM matrix were prepared: silica/NafionRTM membrane and palladium impregnated NafionRTM (Pd-NafionRTM) membrane. The composite silica/NafionRTM membrane was developed by in-situ sol-gel reaction followed by solution casting, while the Pd-NafionRTM was fabricated via a supercritical fluid CO2 (scCO 2) route. Reduced methanol crossover and enhanced efficiency was observed by applying each of the two membranes to DMFCs. In addition, the research demonstrated that scCO2 is a promising technique for modifying membranes or depositing nano-particle electrocatalysts onto electrolyte. Sulfonated poly(ether ether ketone) (SPEEK) was synthesized by a sulfonation reaction using poly(ether ether ketone) (PEEK). Multilayer structure SPEEK membranes with methanol barriers were fabricated and showed enhanced membrane stability in DMFCs. Improved MEA performance was obtained due to lower methanol crossover and the presence of a good membrane/electrode interface for facilitating proton transfer.

  9. How the antimicrobial peptides destroy bacteria cell membrane: Translocations vs. membrane buckling

    NASA Astrophysics Data System (ADS)

    Golubovic, Leonardo; Gao, Lianghui; Chen, Licui; Fang, Weihai

    2012-02-01

    In this study, coarse grained Dissipative Particle Dynamics simulation with implementation of electrostatic interactions is developed in constant pressure and surface tension ensemble to elucidate how the antimicrobial peptide molecules affect bilayer cell membrane structure and kill bacteria. We find that peptides with different chemical-physical properties exhibit different membrane obstructing mechanisms. Peptide molecules can destroy vital functions of the affected bacteria by translocating across their membranes via worm-holes, or by associating with membrane lipids to form hydrophilic cores trapped inside the hydrophobic domain of the membranes. In the latter scenario, the affected membranes are strongly corrugated (buckled) in accord with very recent experimental observations [G. E. Fantner et al., Nat. Nanotech., 5 (2010), pp. 280-285].

  10. Conjugated linoleic acid modulation of cell membrane in leukemia cells.

    PubMed

    Agatha, Gerhard; Voigt, Astrid; Kauf, Eberhard; Zintl, Felix

    2004-06-01

    This study compared the cellular uptake of pure conjugated linoleic acid isomers (CLA(9c,11t) and CLA(9c,11c)) to linoleic acid (LA) and their effects on polyunsaturated fatty acid (PUFA) synthesis, its metabolism into conjugated long chain fatty acids (FAs) by desaturation and chain-elongation as well as cell proliferation and the associated anticarcinogenic effects on various human leukemia cell lines (K562, REH, CCRF-CEM and U937 cells). Furthermore, selective effects of this individual isomers of CLA on desaturation steps involved in the biosynthesis of PUFAs associated with cell growth were investigated. CLA isomers supplemented in the culture medium was readily incorporated and esterified into phospholipids (PLs) in the four cell lines in a concentration- and time-dependent manner. The incorporation of the specific CLA isomers in PLs was similar to LA. All four incubating leukemia cells (40 microM CLA for 48 h) showed very high cellular CLA content in PLs (range: 32-63 g FA/100 g total phospholipid fatty acid) affected by the nature of CLA and the cell type. Supplementation with CLA or LA altered also cell membrane composition by n-6 PUFA synthesis. Accordingly, CLA metabolism interferes with LA metabolism. We were able to show that CLA isomers are converted by the leukemia cells of the same metabolic pathway into conjugated diene fatty acids (CDFAs) as LA into non-conjugated PUFAs. In this view, the gas chromatography-flame ionization detector detection of major CDFAs (CD-18:3, CD-20:2 and CD-20:3) in cell membrane of CLA-treated cultures resulted from successive Delta6-desaturation, elongation and Delta5-desaturation of CLA isomers. However, in comparison to LA, relatively lower amounts of elongation and/or desaturation metabolites were detected for CLA(9c,11t), and only minor amounts or trace CDFAs were observed for CLA(9c,11c). Furthermore, CLA(9c,11t) revealed only very low levels of CD-20:4 FA and no CLA(9c,11c)-conversion could be detected. The metabolization of CLA indicated that CLA(9c,11c)cells or for the Delta5-desaturation/elongation in the K562 cells. CLA(9c,11t) suppresses Delta6-desaturation in CCRF-CEM, REH, and U937 cells (43.5, 54.6 and 58.8% Delta6-inhibition, respectively) and as well Delta9-desaturation in all four cell lines (Delta9-inhibition; 47.1, 33.9, 29.8 and 25.9% for CCRF-CEM, REH, K562 and U937 cells, respectively). However, CLA(9c,11c) does not inhibit or only slightly affected these desaturations. CLA(9c,11t) isomer was found as an Delta6-desaturase inhibitor with a dose-dependent relationship between inhibition of Delta6-desaturase activity and decreases in cell growth. The growth inhibitory effects of CLA (with 30-120 microM) on leukemia cells were dependent upon the type and concentration of CLA isomers present. CLA-supplemented cells with low concentrations (<60 microM) were not sufficient to impair cell proliferation. Nevertheless, higher amounts of CLAs (>60 microM) had the CLA type dependent antiproliferative effects. Thus, the 9cis,11trans- and the 9cis,11cis-CLA isomers regulate cell growth and survival in different leukemia cell types through their existence alone and/or by their inhibitory effects of desaturase activity. PMID:15145524

  11. Prevalence and Specificity of RBC Alloantibodies in Indian Patients Attending a Tertiary Care Hospital

    PubMed Central

    Zaman, Shamsuz; Chaurasia, Rahul; Chatterjee, Kabita; Thapliyal, Rakesh Mohan

    2014-01-01

    Background. Red blood cell (RBC) alloimmunization results from genetic disparity of RBC antigens between donor and recipients. Data about alloimmunization rate in general patient population is scarce especially from resource limited countries. We undertook this study to determine prevalence and specificity of RBC alloantibodies in patients admitted in various clinical specialties at a tertiary care hospital in North India. Methods. Antibody screening was carried out in 11,235 patients on automated QWALYS 3 platform (Diagast, Loos, France). Antibody identification was carried out with an 11-cell identification panel (ID-Diapanel, Diamed GmbH, Switzerland). Results. The overall incidence of RBC alloimmunization in transfused patients was 1.4% (157/11235), with anti-E being the most common specificity (36.3%), followed by anti-D (16%), anti-c (6.4%), anti-c + E (6.4%), anti-C + D (5.1%), and anti-K (4.5%). The highest incidence of alloimmunization was observed in hematology/oncology patients (1.9%), whereas in other specialties the range was 0.71%. Conclusion. As alloimmunization complicates the transfusion outcomes, authors recommend pretransfusion antibody screening and issue of Rh and Kell matched blood to patients who warrant high transfusion requirements in future. PMID:25386192

  12. Measuring electrical and mechanical properties of red blood cells with a double optical tweezers

    NASA Astrophysics Data System (ADS)

    Fontes, Adriana; Fernandes, Heloise P.; Barjas-Castro, Maria L.; de Thomaz, André A.; Pozzo, Liliana d. Y.; Barbosa, Luiz C.; Cesar, Carlos L.

    2006-08-01

    The fluid lipid bilayer viscoelastic membrane of red blood cells (RBC) contains antigen glycolproteins and proteins which can interact with antibodies to cause cell agglutination. This is the basis of most of the immunohematologic tests in blood banks and the identification of the antibodies against the erythrocyte antigens is of fundamental importance for transfusional routines. The negative charges of the RBCs creates a repulsive electric (zeta) potential between the cells and prevents their aggregation in the blood stream. The first counterions cloud strongly binded moving together with the RBC is called the compact layer. This report proposes the use of a double optical tweezers for a new procedure for measuring: (1) the apparent membrane viscosity, (2) the cell adhesion, (3) the zeta potential and (4) the compact layer's size of the charges formed around the cell in the electrolytic solution. To measure the membrane viscosity we trapped silica beads strongly attached to agglutinated RBCs and measured the force to slide one RBC over the other as a function of the relative velocity. The RBC adhesion was measured by slowly displacing two RBCs apart until the disagglutination happens. The compact layer's size was measured using the force on the silica bead attached to a single RBC in response to an applied voltage and the zeta potential was obtained by measuring the terminal velocity after releasing the RBC from the optical trap at the last applied voltage. We believe that the methodology here proposed can improve the methods of diagnosis in blood banks.

  13. Studies in red blood cell preservation. 6. Red cell membrane remodeling during rejuvenation.

    PubMed

    Dumaswala, U J; Petrosky, T L; Greenwalt, T J

    1992-01-01

    The purpose of this study was to examine whether vesiculation of RBC plays a significant role in their rejuvenation. Outdated units of Adsol blood, were divided into two aliquots and incubated with equal volumes of a solution of 100 mM pyruvate and inosine, 103 mM phosphate and 5 mM adenine (PIPA) or 0.9% saline. Following 1 h incubation, vesicles were isolated from the supernatants and quantitated for hemoglobin content. Restoration of RBC ATP, 2,3-DPG, morphology, and osmotic fragility after rejuvenation was satisfactory. The postrejuvenation mean corpuscular volumes (88.2 +/- 6.9 fl) were significantly lower (p less than 0.001) than the prerejuvenation (94.6 +/- 6.8 fl) and control (104.0 +/- 7.3 fl) volumes. The hemoglobin shed in vesicles during rejuvenation was significantly greater than in the saline controls (0.44 +/- 0.31 vs. 0.18 +/- 0.10 mg/dl RBCs; p = 0.026). These data suggest that the decreased MCV following rejuvenation is in part due to membrane loss in exocytic vesiculation. PMID:1413658

  14. Cell membrane-camouflaged nanoparticles for drug delivery.

    PubMed

    Luk, Brian T; Zhang, Liangfang

    2015-12-28

    Nanoparticles can preferentially accumulate at sites of action and hold great promise to improve the therapeutic index of many drugs. While conventional methods of nanocarrier-mediated drug delivery have focused on primarily synthetic approaches, engineering strategies that combine synthetic nanoparticles with natural biomaterials have recently gained much attention. In particular, cell membrane-camouflaged nanoparticles are a new class of biomimetic nanoparticles that combine the unique functionalities of cellular membranes and engineering versatility of synthetic nanomaterials for effective delivery of therapeutic agents. Herein, we report on the recent progress on cell membrane-coated nanoparticles for drug delivery. In particular, we highlight three areas: (i) prolonging systemic circulation via cell membrane coating, (ii) cell-specific targeting via cell membrane coating, and (iii) applications of cell membrane coating for drug delivery. The cell membrane-camouflaged nanoparticle platform has emerged as a novel delivery strategy with the potential to improve the therapeutic efficacy for the treatment of a variety of diseases. PMID:26210440

  15. The Flocculating Cationic Polypetide from Moringa oleifera Seeds Damages Bacterial Cell Membranes by Causing Membrane Fusion.

    PubMed

    Shebek, Kevin; Schantz, Allen B; Sines, Ian; Lauser, Kathleen; Velegol, Stephanie; Kumar, Manish

    2015-04-21

    A cationic protein isolated from the seeds of the Moringa oleifera tree has been extensively studied for use in water treatment in developing countries and has been proposed for use in antimicrobial and therapeutic applications. However, the molecular basis for the antimicrobial action of this peptide, Moringa oleifera cationic protein (MOCP), has not been previously elucidated. We demonstrate here that a dominant mechanism of MOCP antimicrobial activity is membrane fusion. We used a combination of cryogenic electron microscopy (cryo-EM) and fluorescence assays to observe and study the kinetics of fusion of membranes in liposomes representing model microbial cells. We also conducted cryo-EM experiments on E. coli cells where MOCP was seen to fuse the inner and outer membranes. Coarse-grained molecular dynamics simulations of membrane vesicles with MOCP molecules were used to elucidate steps in peptide adsorption, stalk formation, and fusion between membranes. PMID:25845029

  16. Improved Membrane Materials for PEM Fuel Cell Application

    SciTech Connect

    Kenneth A. Mauritz; Robert B. Moore

    2008-06-30

    The overall goal of this project is to collect and integrate critical structure/property information in order to develop methods that lead to significant improvements in the durability and performance of polymer electrolyte membrane fuel cell (PEMFC) materials. This project is focused on the fundamental improvement of PEMFC membrane materials with respect to chemical, mechanical and morphological durability as well as the development of new inorganically-modified membranes.

  17. Entry of enveloped viruses into host cells: membrane fusion.

    PubMed

    Ms, Vicente; Melero, Jos A

    2013-01-01

    Viruses are intracellular parasites that hijack the cellular machinery for their own replication. Therefore, an obligatory step in the virus life cycle is the delivery of the viral genome inside the cell. Enveloped viruses (i.e., viruses with a lipid envelope) use a two-step procedure to release their genetic material into the cell: (i) they first bind to specific surface receptors of the target cell membrane and then, (ii) they fuse the viral and cell membranes. This last step may occur at the cell surface or after internalization of the virus particle by endocytosis or by some other route (e.g., macropinocytosis). Remarkably, the virus-cell membrane fusion process goes essentially along the same intermediate steps as other membrane fusions that occur for instance in vesicular fusion at the nerve synapsis or cell-cell fusion in yeast mating. Specialized viral proteins, fusogens, promote virus-cell membrane fusion. The viral fusogens experience drastic structural rearrangements during fusion, liberating the energy required to overcome the repulsive forces that prevent spontaneous fusion of the two membranes. This chapter describes the different types of viral fusogens and their mode of action, as are currently known. PMID:23737062

  18. The application of Dow Chemical's perfluorinated membranes in proton-exchange membrane fuel cells

    NASA Technical Reports Server (NTRS)

    Eisman, G. A.

    1989-01-01

    Dow Chemical's research activities in fuel cell devices revolves around the development and subsequent investigation of the perfluorinated inomeric membrane separator useful in proton-exchange membrane systems. Work is currently focusing on studying the effects of equivalent weight, thickness, water of hydration, pretreatment procedures, as well as the degree of water management required for a given membrane separator in the cell. The presentation will include details of certain aspects of the above as well as some of the requirements for high and low power generation.

  19. Studies on RBC lipid and protein phosphorylation during blood bank storage

    SciTech Connect

    Dumaswala, U.J.; Bryan, D.J.; Greenwalt, T.J.

    1986-05-01

    Recent evidence has suggested that phosphoinositides play a significant role in maintaining membrane structure and function. Their importance during blood bank storage is not understood. They have performed preliminary studies of the phosphoinositide synthetic pathway enzymes of RBC during blood bank storage. At 0 and 35 days of storage leaky ghosts were prepared and incubated with (..gamma..-/sup 32/P)ATP for 5 minutes at 30 C. One aliquot was subjected to acidified solvent extraction and thin layer chromatography. The labeled phosphoinositide -4,5 biphosphate (PIP/sub 2/), phosphoinositide-4 phosphate (PIP) and phosphatidic acid (PA) spots were scraped and counted by liquid scintillation spectrometry. Another aliquot was used for SDS-PAGE and the radioactivity associated with the ..beta..-spectrin was measured. These experiments suggest a decrease in RBC phosphoinositol and PIP-Kinases and ..beta..-spectrin kinase activities during blood bank storage. Further studies are being done to evaluate significance of these observations.

  20. Effect of Hydroperoxides on Red Blood Cell Membrane Mechanical Properties

    PubMed Central

    Hale, JohnP.; Winlove, C.Peter; Petrov, PeterG.

    2011-01-01

    We investigate the effect of oxidative stress on red blood cell membrane mechanical properties invitro using detailed analysis of the membrane thermal fluctuation spectrum. Two different oxidants, the cytosol-soluble hydrogen peroxide and the membrane-soluble cumene hydroperoxide, are used, and their effects on the membrane bending elastic modulus, surface tension, strength of confinement due to the membrane skeleton, and 2D shear elastic modulus are measured. We find that both oxidants alter significantly the membrane elastic properties, but their effects differ qualitatively and quantitatively. While hydrogen peroxide mainly affects the elasticity of the membrane protein skeleton (increasing the membrane shear modulus), cumene hydroperoxide has an impact on both membrane skeleton and lipid bilayer mechanical properties, as can be seen from the increased values of the shear and bending elastic moduli. The biologically important implication of these results is that the effects of oxidative stress on the biophysical properties, and hence the physiological functions, of the cell membrane depend on the nature of the oxidative agent. Thermal fluctuation spectroscopy provides a means of characterizing these different effects, potentially in a clinical milieu. PMID:22004746

  1. Radiation Interaction with Therapeutic Drugs and Cell Membranes

    SciTech Connect

    Martin, Diana I.; Manaila, Elena N.; Matei, Constantin I.; Iacob, Nicusor I.; Ighigeanu, Daniel I.; Craciun, Gabriela D.; Moisescu, Mihaela I.; Savopol, Tudor D.; Kovacs, Eugenia A.; Cinca, Sabin A.; Margaritescu, Irina D.

    2007-04-23

    This transient permeabilized state of the cell membrane, named the 'cell electroporation' (CE) can be used to increase cells uptake of drugs that do not readily pass cell membrane, thus enabling their cytotoxicity. The anticancer drugs, such as bleomycin (BL) and cisplatin, are the most candidates for the combined use with ionizing and non-ionizing radiation fields. The methods and installations for the cell electroporation by electron beam (EB) and microwave (MW) irradiation are presented. The viability tests of the human leukocytes under EB and MW exposure with/without the BL in the cell cultures are discussed.

  2. Investigating cell membrane structure and dynamics with TCSPC-FLIM

    NASA Astrophysics Data System (ADS)

    Le Marois, Alix; Owen, Dylan M.; Suhling, Klaus

    2015-03-01

    We report the use of Time-Correlated Single Photon Counting (TCSPC) in a polarization-resolved Fluorescence Lifetime Imaging (FLIM) setup for the investigation of cell membrane structural and dynamic properties. This technique allows us to study the orientation and mobility of fluorescent membrane dyes, namely di-4-ANEPPDHQ and DiO, in model bilayers of different lipid compositions. Dipole alignment and extent of rotational motion can be linked to membrane order and fluidity. Comparison of the time-resolved anisotropy decays of the two fluorescent dyes suggests that rotational motion of membrane constituents is restricted in liquid-ordered phases, and appears to be limited to the region of aliphatic tails in liquid-disordered phases. In living cells, understanding the membrane structure provides crucial information on its functional properties, such as exo- and endocytosis, cell mobility and signal transduction.

  3. Membrane-electrode assemblies for electrochemical cells

    DOEpatents

    Swathirajan, Sundararajan (Troy, MI); Mikhail, Youssef M. (Sterling Heights, MI)

    1993-01-01

    A combination, unitary, membrane and electrode assembly with a solid polymer electrolyte membrane, and first and second electrodes at least partially embedded in opposed surfaces of the membrane. The electrodes each comprise a respective group of finely divided carbon particles, very finely divided catalytic particles supported on internal and external surfaces of the carbon particles and a proton conductive material intermingled with the catalytic and carbon particles. A first group of finely divided carbon particles forming the first electrode has greater water attraction and retention properties, and is more hydrophilic than a second group of carbon particles forming the second electrode. In a preferred method, the membrane electrode assembly of the invention is prepared by forming a slurry of proton conductive material and at least one group of the carbon and catalyst particles. The slurry is applied to the opposed surfaces of the membrane and heated while being pressed to the membrane for a time and at a temperature and compressive load sufficient to embed at least a portion of the particles into the membrane.

  4. Catalytic membranes for CO oxidation in fuel cells

    DOEpatents

    Sandi-Tapia, Giselle; Carrado Gregar, Kathleen; Kizilel, Riza

    2010-06-08

    A hydrogen permeable membrane, which includes a polymer stable at temperatures of about 200 C having clay impregnated with Pt or Au or Ru or Pd particles or mixtures thereof with average diameters of less than about 10 nanometers (nms) is disclosed. The membranes are useful in fuel cells or any device which requires hydrogen to be separated from carbon monoxide.

  5. Adaptation of yeast cell membranes to ethanol

    SciTech Connect

    Jimenez, J.; Benitez, T.

    1987-05-01

    A highly ethanol-tolerant Saccharomyces wine strain is able, after growth in the presence of ethanol, to efficiently improve the ethanol tolerance of its membrane. A less-tolerant Saccharomyces laboratory strain, however, is unable to adapt its membrane to ethanol. Furthermore, after growth in the presence of ethanol, the membrane of the latter strain becomes increasingly sensitive, although this is a reversible process. Reversion to a higher tolerance occurs only after the addition of an energy source and does not take place in the presence of cycloheximide.

  6. Graphene can wreak havoc with cell membranes.

    PubMed

    Dallavalle, Marco; Calvaresi, Matteo; Bottoni, Andrea; Melle-Franco, Manuel; Zerbetto, Francesco

    2015-02-25

    Molecular dynamics--coarse grained to the level of hydrophobic and hydrophilic interactions--shows that small hydrophobic graphene sheets pierce through the phospholipid membrane and navigate the double layer, intermediate size sheets pierce the membrane only if a suitable geometric orientation is met, and larger sheets lie mainly flat on the top of the bilayer where they wreak havoc with the membrane and create a patch of upturned phospholipids. The effect arises in order to maximize the interaction between hydrophobic moieties and is quantitatively explained in terms of flip-flops by the analysis of the simulations. Possible severe biological consequences are discussed. PMID:25648559

  7. Sulfated Titania-Silica Reinforced Nafion Nanocomposite Membranes for Proton Exchange Membrane Fuel Cells.

    PubMed

    Abu Sayeed, M D; Kim, Hee Jin; Gopalan, A I; Kim, Young Ho; Lee, Kwang-Pill; Choi, Sang-June

    2015-09-01

    Sulfated titania-silica (SO4(2-)-/TiO2-SiO2) composites were prepared by a sol-gel method with sulfate reaction and characterized by X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS). The nanometric diameter and geometry of the sulfated titania-silica (STS) was investigated by transmission electron microscopy (TEM). A small amount of the STS composite in the range of 0.5-3 wt% was then added as reinforcing into the Nafion membrane by water-assisted solution casting method to prepare STS reinforced Nafion nanocomposite membranes (STS-Nafion nanocomposite membranes). The additional functional groups, sulfate groups, of the nanocomposite membrane having more surface oxygenated groups enhanced the fuel cell membrane properties. The STS-Nafion nanocomposite membranes exhibited improved water uptake compared to that of neat Nafion membranes, whereas methanol uptake values were decreased dramatically improved thermal property of the prepared nanocomposite membranes were measured by thermogravimetric analysis (TGA). Furthermore, increased ion exchange capacity values were obtained by thermoacidic pretreatment of the nanocomposite membranes. PMID:26716283

  8. Erythrocyte membrane proteins reactive with human (warm-reacting) anti-red cell autoantibodies.

    PubMed Central

    Leddy, J P; Falany, J L; Kissel, G E; Passador, S T; Rosenfeld, S I

    1993-01-01

    Immunoglobulin G (IgG) autoantibodies of 20 patients with autoimmune hemolytic anemia (AHA) were used in immunoaffinity assays with surface-radioiodinated human red blood cells (RBCs), and detergent-solubilized products were analyzed by SDS-PAGE/autoradiography. Four membrane proteins were identified as candidate autoantigens: a nonglycosylated polypeptide with an apparent molecular mass of 34 kD (p34) that was expressed in all available RBC phenotypes except Rhnull but differed consistently in apparent molecular mass from the 32-kD Rh(D) polypeptide co-isolated by IgG allo-anti-D; a heterogenous 37-55-kD glycoprotein, also deficient in Rhnull RBCs, which disappeared after deglycosylation by N-glycanase, with the appearance of a sharp, new approximately 31-kD band distinct from p34 and from Rh(D) polypeptide; a approximately 100-kD major membrane glycoprotein identified by immunoblotting as the band 3 anion transporter; and glycophorin A (GPA), also confirmed by immunoblotting. GP37-55 was not seen in the absence of p34, and both proteins are likely to be members of the Rh family. Indeed, a 34-kD polypeptide band and 37-55-kD poly-disperse "smear," isolated concurrently from the same labeled RBCs by IgG allo-anti-e, were indistinguishable from their autoantibody-isolated counterparts and may well be the same protein identified at different epitopes by the auto- and allo-antibodies. Individual AHA patients' autoantibodies isolated p34 and gp37-55, alone or in combination with band 3 (nine cases); strong band 3 alone (five cases); and combinations of band 3 with GPA (six cases). The autoantibodies of three additional patients whose AHA had been induced by alpha-methyldopa also isolated p34 and gp37-55. Images PMID:8473510

  9. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

    DOEpatents

    Laible, Philip D; Hanson, Deborah K

    2013-06-04

    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

  10. Low Crossover Polymer Electrolyte Membranes for Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Prakash, G. K. Surya; Smart, Marshall; Atti, Anthony R.; Olah, George A.; Narayanan, S. R.; Valdez, T.; Surampudi, S.

    1996-01-01

    Direct Methanol Fuel Cells (DMFC's) using polymer electrolyte membranes are promising power sources for portable and vehicular applications. State of the art technology using Nafion(R) 117 membranes (Dupont) are limited by high methanol permeability and cost, resulting in reduced fuel cell efficiencies and impractical commercialization. Therefore, much research in the fuel cell field is focused on the preparation and testing of low crossover and cost efficient polymer electrolyte membranes. The University of Southern California in cooperation with the Jet Propulsion Laboratory is focused on development of such materials. Interpenetrating polymer networks are an effective method used to blend polymer systems without forming chemical links. They provide the ability to modify physical and chemical properties of polymers by optimizing blend compositions. We have developed a novel interpenetrating polymer network based on poly (vinyl - difluoride)/cross-linked polystyrenesulfonic acid polymer composites (PVDF PSSA). Sulfonation of polystyrene accounts for protonic conductivity while the non-polar, PVDF backbone provides structural integrity in addition to methanol rejection. Precursor materials were prepared and analyzed to characterize membrane crystallinity, stability and degree of interpenetration. USC JPL PVDF-PSSA membranes were also characterized to determine methanol permeability, protonic conductivity and sulfur distribution. Membranes were fabricated into membrane electrode assemblies (MEA) and tested for single cell performance. Tests include cell performance over a wide range of temperatures (20 C - 90 C) and cathode conditions (ambient Air/O2). Methanol crossover values are measured in situ using an in-line CO2 analyzer.

  11. Selectivity of biopolymer membranes using HepG2 cells

    PubMed Central

    L, Dongyuan; Gao, Yuxin; Luo, Chunhua; L, Shouqian; Wang, Qian; Xu, Xianghong; Sun, Shujin; Wang, Chengzhi; Long, Mian

    2015-01-01

    Bioartificial liver (BAL) system has emerged as an alternative treatment to bridge acute liver failure to either liver transplantation or liver regeneration. One of the main reasons that the efficacy of the current BAL systems was not convincing in clinical trials is attributed to the lack of friendly interface between the membrane and the hepatocytes in liver bioreactor, the core unit of BAL system. Here, we systematically compared the biological responses of hepatosarcoma HepG2 cells seeded on eight, commercially available biocompatible membranes made of acetyl cellulose-nitrocellulose mixed cellulose (CA-NC), acetyl cellulose (CA), nylon (JN), polypropylene (PP), nitrocellulose (NC), polyvinylidene fluoride (PVDF), polycarbonate (PC) and polytetrafluoroethylene (PTFE). Physicochemical analysis and mechanical tests indicated that CA, JN and PP membranes yield high adhesivity and reasonable compressive and/or tensile features with friendly surface topography for cell seeding. Cells prefer to adhere on CA, JN, PP or PTFE membranes with high proliferation rate in spheriod-like shape. Actin, albumin and cytokeratin 18 expressions are favorable for cells on CA or PP membrane, whereas protein filtration is consistent among all the eight membranes. These results further the understandings of cell growth, morphology and spreading, as well as protein filtration on distinct membranes in designing a liver bioreactor.

  12. Membrane time constant as a tool to assess cell degeneration.

    PubMed

    Isokawa, M

    1997-05-01

    Changes in neuronal surface area may be monitored by measuring the plasma membrane capacitance [8]. Membrane time constant (tao m) is given by the product of the membrane resistance (rm) and membrane capacitance (Cm), tao m = rm Cm. Thus, when membrane resistance is kept constant at a steady state (resting), membrane time constant can reflect the size of neuronal surface area. Membrane time constant is the time for the potential to fall from the resting to a fraction (1-l/e), or 63%, of its final value in the charging curve during the application of a small negative current pulse. Negative voltage shift from the resting potential hardly activates any voltage-dependent ion channel, resulting in nominal changes in cell membrane resistance. Although elaborated methods for mathematical models and simulations are available for the electrophysiological assessment of neuron geometry in order to estimate subthreshold potential attenuation during the propagation of synaptically mediated electrical signals, they involve a number of critical assumptions for the convenience to each model, and some of these assumptions are unlikely to be valid. With these restrictive assumptions, very little can be determined about the electronic structure of a neuron beyond the measurement of neuronal membrane resistance and membrane time constant. Alternatively, numerous tracers are available to visualize morphologies of neurons intracellularly and extracellularly. These anatomical methods provide direct and quantitative evidence for neuron geometry; however, they involve tissue processing and a series of chemical reactions, some of which are time- and effort-demanding. The purpose of the present paper is to show that membrane time constant can be effectively used as a tool to assess diminution in cell surface area without involving extensive mathematical theories and/or neuroanatomical techniques. This approach is particularly effective in electrotonically compact cells such as hippocampal neurons. Recent development in the technique of the whole-cell patch clamp recording in the slice preparation yielded longer time constant with better resolution due to the absence of the leak conductance associated with microelectrode impalement. Indeed, when membrane time constant was measured with the whole-cell patch clamp recording technique, it successfully detected the reduction in dendritic arbors (dendritic degeneration) in dentate granule cells in the pilocarpine model of chronic epilepsy, and this finding is supported by the neuroanatomical evidence that was obtained from the same specimen samples. Membrane time constant is an easy-to-measure "passive membrane property" and can be used as a reliable probe by itself for detecting dendritic degeneration or as a tool for decision-making in introducing neuroanatomical technique in combination with slice neurophysiology. PMID:9385072

  13. Apparatus measures swelling of membranes in electrochemical cells

    NASA Technical Reports Server (NTRS)

    Hennigan, T. J.

    1965-01-01

    Apparatus consisting of a pressure plate unit, four springs of known spring constant and a micrometer measures the swelling and force exerted by the polymer membranes of alkaline electrochemical cells.

  14. Membrane stress increases cation permeability in red cells.

    PubMed

    Johnson, R M

    1994-11-01

    The human red cell is known to increase its cation permeability when deformed by mechanical forces. Light-scattering measurements were used to quantitate the cell deformation, as ellipticity under shear. Permeability to sodium and potassium was not proportional to the cell deformation. An ellipticity of 0.75 was required to increase the permeability of the membrane to cations, and flux thereafter increased rapidly as the limits of cell extension were reached. Induction of membrane curvature by chemical agents also did not increase cation permeability. These results indicate that membrane deformation per se does not increase permeability, and that membrane tension is the effector for increased cation permeability. This may be relevant to some cation permeabilities observed by patch clamping. PMID:7858123

  15. Perceptual Grouping of Membrane Signals in Cell-based Assays

    SciTech Connect

    Chang, Hang; Andarawewa, Punya Kumari; Han, Ju; Barcellos-Hoff,Mary Helen; Parvin, Bahram

    2007-02-02

    Membrane proteins organize themselves in a linear fashion where adjacent cells are attached together along the basal-lateral region. Their intensity distributions are often heterogeneous and may lack specificity. Grouping of these linear structures can aid in segmentation and quantitative representation of protein localization. However, quantitative analysis of these signals is often hindered by noise, variation in scale, and perceptual features. This paper introduces an iterative voting method for inferring the membrane signal as it relates to continuity. A unique aspect of this technique is in the topography of the voting kernel, which is refined and reoriented iteratively. The technique can cluster and group membrane signals along the tangential direction. It has an excellent noise immunity and is tolerant to perturbations in scale. Application of this technique to quantitative analysis of cell-cell adhesion mediated by integral cell membrane proteins is demonstrated.

  16. Decreasing Outer Hair Cell Membrane Cholesterol Increases Cochlear Electromechanics

    NASA Astrophysics Data System (ADS)

    Brownell, William E.; Jacob, Stefan; Hakizimana, Pierre; Ulfendahl, Mats; Fridberger, Anders

    2011-11-01

    The effect of decreasing membrane cholesterol on the mechanical response of the cochlea to acoustic and/or electrical stimulation was monitored using laser interferometry. In contrast to pharmacological interventions that typically decrease cochlear electromechanics, reducing membrane cholesterol increased the response. The electromechanical response in untreated preparations was asymmetric with greater displacements in response to positive currents and cholesterol depletion increased the asymmetry. The results confirm that outer hair cell electromotility is enhanced by low membrane cholesterol. The asymmetry of the response indicates the outer hair cell resting membrane potential is hyperpolarized relative to the voltage of maximum gain for the outer hair cell voltage-displacement function. The magnitude of the response increase suggests a non-uniform distribution of cholesterol along the lateral wall of normal adult outer hair cells.

  17. Bacteria May Cope Differently from Similar Membrane Damage Caused by the Australian Tree Frog Antimicrobial Peptide Maculatin 1.1.

    PubMed

    Sani, Marc-Antoine; Henriques, Sónia Troeira; Weber, Daniel; Separovic, Frances

    2015-08-01

    Maculatin 1.1 (Mac1) is an antimicrobial peptide from the skin of Australian tree frogs and is known to possess selectivity toward Gram-positive bacteria. Although Mac1 has membrane disrupting activity, it is not known how Mac1 selectively targets Gram-positive over Gram-negative bacteria. The interaction of Mac1 with Escherichia coli, Staphylococcus aureus, and human red blood cells (hRBC) and with their mimetic model membranes is here reported. The peptide showed a 16-fold greater growth inhibition activity against S. aureus (4 μM) than against E. coli (64 μM) and an intermediate cytotoxicity against hRBC (30 μM). Surprisingly, Sytox Green uptake monitored by flow cytometry showed that Mac1 compromised both bacterial membranes with similar efficiency at ∼20-fold lower concentration than the reported minimum inhibition concentration against S. aureus. Mac1 also reduced the negative potential of S. aureus and E. coli membrane with similar efficacy. Furthermore, liposomes mimicking the cell membrane of S. aureus (POPG/TOCL) and E. coli (POPE/POPG) were lysed at similar concentrations, whereas hRBC-like vesicles (POPC/SM/Chol) remained mostly intact in the presence of Mac1. Remarkably, when POPG/TOCL and POPE/POPG liposomes were co-incubated, Mac1 did not induce leakage from POPE/POPG liposomes, suggesting a preference toward POPG/TOCL membranes that was supported by surface plasma resonance assays. Interestingly, circular dichroism spectroscopy showed a similar helical conformation in the presence of the anionic liposomes but not the hRBC mimics. Overall, the study showed that Mac1 disrupts bacterial membranes in a similar fashion before cell death events and would preferentially target S. aureus over E. coli or hRBC membranes. PMID:26100634

  18. Structural Analysis of the Rubisco-Assembly Chaperone RbcX-II from Chlamydomonas reinhardtii

    PubMed Central

    Liu, Cuimin; Hartl, F. Ulrich; Hayer-Hartl, Manajit

    2015-01-01

    The most prevalent form of the Rubisco enzyme is a complex of eight catalytic large subunits (RbcL) and eight regulatory small subunits (RbcS). Rubisco biogenesis depends on the assistance by specific molecular chaperones. The assembly chaperone RbcX stabilizes the RbcL subunits after folding by chaperonin and mediates their assembly to the RbcL8 core complex, from which RbcX is displaced by RbcS to form active holoenzyme. Two isoforms of RbcX are found in eukaryotes, RbcX-I, which is more closely related to cyanobacterial RbcX, and the more distant RbcX-II. The green algae Chlamydomonas reinhardtii contains only RbcX-II isoforms, CrRbcX-IIa and CrRbcX-IIb. Here we solved the crystal structure of CrRbcX-IIa and show that it forms an arc-shaped dimer with a central hydrophobic cleft for binding the C-terminal sequence of RbcL. Like other RbcX proteins, CrRbcX-IIa supports the assembly of cyanobacterial Rubisco in vitro, albeit with reduced activity relative to cyanobacterial RbcX-I. Structural analysis of a fusion protein of CrRbcX-IIa and the C-terminal peptide of RbcL suggests that the peptide binding mode of RbcX-II may differ from that of cyanobacterial RbcX. RbcX homologs appear to have adapted to their cognate Rubisco clients as a result of co-evolution. PMID:26305355

  19. Membrane Composition Tunes the Outer Hair Cell Motor

    NASA Astrophysics Data System (ADS)

    Rajagopalan, L.; Sfondouris, J.; Oghalai, J. S.; Pereira, F. A.; Brownell, W. E.

    2009-02-01

    Cholesterol and docosahexaenoic acid (DHA), an ?-3 fatty acid, affect membrane mechanical properties in different ways and modulate the function of membrane proteins. We have probed the functional consequence of altering cholesterol and DHA levels in the membranes of OHCs and prestin expressing HEK cells. Large, dynamic and reversible changes in prestin-associated charge movement and OHC motor activity result from altering the concentration of membrane cholesterol. Increasing membrane cholesterol shifts the q/V function ~ 50 mV in the hyperpolarizing direction, possibly a response related to increases in membrane stiffness. The voltage shift is linearly related to total membrane cholesterol. Increasing cholesterol also decreases the total charge moved in a linear fashion. Decreasing membrane cholesterol shifts the q/V function ~ 50 mV in the depolarizing direction with little or no effect on the amount of charge moved. In vivo increases in membrane cholesterol transiently increase but ultimately lead to decreases in DPOAE. Docosahexaenoic acid shifts the q/V function in the hyperpolarizing direction < 15 mV and increases total charge moved. Tuning of cochlear function by membrane cholesterol contributes to the exquisite temporal and frequency processing of mammalian hearing by optimizing the cochlear amplifier.

