Sample records for cell secretory granules

  1. Distorted secretory granule composition in mast cells with multiple protease deficiency.

    PubMed

    Grujic, Mirjana; Calounova, Gabriela; Eriksson, Inger; Feyerabend, Thorsten; Rodewald, Hans-Reimer; Tchougounova, Elena; Kjellén, Lena; Pejler, Gunnar

    2013-10-01

    Mast cells are characterized by an abundance of secretory granules densely packed with inflammatory mediators such as bioactive amines, cytokines, serglycin proteoglycans with negatively charged glycosaminoglycan side chains of either heparin or chondroitin sulfate type, and large amounts of positively charged proteases. Despite the large biological impact of mast cell granules and their contents on various pathologies, the mechanisms that regulate granule composition are incompletely understood. In this study, we hypothesized that granule composition is dependent on a dynamic electrostatic interrelationship between different granule compounds. As a tool to evaluate this possibility, we generated mice in which mast cells are multideficient in a panel of positively charged proteases: the chymase mouse mast cell protease-4, the tryptase mouse mast cell protease-6, and carboxypeptidase A3. Through a posttranslational effect, mast cells from these mice additionally lack mouse mast cell protease-5 protein. Mast cells from mice deficient in individual proteases showed normal morphology. In contrast, mast cells with combined protease deficiency displayed a profound distortion of granule integrity, as seen both by conventional morphological criteria and by transmission electron microscopy. An assessment of granule content revealed that the distorted granule integrity in multiprotease-deficient mast cells was associated with a profound reduction of highly negatively charged heparin, whereas no reduction in chondroitin sulfate storage was observed. Taken together with previous findings showing that the storage of basic proteases conversely is regulated by anionic proteoglycans, these data suggest that secretory granule composition in mast cells is dependent on a dynamic interrelationship between granule compounds of opposite electrical charge.

  2. The Prohormone VGF Regulates β Cell Function via Insulin Secretory Granule Biogenesis.

    PubMed

    Stephens, Samuel B; Edwards, Robert J; Sadahiro, Masato; Lin, Wei-Jye; Jiang, Cheng; Salton, Stephen R; Newgard, Christopher B

    2017-09-05

    The prohormone VGF is expressed in neuroendocrine and endocrine tissues and regulates nutrient and energy status both centrally and peripherally. We and others have shown that VGF-derived peptides have direct action on the islet β cell as secretagogues and cytoprotective agents; however, the endogenous function of VGF in the β cell has not been described. Here, we demonstrate that VGF regulates secretory granule formation. VGF loss-of-function studies in both isolated islets and conditional knockout mice reveal a profound decrease in stimulus-coupled insulin secretion. Moreover, VGF is necessary to facilitate efficient exit of granule cargo from the trans-Golgi network and proinsulin processing. It also functions to replenish insulin granule stores following nutrient stimulation. Our data support a model in which VGF operates at a critical node of granule biogenesis in the islet β cell to coordinate insulin biosynthesis with β cell secretory capacity. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Three-dimensional ultrastructural analyses of anterior pituitary gland expose spatial relationships between endocrine cell secretory granule localization and capillary distribution.

    PubMed

    Yoshitomi, Munetake; Ohta, Keisuke; Kanazawa, Tomonoshin; Togo, Akinobu; Hirashima, Shingo; Uemura, Kei-Ichiro; Okayama, Satoko; Morioka, Motohiro; Nakamura, Kei-Ichiro

    2016-10-31

    Endocrine and endothelial cells of the anterior pituitary gland frequently make close appositions or contacts, and the secretory granules of each endocrine cell tend to accumulate at the perivascular regions, which is generally considered to facilitate secretory functions of these cells. However, three-dimensional relationships between the localization pattern of secretory granules and blood vessels are not fully understood. To define and characterize these spatial relationships, we used scanning electron microscopy (SEM) three-dimensional reconstruction method based on focused ion-beam slicing and scanning electron microscopy (FIB/SEM). Full three-dimensional cellular architectures of the anterior pituitary tissue at ultrastructural resolution revealed that about 70% of endocrine cells were in apposition to the endothelial cells, while almost 30% of endocrine cells were entirely isolated from perivascular space in the tissue. Our three-dimensional analyses also visualized the distribution pattern of secretory granules in individual endocrine cells, showing an accumulation of secretory granules in regions in close apposition to the blood vessels in many cases. However, secretory granules in cells isolated from the perivascular region tended to distribute uniformly in the cytoplasm of these cells. These data suggest that the cellular interactions between the endocrine and endothelial cells promote an uneven cytoplasmic distribution of the secretory granules.

  4. Alpha-SNAP functions in insulin exocytosis from mature, but not immature secretory granules in pancreatic beta cells.

    PubMed

    Nakamichi, Y; Nagamatsu, S

    1999-06-24

    To explore alpha-SNAP function in insulin exocytosis from either immature or mature secretory granules in pancreatic beta cells, we studied the effects of overexpression of adenovirus-mediated wild-type alpha-SNAP and C-terminally deleted alpha-SNAP mutant (1-285) on newly synthesized proinsulin and insulin release by rat islets and MIN6 cells. Rat islets overexpressing alpha-SNAP and mutant alpha-SNAP were pulse-chased. Exocytosis from immature and mature insulin secretory granules was measured as fractional (%) labeled-proinsulin release immediately after the pulse-labeling and percentage labeled-insulin release after a 3-h chase period, respectively. There was no difference in percentage labeled-proinsulin release between the control and alpha-SNAP or mutant alpha-SNAP-overexpressed islets. Although percentage labeled-insulin release after a 3-h chase period was significantly increased in alpha-SNAP-overexpressed islets, it was decreased in mutant alpha-SNAP-overexpressed islets. Thus, the results demonstrated that alpha-SNAP overexpression in rat islets primarily increased exocytosis from mature, but not immature insulin secretory granules. On the other hand, in MIN6 cells, alpha-SNAP overexpression scarcely affected glucose-stimulated insulin release; therefore, we examined the effect of mutant alpha-SNAP overexpression as the dominant-negative inhibitor on the newly synthesized proinsulin/insulin release using the same protocol as in the rat islet experiments. alpha-SNAP mutant (1-285) overexpression in MIN6 cells decreased the percentage labeled insulin release from mature secretory granules, but not percentage labeled proinsulin release from immature secretory granules. Thus, our data demonstrate that alpha-SNAP functions mainly in the mature insulin secretory granules in pancreatic beta cells. Copyright 1999 Academic Press.

  5. Imaging Ca2+-triggered exocytosis of single secretory granules on plasma membrane lawns from neuroendocrine cells.

    PubMed

    Lang, Thorsten

    2008-01-01

    This cell-free assay for exocytosis is particularly useful when spatial information about exocytotic sites and biochemical access to the plasma membrane within less than a minute is required. It is based on the study of plasma membrane lawns from secretory cells exhibiting secretory granules filled with neuropeptide Y-green fluorescent protein (NPY-GFP). The sample is prepared by subjecting NPY-GFP-expressing cells to a brief ultrasound pulse, leaving behind a basal, flat plasma membrane with fluorescent attached secretory organelles. These sheets can then be incubated in defined solutions with the benefit that complete solution changes can be achieved in less than 1 min. Individual secretory granules are monitored in the docked state and during exocytosis by video microscopy.

  6. A Role for Serglycin Proteoglycan in Mast Cell Apoptosis Induced by a Secretory Granule-mediated Pathway*

    PubMed Central

    Melo, Fabio Rabelo; Waern, Ida; Rönnberg, Elin; Åbrink, Magnus; Lee, David M.; Schlenner, Susan M.; Feyerabend, Thorsten B.; Rodewald, Hans-Reimer; Turk, Boris; Wernersson, Sara; Pejler, Gunnar

    2011-01-01

    Mast cell secretory granules (secretory lysosomes) contain large amounts of fully active proteases bound to serglycin proteoglycan. Damage to the granule membrane will thus lead to the release of serglycin and serglycin-bound proteases into the cytosol, which potentially could lead to proteolytic activation of cytosolic pro-apoptotic compounds. We therefore hypothesized that mast cells are susceptible to apoptosis induced by permeabilization of the granule membrane and that this process is serglycin-dependent. Indeed, we show that wild-type mast cells are highly sensitive to apoptosis induced by granule permeabilization, whereas serglycin-deficient cells are largely resistant. The reduced sensitivity of serglycin−/− cells to apoptosis was accompanied by reduced granule damage, reduced release of proteases into the cytosol, and defective caspase-3 activation. Mechanistically, the apoptosis-promoting effect of serglycin involved serglycin-dependent proteases, as indicated by reduced sensitivity to apoptosis and reduced caspase-3 activation in cells lacking individual mast cell-specific proteases. Together, these findings implicate serglycin proteoglycan as a novel player in mast cell apoptosis. PMID:21123167

  7. Localization of DNA and RNA in eosinophil secretory granules.

    PubMed

    Behzad, Ali R; Walker, David C; Abraham, Thomas; McDonough, John; Mahmudi-Azer, Salahadin; Chu, Fanny; Shaheen, Furquan; Hogg, James C; Paré, Peter D

    2010-01-01

    Although the accepted paradigm is that the proteins stored in eosinophil crystalloid granules are translated from messenger RNA transcribed in the cell nucleus, recent ultrastructural evidence suggests that protein synthesis may also take place within eosinophilic granules. We used 2 different methods to detect the presence of DNA and RNA in eosinophil secretory granules. Using bromodeoxyuridine, a thymidine analogue, and bromouridine, a uracil analogue, we labeled the DNA and RNA in eosinophils in vivo in rabbits. Immunoelectron microscopy to localize these molecules was performed on ultrathin sections of blood and bone marrow eosinophils using monoclonal anti-bromodeoxyuridine antibody with IgG as a control. The immunogold grain density was measured in each subcellular compartment within the eosinophils and analyzed using image analysis software. A combination of DNA/CD63 immunofluorescence staining and a fluorescently labeled molecular probe that stains RNA was used to examine the presence of DNA and RNA in the secretory granules of human blood eosinophils. The mean density of bromodeoxyuridine-labeled DNA and bromouridine-labeled RNA immunogold grains in the secretory granules of blood and bone marrow eosinophils were significantly higher (p < 0.0005) than cytoplasmic or background staining. We also demonstrated the existence of DNA and RNA in the CD63-positive secretory granules of human peripheral blood eosinophils by means of immunofluorescent staining and a fluorescently labeled molecular probe. These results provide evidence that eosinophil granules are the site of DNA and RNA synthesis and suggest the potential for a new role(s) for eosinophil-secretory granules. Copyright 2009 S. Karger AG, Basel.

  8. Intracisternal granules in the adipokinetic cells of locusts are not degraded and apparently function as supplementary stores of secretory material.

    PubMed

    Harthoorn, L F; Diederen, J H; Oudejans, R C; Verstegen, M M; Vullings, H G; Van der Horst, D J

    2000-01-01

    The intracisternal granules in locust adipokinetic cells appear to represent accumulations of secretory material within cisternae of the rough endoplasmic reticulum. An important question is whether these granules are destined for degradation or represent stores of (pro)hormones. Two strategies were used to answer this question. First, cytochemistry was applied to elucidate the properties of intracisternal granules. The endocytic tracers horseradish peroxidase and wheat-germ agglutinin-conjugated horseradish peroxidase were used to facilitate the identification of endocytic, autophagic, and lysosomal organelles, which may be involved in the degradation of intracisternal granules. No intracisternal granules could be found within autophagosomes, and granules fused with endocytic and lysosomal organelles were not observed, nor could tracer be found within the granules. The lysosomal enzyme acid phosphatase was absent from the granules. Second, biochemical analysis of the content of intracisternal granules revealed that these granules contain prohormones as well as hormones. Prohormones were present in relatively higher amounts compared with ordinary secretory granules. Since the intracisternal granules in locust adipokinetic cells are not degraded and contain intact (pro)hormones it is concluded that they function as supplementary stores of secretory material.

  9. Wolfram syndrome 1 gene (WFS1) product localizes to secretory granules and determines granule acidification in pancreatic beta-cells.

    PubMed

    Hatanaka, Masayuki; Tanabe, Katsuya; Yanai, Akie; Ohta, Yasuharu; Kondo, Manabu; Akiyama, Masaru; Shinoda, Koh; Oka, Yoshitomo; Tanizawa, Yukio

    2011-04-01

    Wolfram syndrome is an autosomal recessive disorder characterized by juvenile-onset insulin-dependent diabetes mellitus and optic atrophy. The gene responsible for the syndrome (WFS1) encodes an endoplasmic reticulum (ER) resident transmembrane protein. The Wfs1-null mouse exhibits progressive insulin deficiency causing diabetes. Previous work suggested that the function of the WFS1 protein is connected to unfolded protein response and to intracellular Ca(2+) homeostasis. However, its precise molecular function in pancreatic β-cells remains elusive. In our present study, immunofluorescent and electron-microscopic analyses revealed that WFS1 localizes not only to ER but also to secretory granules in pancreatic β-cells. Intragranular acidification was assessed by measuring intracellular fluorescence intensity raised by the acidotrophic agent, 3-[2,4-dinitroanilino]-3'-amino-N-methyldipropyramine. Compared with wild-type β-cells, there was a 32% reduction in the intensity in WFS1-deficient β-cells, indicating the impairment of granular acidification. This phenotype may, at least partly, account for the evidence that Wfs1-null islets have impaired proinsulin processing, resulting in an increased circulating proinsulin level. Morphometric analysis using electron microscopy evidenced that the density of secretory granules attached to the plasma membrane was significantly reduced in Wfs1-null β-cells relative to that in wild-type β-cells. This may be relevant to the recent finding that granular acidification is required for the priming of secretory granules preceding exocytosis and may partly explain the fact that glucose-induced insulin secretion is profoundly impaired in young prediabetic Wfs1-null mice. These results thus provide new insights into the molecular mechanisms of β-cell dysfunction in patients with Wolfram syndrome.

  10. Pro-hormone Secretogranin II Regulates Dense Core Secretory Granule Biogenesis in Catecholaminergic Cells*

    PubMed Central

    Courel, Maïté; Soler-Jover, Alex; Rodriguez-Flores, Juan L.; Mahata, Sushil K.; Elias, Salah; Montero-Hadjadje, Maïté; Anouar, Youssef; Giuly, Richard J.; O'Connor, Daniel T.; Taupenot, Laurent

    2010-01-01

    Processes underlying the formation of dense core secretory granules (DCGs) of neuroendocrine cells are poorly understood. Here, we present evidence that DCG biogenesis is dependent on the secretory protein secretogranin (Sg) II, a member of the granin family of pro-hormone cargo of DCGs in neuroendocrine cells. Depletion of SgII expression in PC12 cells leads to a decrease in both the number and size of DCGs and impairs DCG trafficking of other regulated hormones. Expression of SgII fusion proteins in a secretory-deficient PC12 variant rescues a regulated secretory pathway. SgII-containing dense core vesicles share morphological and physical properties with bona fide DCGs, are competent for regulated exocytosis, and maintain an acidic luminal pH through the V-type H+-translocating ATPase. The granulogenic activity of SgII requires a pH gradient along this secretory pathway. We conclude that SgII is a critical factor for the regulation of DCG biogenesis in neuroendocrine cells, mediating the formation of functional DCGs via its pH-dependent aggregation at the trans-Golgi network. PMID:20061385

  11. Pro-hormone secretogranin II regulates dense core secretory granule biogenesis in catecholaminergic cells.

    PubMed

    Courel, Maïté; Soler-Jover, Alex; Rodriguez-Flores, Juan L; Mahata, Sushil K; Elias, Salah; Montero-Hadjadje, Maïté; Anouar, Youssef; Giuly, Richard J; O'Connor, Daniel T; Taupenot, Laurent

    2010-03-26

    Processes underlying the formation of dense core secretory granules (DCGs) of neuroendocrine cells are poorly understood. Here, we present evidence that DCG biogenesis is dependent on the secretory protein secretogranin (Sg) II, a member of the granin family of pro-hormone cargo of DCGs in neuroendocrine cells. Depletion of SgII expression in PC12 cells leads to a decrease in both the number and size of DCGs and impairs DCG trafficking of other regulated hormones. Expression of SgII fusion proteins in a secretory-deficient PC12 variant rescues a regulated secretory pathway. SgII-containing dense core vesicles share morphological and physical properties with bona fide DCGs, are competent for regulated exocytosis, and maintain an acidic luminal pH through the V-type H(+)-translocating ATPase. The granulogenic activity of SgII requires a pH gradient along this secretory pathway. We conclude that SgII is a critical factor for the regulation of DCG biogenesis in neuroendocrine cells, mediating the formation of functional DCGs via its pH-dependent aggregation at the trans-Golgi network.

  12. Amyloid-like aggregation of provasopressin in diabetes insipidus and secretory granule sorting.

    PubMed

    Beuret, Nicole; Hasler, Franziska; Prescianotto-Baschong, Cristina; Birk, Julia; Rutishauser, Jonas; Spiess, Martin

    2017-01-26

    Aggregation of peptide hormone precursors in the trans-Golgi network is an essential process in the biogenesis of secretory granules in endocrine cells. It has recently been proposed that this aggregation corresponds to the formation of functional amyloids. Our previous finding that dominant mutations in provasopressin, which cause cell degeneration and diabetes insipidus, prevent native folding and produce fibrillar aggregates in the endoplasmic reticulum (ER) might thus reflect mislocalized amyloid formation by sequences that evolved to mediate granule sorting. Here we identified two sequences responsible for fibrillar aggregation of mutant precursors in the ER: the N-terminal vasopressin nonapeptide and the C-terminal glycopeptide. To test their role in granule sorting, the glycopeptide was deleted and/or vasopressin mutated to inactivate ER aggregation while still permitting precursor folding and ER exit. These mutations strongly reduced sorting into granules and regulated secretion in endocrine AtT20 cells. The same sequences - vasopressin and the glycopeptide - mediate physiological aggregation of the wild-type hormone precursor into secretory granules and the pathological fibrillar aggregation of disease mutants in the ER. These findings support the amyloid hypothesis for secretory granule biogenesis.

  13. Secretory granule formation and membrane recycling by the trans-Golgi network in adipokinetic cells of Locusta migratoria in relation to flight and rest.

    PubMed

    Diederen, J H; Vullings, H G

    1995-03-01

    The influence of flight activity on the formation of secretory granules and the concomitant membrane recycling by the trans-Golgi network in the peptidergic neurosecretory adipokinetic cells of Locusta migratoria was investigated by means of ultrastructural morphometric methods. The patterns of labelling of the trans-Golgi network by the exogenous adsorptive endocytotic tracer wheat-germ agglutinin-conjugated horse-radish peroxidase and by the endogenous marker enzyme acid phosphatase were used as parameters and were measured by an automatic image analysis system. The results show that endocytosed fragments of plasma membrane with bound peroxidase label were transported to the trans-Golgi network and used to build new secretory granules. The amounts of peroxidase and especially of acid phosphatase within the trans-Golgi network showed a strong tendency to be smaller in flight-stimulated cells than in non-stimulated cells. The amounts of acid phosphatase in the immature secretory granules originating from the trans-Golgi network were significantly smaller in stimulated cells. The number of immature secretory granules positive for acid phosphatase tended to be higher in stimulated cells. Thus, flight stimulation of adipokinetic cells for 1 h influences the functioning of the trans-Golgi network; this most probably results in a slight enhancement of the production of secretory granules by the trans-Golgi network.

  14. PtdIns(4,5)P2 is not required for secretory granule docking.

    PubMed

    Omar-Hmeadi, Muhmmad; Gandasi, Nikhil R; Barg, Sebastian

    2018-06-01

    Phosphoinositides (PtdIns) play important roles in exocytosis and are thought to regulate secretory granule docking by co-clustering with the SNARE protein syntaxin to form a docking receptor in the plasma membrane. Here we tested this idea by high-resolution total internal reflection imaging of EGFP-labeled PtdIns markers or syntaxin-1 at secretory granule release sites in live insulin-secreting cells. In intact cells, PtdIns markers distributed evenly across the plasma membrane with no preference for granule docking sites. In contrast, syntaxin-1 was found clustered in the plasma membrane, mostly beneath docked granules. We also observed rapid accumulation of syntaxin-1 at sites where granules arrived to dock. Acute depletion of plasma membrane phosphatidylinositol (4,5) bisphosphate (PtdIns(4,5)P 2 ) by recruitment of a 5'-phosphatase strongly inhibited Ca 2+ -dependent exocytosis, but had no effect on docked granules or the distribution and clustering of syntaxin-1. Cell permeabilization by α-toxin or formaldehyde-fixation caused PtdIns marker to slowly cluster, in part near docked granules. In summary, our data indicate that PtdIns(4,5)P 2 accelerates granule priming, but challenge a role of PtdIns in secretory granule docking or clustering of syntaxin-1 at the release site. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Snapin mediates insulin secretory granule docking, but not trans-SNARE complex formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somanath, Sangeeta; Partridge, Christopher J.; Marshall, Catriona

    Secretory granule exocytosis is a tightly regulated process requiring granule targeting, tethering, priming, and membrane fusion. At the heart of this process is the SNARE complex, which drives fusion through a coiled-coil zippering effect mediated by the granule v-SNARE protein, VAMP2, and the plasma membrane t-SNAREs, SNAP-25 and syntaxin-1A. Here we demonstrate that in pancreatic β-cells the SNAP-25 accessory protein, snapin, C-terminal H2 domain binds SNAP-25 through its N-terminal Sn-1 domain. Interestingly whilst snapin binds SNAP-25, there is only modest binding of this complex with syntaxin-1A under resting conditions. Instead synataxin-1A appears to be recruited in response to secretory stimulation.more » These results indicate that snapin plays a role in tethering insulin granules to the plasma membrane through coiled coil interaction of snapin with SNAP-25, with full granule fusion competency only resulting after subsequent syntaxin-1A recruitment triggered by secretory stimulation. - Highlights: • Snapin mediates granule docking. • Snapin binds SNAP-25. • SNARE complex forms downstream.« less

  16. Docking is not a prerequisite but a temporal constraint for fusion of secretory granules.

    PubMed

    Kasai, Kazuo; Fujita, Takuji; Gomi, Hiroshi; Izumi, Tetsuro

    2008-07-01

    We examined secretory granule dynamics using total internal reflection fluorescence microscopy in normal pancreatic beta cells and their mutants devoid of Rab27a and/or its effector, granuphilin, which play critical roles in the docking and recruitment of insulin granules to the plasma membrane. In the early phase of glucose stimulation in wild-type cells, we observed marked fusion of granules recruited from a relatively distant area, in parallel with that from granules located underneath the plasma membrane. Furthermore, despite a lack of granules directly attached to the plasma membrane, both spontaneous and evoked fusion was increased in granuphilin-null cells. In addition to these granuphilin-null phenotypes, Rab27a/granuphilin doubly deficient cells showed the decreases in granules located next to the docked area and in fusion from granules near the plasma membrane in the early phase of glucose-stimulated secretion, similar to Rab27a-mutated cells. Thus, the two proteins play nonoverlapping roles in insulin exocytosis: granuphilin acts on the granules underneath the plasma membrane, whereas Rab27a acts on those in a more distal area. These findings demonstrate that, in contrast to our conventional understanding, stable attachment of secretory granules to the plasma membrane is not prerequisite but temporally inhibitory for both spontaneous and evoked fusion.

  17. Glucokinase is an integral component of the insulin granules in glucose-responsive insulin secretory cells and does not translocate during glucose stimulation.

    PubMed

    Arden, Catherine; Harbottle, Andrew; Baltrusch, Simone; Tiedge, Markus; Agius, Loranne

    2004-09-01

    The association of glucokinase with insulin secretory granules has been shown by cell microscopy techniques. We used MIN6 insulin-secretory cells and organelle fractionation to determine the effects of glucose on the subcellular distribution of glucokinase. After permeabilization with digitonin, 50% of total glucokinase remained bound intracellularly, while 30% was associated with the 13,000g particulate fraction. After density gradient fractionation of the organelles, immunoreactive glucokinase was distributed approximately equally between dense insulin granules and low-density organelles that cofractionate with mitochondria. Although MIN6 cells show glucose-responsive insulin secretion, glucokinase association with the granules and low-density organelles was not affected by glucose. Subfractionation of the insulin granule components by hypotonic lysis followed by sucrose gradient centrifugation showed that glucokinase colocalized with the granule membrane marker phogrin and not with insulin. PFK2 (6-phosphofructo-2-kinase-2/fructose-2,6-bisphosphatase)/FDPase-2, a glucokinase-binding protein, and glyceraldehyde phosphate dehydrogenase, which has been implicated in granule fusion, also colocalized with glucokinase after hypotonic lysis or detergent extaction of the granules. The results suggest that glucokinase is an integral component of the granule and does not translocate during glucose stimulation.

  18. α-Synuclein binds the KATP channel at insulin-secretory granules and inhibits insulin secretion

    PubMed Central

    Geng, Xuehui; Lou, Haiyan; Wang, Jian; Li, Lehong; Swanson, Alexandra L.; Sun, Ming; Beers-Stolz, Donna; Watkins, Simon; Perez, Ruth G.

    2011-01-01

    α-Synuclein has been studied in numerous cell types often associated with secretory processes. In pancreatic β-cells, α-synuclein might therefore play a similar role by interacting with organelles involved in insulin secretion. We tested for α-synuclein localizing to insulin-secretory granules and characterized its role in glucose-stimulated insulin secretion. Immunohistochemistry and fluorescent sulfonylureas were used to test for α-synuclein localization to insulin granules in β-cells, immunoprecipitation with Western blot analysis for interaction between α-synuclein and KATP channels, and ELISA assays for the effect of altering α-synuclein expression up or down on insulin secretion in INS1 cells or mouse islets, respectively. Differences in cellular phenotype between α-synuclein knockout and wild-type β-cells were found by using confocal microscopy to image the fluorescent insulin biosensor Ins-C-emGFP and by using transmission electron microscopy. The results show that anti-α-synuclein antibodies labeled secretory organelles within β-cells. Anti-α-synuclein antibodies colocalized with KATP channel, anti-insulin, and anti-C-peptide antibodies. α-Synuclein coimmunoprecipitated in complexes with KATP channels. Expression of α-synuclein downregulated insulin secretion at 2.8 mM glucose with little effect following 16.7 mM glucose stimulation. α-Synuclein knockout islets upregulated insulin secretion at 2.8 and 8.4 mM but not 16.7 mM glucose, consistent with the depleted insulin granule density at the β-cell surface membranes observed in these islets. These findings demonstrate that α-synuclein interacts with KATP channels and insulin-secretory granules and functionally acts as a brake on secretion that glucose stimulation can override. α-Synuclein might play similar roles in diabetes as it does in other degenerative diseases, including Alzheimer's and Parkinson's diseases. PMID:20858756

  19. Electron microprobe analysis of human labial gland secretory granules in cystic fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izutsu, K.; Johnson, D.; Schubert, M.

    1985-06-01

    X-ray microanalysis of freeze-dried labial gland cryosections revealed that Na concentration was doubled and the Ca/S concentration ratio was decreased in secretory granules of labial glands from patients with cystic fibrosis (CF) when compared with glands from normal subjects. Other results suggested that the decrease in the Ca/S concentration ratio resulted from an increase in S concentration. These findings imply that mucous granules in labial saliva showed a CF-related increase in Na and S content, and such changes would be expected to affect the rheology of the mucus after exocytosis. In contrast with a previous study in human parotid glands,more » no evidence was found for CF-related changes in cytoplasmic or nuclear Na, K, and Ca concentrations. Significant elemental differences were found between secretory granules and nuclei and cytoplasm of control cells.« less

  20. Protein Mobility within Secretory Granules

    PubMed Central

    Weiss, Annita Ngatchou; Bittner, Mary A.; Holz, Ronald W.; Axelrod, Daniel

    2014-01-01

    We investigated the basis for previous observations that fluorescent-labeled neuropeptide Y (NPY) is usually released within 200 ms after fusion, whereas labeled tissue plasminogen activator (tPA) is often discharged over many seconds. We found that tPA and NPY are endogenously expressed in small and different subpopulations of bovine chromaffin cells in culture. We measured the mobility of these proteins (tagged with fluorophore) within the lumen of individual secretory granules in living chromaffin cells, and related their mobilities to postfusion release kinetics. A method was developed that is not limited by standard optical resolution, in which a bright flash of strongly decaying evanescent field (∼64 nm exponential decay constant) produced by total internal reflection (TIR) selectively bleaches cerulean-labeled protein proximal to the glass coverslip within individual granules. Fluorescence recovery occurred as unbleached protein from distal regions within the 300 nm granule diffused into the bleached proximal regions. The fractional bleaching of tPA-cerulean (tPA-cer) was greater when subsequently probed with TIR excitation than with epifluorescence, indicating that tPA-cer mobility was low. The almost equal NPY-cer bleaching when probed with TIR and epifluorescence indicated that NPY-cer equilibrated within the 300 ms bleach pulse, and therefore had a greater mobility than tPA-cer. TIR-fluorescence recovery after photobleaching revealed a significant recovery of tPA-cer (but not NPY-cer) fluorescence within several hundred milliseconds after bleaching. Numerical simulations, which take into account bleach duration, granule diameter, and the limited number of fluorophores in a granule, are consistent with tPA-cer being 100% mobile, with a diffusion coefficient of 2 × 10−10 cm2/s (∼1/3000 of that for a protein of similar size in aqueous solution). However, the low diffusive mobility of tPA cannot alone explain its slow postfusion release. In the

  1. Novel secretory granule morphology in physically fixed pancreatic islets.

    PubMed

    Dudek, R W; Boyne, A F; Charles, T M

    1984-09-01

    Protein A-gold immunocytochemistry has been applied to physically fixed beta cells from rat islets of Langerhans. The punctate nature of the gold particles permits improved resolution of the antigenic sites without obscuring the fine ultrastructural preservation obtained by physical fixation. There is a filamentous material within the halo of the secretory granules that is not preserved by aqueous, chemical fixation. When viewed in stereo the filaments appear as an annular cobweb or a series of wheel spokes attached to a centrally located hub (the dense core of the granule). The filaments demonstrate insulin-like immunoreactivity using the protein A-gold technique. The immunoreactivity appears to be restricted to the filaments and the surface of the dense cores. This may be a consequence of the preservation of a solid, insolubilized core state that resists penetration by the antibody and/or the protein A-gold complex. However, the evidence that there is a halo pool of insulin which is separate from the massive core aggregate suggests that i) correspondingly massive exocytotic pits may not be as mandatory for insulin release as has been assumed and ii) the complex kinetics of insulin secretion may be, in part, a reflection of multiple insulin compartments within secretory granules.

  2. Protease nexin-1 promotes secretory granule biogenesis by preventing granule protein degradation.

    PubMed

    Kim, Taeyoon; Loh, Y Peng

    2006-02-01

    Dense-core secretory granule (DCG) biogenesis is a prerequisite step for the sorting, processing, and secretion of neuropeptides and hormones in (neuro)endocrine cells. Previously, chromogranin A (CgA) has been shown to play a key role in the regulation of DCG biogenesis in vitro and in vivo. However, the underlying mechanism of CgA-mediated DCG biogenesis has not been explored. In this study, we have uncovered a novel mechanism for the regulation of CgA-mediated DCG biogenesis. Transfection of CgA into endocrine 6T3 cells lacking CgA and DCGs not only recovered DCG formation and regulated secretion but also prevented granule protein degradation. Genetic profiling of CgA-expressing 6T3 versus CgA- and DCG-deficient 6T3 cells, followed by real-time reverse transcription-polymerase chain reaction and Western blotting analyses, revealed that a serine protease inhibitor, protease nexin-1 (PN-1), was significantly up-regulated in CgA-expressing 6T3 cells. Overexpression of PN-1 in CgA-deficient 6T3 cells prevented degradation of DCG proteins at the Golgi apparatus, enhanced DCG biogenesis, and recovered regulated secretion. Moreover, depletion of PN-1 by antisense RNAs in CgA-expressing 6T3 cells resulted in the specific degradation of DCG proteins. We conclude that CgA increases DCG biogenesis in endocrine cells by up-regulating PN-1 expression to stabilize granule proteins against degradation.

  3. Protease Nexin-1 Promotes Secretory Granule Biogenesis by Preventing Granule Protein Degradation

    PubMed Central

    Kim, Taeyoon; Loh, Y. Peng

    2006-01-01

    Dense-core secretory granule (DCG) biogenesis is a prerequisite step for the sorting, processing, and secretion of neuropeptides and hormones in (neuro)endocrine cells. Previously, chromogranin A (CgA) has been shown to play a key role in the regulation of DCG biogenesis in vitro and in vivo. However, the underlying mechanism of CgA-mediated DCG biogenesis has not been explored. In this study, we have uncovered a novel mechanism for the regulation of CgA-mediated DCG biogenesis. Transfection of CgA into endocrine 6T3 cells lacking CgA and DCGs not only recovered DCG formation and regulated secretion but also prevented granule protein degradation. Genetic profiling of CgA-expressing 6T3 versus CgA- and DCG-deficient 6T3 cells, followed by real-time reverse transcription-polymerase chain reaction and Western blotting analyses, revealed that a serine protease inhibitor, protease nexin-1 (PN-1), was significantly up-regulated in CgA-expressing 6T3 cells. Overexpression of PN-1 in CgA-deficient 6T3 cells prevented degradation of DCG proteins at the Golgi apparatus, enhanced DCG biogenesis, and recovered regulated secretion. Moreover, depletion of PN-1 by antisense RNAs in CgA-expressing 6T3 cells resulted in the specific degradation of DCG proteins. We conclude that CgA increases DCG biogenesis in endocrine cells by up-regulating PN-1 expression to stabilize granule proteins against degradation. PMID:16319172

  4. Distribution Profile of Inositol 1,4,5-Trisphosphate Receptor/Ca2+ Channels in α and β Cells of Pancreas: Dominant Localization in Secretory Granules and Common Error in Identification of Secretory Granule Membranes.

    PubMed

    Hur, Yong Suk; Yoo, Seung Hyun

    2015-01-01

    The α and β cells of pancreatic islet release important hormones in response to intracellular Ca increases that result from Ca releases through the inositol 1,4,5-trisphoshate receptor (IP3R)/Ca channels. Yet no systematic studies on distribution of IP3R/Ca channels have been done, prompting us to investigate the distribution of all 3 IP3R isoforms. Immunogold electron microscopy was performed to determine the presence and the relative concentrations of all 3 IP3R isoforms in 2 major organelles secretory granules (SGs) and the endoplasmic reticulum of α and β cells of rat pancreas. All 3 IP3R isoforms were present in SG membranes of both cells, and the IP3R concentrations in SGs were ∼2-fold higher than those in the endoplasmic reticulum. Moreover, large halos shown in the electron microscope images of insulin-containing SGs of β cells were gap spaces that resulted from separation of granule membranes from the surrounding cytoplasm. These results strongly suggest the important roles of SGs in IP3-induced, Ca-dependent regulatory secretory pathway in pancreas. Moreover, the accurate location of SG membranes of β cells was further confirmed by the location of another integral membrane protein synaptotagmin V and of membrane phospholipid PI(4,5)P2.

  5. Distinct Molecular Events during Secretory Granule Biogenesis Revealed by Sensitivities to Brefeldin A

    PubMed Central

    Fernandez, Carlos J.; Haugwitz, Michael; Eaton, Benjamin; Moore, Hsiao-Ping H.

    1997-01-01

    The biogenesis of peptide hormone secretory granules involves a series of sorting, modification, and trafficking steps that initiate in the trans-Golgi and trans-Golgi network (TGN). To investigate their temporal order and interrelationships, we have developed a pulse–chase protocol that follows the synthesis and packaging of a sulfated hormone, pro-opiomelanocortin (POMC). In AtT-20 cells, sulfate is incorporated into POMC predominantly on N-linked endoglycosidase H-resistant oligosaccharides. Subcellular fractionation and pharmacological studies confirm that this sulfation occurs at the trans-Golgi/TGN. Subsequent to sulfation, POMC undergoes a number of molecular events before final storage in dense-core granules. The first step involves the transfer of POMC from the sulfation compartment to a processing compartment (immature secretory granules, ISGs): Inhibiting export of pulse-labeled POMC by brefeldin A (BFA) or a 20°C block prevents its proteolytic conversion to mature adrenocorticotropic hormone. Proteolytic cleavage products were found in vesicular fractions corresponding to ISGs, suggesting that the processing machinery is not appreciably activated until POMC exits the sulfation compartment. A large portion of the labeled hormone is secreted from ISGs as incompletely processed intermediates. This unregulated secretory process occurs only during a limited time window: Granules that have matured for 2 to 3 h exhibit very little unregulated release, as evidenced by the efficient storage of the 15-kDa N-terminal fragment that is generated by a relatively late cleavage event within the maturing granule. The second step of granule biogenesis thus involves two maturation events: proteolytic activation of POMC in ISGs and a transition of the organelle from a state of high unregulated release to one that favors intracellular storage. By using BFA, we show that the two processes occurring in ISGs may be uncoupled: although the unregulated secretion from ISGs is

  6. Distinct molecular events during secretory granule biogenesis revealed by sensitivities to brefeldin A.

    PubMed

    Fernandez, C J; Haugwitz, M; Eaton, B; Moore, H P

    1997-11-01

    The biogenesis of peptide hormone secretory granules involves a series of sorting, modification, and trafficking steps that initiate in the trans-Golgi and trans-Golgi network (TGN). To investigate their temporal order and interrelationships, we have developed a pulse-chase protocol that follows the synthesis and packaging of a sulfated hormone, pro-opiomelanocortin (POMC). In AtT-20 cells, sulfate is incorporated into POMC predominantly on N-linked endoglycosidase H-resistant oligosaccharides. Subcellular fractionation and pharmacological studies confirm that this sulfation occurs at the trans-Golgi/TGN. Subsequent to sulfation, POMC undergoes a number of molecular events before final storage in dense-core granules. The first step involves the transfer of POMC from the sulfation compartment to a processing compartment (immature secretory granules, ISGs): Inhibiting export of pulse-labeled POMC by brefeldin A (BFA) or a 20 degrees C block prevents its proteolytic conversion to mature adrenocorticotropic hormone. Proteolytic cleavage products were found in vesicular fractions corresponding to ISGs, suggesting that the processing machinery is not appreciably activated until POMC exits the sulfation compartment. A large portion of the labeled hormone is secreted from ISGs as incompletely processed intermediates. This unregulated secretory process occurs only during a limited time window: Granules that have matured for 2 to 3 h exhibit very little unregulated release, as evidenced by the efficient storage of the 15-kDa N-terminal fragment that is generated by a relatively late cleavage event within the maturing granule. The second step of granule biogenesis thus involves two maturation events: proteolytic activation of POMC in ISGs and a transition of the organelle from a state of high unregulated release to one that favors intracellular storage. By using BFA, we show that the two processes occurring in ISGs may be uncoupled: although the unregulated secretion from

  7. New Class of Cargo Protein in Tetrahymena thermophila Dense Core Secretory Granules

    PubMed Central

    Haddad, Alex; Bowman, Grant R.; Turkewitz, Aaron P.

    2002-01-01

    Regulated exocytosis of dense core secretory granules releases biologically active proteins in a stimulus-dependent fashion. The packaging of the cargo within newly forming granules involves a transition: soluble polypeptides condense to form water-insoluble aggregates that constitute the granule cores. Following exocytosis, the cores generally disassemble to diffuse in the cell environment. The ciliates Tetrahymena thermophila and Paramecium tetraurelia have been advanced as genetically manipulatable systems for studying exocytosis via dense core granules. However, all of the known granule proteins in these organisms condense to form the architectural units of lattices that are insoluble both before and after exocytosis. Using an approach designed to detect new granule proteins, we have now identified Igr1p (induced during granule regeneration). By structural criteria, it is unrelated to the previously characterized lattice-forming proteins. It is distinct in that it is capable of dissociating from the insoluble lattice following secretion and therefore represents the first diffusible protein identified in ciliate granules. PMID:12456006

  8. Chromaffin granules in the rat adrenal medulla release their secretory content in a particulate fashion.

    PubMed

    Crivellato, Enrico; Belloni, Anna; Nico, Beatrice; Nussdorfer, Gastone G; Ribatti, Domenico

    2004-03-01

    Exocytosis is considered the main route of granule discharge in chromaffin cells. We recently provided ultrastructural evidence suggesting that piecemeal degranulation (PMD) occurs in mouse adrenal chromaffin cells. In the present study, we processed rat adrenal glands for transmission electron microscopy (TEM), and examined chromaffin cells for changes characteristic of PMD. Both adrenaline (A)- and noradrenaline (NA)-storing cells express ultrastructural features suggestive of a slow and particulate mode of granule discharge. In adrenaline-containing cells, some granules present enlarged dimensions accompanied by eroded or dissolved matrices. Likewise, a number of granules in NA-releasing cells show content reduction with variably expanded granule chambers. Dilated, empty granule containers are recognizable in the cytoplasm of both cell types. Characteristically, altered granules and empty containers are seen intermingled with normal, resting granules. In addition, chromaffin granules often show irregular profiles, with budding or tail-like projections of their limiting membranes. Thirty 150-nm-diameter membrane-bound vesicles with a moderately electron-dense or -lucent internal structure are observable in the cytoplasm of both cell types. These vesicles are seen among the granules and some of them are fused with the perigranule membranes in the process of attachment to or budding from the granules. These data add further support to the concept that PMD may be an alternative secretory pathway in adrenal chromaffin cells. Copyright 2004 Wiley-Liss, Inc.

  9. Separation of rat pituitary secretory granules by continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Hayes, Daniel; Exton, Carrie; Salada, Thomas; Shellenberger, Kathy; Waddle, Jenny; Hymer, W. C.

    1990-01-01

    The separation of growth hormone-containing cytoplasmic secretory granules from the rat pituitary gland by continuous flow electrophoresis is described. The results are consistent with the hypothesis that granule subpopulations can be separated due to differences in surface charge; these, in turn, may be related to the oligomeric state of the hormone.

  10. Monitoring of exocytosis and endocytosis of insulin secretory granules in the pancreatic beta-cell line MIN6 using pH-sensitive green fluorescent protein (pHluorin) and confocal laser microscopy.

    PubMed

    Ohara-Imaizumi, Mica; Nakamichi, Yoko; Tanaka, Toshiaki; Katsuta, Hidenori; Ishida, Hitoshi; Nagamatsu, Shinya

    2002-04-01

    The dynamics of exocytosis/endocytosis of insulin secretory granules in pancreatic beta-cells remains to be clarified. In the present study, we visualized and analysed the motion of insulin secretory granules in MIN6 cells using pH-sensitive green fluorescent protein (pHluorin) fused to either insulin or the vesicle membrane protein, phogrin. In order to monitor insulin exocytosis, pHluorin, which is brightly fluorescent at approximately pH 7.4, but not at approximately pH 5.0, was attached to the C-terminus of insulin. To monitor the motion of insulin secretory granules throughout exocytosis/endocytosis, pHluorin was inserted between the third and fourth amino acids after the identified signal-peptide cleavage site of rat phogrin cDNA. Using this method of cDNA construction, pHluorin was located in the vesicle lumen, which may enable discrimination of the unfused acidic secretory granules from the fused neutralized ones. In MIN6 cells expressing insulin-pHluorin, time-lapse confocal laser scanning microscopy (5 or 10 s intervals) revealed the appearance of fluorescent spots by depolarization after stimulation with 50 mM KCl and 22 mM glucose. The number of these spots in the image at the indicated times was counted and found to be consistent with the results of insulin release measured by RIA during the time course. In MIN6 cells expressing phogrin-pHluorin, data showed that fluorescent spots appeared following high KCl stimulation and remained stationary for a while, moved on the plasma membrane and then disappeared. Thus we demonstrate the visualized motion of insulin granule exocytosis/endocytosis using the pH-sensitive marker, pHluorin.

  11. The src-family protein-tyrosine kinase p59hck is located on the secretory granules in human neutrophils and translocates towards the phagosome during cell activation.

    PubMed Central

    Möhn, H; Le Cabec, V; Fischer, S; Maridonneau-Parini, I

    1995-01-01

    The src-family protein-tyrosine kinase p59hck is mainly expressed in neutrophils; however, its functional role in these cells is unknown. Several other src-family members are localized on secretory vesicles and have been proposed to regulate intracellular traffic. We have established here the subcellular localization of p59hck in human neutrophils. Immunoblotting of subcellular fractions showed that approx. 60% of the p59hck per cell is localized on the secretory granules; the other 40% is distributed equally between non-granular membranes and the cytosol. Immunofluorescence of neutrophils and HL60 cells suggests that the p59hck-positive granules are azurophil granules. Granular p59hck is highly susceptible to degradation by an azurophil-granule proteinase. Different forms of p59hck occur in the three subcellular compartments: a 61 kDa form is mainly found in the granules, a 59 kDa form is predominant in the non-granular membranes, whereas cytosolic p59hck migrates as a doublet at 63 kDa. During the process of phagocytosis-linked degranulation, induced by serum-opsonized zymosan in neutrophils or HL60 cells, granular p59hck translocates towards the phagosome. The subcellular localization of p59hck suggests that the enzyme could be involved in the regulation of the degranulation process. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7626033

  12. The src-family protein-tyrosine kinase p59hck is located on the secretory granules in human neutrophils and translocates towards the phagosome during cell activation.

    PubMed

    Möhn, H; Le Cabec, V; Fischer, S; Maridonneau-Parini, I

    1995-07-15

    The src-family protein-tyrosine kinase p59hck is mainly expressed in neutrophils; however, its functional role in these cells is unknown. Several other src-family members are localized on secretory vesicles and have been proposed to regulate intracellular traffic. We have established here the subcellular localization of p59hck in human neutrophils. Immunoblotting of subcellular fractions showed that approx. 60% of the p59hck per cell is localized on the secretory granules; the other 40% is distributed equally between non-granular membranes and the cytosol. Immunofluorescence of neutrophils and HL60 cells suggests that the p59hck-positive granules are azurophil granules. Granular p59hck is highly susceptible to degradation by an azurophil-granule proteinase. Different forms of p59hck occur in the three subcellular compartments: a 61 kDa form is mainly found in the granules, a 59 kDa form is predominant in the non-granular membranes, whereas cytosolic p59hck migrates as a doublet at 63 kDa. During the process of phagocytosis-linked degranulation, induced by serum-opsonized zymosan in neutrophils or HL60 cells, granular p59hck translocates towards the phagosome. The subcellular localization of p59hck suggests that the enzyme could be involved in the regulation of the degranulation process.

  13. Porosome: The Universal Secretory Portal in Cells

    NASA Astrophysics Data System (ADS)

    Jena, Bhanu

    2012-10-01

    , and only 20-45% increase in porosome diameter is demonstrated following the docking and fusion of 0.2-1.2 μm in diameter secretory vesicles, it is concluded that secretory vesicles ``transiently'' dock and fuse, rather than completely merge at the base of the porosome complex to release their contents to the outside. In agreement, it has been demonstrated that ``secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells''; that ``single synaptic vesicles fuse transiently and successively without loss of identity''; and that``zymogen granule (the secretory vesicle in exocrine pancreas) exocytosis is characterized by long fusion pore openings and preservation of vesicle lipid identity.'' In this presentation, the discovery of the porosome, resulting in a paradigm shift in our understanding of cell secretion will be briefly discussed.

  14. Analysis of a mutant exhibiting conditional sorting to dense core secretory granules in Tetrahymena thermophila.

    PubMed

    Bowman, G R; Turkewitz, A P

    2001-12-01

    The formation of dense core granules (DCGs) requires both the sorting of granule contents from other secretory proteins and a postsorting maturation process. The Tetrahymena thermophila strain SB281 fails to synthesize DCGs, and previous analysis suggested that the defect lay at or near the sorting step. Because this strain represents one of the very few mutants in this pathway, we have undertaken a more complete study of the phenotype. Genetic epistasis analysis places the defect upstream of those in two other characterized Tetrahymena mutants. Using immunofluorescent detection of granule content proteins, as well as GFP tagging, we describe a novel cytoplasmic compartment to which granule contents can be sorted in growing SB281 cells. Cell fusion experiments indicate that this compartment is not a biosynthetic intermediate in DCG synthesis. Sorting in SB281 is strongly conditional with respect to growth. When cells are starved, the storage compartment is degraded and de novo synthesized granule proteins are rapidly secreted. The mutation in SB281 therefore appears to affect DCG synthesis at the level of both sorting and maturation.

  15. Analysis of a mutant exhibiting conditional sorting to dense core secretory granules in Tetrahymena thermophila.

    PubMed Central

    Bowman, G R; Turkewitz, A P

    2001-01-01

    The formation of dense core granules (DCGs) requires both the sorting of granule contents from other secretory proteins and a postsorting maturation process. The Tetrahymena thermophila strain SB281 fails to synthesize DCGs, and previous analysis suggested that the defect lay at or near the sorting step. Because this strain represents one of the very few mutants in this pathway, we have undertaken a more complete study of the phenotype. Genetic epistasis analysis places the defect upstream of those in two other characterized Tetrahymena mutants. Using immunofluorescent detection of granule content proteins, as well as GFP tagging, we describe a novel cytoplasmic compartment to which granule contents can be sorted in growing SB281 cells. Cell fusion experiments indicate that this compartment is not a biosynthetic intermediate in DCG synthesis. Sorting in SB281 is strongly conditional with respect to growth. When cells are starved, the storage compartment is degraded and de novo synthesized granule proteins are rapidly secreted. The mutation in SB281 therefore appears to affect DCG synthesis at the level of both sorting and maturation. PMID:11779800

  16. Observing secretory granules with a multiangle evanescent wave microscope.

    PubMed Central

    Rohrbach, A

    2000-01-01

    In total internal reflection fluorescence microscopy (TIRFM), fluorophores near a surface can be excited with evanescent waves, which decay exponentially with distance from the interface. Penetration depths of evanescent waves from 60 nm to 300 nm were generated by varying the angle of incidence of a laser beam. With a novel telecentric multiangle evanescent wave microscope, we monitored and investigated both single secretory granules and pools of granules in bovine chromaffin cells. By measuring the fluorescence intensity as a function of penetration depth, it is possible through a Laplace transform to obtain the fluorophore distribution as a function of axial position. We discuss the extent to which it is possible to determine distances and diameters of granules with this microscopy technique by modeling the fluorescent volumes of spheres in evanescent fields. The anisotropic near-field detection of fluorophores and the influence of the detection point-spread function are considered. The diameters of isolated granules between 70 nm and 300 nm have been reconstructed, which is clearly beyond the resolution limit of a confocal microscope. Furthermore, the paper demonstrates how evanescent waves propagate along surfaces and scatter at objects with a higher refractive index. TIRFM will have a limited applicability for quantitative measurements when the parameters used to define evanescent waves are not optimally selected. PMID:10777760

  17. Difference in distribution of membrane proteins between low- and high-density secretory granules in parotid acinar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita-Yoshigaki, Junko; Katsumata, Osamu; Matsuki, Miwako

    Secretory granules (SGs) are considered to be generated as immature granules and to mature by condensation of their contents. In this study, SGs of parotid gland were separated into low-, medium-, and high-density granule fractions by Percoll-density gradient centrifugation, since it was proposed that the density corresponds to the degree of maturation. The observation with electron microscopy showed that granules in the three fractions were very similar. The average diameter of high-density granules was a little but significantly larger than that of low-density granules. Although the three fractions contained amylase, suggesting that they are all SGs, distribution of membrane proteinsmore » was markedly different. Syntaxin6 and VAMP4 were localized in the low-density granule fraction, while VAMP2 was concentrated in the high-density granule fraction. Immunoprecipitation with anti-syntaxin6 antibody caused coprecipitation of VAMP2 from the medium-density granule fraction without solubilization, but not from Triton X-100-solubilized fraction, while VAMP4 was coprecipitated from both fractions. Therefore, VAMP2 is present on the same granules, but is separated from syntaxin6 and VAMP4, which are expected to be removed from immature granules. These results suggest that the medium-density granules are intermediates from low- to high-density granules, and that the membrane components of SGs dynamically change by budding and fusion during maturation.« less

  18. Bacterial mimetics of endocrine secretory granules as immobilized in vivo depots for functional protein drugs

    PubMed Central

    Céspedes, María Virtudes; Fernández, Yolanda; Unzueta, Ugutz; Mendoza, Rosa; Seras-Franzoso, Joaquin; Sánchez-Chardi, Alejando; Álamo, Patricia; Toledo-Rubio, Verónica; Ferrer-Miralles, Neus; Vázquez, Esther; Schwartz, Simó; Abasolo, Ibane; Corchero, José Luis; Mangues, Ramon; Villaverde, Antonio

    2016-01-01

    In the human endocrine system many protein hormones including urotensin, glucagon, obestatin, bombesin and secretin, among others, are supplied from amyloidal secretory granules. These granules form part of the so called functional amyloids, which within the whole aggregome appear to be more abundant than formerly believed. Bacterial inclusion bodies (IBs) are non-toxic, nanostructured functional amyloids whose biological fabrication can be tailored to render materials with defined biophysical properties. Since under physiological conditions they steadily release their building block protein in a soluble and functional form, IBs are considered as mimetics of endocrine secretory granules. We have explored here if the in vivo implantation of functional IBs in a given tissue would represent a stable local source of functional protein. Upon intratumoral injection of bacterial IBs formed by a potent protein ligand of CXCR4 we have observed high stability and prevalence of the material in absence of toxicity, accompanied by apoptosis of CXCR4+ cells and tumor ablation. Then, the local immobilization of bacterial amyloids formed by therapeutic proteins in tumors or other tissues might represent a promising strategy for a sustained local delivery of protein drugs by mimicking the functional amyloidal architecture of the mammals’ endocrine system. PMID:27775083

  19. The biological significance of storage granules in rat parathyroid cells.

    PubMed

    Setoguti, T; Inoue, Y; Wild, P

    1995-10-01

    Both prosecretory and storage granules are concomitantly formed at the trans Golgi network including the innermost Golgi cisterna. Prosecretory granules develop into small secretory granules that release their contents by exocytosis finely regulated by a complex mechanism for maintaining calcium homeostasis. In the rat parathyroid cells, storage granules are large secretory granules storing parathyroid hormone for an emergency supply. The hormone is rapidly discharged by exocytosis when serum calcium concentration is decreased. The granules are constantly produced even under conditions of low serum calcium concentration in the regions of 8 mg/dl. The granule content is constantly hydrolyzed when not discharged, leading to a decreased core and finally to the formation of vacuolar bodies. The fate of the vacuolar bodies is unknown. Hypercalcemic conditions accelerate hydrolysis. The threshold value of calcium concentration required for the release of storage granule contents is between 8.0 and 7.5 mg/dl and that of calcium concentration for accelerating degradation of storage granules is about 11.5 mg/dl. Sympathetic stimulation causes storage granules to be discharged regardless of hypercalcemia or hypocalcemia. Parasympathetic stimulation accelerates hydrolysis. The degradation of storage granules seems to be closely associated with an intracellular regulatory mechanism for parathyroid hormone secretion.

  20. Biogenesis of the Secretory Granule: Chromogranin a Coiled-Coil Structure Results in Unusual Physical Properties And Suggests a Mechanism for Granule Core Condensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosley, C.A.; Taupenot, L.; Biswas, N.

    2009-06-03

    The secretory pro-hormone chromogranin A (CHGA) is densely packed into storage granules along with catecholamines, playing a catalytic role in granule biogenesis. 3-Dimensional structural data on CHGA are lacking. We found a superfamily structural homology for CHGA in the tropomyosin family of alpha-helical coiled-coils, even in mid-molecule regions where primary sequence identity is only modest. The assignment was confirmed by an independent algorithm, suggesting approximately 6-7 such domains spanning CHGA. We provide additional physiochemical evidence (chromatographic, spectral, microscopic) consistent with this unusual structure. Alpha-helical secondary structure (at up to approximately 45%) was confirmed by circular dichroism. CHGA molecular mass wasmore » estimated by MALDI-TOF mass spectrometry at approximately 50 kDa and by denaturing gel filtration at approximately 50-61 kDa, while its native Stokes radius was approximately 84.8 A, as compared to an expected approximately 30 A; the increase gave rise to an apparent native molecular weight of approximately 578 kDa, also consistent with the extended conformation of a coiled-coil. Small-angle X-ray scattering (SAXS) on CHGA in solution best fit an elongated cylindrical conformation in the monodisperse region with a radius of gyration of the rod cross-section (Rt) of approximately 52 A, compatible with a coiled-coil in the hydrated, aqueous state, or a multimeric coiled-coil. Electron microscopy with negative staining revealed an extended, filamentous CHGA structure with a diameter of approximately 94 +/- 4.5 A. Extended, coiled-coil conformation is likely to permit protein 'packing' in the secretory granule at approximately 50% higher density than a globular/spherical conformation. Natural allelic variation in the catestatin region was predicted to disrupt the coiled-coil. Chromaffin granule ultrastructure revealed a approximately 108 +/- 6.3 A periodicity of electron density, suggesting nucleation of a

  1. Epithelial Cell Culture from Human Adenoids: A Functional Study Model for Ciliated and Secretory Cells

    PubMed Central

    González, Claudia; Espinosa, Marisol; Sánchez, María Trinidad; Droguett, Karla; Ríos, Mariana; Fonseca, Ximena; Villalón, Manuel

    2013-01-01

    Background. Mucociliary transport (MCT) is a defense mechanism of the airway. To study the underlying mechanisms of MCT, we have both developed an experimental model of cultures, from human adenoid tissue of ciliated and secretory cells, and characterized the response to local chemical signals that control ciliary activity and the secretion of respiratory mucins in vitro. Materials and Methods. In ciliated cell cultures, ciliary beat frequency (CBF) and intracellular Ca2+ levels were measured in response to ATP, UTP, and adenosine. In secretory cultures, mucin synthesis and secretion were identified by using immunodetection. Mucin content was taken from conditioned medium and analyzed in the presence or absence of UTP. Results. Enriched ciliated cell monolayers and secretory cells were obtained. Ciliated cells showed a basal CBF of 10.7 Hz that increased significantly after exposure to ATP, UTP, or adenosine. Mature secretory cells showed active secretion of granules containing different glycoproteins, including MUC5AC. Conclusion. Culture of ciliated and secretory cells grown from adenoid epithelium is a reproducible and feasible experimental model, in which it is possible to observe ciliary and secretory activities, with a potential use as a model to understand mucociliary transport control mechanisms. PMID:23484122

  2. Myrip couples the capture of secretory granules by the actin-rich cell cortex and their attachment to the plasma membrane.

    PubMed

    Huet, Sébastien; Fanget, Isabelle; Jouannot, Ouardane; Meireles, Patricia; Zeiske, Tim; Larochette, Nathanaël; Darchen, François; Desnos, Claire

    2012-02-15

    Exocytosis of secretory granules (SGs) requires their delivery to the actin-rich cell cortex followed by their attachment to the plasma membrane (PM). How these reactions are executed and coordinated is still unclear. Myrip, which is also known as Slac-2c, binds to the SG-associated GTPase Rab27 and is thought to promote the delivery of SGs to the PM by recruiting the molecular motor myosin Va. Myrip also interacts with actin and the exocyst complex, suggesting that it may exert multiple roles in the secretory process. By combining total internal reflection fluorescence microscopy, single-particle tracking, a photoconversion-based assay, and mathematical modeling, we show that, in human enterochromaffin cells, Myrip (1) inhibits a class of SG motion characterized by fast and directed movement, suggesting that it facilitates the dissociation of SGs from microtubules; (2) enhances their motion toward the PM and the probability of SG attachment to the PM; and (3) increases the characteristic time of immobilization at the PM, indicating that it is a component of the molecular machinery that tether SGs to the PM. Remarkably, while the first two effects of Myrip depend on its ability to recruit myosin Va on SGs, the third is myosin Va independent but relies on the C-terminal domain of Myrip. We conclude that Myrip couples the retention of SGs in the cell cortex, their transport to the PM, and their attachment to the PM, and thus promotes secretion. These three steps of the secretory process are thus intimately coordinated.

  3. Conformational study of the proline rich peptide from bovine neurohypophysis secretory granules

    NASA Astrophysics Data System (ADS)

    Alieva, Irada; Velieva, Lala; Aliev, Dshavanchir; Gojayev, Niftali; Demukhamedova, Svetlana

    2004-01-01

    The spatial organization and conformational properties of the Proline Rich Peptide (PRP) from bovine neurohypophysis secretory granules have been established by the methods of molecular mechanics and molecular dynamics simulations in water solution. Conformational studies showed the peptide with limited conformational flexibility. Two β-type III turns are observed in PRP spatial organization.

  4. Ectopic expression of syncollin in INS-1 beta-cells sorts it into granules and impairs regulated secretion.

    PubMed

    Li, Jingsong; Luo, Ruihua; Hooi, Shing Chuan; Ruga, Pilar; Zhang, Jiping; Meda, Paolo; Li, GuoDong

    2005-03-22

    Syncollin was first demonstrated to be a protein capable of affecting granule fusion in a cell-free system, but later studies revealed its luminal localization in zymogen granules. To determine its possible role in exocytosis in the intact cell, syncollin and a truncated form of the protein (lacking the N-terminal hydrophobic domain) were stably transfected in insulin-secreting INS-1 cells since these well-studied exocytotic cells appear not to express the protein per se. Studies by subcellular fractionation analysis, double immunofluorescence staining, and electron microscopy examination revealed that transfection of syncollin produced strong signals in the insulin secretory granules, whereas the product from transfecting the truncated syncollin was predominantly associated with the Golgi apparatus and to a lesser degree with the endoplasmic reticulum. The expressed products were associated with membranes and not the soluble fractions in either cytoplasm or the lumens of organelles. Importantly, insulin release stimulated by various secretagogues was severely impaired in cells expressing syncollin, but not affected by expressing truncated syncollin. Transfection of syncollin appeared not to impede insulin biosynthesis and processing, since cellular contents of proinsulin and insulin and the number of secretory granules were not altered. In addition, the early signals (membrane depolarization and Ca(2+) responses) for regulated insulin secretion were unaffected. These findings indicate that syncollin may be targeted to insulin secretory granules specifically and impair regulated secretion at a distal stage.

  5. Characterization of Phospholipids in Insulin Secretory Granules and Mitochondria in Pancreatic Beta Cells and Their Changes with Glucose Stimulation*

    PubMed Central

    MacDonald, Michael J.; Ade, Lacmbouh; Ntambi, James M.; Ansari, Israr-Ul H.; Stoker, Scott W.

    2015-01-01

    The lipid composition of insulin secretory granules (ISG) has never previously been thoroughly characterized. We characterized the phospholipid composition of ISG and mitochondria in pancreatic beta cells without and with glucose stimulation. The phospholipid/protein ratios of most phospholipids containing unsaturated fatty acids were higher in ISG than in whole cells and in mitochondria. The concentrations of negatively charged phospholipids, phosphatidylserine, and phosphatidylinositol in ISG were 5-fold higher than in the whole cell. In ISG phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin, fatty acids 12:0 and 14:0 were high, as were phosphatidylserine and phosphatidylinositol containing 18-carbon unsaturated FA. With glucose stimulation, the concentration of many ISG phosphatidylserines and phosphatidylinositols increased; unsaturated fatty acids in phosphatidylserine increased; and most phosphatidylethanolamines, phosphatidylcholines, sphingomyelins, and lysophosphatidylcholines were unchanged. Unsaturation and shorter fatty acid length in phospholipids facilitate curvature and fluidity of membranes, which favors fusion of membranes. Recent evidence suggests that negatively charged phospholipids, such as phosphatidylserine, act as coupling factors enhancing the interaction of positively charged regions in SNARE proteins in synaptic or secretory vesicle membrane lipid bilayers with positively charged regions in SNARE proteins in the plasma membrane lipid bilayer to facilitate docking of vesicles to the plasma membrane during exocytosis. The results indicate that ISG phospholipids are in a dynamic state and are consistent with the idea that changes in ISG phospholipids facilitate fusion of ISG with the plasma membrane-enhancing glucose-stimulated insulin exocytosis. PMID:25762724

  6. Sorting of progeny coronavirus from condensed secretory proteins at the exit from the trans-Golgi network of AtT20 cells.

    PubMed

    Tooze, J; Tooze, S A; Fuller, S D

    1987-09-01

    Murine hepatitis virus (strain A59), (MHV-A59) is a coronavirus that buds into pre-Golgi compartments and then exploits the exocytic pathway of the host cell to reach the exterior. The fibroblastic cells in which replication of this virus is usually studied have only a constitutive exocytic pathway that the virus uses. MHV-A59 also infects, albeit inefficiently, AtT20 cells, murine pituitary tumor cells with a regulated as well as a constitutive exocytic pathway. Here we examine AtT20 cells at early times after the infection, when the Golgi apparatus retains its morphological and biochemical integrity. We observe that progeny coronavirus and secretory protein destined for the secretory granules of the regulated exocytic pathway traverse the same Golgi stacks and accumulate in the trans-Golgi network. Their pathways diverge at this site, the condensed secretory proteins including the ACTH going to the secretory granules and the coronavirus to post-Golgi transport vesicles devoid of ACTH. On very rare occasions there is missorting such that aggregates of condensed secretory proteins and viruses occur together in post-Golgi vesicles. We conclude that the constitutive and regulated exocytic pathways, identified respectively by the progeny virions and the secretory protein ACTH, diverge at the exit from the trans-Golgi network.

  7. Characterization of phospholipids in insulin secretory granules and mitochondria in pancreatic beta cells and their changes with glucose stimulation.

    PubMed

    MacDonald, Michael J; Ade, Lacmbouh; Ntambi, James M; Ansari, Israr-Ul H; Stoker, Scott W

    2015-04-24

    The lipid composition of insulin secretory granules (ISG) has never previously been thoroughly characterized. We characterized the phospholipid composition of ISG and mitochondria in pancreatic beta cells without and with glucose stimulation. The phospholipid/protein ratios of most phospholipids containing unsaturated fatty acids were higher in ISG than in whole cells and in mitochondria. The concentrations of negatively charged phospholipids, phosphatidylserine, and phosphatidylinositol in ISG were 5-fold higher than in the whole cell. In ISG phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin, fatty acids 12:0 and 14:0 were high, as were phosphatidylserine and phosphatidylinositol containing 18-carbon unsaturated FA. With glucose stimulation, the concentration of many ISG phosphatidylserines and phosphatidylinositols increased; unsaturated fatty acids in phosphatidylserine increased; and most phosphatidylethanolamines, phosphatidylcholines, sphingomyelins, and lysophosphatidylcholines were unchanged. Unsaturation and shorter fatty acid length in phospholipids facilitate curvature and fluidity of membranes, which favors fusion of membranes. Recent evidence suggests that negatively charged phospholipids, such as phosphatidylserine, act as coupling factors enhancing the interaction of positively charged regions in SNARE proteins in synaptic or secretory vesicle membrane lipid bilayers with positively charged regions in SNARE proteins in the plasma membrane lipid bilayer to facilitate docking of vesicles to the plasma membrane during exocytosis. The results indicate that ISG phospholipids are in a dynamic state and are consistent with the idea that changes in ISG phospholipids facilitate fusion of ISG with the plasma membrane-enhancing glucose-stimulated insulin exocytosis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. A novel two-chain IGF-II-derived peptide from purified β-cell granules.

    PubMed

    Buchanan, Christina M; Phillips, Anthony R J; Cooper, Garth J S

    2010-10-01

    Insulin-like growth factor II (IGF-II) is a potent mitogen that regulates prenatal growth and development in both humans and rodents. Its role in post-natal life is less clear although immunohistochemical studies have observed IGF-II-like immunoreactivity (IGF-II-LI) associated with insulin-producing pancreatic β-cells. Here we isolated secretory granules from a β-cell line, βTC6-F7, and characterized the nature of the IGF-II-LI located therein. Secretory granules were isolated from cultured mouse βTC6-F7 cells by ultracentrifugation. Granule protein content was separated by reversed-phase HPLC, and assayed for IGF-II (radioimmunoassay) prior to identification by gas-phase NH(2)-terminal sequencing and MALDI-TOF MS. Effects of glucose incorporation into muscle glycogen were determined by incubating with isolated rat soleus muscle strips. βTC6-F7 cells contained 60 ± 8 pmol of IGF-II-LI per 10⁶ cells compared to 340 ± 44 pmol insulin-LI per 10⁶ cells. IGF-II immunoreactive fractions were found to contain an IGF-II-like molecule with a molecular mass of 6847.6 Da. The protein was found to be a two-chain insulin-like product of Igf2 that corresponds to mouse des(37-40)IGF-II, which we termed 'vesiculin'. This molecule was also detectable in βTC6-F7 cells by intact-cell mass spectrometry. Mouse vesiculin evoked concentration-dependent stimulation of muscle glycogen synthesis ex vivo with an EC(50) value of 131 nM ± 1.35. Vesiculin, des(37-40)IGF-II, is a novel two-chain insulin-like hormone and the major "IGF-II-like" peptide found in purified mouse βTC6-F7 secretory granules. It stimulated ex vivo muscle glycogen synthesis with an efficacy greater than or equal to the intrinsic potency of IGF-II when compared to insulin derived from the same species. Copyright © 2010 Growth Hormone Research Society. Published by Elsevier Ltd. All rights reserved.

  9. Missing secretory granules, dilated endoplasmic reticulum, and nuclear dislocation in the thyroid gland of rdw rats with hereditary dwarfism.

    PubMed

    Sakai, Y; Yamashina, S; Furudate, S I

    2000-05-01

    Previous studies on the rdw rat have suggested that its dwarfism is caused primarily by dysfunction of the thyroid gland. In this study, rat thyroid glands were analyzed endocrinologically and morphologically to clarify the primary cause of dwarfism in the rdw rat. The rdw rat showed lowered thyroid hormone (T4 and T3) levels but elevated TSH in serum. The rdw thyroid gland was almost proportional in size and it was not goiter in gross inspection. Our histological investigation produced three results that may lend important evidence in understanding the problem in the thyroid gland of rdw rats. First of all, secretory granules could not be detected in the follicular epithelial cells of the rdw. Secondly, thyroglobulin was found at very low levels in the follicular lumen by immunohistochemical analysis. In contrast, it could be detected in a substantial quantity inside the dilated rER and in the huge vacuoles that are formed by swelling of the rough endoplasmic reticulum (rER) at the basal side of the follicular epithelial cells. Additionally, the nucleus of the follicular epithelial cells was pressed to the luminal side by the enlarged rER. These morphological changes would indicate that the transport of thyroglobulin is stopped at or before the formation of the secretory granules and thyroglobulin is not secreted into the follicular lumen. The rdw characterization strongly supports that rdw dwarfism is induced by hypothyroidism due to some defect(s) in the thyroid gland. Copyright 2000 Wiley-Liss, Inc.

  10. Somatostatin inhibits exocytosis in rat pancreatic α-cells by Gi2-dependent activation of calcineurin and depriming of secretory granules

    PubMed Central

    Gromada, Jesper; Høy, Marianne; Buschard, Karsten; Salehi, Albert; Rorsman, Patrik

    2001-01-01

    Measurements of cell capacitance were used to investigate the molecular mechanisms by which somatostatin inhibits Ca2+-induced exocytosis in single rat glucagon-secreting pancreatic α-cells. Somatostatin decreased the exocytotic responses elicited by voltage-clamp depolarisations by 80 % in the presence of cyclic AMP-elevating agents such as isoprenaline and forskolin. Inhibition was time dependent and half-maximal within 22 s. The inhibitory action of somatostatin was concentration dependent with an IC50 of 68 nm and prevented by pretreatment of the cells with pertussis toxin. The latter effect was mimicked by intracellular dialysis with specific antibodies to Gi1/2 and by antisense oligonucleotides against G proteins of the subtype Gi2. Somatostatin lacked inhibitory action when applied in the absence of forskolin or in the presence of the L-type Ca2+ channel blocker nifedipine. The size of the ω-conotoxin-sensitive and forskolin-independent component of exocytosis was limited to 60 fF. By contrast, somatostatin abolished L-type Ca2+ channel-dependent exocytosis in α-cells exposed to forskolin. The magnitude of the latter pool amounted to 230 fF. The inhibitory effect of somatostatin on exocytosis was mediated by activation of the serine/threonine protein phosphatase calcineurin and was prevented by pretreatment with cyclosporin A and deltamethrin or intracellularly applied calcineurin autoinhibitory peptide. Experiments using the stable ATP analogue AMP-PCP indicate that somatostatin acts by depriming of granules. We propose that somatostatin receptors associate with L-type Ca2+ channels and couple to Gi2 proteins leading to a localised activation of calcineurin and depriming of secretory granules situated close to the L-type Ca2+ channels. PMID:11533141

  11. Munc13-4 functions as a Ca2+ sensor for homotypic secretory granule fusion to generate endosomal exocytic vacuoles

    PubMed Central

    Woo, Sang Su; James, Declan J.; Martin, Thomas F. J.

    2017-01-01

    Munc13-4 is a Ca2+-dependent SNARE (soluble N-ethylmaleimide–sensitive factor attachment protein receptor)- and phospholipid-binding protein that localizes to and primes secretory granules (SGs) for Ca2+-evoked secretion in various secretory cells. Studies in mast cell–like RBL-2H3 cells provide direct evidence that Munc13–4 with its two Ca2+-binding C2 domains functions as a Ca2+ sensor for SG exocytosis. Unexpectedly, Ca2+ stimulation also generated large (>2.4 μm in diameter) Munc13-4+/Rab7+/Rab11+ endosomal vacuoles. Vacuole generation involved the homotypic fusion of Munc13-4+/Rab7+ SGs, followed by a merge with Rab11+ endosomes, and depended on Ca2+ binding to Munc13-4. Munc13-4 promoted the Ca2+-stimulated fusion of VAMP8-containing liposomes with liposomes containing exocytic or endosomal Q-SNAREs and directly interacted with late endosomal SNARE complexes. Thus Munc13-4 is a tethering/priming factor and Ca2+ sensor for both heterotypic SG-plasma membrane and homotypic SG-SG fusion. Total internal reflection fluorescence microscopy imaging revealed that vacuoles were exocytic and mediated secretion of β-hexosaminidase and cytokines accompanied by Munc13-4 diffusion onto the plasma membrane. The results provide new molecular insights into the mechanism of multigranular compound exocytosis commonly observed in various secretory cells. PMID:28100639

  12. A Dynamic Analysis of Secretory Granules Containing Proteins Involved In Learning

    NASA Astrophysics Data System (ADS)

    Prahl, Louis; Simon, Alex; Jacobs, Conor; Fulwiler, Audrey; Hilken, Lindsay; Scalettar, Bethe; Lochner, Janis

    2010-10-01

    Formation and encoding of long-term memories requires a series of structural changes at synapses, or sites of neuronal communication, in the hippocampus; these changes are mediated by neuromodulatory proteins and serve to strengthen synapses to improve communication. Two prominent neuromodulators, tissue plasminogen activator (tPA) and brain-derived neurotrophic factor (BDNF), are copackaged into secretory granules (SGs) in the body of nerve cells and are transported to distal synapses by motor proteins. At synapses, particularly presynaptic sites, the fate of tPA and BDNF is largely unknown. Motivated by this, and by recent data implicating presynaptic BDNF in early phases of learning, we used fluorescence microscopy to elucidate dynamic properties of presynaptic tPA and BDNF. We find that presynaptic SGs containing tPA and/or BDNF undergo Brownian and anomalous diffusive motion that, in 75% of cases, is so slow that it typically would be classified as immobility. These results suggest that tPA and BDNF are retained at presynaptic sites to facilitate their corelease and role in learning.

  13. Secretory structure and histochemistry test of some Zingiberaceae plants

    NASA Astrophysics Data System (ADS)

    Indriyani, Serafinah

    2017-11-01

    droplets, it had 10.4 ± 2.1 secretory cells of oil droplets per mm2. All of Zingiberaceae's root and leaves did not have secretory cells of protein. Zingiberaceae's rhizomes had amylum grain, protein granules, and oil droplets. Jahe merah's rhizomes had the greatest density of amylum grain, it had 198.3 ± 21.1 cells of amylum grain per mm2. Jahe emprit's rhizomes had the greatest density of protein granules, it had254.0 ± 90.0 cells of protein granules per mm². Kunyit putih's rhizomes had the greatest density of oil droplets, it had 254.0 ± 90.0 cells of oil droplets per mm².

  14. Acquisition of Lubrol insolubility, a common step for growth hormone and prolactin in the secretory pathway of neuroendocrine cells.

    PubMed

    Lee, M S; Zhu, Y L; Chang, J E; Dannies, P S

    2001-01-05

    Rat prolactin in the dense cores of secretory granules of the pituitary gland is a Lubrol-insoluble aggregate. In GH(4)C(1) cells, newly synthesized rat prolactin and growth hormone were soluble, but after 30 min about 40% converted to a Lubrol-insoluble form. Transport from the endoplasmic reticulum is necessary for conversion to Lubrol insolubility, since incubating cells with brefeldin A or at 15 degrees C reduced formation of insoluble rat (35)S-prolactin. Formation of Lubrol-insoluble aggregates has protein and cell specificity; newly synthesized human growth hormone expressed in AtT20 cells underwent a 40% conversion to Lubrol insolubility with time, but albumin did not, and human growth hormone expressed in COS cells underwent less than 10% conversion to Lubrol insolubility. del32-46 growth hormone, a naturally occurring form of growth hormone, and P89L growth hormone underwent conversion, although they were secreted more slowly, indicating that there is some tolerance in structural requirements for aggregation. An intracellular compartment with an acidic pH is not necessary for conversion to Lubrol insolubility, because incubation with chloroquine or bafilomycin slowed, but did not prevent, the conversion. GH(4)C(1) cells treated with estradiol, insulin, and epidermal growth factor accumulate more secretory granules and store more prolactin, but not more growth hormone, than untreated cells; Lubrol-insoluble aggregates of prolactin and growth hormone formed to the same extent in hormone-treated or untreated GH(4)C(1) cells, but prolactin was retained longer in hormone-treated cells. These findings indicate that aggregation alone is not sufficient to cause retention of secretory granule proteins, and there is an additional selective process.

  15. Secretagogue-triggered Transfer of Membrane Proteins from Neuroendocrine Secretory Granules to Synaptic-like Microvesicles

    PubMed Central

    Strasser, Jane E.; Arribas, Monica; Blagoveshchenskaya, Anastasia D.; Cutler, Daniel F.

    1999-01-01

    The membrane proteins of all regulated secretory organelles (RSOs) recycle after exocytosis. However, the recycling of those membrane proteins that are targeted to both dense core granules (DCGs) and synaptic-like microvesicles (SLMVs) has not been addressed. Since neuroendocrine cells contain both RSOs, and the recycling routes that lead to either organelle overlap, transfer between the two pools of membrane proteins could occur during recycling. We have previously demonstrated that a chimeric protein containing the cytosolic and transmembrane domains of P-selectin coupled to horseradish peroxidase is targeted to both the DCG and the SLMV in PC12 cells. Using this chimera, we have characterized secretagogue-induced traffic in PC12 cells. After stimulation, this chimeric protein traffics from DCGs to the cell surface, internalizes into transferrin receptor (TFnR)-positive endosomes and thence to a population of secretagogue-responsive SLMVs. We therefore find a secretagogue-dependent rise in levels of HRP within SLMVs. In addition, the levels within SLMVs of the endogenous membrane protein, synaptotagmin, as well as a green fluorescent protein-tagged version of vesicle-associated membrane protein (VAMP)/synaptobrevin, also show a secretagogue-dependent increase. PMID:10436017

  16. Somatostatin inhibits exocytosis in rat pancreatic alpha-cells by G(i2)-dependent activation of calcineurin and depriming of secretory granules.

    PubMed

    Gromada, J; Høy, M; Buschard, K; Salehi, A; Rorsman, P

    2001-09-01

    1. Measurements of cell capacitance were used to investigate the molecular mechanisms by which somatostatin inhibits Ca(2+)-induced exocytosis in single rat glucagon-secreting pancreatic alpha-cells. 2. Somatostatin decreased the exocytotic responses elicited by voltage-clamp depolarisations by 80 % in the presence of cyclic AMP-elevating agents such as isoprenaline and forskolin. Inhibition was time dependent and half-maximal within 22 s. 3. The inhibitory action of somatostatin was concentration dependent with an IC(50) of 68 nM and prevented by pretreatment of the cells with pertussis toxin. The latter effect was mimicked by intracellular dialysis with specific antibodies to G(i1/2) and by antisense oligonucleotides against G proteins of the subtype G(i2). 4. Somatostatin lacked inhibitory action when applied in the absence of forskolin or in the presence of the L-type Ca(2+) channel blocker nifedipine. The size of the omega-conotoxin-sensitive and forskolin-independent component of exocytosis was limited to 60 fF. By contrast, somatostatin abolished L-type Ca(2+) channel-dependent exocytosis in alpha-cells exposed to forskolin. The magnitude of the latter pool amounted to 230 fF. 5. The inhibitory effect of somatostatin on exocytosis was mediated by activation of the serine/threonine protein phosphatase calcineurin and was prevented by pretreatment with cyclosporin A and deltamethrin or intracellularly applied calcineurin autoinhibitory peptide. Experiments using the stable ATP analogue AMP-PCP indicate that somatostatin acts by depriming of granules. 6. We propose that somatostatin receptors associate with L-type Ca(2+) channels and couple to G(i2) proteins leading to a localised activation of calcineurin and depriming of secretory granules situated close to the L-type Ca(2+) channels.

  17. Exocyst sec5 regulates exocytosis of newcomer insulin granules underlying biphasic insulin secretion.

    PubMed

    Xie, Li; Zhu, Dan; Kang, Youhou; Liang, Tao; He, Yu; Gaisano, Herbert Y

    2013-01-01

    The exocyst complex subunit Sec5 is a downstream effector of RalA-GTPase which promotes RalA-exocyst interactions and exocyst assembly, serving to tether secretory granules to docking sites on the plasma membrane. We recently reported that RalA regulates biphasic insulin secretion in pancreatic islet β cells in part by tethering insulin secretory granules to Ca(2+) channels to assist excitosome assembly. Here, we assessed β cell exocytosis by patch clamp membrane capacitance measurement and total internal reflection fluorescence microscopy to investigate the role of Sec5 in regulating insulin secretion. Sec5 is present in human and rodent islet β cells, localized to insulin granules. Sec5 protein depletion in rat INS-1 cells inhibited depolarization-induced release of primed insulin granules from both readily-releasable pool and mobilization from the reserve pool. This reduction in insulin exocytosis was attributed mainly to reduction in recruitment and exocytosis of newcomer insulin granules that undergo minimal docking time at the plasma membrane, but which encompassed a larger portion of biphasic glucose stimulated insulin secretion. Sec5 protein knockdown had little effect on predocked granules, unless vigorously stimulated by KCl depolarization. Taken together, newcomer insulin granules in β cells are more sensitive than predocked granules to Sec5 regulation.

  18. Munc13-4 functions as a Ca2+ sensor for homotypic secretory granule fusion to generate endosomal exocytic vacuoles.

    PubMed

    Woo, Sang Su; James, Declan J; Martin, Thomas F J

    2017-03-15

    Munc13-4 is a Ca 2+ -dependent SNARE (soluble N -ethylmaleimide-sensitive factor attachment protein receptor)- and phospholipid-binding protein that localizes to and primes secretory granules (SGs) for Ca 2+ -evoked secretion in various secretory cells. Studies in mast cell-like RBL-2H3 cells provide direct evidence that Munc13-4 with its two Ca 2+ -binding C2 domains functions as a Ca 2+ sensor for SG exocytosis. Unexpectedly, Ca 2+ stimulation also generated large (>2.4 μm in diameter) Munc13-4 + /Rab7 + /Rab11 + endosomal vacuoles. Vacuole generation involved the homotypic fusion of Munc13-4 + /Rab7 + SGs, followed by a merge with Rab11 + endosomes, and depended on Ca 2+ binding to Munc13-4. Munc13-4 promoted the Ca 2+ -stimulated fusion of VAMP8-containing liposomes with liposomes containing exocytic or endosomal Q-SNAREs and directly interacted with late endosomal SNARE complexes. Thus Munc13-4 is a tethering/priming factor and Ca 2+ sensor for both heterotypic SG-plasma membrane and homotypic SG-SG fusion. Total internal reflection fluorescence microscopy imaging revealed that vacuoles were exocytic and mediated secretion of β-hexosaminidase and cytokines accompanied by Munc13-4 diffusion onto the plasma membrane. The results provide new molecular insights into the mechanism of multigranular compound exocytosis commonly observed in various secretory cells. © 2017 Woo et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. Identification of human cysteine-rich secretory protein 3 (CRISP-3) as a matrix protein in a subset of peroxidase-negative granules of neutrophils and in the granules of eosinophils.

    PubMed

    Udby, Lene; Calafat, Jero; Sørensen, Ole E; Borregaard, Niels; Kjeldsen, Lars

    2002-09-01

    Cysteine-rich secretory protein 3 (CRISP-3; also known as SGP28) was originally discovered in human neutrophilic granulocytes. We have recently developed a sensitive sandwich enzyme-linked immunosorbent assay for CRISP-3 and demonstrated the presence of CRISP-3 in exocrine secretions. To investigate the subcellular localization and mobilization of CRISP-3 in human neutrophils, we performed subcellular fractionation of resting and activated neutrophils on three-layer Percoll density gradients, release-studies of granule proteins in response to different secretagogues, and double-labeling immunogold electron microscopy. CRISP-3 was found to be localized in a subset of granules with overlapping characteristics of specific and gelatinase granules and mobilized accordingly, thus confirming the hypothesis that peroxidase-negative granules exist as a continuum from specific to gelatinase granules regarding protein content and mobilization. CRISP-3 was found to be a matrix protein, which is stored in granules as glycosylated and as unglycosylated protein. The subcellular distribution of the two forms of CRISP-3 was identical. In addition, CRISP-3 was found as a granule protein in eosinophilic granulocytes. The presence of CRISP-3 in peroxidase-negative granules of neutrophils, in granules of eosinophils, and in exocrine secretions indicates a role in the innate host defense.

  20. Beta cell chromogranin B is partially segregated in distinct granules and can be released separately from insulin in response to stimulation.

    PubMed

    Giordano, T; Brigatti, C; Podini, P; Bonifacio, E; Meldolesi, J; Malosio, M L

    2008-06-01

    We investigated, in three beta cell lines (INS-1E, RIN-5AH, betaTC3) and in human and rodent primary beta cells, the storage and release of chromogranin B, a secretory protein expressed in beta cells and postulated to play an autocrine role. We asked whether chromogranin B is stored together with and discharged in constant ratio to insulin upon various stimuli. The intracellular distribution of insulin and chromogranin B was revealed by immunofluorescence followed by three-dimensional image reconstruction and by immunoelectron microscopy; their stimulated discharge was measured by ELISA and immunoblot analysis of homogenates and incubation media. Insulin and chromogranin B, co-localised in the Golgi complex/trans-Golgi network, appeared largely segregated from each other in the secretory granule compartment. In INS-1E cells, the percentage of granules positive only for insulin or chromogranin B and of those positive for both was 66, 7 and 27%, respectively. In resting cells, both insulin and chromogranin B were concentrated in the granule cores; upon stimulation, chromogranin B (but not insulin) was largely redistributed to the core periphery and the surrounding halo. Strong stimulation with a secretagogue mixture induced parallel release of insulin and chromogranin B, whereas with 3-isobutyl-1-methylxantine and forskolin +/- high glucose release of chromogranin B predominated. Weak, Ca(2+)-dependent stimulation with ionomycin or carbachol induced exclusive release of chromogranin B, suggesting a higher Ca(2+) sensitivity of the specific granules. The unexpected complexity of the beta cell granule population in terms of heterogeneity, molecular plasticity and the differential discharge, could play an important role in physiological control of insulin release and possibly also in beta cell pathology.

  1. Cells in 3D-reconstitutued eccrine sweat gland cell spheroids differentiate into gross cystic disease fluid protein 15-expressing dark secretory cells and carbonic anhydrase II-expressing clear secretory cells.

    PubMed

    Li, Haihong; Chen, Liyun; Zhang, Mingjun; Zhang, Bingna

    2017-07-01

    Secretory coils of eccrine sweat glands are composed of myoepithelial cells, dark secretory cells and clear secretory cells. The two types of cells play important roles in sweat secretion. In our previous study, we demonstrated that the 3D-reconstituted eccrine sweat gland cell spheroids differentiate into secretory coil-like structures. However, whether the secretory coil-like structures further differentiate into dark secretory cells and clear secretory cells were is still unknown. In this study, we detected the differentiation of clear and dark secretory cells in the 3D-reconstituted eccrine sweat gland cell spheroids using the dark secretory cell-specific marker, GCDFP-15, and clear secretory cell-specific marker, CAII by immunofluorescence staining. Results showed that there were both GCDFP-15- and CAII-expressing cells in 12-week-old 3D spheroids, similar to native eccrine sweat glands, indicating that the spheroids possess a cellular structure capable of sweat secretion. We conclude that the 12-week 3D spheroids may have secretory capability. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. Rab27a mediates the tight docking of insulin granules onto the plasma membrane during glucose stimulation.

    PubMed

    Kasai, Kazuo; Ohara-Imaizumi, Mica; Takahashi, Noriko; Mizutani, Shin; Zhao, Shengli; Kikuta, Toshiteru; Kasai, Haruo; Nagamatsu, Shinya; Gomi, Hiroshi; Izumi, Tetsuro

    2005-02-01

    The monomeric small GTPase Rab27a is specifically localized on both secretory granules and lysosome-related organelles. Although natural mutations of the Rab27a gene in human Griscelli syndrome and in ashen mice cause partial albinism and immunodeficiency reflecting the dysfunction of lysosome-related organelles, phenotypes resulting from the defective exocytosis of secretory granules have not been reported. To explore the roles of Rab27a in secretory granules, we analyzed insulin secretion profiles in ashen mice. Ashen mice showed glucose intolerance after a glucose load without signs of insulin resistance in peripheral tissues or insulin deficiency in the pancreas. Insulin secretion from isolated islets was decreased specifically in response to high glucose concentrations but not other nonphysiological secretagogues such as high K+ concentrations, forskolin, or phorbol ester. Neither the intracellular Ca2+ concentration nor the dynamics of fusion pore opening after glucose stimulation were altered. There were, however, marked reductions in the exocytosis from insulin granules predocked on the plasma membrane and in the replenishment of docked granules during glucose stimulation. These results provide the first genetic evidence to our knowledge for the role of Rab27a in the exocytosis of secretory granules and suggest that the Rab27a/effector system mediates glucose-specific signals for the exocytosis of insulin granules in pancreatic beta cells.

  3. Exocytosis of Neutrophil Granule Subsets and Activation of Prolyl Isomerase 1 are required for Respiratory Burst Priming

    PubMed Central

    McLeish, Kenneth R.; Uriarte, Silvia M.; Tandon, Shweta; Creed, Timothy M.; Le, Junyi; Ward, Richard A.

    2013-01-01

    This study tested the hypothesis that priming the neutrophil respiratory burst requires both granule exocytosis and activation of the prolyl isomerase, Pin1. Fusion proteins containing the TAT cell permeability sequence and either the SNARE domain of syntaxin-4 or the N-terminal SNARE domain of SNAP-23 were used to examine the role of granule subsets in TNF-mediated respiratory burst priming using human neutrophils. Concentration-inhibition curves for exocytosis of individual granule subsets and for priming of fMLF-stimulated superoxide release and phagocytosis-stimulated H2O2 production were generated. Maximal inhibition of priming ranged from 72% to 88%. Linear regression lines for inhibition of priming versus inhibition of exocytosis did not differ from the line of identity for secretory vesicles and gelatinase granules, while the slopes or the y-intercepts were different from the line of identity for specific and azurophilic granules. Inhibition of Pin1 reduced priming by 56%, while exocytosis of secretory vesicles and specific granules was not affected. These findings indicate that exocytosis of secretory vesicles and gelatinase granules and activation of Pin1 are independent events required for TNF-mediated priming of neutrophil respiratory burst. PMID:23363774

  4. Sorting of the Neuroendocrine Secretory Protein Secretogranin II into the Regulated Secretory Pathway

    PubMed Central

    Courel, Maïté; Vasquez, Michael S.; Hook, Vivian Y.; Mahata, Sushil K.; Taupenot, Laurent

    2008-01-01

    Secretogranin II (SgII) belongs to the granin family of prohormones widely distributed in dense-core secretory granules (DCGs) of endocrine, neuroendocrine, and neuronal cells, including sympathoadrenal chromaffin cells. The mechanisms by which secretory proteins, and granins in particular, are sorted into the regulated secretory pathway are unsettled. We designed a strategy based on novel chimeric forms of human SgII fused to fluorescent (green fluorescent protein) or chemiluminescent (embryonic alkaline phosphatase) reporters to identify trafficking determinants mediating DCG targeting of SgII in sympathoadrenal cells. Three-dimensional deconvolution fluorescence microscopy and secretagogue-stimulated release studies demonstrate that SgII chimeras are correctly targeted to DCGs and released by exocytosis in PC12 and primary chromaffin cells. Results from a Golgi-retained mutant form of SgII suggest that sorting of SgII into DCGs depends on a saturable sorting machinery at the trans-Golgi/trans-Golgi network. Truncation analyses reveal the presence of DCG-targeting signals within both the N- and C-terminal regions of SgII, with the putative α-helix-containing SgII-(25-41) and SgII-(334-348) acting as sufficient, independent sorting domains. This study defines sequence features of SgII mediating vesicular targeting in sympathoadrenal cells and suggests a mechanism by which discrete domains of the molecule function in sorting, perhaps by virtue of a particular arrangement in tertiary structure and/or interaction with a specific component of the DCG membrane. PMID:18299326

  5. SIDT2 is involved in the NAADP-mediated release of calcium from insulin secretory granules.

    PubMed

    Chang, Guoying; Yang, Rui; Cao, Yanan; Nie, Aifang; Gu, Xuefan; Zhang, Huiwen

    2016-04-01

    The Sidt2 global knockout mouse (Sidt2(-/-)) has impaired insulin secretion. The aim of this study was to assess the role of SIDT2 protein in glucose-induced insulin secretion in primary cultured mouse β-cells. The major metabolic and electrophysiological steps of glucose-induced insulin secretion of primary cultured β-cells from Sidt2(-/-) mice were investigated. The β-cells from Sidt2(-/-) mice had normal NAD(P)H responses and KATP and KV currents. However, they exhibited a lower [Ca(2+)]i peak height when stimulated with 20mM glucose compared with those from WT mice. Furthermore, it took a longer time for the [Ca(2+)]i of β-cell from Sidt2(-/-) mice to reach the peak. Pretreatment with ryanodine or 2-aminoethoxydiphenyl borate (2-APB) did not change [Ca(2+)]i the response pattern to glucose in Sidt2(-/-) cells. Extraordinarily, pretreatment with bafilomycin A1(Baf-A1) led to a comparable [Ca(2+)]i increase pattern between these two groups, suggesting that calcium traffic from the intracellular acidic compartment is defective in Sidt2(-/-) β-cells. Bath-mediated application of 50nM nicotinic acid adenine dinucleotide phosphate (NAADP) normalized the [Ca(2+)]i response of Sidt2(-/-) β-cells. Finally, glucose-induced CD38 expression increased to a comparable level between Sidt2(-/-) and WT islets, suggesting that Sidt2(-/-) islets generated NAADP normally. We conclude that Sidt2 is involved in NAADP-mediated release of calcium from insulin secretory granules and thus regulates insulin secretion. © 2016 Society for Endocrinology.

  6. Common spectrum of polypeptides occurs in secretion granule membranes of different exocrine glands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron, R.S.; Cameron, P.L.; Castle, J.D.

    1986-10-01

    A highly purified membrane preparation from rat parotid secretion granules has been used as a comparative probe to examine the extent of compositional overlap in granule membranes of three other exocrine secretory tissues - pancreatic, lacrimal, and submandibular - from several standpoints. First, indirect immunofluorescent studies using a polyclonal polyspecific anti-parotid granule membrane antiserum has indicated a selective staining of granule membrane profiles in all acinar cells of all tissues. Second, highly purified granule membrane subfractions have been isolated from each exocrine tissue; comparative two-dimensional (isoelectric focusing; SDS) PAGE of radioiodinated granule membranes has identified 10-15 polypeptides of identical pImore » and apparent molecular mass. These species are likely to be integral membrane components since they are not extracted by either saponin-sodium sulfate or sodium carbonate (pH 11.5) treatments, and they do not have counterparts in the granule content. Finally, the identity among selected parotid and pancreatic radioiodinated granule membrane polypeptides has been documented using two-dimensional peptide mapping of chymotryptic and tryptic digests. These findings clearly indicate that exocrine secretory granules, irrespective of the nature of stored secretion, comprise a type of vesicular carrier with a common (and probably refined) membrane composition. Conceivably, the polypeptides identified carry out general functions related to exocrine secretion.« less

  7. The life cycle of platelet granules.

    PubMed

    Sharda, Anish; Flaumenhaft, Robert

    2018-01-01

    Platelet granules are unique among secretory vesicles in both their content and their life cycle. Platelets contain three major granule types-dense granules, α-granules, and lysosomes-although other granule types have been reported. Dense granules and α-granules are the most well-studied and the most physiologically important. Platelet granules are formed in large, multilobulated cells, termed megakaryocytes, prior to transport into platelets. The biogenesis of dense granules and α-granules involves common but also distinct pathways. Both are formed from the trans -Golgi network and early endosomes and mature in multivesicular bodies, but the formation of dense granules requires trafficking machinery different from that of α-granules. Following formation in the megakaryocyte body, both granule types are transported through and mature in long proplatelet extensions prior to the release of nascent platelets into the bloodstream. Granules remain stored in circulating platelets until platelet activation triggers the exocytosis of their contents. Soluble N -ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, located on both the granules and target membranes, provide the mechanical energy that enables membrane fusion during both granulogenesis and exocytosis. The function of these core fusion engines is controlled by SNARE regulators, which direct the site, timing, and extent to which these SNAREs interact and consequently the resulting membrane fusion. In this review, we assess new developments in the study of platelet granules, from their generation to their exocytosis.

  8. Chromogranin A promotes peptide hormone sorting to mobile granules in constitutively and regulated secreting cells: role of conserved N- and C-terminal peptides.

    PubMed

    Montero-Hadjadje, Maité; Elias, Salah; Chevalier, Laurence; Benard, Magalie; Tanguy, Yannick; Turquier, Valérie; Galas, Ludovic; Yon, Laurent; Malagon, Maria M; Driouich, Azeddine; Gasman, Stéphane; Anouar, Youssef

    2009-05-01

    Chromogranin A (CgA) has been proposed to play a major role in the formation of dense-core secretory granules (DCGs) in neuroendocrine cells. Here, we took advantage of unique features of the frog CgA (fCgA) to assess the role of this granin and its potential functional determinants in hormone sorting during DCG biogenesis. Expression of fCgA in the constitutively secreting COS-7 cells induced the formation of mobile vesicular structures, which contained cotransfected peptide hormones. The fCgA and the hormones coexpressed in the newly formed vesicles could be released in a regulated manner. The N- and C-terminal regions of fCgA, which exhibit remarkable sequence conservation with their mammalian counterparts were found to be essential for the formation of the mobile DCG-like structures in COS-7 cells. Expression of fCgA in the corticotrope AtT20 cells increased pro-opiomelanocortin levels in DCGs, whereas the expression of N- and C-terminal deletion mutants provoked retention of the hormone in the Golgi area. Furthermore, fCgA, but not its truncated forms, promoted pro-opiomelanocortin sorting to the regulated secretory pathway. These data demonstrate that CgA has the intrinsic capacity to induce the formation of mobile secretory granules and to promote the sorting and release of peptide hormones. The conserved terminal peptides are instrumental for these activities of CgA.

  9. Down-regulation of zinc transporter 8 (SLC30A8) in pancreatic beta-cells promotes cell survival

    USDA-ARS?s Scientific Manuscript database

    The pancreatic islet contains high levels of zinc in granular vesicles of beta-cells where insulin is matured, crystallized, and stored before secretion. Zinc is an essential co-factor for insulin crystallization forming dense core in secretory granules. In insulin-containing secretory granules, zin...

  10. Down-regulation of zinc transporter 8 (SLC30A8) in pancreatic beta-cells promotes cell survival.

    USDA-ARS?s Scientific Manuscript database

    The pancreatic islet contains high levels of zinc in granular vesicles of ß-cells where insulin is matured, crystallized, and stored before secretion. Zinc is an essential co-factor for insulin crystallization forming dense cores in secretory granules. In insulin-containing secretory granules, zinc ...

  11. Antral G-cell in gastrin and gastrin-cholecystokinin knockout animals.

    PubMed

    Friis-Hansen, Lennart; Wierup, Nils; Rehfeld, Jens F; Sundler, Frank

    2005-07-01

    The antral hormone gastrin is the key regulator of gastric acid secretion, mucosal growth and differentiation. Gastrin is synthesized in the endocrine G-cells in the antroduodenal mucosa. We have now examined the way in which the loss of gastrin alone or gastrin plus cholecystokinin (CCK) affects the antral G-cell. Immunohistochemistry, radioimmunoassay and quantitative real-time polymerase chain reaction techniques were employed to examine the expression of genes belonging to the G-cell secretory pathway in gastrin and gastrin-CCK knockout mice. Transmission electron microscopy was used to examine the ultrastructure of the G-cells. The number of G-cells increased but the secretory granules were few and abnormally small in the G-cells of both mouse models compared with wildtypes. Thus, gastrin is not necessary for the formation of G-cells as such but the lack of gastrin reduces the number and size of their secretory granules suggesting that gastrin is vital for the formation and/or maintenance of secretory granules in G-cells.

  12. Identification and staining of distinct populations of secretory organelles in astrocytes.

    PubMed

    Bezzi, Paola; Volterra, Andrea

    2014-05-01

    Increasing evidence indicates that astrocytes, the most abundant glial cell type in the brain, respond to an elevation in cytoplasmic calcium concentration ([Ca(2+)]i) by releasing chemical transmitters (also called gliotransmitters) via regulated exocytosis of heterogeneous classes of organelles. By this process, astrocytes exert modulatory influences on neighboring cells and are thought to participate in the control of synaptic circuits and cerebral blood flow. Studying the properties of exocytosis in astrocytes is a challenge, because the cell biological basis of this process is incompletely defined. Astrocytic exocytosis involves multiple populations of secretory vesicles, including synaptic-like microvesicles (SLMVs), dense-core granules (DCGs), and lysosomes. Here we summarize the available information for identifying individual populations of secretory organelles in astrocytes, including DCGs, SLMVs, and lysosomes, and present experimental procedures for specifically staining such populations.

  13. Independent transport and sorting of functionally distinct protein families in Tetrahymena thermophila dense core secretory granules.

    PubMed

    Rahaman, Abdur; Miao, Wei; Turkewitz, Aaron P

    2009-10-01

    Dense core granules (DCGs) in Tetrahymena thermophila contain two protein classes. Proteins in the first class, called granule lattice (Grl), coassemble to form a crystalline lattice within the granule lumen. Lattice expansion acts as a propulsive mechanism during DCG release, and Grl proteins are essential for efficient exocytosis. The second protein class, defined by a C-terminal beta/gamma-crystallin domain, is poorly understood. Here, we have analyzed the function and sorting of Grt1p (granule tip), which was previously identified as an abundant protein in this family. Cells lacking all copies of GRT1, together with the closely related GRT2, accumulate wild-type levels of docked DCGs. Unlike cells disrupted in any of the major GRL genes, DeltaGRT1 DeltaGRT2 cells show no defect in secretion, indicating that neither exocytic fusion nor core expansion depends on GRT1. These results suggest that Grl protein sorting to DCGs is independent of Grt proteins. Consistent with this, the granule core lattice in DeltaGRT1 DeltaGRT2 cells appears identical to that in wild-type cells by electron microscopy, and the only biochemical component visibly absent is Grt1p itself. Moreover, gel filtration showed that Grl and Grt proteins in cell homogenates exist in nonoverlapping complexes, and affinity-isolated Grt1p complexes do not contain Grl proteins. These data demonstrate that two major classes of proteins in Tetrahymena DCGs are likely to be independently transported during DCG biosynthesis and play distinct roles in granule function. The role of Grt1p may primarily be postexocytic; consistent with this idea, DCG contents from DeltaGRT1 DeltaGRT2 cells appear less adhesive than those from the wild type.