  20. Intravacuolar Membranes Regulate CD8 T Cell Recognition of Membrane-Bound Toxoplasma gondii Protective Antigen.

    PubMed

    Lopez, Jodie; Bittame, Amina; Massera, Cline; Vasseur, Virginie; Effantin, Grgory; Valat, Anne; Buaillon, Clia; Allart, Sophie; Fox, Barbara A; Rommereim, Leah M; Bzik, David J; Schoehn, Guy; Weissenhorn, Winfried; Dubremetz, Jean-Franois; Gagnon, Jean; Mercier, Corinne; Cesbron-Delauw, Marie-France; Blanchard, Nicolas

    2015-12-15

    Apicomplexa parasites such as Toxoplasma gondii target effectors to and across the boundary of their parasitophorous vacuole (PV), resulting in host cell subversion and potential presentation by MHC class I molecules for CD8 Tcell recognition. The host-parasite interface comprises the PV limiting membrane and a highly curved, membranous intravacuolar network (IVN) of uncertain function. Here, using a cell-free minimal system, we dissect how membrane tubules are shaped by the parasite effectors GRA2 and GRA6. We show that membrane association regulates access of the GRA6 protective antigen to the MHC I pathway in infected cells. Although insertion of GRA6 in the PV membrane is key for immunogenicity, association of GRA6 with the IVN limits presentation and curtails GRA6-specific CD8 responses in mice. Thus, membrane deformations of the PV regulate access of antigens to the MHC class I pathway, and the IVN may play a role in immune modulation. PMID:26628378

  1. Modeling of interactions between nanoparticles and cell membranes

    NASA Astrophysics Data System (ADS)

    Ban, Young-Min

    Rapid development of nanotechnology and ability to manufacture materials and devices with nanometer feature size leads to exciting innovations in many areas including the medical and electronic fields. However, the possible health and environmental impacts of manufactured nanomaterials are not fully known. Recent experimental reports suggest that some of the manufactured nanomaterials, such as fullerenes and carbon nanotubes, are highly toxic even in small concentrations. The goal of the current work is to understand the mechanisms responsible for the toxicity of nanomaterials. In the current study coarse-grained molecular dynamics simulations are employed to investigate the interactions between NPs and cellular membranes at a molecular level. One of the possible toxicity mechanisms of the nanomaterials is membrane disruption. Possibility of membrane disruption exposed to the manufactured nanomaterials are examined by considering chemical reactions and non-reactive physical interactions as chemical as well as physical mechanisms. Mechanisms of transport of carbon-based nanoparticles (fullerene and its derivative) across a phospholipid bilayer are investigated. The free energy profile is obtained using constrained simulations. It is shown that the considered nanoparticles are hydrophobic and therefore they tend to reside in the interior of the lipid bilayer. In addition, the dynamics of the membrane fluctuations is significantly affected by the nanoparticles at the bilayer-water interface. The hydrophobic interaction between the particles and membrane core induces the strong coupling between the nanoparticle motion and membrane deformation. It is observed that the considered nanoparticles affect several physical properties of the membrane. The nanoparticles embedded into the membrane interior lead to the membrane softening, which becomes more significant with increase in CNT length and concentration. The lateral pressure profile and membrane energy in the membrane containing the nanoparticles exhibit localized perturbation around the nanoparticle. The nanoparticles are not likely to affect membrane protein function by the weak perturbation of the internal stress in the membrane. Due to the short-ranged interactions between the nanoparticles, the nanoparticles would not form aggregates inside membranes. The effect of lipid peroxidation on cell membrane deformation is assessed. The peroxidized lipids introduce a perturbation to the internal structure of the membrane leading to higher amplitude of the membrane fluctuations. Higher concentration of the peroxidized lipids induces more significant perturbation. Cumulative effects of lipid peroxidation caused by nanoparticles are examined for the first time. The considered amphiphilic particle appears to reduce the perturbation of the membrane structure at its equilibrium position inside the peroxidized membrane. This suggests a possibility of antioxidant effect of the nanoparticle.

  2. Penetration of Cell Membranes and Synthetic Lipid Bilayers by Nanoprobes

    PubMed Central

    Angle, Matthew R.; Wang, Andrew; Thomas, Aman; Schaefer, Andreas T.; Melosh, Nicholas A.

    2014-01-01

    Nanoscale devices have been proposed as tools for measuring and controlling intracellular activity by providing electrical and/or chemical access to the cytosol. Unfortunately, nanostructures with diameters of 50–500 nm do not readily penetrate the cell membrane, and rationally optimizing nanoprobes for cell penetration requires real-time characterization methods that are capable of following the process of membrane penetration with nanometer resolution. Although extensive work has examined the rupture of supported synthetic lipid bilayers, little is known about the applicability of these model systems to living cell membranes with complex lipid compositions, cytoskeletal attachment, and membrane proteins. Here, we describe atomic force microscopy (AFM) membrane penetration experiments in two parallel systems: live HEK293 cells and stacks of synthetic lipid bilayers. By using the same probes in both systems, we were able to clearly identify membrane penetration in synthetic bilayers and compare these events with putative membrane penetration events in cells. We examined membrane penetration forces for three tip geometries and 18 chemical modifications of the probe surface, and in all cases the median forces required to penetrate cellular and synthetic lipid bilayers with nanoprobes were greater than 1 nN. The penetration force was sensitive to the probe's sharpness, but not its surface chemistry, and the force did not depend on cell surface or cytoskeletal properties, with cells and lipid stacks yielding similar forces. This systematic assessment of penetration under various mechanical and chemical conditions provides insights into nanoprobe-cell interactions and informs the design of future intracellular nanoprobes. PMID:25418094

  3. Hydrodynamic extrusion of membrane nanotubes: the role of the cytoskeleton

    NASA Astrophysics Data System (ADS)

    Guevorkian, Karine; Borghi, Nicolas; Kremer, Séastien; Buguin, Axel; Brochard, Françise

    2007-03-01

    We have investigated membrane-cytoskeleton adhesion properties by extrusion of tubes from tethered vesicles and cells using hydrodynamic flows. Our experimental results show that impermeable membranes (giant vesicles) act as entropic springs, i.e. the extruded tubes reach a stationary length, whereas porous membranes (vesicles decorated with pores) lead to tubes, which extrude at constant velocity without reaching a stationary length. On the other hand, experiments on red blood cells (RBC) suggest that the dynamics of extruded tubes is dominated by the detachment of the membrane from the cytoskeleton and the flow of lipids through the binding membrane proteins. We have estimated the membrane-cytoskeleton binding energy and the viscosity of the membrane for RBC-s. Tube extrusion from other cell types (S180, MDCK, BON) show phenomena such as healing time for the membrane-cytoskeleton rebinding, and cell aging (breakage of the tube after a few consecutive extrusions). We will discuss how these phenomena depend on the properties of the cytoskeleton and on the presence of cell adhesion molecules.

  4. Internally humidified membranes for use in fuel cells

    SciTech Connect

    Cisar, A.; Gonzalez-Martin, A.; Murphy, O.J.; Simpson, S.F.; Salinas, C.

    1995-12-31

    For optimal operation the membrane in a proton exchange membrane (PEM) fuel cell must be kept fully hydrated at all times. In most systems this is accomplished by the addition of water as vapor or as a mist to at least the fuel stream, and frequently both of the gas streams being fed to the cell. This requires the inclusion of a humidifier in the system as either a portion of the cell stack or as an external component, increasing the size, weight, and complexity of the system. The authors have developed a membrane equipped with internal passages which allows water to be fed directly to the entire active area of the membrane, putting the water directly where it is needed. This produces a uniform water content throughout the membrane while at the same time reducing the size and weight of the system by eliminating the need for a separate humidification section. These new membranes are useful in most types of fuel cells and electrolyzers, but they have specific advantages for regenerative fuel cells, where the same structure must function as both a fuel cell and as an electrolyzer.

  5. [Characteristics of red cell membrane disorders in the Japanese population].

    PubMed

    Yawata, Y

    1997-04-01

    The characteristic features of the incidence of hereditary red cell membrane disorders in the Japanese population are described, based on our studies on 610 patients from 353 kindreds during 20 years since 1975. These patients were screened by a protocol on red cell morphology (scanning and transmission electron microscopy), red cell membrane proteins (sodium dodecylsulfate polyacrylamide gel electrophoresis, and kinetics of membrane proteins), membrane lipids, biophysical studies (ektacytometry, mechanical stability, and fluorescence recovery after photobleaching method), and membrane transport (sodium influx and efflux, and anion transport). Hereditary spherocytosis (HS) is most frequent (308 patients from 156 kindreds), hereditary elliptocytosis (HE) is the second (98 patients from 47 kindreds) followed by hereditary stomatocytosis (57 patients from 40 kindreds). Among the molecular abnormalities detected, alpha-spectrin mutation in the Japanese HE patients appeared extremely rare (only one family with spectrin alpha 1/74), despite three novel beta-spectrin mutations were found out of nine world-wide cases. Most of the Japanese HE patients were associated with partial protein 4.1 deficiencies. Ankyrin abnormalities in the Japanese HS patients appeared less common than those in the Western countries. Complete protein 4.2 deficiencies (34 patients from 20 kindreds) were unique in the Japanese population. Membrane lipid abnormalities included hereditary high red cell membrane phosphatidylcholine hemolytic anemia (30 patients from 18 kindreds), congenital beta-lipoprotein deficiency (acanthocytosis: seven patients from five kindreds), and each one patient of congenital lecithin: cholesterol acyltransferase deficiency and of congenital alpha-lipoprotein deficiency (Tangier disease). PMID:9136602

  6. Deformation of a single red blood cell in bounded Poiseuille flows

    NASA Astrophysics Data System (ADS)

    Shi, Lingling; Pan, Tsorng-Whay; Glowinski, Roland

    2012-11-01

    An immersed boundary method (IBM) combined with the elastic spring model is applied to investigate the deformation of a single red blood cell (RBC) in two-dimensional bounded Poiseuille flows. The equilibrium shape of the cell under flow depends on the swelling ratio ((s*)), the initial angle of the long axis of the cell at the centerline (?), the maximum velocity of the flow (umax), the membrane bending stiffness of the RBC (kb), and the height of the microchannel(H). Two motions of oscillation and vacillating breathing of the RBC are observed in narrow channel considered here. The strength of the vacillating-breathing motion depends on degree of confinement and umax. For the different kb, the RBC obtains the same equilibrium shape for the same capillary number. Parachute shape and bullet-like shape, depending on the angle ?, coexist for the elliptic shape cell with lower umax in a narrower channel. NSF Grant No. DMS-0914788.

  7. VIEW OF RBC (REFINED BICARBONATE) BUILDING LOOKING NORTHEAST. DEMOLITION IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF RBC (REFINED BICARBONATE) BUILDING LOOKING NORTHEAST. DEMOLITION IN PROGRESS. "ARM & HAMMER BAKING SODA WAS MADE HERE FOR OVER 50 YEARS AND THEN SHIPPED ACROSS THE STREET TO THE CHURCH & DWIGHT PLANT ON WILLIS AVE. (ON THE RIGHT IN THIS PHOTO). LAYING ON THE GROUND IN FRONT OF C&D BUILDING IS PART OF AN RBC DRYING TOWER. - Solvay Process Company, Refined Bicarbonate Building, Between Willis & Milton Avenues, Solvay, Onondaga County, NY

  8. Proton conducting membranes for high temperature fuel cells with solid state water free membranes

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Yen, Shiao-Pin S. (Inventor)

    2006-01-01

    A water free, proton conducting membrane for use in a fuel cell is fabricated as a highly conducting sheet of converted solid state organic amine salt, such as converted acid salt of triethylenediamine with two quaternized tertiary nitrogen atoms, combined with a nanoparticulate oxide and a stable binder combined with the converted solid state organic amine salt to form a polymeric electrolyte membrane. In one embodiment the membrane is derived from triethylenediamine sulfate, hydrogen phosphate or trifiate, an oxoanion with at least one ionizable hydrogen, organic tertiary amine bisulfate, polymeric quaternized amine bisulfate or phosphate, or polymeric organic compounds with quaternizable nitrogen combined with Nafion to form an intimate network with ionic interactions.

  9. A life-like virtual cell membrane using discrete automata.

    PubMed

    Broderick, Gordon; Ru'aini, Melania; Chan, Eugene; Ellison, Michael J

    2005-01-01

    A framework is presented that captures the discrete and probabilistic nature of molecular transport and reaction kinetics found in a living cell as well as formally representing the spatial distribution of these phenomena. This particle or agent-based approach is computationally robust and complements established methods. Namely it provides a higher level of spatial resolution than formulations based on ordinary differential equations (ODE) while offering significant advantages in computational efficiency over molecular dynamics (MD). Using this framework, a model cell membrane has been constructed with discrete particle agents that respond to local component interactions that resemble flocking or herding behavioural cues in animals. Results from simulation experiments are presented where this model cell exhibits many of the characteristic behaviours associated with its biological counterpart such as lateral diffusion, response to osmotic pressure gradients, membrane growth and cell division. Lateral diffusion rates and estimates for the membrane modulus of elasticity derived from these simple experiments fall well within a biologically relevant range of values. More importantly, these estimates were obtained by applying a simple qualitative tuning of the model membrane. Membrane growth was simulated by injecting precursor molecules into the proto-cell at different rates and produced a variety of morphologies ranging from a single large cell to a cluster of cells. The computational scalability of this methodology has been tested and results from benchmarking experiments indicate that real-time simulation of a complete bacterial cell will be possible within 10 years. PMID:15972012

  10. Cell-Free Synthesis of a Functional Membrane Transporter into a Tethered Bilayer Lipid Membrane.

    PubMed

    Zieleniecki, Julius L; Nagarajan, Yagnesh; Waters, Shane; Rongala, Jay; Thompson, Vanessa; Hrmova, Maria; Köper, Ingo

    2016-03-15

    Eukaryotic cell-free synthesis was used to incorporate the large and complex multispan plant membrane transporter Bot1 in a functional form into a tethered bilayer lipid membrane. The electrical properties of the protein-functionalized tethered bilayer were measured using electrochemical impedance spectroscopy and revealed a pH-dependent transport of borate ions through the protein. The efficacy of the protein synthesis has been evaluated using immunoblot analysis. PMID:26910192

  11. Spring-network-based model of a red blood cell for simulating mesoscopic blood flow.

    PubMed

    Nakamura, Masanori; Bessho, Sadao; Wada, Shigeo

    2013-01-01

    We developed a mechanical model of a red blood cell (RBC) that is capable of expressing its characteristic behaviors in shear flows. The RBC was modeled as a closed shell membrane consisting of spring networks in the framework of the energy minimum concept. The fluid forces acting on RBCs were modeled from Newton's viscosity law and the conservation of momentum. In a steady shear flow, the RBC model exhibited various behaviors, depending on the shear rate; it tumbled, tank-treaded, or both. The transition from tumbling to tank-treading occurred at a shear rate of 20 s(?-?1). The simulation of an RBC in steady and unsteady parallel shear flows (Couette flows) showed that the deformation parameters of the RBC were consistent with experimental results. The RBC in Poiseuille flow migrated radially towards the central axis of the flow channel. Axial migration became faster with an increase in the viscosity of the media, qualitatively consistent with experimental results. These results demonstrate that the proposed model satisfies the essential conditions for simulating RBC behavior in blood flow. Finally, a large-scale RBC flow simulation was implemented to show the capability of the proposed model for analyzing the mesoscopic nature of blood flow. PMID:23293072

  12. Membrane protein production in Escherichia coli cell-free lysates.

    PubMed

    Henrich, Erik; Hein, Christopher; Dötsch, Volker; Bernhard, Frank

    2015-07-01

    Cell-free protein production has become a core technology in the rapidly spreading field of synthetic biology. In particular the synthesis of membrane proteins, highly problematic proteins in conventional cellular production systems, is an ideal application for cell-free expression. A large variety of artificial as well as natural environments for the optimal co-translational folding and stabilization of membrane proteins can rationally be designed. The high success rate of cell-free membrane protein production allows to focus on individually selected targets and to modulate their functional and structural properties with appropriate supplements. The efficiency and robustness of lysates from Escherichia coli strains allow a wide diversity of applications and we summarize current strategies for the successful production of high quality membrane protein samples. PMID:25937121

  13. Anhydrous Proton-Conducting Membranes for Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Yen, Shiao-Pin S.

    2005-01-01

    Polymeric electrolyte membranes that do not depend on water for conduction of protons are undergoing development for use in fuel cells. Prior polymeric electrolyte fuel-cell membranes (e.g., those that contain perfluorosulfonic acid) depend on water and must be limited to operation below a temperature of 125 C because they retain water poorly at higher temperatures. In contrast, the present developmental anhydrous membranes are expected to function well at temperatures up to 200 C. The developmental membranes exploit a hopping-and-reorganization proton- conduction process that can occur in the solid state in organic amine salts and is similar to a proton-conduction process in a liquid. This process was studied during the 1970s, but until now, there has been no report of exploiting organic amine salts for proton conduction in fuel cells.

  14. Molecular simulations of glycolipids: Towards mammalian cell membrane models

    PubMed Central

    Shorthouse, David; Hedger, George; Koldsø, Heidi; Sansom, Mark S.P.

    2016-01-01

    Glycolipids are key components of mammalian cell membranes, influencing a diverse range of cellular functions. For example, a number of receptor tyrosine kinases, including the epidermal growth factor receptor (EGFR), are allosterically regulated by the glycolipid monosialodihexosylganglioside (GM3). Recent advances in molecular dynamics methods, especially the development of coarse-grained models, have enabled simulations of increasingly complex models of cell membranes. We demonstrate these methodological developments via a case study of a coarse-grained model for the ganglioside GM3. This glycolipid is included in simulations of a mixed lipid bilayer model reflecting the compositional complexity of a mammalian cell membrane. The resultant membrane model is used to simulate the interactions of GM3 with the transmembrane domain of the EGFR. PMID:26427555

  15. Cytotoxicity of bovine and porcine collagen membranes in mononuclear cells.

    PubMed

    Moura, Camilla Christian Gomes; Soares, Priscilla Barbosa Ferreira; Carneiro, Karine Fernandes; Souza, Maria Aparecida de; Magalhães, Denildo

    2012-01-01

    This study compared the cytotoxicity and the release of nitric oxide induced by collagen membranes in human mononuclear cells. Peripheral blood was collected from each patient and the separation of mononuclear cells was performed by Ficoll. Then, 2x10(5) cells were plated in 48-well culture plates under the membranes in triplicate. The polystyrene surface was used as negative control. Cell viability was assessed by measuring mitochondrial activity (MTT) at 4, 12 and 24 h, with dosage levels of nitrite by the Griess method for the same periods. Data had non-normal distribution and were analyzed by the Kruskal-Wallis test (p<0.05). Statistically significant differences (p<0.05) were observed between the membranes and the control in the experimental period, although there was a significant reduction in viability over time (p<0.01). At 4 and 12 h, the porcine membrane induced a higher release of nitrite compared with the control and bovine membrane, respectively (p<0.01), and this difference was maintained at 24 h (p<0.05). This in vitro study showed that the porcine collagen membrane induces an increased production of proinflammatory mediators by mononuclear cells in the first hours of contact, decreasing with time. PMID:22460313

  16. Controlled Bacterial Lysis for Electron Tomography of Native Cell Membranes

    PubMed Central

    Fu, Xiaofeng; Himes, Benjamin; Ke, Danxia; Rice, William J.; Ning, Jiying; Zhang, Peijun

    2014-01-01

    SUMMARY Cryo-electron tomography (cryoET) has become a powerful tool for direct visualization of 3D structures of native biological specimens at molecular resolution, but its application is limited to thin specimens (<300 nm). Recently, vitreous sectioning and cryo-FIB milling technologies were developed to physically reduce the specimen thickness; however, cryoET analysis of membrane protein complexes within native cell membranes remains a great challenge. Here, we use phage φX174 lysis gene E to rapidly produce native, intact, bacterial cell membranes for high resolution cryoET. We characterized E gene-induced cell lysis using FIB/SEM and cryoEM and show that the bacteria cytoplasm was largely depleted through spot lesion, producing ghosts with the cell membranes intact. We further demonstrate the utility of E-gene-induced lysis for cryoET using the bacterial chemotaxis receptor signaling complex array. The described method should have a broad application for structural and functional studies of native, intact cell membranes and membrane protein complexes. PMID:25456413

  17. Membrane Targeting of P-type ATPases in Plant Cells

    SciTech Connect

    Jeffrey F. Harper, Ph.D.

    2004-06-30

    How membrane proteins are targeted to specific subcellular locations is a very complex and poorly understood area of research. Our long-term goal is to use P-type ATPases (ion pumps), in a model plant system Arabidopsis, as a paradigm to understand how members of a family of closely related membrane proteins can be targeted to different subcellular locations. The research is divided into two specific aims. The first aim is focused on determining the targeting destination of all 10 ACA-type calcium pumps (Arabidopsis Calcium ATPase) in Arabidopsis. ACAs represent a plant specific-subfamily of plasma membrane-type calcium pumps. In contrast to animals, the plant homologs have been found in multiple membrane systems, including the ER (ACA2), tonoplast (ACA4) and plasma membrane (ACA8). Their high degree of similarity provides a unique opportunity to use a comparative approach to delineate the membrane specific targeting information for each pump. One hypothesis to be tested is that an endomembrane located ACA can be re-directed to the plasma membrane by including targeting information from a plasma membrane isoform, ACA8. Our approach is to engineer domain swaps between pumps and monitor the targeting of chimeric proteins in plant cells using a Green Fluorescence Protein (GFP) as a tag. The second aim is to test the hypothesis that heterologous transporters can be engineered into plants and targeted to the plasma membrane by fusing them to a plasma membrane proton pump. As a test case we are evaluating the targeting properties of fusions made between a yeast sodium/proton exchanger (Sod2) and a proton pump (AHA2). This fusion may potentially lead to a new strategy for engineering salt resistant plants. Together these aims are designed to provide fundamental insights into the biogenesis and function of plant cell membrane systems.

  18. Gradiently crosslinked polymer electrolyte membranes in fuel cells

    NASA Astrophysics Data System (ADS)

    An, De; Wu, Bin; Zhang, Genlei; Zhang, Wen; Wang, Yuxin

    2016-01-01

    Polymer electrolyte membranes in fuel cells should be high in both ionic conductivity and mechanical strength. However, the two are often exclusive to each other. To solve this conundrum, a novel strategy is proposed in this paper, with extensively researched sulfonated poly (ether ether ketone) (SPEEK) membrane as a paradigm. A SPEEK membrane of high sulfonation degree is simply post-treated with NaBH4 and H2SO4 solution at ambient temperature for a certain time to afford the membrane with a gradient crosslinking structure. Measurements via 1H NMR, ATR-FTIR and SEM-EDS are conducted to verify such structural changes. The gradient crosslinks make practically no damage to proton conductance, but effectively restrain the membrane from over swelling and greatly enhance its tensile strength. A H2-O2 fuel cell with the gradiently crosslinked SPEEK membrane shows a maximal power density of 533 mW cm-2 at 80 °C, whereas the fuel cell with the pristine SPEEK membrane cannot be operated beyond 30 °C.

  19. Fuel cell electrolyte membrane with basic polymer

    DOEpatents

    Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

    2012-12-04

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  20. Fuel cell electrolyte membrane with basic polymer

    DOEpatents

    Larson, James M. (Saint Paul, MN); Pham, Phat T. (Little Canada, MN); Frey, Matthew H. (Cottage Grove, MN); Hamrock, Steven J. (Stillwater, MN); Haugen, Gregory M. (Edina, MN); Lamanna, William M. (Stillwater, MN)

    2010-11-23

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  1. Combined use of micropipette aspiration and perifusion for studying red blood cell volume regulation.

    PubMed

    Engstrm, K G; Meiselman, H J

    1997-04-01

    We combined micropipette aspiration with a new technique of perifusion to study volume behavior of single red blood cells (RBCs) during anisotonic conditions. Other techniques have suggested that RBC volume changes are complete within 1 s, but our pipette data indicate a slower volume response of 5-10 s. This difference appears to be due to the partial aspiration of the cell into the pipette, which in part prevents exposure of the membrane area to the anisotonic medium. However, we found that medium will pass the aspirated RBC (-20 mm H2O aspiration pressure) and enter the pipette at a volume rate of 0.3 micron3/s; this rate was measured by introducing a flow marker, a separate RBC or a cell fragment, into the pipette. The osmotic balance across the RBC also affected the flow: if the outside fluid was made hypertonic, the pipette flow decreased, but a hypotonic conditions, the flow increased and contributed to the exposure of the aspirated portions of the RBC. However, after the initial 10 s, the RBC geometry can be precisely monitored; at 200 mOsm, the RBC swelled by 41.0 +/- 0.9% and then demonstrated a small but significant (P < 0.001) regulatory volume decrease. We suggest that this technique is very precise in measuring the dynamics of geometric regulation, although acute changes are affected by the partial cell aspiration and pipette flow. PMID:9098626

  2. Aging and red blood cell membrane: a study of centenarians.

    PubMed

    Caprari, P; Scuteri, A; Salvati, A M; Bauco, C; Cantafora, A; Masella, R; Modesti, D; Tarzia, A; Marigliano, V

    1999-01-01

    Successful aging, characterized by little or no loss in physiological functions, should be the usual aging process in centenarians. It is known that well-preserved physiological functions depend on the proper functioning of cell systems. In this article we focus on cell membrane integrity and study the red blood cell membrane to evaluate the effect of physiological aging in centenarians. Fifteen healthy, self-sufficient centenarians, mean age 103 years, were examined by assessing hemocytometric values and some relevant characteristics of the erythrocyte membrane, i.e., the cholesterol/phospholipid molar ratio, the distribution of phospholipid classes and their fatty acid composition, the integral and skeletal protein profiles. The centenarians showed a significant decrease in the red blood cell count (p < 0.0002), hemoglobin (p < 0.0002), and hematocrit (p < 0.0005). The red blood cell membrane showed a significantly increased cholesterol/phospholipid molar ratio (p < 0.01), with a concomitant increase in polyunsaturated fatty acids in phosphatidylcholine (p < 0.001) and, to a lesser extent, in phosphatidylethanolamine. The electrophoretic pattern of membrane proteins was qualitatively normal compared to controls but the densitometric analysis showed a significant increase in the integral protein band 4.2 (p < 0.05) and in the skeletal protein actin (p < 0.001). Extreme longevity seems to be associated with a substantial integrity of the erythrocyte membrane. Moreover, the evident increase in polyunsaturated fatty acids and in actin are likely to improve the membrane fluidity and to strengthen the membrane structure. PMID:10197727

  3. With or without rafts? Alternative views on cell membranes.

    PubMed

    Sevcsik, Eva; Schtz, Gerhard J

    2016-02-01

    The fundamental mechanisms of protein and lipid organization at the plasma membrane have continued to engage researchers for decades. Among proposed models, one idea has been particularly successful which assumes that sterol-dependent nanoscopic phases of different lipid chain order compartmentalize proteins, thereby modulating protein functionality. This model of membrane rafts has sustainably sparked the fields of membrane biophysics and biology, and shifted membrane lipids into the spotlight of research; by now, rafts have become an integral part of our terminology to describe a variety of cell biological processes. But is the evidence clear enough to continue supporting a theoretical concept which has resisted direct proof by observation for nearly twenty years? In this essay, we revisit findings that gave rise to and substantiated the raft hypothesis, discuss its impact on recent studies, and present alternative mechanisms to account for plasma membrane heterogeneity. PMID:26666984

  4. Role of Rab GTPases in Membrane Traffic and Cell Physiology

    PubMed Central

    HUTAGALUNG, ALEX H.; NOVICK, PETER J.

    2013-01-01

    Intracellular membrane traffic defines a complex network of pathways that connects many of the membrane-bound organelles of eukaryotic cells. Although each pathway is governed by its own set of factors, they all contain Rab GTPases that serve as master regulators. In this review, we discuss how Rabs can regulate virtually all steps of membrane traffic from the formation of the transport vesicle at the donor membrane to its fusion at the target membrane. Some of the many regulatory functions performed by Rabs include interacting with diverse effector proteins that select cargo, promoting vesicle movement, and verifying the correct site of fusion. We describe cascade mechanisms that may define directionality in traffic and ensure that different Rabs do not overlap in the pathways that they regulate. Throughout this review we highlight how Rab dysfunction leads to a variety of disease states ranging from infectious diseases to cancer. PMID:21248164

  5. Calcium movements across the membrane of human red cells

    PubMed Central

    Schatzmann, H. J.; Vincenzi, F. F.

    1969-01-01

    1. A study has been made of the cellular content and movement of Ca across the membrane of human red blood cells. 2. The [Ca] in the cellular contents of fresh red cells is 409 10-2 mM. The intracellular concentration of free ionic Ca ([Ca2+]) is considered to be less than this value and therefore less than extracellular [Ca2+] under normal conditions. 3. Observation of unidirectional Ca fluxes with 45Ca confirms previous reports of low permeability of the red cell membrane for Ca. After nearly 1 week of loading in the cold, intracellular 45Ca content is 18% of extracellular 45Ca content. Appearance in extracellular fluid of 45Ca from coldloaded cells can be considered to arise from two compartments. Efflux of 45Ca from the `slower compartment' is accelerated by the addition of glucose. 4. Starved red cells, incubated at 37 C, after reversible haemolysis for loading with Ca and Mg-ATP, exhibit an outward net transport of Ca against an electrochemical gradient. The transport is associated with the appearance of inorganic phosphate (Pi). Cells treated similarly, but without ATP show no transport and no appearance of Pi. 5. During the initial phase of transport, 13 mole Pi appear per mole Ca transported. 6. The transport of Ca from ATP-loaded cells is highly temperature-dependent, with a Q10 of 35. 7. Cell membrane adenosine triphosphatase (ATPase) activity of reversibly haemolysed cells is stimulated only by intracellular, and not by extracellular Ca. 8. Neither Ca transport in reversibly haemolysed cells, nor the Ca-Mg activated ATPase of isolated cell membranes is sensitive to Na, K, ouabain or oligomycin. 9. Mg is not transported under the conditions which reveal Ca transport, but Mg appears to be necessary for Ca transport. 10. Sr is transported from reversibly haemolysed Mg-ATP-loaded cells. Sr also can substitute for Ca, but not for Mg, in the activation of membrane ATPase. 11. It is concluded that, in addition to a low passive permeability, an active extrusion mechanism for Ca exists in the human red cell membrane. This extrusion mechanism, in addition to a low passive membrane permeability for Ca, may represent the means by which intracellular Ca content is maintained at a low level. It is suggested that the Ca-Mg activated membrane ATPase and the active transport of Ca are two manifestations of the same process. PMID:4238381

  6. Molecular interactions between gold nanoparticles and model cell membranes.

    PubMed

    Hu, Peipei; Zhang, Xiaoxian; Zhang, Chi; Chen, Zhan

    2015-04-21

    The interactions between nanoparticles (NPs) and cells are of huge interest because NPs have been extensively researched for biomedical applications. For the cellular entry of NPs, it remains unclear how the cell membrane molecules respond to the exposure of NPs due to a lack of appropriate surface/interface-sensitive techniques to study NP-cell membrane interactions in situ in real time. In this study, sum frequency generation (SFG) vibrational spectroscopy was employed to examine the interactions between lipid bilayers (serving as model mammalian cell membranes) and Au NPs of four different sizes with the same mass, or the same NP number, or the same NP surface area. It was found that lipid flip-flop was induced by Au NPs of all four sizes. Interestingly, the lipid flip-flop rate was found to increase as the Au NP size increased with respect to the same particle number or the same NP surface area. However, the induced lipid flip-flop rate was the same for Au NPs with different sizes with the same mass, which was interpreted by the same "effective surface contact area" between Au NPs and the model cell membrane. We believe that this study provided the first direct observation of the lipid flip-flop induced by the interactions between Au NPs and the model mammalian cell membrane. PMID:25776800

  7. Anion selective membrane. [ion exchange resins and ion exchange membrane electrolytes for electrolytic cells

    NASA Technical Reports Server (NTRS)

    Alexander, S. S.; Geoffroy, R. R.; Hodgdon, R. B.

    1975-01-01

    Experimental anion permselective membranes were prepared and tested for their suitability as cell separators in a chemical redox power storage system being developed at NASA-Lewis Research Center. The goals of long-term (1000 hr) oxidative and thermal stability at 80 C in FeCl3 and CrCl3 electrolytes were met by most of the weak base and strong base amino exchange groups considered in the program. Good stability is exhibited by several of the membrane substrate resins. These are 'styrene' divinylbenzene copolymer and PVC film. At least four membrane systems produce strong flexible films with electrochemical properties (resistivity, cation transfer) superior to those of the 103QZL, the most promising commercial membrane. The physical and chemical properties of the resins are listed.

  8. From artificial red blood cells, oxygen carriers, and oxygen therapeutics to artificial cells, nanomedicine, and beyond.

    PubMed

    Chang, Thomas M S

    2012-06-01

    The first experimental artificial red blood cells have all three major functions of red blood cells (rbc). However, the first practical one is a simple polyhemoglobin (PolyHb) that only has an oxygen-carrying function. This is now in routine clinical use in South Africa and Russia. An oxygen carrier with antioxidant functions, PolyHb-catalase-superoxide dismutase, can fulfill two of the three functions of rbc. Even more complete is one with all three functions of rbc in the form of PolyHb-catalase-superoxide dismutase-carbonic anhydrase. The most advanced ones are nanodimension artificial rbc with either PEG-lipid membrane or PEG-PLA polymer membrane. Extensions into oxygen therapeutics include a PolyHb-tyrosinase that suppresses the growth of melanoma in a mice model. Another is a PolyHb-fibrinogen that is an oxygen carrier with platelet-like function. Research has now extended well beyond the original research on artificial rbc into many areas of artificial cells. These include nanoparticles, nanotubules, lipid vesicles, liposomes, polymer-tethered lipid vesicles, polymersomes, microcapsules, bioencapsulation, nanocapules, macroencapsulation, synthetic cells, and others. These are being used in nanotechnology, nanomedicine, regenerative medicine, enzyme/gene therapy, cell/stem cell therapy, biotechnology, drug delivery, hemoperfusion, nanosensers, and even by some groups in agriculture, industry, aquatic culture, nanocomputers, and nanorobotics. PMID:22409281

  9. Nonlinear electro-mechanobiological behavior of cell membrane during electroporation

    NASA Astrophysics Data System (ADS)

    Deng, Peigang; Lee, Yi-Kuen; Lin, Ran; Zhang, Tong-Yi

    2012-07-01

    A nonlinear electroporation (EP) model is proposed to study the electro-mechanobiological behavior of cell membrane during EP, by taking the nonlinear large deformation of the membrane into account. The proposed model predicts the critical transmembrane potential and the activation energy for EP, the equilibrium pore size, and the resealing process of the pore. Single-cell EP experiments using a micro EP chip were conducted on chicken red blood cells at different temperatures to determine the activation energy and the critical transmembrane potential for EP. The experimental results are in good agreement with the theoretical predictions.

  10. Attachment of killed Mycoplasma gallisepticum cells and membranes to erythrocytes

    SciTech Connect

    Banai, M.; Kahane, I.; Feldner, J.; Razin, S.

    1981-11-01

    To correlate viability with attachment capacity, Mycoplasma gallisepticum cells harvested at different growth phases and treated by various agents were tested for their capacity to attach to human erythrocytes. The results show that viability per se is not essential for M. gallisepticum attachment to erythrocytes, as cells killed by ultraviolet irradiation and membranes isolated by lysing M. gallisepticum cells by various means retained attachment capacity. However, treatment of the mycoplasmas by protein-denaturing agents, such as heart, glutaraldehyde, or prolonged exposure to low pH, drastically affected or even abolished attachment, supporting the protein nature of the mycoplasma membrane components responsible for specific binding to the sialoglycoprotein receptors on the erythrocytes.

  11. Composite polymer membranes for proton exchange membrane fuel cells operating at elevated temperatures and reduced humidities

    NASA Astrophysics Data System (ADS)

    Zhang, Tao

    Proton Exchange Membrane Fuel Cells (PEMFCs) are the leading candidate in the fuel cell technology due to the high power density, solid electrolyte, and low operational temperature. However, PEMFCs operating in the normal temperature range (60-80C) face problems including poor carbon monoxide tolerance and heat rejection. The poisoning effect can be significantly relieved by operating the fuel cell at elevated temperature, which also improves the heat rejection and electrochemical kinetics. Low relative humidity (RH) operation is also desirable to simplify the reactant humidification system. However, at elevated temperatures, reduced RH PEMFC performance is seriously impaired due to irreversible water loss from presently employed state-of-the-art polymer membrane, Nafion. This thesis focuses on developing polymer electrolyte membranes with high water retention ability for operation in elevated temperature (110-150C), reduced humidity (50%RH) PEMFCs. One approach is to alter Nafion by adding inorganic particles such as TiO2, SiO2, Zr(HPO 4)2, etc. While the presence of these materials in Nafion has proven beneficial, a reduction or no improvement in the PEMFC performance of Nafion/TiO2 and Nafion/Zr(HPO4)2 membranes is observed with reduced particle sizes or increased particle loadings in Nafion. It is concluded that the PEMFC performance enhancement associated with addition of these inorganic particles was not due to the particle hydrophilicity. Rather, the particle, partially located in the hydrophobic region of the membrane, benefits the cell performance by altering the membrane structure. Water transport properties of some Nafion composite membranes were investigated by NMR methods including pulsed field gradient spin echo diffusion, spin-lattice relaxation, and spectral measurements. Compared to unmodified Nafion, composite membranes materials exhibit longer longitudinal relaxation time constant T1. In addition to the Nafion material, sulfonated styrene-ethylene/butylene-styrene triblock copolymer (sSEBS) was investigated as an alternate membrane candidate. sSEBS was modified through introduction of polymer crosslinks using benzephenone as a photoinitiator and addition of a titania co-phase. A photocrosslinked membrane initially containing 15% benzophenone and 3% titania laminated with a 10 mum Nafion layer was found to produce the best PEMFC performance (120C, 50%RH).

  12. Activation of Lyn Tyrosine Kinase through Decreased Membrane Cholesterol Levels during a Change in Its Membrane Distribution upon Cell Detachment*

    PubMed Central

    Morinaga, Takao; Abe, Kohei; Nakayama, Yuji; Yamaguchi, Noritaka; Yamaguchi, Naoto

    2014-01-01

    Cellular membranes, which can serve as scaffolds for signal transduction, dynamically change their characteristics upon cell detachment. Src family kinases undergo post-translational lipid modification and are involved in a wide range of signaling events at the plasma membrane, such as cell proliferation, cell adhesion, and survival. Previously, we showed the differential membrane distributions among the members of Src family kinases by sucrose density gradient fractionation. However, little is known about the regulation of the membrane distribution of Src family kinases upon cell detachment. Here, we show that cell detachment shifts the main peak of the membrane distribution of Lyn, a member of Src family kinase, from the low density to the high density membrane fractions and enhances the kinase activity of Lyn. The change in Lyn distribution upon cell detachment involves both dynamin activity and a decrease in membrane cholesterol. Cell detachment activates Lyn through decreased membrane cholesterol levels during a change in its membrane distribution. Furthermore, cholesterol incorporation decreases Lyn activity and reduces the viability of suspension cells. These results suggest that cell detachment-induced Lyn activation through the change in the membrane distribution of Lyn plays an important role in survival of suspension cells. PMID:25104351

  13. Aluminum chloride and membrane potentials of barley root cells

    SciTech Connect

    Etherton, B.; Shane, M.

    1986-04-01

    Aluminum chloride at pH 4 hyperpolarizes the membrane potentials of barley root epidermal cells. The authors tested to see whether this hyperpolarization could be caused by an aluminum induced alteration of the permeability of the membrane to potassium or sodium ions by measuring the effect of .04 mM aluminum ions (the Ca/sup + +/ conc. was 0.1 mM) on the membrane potential changes induced by changing the potassium or sodium concentrations in the medium bathing the roots. Aluminum ions did not change the magnitude of potassium or sodium induced changes in membrane potentials but significantly altered the rates of potassium and sodium induced changes of the potential. The results indicate that aluminum ions did not change sodium or potassium ion permeabilities of barley root cells.

  14. Direct Cytoskeleton Forces Cause Membrane Softening in Red Blood Cells.

    PubMed

    Rodrguez-Garca, Ruddi; Lpez-Montero, Ivn; Mell, Michael; Egea, Gustavo; Gov, Nir S; Monroy, Francisco

    2015-06-16

    Erythrocytes are flexible cells specialized in the systemic transport of oxygen in vertebrates. This physiological function is connected to their outstanding ability to deform in passing through narrow capillaries. In recent years, there has been an influx of experimental evidence of enhanced cell-shape fluctuations related to metabolically driven activity of the erythroid membrane skeleton. However, no direct observation of the active cytoskeleton forces has yet been reported to our knowledge. Here, we show experimental evidence of the presence of temporally correlated forces superposed over the thermal fluctuations of the erythrocyte membrane. These forces are ATP-dependent and drive enhanced flickering motions in human erythrocytes. Theoretical analyses provide support for a direct force exerted on the membrane by the cytoskeleton nodes as pulses of well-defined average duration. In addition, such metabolically regulated active forces cause global membrane softening, a mechanical attribute related to the functional erythroid deformability. PMID:26083919

  15. Fluorescent sterols as tools in membrane biophysics and cell biology.

    PubMed

    Wüstner, Daniel

    2007-03-01

    Cholesterol is an important constituent of cellular membranes playing a fundamental role in many biological processes. This sterol affects membrane permeability, lateral lipid organization, signal transduction and membrane trafficking. Intracellular sterol transport modes and pathways as well as the regulation of sterol metabolism and disposition in various tissues are areas of intense research. Progress is intimately linked to development and use of appropriate analogs, which closely mimic the properties of cholesterol while allowing to be detected by spectroscopic or microscopic methods. This review provides an overview of various fluorescent sterols used in membrane biophysics and cell biology including analogs of cholesterol and cholesteryl esters. Attention is paid to the natural fluorescent sterol dehydroergosterol (DHE). A survey of the many applications of DHE in biological research is presented. Special emphasis is on recent developments in fluorescence microscopy instrumentation to visualize DHE as an intrinsically fluorescent analog of cholesterol in living cells. PMID:17241621

  16. Mechanical degradation of fuel cell membranes under fatigue fracture tests

    NASA Astrophysics Data System (ADS)

    M. H. Khorasany, Ramin; Sadeghi Alavijeh, Alireza; Kjeang, Erik; Wang, G. G.; Rajapakse, R. K. N. D.

    2015-01-01

    The effects of cyclic stresses on the fatigue and mechanical stability of perfluorosulfonic acid (PFSA) membranes are experimentally investigated under standard fuel cell conditions. The experiments are conducted ex-situ by subjecting membrane specimens to cyclic uniaxial tension at controlled temperature and relative humidity. The fatigue lifetime is measured in terms of the number of cycles until ultimate fracture. The results indicate that the membrane fatigue lifetime is a strong function of the applied stress, temperature, and relative humidity. The fatigue life increases exponentially with reduced stresses in all cases. The effect of temperature is found to be more significant than that of humidity, with reduced fatigue life at high temperatures. The maximum membrane strain at fracture is determined to decrease exponentially with increasing membrane lifetime. At a given fatigue life, a membrane exposed to fuel cell conditions is shown to accommodate more plastic strain before fracture than one exposed to room conditions. Overall, the proposed ex-situ membrane fatigue experiment can be utilized to benchmark the fatigue lifetime of new materials in a fraction of the time and cost associated with conventional in-situ accelerated stress testing methods.

  17. Membrane proteins of dense lysosomes from Chinese hamster ovary cells

    SciTech Connect

    Chance, S.C.

    1987-01-01

    In this work membrane proteins from lysosomes were studied in order to gain more information on the biogenesis and intracellular sorting of this class of membrane proteins. Membrane proteins were isolated from a purified population of lysosomes. These proteins were then examined for various co- and post-translational modifications which could serve as potential intracellular sorting signals. Biochemical analysis using marker enzymatic activities detected no plasma membrane, Golgi, endoplasmic reticulum, peroxisomes, mitochondria, or cytosol. Analysis after incorporation of ({sup 3}H)thymidine or ({sup 3}H)uridine detected no nuclei or ribosomes. A fraction containing integral membrane proteins was obtained from the dense lysosomes by extraction with Triton X-114. Twenty-three polypeptides which incorporated both ({sup 35}S)methionine and ({sup 3}H)leucine were detected by SDS PAGE in this membrane fraction, and ranged in molecular weight from 30-130 kDa. After incorporation by cells of various radioactive metabolic precursors, the membrane fraction from dense lysosomes was examined and was found to be enriched in mannose, galactose, fucose, palmitate, myristate, and sulfate, but was depleted in phosphate. The membrane fraction from dense lysosomes was then analyzed by SDS PAGE to determine the apparent molecular weights of modified polypepties.

  18. A boron phosphate-phosphoric acid composite membrane for medium temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Mamlouk, M.; Scott, K.

    2015-07-01

    A composite membrane based on a non-stoichiometric composition of BPO4 with excess of PO4 (BPOx) was synthesised and characterised for medium temperature fuel cell use (120-180 C). The electrolyte was characterised by FTIR, SS-NMR, TGA and XRD and showed that the B-O is tetrahedral, in agreement with reports in the literature that boron phosphorus oxide compounds at B:P < 1 are exclusively built of borate and phosphate tetrahedra. Platinum micro electrodes were used to study the electrolyte compatibility and stability towards oxygen reduction at 150 C and to obtain kinetic and mass transport parameters. The conductivities of the pure BPOx membrane electrolyte and a Polybenzimidazole (PBI)-4BPOx composite membrane were 7.9 10-2 S cm-1 and 4.5 10-2 S cm-1 respectively at 150 C, 5%RH. Fuel cell tests showed a significant enhancement in performance of BPOx over that of typical 5.6H3PO4-PBI membrane electrolyte. The enhancement is due to the improved ionic conductivity (3), a higher exchange current density of the oxygen reduction (30) and a lower membrane gas permeability (10). Fuel cell current densities at 0.6 V were 706 and 425 mA cm-2 for BPOx and 5.6H3PO4-PBI, respectively, at 150 C with O2 (atm).

  19. Understanding the transport processes in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Cheah, May Jean

    Polymer electrolyte membrane (PEM) fuel cells are energy conversion devices suitable for automotive, stationary and portable applications. An engineering challenge that is hindering the widespread use of PEM fuel cells is the water management issue, where either a lack of water (resulting in membrane dehydration) or an excess accumulation of liquid water (resulting in fuel cell flooding) critically reduces the PEM fuel cell performance. The water management issue is addressed by this dissertation through the study of three transport processes occurring in PEM fuel cells. Water transport within the membrane is a combination of water diffusion down the water activity gradient and the dragging of water molecules by protons when there is a proton current, in a phenomenon termed electro-osmotic drag, EOD. The impact of water diffusion and EOD on the water flux across the membrane is reduced due to water transport resistance at the vapor/membrane interface. The redistribution of water inside the membrane by EOD causes an overall increase in the membrane resistance that regulates the current and thus EOD, thereby preventing membrane dehydration. Liquid water transport in the PEM fuel cell flow channel was examined at different gas flow regimes. At low gas Reynolds numbers, drops transitioned into slugs that are subsequently pushed out of the flow channel by the gas flow. The slug volume is dependent on the geometric shape, the surface wettability and the orientation (with respect to gravity) of the flow channel. The differential pressure required for slug motion primarily depends on the interfacial forces acting along the contact lines at the front and the back of the slug. At high gas Reynolds number, water is removed as a film or as drops depending on the flow channel surface wettability. The shape of growing drops at low and high Reynolds number can be described by a simple interfacial energy minimization model. Under flooding conditions, the fuel cell local current can be significantly reduced due to diffusional limitation of the transport of gaseous reactants through inerts such as water vapor and nitrogen gas. A non-uniform current distribution across the membrane electrode assembly can cause pinhole formation and ultimately, fuel cell failure.

  20. RBC elastic properties studied by means of active rheology approach

    NASA Astrophysics Data System (ADS)

    Khokhlova, Maria D.; Lyubin, Evgeny V.; Skryabina, Maria N.; Fedyanin, Andrey A.

    2012-10-01

    Double optical tweezers combined with active rheology approach are suggested for dynamic monitoring of the red blood cell elastic properties. Frequency dependence of the phase difference in the forced movement of the erythrocyte opposite edges appeared to be highly dependent on the rigidity of the cellular membrane. Cell relaxation time value is suggested as an effective parameter determining the state of the cell. Photo-induced effects caused by optical trapping are analyzed.

  1. Application of Dissipative Particle Dynamics to the Study of a Red Blood Cell in Simple Shear Flow

    NASA Astrophysics Data System (ADS)

    Ye, Ting; Phan-Thien, Nhan; Khoo, Boo Cheong; Lim, Chwee Teck

    2014-11-01

    The present work reports an attempt to apply the dissipative particle dynamics (DPD) method to study the dynamic behaviors of a red blood cell (RBC) in simple shear flow. The simulation system is discretized into four types of particles, namely wall particles, fluid particles, membrane particles and internal particles. The particle interaction is modeled by the DPD method, and the membrane particles are connected into a viscoelastic triangular network to represent the RBC membrane. As benchmarking tests, we simulate the deformation of a spherical capsule in shear flow and compare it with the past study, and also examine the effect of computational domain size. After that, we investigate the dynamics of a RBC in shear flow at different membrane shear and bending moduli. Our simulations reproduce the tank-treading, trembling and tumbling motions of the RBC at the shear modulus Es = 6, 60 and 600 ?N/m, respectively. Moreover, we find that the RBC undergoes a trembling motion when its bending modulus is large enough, where the obvious stretching and smoothing of the RBC occur alternately in shape.

  2. Corona discharge in electroporation of cell membranes

    NASA Astrophysics Data System (ADS)

    Cramariuc, R.; Tudorache, A.; Popa, M. E.; Branduse, E.; Nisiparu, L.; Mitelut, A.; Turtoi, M. O.; Fotescu, L.

    2008-12-01

    The objective of the present work is to demonstrate that electrical corona discharge is very efficient in cellular membrane electroporation due to current pulses with sharp front (2-5 ns) and to the fact that corona discharge is associated with UV radiation and micro particles emission. A comparison between DC and AC at 800 Hz and a special waveform to corona application is presented. The comparison is analyzed by means of applying all these in the maceration process (electroplasmolysis) of red wine production and in the processes of different types of the microbes.

  3. Membrane potential genesis in Nitella cells, mitochondria, and thylakoids.

    PubMed

    Kitasato, Hiroshi

    2003-10-01

    The resting membrane potential of Nitella cells shifts in parallel with the change in H+ equilibrium potential, but is not equal to the H+ equilibrium potential. The deviation of the membrane potential from the H+ equilibrium potential depends on the extrusion rate of H+ by the electrogenic H+-pump. The activity of the electrogenic H+-pump was formulated in terms of the change in the free energy of ATP hydrolysis. The deviation of membrane potential from the H+ equilibrium potential induces a passive H+ flow. The passive inward H+ current may be coupled with Cl- uptake. The coupling rate of H+,Cl- co-transport was discussed. The membrane potential of mitochondria was electrochemically formulated in terms of oxidation-reduction H2/H+ half-cells spontaneously formed at the inner and outer boundaries of each trans-membrane electron-conducting pathway. The membrane potential formed by a pair of H2/H+ redox cells is pH-sensitive in its nature, but deviates from the H+ equilibrium potential to an extent that depends on the logarithm of the ratio of H2 concentrations at the inner and outer boundaries. The membrane potential of thylakoids is considered to be primarily due to the electromotive force of photocells embedded in the thylakoid membrane, as far as the anode and cathode of each photocell are in contact with the inner and outer solutions, respectively. The light-induced electronic current yields oxygen at the inner boundary and causes an increase in the H2 pool at the outer boundary of the electron-conducting pathway, which has no shunting plastoquinone chain between these two boundaries. PMID:12920604

  4. The role of MIP in lens fiber cell membrane transport.

    PubMed

    Varadaraj, K; Kushmerick, C; Baldo, G J; Bassnett, S; Shiels, A; Mathias, R T

    1999-08-01

    MIP has been hypothesized to be a gap junction protein, a membrane ion channel, a membrane water channel and a facilitator of glycerol transport and metabolism. These possible roles have been indirectly suggested by the localization of MIP in lens gap junctional plaques and the properties of MIP when reconstituted into artificial membranes or exogenously expressed in oocytes. We have examined lens fiber cells to see if these functions are present and whether they are affected by a mutation of MIP found in CatFr mouse lens. Of these five hypothesized functions, only one, the role of water channel, appears to be true of fiber cells in situ. Based on the rate of volume change of vesicles placed in a hypertonic solution, fiber cell membrane lipids have a low water permeability (pH2O) on the order of 1 micron/sec whereas normal fiber cell membrane pH2O was 17 micron/sec frog, 32 micron/sec rabbit and 43 micron/sec mouse. CatFr mouse lens fiber cell pH2O was reduced by 13 micron/sec for heterozygous and 30 micron/sec for homozygous mutants when compared to wild type. Lastly, when expressed in oocytes, the pH2O conferred by MIP is not sensitive to Hg2+ whereas that of CHIP28 (AQP1) is blocked by Hg2+. The fiber cell membrane pH2O was also not sensitive to Hg2+ whereas lens epithelial cell pH2O (136 micron/sec in rabbit) was blocked by Hg2+. With regard to the other hypothesized roles, fiber cell membrane or lipid vesicles had a glycerol permeability on the order of 1 nm/sec, an order of magnitude less than that conferred by MIP when expressed in oocytes. Impedance studies were employed to determine gap junctional coupling and fiber cell membrane conductance in wild-type and heterozygous CatFr mouse lenses. There was no detectable difference in either coupling or conductance between the wild-type and the mutant lenses. PMID:10441663

  5. An elastic network model based on the structure of the red blood cell membrane skeleton.

    PubMed Central

    Hansen, J C; Skalak, R; Chien, S; Hoger, A

    1996-01-01

    A finite element network model has been developed to predict the macroscopic elastic shear modulus and the area expansion modulus of the red blood cell (RBC) membrane skeleton on the basis of its microstructure. The topological organization of connections between spectrin molecules is represented by the edges of a random Delaunay triangulation, and the elasticity of an individual spectrin molecule is represented by the spring constant, K, for a linear spring element. The model network is subjected to deformations by prescribing nodal displacements on the boundary. The positions of internal nodes are computed by the finite element program. The average response of the network is used to compute the shear modulus (mu) and area expansion modulus (kappa) for the corresponding effective continuum. For networks with a moderate degree of randomness, this model predicts mu/K = 0.45 and kappa/K = 0.90 in small deformations. These results are consistent with previous computational models and experimental estimates of the ratio mu/kappa. This model also predicts that the elastic moduli vary by 20% or more in networks with varying degrees of randomness. In large deformations, mu increases as a cubic function of the extension ratio lambda 1, with mu/K = 0.62 when lambda 1 = 1.5. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 11 FIGURE 12 FIGURE 13 FIGURE 14 FIGURE 15 FIGURE 16 FIGURE 17 FIGURE 18 FIGURE 20 FIGURE A1 FIGURE A2 FIGURE A3 PMID:8770194

  6. Development of membrane electrode assembly for high temperature proton exchange membrane fuel cell by catalyst coating membrane method

    NASA Astrophysics Data System (ADS)

    Liang, Huagen; Su, Huaneng; Pollet, Bruno G.; Pasupathi, Sivakumar

    2015-08-01

    Membrane electrode assembly (MEA), which contains cathode and anode catalytic layer, gas diffusion layers (GDL) and electrolyte membrane, is the key unit of a PEMFC. An attempt to develop MEA for ABPBI membrane based high temperature (HT) PEMFC is conducted in this work by catalyst coating membrane (CCM) method. The structure and performance of the MEA are examined by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and I-V curve. Effects of the CCM preparation method, Pt loading and binder type are investigated for the optimization of the single cell performance. Under 160 C and atmospheric pressure, the peak power density of the MEA, with Pt loading of 0.5 mg cm-2 and 0.3 mg cm-2 for the cathode and the anode, can reach 277 mW cm-2, while a current density of 620 A cm-2 is delivered at the working voltage of 0.4 V. The MEA prepared by CCM method shows good stability operating in a short term durability test: the cell voltage maintained at ?0.45 V without obvious drop when operated at a constant current density of 300 mA cm-2 and 160 C under ambient pressure for 140 h.

  7. The relationship between tissue RBC n-3 fatty acids and pulse wave velocity.

    PubMed

    Nishizawa, Hiroto; Hamazaki, Kei; Hamazaki, Tomohito; Fujioka, Shuntaro; Sawazaki, Shigeki

    2006-01-01

    Consumption of n-3 fatty acids is well-known to prevent deaths from coronary heart disease. However, not many studies have investigated the effects of n-3 fatty acids on arteriosclerosis in free living subjects. The pulse wave velocity between the brachia and ankles (baPWV) of 161 healthy male subjects was measured and the fatty acid composition of the total phospholipid fraction of their red blood cells (RBC) analyzed. There was a significant inverse correlation between the eicosapentaenoic acid concentrations in the RBC phospholipid fraction and baPWV of the subjects after adjustment for age, pulse rate and diastolic pressure, or further for body mass index, smoking status, diabetes and the ratio of low-density cholesterol to high-density cholesterol. Although baPWV values may not directly indicate arteriosclerosis, the present study suggests that long-term n-3 fatty acid intake is beneficial for the vascular system. PMID:16634535

  8. Application of graphene membrane in micro-Golay cell array

    NASA Astrophysics Data System (ADS)

    Ledwosinska, Elizabeth; Szkopek, Thomas; Guermoune, Abdeladim; Siaj, Mohamed

    2012-02-01

    We report the design, simulation, and fabrication of a miniaturized Golay cell array, implemented with monolayer graphene suspended over a TEM grid as the deflecting membrane. Currently, ultra-thin membranes for Golay cell applications suffer diminishing responsivity as the lateral dimensions are reduced to the microscopic scale. We propose graphene as the ideal membrane material for micro-Golay cell arrays, whereby the minimal elastic stiffness of atomically thin graphene allows membranes to be scaled to microscopic dimensions. We examine how graphene's unique material parameters, such as high mobility, negligible gas permeability, and supreme strength, offer ease of fabrication and improved performance over existing technology. Simulations of graphene membrane deflection versus temperature are presented, with an analysis of the optimal geometry for maximum sensitivity. Cavities with all spatial dimensions under 100 ?m are predicted to provide sensitivities of hundreds of nanometres per Kelvin, in good competition with existing research on devices many times larger. Up to a four-fold increase in responsivity of 400 nm/K is predicted for a graphene cell of the same dimensions as current technology, and a three-fold increase for a cell one quarter the diameter. These predictions permit an increased detector density in a focal plane array application while still providing improved responsivity. Furthermore, our fabrication method permits the construction of arrays consisting of thousands of devices, avoiding individual cell assembly and including built-in electrical contacts due to the conductive nature of graphene. We also present a theoretical analysis of interferometric optical read-out of membrane deflection.

  9. A membrane bending model of outer hair cell electromotility.

    PubMed Central

    Raphael, R M; Popel, A S; Brownell, W E

    2000-01-01

    We propose a new mechanism for outer hair cell electromotility based on electrically induced localized changes in the curvature of the plasma membrane (flexoelectricity). Electromechanical coupling in the cell's lateral wall is modeled in terms of linear constitutive equations for a flexoelectric membrane and then extended to nonlinear coupling based on the Langevin function. The Langevin function, which describes the fraction of dipoles aligned with an applied electric field, is shown to be capable of predicting the electromotility voltage displacement function. We calculate the electrical and mechanical contributions to the force balance and show that the model is consistent with experimentally measured values for electromechanical properties. The model rationalizes several experimental observations associated with outer hair cell electromotility and provides for constant surface area of the plasma membrane. The model accounts for the isometric force generated by the cell and explains the observation that the disruption of spectrin by diamide reduces force generation in the cell. We discuss the relation of this mechanism to other proposed models of outer hair cell electromotility. Our analysis suggests that rotation of membrane dipoles and the accompanying mechanical deformation may be the molecular mechanism of electromotility. PMID:10827967

  10. Dipole relaxation in erythrocyte membrane: involvement of spectrin skeleton.

    PubMed

    Ivanov, I T; Paarvanova, B; Slavov, T

    2012-12-01

    Polarization of spectrin-actin undermembrane skeleton of red blood cell (RBC) plasma membranes was studied by impedance spectroscopy. Relatedly, dielectric spectra of suspensions that contained RBCs of humans, mammals (bovine, horse, dog, cat) and birds (turkey, pigeon, duck), and human RBC ghost membranes were continuously obtained during heating from 20 to 70C. Data for the complex admittance and capacitance were used to derive the suspension resistance, R, and capacitance, C, as well as the energy loss as a function of temperature. As in previous studies, two irreversible temperature-induced transitions in the human RBC plasma membrane were detected at 49.5C and at 60.7C (at low heating rate). The transition at 49.5C was evident from the abrupt changes in R, and C and the fall in the energy loss, due to dipole relaxation. For the erythrocytes of indicated species the changes in R and C displayed remarkable and similar frequency profiles within the 0.05-13MHz domain. These changes were subdued after cross-linking of membranes by diamide (0.3-1.3mM) and glutaraldehyde (0.1-0.4%) and at the presence of glycerol (10%). Based on the above results and previous reports, the dielectric changes at 49.5C were related to dipole relaxation and segmental mobility of spectrin cytoskeleton. The results open the possibility for selective dielectric thermolysis of cell cytoskeleton. PMID:22513264

  11. Platinum nanoparticle deposition on polymeric membranes for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Moreira, A. J.; Lopera, S.; Ordonez, N.; Mansano, R. D.

    2012-06-01

    This work aimed to show an alternative to produce platinum nanoparticles directly on a polymeric membrane using plasma technique, in order to make these nanoparticles adhere to the membrane, in size, shape and homogeneity controlled by the process without damaging the polymeric material. In this manner the cell's production time is reduced since the catalyst is directly deposited on the polymeric membrane; the time of the process is approximately five minutes for each side of the membrane, and the total time for each membrane is 10 minutes. With this exposure time, and the advantage of controlling the other parameters such as pressure, RF power, gas flow rate and temperature of the electrode, it was possible to obtain platinum nanoparticles with dimensions of about 50 nm scattered homogenously on the membrane, without damaging the structure of the polymeric material and, consequently, affecting its performance. Together with platinum nanoparticles were also deposited carbon nanoparticles, so that these acted as catalyst support, avoiding self poisoning. Electrochemical activity tests were performed to test the efficiency of the cell where it was exposed to different pressures and flow rates of O2 and H2, reaching open-circuit voltage of 750 mVolts.

  12. Membrane Mechanics of Endocytosis in Cells with Turgor

    PubMed Central

    Dmitrieff, Serge; Ndlec, Franois

    2015-01-01

    Endocytosis is an essential process by which cells internalize a piece of plasma membrane and material from the outside. In cells with turgor, pressure opposes membrane deformations, and increases the amount of force that has to be generated by the endocytic machinery. To determine this force, and calculate the shape of the membrane, we used physical theory to model an elastic surface under pressure. Accurate fits of experimental profiles are obtained assuming that the coated membrane is highly rigid and preferentially curved at the endocytic site. The forces required from the actin machinery peaks at the onset of deformation, indicating that once invagination has been initiated, endocytosis is unlikely to stall before completion. Coat proteins do not lower the initiation force but may affect the process by the curvature they induce. In the presence of isotropic curvature inducers, pulling the tip of the invagination can trigger the formation of a neck at the base of the invagination. Hence direct neck constriction by actin may not be required, while its pulling role is essential. Finally, the theory shows that anisotropic curvature effectors stabilize membrane invaginations, and the loss of crescent-shaped BAR domain proteins such as Rvs167 could therefore trigger membrane scission. PMID:26517669

  13. Coarse-Grained Models for Protein-Cell Membrane Interactions

    PubMed Central

    Bradley, Ryan; Radhakrishnan, Ravi

    2015-01-01

    The physiological properties of biological soft matter are the product of collective interactions, which span many time and length scales. Recent computational modeling efforts have helped illuminate experiments that characterize the ways in which proteins modulate membrane physics. Linking these models across time and length scales in a multiscale model explains how atomistic information propagates to larger scales. This paper reviews continuum modeling and coarse-grained molecular dynamics methods, which connect atomistic simulations and single-molecule experiments with the observed microscopic or mesoscale properties of soft-matter systems essential to our understanding of cells, particularly those involved in sculpting and remodeling cell membranes. PMID:26613047

  14. Filter-exchange PGSE NMR determination of cell membrane permeability

    NASA Astrophysics Data System (ADS)

    slund, Ingrid; Nowacka, Agnieszka; Nilsson, Markus; Topgaard, Daniel

    2009-10-01

    A new PGSE NMR sequence is introduced for measuring diffusive transport across the plasma membrane of living cells. A "diffusion filter" and a variable mixing time precedes a standard PGSE block for diffusion encoding of the NMR signal. The filter is a PGSE block optimized for selectively removing the magnetization of the extracellular water. With increasing mixing time the intra- and extracellular components approach their equilibrium fractional populations. The rate of exchange can be measured using only a few minutes of instrument time. Water exchange over the plasma membrane of starved yeast cells is studied in the temperature range +5 to +32 C.

  15. Microstructured Electrolyte Membranes to Improve Fuel Cell Performance

    NASA Astrophysics Data System (ADS)

    Wei, Xue

    Fuel cells, with the advantages of high efficiency, low greenhouse gas emission, and long lifetime are a promising technology for both portable power and stationary power sources. The development of efficient electrolyte membranes with high ionic conductivity, good mechanical durability and dense structure at low cost remains a challenge to the commercialization of fuel cells. This thesis focuses on exploring novel composite polymer membranes and ceramic electrolytes with the microstructure engineered to improve performance in direct methanol fuel cells (DMFCs) and solid oxide fuel cells (SOFCs), respectively. Polymer/particle composite membranes hold promise to meet the demands of DMFCs at lower cost. The structure of composite membranes was controlled by aligning proton conducting particles across the membrane thickness under an applied electric field. The field-induced structural changes caused the membranes to display an enhanced water uptake, proton conductivity, and methanol permeability in comparison to membranes prepared without an applied field. Although both methanol permeability and proton conductivity are enhanced by the applied field, the permeability increase is relatively lower than the proton conductivity improvement, which results in enhanced proton/methanol selectivity and improved DMFC performance. Apatite ceramics are a new class of fast ion conductors being studied as alternative SOFC electrolytes in the intermediate temperature range. An electrochemical/hydrothermal deposition method was developed to grow fully dense apatite membranes containing well-developed crystals with c-axis alignment to promote ion conductivity. Hydroxyapatite seed crystals were first deposited onto a metal substrate electrochemically. Subsequent ion substitution during the hydrothermal growth process promoted the formation of dense, fully crystalline films with microstructure optimal for ion transport. The deposition parameters were systematically investigated, such as reactant type, reagent concentration, solution pH, and reaction time. Dense apatite films were formed on palladium substrates that can serve as intermediate temperature fuel cell anodes. The novel apatite membrane structure is promising for fuel cell applications, as well as in improving the biocompatibility of orthopedic implants when coated on stainless steel or titanium substrates.

  16. The antioxidant effect of erythropoietin on thalassemic blood cells.

    PubMed

    Amer, Johnny; Dana, Mutaz; Fibach, Eitan

    2010-01-01

    Because of its stimulating effect on RBC production, erythropoietin (Epo) is used to treat anemia, for example, in patients on dialysis or on chemotherapy. In ?-thalassemia, where Epo levels are low relative to the degree of anemia, Epo treatment improves the anemia state. Since RBC and platelets of these patients are under oxidative stress, which may be involved in anemia and thromboembolic complications, we investigated Epo as an antioxidant. Using flow-cytometry technology, we found that in vitro treatment with Epo of blood cells from these patients increased their glutathione content and reduced their reactive oxygen species, membrane lipid peroxides, and external phosphatidylserine. This resulted in reduced susceptibility of RBC to undergo hemolysis and phagocytosis. Injection of Epo into heterozygous (Hbb(th3/+)) ?-thalassemic mice reduced the oxidative markers within 3 hours. Our results suggest that, in addition to stimulating RBC and fetal hemoglobin production, Epo might alleviate symptoms of hemolytic anemias as an antioxidant. PMID:21490911

  17. Once upon a time the cell membranes: 175years of cell boundary research.

    PubMed

    Lombard, Jonathan

    2014-01-01

    All modern cells are bounded by cell membranes best described by the fluid mosaic model. This statement is so widely accepted by biologists that little attention is generally given to the theoretical importance of cell membranes in describing the cell. This has not always been the case. When the Cell Theory was first formulated in the XIX(th) century, almost nothing was known about the cell membranes. It was not until well into the XX(th) century that the existence of the plasma membrane was broadly accepted and, even then, the fluid mosaic model did not prevail until the 1970s. How were the cell boundaries considered between the articulation of the Cell Theory around 1839 and the formulation of the fluid mosaic model that has described the cell membranes since 1972? In this review I will summarize the major historical discoveries and theories that tackled the existence and structure of membranes and I will analyze how these theories impacted the understanding of the cell. Apart from its purely historical relevance, this account can provide a starting point for considering the theoretical significance of membranes to the definition of the cell and could have implications for research on early life. PMID:25522740

  18. Highly Water Resistant Anion Exchange Membrane for Fuel Cells.

    PubMed

    Yang, Zhengjin; Hou, Jianqiu; Wang, Xinyu; Wu, Liang; Xu, Tongwen

    2015-07-01

    For anion exchange membranes (AEMs), achieving efficient hydroxide conductivity without excessive hydrophilicity presents a challenge. Hence, new strategies for constructing mechanically strengthened and hydroxide conductive (especially at controlled humidity) membranes are critical for developing better AEMs. Macromolecular modification involving ylide chemistry (Wittig reaction) for the fabrication of novel AEMs with an interpenetrating polymer network structure is reported. The macromolecular modification is cost effective, facile, and based on a one-pot synthesis. AEM water uptake is reduced to 3.6 wt% and a high hydroxide conductivity (69.7 mS cm(-1) , 90 C) is achieved simultaneously. More importantly, the membrane exhibits similar tensile strength (>35 MPa) and comparable flexibility in both dry and wet states. These AEMs could find further applications within anion exchange membrane fuel cells with low humidity or photoelectric assemblies. PMID:25962480

  19. New High-Temperature Membranes Developed for Proton Exchange Membrane Fuel Cells

    NASA Technical Reports Server (NTRS)

    Kinder, James D.

    2004-01-01

    Fuel cells are receiving a considerable amount of attention for potential use in a variety of areas, including the automotive industry, commercial power generation, and personal electronics. Research at the NASA Glenn Research Center has focused on the development of fuel cells for use in aerospace power systems for aircraft, unmanned air vehicles, and space transportation systems. These applications require fuel cells with higher power densities and better durability than what is required for nonaerospace uses. In addition, membrane cost is a concern for any fuel cell application. The most widely used membrane materials for proton exchange membrane (PEM) fuel cells are based on sulfonated perfluorinated polyethers, typically Nafion 117, Flemion, or Aciplex. However, these polymers are costly and do not function well at temperatures above 80 C. At higher temperatures, conventional membrane materials dry out and lose their ability to conduct protons, essential for the operation of the fuel cell. Increasing the operating temperature of PEM fuel cells from 80 to 120 C would significantly increase their power densities and enhance their durability by reducing the susceptibility of the electrode catalysts to carbon monoxide poisoning. Glenn's Polymers Branch has focused on developing new, low-cost membranes that can operate at these higher temperatures. A new series of organically modified siloxane (ORMOSIL) polymers were synthesized for use as membrane materials in a high-temperature PEM fuel cell. These polymers have an organic portion that can allow protons to transport through the polymer film and a cross-linked silica network that gives the polymers dimensional stability. These flexible xerogel polymer films are thermally stable, with decomposition onset as high as 380 C. Two types of proton-conducting ORMOSIL films have been produced: (1) NASA-A, which can coordinate many highly acid inorganic salts that facilitate proton conduction and (2) NASA-B, which has been produced and which incorporates strongly acidic (proton donating) functional groups into the polymer backbone. Both of these polymer films have demonstrated significantly higher proton conductivity than Nafion at elevated temperatures and low relative humidities. An added advantage is that these polymers are very inexpensive to produce because their starting materials are commodity chemicals that are commercially available in large volumes.

  20. Inorganic Nanoporous Membranes for Immunoisolated Cell-Based Drug Delivery

    PubMed Central

    Mendelsohn, Adam; Desai, Tejal

    2014-01-01

    Materials advances enabled by nanotechnology have brought about promising approaches to improve the encapsulation mechanism for immunoisolated cell-based drug delivery. Cell-based drug delivery is a promising treatment for many diseases but has thus far achieved only limited clinical success. Treatment of insulin dependent diabetes mellitus (IDDM) by transplantation of pancreatic ?-cells represents the most anticipated application of cell-based drug delivery technology. This review outlines the challenges involved with maintaining transplanted cell viability and discusses how inorganic nanoporous membranes may be useful in achieving clinical success. PMID:20384222

  1. The role of cell membranes in the regulation of lignification in pine cells

    NASA Technical Reports Server (NTRS)

    Hendrix, D. L.

    1978-01-01

    The identity of pine cell membranes bearing PAL enzyme activity, the isolation of a plasma membrane preparation from pine cells for testing as a regulatory barrier in lignification, and the measurement of the geopotential effect in pine stems are presented. A model to describe and predict the interaction of gravity and lignification of higher plants was developed.

  2. Importance of Heparin Provocation and SPECT/CT in Detecting Obscure Gastrointestinal Bleeding on 99mTc-RBC Scintigraphy

    PubMed Central

    Haghighatafshar, Mahdi; Gheisari, Farshid; Ghaedian, Tahereh

    2015-01-01

    Abstract We presented a pediatric case with a history of intermittent melena for 3 years because of angiodyplasia of small intestine. The results of frequent upper gastrointestinal endoscopies and colonoscopies as well as both 99mTc-red blood cell (RBC) and Meckel's scintigraphies for several times were negative in detection of bleeding site. However, 99mTc-RBC scintigraphy with single-photon emission computed tomography (SPECT)/computed tomography (CT) after heparin augmentation detected a site of bleeding in the distal ileum which later was confirmed during surgery with final diagnosis of angiodysplasia. It could be stated that heparin provocation of bleeding before 99mTc-RBC scintigraphy accompanied by fused SPECT/CT images should be kept in mind for management of intestinal bleeding especially in difficult cases. PMID:26313771

  3. Lipids that determine detergent resistance of MDCK cell membrane fractions.

    PubMed

    Manni, Marco M; Cano, Ainara; Alonso, Cristina; Goi, Flix M

    2015-10-01

    A comparative lipidomic study has been performed of whole Madin-Darby canine kidney epithelial cells and of the detergent-resistant membrane fraction (DRM) obtained after treating the cells with the non-ionic detergent Triton X-100. The DRM were isolated following a standard procedure that is extensively used in cell biology studies. Significant differences were found in the lipid composition of the whole cells and of DRM. The latter were enriched in all the analyzed sphingolipid classes: sphingomyelins, ceramides and hexosylceramides. Diacylglycerols were also preferentially found in DRM. The detergent-resistant fraction was also enriched in saturated over unsaturated fatty acyl chains, and in sn-1 acyl chains containing 16 carbon atoms, over the longer and shorter ones. The glycerophospholipid species phosphatidylethanolamines and phosphatidylinositols, that were mainly unsaturated, did not show a preference for DRM. Phosphatidylcholines were an intermediate case: the saturated, but not the unsaturated species were found preferentially in DRM. The question remains on whether these DRM, recovered from detergent-membrane mixtures by floatation over a sucrose gradient, really correspond to membrane domains existing in the cell membrane prior to detergent treatment. PMID:26320877

  4. Autophagy modulates cell migration and ?1 integrin membrane recycling

    PubMed Central

    Tuloup-Minguez, Vronique; Hama, Ahmed; Greffard, Anne; Nicolas, Valrie; Codogno, Patrice; Botti, Jolle

    2013-01-01

    Cell migration is dependent on a series of integrated cellular events including the membrane recycling of the extracellular matrix receptor integrins. In this paper, we investigate the role of autophagy in regulating cell migration. In a wound-healing assay, we observed that autophagy was reduced in cells at the leading edge than in cells located rearward. These differences in autophagy were correlated with the robustness of MTOR activity. The spatial difference in the accumulation of autophagic structures was not detected in rapamycin-treated cells, which had less migration capacity than untreated cells. In contrast, the knockdown of the autophagic protein ATG7 stimulated cell migration of HeLa cells. Accordingly, atg3?/? and atg5?/? MEFs have greater cell migration properties than their wild-type counterparts. Stimulation of autophagy increased the co-localization of ?1 integrin-containing vesicles with LC3-stained autophagic vacuoles. Moreover, inhibition of autophagy slowed down the lysosomal degradation of internalized ?1 integrins and promoted its membrane recycling. From these findings, we conclude that autophagy regulates cell migration, a central mechanism in cell development, angiogenesis, and tumor progression, by mitigating the cell surface expression of ?1 integrins. PMID:24036548

  5. Membrane with internal passages to permit fluid flow and an electrochemical cell containing the same

    NASA Technical Reports Server (NTRS)

    Cisar, Alan J. (Inventor); Gonzalez-Martin, Anuncia (Inventor); Hitchens, G. Duncan (Inventor); Murphy, Oliver J. (Inventor)

    1997-01-01

    The invention provides an improved proton exchange membrane for use in electrochemical cells having internal passages parallel to the membrane surface, an apparatus and process for making the membrane, membrane and electrode assemblies fabricated using the membrane, and the application of the membrane and electrode assemblies to a variety of devices, both electrochemical and otherwise. The passages in the membrane extend from one edge of the membrane to another and allow fluid flow through the membrane and give access directly to the membrane for purposes of hydration.