  14. Remodeling of bovine oviductal epithelium by mitosis of secretory cells.

    PubMed

    Ito, Sayaka; Kobayashi, Yoshihiko; Yamamoto, Yuki; Kimura, Koji; Okuda, Kiyoshi

    2016-11-01

    Two types of oviductal epithelial cells, secretory and ciliated, play crucial roles in the first days after fertilization in mammals. Secretory cells produce various molecules promoting embryo development, while ciliated cells facilitate transport of oocytes and zygotes by ciliary beating. The proportions of the two cell types change during the estrous cycle. The proportion of ciliated cells on the oviductal luminal surface is abundant at the follicular phase, whereas the proportion of secretory cells gradually increases with the formation of the corpus luteum. In the present study, we hypothesize that the proportions of ciliated and secretory epithelial cells are regulated by mitosis. The proportion of the cells being positive for FOXJ1 (a ciliated cell marker) or Ki67 (a mitosis marker) in epithelial cells during the estrous cycle were immunohistochemically examined. Ki67 and FOXJ1 or PAX8 (a secretory cell marker), were double-stained to clarify which types of epithelial cells undergo mitosis. In the ampulla, the percentage of FOXJ1-positive cells was highest at the day of ovulation (Day 0) and decreased by about 50 % by Days 8-12, while in the isthmus it did not change during the estrous cycle. The proportion of Ki67-positive cells was highest at around the time of ovulation in both the ampulla and isthmus. All the Ki67-positive cells were PAX8-positive and FOXJ1-negative in both the ampulla and isthmus. These findings suggest that epithelial remodeling, which is regulated by differentiation and/or proliferation of secretory cells of the oviduct, provides the optimal environment for gamete transport, fertilization and embryonic development.

  15. MyRIP interaction with MyoVa on secretory granules is controlled by the cAMP-PKA pathway.

    PubMed

    Brozzi, Flora; Lajus, Sophie; Diraison, Frederique; Rajatileka, Shavanthi; Hayward, Katy; Regazzi, Romano; Molnár, Elek; Váradi, Anikó

    2012-11-01

    Myosin- and Rab-interacting protein (MyRIP), which belongs to the protein kinase A (PKA)-anchoring family, is implicated in hormone secretion. However, its mechanism of action is not fully elucidated. Here we investigate the role of MyRIP in myosin Va (MyoVa)-dependent secretory granule (SG) transport and secretion in pancreatic beta cells. These cells solely express the brain isoform of MyoVa (BR-MyoVa), which is a key motor protein in SG transport. In vitro pull-down, coimmunoprecipitation, and colocalization studies revealed that MyRIP does not interact with BR-MyoVa in glucose-stimulated pancreatic beta cells, suggesting that, contrary to previous notions, MyRIP does not link this motor protein to SGs. Glucose-stimulated insulin secretion is augmented by incretin hormones, which increase cAMP levels and leads to MyRIP phosphorylation, its interaction with BR-MyoVa, and phosphorylation of the BR-MyoVa receptor rabphilin-3A (Rph-3A). Rph-3A phosphorylation on Ser-234 was inhibited by small interfering RNA knockdown of MyRIP, which also reduced cAMP-mediated hormone secretion. Demonstrating the importance of this phosphorylation, nonphosphorylatable and phosphomimic Rph-3A mutants significantly altered hormone release when PKA was activated. These data suggest that MyRIP only forms a functional protein complex with BR-MyoVa on SGs when cAMP is elevated and under this condition facilitates phosphorylation of SG-associated proteins, which in turn can enhance secretion.

  16. Cerebellar granule cells encode the expectation of reward

    PubMed Central

    Wagner, Mark J; Kim, Tony Hyun; Savall, Joan; Schnitzer, Mark J; Luo, Liqun

    2017-01-01

    The human brain contains ~60 billion cerebellar granule cells1, which outnumber all other neurons combined. Classical theories posit that a large, diverse population of granule cells allows for highly detailed representations of sensorimotor context, enabling downstream Purkinje cells to sense fine contextual changes2–6. Although evidence suggests a role for cerebellum in cognition7–10, granule cells are known to encode only sensory11–13 and motor14 context. Using two-photon calcium imaging in behaving mice, here we show that granule cells convey information about the expectation of reward. Mice initiated voluntary forelimb movements for delayed water reward. Some granule cells responded preferentially to reward or reward omission, whereas others selectively encoded reward anticipation. Reward responses were not restricted to forelimb movement, as a Pavlovian task evoked similar responses. Compared to predictable rewards, unexpected rewards elicited markedly different granule cell activity despite identical stimuli and licking responses. In both tasks, reward signals were widespread throughout multiple cerebellar lobules. Tracking the same granule cells over several days of learning revealed that cells with reward-anticipating responses emerged from those that responded at the start of learning to reward delivery, whereas reward omission responses grew stronger as learning progressed. The discovery of predictive, non-sensorimotor encoding in granule cells is a major departure from current understanding of these neurons and dramatically enriches contextual information available to postsynaptic Purkinje cells, with important implications for cognitive processing in the cerebellum. PMID:28321129

  17. The use of lectins as markers for differentiated secretory cells in planarians.

    PubMed

    Zayas, Ricardo M; Cebrià, Francesc; Guo, Tingxia; Feng, Junjie; Newmark, Phillip A

    2010-11-01

    Freshwater planarians have reemerged as excellent models to investigate mechanisms underlying regeneration. The introduction of molecular tools has facilitated the study of planarians, but cell- and tissue-specific markers are still needed to examine differentiation of most cell types. Here we report the utility of fluorescent lectin-conjugates to label tissues in the planarian Schmidtea mediterranea. We show that 16 lectin-conjugates stain planarian cells or tissues; 13 primarily label the secretory cells, their cytoplasmic projections, and terminal pores. Thus, we examined regeneration of the secretory system using lectin markers and functionally characterized two genes expressed in the secretory cells: marginal adhesive gland-1 (mag-1) and Smed-reticulocalbin1 (Smed-rcn1). RNAi knockdown of these genes caused a dramatic reduction of secretory cell lectin staining, suggesting a role for mag-1 and Smed-rcn1 in secretory cell differentiation. Our results provide new insights into planarian secretory system regeneration and add new markers for labeling several planarian tissues. © 2010 Wiley-Liss, Inc.

  18. Control of cerebellar granule cell output by sensory-evoked Golgi cell inhibition

    PubMed Central

    Duguid, Ian; Branco, Tiago; Chadderton, Paul; Arlt, Charlotte; Powell, Kate; Häusser, Michael

    2015-01-01

    Classical feed-forward inhibition involves an excitation–inhibition sequence that enhances the temporal precision of neuronal responses by narrowing the window for synaptic integration. In the input layer of the cerebellum, feed-forward inhibition is thought to preserve the temporal fidelity of granule cell spikes during mossy fiber stimulation. Although this classical feed-forward inhibitory circuit has been demonstrated in vitro, the extent to which inhibition shapes granule cell sensory responses in vivo remains unresolved. Here we combined whole-cell patch-clamp recordings in vivo and dynamic clamp recordings in vitro to directly assess the impact of Golgi cell inhibition on sensory information transmission in the granule cell layer of the cerebellum. We show that the majority of granule cells in Crus II of the cerebrocerebellum receive sensory-evoked phasic and spillover inhibition prior to mossy fiber excitation. This preceding inhibition reduces granule cell excitability and sensory-evoked spike precision, but enhances sensory response reproducibility across the granule cell population. Our findings suggest that neighboring granule cells and Golgi cells can receive segregated and functionally distinct mossy fiber inputs, enabling Golgi cells to regulate the size and reproducibility of sensory responses. PMID:26432880

  19. Sorting of the neuroendocrine secretory protein Secretogranin II into the regulated secretory pathway: role of N- and C-terminal alpha-helical domains.

    PubMed

    Courel, Maïté; Vasquez, Michael S; Hook, Vivian Y; Mahata, Sushil K; Taupenot, Laurent

    2008-04-25

    Secretogranin II (SgII) belongs to the granin family of prohormones widely distributed in dense-core secretory granules (DCGs) of endocrine, neuroendocrine, and neuronal cells, including sympathoadrenal chromaffin cells. The mechanisms by which secretory proteins, and granins in particular, are sorted into the regulated secretory pathway are unsettled. We designed a strategy based on novel chimeric forms of human SgII fused to fluorescent (green fluorescent protein) or chemiluminescent (embryonic alkaline phosphatase) reporters to identify trafficking determinants mediating DCG targeting of SgII in sympathoadrenal cells. Three-dimensional deconvolution fluorescence microscopy and secretagogue-stimulated release studies demonstrate that SgII chimeras are correctly targeted to DCGs and released by exocytosis in PC12 and primary chromaffin cells. Results from a Golgi-retained mutant form of SgII suggest that sorting of SgII into DCGs depends on a saturable sorting machinery at the trans-Golgi/trans-Golgi network. Truncation analyses reveal the presence of DCG-targeting signals within both the N- and C-terminal regions of SgII, with the putative alpha-helix-containing SgII-(25-41) and SgII-(334-348) acting as sufficient, independent sorting domains. This study defines sequence features of SgII mediating vesicular targeting in sympathoadrenal cells and suggests a mechanism by which discrete domains of the molecule function in sorting, perhaps by virtue of a particular arrangement in tertiary structure and/or interaction with a specific component of the DCG membrane.

  20. Transcriptional and Functional Plasticity Induced by Chronic Insulin Exposure in a Mast Cell-Like Basophilic Leukemia Cell Model

    PubMed Central

    Jansen, Chad; Speck, Mark; Greineisen, William E; Maaetoft-Udsen, Kristina; Cordasco, Edward; Shimoda, Lori MN; Stokes, Alexander J; Turner, Helen

    2018-01-01

    Objective Secretory granules (SG) and lipid bodies (LB) are the primary organelles that mediate functional responses in mast cells. SG contains histamine and matrix-active proteases, while LB are reservoirs of arachidonic acid and its metabolites, precursors for rapid synthesis of eicosanoids such as LTC4. Both of these compartments can be dynamically or ontologically regulated, with metabolic and immunological stimuli altering lipid body content and granule numbers responding to contextual signals from tissue. We previously described that chronic in vitro or in vivo hyperinsulinemia expands the LB compartment with a concomitant loss of SG capacity, suggesting that this ratio is dynamically regulated. The objective of the current study is to determine if chronic insulin exposure initiates a transcriptional program that biases model mast cells towards a lipogenic state with accompanying loss of secretory granule biogenesis. Methods We used a basophilic leukemic cell line with mucosal mast cell-like features as a model system. We tested the hypothesis that chronic insulin exposure initiates a transcriptional program that biases these model mast cells towards a lipogenic state with accompanying loss of secretory granule biogenesis. Transcriptional arrays were used to map gene expression patterns. Biochemical, immunocytochemical and mediator release assays were used to evaluate organelle numbers and functional responses. Results In a mucosal mast cell model, the rat basophilic leukemia line RBL2H3, mast cell granularity and SG numbers are inversely correlated with LB numbers. Chronic insulin exposure appears to modulate gene networks involved in both lipid body biogenesis and secretory granule formation. Western blot analysis confirms upregulation of protein levels for LB proteins, and decreases in proteins that are markers for SG cargo. Conclusions The levels of insulin in the extracellular milieu may modify the phenotype of mast cell-like cells in vitro. PMID

  1. JAG1-Mediated Notch Signaling Regulates Secretory Cell Differentiation of the Human Airway Epithelium.

    PubMed

    Gomi, Kazunori; Staudt, Michelle R; Salit, Jacqueline; Kaner, Robert J; Heldrich, Jonna; Rogalski, Allison M; Arbelaez, Vanessa; Crystal, Ronald G; Walters, Matthew S

    2016-08-01

    Basal cells (BC) are the stem/progenitor cells of the human airway epithelium capable of differentiating into secretory and ciliated cells. Notch signaling activation increases BC differentiation into secretory cells, but the role of individual Notch ligands in regulating this process in the human airway epithelium is largely unknown. The objective of this study was to define the role of the Notch ligand JAG1 in regulating human BC differentiation. JAG1 over-expression in BC increased secretory cell differentiation, with no effect on ciliated cell differentiation. Conversely, knockdown of JAG1 decreased expression of secretory cell genes. These data demonstrate JAG1-mediated Notch signaling regulates differentiation of BC into secretory cells.

  2. Vaccine adjuvants: Tailor-made mast-cell granules

    NASA Astrophysics Data System (ADS)

    Gunzer, Matthias

    2012-03-01

    Mast cells induce protective immune responses through secretion of stimulatory granules. Microparticles modelled after mast-cell granules are now shown to replicate and enhance the functions of their natural counterparts and to direct the character of the resulting immunity.

  3. Ultrastructural evidence of a vesicle-mediated mode of cell degranulation in chicken chromaffin cells during the late phase of embryonic development

    PubMed Central

    Crivellato, Enrico; Nico, Beatrice; Travan, Luciana; Isola, Miriam; Ribatti, Domenico

    2009-01-01

    In the present investigation, we attempted to determine whether ultrastructural features indicative of a vesicle-mediated mode of cell secretion were detectable in chick chromaffin cells during embryo development. The adrenal anlagen of domestic fowls were examined at embryonic days (E) 12, 15, 19 and 21 by electron microscopy quantitative analysis. Morphometric evaluation revealed a series of granule and cytoplasmic changes highly specific for piecemeal degranulation (PMD), a secretory process based on vesicular transport of cargoes from within granules for extracellular release. At E19 and E21 we found a significant peak in the percentage of granules exhibiting changes indicative of progressive release of secretory materials, i.e. granules with lucent areas in their cores, reduced electron density, disassembled matrices, residual cores and membrane empty containers. A dramatic raise in the density of 30–80-nm-diameter, membrane-bound, electron-dense and electron-lucent vesicles – which were located either next to granules or close to the plasma membrane – was recognizable at E19, that is, during the prehatching phase. The cytoplasmic burst of dense and clear vesicles was paralleled by the appearance of chromaffin granules showing outpouches or protrusions of their profiles (‘budding features’). These ultrastructural data are indicative of an augmented vesicle-mediated transport of chromaffin granule products for extracellular release in chick embryo chromaffin cells during the prehatching stage. In conclusion, this study provides new data on the fine structure of chromaffin cell organelles during organ development and suggests that PMD may be part of an adrenomedullary secretory response that occurs towards the end of chicken embryogenesis. From an evolutionary point of view, this study lends support to the concept that PMD is a secretory mechanism highly conserved throughout vertebrate classes. PMID:19245498

  4. Beta cells transfer vesicles containing insulin to phagocytes for presentation to T cells.

    PubMed

    Vomund, Anthony N; Zinselmeyer, Bernd H; Hughes, Jing; Calderon, Boris; Valderrama, Carolina; Ferris, Stephen T; Wan, Xiaoxiao; Kanekura, Kohsuke; Carrero, Javier A; Urano, Fumihiko; Unanue, Emil R

    2015-10-06

    Beta cells from nondiabetic mice transfer secretory vesicles to phagocytic cells. The passage was shown in culture studies where the transfer was probed with CD4 T cells reactive to insulin peptides. Two sets of vesicles were transferred, one containing insulin and another containing catabolites of insulin. The passage required live beta cells in a close cell contact interaction with the phagocytes. It was increased by high glucose concentration and required mobilization of intracellular Ca2+. Live images of beta cell-phagocyte interactions documented the intimacy of the membrane contact and the passage of the granules. The passage was found in beta cells isolated from islets of young nonobese diabetic (NOD) mice and nondiabetic mice as well as from nondiabetic humans. Ultrastructural analysis showed intraislet phagocytes containing vesicles having the distinct morphology of dense-core granules. These findings document a process whereby the contents of secretory granules become available to the immune system.

  5. Membrane interactions between secretion granules and plasmalemma in three exocrine glands

    PubMed Central

    Tanaka, Y; De Camilli, P; Meldolesi, J

    1980-01-01

    Three types of membrane interactions were studied in three exocrine systems (the acinar cells of the rat parotid, rat lacrimal gland, and guinea pig pancrease) by freeze- fracture and thin-section electron microscopy: exocytosis, induced in vivo by specific pharmacological stimulations; the mutual apposition of secretory granule membranes in the intact cell; membrane appositions induced in vitro by centrifugation of the isolated granules. In all three glandular cells, the distribution of intramembrane particles (IMP) on the fracture faces of the luminal plasmagranule membrane particles (IMP) on the fracture faces of the lumenal plasmalemma appeared random before stimulation. However, after injection of secretagogues, IMP were rapidly clearly from the areas of granule- plasmalemma apposition in the parotid cells and, especially, in lacrimocytes. In the latter, the cleared areas appeared as large bulges toward the lumen, whereas in the parotid they were less pronounced. Exocytotic openings were usually large and the fracture faces of their rims were covered with IMP. In contrast, in stimulated pancreatic acinar cells, the IMP distribution remained apparently random after stimulation. Exocytoses were established through the formation of narrown necks, and no images which might correspond to early stages of membrane fusion were revealed. Within the cytoplasm of parotid and lacrimal cells (but not in the pancreas), both at rest and after stimulation, secretion granules were often closely apposed by means of flat, circular areas, also devoid of IMP. In thin sections, the images corresponding to IMP-free areas were close granule-granule and granule-plasmalemma appositions, sometimes with focal merging of the membrane outer layers to yield pentalaminar structures. Isolated secretion granules were forced together in vitro by centrifugation. Under these conditions, increasing the centrifugal force from 1,600 to 50,000 g for 10 min resulted in a progressive, statistically

  6. A homozygous nonsense mutation in the gene for Tmem79, a component for the lamellar granule secretory system, produces spontaneous eczema in an experimental model of atopic dermatitis.

    PubMed

    Sasaki, Takashi; Shiohama, Aiko; Kubo, Akiharu; Kawasaki, Hiroshi; Ishida-Yamamoto, Akemi; Yamada, Taketo; Hachiya, Takayuki; Shimizu, Atsushi; Okano, Hideyuki; Kudoh, Jun; Amagai, Masayuki

    2013-11-01

    Flaky tail (ma/ma Flg(ft/ft)) mice have a frameshift mutation in the filaggrin (Flg(ft)) gene and are widely used as a model of human atopic dermatitis associated with FLG mutations. These mice possess another recessive hair mutation, matted (ma), and develop spontaneous dermatitis under specific pathogen-free conditions, whereas genetically engineered Flg(-/-) mice do not. We identified and characterized the gene responsible for the matted hair and dermatitis phenotype in flaky tail mice. We narrowed down the responsible region by backcrossing ma/ma mice with wild-type mice and identified the mutation using next-generation DNA sequencing. We attempted to rescue the matted phenotype by introducing the wild-type matted transgene. We characterized the responsible gene product by using whole-mount immunostaining of epidermal sheets. We demonstrated that ma, but not Flg(ft), was responsible for the dermatitis phenotype and corresponded to a Tmem79 gene nonsense mutation (c.840C>G, p.Y280*), which encoded a 5-transmembrane protein. Exogenous Tmem79 expression rescued the matted hair and dermatitis phenotype of Tmem79(ma/ma) mice. Tmem79 was mainly expressed in the trans-Golgi network in stratum granulosum cells in the epidermis in both mice and humans. The Tmem79(ma/ma) mutation impaired the lamellar granule secretory system, which resulted in altered stratum corneum formation and a subsequent spontaneous dermatitis phenotype. The Tmem79(ma/ma) mutation is responsible for the spontaneous dermatitis phenotype in matted mice, probably as a result of impaired lamellar granule secretory system and altered stratum corneum barrier function. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  7. Proteomics of Dense Core Secretory Vesicles Reveal Distinct Protein Categories for Secretion of Neuroeffectors for Cell-Cell Communication

    PubMed Central

    Wegrzyn, Jill L.; Bark, Steven J.; Funkelstein, Lydiane; Mosier, Charles; Yap, Angel; Kazemi-Esfarjani, Parasa; La Spada, Albert; Sigurdson, Christina; O’Connor, Daniel T.; Hook, Vivian

    2010-01-01

    Regulated secretion of neurotransmitters and neurohumoural factors from dense core secretory vesicles provides essential neuroeffectors for cell-cell communication in the nervous and endocrine systems. This study provides comprehensive proteomic characterization of the categories of proteins in chromaffin dense core secretory vesicles that participate in cell-cell communication from the adrenal medulla. Proteomic studies were conducted by nano-HPLC Chip MS/MS tandem mass spectrometry. Results demonstrate that these secretory vesicles contain proteins of distinct functional categories consisting of neuropeptides and neurohumoural factors, protease systems, neurotransmitter enzymes and transporters, receptors, enzymes for biochemical processes, reduction/oxidation regulation, ATPases, protein folding, lipid biochemistry, signal transduction, exocytosis, calcium regulation, as well as structural and cell adhesion proteins. The secretory vesicle proteomic data identified 371 distinct proteins in the soluble fraction and 384 distinct membrane proteins, for a total of 686 distinct secretory vesicle proteins. Notably, these proteomic analyses illustrate the presence of several neurological disease-related proteins in these secretory vesicles, including huntingtin interacting protein, cystatin C, ataxin 7, and prion protein. Overall, these findings demonstrate that multiple protein categories participate in dense core secretory vesicles for production, storage, and secretion of bioactive neuroeffectors for cell-cell communication in health and disease. PMID:20695487

  8. The Rab27a effector exophilin7 promotes fusion of secretory granules that have not been docked to the plasma membrane.

    PubMed

    Wang, Hao; Ishizaki, Ray; Xu, Jun; Kasai, Kazuo; Kobayashi, Eri; Gomi, Hiroshi; Izumi, Tetsuro

    2013-02-01

    Granuphilin, an effector of the small GTPase Rab27a, mediates the stable attachment (docking) of insulin granules to the plasma membrane and inhibits subsequent fusion of docked granules, possibly through interaction with a fusion-inhibitory Munc18-1/syntaxin complex. However, phenotypes of insulin exocytosis differ considerably between Rab27a- and granuphilin-deficient pancreatic β cells, suggesting that other Rab27a effectors function in those cells. We found that one of the putative Rab27a effector family proteins, exophilin7/JFC1/Slp1, is expressed in β cells; however, unlike granuphilin, exophilin7 overexpressed in the β-cell line MIN6 failed to show granule-docking or fusion-inhibitory activity. Furthermore, exophilin7 has no affinities to either Munc18-1 or Munc18-1-interacting syntaxin-1a, in contrast to granuphilin. Although β cells of exophilin7-knockout mice show no apparent abnormalities in intracellular distribution or in ordinary glucose-induced exocytosis of insulin granules, they do show impaired fusion in response to some stronger stimuli, specifically from granules that have not been docked to the plasma membrane. Exophilin7 appears to mediate the fusion of undocked granules through the affinity of its C2A domain toward the plasma membrane phospholipids. These findings indicate that the two Rab27a effectors, granuphilin and exophilin7, differentially regulate the exocytosis of either stably or minimally docked granules, respectively.

  9. Fusion of lysosomes with secretory organelles leads to uncontrolled exocytosis in the lysosomal storage disease mucolipidosis type IV.

    PubMed

    Park, Soonhong; Ahuja, Malini; Kim, Min Seuk; Brailoiu, G Cristina; Jha, Archana; Zeng, Mei; Baydyuk, Maryna; Wu, Ling-Gang; Wassif, Christopher A; Porter, Forbes D; Zerfas, Patricia M; Eckhaus, Michael A; Brailoiu, Eugen; Shin, Dong Min; Muallem, Shmuel

    2016-02-01

    Mutations in TRPML1 cause the lysosomal storage disease mucolipidosis type IV (MLIV). The role of TRPML1 in cell function and how the mutations cause the disease are not well understood. Most studies focus on the role of TRPML1 in constitutive membrane trafficking to and from the lysosomes. However, this cannot explain impaired neuromuscular and secretory cells' functions that mediate regulated exocytosis. Here, we analyzed several forms of regulated exocytosis in a mouse model of MLIV and, opposite to expectations, we found enhanced exocytosis in secretory glands due to enlargement of secretory granules in part due to fusion with lysosomes. Preliminary exploration of synaptic vesicle size, spontaneous mEPSCs, and glutamate secretion in neurons provided further evidence for enhanced exocytosis that was rescued by re-expression of TRPML1 in neurons. These features were not observed in Niemann-Pick type C1. These findings suggest that TRPML1 may guard against pathological fusion of lysosomes with secretory organelles and suggest a new approach toward developing treatment for MLIV. © 2015 The Authors.

  10. Constitutively polarized granules prime KHYG-1 NK cells.

    PubMed

    Suck, Garnet; Branch, Donald R; Aravena, Paola; Mathieson, Mark; Helke, Simone; Keating, Armand

    2006-09-01

    The major mechanism for NK cell lysis of tumor cells is granule-mediated cytotoxicity. Polarization of granules is a prelude to the release of their cytotoxic contents in response to target-cell binding. We describe the novel observation of constitutive granule polarization in the cytotoxic NK cell line, KHYG-1. Continuous degranulation of KHYG-1 cells, however, does not occur and still requires target-cell contact. Disruption of microtubules with colcemid is sufficient to disperse the granules in KHYG-1 and significantly decreases cytotoxicity. A similar effect is not obtained by inhibiting extracellular signal-related kinase 2 (ERK2), the most distal kinase investigated in the cytolytic pathway. Disruption of microtubules significantly down-regulates activation receptors, NKp44 and NKG2D, implicating them as potential microtubule-trafficking receptors. Such changes in upstream receptor expression may have caused deactivation of ERK2, since NKG2D cross-linking also leads to receptor down-regulation and diminished ERK phosphorylation. Thus, a functional role for NKG2D in KHYG-1 cytotoxicity is demonstrated. Moreover, the novel primed state may contribute to the high cytotoxicity exhibited by KHYG-1.

  11. Normal and abnormal secretion by haemopoietic cells

    PubMed Central

    STINCHCOMBE, JANE C; GRIFFITHS, GILLIAN M

    2001-01-01

    The secretory lysosomes found in haemopoietic cells provide a very efficient mechanism for delivering the effector proteins of many immune cells in response to antigen recognition. Although secretion shows some similarities to the secretion of specialized granules in other secretory cell types, some aspects of secretory lysosome release appear to be unique to melanocytes and cells of the haemopoietic lineage. Mast cells and platelets have provided excellent models for studying secretion, but recent advances in characterizing the immunological synapse allow a very fine dissection of the secretory process in T lymphocytes. These studies show that secretory lysosomes are secreted from the centre of the talin ring at the synapse. Proper secretion requires a series of Rab and cytoskeletal elements which play critical roles in the specialized secretion of lysosomes in haemopoietic cells. PMID:11380687

  12. Membrane Tension Inhibits Rapid and Slow Endocytosis in Secretory Cells.

    PubMed

    Wu, Xin-Sheng; Elias, Sharon; Liu, Huisheng; Heureaux, Johanna; Wen, Peter J; Liu, Allen P; Kozlov, Michael M; Wu, Ling-Gang

    2017-12-05

    Endocytosis generates spherical or ellipsoid-like vesicles from the plasma membrane, which recycles vesicles that fuse with the plasma member during exocytosis in neurons and endocrine secretory cells. Although tension in the plasma membrane is generally considered to be an important factor in regulating endocytosis, whether membrane tension inhibits or facilitates endocytosis remains debated in the endocytosis field, and has been rarely studied for vesicular endocytosis in secretory cells. Here we report that increasing membrane tension by adjusting osmolarity inhibited both the rapid (a few seconds) and slow (tens of seconds) endocytosis in calyx-type nerve terminals containing conventional active zones and in neuroendocrine chromaffin cells. We address the mechanism of this phenomenon by computational modeling of the energy barrier that the system must overcome at the stage of membrane budding by an assembling protein coat. We show that this barrier grows with increasing tension, which may slow down or prevent membrane budding. These results suggest that in live secretory cells, membrane tension exerts inhibitory action on endocytosis. Published by Elsevier Inc.

  13. GABAergic excitation after febrile seizures induces ectopic granule cells and adult epilepsy.

    PubMed

    Koyama, Ryuta; Tao, Kentaro; Sasaki, Takuya; Ichikawa, Junya; Miyamoto, Daisuke; Muramatsu, Rieko; Matsuki, Norio; Ikegaya, Yuji

    2012-08-01

    Temporal lobe epilepsy (TLE) is accompanied by an abnormal location of granule cells in the dentate gyrus. Using a rat model of complex febrile seizures, which are thought to be a precipitating insult of TLE later in life, we report that aberrant migration of neonatal-generated granule cells results in granule cell ectopia that persists into adulthood. Febrile seizures induced an upregulation of GABA(A) receptors (GABA(A)-Rs) in neonatally generated granule cells, and hyperactivation of excitatory GABA(A)-Rs caused a reversal in the direction of granule cell migration. This abnormal migration was prevented by RNAi-mediated knockdown of the Na(+)K(+)2Cl(-) co-transporter (NKCC1), which regulates the excitatory action of GABA. NKCC1 inhibition with bumetanide after febrile seizures rescued the granule cell ectopia, susceptibility to limbic seizures and development of epilepsy. Thus, this work identifies a previously unknown pathogenic role of excitatory GABA(A)-R signaling and highlights NKCC1 as a potential therapeutic target for preventing granule cell ectopia and the development of epilepsy after febrile seizures.

  14. Morphological Constraints on Cerebellar Granule Cell Combinatorial Diversity.

    PubMed

    Gilmer, Jesse I; Person, Abigail L

    2017-12-13

    Combinatorial expansion by the cerebellar granule cell layer (GCL) is fundamental to theories of cerebellar contributions to motor control and learning. Granule cells (GrCs) sample approximately four mossy fiber inputs and are thought to form a combinatorial code useful for pattern separation and learning. We constructed a spatially realistic model of the cerebellar GCL and examined how GCL architecture contributes to GrC combinatorial diversity. We found that GrC combinatorial diversity saturates quickly as mossy fiber input diversity increases, and that this saturation is in part a consequence of short dendrites, which limit access to diverse inputs and favor dense sampling of local inputs. This local sampling also produced GrCs that were combinatorially redundant, even when input diversity was extremely high. In addition, we found that mossy fiber clustering, which is a common anatomical pattern, also led to increased redundancy of GrC input combinations. We related this redundancy to hypothesized roles of temporal expansion of GrC information encoding in service of learned timing, and we show that GCL architecture produces GrC populations that support both temporal and combinatorial expansion. Finally, we used novel anatomical measurements from mice of either sex to inform modeling of sparse and filopodia-bearing mossy fibers, finding that these circuit features uniquely contribute to enhancing GrC diversification and redundancy. Our results complement information theoretic studies of granule layer structure and provide insight into the contributions of granule layer anatomical features to afferent mixing. SIGNIFICANCE STATEMENT Cerebellar granule cells are among the simplest neurons, with tiny somata and, on average, just four dendrites. These characteristics, along with their dense organization, inspired influential theoretical work on the granule cell layer as a combinatorial expander, where each granule cell represents a unique combination of inputs

  15. Chromogranin A deficiency in transgenic mice leads to aberrant chromaffin granule biogenesis.

    PubMed

    Kim, Taeyoon; Zhang, Chun-fa; Sun, Ziqing; Wu, Heling; Loh, Y Peng

    2005-07-27

    The biogenesis of dense-core secretory granules (DCGs), organelles responsible for the storage and secretion of neurotransmitters and neuropeptides in chromaffin cells, is poorly understood. Chromogranin A (CgA), which binds catecholamines for storage in the lumen of chromaffin granules, has been shown to be involved in DCG biogenesis in neuroendocrine PC12 cells. Here, we report that downregulation of CgA expression in vivo by expressing antisense RNA against CgA in transgenic mice led to a significant reduction in DCG formation in adrenal chromaffin cells. The number of DCGs formed in CgA antisense transgenic mice was directly correlated with the amount of CgA present in adrenal medulla. In addition, DCGs showed an increase in size, with enlargement in the volume around the dense core, a phenomenon that occurs to maintain constant "free" catecholamine concentration in the lumen of these granules. The extent of DCG swelling was inversely correlated with the number of DCGs formed, as well as the amount of CgA present in the adrenal glands of CgA antisense transgenic mice. These data indicate an essential role of CgA in regulating chromaffin DCG biogenesis and catecholamine storage in vivo.

  16. Toxoplasma exports dense granule proteins beyond the vacuole to the host cell nucleus and rewires the host genome expression.

    PubMed

    Bougdour, Alexandre; Tardieux, Isabelle; Hakimi, Mohamed-Ali

    2014-03-01

    Toxoplasma gondii is the most widespread apicomplexan parasite and occupies a large spectrum of niches by infecting virtually any warm-blooded animals. As an obligate intracellular parasite, Toxoplasma has evolved a repertoire of strategies to fine-tune the cellular environment in an optimal way to promote growth and persistence in host tissues hence increasing the chance to be transmitted to new hosts. Short and long-term intracellular survival is associated with Toxoplasma ability to both evade the host deleterious immune defences and to stimulate a beneficial immune balance by governing host cell gene expression. It is only recently that parasite proteins responsible for driving these transcriptional changes have been identified. While proteins contained in the apical secretory Rhoptry organelle have already been identified as bona fide secreted effectors that divert host signalling pathways, recent findings revealed that dense granule proteins should be added to the growing list of effectors as they reach the host cell cytoplasm and nucleus and target various host cell pathways in the course of cell infection. Herein, we emphasize on a novel subfamily of dense granule residentproteins, exemplified with the GRA16 and GRA24 members we recently discovered as both are exported beyond the vacuole-containing parasites and reach the host cell nucleus to reshape the host genome expression. © 2013 John Wiley & Sons Ltd.

  17. Increased Neutrophil Secretion Induced by NLRP3 Mutation Links the Inflammasome to Azurophilic Granule Exocytosis

    PubMed Central

    Johnson, Jennifer L.; Ramadass, Mahalakshmi; Haimovich, Ariela; McGeough, Matthew D.; Zhang, Jinzhong; Hoffman, Hal M.; Catz, Sergio D.

    2017-01-01

    Heterozygous mutations in the NLRP3 gene in patients with cryopyrin associated periodic syndrome (CAPS) lead to hyper-responsive inflammasome function. CAPS is a systemic auto-inflammatory syndrome characterized by the activation of the innate immune system induced by elevated pro-inflammatory cytokines, but the involvement of selective innate immune cells in this process is not fully understood. Neutrophil secretion and the toxic components of their granules are mediators of inflammation associated with several human diseases and inflammatory conditions. Here, using the Nlrp3A350V inducible mouse model (MWS CreT) that recapitulates human patients with the A352V mutation in NLRP3 observed in the Muckle-Wells sub-phenotype of CAPS, we studied the relationship between hyper-activation of the inflammasome and neutrophil exocytosis. Using a flow cytometry approach, we show that Nlrp3A350V (MWS) neutrophils express normal basal levels of CD11b at the plasma membrane and that the upregulation of CD11b from secretory vesicles in response to several plasma membrane or endocytic agonist including the bacterial-derived mimetic peptide formyl-Leu-Met-Phe (fMLF) and the unmethylated oligonucleotide CpG is normal in MWS neutrophils. Significant but modest CD11b upregulation in MWS neutrophils compared to wild type was only observed in response to GM-CSF and CpG. The same pattern was observed for the secretion of matrix metalloproteinase-9 (MMP-9) from gelatinase granules in that MMP-9 secretion in MWS neutrophils was not different from that observed in wild-type neutrophils except when stimulated with GM-CSF and CpG. In contrast, azurophilic granule secretion, whose cargoes constitute the most toxic secretory and pro-inflammatory factors of the neutrophil, was markedly dysregulated in MWS neutrophils under both basal and stimulated conditions. This could not be attributed to paracrine effects of secretory cytokines because IL-1β secretion by neutrophils was undetectable under

  18. NK cells converge lytic granules to promote cytotoxicity and prevent bystander killing

    PubMed Central

    Hsu, Hsiang-Ting; Viswanath, Dixita I.; Önfelt, Björn

    2016-01-01

    Natural killer (NK) cell activation triggers sequential cellular events leading to destruction of diseased cells. We previously identified lytic granule convergence, a dynein- and integrin signal–dependent movement of lysosome-related organelles to the microtubule-organizing center, as an early step in the cell biological process underlying NK cell cytotoxicity. Why lytic granules converge during NK cell cytotoxicity, however, remains unclear. We experimentally controlled the availability of human ligands to regulate NK cell signaling and promote granule convergence with either directed or nondirected degranulation. By the use of acoustic trap microscopy, we generated specific effector–target cell arrangements to define the impact of the two modes of degranulation. NK cells with converged granules had greater targeted and less nonspecific “bystander” killing. Additionally, NK cells in which dynein was inhibited or integrin blocked under physiological conditions demonstrated increased nondirected degranulation and bystander killing. Thus, NK cells converge lytic granules and thereby improve the efficiency of targeted killing and prevent collateral damage to neighboring healthy cells. PMID:27903610

  19. Rapid Feedforward Inhibition and Asynchronous Excitation Regulate Granule Cell Activity in the Mammalian Main Olfactory Bulb

    PubMed Central

    Burton, Shawn D.

    2015-01-01

    Granule cell-mediated inhibition is critical to patterning principal neuron activity in the olfactory bulb, and perturbation of synaptic input to granule cells significantly alters olfactory-guided behavior. Despite the critical role of granule cells in olfaction, little is known about how sensory input recruits granule cells. Here, we combined whole-cell patch-clamp electrophysiology in acute mouse olfactory bulb slices with biophysical multicompartmental modeling to investigate the synaptic basis of granule cell recruitment. Physiological activation of sensory afferents within single glomeruli evoked diverse modes of granule cell activity, including subthreshold depolarization, spikelets, and suprathreshold responses with widely distributed spike latencies. The generation of these diverse activity modes depended, in part, on the asynchronous time course of synaptic excitation onto granule cells, which lasted several hundred milliseconds. In addition to asynchronous excitation, each granule cell also received synchronous feedforward inhibition. This inhibition targeted both proximal somatodendritic and distal apical dendritic domains of granule cells, was reliably recruited across sniff rhythms, and scaled in strength with excitation as more glomeruli were activated. Feedforward inhibition onto granule cells originated from deep short-axon cells, which responded to glomerular activation with highly reliable, short-latency firing consistent with tufted cell-mediated excitation. Simulations showed that feedforward inhibition interacts with asynchronous excitation to broaden granule cell spike latency distributions and significantly attenuates granule cell depolarization within local subcellular compartments. Collectively, our results thus identify feedforward inhibition onto granule cells as a core feature of olfactory bulb circuitry and establish asynchronous excitation and feedforward inhibition as critical regulators of granule cell activity. SIGNIFICANCE

  20. Unremitting Cell Proliferation in the Secretory Phase of Eutopic Endometriosis

    PubMed Central

    Franco-Murillo, Yanira; Miranda-Rodríguez, José Antonio; Rendón-Huerta, Erika; Montaño, Luis F.; Cornejo, Gerardo Velázquez; Gómez, Lucila Poblano; Valdez-Morales, Francisco Javier; Gonzalez-Sanchez, Ignacio

    2014-01-01

    Objective: Endometriosis is linked to altered cell proliferation and stem cell markers c-kit/stem cell factor (SCF) in ectopic endometrium. Our aim was to investigate whether c-kit/SCF also plays a role in eutopic endometrium. Design: Eutopic endometrium obtained from 35 women with endometriosis and 25 fertile eumenorrheic women was analyzed for in situ expression of SCF/c-kit, Ki67, RAC-alpha serine/threonine-protein kinase (Akt), phosphorylated RAC-alpha serine/threonin-protein kinase (pAkt), Glycogen synthase kinase 3 beta (GSK3β), and phosphorylated glycogen synthase kinase 3 beta (pGSK3β), throughout the menstrual cycle. Results: Expression of Ki67 and SCF was higher in endometriosis than in control tissue (P < .05) and greater in secretory rather than proliferative (P < .01) endometrium in endometriosis. Expression of c-kit was also higher in endometriosis although similar in both phases. Expression of Akt and GSK3β was identical in all samples and cycle phases, whereas pAkt and pGSK3β, opposed to control tissue, remained overexpressed in the secretory phase in endometriosis. Conclusion: Unceasing cell proliferation in the secretory phase of eutopic endometriosis is linked to deregulation of c-kit/SCF-associated signaling pathways. PMID:25194152

  1. Modulation of neuronal pentraxin 1 expression in rat pancreatic β-cells submitted to chronic glucotoxic stress.

    PubMed

    Schvartz, Domitille; Couté, Yohann; Brunner, Yannick; Wollheim, Claes B; Sanchez, Jean-Charles

    2012-08-01

    Insulin secretory granules are β-cell vesicles dedicated to insulin processing, storage, and release. The secretion of insulin secretory granule content in response to an acute increase of glucose concentration is a highly regulated process allowing normal glycemic homeostasis. Type 2 diabetes is a metabolic disease characterized by chronic hyperglycemia. The consequent prolonged glucose exposure is known to exert deleterious effects on the function of various organs, notably impairment of insulin secretion by pancreatic β-cells and induction of apoptosis. It has also been described as modifying gene and protein expression in β-cells. Therefore, we hypothesized that a modulation of insulin secretory granule protein expression induced by chronic hyperglycemia may partially explain β-cell dysfunction. To identify the potential early molecular mechanisms underlying β-cell dysfunction during chronic hyperglycemia, we performed SILAC and mass spectrometry experiments to monitor changes in the insulin secretory granule proteome from INS-1E rat insulinoma β-cells cultivated either with 11 or 30 mm of glucose for 24 h. Fourteen proteins were found to be differentially expressed between these two conditions, and several of these proteins were not described before to be present in β-cells. Among them, neuronal pentraxin 1 was only described in neurons so far. Here we investigated its expression and intracellular localization in INS-1E cells. Furthermore, its overexpression in glucotoxic conditions was confirmed at the mRNA and protein levels. According to its role in hypoxia-ischemia-induced apoptosis described in neurons, this suggests that neuronal pentraxin 1 might be a new β-cell mediator in the AKT/GSK3 apoptotic pathway. In conclusion, the modification of specific β-cell pathways such as apoptosis and oxidative stress may partially explain the impairment of insulin secretion and β-cell failure, observed after prolonged exposure to high glucose concentrations.

  2. The plant secretory pathway seen through the lens of the cell wall.

    PubMed

    van de Meene, A M L; Doblin, M S; Bacic, Antony

    2017-01-01

    Secretion in plant cells is often studied by looking at well-characterised, evolutionarily conserved membrane proteins associated with particular endomembrane compartments. Studies using live cell microscopy and fluorescent proteins have illuminated the highly dynamic nature of trafficking, and electron microscopy studies have resolved the ultrastructure of many compartments. Biochemical and molecular analyses have further informed about the function of particular proteins and endomembrane compartments. In plants, there are over 40 cell types, each with highly specialised functions, and hence potential variations in cell biological processes and cell wall structure. As the primary function of secretion in plant cells is for the biosynthesis of cell wall polysaccharides and apoplastic transport complexes, it follows that utilising our knowledge of cell wall glycosyltransferases (GTs) and their polysaccharide products will inform us about secretion. Indeed, this knowledge has led to novel insights into the secretory pathway, including previously unseen post-TGN secretory compartments. Conversely, our knowledge of trafficking routes of secretion will inform us about polarised and localised deposition of cell walls and their constituent polysaccharides/glycoproteins. In this review, we look at what is known about cell wall biosynthesis and the secretory pathway and how the different approaches can be used in a complementary manner to study secretion and provide novel insights into these processes.

  3. De novo epidermal regeneration using human eccrine sweat gland cells: higher competence of secretory over absorptive cells.

    PubMed

    Pontiggia, Luca; Biedermann, Thomas; Böttcher-Haberzeth, Sophie; Oliveira, Carol; Braziulis, Erik; Klar, Agnieszka S; Meuli-Simmen, Claudia; Meuli, Martin; Reichmann, Ernst

    2014-06-01

    In our previous work, we showed that human sweat gland-derived epithelial cells represent an alternative source of keratinocytes to grow a near normal autologous epidermis. The role of subtypes of sweat gland cells in epidermal regeneration and maintenance remained unclear. In this study, we compare the regenerative potential of both secretory and absorptive sweat gland cell subpopulations. We demonstrate the superiority of secretory over absorptive cells in forming a new epidermis on two levels: first, the proliferative and colony-forming efficiencies in vitro are significantly higher for secretory cells (SCs), and second, SCs show a higher frequency of successful epidermis formation as well as an increase in the thickness of the formed epidermis in the in vitro and in vivo functional analyses using a 3D dermo-epidermal skin model. However, the ability of forming functional skin substitutes is not limited to SCs, which supports the hypothesis that multiple subtypes of sweat gland epithelial cells hold regenerative properties, while the existence and exact localization of a keratinocyte stem cell population in the human eccrine sweat gland remain elusive.

  4. Ca2+ influx does not trigger glucose-induced traffic of the insulin granules and alteration of their distribution.

    PubMed

    Niki, Ichiro; Niwa, Tae; Yu, Wei; Budzko, Dorota; Miki, Takashi; Senda, Takao

    2003-11-01

    This study investigated mechanisms by which glucose increases readily releasable secretory granules via acting on preexocytotic steps, i.e., intracellular granule movement and granule access to the plasma membrane using a pancreatic beta-cell line, MIN6. Glucose-induced activation of the movement occurred at a substimulatory concentration with regard to insulin output. Glucose activation of the movement was inhibited by pretreatment with thapsigargin plus acetylcholine to suppress intracellular Ca2+ mobilization. Inhibitors of calmodulin and myosin light chain kinase also suppressed glucose activation of the movement. Simultaneous addition of glucose with Ca2+ channel blockers or the ATP-sensitive K+ channel opener diazoxide failed to suppress the traffic activation, and addition of these substances on top of glucose stimulation resulted in a further increase. Although stimulatory glucose had minimal changes in the intracellular granule distribution, inhibition of Ca2+ influx revealed increases by glucose of the granules in the cell periphery. In contrast, high K+ depolarization decreased the peripheral granules. Glucose-induced granule margination was abolished when the protein kinase C activity was downregulated. These findings indicate that preexocytotic control of insulin release is regulated by distinct mechanisms from Ca2+ influx, which triggers insulin exocytosis. The nature of the regulation by glucose may explain a part of potentiating effects of the hexose independent of the closure of the ATP-sensitive K+ channel.

  5. Olfactory granule cell development in normal and hyperthyroid rats.

    PubMed

    Brunjes, P C; Schwark, H D; Greenough, W T

    1982-10-01

    Dendritic development was examined in olfactory bulbs of both normal 7-, 14-, 21- and 60-day-old rats and littermates treated on postnatal days 1-4 with 1 microgram/g body weight of L-thyroxine sodium. Tissue was processed via the Golgi-Cox technique and subjected to quantitative analyses of mitral and internal layer granule cell development. These populations of granule cells were selected because their pattern of late proliferation suggested potentially greater susceptibility to postnatal hormonal alterations. Although neonatal hyperthyroidism induces widespread acceleration of maturation, including precocious chemosensitivity, granule cell development was unaffected relative to littermate controls. Both normal and hyperthyroid groups exhibited an inverted U-shaped pattern of cellular development, with rapid dendritic dendritic growth and expansion occurring during the earliest ages tested, but with loss of processes and dendritic field size occurring after day 21.

  6. Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells

    PubMed Central

    Huang, Cheng-Chiu; Sugino, Ken; Shima, Yasuyuki; Guo, Caiying; Bai, Suxia; Mensh, Brett D; Nelson, Sacha B; Hantman, Adam W

    2013-01-01

    Cerebellar granule cells constitute the majority of neurons in the brain and are the primary conveyors of sensory and motor-related mossy fiber information to Purkinje cells. The functional capability of the cerebellum hinges on whether individual granule cells receive mossy fiber inputs from multiple precerebellar nuclei or are instead unimodal; this distinction is unresolved. Using cell-type-specific projection mapping with synaptic resolution, we observed the convergence of separate sensory (upper body proprioceptive) and basilar pontine pathways onto individual granule cells and mapped this convergence across cerebellar cortex. These findings inform the long-standing debate about the multimodality of mammalian granule cells and substantiate their associative capacity predicted in the Marr-Albus theory of cerebellar function. We also provide evidence that the convergent basilar pontine pathways carry corollary discharges from upper body motor cortical areas. Such merging of related corollary and sensory streams is a critical component of circuit models of predictive motor control. DOI: http://dx.doi.org/10.7554/eLife.00400.001 PMID:23467508

  7. Hilar Mossy Cell Degeneration Causes Transient Dentate Granule Cell Hyperexcitability and Impaired Pattern Separation

    PubMed Central

    Jinde, Seiichiro; Zsiros, Veronika; Jiang, Zhihong; Nakao, Kazuhito; Pickel, James; Kohno, Kenji; Belforte, Juan E.; Nakazawa, Kazu

    2012-01-01

    Summary Although excitatory mossy cells of the hippocampal hilar region are known to project both to dentate granule cells and to interneurons, it is as yet unclear whether mossy cell activity’s net effect on granule cells is excitatory or inhibitory. To explore their influence on dentate excitability and hippocampal function, we generated a conditional transgenic mouse line, using the Cre/loxP system, in which diphtheria toxin receptor was selectively expressed in mossy cells. One week after injecting toxin into this line, mossy cells throughout the longitudinal axis were degenerated extensively, theta wave power of dentate local field potentials increased during exploration, and deficits occurred in contextual discrimination. By contrast, we detected no epileptiform activity, spontaneous behavioral seizures, or mossy-fiber sprouting 5–6 weeks after mossy cell degeneration. These results indicate that the net effect of mossy cell excitation is to inhibit granule cell activity and enable dentate pattern separation. PMID:23259953

  8. Dielectric properties of isolated adrenal chromaffin cells determined by microfluidic impedance spectroscopy.

    PubMed

    Sabuncu, A C; Stacey, M; Craviso, G L; Semenova, N; Vernier, P T; Leblanc, N; Chatterjee, I; Zaklit, J

    2018-02-01

    Knowledge of the dielectric properties of biological cells plays an important role in numerical models aimed at understanding how high intensity ultrashort nanosecond electric pulses affect the plasma membrane and the membranes of intracellular organelles. To this end, using electrical impedance spectroscopy, the dielectric properties of isolated, neuroendocrine adrenal chromaffin cells were obtained. Measured impedance data of the cell suspension, acquired between 1kHz and 20MHz, were fit into a combination of constant phase element and Cole-Cole models from which the effect of electrode polarization was extracted. The dielectric spectrum of each cell suspension was fit into a Maxwell-Wagner mixture model and the Clausius-Mossotti factor was obtained. Lastly, to extract the cellular dielectric parameters, the cell dielectric data were fit into a granular cell model representative of a chromaffin cell, which was based on the inclusion of secretory granules in the cytoplasm. Chromaffin cell parameters determined from this study were the cell and secretory granule membrane specific capacitance (1.22 and 7.10μF/cm 2 , respectively), the cytoplasmic conductivity, which excludes and includes the effect of intracellular membranous structures (1.14 and 0.49S/m, respectively), and the secretory granule milieu conductivity (0.35S/m). These measurements will be crucial for incorporating into numerical models aimed at understanding the differential poration effect of nanosecond electric pulses on chromaffin cell membranes. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Pten Knockdown in vivo Increases Excitatory Drive onto Dentate Granule Cells

    PubMed Central

    Luikart, Bryan W.; Schnell, Eric; Washburn, Eric K.; Bensen, AeSoon L.; Tovar, Kenneth R.; Westbrook, Gary L.