  6. Nanoceramic oxide hybrid electrolyte membranes for proton exchange membrane fuel cells.

    PubMed

    Xu, Feng; Mu, Shichun

    2014-02-01

    This review reports on the functions and applications of nanoceramic oxides in proton exchange membrane fuel cells (PEMFCs). Such materials are mainly used as fillers to enhance the water uptake and proton conductivity of polymeric matrices at high temperatures under low relative humidity. To further enhance the mechanical property of proton exchange membranes (PEMs), the functionalized ceramic oxides with organic groups are introduced. Furthermore, the inorganic PEMs are developed to improve their proton conductivities at elevated temperatures. Due to the inherent disadvantages of polymeric PEMs, it is believed that the inorganic PEMs based on porous ceramic oxides are a promising new candidate as solid electrolyte membranes in PEMFCs at high temperatures and with low relative humidity. PMID:24749420

  7. The effect of liposome treatment on the quality of hypothermically stored red blood cells.

    PubMed

    Stadnick, Hart; Stoll, Cristoph; Wolkers, Wim F; Acker, Jason Paul; Holovati, Jelena Lecak

    2011-12-01

    Recent studies have demonstrated that liposome treatment of red blood cells (RBCs) leads to improved recovery and membrane integrity following cryopreservation protocols. However, the effect of liposome treatment on hypothermically stored RBCs has not been previously investigated. The current study has investigated whether liposome treatment could modify the membrane quality and deformability of hypothermically stored RBCs. Unilamellar liposomes were synthesized using an extrusion protocol. Three lipid bilayer compositions were investigated: 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC):PE:PS (8:1:1); 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC):PE:PS (8:1:1); and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC):PE:PS (8:1:1). RBCs were treated with liposomes and subsequently stored for 42 days in HEPES-NaCl buffer and saline-adenine-glucose-mannitol. RBC quality was assessed by percent hemolysis, mean corpuscular volume (MCV), and RBC deformability (ektacytometry). DOPC and DMPC liposome treatment resulted in destabilization of the RBC membrane. Percent hemolysis values for DMPC-treated RBCs were higher than untreated controls throughout storage (P<0.05). DOPC-treated RBCs showed elevated levels of hemolysis compared to controls from day 21 of storage onward (P<0.05). In addition, DOPC and DMPC-treated RBCs were less deformable than untreated controls from days 21(P=0.02) and 14 (P<0.001) of storage onward respectively. [We suggest that these changes in RBC hemolysis and deformability are due to cholesterol extraction from the RBC membrane into the liposome fraction.] In contrast, DPPC-treated RBCs maintained hemolysis, MCV, and deformability values comparable to untreated controls. Future research addressing the optimal liposome composition for stabilizing the RBC membrane at cold temperatures could lead to effective strategies to combat the RBC membrane hypothermic storage lesion and ultimately improve the quality of hypothermically preserved blood. PMID:24836629

  8. Cell-mediated immunity in idiopathic autoimmune haemolytic disease.

    PubMed Central

    Slavin, S; Aker, M; Plesser, Y M; Rachmilewitz, E A

    1975-01-01

    Membrane antigens from autologous and from allogeneic red blood cells (RBC) induced migration inhibition of splenic leucocytes and transformation of peripheral blood lymphocytes from a patient with idiopathic autoimmune haemolytic disease (AHD). No migration inhibition occurred following stimulation of splenic leucocytes obtained during splenectomy from a patient with beta-thalassaemia major. Lymphocyte transformation did not occur when normal lymphocytes were stimulated by similar RBC membrane preparations. These findings indicate that autosensitization in AHD may be a function of both humoral and cellular immune mechanisms. PMID:1204245

  9. Durable, Low-cost, Improved Fuel Cell Membranes

    SciTech Connect

    Chris Roger; David Mountz; Wensheng He; Tao Zhang

    2011-03-17

    The development of low cost, durable membranes and membranes electrode assemblies (MEAs) that operate under reduced relative humidity (RH) conditions remain a critical challenge for the successful introduction of fuel cells into mass markets. It was the goal of the team lead by Arkema, Inc. to address these shortages. Thus, this project addresses the following technical barriers from the fuel cells section of the Hydrogen Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan: (A) Durability (B) Cost Arkema’s approach consisted of using blends of polyvinylidenefluoride (PVDF) and proprietary sulfonated polyelectrolytes. In the traditional approach to polyelectrolytes for proton exchange membranes (PEM), all the required properties are “packaged” in one macromolecule. The properties of interest include proton conductivity, mechanical properties, durability, and water/gas transport. This is the case, for example, for perfluorosulfonic acid-containing (PFSA) membranes. However, the cost of these materials is high, largely due to the complexity and the number of steps involved in their synthesis. In addition, they suffer other shortcomings such as mediocre mechanical properties and insufficient durability for some applications. The strength and originality of Arkema’s approach lies in the decoupling of ion conductivity from the other requirements. Kynar® PVDF provides an exceptional combination of properties that make it ideally suited for a membrane matrix (Kynar® is a registered trademark of Arkema Inc.). It exhibits outstanding chemical resistance in highly oxidative and acidic environments. In work with a prior grant, a membrane known as M41 was developed by Arkema. M41 had many of the properties needed for a high performance PEM, but had a significant deficiency in conductivity at low RH. In the first phase of this work, the processing parameters of M41 were explored as a means to increase its proton conductivity. Optimizing the processing of M41 was found to increase its proton conductivity by almost an order of magnitude at 50% RH. Characterization of the membrane morphology with Karren More at Oak Ridge National Laboratory showed that the membrane morphology was complex. This technology platform was dubbed M43 and was used as a baseline in the majority of the work on the project. Although its performance was superior to M41, M43 still showed proton conductivity an order of magnitude lower than that of a PFSA membrane at 50% RH. The MEA performance of M43 could be increased by reducing the thickness from 1 to 0.6 mils. However, the performance of the thinner M43 still did not match that of a PFSA membrane.

  10. Macrophages engulf endothelial cell membrane particles preceding pupillary membrane capillary regression.

    PubMed

    Poché, Ross A; Hsu, Chih-Wei; McElwee, Melissa L; Burns, Alan R; Dickinson, Mary E

    2015-07-01

    Programmed capillary regression and remodeling are essential developmental processes. However, the cellular and molecular mechanisms that regulate vessel regression are only the beginning to be understood. Here, using in vivo, dynamic, confocal imaging of mouse transgenic reporters as well as static confocal and electron microscopy, we studied the embryonic development and postnatal regression of the transient mouse pupillary membrane (PM) vasculature. This approach allowed us to directly observe the precise temporal sequence of cellular events preceding and during the elimination of the PM from the mouse eye. Imaging of Tcf/Lef-H2B::GFP Wnt-reporter mice uncovered that, unlike the hyaloid vasculature of the posterior eye, a PM endothelial cell (EC) Wnt/β-catenin response is unlikely to be part of the regression mechanism. Live imaging of EC and macrophage dynamics revealed highly active Csf1r-GFP+ macrophages making direct contact with the Flk1-myr::mCherry+ vessel surface and with membrane protrusions or filopodia extending from the ECs. Flk1-myr::mCherry+ EC membrane particles were observed on and around ECs as well as within macrophages. Electron microscopy studies confirmed that they were in phagosomes within macrophages, indicating that the macrophages engulfed the membrane particles. Interestingly, EC plasma membrane uptake by PM macrophages did not correlate with apoptosis and was found shortly after vessel formation at mid-gestation stages in the embryo; long before vessel regression begins during postnatal development. Additionally, genetic ablation of macrophages showed that EC membrane particles were still shed in the absence of macrophages suggesting that macrophages do not induce the formation or release of EC microparticles. These studies have uncovered a novel event during programmed capillary regression in which resident macrophages scavenge endothelial cell microparticles released from the PM vessels. This finding suggests that there may be an initial disruption in vessel homeostasis embryonically as the PM forms that may underlie its ultimate regression postnatally. PMID:25912686

  11. Scanning force microscopy of cells and membrane proteins

    NASA Astrophysics Data System (ADS)

    Keller, David; Chang, Leda; Luo, Ke; Singh, Seema; Yorgancioglu, Maxim

    1992-05-01

    Recent results on scanning force microscopy of cells and membrane proteins are presented. Whole immune system cells (rat basophil leukemia cells) can be imaged either alive and moving in aqueous medium, frozen, and exposed by freeze fracture (and imaged at -25 degree(s)C), fixed with glutaraldehyde in buffer, or fixed and dried (as if for scanning electron microscopy). Living cells can be stimulated with antigens or drugs and then observed as they move and change shape as a function of time after exposure. In either living or fixed cells it is possible to visualize and map cytoskeletal networks under the cell membrane, and, in living cells, to observe changes in the network with time. Membrane proteins (e.g., the F1 fragment of ATP synthase) can be imaged by simple passive adsorption to freshly cleaved mica. The resolution is about 50 angstroms, which is high enough to identify individual protein molecules, but still too low to distinguish internal structure. Factors which limit resolution and methods that may overcome these limitations are also discussed.

  12. Electrospun fiber membranes enable proliferation of genetically modified cells.

    PubMed

    Borjigin, Mandula; Eskridge, Chris; Niamat, Rohina; Strouse, Bryan; Bialk, Pawel; Kmiec, Eric B

    2013-01-01

    Polycaprolactone (PCL) and its blended composites (chitosan, gelatin, and lecithin) are well-established biomaterials that can enrich cell growth and enable tissue engineering. However, their application in the recovery and proliferation of genetically modified cells has not been studied. In the study reported here, we fabricated PCL-biomaterial blended fiber membranes, characterized them using physicochemical techniques, and used them as templates for the growth of genetically modified HCT116-19 colon cancer cells. Our data show that the blended polymers are highly miscible and form homogenous electrospun fiber membranes of uniform texture. The aligned PCL nanofibers support robust cell growth, yielding a 2.5-fold higher proliferation rate than cells plated on standard plastic plate surfaces. PCL-lecithin fiber membranes yielded a 2.7-fold higher rate of proliferation, while PCL-chitosan supported a more modest growth rate (1.5-fold higher). Surprisingly, PCL-gelatin did not enhance cell proliferation when compared to the rate of cell growth on plastic surfaces. PMID:23467983

  13. Electrospun fiber membranes enable proliferation of genetically modified cells

    PubMed Central

    Borjigin, Mandula; Eskridge, Chris; Niamat, Rohina; Strouse, Bryan; Bialk, Pawel; Kmiec, Eric B

    2013-01-01

    Polycaprolactone (PCL) and its blended composites (chitosan, gelatin, and lecithin) are well-established biomaterials that can enrich cell growth and enable tissue engineering. However, their application in the recovery and proliferation of genetically modified cells has not been studied. In the study reported here, we fabricated PCL-biomaterial blended fiber membranes, characterized them using physicochemical techniques, and used them as templates for the growth of genetically modified HCT116-19 colon cancer cells. Our data show that the blended polymers are highly miscible and form homogenous electrospun fiber membranes of uniform texture. The aligned PCL nanofibers support robust cell growth, yielding a 2.5-fold higher proliferation rate than cells plated on standard plastic plate surfaces. PCL-lecithin fiber membranes yielded a 2.7-fold higher rate of proliferation, while PCL-chitosan supported a more modest growth rate (1.5-fold higher). Surprisingly, PCL-gelatin did not enhance cell proliferation when compared to the rate of cell growth on plastic surfaces. PMID:23467983

  14. Higher RBC EPA + DHA corresponds with larger total brain and hippocampal volumes

    PubMed Central

    Yaffe, Kristine; Robinson, Jennifer G.; Espeland, Mark A.; Wallace, Robert; Harris, William S.

    2014-01-01

    Objective: To test whether red blood cell (RBC) levels of marine omega-3 fatty acids measured in the Women's Health Initiative Memory Study were related to MRI brain volumes measured 8 years later. Methods: RBC eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and MRI brain volumes were assessed in 1,111 postmenopausal women from the Women's Health Initiative Memory Study. The endpoints were total brain volume and anatomical regions. Linear mixed models included multiple imputations of fatty acids and were adjusted for hormone therapy, time since randomization, demographics, intracranial volume, and cardiovascular disease risk factors. Results: In fully adjusted models, a 1 SD greater RBC EPA + DHA (omega-3 index) level was correlated with 2.1 cm3 larger brain volume (p = 0.048). DHA was marginally correlated (p = 0.063) with total brain volume while EPA was less so (p = 0.11). There were no correlations between ischemic lesion volumes and EPA, DHA, or EPA + DHA. A 1 SD greater omega-3 index was correlated with greater hippocampal volume (50 mm3, p = 0.036) in fully adjusted models. Comparing the fourth quartile vs the first quartile of the omega-3 index confirmed greater hippocampal volume (159 mm3, p = 0.034). Conclusion: A higher omega-3 index was correlated with larger total normal brain volume and hippocampal volume in postmenopausal women measured 8 years later. While normal aging results in overall brain atrophy, lower omega-3 index may signal increased risk of hippocampal atrophy. Future studies should examine whether maintaining higher RBC EPA + DHA levels slows the rate of hippocampal or overall brain atrophy. PMID:24453077

  15. The formin FMNL3 assembles plasma membrane protrusions that participate in cellcell adhesion

    PubMed Central

    Gauvin, Timothy J.; Young, Lorna E.; Higgs, Henry N.

    2015-01-01

    FMNL3 is a vertebrate-specific formin protein previously shown to play a role in angiogenesis and cell migration. Here we define the cellular localization of endogenous FMNL3, the dynamics of GFP-tagged FMNL3 during cell migration, and the effects of FMNL3 suppression in mammalian culture cells. The majority of FMNL3 localizes in a punctate pattern, with >95% of these puncta being indistinguishable from the plasma membrane by fluorescence microscopy. A small number of dynamic cytoplasmic FMNL3 patches also exist, which enrich near cellcell contact sites and fuse with the plasma membrane at these sites. These cytoplasmic puncta appear to be part of larger membranes of endocytic origin. On the plasma membrane, FMNL3 enriches particularly in filopodia and membrane ruffles and at nascent cellcell adhesions. FMNL3-containing filopodia occur both at the cellsubstratum interface and at cellcell contacts, with the latter being 10-fold more stable. FMNL3 suppression by siRNA has two major effects: decrease in filopodia and compromised cellcell adhesion in cells migrating as a sheet. Overall our results suggest that FMNL3 functions in assembly of actin-based protrusions that are specialized for cellcell adhesion. PMID:25428984

  16. Apoptosis method for biomimetic artificial cell membranes employing nanophotonic theranostics

    NASA Astrophysics Data System (ADS)

    Gilleland, Cody L.; Waters, Brian D.; Jarvis, Brandon; Schaefers, Justin K.; Renfro, Tim; Gutierrez, Jose; Ussery, Geoffrey; Cavanah, Taylor; Glosser, R.; Landon, Preston B.

    2005-08-01

    Colloidal biomimetic disc shaped metallic gold shells with a uniform size distribution were synthesized using red blood cells as sacrificial templates. Red blood cells do not reproduce by dividing; hence they are truly colloidal particles. They are almost completely filled with hemoglobin allowing for an extremely dynamic work cycle with long intercellular vacations separated by self-destructive workloads on the cell surface. This method of exchange is emulated in the presented research. The colloidal disc shaped gold shells were coated with multiple layers of 50nm fluorescent polystyrene spheres followed by chemical removal of the gold core. This process yielded hollow synthetic biomimetic membranes with a strong optical signature that are diffusely permeable to water and impervious to particles larger than a few nanometers. Currently, the most successful synthetic intravascular oxygen carrying materials are perfluorocarbons; however, they break down quickly in roughly 50 hours from overexposure to their in vivo workload. The meso-porous membrane cages will be filled with hundreds of fibrous spheroid conglomerates composed of perfluorocarbon chains that can protrude through the meso-porous membrane as they thermally jostle about the cage. This is to statistically limit the exposure time of individual polymer strands to the self-destructive work at the surface and hopefully will greatly increase the effective functioning lifetime of the perfluorocarbon-based synthetic red blood cell. The artificial membranes are intentionally designed to be weak allowing them to flex under normal pressures and to hopefully burst under more extreme conditions such as blockage.

  17. Purified oxygen scavenging cell membrane fragments and use of same

    SciTech Connect

    Jacobson, K.B.; Adler, H.I.

    1988-10-18

    A process for purifying oxygen scavenging cell membrane fragments (OSCMF) and the use of same are disclosed. The novel purifying process involves salt precipitation and molecular exclusion chromatography. The unique feature of purified OSCMF is its ability to remove oxygen from organic reaction media and organic preparations without contaminating them to any substantial degree. 1 ref., 2 figs.

  18. CAPSTONE SENIOR DESIGN - SUPRAMOLECULAR PROTON EXCHANGE MEMBRANES FOR FUEL CELLS

    EPA Science Inventory

    In order to assume a leading role in the burgeoning hydrogen economy, new infrastructure will be required for fuel cell manufacturing and R&D capabilities. The objective of this proposal is the development of a new generation of advanced proton exchange membrane (PEM) technol...

  19. Tetrazole-based, anhydrous proton exchange membranes for fuel cells.

    PubMed

    Song, Min-Kyu; Li, Huiping; Li, Jinhuan; Zhao, Dan; Wang, Jenghan; Liu, Meilin

    2014-02-26

    A tetrazole-based polymer electrolyte membrane showed high conductivity at 20-120C under dry conditions, offering the potential to dramatically simplify fuel cells for many applications over a wide temperature range without the need for cumbersome humidification and pressurization. PMID:24591010

  20. Monocyte cell membrane-derived nanoghosts for targeted cancer therapy.

    PubMed

    Krishnamurthy, S; Gnanasammandhan, M K; Xie, C; Huang, K; Cui, M Y; Chan, J M

    2016-03-24

    Core-shell type 'nanoghosts' were synthesized with a drug-loaded biodegradable PLGA core and a monocyte cell membrane-derived shell. The nanoghosts were monodisperse with an average size <200 nm, and showed good serum stability for 120 h. Doxorubicin-loaded nanoghosts showed greater cellular uptake and cytotoxicity compared to non-coated nanoparticle controls in metastatic MCF-7 breast cancer cell lines. PMID:26975904

  1. A prototype biosensor: artificial cell membrane on porous silicon

    NASA Astrophysics Data System (ADS)

    Retamal, Maria Jose; Cisternas, Marcelo; Busch, Mark; Gutierrez, Sebastian; Huber, Patrick; Perez-Acle, Tomas; Kappl, Michael; Volkmann, Ulrich

    2014-03-01

    Biosensors have been studied in recent years because they are powerful instruments to detect physical or chemical parameters as, e.g., intracellular interactions. What we propose is a prototype biosensor based on an artificial cell membrane (DPPC) on porous silicon. Porous silicon is used as a sponge-like substrate to absorb water by capillarity and keep the membrane hydrated, which is essential for the membrane not to denature when performing temperature cycles. Thus, one can observe the phase changes of the cell membrane with temperature using optical and surface scanning methods. In this research we used the technique of Very High Resolution Ellipsometry (VHRE) to observe changes in the ellipsometric angles during temperature ramps, which are attributed to different lipid phase transitions. Imaging ellipsometry (IE) was used to observe surface changes at the microscopic level and Atomic Force Microscopy (AFM) to observe changes in the topography of the membrane at the nanoscale. This work was supported by Fondecyt 1100882, DAAD-Conicyt PCCI 044, Conicyt Scholarship and Project Anillo ACT 1107.

  2. How to Evaluate the Electric Noise in a Cell Membrane?

    NASA Astrophysics Data System (ADS)

    Bier, M.

    2006-05-01

    There has been considerable public anxiety about possible health effects of electromagnetic radiation emitted by high voltage power lines. Power frequencies (60 Hz in the US, 50 Hz in many other countries) are sufficiently slow for the associated electric fields to distribute themselves across the highly resistive cell membranes. To assess the ambient power frequency fields, researchers have compared the voltage that these fields induce across cell membranes to the strength of the electric noise that the membranes generate themselves through Brownian motion. However, there has been disagreement among researchers on how to evaluate this equilibrium membrane electric noise. I will review the different approaches and present an {ITALIC ab initio} modeling of membrane electric fields. I will show that different manifestations of Brownian noise lead to an electric noise intensity that is many times larger than what conventional estimates have yielded. Next, the legitimacy of gauging a nonequilibrium external signal against internal equilibrium noise is questioned and a more meaningful criterion is proposed. Finally, an estimate will be derived of the nonequilibrium noise intensity due to the driven ion traffic through randomly opening and closing ion channels.

  3. Alternative Sources of Adult Stem Cells: Human Amniotic Membrane

    NASA Astrophysics Data System (ADS)

    Wolbank, Susanne; van Griensven, Martijn; Grillari-Voglauer, Regina; Peterbauer-Scherb, Anja

    Human amniotic membrane is a highly promising cell source for tissue engineering. The cells thereof, human amniotic epithelial cells (hAEC) and human amniotic mesenchymal stromal cells (hAMSC), may be immunoprivileged, they represent an early developmental status, and their application is ethically uncontroversial. Cell banking strategies may use freshly isolated cells or involve in vitro expansion to increase cell numbers. Therefore, we have thoroughly characterized the effect of in vitro cultivation on both phenotype and differentiation potential of hAEC. Moreover, we present different strategies to improve expansion including replacement of animal-derived supplements by human platelet products or the introduction of the catalytic subunit of human telomerase to extend the in vitro lifespan of amniotic cells. Characterization of the resulting cultures includes phenotype, growth characteristics, and differentiation potential, as well as immunogenic and immunomodulatory properties.

  4. Involvement of Membrane GRP78 in Trophoblastic Cell Fusion

    PubMed Central

    Fradet, Sarah; Pierredon, Sandra; Ribaux, Pascale; Epiney, Manuella; Shin Ya, Kazuo; Irion, Olivier; Cohen, Marie

    2012-01-01

    Background Glucose-regulated protein 78 (GRP78) is highly expressed in first trimester cytrophoblastic cells (CTBs), especially in syncytiotrophoblast (STB). However, the role of GRP78 in these cells has never been investigated. Methodology/Principal Findings In this study, we have examined the role of GRP78 in trophoblast fusion using the Bewo choriocarcinoma cell line as a model of cytotrophoblast fusion. Down regulation of GRP78 by siRNA or chemical inhibitors and use of antibodies against GRP78 in culture medium significantly decreased forskolin-induced fusion capacity of Bewo cells suggesting the involvement of membrane GRP78 in trophoblast fusion. GRP78 expression was also studied in preeclamptic (PE) CTBs which are known to have lower fusion capacity compared to control CTBs. Interestingly, despite the increase of GRP78 mRNA in PE CTBs, membrane GRP78 is significantly decreased in PE CTBs compared to control CTBs, suggesting that relocation of GRP78 from the endoplasmic reticulum to cell surface is probably altered in PE CTBs. Conclusions Our results imply that membrane GRP78 could play an important role in syncytialisation. They also suggest that deregulation of GRP78 expression or relocation at cell surface might be involved in pregnancy complication associated with defective syncytialisation, such as preeclampsia. PMID:22912664

  5. Probing cell membrane dynamics using plasmon coupling microscopy

    NASA Astrophysics Data System (ADS)

    Rong, Guoxin

    The plasma membrane of mammalian cells is depicted as a two-dimensional hybrid material which is compartmentalized into submicron-sized domains. These membrane domains play a pivotal role in cellular signaling processes due to selective recruitment of specific cell surface receptors. The structural dynamics of the membrane domains and their exact biological functions are, however, still unclear, partially due to the wave nature of light, which limits the optical resolution in the visible light to approximately 400 nm in conventional optical microscopy. Here, we provide a non-fluorescence based approach for monitoring distance changes on subdiffraction limit length scales in a conventional far-field optical microscope. This approach, which is referred to as plasmon coupling microscopy (PCM), utilizes the distance dependent near-field coupling between noble metal nanoparticle (NP) labels to resolve close contacts on the length scale of approximately one NP diameter. We firstly utilize this PCM strategy to resolve interparticle separations during individual encounters of gold NP labeled fibronectin-integrin complexes in living HeLa cells. We then further refine this ratiometric detection methodology by augmenting it with a polarization-sensitive detection, which enables simultaneous monitoring of the distance and conformation changes in NP dimers and clusters. We apply this polarization resolved PCM approach to characterize the structural lateral heterogeneity of cell membranes on sub-micron length scales. Finally, we demonstrate that PCM can provide quantitative information about the structural dynamics of individual epidermal growth factor receptor (ErbB1)-enriched membrane domains in living cells.

  6. Durability aspects of polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Sethuraman, Vijay Anand

    In order for the successful adoption of proton exchange membrane (PEM) fuel cell technology, it is imperative that durability is understood, quantified and improved. A number of mechanisms are known to contribute to PEMFC membrane electrode assembly (MEA) performance degradation. In this dissertation, we show, via experiments, some of the various processes that degrade the proton exchange membrane in a PEM fuel cell; and catalyst poisoning due to hydrogen sulfide (H2S) and siloxane. The effect of humidity on the chemical stability of two types of membranes, [i.e., perfluorosulfonic acid type (PFSA, NafionRTM 112) and biphenyl sulfone hydrocarbon type, (BPSH-35)] was studied by subjecting the MEAs to open-circuit voltage (OCV) decay and potential cycling tests at elevated temperatures and low inlet gas relative humidities. The BPSH-35 membranes showed poor chemical stability in ex situ Fenton tests compared to that of NafionRTM membranes. However, under fuel cell conditions, BPSH-35 MEAs outperformed NafionRTM 112 MEAs in both the OCV decay and potential cycling tests. For both membranes, (i) at a given temperature, membrane degradation was more pronounced at lower humidities and (ii) at a given relative humidity operation, increasing the cell temperature accelerated membrane degradation. Mechanical stability of these two types of membranes was also studied using relative humidity (RH) cycling. Hydrogen peroxide (H2O2) formation rates in a proton exchange membrane (PEM) fuel cell were estimated by studying the oxygen reduction reaction (ORR) on a rotating ring disc electrode (RRDE). Fuel cell conditions were replicated by depositing a film of Pt/Vulcan XC-72 catalyst onto the disk and by varying the temperature, dissolved O2 concentration and the acidity levels in HClO4. The HClO4 acidity was correlated to ionomer water activity and hence fuel cell humidity. H 2O2 formation rates showed a linear dependence on oxygen concentration and square dependence on water activity. The H2O 2 selectivity in ORR was independent of oxygen concentration but increased with decrease in water activity (i.e., decreased humidity). Presences of trace impurities (such as CO, H2S, NH3, etc.) in the fuel also affect PEMFC durability. Among these impurities, H 2S causes significantly higher performance loss and irreversible catalytic poisoning. A concise mechanism for the poisoning kinetics of H2S on composite solid polymer electrolyte Pt (SPE-Pt) electrode was validated experimentally by charge balances and theoretically by a model, which predicted the oxidation current as a function of the applied potential. H2S dissociatively adsorbed onto SPE-Pt electrode as linear and bridge bonded sulfur (S) species and, under favorable potentials, underwent electro-oxidation to sulfur and then to sulfur dioxide (SO2). Fraction of the adsorbed S species remained as 'hard-to-oxidize' adsorbents and caused irreversible loss of catalytic activity. Deactivation of bridge sites occurred first followed by the loss of linear sites. A method to estimate the catalytic sites irreversibly lost due to sulfur poisoning was developed.

  7. Chemical Imaging of the Cell Membrane by NanoSIMS

    SciTech Connect

    Weber, P K; Kraft, M L; Frisz, J F; Carpenter, K J; Hutcheon, I D

    2010-02-23

    The existence of lipid microdomains and their role in cell membrane organization are currently topics of great interest and controversy. The cell membrane is composed of a lipid bilayer with embedded proteins that can flow along the two-dimensional surface defined by the membrane. Microdomains, known as lipid rafts, are believed to play a central role in organizing this fluid system, enabling the cell membrane to carry out essential cellular processes, including protein recruitment and signal transduction. Lipid rafts are also implicated in cell invasion by pathogens, as in the case of the HIV. Therefore, understanding the role of lipid rafts in cell membrane organization not only has broad scientific implications, but also has practical implications for medical therapies. One of the major limitations on lipid organization research has been the inability to directly analyze lipid composition without introducing artifacts and at the relevant length-scales of tens to hundreds of nanometers. Fluorescence microscopy is widely used due to its sensitivity and specificity to the labeled species, but only the labeled components can be observed, fluorophores can alter the behavior of the lipids they label, and the length scales relevant to imaging cell membrane domains are between that probed by fluorescence resonance energy transfer (FRET) imaging (<10 nm) and the diffraction limit of light. Topographical features can be imaged on this length scale by atomic force microscopy (AFM), but the chemical composition of the observed structures cannot be determined. Immuno-labeling can be used to study the distribution of membrane proteins at high resolution, but not lipid composition. We are using imaging mass spectrometry by secondary ion mass spectrometry (SIMS) in concert with other high resolution imaging methods to overcome these limitations. The experimental approach of this project is to combine molecule-specific stable isotope labeling with high-resolution SIMS using a Cameca NanoSIMS 50 to probe membrane organization and test microdomain hypotheses. The NanoSIMS is an imaging secondary ion mass spectrometer with an unprecedented combination of spatial resolution, sensitivity and mass specificity. It has 50 nm lateral resolution and is capable of detecting 1 in 20 nitrogen atoms while excluding near-neighbor isobaric interferences. The tightly focused cesium ion beam is rastered across the sample to produce simultaneous, quantitative digital images of up to five different masses. By labeling each specific components of a membrane with a unique rare stable isotope or element and mapping the location of the labels with the NanoSIMS, the location of the each labeled component can be determined and quantified. This new approach to membrane composition analysis allows molecular interactions of biological membranes to be probed at length-scales relevant to lipid rafts (10s to 100s of nm) that were not previously possible. Results from our most recent experiments analyzing whole cells will be presented.

  8. Novel phosphoric acid doped polybenzimidazole membranes for fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Haifeng

    Acid doped polybenzimidazole (PBIRTM, called mPBI in this thesis) membranes are applied as electrolytes in high temperature polymer electrolyte membrane fuel cells (PEMFCs). Several series of homopolymers and copolymers with high I.V. were synthesized in PPA solution. A novel membrane fabrication and acid doping process, called the PPA process, was developed by casting the polymer-polyphosphoric acid (PPA) solution directly after polymerization without isolation or redissolution of the polymers. The PPA absorbed moisture from the atmosphere and hydrolyzed to phosphoric acid, which induced a sol-gel transition and produced a high acid doped PBI membrane. A water spray method was developed to make an acid doped ABPBI membrane by spraying water or dilute phosphoric acid onto the cast solution directly. This process induced film formation for ABPBI, but washed out most of the phosphoric acid dopant. A more rigid pPBI homopolymer was synthesized in PPA solution with high inherent viscosity (23 dL/g). Acid doped pPBI membranes showed high acid doping level (pPBI69H3PO4) and high conductivity (0.24 S/cm at 160C). Fuel cells based on pPBI/PA showed good performance at various conditions. For example, a fuel cell based on pPBI/PA showed a maximum power density of 0.92 W/cm2 at 160C and ambient pressure (H2/O2). The degradation rate of the cell potential was -21 mV/1,000 hours and -35 mV/1,000 hours at 160C and 180C, respectively in continuous testing. Fuel cells also showed good performance and tolerance to carbon monoxide poisoning when operated at temperatures higher than 120C. The voltage drop was only 31 mV (from 0.657 V to 0.626 V at 0.3 A/cm2) when reformate gas (40.0% H2, 0.2% CO, 19.0% CO2, 40.8% N2) was used instead of pure hydrogen at one atmosphere pressure and 160C. The structure-property relationships were investigated on the homopolymers and copolymers with different rigidities in the main chain. It is found that para-oriented structures greatly improved the mechanical properties, retained more acid in the membrane and showed higher fuel cell performance.

  9. Arabidopsis Pol II-Dependent in Vitro Transcription System Reveals Role of Chromatin for Light-Inducible rbcS Gene Transcription.

    PubMed

    Ido, Ayaka; Iwata, Shinya; Iwata, Yuka; Igarashi, Hisako; Hamada, Takahiro; Sonobe, Seiji; Sugiura, Masahiro; Yukawa, Yasushi

    2016-02-01

    In vitro transcription is an essential tool to study the molecular mechanisms of transcription. For over a decade, we have developed an in vitro transcription system from tobacco (Nicotiana tabacum)-cultured cells (BY-2), and this system supported the basic activities of the three RNA polymerases (Pol I, Pol II, and Pol III). However, it was not suitable to study photosynthetic genes, because BY-2 cells have lost their photosynthetic activity. Therefore, Arabidopsis (Arabidopsis thaliana) in vitro transcription systems were developed from green and etiolated suspension cells. Sufficient in vitro Pol II activity was detected after the minor modification of the nuclear soluble extracts preparation method; removal of vacuoles from protoplasts and L-ascorbic acid supplementation in the extraction buffer were particularly effective. Surprisingly, all four Arabidopsis Rubisco small subunit (rbcS-1A, rbcS-1B, rbcS-2B, and rbcS-3B) gene members were in vitro transcribed from the naked DNA templates without any light-dependent manner. However, clear light-inducible transcriptions were observed using chromatin template of rbcS-1A gene, which was prepared with a human nucleosome assembly protein 1 (hNAP1) and HeLa histones. This suggested that a key determinant of light-dependency through the rbcS gene transcription was a higher order of DNA structure (i.e. chromatin). PMID:26662274

  10. Analysis of Membrane Topology of Prestin Expressing in CHO Cells

    NASA Astrophysics Data System (ADS)

    Murakoshi, Michio; Kawase, Tomohiro; Kumano, Shun; Wada, Hiroshi

    2011-11-01

    Outer hair cell (OHC) motility is thought to be based on the voltage-dependent conformational changes of the motor protein prestin. However, little is known about its structure and function. In this study, the membrane topology of prestin was investigated by single molecule force spectroscopy using an atomic force microscope (AFM). The C-terminus of prestin was tagged with an Avi-tag and biotinylated. Prestin was then connected with a streptavidin-coated AFM cantilever via biotin-streptavidin binding. The prestin was pulled out from the plasma membrane by retracting the cantilever and force curves were obtained. Obtained force curves suggested the existence of 12 transmembrane domains of prestin.

  11. Block copolymers for alkaline fuel cell membrane materials

    NASA Astrophysics Data System (ADS)

    Li, Yifan

    Alkaline fuel cells (AFCs) using anion exchange membranes (AEMs) as electrolyte have recently received considerable attention. AFCs offer some advantages over proton exchange membrane fuel cells, including the potential of non-noble metal (e.g. nickel, silver) catalyst on the cathode, which can dramatically lower the fuel cell cost. The main drawback of traditional AFCs is the use of liquid electrolyte (e.g. aqueous potassium hydroxide), which can result in the formation of carbonate precipitates by reaction with carbon dioxide. AEMs with tethered cations can overcome the precipitates formed in traditional AFCs. Our current research focuses on developing different polymer systems (blend, block, grafted, and crosslinked polymers) in order to understand alkaline fuel cell membrane in many aspects and design optimized anion exchange membranes with better alkaline stability, mechanical integrity and ionic conductivity. A number of distinct materials have been produced and characterized. A polymer blend system comprised of poly(vinylbenzyl chloride)-b-polystyrene (PVBC-b-PS) diblock copolymer, prepared by nitroxide mediated polymerization (NMP), with poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) or brominated PPO was studied for conversion into a blend membrane for AEM. The formation of a miscible blend matrix improved mechanical properties while maintaining high ionic conductivity through formation of phase separated ionic domains. Using anionic polymerization, a polyethylene based block copolymer was designed where the polyethylene-based block copolymer formed bicontinuous morphological structures to enhance the hydroxide conductivity (up to 94 mS/cm at 80 C) while excellent mechanical properties (strain up to 205%) of the polyethylene block copolymer membrane was observed. A polymer system was designed and characterized with monomethoxy polyethylene glycol (mPEG) as a hydrophilic polymer grafted through substitution of pendent benzyl chloride groups of a PVBC-b-PS. The incorporation of the hydrophilic polymer allows for an investigation of the effect of hydration on ionic conductivity, resulting in the increase in membrane water affinity, enhancement of conductivity and reduced dependence of conductivity on relative humidity. A study of crosslinking of block copolymers was done wherein the crosslinking occurs in the non-matrix phase in order to maintain mechanical properties. The formation of a cationic crosslinked structure improves the mechanical integrity of the membrane in water while showing little deleterious effect on ionic conductivity and mechanical properties.