    2011-01-01

    Some cases of autism spectrum disorder (ASD) have mutations in the lipid phosphatase, Pten (phosphatase and tensin homolog on chromosome 10). Tissue specific deletion of Pten in the hippocampus and cortex of mice causes anatomical and behavioral abnormalities similar to human autism. However, the impact of reductions in Pten on synaptic and circuit function remains unexplored. We used in vivo stereotaxic injections of lentivirus expressing an shRNA to knockdown Pten in mouse neonatal and young adult dentate granule cells. We then assessed the morphology and synaptic physiology between two weeks and four months later. Confocal imaging of the hippocampus revealed a marked increase in granule cell size and an increase in dendritic spine density. The onset of morphological changes occurred earlier in neonatal mice than in young adults. We used whole-cell recordings from granule cells in acute slices to assess synaptic function following Pten knockdown. Consistent with the increase in dendritic spines, the frequency of excitatory miniature and spontaneous postsynaptic currents increased. However, there was little or no effect on inhibitory postsynaptic currents. Thus Pten knockdown results in an imbalance between excitatory and inhibitory synaptic activity. Because reductions in Pten affected mature granule cells as well as developing granule cells, we suggest that the disruption of circuit function by Pten hypofunction may be ongoing well beyond early development. PMID:21411674

  10. Mapping organelle motion reveals a vesicular conveyor belt spatially replenishing secretory vesicles in stimulated chromaffin cells.

    PubMed

    Maucort, Guillaume; Kasula, Ravikiran; Papadopulos, Andreas; Nieminen, Timo A; Rubinsztein-Dunlop, Halina; Meunier, Frederic A

    2014-01-01

    How neurosecretory cells spatially adjust their secretory vesicle pools to replenish those that have fused and released their hormonal content is currently unknown. Here we designed a novel set of image analyses to map the probability of tracked organelles undergoing a specific type of movement (free, caged or directed). We then applied our analysis to time-lapse z-stack confocal imaging of secretory vesicles from bovine Chromaffin cells to map the global changes in vesicle motion and directionality occurring upon secretagogue stimulation. We report a defined region abutting the cortical actin network that actively transports secretory vesicles and is dissipated by actin and microtubule depolymerizing drugs. The directionality of this "conveyor belt" towards the cell surface is activated by stimulation. Actin and microtubule networks therefore cooperatively probe the microenvironment to transport secretory vesicles to the periphery, providing a mechanism whereby cells globally adjust their vesicle pools in response to secretagogue stimulation.

  11. Fast insulin secretion reflects exocytosis of docked granules in mouse pancreatic B-cells.

    PubMed

    Olofsson, Charlotta S; Göpel, Sven O; Barg, Sebastian; Galvanovskis, Juris; Ma, Xiaosong; Salehi, Albert; Rorsman, Patrik; Eliasson, Lena

    2002-05-01

    A readily releasable pool (RRP) of granules has been proposed to underlie the first phase of insulin secretion. In the present study we combined electron microscopy, insulin secretion measurements and recordings of cell capacitance in an attempt to define this pool ultrastructurally. Mouse pancreatic B-cells contain approximately 9,000 granules, of which 7% are docked below the plasma membrane. The number of docked granules was reduced by 30% (200 granules) during 10 min stimulation with high K+. This stimulus depolarized the cell to -10 mV, elevated cytosolic [Ca2+] ([Ca2+](i)) from a basal concentration of 130 nM to a peak of 1.3 microM and released 0.5 ng insulin/islet, corresponding to 200-300 granules/cell. The Ca2+ transient decayed towards the prestimulatory concentration within approximately 200 s, presumably reflecting Ca2+ channel inactivation. Renewed stimulation with high K+ failed to stimulate insulin secretion when applied in the absence of glucose. The size of the RRP, derived from the insulin measurements, is similar to that estimated from the increase in cell capacitance elicited by photolytic release of caged Ca2+. We propose that the RRP represents a subset of the docked pool of granules and that replenishment of RRP can be accounted for largely by chemical modification of granules already in place or situated close to the plasma membrane.

  12. Biochemical analysis of secretory proteins synthesized by normal rat pancreas and by pancreatic acinar tumor cells

    PubMed Central

    1982-01-01

    We have examined the secretogogue responsiveness and the pattern of secretory proteins produced by a transplantable rat pancreatic acinar cell tumor. Dispersed tumor cells were found to discharge secretory proteins in vitro when incubated with hormones that act on four different classes of receptors: carbamylcholine, caerulein, secretin- vasoactive intestinal peptide, and bombesin. With all hormones tested, maximal discharge from tumor cells was only about one-half that of control pancreatic lobules, but occurred at the same dose optima except for secretin, whose dose optimum was 10-fold higher. Biochemical analysis of secretory proteins discharged by the tumor cells was carried out by crossed immunoelectrophoresis and by two-dimensional isoelectric focusing-SDS polyacrylamide gel electrophoresis. To establish a baseline for comparison, secretory proteins from normal rat pancreas were identified according to enzymatic activity and correlated with migration position on two-dimensional gels. Our results indicate that a group of basic polypeptides including proelastase, basic trypsinogen, basic chymotrypsinogen, and ribonuclease, two out of three forms of procarboxypeptidase B, and the major lipase species were greatly reduced or absent in tumor cell secretion. In contrast, the amount of acidic chymotrypsinogen was notably increased compared with normal acinar cells. Although the acinar tumor cells are highly differentiated cytologically and express functional receptors for several classes of pancreatic secretagogues, they show quantitative and qualitative differences when compared with normal pancreas with regard to their production of secretory proteins. PMID:6185502

  13. How does the stimulus define exocytosis in adrenal chromaffin cells?

    PubMed

    Marengo, Fernando D; Cárdenas, Ana M

    2018-01-01

    The extent and type of hormones and active peptides secreted by the chromaffin cells of the adrenal medulla have to be adjusted to physiological requirements. The chromaffin cell secretory activity is controlled by the splanchnic nerve firing frequency, which goes from approximately 0.5 Hz in basal conditions to more than 15 Hz in stress. Thus, these neuroendocrine cells maintain a tonic release of catecholamines under resting conditions, massively discharge intravesicular transmitters in response to stress, or adequately respond to moderate stimuli. In order to adjust the secretory response to the stimulus, the adrenal chromaffin cells have an appropriate organization of Ca 2+ channels, secretory granules pools, and sets of proteins dedicated to selectively control different steps of the secretion process, such as the traffic, docking, priming and fusion of the chromaffin granules. Among the molecules implicated in such events are the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, Ca 2+ sensors like Munc13 and synaptotagmin-1, chaperon proteins such as Munc18, and the actomyosin complex. In the present review, we discuss how these different actors contribute to the extent and maintenance of the stimulus-dependent exocytosis in the adrenal chromaffin cells.

  14. Ultrastructure of the platypus and echidna mandibular glands.

    PubMed

    Krause, W J

    2011-10-01

    The secretory units of the platypus and echidna mandibular glands consist of a single serous cell type. Secretory granules within the cells of the platypus mandibular gland stained intensely with the periodic acid-Schiff staining procedure but failed to stain with Alcian Blue, suggesting the granules contained neutral glycoproteins. Secretory granules within the mandibular glands of the echidna failed to stain with the methods used indicating little if any glycoprotein was associated with the secretory granules. Ultrastructurally, secretory granules of the platypus mandibular gland were electron dense with a central core of less electron-dense material and were membrane bound. In contrast, those of the echidna presented a lamellated appearance and also were limited by a membrane. These secretory granules appeared to form as a result of concentric layering of lamellae within cisternae of the Golgi membranes. The intralobular ductal system of the platypus was more extensively developed than that of the echidna. The striated ducts of both species were characterized by elaborate infoldings of the basolateral plasmalemma and an abundance of associated mitochondria. © 2011 Blackwell Verlag GmbH.

  15. [Changes of right atrial myoendocrine cells during hypertension and after arterial pressure decrease].

    PubMed

    Maksimov, V F; Korostyshevskaia, I M; Kurganov, S A; Markel', A L; Rudenko, N S; Iakobson, G S

    2014-01-01

    It is well known now that atrial cardiomyocytes carry out both contractile and endocrine activities--they synthesize, accumulate in specific secretory granules and release the natriuretic peptides. The main physiological effects of natriuretic peptides are antagonistic to the renin-angiotensin-aldostrol system, but their role in the development of hypertension is still disputable. The aim of this investigation is to estimate using electron microscopy the secretory activities of atrial myoendocrine cells in rats with inherited stress-induced arterial hypertension (ISIAH stain). It has been shown that myoendocrine cells in the ISIAH rats with arterial pressure about 180 mm Hg reveal morphological features of increased synthesis, extra accumulation and release of natriuretic peptides compared with normotensive control rats. In the ISIAH rats treated with losartan (angiotensin II receptor blocker) and therefore having a sustained decrease in arterial pressure to 140 mm Hg, changes in granular pool composition, reduction of the number and diameter of the secretory granules, reduction of Golgi complexes, and increased intracellular degradation of secretory stores were found in the myoendocrine cells. At the same time the marked capillary hyperemia and interstitial edema in the myocardium were observed. Thus, in rats with severe inherited hypertension, the secretory activity of heart myoendocrine cells is sharply increased and directly depends on the arterial blood pressure level. This proves that natriuretic peptides actively participate in the regulation of hemodynamics during with cardiovascular pathology.

  16. Electron-microscopic study of the secretion of the ependymal cells in the domestic cat (ependymin-beta cells).

    PubMed

    Gonzalez-Santander, R

    1979-01-01

    We have studied, by electron microscopy, the ultrastructural aspects of secretion (neurosecretion) of the ependyma of the third ventricle of the domestic cat. We have found cytoplasmic protrusions and isolated masses of cytoplasm, some with homogeneous cytoplasm and others with very dense granulation (protein-beta?). Axons, synaptic terminals and free secretory granules in the ventricular lumen were also seen. The existence of ependymin-beta cells (ependymocyte-beta) and axohormonal buttons is suggested. The ependymal cells are classified into seven types: (1) covering ependymocytes, (2) tanycyt ependymocytes, (3) secretory ependymocytes, (4) ependymocytes-beta, (5) neurosecretory ependymocytes, (6) neurosensorial ependymocytes (crown-like) and (7) supraependymal microgial ependymocytes. A neurohormonal hypothesis and the possible existence of one or more cerebral hormones (neurohormones) are suggested. These hormones would flow into the CSF through some of the ependymal cells (by microapocrine secretion, liberation of neurosecretion granules, or by axohormonal buttons): this could be the most important link in the endocrine system, assuring the functional unity throughout the ventricular system of the cerebrospinal axis which it winds through, although its basic influence is exercised) on the hypophysis level as a vertex of the classical endocrine system.

  17. Rapid association of protein kinase C-epsilon with insulin granules is essential for insulin exocytosis.

    PubMed

    Mendez, Carlos F; Leibiger, Ingo B; Leibiger, Barbara; Høy, Marianne; Gromada, Jesper; Berggren, Per-Olof; Bertorello, Alejandro M

    2003-11-07

    Glucose-dependent exocytosis of insulin requires activation of protein kinase C (PKC). However, because of the great variety of isoforms and their ubiquitous distribution within the beta-cell, it is difficult to predict the importance of a particular isoform and its mode of action. Previous data revealed that two PKC isoforms (alpha and epsilon) translocate to membranes in response to glucose (Zaitzev, S. V., Efendic, S., Arkhammar, P., Bertorello, A. M., and Berggren, P. O. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 9712-9716). Using confocal microscopy, we have now established that in response to glucose, PKC-epsilon but not PKC-alpha associates with insulin granules and that green fluorescent protein-tagged PKC-epsilon changes its distribution within the cell periphery upon stimulation of beta-cells with glucose. Definite evidence of PKC-epsilon requirement during insulin granule exocytosis was obtained by using a dominant negative mutant of this isoform. The presence of this mutant abolished glucose-induced insulin secretion, whereas transient expression of the wild-type PKC-epsilon led to a significant increase in insulin exocytosis. These results suggest that association of PKC-epsilon with insulin granule membranes represents an important component of the secretory network because it is essential for insulin exocytosis in response to glucose.

  18. Heterogeneous integration of adult-generated granule cells into the epileptic brain

    PubMed Central

    Murphy, Brian L.; Pun, Raymund Y.K.; Yin, Hulian; Faulkner, Christian R.; Loepke, Andreas W.; Danzer, Steve C.

    2011-01-01

    The functional impact of adult-generated granule cells in the epileptic brain is unclear, with data supporting both protective and maladaptive roles. These conflicting findings could be explained if new granule cells integrate heterogeneously, with some cells taking neutral or adaptive roles, while others contribute to recurrent circuitry supporting seizures. Here, we tested this hypothesis by completing detailed morphological characterizations of age- and experience-defined cohorts of adult-generated granule cells from transgenic mice. The majority of newborn cells exposed to an epileptogenic insult exhibited reductions in dendritic spine number, suggesting reduced excitatory input to these cells. A significant subset, however, exhibited higher spine numbers. These latter cells tended to have enlarged cell bodies, long basal dendrites or both. Moreover, cells with basal dendrites received significantly more recurrent mossy fiber input through their apical dendrites, indicating that these cells are robustly integrated into the pathological circuitry of the epileptic brain. These data imply that newborn cells play complex – and potentially conflicting – roles in epilepsy. PMID:21209195

  19. Changes in biochemical processes in cerebellar granule cells of mice exposed to methylmercury.

    PubMed

    Bellum, Sairam; Bawa, Bhupinder; Thuett, Kerry A; Stoica, Gheorghe; Abbott, Louise C

    2007-01-01

    At postnatal day 34, male and female C57BL/6J mice were exposed orally once a day to a total of five doses totaling 1.0 or 5.0 mg/kg of methylmercuric chloride or sterile deionized water in moistened rodent chow. Eleven days after the last dose cerebellar granule cells were acutely isolated to measure reactive oxygen species (ROS) levels and mitochondrial membrane potential using CM-H(2)DCFDA and TMRM dyes, respectively. For visualizing intracellular calcium ion distribution using transmission electron microscopy, mice were perfused 11 days after the last dose of methylmercury (MeHg) using the oxalate-pyroantimonate method. Cytosolic and mitochondrial protein fractions from acutely isolated granule cells were analyzed for cytochrome c content using Western blot analysis. Histochemistry (Fluoro-Jade dye) and immunohistochemistry (activated caspase 3) was performed on frozen serial cerebellar sections to label granule cell death and activation of caspase 3, respectively. Granule cells isolated from MeHg-treated mice showed elevated ROS levels and decreased mitochondrial membrane potential when compared to granule cells from control mice. Electron photomicrographs of MeHg-treated granule cells showed altered intracellular calcium ion homeostasis ([Ca(2+)](i)) when compared to control granule cells. However, in spite of these subcellular changes and moderate relocalization of cytochrome c into the cytosol, the concentrations of MeHg used in this study did not produce significant neuronal cell death/apoptosis at the time point examined, as evidenced by Fluoro-Jade and activated caspase 3 immunostaining, respectively. These results demonstrate that short-term in vivo exposure to total doses of 1.0 and 5.0 mg/kg MeHg through the most common exposure route (oral) can result in significant subcellular changes that are not accompanied by overt neuronal cell death.

  20. Rab3A, a possible marker of cortical granules, participates in cortical granule exocytosis in mouse eggs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bello, Oscar Daniel; Cappa, Andrea Isabel; Paola, Matilde de

    Fusion of cortical granules with the oocyte plasma membrane is the most significant event to prevent polyspermy. This particular exocytosis, also known as cortical reaction, is regulated by calcium and its molecular mechanism is still not known. Rab3A, a member of the small GTP-binding protein superfamily, has been implicated in calcium-dependent exocytosis and is not yet clear whether Rab3A participates in cortical granules exocytosis. Here, we examine the involvement of Rab3A in the physiology of cortical granules, particularly, in their distribution during oocyte maturation and activation, and their participation in membrane fusion during cortical granule exocytosis. Immunofluorescence and Western blotmore » analysis showed that Rab3A and cortical granules have a similar migration pattern during oocyte maturation, and that Rab3A is no longer detected after cortical granule exocytosis. These results suggested that Rab3A might be a marker of cortical granules. Overexpression of EGFP-Rab3A colocalized with cortical granules with a Pearson correlation coefficient of +0.967, indicating that Rab3A and cortical granules have almost a perfect colocalization in the egg cortical region. Using a functional assay, we demonstrated that microinjection of recombinant, prenylated and active GST-Rab3A triggered cortical granule exocytosis, indicating that Rab3A has an active role in this secretory pathway. To confirm this active role, we inhibited the function of endogenous Rab3A by microinjecting a polyclonal antibody raised against Rab3A prior to parthenogenetic activation. Our results showed that Rab3A antibody microinjection abolished cortical granule exocytosis in parthenogenetically activated oocytes. Altogether, our findings confirm that Rab3A might function as a marker of cortical granules and participates in cortical granule exocytosis in mouse eggs. - Highlights: • Rab3A has a similar migration pattern to cortical granules in mouse oocytes. • Rab3A can be a

  1. Colchicine induced intraneuronal free zinc accumulation and dentate granule cell degeneration.

    PubMed

    Choi, Bo Young; Lee, Bo Eun; Kim, Jin Hee; Kim, Hyun Jung; Sohn, Min; Song, Hong Ki; Chung, Tae Nyoung; Suh, Sang Won

    2014-08-01

    Colchicine has been discovered to inhibit many inflammatory processes such as gout, familial Mediterranean fever, pericarditis and Behcet disease. Other than these beneficial anti-inflammatory effects, colchicine blocks microtubule-assisted axonal transport, which results in the selective loss of dentate granule cells of the hippocampus. The mechanism of the colchicine-induced dentate granule cell death and depletion of mossy fiber terminals still remains unclear. In the present study, we hypothesized that colchicine-induced dentate granule cell death may be caused by accumulation of labile intracellular zinc. 10 μg kg(-1) of colchicine was injected into the adult rat hippocampus and then brain sections were evaluated at 1 day or 1 week later. Neuronal cell death was evaluated by H&E staining or Fluoro-Jade B. Zinc accumulation and vesicular zinc were detected by N-(6-methoxy-8-quinolyl)-para-toluene sulfonamide (TSQ) staining. To test whether an extracellular zinc chelator can prevent this process, CaEDTA was injected into the hippocampus over a 5 min period with colchicine. To test whether other microtubule toxins also produce similar effects as colchicine, vincristine was injected into the hippocampus. The present study found that colchicine injection induced intracellular zinc accumulation in the dentate granule cells and depleted vesicular zinc from mossy fiber terminals. Injection of a zinc chelator, CaEDTA, did not block the zinc accumulation and neuronal death. Vincristine also produced intracellular zinc accumulation and neuronal death. These results suggest that colchicine-induced dentate granule cell death is caused by blocking axonal zinc flow and accumulation of intracellular labile zinc.

  2. NMDA-receptor dependent synaptic activation of TRPC channels in olfactory bulb granule cells

    PubMed Central

    Stroh, Olga; Freichel, Marc; Kretz, Oliver; Birnbaumer, Lutz; Hartmann, Jana; Egger, Veronica

    2012-01-01

    TRPC channels are widely expressed throughout the nervous system including the olfactory bulb where their function is largely unknown. Here we describe their contribution to central synaptic processing at the reciprocal mitral and tufted cell - granule cell microcircuit, the most abundant synapse of the mammalian olfactory bulb. Suprathreshold activation of the synapse causes sodium action potentials in mouse granule cells and a subsequent long-lasting depolarization (LLD) linked to a global dendritic postsynaptic calcium signal recorded with two-photon laser scanning microscopy. These signals are not observed after action potentials evoked by current injection in the same cells. The LLD persists in the presence of group I metabotropic glutamate receptor antagonists but is entirely absent from granule cells deficient for the NMDA receptor subunit NR1. Moreover, both depolarization and Ca2+ rise are sensitive to the blockade of NMDA receptors. The LLD and the accompanying Ca2+ rise are also absent in granule cells from mice deficient for both TRPC channel subtypes 1 and 4, whereas the deletion of either TRPC1 or TRPC4 results in only a partial reduction of the LLD. Recordings from mitral cells in the absence of both subunits reveal a reduction of asynchronous neurotransmitter release from the granule cells during recurrent inhibition. We conclude that TRPC1 and TRPC4 can be activated downstream of NMDA receptor activation and contribute to slow synaptic transmission in the olfactory bulb, including the calcium dynamics required for asynchronous release from the granule cell spine. PMID:22539836

  3. Functional properties of granule cells with hilar basal dendrites in the epileptic dentate gyrus.

    PubMed

    Kelly, Tony; Beck, Heinz

    2017-01-01

    The maturation of adult-born granule cells and their functional integration into the network is thought to play a key role in the proper functioning of the dentate gyrus. In temporal lobe epilepsy, adult-born granule cells in the dentate gyrus develop abnormally and possess a hilar basal dendrite (HBD). Although morphological studies have shown that these HBDs have synapses, little is known about the functional properties of these HBDs or the intrinsic and network properties of the granule cells that possess these aberrant dendrites. We performed patch-clamp recordings of granule cells within the granule cell layer "normotopic" from sham-control and status epilepticus (SE) animals. Normotopic granule cells from SE animals possessed an HBD (SE + HBD + cells) or not (SE + HBD - cells). Apical and basal dendrites were stimulated using multiphoton uncaging of glutamate. Two-photon Ca 2+ imaging was used to measure Ca 2+ transients associated with back-propagating action potentials (bAPs). Near-synchronous synaptic input integrated linearly in apical dendrites from sham-control animals and was not significantly different in apical dendrites of SE + HBD - cells. The majority of HBDs integrated input linearly, similar to apical dendrites. However, 2 of 11 HBDs were capable of supralinear integration mediated by a dendritic spike. Furthermore, the bAP-evoked Ca 2+ transients were relatively well maintained along HBDs, compared with apical dendrites. This further suggests an enhanced electrogenesis in HBDs. In addition, the output of granule cells from epileptic tissue was enhanced, with both SE + HBD - and SE + HBD + cells displaying increased high-frequency (>100 Hz) burst-firing. Finally, both SE + HBD - and SE + HBD + cells received recurrent excitatory input that was capable of generating APs, especially in the absence of feedback inhibition. Taken together, these data suggest that the enhanced excitability of HBDs combined with the altered intrinsic and network

  4. Turnover of pigment granules: cyclic catabolism and anabolism of ommochromes within epidermal cells.

    PubMed

    Insausti, T C; Casas, J

    2009-12-01

    Ommochromes are end products of the tryptophan metabolism in arthropods. While the anabolism of ommochromes has been well studied, the catabolism is totally unknown. In order to study it, we used the crab-spider Misumena vatia, which is able to change color reversibly in a few days, from yellow to white and back. Ommochromes is the only pigment class responsible for the body coloration in this animal. The aim of this study was to analyze the fine structure of the epidermal cells in bleaching spiders, in an attempt to correlate morphological changes with the fate of the pigment granules. Central to the process of bleaching is the lysis of the ommochrome granules. In the same cell, intact granules and granules in different degradation stages are found. The degradation begins with granule autolysis. Some components are extruded in the extracellular space and others are recycled via autophagy. Abundant glycogen appears associated to granulolysis. In a later stage of bleaching, ommochrome progranules, typical of white spiders, appear in the distal zone of the same epidermal cell. Catabolism and anabolism of pigment granules thus take place simultaneously in spider epidermal cells. A cyclic pathway of pigment granules formation and degradation, throughout a complete cycle of color change is proposed, together with an explanation for this turnover, involving photoprotection against UV by ommochromes metabolites. The presence of this turnover for melanins is discussed.

  5. Formation of tRNA granules in the nucleus of heat-induced human cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyagawa, Ryu; Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654; Mizuno, Rie

    Highlights: Black-Right-Pointing-Pointer tRNAs are tranlocated into the nucleus in heat-induced HeLa cells. Black-Right-Pointing-Pointer tRNAs form the unique granules in the nucleus. Black-Right-Pointing-Pointer tRNA ganules overlap with nuclear stress granules. -- Abstract: The stress response, which can trigger various physiological phenomena, is important for living organisms. For instance, a number of stress-induced granules such as P-body and stress granule have been identified. These granules are formed in the cytoplasm under stress conditions and are associated with translational inhibition and mRNA decay. In the nucleus, there is a focus named nuclear stress body (nSB) that distinguishes these structures from cytoplasmic stress granules.more » Many splicing factors and long non-coding RNA species localize in nSBs as a result of stress. Indeed, tRNAs respond to several kinds of stress such as heat, oxidation or starvation. Although nuclear accumulation of tRNAs occurs in starved Saccharomyces cerevisiae, this phenomenon is not found in mammalian cells. We observed that initiator tRNA{sup Met} (Meti) is actively translocated into the nucleus of human cells under heat stress. During this study, we identified unique granules of Meti that overlapped with nSBs. Similarly, elongator tRNA{sup Met} was translocated into the nucleus and formed granules during heat stress. Formation of tRNA granules is closely related to the translocation ratio. Then, all tRNAs may form the specific granules.« less

  6. Neuroligin-1 overexpression in newborn granule cells in vivo.

    PubMed

    Schnell, Eric; Bensen, Aesoon L; Washburn, Eric K; Westbrook, Gary L

    2012-01-01

    Adult-born dentate granule cells integrate into the hippocampal network, extend neurites and form synapses in otherwise mature tissue. Excitatory and inhibitory inputs innervate these new granule cells in a stereotyped, temporally segregated manner, which presents a unique opportunity to study synapse development in the adult brain. To examine the role of neuroligins as synapse-inducing molecules in vivo, we infected dividing neural precursors in adult mice with a retroviral construct that increased neuroligin-1 levels during granule cell differentiation. By 21 days post-mitosis, exogenous neuroligin-1 was expressed at the tips of dendritic spines and increased the number of dendritic spines. Neuroligin-1-overexpressing cells showed a selective increase in functional excitatory synapses and connection multiplicity by single afferent fibers, as well as an increase in the synaptic AMPA/NMDA receptor ratio. In contrast to its synapse-inducing ability in vitro, neuroligin-1 overexpression did not induce precocious synapse formation in adult-born neurons. However, the dendrites of neuroligin-1-overexpressing cells did have more thin protrusions during an early period of dendritic outgrowth, suggesting enhanced filopodium formation or stabilization. Our results indicate that neuroligin-1 expression selectively increases the degree, but not the onset, of excitatory synapse formation in adult-born neurons.

  7. The effects of exercise and stress on the survival and maturation of adult-generated granule cells

    PubMed Central

    Snyder, Jason S.; Glover, Lucas R.; Sanzone, Kaitlin M.; Kamhi, J. Frances; Cameron, Heather A.

    2009-01-01

    Stress strongly inhibits proliferation of granule cell precursors in the dentate gyrus, while voluntary running has the opposite effect. Few studies, however, have examined the possible effects of these environmental manipulations on the maturation and survival of young granule cells. We examined number of surviving granule cells and the proportion of young neurons that were functionally mature, as defined by seizure-induced immediate-early gene expression, in 14 and 21 day-old granule cells in mice that were given access to a running wheel, restrained daily for 2 hours, or given no treatment during this period. Importantly, treatments began two days after BrdU injection, to isolate effects on survival from those on cell proliferation. We found a large increase in granule cell survival in running mice compared with controls at both time points. In addition, running increased the proportion of granule cells expressing the immediate-early gene Arc in response to seizures, suggesting that it speeds incorporation into circuits, i.e., functional maturation. Stressed mice showed no change in Arc expression, compared to control animals, but, surprisingly, showed a transient increase in survival of 14-day-old granule cells, which was gone 7 days later. Examination of cell proliferation, using the endogenous mitotic marker proliferating cell nuclear antigen (PCNA) showed an increase in cell proliferation after 12 days of running but not after 19 days of running. The number of proliferating cells was unchanged 24 hours after the 12th or 19th episode of daily restraint stress. These findings demonstrate that running has strong effects on survival and maturation of young granule cells as well as their birth and that stress can have positive but short-lived effects on granule cell survival. PMID:19156854

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baconnais, S.; Delavoie, F.; Zahm, J.M.

    The absence or decreased expression of cystic fibrosis transmembrane conductance regulator (CFTR) induces increased Na{sup +} absorption and hyperabsorption of the airway surface liquid (ASL) resulting in a dehydrated and hyperviscous ASL. Although the implication of abnormal airway submucosal gland function has been suggested, the ion and water content in the Cystic Fibrosis (CF) glandular secretory granules, before exocytosis, is unknown. We analyzed, in non-CF and CF human airway glandular cell lines (MM-39 and KM4, respectively), the ion content in the secretory granules by electron probe X-ray microanalysis and the water content by quantitative dark field imaging on freeze-dried cryosections.more » We demonstrated that the ion content (Na{sup +}, Mg{sup 2+}, P, S and Cl{sup -}) is significantly higher and the water content significantly lower in secretory granules from the CF cell line compared to the non-CF cell line. Using videomicroscopy, we observed that the secretory granule expansion was deficient in CF glandular cells. Transfection of CF cells with CFTR cDNA or inhibition of non-CF cells with CFTR{sub inh}-172, respectively restored or decreased the water content and granule expansion, in parallel with changes in ion content. We hypothesize that the decreased water and increased ion content in glandular secretory granules may contribute to the dehydration and increased viscosity of the ASL in CF.« less

  9. Asymmetrical Transmembrane Potential in Intracellular Organelles of Adrenal Chromatin Cells Exposed to Nanosecond Electric Pulses

    NASA Astrophysics Data System (ADS)

    Aramendia Zabaleta, Guillermo Jose

    In our research on exploring the effects of 5 ns, high intensity electric pulses on neurosecretory adrenal chromaffin cells, cell modeling has played an important role in understanding and explaining the experimental results. Externally applied nanosecond-duration electric pulses (NEPs) can affect cells by creating nanopores in the cell and intracellular organelle membranes, making these membranes permeable to certain ions. A chromaffin cell contains, at a minimum, 7000 secretory granules plus other organelles such as mitochondria and the endoplasmic reticulum. In all the biological cell models constructed in the literature, there is no evidence of asymmetrical Transmembrane Potential (TMP) distribution in the intracellular membranes. However, these models do not include a realistic number of intracellular organelles. The goal of this research was to construct a more realistic cell model that incorporates a large number of secretory granules in the cytosol. To this end, a beta-version of the real-valued unstructured mesh Finite Element Method (FEM) electro-quasi-static module in Sim4life (SPEAG, Switzerland) has been used to model a chromaffin cell in which 1000 secretory granules are included in the cytosol. The model is, we believe, the most detailed geometrical cell model developed. It includes a spherical chromaffin cell (radius 8 mum), nucleus (radius 2.5 mum) located off-center, 500 granules (radius 200 nm) randomly located within a distance of 2 mum from the surface of the nucleus, and additional 500 granules randomly located in the remaining region of the cytosol. Cell and granule membrane thickness was set to 5 nm and nuclear membrane thickness to 10 nm. Dielectric properties of all constituents of the model were obtained from the literature or measured. Because the FEM Low Frequency solver is a quasi-static solver and not capable of accepting a time-varying pulse as input, all computations have been performed at single frequencies in the range DC to 60

  10. The Secretory System of Arabidopsis

    PubMed Central

    Bassham, Diane C.; Brandizzi, Federica; Otegui, Marisa S.; Sanderfoot, Anton A.

    2008-01-01

    Over the past few years, a vast amount of research has illuminated the workings of the secretory system of eukaryotic cells. The bulk of this work has been focused on the yeast Saccharomyces cerevisiae, or on mammalian cells. At a superficial level, plants are typical eukaryotes with respect to the operation of the secretory system; however, important differences emerge in the function and appearance of endomembrane organelles. In particular, the plant secretory system has specialized in several ways to support the synthesis of many components of the complex cell wall, and specialized kinds of vacuole have taken on a protein storage role—a role that is intended to support the growing seedling, but has been co-opted to support human life in the seeds of many crop plants. In the past, most research on the plant secretory system has been guided by results in mammalian or fungal systems but recently plants have begun to stand on their own as models for understanding complex trafficking events within the eukaryotic endomembrane system. PMID:22303241

  11. Cerebellar Granule Cell Replenishment Post-Injury by Adaptive Reprogramming of Nestin+ Progenitors

    PubMed Central

    Wojcinski, Alexandre; Lawton, Andrew K.; Bayin, N Sumru.; Lao, Zhimin; Stephen, Daniel N.; Joyner, Alexandra L.

    2017-01-01

    Regeneration of several organs involves adaptive reprogramming of progenitors, however, the intrinsic capacity of the developing brain to replenish lost cells remains largely unknown. In this study, we discovered that the developing cerebellum has unappreciated progenitor plasticity, since it undergoes near full growth and functional recovery following acute depletion of granule cells, the most plentiful neuron population in the brain. We demonstrate that following postnatal ablation of granule cell progenitors, Nestin-expressing progenitors (NEPs) specified during mid-embryogenesis to produce astroglia and interneurons, switch their fate and generate granule neurons in mice. Moreover, Hedgehog-signaling in two NEP populations is crucial not only for the compensatory replenishment of granule neurons but also to scale interneuron and astrocyte numbers. Thus we provide insights into the mechanisms underlying robustness of circuit formation in the cerebellum, and speculate that adaptive reprogramming of progenitors in other brain regions plays a greater role than appreciated in developmental regeneration. PMID:28805814

  12. Environmental enrichment alters dentate granule cell morphology in oldest-old rat.

    PubMed

    Darmopil, Sanja; Petanjek, Zdravko; Mohammed, Abdul H; Bogdanović, Nenad

    2009-08-01

    The hippocampus of aged rats shows marked age-related morphological changes that could cause memory deficits. Experimental evidence has established that environmental enrichment attenuates memory deficits in aged rats. We therefore studied whether environmental enrichment produces morphological changes on the dentate granule cells of aged rats. Fifteen male Sprague-Dawley rats, 24 months of age, were randomly distributed in two groups that were housed under standard (n = 7) or enriched (n = 8) environmental conditions for 26 days. Quantitative data of dendritic morphology from dentate gyrus granule cells were obtained on Golgi-Cox stained sections. Environmental enrichment significantly increased the complexity and size of dendritic tree (total number of segments increased by 61% and length by 116%), and spine density (88% increase). There were large interindividual differences within the enriched group, indicating differential individual responses to environmental stimulation. Previous studies in young animals have shown changes produced by environmental enrichment in the morphology of dentate gyrus granule cells. The results of the present study show that environmental enrichment can also produce changes in dentate granule cell morphology in the senescent brain. In conclusion, the hippocampus retains its neuroplastic capacity during aging, and enriched environmental housing conditions can attenuate age-related dendritic regression and synaptic loss, thus preserving memory functions.

  13. MicroRNAs Promote Granule Cell Expansion in the Cerebellum Through Gli2.

    PubMed

    Constantin, Lena; Wainwright, Brandon J

    2015-12-01

    MicroRNAs (miRNAs) are important regulators of cerebellar function and homeostasis. Their deregulation results in cerebellar neuronal degeneration and spinocerebellar ataxia type 1 and contributes to medulloblastoma. Canonical miRNA processing involves Dicer, which cleaves precursor miRNAs into mature double-stranded RNA duplexes. In order to address the role of miRNAs in cerebellar granule cell precursor development, loxP-flanked exons of Dicer1 were conditionally inactivated using the granule cell precursor-specific Atoh1-Cre recombinase. A reduction of 87% in Dicer1 transcript was achieved in this conditional Dicer knockdown model. Although knockdown resulted in normal survival, mice had disruptions to the cortical layering of the anterior cerebellum, which resulted from the premature differentiation of granule cell precursors in this region during neonatal development. This defect manifested as a thinner external granular layer with ectopic mature granule cells, and a depleted internal granular layer. We found that expression of the activator components of the Hedgehog-Patched pathway, the Gli family of transcription factors, was perturbed in conditional Dicer knockdown mice. We propose that loss of Gli2 mRNA mediated the anterior-restricted defect in conditional Dicer knockdown mice and, as proof of principle, were able to show that miR-106b positively regulated Gli2 mRNA expression. These findings confirm the importance of miRNAs as positive mediators of Hedgehog-Patched signalling during granule cell precursor development.

  14. Changes in the oviducal epithelium during the estrous cycle in the marsupial Monodelphis domestica

    PubMed Central

    Kress, Annetrudi; Morson, Gianni

    2007-01-01

    The Monodelphis oviduct can be divided into four anatomical segments: preampulla (comprising fimbriae and infundibulum), ampulla, isthmus with crypts and uterotubal junction. Ovaries are enclosed in a periovarial sac, the bursa, and in some specimens tubules of an epoophoron could be identified. In both structures non-ciliated cells develop small translucent vesicles, which accumulate in the cell apices and presumably produce fluid as often seen in the bursa and in the tubules of the epooophoron. These vesicles do not stain with Alcian blue or PAS. The same applies also to the non-ciliated cells of the fimbriae. The oviducal epithelium of ampulla and the surface epithelium of the isthmus consisting of ciliated and non-ciliated, secretory cells undergo considerable changes during the estrous cycle. Proestrus shows low numbers of ciliated cells, some are in the process of neo-ciliogenesis, non-ciliated cells carry solitary cilia and few remnant secretory granules from the previous cycle may be found. At estrus the amount of ciliated cells in ampulla and isthmus has increased, most non-cililated cells lost the solitary cilia, developed longer microvilli and formed numerous secretory granules in their cell apices. At postestrus secretory products, often surrounded by membranes, are extruded into the oviducal lumen and contribute towards egg coat formation. First signs of deciliation processes are apparent. Solitary cilia reappear. At metestrus only few secretory cells are left with some secretory material. The lumen is often filled with shed cilia and cell apices. Proliferation of basal bodies within non-secretory cells indicate the formation of new ciliated cells. The non-ciliated epithelial cells of the isthmic crypts form no secretory granules but accumulate a great number of translucent vesicles, which in contrast to the secretory granules do not stain with Alcian blue or PAS. PMID:17883438

  15. LKB1 Regulates Cerebellar Development by Controlling Sonic Hedgehog-mediated Granule Cell Precursor Proliferation and Granule Cell Migration.

    PubMed

    Men, Yuqin; Zhang, Aizhen; Li, Haixiang; Jin, Yecheng; Sun, Xiaoyang; Li, Huashun; Gao, Jiangang

    2015-11-09

    The Liver Kinase B1 (LKB1) gene plays crucial roles in cell differentiation, proliferation and the establishment of cell polarity. We created LKB1 conditional knockout mice (LKB1(Atoh1) CKO) to investigate the function of LKB1 in cerebellar development. The LKB1(Atoh1) CKO mice displayed motor dysfunction. In the LKB1(Atoh1) CKO cerebellum, the overall structure had a larger volume and more lobules. LKB1 inactivation led to an increased proliferation of granule cell precursors (GCPs), aberrant granule cell migration and overproduction of unipolar brush cells. To investigate the mechanism underlying the abnormal foliation, we examined sonic hedgehog signalling (Shh) by testing its transcriptional mediators, the Gli proteins, which regulate the GCPs proliferation and cerebellar foliation during cerebellar development. The expression levels of Gli genes were significantly increased in the mutant cerebellum. In vitro assays showed that the proliferation of cultured GCPs from mutant cerebellum significantly increased, whereas the proliferation of mutant GCPs significantly decreased in the presence of a Shh inhibitor GDC-0049. Thus, LKB1 deficiency in the LKB1(Atoh1) CKO mice enhanced Shh signalling, leading to the excessive GCP proliferation and the formation of extra lobules. We proposed that LKB1 regulates cerebellar development by controlling GCPs proliferation through Shh signalling during cerebellar development.

  16. LKB1 Regulates Cerebellar Development by Controlling Sonic Hedgehog-mediated Granule Cell Precursor Proliferation and Granule Cell Migration

    PubMed Central

    Men, Yuqin; Zhang, Aizhen; Li, Haixiang; Jin, Yecheng; Sun, Xiaoyang; Li, Huashun; Gao, Jiangang

    2015-01-01

    The Liver Kinase B1 (LKB1) gene plays crucial roles in cell differentiation, proliferation and the establishment of cell polarity. We created LKB1 conditional knockout mice (LKB1Atoh1 CKO) to investigate the function of LKB1 in cerebellar development. The LKB1Atoh1 CKO mice displayed motor dysfunction. In the LKB1Atoh1 CKO cerebellum, the overall structure had a larger volume and morelobules. LKB1 inactivationled to an increased proliferation of granule cell precursors (GCPs), aberrant granule cell migration and overproduction of unipolar brush cells. To investigate the mechanism underlying the abnormal foliation, we examined sonic hedgehog signalling (Shh) by testing its transcriptional mediators, the Gli proteins, which regulate the GCPs proliferation and cerebellar foliation during cerebellar development. The expression levels of Gli genes were significantly increased in the mutant cerebellum. In vitro assays showed that the proliferation of cultured GCPs from mutant cerebellum significantly increased, whereas the proliferation of mutant GCPs significantly decreased in the presence of a Shh inhibitor GDC-0049. Thus, LKB1 deficiency in the LKB1Atoh1 CKO mice enhanced Shh signalling, leading to the excessive GCP proliferation and the formation of extra lobules. We proposed that LKB1 regulates cerebellar development by controlling GCPs proliferation through Shh signalling during cerebellar development. PMID:26549569

  17. A Role for Glutamate Transporters in the Regulation of Insulin Secretion

    PubMed Central

    Gammelsaeter, Runhild; Coppola, Thierry; Marcaggi, Païkan; Storm-Mathisen, Jon; Chaudhry, Farrukh A.; Attwell, David; Regazzi, Romano; Gundersen, Vidar

    2011-01-01

    In the brain, glutamate is an extracellular transmitter that mediates cell-to-cell communication. Prior to synaptic release it is pumped into vesicles by vesicular glutamate transporters (VGLUTs). To inactivate glutamate receptor responses after release, glutamate is taken up into glial cells or neurons by excitatory amino acid transporters (EAATs). In the pancreatic islets of Langerhans, glutamate is proposed to act as an intracellular messenger, regulating insulin secretion from β-cells, but the mechanisms involved are unknown. By immunogold cytochemistry we show that insulin containing secretory granules express VGLUT3. Despite the fact that they have a VGLUT, the levels of glutamate in these granules are low, indicating the presence of a protein that can transport glutamate out of the granules. Surprisingly, in β-cells the glutamate transporter EAAT2 is located, not in the plasma membrane as it is in brain cells, but exclusively in insulin-containing secretory granules, together with VGLUT3. In EAAT2 knock out mice, the content of glutamate in secretory granules is higher than in wild type mice. These data imply a glutamate cycle in which glutamate is carried into the granules by VGLUT3 and carried out by EAAT2. Perturbing this cycle by knocking down EAAT2 expression with a small interfering RNA, or by over-expressing EAAT2 or a VGLUT in insulin granules, significantly reduced the rate of granule exocytosis. Simulations of granule energetics suggest that VGLUT3 and EAAT2 may regulate the pH and membrane potential of the granules and thereby regulate insulin secretion. These data suggest that insulin secretion from β-cells is modulated by the flux of glutamate through the secretory granules. PMID:21853059

  18. The effect of hepatocyte growth factor on secretory functions in human eosinophils.

    PubMed

    Yamauchi, Yumiko; Ueki, Shigeharu; Konno, Yasunori; Ito, Wataru; Takeda, Masahide; Nakamura, Yuka; Nishikawa, Junko; Moritoki, Yuki; Omokawa, Ayumi; Saga, Tomoo; Hirokawa, Makoto

    2016-12-01

    Hepatocyte growth factor (HGF), originally identified as a potent mitogen for mature hepatocytes, is now recognized as a humoral mediator in inflammatory and immune responses. Previous studies indicated that HGF negatively regulated allergic airway inflammation. In view of eosinophils playing a role in the pathogenesis of asthma, especially in airway remodeling as a rich source of pro-fibrogenic mediators, the effects of HGF on the different types of eosinophil secretory functions were examined in this study. We found that HGF significantly inhibited IL-5-induced secretion of TGF-β and VEGF from human eosinophils. The inhibitory effect is not associated with TGF-β transcription; rather, it is associated with ultrastructural granule emptying and loss of intracellular TGF-β contents, indicating HGF inhibits the process of piecemeal degranulation. The effect of HGF on extracellular trap cell death (ETosis) that mediates cytolytic degranulation was also investigated; however, immobilized IgG- or phorbol myristate acetate-induced ETosis was only minimally attenuated by HGF. These results reveal the effect of HGF on the distinct pathways of eosinophil secretory functions and also provide novel insights into the role of HGF in the pathogenesis of allergic inflammation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Nitric oxide inhibits exocytosis of cytolytic granules from lymphokine-activated killer cells

    PubMed Central

    Ferlito, Marcella; Irani, Kaikobad; Faraday, Nauder; Lowenstein, Charles J.

    2006-01-01

    NO inhibits cytotoxic T lymphocyte killing of target cells, although the precise mechanism is unknown. We hypothesized that NO decreases exocytosis of cytotoxic granules from activated lymphocytes. We now show that NO inhibits lymphokine-activated killer cell killing of K562 target cells. Exogenous and endogenous NO decreases the release of granzyme B, granzyme A, and perforin: all contents of cytotoxic granules. NO inhibits the signal transduction cascade initiated by cross-linking of the T cell receptor that leads to granule exocytosis. In particular, we found that NO decreases the expression of Ras, a critical signaling component within the exocytic pathway. Ectopic expression of Ras prevents NO inhibition of exocytosis. Our data suggest that Ras mediates NO inhibition of lymphocyte cytotoxicity and emphasize that alterations in the cellular redox state may regulate the exocytic signaling pathway. PMID:16857739

  20. Microbiota promote secretory cell determination in the intestinal epithelium by modulating host Notch signaling.

    PubMed

    Troll, Joshua V; Hamilton, M Kristina; Abel, Melissa L; Ganz, Julia; Bates, Jennifer M; Stephens, W Zac; Melancon, Ellie; van der Vaart, Michiel; Meijer, Annemarie H; Distel, Martin; Eisen, Judith S; Guillemin, Karen

    2018-02-23

    Resident microbes promote many aspects of host development, although the mechanisms by which microbiota influence host tissues remain unclear. We showed previously that the microbiota is required for allocation of appropriate numbers of secretory cells in the zebrafish intestinal epithelium. Because Notch signaling is crucial for secretory fate determination, we conducted epistasis experiments to establish whether the microbiota modulates host Notch signaling. We also investigated whether innate immune signaling transduces microbiota cues via the Myd88 adaptor protein. We provide the first evidence that microbiota-induced, Myd88-dependent signaling inhibits host Notch signaling in the intestinal epithelium, thereby promoting secretory cell fate determination. These results connect microbiota activity via innate immune signaling to the Notch pathway, which also plays crucial roles in intestinal homeostasis throughout life and when impaired can result in chronic inflammation and cancer. © 2018. Published by The Company of Biologists Ltd.

  1. Model cerebellar granule cells can faithfully transmit modulated firing rate signals

    PubMed Central

    Rössert, Christian; Solinas, Sergio; D'Angelo, Egidio; Dean, Paul; Porrill, John

    2014-01-01

    A crucial assumption of many high-level system models of the cerebellum is that information in the granular layer is encoded in a linear manner. However, granule cells are known for their non-linear and resonant synaptic and intrinsic properties that could potentially impede linear signal transmission. In this modeling study we analyse how electrophysiological granule cell properties and spike sampling influence information coded by firing rate modulation, assuming no signal-related, i.e., uncorrelated inhibitory feedback (open-loop mode). A detailed one-compartment granule cell model was excited in simulation by either direct current or mossy-fiber synaptic inputs. Vestibular signals were represented as tonic inputs to the flocculus modulated at frequencies up to 20 Hz (approximate upper frequency limit of vestibular-ocular reflex, VOR). Model outputs were assessed using estimates of both the transfer function, and the fidelity of input-signal reconstruction measured as variance-accounted-for. The detailed granule cell model with realistic mossy-fiber synaptic inputs could transmit information faithfully and linearly in the frequency range of the vestibular-ocular reflex. This was achieved most simply if the model neurons had a firing rate at least twice the highest required frequency of modulation, but lower rates were also adequate provided a population of neurons was utilized, especially in combination with push-pull coding. The exact number of neurons required for faithful transmission depended on the precise values of firing rate and noise. The model neurons were also able to combine excitatory and inhibitory signals linearly, and could be replaced by a simpler (modified) integrate-and-fire neuron in the case of high tonic firing rates. These findings suggest that granule cells can in principle code modulated firing-rate inputs in a linear manner, and are thus consistent with the high-level adaptive-filter model of the cerebellar microcircuit. PMID:25352777

  2. Light scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation.

    PubMed

    Slaninova, Eva; Sedlacek, Petr; Mravec, Filip; Mullerova, Lucie; Samek, Ota; Koller, Martin; Hesko, Ondrej; Kucera, Dan; Marova, Ivana; Obruca, Stanislav

    2018-02-01

    Numerous prokaryotes accumulate polyhydroxyalkanoates (PHA) in the form of intracellular granules. The primary function of PHA is the storage of carbon and energy. Nevertheless, there are numerous reports that the presence of PHA granules in microbial cells enhances their stress resistance and fitness when exposed to various stress factors. In this work, we studied the protective mechanism of PHA granules against UV irradiation employing Cupriavidus necator as a model bacterial strain. The PHA-accumulating wild type strain showed substantially higher UV radiation resistance than the PHA non-accumulating mutant. Furthermore, the differences in UV-Vis radiation interactions with both cell types were studied using various spectroscopic approaches (turbidimetry, absorption spectroscopy, and nephelometry). Our results clearly demonstrate that intracellular PHA granules efficiently scatter UV radiation, which provides a substantial UV-protective effect for bacterial cells and, moreover, decreases the intracellular level of reactive oxygen species in UV-challenged cells. The protective properties of the PHA granules are enhanced by the fact that granules specifically bind to DNA, which in turn provides shield-like protection of DNA as the most UV-sensitive molecule. To conclude, the UV-protective action of PHA granules adds considerable value to their primary storage function, which can be beneficial in numerous environments.

  3. Protein kinases are associated with multiple, distinct cytoplasmic granules in quiescent yeast cells.

    PubMed

    Shah, Khyati H; Nostramo, Regina; Zhang, Bo; Varia, Sapna N; Klett, Bethany M; Herman, Paul K

    2014-12-01

    The cytoplasm of the eukaryotic cell is subdivided into distinct functional domains by the presence of a variety of membrane-bound organelles. The remaining aqueous space may be further partitioned by the regulated assembly of discrete ribonucleoprotein (RNP) complexes that contain particular proteins and messenger RNAs. These RNP granules are conserved structures whose importance is highlighted by studies linking them to human disorders like amyotrophic lateral sclerosis. However, relatively little is known about the diversity, composition, and physiological roles of these cytoplasmic structures. To begin to address these issues, we examined the cytoplasmic granules formed by a key set of signaling molecules, the protein kinases of the budding yeast Saccharomyces cerevisiae. Interestingly, a significant fraction of these proteins, almost 20%, was recruited to cytoplasmic foci specifically as cells entered into the G0-like quiescent state, stationary phase. Colocalization studies demonstrated that these foci corresponded to eight different granules, including four that had not been reported previously. All of these granules were found to rapidly disassemble upon the resumption of growth, and the presence of each was correlated with cell viability in the quiescent cultures. Finally, this work also identified new constituents of known RNP granules, including the well-characterized processing body and stress granule. The composition of these latter structures is therefore more varied than previously thought and could be an indicator of additional biological activities being associated with these complexes. Altogether, these observations indicate that quiescent yeast cells contain multiple distinct cytoplasmic granules that may make important contributions to their long-term survival. Copyright © 2014 by the Genetics Society of America.

  4. Alpha 1-protease inhibitor moderates human neutrophil elastase-induced emphysema and secretory cell metaplasia in hamsters.