  12. Synthesis and characterization of Nafion/TiO2 nanocomposite membrane for proton exchange membrane fuel cell.

    PubMed

    Kim, Tae Young; Cho, Sung Yong

    2011-08-01

    In this study, the syntheses and characterizations of Nafion/TiO2 membranes for a proton exchange membrane fuel cell (PEMFC) were investigated. Porous TiO2 powders were synthesized using the sol-gel method; with Nafion/TiO2 nanocomposite membranes prepared using the casting method. An X-ray diffraction analysis demonstrated that the synthesized TiO2 had an anatase structure. The specific surface areas of the TiO2 and Nafion/TiO2 nanocomposite membrane were found to be 115.97 and 33.91 m2/g using a nitrogen adsorption analyzer. The energy dispersive spectra analysis indicated that the TiO2 particles were uniformly distributed in the nanocomposite membrane. The membrane electrode assembly prepared from the Nafion/TiO2 nanocomposite membrane gave the best PEMFC performance compared to the Nafion/P-25 and Nafion membranes. PMID:22103220

  13. Capacitance-Voltage Measurement of Transporting Function at Cell Membrane

    NASA Astrophysics Data System (ADS)

    Sakata, Toshiya; Miyahara, Yuji

    In this paper, we report the detection of transporting function at cell membrane using capacitance-voltage (CV) measurement. The detection principle of our devices is based on the field-effect of electrostatic interaction between charged species at cell membrane in solution and surface electrons in silicon crystal through the gate insulator of Si3N4/SiO2 thin double-layer. We designed an oocyte-based field-effect capacitor, on which a Xenopus laevis oocyte was fixed. The transporter of human organic anion transporting peptide C (hOATP-C) was expressed at oocyte membrane by induction of cRNA. The electrical phenomena such as ion or molecular charge flux at the interface between cell membrane and gate surface could be detected as the change of flat band voltage in CV characteristics. The flat band voltage shift decreased with incubation time after introduction of substrate into the oocyte-based field-effect capacitor. The electrical signal is due to the change of charge flux from the oocyte at the gate surface inspired by transporter-substrate binding. The platform based on the oocyte-based field-effect capacitor is suitable for a simple and non-invasive detection system in order to analyze function of transporters related to drug efficacy.

  14. Macroporous thin membranes for cell transplant in regenerative medicine.

    PubMed

    Antolinos-Turpn, C M; Morales Romn, R M; Rodenas-Rochina, J; Gmez Ribelles, J L; Gmez-Tejedor, J A

    2015-10-01

    The aim of this paper is to present a method to produce macroporous thin membranes made of poly (ethyl acrylate-co-hydroxyethyl acrylate) copolymer network with varying cross-linking density for cell transplantation and prosthesis fabrication. The manufacture process is based on template techniques and anisotropic pore collapse. Pore collapse was produced by swelling the membrane in acetone and subsequently drying and changing the solvent by water to produce 100 microns thick porous membranes. These very thin membranes are porous enough to hold cells to be transplanted to the organism or to be colonized by ingrowth from neighboring tissues in the organism, and they present sufficient tearing stress to be sutured with surgical thread. The obtained pore morphology was observed by Scanning Electron Microscope, and confocal laser microscopy. Mechanical properties were characterized by stress-strain experiments in tension and tearing strength measurements. Morphology and mechanical properties were related to the different initial thickness of the scaffold and the cross-linking density of the polymer network. Seeding efficiency and proliferation of mesenchymal stem cells inside the pore structure were determined at 2h, 1, 7, 14 and 21 days from seeding. PMID:26231916

  15. A Novel Unitized Regenerative Proton Exchange Membrane Fuel Cell

    NASA Technical Reports Server (NTRS)

    Murphy, O. J.; Cisar, A. J.; Gonzalez-Martin, A.; Salinas, C. E.; Simpson, S. F.

    1996-01-01

    A difficulty encountered in designing a unitized regenerative proton exchange membrane (PEM) fuel cell lies in the incompatibility of electrode structures and electrocatalyst materials optimized for either of the two functions (fuel cell or electrolyzer) with the needs of the other function. This difficulty is compounded in previous regenerative fuel cell designs by the fact that water, which is needed for proton conduction in the PEM during both modes of operation, is the reactant supplied to the anode in the electrolyzer mode of operation and the product formed at the cathode in the fuel cell mode. Drawbacks associated with existing regenerative fuel cells have been addressed. In a first innovation, electrodes function either as oxidation electrodes (hydrogen ionization or oxygen evolution) or as reduction electrodes (oxygen reduction or hydrogen evolution) in the fuel cell and electrolyzer modes, respectively. Control of liquid water within the regenerative fuel cell has been brought about by a second innovation. A novel PEM has been developed with internal channels that permit the direct access of water along the length of the membrane. Lateral diffusion of water along the polymer chains of the PEM provides the water needed at electrode/PEM interfaces. Fabrication of the novel single cell unitized regenerative fuel cell and results obtained on testing it are presented.

  16. A novel RNA binding protein affects rbcL gene expression and is specific to bundle sheath chloroplasts in C4 plants

    PubMed Central

    2013-01-01

    Background Plants that utilize the highly efficient C4 pathway of photosynthesis typically possess kranz-type leaf anatomy that consists of two morphologically and functionally distinct photosynthetic cell types, the bundle sheath (BS) and mesophyll (M) cells. These two cell types differentially express many genes that are required for C4 capability and function. In mature C4 leaves, the plastidic rbcL gene, encoding the large subunit of the primary CO2 fixation enzyme Rubisco, is expressed specifically within BS cells. Numerous studies have demonstrated that BS-specific rbcL gene expression is regulated predominantly at post-transcriptional levels, through the control of translation and mRNA stability. The identification of regulatory factors associated with C4 patterns of rbcL gene expression has been an elusive goal for many years. Results RLSB, encoded by the nuclear RLSB gene, is an S1-domain RNA binding protein purified from C4 chloroplasts based on its specific binding to plastid-encoded rbcL mRNA in vitro. Co-localized with LSU to chloroplasts, RLSB is highly conserved across many plant species. Most significantly, RLSB localizes specifically to leaf bundle sheath (BS) cells in C4 plants. Comparative analysis using maize (C4) and Arabidopsis (C3) reveals its tight association with rbcL gene expression in both plants. Reduced RLSB expression (through insertion mutation or RNA silencing, respectively) led to reductions in rbcL mRNA accumulation and LSU production. Additional developmental effects, such as virescent/yellow leaves, were likely associated with decreased photosynthetic function and disruption of associated signaling networks. Conclusions Reductions in RLSB expression, due to insertion mutation or gene silencing, are strictly correlated with reductions in rbcL gene expression in both maize and Arabidopsis. In both plants, accumulation of rbcL mRNA as well as synthesis of LSU protein were affected. These findings suggest that specific accumulation and binding of the RLSB binding protein to rbcL mRNA within BS chloroplasts may be one determinant leading to the characteristic cell type-specific localization of Rubisco in C4 plants. Evolutionary modification of RLSB expression, from a C3 “default” state to BS cell-specificity, could represent one mechanism by which rbcL expression has become restricted to only one cell type in C4 plants. PMID:24053212

  17. Plasma membrane growth during the cell cycle: unsolved mysteries and recent progress.

    PubMed

    McCusker, Derek; Kellogg, Douglas R

    2012-12-01

    Growth of the plasma membrane is as fundamental to cell reproduction as DNA replication, chromosome segregation and ribosome biogenesis, yet little is known about the underlying mechanisms. Membrane growth during the cell cycle requires mechanisms that control the initiation, location, and extent of membrane growth, as well as mechanisms that coordinate membrane growth with cell cycle progression. Recent experiments have established links between membrane growth and core cell cycle regulators. Further analysis of these links will yield insights into conserved and fundamental mechanisms of cell growth. A better understanding of the post-Golgi pathways by which membrane growth occurs will be essential for future progress. PMID:23141634

  18. Probing red blood cell mechanics, rheology and dynamics with a two-component multi-scale model

    PubMed Central

    Li, Xuejin; Peng, Zhangli; Lei, Huan; Dao, Ming; Karniadakis, George Em

    2014-01-01

    This study is partially motivated by the validation of a new two-component multi-scale cell model we developed recently that treats the lipid bilayer and the cytoskeleton as two distinct components. Here, the whole cell model is validated and compared against several available experiments that examine red blood cell (RBC) mechanics, rheology and dynamics. First, we investigated RBC deformability in a microfluidic channel with a very small cross-sectional area and quantified the mechanical properties of the RBC membrane. Second, we simulated twisting torque cytometry and compared predicted rheological properties of the RBC membrane with experimental measurements. Finally, we modelled the tank-treading (TT) motion of a RBC in a shear flow and explored the effect of channel width variation on the TT frequency. We also investigated the effects of bilayer–cytoskeletal interactions on these experiments and our simulations clearly indicated that they play key roles in the determination of cell membrane mechanical, rheological and dynamical properties. These simulations serve as validation tests and moreover reveal the capabilities and limitations of the new whole cell model. PMID:24982252

  19. Mechanical properties of stored red blood cells using optical tweezers

    NASA Astrophysics Data System (ADS)

    Fontes, Adriana; Alexandre de Thomaz, Andre; de Ysasa Pozzo, Liliana; de Lourdes Barjas-Castro, Maria; Brandao, Marcelo M.; Saad, Sara T. O.; Barbosa, Luiz Carlos; Cesar, Carlos Lenz

    2005-08-01

    We have developed a method for measuring the red blood cell (RBC) membrane overall elasticity ? by measuring the deformation of the cells when dragged at a constant velocity through a plasma fluid by an optical tweezers. The deformability of erythrocytes is a critical determinant of blood flow in the microcirculation. We tested our method and hydrodynamic models, which included the presence of two walls, by measuring the RBC deformation as a function of drag velocity and of the distance to the walls. The capability and sensitivity of this method can be evaluated by its application to a variety of studies, such as, the measurement of RBC elasticity of sickle cell anemia patients comparing homozygous (HbSS), including patients taking hydroxyrea (HU) and heterozygous (HbAS) with normal donors and the RBC elasticity measurement of gamma irradiated stored blood for transfusion to immunosupressed patients as a function of time and dose. These studies show that the technique has the sensitivity to discriminate heterozygous and homozygous sickle cell anemia patients from normal donors and even follow the course of HU treatment of Homozygous patients. The gamma irradiation studies show that there is no significant change in RBC elasticity over time for up to 14 days of storage, regardless of whether the unit was irradiated or not, but there was a huge change in the measured elasticity for the RBC units stored for more than 21 days after irradiation. These finds are important for the assessment of stored irradiated RBC viability for transfusion purposes because the present protocol consider 28 storage days after irradiation as the limit for the RBC usage.

  20. New materials for polymer electrolyte membrane fuel cell current collectors

    NASA Astrophysics Data System (ADS)

    Hentall, Philip L.; Lakeman, J. Barry; Mepsted, Gary O.; Adcock, Paul L.; Moore, Jon M.

    Polymer Electrolyte Membrane Fuel cells for automotive applications need to have high power density, and be inexpensive and robust to compete effectively with the internal combustion engine. Development of membranes and new electrodes and catalysts have increased power significantly, but further improvements may be achieved by the use of new materials and construction techniques in the manufacture of the bipolar plates. To show this, a variety of materials have been fabricated into flow field plates, both metallic and graphitic, and single fuel cell tests were conducted to determine the performance of each material. Maximum power was obtained with materials which had lowest contact resistance and good electrical conductivity. The performance of the best material was characterised as a function of cell compression and flow field geometry.

  1. Electrokinetic transport through the nanopores in cell membrane during electroporation.

    PubMed

    Movahed, Saeid; Li, Dongqing

    2012-03-01

    In electroporation, applied electric field creates hydrophilic nanopores in a cell membrane that can serve as a pathway for inserting biological samples to the cell. It is highly desirable to understand the ionic transfer and fluid flow through the nanopores in order to control and improve the cell transfection. Because of submicron dimensions, conventional theories of electrokinetics may lose their applicability in such nanopores. In the current study, the Poisson-Nernst-Planck equations along with modified Navier-Stokes equations and the continuity equation are solved in order to find electric potential, fluid flow, and ionic concentration through the nanopores. The results show that the electric potential, velocity field, and ionic concentration vary with the size of the nanopores and are different through the nanopores located at the front and backside of the cell membrane. However, on a given side of the cell membrane, angular position of nanopores has fewer influences on liquid flow and ionic transfer. By increasing the radius of the nanopores, the averaged velocity and ionic concentration through the nanopores are increased. It is also shown that, in the presence of electric pulse, electrokinetic effects (electroosmosis and electrophoresis) have significant influences on ionic mass transfer through the nanopores, while the effect of diffusion on ionic mass flux is negligible in comparison with electrokinetics. Increasing the radius of the nanopores intensifies the effect of convection (electroosmosis) in comparison with electrophoresis on ionic flux. PMID:22226500

  2. A polybenzimidazole/ionic-liquid-graphite-oxide composite membrane for high temperature polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Xu, Chenxi; Liu, Xiaoteng; Cheng, Jigui; Scott, Keith

    2015-01-01

    Graphite oxide is successfully functionalised by 3-aminopropyltriethoxysilane ionic liquid and used as a filler material in a polybenzimidazole (PBI) membrane for high temperature proton exchange membrane fuel cells. The ionic-liquid-graphite-oxide/polybenzimidazole (ILGO/PBI) composite membrane exhibits an appropriate level of proton conductivity when imbibed with phosphoric acid at low phosphoric acid loading, which promotes its use in fuel cells by avoiding acid leakage and materials corrosion. The ionic conductivities of the ILGO/PBI membranes at 175 C are 0.035 S cm-1 and 0.025 S cm-1 at per repeat units of 3.5 and 2.0, respectively. The fuel cell performance of ILGO/PBI membranes exhibits a maximum power density of 320 mW cm-2 at 175 C, which is higher than that of a pristine PBI membrane.

  3. Creating Transient Cell Membrane Pores Using a Standard Inkjet Printer

    PubMed Central

    Owczarczak, Alexander B.; Shuford, Stephen O.; Wood, Scott T.; Deitch, Sandra; Dean, Delphine

    2012-01-01

    Bioprinting has a wide range of applications and significance, including tissue engineering, direct cell application therapies, and biosensor microfabrication.1-10 Recently, thermal inkjet printing has also been used for gene transfection.8,9 The thermal inkjet printing process was shown to temporarily disrupt the cell membranes without affecting cell viability. The transient pores in the membrane can be used to introduce molecules, which would otherwise be too large to pass through the membrane, into the cell cytoplasm.8,9,11 The application being demonstrated here is the use of thermal inkjet printing for the incorporation of fluorescently labeled g-actin monomers into cells. The advantage of using thermal ink-jet printing to inject molecules into cells is that the technique is relatively benign to cells.8, 12 Cell viability after printing has been shown to be similar to standard cell plating methods1,8. In addition, inkjet printing can process thousands of cells in minutes, which is much faster than manual microinjection. The pores created by printing have been shown to close within about two hours. However, there is a limit to the size of the pore created (~10 nm) with this printing technique, which limits the technique to injecting cells with small proteins and/or particles. 8,9,11 A standard HP DeskJet 500 printer was modified to allow for cell printing.3, 5, 8 The cover of the printer was removed and the paper feed mechanism was bypassed using a mechanical lever. A stage was created to allow for placement of microscope slides and coverslips directly under the print head. Ink cartridges were opened, the ink was removed and they were cleaned prior to use with cells. The printing pattern was created using standard drawing software, which then controlled the printer through a simple print command. 3T3 fibroblasts were grown to confluence, trypsinized, and then resuspended into phosphate buffered saline with soluble fluorescently labeled g-actin monomers. The cell suspension was pipetted into the ink cartridge and lines of cells were printed onto glass microscope cover slips. The live cells were imaged using fluorescence microscopy and actin was found throughout the cytoplasm. Incorporation of fluorescent actin into the cell allows for imaging of short-time cytoskeletal dynamics and is useful for a wide range of applications.13-15 PMID:22453577

  4. Vesiculation of healthy and defective red blood cells

    NASA Astrophysics Data System (ADS)

    Li, He; Lykotrafitis, George

    2015-07-01

    Vesiculation of mature red blood cells (RBCs) contributes to removal of defective patches of the erythrocyte membrane. In blood disorders, which are related to defects in proteins of the RBC membrane, vesiculation of the plasma membrane is intensified. Several hypotheses have been proposed to explain RBC vesiculation but the exact underlying mechanisms and what determines the sizes of the vesicles are still not completely understood. In this work, we apply a two-component coarse-grained molecular dynamics RBC membrane model to study how RBC vesiculation is controlled by the membrane spontaneous curvature and by lateral compression of the membrane. Our simulation results show that the formation of small homogeneous vesicles with a diameter less than 40 nm can be attributed to a large spontaneous curvature of membrane domains. On the other hand, compression on the membrane can cause the formation of vesicles with heterogeneous composition and with sizes comparable with the size of the cytoskeleton corral. When spontaneous curvature and lateral compression are simultaneously considered, the compression on the membrane tends to facilitate formation of vesicles originating from curved membrane domains. We also simulate vesiculation of RBCs with membrane defects connected to hereditary elliptocytosis (HE) and to hereditary spherocytosis (HS). When the vertical connectivity between the lipid bilayer and the membrane skeleton is elevated, as in normal RBCs, multiple vesicles are shed from the compressed membrane with diameters similar to the cytoskeleton corral size. In HS RBCs, where the connectivity between the lipid bilayer and the cytoskeleton is reduced, larger-size vesicles are released under the same compression ratio as in normal RBCs. Lastly, we find that vesicles released from HE RBCs can contain cytoskeletal filaments due to fragmentation of the membrane skeleton while vesicles released from the HS RBCs are depleted of cytoskeletal filaments.

  5. Sodium channels in membrane vesicles from cultured toad bladder cells

    SciTech Connect

    Asher, C.; Moran, A.; Rossier, B.C.; Garty, H. Ben Gurion Univ., Beer-Sheva Institut de Pharmacologie de l'Universite de Lausanne )

    1988-04-01

    Electrical potential-driven {sup 22}Na{sup +} fluxes were measured in membrane vesicles prepared from TBM-18(cl23) cells (a clone of the established cell line TB-M). Fifty to seventy percent of the tracer uptake in vesicles derived from cells that were cultivated on a porous support were blocked by the diuretic amiloride. The amiloride inhibition constant was <0.1 {mu}M, indicating that this flux is mediated by the apical Na{sup +}-specific channels. Vesicles prepared from cells that were not grown on a porous support exhibited much smaller amiloride-sensitive fluxes. Two Ca{sup 2+}-dependent processes that down-regulated the channel conductance and were previously identified in native epithelia were found in the cultured cells as well. Vesicles isolated from cells that were preincubated with 5 {times} 10{sup {minus}7} M aldosterone for 16-20 h exhibited higher amiloride-sensitive conductance than vesicles derived from control, steroid-depleted cells. Thus membrane derived from TBM-18(cl23) cells can be used to characterize the epithelial Na{sup +} channel and its hormonal regulation.

  6. A novel unitized regenerative proton exchange membrane fuel cell

    NASA Technical Reports Server (NTRS)

    Murphy, O. J.; Cisar, A. J.; Gonzalez-Martin, A.; Salinas, C. E.; Simpson, S. F.

    1995-01-01

    A difficulty encountered in designing a unitized regenerative proton exchange membrane (PEM) fuel cell lies in the incompatibility of electrode structures and electrocatalyst materials optimized for either of the two functions (fuel cell or electrolyzer) with the needs of the other function. This difficulty is compounded in previous regenerative fuel cell designs by the fact that water, which is needed for proton conduction in the PEM during both modes of operation, is the reactant supplied to the anode in the electrolyzer mode of operation and the product formed at the cathode in the fuel cell mode. Drawbacks associated with existing regenerative fuel cells have been addressed in work performed at Lynntech. In a first innovation, electrodes function either as oxidation electrodes (hydrogen ionization or oxygen evolution) or as reduction electrodes (oxygen reduction or hydrogen evolution) in the fuel cell and electrolyzer modes, respectively. Control of liquid water within the regenerative fuel cell has been brought about by a second innovation. A novel PEM has been developed with internal channels that permit the direct access of water along the length of the membrane. Lateral diffusion of water along the polymer chains of the PEM provides the water needed at electrode/PEM interfaces. Fabrication of the novel unitized regenerative fuel cell and results obtained on testing it will be presented.

  7. From artificial red blood cells, oxygen carriers, and oxygen therapeutics to artificial cells, nanomedicine, and beyond

    PubMed Central

    Chang, Thomas M. S.

    2013-01-01

    The first experimental artificial red blood cells have all three major functions of red blood cells (rbc). However, the first practical one is a simple polyhemoglobin (PolyHb) that only has an oxygen-carrying function. This is now in routine clinical use in South Africa and Russia. An oxygen carrier with antioxidant functions, PolyHb-catalase-superoxide dismutase, can fulfill two of the three functions of rbc. Even more complete is one with all three functions of rbc in the form of PolyHb-catalase-superoxide dismutase-carbonic anhydrase. The most advanced ones are nanodimension artificial rbc with either PEG-lipid membrane or PEG-PLA polymermembrane. Extensions in to oxygen therapeutics include a PolyHb-tyrosinase that suppresses the growth of melanoma in a mice model. Another is a PolyHb-fibrinogen that is an oxygen carrier with platelet-like function. Research has now extended well beyond the original research on artificial rbc into many areas of artificial cells. These include nanoparticles, nanotubules, lipid vesicles, liposomes, polymer-tethered lipid vesicles, polymersomes, microcapsules, bioencapsulation, nanocapules, macroencapsulation, synthetic cells, and others. These are being used in nanotechnology, nanomedicine, regenerative medicine, enzyme/gene therapy, cell/stem cell therapy, biotechnology, drug delivery, hemoperfusion, nanosensers, and even by some groups in agriculture, industry, aquatic culture, nanocomputers, and nanorobotics. PMID:22409281

  8. Membrane tether formation from outer hair cells with optical tweezers.

    PubMed

    Li, Zhiwei; Anvari, Bahman; Takashima, Masayoshi; Brecht, Peter; Torres, Jorge H; Brownell, William E

    2002-03-01

    Optical tweezers were used to characterize the mechanical properties of the outer hair cell (OHC) plasma membrane by pulling tethers with 4.5-microm polystyrene beads. Tether formation force and tether force were measured in static and dynamic conditions. A greater force was required for tether formations from OHC lateral wall (499 +/- 152 pN) than from OHC basal end (142 +/- 49 pN). The difference in the force required to pull tethers is consistent with an extensive cytoskeletal framework associated with the lateral wall known as the cortical lattice. The apparent plasma membrane stiffness, estimated under the static conditions by measuring tether force at different tether length, was 3.71 pN/microm for OHC lateral wall and 4.57 pN/microm for OHC basal end. The effective membrane viscosity was measured by pulling tethers at different rates while continuously recording the tether force, and estimated in the range of 2.39 to 5.25 pN x s/microm. The viscous force most likely results from the viscous interactions between plasma membrane lipids and the OHC cortical lattice and/or integral membrane proteins. The information these studies provide on the mechanical properties of the OHC lateral wall is important for understanding the mechanism of OHC electromotility. PMID:11867454

  9. Buffalo (Bubalus bubalis) term amniotic-membrane-derived cells exhibited mesenchymal stem cells characteristics in vitro.

    PubMed

    Ghosh, Kaushalya; Kumar, Rajesh; Singh, Jarnail; Gahlawat, S K; Kumar, Dharmendra; Selokar, Naresh Lalaji; Yadav, S P; Gulati, B R; Yadav, P S

    2015-10-01

    Recent studies suggested that placentae amniotic membrane is a valuable source of stem cells in human as well as in livestock species. Advantages of amnion over other sources of stem cells included abundant availability, ethically non-objectionable and non-invasive source. The aim of the present study was the isolation, culture and characterization of amniotic-membrane-derived mesenchymal stem cells from term placentae collected postpartum in buffalo. We have observed that both presumptive epithelial-like and fibroblast-like cells were cultured and maintained from term amnion. These cells were shown the positive expression of pluripotency markers (OCT-4, SOX-2, NANOG, TERT), mesenchymal stem cell markers (CD29, CD44, CD105) and negative for haematopoietic marker (CD34) genes at different passages. In addition, these cells were also positive for alkaline phosphatase staining. Stem-ness potential of any stem cells is determined by their potential to differentiate into specific lineages of cell type. In the present study, we have successfully differentiated the amniotic-membrane-derived cells into adipogenic, chondrogenic and osteogenic lineages of cells in vitro. In conclusion, the results of this study demonstrate that amniotic-membrane-derived cells expressed pluripotent and mesenchymal stem cells markers and have propensity to differentiate into cells of mesenchymal lineage cell type upon directed differentiation in vitro. PMID:26019121

  10. Myosin-X facilitates Shigella-induced membrane protrusions and cell-to-cell spread

    PubMed Central

    Li, Wei; Dhillon, Jess; Bohil, Aparna B.; Cheney, Richard E.; Hartwig, John H.; Southwick, Frederick S.

    2014-01-01

    Summary The intracellular pathogen Shigella flexneri forms membrane protrusions to spread from cell to cell. As protrusions form, myosin-X (Myo10) localizes to Shigella. Electron micrographs of immunogold-labelled Shigella-infected HeLa cells reveal that Myo10 concentrates at the bases and along the sides of bacteria within membrane protrusions. Time-lapse video microscopy shows that a full-length Myo10 GFP-construct cycles along the sides of Shigella within the membrane protrusions as these structures progressively lengthen. RNAi knock-down of Myo10 is associated with shorter protrusions with thicker stalks, and causes a >80% decrease in confluent cell plaque formation. Myo10 also concentrates in membrane protrusions formed by another intracellular bacteria, Listeria, and knock-down of Myo10 also impairs Listeria plaque formation. In Cos7 cells (contain low concentrations of Myo10), the expression of full-length Myo10 nearly doubles Shigella-induced protrusion length, and lengthening requires the head domain, as well as the tail-PH domain, but not the FERM domain. The GFP-Myo10-HMM domain localizes to the sides of Shigella within membrane protrusions and the GFP-Myo10-PH domain localizes to host cell membranes. We conclude that Myo10 generates the force to enhance bacterial-induced protrusions by binding its head region to actin filaments and its PH tail domain to the peripheral membrane. PMID:23083060

  11. Comparison of cell membrane water permeability in monolayers and suspensions.

    PubMed

    Higgins, Adam Z; Karlsson, Jens O M

    2012-01-01

    We previously measured the membrane water permeability of monolayers and suspensions of MIN6 mouse insulinoma cells at room temperature, and found that water transport was faster in monolayers. Here, we compare water transport kinetics in monolayers and suspensions over a range of temperatures for two different cell types, MIN6 cells and bovine pulmonary artery endothelial cells (BPAEC). At room temperature the results for BPAEC and MIN6 cells were similar, with approximately 2-fold faster water transport in monolayers than suspensions. The activation energy for water transport (Ea) was estimated from Arrhenius plots of the water permeability data. The values of Ea for monolayers and suspensions of MIN6 cells were not significantly different. However, the activation energy was significantly lower for BPAEC monolayers (Ea = 49 +/- 2 kJ per mol) than suspensions (Ea = 70 +/- 4 kJ per mol). Predictions of water transport during cryopreservation revealed substantial differences in supercooling between monolayers and suspensions. PMID:22576122

  12. Tetraspanins regulate the protrusive activities of cell membrane

    SciTech Connect

    Bari, Rafijul; Guo, Qiusha; Zhongnan Hospital, Wuhan University, Wuhan ; Xia, Bing; Zhang, Yanhui H.; Giesert, Eldon E.; Levy, Shoshana; Zheng, Jie J.; Zhang, Xin A.

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Tetraspanins regulate microvillus formation. Black-Right-Pointing-Pointer Tetraspanin CD81 promotes microvillus formation. Black-Right-Pointing-Pointer Tetraspanin CD82 inhibits microvillus formation. Black-Right-Pointing-Pointer Based on this study, we extrapolated a general cellular mechanism for tetraspanins. Black-Right-Pointing-Pointer Tetraspanins engage various functions by regulating membrane protrusion morphogenesis. -- Abstract: Tetraspanins have gained increased attention due to their functional versatility. But the universal cellular mechanism that governs such versatility remains unknown. Herein we present the evidence that tetraspanins CD81 and CD82 regulate the formation and/or development of cell membrane protrusions. We analyzed the ultrastructure of the cells in which a tetraspanin is either overexpressed or ablated using transmission electron microscopy. The numbers of microvilli on the cell surface were counted, and the radii of microvillar tips and the lengths of microvilli were measured. We found that tetraspanin CD81 promotes the microvillus formation and/or extension while tetraspanin CD82 inhibits these events. In addition, CD81 enhances the outward bending of the plasma membrane while CD82 inhibits it. We also found that CD81 and CD82 proteins are localized at microvilli using immunofluorescence. CD82 regulates microvillus morphogenesis likely by altering the plasma membrane curvature and/or the cortical actin cytoskeletal organization. We predict that membrane protrusions embody a common morphological phenotype and cellular mechanism for, at least some if not all, tetraspanins. The differential effects of tetraspanins on microvilli likely lead to the functional diversification of tetraspanins and appear to correlate with their functional propensity.

  13. Fluconazole treatment hyperpolarizes the plasma membrane of Candida cells.

    PubMed

    Elicharova, Hana; Sychrova, Hana

    2013-11-01

    Five pathogenic Candida species were compared in terms of their osmotolerance, tolerance to toxic sodium and lithium cations, and resistance to fluconazole. The species not only differed, in general, in their tolerance to high osmotic pressure (C. albicans and C. parapsilosis being the most osmotolerant) but exhibited distinct sensitivities to toxic sodium and lithium cations, with C. parapsilosis and C. tropicalis being very tolerant but C. krusei and C. dubliniensis sensitive to LiCl. The treatment of both fluconazole-susceptible (C. albicans and C. parapsilosis) and fluconazole-resistant (C. dubliniensis, C. krusei and C. tropicalis) growing cells with subinhibitory concentrations of fluconazole resulted in substantially elevated intracellular Na(+) levels. Using a diS-C3(3) assay, for the first time, to monitor the relative membrane potential (ΔΨ) of Candida cells, we show that the fluconazole treatment of growing cells of all five species results in a substantial hyperpolarization of their plasma membranes, which is responsible for an increased non-specific transport of toxic alkali metal cations and other cationic drugs (e.g., hygromycin B). Thus, the combination of relatively low doses of fluconazole and drugs, whose import into the tested Candida strains is driven by the cell membrane potential, might be especially potent in terms of its ability to inhibit the growth of or even kill various Candida species. PMID:23547882

  14. Labeling of Membrane Proteins by Cell-Free Expression.

    PubMed

    LaGuerre, Aisha; Lhr, Frank; Bernhard, Frank; Dtsch, Volker

    2015-01-01

    The particular advantage of the cell-free reaction is that it allows a plethora of supplementation during protein expression and offers complete control over the available amino acid pool in view of concentration and composition. In combination with the fast and reliable production efficiencies of cell-free systems, the labeling and subsequent structural evaluation of very challenging targets, such as membrane proteins, comes into focus. We describe current methods for the isotopic labeling of cell-free synthesized membrane proteins and we review techniques available to the practitioner pursuing structural studies by nuclear magnetic resonance spectroscopy. Though isotopic labeling of individual amino acid types appears to be relatively straightforward, an ongoing critical issue in most labeling schemes for structural approaches is the selective substitution of deuterons for protons. While few options are available, the continuous refinement of labeling schemes in combination with improved pulse sequences and optimized instrumentation gives promising perspectives for extended applications in the structural evaluation of cell-free synthesized membrane. PMID:26577739

  15. Muscarinic receptor size on smooth muscle cells and membranes

    SciTech Connect

    Collins, S.M.; Jung, C.Y.; Grover, A.K.

    1986-08-01

    The loss of (/sup 3/H)quinuclidinyl benzilate ((/sup 3/H)QNB) binding following high-energy radiation was used to compare the muscarinic receptor size on single smooth muscle cells isolated by collagenase digestion from the canine stomach and on plasma membranes derived from intact gastric smooth muscle without exposure to exogenous proteolysis. Radiation inactivation of galactose oxidase (68 kdaltons), yeast alcohol dehydrogenase (160 kdaltons), and pyruvate kinase (224 kdaltons) activities were used as molecular-weight standards. Radiation inactivation of (/sup 3/H)QNB binding to rat brain membranes, which gave a target size of 86 kdaltons, served as an additional control. In isolated smooth muscle cells, the calculated size of the muscarinic receptor was 80 +/- 8 kdaltons. In contrast, in a smooth muscle enriched plasma membrane preparation, muscarinic receptor size was significantly smaller at 45 +/- 3 kdaltons. Larger molecular sizes were obtained either in the presence of protease inhibitors (62 +/- 4 kdaltons) or by using a crude membrane preparation of gastric smooth muscle 86 +/- 7 kdaltons).

  16. Determining TGF-? Receptor Levels in the Cell Membrane.

    PubMed

    Zhang, Long; Zhou, Fangfang; van Dinther, Maarten; Ten Dijke, Peter

    2016-01-01

    Transforming growth factor-? (TGF-?) is a pleiotropic cytokine that signals via transmembrane TGF-? type I and type II serine/threonine kinases receptors, i.e., T?RI and T?RII. Upon TGF-?-induced receptor complex formation, the T?RII kinase phosphorylates T?RI. Subsequently, the activated T?RI induces the phosphorylation of receptor regulated SMAD2 and SMAD3, which can form heteromeric complexes with Smad4. These heteromeric SMAD complexes accumulate in the nucleus, where they regulate target gene expression. The stability and membrane localization of T?RI is an important determinant to control the intensity and duration of TGF-? signaling. T?RI is targeted for poly-ubiquitylation-mediated proteasomal degradation by the SMAD7-SMURF E3 ligase complex. We recently identified another important regulatory factor that controls T?RI levels in the cell membrane. As a strong inducer of TGF-? signaling, ubiquitin-specific protease (USP) 4 was found to directly interact with T?RI and act as a deubiquitylating enzyme, thereby stabilizing T?RI levels at the plasma membrane. This chapter introduces methods for examining cell membrane receptor (T?RI) levels. PMID:26520116

  17. Cell Surface and Membrane Engineering: Emerging Technologies and Applications.

    PubMed

    Saeui, Christopher T; Mathew, Mohit P; Liu, Lingshui; Urias, Esteban; Yarema, Kevin J

    2015-01-01

    Membranes constitute the interface between the basic unit of life-a single cell-and the outside environment and thus in many ways comprise the ultimate "functional biomaterial". To perform the many and often conflicting functions required in this role, for example to partition intracellular contents from the outside environment while maintaining rapid intake of nutrients and efflux of waste products, biological membranes have evolved tremendous complexity and versatility. This article describes how membranes, mainly in the context of living cells, are increasingly being manipulated for practical purposes with drug discovery, biofuels, and biosensors providing specific, illustrative examples. Attention is also given to biology-inspired, but completely synthetic, membrane-based technologies that are being enabled by emerging methods such as bio-3D printers. The diverse set of applications covered in this article are intended to illustrate how these versatile technologies-as they rapidly mature-hold tremendous promise to benefit human health in numerous ways ranging from the development of new medicines to sensitive and cost-effective environmental monitoring for pathogens and pollutants to replacing hydrocarbon-based fossil fuels. PMID:26096148

  18. Yield Strength of Human Erythrocyte Membranes to Impulsive Stretching

    PubMed Central

    Li, Fenfang; Chan, Chon U; Ohl, Claus Dieter

    2013-01-01

    Deformability while remaining viable is an important mechanical property of cells. Red blood cells (RBCs) deform considerably while flowing through small capillaries. The RBC membrane can withstand a finite strain, beyond which it ruptures. The classical yield areal strain of 2–4% for RBCs is generally accepted for a quasi-static strain. It has been noted previously that this threshold strain may be much larger with shorter exposure duration. Here we employ an impulse-like forcing to quantify this yield strain of RBC membranes. In the experiments, RBCs are stretched within tens of microseconds by a strong shear flow generated from a laser-induced cavitation bubble. The deformation of the cells in the strongly confined geometry is captured with a high-speed camera and viability is successively monitored with fluorescence microscopy. We find that the probability of cell survival is strongly dependent on the maximum strain. Above a critical areal strain of ∼40%, permanent membrane damage is observed for 50% of the cells. Interestingly, many of the cells do not rupture immediately and exhibit ghosting, but slowly obtain a round shape before they burst. This observation is explained with structural membrane damage leading to subnanometer-sized pores. The cells finally lyse from the colloidal osmotic pressure imbalance. PMID:23972839

  19. Increase in Red Blood Cell-Nitric Oxide Synthase Dependent Nitric Oxide Production during Red Blood Cell Aging in Health and Disease: A Study on Age Dependent Changes of Rheologic and Enzymatic Properties in Red Blood Cells

    PubMed Central

    Bizjak, Daniel Alexander; Brinkmann, Christian; Bloch, Wilhelm; Grau, Marijke

    2015-01-01

    Aim To investigate RBC-NOS dependent NO signaling during in vivo RBC aging in health and disease. Method RBC from fifteen healthy volunteers (HC) and four patients with type 2 diabetes mellitus (DM) were separated in seven subpopulations by Percoll density gradient centrifugation. Results The proportion of old RBC was significantly higher in DM compared to HC. In both groups, in vivo aging was marked by changes in RBC shape and decreased cell volume. RBC nitrite, as marker for NO, was higher in DM and increased in both HC and DM during aging. RBC deformability was lower in DM and significantly decreased in old compared to young RBC in both HC and DM. RBC-NOS Serine1177 phosphorylation, indicating enzyme activation, increased during aging in both HC and DM. Arginase I activity remained unchanged during aging in HC. In DM, arginase I activity was significantly higher in young RBC compared to HC but decreased during aging. In HC, concentration of L-arginine, the substrate of RBC-NOS and arginase I, significantly dropped from young to old RBC. In DM, L-arginine concentration was significantly higher in young RBC compared to HC and significantly decreased during aging. In blood from healthy subjects, RBC-NOS activation was additionally inhibited by N5-(1-iminoethyl)-L-Ornithine dihydrochloride which decreased RBC nitrite, and impaired RBC deformability of all but the oldest RBC subpopulation. Conclusion This study first-time showed highest RBC-NOS activation and NO production in old RBC, possibly to counteract the negative impact of cell shrinkage on RBC deformability. This was even more pronounced in DM. It is further suggested that highly produced NO only insufficiently affects cell function of old RBC maybe because of isolated RBC-NOS in old RBC thus decreasing NO bioavailability. Thus, increasing NO availability may improve RBC function and may extend cell life span in old RBC. PMID:25902315

  20. Proton exchange membrane fuel cell technology for transportation applications

    SciTech Connect

    Swathirajan, S.