    PubMed

    Stone, P J; Lucey, E C; Virca, G D; Christensen, T G; Breuer, R; Snider, G L

    1990-06-01

    A study was undertaken to determine whether emphysema and airway secretory cell metaplasia, induced in hamsters by intratracheal treatment with human neutrophil elastase (HNE), could be moderated by pretreatment with human alpha 1-protease inhibitor (API). API (4.9 mg) was given intratracheally to hamsters 1 h before 0.3 mg HNE. Eight weeks later, lung volumes and pressure-volume relationships were measured in the anaesthetized animals. Mean linear intercepts and secretory cell indices were measured in lung sections. API given 1 h before HNE moderated the development of bronchial secretory cell metaplasia. The severity of emphysema was reduced by 75%. Clearance studies indicated that 80% of the functional activity of instilled API could be lavaged from the lungs after 1 h, indicating a 4 h half-life in the lavageable compartment of the lungs. We calculate that for 50% protection from emphysema the molar ratio of lavageable API to HNE at the time of HNE instillation was 4.8 as compared with 0.78 for 50% inhibition of elastolytic activity in vitro, indicating that API is only 16% as efficient in vivo as compared with its in vitro HNE inhibitory effectiveness. Nevertheless, we conclude that human API given intratracheally is efficacious against HNE-induced emphysema and secretory cell metaplasia.

  5. CCL11 elicits secretion of RNases from mouse eosinophils and their cell-free granules

    PubMed Central

    Shamri, Revital; Melo, Rossana C. N.; Young, Kristen M.; Bivas-Benita, Maytal; Xenakis, Jason J.; Spencer, Lisa A.; Weller, Peter F.

    2012-01-01

    Rapid secretion of eosinophil-associated RNases (EARs), such as the human eosinophilic cationic protein (ECP), from intracellular granules is central to the role of eosinophils in allergic diseases and host immunity. Our knowledge regarding allergic inflammation has advanced based on mouse experimental models. However, unlike human eosinophils, capacities of mouse eosinophils to secrete granule proteins have been controversial. To study mechanisms of mouse eosinophil secretion and EAR release, we combined an RNase assay of mouse EARs with ultrastructural studies. In vitro, mouse eosinophils stimulated with the chemokine eotaxin-1 (CCL11) secreted enzymatically active EARs (EC50 5 nM) by piecemeal degranulation. In vivo, in a mouse model of allergic airway inflammation, increased airway eosinophil infiltration (24-fold) correlated with secretion of active RNases (3-fold). Moreover, we found that eosinophilic inflammation in mice can involve eosinophil cytolysis and release of cell-free granules. Cell-free mouse eosinophil granules expressed functional CCR3 receptors and secreted their granule proteins, including EAR and eosinophil peroxidase in response to CCL11. Collectively, these data demonstrate chemokine-dependent secretion of EARs from both intact mouse eosinophils and their cell-free granules, findings pertinent to understanding the pathogenesis of eosinophil-associated diseases, in which EARs are key factors.—Shamri, R., Melo, R. C. N., Young, K. M., B.-B, M., Xenakis, J. J., Spencer, L. A., Weller, P. F. CCL11 elicits secretion of RNases from mouse eosinophils and their cell-free granules. PMID:22294786

  6. Morphologic Integration of Hilar Ectopic Granule Cells into Dentate Gyrus Circuitry in the Pilocarpine Model of Temporal Lobe Epilepsy

    PubMed Central

    Cameron, Michael C.; Zhan, Ren-Zhi; Nadler, J. Victor

    2014-01-01

    After pilocarpine-induced status epilepticus, many granule cells born into the postseizure environment migrate aberrantly into the dentate hilus. Hilar ectopic granule cells (HEGCs) are hyperexcitable and may therefore increase circuit excitability. This study determined the distribution of their axons and dendrites. HEGCs and normotopic granule cells were filled with biocytin during whole-cell patch clamp recording in hippocampal slices from pilocarpine-treated rats. The apical dendrite of 86% of the biocytin-labeled HEGCs extended to the outer edge of the dentate molecular layer. The total length and branching of HEGC apical dendrites that penetrated the molecular layer were significantly reduced compared with apical dendrites of normotopic granule cells. HEGCs were much more likely to have a hilar basal dendrite than normotopic granule cells. They were about as likely as normotopic granule cells to project to CA3 pyramidal cells within the slice, but were much more likely to send at least one recurrent mossy fiber into the molecular layer. HEGCs with burst capability had less well-branched apical dendrites than nonbursting HEGCs, their dendrites were more likely to be confined to the hilus, and some exhibited dendritic features similar to those of immature granule cells. HEGCs thus have many paths along which to receive synchronized activity from normotopic granule cells and to transmit their own hyperactivity to both normotopic granule cells and CA3 pyramidal cells. They may therefore contribute to the highly interconnected granule cell hubs that have been proposed as crucial to development of a hyperexcitable, potentially seizure-prone circuit. PMID:21455997

  7. The Low-Threshold Calcium Channel Cav3.2 Mediates Burst Firing of Mature Dentate Granule Cells

    PubMed Central

    Dumenieu, Mael; Senkov, Oleg; Mironov, Andrey; Bourinet, Emmanuel; Kreutz, Michael R; Dityatev, Alexander; Heine, Martin; Bikbaev, Arthur

    2018-01-01

    Abstract Mature granule cells are poorly excitable neurons that were recently shown to fire action potentials, preferentially in bursts. It is believed that the particularly pronounced short-term facilitation of mossy fiber synapses makes granule cell bursting a very effective means of properly transferring information to CA3. However, the mechanism underlying the unique bursting behavior of mature granule cells is currently unknown. Here, we show that Cav3.2 T-type channels at the axon initial segment are responsible for burst firing of mature granule cells in rats and mice. Accordingly, Cav3.2 knockout mice fire tonic spikes and exhibit impaired bursting, synaptic plasticity and dentate-to-CA3 communication. The data show that Cav3.2 channels are strong modulators of bursting and can be considered a critical molecular switch that enables effective information transfer from mature granule cells to the CA3 pyramids. PMID:29790938

  8. The regulated secretory pathway and human disease: insights from gene variants and single nucleotide polymorphisms.

    PubMed

    Lin, Wei-Jye; Salton, Stephen R

    2013-01-01

    The regulated secretory pathway provides critical control of peptide, growth factor, and hormone release from neuroendocrine and endocrine cells, and neurons, maintaining physiological homeostasis. Propeptides and prohormones are packaged into dense core granules (DCGs), where they frequently undergo tissue-specific processing as the DCG matures. Proteins of the granin family are DCG components, and although their function is not fully understood, data suggest they are involved in DCG formation and regulated protein/peptide secretion, in addition to their role as precursors of bioactive peptides. Association of gene variation, including single nucleotide polymorphisms (SNPs), with neuropsychiatric, endocrine, and metabolic diseases, has implicated specific secreted proteins and peptides in disease pathogenesis. For example, a SNP at position 196 (G/A) of the human brain-derived neurotrophic factor gene dysregulates protein processing and secretion and leads to cognitive impairment. This suggests more generally that variants identified in genes encoding secreted growth factors, peptides, hormones, and proteins involved in DCG biogenesis, protein processing, and the secretory apparatus, could provide insight into the process of regulated secretion as well as disorders that result when it is impaired.

  9. STUDIES ON RENAL JUXTAGLOMERULAR CELLS

    PubMed Central

    Hartroft, Phyllis Merritt; Hartroft, W. Stanley

    1953-01-01

    Accumulation of granules in the juxtaglomerular cells occurred in rats which were maintained for 5 to 6 weeks on a diet low in sodium, chloride. Cytological evidence suggests that this was probably a storage phase of secretion following a decrease in the rate of liberation of the granules. Administration of DCA (desoxycorticosterone acetate) to salt-deficient rats did not alter this appearance of the juxtaglomerular cells. Two per cent sodium chloride taken in the drinking water consumed for 4 weeks by similar animals caused degranulation of the juxtaglomerular cells. This effect was enhanced by DCA. DCA administered to animals on a normal salt intake produced a lesser degree of degranulation. Cytological changes in degranulated cells suggested that these represent a stage of hyperactivity in the secretory cycle produced by an increase in the rate of liberation of granules. A hypothesis is suggested that the juxtaglomerular cells are involved in the hormonal regulation of sodium metabolism and/or blood pressure. PMID:13052809

  10. Vesicular trafficking of immune mediators in human eosinophils revealed by immunoelectron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melo, Rossana C.N., E-mail: rossana.melo@ufjf.edu.br; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 943, Boston, MA 02215; Weller, Peter F.

    Electron microscopy (EM)-based techniques are mostly responsible for our current view of cell morphology at the subcellular level and continue to play an essential role in biological research. In cells from the immune system, such as eosinophils, EM has helped to understand how cells package and release mediators involved in immune responses. Ultrastructural investigations of human eosinophils enabled visualization of secretory processes in detail and identification of a robust, vesicular trafficking essential for the secretion of immune mediators via a non-classical secretory pathway associated with secretory (specific) granules. This vesicular system is mainly organized as large tubular-vesicular carriers (Eosinophil Sombreromore » Vesicles – EoSVs) actively formed in response to cell activation and provides a sophisticated structural mechanism for delivery of granule-stored mediators. In this review, we highlight the application of EM techniques to recognize pools of immune mediators at vesicular compartments and to understand the complex secretory pathway within human eosinophils involved in inflammatory and allergic responses. - Highlights: • Application of EM to understand the complex secretory pathway in human eosinophils. • EM techniques reveal an active vesicular system associated with secretory granules. • Tubular vesicles are involved in the transport of granule-derived immune mediators.« less

  11. Snapshot 3D tracking of insulin granules in live cells

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolei; Huang, Xiang; Gdor, Itay; Daddysman, Matthew; Yi, Hannah; Selewa, Alan; Haunold, Theresa; Hereld, Mark; Scherer, Norbert F.

    2018-02-01

    Rapid and accurate volumetric imaging remains a challenge, yet has the potential to enhance understanding of cell function. We developed and used a multifocal microscope (MFM) for 3D snapshot imaging to allow 3D tracking of insulin granules labeled with mCherry in MIN6 cells. MFM employs a special diffractive optical element (DOE) to simultaneously image multiple focal planes. This simultaneous acquisition of information determines the 3D location of single objects at a speed only limited by the array detector's frame rate. We validated the accuracy of MFM imaging/tracking with fluorescence beads; the 3D positions and trajectories of single fluorescence beads can be determined accurately over a wide range of spatial and temporal scales. The 3D positions and trajectories of single insulin granules in a 3.2um deep volume were determined with imaging processing that combines 3D decovolution, shift correction, and finally tracking using the Imaris software package. We find that the motion of the granules is superdiffusive, but less so in 3D than 2D for cells grown on coverslip surfaces, suggesting an anisotropy in the cytoskeleton (e.g. microtubules and action).

  12. Odontogenic Differentiation of Human Dental Pulp Stem Cells Stimulated by the Calcium Phosphate Porous Granules

    PubMed Central

    Nam, Sunyoung; Won, Jong-Eun; Kim, Cheol-Hwan; Kim, Hae-Won

    2011-01-01

    Effects of three-dimensional (3D) calcium phosphate (CaP) porous granules on the growth and odontogenic differentiation of human dental pulp stem cells (hDPSCs) were examined for dental tissue engineering. hDPSCs isolated from adult human dental pulps were cultured for 3-4 passages, and populated on porous granules. Cell growth on the culture dish showed an ongoing increase for up to 21 days, whereas the growth on the 3D granules decreased after 14 days. This reduction in proliferative potential on the 3D granules was more conspicuous under the osteogenic medium conditions, indicating that the 3D granules may induce the odontogenic differentiation of hDPSCs. Differentiation behavior on the 3D granules was confirmed by the increased alkaline phosphatase activity, up-regulation of odontoblast-specific genes, including dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP1) by quantitative polymerase chain reaction, and greater level of dentin sialoprotein synthesis by western blot. Moreover, the cellular mineralization, as assessed by Alizarin red S and calcium quantification, was significantly higher in the 3D CaP granules than in the culture dish. Taken all, the 3D CaP porous granules should be useful for dental tissue engineering in combination with hDPSCs by providing favorable 3D substrate conditions for cell growth and odontogenic development. PMID:21772958

  13. DEPS-1 promotes P-granule assembly and RNA interference in C. elegans germ cells

    PubMed Central

    Spike, Caroline A.; Bader, Jason; Reinke, Valerie; Strome, Susan

    2008-01-01

    P granules are germ-cell-specific cytoplasmic structures containing RNA and protein, and required for proper germ cell development in C. elegans. PGL-1 and GLH-1 were previously identified as critical components of P granules. We have identified a new P-granule-associated protein, DEPS-1, the loss of which disrupts P-granule structure and function. DEPS-1 is required for the proper localization of PGL-1 to P granules, the accumulation of glh-1 mRNA and protein, and germ cell proliferation and fertility at elevated temperatures. In addition, DEPS-1 is required for RNA interference (RNAi) of germline-expressed genes, possibly because DEPS-1 promotes the accumulation of RDE-4, a dsRNA-binding protein required for RNAi. A genome wide analysis of gene expression in deps-1 mutant germ lines identified additional targets of DEPS-1 regulation, many of which are also regulated by the RNAi factor RDE-3. Our studies suggest that DEPS-1 is a key component of the P-granule assembly pathway and that its roles include promoting accumulation of some mRNAs, such as glh-1 and rde-4, and reducing accumulation of other mRNAs, perhaps by collaborating with RDE-3 to generate endogenous short interfering RNAs (endo-siRNAs). PMID:18234720

  14. DEPS-1 promotes P-granule assembly and RNA interference in C. elegans germ cells.

    PubMed

    Spike, Caroline A; Bader, Jason; Reinke, Valerie; Strome, Susan

    2008-03-01

    P granules are germ-cell-specific cytoplasmic structures containing RNA and protein, and required for proper germ cell development in C. elegans. PGL-1 and GLH-1 were previously identified as critical components of P granules. We have identified a new P-granule-associated protein, DEPS-1, the loss of which disrupts P-granule structure and function. DEPS-1 is required for the proper localization of PGL-1 to P granules, the accumulation of glh-1 mRNA and protein, and germ cell proliferation and fertility at elevated temperatures. In addition, DEPS-1 is required for RNA interference (RNAi) of germline-expressed genes, possibly because DEPS-1 promotes the accumulation of RDE-4, a dsRNA-binding protein required for RNAi. A genome wide analysis of gene expression in deps-1 mutant germ lines identified additional targets of DEPS-1 regulation, many of which are also regulated by the RNAi factor RDE-3. Our studies suggest that DEPS-1 is a key component of the P-granule assembly pathway and that its roles include promoting accumulation of some mRNAs, such as glh-1 and rde-4, and reducing accumulation of other mRNAs, perhaps by collaborating with RDE-3 to generate endogenous short interfering RNAs (endo-siRNAs).

  15. Secretory Structure, Histochemistry and Phytochemistry Analyses of Stimulant Plant

    NASA Astrophysics Data System (ADS)

    Umah, C.; Dorly; Sulistyaningsih, Y. C.

    2017-03-01

    Plants that are used as stimulant supposed to contains various metabolit compounds that are produced or secreted by secretory structures. This study aimed to identify the secretory structure of plant used as stimulant and chemical compounds accumulated in it. The secretory structure and its histochemistry were observed on plant material that are used as herbal ingredient. Phytochemical content was analyzed by using a qualitative test. The result showed that the idioblast cells and secretory cavities were found in the leaves of Decaspermum fruticosum, and Polyalthia rumphii. Most idioblast cells contained lipophilic substances and terpenoids or alkaloids, while secretory cavity contained alkaloid. Phytochemical analysis for D. fruticosum, and P. rumphii contain terpenoids, phenols, steroids, and flavonoids

  16. The role of F-actin in the transport and secretion of chromaffin granules: an historic perspective.

    PubMed

    Gutiérrez, Luis M; Villanueva, José

    2018-01-01

    Actin is one of the most ubiquitous protein playing fundamental roles in a variety of cellular processes. Since early in the 1980s, it was evident that filamentous actin (F-actin) formed a peripheral cortical barrier that prevented vesicles to access secretory sites in chromaffin cells in culture. Later, around 2000, it was described that the F-actin structure accomplishes a dual role serving both vesicle transport and retentive purposes and undergoing dynamic transient changes during cell stimulation. The complex role of the F-actin cytoskeleton in neuroendocrine secretion was further evidenced when it has been proved to participate in the scaffold structure holding together the secretory machinery at active sites and participate in the generation of mechanical forces that drive the opening of the fusion pore, during the first decade of the present century. The complex vision of the multiple roles of F-actin in secretion we have acquired to date comes largely from studies performed on traditional 2D cultures of primary cells; however, recent evidences suggest that these may not accurately mimic the 3D in vivo environment, and thus, more work is now needed on adrenomedullary cells kept in a more "native" configuration to fully understand the role of F-actin in regulating chromaffin granule transport and secretion under physiological conditions.

  17. Direct conversion of injury-site myeloid cells to fibroblast-like cells of granulation tissue.

    PubMed

    Sinha, Mithun; Sen, Chandan K; Singh, Kanhaiya; Das, Amitava; Ghatak, Subhadip; Rhea, Brian; Blackstone, Britani; Powell, Heather M; Khanna, Savita; Roy, Sashwati

    2018-03-05

    Inflammation, following injury, induces cellular plasticity as an inherent component of physiological tissue repair. The dominant fate of wound macrophages is unclear and debated. Here we show that two-thirds of all granulation tissue fibroblasts, otherwise known to be of mesenchymal origin, are derived from myeloid cells which are likely to be wound macrophages. Conversion of myeloid to fibroblast-like cells is impaired in diabetic wounds. In cross-talk between keratinocytes and myeloid cells, miR-21 packaged in extracellular vesicles (EV) is required for cell conversion. EV from wound fluid of healing chronic wound patients is rich in miR-21 and causes cell conversion more effectively compared to that by fluid from non-healing patients. Impaired conversion in diabetic wound tissue is rescued by targeted nanoparticle-based delivery of miR-21 to macrophages. This work introduces a paradigm wherein myeloid cells are recognized as a major source of fibroblast-like cells in the granulation tissue.

  18. Granule Exocytosis Contributes to Priming and Activation of the Human Neutrophil Respiratory Burst

    PubMed Central

    Uriarte, Silvia M.; Rane, Madhavi J.; Luerman, Gregory C.; Barati, Michelle T.; Ward, Richard A.; Nauseef, William M.; McLeish, Kenneth R.

    2013-01-01

    The role of exocytosis in the human neutrophil respiratory burst was determined using a fusion protein (TAT–SNAP-23) containing the HIV transactivator of transcription (TAT) cell-penetrating sequence and the N-terminal SNARE domain of synaptosome-associated protein-23 (SNAP-23). This agent inhibited stimulated exocytosis of secretory vesicles and gelatinase and specific granules but not azurophil granules. GST pulldown showed that TAT–SNAP-23 bound to the combination of vesicle-associated membrane protein-2 and syntaxin-4 but not to either individually. TAT–SNAP-23 reduced phagocytosis-stimulated hydrogen peroxide production by 60% without affecting phagocytosis or generation of HOCl within phagosomes. TAT–SNAP-23 had no effect on fMLF-stimulated superoxide release but significantly inhibited priming of this response by TNF-α and platelet-activating factor. Pretreatment with TAT–SNAP-23 inhibited the increase in plasma membrane expression of gp91phox in TNF-α–primed neutrophils, whereas TNF-α activation of ERK1/2 and p38 MAPK was not affected. The data demonstrate that neutrophil granule exocytosis contributes to phagocytosis-induced respiratory burst activity and plays a critical role in priming of the respiratory burst by increasing expression of membrane components of the NADPH oxidase. PMID:21642540

  19. Cytoplasmic RNA Granules in Somatic Maintenance.

    PubMed

    Moujaber, Ossama; Stochaj, Ursula

    2018-05-30

    Cytoplasmic RNA granules represent subcellular compartments that are enriched in protein-bound RNA species. RNA granules are produced by evolutionary divergent eukaryotes, including yeast, mammals, and plants. The functions of cytoplasmic RNA granules differ widely. They are dictated by the cell type and physiological state, which in turn is determined by intrinsic cell properties and environmental factors. RNA granules provide diverse cellular functions. However, all of the granules contribute to aspects of RNA metabolism. This is exemplified by transcription, RNA storage, silencing, and degradation, as well as mRNP remodeling and regulated translation. Several forms of cytoplasmic mRNA granules are linked to normal physiological processes. For instance, they may coordinate protein synthesis and thereby serve as posttranscriptional "operons". RNA granules also participate in cytoplasmic mRNA trafficking, a process particularly well understood for neurons. Many forms of RNA granules support the preservation of somatic cell performance under normal and stress conditions. On the other hand, severe insults or disease can cause the formation and persistence of RNA granules that contribute to cellular dysfunction, especially in the nervous system. Neurodegeneration and many other diseases linked to RNA granules are associated with aging. Nevertheless, information related to the impact of aging on the various types of RNA granules is presently very limited. This review concentrates on cytoplasmic RNA granules and their role in somatic cell maintenance. We summarize the current knowledge on different types of RNA granules in the cytoplasm, their assembly and function under normal, stress, or disease conditions. Specifically, we discuss processing bodies, neuronal granules, stress granules, and other less characterized cytoplasmic RNA granules. Our focus is primarily on mammalian and yeast models, because they have been critical to unravel the physiological role of various

  20. Nucleotide and bivalent cation specificity of the insulin-granule proton translocase.

    PubMed Central

    Hutton, J C; Peshavaria, M

    1983-01-01

    1. The nucleotide and bivalent cation specificity of the proton translocase activity of insulin secretory granules was investigated by assessing the inhibitor-sensitive rates of nucleotide hydrolysis by these organelles in relation to their chemiosmotic properties. 2. The relative rates of nucleotide hydrolysis by freeze/thawed granule preparations were: Mg2+ATP (100%) greater than Mg2+GTP (55%) greater than Mg2+UTP (48%) greater than Mg2+ITP (44%) greater than Mg2+CTP (23%) greater than Mg2+TTP (20%), and by intact granules were: Mg2+ATP (100%) greater than Mg2+ITP (74%) greater than Mg2+GTP (60%) greater than Mg2+CTP (35%). Mg2+ATP, Mg2+GTP and Mg2+ITP hydrolyses were inhibited by tributyltin and stimulated, in intact granules, by the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone; Mg2+CTP hydrolysis was not markedly affected by these compounds. Correspondingly, only Mg2+ATP, Mg2+GTP and Mg2+ITP produced large changes in the delta psi and delta mu H+ across the granule membrane. 3. The relative rates of maximal ATPase activity stimulated by bivalent cations in freeze/thawed granule preparations were: Mg2+ (100%) greater than Mn2+ (82%) greater than Ca2+ (40%) greater than Co2+ (36%) greater than Zn2+ (0%), and in intact granules were: Mg2+ (100%) greater than Mn2+ (85%) greater than Co2+ (61%) greater than Ca2+ (42%). Tributyltin and carbonyl cyanide p-trifluoromethoxyphenylhydrazone affected Mg2+-, Mn2+- and Co2+-activated, but not Ca2+-activated, ATP hydrolysis. Correspondingly, only Mg2+, Mn2+ and Co2+ supported the generation of a delta psi and delta mu H+ across granule membranes in the presence of ATP. 4. The results were consistent with a single proton translocase that had its catalytic site exposed on the external face of the granule membrane. The indicated specificity (Mg2+ATP = Mn2+ATP greater than Co2+ATP greater than Mg2+GTP greater than Mg2+ITP) was similar to that of enzymes described in membrane fractions prepared from

  1. Preterm birth disrupts cerebellar development by affecting granule cell proliferation program and Bergmann glia.

    PubMed

    Iskusnykh, Igor Y; Buddington, Randal K; Chizhikov, Victor V

    2018-08-01

    Preterm birth is a leading cause of long-term motor and cognitive deficits. Clinical studies suggest that some of these deficits result from disruption of cerebellar development, but the mechanisms that mediate cerebellar abnormalities in preterm infants are largely unknown. Furthermore, it remains unclear whether preterm birth and precocious exposure to the ex-utero environment directly disrupt cerebellar development or indirectly by increasing the probability of cerebellar injury, including that resulting from clinical interventions and protocols associated with the care of preterm infants. In this study, we analyzed the cerebellum of preterm pigs delivered via c-section at 91% term and raised for 10 days, until term-equivalent age. The pigs did not receive any treatments known or suspected to affect cerebellar development and had no evidence of brain damage. Term pigs sacrificed at birth were used as controls. Immunohistochemical analysis revealed that preterm birth did not affect either size or numbers of Purkinje cells or molecular layer interneurons at term-equivalent age. The number of granule cell precursors and Bergmann glial fibers, however, were reduced in preterm pigs. Preterm pigs had reduced proliferation but not differentiation of granule cells. qRT-PCR analysis of laser capture microdissected external granule cell layer showed that preterm pigs had a reduced expression of Ccnd1 (Cyclin D1), Ccnb1 (Cyclin B1), granule cell master regulatory transcription factor Atoh1, and signaling molecule Jag1. In vitro rescue experiments identified Jag1 as a central granule cell gene affected by preterm birth. Thus, preterm birth and precocious exposure to the ex-utero environment disrupt cerebellum by modulating expression of key cerebellar developmental genes, predominantly affecting development of granule precursors and Bergmann glia. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Reduced β-Cell Secretory Capacity in Pancreatic-Insufficient, but Not Pancreatic-Sufficient, Cystic Fibrosis Despite Normal Glucose Tolerance.

    PubMed

    Sheikh, Saba; Gudipaty, Lalitha; De Leon, Diva D; Hadjiliadis, Denis; Kubrak, Christina; Rosenfeld, Nora K; Nyirjesy, Sarah C; Peleckis, Amy J; Malik, Saloni; Stefanovski, Darko; Cuchel, Marina; Rubenstein, Ronald C; Kelly, Andrea; Rickels, Michael R

    2017-01-01

    Patients with pancreatic-insufficient cystic fibrosis (PI-CF) are at increased risk for developing diabetes. We determined β-cell secretory capacity and insulin secretory rates from glucose-potentiated arginine and mixed-meal tolerance tests (MMTTs), respectively, in pancreatic-sufficient cystic fibrosis (PS-CF), PI-CF, and normal control subjects, all with normal glucose tolerance, in order to identify early pathophysiologic defects. Acute islet cell secretory responses were determined under fasting, 230 mg/dL, and 340 mg/dL hyperglycemia clamp conditions. PI-CF subjects had lower acute insulin, C-peptide, and glucagon responses compared with PS-CF and normal control subjects, indicating reduced β-cell secretory capacity and α-cell function. Fasting proinsulin-to-C-peptide and proinsulin secretory ratios during glucose potentiation were higher in PI-CF, suggesting impaired proinsulin processing. In the first 30 min of the MMTT, insulin secretion was lower in PI-CF compared with PS-CF and normal control subjects, and glucagon-like peptide 1 and gastric inhibitory polypeptide were lower compared with PS-CF, and after 180 min, glucose was higher in PI-CF compared with normal control subjects. These findings indicate that despite "normal" glucose tolerance, adolescents and adults with PI-CF have impairments in functional islet mass and associated early-phase insulin secretion, which with decreased incretin responses likely leads to the early development of postprandial hyperglycemia in CF. © 2017 by the American Diabetes Association.

  3. Morphological and histochemical observations on the crural gland-spur apparatus of the echidna (Tachyglossus aculeatus) together with comparative observations on the femoral gland-spur apparatus of the duckbilled platypus (Ornithorhyncus anatinus).

    PubMed

    Krause, William J

    2010-01-01

    The echidna and platypus have a crural/femoral gland that is linked by a large duct to a canalized, keratinous spur located on the medial side of the ankle. The echidna crural gland, like the femoral gland of the platypus, exhibits cyclic activity, being prominent in both monotremes when they are sexually active. In the present study, we compared the structure and histochemistry of these glands. During the active phase, the secretory epithelium forming the respective glands of both species increased in height and became packed with secretory granules that differed markedly in structure. Secretory granules of the echidna crural gland were electron dense and characterized by cores or areas of increased electron density. Those of the platypus were initially electron dense, but then became less dense and coalesced into irregular complexes of secretory material. Large cytoplasmic blebs extended from epithelial cell apices and appeared to be shed into the lumen, resulting in an apocrine mode of secretion. Exocytosis was also observed. A similar form of release of secretory product was not observed in the echidna. Secretory granules of both species were periodic acid-Schiff positive and stained for protein, suggesting that much of the secretory product was glycoprotein. Myoepithelial cells enveloped the secretory tubules of the platypus femoral gland, whereas they were not observed surrounding tubules comprising the echidna crural gland. During the quiescent phase, the epithelial cells of both species lost their secretory granules and decreased in height. As a result, the secretory tubules became smaller, intralobular connective tissue increased and the glands decreased in overall size.

  4. ["Light" epithelial cells of swine and bovine oviducts].

    PubMed

    Suuroia, T; Aunapuu, M; Arend, A; Sépp, E

    2002-01-01

    The ultrastructure of oviduct epithelium of clinically healthy cows and 15 sows was investigated using scanning and transmission electron microscopy. In all parts of the oviduct, ciliated and non-ciliated epithelial cells are present, but their number varies in both the investigated animals in different regions of the oviduct, depending on the phase of the estrous cycle. In addition to ciliated cells with numerous cilia on their luminal surface, so-called pale ciliary cells were found in all parts of the oviduct of cows and sows. The cytoplasm of these cells is electron-lucent, their luminal surface carries few cilia and short microvilli. The apical cytoplasm contains species specific secretory granules, which means that these cells have features characteristic of both secretory and ciliated cells. It is suggested that the pale ciliated and non-ciliated secretory cells are functional stages of the same tubar epithelium cell, and that the transformation between these two cell types is regulated by functional requirements of the organ in different phases of the estrous cycle.

  5. Status epilepticus increases mature granule cells in the molecular layer of the dentate gyrus in rats★

    PubMed Central

    Liang, Zhaoliang; Gao, Fei; Wang, Fajun; Wang, Xiaochen; Song, Xinyu; Liu, Kejing; Zhan, Ren-Zhi

    2013-01-01

    Enhanced neurogenesis in the dentate gyrus of the hippocampus following seizure activity, especially status epilepticus, is associated with ectopic residence and aberrant integration of newborn granule cells. Hilar ectopic granule cells may be detrimental to the stability of dentate circuitry by means of their electrophysiological properties and synaptic connectivity. We hypothesized that status epilepticus also increases ectopic granule cells in the molecular layer. Status epilepticus was induced in male Sprague-Dawley rats by intraperitoneal injection of pilocarpine. Immunostaining showed that many doublecortin-positive cells were present in the molecular layer and the hilus 7 days after the induction of status epilepticus. At least 10 weeks after status epilepticus, the estimated number of cells positive for both prospero homeobox protein 1 and neuron-specific nuclear protein in the hilus was significantly increased. A similar trend was also found in the molecular layer. These findings indicate that status epilepticus can increase the numbers of mature and ectopic newborn granule cells in the molecular layer. PMID:25206705

  6. COUP-TFI mitotically regulates production and migration of dentate granule cells and modulates hippocampal Cxcr4 expression.

    PubMed

    Parisot, Joséphine; Flore, Gemma; Bertacchi, Michele; Studer, Michèle

    2017-06-01

    Development of the dentate gyrus (DG), the primary gateway for hippocampal inputs, spans embryonic and postnatal stages, and involves complex morphogenetic events. We have previously identified the nuclear receptor COUP-TFI as a novel transcriptional regulator in the postnatal organization and function of the hippocampus. Here, we dissect its role in DG morphogenesis by inactivating it in either granule cell progenitors or granule neurons. Loss of COUP-TFI function in progenitors leads to decreased granule cell proliferative activity, precocious differentiation and increased apoptosis, resulting in a severe DG growth defect in adult mice. COUP-TFI-deficient cells express high levels of the chemokine receptor Cxcr4 and migrate abnormally, forming heterotopic clusters of differentiated granule cells along their paths. Conversely, high COUP-TFI expression levels downregulate Cxcr4 expression, whereas increased Cxcr4 expression in wild-type hippocampal cells affects cell migration. Finally, loss of COUP-TFI in postmitotic cells leads to only minor and transient abnormalities, and to normal Cxcr4 expression. Together, our results indicate that COUP-TFI is required predominantly in DG progenitors for modulating expression of the Cxcr4 receptor during granule cell neurogenesis and migration. © 2017. Published by The Company of Biologists Ltd.

  7. Synchronous Parotid (Mammary Analog) Secretory Carcinoma and Acinic Cell Carcinoma: Report of a Case.

    PubMed

    Mossinelli, C; Pigni, C; Sovardi, F; Occhini, A; Preda, L; Benazzo, M; Morbini, P; Pagella, F

    2018-06-06

    Mammary analogue secretory carcinoma (MASC) is a recently described low-grade salivary gland malignancy with histologic, immunohistochemical and molecular similarities to secretory carcinoma of the breast, including a specific t(12;15)(p13;q25) resulting in an ETV6-NTRK3 gene fusion. Ultrasound and magnetic resonance imaging frequently document a macrocystic structure. The main differential diagnosis of secretory carcinoma is with low grade acinic cell carcinoma (AciCC). The two can be differentiated with immunohistochemical stains for S100, mammaglobin, carbonic anhydrase VI and DOG-1; the identification of the specific translocation can help to characterize non-typical cases. We report a unique case of synchronous MASC and AciCC presenting in a parotid gland and discuss the implications of the correct identification of the two tumors.

  8. Synaptotagmin-7 Functions to Replenish Insulin Granules for Exocytosis in Human Islet β-Cells.

    PubMed

    Dolai, Subhankar; Xie, Li; Zhu, Dan; Liang, Tao; Qin, Tairan; Xie, Huanli; Kang, Youhou; Chapman, Edwin R; Gaisano, Herbert Y

    2016-07-01

    Synaptotagmin (Syt)-7, a major component of the exocytotic machinery in neurons, is also the major Syt in rodent pancreatic β-cells shown to mediate glucose-stimulated insulin secretion (GSIS). However, Syt-7's precise exocytotic actions in β-cells remain unknown. We show that Syt-7 is abundant in human β-cells. Adenovirus-short hairpin RNA knockdown (KD) of Syt-7 in human islets reduced first- and second-phase GSIS attributed to the reduction of exocytosis of predocked and newcomer insulin secretory granules (SGs). Glucose stimulation expectedly induced Syt-7 association in a Ca(2+)-dependent manner with syntaxin-3 and syntaxin-1A soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes known to mediate exocytosis of newcomer and predocked SGs, respectively. However, Syt-7-KD did not disrupt SNARE complex assembly. Instead, electron microscopy analysis showed that Syt-7-KD reduced the recruitment of SGs to the plasma membrane after glucose-stimulated depletion, which could not be rescued by glucagon-like peptide 1 pretreatment. To assess the possibility that this new action of Syt-7 on SG recruitment may involve calmodulin (CaM), pretreatment of islets with CaM blocker calmidazolium showed effects very similar to those of Syt-7-KD. Syt-7 therefore plays a novel more dominant function in the replenishment of releasable SG pools in human β-cells than its previously purported role in exocytotic fusion per se. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  9. Conditional induction of Math1 specifies embryonic stem cells to cerebellar granule neuron lineage and promotes differentiation into mature granule neurons.

    PubMed

    Srivastava, Rupali; Kumar, Manoj; Peineau, Stéphane; Csaba, Zsolt; Mani, Shyamala; Gressens, Pierre; El Ghouzzi, Vincent

    2013-04-01

    Directing differentiation of embryonic stem cells (ESCs) to specific neuronal subtype is critical for modeling disease pathology in vitro. An attractive means of action would be to combine regulatory differentiation factors and extrinsic inductive signals added to the culture medium. In this study, we have generated mature cerebellar granule neurons by combining a temporally controlled transient expression of Math1, a master gene in granule neuron differentiation, with inductive extrinsic factors involved in cerebellar development. Using a Tetracyclin-On transactivation system, we overexpressed Math1 at various stages of ESCs differentiation and found that the yield of progenitors was considerably increased when Math1 was induced during embryonic body stage. Math1 triggered expression of Mbh1 and Mbh2, two target genes directly involved in granule neuron precursor formation and strong expression of early cerebellar territory markers En1 and NeuroD1. Three weeks after induction, we observed a decrease in the number of glial cells and an increase in that of neurons albeit still immature. Combining Math1 induction with extrinsic factors specifically increased the number of neurons that expressed Pde1c, Zic1, and GABAα6R characteristic of mature granule neurons, formed "T-shaped" axons typical of granule neurons, and generated synaptic contacts and action potentials in vitro. Finally, in vivo implantation of Math1-induced progenitors into young adult mice resulted in cell migration and settling of newly generated neurons in the cerebellum. These results show that conditional induction of Math1 drives ESCs toward the cerebellar fate and indicate that acting on both intrinsic and extrinsic factors is a powerful means to modulate ESCs differentiation and maturation into a specific neuronal lineage. Copyright © 2012 AlphaMed Press.

  10. The Harderian gland, its secretory duct and porphyrin content in the mongolian gerbil (Meriones unguiculatus).

    PubMed Central

    Johnston, H S; McGadey, J; Thompson, G G; Moore, M R; Payne, A P

    1983-01-01

    The Harderian gland, its secretory duct and porphyrin content were examined in the mongolian gerbil (Meriones unguiculatus). The gland consisted of tubules lined by a single layer of epithelial cells and a myoepithelial network. The tubule cells were often binucleate and possessed lipid vacuoles in the apical half of the cell, a corona of granular endoplasmic reticulum surrounding the nucleus, and cytoplasmic 'slashes'. The latter are probably derived from dense membranous couplets and may be precursors of the lipid vacuoles. Holocrine and merocrine secretion was observed. Interstitial cells included plasma cells, mast cells and (predominantly) melanocytes which render the gland black. The gland was surrounded by a collagen capsule and an outer layer of highly attenuated (possibly endothelioid) cells. Within the gland, the secretory duct was lined by a single layer of normal tubule cells. Outside the gland, the duct enlarged to form an ampulla, from which clefts led off to deep crypts. The ampulla and clefts were lined by cells with small dense apical granules and stubby microvilli; some possessed lipid vacuoles. The crypts were lined by serous cells with active Golgi regions. At the duct opening, ampullary cells became squamous and goblet cells occurred. Geometric crystalloid deposits (with a layered structure of 7.6 nm periodicity) occurred at cleft-crypt junctions. Islets of extra-glandular ductal tissue were occasionally found within the gland. Porphyrins were detectable both by chemical assay and fluorescence microscopy. There was a trend for female glands to have a higher content than males. Solid intraluminal accretions of porphyrin and/or lipid were present. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 PMID:6654750

  11. The Regulated Secretory Pathway and Human Disease: Insights from Gene Variants and Single Nucleotide Polymorphisms

    PubMed Central

    Lin, Wei-Jye; Salton, Stephen R.

    2013-01-01

    The regulated secretory pathway provides critical control of peptide, growth factor, and hormone release from neuroendocrine and endocrine cells, and neurons, maintaining physiological homeostasis. Propeptides and prohormones are packaged into dense core granules (DCGs), where they frequently undergo tissue-specific processing as the DCG matures. Proteins of the granin family are DCG components, and although their function is not fully understood, data suggest they are involved in DCG formation and regulated protein/peptide secretion, in addition to their role as precursors of bioactive peptides. Association of gene variation, including single nucleotide polymorphisms (SNPs), with neuropsychiatric, endocrine, and metabolic diseases, has implicated specific secreted proteins and peptides in disease pathogenesis. For example, a SNP at position 196 (G/A) of the human brain-derived neurotrophic factor gene dysregulates protein processing and secretion and leads to cognitive impairment. This suggests more generally that variants identified in genes encoding secreted growth factors, peptides, hormones, and proteins involved in DCG biogenesis, protein processing, and the secretory apparatus, could provide insight into the process of regulated secretion as well as disorders that result when it is impaired. PMID:23964269

  12. Distribution profile of inositol 1,4,5-trisphosphate receptor isoforms in adrenal chromaffin cells.

    PubMed

    Huh, Yang Hoon; Yoo, Jie Ae; Bahk, Sook Jin; Yoo, Seung Hyun

    2005-05-09

    Given the importance of inositol 1,4,5-trisphosphate receptor (IP(3)R)/Ca(2+) channels in the control of intracellular Ca(2+) concentrations, we determined the relative concentrations of the IP(3)R isoforms in subcellular organelles, based on serially sectioned electron micrographs. The endoplasmic reticulum (ER) was estimated to contain 15-20% of each of the three IP(3)R isoforms while secretory granules contained 58-69%. The nucleus contained approximately 15% each of IP(3)R-1 and -2, but 25% of IP(3)R-3, whereas the plasma membrane contained approximately 1% or less of each. These suggested that secretory granules, the nucleus and ER are at the center of IP(3)-dependent intracellular Ca(2+) control mechanisms in chromaffin cells.

  13. Intrauterine Growth Restriction Affects Cerebellar Granule Cells in the Developing Guinea Pig Brain.

    PubMed

    Tolcos, Mary; McDougall, Annie; Shields, Amy; Chung, Yoonyoung; O'Dowd, Rachael; Turnley, Ann; Wallace, Megan; Rees, Sandra

    2018-01-01

    Intrauterine growth restriction (IUGR) can lead to adverse neurodevelopmental sequelae in postnatal life. However, the effects of IUGR on the cerebellum are still to be fully elucidated. A major determinant of growth and development of the cerebellum is proliferation and subsequent migration of cerebellar granule cells. Our objective was to determine whether IUGR, induced by chronic placental insufficiency (CPI) in guinea pigs, results in abnormal cerebellar development due to deficits suggestive of impaired granule cell proliferation and/or migration. CPI was induced by unilateral ligation of the uterine artery at mid-gestation, producing growth-restricted (GR) foetuses at 52 and 60 days of gestation (dg), and neonates at 1 week postnatal age (term approx. 67 dg). Controls were from sham-operated animals. In GR foetuses compared with controls at 52 dg, the external granular layer (EGL) width and internal granular layer (IGL) area were similar. In GR foetuses compared with controls at 60 dg: (a) the EGL width was greater (p < 0.005); (b) the IGL area was smaller (p < 0.005); (c) the density of Ki67-negative (postmitotic) granule cells in the EGL was greater (p < 0.01); (d) the somal area of Purkinje cells was reduced (p < 0.005), and (e) the linear density of Bergmann glia was similar. The EGL width in GR foetuses at 60 dg was comparable to that of 52 dg control and GR foetuses. The pattern of p27-immunoreactivity in the EGL was the inverse of Ki67-immunoreactivity at both foetal ages; there was no difference between control and GR foetuses at either age in the width of p27-immunoreactivity, or in the percentage of the EGL width that it occupied. In the molecular layer of GR neonates compared with controls there was an increase in the areal density of granule cells (p < 0.05) and in the percentage of migrating to total number of granule cells (p < 0.01) at 1 week but not at 60 dg (p > 0.05). Thus, we found no specific evidence that IUGR affects granule cell

  14. Spatial and structural interrelationships between secretory cells of the subcommissural organ and blood vessels. An immunocytochemical study.

    PubMed

    Rodríguez, E M; Oksche, A; Hein, S; Rodríguez, S; Yulis, R

    1984-01-01

    In 76 specimens (amphibians, reptilians, mammals) belonging to 25 different vertebrate species, the region of the subcommissural organ (SCO) was investigated with the use of a primary antiserum raised against an extract of bovine Reissner's fiber + the immunoperoxidase procedure according to Sternberger et al. (1970). In the SCO of a toad (Bufo arenarum) and several species of reptiles (lacertilians, ophidians, crocodilians), the ependymal cells were the only type of secretory cell displaying vascular contacts, whereas in mammals ependymal and hypendymal cells established intimate spatial contacts with blood vessels. In Bufo arenarum, but especially in the reptilian species examined, the ependymo-vascular relationship was exerted by a population of ependymal cells having a rather constant location within the SCO and projecting to capillaries that showed a remarkably constant pattern of anatomical distribution. In the SCO of mammals the modality and degree of the structural relationships between secretory cells and blood vessels varied greatly from species to species. In the SCO of the armadillo and dog the secretory tissue was organized as a thick, highly vascularized layer with most of the cells oriented toward the capillaries. A rather opposite situation was found in the SCO of New- and Old-World monkeys, where vascular contacts were restricted to a few ependymal cells.

  15. Characterization of synthesis and storage of TGF-alpha in rat parotid acinar and intercalated duct cells.

    PubMed

    Login, G R; Yang, J; Bryan, K P; Digenis, E C; McBride, J; Elovic, A; Quissell, D O; Dvorak, A M; Wong, D T

    1997-03-01

    Although the expression and biological role of transforming growth factor-alpha (TGF-alpha) have been explored in a variety of normal cells in mammalian species, little is known about the storage of TGF-alpha in secretory cells of exocrine organs. Parotid glands from four rats were homogenized for RNA isolation followed by reverse transcription-polymerase chain reaction to determine the presence of TGF-alpha message. In situ hybridization using a hamster-specific TGF-alpha riboprobe was done on paraffin sections. Parotid gland and isolated acinar cells were processed for transmission electron microscopy (TEM) and postembedding immunogold labeled for TGF-alpha. Gold particles were counted on approximately 200 granules in 10 acinar cells and in 10 intercalated duct cells. Labeling density was calculated as the number of gold particles per square micrometer +/- SD. Statistical significance was calculated using one-way analysis of variance. Using multiple technologies, we have established that rat parotid acinar and intercalated duct cells synthesize TGF-alpha and store the precursor form of this cytokine in their secretory granules.

  16. Secretory expression of the non-secretory-type Lentinula edodes laccase by Aspergillus oryzae.

    PubMed

    Yano, Akira; Kikuchi, Sayaka; Nakagawa, Yuko; Sakamoto, Yuichi; Sato, Toshitsugu

    2009-01-01

    The shiitake mushroom, Lentinula edodes, has an extracelluar secretory-type laccase, Lcc1, and a fruiting-body-accumulation-type laccase, Lcc4. We previously reported the production of Lcc1 by plant cells, but had difficulty producing Lcc4. Here, we report the production of Lcc1 and Lcc4 by Aspergillus oryzae and the extracellular secretory production of Lcc4 using a modified secretion signal peptide (SP) from Lcc1. Sp-Lcc4 produced by A. oryzae had biochemical activities similar to Lcc4 produced by L. edodes. Lcc1 did not react with beta-(3,4-dihydroxyphenol) alanine (DOPA), but Lcc4 from L. edodes and A. oryzae could oxidize DOPA. K(M) values for the substrates 2,2'-azino-di-(3-ethylbenzthiazolinsulfonate), 2,6-dimethoxyphenol, guaiacol, pyrogallol, and catechol were similar for Lcc4 and Sp-Lcc4. In conclusion, a non-secretory-type fungal laccase is secreted into the culture media with its original enzymatic properties by exploiting modified secretory signal peptide. 2008 Elsevier GmbH.

  17. Properties of single NMDA receptor channels in human dentate gyrus granule cells

    PubMed Central

    Lieberman, David N; Mody, Istvan

    1999-01-01

    Cell-attached single-channel recordings of NMDA channels were carried out in human dentate gyrus granule cells acutely dissociated from slices prepared from hippocampi surgically removed for the treatment of temporal lobe epilepsy (TLE). The channels were activated by l-aspartate (250–500 nm) in the presence of saturating glycine (8 μm). The main conductance was 51 ± 3 pS. In ten of thirty granule cells, clear subconductance states were observed with a mean conductance of 42 ± 3 pS, representing 8 ± 2% of the total openings. The mean open times varied from cell to cell, possibly owing to differences in the epileptogenicity of the tissue of origin. The mean open time was 2.70 ± 0.95 ms (range, 1.24–4.78 ms). In 87% of the cells, three exponential components were required to fit the apparent open time distributions. In the remaining neurons, as in control rat granule cells, two exponentials were sufficient. Shut time distributions were fitted by five exponential components. The average numbers of openings in bursts (1.74 ± 0.09) and clusters (3.06 ± 0.26) were similar to values obtained in rodents. The mean burst (6.66 ± 0.9 ms), cluster (20.1 ± 3.3 ms) and supercluster lengths (116.7 ± 17.5 ms) were longer than those in control rat granule cells, but approached the values previously reported for TLE (kindled) rats. As in rat NMDA channels, adjacent open and shut intervals appeared to be inversely related to each other, but it was only the relative areas of the three open time constants that changed with adjacent shut time intervals. The long openings of human TLE NMDA channels resembled those produced by calcineurin inhibitors in control rat granule cells. Yet the calcineurin inhibitor FK-506 (500 nm) did not prolong the openings of human channels, consistent with a decreased calcineurin activity in human TLE. Many properties of the human NMDA channels resemble those recorded in rat hippocampal neurons. Both have similar slope conductances, five

  18. Clonal Analysis of Newborn Hippocampal Dentate Granule Cell Proliferation and Development in Temporal Lobe Epilepsy1,2,3

    PubMed Central

    LaSarge, Candi L.; McAuliffe, John J.

    2015-01-01

    Abstract Hippocampal dentate granule cells are among the few neuronal cell types generated throughout adult life in mammals. In the normal brain, new granule cells are generated from progenitors in the subgranular zone and integrate in a typical fashion. During the development of epilepsy, granule cell integration is profoundly altered. The new cells migrate to ectopic locations and develop misoriented “basal” dendrites. Although it has been established that these abnormal cells are newly generated, it is not known whether they arise ubiquitously throughout the progenitor cell pool or are derived from a smaller number of “bad actor” progenitors. To explore this question, we conducted a clonal analysis study in mice expressing the Brainbow fluorescent protein reporter construct in dentate granule cell progenitors. Mice were examined 2 months after pilocarpine-induced status epilepticus, a treatment that leads to the development of epilepsy. Brain sections were rendered translucent so that entire hippocampi could be reconstructed and all fluorescently labeled cells identified. Our findings reveal that a small number of progenitors produce the majority of ectopic cells following status epilepticus, indicating that either the affected progenitors or their local microenvironments have become pathological. By contrast, granule cells with “basal” dendrites were equally distributed among clonal groups. This indicates that these progenitors can produce normal cells and suggests that global factors sporadically disrupt the dendritic development of some new cells. Together, these findings strongly predict that distinct mechanisms regulate different aspects of granule cell pathology in epilepsy. PMID:26756038

  19. Immunohistochemical localization of cystic fibrosis transmembrane regulator and clara cell secretory protein in taste receptor cells of rat circumvallate papillae.

    PubMed

    Merigo, Flavia; Benati, Donatella; Galiè, Mirco; Crescimanno, Caterina; Osculati, Francesco; Sbarbati, Andrea

    2008-03-01

    Taste receptor cells (TRCs) are the sensory cells of taste transduction and are organized into taste buds embedded in the epithelium of the tongue, palate, pharynx, and larynx. Several studies have demonstrated that TRCs involved in sweet as well as bitter and umami responses express alpha-gustducin, an alpha-subunit of the G-protein complex. It has been further demonstrated that this typical taste protein is a potent marker of chemosensory cells located in several tissues, including gastric and pancreatic mucosa and the respiratory apparatus. We recently observed that alpha-gustducin and phospholipase C beta 2-immunoreactive cells were colocalized in the airways with cystic fibrosis transmembrane regulator (CFTR) and Clara cell-specific secretory protein of 10 (CC10) and 26 kDa (CC26). This finding suggests that TRCs might themselves express secretory markers. To test this hypothesis, we investigated the expression of CFTR, CC10, and CC26 in rat circumvallate papillae using reverse transcriptase-polymerase chain reaction analysis, immunohistochemistry, and confocal laser microscopy. The results showed that secretory markers such as CFTR, CC10, and CC26 are present in taste cells of rat circumvallate papillae, and their immunoreactivity is expressed, to a different extent, in subsets of taste cells that express alpha-gustducin. The presence of CFTR, CC10, and CC26 in taste bud cells and their coexpression pattern with alpha-gustducin confirms and extends our previous findings in airway epithelium, lending further credence to the notion that chemoreception and secretion may be related processes.