    1996-04-01

    Proton Exchange Membrane (PEM) fuel cells are extremely promising as future power plants in the transportation sector to achieve an increase in energy efficiency and eliminate environmental pollution due to vehicles. GM is currently involved in a multiphase program with the US Department of Energy for developing a proof-of-concept hybrid vehicle based on a PEM fuel cell power plant and a methanol fuel processor. Other participants in the program are Los Alamos National Labs, Dow Chemical Co., Ballard Power Systems and DuPont Co., In the just completed phase 1 of the program, a 10 kW PEM fuel cell power plant was built and tested to demonstrate the feasibility of integrating a methanol fuel processor with a PEM fuel cell stack. However, the fuel cell power plant must overcome stiff technical and economic challenges before it can be commercialized for light duty vehicle applications. Progress achieved in phase I on the use of monolithic catalyst reactors in the fuel processor, managing CO impurity in the fuel cell stack, low-cost electrode-membrane assembles, and on the integration of the fuel processor with a Ballard PEM fuel cell stack will be presented.

  1. Development of structured polymer electrolyte membranes for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Gasa, Jeffrey

    The objective of this research was to explore structure-property relationships to develop the understanding needed for introduction of superior PEM materials. Polymer electrolyte membranes based on sulfonated poly(ether ketone ketone) (SPEKK) were fabricated using N-methyl pyrrolidone as casting solvent. The membranes were characterized in terms of properties that were relevant to fuel cell applications, such as proton conductivity, methanol permeability, and swelling properties, among others. It was found in this study that the proton conductivity of neat SPEKK membranes could reach the conductivity of commercial membranes such as NafionRTM. However, when the conductivity of SPEKK was comparable to NafionRTM, the swelling of SPEKK in water was quite excessive. The swelling problem was remedied by modifying the microstructure of SPEKK using different techniques. One of them involved blending of lightly sulfonated PEKK with highly acidic particles (sulfonated crosslinked polystyrene-SXLPS). Low sulfonation level of SPEKK was used to reduce the swelling of the membrane in water and the role of the highly acidic particles was to enhance the proton conductivity of the membrane. Because of the residual crystallinity in SPEKK with low sulfonation levels (IEC < 1 meq/g), the composite membranes exhibited excellent dimensional stability in water at elevated temperatures (30-90 C). Also, the resistance to swelling of these composite membranes in methanol-water mixtures was far better than NafionRTM, and so was the methanol permeability. Another technique explored was blending with non-conductive polymers (poly(ether imide) and poly(ether sulfone)) to act as mechanical reinforcement. It was found that miscibility behavior of the blends had a significant impact on the transport and swelling properties of these blends, which could be explained by the blend microstructure. The miscibility behavior was found to be strongly dependent on the sulfonation level of SPEKK. The conductivities of the blends were enhanced by as much as two orders of magnitude when the morphology was modified by electric field. The last approach was ionic crosslinking of the sulfonate groups in SPEKK using divalent cations, specifically barium ions. The crosslinking treatment has greatly improved the thermal stability of the membranes in both dry and wet conditions.

  2. Evaluation of stem cell components in retrocorneal membranes.

    PubMed

    Lee, Seok Hyun; Kim, Kyoung Woo; Kim, Mi Kyung; Chun, Yeoun Sook; Kim, Jae Chan

    2014-06-01

    The purpose of this study was to elucidate the origin and cellular composition of retrocorneal membranes (RCMs) associated with chemical burns using immunohistochemical staining for primitive cell markers. Six cases of RCMs were collected during penetrating keratoplasty. We examined RCMs with hematoxylin and eosin (H&E), periodic acid-Schiff (PAS) staining and immunohistochemical analysis using monoclonal antibodies against hematopoietic stem cells (CD34, CD133, c-kit), mesenchymal stem cells (beta-1-integrin, TGF-β, vimentin, hSTRO-1), fibroblasts (FGF-β, α-smooth muscle actin), and corneal endothelial cells (type IV collagen, CD133, VEGF, VEGFR1). Histologic analysis of RCMs revealed an organized assembly of spindle-shaped cells, pigment-laden cells, and thin collagenous matrix structures. RCMs were positive for markers of mesenchymal stem cells including beta-1-integrin, TGF-β, vimentin, and hSTRO-1. Fibroblast markers were also positive, including FGF-β and α-smooth muscle actin (SMA). In contrast, immunohistochemical staining was negative for hematopoietic stem cell markers including CD34, CD133 and c-kit as well as corneal endothelial cell markers such as type IV collagen, CD133 except VEGF and VEGFR1. Pigment-laden cells did not stain with any antibodies. The results of this study suggest that RCMs consist of a thin collagen matrix and fibroblast-like cells and may be a possible neogenetic structure produced from a lineage of bone marrow-derived mesenchymal stem cells. PMID:24932088

  3. Novel Lipophilic Probe for Detecting Near-Membrane Reactive Oxygen Species Responses and Its Application for Studies of Pancreatic Acinar Cells: Effects of Pyocyanin and L-Ornithine

    PubMed Central

    Chvanov, Michael; Huang, Wei; Jin, Tao; Wen, Li; Armstrong, Jane; Elliot, Vicky; Alston, Ben; Burdyga, Alex; Criddle, David N.; Sutton, Robert

    2015-01-01

    Abstract Aims: The aim of this study was to develop a fluorescent reactive oxygen species (ROS) probe, which is preferentially localized in cellular membranes and displays a strong change in fluorescence upon oxidation. We also aimed to test the performance of this probe for detecting pathophysiologically relevant ROS responses in isolated cells. Results: We introduced a novel lipophilic ROS probe dihydrorhodamine B octadecyl ester (H2RB-C18). We then applied the new probe to characterize the ROS changes triggered by inducers of acute pancreatitis in pancreatic acinar cells. We resolved ROS changes produced by L-ornithine, L-arginine, cholecystokinin-8, acetylcholine, taurolithocholic acid 3-sulfate, palmitoleic acid ethyl ester, and the bacterial toxin pyocyanin. Particularly prominent ROS responses were induced by pyocyanin and L-ornithine. These ROS responses were accompanied by changes in cytosolic Ca2+concentration ([Ca2+]i), mitochondrial membrane potential (??), and NAD(P)H concentration. Innovation: The study describes a novel sensitive lipophilic ROS probe. The probe is particularly suitable for detecting ROS in near-membrane regions and therefore for reporting the ROS environment of plasma membrane channels and pumps. Conclusions: In our experimental conditions, the novel probe was more sensitive than 5-(and-6)-chloromethyl-2?,7?-dichlorodihydrofluorescein (CM-H2DCF) and dihydrorhodamine123 (H2R123) and allowed us to resolve ROS responses to secretagogues, pyocyanin, and L-ornithine. Changes in the fluorescence of the new probe were particularly prominent in the peripheral plasma membrane-associated regions. Our findings suggest that the new probe will be a useful tool in studies of the contribution of ROS to the pathophysiology of exocrine pancreas and other organs/tissues. Antioxid. Redox Signal. 22, 451464. PMID:24635199

  4. Airborne elements, cell membranes, and chlorophyll in transplanted lichens

    SciTech Connect

    Garty, J.; Cohen, Y.; Kloog, N.

    1998-07-01

    The objective of the present study was to test the concentration of airborne mineral elements in the lichen Ramalina lacera (with.) J.R. Laund. in comparison with its physiological status. Thalli of Ramalina lacera were collected in a remote unpolluted site and transplanted in a polluted region for 10 mo. An analysis of 20 elements in addition to an analysis of the status of cell membranes and the integrity of chlorophyll was performed after this period of transplantation. The lichen manifested a great potential for the accumulation of Pb, V, Ni, Zn, and Cu. Potassium and P were found to leach out. High concentrations of Ni, Mg, and B coincided with damage caused to cell membranes. The integrity of chlorophyll correlated with the concentration of K and correlated inversely with the concentration of Cr, Fe, Mn, Ni, Pb, and B.

  5. Plant cell membranes as biochemical targets of the phytotoxin helminthosporol.

    PubMed

    Briquet, M; Vilret, D; Goblet, P; Mesa, M; Eloy, M C

    1998-06-01

    Helminthosporol is one of the natural sesquiterpenoid toxins isolated and identified in the culture medium of the phytopathogenic ascomycete fungus Cochliobolus sativus. The effect of this phytotoxin was investigated on enzymatic activities, electron and ion transport in mitochondria, chloroplasts, and microsomes of plant. The results indicate that helminthosporol drastically affects the membrane permeability of these organelles to protons and substrate anions, inhibiting the mitochondrial oxidative phosphorylation, the photophosphorylation in chloroplasts, and the proton pumping across the cell plasma membrane. The 1,3-beta-glucan synthase activity, involved in defense mechanisms of plant cells against stress and damage, e.g., during pathogen attack, was also strongly inhibited by the toxin. PMID:9733095

  6. Collaboration between primitive cell membranes and soluble catalysts

    PubMed Central

    Adamala, Katarzyna P.; Engelhart, Aaron E.; Szostak, Jack W.

    2016-01-01

    One widely held model of early life suggests primitive cells consisted of simple RNA-based catalysts within lipid compartments. One possible selective advantage conferred by an encapsulated catalyst is stabilization of the compartment, resulting from catalyst-promoted synthesis of key membrane components. Here we show model protocell vesicles containing an encapsulated enzyme that promotes the synthesis of simple fatty acid derivatives become stabilized to Mg2+, which is required for ribozyme activity and RNA synthesis. Thus, protocells capable of such catalytic transformations would have enjoyed a selective advantage over other protocells in high Mg2+ environments. The synthetic transformation requires both the catalyst and vesicles that solubilize the water-insoluble precursor lipid. We suggest that similar modified lipids could have played a key role in early life, and that primitive lipid membranes and encapsulated catalysts, such as ribozymes, may have acted in conjunction with each other, enabling otherwise-impossible chemical transformations within primordial cells. PMID:26996603

  7. Regulation of membrane lipid bilayer structure during salinity adaptation: a study with the gill epithelial cell membranes of Oreochromis niloticus.

    PubMed

    Shivkamat, P; Roy, R

    2005-09-01

    A significant variation in the membrane fluidity (as assessed by DPH-fluorescence polarisation) and membrane lipid bilayer composition is noticed in the subcellular membranes of the gill epithelial cells of Oreochromis niloticus due to exposure of the fish to 1% saline water for 1 month. Also, a 70% enhanced activity of Na(+)-K(+)-ATPase in plasma membranes and a 2.5-fold increase of glucose-6-phosphate dehydrogenase in microsomal membranes are recorded in the treated fish. The changed membrane structure and fluidity along with the changed enzymatic activity of Na(+)-K(+)-ATPase help the influx the Na(+) rather than the efflux of K(+) through the gill epithelial cells during salinity adaptation. PMID:16000254

  8. Translocation of cell-penetrating peptides across the plasma membrane is controlled by cholesterol and microenvironment created by membranous proteins.

    PubMed

    Pae, Janely; Slik, Pille; Liivamgi, Laura; Lubenets, Dmitri; Arukuusk, Piret; Langel, lo; Pooga, Margus

    2014-10-28

    Despite the extensive research in the field of CPPs' cell entry the exact mechanisms underlying their cellular uptake and the role of involved cell surface molecules in the internalization process have remained controversial. The present study focused on the interactions between CPPs and plasma membrane compounds using giant plasma membrane vesicles (GPMVs). GPMVs have shown to be a suitable model to study the translocation of CPPs across the plasma membrane in conditions lacking endocytosis. Our results show that higher cholesterol content and tighter packing of membrane predominantly reduce the accumulation of transportan, TP10 and model amphipathic peptide (MAP) in vesicles, indicating that the internalization of CPPs takes place preferentially via the more dynamic membrane regions. The partial digestion of membrane proteins from GPMVs' surface, on the other hand, drastically reduced the accumulation of nona-arginine and Tat peptide into vesicles, suggesting that proteins play a crucial role in the uptake of arginine-rich CPPs. PMID:25016968

  9. Investigation of oxygen gain in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Prasanna, M.; Ha, H. Y.; Cho, E. A.; Hong, S.-A.; Oh, I.-H.

    The polymer electrolyte membrane fuel cell (PEMFC) faces an efficiency loss, so called "oxygen gain", when the cathode gas is changed from oxygen to air due to the reduced oxygen partial pressure. To reduce the oxygen gain of a PEMFC, performance and oxygen gain of the single cells were evaluated as a function of carbon support, Pt content in the catalyst, membrane electrode assembly (MEA) fabrication process and the cathode humidification temperature. Among the tested carbon supports, Black Pearl 2000 and an undisclosed carbon produced the best performance and the lowest oxygen gain with their high surface area and high pore volume. As the Pt content in the catalyst increased from 10 to 60 wt.%, Pt surface area and the electrode thickness decreased leading to decreases in active catalyst surface area, and an ohmic and mass transfer resistance of the electrode. Due to trade-off effects, 20 wt.% Pt exhibited the highest performance. Compared to the conventional MEA, the MEA prepared using catalyst-coated membrane (CCM) method showed better performance with reduced catalyst loss into the gas diffusion media (GDM). As the cathode humidification temperature increased from 55 to 85 °C, the amount of water supplied to the cathode increased, leading to an increase in ionic conductivity of the membrane and another probability of water flooding. Thus, in the low current density region, performance of the single cell was improved with cathode humidification temperature, while in the high current density region, the single cell showed the highest performance at the cathode humidification temperature of 65 °C with water flooding at 75 and 85 °C.

  10. Interferometric tomography of fuel cells for monitoring membrane water content.

    PubMed

    Waller, Laura; Kim, Jungik; Shao-Horn, Yang; Barbastathis, George

    2009-08-17

    We have developed a system that uses two 1D interferometric phase projections for reconstruction of 2D water content changes over time in situ in a proton exchange membrane (PEM) fuel cell system. By modifying the filtered backprojection tomographic algorithm, we are able to incorporate a priori information about the object distribution into a fast reconstruction algorithm which is suitable for real-time monitoring. PMID:19687959

  11. Do heavy ions cause microlesions in cell membranes?

    NASA Technical Reports Server (NTRS)

    Koniarek, Jan P.; Worgul, Basil V.

    1992-01-01

    The microlesion question is investigated by monitoring the electrical potential difference across the endothelium of rat corneas in vitro before, during, and after irradiation. When the corneas were exposed to 1 Gy of Fe-56 ions (450 and 600 MeV/a.m.u.), no effect was detected on this parameter. These results suggest that direct physical damage to cell membranes, as predicted by the microlesion theory, does not take place.

  12. Molecular phylogeny of cycads inferred from rbcL sequences

    NASA Astrophysics Data System (ADS)

    Treutlein, Jens; Wink, Michael

    2002-03-01

    The chloroplast gene rbcL was sequenced to elucidate the evolution of the gymnosperm plant order Cycadales. In accordance with traditional systematics, the order Cycadales and the corresponding genera cluster as monophyletic clades. Among them, the genus Cycas forms a basal group. The genetic distances within the genus Encephalartos and between the sister groups Encephalartos, Lepidozamia and Macrozamia, are unexpectedly small, suggesting that the extant species are the result of Miocene and Pliocene speciation. Their distribution in Africa or Australia, respectively, may therefore rather be due to long-distance dispersal than to Cretaceous continental drift, as had previously been assumed. The rbcL sequences also indicate that the colonisation of Madagascar by Cycas thouarsii occurred only recently as the sequences of C. thouarsii and Cycas rumphii from Indonesia are identical. In contrast, the divergence of the Cycadaceae and Zamiaceae apparently occurred in the Mesozoic.

  13. Molecular phylogeny of cycads inferred from rbcL sequences.

    PubMed

    Treutlein, Jens; Wink, Michael

    2002-05-01

    The chloroplast gene rbcL was sequenced to elucidate the evolution of the gymnosperm plant order Cycadales. In accordance with traditional systematics, the order Cycadales and the corresponding genera cluster as monophyletic clades. Among them, the genus Cycas forms a basal group. The genetic distances within the genus Encephalartos and between the sister groups Encephalartos, Lepidozamia and Macrozamia, are unexpectedly small, suggesting that the extant species are the result of Miocene and Pliocene speciation. Their distribution in Africa or Australia, respectively, may therefore rather be due to long-distance dispersal than to Cretaceous continental drift, as had previously been assumed. The rbcL sequences also indicate that the colonisation of Madagascar by Cycas thouarsii occurred only recently as the sequences of C. thouarsii and Cycas rumphii from Indonesia are identical. In contrast, the divergence of the Cycadaceae and Zamiaceae apparently occurred in the Mesozoic. PMID:12135087

  14. Stimulation of Erythrocyte Cell Membrane Scrambling by Mushroom Tyrosinase

    PubMed Central

    Frauenfeld, Leonie; Alzoubi, Kousi; Abed, Majed; Lang, Florian

    2014-01-01

    Background: Mushroom tyrosinase, a copper containing enzyme, modifies growth and survival of tumor cells. Mushroom tyrosinase may foster apoptosis, an effect in part due to interference with mitochondrial function. Erythrocytes lack mitochondria but are able to undergo apoptosis-like suicidal cell death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine-exposure at the erythrocyte surface. Signaling involved in the triggering of eryptosis include increase of cytosolic Ca2+-activity ([Ca2+]i) and activation of sphingomyelinase with subsequent formation of ceramide. The present study explored, whether tyrosinase stimulates eryptosis. Methods: Cell volume has been estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, [Ca2+]i from Fluo3-fluorescence, and ceramide abundance from binding of fluorescent antibodies in flow cytometry. Results: A 24 h exposure to mushroom tyrosinase (7 U/mL) was followed by a significant increase of [Ca2+]i, a significant increase of ceramide abundance, and a significant increase of annexin-V-binding. The annexin-V-binding following tyrosinase treatment was significantly blunted but not abrogated in the nominal absence of extracellular Ca2+. Tyrosinase did not significantly modify forward scatter. Conclusions: Tyrosinase triggers cell membrane scrambling, an effect, at least partially, due to entry of extracellular Ca2+ and ceramide formation. PMID:24647148

  15. 2?-Hydroxy ceramide in membrane homeostasis and cell signaling

    PubMed Central

    Kota, Venkatesh; Hama, Hiroko

    2013-01-01

    Ceramide is a precursor of complex sphingolipids and also plays important roles in cell signaling. With the advances in lipid analytical technologies, the structural diversity of ceramide species have become evident, and the complexity of cellular metabolism and function associated with distinct ceramide species is beginning to be revealed. One of the common structural variations of ceramide is 2?-hydroxylation of the N-acyl chain. Fatty acid 2-hydroxylase (FA2H) is one of the enzymes that introduce the hydroxyl group during de novo synthesis of ceramide. FA2H is essential for the normal functioning of the nervous system, as evidenced by demyelinating disorder associated with FA2H mutations in humans and mice. Studies of Fa2h mutant mice indicate that lack of 2?-hydroxy galactosylceramide in the myelin membrane results in loss of long-term stability of myelin and eventual demyelination. FA2H also regulates differentiation of various cell types (epidermal keratinocytes, schwannoma cells, adipocytes). When provided exogenously, ceramide induces apoptosis in many cell types. Interestingly, the effective concentration of 2?-hydroxy ceramide that induces apoptosis is significantly lower compared to non-hydroxy ceramide, and cells die much more rapidly, suggesting that 2?-hydroxy ceramide can mediate proapoptotic signaling distinct from non-hydroxy ceramide. Collectively, current evidence clearly shows that 2?-hydroxy ceramide and 2?-hydroxy complex sphingolipids have unique functions in membrane homeostasis and cell signaling that could not be substituted by non-hydroxy counterparts. PMID:24139861

  16. Self-humidified proton exchange membrane fuel cells: Operation of larger cells and fuel cell stacks

    SciTech Connect

    Dhar, H.P.; Lee, J.H.; Lewinski, K.A.

    1996-12-31

    The PEM fuel cell is promising as the power source for use in mobile and stationary applications primarily because of its high power density, all solid components, and simplicity of operation. For wide acceptability of this power source, its cost has to be competitive with the presently available energy sources. The fuel cell requires continuous humidification during operation as a power source. The humidification unit however, increases fuel cell volume, weight, and therefore decreases its overall power density. Great advantages in terms of further fuel cell simplification can be achieved if the humidification process can be eliminated or minimized. In addition, cost reductions are associated with the case of manufacturing and operation. At BCS Technology we have developed a technology of self-humidified operation of PEM fuel cells based on the mass balance of the reactants and products and the ability of membrane electrode assembly (MEA) to retain water necessary for humidification under the cell operating conditions. The reactants enter the fuel cell chambers without carrying any form of water, whether in liquid or vapor form. Basic principles of self-humidified operation of fuel cells as practiced by BCS Technology, Inc. have been presented previously in literature. Here, we report the operation of larger self-humidified single cells and fuel cell stacks. Fuel cells of areas Up to 100 cm{sup 2} have been operated. We also show the self-humidified operation of fuel cell stacks of 50 and 100 cm{sup 2} electrode areas.

  17. Latent progenitor cells as potential regulators for tympanic membrane regeneration

    NASA Astrophysics Data System (ADS)

    Kim, Seung Won; Kim, Jangho; Seonwoo, Hoon; Jang, Kyung-Jin; Kim, Yeon Ju; Lim, Hye Jin; Lim, Ki-Taek; Tian, Chunjie; Chung, Jong Hoon; Choung, Yun-Hoon

    2015-06-01

    Tympanic membrane (TM) perforation, in particular chronic otitis media, is one of the most common clinical problems in the world and can present with sensorineural healing loss. Here, we explored an approach for TM regeneration where the latent progenitor or stem cells within TM epithelial layers may play an important regulatory role. We showed that potential TM stem cells present highly positive staining for epithelial stem cell markers in all areas of normal TM tissue. Additionally, they are present at high levels in perforated TMs, especially in proximity to the holes, regardless of acute or chronic status, suggesting that TM stem cells may be a potential factor for TM regeneration. Our study suggests that latent TM stem cells could be potential regulators of regeneration, which provides a new insight into this clinically important process and a potential target for new therapies for chronic otitis media and other eardrum injuries.

  18. Latent progenitor cells as potential regulators for tympanic membrane regeneration

    PubMed Central

    Kim, Seung Won; Kim, Jangho; Seonwoo, Hoon; Jang, Kyung-Jin; Kim, Yeon Ju; Lim, Hye Jin; Lim, Ki-Taek; Tian, Chunjie; Chung, Jong Hoon; Choung, Yun-Hoon

    2015-01-01

    Tympanic membrane (TM) perforation, in particular chronic otitis media, is one of the most common clinical problems in the world and can present with sensorineural healing loss. Here, we explored an approach for TM regeneration where the latent progenitor or stem cells within TM epithelial layers may play an important regulatory role. We showed that potential TM stem cells present highly positive staining for epithelial stem cell markers in all areas of normal TM tissue. Additionally, they are present at high levels in perforated TMs, especially in proximity to the holes, regardless of acute or chronic status, suggesting that TM stem cells may be a potential factor for TM regeneration. Our study suggests that latent TM stem cells could be potential regulators of regeneration, which provides a new insight into this clinically important process and a potential target for new therapies for chronic otitis media and other eardrum injuries. PMID:26100219

  19. Proton electrolyte membrane properties and direct methanol fuel cell performance. II. Fuel cell performance and membrane properties effects

    NASA Astrophysics Data System (ADS)

    Silva, V. S.; Schirmer, J.; Reissner, R.; Ruffmann, B.; Silva, H.; Mendes, A.; Madeira, L. M.; Nunes, S. P.

    In order to study the relationship between the properties of proton electrolyte membranes (PEMs), obtained through standard characterization methods, and the direct methanol fuel cell (DMFC) performance, inorganic-organic hybrid membranes, modified via in situ hydrolysis, were used in a membrane electrolyte assembly (MEA) for DMFC application. The membranes, the characterization of which was performed in the previous paper of this series, were based on sulfonated poly(ether ether ketone) (sPEEK) with a sulfonation degree (SD) of 87% and were loaded with different amounts of zirconium oxide (5.0, 7.5, 10.0, 12.5 wt.%). The standard characterization methods applied were impedance spectroscopy (proton conductivity), water uptake, and pervaporation (permeability to methanol). The MEAs were characterized investigating the DMFC current-voltage polarization curves, constant voltage current (CV, 35 mV), and open-circuit voltage (OCV). The fuel cell ohmic resistance (null phase angle impedance, NPAI) and CO 2 concentration in the cathode outlet were also measured. The characterization results show that the incorporation of the inorganic oxide in the polymer network decreases the DMFC current density for CV experiments, CO 2 concentration in the cathode outlet for both OCV and CV experiments and, finally, the maximum power density output. The opposite effect was verified in terms of the NPAI (ohmic resistance) for both OCV and CV experiments. A good agreement was found between the studied DMFC performance parameters and the characterization results evaluated by impedance spectroscopy, water uptake and pervaporation experiments.

  20. Gallbladder visualization during technetium-99m RBC blood pool imaging. Case report and literature review

    SciTech Connect

    Kotlyarov, E.V.; Mattay, V.S.; Reba, R.C.

    1988-07-01

    Gallbladder visualization occurred after a Tc-99m red blood cell (RBC) cardiac gated blood pool scan. To date, seven cases of gallbladder visualization after the intravenous injection of Tc-99m RBCs have been reported. In the previous six patients the gallbladder was visualized incidentally during a search for gastrointestinal (GI) bleeding. All of the patients were anemic, six of seven had chronic renal failure, and five of seven had received multiple blood transfusions. When interpreting GI bleeding scans in patients with anemia and renal failure, awareness of the possibility of gallbladder visualization in the delayed images is important to avoid false-positive results. 3 references.

  1. Ambidextrous Binding of Cell and Membrane Bilayers by Soluble Matrix Metalloproteinase-12

    PubMed Central

    Koppisetti, Rama K.; Fulcher, Yan G.; Jurkevich, Alexander; Prior, Stephen H.; Xu, Jia; Lenoir, Marc; Overduin, Michael; Van Doren, Steven R.

    2014-01-01

    Matrix metalloproteinases (MMPs) regulate tissue remodeling, inflammation, and disease progression. Some soluble MMPs are inexplicably active near cell surfaces. Here, we demonstrate binding of MMP-12 directly to bilayers and cellular membranes using paramagnetic NMR and fluorescence. Opposing sides of the catalytic domain engage spin-labeled membrane mimics. Loops project from the ?-sheet interface to contact the phospholipid bilayer with basic and hydrophobic residues. The distal membrane interface comprises loops on the other side of the catalytic cleft. Both interfaces mediate MMP-12 association with vesicles and cell membranes. MMP-12 binds plasma membranes and is internalized to hydrophobic perinuclear features, the nuclear membrane, and inside the nucleus within minutes. While binding of TIMP-2 to MMP-12 hinders membrane interactions beside the active site, TIMP-2-inhibited MMP-12 binds vesicles and cells, suggesting compensatory rotation of its membrane approaches. MMP-12 association with diverse cell membranes may target its activities to modulate innate immune responses and inflammation. PMID:25412686

  2. Cell Surface and Membrane Engineering: Emerging Technologies and Applications

    PubMed Central

    Saeui, Christopher T.; Mathew, Mohit P.; Liu, Lingshui; Urias, Esteban; Yarema, Kevin J.

    2015-01-01

    Membranes constitute the interface between the basic unit of life—a single cell—and the outside environment and thus in many ways comprise the ultimate “functional biomaterial”. To perform the many and often conflicting functions required in this role, for example to partition intracellular contents from the outside environment while maintaining rapid intake of nutrients and efflux of waste products, biological membranes have evolved tremendous complexity and versatility. This article describes how membranes, mainly in the context of living cells, are increasingly being manipulated for practical purposes with drug discovery, biofuels, and biosensors providing specific, illustrative examples. Attention is also given to biology-inspired, but completely synthetic, membrane-based technologies that are being enabled by emerging methods such as bio-3D printers. The diverse set of applications covered in this article are intended to illustrate how these versatile technologies—as they rapidly mature—hold tremendous promise to benefit human health in numerous ways ranging from the development of new medicines to sensitive and cost-effective environmental monitoring for pathogens and pollutants to replacing hydrocarbon-based fossil fuels. PMID:26096148

  3. Cell-cycle-specific fluctuation in cytoplasmic membrane composition in aerobically grown Rhodospirillum rubrum.

    PubMed Central

    Myers, C R; Collins, M L

    1987-01-01

    Aerobic growth with synchronous cell division was induced in Rhodospirillum rubrum by starvation methods. Cells were harvested at different points in the cell cycle. Analysis of the composition of the cell envelope prepared by differential centrifugation or density gradient-purified cytoplasmic membrane obtained from cells at different times indicated that the protein/phospholipid ratio fluctuated with the cell cycle. The protein/phospholipid ratio of cell envelope from selection-synchronized cells also fluctuated with the cell cycle. These studies indicate that the phenomenon of cell-cycle-dependent fluctuation in membrane composition is not restricted to the intracytoplasmic chromatophore membrane of phototrophic cells. PMID:3119564

  4. Better Proton-Conducting Polymers for Fuel-Cell Membranes

    NASA Technical Reports Server (NTRS)

    Narayan, Sri; Reddy, Prakash

    2012-01-01

    Polyoxyphenylene triazole sulfonic acid has been proposed as a basis for development of improved proton-conducting polymeric materials for solid-electrolyte membranes in hydrogen/air fuel cells. Heretofore, the proton-conducting membrane materials of choice have been exemplified by a family of perfluorosulfonic acid-based polymers (Nafion7 or equivalent). These materials are suitable for operation in the temperature of 75 to 85 C, but in order to reduce the sizes and/or increase the energy-conversion efficiencies of fuel-cell systems, it would be desirable to increase temperatures to as high as 120 C for transportation applications, and to as high as 180 C for stationary applications. However, at 120 C and at relative humidity values below 50 percent, the loss of water from perfluorosulfonic acid-based polymer membranes results in fuel-cell power densities too low to be of practical value. Therefore, membrane electrolyte materials that have usefully high proton conductivity in the temperature range of 180 C at low relative humidity and that do not rely on water for proton conduction at 180 C would be desirable. The proposed polyoxyphenylene triazole sulfonic acid-based materials have been conjectured to have these desirable properties. These materials would be free of volatile or mobile acid constituents. The generic molecular structure of these materials is intended to exploit the fact, demonstrated in previous research, that materials that contain ionizable acid and base groups covalently attached to thermally stable polymer backbones exhibit proton conduction even in the anhydrous state.

  5. A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment.

    PubMed

    Malaeb, Lilian; Katuri, Krishna P; Logan, Bruce E; Maab, Husnul; Nunes, S P; Saikaly, Pascal E

    2013-10-15

    A new hybrid, air-biocathode microbial fuel cell-membrane bioreactor (MFC-MBR) system was developed to achieve simultaneous wastewater treatment and ultrafiltration to produce water for direct reclamation. The combined advantages of this system were achieved by using an electrically conductive ultrafiltration membrane as both the cathode and the membrane for wastewater filtration. The MFC-MBR used an air-biocathode, and it was shown to have good performance relative to an otherwise identical cathode containing a platinum catalyst. With 0.1 mm prefiltered domestic wastewater as the feed, the maximum power density was 0.38 W/m(2) (6.8 W/m(3)) with the biocathode, compared to 0.82 W/m(2) (14.5 W/m(3)) using the platinum cathode. The permeate quality from the biocathode reactor was comparable to that of a conventional MBR, with removals of 97% of the soluble chemical oxygen demand, 97% NH3-N, and 91% of total bacteria (based on flow cytometry). The permeate turbidity was <0.1 nephelometric turbidity units. These results show that a biocathode MFC-MBR system can achieve high levels of wastewater treatment with a low energy input due to the lack of a need for wastewater aeration. PMID:24016059

  6. Membrane Cholesterol Modulates LOX-1 Shedding in Endothelial Cells

    PubMed Central

    Testa, Barbara; Raniolo, Sofia; Fasciglione, Giovanni Francesco; Coletta, Massimiliano; Biocca, Silvia

    2015-01-01

    The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a scavenger receptor responsible for ox-LDL recognition, binding and internalization, which is up-regulated during atherogenesis. Its activation triggers endothelium dysfunction and induces inflammation. A soluble form of LOX-1 has been identified in the human blood and its presence considered a biomarker of cardiovascular diseases. We recently showed that cholesterol-lowering drugs inhibit ox-LDL binding and internalization, rescuing the ox-LDL induced apoptotic phenotype in primary endothelial cells. Here we have investigated the molecular bases of human LOX-1 shedding by metalloproteinases and the role of cell membrane cholesterol on the regulation of this event by modulating its level with MβCD and statins. We report that membrane cholesterol affects the release of different forms of LOX-1 in cells transiently and stably expressing human LOX-1 and in a human endothelial cell line (EA.hy926). In particular, our data show that i) cholesterol depletion triggers the release of LOX-1 in exosomes as a full-length transmembrane isoform and as a truncated ectodomain soluble fragment (sLOX-1); ii) endothelial cells secrete a soluble metalloproteinase which induces LOX-1 ectodomain shedding and iii) long term statins treatment enhances sLOX-1 proteolytic shedding. PMID:26495844

  7. Mathematical and Computational Modeling of Polymer Exchange Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Ulusoy, Sehribani

    In this thesis a comprehensive review of fuel cell modeling has been given and based on the review, a general mathematical fuel cell model has been developed in order to understand the physical phenomena governing the fuel cell behavior and in order to contribute to the efforts investigating the optimum performance at different operating conditions as well as with different physical parameters. The steady state, isothermal model presented here accounts for the combined effects of mass and species transfer, momentum conservation, electrical current distribution through the gas channels, the electrodes and the membrane, and the electrochemical kinetics of the reactions in the anode and cathode catalyst layers. One of the important features of the model is that it proposes a simpler modified pseudo-homogeneous/agglomerate catalyst layer model which takes the advantage of the simplicity of pseudo-homogenous modeling while taking into account the effects of the agglomerates in the catalyst layer by using experimental geometric parameters published. The computation of the general mathematical model can be accomplished in 3D, 2D and 1D with the proper assumptions. Mainly, there are two computational domains considered in this thesis. The first modeling domain is a 2D Membrane Electrode Assembly (MEA) model including the modified agglomerate/pseudo-homogeneous catalyst layer modeling with consistent treatment of water transport in the MEA while the second domain presents a 3D model with different flow filed designs: straight, stepped and tapered. COMSOL Multiphysics along with Batteries and Fuel Cell Module have been used for 2D & 3D model computations while ANSYS FLUENT PEMFC Module has been used for only 3D two-phase computation. Both models have been validated with experimental data. With 2D MEA model, the effects of temperature and water content of the membrane as well as the equivalent weight of the membrane on the performance have been addressed. 3D COMSOL simulation results showed that the fuel performance can be improved by using flow field designs alleviating the reactant depletion along the channels and supplying more uniform reactant distribution. Stepped flow field was found to show better performance when compared to straight and tapered ones. ANSYS FLUENT model is evaluated in terms of predicting the two phase flow in the fuel cell components. It is proposed that it is not capable of predicting the entire fuel cell polarization due to the lack of agglomerate catalyst layer modeling and well-established two-phase flow modeling. Along with the comprehensive modeling efforts, also an analytical model has been computed by using MathCAD and it is found that this simpler model is able to predict the performance in a general trend according to the experimental data obtained for a new novel membrane. Therefore, it can be used for robust prediction of the cell performance at different operating conditions such as temperature and pressure, and the electrochemical properties such as the catalyst loading, the exchange current density and the diffusion coefficients of the reactants. In addition to the modeling efforts, this thesis also presents a very comprehensive literature review on the models developed in the literature so far, the modeling efforts in fuel cell sandwich including membrane, catalyst layer and gas diffusion layer and fuel cell model properties. Moreover, a summary of possible directions of research in fuel cell analysis and computational modeling has been presented.

  8. Preparation of Highly Sulfonated Ultra-Thin Proton-Exchange Polymer Membranes for Proton Exchange Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Jiang, Zhongqing; Meng, Yuedong; Jiang, Zhong-Jie; Shi, Yicai

    Sulfonated ultra-thin proton-exchange polymer membrane carrying pyridine groups was made from a plasma polymerization of styrene, 2-vinylpyridine, and trifluoromethanesulfonic acid by after-glow capacitively coupled discharge technique. Pyridine groups tethered to the polymer backbone acts as a medium through the basic nitrogen for transfer of protons between the sulfonic acid groups of proton exchange membrane. It shows that the method using present technology could effectively depress the degradation of monomers during the plasma polymerization. Spectroscopic analyses reveal that the obtained membranes are highly functionalized with proton exchange groups and have higher proton conductivity. Thus, the membranes are expected to be used in direct methanol fuel cells.

  9. Measurement of posttransfusion red cell survival with the biotin label.

    PubMed

    Mock, Donald M; Widness, John A; Veng-Pedersen, Peter; Strauss, Ronald G; Cancelas, Jose A; Cohen, Robert M; Lindsell, Christopher J; Franco, Robert S

    2014-07-01

    The goal of this review is to summarize and critically assess information concerning the biotin method to label red blood cells (RBC) for use in studies of RBC and transfusion biology-information that will prove useful to a broad audience of clinicians and scientists. A review of RBC biology, with emphasis on RBC senescence and in vivo survival, is included, followed by an analysis of the advantages and disadvantages of biotin-labeled RBC (BioRBC) for measuring circulating RBC volume, posttransfusion RBC recovery, RBC life span, and RBC age-dependent properties. The advantages of BioRBC over (51)Cr RBC labeling, the current reference method, are discussed. Because the biotin method is straightforward and robust, including the ability to follow the entire life spans of multiple RBC populations concurrently in the same subject, BioRBC offers distinct advantages for studying RBC biology and physiology, particularly RBC survival. The method for biotin labeling, validation of the method, and application of BioRBCs to studies of sickle cell disease, diabetes, and anemia of prematurity are reviewed. Studies documenting the safe use of BioRBC are reviewed; unanswered questions requiring future studies, remaining concerns, and regulatory barriers to broader application of BioRBC including adoption as a new reference method are also presented. PMID:24969019

  10. Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles

    NASA Astrophysics Data System (ADS)

    Fang, Ronnie H.; Hu, Che-Ming J.; Chen, Kevin N. H.; Luk, Brian T.; Carpenter, Cody W.; Gao, Weiwei; Li, Shulin; Zhang, Dong-Er; Lu, Weiyue; Zhang, Liangfang

    2013-09-01

    RBC membrane-cloaked polymeric nanoparticles represent an emerging nanocarrier platform with extended circulation in vivo. A lipid-insertion method is employed to functionalize these nanoparticles without the need for direct chemical conjugation. Insertion of both folate and the nucleolin-targeting aptamer AS1411 shows receptor-specific targeting against model cancer cell lines.RBC membrane-cloaked polymeric nanoparticles represent an emerging nanocarrier platform with extended circulation in vivo. A lipid-insertion method is employed to functionalize these nanoparticles without the need for direct chemical conjugation. Insertion of both folate and the nucleolin-targeting aptamer AS1411 shows receptor-specific targeting against model cancer cell lines. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03064d

  11. NREL Develops Technique to Measure Membrane Thickness and Defects in Polymer Electrode Membrane Fuel Cells (Fact Sheet)

    SciTech Connect

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in fuel cell membrane electrode assembly research and development. Work was performed by the Hydrogen Technologies and Systems Center and the National Center for Photovoltaics.