  20. Ursodeoxycholic acid attenuates colonic epithelial secretory function

    PubMed Central

    Kelly, Orlaith B; Mroz, Magdalena S; Ward, Joseph B J; Colliva, Carolina; Scharl, Michael; Pellicciari, Roberto; Gilmer, John F; Fallon, Padraic G; Hofmann, Alan F; Roda, Aldo; Murray, Frank E; Keely, Stephen J

    2013-01-01

    Dihydroxy bile acids, such as chenodeoxycholic acid (CDCA), are well known to promote colonic fluid and electrolyte secretion, thereby causing diarrhoea associated with bile acid malabsorption. However, CDCA is rapidly metabolised by colonic bacteria to ursodeoxycholic acid (UDCA), the effects of which on epithelial transport are poorly characterised. Here, we investigated the role of UDCA in the regulation of colonic epithelial secretion. Cl− secretion was measured across voltage-clamped monolayers of T84 cells and muscle-stripped sections of mouse or human colon. Cell surface biotinylation was used to assess abundance/surface expression of transport proteins. Acute (15 min) treatment of T84 cells with bilateral UDCA attenuated Cl− secretory responses to the Ca2+ and cAMP-dependent secretagogues carbachol (CCh) and forskolin (FSK) to 14.0 ± 3.8 and 40.2 ± 7.4% of controls, respectively (n= 18, P < 0.001). Investigation of the molecular targets involved revealed that UDCA acts by inhibiting Na+/K+-ATPase activity and basolateral K+ channel currents, without altering their cell surface expression. In contrast, intraperitoneal administration of UDCA (25 mg kg−1) to mice enhanced agonist-induced colonic secretory responses, an effect we hypothesised to be due to bacterial metabolism of UDCA to lithocholic acid (LCA). Accordingly, LCA (50–200 μm) enhanced agonist-induced secretory responses in vitro and a metabolically stable UDCA analogue, 6α-methyl-UDCA, exerted anti-secretory actions in vitro and in vivo. In conclusion, UDCA exerts direct anti-secretory actions on colonic epithelial cells and metabolically stable derivatives of the bile acid may offer a new approach for treating intestinal diseases associated with diarrhoea. PMID:23507881

  1. Secretory IgA in complex with Lactobacillus rhamnosus potentiates mucosal dendritic cell-mediated Treg cell differentiation via TLR regulatory proteins, RALDH2 and secretion of IL-10 and TGF-β

    PubMed Central

    Mikulic, Josip; Longet, Stéphanie; Favre, Laurent; Benyacoub, Jalil; Corthesy, Blaise

    2017-01-01

    The importance of secretory IgA in controlling the microbiota is well known, yet how the antibody affects the perception of the commensals by the local immune system is still poorly defined. We have previously shown that the transport of secretory IgA in complex with bacteria across intestinal microfold cells results in an association with dendritic cells in Peyer’s patches. However, the consequences of such an interaction on dendritic cell conditioning have not been elucidated. In this study, we analyzed the impact of the commensal Lactobacillus rhamnosus, alone or associated with secretory IgA, on the responsiveness of dendritic cells freshly recovered from mouse Peyer’s patches, mesenteric lymph nodes, and spleen. Lactobacillus rhamnosus-conditioned mucosal dendritic cells are characterized by increased expression of Toll-like receptor regulatory proteins [including single immunoglobulin interleukin-1 receptor-related molecule, suppressor of cytokine signaling 1, and Toll-interacting molecule] and retinaldehyde dehydrogenase 2, low surface expression of co-stimulatory markers, high anti- versus pro-inflammatory cytokine production ratios, and induction of T regulatory cells with suppressive function. Association with secretory IgA enhanced the anti-inflammatory/regulatory Lactobacillus rhamnosus-induced conditioning of mucosal dendritic cells, particularly in Peyer’s patches. At the systemic level, activation of splenic dendritic cells exposed to Lactobacillus rhamnosus was partially dampened upon association with secretory IgA. These data suggest that secretory IgA, through coating of commensal bacteria, contributes to the conditioning of mucosal dendritic cells toward tolerogenic profiles essential for the maintenance of intestinal homeostasis. PMID:26972771

  2. Clostridium perfringens epsilon toxin targets granule cells in the mouse cerebellum and stimulates glutamate release.

    PubMed

    Lonchamp, Etienne; Dupont, Jean-Luc; Wioland, Laetitia; Courjaret, Raphaël; Mbebi-Liegeois, Corinne; Jover, Emmanuel; Doussau, Frédéric; Popoff, Michel R; Bossu, Jean-Louis; de Barry, Jean; Poulain, Bernard

    2010-09-30

    Epsilon toxin (ET) produced by C. perfringens types B and D is a highly potent pore-forming toxin. ET-intoxicated animals express severe neurological disorders that are thought to result from the formation of vasogenic brain edemas and indirect neuronal excitotoxicity. The cerebellum is a predilection site for ET damage. ET has been proposed to bind to glial cells such as astrocytes and oligodendrocytes. However, the possibility that ET binds and attacks the neurons remains an open question. Using specific anti-ET mouse polyclonal antibodies and mouse brain slices preincubated with ET, we found that several brain structures were labeled, the cerebellum being a prominent one. In cerebellar slices, we analyzed the co-staining of ET with specific cell markers, and found that ET binds to the cell body of granule cells, oligodendrocytes, but not astrocytes or nerve endings. Identification of granule cells as neuronal ET targets was confirmed by the observation that ET induced intracellular Ca(2+) rises and glutamate release in primary cultures of granule cells. In cultured cerebellar slices, whole cell patch-clamp recordings of synaptic currents in Purkinje cells revealed that ET greatly stimulates both spontaneous excitatory and inhibitory activities. However, pharmacological dissection of these effects indicated that they were only a result of an increased granule cell firing activity and did not involve a direct action of the toxin on glutamatergic nerve terminals or inhibitory interneurons. Patch-clamp recordings of granule cell somata showed that ET causes a decrease in neuronal membrane resistance associated with pore-opening and depolarization of the neuronal membrane, which subsequently lead to the firing of the neuronal network and stimulation of glutamate release. This work demonstrates that a subset of neurons can be directly targeted by ET, suggesting that part of ET-induced neuronal damage observed in neuronal tissue is due to a direct effect of ET on

  3. Clostridium perfringens Epsilon Toxin Targets Granule Cells in the Mouse Cerebellum and Stimulates Glutamate Release

    PubMed Central

    Lonchamp, Etienne; Dupont, Jean-Luc; Wioland, Laetitia; Courjaret, Raphaël; Mbebi-Liegeois, Corinne; Jover, Emmanuel; Doussau, Frédéric; Popoff, Michel R.; Bossu, Jean-Louis; de Barry, Jean; Poulain, Bernard

    2010-01-01

    Epsilon toxin (ET) produced by C. perfringens types B and D is a highly potent pore-forming toxin. ET-intoxicated animals express severe neurological disorders that are thought to result from the formation of vasogenic brain edemas and indirect neuronal excitotoxicity. The cerebellum is a predilection site for ET damage. ET has been proposed to bind to glial cells such as astrocytes and oligodendrocytes. However, the possibility that ET binds and attacks the neurons remains an open question. Using specific anti-ET mouse polyclonal antibodies and mouse brain slices preincubated with ET, we found that several brain structures were labeled, the cerebellum being a prominent one. In cerebellar slices, we analyzed the co-staining of ET with specific cell markers, and found that ET binds to the cell body of granule cells, oligodendrocytes, but not astrocytes or nerve endings. Identification of granule cells as neuronal ET targets was confirmed by the observation that ET induced intracellular Ca2+ rises and glutamate release in primary cultures of granule cells. In cultured cerebellar slices, whole cell patch-clamp recordings of synaptic currents in Purkinje cells revealed that ET greatly stimulates both spontaneous excitatory and inhibitory activities. However, pharmacological dissection of these effects indicated that they were only a result of an increased granule cell firing activity and did not involve a direct action of the toxin on glutamatergic nerve terminals or inhibitory interneurons. Patch-clamp recordings of granule cell somata showed that ET causes a decrease in neuronal membrane resistance associated with pore-opening and depolarization of the neuronal membrane, which subsequently lead to the firing of the neuronal network and stimulation of glutamate release. This work demonstrates that a subset of neurons can be directly targeted by ET, suggesting that part of ET-induced neuronal damage observed in neuronal tissue is due to a direct effect of ET on neurons

  4. NAADP Activates Two-Pore Channels on T Cell Cytolytic Granules to Stimulate Exocytosis and Killing

    PubMed Central

    Davis, Lianne C.; Morgan, Anthony J.; Chen, Ji-Li; Snead, Charlotte M.; Bloor-Young, Duncan; Shenderov, Eugene; Stanton-Humphreys, Megan N.; Conway, Stuart J.; Churchill, Grant C.; Parrington, John; Cerundolo, Vincenzo; Galione, Antony

    2012-01-01

    Summary A cytotoxic T lymphocyte (CTL) kills an infected or tumorigenic cell by Ca2+-dependent exocytosis of cytolytic granules at the immunological synapse formed between the two cells. Although inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ release from the endoplasmic reticulum activates the store-operated Ca2+-influx pathway that is necessary for exocytosis, it is not a sufficient stimulus [1–4]. Here we identify the Ca2+-mobilizing messenger nicotinic acid adenine dinucleotide phosphate (NAADP) and its recently identified molecular target, two-pore channels (TPCs) [5–7], as being important for T cell receptor signaling in CTLs. We demonstrate that cytolytic granules are not only reservoirs of cytolytic proteins but are also the acidic Ca2+ stores mobilized by NAADP via TPC channels on the granules themselves, so that TPCs migrate to the immunological synapse upon CTL activation. Moreover, NAADP activates TPCs to drive exocytosis in a way that is not mimicked by global Ca2+ signals induced by IP3 or ionomycin, suggesting that critical, local Ca2+ nanodomains around TPCs stimulate granule exocytosis. Hence, by virtue of the NAADP/TPC pathway, cytolytic granules generate Ca2+ signals that lead to their own exocytosis and to cell killing. This study highlights a selective role for NAADP in stimulating exocytosis crucial for immune cell function and may impact on stimulus-secretion coupling in wider cellular contexts. PMID:23177477

  5. Assessing the secretory capacity of pancreatic acinar cells.

    PubMed

    Geron, Erez; Schejter, Eyal D; Shilo, Ben-Zion

    2014-08-28

    Pancreatic acinar cells produce and secrete digestive enzymes. These cells are organized as a cluster which forms and shares a joint lumen. This work demonstrates how the secretory capacity of these cells can be assessed by culture of isolated acini. The setup is advantageous since isolated acini, which retain many characteristics of the intact exocrine pancreas can be manipulated and monitored more readily than in the whole animal. Proper isolation of pancreatic acini is a key requirement so that the ex vivo culture will represent the in vivo nature of the acini. The protocol demonstrates how to isolate intact acini from the mouse pancreas. Subsequently, two complementary methods for evaluating pancreatic secretion are presented. The amylase secretion assay serves as a global measure, while direct imaging of pancreatic secretion allows the characterization of secretion at a sub-cellular resolution. Collectively, the techniques presented here enable a broad spectrum of experiments to study exocrine secretion.

  6. Induced trefoil factor family 1 expression by trans-differentiating Clara cells in a murine asthma model.

    PubMed

    Kouznetsova, Irina; Chwieralski, Caroline E; Bälder, Ralf; Hinz, Margitta; Braun, Armin; Krug, Norbert; Hoffmann, Werner

    2007-03-01

    Asthma is a chronic inflammatory disease of the airways that is accompanied by goblet cell metaplasia and mucus hypersecretion. Trefoil factor family (TFF) peptides represent major secretory products of the respiratory tract and are synthesized together with mucins. In the murine lung, TFF2 is mainly expressed, whereas TFF1 transcripts represent only a minor species. TFF peptides are well known for their motogenic and anti-apoptotic effects, and they modulate the inflammatory response of bronchial epithelial cells. Here, an established mouse model of asthma was investigated (i.e., exposure to Aspergillus fumigatus [AF] antigens). RT-PCR analysis of lung tissue showed elevated levels particularly of TFF1 transcripts in AF-sensitized/challenged animals. In contrast, transcripts encoding Clara cell secretory protein (CCSP/CC10) were strongly diminished in these animals. For comparison, the expression of the goblet cell secretory granule marker mCLCA3/Gob-5, the mucins Muc1-Muc6 and Muc19, and the secretoglobins ScgB3A1 and ScgB3A2, as well as the mammalian ependymin-related gene MERP2, were monitored. Immunohistochemistry localized TFF1 mainly in cells with a mixed phenotype (e.g., TFF1-positive cells stain with the lectin wheat germ agglutinin (WGA), which recognizes mucins characteristic of goblet cells). In addition, these cells express CCSP/CC10, a Clara cell marker. When compared with mucins or CCSP/CC10, TFF1 was stored in a different population of secretory granules localized at the more basolateral portion of these cells. Thus, the results presented indicate for the first time that allergen exposure leads to the trans-differentiation of Clara cells toward a TFF1-expressing mucous phenotype.

  7. Trajectory Analysis Unveils Reelin's Role in the Directed Migration of Granule Cells in the Dentate Gyrus.

    PubMed

    Wang, Shaobo; Brunne, Bianka; Zhao, Shanting; Chai, Xuejun; Li, Jiawei; Lau, Jeremie; Failla, Antonio Virgilio; Zobiak, Bernd; Sibbe, Mirjam; Westbrook, Gary L; Lutz, David; Frotscher, Michael

    2018-01-03

    Reelin controls neuronal migration and layer formation. Previous studies in reeler mice deficient in Reelin focused on the result of the developmental process in fixed tissue sections. It has remained unclear whether Reelin affects the migratory process, migration directionality, or migrating neurons guided by the radial glial scaffold. Moreover, Reelin has been regarded as an attractive signal because newly generated neurons migrate toward the Reelin-containing marginal zone. Conversely, Reelin might be a stop signal because migrating neurons in reeler , but not in wild-type mice, invade the marginal zone. Here, we monitored the migration of newly generated proopiomelanocortin-EGFP -expressing dentate granule cells in slice cultures from reeler , reeler -like mutants and wild-type mice of either sex using real-time microscopy. We discovered that not the actual migratory process and migratory speed, but migration directionality of the granule cells is controlled by Reelin. While wild-type granule cells migrated toward the marginal zone of the dentate gyrus, neurons in cultures from reeler and reeler -like mutants migrated randomly in all directions as revealed by vector analyses of migratory trajectories. Moreover, live imaging of granule cells in reeler slices cocultured to wild-type dentate gyrus showed that the reeler neurons changed their directions and migrated toward the Reelin-containing marginal zone of the wild-type culture, thus forming a compact granule cell layer. In contrast, directed migration was not observed when Reelin was ubiquitously present in the medium of reeler slices. These results indicate that topographically administered Reelin controls the formation of a granule cell layer. SIGNIFICANCE STATEMENT Neuronal migration and the various factors controlling its onset, speed, directionality, and arrest are poorly understood. Slice cultures offer a unique model to study the migration of individual neurons in an almost natural environment. In the

  8. Phosphorylation of SNAP-23 regulates its dynamic membrane association during mast cell exocytosis

    PubMed Central

    Naskar, Pieu

    2017-01-01

    ABSTRACT Upon allergen challenge, mast cells (MCs) respond by releasing pre-stored mediators from their secretory granules by the transient mechanism of porosome-mediated cell secretion. The target SNARE SNAP-23 has been shown to be important for MC exocytosis, and our previous studies revealed the presence of one basal (Thr102) and two induced (Ser95 and Ser120) phosphorylation sites in its linker region. To study the role of SNAP-23 phosphorylation in the regulation of exocytosis, green fluorescence protein-tagged wild-type SNAP-23 (GFP-SNAP-23) and its phosphorylation mutants were transfected into rat basophilic leukemia (RBL-2H3) MCs. Studies on GFP-SNAP-23 transfected MCs revealed some dynamic changes in SNAP-23 membrane association. SNAP-23 was associated with plasma membrane in resting MCs, however, on activation a portion of it translocated to cytosol and internal membranes. These internal locations were secretory granule membranes. This dynamic change in the membrane association of SNAP-23 in MCs may be important for mediating internal granule-granule fusions in compound exocytosis. Further studies with SNAP-23 phosphorylation mutants revealed an important role for the phosphorylation at Thr102 in its initial membrane association, and of induced phosphorylation at Ser95 and Ser120 in its internal membrane association, during MC exocytosis. PMID:28784843

  9. Phosphorylation of SNAP-23 regulates its dynamic membrane association during mast cell exocytosis.

    PubMed

    Naskar, Pieu; Puri, Niti

    2017-09-15

    Upon allergen challenge, mast cells (MCs) respond by releasing pre-stored mediators from their secretory granules by the transient mechanism of porosome-mediated cell secretion. The target SNARE SNAP-23 has been shown to be important for MC exocytosis, and our previous studies revealed the presence of one basal (Thr 102 ) and two induced (Ser 95 and Ser 120 ) phosphorylation sites in its linker region. To study the role of SNAP-23 phosphorylation in the regulation of exocytosis, green fluorescence protein-tagged wild-type SNAP-23 (GFP-SNAP-23) and its phosphorylation mutants were transfected into rat basophilic leukemia (RBL-2H3) MCs. Studies on GFP-SNAP-23 transfected MCs revealed some dynamic changes in SNAP-23 membrane association. SNAP-23 was associated with plasma membrane in resting MCs, however, on activation a portion of it translocated to cytosol and internal membranes. These internal locations were secretory granule membranes. This dynamic change in the membrane association of SNAP-23 in MCs may be important for mediating internal granule-granule fusions in compound exocytosis. Further studies with SNAP-23 phosphorylation mutants revealed an important role for the phosphorylation at Thr 102 in its initial membrane association, and of induced phosphorylation at Ser 95 and Ser 120 in its internal membrane association, during MC exocytosis. © 2017. Published by The Company of Biologists Ltd.

  10. Short-term block of Na+/K+-ATPase in neuro-glial cell cultures of cerebellum induces glutamate dependent damage of granule cells.

    PubMed

    Stelmashook, E V; Weih, M; Zorov, D; Victorov, I; Dirnagl, U; Isaev, N

    1999-07-30

    Granule cells in a dissociated neuro-glial cell culture of cerebellum when exposed to ouabain (10(-3) M) for 25 min apparently swell, increase their [Ca2+]i with obvious depolarization of the mitochondrial membrane. In 3 h after ouabain was omitted from the solution, 62 +/- 3% of granule cells had pycnotic nuclei. The supplement of a solution with competitive specific antagonist of NMDA receptors, L-2-amino-7-phosphonoheptanoate (10(-4) M, APH) together with ouabain prevented cells from swelling, mitochondrial deenergization, neuronal death and increase of [Ca2+]i. These data suggest that cellular Na+/K+-ATPase inactivation in neuro-glial cell cultures of cerebellum leads to glutamate (Glu) accumulation, hyperstimulation of glutamate receptors, higher Ca2+ and Na+ influxes into the cells through the channels activated by Glu. This process leads to cell swelling, mitochondrial deenergization and death of granule cells. Possibly, the decrease of Na+/K+-ATPase activity in brain cells can lead to the onset of at least some chronic neurological disorders.

  11. Imaging exocytosis of single glucagon-like peptide-1 containing granules in a murine enteroendocrine cell line with total internal reflection fluorescent microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohara-Imaizumi, Mica; Aoyagi, Kyota; Akimoto, Yoshihiro

    To analyze the exocytosis of glucagon-like peptide-1 (GLP-1) granules, we imaged the motion of GLP-1 granules labeled with enhanced yellow fluorescent protein (Venus) fused to human growth hormone (hGH-Venus) in an enteroendocrine cell line, STC-1 cells, by total internal reflection fluorescent (TIRF) microscopy. We found glucose stimulation caused biphasic GLP-1 granule exocytosis: during the first phase, fusion events occurred from two types of granules (previously docked granules and newcomers), and thereafter continuous fusion was observed mostly from newcomers during the second phase. Closely similar to the insulin granule fusion from pancreatic {beta} cells, the regulated biphasic exocytosis from two typesmore » of granules may be a common mechanism in glucose-evoked hormone release from endocrine cells.« less

  12. Regulated and constitutive protein targeting can be distinguished by secretory polarity in thyroid epithelial cells

    PubMed Central

    1991-01-01

    We have studied concurrent apical/basolateral and regulated/constitutive secretory targeting in filter-grown thyroid epithelial monolayers in vitro, by following the exocytotic routes of two newly synthesized endogenous secretory proteins, thyroglobulin (Tg) and p500. Tg is a regulated secretory protein as indicated by its acute secretory response to secretagogues. Without stimulation, pulse-labeled Tg exhibits primarily two kinetically distinct routes: less than or equal to 80% is released in an apical secretory phase which is largely complete by 6-10 h, with most of the remaining Tg retained in intracellular storage from which delayed apical discharge is seen. The rapid export observed for most Tg is unlikely to be because of default secretion, since its apical polarity is preserved even during the period (less than or equal to 10 h) when p500 is released basolaterally by a constitutive pathway unresponsive to secretagogues. p500 also exhibits a second, kinetically distinct secretory route: at chase times greater than 10 h, a residual fraction (less than or equal to 8%) of p500 is secreted with an apical preponderance similar to that of Tg. It appears that this fraction of p500 has failed to be excluded from the regulated pathway, which has a predetermined apical polarity. From these data we hypothesize that a targeting hierarchy may exist in thyroid epithelial cells such that initial sorting to the regulated pathway may be a way of insuring apical surface delivery from one of two possible exocytotic routes originating in the immature storage compartment. PMID:1991788

  13. An endosomal syntaxin and the AP-3 complex are required for formation and maturation of candidate lysosome-related secretory organelles (mucocysts) in Tetrahymena thermophila

    PubMed Central

    Kaur, Harsimran; Sparvoli, Daniela; Osakada, Hiroko; Iwamoto, Masaaki; Haraguchi, Tokuko; Turkewitz, Aaron P.

    2017-01-01

    The ciliate Tetrahymena thermophila synthesizes large secretory vesicles called mucocysts. Mucocyst biosynthesis shares features with dense core granules (DCGs) in animal cells, including proteolytic processing of cargo proteins during maturation. However, other molecular features have suggested relatedness to lysosome-related organelles (LROs). LROs, which include diverse organelles in animals, are formed via convergence of secretory and endocytic trafficking. Here we analyzed Tetrahymena syntaxin 7-like 1 (Stx7l1p), a Qa-SNARE whose homologues in other lineages are linked with vacuoles/LROs. Stx7l1p is targeted to both immature and mature mucocysts and is essential in mucocyst formation. In STX7L1-knockout cells, the two major classes of mucocyst cargo proteins localize independently, accumulating in largely nonoverlapping vesicles. Thus initial formation of immature mucocysts involves heterotypic fusion, in which a subset of mucocyst proteins is delivered via an endolysosomal compartment. Further, we show that subsequent maturation requires AP-3, a complex widely implicated in LRO formation. Knockout of the µ-subunit gene does not impede delivery of any known mucocyst cargo but nonetheless arrests mucocyst maturation. Our data argue that secretory organelles in ciliates may represent a new class of LROs and reveal key roles of an endosomal syntaxin and AP-3 in the assembly of this complex compartment. PMID:28381425

  14. Adrenal Chromaffin Cells Exposed to 5-ns Pulses Require Higher Electric Fields to Porate Intracellular Membranes than the Plasma Membrane: An Experimental and Modeling Study.

    PubMed

    Zaklit, Josette; Craviso, Gale L; Leblanc, Normand; Yang, Lisha; Vernier, P Thomas; Chatterjee, Indira

    2017-10-01

    Nanosecond-duration electric pulses (NEPs) can permeabilize the endoplasmic reticulum (ER), causing release of Ca 2+ into the cytoplasm. This study used experimentation coupled with numerical modeling to understand the lack of Ca 2+ mobilization from Ca 2+ -storing organelles in catecholamine-secreting adrenal chromaffin cells exposed to 5-ns pulses. Fluorescence imaging determined a threshold electric (E) field of 8 MV/m for mobilizing intracellular Ca 2+ whereas whole-cell recordings of membrane conductance determined a threshold E-field of 3 MV/m for causing plasma membrane permeabilization. In contrast, a 2D numerical model of a chromaffin cell, which was constructed with internal structures representing a nucleus, mitochondrion, ER, and secretory granule, predicted that exposing the cell to the same 5-ns pulse electroporated the plasma and ER membranes at the same E-field amplitude, 3-4 MV/m. Agreement of the numerical simulations with the experimental results was obtained only when the ER interior conductivity was 30-fold lower than that of the cytoplasm and the ER membrane permittivity was twice that of the plasma membrane. A more realistic intracellular geometry for chromaffin cells in which structures representing multiple secretory granules and an ER showed slight differences in the thresholds necessary to porate the membranes of the secretory granules. We conclude that more sophisticated cell models together with knowledge of accurate dielectric properties are needed to understand the effects of NEPs on intracellular membranes in chromaffin cells, information that will be important for elucidating how NEPs porate organelle membranes in other cell types having a similarly complex cytoplasmic ultrastructure.

  15. Expression and subcellular localization of the Qa-SNARE syntaxin17 in human eosinophils.

    PubMed

    Carmo, Lívia A S; Dias, Felipe F; Malta, Kássia K; Amaral, Kátia B; Shamri, Revital; Weller, Peter F; Melo, Rossana C N

    2015-10-01

    SNARE members mediate membrane fusion during intracellular trafficking underlying innate and adaptive immune responses by different cells. However, little is known about the expression and function of these proteins in human eosinophils, cells involved in allergic, inflammatory and immunoregulatory responses. Here, we investigate the expression and distribution of the Qa-SNARE syntaxin17 (STX17) within human eosinophils isolated from the peripheral blood. Flow cytometry and a pre-embedding immunonanogold electron microscopy (EM) technique that combines optimal epitope preservation and secondary Fab-fragments of antibodies linked to 1.4 nm gold particles for optimal access to microdomains, were used to investigate STX17. STX17 was detected within unstimulated eosinophils. Immunogold EM revealed STX17 on secretory granules and on granule-derived vesiculotubular transport carriers (Eosinophil Sombrero Vesicles-EoSVs). Quantitative EM analyses showed that 77.7% of the granules were positive for STX17 with a mean±SEM of 3.9±0.2 gold particles/granule. Labeling was present on both granule outer membranes and matrices while EoSVs showed clear membrane-associated labeling. STX17 was also present in secretory granules in eosinophils stimulated with the cytokine tumor necrosis factor alpha (TNF-α) or the CC-chemokine ligand 11 CCL11 (eotaxin-1), stimuli that induce eosinophil degranulation. The number of secretory granules labeled for STX17 was significantly higher in CCL11 compared with the unstimulated group. The level of cell labeling did not change when unstimulated cells were compared with TNF-α-stimulated eosinophils. The present study clearly shows by immunanonogold EM that STX17 is localized in eosinophil secretory granules and transport vesicles and might be involved in the transport of granule-derived cargos. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Host cell subversion by Toxoplasma GRA16, an exported dense granule protein that targets the host cell nucleus and alters gene expression.

    PubMed

    Bougdour, Alexandre; Durandau, Eric; Brenier-Pinchart, Marie-Pierre; Ortet, Philippe; Barakat, Mohamed; Kieffer, Sylvie; Curt-Varesano, Aurélie; Curt-Bertini, Rose-Laurence; Bastien, Olivier; Coute, Yohann; Pelloux, Hervé; Hakimi, Mohamed-Ali

    2013-04-17

    After invading host cells, Toxoplasma gondii multiplies within a parasitophorous vacuole (PV) that is maintained by parasite proteins secreted from organelles called dense granules. Most dense granule proteins remain within the PV, and few are known to access the host cell cytosol. We identify GRA16 as a dense granule protein that is exported through the PV membrane and reaches the host cell nucleus, where it positively modulates genes involved in cell-cycle progression and the p53 tumor suppressor pathway. GRA16 binds two host enzymes, the deubiquitinase HAUSP and PP2A phosphatase, which exert several functions, including regulation of p53 and the cell cycle. GRA16 alters p53 levels in a HAUSP-dependent manner and induces nuclear translocation of the PP2A holoenzyme. Additionally, certain GRA16-deficient strains exhibit attenuated virulence, indicating the importance of these host alterations in pathogenesis. Therefore, GRA16 represents a potentially emerging subfamily of exported dense granule proteins that modulate host function. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. The fine structure of the stomach mucosa of the Llama (Llama guanacoe). II. The fundic region of the hind stomach.

    PubMed

    Luciano, L; Reale, E; von Engelhardt, W

    1980-01-01

    The epithelium of the fundic region mucosa of the hind stomach in the Llama guanacoe has been studied using morphological and histochemical methods. Morphology suggests that solute and water absorption may occur in the epithelium of the surface and of the foveolae, although this absorption can not be estimated because of the extensive secretion of the gastric glands. The same cells of the surface and foveolar epithelium show numerous secretory granules. The glands reveal neck cells, chief cells, a large number of oxyntic cells, four types of endocrine cells (A-like, ECL, D and EC), brush cells and wandering cells. PAS and Alcian blue reactions for light microscopy suggest a secretion of neutral and acidic mucosubstances in the surface and foveolar epithelium, of neutral mucosubstances only in the neck cells. Periodic acid-thiocarbohydrazide silver proteinate (PA-TCH-SP) reaction for electron microscopy confirms the presence of neutral mucosubstances within the secretory granules of the surface, foveolar and neck epithelial cells. In all these cells, the reaction product is also evident within sacculi and vesicles of the maturing surface of the Golgi apparatus. A positive PA-TCH-SP reaction also occurs on the membrane (and not on the contents) of the Golgi apparatus (maturing surface) and of the secretory granules of the chief cells as well as on the membrane of the Golgi apparatus and of apical vesicles and tubules of the oxyntic cells. In addition, silver granules slightly enhance the electron desity of the contents of the secretory granules in the endocrine cells. Morphological and histochemical findings are discussed and compared with results described by others for monogastric mammals.

  18. The Stress Granule RNA-Binding Protein TIAR-1 Protects Female Germ Cells from Heat Shock in Caenorhabditis elegans.

    PubMed

    Huelgas-Morales, Gabriela; Silva-García, Carlos Giovanni; Salinas, Laura S; Greenstein, David; Navarro, Rosa E

    2016-04-07

    In response to stressful conditions, eukaryotic cells launch an arsenal of regulatory programs to protect the proteome. One major protective response involves the arrest of protein translation and the formation of stress granules, cytoplasmic ribonucleoprotein complexes containing the conserved RNA-binding proteins TIA-1 and TIAR. The stress granule response is thought to preserve mRNA for translation when conditions improve. For cells of the germline-the immortal cell lineage required for sexual reproduction-protection from stress is critically important for perpetuation of the species, yet how stress granule regulatory mechanisms are deployed in animal reproduction is incompletely understood. Here, we show that the stress granule protein TIAR-1 protects the Caenorhabditis elegans germline from the adverse effects of heat shock. Animals containing strong loss-of-function mutations in tiar-1 exhibit significantly reduced fertility compared to the wild type following heat shock. Analysis of a heat-shock protein promoter indicates that tiar-1 mutants display an impaired heat-shock response. We observed that TIAR-1 was associated with granules in the gonad core and oocytes during several stressful conditions. Both gonad core and oocyte granules are dynamic structures that depend on translation; protein synthesis inhibitors altered their formation. Nonetheless, tiar-1 was required for the formation of gonad core granules only. Interestingly, the gonad core granules did not seem to be needed for the germ cells to develop viable embryos after heat shock. This suggests that TIAR-1 is able to protect the germline from heat stress independently of these structures. Copyright © 2016 Huelgas-Morales et al.

  19. The Stress Granule RNA-Binding Protein TIAR-1 Protects Female Germ Cells from Heat Shock in Caenorhabditis elegans

    PubMed Central

    Huelgas-Morales, Gabriela; Silva-García, Carlos Giovanni; Salinas, Laura S.; Greenstein, David; Navarro, Rosa E.

    2016-01-01

    In response to stressful conditions, eukaryotic cells launch an arsenal of regulatory programs to protect the proteome. One major protective response involves the arrest of protein translation and the formation of stress granules, cytoplasmic ribonucleoprotein complexes containing the conserved RNA-binding proteins TIA-1 and TIAR. The stress granule response is thought to preserve mRNA for translation when conditions improve. For cells of the germline—the immortal cell lineage required for sexual reproduction—protection from stress is critically important for perpetuation of the species, yet how stress granule regulatory mechanisms are deployed in animal reproduction is incompletely understood. Here, we show that the stress granule protein TIAR-1 protects the Caenorhabditis elegans germline from the adverse effects of heat shock. Animals containing strong loss-of-function mutations in tiar-1 exhibit significantly reduced fertility compared to the wild type following heat shock. Analysis of a heat-shock protein promoter indicates that tiar-1 mutants display an impaired heat-shock response. We observed that TIAR-1 was associated with granules in the gonad core and oocytes during several stressful conditions. Both gonad core and oocyte granules are dynamic structures that depend on translation; protein synthesis inhibitors altered their formation. Nonetheless, tiar-1 was required for the formation of gonad core granules only. Interestingly, the gonad core granules did not seem to be needed for the germ cells to develop viable embryos after heat shock. This suggests that TIAR-1 is able to protect the germline from heat stress independently of these structures. PMID:26865701

  20. Imaging Polarized Secretory Traffic at the Immune Synapse in Living T Lymphocytes.

    PubMed

    Calvo, Víctor; Izquierdo, Manuel

    2018-01-01

    Immune synapse (IS) formation by T lymphocytes constitutes a crucial event involved in antigen-specific, cellular and humoral immune responses. After IS formation by T lymphocytes and antigen-presenting cells, the convergence of secretory vesicles toward the microtubule-organizing center (MTOC) and MTOC polarization to the IS are involved in polarized secretion at the synaptic cleft. This specialized mechanism appears to specifically provide the immune system with a fine strategy to increase the efficiency of crucial secretory effector functions of T lymphocytes, while minimizing non-specific, cytokine-mediated stimulation of bystander cells, target cell killing and activation-induced cell death. The molecular bases involved in the polarized secretory traffic toward the IS in T lymphocytes have been the focus of interest, thus different models and several imaging strategies have been developed to gain insights into the mechanisms governing directional secretory traffic. In this review, we deal with the most widely used, state-of-the-art approaches to address the molecular mechanisms underlying this crucial, immune secretory response.

  1. Role of mammalian homologue of Caenorhabditis elegans unc-13-1 (Munc13-1) in the recruitment of newcomer insulin granules in both first and second phases of glucose-stimulated insulin secretion in mouse islets.

    PubMed

    Xie, L; Zhu, D; Gaisano, H Y

    2012-10-01

    We have previously reported that the haplodeficient Munc13-1(+/-) mouse exhibits impaired biphasic glucose-stimulated insulin secretion (GSIS), causing glucose intolerance mimicking type 2 diabetes. Glucagon-like peptide-1 (GLP-1) can bypass these insulin-secretory defects in type 2 diabetes, but the mechanism of exocytotic events mediated by GLP-1 in rescuing insulin secretion is unclear. The total internal reflection fluorescence microscopy (TIRFM) technique was used to examine single insulin granule fusion events in mouse islet beta cells. There was no difference in the density of docked granules in the resting state between Munc13-1(+/+) and Munc13-1(+/-) mouse islet beta cells. While exocytosis of previously docked granules in Munc13-1(+/-) beta cells is reduced during high-K(+) stimulation as expected, we now find a reduction in additional exocytosis events that account for the major portion of GSIS, namely two types of newcomer granules, one which has a short docking time (short-dock) and another undergoing no docking before exocytosis (no-dock). As mammalian homologue of Caenorhabditis elegans unc-13-1 (Munc13-1) is a phorbol ester substrate, phorbol ester could partially rescue biphasic GSIS in Munc13-1-deficient beta cells by enhancing recruitment of short-dock newcomer granules for exocytosis. The more effective rescue of biphasic GSIS by GLP-1 than by phorbol was due to increased recruitment of both short-dock and no-dock newcomer granules. Phorbol ester and GLP-1 potentiation of biphasic GSIS are brought about by recruitment of distinct populations of newcomer granules for exocytosis, which may be mediated by Munc13-1 interaction with syntaxin-SNARE complexes other than that formed by syntaxin-1A.

  2. Proton sensitivity of rat cerebellar granule cell GABAA receptors: dependence on neuronal development

    PubMed Central

    Krishek, Belinda J; Smart, Trevor G

    2001-01-01

    The effect of GABAA receptor development in culture on the modulation of GABA-induced currents by external H+ was examined in cerebellar granule cells using whole-cell and single-channel recording. Equilibrium concentration-response curves revealed a lower potency for GABA between 11 and 12 days in vitro (DIV) resulting in a shift of the EC50 from 10.7 to 2.4 μM. For granule cells before 11 DIV, the peak GABA-activated current was inhibited at low external pH and enhanced at high pH with a pKa of 6.65. For the steady-state response, low pH was inhibitory with a pKa of 5.56. After 11 DIV, the peak GABA-activated current was largely pH insensitive; however, the steady-state current was potentiated at low pH with a pKa of 6.84. Single GABA-activated ion channels were recorded from outside-out patches of granule cell bodies. At pH 5.4-9.4, single GABA channels exhibited multiple conductance states occurring at 22-26, 16-17 and 12-14 pS. The conductance levels were not significantly altered over the time period of study, nor by changing the external H+ concentration. Two exponential functions were required to fit the open-time frequency histograms at both early (< 11 DIV) and late (> 11 DIV) development times at each H+ concentration. The short and long open time constants were unaffected either by the extracellular H+ concentration or by neuronal development. The distribution of all shut times was fitted by the sum of three exponentials designated as short, intermediate and long. At acidic pH, the long shut time constant decreased with development as did the relative contribution of these components to the overall distribution. This was concurrent with an increase in the mean probability of channel opening. In conclusion, this study demonstrates in cerebellar granule cells that external pH can either reduce, have no effect on, or enhance GABA-activated responses depending on the stage of development, possibly related to the subunit composition of the GABAA receptors

  3. Gap Junction Modulation of Low-Frequency Oscillations in the Cerebellar Granule Cell Layer.

    PubMed

    Robinson, Jennifer Claire; Chapman, C Andrew; Courtemanche, Richard

    2017-08-01

    Local field potential (LFP) oscillations in the granule cell layer (GCL) of the cerebellar cortex have been identified previously in the awake rat and monkey during immobility. These low-frequency oscillations are thought to be generated through local circuit interactions between Golgi cells and granule cells within the GCL. Golgi cells display rhythmic firing and pacemaking properties, and also are electrically coupled through gap junctions within the GCL. Here, we tested if gap junctions in the rat cerebellar cortex contribute to the generation of LFP oscillations in the GCL. We recorded LFP oscillations under urethane anesthesia, and examined the effects of local infusion of gap junction blockers on 5-15 Hz oscillations. Local infusion of the gap junction blockers carbenoxolone and mefloquine resulted in significant decreases in the power of oscillations over a 30-min period, but the power of oscillations was unchanged in control experiments following vehicle injections. In addition, infusion of gap junction blockers had no significant effect on multi-unit activity, suggesting that the attenuation of low-frequency oscillations was likely due to reductions in electrical coupling rather than a decreased excitability within the granule cell layer. Our results indicate that electrical coupling among the Golgi cell networks in the cerebellar cortex contributes to the local circuit mechanisms that promote the occurrence of GCL LFP slow oscillations in the anesthetized rat.

  4. A senescence secretory switch mediated by PI3K/AKT/mTOR activation controls chemoprotective endothelial secretory responses

    PubMed Central

    Bent, Eric H.; Gilbert, Luke A.; Hemann, Michael T.

    2016-01-01

    Cancer therapy targets malignant cells that are surrounded by a diverse complement of nonmalignant stromal cells. Therapy-induced damage of normal cells can alter the tumor microenvironment, causing cellular senescence and activating cancer-promoting inflammation. However, how these damage responses are regulated (both induced and resolved) to preserve tissue homeostasis and prevent chronic inflammation is poorly understood. Here, we detail an acute chemotherapy-induced secretory response that is self-limiting in vitro and in vivo despite the induction of cellular senescence. We used tissue-specific knockout mice to demonstrate that endothelial production of the proinflammatory cytokine IL-6 promotes chemoresistance and show that the chemotherapeutic doxorubicin induces acute IL-6 release through reactive oxygen species-mediated p38 activation in vitro. Doxorubicin causes endothelial senescence but, surprisingly, without a typical senescence secretory response. We found that endothelial cells repress senescence-associated inflammation through the down-regulation of PI3K/AKT/mTOR signaling and that reactivation of this pathway restores senescence-associated inflammation. Thus, we describe a mechanism by which damage-associated paracrine secretory responses are restrained to preserve tissue homeostasis and prevent chronic inflammation. PMID:27566778

  5. Ca2+-dependent dephosphorylation of kinesin heavy chain on beta-granules in pancreatic beta-cells. Implications for regulated beta-granule transport and insulin exocytosis

    NASA Technical Reports Server (NTRS)

    Donelan, Matthew J.; Morfini, Gerardo; Julyan, Richard; Sommers, Scott; Hays, Lori; Kajio, Hiroshi; Briaud, Isabelle; Easom, Richard A.; Molkentin, Jeffery D.; Brady, Scott T.; hide

    2002-01-01

    The specific biochemical steps required for glucose-regulated insulin exocytosis from beta-cells are not well defined. Elevation of glucose leads to increases in cytosolic [Ca2+]i and biphasic release of insulin from both a readily releasable and a storage pool of beta-granules. The effect of elevated [Ca2+]i on phosphorylation of isolated beta-granule membrane proteins was evaluated, and the phosphorylation of four proteins was found to be altered by [Ca2+]i. One (a 18/20-kDa doublet) was a Ca2+-dependent increase in phosphorylation, and, surprisingly, three others (138, 42, and 36 kDa) were Ca2+-dependent dephosphorylations. The 138-kDa beta-granule phosphoprotein was found to be kinesin heavy chain (KHC). At low levels of [Ca2+]i KHC was phosphorylated by casein kinase 2, but KHC was rapidly dephosphorylated by protein phosphatase 2B beta (PP2Bbeta) as [Ca2+]i increased. Inhibitors of PP2B specifically reduced the second, microtubule-dependent, phase of insulin secretion, suggesting that dephosphorylation of KHC was required for transport of beta-granules from the storage pool to replenish the readily releasable pool of beta-granules. This is distinct from synaptic vesicle exocytosis, because neurotransmitter release from synaptosomes did not require a Ca2+-dependent KHC dephosphorylation. These results suggest a novel mechanism for regulating KHC function and beta-granule transport in beta-cells that is mediated by casein kinase 2 and PP2B. They also implicate a novel regulatory role for PP2B/calcineurin in the control of insulin secretion downstream of a rise in [Ca2+]i.

  6. Studies on proinsulin and proglucagon biosynthesis and conversion at the subcellular level: I. Fractionation procedure and characterization of the subcellular fractions

    PubMed Central

    Noe, BD; Baste, CA; Bauer, GE

    1977-01-01

    Anglerfish islets were homogenized in 0.25 M sucrose and separated into seven separate subcellular fractions by differential and discontinuous density gradient centrifugation. The objective was to isolate microsomes and secretory granules in a highly purified state. The fractions were characterized by electron microscopy and chemical analyses. Each fraction was assayed for its content of protein, RNA, DNA, immunoreactive insulin (IRI), and immunoreactive glucagon (IRG). Ultrastructural examination showed that two of the seven subcellular fractions contain primarily mitochondria, and that two others consist almost exclusively of secretory granules. A fifth fraction contains rough and smooth microsomal vesicles. The remaining two fractions are the cell supernate and the nuclei and cell debris. The content of DNA and RNA in all fractions is consistent with the observed ultrastructure. More than 82 percent of the total cellular IRI and 89(percent) of the total cellular IRG are found in the fractions of secretory granules. The combined fractions of secretory granules and microsomes consistently yield >93 percent of the total IRG. These results indicate that the fractionation procedure employed yields fractions of microsomes and secretory granules that contain nearly all the immunoassayable insulin and glucagons found in whole islet tissue. These fractions are thus considered suitable for study of proinsulin and proglucagon biosynthesis and their metabolic conversion at the subcellular level. PMID:328517

  7. Discovery of Transcription Factors Novel to Mouse Cerebellar Granule Cell Development Through Laser-Capture Microdissection.

    PubMed

    Zhang, Peter G Y; Yeung, Joanna; Gupta, Ishita; Ramirez, Miguel; Ha, Thomas; Swanson, Douglas J; Nagao-Sato, Sayaka; Itoh, Masayoshi; Kawaji, Hideya; Lassmann, Timo; Daub, Carsten O; Arner, Erik; de Hoon, Michiel; Carninci, Piero; Forrest, Alistair R R; Hayashizaki, Yoshihide; Goldowitz, Dan

    2018-06-01

    Laser-capture microdissection was used to isolate external germinal layer tissue from three developmental periods of mouse cerebellar development: embryonic days 13, 15, and 18. The cerebellar granule cell-enriched mRNA library was generated with next-generation sequencing using the Helicos technology. Our objective was to discover transcriptional regulators that could be important for the development of cerebellar granule cells-the most numerous neuron in the central nervous system. Through differential expression analysis, we have identified 82 differentially expressed transcription factors (TFs) from a total of 1311 differentially expressed genes. In addition, with TF-binding sequence analysis, we have identified 46 TF candidates that could be key regulators responsible for the variation in the granule cell transcriptome between developmental stages. Altogether, we identified 125 potential TFs (82 from differential expression analysis, 46 from motif analysis with 3 overlaps in the two sets). From this gene set, 37 TFs are considered novel due to the lack of previous knowledge about their roles in cerebellar development. The results from transcriptome-wide analyses were validated with existing online databases, qRT-PCR, and in situ hybridization. This study provides an initial insight into the TFs of cerebellar granule cells that might be important for development and provide valuable information for further functional studies on these transcriptional regulators.

  8. Ultra-structural study of insulin granules in pancreatic β-cells of db/db mouse by scanning transmission electron microscopy tomography.

    PubMed

    Xue, Yanhong; Zhao, Wei; Du, Wen; Zhang, Xiang; Ji, Gang; Ying, Wang; Xu, Tao

    2012-07-01

    Insulin granule trafficking is a key step in the secretion of glucose-stimulated insulin from pancreatic β-cells. The main feature of type 2 diabetes (T2D) is the failure of pancreatic β-cells to secrete sufficient amounts of insulin to maintain normal blood glucose levels. In this work, we developed and applied tomography based on scanning transmission electron microscopy (STEM) to image intact insulin granules in the β-cells of mouse pancreatic islets. Using three-dimensional (3D) reconstruction, we found decreases in both the number and the grey level of insulin granules in db/db mouse pancreatic β-cells. Moreover, insulin granules were closer to the plasma membrane in diabetic β-cells than in control cells. Thus, 3D ultra-structural tomography may provide new insights into the pathology of insulin secretion in T2D.

  9. Matching native electrical stimulation by graded chemical stimulation in isolated mouse adrenal chromaffin cells.

    PubMed

    Fulop, Tiberiu; Smith, Corey

    2007-11-30

    Adrenal chromaffin cells release multiple transmitters in response to sympathetic stimulation. Modest cell firing, matching sympathetic tone, releases small freely soluble catecholamines. Elevated electrical firing rates matching input under sympathetic stress results in release of catecholamines as well as semi-soluble vaso- and neuro-active peptides packaged within the dense core of the secretory granule. This activity-dependent differential transmitter release has been shown to rely on a mechanistic shift in the mode of exocytosis through the regulated dilation of the secretory fusion pore between granule and cell surface membranes. However, biochemical description of the mechanism regulating fusion pore dilation remains elusive. In the experimental setting, electrical stimulation designed to mimic sympathetic input, is achieved through single-cell voltage-clamp. While precise, this approach is incompatible with biochemical and proteomic analysis, both of which require large sample sizes. We address this limitation in the current study. We describe a bulk chemical stimulation paradigm calibrated to match defined electrical activity. We utilize calcium and single-cell amperometric measurements to match extracellular potassium concentrations to physiological electrical stimulation under sympathetic tone as well as acute stress conditions. This approach provides larger samples of uniformly stimulated cells for determining molecular players in activity-dependent differential transmitter release from adrenal chromaffin cells.

  10. AN ELECTRON MICROSCOPE STUDY OF MATURE AND DIFFERENTIATING PANETH CELLS IN THE RAT, ESPECIALLY OF THEIR ENDOPLASMIC RETICULUM AND LYSOSOMES

    PubMed Central

    Behnke, O.; Moe, H.

    1964-01-01

    In an electron microsope study, the morphology of mature Paneth cells from the small intestine of adult rats is compared with that of differentiating Paneth cells from young rats 2 to 4 weeks old. All mature cells exhibit a marked polarity similar to that of other exocrine gland cells and contain a well developed endoplasmic reticulum, an elaborate Golgi complex, and numerous large secretory granules; they also possess an abundance of lysosomes. The most conspicuous occurrence in the process of differentiation is the development of the endoplasmic reticulum. The most immature Paneth cells possess an endoplasmic reticulum of the vesicular type, which, during maturation, is replaced by the characteristic lamellated ergastoplasm of the mature cell. At a certain stage of differentiation the cavities of the developing cisternae show numerous communications with the perinuclear space, suggesting an outgrowth of the ergastoplasm from the nuclear envelope. Furthermore, the cavities and the perinuclear space at this particular stage contain a material which shows a remarkable intrinsic periodicity. An identical periodicity was exhibited by material contained in Golgi cisternae and secretory granules. Lysosomes are also present in the differentiating cells. PMID:14206428

  11. On the origins of the universal dynamics of endogenous granules in mammalian cells.

    PubMed

    Vanapalli, Siva A; Li, Yixuan; Mugele, Frieder; Duits, Michel H G

    2009-12-01

    Endogenous granules (EGs) that consist of lipid droplets and mitochondria have been commonly used to assess intracellular mechanical properties via multiple particle tracking microrheology (MPTM). Despite their widespread use, the nature of interaction of EGs with the cytoskeletal network and the type of forces driving their dynamics--both of which are crucial for the interpretation of the results from MPTM technique--are yet to be resolved. In this report, we study the dynamics of endogenous granules in mammalian cells using particle tracking methods. We find that the ensemble dynamics of EGs is diffusive in three types of mammalian cells (endothelial cells, smooth muscle cells and fibroblasts), thereby suggesting an apparent universality in their dynamical behavior. Moreover, in a given cell, the amplitude of the mean-squared displacement for EGs is an order of magnitude larger than that of injected particles. This observation along with results from ATP depletion and temperature intervention studies suggests that cytoskeletal active forces drive the dynamics of EGs. To elucidate the dynamical origin of the diffusive-like nonthermal motion, we consider three active force generation mechanisms--molecular motor transport, actomyosin contractility and microtubule polymerization forces. We test these mechanisms using pharmacological interventions. Experimental evidence and model calculations suggest that EGs are intimately linked to microtubules and that microtubule polymerization forces drive their dynamics. Thus, endogenous granules could serve as non-invasive probes for microtubule network dynamics in mammalian cells.

  12. Enterovirus 71 induces anti-viral stress granule-like structures in RD cells.

    PubMed

    Zhu, Yuanmei; Wang, Bei; Huang, He; Zhao, Zhendong

    2016-08-05

    Stress granules (SGs) are dynamic cytoplasmic granules formed in response to a variety of stresses, including viral infection. Several viruses can modulate the formation of SG with different effects, but the relationship between SG formation and EV71 infection is poorly understood. In this study, we report that EV71 inhibits canonical SGs formation in infected cells and induces the formation of novel RNA granules that were distinguished from canonical SGs in composition and morphology, which we termed 'SG like structures'. Our results also demonstrated that EV71 triggered formation of SG-like structures is dependent on PKR and eIF2α phosphorylation and requires ongoing cellular mRNA synthesis. Finally, we found that SG-like structures are antiviral RNA granules that promote cellular apoptosis and suppress EV71 propagation. Taken together, our findings explain the formation mechanism of SG-like structures induced by EV71 and shed light on virus-host interaction and molecular mechanism underlying EV71 pathogenesis. Copyright © 2016. Published by Elsevier Inc.