  12. CR1-mediated ATP Release by Human Red Blood Cells Promotes CR1 Clustering and Modulates the Immune Transfer Process*

    PubMed Central

    Melhorn, Mark I.; Brodsky, Abigail S.; Estanislau, Jessica; Khoory, Joseph A.; Illigens, Ben; Hamachi, Itaru; Kurishita, Yasutaka; Fraser, Andrew D.; Nicholson-Weller, Anne; Dolmatova, Elena; Duffy, Heather S.; Ghiran, Ionita C.

    2013-01-01

    Humans and other higher primates are unique among mammals in using complement receptor 1 (CR1, CD35) on red blood cells (RBC) to ligate complement-tagged inflammatory particles (immune complexes, apoptotic/necrotic debris, and microbes) in the circulation for quiet transport to the sinusoids of spleen and liver where resident macrophages remove the particles, but allow the RBC to return unharmed to the circulation. This process is called immune-adherence clearance. In this study we found using luminometric- and fluorescence-based methods that ligation of CR1 on human RBC promotes ATP release. Our data show that CR1-mediated ATP release does not depend on Ca2+ or enzymes previously shown to mediate an increase in membrane deformability promoted by CR1 ligation. Furthermore, ATP release following CR1 ligation increases the mobility of the lipid fraction of RBC membranes, which in turn facilitates CR1 clustering, and thereby enhances the binding avidity of complement-opsonized particles to the RBC CR1. Finally, we have found that RBC-derived ATP has a stimulatory effect on phagocytosis of immune-adherent immune complexes. PMID:24022490

  13. Water free proton conducting membranes based on poly-4-vinylpyridinebisulfate for fuel cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Yen, Shiao-Pin S. (Inventor)

    2007-01-01

    Disclosed are methods for forming a water-free electrolyte membrane useful in fuel cells. Also provided is a water-free electrolyte membrane comprising a quaternized amine salt including poly-4-vinylpyridinebisulfate, a poly-4-vinylpyridinebisulfate silica composite, and a combination thereof and a fuel cell comprising the membrane.

  14. High temperature polymers for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Einsla, Brian Russel

    Novel proton exchange membranes (PEMs) were investigated that show potential for operating at higher temperatures in both direct methanol (DMFC) and H 2/air PEM fuel cells. The need for thermally stable polymers immediately suggests the possibility of heterocyclic polymers bearing appropriate ion conducting sites. Accordingly, monomers and random disulfonated poly(arylene ether) copolymers containing either naphthalimide, benzoxazole or benzimidazole moieties were synthesized via direct copolymerization. The ion exchange capacity (IEC) was varied by simply changing the ratio of disulfonated monomer to nonsulfonated monomer in the copolymerization step. Water uptake and proton conductivity of cast membranes increased with IEC. The water uptake of these heterocyclic copolymers was lower than that of comparable disulfonated poly(arylene ether) systems, which is a desirable improvement for PEMs. Membrane electrode assemblies were prepared and the initial fuel cell performance of the disulfonated polyimide and polybenzoxazole (PBO) copolymers was very promising at 80C compared to the state-of-the-art PEM (NafionRTM); nevertheless these membranes became brittle under operating conditions. Several series of poly(arylene ether)s based on disodium-3,3'-disulfonate-4,4 '-dichlorodiphenylsulfone (S-DCDPS) and a benzimidazole-containing bisphenol were synthesized and afforded copolymers with enhanced stability. Selected properties of these membranes were compared to separately prepared miscible blends of disulfonated poly(arylene ether sulfone) copolymers and polybenzimidazole (PBI). Complexation of the sulfonic acid groups with the PBI structure reduced water swelling and proton conductivity. The enhanced proton conductivity of NafionRTM membranes has been proposed to be due to the aggregation of the highly acidic side-chain sulfonic acid sites to form ion channels. A series of side-chain sulfonated poly(arylene ether sulfone) copolymers based on methoxyhydroquinone was synthesized in order to investigate this possible advantage and to couple this with the excellent hydrolytic stability of poly(arylene ether)s. The methoxy groups were deprotected to afford reactive phenolic sites and nucleophilic substitution reactions with functional aryl sulfonates were used to prepare simple aryl or highly acidic fluorinated sulfonated copolymers. The proton conductivity and water sorption of the resulting copolymers increased with the ion exchange capacity, but changing the acidity of the sulfonic acid had no apparent effect.

  15. Fluorescence interferometry applied to cell membrane model systems

    NASA Astrophysics Data System (ADS)

    Ganesan, Prasad Viswanathan

    Fluorescence interference contrast microscopy (FLIC) is an experimentally straightforward means for determining the position of fluorescent objects in one dimension with nanometer accuracy. It is therefore a useful method for studying properties of fluorescent objects in supported phospholipid bilayers, a common cell membrane model system. Unfortunately, in its conventional form there are limits on the kinds of systems and questions that can be probed using FLIC. To address this issue, extensions to existing interferometry approaches have been developed to be applicable to a wider range of problems than those than can be investigated with laterally homogeneous supported phospholipid bilayers. One extension takes the form of a new imaging technique that allows the extraction of distance information for fluorescent objects that are not laterally homogeneous. In variable incidence angle fluorescence interference contrast microscopy (VIA-FLIC), a fluorescent sample is assembled above a reflective silicon interface and the incidence angle of excitation light is varied by placing annular photomasks with different radii in the aperture diaphragm plane of the microscope. Constructive and destructive interference occur near the reflective interface, and varying the incidence angle alters the interference pattern, and hence the intensity of detected fluorescence. By collecting a series of images of a single fluorescent object, an intensity profile as a function of angle of incidence can be constructed, and this profile is characteristic of a specific distance between the fluorophore and the interface. A second extension is the development of a model membrane system that can be probed using interferometry techniques, while also positioning the phospholipid bilayer hundreds of nanometers from the substrate surface. This separation distance is sufficient that cell membrane proteins conceivably could be incorporated into this system without the surface interaction problems typically observed for proteins in supported phospholipid bilayers. Although many challenges remain to be addressed, the architecture of this system raises the possibility of studying protein conformational dynamics using fluorescence. Such a system may also be relevant to the study of other membrane-related processes such as membrane-membrane fusion.

  16. Nanocomposite membranes based on polybenzimidazole and ZrO2 for high-temperature proton exchange membrane fuel cells.

    PubMed

    Nawn, Graeme; Pace, Giuseppe; Lavina, Sandra; Vezz, Keti; Negro, Enrico; Bertasi, Federico; Polizzi, Stefano; Di Noto, Vito

    2015-04-24

    Owing to the numerous benefits obtained when operating proton exchange membrane fuel cells at elevated temperature (>100?C), the development of thermally stable proton exchange membranes that demonstrate conductivity under anhydrous conditions remains a significant goal for fuel cell technology. This paper presents composite membranes consisting of poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI4N) impregnated with a ZrO2 nanofiller of varying content (ranging from 0 to 22?wt?%). The structure-property relationships of the acid-doped and undoped composite membranes have been studied using thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, wide-angle X-ray scattering, infrared spectroscopy, and broadband electrical spectroscopy. Results indicate that the level of nanofiller has a significant effect on the membrane properties. From 0 to 8?wt?%, the acid uptake as well as the thermal and mechanical properties of the membrane increase. As the nanofiller level is increased from 8 to 22?wt?% the opposite effect is observed. At 185?C, the ionic conductivity of [PBI4N(ZrO2 )0.231 ](H3 PO4 )13 is found to be 1.0410(-1) ?S?cm(-1) . This renders membranes of this type promising candidates for use in high-temperature proton exchange membrane fuel cells. PMID:25801848

  17. Influence of estrogenic pesticides on membrane integrity and membrane transfer of monosaccharide into the human red cell

    SciTech Connect

    Ingermann, R.L. )

    1989-09-01

    Some natural and synthetic estrogens inhibit carrier-mediated transport of glucose into human red blood cells and membrane vesicles from the placenta. The inhibitory action of these estrogens on transport appears to be a direct effect at the membrane and does not involve receptor binding and protein synthesis. It is not clear, however, whether such inhibition is a common feature among estrogenic agents. Several chlorinated hydrocarbon pesticides have been shown to possess estrogenic activity. These pesticides could have inhibitory effects on the human sodium-independent glucose transporter. Owing to the apparent importance of this membrane transporter in human tissues, direct interaction of hormones and xenobiotics with the glucose transporter is of fundamental significance. Some pesticides have been shown to alter membrane structure directly and alter the passive permeability of membranes. Whether the estrogenic pesticides influence passive diffusion of sugars across membranes has not been established. Finally, preliminary observations have suggested that some estrogens and pesticides have lytic effects on intact cells. Consequently, this study focuses on the ability of several estrogens and estrogenic pesticides to disrupt the cell membrane, influence the monosaccharide transporter, and alter the rate of monosaccharide permeation through the membrane by simple diffusion.

  18. Synthetic nanoparticles camouflaged with biomimetic erythrocyte membranes for reduced reticuloendothelial system uptake

    NASA Astrophysics Data System (ADS)

    Rao, Lang; Xu, Jun-Hua; Cai, Bo; Liu, Huiqin; Li, Ming; Jia, Yan; Xiao, Liang; Guo, Shi-Shang; Liu, Wei; Zhao, Xing-Zhong

    2016-02-01

    Suppression of the reticuloendothelial system (RES) uptake is one of the most challenging tasks in nanomedicine. Coating stratagems using polymers, such as poly(ethylene glycol) (PEG), have led to great success in this respect. Nevertheless, recent observations of immunological response toward these synthetic polymers have triggered a search for better alternatives. In this work, natural red blood cell (RBC) membranes are camouflaged on the surface of Fe3O4 nanoparticles for reducing the RES uptake. In vitro macrophage uptake, in vivo biodistribution and pharmacokinetic studies demonstrate that the RBC membrane is a superior alternative to the current gold standard PEG for nanoparticle ‘stealth’. Furthermore, we systematically investigate the in vivo potential toxicity of RBC membrane-coated nanoparticles by blood biochemistry, whole blood panel examination and histology analysis based on animal models. The combination of synthetic nanoparticles and natural cell membranes embodies a novel and biomimetic nanomaterial design strategy and presents a compelling property of functional materials for a broad range of biomedical applications.

  19. Synthetic nanoparticles camouflaged with biomimetic erythrocyte membranes for reduced reticuloendothelial system uptake.

    PubMed

    Rao, Lang; Xu, Jun-Hua; Cai, Bo; Liu, Huiqin; Li, Ming; Jia, Yan; Xiao, Liang; Guo, Shi-Shang; Liu, Wei; Zhao, Xing-Zhong

    2016-02-26

    Suppression of the reticuloendothelial system (RES) uptake is one of the most challenging tasks in nanomedicine. Coating stratagems using polymers, such as poly(ethylene glycol) (PEG), have led to great success in this respect. Nevertheless, recent observations of immunological response toward these synthetic polymers have triggered a search for better alternatives. In this work, natural red blood cell (RBC) membranes are camouflaged on the surface of Fe3O4 nanoparticles for reducing the RES uptake. In vitro macrophage uptake, in vivo biodistribution and pharmacokinetic studies demonstrate that the RBC membrane is a superior alternative to the current gold standard PEG for nanoparticle 'stealth'. Furthermore, we systematically investigate the in vivo potential toxicity of RBC membrane-coated nanoparticles by blood biochemistry, whole blood panel examination and histology analysis based on animal models. The combination of synthetic nanoparticles and natural cell membranes embodies a novel and biomimetic nanomaterial design strategy and presents a compelling property of functional materials for a broad range of biomedical applications. PMID:26820630

  20. Triggering of erythrocyte cell membrane scrambling by salinomycin.

    PubMed

    Bissinger, Rosi; Malik, Abaid; Jilani, Kashif; Lang, Florian

    2014-11-01

    Salinomycin, a polyether ionophore antibiotic effective against a variety of pathogens, has been shown to trigger apoptosis of cancer cells and cancer stem cells. The substance is thus considered for the treatment of malignancy. Salinomycin compromises tumour cell survival at least in part by interference with mitochondrial function. Erythrocytes lack mitochondria but may undergo apoptosis-like suicidal cell death or eryptosis, which is characterized by scrambling of the cell membrane with phosphatidylserine exposure at the erythrocyte surface. Signalling involved in the triggering of eryptosis includes activation of oxidant-sensitive Ca(2+) permeable cation channels with subsequent increase in cytosolic Ca(2+) activity ([Ca(2+)]i). This study explored whether salinomycin stimulates eryptosis. Phosphatidylserine-exposing erythrocytes were identified by measurement of annexin-V binding, cell volume was estimated from forward scatter, haemolysis determined from haemoglobin release, [Ca(2+)]i quantified utilizing Fluo3-fluorescence and oxidative stress from 2',7' dichlorodihydrofluorescein diacetate (DCFDA) fluorescence in flow cytometry. A 48-hr exposure to salinomycin (5-100 nM) was followed by a significant increase in Fluo3-fluorescence, DCFDA fluorescence and annexin-V binding, as well as a significant decrease in forward scatter (at 5-10nM, but not at 50 and 100nM). The annexin-V binding after salinomycin treatment was significantly blunted but not abrogated in the nominal absence of extracellular Ca(2+) or in the presence of antioxidant n-acetyl cysteine (1mM). Salinomycin triggers cell membrane scrambling, an effect at least partially due to oxidative stress and entry of extracellular Ca(2+). PMID:24717091

  1. Human corneal endothelial cell growth on a silk fibroin membrane.

    PubMed

    Madden, Peter W; Lai, Jonathan N X; George, Karina A; Giovenco, Talia; Harkin, Damien G; Chirila, Traian V

    2011-06-01

    Tissue engineering of the cornea could overcome shortages of donor corneas for transplantation and improve quality. Our aim was to grow an endothelial layer on a substratum suitable for transplant. Silkworm (Bombyx mori) fibroin was prepared as 5 ?m thick transparent membranes. The B4G12 cell line was used to assess attachment and growth of human corneal endothelial cells on fibroin and compare this with a reference substratum of tissue-culture plastic. To see if cell attachment and proliferation could be improved, we assessed coatings of collagen IV, FNC Coating Mix() and a chondroitin sulphate-laminin mixture. All the coatings improved the final mean cell count, but consistently higher cell densities were achieved on a tissue-culture plastic rather than fibroin substratum. Collagen-coated substrata were the best of both groups and collagen-coated fibroin was comparable to uncoated tissue-culture plastic. Only fibroin with collagen coating achieved cell confluency. Primary human corneal endothelial cells were then grown using a sphere-forming technique and when seeded onto collagen-coated fibroin they grew to confluency with polygonal morphology. We report the first successful growth of primary human corneal endothelial cells on coated fibroin as a step in evaluating fibroin as a substratum for the transplantation of tissue-constructs for endothelial keratoplasty. PMID:21427010

  2. [The sodium-potassium-chloride cotransport of the cell membrane].

    PubMed

    Urazaev, A Kh

    1998-01-01

    Discovery and active exploration of the furosemid-sensitive derived-active co-transport of sodium-potassium-chlorine ions took place in the end of 1970-es-1980-es. This transportation mechanism was discovered in various types of cells, both of plant and of animal origin. This review describes properties of the transportation process, which was most comprehensive explored in experiments with erythrocytes, epithelium cells and muscles. The review covers the following properties: anion and cation selectivity of the chlorine transportation, its sensitivity to the specific blocking agents (furocemid, bumetanid, etc.), stoichiometry of the transportation process, etc. For energy source, the chlorine transportation is based on transmembrane electrochemical gradient for sodium ions. The article provides the most recent results of investigation of the chemical nature of the molecule of the chlorine membrane transport. Based on various studies, the molecule of this protein weighs from 120 to 200 kD, includes about 1200 amino acid residua, and forms long cytoplasmatic NH2 and COOH-termini. The gene encoding the amino acid sequence has been cloned. The article discusses the issues of regulation of the chlorine transportation. Humoral control of intensity of the chlorine transportation has been mostly studied in experiments with plain muscles, the issues related to nervous regulation--with only skeleton muscle fibers. The article provides specific data on the mechanisms of the above types of the physiological regulation of active chlorine transportation. In general, the humoral factors, which increase the intracellular concentration of cAMF stimulate chlorine transportation. On the contrary, the hormones, which increase concentration of cGMF in cytoplasm reduce its activity in plain muscles. The discussion of the mechanisms of the nervous controls of the chlorine transportation in the skeleton muscles includes the original results of the author. These results indicate that the suppressive influence of the motor innervation on intensity of the chlorine transportation involves the non-quantum acetilcholine and glutamate secreted from the motor nerves. These agents produce Ca(2+)-dependent molecules of nitrogen oxide in sarcoplasm, which act in the retrograde mode on the nervous terminal and activate there the synthesis of cGMF. Disruption of this bilateral transsynaptic signalization resulting from cutting a nerve of blocking of its axoflow creates more active chlorine transportation and subsequent de-innervation changes in properties of the muscle fibers. The functions of chlorine transportation, which are best studies as of today and therefore, discussed in more detail in the review, include participation of this process in the regulatory rehabilitation of the volume of various cells in non-isotonic medium, and the role of chlorine transportation in development of a negative charge at the interior side of membrane of the skeleton muscle fibers. The former function essentially means that dehydration of a cell in the hypertonic medium increases activity of the sodium, potassium and chlorine co-transport directed to the cell, resulting in increase of the amount of the osmosis-active cytoplasm material, and inflow of water, which fully restores the cell volume in these conditions. Starting from the pioneer studies by Hodgkin and Horowicz [correction of Hojkin and Gorovits], the role of chlorine ions in forming a charge on the membrane of excited cells has been generally interpreted as exclusively passive. I.e., distribution of these ions over both sides of membrane was assumed as equilibrium with the existing values of the membrane potential in the non-excited state. The review provides data obtained in the recent decade, which have proved that the non-excited membrane potential in muscle fibers is co-created by the diffusional potassium and chlorine potential. (ABSTRACT TRUNCATED) PMID:9659682

  3. Characteristics of Subfreezing Operation of Polymer Electrolyte Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Mishler, Jeffrey Harris

    Polymer Electrolyte Membrane (PEM) Fuel Cells are capable of high efficiency operation, and are free of NOx, SOx, and CO2 emissions when using hydrogen fuel, and ideally suited for use in transportation applications due to their high power density and low operating temperatures. However, under subfreezing conditions which may be encountered during winter seasons in some areas, product water will freeze within the membrane, cathode side catalyst layer and gas diffusion media, leading to voltage loss and operation failure. Experiments were undertaken in order to characterize the amount and location of water during fuel cell operation. First, in-situ neutron radiography was undertaken on the fuel cells at a normal operating temperature for various operating current densities, inlet relative humidities, and diffusion media hydrophobicities. It was found that more hydrophobic cathode microporous layer (MPL) or hydrophilic anode MPL may result in a larger amount of water transporting back to the anode. The water profiles along the channels were measured and the point of liquid water emergence, where two phase flow begins, was compared to previous models. Secondly, under subfreezing temperatures, neutron imaging showed that water ice product accumulates because of lack of a water removal mechanism. Water was observed under both the lands and channels, and increased almost linearly with time. It is found that most ice exists in the cathode side. With evidence from experimental observation, a cold start model was developed and explained, following existing approaches in the literature. Three stages of cold start are explained: membrane saturation, ice storage in catalyst layer pores, and then ice melting. The voltage losses due to temperature change, increased transport resistance, and reduced electrochemical surface area. The ionic conductivity of the membrane at subfreezing temperatures was modeled. Voltage evolution over time for isothermal cold starts was predicted and validated against experimental data. The ice coverage coefficient was shown to be a key variable in matching with experimental data. From model analysis, it appears that the coulombs of charge passed before operation failure is an important parameter characterizing PEM fuel cell cold start. To investigate the coulombs of charge and its determining factors, PEM fuel cells were constructed to measure the effects of membrane configuration (thickness and initial state), catalyst layer configuration (thickness and ionomer-carbon ratio), current density, and temperature on the quantity. It was found that subfreezing temperature, ionomer-catalyst ratio, and catalyst-layer thickness significantly affect the amount of charge transferred before operational failure, whereas the membrane thickness and initial hydration level have limited effect for the considered cases. In addition, degradation of the catalyst layer was observed and quantified. These results improve the fundamental understanding of characteristics of subfreezing operation and thus are valuable for automobile applications of PEM fuel cells. The model directly relates the material properties to voltage loss, and predicts voltage evolution, thus providing a way for material optimization and diagnostics. Additionally, insights into component design and operating conditions can be used to better optimize the fuel cell for cold start-up of the vehicle.

  4. Surface-enhanced Raman imaging of red blood cell membrane with highly uniform active substrates obtained using block copolymers self-assembly

    NASA Astrophysics Data System (ADS)

    Zito, Gianluigi; Malafronte, Anna; Dochshanov, Alden; Rusciano, Giulia; Auriemma, Finizia; Pesce, Giuseppe; De Rosa, Claudio; Sasso, Antonio

    2013-05-01

    In this communication, we discuss the application of ordered, ultrahigh-density templates of nano-textured Ag-particles obtained by self-assembling of inorganic-containing polystyrene-block-poly(4-vinylpyridine) copolymer (PS-b-P4VP) micelles, for the spectroscopic surface-enhanced Raman imaging in-vitro of red blood cells (RBCs) and its capability to identify the vibrational fingerprint of the plasma membrane of the cell physisorbed to the SERS substrate. Hexagonal arrays of PS-b-P4VP micelles, with selective inclusion of Ag nanoparticles (NPs) in the polar core, prepared by in situ reduction of a suitable precursor, are obtained by polymer self-assembly upon fast solvent evaporation during spin coating on the supporting substrate. UV irradiation and/or plasma oxygen treatment remove the polymer matrix leaving immobilized nano-islands of Ag-NPs. Such a kind of SERS-active substrate consists of a reproducible and uniform twodimensional hexagonal array of silver clusters with a diameter ranging from 25 to 30 nm (single particles having typically diameters of 5 nm) and nano-island gap distances of the order of 5-8 nm on silicon and 15 nm on glass , while giving rise to high enhancement factors and addressing the issue of SERS reproducibility. The basic substrate supporting the plasmonic coating used in this work is either of silicon or glass. This last allows working in back scattering configuration permitting real time monitoring, via microscopy, of the RBCs on which Raman measurements are being carried out. The template is thus applied for surface-enhanced Raman analysis of the red blood cell (RBC) membrane in confocal micro-Raman configuration demonstrating to have SERS imaging potential thanks to the uniformity of the nano-textured substrate. The first experimental evidence of SERS imaging of a red blood cell membrane in-vitro is demonstrated.

  5. Process for recycling components of a PEM fuel cell membrane electrode assembly

    DOEpatents

    Shore, Lawrence

    2012-02-28

    The membrane electrode assembly (MEA) of a PEM fuel cell can be recycled by contacting the MEA with a lower alkyl alcohol solvent which separates the membrane from the anode and cathode layers of the assembly. The resulting solution containing both the polymer membrane and supported noble metal catalysts can be heated under mild conditions to disperse the polymer membrane as particles and the supported noble metal catalysts and polymer membrane particles separated by known filtration means.

  6. Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages.

    PubMed

    Turturici, Giuseppina; Tinnirello, Rosaria; Sconzo, Gabriella; Geraci, Fabiana

    2014-04-01

    Microvesicles represent a newly identified mechanism of intercellular communication. Two different types of microvesicles have been identified: membrane-derived vesicles (EVs) and exosomes. EVs originate by direct budding from the plasma membrane, while exosomes arise from ectocytosis of multivesicular bodies. Recent attention has focused on the capacity of EVs to alter the phenotype of neighboring cells to make them resemble EV-producing cells. Stem cells are an abundant source of EVs, and the interaction between stem cells and the microenvironment (i.e., stem cell niche) plays a critical role in determining stem cell phenotype. The stem cell niche hypothesis predicts that stem cell number is limited by the availability of niches releasing the necessary signals for self-renewal and survival, and the niche thus provides a mechanism for controlling and limiting stem cell numbers. EVs may play a fundamental role in this context by transferring genetic information between cells. EVs can transfer mRNA and microRNA to target cells, both of which may be involved in the change in target-cell phenotype towards that of EV-producing cells. The exchange of genetic information may be bidirectional, and EV-mediated transfer of genetic information after tissue damage may reprogram stem cells to acquire the phenotypic features of the injured tissue cells. In addition, stem cell-derived EVs may induce the de-differentiation of cells that survive injury by promoting their reentry into the cell cycle and subsequently increasing the possibility of tissue regeneration. PMID:24452373

  7. Noncontact microsurgery of cell membranes using femtosecond laser pulses for optoinjection of specified substances into cells

    SciTech Connect

    Il'ina, I V; Ovchinnikov, A V; Chefonov, O V; Sitnikov, D S; Agranat, Mikhail B; Mikaelyan, A S

    2013-04-30

    IR femtosecond laser pulses were used for microsurgery of a cell membrane aimed at local and short-duration change in its permeability and injection of specified extracellular substances into the cells. The possibility of noncontact laser delivery of the propidium iodide fluorescent dye and the pEGFP plasmid, encoding the green fluorescent protein, into the cells with preservation of the cell viability was demonstrated. (extreme light fields and their applications)

  8. Ionic Liquids and New Proton Exchange Membranes for Fuel Cells

    NASA Technical Reports Server (NTRS)

    Belieres, Jean-Philippe

    2004-01-01

    There is currently a great surge of activity in fuel cell research as laboratories across the world seek to take advantage of the high energy capacity provided by &el cells relative to those of other portable electrochemical power systems. Much of this activity is aimed at high temperature fie1 cells, and a vital component of such &el cells must be the availability of a high temperature stable proton-permeable membrane. NASA Glenn Research Center is greatly involved in developing this technology. Other approaches to the high temperature fuel cell involve the use of single- component or almost-single-component electrolytes that provide a path for protons through the cell. A heavily researched case is the phosphoric acid fuel cell, in which the electrolyte is almost pure phosphoric acid and the cathode reaction produces water directly. The phosphoric acid fie1 cell delivers an open circuit voltage of 0.9 V falling to about 0.7 V under operating conditions at 170 C. The proton transport mechanism is mainly vehicular in character according to the viscosity/conductance relation. Here we describe some Proton Transfer Ionic Liquids (PTILs) with low vapor pressure and high temperature stability that have conductivities of unprecedented magnitude for non-aqueous systems. The first requirement of an ionic liquid is that, contrary to experience with most liquids consisting of ions, it must have a melting point that is not much above room temperature. The limit commonly suggested is 100 C. PTILs constitute an interesting class of non-corrosive proton-exchange electrolyte, which can serve well in high temperature (T = 100 - 250 C) fuel cell applications. We will present cell performance data showing that the open circuit voltage output, and the performance of a simple H2(g)Pt/PTIL/Pt/O2(g) fuel cell may be superior to those of the equivalent phosphoric acid electrolyte fuel cell both at ambient temperature and temperatures up to and above 200 C. My work at NASA Glenn Research Center during this summer is to develop and characterize proton exchange membranes doped with ionic liquids. The main techniques used to characterize these materials are: Impedance Spectroscopy, NMR, DSC, TGA, DMA, IR, and SEM ...

  9. Demonstrating Cell Traction--Using Hens' Egg Vitelline Membrane as Substratum.

    ERIC Educational Resources Information Center

    Downie, Roger

    1987-01-01

    Suggests ways in which hens' egg vitelline membranes can be used to demonstrate cell traction effects. Reviews procedures for using and culturing the membranes and identifies topic areas for student projects. (ML)

  10. Direct liquid-feed fuel cell with membrane electrolyte and manufacturing thereof

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram (Inventor); Surampudi, Subbarao (Inventor); Halpert, Gerald (Inventor)

    1999-01-01

    An improved direct liquid-feed fuel cell having a solid membrane electrolyte for electrochemical reactions of an organic fuel. Improvements in interfacing of the catalyst layer and the membrane and activating catalyst materials are disclosed.

  11. Development of Novel Electrocatalyst for Proton Exchange Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Illias, S.

    2000-01-01

    Proton-exchange membrane fuel cell (PEMFC) is one of the strongest contenders as a power source for space & electric vehicle applications. Platinum catalyst is used for both fuel and air electrodes in PEMFCs. CO contamination of H2 greatly affects electrocatalysts used at the anode of polymer electrolyte fuel cells and decrease the cell performance. Pt-Ru catalyst had been recognized to alleviate this problem by showing better tolerance to CO poisoning than only Pt catalyst. This irreversible poisoning of the anode can be happened even in concentrations as little as a few ppm, and therefore, require expensive scrubbing to reduce the contaminant concentration to acceptable level. In order to commercialize this environmentally sound source of energy/power system, development of suitable impurity tolerant catalyst is needed.

  12. Physical Chemistry Research Toward Proton Exchange Membrane Fuel Cell Advancement.

    PubMed

    Swider-Lyons, Karen E; Campbell, Stephen A

    2013-02-01

    Hydrogen fuel cells, the most common type of which are proton exchange membrane fuel cells (PEMFCs), are on a rapid path to commercialization. We credit physical chemistry research in oxygen reduction electrocatalysis and theory with significant breakthroughs, enabling more cost-effective fuel cells. However, most of the physical chemistry has been restricted to studies of platinum and related alloys. More work is needed to better understand electrocatalysts generally in terms of properties and characterization. While the advent of such highly active catalysts will enable smaller, less expensive, and more powerful stacks, they will require better understanding and a complete restructuring of the diffusion media in PEMFCs to facilitate faster transport of the reactants (O2) and products (H2O). Even Ohmic losses between materials become more important at high power. Such lessons from PEMFC research are relevant to other electrochemical conversion systems, including Li-air batteries and flow batteries. PMID:26281730

  13. Percolation in a Proton Exchange Membrane Fuel Cell Catalyst Layer

    SciTech Connect

    Stacy, Stephen; Allen, Jeffrey

    2012-07-01

    Water management in the catalyst layers of proton exchange membrane fuel cells (PEMFC) is confronted by two issues, flooding and dry out, both of which result in improper functioning of the fuel cell and lead to poor performance and degradation. At the present time, the data that has been reported about water percolation and wettability within a fuel cell catalyst layer is limited. A method and apparatus for measuring the percolation pressure in the catalyst layer has been developed based upon an experimental apparatus used to test water percolation in porous transport layers (PTL). The experimental setup uses a pseudo Hele-Shaw type testing where samples are compressed and a fluid is injected into the sample. Testing the samples gives percolation pressure plots which show trends in increasing percolation pressure with an increase in flow rate. A decrease in pressure was seen as percolation occurred in one sample, however the pressure only had a rising effect in the other sample.

  14. Cryptosporidia: epicellular parasites embraced by the host cell membrane.

    PubMed

    Valigurov, Andrea; Jirk?, Miloslav; Koudela, Bretislav; Gelnar, Milan; Modr, David; Slapeta, Jan

    2008-07-01

    The ultrastructure of two gastric cryptosporidia, Cryptosporidium muris from experimentally infected rodents (Mastomys natalensis) and Cryptosporidium sp. 'toad' from naturally infected toads (Duttaphrynus melanostictus), was studied using electron microscopy. Observations presented herein allowed us to map ultrastructural aspects of the cryptosporidian invasion process and the origin of a parasitophorous sac. Invading parasites attach to the host cell, followed by gradual envelopment, with the host's cell membrane folds, eventually forming the parasitophorous sac. Cryptosporidian developmental stages remain epicellular during the entire life cycle. The parasite development is illustrated in detail using high resolution field emission scanning electron microscopy. This provides a new insight into the ultrastructural detail of host-parasite interactions and species-specific differences manifested in frequency of detachment of the parasitophorous sac, radial folds of the parasitophorous sac and stem-formation of the parasitised host cell. PMID:18158154

  15. Reusable, reversibly sealable parylene membranes for cell and protein patterning

    PubMed Central

    Wright, Dylan; Rajalingam, Bimalraj; Karp, Jeffrey M.; Selvarasah, Selvapraba; Ling, Yibo; Yeh, Judy; Langer, Robert; Dokmeci, Mehmet R.; Khademhosseini, Ali

    2010-01-01

    The patterned deposition of cells and biomolecules on surfaces is a potentially useful tool for in vitro diagnostics, high-throughput screening, and tissue engineering. Here, we describe an inexpensive and potentially widely applicable micropatterning technique that uses reversible sealing of microfabricated parylene-C stencils on surfaces to enable surface patterning. Using these stencils it is possible to generate micropatterns and copatterns of proteins and cells, including NIH-3T3 fibroblasts, hepatocytes and embryonic stem cells. After patterning, the stencils can be removed from the surface, plasma treated to remove adsorbed proteins, and reused. A variety of hydrophobic surfaces including PDMS, polystyrene and acrylated glass were patterned using this approach. Furthermore, we demonstrated the reusability and mechanical integrity of the parylene membrane for at least 10 consecutive patterning processes. These parylene-C stencils are potentially scalable commercially and easily accessible for many biological and biomedical applications. PMID:17729252

  16. Deformation of a single red blood cell in bounded Poiseuille flows

    NASA Astrophysics Data System (ADS)

    Shi, Lingling; Pan, Tsorng-Whay; Glowinski, Roland

    2012-01-01

    Deformation of a red blood cell (RBC) in bounded two-dimensional Poiseuille flows is studied by using an immersed boundary method (IBM). An elastic spring model is applied to simulate the skeleton structure of a RBC membrane. As a benchmarking test, the dynamical behavior of a single RBC under a simple shear flow has been validated. Then we focus on investigating the motion and the deformation of a single RBC in Poiseuille flows by varying the swelling ratio (s*), the initial angle of the long axis of the cell at the centerline (?), the maximum velocity at the centerline of fluid flow (umax), the membrane bending stiffness of a RBC (kb), and the height of the microchannel (H). Two motions of oscillation and vacillating breathing (swing) of a RBC are observed in both narrow and wide channels. The strength of the vacillating-breathing motion depends on the degree of confinement and the value of umax. A RBC exhibits a strong vacillating-breathing motion as the degree of confinement is larger or the value of umax is higher. For the same degree of confinement, the vacillating-breathing motion appears to be relatively weaker but persists longer as the value of umax is lower. The continuation of shape change from the slippery to the parachute by varying the value of umax is obtained for the biconcave shape cell in a narrower channel. In particular, parachute shape and bulletlike shape, depending on the angle ?, coexist for the elliptic shape cell given initially with lower umax in a narrower channel.

  17. A Simple Alkaline Method for Decellularizing Human Amniotic Membrane for Cell Culture

    PubMed Central

    Saghizadeh, Mehrnoosh; Winkler, Michael A.; Kramerov, Andrei A.; Hemmati, David M.; Ghiam, Chantelle A.; Dimitrijevich, Slobodan D.; Sareen, Dhruv; Ornelas, Loren; Ghiasi, Homayon; Brunken, William J.; Maguen, Ezra; Rabinowitz, Yaron S.; Svendsen, Clive N.; Jirsova, Katerina; Ljubimov, Alexander V.

    2013-01-01

    Human amniotic membrane is a standard substratum used to culture limbal epithelial stem cells for transplantation to patients with limbal stem cell deficiency. Various methods were developed to decellularize amniotic membrane, because denuded membrane is poorly immunogenic and better supports repopulation by dissociated limbal epithelial cells. Amniotic membrane denuding usually involves treatment with EDTA and/or proteolytic enzymes; in many cases additional mechanical scraping is required. Although ensuring limbal cell proliferation, these methods are not standardized, require relatively long treatment times and can result in membrane damage. We propose to use 0.5 M NaOH to reliably remove amniotic cells from the membrane. This method was used before to lyse cells for DNA isolation and radioactivity counting. Gently rubbing a cotton swab soaked in NaOH over the epithelial side of amniotic membrane leads to nearly complete and easy removal of adherent cells in less than a minute. The denuded membrane is subsequently washed in a neutral buffer. Cell removal was more thorough and uniform than with EDTA, or EDTA plus mechanical scraping with an electric toothbrush, or n-heptanol plus EDTA treatment. NaOH-denuded amniotic membrane did not show any perforations compared with mechanical or thermolysin denuding, and showed excellent preservation of immunoreactivity for major basement membrane components including laminin α2, γ1-γ3 chains, α1/α2 and α6 type IV collagen chains, fibronectin, nidogen-2, and perlecan. Sodium hydroxide treatment was efficient with fresh or cryopreserved (10% dimethyl sulfoxide or 50% glycerol) amniotic membrane. The latter method is a common way of membrane storage for subsequent grafting in the European Union. NaOH-denuded amniotic membrane supported growth of human limbal epithelial cells, immortalized corneal epithelial cells, and induced pluripotent stem cells. This simple, fast and reliable method can be used to standardize decellularized amniotic membrane preparations for expansion of limbal stem cells in vitro before transplantation to patients. PMID:24236148

  18. Alterations of red cell membrane properties in neuroacanthocytosis.

    PubMed

    Siegl, Claudia; Hamminger, Patricia; Jank, Herbert; Ahting, Uwe; Bader, Benedikt; Danek, Adrian; Gregory, Allison; Hartig, Monika; Hayflick, Susan; Hermann, Andreas; Prokisch, Holger; Sammler, Esther M; Yapici, Zuhal; Prohaska, Rainer; Salzer, Ulrich

    2013-01-01

    Neuroacanthocytosis (NA) refers to a group of heterogenous, rare genetic disorders, namely chorea acanthocytosis (ChAc), McLeod syndrome (MLS), Huntington's disease-like 2 (HDL2) and pantothenate kinase associated neurodegeneration (PKAN), that mainly affect the basal ganglia and are associated with similar neurological symptoms. PKAN is also assigned to a group of rare neurodegenerative diseases, known as NBIA (neurodegeneration with brain iron accumulation), associated with iron accumulation in the basal ganglia and progressive movement disorder. Acanthocytosis, the occurrence of misshaped erythrocytes with thorny protrusions, is frequently observed in ChAc and MLS patients but less prevalent in PKAN (about 10%) and HDL2 patients. The pathological factors that lead to the formation of the acanthocytic red blood cell shape are currently unknown. The aim of this study was to determine whether NA/NBIA acanthocytes differ in their functionality from normal erythrocytes. Several flow-cytometry-based assays were applied to test the physiological responses of the plasma membrane, namely drug-induced endocytosis, phosphatidylserine exposure and calcium uptake upon treatment with lysophosphatidic acid. ChAc red cell samples clearly showed a reduced response in drug-induced endovesiculation, lysophosphatidic acid-induced phosphatidylserine exposure, and calcium uptake. Impaired responses were also observed in acanthocyte-positive NBIA (PKAN) red cells but not in patient cells without shape abnormalities. These data suggest an "acanthocytic state" of the red cell where alterations in functional and interdependent membrane properties arise together with an acanthocytic cell shape. Further elucidation of the aberrant molecular mechanisms that cause this acanthocytic state may possibly help to evaluate the pathological pathways leading to neurodegeneration. PMID:24098554

  19. Chimerism of buccal membrane cells in a monochorionic dizygotic twin.

    PubMed

    Fumoto, Seiko; Hosoi, Kenichiro; Ohnishi, Hiroaki; Hoshina, Hiroaki; Yan, Kunimasa; Saji, Hiroh; Oka, Akira

    2014-04-01

    No monochorionic dizygotic twins (MCDZTs) with cellular chimerism involving cells other than blood cells have been reported in the literature to date. Here we report a probable first case of MCDZTs with buccal cell chimerism. A 32-year-old woman conceived twins by in vitro fertilization by using 2 cryopreserved blastocysts that were transferred into her uterus. An ultrasound scan at 8 weeks' gestation showed signs indicative of monochorionic twins. A healthy boy and a healthy girl were born, showing no sexual ambiguity. Cytogenetic analyses and microsatellite studies demonstrated chimerism in blood cells of both twins. Notably, repeated fluorescence in situ hybridization and microsatellite studies revealed chimerism in buccal cells obtained from 1 of the twins. Although the mechanism through which buccal cell chimerism was generated remains to be elucidated, ectopic differentiation of chimeric hematopoietic cells that migrated to the buccal membrane or the cellular transfer between the 2 embryos at the early stage of development might be responsible for the phenomenon. This hypothesis raises an interesting issue regarding embryonic development and cellular differentiation into organs during fetal development. Given the possibility of cryptic chimerism in various organs including gonadal tissues in MCDZTs, close observation will be required to determine whether complications develop in the course of the patients' growth. PMID:24685957

  20. Analysis of plasma membrane phosphoinositides from fusogenic carrot cells

    SciTech Connect

    Wheeler, J.J.; Boss, W.F.

    1987-04-01

    Phosphatidylinositol monophosphate (PIP) and phosphatidylinositol bisphosphate (PIP/sub 2/) were found to be associated with the plasma membrane-rich fractions isolated by aqueous polymer two-phase partitioning from fusogenic cells. They represented at least 5% and 0.7% of the total inositol-labeled lipids in the plasma membrane-rich fractions, respectively, and were present in a ratio of about 7:1 (PIP:PIP/sub 2/). In addition, two unidentified inositol-labeled compounds, which together were approximately 3% of the inositol-labeled lipids, were found predominantly in the plasma membrane-rich fractions and migrated between PIP/sub 2/ and PIP. The R/sub f/s of these compounds were approximately 0.31 and 0.34 in the solvent system CHCl/sub 3/:MeOH:15N NH/sub 4/OH:H/sub 2/O (90:90:7:22) using LK5 plates presoaked in 1% potassium oxalate. These compounds incorporated /sup 32/P/sub i/, (/sup 3/H)inositol and were hydrolyzed in mild base. These data suggested that they were glycero-phospholipids. Although the compounds did not comigrate with lysoPIP obtained from bovine brain (R/sub f/ approx. 0.35), when endogenous PIP was hydrolyzed to lysoPIP, the breakdown product migrated in the region of the unidentified inositol lipids.

  1. Grafted polyelectrolyte membranes for lithium batteries and fuel cells

    SciTech Connect

    Kerr, John B.

    2003-06-24

    Polyelectrolyte materials have been developed for lithium battery systems in response to the severe problems due to salt concentration gradients that occur in composite electrodes (aka membrane-electrode assemblies). Comb branch polymer architectures are described which allow for grafting of appropriate anions on to the polymer and also for cross-linking to provide for appropriate mechanical properties. The interactions of the polymers with the electrode surfaces are critical for the performance of the system and some of the structural features that influence this will be described. Parallels with the fuel cell MEA structures exist and will also be discussed.

  2. 2011 Alkaline Membrane Fuel Cell Workshop Final Report

    SciTech Connect

    Pivovar, B.

    2012-02-01

    A workshop addressing the current state-of-the-art in alkaline membrane fuel cells (AMFCs) was held May 8-9, 2011, at the Crystal Gateway Marriott in Arlington, Virginia. This workshop was the second of its kind, with the first being held December 11-13, 2006, in Phoenix, Arizona. The 2011 workshop and associated workshop report were created to assess the current state of AMFC technology (taking into account recent advances), investigate the performance potential of AMFC systems across all possible power ranges and applications, and identify the key research needs for commercial competitiveness in a variety of areas.

  3. Unconventional myosins in cell movement, membrane traffic, and signal transduction.

    PubMed

    Mermall, V; Post, P L; Mooseker, M S

    1998-01-23

    In the past few years genetic, biochemical, and cytolocalization data have implicated members of the myosin superfamily of actin-based molecular motors in a variety of cellular functions including membrane trafficking, cell movements, and signal transduction. The importance of myosins is illustrated by the identification of myosin genes as targets for disease-causing mutations. The task at hand is to decipher how the multitude of myosins function at both the molecular and cellular level-a task facilitated by our understanding of myosin structure and function in muscle. PMID:9438839

  4. Elisidepsin Interacts Directly with Glycosylceramides in the Plasma Membrane of Tumor Cells to Induce Necrotic Cell Death.

    PubMed

    Molina-Guijarro, Jos Manuel; Garca, Carolina; Macas, lvaro; Garca-Fernndez, Luis Francisco; Moreno, Cristina; Reyes, Fernando; Martnez-Leal, Juan Fernando; Fernndez, Rogelio; Martnez, Valentn; Valenzuela, Carmen; Lillo, M Pilar; Galmarini, Carlos M

    2015-01-01

    Plasma membrane integrity is essential for cell life. Any major break on it immediately induces the death of the affected cell. Different molecules were described as disrupting this cell structure and thus showing antitumor activity. We have previously defined that elisidepsin (Irvalec, PM02734) inserts and self-organizes in the plasma membrane of tumor cells, inducing a rapid loss of membrane integrity, cell permeabilization and necrotic death. Here we show that, in sensitive HCT-116 colorectal cells, all these effects are consequence of the interaction of elisidepsin with glycosylceramides in the cell membrane. Of note, an elisidepsin-resistant subline (HCT-116-Irv) presented reduced levels of glycosylceramides and no accumulation of elisidepsin in the plasma membrane. Consequently, drug treatment did not induce the characteristic necrotic cell death. Furthermore, GM95, a mutant derivative from B16 mouse melanoma cells lacking ceramide glucosyltransferase (UGCG) activity and thus the synthesis of glycosylceramides, was also resistant to elisidepsin. Over-expression of UGCG gene in these deficient cells restored glycosylceramides synthesis, rendering them sensitive to elisidepsin, at a similar level than parental B16 cells. These results indicate that glycosylceramides act as membrane targets of elisidepsin, facilitating its insertion in the plasma membrane and the subsequent membrane permeabilization that leads to drug-induced cell death. They also indicate that cell membrane lipids are a plausible target for antineoplastic therapy. PMID:26474061

  5. Elisidepsin Interacts Directly with Glycosylceramides in the Plasma Membrane of Tumor Cells to Induce Necrotic Cell Death

    PubMed Central

    Molina-Guijarro, José Manuel; García, Carolina; Macías, Álvaro; García-Fernández, Luis Francisco; Moreno, Cristina; Reyes, Fernando; Martínez-Leal, Juan Fernando; Fernández, Rogelio; Martínez, Valentín; Valenzuela, Carmen; Lillo, M. Pilar; Galmarini, Carlos M.

    2015-01-01

    Plasma membrane integrity is essential for cell life. Any major break on it immediately induces the death of the affected cell. Different molecules were described as disrupting this cell structure and thus showing antitumor activity. We have previously defined that elisidepsin (Irvalec®, PM02734) inserts and self-organizes in the plasma membrane of tumor cells, inducing a rapid loss of membrane integrity, cell permeabilization and necrotic death. Here we show that, in sensitive HCT-116 colorectal cells, all these effects are consequence of the interaction of elisidepsin with glycosylceramides in the cell membrane. Of note, an elisidepsin-resistant subline (HCT-116-Irv) presented reduced levels of glycosylceramides and no accumulation of elisidepsin in the plasma membrane. Consequently, drug treatment did not induce the characteristic necrotic cell death. Furthermore, GM95, a mutant derivative from B16 mouse melanoma cells lacking ceramide glucosyltransferase (UGCG) activity and thus the synthesis of glycosylceramides, was also resistant to elisidepsin. Over-expression of UGCG gene in these deficient cells restored glycosylceramides synthesis, rendering them sensitive to elisidepsin, at a similar level than parental B16 cells. These results indicate that glycosylceramides act as membrane targets of elisidepsin, facilitating its insertion in the plasma membrane and the subsequent membrane permeabilization that leads to drug-induced cell death. They also indicate that cell membrane lipids are a plausible target for antineoplastic therapy. PMID:26474061

  6. Feedback regulation between plasma membrane tension and membrane-bending proteins organizes cell polarity during leading edge formation.

    PubMed

    Tsujita, Kazuya; Takenawa, Tadaomi; Itoh, Toshiki

    2015-06-01

    Tension applied to the plasma membrane (PM) is a global mechanical parameter involved in cell migration. However, how membrane tension regulates actin assembly is unknown. Here, we demonstrate that FBP17, a membrane-bending protein and an activator of WASP/N-WASP-dependent actin nucleation, is a PM tension sensor involved in leading edge formation. In migrating cells, FBP17 localizes to short membrane invaginations at the leading edge, while diminishing from the cell rear in response to PM tension increase. Conversely, following reduced PM tension, FBP17 dots randomly distribute throughout the cell, correlating with loss of polarized actin assembly on PM tension reduction. Actin protrusive force is required for the polarized accumulation, indicating a role for FBP17-mediated activation of WASP/N-WASP in PM tension generation. Invitro experiments show that FBP17 membrane-bending activity depends on liposomal membrane tension. Thus, FBP17 is the local activator of actin polymerization that is inhibited by PM tension in the feedback loop that regulates cell migration. PMID:25938814

  7. High-temperature proton-exchange-membrane fuel cells using an ether-containing polybenzimidazole membrane as electrolyte.

    PubMed

    Li, Jin; Li, Xiaojin; Zhao, Yun; Lu, Wangting; Shao, Zhigang; Yi, Baolian

    2012-05-01

    Herein, poly[2,2'-(p-oxydiphenylene)-5,5'-benzimidazole] (PBI) is synthesized from 3,3'-diaminobenzidine and 4,4'-oxybisbenzoic acid, and the membrane is prepared by solvent casting. The main characteristics of PBI are studied. In the preparation of the PBI/H(3) PO(4) composite membrane, the absorbing temperature of H(3) PO(4) is 120?C, which leads to a membrane with a high content of H(3) PO(4) . Membrane electrode assemblies (MEAs) are fabricated from PBI/H(3) PO(4) membranes with the catalyst layer made of Pt/C, PBI, and polyvinylidene fluoride (230:12:7 w/w). The fabricated MEA is tested at 150?C with dry hydrogen and oxygen gas at 0.2 MPa for both anode and cathode feeds. No degradation of voltage is seen during stability testing of the PBI/H(3) PO(4) membrane at a constant current for 100 h. The maximum power density is 1.17 W cm(-2) , and the maximum current density is 6.0 A cm(-2) with a Pt loading of 0.5 mg cm(-2) . The high performance of these membrane materials demonstrates that PBI can be regarded as an alternative membrane material for high-temperature proton-exchange-membrane fuel cells. PMID:22529063

  8. Platelet and red blood cell interactions and their role in rheumatoid arthritis.

    PubMed

    Olumuyiwa-Akeredolu, Oore-Ofe O; Pretorius, Etheresia

    2015-12-01

    Cytokines, lymphocytes, platelets and several biomolecules have long been implicated in the pathology of rheumatoid arthritis (RA), and the influences of antibody production and tagging, and cytokine, chemokine and enzyme production at specific rheumatoid joints were thought to be exclusive to the advancement of disease parameters. Another role player in RA is red blood cells (RBCs) which, of late, have been found to be involved in RA pathobiology, as there is a positive correlation between RBC counts and joint pathology, as well as with inflammatory biomarkers in the disease. There is also an association between RBC distribution width and the incidence of myocardial infarction amongst RA patients, and there is a change in the lipid distribution within RBC membranes. Of late, certain RBC-associated factors with previously obscure roles and cell-derived particles thought to be inconsequential to the other constituents of plasma were found to be active biomolecular players. Several of these have been discovered to be present in or originating from RBCs. Their influences have been shown to involve in membrane dynamics that cause structural and functional changes in both platelets and RBCs. RBC-derived microparticles are emerging entities found to play direct roles in immunomodulation via interactions with other plasma cells. These correlations highlight the direct influences of RBCs on exacerbating RA pathology. This review will attempt to shed more light on how RBCs, in the true inflammatory milieu of RA, are playing an even greater role than previously assumed. PMID:26059943

  9. Toward mechanical manipulations of cell membranes and membrane proteins using an atomic force microscope: an invited review.

    PubMed

    Ikai, Atsushi; Afrin, Rehana

    2003-01-01

    Recent advances in the use of the atomic force microscope (AFM) for manipulating cell membranes and membrane proteins are reviewed. Early pioneering work on measurements of the magnitude of the force required to create indentations with defined depth on their surfaces and to separate interacting pairs of avidin-biotin, antigen-antibody, and complementary DNA pairs formed the basis of this field. The method has subsequently been applied to map the presence of cell surface receptors and polysaccharides on live cell membranes by force measurement, with promising results. Attempts to extract phospholipids and proteins from lipid bilayers and live cell surfaces have been reported, providing a new tool for the manipulation of cellular activities and biochemical analysis at the single-cell level. An increasing awareness of the effect of the pulling speed (nm/s or microm/s), or more accurately, the force loading rate (pN/s or nN/s) on the magnitude of the rupture force, has led researchers to construct energy diagrams of rupture events based on the parameters available from such studies. Information on such nature of the interplay of force and loading rate is vital for nanomanipulation of living cells and cell membranes. Some relevant work for membrane manipulation using other methods is also reviewed in relation to AFM-based methodology. PMID:14716080

  10. Structural and functional changes in the membrane and membrane skeleton of red blood cells induced by peroxynitrite.

    PubMed

    Starodubtseva, Maria N; Tattersall, Amanda L; Kuznetsova, Tatyana G; Yegorenkov, Nicolai I; Ellory, J Clive

    2008-08-01

    The changes in passive ion permeability of the red blood cell membrane after peroxynitrite action (3 microM-3 mM) have been studied by biophysical (using radioisotopes of rubidium, sodium and sulphur (sulphate)) and electrophysiological methods. The enhancement of passive membrane permeability to cations (potassium and sodium ions) and the inhibition of anion flux through the anion exchanger in peroxynitrite-treated red blood cells were revealed. In patch-clamp experiments the whole-cell conductance after peroxynitrite (80 microM) treatment of red blood cells increased 3-3.5-fold with a shift in the reversal potential from -7.0+/-1.5 mV to -4.3+/-0.9 mV (n=7, p=0.005). The addition of cobalt and nickel ions to red blood cell suspensions before peroxynitrite treatment had no effect on the peroxynitrite-induced cation flux but zinc ions in the same condition decreased cation flux about 2-fold. Using atomic force microscopy methods we revealed an increase in red blood cell membrane stiffness and the membrane skeleton complexity after peroxynitrite action. We conclude that the peroxynitrite-induced water and ion imbalance and reorganization in membrane structure lead to crenation of red blood cells. PMID:18339585

  11. Aggregation and deformation of red blood cells as probed by a laser light scattering technique in a concentrated suspension: comparison between normal and pathological red blood cells

    NASA Astrophysics Data System (ADS)

    Gandjbakhche, Amir H.; Othmane, Ali; Mills, Pierre; Snabre, Patrick; Dufaux, Jacques

    1994-07-01

    Changes in aggregability and/or deformability of red blood cells (RBC) can cause severe complications in blood circulation. We use a laser light scattering technique, which can distinguish between normal and pathological RBCs by studying the angular distributions of backscattered and transmitted light of concentrated suspensions of RBCs submitted to a simple shear flow. In order to study the deformation, we induced partial rigidity in the RBC membrane, and showed that the gradients of deformation and the relaxation times of normal and partially rigidified RBC membranes can be quantified using a non-Newtonian rheological model. We observe that blood aggregation of patients with `microcirculatory' diseases, such as diabetes, differs from that of healthy individuals.

  12. Live-cell subcellular measurement of cell stiffness using a microengineered stretchable micropost array membrane.

    PubMed

    Lam, Raymond H W; Weng, Shinuo; Lu, Wei; Fu, Jianping

    2012-10-01

    Forces are increasingly recognized as major regulators of cell structure and function, and the mechanical properties of cells, such as cell stiffness, are essential to the mechanisms by which cells sense forces, transmit them to the cell interior or to other cells, and transduce them into chemical signals that impact a spectrum of cellular responses. Here we reported a new whole-cell cell stiffness measurement technique with a subcellular spatial resolution. This technique was based on a novel cell stretching device that allowed for quantitative control and real-time measurements of mechanical stimuli and cellular biomechanical responses. Our strategy involved a microfabricated array of silicone elastomeric microposts integrated onto a stretchable elastomeric membrane. Using a computer-controlled vacuum, this micropost array membrane (mPAM) was activated to apply equibiaxial cell stretching forces to adherent cells attached on the tops of the microposts. The micropost top positions before and after mPAM stretches were recorded using fluorescence microscopy and further utilized to quantify local cell stretching forces and cell area increments. A robust computation scheme was developed and implemented for subcellular quantifications of cell stiffness using the data of local cell stretching forces and cell area increments generated from mPAM cell stretch assays. Our cell stiffness studies using the mPAM revealed strong positive correlations among cell stiffness, cellular traction force, and cell spread area, and illustrated the important functional roles of actin polymerization and myosin II-mediated cytoskeleton contractility in regulating cell stiffness. Collectively, our work reported a new approach for whole-cell stiffness measurements with a subcellular spatial resolution, which would help likely explain the complex biomechanical functions and force-sensing mechanisms of cells and design better materials for cell and tissue engineering and other applications in vivo. PMID:22935822

  13. Hostile Takeover by Plasmodium: Reorganization of Parasite and Host Cell Membranes during Liver Stage Egress

    PubMed Central

    Graewe, Stefanie; Rankin, Kathleen E.; Lehmann, Christine; Deschermeier, Christina; Hecht, Leonie; Froehlke, Ulrike; Stanway, Rebecca R.; Heussler, Volker

    2011-01-01

    The protozoan parasite Plasmodium is transmitted by female Anopheles mosquitoes and undergoes obligatory development within a parasitophorous vacuole in hepatocytes before it is released into the bloodstream. The transition to the blood stage was previously shown to involve the packaging of exoerythrocytic merozoites into membrane-surrounded vesicles, called merosomes, which are delivered directly into liver sinusoids. However, it was unclear whether the membrane of these merosomes was derived from the parasite membrane, the parasitophorous vacuole membrane or the host cell membrane. This knowledge is required to determine how phagocytes will be directed against merosomes. Here, we fluorescently label the candidate membranes and use live cell imaging to show that the merosome membrane derives from the host cell membrane. We also demonstrate that proteins in the host cell membrane are lost during merozoite liberation from the parasitophorous vacuole. Immediately after the breakdown of the parasitophorous vacuole membrane, the host cell mitochondria begin to degenerate and protein biosynthesis arrests. The intact host cell plasma membrane surrounding merosomes allows Plasmodium to mask itself from the host immune system and bypass the numerous Kupffer cells on its way into the bloodstream. This represents an effective strategy for evading host defenses before establishing a blood stage infection. PMID:21909271

  14. The Effect of Platinum Electrocatalyst on Membrane Degradation in Polymer Electrolyte Fuel Cells.

    PubMed

    Bodner, Merit; Cermenek, Bernd; Rami, Mija; Hacker, Viktor

    2015-01-01

    Membrane degradation is a severe factor limiting the lifetime of polymer electrolyte fuel cells. Therefore, obtaining a deeper knowledge is fundamental in order to establish fuel cells as competitive product. A segmented single cell was operated under open circuit voltage with alternating relative humidity. The influence of the catalyst layer on membrane degradation was evaluated by measuring a membrane without electrodes and a membrane-electrode-assembly under identical conditions. After 100 h of accelerated stress testing the proton conductivity of membrane samples near the anode and cathode was investigated by means of ex situ electrochemical impedance spectroscopy. The membrane sample near the cathode inlet exhibited twofold lower membrane resistance and a resulting twofold higher proton conductivity than the membrane sample near the anode inlet. The results from the fluoride ion analysis have shown that the presence of platinum reduces the fluoride emission rate; which supports conclusions drawn from the literature. PMID:26670258

  15. The Effect of Platinum Electrocatalyst on Membrane Degradation in Polymer Electrolyte Fuel Cells

    PubMed Central

    Bodner, Merit; Cermenek, Bernd; Rami, Mija; Hacker, Viktor

    2015-01-01

    Membrane degradation is a severe factor limiting the lifetime of polymer electrolyte fuel cells. Therefore, obtaining a deeper knowledge is fundamental in order to establish fuel cells as competitive product. A segmented single cell was operated under open circuit voltage with alternating relative humidity. The influence of the catalyst layer on membrane degradation was evaluated by measuring a membrane without electrodes and a membrane-electrode-assembly under identical conditions. After 100 h of accelerated stress testing the proton conductivity of membrane samples near the anode and cathode was investigated by means of ex situ electrochemical impedance spectroscopy. The membrane sample near the cathode inlet exhibited twofold lower membrane resistance and a resulting twofold higher proton conductivity than the membrane sample near the anode inlet. The results from the fluoride ion analysis have shown that the presence of platinum reduces the fluoride emission rate; which supports conclusions drawn from the literature. PMID:26670258

  16. Co-option of Membrane Wounding Enables Virus Penetration into Cells.

    PubMed

    Luisoni, Stefania; Suomalainen, Maarit; Boucke, Karin; Tanner, Lukas B; Wenk, Markus R; Guan, Xue Li; Grzybek, Micha?; Coskun, nal; Greber, Urs F

    2015-07-01

    During cell entry, non-enveloped viruses undergo partial uncoating to expose membrane lytic proteins for gaining access to the cytoplasm. We report that adenovirus uses membrane piercing to induce and hijack cellular wound removal processes that facilitate further membrane disruption and infection. Incoming adenovirus stimulates calcium influx and lysosomal exocytosis, a membrane repair mechanism resulting in release of acid sphingomyelinase (ASMase) and degradation of sphingomyelin to ceramide lipids in the plasma membrane. Lysosomal exocytosis is triggered by small plasma membrane lesions induced by the viral membrane lytic protein-VI, which is exposed upon mechanical cues from virus receptors, followed by virus endocytosis into leaky endosomes. Chemical inhibition or RNA interference of ASMase slows virus endocytosis, inhibits virus escape to the cytosol, and reduces infection. Ceramide enhances binding of protein-VI to lipid membranes and protein-VI-induced membrane rupture. Thus, adenovirus uses a positive feedback loop between virus uncoating and lipid signaling for efficient membrane penetration. PMID:26159720

  17. Cell volume and plasma membrane osmotic water permeability in epithelial cell layers measured by interferometry.

    PubMed

    Farinas, J; Verkman, A S

    1996-12-01

    The development of strategies to measure plasma membrane osmotic water permeability (Pf) in epithelial cells has been motivated by the identification of a family of molecular water channels. A general approach utilizing interferometry to measure cell shape and volume was developed and applied to measure Pf in cell layers. The method is based on the cell volume dependence of optical path length (OPL) for a light beam passing through the cell. The small changes in OPL were measured by interferometry. A mathematical model was developed to relate the interference signal to cell volume changes for cells of arbitrary shape and size. To validate the model, a Mach-Zehnder interference microscope was used to image OPL in an Madin Darby Canine Kidney (MDCK) cell layer and to reconstruct the three-dimensional cell shape (OPL resolution < lambda/25). As predicted by the model, a doubling of cell volume resulted in a change in OPL that was proportional to the difference in refractive indices between water and the extracellular medium. The time course of relative cell volume in response to an osmotic gradient was computed from serial interference images. To measure cell volume without microscopy and image analysis, a Mach-Zehnder interferometer was constructed in which one of two interfering laser beams passed through a flow chamber containing the cell layer. The interference signal in response to an osmotic gradient was analyzed to quantify the time course of relative cell volume. The calculated MDCK cell plasma membrane Pf of 6.1 x 10(-4) cm/s at 24 degrees C agreed with that obtained by interference microscopy and by a total internal reflection fluorescence method. Interferometry was also applied to measure the apical plasma membrane water permeability of intact toad urinary bladder; Pf increased fivefold after forskolin stimulation to 0.04 cm/s at 23 degrees C. These results establish and validate the application of interferometry to quantify cell volume and osmotic water permeability in cell layers. PMID:8968620

  18. Basement Membrane Dissolution and Reassembly by Limbal Corneal Epithelial Cells Expanded on Amniotic Membrane

    PubMed Central

    Li, Wei; He, Hua; Kuo, Ching-Liang; Gao, Yingying; Kawakita, Tetsuya; Tseng, Scheffer C. G.

    2006-01-01

    Purpose To investigate basement membrane (BM) formation during ex vivo expansion of limbal corneal epithelial cells on intact amniotic membrane (iAM) and epithelially denuded (d)AM. Methods Human limbal explants were cultured on iAM and dAM. Expression of BM components, including laminin-5, type IV collagen, type VII collagen, perlecan, integrin ?6, and epithelial cell differentiation markers such as p63, cytokeratin 3 (K3), and cytokeratin 12 (K12), were investigated by immunostaining. Levels of matrix metalloproteinase (MMP)-2 and MMP-9 and tissue inhibitor of matrix metalloproteinase (TIMP)-1 in the conditioned media were determined by ELISA and gelatin zymography. Results All four BM components were preserved in both iAM and dAM before culturing, but dissolved 1 week afterward when MMP-2 was increased. Epithelial outgrowth correlated with increased expression of MMP-2 and -9 for both cultures. Resynthesis of BM began with laminin-5 followed by other components. This process took place at 1 week on iAM but at 2 weeks on dAM after culturing. At 4 weeks, BM was more maturely deposited as a linear band from the explant toward the leading edge on iAM and temporally correlated with a sharp decline of MMP-9 levels. In contrast, such BM deposition began at the leading edge on dAM only when TIMP-1 levels were increased. Epithelial cell outgrowth on iAM expressed more p63 but less K3 and K12 than did that on dAM. Conclusions After dissolution of original amniotic BM, new BM formed by ex vivo expanded human limbal corneal epithelial cells on iAM deposits much faster and is more mature, resulting in regeneration of a limbal epithelial phenotype. In contrast, BM deposition is delayed and remains immature on dAM, resembling wound healing by a corneal epithelial phenotype. Thus, BM resynthesis may be used as another objective readout for assessing the success of ex vivo expansion of limbal epithelial progenitor cells on AM. PMID:16723447

  19. Electricity generation using membrane and salt bridge microbial fuel cells.

    PubMed

    Min, Booki; Cheng, Shaoan; Logan, Bruce E

    2005-05-01

    Microbial fuel cells (MFCs) can be used to directly generate electricity from the oxidation of dissolved organic matter, but optimization of MFCs will require that we know more about the factors that can increase power output such as the type of proton exchange system which can affect the system internal resistance. Power output in a MFC containing a proton exchange membrane was compared using a pure culture (Geobacter metallireducens) or a mixed culture (wastewater inoculum). Power output with either inoculum was essentially the same, with 40+/-1mW/m2 for G. metallireducens and 38+/-1mW/m2 for the wastewater inoculum. We also examined power output in a MFC with a salt bridge instead of a membrane system. Power output by the salt bridge MFC (inoculated with G. metallireducens) was 2.2mW/m2. The low power output was directly attributed to the higher internal resistance of the salt bridge system (19920+/-50 Ohms) compared to that of the membrane system (1286+/-1Ohms) based on measurements using impedance spectroscopy. In both systems, it was observed that oxygen diffusion from the cathode chamber into the anode chamber was a factor in power generation. Nitrogen gas sparging, L-cysteine (a chemical oxygen scavenger), or suspended cells (biological oxygen scavenger) were used to limit the effects of gas diffusion into the anode chamber. Nitrogen gas sparging, for example, increased overall Coulombic efficiency (47% or 55%) compared to that obtained without gas sparging (19%). These results show that increasing power densities in MFCs will require reducing the internal resistance of the system, and that methods are needed to control the dissolved oxygen flux into the anode chamber in order to increase overall Coulombic efficiency. PMID:15899266

  20. Association rates of membrane-coupled cell adhesion molecules.

    PubMed

    Bihr, Timo; Fenz, Susanne; Sackmann, Erich; Merkel, Rudolf; Seifert, Udo; Sengupta, Kheya; Smith, Ana-Sun?ana

    2014-12-01

    Thus far, understanding how the confined cellular environment affects the lifetime of bonds, as well as the extraction of complexation rates, has been a major challenge in studies of cell adhesion. Based on a theoretical description of the growth curves of adhesion domains, we present a new (to our knowledge) method to measure the association rate k(on) of ligand-receptor pairs incorporated into lipid membranes. As a proof of principle, we apply this method to several systems. We find that the k(on) for the interaction of biotin with neutravidin is larger than that for integrin binding to RGD or sialyl Lewis(x) to E-selectin. Furthermore, we find k(on) to be enhanced by membrane fluctuations that increase the probability for encounters between the binders. The opposite effect on k(on) could be attributed to the presence of repulsive polymers that mimic the glycocalyx, which points to two potential mechanisms for controlling the speed of protein complexation during the cell recognition process. PMID:25468354

  1. Cell-Culture Reactor Having a Porous Organic Polymer Membrane

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    2000-01-01

    A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclosed. The substrate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphory1choline groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge, wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic regions, and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.

  2. Structural transition of actin filament in a cell-sized water droplet with a phospholipid membrane

    NASA Astrophysics Data System (ADS)

    Hase, M.; Yoshikawa, K.

    2006-03-01

    Actin filament, F-actin, is a semiflexible polymer with a negative charge, and is one of the main constituents of cell membranes. To clarify the effect of cross talk between a phospholipid membrane and actin filaments in cells, we conducted microscopic observations on the structural changes in actin filaments in a cell-sized (several tens of micrometers in diameter) water droplet coated with a phospholipid membrane such as phosphatidylserine (PS; negatively charged head group) or phosphatidylethanolamine (PE; neutral head group) as a simple model of a living cell membrane. With PS, actin filaments are distributed uniformly in the water phase without adsorption onto the membrane surface between 2 and 6mM Mg2+, while between 6 and 12mM Mg2+, actin filaments are adsorbed onto the inner membrane surface. With PE, the actin filaments are uniformly adsorbed onto the inner membrane surface between 2 and 12mM Mg2+. With both PS and PE membranes, at Mg2+ concentrations higher than 12mM, thick bundles are formed in the bulk water droplet accompanied by the dissolution of actin filaments from the membrane surface. The attraction between actin filaments and membrane is attributable to an increase in the translational entropy of counterions accompanied by the adsorption of actin filaments onto the membrane surface. These results suggest that a microscopic water droplet coated with phospholipid can serve as an easy-to-handle model of cell membranes.

  3. Dynamics of red blood cells in microporous membranes

    PubMed Central

    Czerwinska, Justyna; Rieger, Michael; Uehlinger, Dominik E.

    2014-01-01

    We have performed microfluidic experiments with erythrocytes passing through a network of microchannels of 2025??m width and 5??m of height. Red blood cells (RBCs) were flowing in countercurrent directions through microchannels connected by ?m pores. Thereby, we have observed interesting flow dynamics. All pores were blocked by erythrocytes. Some erythrocytes have passed through pores, depending on the channel size and cell elasticity. Many RBCs split into two or more smaller parts. Two types of splits were observed. In one type, the lipid bilayer and spectrin network were cut at the same time. In the second type, the lipid bilayer reconnected, but the part of spectrin network stayed outside the cell forming a rope like structure, which could eventually break. The microporous membrane results in multiple breakups of the cells, which can have various clinical implications, e.g., glomerulus hematuria and anemia of patients undergoing dialysis. The cell breakup procedure is similar to the one observed in the droplet breakage of viscoelastic liquids in confinement. PMID:25379086

  4. Proliferation of Schwann cells induced by axolemmal and myelin membranes

    SciTech Connect

    Dinneen, M..

    1985-01-01

    Purified Schwann Cells were cultured from neonatal rat sciatic nerve using a modification of the method of Brockes. Schwann cells and contaminating fibroblasts were unambiguously identified using fluorescent antibodies of 2'3' cyclic nucleotide 3'-phosphodiesterase and the thy 1.1 antigen respectively. The Schwann cells were quiescent unless challenged with mitogens. They proliferated rapidly in response to the soluble mitogen, cholera toxin, or to membrane fractions from rat CNS or PNS, prepared by the method of DeVries. Mitogenic activity was present in both axolemmal and myelin enriched fractions and promoted a 10-15 fold increase in the rate of /sup 3/H-thymidine uptake. The axolemmal mitogen was sensitive to heat (80/sup 0/C for 10 minutes), trypsin digestion (0.05% x 30 mins) or to treatment with endoglycosidase D, suggesting that it could be a glycoprotein. Fifty percent of the axolemmal mitogenic activity was solubilized in 1% octyl-glucoside. The solubilized material, however, was very unstable and further purification was not possible. The myelin associated mitogenic activity was markedly different. It was resistant to freeze thaw cycles, trypsin digestion of endoglycosidase treatment and the activity was actually enhanced by heating at 100/sup 0/C for two hours. It is proposed that the axolemmal activity is responsible for Schwann cell proliferation during development and that the myelin associated activity promotes Schwann cell proliferation during Wallerian degeneration.

  5. Bending elasticities of model membranes: influences of temperature and sterol content.

    PubMed Central

    Méléard, P; Gerbeaud, C; Pott, T; Fernandez-Puente, L; Bivas, I; Mitov, M D; Dufourcq, J; Bothorel, P

    1997-01-01

    Giant liposomes obtained by electroformation and observed by phase-contrast video microscopy show spontaneous deformations originating from Brownian motion that are characterized, in the case of quasispherical vesicles, by two parameters only, the membrane tension sigma and the bending elasticity k(c). For liposomes containing dimyristoyl phosphatidylcholine (DMPC) or a 10 mol% cholesterol/DMPC mixture, the mechanical property of the membrane, k(c), is shown to be temperature dependent on approaching the main (thermotropic) phase transition temperature T(m). In the case of DMPC/cholesterol bilayers, we also obtained evidence for a relation between the bending elasticity and the corresponding temperature/cholesterol molecular ratio phase diagram. Comparison of DMPC/cholesterol with DMPC/cholesterol sulfate bilayers at 30 degrees C containing 30% sterol ratio shows that k(c) is independent of the surface charge density of the bilayer. Finally, bending elasticities of red blood cell (RBC) total lipid extracts lead to a very low k(c) at 37 degrees C if we refer to DMPC/cholesterol bilayers. At 25 degrees C, the very low bending elasticity of a cholesterol-free RBC lipid extract seems to be related to a phase coexistence, as it can be observed by solid-state (31)P-NMR. At the same temperature, the cholesterol-containing RBC lipid extract membrane shows an increase in the bending constant comparable to the one observed for a high cholesterol ratio in DMPC membranes. Images FIGURE 1 FIGURE 7 PMID:9168037

  6. Smoking and fluidity of erythrocyte membranes: a high resolution scanning electron and atomic force microscopy investigation.

    PubMed

    Pretorius, Etheresia; du Plooy, Jeanette N; Soma, Prashilla; Keyser, Ina; Buys, Antoinette V

    2013-11-30

    Smoking affects the general health of an individual, however, the red blood cells (RBCs) and their architecture are particularly vulnerable to inhaled toxins related to smoking. Smoking is one of the lifestyle diseases that are responsible for the most deaths worldwide and an individual who smokes is exposed to excessive amounts of oxidants and toxins which generate up to 10(18) free radicals in the human body. Recently, it was reported that smoking decreases RBC membrane fluidity. Here we confirm this and we show changes visible in the topography of RBC membranes, using scanning electron microscopy (SEM). RBC membranes show bubble formation of the phospholipid layer, as well as balloon-like smooth areas; while their general discoid shapes are changed to form pointed extensions. We also investigate membrane roughness using atomic force microscopy (AFM) and these results confirm SEM results. Due to the vast capability of RBCs to be adaptable, their state of well-being is a major indication for the general health status of an individual. We conclude that these changes, using an old technique in a novel application, may provide new insights and new avenues for future improvements in clinical medicine pertaining to conditions like COPD. PMID:23973530

  7. Cell proliferation and carcinogenesis may share a common basis of permeable plasma membrane clusters.

    PubMed

    Beech, J A

    1992-07-01

    Wound potentials increase the surface potential of exposed areas of nearby cells. In these cells, soluble cytoplasmic bases are assu