  13. Induction of stress granule-like structures in vesicular stomatitis virus-infected cells.

    PubMed

    Dinh, Phat X; Beura, Lalit K; Das, Phani B; Panda, Debasis; Das, Anshuman; Pattnaik, Asit K

    2013-01-01

    Previous studies from our laboratory revealed that cellular poly(C) binding protein 2 (PCBP2) downregulates vesicular stomatitis virus (VSV) gene expression. We show here that VSV infection induces the formation of granular structures in the cytoplasm containing cellular RNA-binding proteins, including PCBP2, T-cell-restricted intracellular antigen 1 (TIA1), and TIA1-related protein (TIAR). Depletion of TIA1 via small interfering RNAs (siRNAs), but not depletion of TIAR, results in enhanced VSV growth and gene expression. The VSV-induced granules appear to be similar to the stress granules (SGs) generated in cells triggered by heat shock or oxidative stress but do not contain some of the bona fide SG markers, such as eukaryotic initiation factor 3 (eIF3) or eIF4A, or the processing body (PB) markers, such as mRNA-decapping enzyme 1A (DCP1a), and thus may not represent canonical SGs or PBs. Our results revealed that the VSV-induced granules, called SG-like structures here, contain the viral replicative proteins and RNAs. The formation and maintenance of the SG-like structures required viral replication and ongoing protein synthesis, but an intact cytoskeletal network was not necessary. These results suggest that cells respond to VSV infection by aggregating the antiviral proteins, such as PCBP2 and TIA1, to form SG-like structures. The functional significance of these SG-like structures in VSV-infected cells is currently under investigation.

  14. Killing effects of Huaier Granule combined with DC-CIK on nude mice transplanted with colon carcinoma cell line.

    PubMed

    Sun, Wen-Wen; Dou, Jin-Xia; Zhang, Lin; Qiao, Li-Kui; Shen, Na; Zhao, Qiang; Gao, Wen-Yuan

    2017-07-11

    This study aims to compare the efficacy of different treatments for nude mice transplanted with HT-29 colon carcinoma cell line. BalB/C nude mice were transplanted with HT-29 colon carcinoma cell line and randomly divided into four groups, with 5 mice in each group: blank control group, DC-CIK group, Huaier Granule group, and Huaier Granule group combined with DC-CIK group (combined treatment group). For DC-CIK group and combined treatment group, 1×106 DC-CIK cells were injected via the tail vein 4 days after transplantation. The injection was performed twice weekly for a total of 2 weeks. For Huaier Granule group and combined treatment group, Huaier Granule was administered at the dose of 20 g/60 g, by dissolving 20 g of Huaier granules in 600 ml of pure water. Intragastric administration of 0.2 ml of granules was performed once daily for 3 weeks. For the blank control group, equal volume of normal saline was given. Tumor size and body weight of nude mice were measured every 2 days during the 3-week treatment. The mice were sacrificed at the end of treatment to harvest tumors. Key genes of the signaling pathway were detected by RT-PCR. At the end of treatment, mice in combined treatment group, DC-CIK group and Huaier Granule group remained stable emotionally with normal mobility and water and food intake. However, in the blank control group, the mobility was restricted starting from the third week and the mice were on the verge of dying. The expression of PI3KR1, Akt, Wnt1, CTTNB1, Notch1, Notch2 and Notch3 genes were all downregulated significantly in the combined treatment group compared with DC-CIK group and Huaier Granule group (P<0.05). Therefore, the combined treatment of Huaier Granule combined with DC-CIK achieved the best effect in nude mice transplanted with HT-29 colon carcinoma cell line.

  15. Maternal dazap2 Regulates Germ Granules by Counteracting Dynein in Zebrafish Primordial Germ Cells.

    PubMed

    Forbes, Meredyth M; Rothhämel, Sophie; Jenny, Andreas; Marlow, Florence L

    2015-07-07

    Primordial germ cells (PGCs) are the stem cells of the germline. Generally, germline induction occurs via zygotic factors or the inheritance of maternal determinants called germ plasm (GP). GP is packaged into ribonucleoprotein complexes within oocytes and later promotes the germline fate in embryos. Once PGCs are specified by either mechanism, GP components localize to perinuclear granular-like structures. Although components of zebrafish PGC germ granules have been studied, the maternal factors regulating their assembly and contribution to germ cell development are unknown. Here, we show that the scaffold protein Dazap2 binds to Bucky ball, an essential regulator of oocyte polarity and GP assembly, and colocalizes with the GP in oocytes and in PGCs. Mutational analysis revealed a requirement for maternal Dazap2 (MDazap2) in germ-granule maintenance. Through molecular epistasis analyses, we show that MDazap2 is epistatic to Tdrd7 and maintains germ granules in the embryonic germline by counteracting Dynein activity. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. CREB3L1-mediated functional and structural adaptation of the secretory pathway in hormone-stimulated thyroid cells.

    PubMed

    García, Iris A; Torres Demichelis, Vanina; Viale, Diego L; Di Giusto, Pablo; Ezhova, Yulia; Polishchuk, Roman S; Sampieri, Luciana; Martinez, Hernán; Sztul, Elizabeth; Alvarez, Cecilia

    2017-12-15

    Many secretory cells increase the synthesis and secretion of cargo proteins in response to specific stimuli. How cells couple increased cargo load with a coordinate rise in secretory capacity to ensure efficient transport is not well understood. We used thyroid cells stimulated with thyrotropin (TSH) to demonstrate a coordinate increase in the production of thyroid-specific cargo proteins and ER-Golgi transport factors, and a parallel expansion of the Golgi complex. TSH also increased expression of the CREB3L1 transcription factor, which alone caused amplified transport factor levels and Golgi enlargement. Furthermore, CREB3L1 potentiated the TSH-induced increase in Golgi volume. A dominant-negative CREB3L1 construct hampered the ability of TSH to induce Golgi expansion, implying that this transcription factor contributes to Golgi expansion. Our findings support a model in which CREB3L1 acts as a downstream effector of TSH to regulate the expression of cargo proteins, and simultaneously increases the synthesis of transport factors and the expansion of the Golgi to synchronize the rise in cargo load with the amplified capacity of the secretory pathway. © 2017. Published by The Company of Biologists Ltd.

  17. Excess influx of Zn(2+) into dentate granule cells affects object recognition memory via attenuated LTP.

    PubMed

    Suzuki, Miki; Fujise, Yuki; Tsuchiya, Yuka; Tamano, Haruna; Takeda, Atsushi

    2015-08-01

    The influx of extracellular Zn(2+) into dentate granule cells is nonessential for dentate gyrus long-term potentiation (LTP) and the physiological significance of extracellular Zn(2+) dynamics is unknown in the dentate gyrus. Excess increase in extracellular Zn(2+) in the hippocampal CA1, which is induced with excitation of zincergic neurons, induces memory deficit via excess influx of Zn(2+) into CA1 pyramidal cells. In the present study, it was examined whether extracellular Zn(2+) induces object recognition memory deficit via excess influx of Zn(2+) into dentate granule cells. KCl (100 mM, 2 µl) was locally injected into the dentate gyrus. The increase in intracellular Zn(2+) in dentate granule cells induced with high K(+) was blocked by co-injection of CaEDTA and CNQX, an extracellular Zn(2+) chelator and an AMPA receptor antagonist, respectively, suggesting that high K(+) increases the influx of Zn(2+) into dentate granule cells via AMPA receptor activation. Dentate gyrus LTP induction was attenuated 1 h after KCl injection into the dentate gyrus and also attenuated when KCl was injected 5 min after the induction. Memory deficit was induced when training of object recognition test was performed 1 h after KCl injection into the dentate gyrus and also induced when KCl was injected 5 min after the training. High K(+)-induced impairments of LTP and memory were rescued by co-injection of CaEDTA. These results indicate that excess influx of Zn(2+) into dentate granule cells via AMPA receptor activation affects object recognition memory via attenuated LTP induction. Even in the dentate gyrus where is scarcely innervated by zincergic neurons, it is likely that extracellular Zn(2+) homeostasis is strictly regulated for cognition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Loss of ascl1a prevents secretory cell differentiation within the zebrafish intestinal epithelium resulting in a loss of distal intestinal motility

    PubMed Central

    Roach, Gillian; Wallace, Rachel Heath; Cameron, Amy; Ozel, Rifat Emrah; Hongay, Cintia F.; Baral, Reshica; Andreescu, Silvana; Wallace, Kenneth N.

    2013-01-01

    The vertebrate intestinal epithelium is renewed continuously from stem cells at the base of the crypt in mammals or base of the fold in fish over the life of the organism. As stem cells divide, newly formed epithelial cells make an initial choice between a secretory or enterocyte fate. This choice has previously been demonstrated to involve Notch signaling as well as Atonal and Her transcription factors in both embryogenesis and adults. Here, we demonstrate that in contrast to the atoh1 in mammals, ascl1a is responsible for formation of secretory cells in zebrafish. ascl1a−/− embryos lack all intestinal epithelial secretory cells and instead differentiate into enterocytes. ascl1a−/− embryos also fail to induce intestinal epithelial expression of deltaD suggesting that ascl1a plays a role in initiation of Notch signaling. Inhibition of Notch signaling increases the number of ascl1a and deltaD expressing intestinal epithelial cells as well as the number of developing secretory cells during two specific time periods: between 30 and 34 hpf and again between 64 and 74 hpf. Loss of enteroendocrine products results in loss of anterograde motility in ascl1a−/− embryos. 5HT produced by enterochromaffin cells is critical in motility and secretion within the intestine. We find that addition of exogenous 5HT to ascl1a−/− embryos at near physiological levels (measured by differential pulse voltammetry) induce anterograde motility at similar levels to wild type velocity, distance, and frequency. Removal or doubling the concentration of 5HT in WT embryos does not significantly affect anterograde motility, suggesting that the loss of additional enteroendocrine products in ascl1a−/− embryos also contributes to intestinal motility. Thus, zebrafish intestinal epithelial cells appear to have a common secretory progenitor from which all subtypes form. Loss of enteroendocrine cells reveals the critical need for enteroendocrine products in maintenance of normal

  19. VAMP-2 and cellubrevin are expressed in pancreatic beta-cells and are essential for Ca(2+)-but not for GTP gamma S-induced insulin secretion.

    PubMed Central

    Regazzi, R; Wollheim, C B; Lang, J; Theler, J M; Rossetto, O; Montecucco, C; Sadoul, K; Weller, U; Palmer, M; Thorens, B

    1995-01-01

    VAMP proteins are important components of the machinery controlling docking and/or fusion of secretory vesicles with their target membrane. We investigated the expression of VAMP proteins in pancreatic beta-cells and their implication in the exocytosis of insulin. cDNA cloning revealed that VAMP-2 and cellubrevin, but not VAMP-1, are expressed in rat pancreatic islets and that their sequence is identical to that isolated from rat brain. Pancreatic beta-cells contain secretory granules that store and secrete insulin as well as synaptic-like microvesicles carrying gamma-aminobutyric acid. After subcellular fractionation on continuous sucrose gradients, VAMP-2 and cellubrevin were found to be associated with both types of secretory vesicle. The association of VAMP-2 with insulin-containing granules was confirmed by confocal microscopy of primary cultures of rat pancreatic beta-cells. Pretreatment of streptolysin-O permeabilized insulin-secreting cells with tetanus and botulinum B neurotoxins selectively cleaved VAMP-2 and cellubrevin and abolished Ca(2+)-induced insulin release (IC50 approximately 15 nM). By contrast, the pretreatment with tetanus and botulinum B neurotoxins did not prevent GTP gamma S-stimulated insulin secretion. Taken together, our results show that pancreatic beta-cells express VAMP-2 and cellubrevin and that one or both of these proteins selectively control Ca(2+)-mediated insulin secretion. Images PMID:7796801

  20. Proneurotrophin-3 promotes cell cycle withdrawal of developing cerebellar granule cell progenitors via the p75 neurotrophin receptor.

    PubMed

    Zanin, Juan Pablo; Abercrombie, Elizabeth; Friedman, Wilma J

    2016-07-19

    Cerebellar granule cell progenitors (GCP) proliferate extensively in the external granule layer (EGL) of the developing cerebellum prior to differentiating and migrating. Mechanisms that regulate the appropriate timing of cell cycle withdrawal of these neuronal progenitors during brain development are not well defined. The p75 neurotrophin receptor (p75(NTR)) is highly expressed in the proliferating GCPs, but is downregulated once the cells leave the cell cycle. This receptor has primarily been characterized as a death receptor for its ability to induce neuronal apoptosis following injury. Here we demonstrate a novel function for p75(NTR) in regulating proper cell cycle exit of neuronal progenitors in the developing rat and mouse EGL, which is stimulated by proNT3. In the absence of p75(NTR), GCPs continue to proliferate beyond their normal period, resulting in a larger cerebellum that persists into adulthood, with consequent motor deficits.

  1. MUM ENHANCERS are important for seed coat mucilage production and mucilage secretory cell differentiation in Arabidopsis thaliana

    PubMed Central

    Arsovski, Andrej A.; Villota, Maria M.; Rowland, Owen; Subramaniam, Rajagopal; Western, Tamara L.

    2009-01-01

    Pollination triggers not only embryo development but also the differentiation of the ovule integuments to form a specialized seed coat. The mucilage secretory cells of the Arabidopsis thaliana seed coat undergo a complex differentiation process in which cell growth is followed by the synthesis and secretion of pectinaceous mucilage. A number of genes have been identified affecting mucilage secretory cell differentiation, including MUCILAGE-MODIFIED4 (MUM4). mum4 mutants produce a reduced amount of mucilage and cloning of MUM4 revealed that it encodes a UDP-L-rhamnose synthase that is developmentally up-regulated to provide rhamnose for mucilage pectin synthesis. To identify additional genes acting in mucilage synthesis and secretion, a screen for enhancers of the mum4 phenotype was performed. Eight mum enhancers (men) have been identified, two of which result from defects in known mucilage secretory cell genes (MUM2 and MYB61). Our results show that, in a mum4 background, mutations in MEN1, MEN4, and MEN5 lead to further reductions in mucilage compared to mum4 single mutants, suggesting that they are involved in mucilage synthesis or secretion. Conversely, mutations in MEN2 and MEN6 appear to affect mucilage release rather than quantity. With the exception of men4, whose single mutant exhibits reduced mucilage, none of these genes have a single mutant phenotype, suggesting that they would not have been identified outside the compromised mum4 background. PMID:19401413

  2. Quality control in the secretory assembly line.

    PubMed Central

    Helenius, A

    2001-01-01

    As a rule, only proteins that have reached a native, folded and assembled structure are transported to their target organelles and compartments within the cell. In the secretory pathway of eukaryotic cells, this type of sorting is particularly important. A variety of molecular mechanisms are involved that distinguish between folded and unfolded proteins, modulate their intracellular transport, and induce degradation if they fail to fold. This phenomenon, called quality control, occurs at several levels and involves different types of folding sensors. The quality control system provides a stringent and versatile molecular sorting system that guaranties fidelity of protein expression in the secretory pathway. PMID:11260794

  3. Adherens Junctions Modulate Diffusion between Epithelial Cells in Trichoplax adhaerens.

    PubMed

    Smith, Carolyn L; Reese, Thomas S

    2016-12-01

    Trichoplax adhaerens is the sole named member of Placozoa, an ancient metazoan phylum. This coin-shaped animal glides on ventral cilia to find and digest algae on the substrate. It has only six cell types, all but two of which are incorporated into the epithelium that encloses it. The upper epithelium is thin, composed of a pavement of relatively large polygonal disks, each bearing a cilium. The lower epithelium is thick and composed primarily of narrow ciliated cells that power locomotion. Interspersed among these cells are two different secretory cells: one containing large lipophilic granules that, when released, lyse algae under the animal; the other, less abundant, is replete with smaller secretory granules containing neuropeptides. All cells within both epithelia are joined by adherens junctions that are stabilized by apical actin networks. Cells are held in place during shape changes or under osmotic stress, but dissociate in low calcium. Neither tight, septate, nor gap junctions are evident, leaving only the adherens junction to control the permeability of the epithelium. Small (<4 kDa) fluorescent dextrans introduced into artificial seawater readily penetrate into the animal between the cells. Larger dextrans enter slowly, except in animals treated with reduced calcium, indicating that the adherens junctions form a circumferential belt around each cell that impedes diffusion into the animal. During feeding, the limited permeability of the adherens junctions helps to confine material released from lysed algae within the narrow space under the animal, where it is absorbed by endocytosis.

  4. Simulating spinal border cells and cerebellar granule cells under locomotion--a case study of spinocerebellar information processing.

    PubMed

    Spanne, Anton; Geborek, Pontus; Bengtsson, Fredrik; Jörntell, Henrik

    2014-01-01

    The spinocerebellar systems are essential for the brain in the performance of coordinated movements, but our knowledge about the spinocerebellar interactions is very limited. Recently, several crucial pieces of information have been acquired for the spinal border cell (SBC) component of the ventral spinocerebellar tract (VSCT), as well as the effects of SBC mossy fiber activation in granule cells of the cerebellar cortex. SBCs receive monosynaptic input from the reticulospinal tract (RST), which is an important driving system under locomotion, and disynaptic inhibition from Ib muscle afferents. The patterns of activity of RST neurons and Ib afferents under locomotion are known. The activity of VSCT neurons under fictive locomotion, i.e. without sensory feedback, is also known, but there is little information on how these neurons behave under actual locomotion and for cerebellar granule cells receiving SBC input this is completely unknown. But the available information makes it possible to simulate the interactions between the spinal and cerebellar neuronal circuitries with a relatively large set of biological constraints. Using a model of the various neuronal elements and the network they compose, we simulated the modulation of the SBCs and their target granule cells under locomotion and hence generated testable predictions of their general pattern of modulation under this condition. This particular system offers a unique opportunity to simulate these interactions with a limited number of assumptions, which helps making the model biologically plausible. Similar principles of information processing may be expected to apply to all spinocerebellar systems.

  5. Entorhinal Denervation Induces Homeostatic Synaptic Scaling of Excitatory Postsynapses of Dentate Granule Cells in Mouse Organotypic Slice Cultures

    PubMed Central

    Vlachos, Andreas; Becker, Denise; Jedlicka, Peter; Winkels, Raphael; Roeper, Jochen; Deller, Thomas

    2012-01-01

    Denervation-induced changes in excitatory synaptic strength were studied following entorhinal deafferentation of hippocampal granule cells in mature (≥3 weeks old) mouse organotypic entorhino-hippocampal slice cultures. Whole-cell patch-clamp recordings revealed an increase in excitatory synaptic strength in response to denervation during the first week after denervation. By the end of the second week synaptic strength had returned to baseline. Because these adaptations occurred in response to the loss of excitatory afferents, they appeared to be in line with a homeostatic adjustment of excitatory synaptic strength. To test whether denervation-induced changes in synaptic strength exploit similar mechanisms as homeostatic synaptic scaling following pharmacological activity blockade, we treated denervated cultures at 2 days post lesion for 2 days with tetrodotoxin. In these cultures, the effects of denervation and activity blockade were not additive, suggesting that similar mechanisms are involved. Finally, we investigated whether entorhinal denervation, which removes afferents from the distal dendrites of granule cells while leaving the associational afferents to the proximal dendrites of granule cells intact, results in a global or a local up-scaling of granule cell synapses. By using computational modeling and local electrical stimulations in Strontium (Sr2+)-containing bath solution, we found evidence for a lamina-specific increase in excitatory synaptic strength in the denervated outer molecular layer at 3–4 days post lesion. Taken together, our data show that entorhinal denervation results in homeostatic functional changes of excitatory postsynapses of denervated dentate granule cells in vitro. PMID:22403720

  6. Dual-Modal Magnetic Resonance/Fluorescent Zinc Probes for Pancreatic β-Cell Mass Imaging

    PubMed Central

    Stasiuk, Graeme J; Minuzzi, Florencia; Sae-Heng, Myra; Rivas, Charlotte; Juretschke, Hans-Paul; Piemonti, Lorenzo; Allegrini, Peter R; Laurent, Didier; Duckworth, Andrew R; Beeby, Andrew; Rutter, Guy A; Long, Nicholas J

    2015-01-01

    Despite the contribution of changes in pancreatic β-cell mass to the development of all forms of diabetes mellitus, few robust approaches currently exist to monitor these changes prospectively in vivo. Although magnetic-resonance imaging (MRI) provides a potentially useful technique, targeting MRI-active probes to the β cell has proved challenging. Zinc ions are highly concentrated in the secretory granule, but they are relatively less abundant in the exocrine pancreas and in other tissues. We have therefore developed functional dual-modal probes based on transition-metal chelates capable of binding zinc. The first of these, Gd⋅1, binds ZnII directly by means of an amidoquinoline moiety (AQA), thus causing a large ratiometric Stokes shift in the fluorescence from λem=410 to 500 nm with an increase in relaxivity from r1=4.2 up to 4.9 mM−1 s−1. The probe is efficiently accumulated into secretory granules in β-cell-derived lines and isolated islets, but more poorly by non-endocrine cells, and leads to a reduction in T1 in human islets. In vivo murine studies of Gd⋅1 have shown accumulation of the probe in the pancreas with increased signal intensity over 140 minutes. PMID:25736590

  7. Glucose acutely decreases pH of secretory granules in mouse pancreatic islets. Mechanisms and influence on insulin secretion.

    PubMed

    Stiernet, Patrick; Guiot, Yves; Gilon, Patrick; Henquin, Jean-Claude

    2006-08-04

    Glucose-induced insulin secretion requires a rise in beta-cell cytosolic Ca2+ ([Ca2+]c) that triggers exocytosis and a mechanistically unexplained amplification of the action of [Ca2+]c. Insulin granules are kept acidic by luminal pumping of protons with simultaneous Cl- uptake to maintain electroneutrality. Experiments using patched, dialyzed beta-cells prompted the suggestion that acute granule acidification by glucose underlies amplification of insulin secretion. However, others found glucose to increase granular pH in intact islets. In this study, we measured islet granular pH with Lysosensor DND-160, a fluorescent dye that permits ratiometric determination of pH < 6 in acidic compartments. Stimulation of mouse islets with glucose reversibly decreased granular pH by mechanisms that are dependent on metabolism and Cl- ions but independent of changes in [Ca2+]c and protein kinase A or C activity. Granular pH was increased by concanamycin (blocker of the vesicular type H+-ATPase) > methylamine (weak base) > Cl- omission. Concanamycin and methylamine did not alter glucose-induced [Ca2+]c increase in islets but strongly inhibited the two phases of insulin secretion. Omission of Cl- did not affect the first phase but decreased the second phase of both [Ca2+]c and insulin responses. Neither experimental condition affected the [Ca2+]c rise induced by 30 mM KCl, but the insulin responses were inhibited by concanamycin > methylamine and not affected by Cl- omission. The amplification of insulin secretion by glucose was not suppressed. We conclude that an acidic granular pH is important for insulin secretion but that the acute further acidification produced by glucose is not essential for the augmentation of secretion via the amplifying pathway.

  8. Loss of Melanin by Eye Retinal Pigment Epithelium Cells Is Associated with Its Oxidative Destruction in Melanolipofuscin Granules.

    PubMed

    Dontsov, A E; Sakina, N L; Ostrovsky, M A

    2017-08-01

    The effect of superoxide radicals on melanin destruction and degradation of melanosomes isolated from cells of retinal pigment epithelium (RPE) of the human eye was studied. We found that potassium superoxide causes destruction of melanin in melanosomes of human and bovine RPE, as well as destruction of melanin from the ink bag of squid, with the formation of fluorescent decay products having an emission maximum at 520-525 nm. The initial kinetics of the accumulation of the fluorescent decay products is linear. Superoxide radicals lead simultaneously to a decrease in the number of melanosomes and to a decrease in concentration of paramagnetic centers in them. Complete degradation of melanosomes leads to the formation of a transparent solution containing dissolved proteins and melanin degradation products that do not exhibit paramagnetic properties. To completely degrade one melanosome of human RPE, 650 ± 100 fmol of superoxide are sufficient. The concentration of paramagnetic centers in a melanolipofuscin granule of human RPE is on average 32.5 ± 10.4% (p < 0.05, 150 eyes) lower than in a melanosome, which indicates melanin undergoing a destruction process in these granules. RPE cells also contain intermediate granules that have an EPR signal with a lower intensity than that of melanolipofuscin granules, but higher than that of lipofuscin granules. This signal is due to the presence of residual melanin in these granules. Irradiation of a mixture of melanosomes with lipofuscin granules with blue light (450 nm), in contrast to irradiation of only melanosomes, results in the appearance of fluorescent melanin degradation products. We suggest that one of the main mechanisms of age-related decrease in melanin concentration in human RPE cells is its destruction in melanolipofuscin granules under the action of superoxide radicals formed during photoinduced oxygen reduction by lipofuscin fluorophores.

  9. Imaging of zymogen granules in fully wet cells: evidence for restricted mechanism of granule growth.

    PubMed

    Hammel, Ilan; Anaby, Debbie

    2007-09-01

    The introduction of wet SEM imaging technology permits electron microscopy of wet samples. Samples are placed in sealed specimen capsules and are insulated from the vacuum in the SEM chamber by an impermeable, electron-transparent membrane. The complete insulation of the sample from the vacuum allows direct imaging of fully hydrated, whole-mount tissue. In the current work, we demonstrate direct inspection of thick pancreatic tissue slices (above 400 mum). In the case of scanning of the pancreatic surface, the boundaries of intracellular features are seen directly. Thus no unfolding is required to ascertain the actual particle size distribution based on the sizes of the sections. This method enabled us to investigate the true granule size distribution and confirm early studies of improved conformity to a Poisson-like distribution, suggesting that the homotypic granule growth results from a mechanism, which favors the addition of a single unit granule to mature granules.

  10. How do secretory products cross the plant cell wall to be released? A new hypothesis involving cyclic mechanical actions of the protoplast

    PubMed Central

    Paiva, Elder Antônio Sousa

    2016-01-01

    Background In plants, the products of secretory activity leave the protoplast and cross the plasma membrane by means of transporters, fusion with membranous vesicles or, less commonly, as result of disintegration of the cell. These mechanisms do not address an intriguing question: How do secretory products cross the cell wall? Furthermore, how do these substances reach the external surface of the plant body? Such diverse substances as oils, polysaccharides or nectar are forced to cross the cell wall and, in fact, do so. How are chemical materials that are repelled by the cell wall or that are sufficiently viscous to not cross passively released from plant cells? Scope and Conclusions I propose a cell-cycle model developed based on observations of different secreting systems, some unpublished results and an extensive literature review, aiming to understand the processes involved in both the secretory process and the release of secretion products. In the absence of facilitated diffusion, a mechanical action of the protoplast is necessary to ensure that some substances can cross the cell wall. The mechanical action of the protoplast, in the form of successive cycles of contraction and expansion, causes the material accumulated in the periplasmic space to cross the cell wall and the cuticle. This action is particularly relevant for the release of lipids, resins and highly viscous hydrophilic secretions. The proposed cell-cycle model and the statements regarding exudate release will also apply to secretory glands not elaborated upon here. Continuous secretion of several days, as observed in extrafloral nectaries, salt glands and some mucilage-producing glands, is only possible because the process is cyclical. PMID:26929201

  11. Expression and subcellular localization of the Qa-SNARE syntaxin17 in human eosinophils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmo, Lívia A.S.; Dias, Felipe F.; Malta, Kássia K.

    Background: SNARE members mediate membrane fusion during intracellular trafficking underlying innate and adaptive immune responses by different cells. However, little is known about the expression and function of these proteins in human eosinophils, cells involved in allergic, inflammatory and immunoregulatory responses. Here, we investigate the expression and distribution of the Qa-SNARE syntaxin17 (STX17) within human eosinophils isolated from the peripheral blood. Methods: Flow cytometry and a pre-embedding immunonanogold electron microscopy (EM) technique that combines optimal epitope preservation and secondary Fab-fragments of antibodies linked to 1.4 nm gold particles for optimal access to microdomains, were used to investigate STX17. Results: STX17more » was detected within unstimulated eosinophils. Immunogold EM revealed STX17 on secretory granules and on granule-derived vesiculotubular transport carriers (Eosinophil Sombrero Vesicles-EoSVs). Quantitative EM analyses showed that 77.7% of the granules were positive for STX17 with a mean±SEM of 3.9±0.2 gold particles/granule. Labeling was present on both granule outer membranes and matrices while EoSVs showed clear membrane-associated labeling. STX17 was also present in secretory granules in eosinophils stimulated with the cytokine tumor necrosis factor alpha (TNF-α) or the CC-chemokine ligand 11 CCL11 (eotaxin-1), stimuli that induce eosinophil degranulation. The number of secretory granules labeled for STX17 was significantly higher in CCL11 compared with the unstimulated group. The level of cell labeling did not change when unstimulated cells were compared with TNF-α-stimulated eosinophils. Conclusions: The present study clearly shows by immunanonogold EM that STX17 is localized in eosinophil secretory granules and transport vesicles and might be involved in the transport of granule-derived cargos. - Highlights: • First demonstration of the Qa-SNARE syntaxin-17 (STX17) in human eosinophils.

  12. Wide distribution of cysteine-rich secretory proteins in snake venoms: isolation and cloning of novel snake venom cysteine-rich secretory proteins.

    PubMed

    Yamazaki, Yasuo; Hyodo, Fumiko; Morita, Takashi

    2003-04-01

    Cysteine-rich secretory proteins (CRISPs) are found in epididymis and granules of mammals, and they are thought to function in sperm maturation and in the immune system. Recently, we isolated and obtained clones for novel snake venom proteins that are classified as CRISP family proteins. To elucidate the distribution of snake venom CRISP family proteins, we evaluated a wide range of venoms for immuno-cross-reactivity. Then we isolated, characterized, and cloned genes for three novel CRISP family proteins (piscivorin, ophanin, and catrin) from the venom of eastern cottonmouth (Agkistrodon piscivorus piscivorus), king cobra (Ophiophagus hannah), and western diamondback rattlesnake (Crotalus atrox). Our results show the wide distribution of snake venom CRISP family proteins among Viperidae and Elapidae from different continents, indicating that CRISP family proteins compose a new group of snake venom proteins.

  13. Barrier role of actin filaments in regulated mucin secretion from airway goblet cells.

    PubMed

    Ehre, Camille; Rossi, Andrea H; Abdullah, Lubna H; De Pestel, Kathleen; Hill, Sandra; Olsen, John C; Davis, C William

    2005-01-01

    Airway goblet cells secrete mucin onto mucosal surfaces under the regulation of an apical, phospholipase C/G(q)-coupled P2Y(2) receptor. We tested whether cortical actin filaments negatively regulate exocytosis in goblet cells by forming a barrier between secretory granules and plasma membrane docking sites as postulated for other secretory cells. Immunostaining of human lung tissues and SPOC1 cells (an epithelial, mucin-secreting cell line) revealed an apical distribution of beta- and gamma-actin in ciliated and goblet cells. In goblet cells, actin appeared as a prominent subplasmalemmal sheet lying between granules and the apical membrane, and it disappeared from SPOC1 cells activated by purinergic agonist. Disruption of actin filaments with latrunculin A stimulated SPOC1 cell mucin secretion under basal and agonist-activated conditions, whereas stabilization with jasplakinolide or overexpression of beta- or gamma-actin conjugated to yellow fluorescent protein (YFP) inhibited secretion. Myristoylated alanine-rich C kinase substrate, a PKC-activated actin-plasma membrane tethering protein, was phosphorylated after agonist stimulation, suggesting a translocation to the cytosol. Scinderin (or adseverin), a Ca(2+)-activated actin filament severing and capping protein was cloned from human airway and SPOC1 cells, and synthetic peptides corresponding to its actin-binding domains inhibited mucin secretion. We conclude that actin filaments negatively regulate mucin secretion basally in airway goblet cells and are dynamically remodeled in agonist-stimulated cells to promote exocytosis.

  14. An endosomal syntaxin and the AP-3 complex are required for formation and maturation of candidate lysosome-related secretory organelles (mucocysts) in Tetrahymena thermophila.

    PubMed

    Kaur, Harsimran; Sparvoli, Daniela; Osakada, Hiroko; Iwamoto, Masaaki; Haraguchi, Tokuko; Turkewitz, Aaron P

    2017-06-01

    The ciliate Tetrahymena thermophila synthesizes large secretory vesicles called mucocysts. Mucocyst biosynthesis shares features with dense core granules (DCGs) in animal cells, including proteolytic processing of cargo proteins during maturation. However, other molecular features have suggested relatedness to lysosome-related organelles (LROs). LROs, which include diverse organelles in animals, are formed via convergence of secretory and endocytic trafficking. Here we analyzed Tetrahymena syntaxin 7-like 1 (Stx7l1p), a Qa-SNARE whose homologues in other lineages are linked with vacuoles/LROs. Stx7l1p is targeted to both immature and mature mucocysts and is essential in mucocyst formation. In STX7L1 -knockout cells, the two major classes of mucocyst cargo proteins localize independently, accumulating in largely nonoverlapping vesicles. Thus initial formation of immature mucocysts involves heterotypic fusion, in which a subset of mucocyst proteins is delivered via an endolysosomal compartment. Further, we show that subsequent maturation requires AP-3, a complex widely implicated in LRO formation. Knockout of the µ-subunit gene does not impede delivery of any known mucocyst cargo but nonetheless arrests mucocyst maturation. Our data argue that secretory organelles in ciliates may represent a new class of LROs and reveal key roles of an endosomal syntaxin and AP-3 in the assembly of this complex compartment. © 2017 Kaur et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Hedgehog-induced medulloblastoma

    PubMed Central

    Schüller, Ulrich; Heine, Vivi M.; Mao, Junhao; Kho, Alvin T.; Dillon, Allison K.; Han, Young-Goo; Huillard, Emmanuelle; Sun, Tao; Ligon, Azra H.; Qian, Ying; Ma, Qiufu; Alvarez-Buylla, Arturo; McMahon, Andrew P.; Rowitch, David H.; Ligon, Keith L.

    2008-01-01

    Origins of the brain tumor, medulloblastoma, from stem cells or restricted progenitor cells are unclear. To investigate this, we activated oncogenic Hedgehog (Hh) signaling in multipotent and lineage-restricted CNS progenitors. We observed that normal unipotent cerebellar granule neuron precursors (CGNP) derive from hGFAP+ and Olig2+ RL progenitors. Hh activation in a spectrum of early and late stage CNS progenitors generated similar medulloblastomas, but not other brain cancers, indicating that acquisition of CGNP identity is essential for tumorigenesis. We show in human and mouse medulloblastoma that cells expressing the glia-associated markers Gfap and Olig2 are neoplastic and that they retain features of embryonic-type granule lineage progenitors. Thus, oncogenic Hh signaling promotes medulloblastoma from lineage-restricted granule cell progenitors. PMID:18691547

  16. Irradiation induces glioblastoma cell senescence and senescence-associated secretory phenotype.

    PubMed

    Jeon, Hee-Young; Kim, Jun-Kyum; Ham, Seok Won; Oh, Se-Yeong; Kim, Jaebong; Park, Jae-Bong; Lee, Jae-Yong; Kim, Sung-Chan; Kim, Hyunggee

    2016-05-01

    Glioblastoma multiforme (GBM) is one of the most aggressive and fatal primary brain tumors in humans. The standard therapy for the treatment of GBM is surgical resection, followed by radiotherapy and/or chemotherapy. However, the frequency of tumor recurrence in GBM patients is very high, and the survival rate remains poor. Delineating the mechanisms of GBM recurrence is essential for therapeutic advances. Here, we demonstrate that irradiation rendered 17-20 % of GBM cells dead, but resulted in 60-80 % of GBM cells growth-arrested with increases in senescence markers, such as senescence-associated beta-galactosidase-positive cells, H3K9me3-positive cells, and p53-p21(CIP1)-positive cells. Moreover, irradiation induced expression of senescence-associated secretory phenotype (SASP) mRNAs and NFκB transcriptional activity in GBM cells. Strikingly, compared to injection of non-irradiated GBM cells into immune-deficient mice, the co-injection of irradiated and non-irradiated GBM cells resulted in faster growth of tumors with the histological features of human GBM. Taken together, our findings suggest that the increases in senescent cells and SASP in GBM cells after irradiation is likely one of main reasons for tumor recurrence in post-radiotherapy GBM patients.

  17. Cellular stress induces cytoplasmic RNA granules in fission yeast.

    PubMed

    Nilsson, Daniel; Sunnerhagen, Per

    2011-01-01

    Severe stress causes plant and animal cells to form large cytoplasmic granules containing RNA and proteins. Here, we demonstrate the existence of stress-induced cytoplasmic RNA granules in Schizosaccharomyces pombe. Homologs to several known protein components of mammalian processing bodies and stress granules are found in fission yeast RNA granules. In contrast to mammalian cells, poly(A)-binding protein (Pabp) colocalizes in stress-induced granules with decapping protein. After glucose deprivation, protein kinase A (PKA) is required for accumulation of Pabp-positive granules and translational down-regulation. This is the first demonstration of a role for PKA in RNA granule formation. In mammals, the translation initiation protein eIF2α is a key regulator of formation of granules containing poly(A)-binding protein. In S. pombe, nonphosphorylatable eIF2α does not block but delays granule formation and subsequent clearance after exposure to hyperosmosis. At least two separate pathways in S. pombe appear to regulate stress-induced granules: pka1 mutants are fully proficient to form granules after hyperosmotic shock; conversely, eIF2α does not affect granule formation in glucose starvation. Further, we demonstrate a Pka1-dependent link between calcium perturbation and RNA granules, which has not been described earlier in any organism.

  18. Arf-like GTPase Arl8b regulates lytic granule polarization and natural killer cell-mediated cytotoxicity.

    PubMed

    Tuli, Amit; Thiery, Jerome; James, Ashley M; Michelet, Xavier; Sharma, Mahak; Garg, Salil; Sanborn, Keri B; Orange, Jordan S; Lieberman, Judy; Brenner, Michael B

    2013-12-01

    Natural killer (NK) lymphocytes contain lysosome-related organelles (LROs), known as lytic granules, which upon formation of immune synapse with the target cell, polarize toward the immune synapse to deliver their contents to the target cell membrane. Here, we identify a small GTP-binding protein, ADP-ribosylation factor-like 8b (Arl8b), as a critical factor required for NK cell-mediated cytotoxicity. Our findings indicate that Arl8b drives the polarization of lytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells. Using a glutathione S-transferase pull-down approach, we identify kinesin family member 5B (KIF5B; the heavy chain of kinesin-1) as an interaction partner of Arl8b from NK cell lysates. Previous studies showed that interaction between kinesin-1 and Arl8b is mediated by SifA and kinesin-interacting protein (SKIP) and the tripartite complex drives the anterograde movement of lysosomes. Silencing of both KIF5B and SKIP in NK cells, similar to Arl8b, led to failure of MTOC-lytic granule polarization to the immune synapse, suggesting that Arl8b and kinesin-1 together control this critical step in NK cell cytotoxicity.

  19. The defensive secretion of Carabus lefebvrei Dejean 1826 pupa (Coleoptera, Carabidae): gland ultrastructure and chemical identification.

    PubMed

    Giglio, Anita; Brandmayr, Pietro; Dalpozzo, Renato; Sindona, Giovanni; Tagarelli, Antonio; Talarico, Federica; Brandmayr, Tullia Zetto; Ferrero, Enrico A

    2009-05-01

    This study documents the defensive function of flavored humor secreted by the abdominal glands of Carabus lefebvrei pupae. The morphology and the ultrastructure of these glands were described and the volatile compounds of glands secretion were identified by gas chromatography/mass spectrometry. The ultrastructure analysis shows an acinose complex formed by about 50 clusters. Each cluster has 20 glandular units and the unit-composed of one secretory and one canal cell lying along a duct-belongs to the class 3 cell type of Quennedey (1998). In the cytoplasm, the secretory cell contains abundant rough endoplasmatic reticula, glycogen granules, numerous mitochondria, and many well-developed Golgi complexes producing electron-dense secretory granules. Mitochondria are large, elongated, and often adjoining electronlucent vesicles. The kind and the origin of secretory granules varying in size and density were discussed. The chemical analysis of the gland secretion revealed the presence of a mixture of low molecular weight terpenes, ketones, aldehydes, alcohols, esters, and carboxylic acids. Monoterpenes, especially linalool, were the major products. We supposed that ketones, aldehydes, alcohols, esters, and carboxylic acids have a deterrent function against the predators and monoterpenes provide a prophylaxis function against pathogens. (c) 2008 Wiley-Liss, Inc.

  20. Discovery and characterization of secretory IgD in rainbow trout: secretory IgD is produced through a novel splicing mechanism

    USGS Publications Warehouse

    Ramirez-Gomez, F.; Greene, W.; Rego, K.; Hansen, J.D.; Costa, G.; Kataria, P.; Bromage, E.S.

    2012-01-01

    The gene encoding IgH δ has been found in all species of teleosts studied to date. However, catfish (Ictalurus punctatus) is the only species of fish in which a secretory form of IgD has been characterized, and it occurs through the use of a dedicated δ-secretory exon, which is absent from all other species examined. Our studies have revealed that rainbow trout (Oncorhynchus mykiss) use a novel strategy for the generation of secreted IgD. The trout secretory δ transcript is produced via a run-on event in which the splice donor site at the end of the last constant domain exon (D7) is ignored and transcription continues until a stop codon is reached 33 nt downstream of the splice site, resulting in the production of an in-frame, 11-aa secretory tail at the end of the D7 domain. In silico analysis of several published IgD genes suggested that this unique splicing mechanism may also be used in other species of fish, reptiles, and amphibians. Alternative splicing of the secretory δ transcript resulted in two δ-H chains, which incorporated Cμ1 and variable domains. Secreted IgD was found in two heavily glycosylated isoforms, which are assembled as monomeric polypeptides associated with L chains. Secretory δ mRNA and IgD+ plasma cells were detected in all immune tissues at a lower frequency than secretory IgM. Our data demonstrate that secretory IgD is more prevalent and widespread across taxa than previously thought, and thus illustrate the potential that IgD may have a conserved role in immunity.

  1. Bone Marrow Cells Expressing Clara Cell Secretory Protein Increase Epithelial Repair After Ablation of Pulmonary Clara Cells

    PubMed Central

    Bustos, Martha L; Mura, Marco; Marcus, Paula; Hwang, David; Ludkovski, Olga; Wong, Amy P; Waddell, Thomas K

    2013-01-01

    We have previously reported a subpopulation of bone marrow cells (BMC) that express Clara cell secretory protein (CCSP), generally felt to be specific to lung Clara cells. Ablation of lung Clara cells has been reported using a transgenic mouse that expresses thymidine kinase under control of the CCSP promoter. Treatment with ganciclovir results in permanent elimination of CCSP+ cells, failure of airway regeneration, and death. To determine if transtracheal delivery of wild-type bone marrow CCSP+ cells is beneficial after ablation of lung CCSP+ cells, transgenic mice were treated with ganciclovir followed by transtracheal administration of CCSP+ or CCSP− BMC. Compared with mice administered CCSP− cells, mice treated with CCSP+ cells had more donor cells lining the airway epithelium, where they expressed epithelial markers including CCSP. Although donor CCSP+ cells did not substantially repopulate the airway, their administration resulted in increased host ciliated cells, better preservation of airway epithelium, reduction of inflammatory cells, and an increase in animal survival time. Administration of CCSP+ BMC is beneficial after permanent ablation of lung Clara cells by increasing bronchial epithelial repair. Therefore, CCSP+ BMC could be important for treatment of lung diseases where airways re-epithelialization is compromised. PMID:23609017

  2. The kunitz protease inhibitor form of the amyloid precursor protein (KPI/APP) inhibits the proneuropeptide processing enzyme prohormone thiol protease (PTP). Colocalization of KPI/APP and PTP in secretory vesicles.

    PubMed

    Hook, V Y; Sei, C; Yasothornsrikul, S; Toneff, T; Kang, Y H; Efthimiopoulos, S; Robakis, N K; Van Nostrand, W

    1999-01-29

    Proteolytic processing of proenkephalin and proneuropeptides is required for the production of active neurotransmitters and peptide hormones. Variations in the extent of proenkephalin processing in vivo suggest involvement of endogenous protease inhibitors. This study demonstrates that "protease nexin 2 (PN2)," the secreted form of the kunitz protease inhibitor (KPI) of the amyloid precursor protein (APP), potently inhibited the proenkephalin processing enzyme known as prohormone thiol protease (PTP), with a Ki,app of 400 nM. Moreover, PTP and PN2 formed SDS-stable complexes that are typical of kunitz protease inhibitor interactions with target proteases. In vivo, KPI/APP (120 kDa), as well as a truncated form of KPI/APP that resembles PN2 in apparent molecular mass (110 kDa), were colocalized with PTP and (Met)enkephalin in secretory vesicles of adrenal medulla (chromaffin granules). KPI/APP (110-120 kDa) was also detected in pituitary secretory vesicles that contain PTP. In chromaffin cells, calcium-dependent secretion of KPI/APP with PTP and (Met)enkephalin demonstrated the colocalization of these components in functional secretory vesicles. These results suggest a role for KPI/APP inhibition of PTP in regulated secretory vesicles. In addition, these results are the first to identify an endogenous protease target of KPI/APP, which is developmentally regulated in aging and Alzheimer's disease.

  3. Large granulation cells on the surface of the giant star π1 Gruis

    NASA Astrophysics Data System (ADS)

    Paladini, C.; Baron, F.; Jorissen, A.; Le Bouquin, J.-B.; Freytag, B.; van Eck, S.; Wittkowski, M.; Hron, J.; Chiavassa, A.; Berger, J.-P.; Siopis, C.; Mayer, A.; Sadowski, G.; Kravchenko, K.; Shetye, S.; Kerschbaum, F.; Kluska, J.; Ramstedt, S.

    2018-01-01

    Convection plays a major part in many astrophysical processes, including energy transport, pulsation, dynamos and winds on evolved stars, in dust clouds and on brown dwarfs. Most of our knowledge about stellar convection has come from studying the Sun: about two million convective cells with typical sizes of around 2,000 kilometres across are present on the surface of the Sun—a phenomenon known as granulation. But on the surfaces of giant and supergiant stars there should be only a few large (several tens of thousands of times larger than those on the Sun) convective cells, owing to low surface gravity. Deriving the characteristic properties of convection (such as granule size and contrast) for the most evolved giant and supergiant stars is challenging because their photospheres are obscured by dust, which partially masks the convective patterns. These properties can be inferred from geometric model fitting, but this indirect method does not provide information about the physical origin of the convective cells. Here we report interferometric images of the surface of the evolved giant star π1 Gruis, of spectral type S5,7. Our images show a nearly circular, dust-free atmosphere, which is very compact and only weakly affected by molecular opacity. We find that the stellar surface has a complex convective pattern with an average intensity contrast of 12 per cent, which increases towards shorter wavelengths. We derive a characteristic horizontal granule size of about 1.2 × 1011 metres, which corresponds to 27 per cent of the diameter of the star. Our measurements fall along the scaling relations between granule size, effective temperature and surface gravity that are predicted by simulations of stellar surface convection.

  4. Large granulation cells on the surface of the giant star π1 Gruis.

    PubMed

    Paladini, C; Baron, F; Jorissen, A; Le Bouquin, J-B; Freytag, B; Van Eck, S; Wittkowski, M; Hron, J; Chiavassa, A; Berger, J-P; Siopis, C; Mayer, A; Sadowski, G; Kravchenko, K; Shetye, S; Kerschbaum, F; Kluska, J; Ramstedt, S

    2018-01-18

    Convection plays a major part in many astrophysical processes, including energy transport, pulsation, dynamos and winds on evolved stars, in dust clouds and on brown dwarfs. Most of our knowledge about stellar convection has come from studying the Sun: about two million convective cells with typical sizes of around 2,000 kilometres across are present on the surface of the Sun-a phenomenon known as granulation. But on the surfaces of giant and supergiant stars there should be only a few large (several tens of thousands of times larger than those on the Sun) convective cells, owing to low surface gravity. Deriving the characteristic properties of convection (such as granule size and contrast) for the most evolved giant and supergiant stars is challenging because their photospheres are obscured by dust, which partially masks the convective patterns. These properties can be inferred from geometric model fitting, but this indirect method does not provide information about the physical origin of the convective cells. Here we report interferometric images of the surface of the evolved giant star π 1 Gruis, of spectral type S5,7. Our images show a nearly circular, dust-free atmosphere, which is very compact and only weakly affected by molecular opacity. We find that the stellar surface has a complex convective pattern with an average intensity contrast of 12 per cent, which increases towards shorter wavelengths. We derive a characteristic horizontal granule size of about 1.2 × 10 11 metres, which corresponds to 27 per cent of the diameter of the star. Our measurements fall along the scaling relations between granule size, effective temperature and surface gravity that are predicted by simulations of stellar surface convection.

  5. Bmi1 overexpression in the cerebellar granule cell lineage of mice affects cell proliferation and survival without initiating medulloblastoma formation

    PubMed Central

    Behesti, Hourinaz; Bhagat, Heeta; Dubuc, Adrian M.; Taylor, Michael D.; Marino, Silvia

    2013-01-01

    SUMMARY BMI1 is a potent inducer of neural stem cell self-renewal and neural progenitor cell proliferation during development and in adult tissue homeostasis. It is overexpressed in numerous human cancers – including medulloblastomas, in which its functional role is unclear. We generated transgenic mouse lines with targeted overexpression of Bmi1 in the cerebellar granule cell lineage, a cell type that has been shown to act as a cell of origin for medulloblastomas. Overexpression of Bmi1 in granule cell progenitors (GCPs) led to a decrease in cerebellar size due to decreased GCP proliferation and repression of the expression of cyclin genes, whereas Bmi1 overexpression in postmitotic granule cells improved cell survival in response to stress by altering the expression of genes in the mitochondrial cell death pathway and of Myc and Lef-1. Although no medulloblastomas developed in ageing cohorts of transgenic mice, crosses with Trp53−/− mice resulted in a low incidence of medulloblastoma formation. Furthermore, analysis of a large collection of primary human medulloblastomas revealed that tumours with a BMI1high TP53low molecular profile are significantly enriched in Group 4 human medulloblastomas. Our data suggest that different levels and timing of Bmi1 overexpression yield distinct cellular outcomes within the same cellular lineage. Importantly, Bmi1 overexpression at the GCP stage does not induce tumour formation, suggesting that BMI1 overexpression in GCP-derived human medulloblastomas probably occurs during later stages of oncogenesis and might serve to enhance tumour cell survival. PMID:23065639

  6. Ovulation in Drosophila is controlled by secretory cells of the female reproductive tract

    PubMed Central

    Sun, Jianjun; Spradling, Allan C

    2013-01-01

    How oocytes are transferred into an oviduct with a receptive environment remains poorly known. We found that glands of the Drosophila female reproductive tract, spermathecae and/or parovaria, are required for ovulation and to promote sperm storage. Reducing total secretory cell number by interferring with Notch signaling during development blocked ovulation. Knocking down expression after adult eclosion of the nuclear hormone receptor Hr39, a master regulator of gland development, slowed ovulation and blocked sperm storage. However, ovulation (but not sperm storage) continued when only canonical protein secretion was compromised in adult glands. Our results imply that proteins secreted during adulthood by the canonical secretory pathway from female reproductive glands are needed to store sperm, while a non-canonical glandular secretion stimulates ovulation. Our results suggest that the reproductive tract signals to the ovary using glandular secretions, and that this pathway has been conserved during evolution. DOI: http://dx.doi.org/10.7554/eLife.00415.001 PMID:23599892

  7. Facilitation of granule cell epileptiform activity by mossy fiber-released zinc in the pilocarpine model of temporal lobe epilepsy.

    PubMed

    Timofeeva, Olga; Nadler, J Victor

    2006-03-17

    Recurrent mossy fiber synapses in the dentate gyrus of epileptic brain facilitate the synchronous firing of granule cells and may promote seizure propagation. Mossy fiber terminals contain and release zinc. Released zinc inhibits the activation of NMDA receptors and may therefore oppose the development of granule cell epileptiform activity. Hippocampal slices from rats that had experienced pilocarpine-induced status epilepticus and developed a recurrent mossy fiber pathway were used to investigate this possibility. Actions of released zinc were inferred from the effects of chelation with 1 mM calcium disodium EDTA (CaEDTA). When granule cell population bursts were evoked by mossy fiber stimulation in the presence of 6 mM K(+) and 30 microM bicuculline, CaEDTA slowed the rate at which evoked bursting developed, but did not change the magnitude of the bursts once they had developed fully. The effects of CaEDTA were then studied on the pharmacologically isolated NMDA receptor- and AMPA/kainate receptor-mediated components of the fully developed bursts. CaEDTA increased the magnitude of NMDA receptor-mediated bursts and reduced the magnitude of AMPA/kainate receptor-mediated bursts. CaEDTA did not affect the granule cell bursts evoked in slices from untreated rats by stimulating the perforant path in the presence of bicuculline and 6 mM K(+). These results suggest that zinc released from the recurrent mossy fibers serves mainly to facilitate the recruitment of dentate granule cells into population bursts.

  8. Stimulation of microtubule-based transport by nucleation of microtubules on pigment granules

    PubMed Central

    Semenova, Irina; Gupta, Dipika; Usui, Takeo; Hayakawa, Ichiro; Cowan, Ann; Rodionov, Vladimir

    2017-01-01

    Microtubule (MT)-based transport can be regulated through changes in organization of MT transport tracks, but the mechanisms that regulate these changes are poorly understood. In Xenopus melanophores, aggregation of pigment granules in the cell center involves their capture by the tips of MTs growing toward the cell periphery, and granule aggregation signals facilitate capture by increasing the number of growing MT tips. This increase could be explained by stimulation of MT nucleation either on the centrosome or on the aggregate of pigment granules that gradually forms in the cell center. We blocked movement of pigment granules to the cell center and compared the MT-nucleation activity of the centrosome in the same cells in two signaling states. We found that granule aggregation signals did not stimulate MT nucleation on the centrosome but did increase MT nucleation activity of pigment granules. Elevation of MT-nucleation activity correlated with the recruitment to pigment granules of a major component of MT-nucleation templates, γ-tubulin, and was suppressed by γ-tubulin inhibitors. We conclude that generation of new MT transport tracks by concentration of the leading pigment granules provides a positive feedback loop that enhances delivery of trailing granules to the cell center. PMID:28381426

  9. Sperm-storage defects and live birth in Drosophila females lacking spermathecal secretory cells.

    PubMed

    Schnakenberg, Sandra L; Matias, Wilfredo R; Siegal, Mark L

    2011-11-01

    Male Drosophila flies secrete seminal-fluid proteins that mediate proper sperm storage and fertilization, and that induce changes in female behavior. Females also produce reproductive-tract secretions, yet their contributions to postmating physiology are poorly understood. Large secretory cells line the female's spermathecae, a pair of sperm-storage organs. We identified the regulatory regions controlling transcription of two genes exclusively expressed in these spermathecal secretory cells (SSC): Spermathecal endopeptidase 1 (Send1), which is expressed in both unmated and mated females, and Spermathecal endopeptidase 2 (Send2), which is induced by mating. We used these regulatory sequences to perform precise genetic ablations of the SSC at distinct time points relative to mating. We show that the SSC are required for recruiting sperm to the spermathecae, but not for retaining sperm there. The SSC also act at a distance in the reproductive tract, in that their ablation: (1) reduces sperm motility in the female's other sperm-storage organ, the seminal receptacle; and (2) causes ovoviviparity--the retention and internal development of fertilized eggs. These results establish the reproductive functions of the SSC, shed light on the evolution of live birth, and open new avenues for studying and manipulating female fertility in insects.

  10. Localization of amylin-like immunoreactivity in melanocyte-stimulating hormone-containing cells of the pars intermedia but not those of the pars distalis in the axolotl (Ambystoma mexicanum) pituitary.

    PubMed

    Suzuki, Hirohumi; Yamamoto, Toshiharu

    2016-04-01

    Immunohistochemical techniques were employed to investigate the distribution of amylin-like immunoreactivity in the axolotl (Ambystoma mexicanum) pituitary. Amylin-immunoreactive cells were observed in the pars intermedia, and these cells were found to be immunoreactive for α-melanocyte-stimulating hormone (αMSH) as well. In contrast, αMSH-immunoreactive cells in the pars distalis were immuno-negaitive for amylin. These light microscopic findings were confirmed by immunoelectron microscopy. Amylin-immunoreactive signals were located on the haloes of presumable secretory granules in association with αMSH-immunoreactive signals in the amylin-positive cells. However, in the pars distalis, the αMSH-positive cells did not contain amylin-immunoreactive secretory granules. Western blot analysis of axolotl pituitary extracts revealed the labeling of a protein band at approximately 10.5-kDa by the anti-rat amylin serum, which was not labeled by the anti-αMSH antibody. These findings indicate that amylin secreted from MSH-producing cells in the pars intermedia may modulate MSH secretion in an autocrine fashion and may participate in MSH functions such as fatty homeostasis together with MSH. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Mammary analogue secretory carcinoma (MASC) of salivary gland in four Mexican patients.

    PubMed

    Serrano-Arévalo, Mónica L; Mosqueda-Taylor, Adalberto; Domínguez-Malagón, Hugo; Michal, Michal

    2015-01-01

    The Clinco-pathological, immunohistochemical and molecular findings of four cases of Mammary Analogue Secretory Carcinoma (MASC) of salivary glands found in Mexico are described. The cases were extracted from 253 salivary gland tumors from a single institution in Mexico City. The 85 Candidates for initial selection were: low grade mucoepidermoid carcinoma (MEC) (N=70 ), Acinic cell cancinoma (AciCC) (N=14), papillary cystadenocarcinoma (N=1), and adenocarcinoma NOS (N=0). Tumors with some histological features consistent with MASC (N= 17, 6.7%) were studied by immunohistochemistry for mammaglobin, STAT5, and S-100 protein and four cases were positive (1.5%), thus the diagnosis of MASC was established, and these were submitted for molecular studies for ETV6-NTRK3. Fusion gene was demonstrated in three cases, two had been erroneously diagnosed as poorly granulated AciCC, and one as low grade MEC with microcystic pattern. Female gender predominated (3:1); one occurred in the parotid, two in minor salivary glands and one in the submaxillary gland; infiltrating borders, atypical mitosis and lymph node metastases were seen in the parotideal tumor. Two patients with major salivary gland tumors are alive and well at 10 and 20 months respectively, the two patients with minor salivary gland tumors are lost. It can be concluded that is important to think in MASC in poorly granulated AciCC and low grade MEC with microcystic pattern. Immunohistochemisty studies confirm the diagnosis, preferentially supported by molecular studies. MASC may follow aggressive behavior or transform into a high grade neoplasm.

  12. Possible orientational constraints determine secretory signals induced by aggregation of IgE receptors on mast cells.

    PubMed Central

    Ortega, E; Schweitzer-Stenner, R; Pecht, I

    1988-01-01

    Three biologically active monoclonal antibodies (mAbs) specific for the monovalent, high-affinity membrane receptor for IgE (Fc epsilon R) were employed in analysing the secretory response of mast cells of the RBL-2H3 line to crosslinking of their Fc epsilon R. All three mAbs (designated F4, H10 and J17) compete with each other and with IgE for binding to the Fc epsilon R. Their stoichiometry of binding is 1 Fab:1 Fc epsilon R, hence, the intact mAbs can aggregate the Fc epsilon Rs to dimers only. Since all three mAbs induce secretion, we conclude that Fc epsilon R dimers constitute a sufficient 'signal element' for secretion of mediators for RBL-2H3 cells. The secretory dose-response of the cells to these three mAbs are, however, markedly different: F4 caused rather high secretion, reaching almost 80% of the cells' content, while J17 and H10 induced release of only 30-40% mediators content. Both the intrinsic affinities and equilibrium constants for the receptor dimerization were derived from analysis of binding data of the Fab fragments and intact mAbs. These parameters were used to compute the extent of Fc epsilon R dimerization caused by each of the antibodies. However, the different secretory responses to the three mAbs could not be rationalized simply in terms of the extent of Fc epsilon R dimerization which they produce. This suggests that it is not only the number of crosslinked Fc epsilon Rs which determines the magnitude of secretion-causing signal, but rather other constraints imposed by each individual mAb are also important.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2977332

  13. Megamitochondria in the serous acinar cells of the submandibular gland of the neotropical fruit bat, Artibeus obscurus.

    PubMed

    Tandler, B; Nagato, T; Phillips, C J

    1997-05-01

    As part of a continuing investigation of the comparative ultrastructure of chiropteran salivary glands, we examined the submandibular glands of eight species of neotropical fruit bats in the genus Artibeus. We previously described secretory granules of unusual substructure in the seromucous demilunar cells of this organ in some species in this genus. In the present study, we turned our attention to the serous acinar cells in the same glands. Specimens of eight species of Artibeus were collected in neotropical localities. Salivary glands were extirpated in the field and thin slices were fixed by immersion in triple aldehyde-DMSO or in modified half-strength Karnovsky's fixative. Tissues were further processed for electron microscopy by conventional means. In contrast to seromucous cells, which exhibit species-specific diversification in bats of this genus, the secretory apparatus and secretory granules in the serous acinar cells are highly conserved across all seven species. The single exception involves the mitochondria in one species. In this instance, some of the serous cell mitochondria in Artibeus obscurus are modified into megamitochondria. Such organelles usually have short, peripheral cristae; a laminar inclusion is present in the matrix compartment of every outsized organelle. Inclusions of this nature never are present in normal-size mitochondria in the serous cells. None of the megamitochondria were observed in the process of degeneration. The giant mitochondria in A. obscurus have a matrical structure that is radically different from that of the only other megamitochondria reported to occur in bat salivary glands. The factors that lead to variation in megamitochondrial substructure in different species, as well as the functional capacities of such giant organelles, are unknown.

  14. The presence of PHB granules in cytoplasm protects non-halophilic bacterial cells against the harmful impact of hypertonic environments.

    PubMed

    Obruca, Stanislav; Sedlacek, Petr; Mravec, Filip; Krzyzanek, Vladislav; Nebesarova, Jana; Samek, Ota; Kucera, Dan; Benesova, Pavla; Hrubanova, Kamila; Milerova, Miluse; Marova, Ivana

    2017-10-25

    Numerous prokaryotes accumulate polyhydroxybutyrate (PHB) intracellularly as a storage material. It has also been proposed that PHB accumulation improves bacterial stress resistance. Cupriavidus necator and its PHB non-accumulating mutant were employed to investigate the protective role of PHB under hypertonic conditions. The presence of PHB granules enhanced survival of the bacteria after exposure to hypertonic conditions. Surprisingly, when coping with such conditions, the bacteria did not utilize PHB to harvest carbon or energy, suggesting that, in the osmotic upshock of C. necator, the protective mechanism of PHB granules is not associated with their hydrolysis. The presence of PHB granules influenced the overall properties of the cells, since challenged PHB-free cells underwent massive plasmolysis accompanied by damage to the cell membrane and the leakage of cytoplasm content, while no such effects were observed in PHB containing bacteria. Moreover, PHB granules demonstrated "liquid-like" properties indicating that they can partially repair and stabilize cell membranes by plugging small gaps formed during plasmolysis. In addition, the level of dehydration and changes in intracellular pH in osmotically challenged cells were less pronounced for PHB-containing cultures, demonstrating the important role of PHB for bacterial survival under hyperosmotic conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Ionic and secretory response of pancreatic islet cells to minoxidil sulfate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoine, M.H.; Hermann, M.; Herchuelz, A.

    Minoxidil sulfate is an antihypertensive agent belonging to the new class of vasodilators, the K+ channel openers. The present study was undertaken to characterize the effects of minoxidil sulfate on ionic and secretory events in rat pancreatic islets. The drug unexpectedly provoked a concentration-dependent decrease in 86Rb outflow. This inhibitory effect was reduced in a concentration-dependent manner by glucose and tolbutamide. Minoxidil sulfate did not affect 45Ca outflow from islets perfused in the presence of extracellular Ca++ and absence or presence of glucose. However, in islets exposed to a medium deprived of extracellular Ca++, the drug provoked a rise inmore » 45Ca outflow. Whether in the absence or presence of extracellular Ca++, minoxidil sulfate increased the cytosolic free Ca++ concentration of islet cells. Lastly, minoxidil sulfate increased the release of insulin from glucose-stimulated pancreatic islets. These results suggest that minoxidil sulfate reduces the activity of the ATP-sensitive K+ channels and promotes an intracellular translocation of Ca++. The latter change might account for the effect of the drug on the insulin-releasing process. However, the secretory response to minoxidil sulfate could also be mediated, at least in part, by a modest Ca++ entry.« less

  16. Suggestive evidence of a vesicle-mediated mode of cell degranulation in chromaffin cells. A high-resolution scanning electron microscopy investigation

    PubMed Central

    Crivellato, Enrico; Solinas, Paola; Isola, Raffaella; Ribatti, Domenico; Riva, Alessandro

    2010-01-01

    In this study we used a modified osmium maceration method for high-resolution scanning electron microscopy to study some ultrastructural details fitting the schema of piecemeal degranulation in chromaffin cells. Piecemeal degranulation refers to a particulate pattern of cell secretion that is accomplished by vesicle-mediated extracellular transport of granule-stored material. We investigated adrenal samples from control and angiotensin II-treated rats, and identified a variable proportion of smooth, 30–60-nm-diameter vesicles in the cytoplasm of chromaffin cells. A percentage of these vesicles were interspersed in the cytosol among chromaffin granules but the majority appeared to be attached to granules. Remarkably, the number of unattached cytoplasmic vesicles was greatly increased in chromaffin cells from angiotensin II-treated animals. Vesicles of the same structure and dimension were detected close to or attached to the cytoplasmic face of the plasma membrane; these, too, were increased in number in chromaffin cells from rats stimulated with angiotensin II. In specimens shaken with a rotating agitator during maceration, the cytoplasmic organelles could be partially removed and the fine structure of the vesicular interaction with the inner side of the plasma membrane emerged most clearly. A proportion of chromaffin granules showed protrusions that we interpreted as vesicular structures budding from the granular envelope. In some instances, the transection plane intersected granules with putative vesicles emerging from the surfaces. In these cases, the protrusions of budding vesicles could be observed from the internal side. This study provides high-resolution scanning electron microscopy images compatible with a vesicle-mediated degranulation mode of cell secretion in adrenal chromaffin cells. The data indicating an increase in the number of vesicles observed in chromaffin cells after stimulation with the chromaffin cell secretagogue angiotensin II suggests

  17. Isolation of zymogen granules from rat pancreas.

    PubMed

    Rindler, Michael J

    2006-01-01

    This unit describes methods for preparing zymogen granules from rat pancreas. Zymogen granules are storage organelles in pancreatic acinar cells containing digestive enzymes that are released into the pancreatic duct. The protocols in this unit take advantage of the large size (up to 1 microm diameter) and high density (>1.20 g/cm(3) on sucrose gradients) of the granules as compared to other cellular organelles. They use a combination of differential sedimentation and density gradient separation to accomplish the purification. Similar procedures can be used to isolate zymogen granules from mouse pancreas and canine pancreas. A protocol for preparing zymogen granules from dog pancreas is also included.

  18. Shp2 Acts Downstream of SDF-1α/CXCR4 in Guiding Granule Cell Migration During Cerebellar Development

    PubMed Central

    Hagihara, Kazuki; Zhang, Eric E.; Ke, Yue-Hai; Liu, Guofa; Liu, Jan-Jan; Rao, Yi; Feng, Gen-Sheng

    2009-01-01

    Shp2 is a non-receptor protein tyrosine phosphatase containing two Src homology 2 (SH2) domains that is implicated in intracellular signaling events controlling cell proliferation, differentiation and migration. To examine the role of Shp2 in brain development, we created mice with Shp2 selectively deleted in neural stem/progenitor cells. Homozygous mutant mice exhibited early postnatal lethality with defects in neural stem cell self-renewal and neuronal/glial cell fate specification. Here we report a critical role of Shp2 in guiding neuronal cell migration in the cerebellum. In homozygous mutants, we observed reduced and less foliated cerebellum, ectopic presence of external granule cells and mispositioned Purkinje cells, a phenotype very similar to that of mutant mice lacking either SDF-1α or CXCR4. Consistently, Shp2-deficient granule cells failed to migrate toward SDF-1α in an in vitro cell migration assay, and SDF-1α treatment triggered a robust induction of tyrosyl phosphorylation on Shp2. Together, these results suggest that although Shp2 is involved in multiple signaling events during brain development, a prominent role of the phosphatase is to mediate SDF-1α/CXCR4 signal in guiding cerebellar granule cell migration. PMID:19635473

  19. Quantum dot immunocytochemical localization of somatostatin in somatostatinoma by Widefield Epifluorescence, super-resolution light, and immunoelectron microscopy.

    PubMed

    Killingsworth, Murray C; Lai, Ken; Wu, Xiaojuan; Yong, Jim L C; Lee, C Soon

    2012-11-01

    Quantum dot nanocrystal probes (QDs) have been used for detection of somatostatin hormone in secretory granules of somatostatinoma tumor cells by immunofluorescence light microscopy, super-resolution light microscopy, and immunoelectron microscopy. Immunostaining for all modalities was done using sections taken from an epoxy resin-embedded tissue specimen and a similar labeling protocol. This approach allowed assessment of labeling at light microscopy level before examination at super-resolution and electron microscopy level and was a significant aid in interpretation. Etching of ultrathin sections with saturated sodium metaperiodate was a critical step presumably able to retrieve some tissue antigenicity masked by processing in epoxy resin. Immunofluorescence microscopy of QD-immunolabeled sections showed somatostatin hormone localization in cytoplasmic granules. Some variable staining of tumor gland-like structures appeared related to granule maturity and dispersal of granule contents within the tumor cell cytoplasm. Super-resolution light microscopy demonstrated localization of somatostatin within individual secretory granules to be heterogeneous, and this staining pattern was confirmed by immunoelectron microscopy.

  20. Quantum Dot Immunocytochemical Localization of Somatostatin in Somatostatinoma by Widefield Epifluorescence, Super-resolution Light, and Immunoelectron Microscopy

    PubMed Central

    Lai, Ken; Wu, Xiaojuan; Yong, Jim L. C.; Lee, C. Soon

    2012-01-01

    Quantum dot nanocrystal probes (QDs) have been used for detection of somatostatin hormone in secretory granules of somatostatinoma tumor cells by immunofluorescence light microscopy, super-resolution light microscopy, and immunoelectron microscopy. Immunostaining for all modalities was done using sections taken from an epoxy resin-embedded tissue specimen and a similar labeling protocol. This approach allowed assessment of labeling at light microscopy level before examination at super-resolution and electron microscopy level and was a significant aid in interpretation. Etching of ultrathin sections with saturated sodium metaperiodate was a critical step presumably able to retrieve some tissue antigenicity masked by processing in epoxy resin. Immunofluorescence microscopy of QD-immunolabeled sections showed somatostatin hormone localization in cytoplasmic granules. Some variable staining of tumor gland-like structures appeared related to granule maturity and dispersal of granule contents within the tumor cell cytoplasm. Super-resolution light microscopy demonstrated localization of somatostatin within individual secretory granules to be heterogeneous, and this staining pattern was confirmed by immunoelectron microscopy. PMID:22899862

  1. Application of the thiocarbohydrazide method for vicinal glycol group detection to the study of gastric mucosa endocrine cells.

    PubMed

    Lefranc, G; Chung, Y T; Barrière, P; Pradal, G

    1980-01-01

    The thiocarbohydrazide-silver proteinate (TCH SP) method was applied to the study of cat, rabbit and mouse gastric mucosa endocrine cells. After 24-h treatment with thiocarbohydrazide (TCH), glycogen was seen in the hyaloplasm of X, D, P, A and O cells but not in EC, EC-like or D1 cells. With flotation times as short as 30 to 40 min glycogen was readily detected in X cells. Secretory granules of EC cells were constantly stained, while those of D1 cells failed to react. In most experiments granules of X, A and O cells showed peripheral "staining", while in others staining of variable intensity affected the entire granular cross-section in X, D and P cells. With 72-h exposure to TCH, EC and EC-like cells showed particles resembling glycogen, even staining or only peripheral staining of certain EC cell granules. From the results of this and previous studies, EC cell staining is believed to be due wholly or partly, according to exposure times, to the action of silver proteinate, while that of certain non-EC cells is probably a specific indicator of complexed carbohydrates.

  2. A Western blot-based investigation of the yeast secretory pathway designed for an intermediate-level undergraduate cell biology laboratory.

    PubMed

    Hood-Degrenier, Jennifer K

    2008-01-01

    The movement of newly synthesized proteins through the endomembrane system of eukaryotic cells, often referred to generally as the secretory pathway, is a topic covered in most intermediate-level undergraduate cell biology courses. An article previously published in this journal described a laboratory exercise in which yeast mutants defective in two distinct steps of protein secretion were differentiated using a genetic reporter designed specifically to identify defects in the first step of the pathway, the insertion of proteins into the endoplasmic reticulum (Vallen, 2002). We have developed two versions of a Western blotting assay that serves as a second way of distinguishing the two secretory mutants, which we pair with the genetic assay in a 3-wk laboratory module. A quiz administered before and after students participated in the lab activities revealed significant postlab gains in their understanding of the secretory pathway and experimental techniques used to study it. A second survey administered at the end of the lab module assessed student perceptions of the efficacy of the lab activities; the results of this survey indicated that the experiments were successful in meeting a set of educational goals defined by the instructor.

  3. Formation of artificial granules for proving gelation as the main mechanism of aerobic granulation in biological wastewater treatment.

    PubMed

    Li, Yun; Yang, Shu-Fang; Zhang, Jian-Jun; Li, Xiao-Yan

    2014-01-01

    In this study, gelation-facilitated biofilm formation as a new mechanism is proposed for the phenomenon of aerobic granulation in biological wastewater treatment. To obtain an experimental proof for the gelation-based theory, the granulation process was simulated in a chemical system using latex particles for bacterial cells and organic polymers (alginate and peptone) for extracellular polymeric substances (EPS) in a solution with the addition of cations (Ca²⁺, Mg²⁺ and Fe³⁺). The results showed that at a low alginate content (70 mg g⁻¹ mixed liquid suspended solids (MLSS)) flocculation was observed in the suspension with loose flocs. At a higher alginate content (180 mg g⁻¹ MLSS), together with discharge of small flocs, formation of artificial gel granules was successfully achieved leading to granulation. The artificial granules show a morphological property similar to that of actual microbial granules. However, if the protein content increased, granulation became difficult with little gel formation. The experimental work demonstrates the importance of the bonding interactions between EPS functional groups and cations in gel formation and granulation. The laboratory results on the formation of artificial granules provide a sound proof for the theory of gelation-facilitated biofilm formation as the main mechanism for aerobic granulation in sludge suspensions.

  4. Roll compaction/dry granulation: comparison between roll mill and oscillating granulator in dry granulation.

    PubMed

    Sakwanichol, Jarunee; Puttipipatkhachorn, Satit; Ingenerf, Gernot; Kleinebudde, Peter

    2012-01-01

    Different experimental factorial designs were employed to evaluate granule properties obtained from oscillating granulator and roll mill. Four oscillating-granulator parameters were varied, i.e. rotor speed, oscillating angle, aperture of mesh screen and rotor type. Six roll-mill parameters that were throughput, speed ratio in both first and second stages, gap between roll pair in both stages and roll-surface texture were also investigated. Afterwards, the granule properties obtained from two milling types with similar median particle size were compared. All milling parameters in both milling types affected significantly the median particle size, size distribution and amount of fine particles (P < 0.05), except the rotor types of oscillating granulator on fines. Only three milling parameters influenced significantly the flowability (P < 0.05). These were the throughput and the gap size in the first stage of roll mill and the sieve size of oscillating granulator. In comparison between milling types, the differences of granule properties were not practically relevant. However, the roll mill had much higher capacity than the oscillating granulator about seven times, resulting in improving energy savings per unit of product. Consequently, the roll mill can be applied instead of oscillating granulator for roll compaction/dry granulation technique.

  5. Visualization of Cytolytic T Cell Differentiation and Granule Exocytosis with T Cells from Mice Expressing Active Fluorescent Granzyme B

    PubMed Central

    Mouchacca, Pierre; Schmitt-Verhulst, Anne-Marie; Boyer, Claude

    2013-01-01

    To evaluate acquisition and activation of cytolytic functions during immune responses we generated knock in (KI) mice expressing Granzyme B (GZMB) as a fusion protein with red fluorescent tdTomato (GZMB-Tom). As for GZMB in wild type (WT) lymphocytes, GZMB-Tom was absent from naïve CD8 and CD4 T cells in GZMB-Tom-KI mice. It was rapidly induced in most CD8 T cells and in a subpopulation of CD4 T cells in response to stimulation with antibodies to CD3/CD28. A fraction of splenic NK cells expressed GZMB-Tom ex vivo with most becoming positive upon culture in IL-2. GZMB-Tom was present in CTL granules and active as a protease when these degranulated into cognate target cells, as shown with target cells expressing a specific FRET reporter construct. Using T cells from mice expressing GZMB-Tom but lacking perforin, we show that the transfer of fluorescent GZMB-Tom into target cells was dependent on perforin, favoring a role for perforin in delivery of GZMB at the target cells’ plasma membranes. Time-lapse video microscopy showed Ca++ signaling in CTL upon interaction with cognate targets, followed by relocalization of GZMB-Tom-containing granules to the synaptic contact zone. A perforin-dependent step was next visualized by the fluorescence signal from the non-permeant dye TO-PRO-3 at the synaptic cleft, minutes before the labeling of the target cell nucleus, characterizing a previously undescribed synaptic event in CTL cytolysis. Transferred OVA-specific GZMB-Tom-expressing CD8 T cells acquired GZMB-Tom expression in Listeria monocytogenes-OVA infected mice as soon as 48h after infection. These GZMB-Tom positive CD8 T cells localized in the splenic T-zone where they interacted with CD11c positive dendritic cells (DC), as shown by GZMB-Tom granule redistribution to the T/DC contact zone. GZMB-Tom-KI mice thus also provide tools to visualize acquisition and activation of cytolytic function in vivo. PMID:23840635

  6. Spatial Relationships between Markers for Secretory and Endosomal Machinery in Human Cytomegalovirus-Infected Cells versus Those in Uninfected Cells▿†

    PubMed Central

    Das, Subhendu; Pellett, Philip E.

    2011-01-01

    Human cytomegalovirus (HCMV) induces extensive remodeling of the secretory apparatus to form the cytoplasmic virion assembly compartment (cVAC), where virion tegumentation and envelopment take place. We studied the structure of the cVAC by confocal microscopy to assess the three-dimensional distribution of proteins specifically associated with individual secretory organelles. In infected cells, early endosome antigen 1 (EEA1)-positive vesicles are concentrated at the center of the cVAC and, as previously seen, are distinct from structures visualized by markers for the endoplasmic reticulum, Golgi apparatus, and trans-Golgi network (TGN). EEA1-positive vesicles can be strongly associated with markers for recycling endosomes, to a lesser extent with markers associated with components of the endosomal sorting complex required for transport III (ESCRT III) machinery, and then with markers of late endosomes. In comparisons of uninfected and infected cells, we found significant changes in the structural associations and colocalization of organelle markers, as well as in net organelle volumes. These results provide new evidence that the HCMV-induced remodeling of the membrane transport apparatus involves much more than simple relocation and expansion of preexisting structures and are consistent with the hypothesis that the shift in identity of secretory organelles in HCMV-infected cells results in new functional profiles. PMID:21471245

  7. Vesicular trafficking of immune mediators in human eosinophils revealed by immunoelectron microscopy.

    PubMed

    Melo, Rossana C N; Weller, Peter F

    2016-10-01

    Electron microscopy (EM)-based techniques are mostly responsible for our current view of cell morphology at the subcellular level and continue to play an essential role in biological research. In cells from the immune system, such as eosinophils, EM has helped to understand how cells package and release mediators involved in immune responses. Ultrastructural investigations of human eosinophils enabled visualization of secretory processes in detail and identification of a robust, vesicular trafficking essential for the secretion of immune mediators via a non-classical secretory pathway associated with secretory (specific) granules. This vesicular system is mainly organized as large tubular-vesicular carriers (Eosinophil Sombrero Vesicles - EoSVs) actively formed in response to cell activation and provides a sophisticated structural mechanism for delivery of granule-stored mediators. In this review, we highlight the application of EM techniques to recognize pools of immune mediators at vesicular compartments and to understand the complex secretory pathway within human eosinophils involved in inflammatory and allergic responses. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. A Role for Human Skin Mast Cells in Dengue Virus Infection and Systemic Spread.

    PubMed

    Troupin, Andrea; Shirley, Devon; Londono-Renteria, Berlin; Watson, Alan M; McHale, Cody; Hall, Alex; Hartstone-Rose, Adam; Klimstra, William B; Gomez, Gregorio; Colpitts, Tonya M

    2016-12-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious global human disease and mortality. Skin immune cells are an important component of initial DENV infection and systemic spread. Here, we show that mast cells are a target of DENV in human skin and that DENV infection of skin mast cells induces degranulation and alters cytokine and growth factor expression profiles. Importantly, to our knowledge, we also demonstrate for the first time that DENV localizes within secretory granules in infected skin mast cells. In addition, DENV within extracellular granules was infectious in vitro and in vivo, trafficking through lymph to draining lymph nodes in mice. We demonstrate an important role for human skin mast cells in DENV infection and identify a novel mechanism for systemic spread of DENV infection from the initial peripheral mosquito injection site. Copyright © 2016 by The American Association of Immunologists, Inc.

  9. A Western Blot-based Investigation of the Yeast Secretory Pathway Designed for an Intermediate-Level Undergraduate Cell Biology Laboratory

    ERIC Educational Resources Information Center

    Hood-DeGrenier, Jennifer K.

    2008-01-01

    The movement of newly synthesized proteins through the endomembrane system of eukaryotic cells, often referred to generally as the secretory pathway, is a topic covered in most intermediate-level undergraduate cell biology courses. An article previously published in this journal described a laboratory exercise in which yeast mutants defective in…

  10. Comparative morphology and ultrastructure of the prosomal salivary glands in the unfed larvae Leptotrombidium orientale (Acariformes, Trombiculidae), a possible vector of tsutsugamushi disease agent.

    PubMed

    Shatrov, Andrew B

    2015-07-01

    The prosomal salivary glands of the unfed larvae Leptotrombidium orientale (Schluger) were investigated using transmission electron microscopy. In total, four pairs of the prosomal glands were identified--three pairs, the lateral, the medial and the anterior, belong to the podocephalic system, and one pair, the posterior, is separate having an own excretory duct. All glands are simple alveolar/acinous with prismatic cells arranged around a relatively small intra-alveolar lumen with the duct base. The cells of all glands besides the lateral ones contain practically mature electron-dense secretory granules ready to be discharged from the cells. The secretory granules in the lateral glands undergo formation and maturation due to the Golgi body activity. The cells of all gland types contain a large basally located nucleus and variously expressed rough endoplasmic reticulum. Specialized duct-forming cells filled with numerous freely scattered microtubules are situated in the middle zone of each gland's acinus and form the intra-alveolar lumen and the duct base. Both the acinar (secretory) and the duct-forming cells contact each other via gap junctions and septate desmosomes. Axons of nerve cells come close to the basal extensions of the duct-forming cells where they form the bulb-shaped synaptic terminations. The process of secretion is under the control of the nerve system that provides contraction of the duct-forming cells and discharge of secretion from the secretory cells into the intra-alveolar lumen and further to the exterior. Unfed larvae of L. orientale, the potential vector of tsutsugamushi disease agents, contain the most simply organized salivary secretory granules among known trombiculid larvae, and this secretion, besides the lateral glands, does not undergo significant additional maturation. Thus, the larvae are apparently ready to feed on the appropriate host just nearly after hatching.

  11. β-Cell secretory defects are present in pancreatic insufficient cystic fibrosis with 1-hour oral glucose tolerance test glucose ≥155 mg/dL.

    PubMed

    Nyirjesy, Sarah C; Sheikh, Saba; Hadjiliadis, Denis; De Leon, Diva D; Peleckis, Amy J; Eiel, Jack N; Kubrak, Christina; Stefanovski, Darko; Rubenstein, Ronald C; Rickels, Michael R; Kelly, Andrea

    2018-06-08

    Patients with pancreatic insufficient cystic fibrosis (PI-CF) meeting standard criteria for normal glucose tolerance display impaired β-cell secretory capacity and early-phase insulin secretion defects. We sought evidence of impaired β-cell secretory capacity, a measure of functional β-cell mass, among those with early glucose intolerance (EGI), defined as 1-hour oral glucose tolerance test (OGTT) glucose ≥155 mg/dL (8.6 mmol/L). A cross-sectional study was conducted in the Penn and CHOP Clinical & Translational Research Centers. PI-CF categorized by OGTT as normal (PI-NGT: 1-hour glucose <155 mg/dL and 2-hour <140 mg/dL [7.8 mmol/L]; n = 13), PI-EGI (1-hour ≥155 mg/dL and 2-hour <140 mg/dL; n = 13), impaired (PI-IGT: 2-hour ≥140 and <200 mg/dL [11.1 mmol/L]; n = 8), and diabetic (cystic fibrosis-related diabetes, CFRD: 2-hour ≥200 mg/dL; n = 8) participated. Post-prandial glucose tolerance and insulin secretion, and β-cell secretory capacity and demand were derived from mixed-meal tolerance tests (MMTTs), and glucose-potentiated arginine (GPA) tests, respectively. PI-EGI had elevated post-prandial glucose with reduced early-phase insulin secretion during MMTT compared to PI-NGT (P < .05). PI-EGI also exhibited impaired acute insulin and C-peptide responses to GPA (P < .01 vs PI-NGT), measures of β-cell secretory capacity. Proinsulin secretory ratios were higher under hyperglycemic clamp conditions in PI-IGT and CFRD (P < .05 vs PI-NGT), and correlated with 1-hour glucose in PI-CF (P < .01). PI-CF patients with 1-hour OGTT glucose ≥155 mg/dL already manifest impaired β-cell secretory capacity with associated early-phase insulin secretion defects. Avoiding hyperglycemia in patients with EGI may be important for preventing excessive insulin demand indicated by disproportionately increased proinsulin secretion. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Routing of the RAB6 secretory pathway towards the lysosome related organelle of melanocytes

    PubMed Central

    Patwardhan, Anand; Bardin, Sabine; Miserey-Lenkei, Stéphanie; Larue, Lionel; Goud, Bruno; Raposo, Graça; Delevoye, Cédric

    2017-01-01

    Exocytic carriers convey neo-synthesized components from the Golgi apparatus to the cell surface. While the release and anterograde movement of Golgi-derived vesicles require the small GTPase RAB6, its effector ELKS promotes the targeting and docking of secretory vesicles to particular areas of the plasma membrane. Here, we show that specialized cell types exploit and divert the secretory pathway towards lysosome related organelles. In cultured melanocytes, the secretory route relies on RAB6 and ELKS to directly transport and dock Golgi-derived carriers to melanosomes. By delivering specific cargos, such as MART-1 and TYRP2/ DCT, the RAB6/ELKS-dependent secretory pathway controls the formation and maturation of melanosomes but also pigment synthesis. In addition, pigmentation defects are observed in RAB6 KO mice. Our data together reveal for the first time that the secretory pathway can be directed towards intracellular organelles of endosomal origin to ensure their biogenesis and function. PMID:28607494

  13. Clonorchis sinensis excretory-secretory products regulate migration and invasion in cholangiocarcinoma cells via extracellular signal-regulated kinase 1/2/nuclear factor-κB-dependent matrix metalloproteinase-9 expression.

    PubMed

    Pak, Jhang Ho; Shin, Jimin; Song, In-Sung; Shim, Sungbo; Jang, Sung-Wuk

    2017-01-01

    Matrix metalloproteinase-9 plays an important role in the invasion and metastasis of various types of cancer cells. We have previously reported that excretory-secretory products from Clonorchis sinensis increases matrix metalloproteinase-9 expression. However, the regulatory mechanisms through which matrix metalloproteinase-9 expression affects cholangiocarcinoma development remain unclear. In the current study, we examined the potential role of excretory-secretory products in regulating the migration and invasion of various cholangiocarcinoma cell lines. We demonstrated that excretory-secretory products significantly induced matrix metalloproteinase-9 expression and activity in a concentration-dependent manner. Reporter gene and chromatin immunoprecipitation assays showed that excretory-secretory products induced matrix metalloproteinase-9 expression by enhancing the activity of nuclear factor-kappa B. Moreover, excretory-secretory products induced the degradation and phosphorylation of IκBα and stimulated nuclear factor-kappa B p65 nuclear translocation, which was regulated by extracellular signal-regulated kinase 1/2. Taken together, our findings indicated that the excretory-secretory product-dependent enhancement of matrix metalloproteinase-9 activity and subsequent induction of IκBα and nuclear factor-kappa B activities may contribute to the progression of cholangiocarcinoma. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  14. Immunohistochemical evidence suggests intrinsic regulatory activity of human eccrine sweat glands

    PubMed Central

    ZANCANARO, CARLO; MERIGO, FLAVIA; CRESCIMANNO, CATERINA; ORLANDINI, SIMONETTA; OSCULATI, ANTONIO

    1999-01-01

    Immunohistochemistry of normal eccrine sweat glands was performed on paraffin sections of human skin. Immunoreactivity (ir) for neuron specific enolase, S100 protein (S100), regulatory peptides, nitric oxide synthase type I (NOS-I) and choline-acetyltransferase (ChAT) was found in small nerve bundles close to sweat glands. In the glands, secretory cells were labelled with anticytokeratin antibody. Using antibodies to S100, calcitonin gene-related peptide (CGRP) and substance P (SP) a specific distribution pattern was found in secretory cells. Granulated (dark) and parietal (clear) cells were immunopositive for CGRP, and S100 and SP, respectively. Immunoreactivity was diffuse in the cytoplasm for CGRP and S100, and peripheral for SP. Myoepithelial cells were not labelled. Electron microscopy revealed electron dense granules, probably containing peptide, in granulated cells. Using antibodies to NOS-I and ChAT, ir was exclusively found in myoepithelial cells. Immunoreactivity for the atrial natriuretic peptide was absent in sweat glands. These results provide evidence for the presence of both regulatory peptides involved in vasodilation and key enzymes for the synthesis of nitric oxide and acetylcholine in the secretory coil of human sweat glands. It is suggested that human sweat glands are capable of some intrinsic regulation in addition to that carried out by their nerve supply. PMID:10386780

  15. Biosynthesis, Trafficking and Secretion of Pro-opiomelanocortin-derived peptides

    PubMed Central

    Cawley, Niamh X.; Li, Zhaojin; Loh, Y. Peng

    2016-01-01

    Pro-opiomelanocortin (POMC) is a prohormone that encodes multiple smaller peptide hormones within its structure. These peptide hormones can be generated by cleavage of POMC at basic-residue cleavage sites by prohormone converting enzymes in the regulated secretory pathway of POMC synthesizing endocrine cells and neurons. The peptides are stored inside the cells in dense core secretory granules until released in a stimulus dependent manner. The complexity of the regulation of the biosynthesis, trafficking and secretion of POMC and its peptides reflect an impressive level of control over many factors involved in the ultimate role of POMC expressing cells, i.e. to produce a range of different biologically active peptide hormones ready for action when signaled by the body. From the discovery of POMC as the precursor to ACTH and β-Lipotropin in the late 1970s to our current knowledge, the understanding of POMC physiology remains a monumental body of work that has provided insight into many aspects of molecular endocrinology. In this chapter, we describe the intracellular trafficking of POMC in endocrine cells, its sorting into dense core secretory granules and transport of these granules to the regulated secretory pathway. Additionally, we review the enzymes involved in the maturation of POMC to its various peptides and the mechanisms involved in the differential processing of POMC in different cell types. Finally, we highlight studies pertaining to the regulation of ACTH secretion in the anterior and intermediate pituitary and POMC neurons of the hypothalamus. PMID:26880796

  16. Acid-base interactions during exocrine pancreatic secretion. Primary role for ductal bicarbonate in acinar lumen function.

    PubMed

    Freedman, S D; Scheele, G A

    1994-03-23

    The role of acid-base interactions during coordinated acinar and duct cell secretion in the exocrine pancreas is described. The sequence of acid-base events may be summarized as follows: (1) Sorting of secretory proteins and membrane components into the regulated secretory pathway of pancreatic acinar cells is triggered by acid- and calcium-induced aggregation and association mechanisms located in the trans-Golgi network. (2) Cholecystokinin-stimulated exocytosis in acinar cells releases the acidic contents of secretory granules into the acinar lumen. (3) Secretin-stimulated bicarbonate secretion from duct and duct-like cells neutralizes the acidic pH of exocytic contents, which leads to dissociation of protein aggregates and solubilization of (pro)enzymes within the acinar lumen. (4) Stimulated fluid secretion transports solubilized enzymes through the ductal system. (5) Further alkalinization of acinar lumen pH accelerates the enzymatic cleavage of the glycosyl phosphatidyl-inositol anchor associated with GP2 and thus releases the GP2/proteoglycan matrix from lumenal membranes, a process that appears to be required for vesicular retrieval of granule membranes from the apical plasma membrane and their reuse in the secretory process. We conclude that the central function of bicarbonate secretion by centroacinar and duct cells in the pancreas is to neutralize and then alkalinize the pH of the acinar lumen, sequential process that are required for (a) solubilization of secreted proteins and (b) cellular retrieval of granule membranes, respectively.

  17. AMP Kinase Activation Alters Oxidant-Induced Stress Granule Assembly by Modulating Cell Signaling and Microtubule Organization.

    PubMed

    Mahboubi, Hicham; Koromilas, Antonis E; Stochaj, Ursula

    2016-10-01

    Eukaryotic cells assemble stress granules (SGs) when translation initiation is inhibited. Different cell signaling pathways regulate SG production. Particularly relevant to this process is 5'-AMP-activated protein kinase (AMPK), which functions as a stress sensor and is transiently activated by adverse physiologic conditions. Here, we dissected the role of AMPK for oxidant-induced SG formation. Our studies identified multiple steps of de novo SG assembly that are controlled by the kinase. Single-cell analyses demonstrated that pharmacological AMPK activation prior to stress exposure changed SG properties, because the granules became more abundant and smaller in size. These altered SG characteristics correlated with specific changes in cell survival, cell signaling, cytoskeletal organization, and the abundance of translation initiation factors. Specifically, AMPK activation increased stress-induced eukaryotic initiation factor (eIF) 2α phosphorylation and reduced the concentration of eIF4F complex subunits eIF4G and eIF4E. At the same time, the abundance of histone deacetylase 6 (HDAC6) was diminished. This loss of HDAC6 was accompanied by increased acetylation of α-tubulin on Lys40. Pharmacological studies further confirmed this novel AMPK-HDAC6 interplay and its importance for SG biology. Taken together, we provide mechanistic insights into the regulation of SG formation. We propose that AMPK activation stimulates oxidant-induced SG formation but limits their fusion into larger granules. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  18. PHB granules are attached to the nucleoid via PhaM in Ralstonia eutropha.

    PubMed

    Wahl, Andreas; Schuth, Nora; Pfeiffer, Daniel; Nussberger, Stephan; Jendrossek, Dieter

    2012-11-16

    Poly(3-hydroxybutyrate) (PHB) granules are important storage compounds of carbon and energy in many prokaryotes which allow survival of the cells in the absence of suitable carbon sources. Formation and subcellular localization of PHB granules was previously assumed to occur randomly in the cytoplasm of PHB accumulating bacteria. However, contradictionary results on subcellular localization of PHB granules in Ralstonia eutropha were published, recently. Here, we provide evidence by transmission electron microscopy that PHB granules are localized in close contact to the nucleoid region in R. eutropha during growth on nutrient broth. Binding of PHB granules to the nucleoid is mediated by PhaM, a PHB granule associated protein with phasin-like properties that is also able to bind to DNA and to phasin PhaP5. Over-expression of PhaM resulted in formation of many small PHB granules that were always attached to the nucleoid region. In contrast, PHB granules of ∆phaM strains became very large and distribution of granules to daughter cells was impaired. Association of PHB granules to the nucleoid region was prevented by over-expression of PhaP5 and clusters of several PHB granules were mainly localized near the cell poles. Subcellular localization of PHB granules is controlled in R. eutropha and depends on the presence and concentrations of at least two PHB granule associated proteins, PhaM and PhaP5.

  19. Interactions between Inhibitory Interneurons and Excitatory Associational Circuitry in Determining Spatio-Temporal Dynamics of Hippocampal Dentate Granule Cells: A Large-Scale Computational Study

    PubMed Central

    Hendrickson, Phillip J.; Yu, Gene J.; Song, Dong; Berger, Theodore W.

    2015-01-01

    This paper reports on findings from a million-cell granule cell model of the rat dentate gyrus that was used to explore the contributions of local interneuronal and associational circuits to network-level activity. The model contains experimentally derived morphological parameters for granule cells, which each contain approximately 200 compartments, and biophysical parameters for granule cells, basket cells, and mossy cells that were based both on electrophysiological data and previously published models. Synaptic input to cells in the model consisted of glutamatergic AMPA-like EPSPs and GABAergic-like IPSPs from excitatory and inhibitory neurons, respectively. The main source of input to the model was from layer II entorhinal cortical neurons. Network connectivity was constrained by the topography of the system, and was derived from axonal transport studies, which provided details about the spatial spread of axonal terminal fields, as well as how subregions of the medial and lateral entorhinal cortices project to subregions of the dentate gyrus. Results of this study show that strong feedback inhibition from the basket cell population can cause high-frequency rhythmicity in granule cells, while the strength of feedforward inhibition serves to scale the total amount of granule cell activity. Results furthermore show that the topography of local interneuronal circuits can have just as strong an impact on the development of spatio-temporal clusters in the granule cell population as the perforant path topography does, both sharpening existing clusters and introducing new ones with a greater spatial extent. Finally, results show that the interactions between the inhibitory and associational loops can cause high frequency oscillations that are modulated by a low-frequency oscillatory signal. These results serve to further illustrate the importance of topographical constraints on a global signal processing feature of a neural network, while also illustrating how rich

  20. BPIFB6 Regulates Secretory Pathway Trafficking and Enterovirus Replication

    PubMed Central

    Morosky, Stefanie; Lennemann, Nicholas J.

    2016-01-01

    ABSTRACT Bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 3 (BPIFB3) is an endoplasmic reticulum (ER)-localized host factor that negatively regulates coxsackievirus B (CVB) replication through its control of the autophagic pathway. Here, we show that another member of the BPIFB family, BPIFB6, functions as a positive regulator of CVB, and other enterovirus, replication by controlling secretory pathway trafficking and Golgi complex morphology. We show that similar to BPIFB3, BPIFB6 localizes exclusively to the ER, where it associates with other members of the BPIFB family. However, in contrast to our findings that RNA interference (RNAi)-mediated silencing of BPIFB3 greatly enhances CVB replication, we show that silencing of BPIFB6 expression dramatically suppresses enterovirus replication in a pan-viral manner. Mechanistically, we show that loss of BPIFB6 expression induces pronounced alterations in retrograde and anterograde trafficking, which correlate with dramatic fragmentation of the Golgi complex. Taken together, these data implicate BPIFB6 as a key regulator of secretory pathway trafficking and viral replication and suggest that members of the BPIFB family participate in diverse host cell functions to regulate virus infections. IMPORTANCE Enterovirus infections are associated with a number of severe pathologies, such as aseptic meningitis, dilated cardiomyopathy, type I diabetes, paralysis, and even death. These viruses, which include coxsackievirus B (CVB), poliovirus (PV), and enterovirus 71 (EV71), co-opt the host cell secretory pathway, which controls the transport of proteins from the endoplasmic reticulum to the Golgi complex, to facilitate their replication. Here we report on the identification of a novel regulator of the secretory pathway, bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 6 (BPIFB6), whose expression is required for enterovirus replication. We show that loss of

  1. BPIFB6 Regulates Secretory Pathway Trafficking and Enterovirus Replication.

    PubMed

    Morosky, Stefanie; Lennemann, Nicholas J; Coyne, Carolyn B

    2016-05-15

    Bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 3 (BPIFB3) is an endoplasmic reticulum (ER)-localized host factor that negatively regulates coxsackievirus B (CVB) replication through its control of the autophagic pathway. Here, we show that another member of the BPIFB family, BPIFB6, functions as a positive regulator of CVB, and other enterovirus, replication by controlling secretory pathway trafficking and Golgi complex morphology. We show that similar to BPIFB3, BPIFB6 localizes exclusively to the ER, where it associates with other members of the BPIFB family. However, in contrast to our findings that RNA interference (RNAi)-mediated silencing of BPIFB3 greatly enhances CVB replication, we show that silencing of BPIFB6 expression dramatically suppresses enterovirus replication in a pan-viral manner. Mechanistically, we show that loss of BPIFB6 expression induces pronounced alterations in retrograde and anterograde trafficking, which correlate with dramatic fragmentation of the Golgi complex. Taken together, these data implicate BPIFB6 as a key regulator of secretory pathway trafficking and viral replication and suggest that members of the BPIFB family participate in diverse host cell functions to regulate virus infections. Enterovirus infections are associated with a number of severe pathologies, such as aseptic meningitis, dilated cardiomyopathy, type I diabetes, paralysis, and even death. These viruses, which include coxsackievirus B (CVB), poliovirus (PV), and enterovirus 71 (EV71), co-opt the host cell secretory pathway, which controls the transport of proteins from the endoplasmic reticulum to the Golgi complex, to facilitate their replication. Here we report on the identification of a novel regulator of the secretory pathway, bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 6 (BPIFB6), whose expression is required for enterovirus replication. We show that loss of BPIFB6 expression

  2. Secretory pathway Ca2+ -ATPases promote in vitro microcalcifications in breast cancer cells.

    PubMed

    Dang, Donna; Prasad, Hari; Rao, Rajini

    2017-11-01

    Calcification of the breast is often an outward manifestation of underlying molecular changes that drive carcinogenesis. Up to 50% of all non-palpable breast tumors and 90% of ductal carcinoma in situ present with radiographically dense mineralization in mammographic scans. However, surprisingly little is known about the molecular pathways that lead to microcalcifications in the breast. Here, we report on a rapid and quantitative in vitro assay to monitor microcalcifications in breast cancer cell lines, including MCF7, MDA-MB-231, and Hs578T. We show that the Secretory Pathway Ca 2+ -ATPases SPCA1 and SPCA2 are strongly induced under osteogenic conditions that elicit microcalcifications. SPCA gene expression is significantly elevated in breast cancer subtypes that are associated with microcalcifications. Ectopic expression of SPCA genes drives microcalcifications and is dependent on pumping activity. Conversely, knockdown of SPCA expression significantly attenuates formation of microcalcifications. We propose that high levels of SPCA pumps may initiate mineralization in the secretory pathway by elevating luminal Ca 2+ . Our new findings offer mechanistic insight and functional implications on a widely observed, yet poorly understood radiographic signature of breast cancer. © 2017 Wiley Periodicals, Inc.

  3. Correlation between loose density and compactibility of granules prepared by various granulation methods.

    PubMed

    Murakami, H; Yoneyama, T; Nakajima, K; Kobayashi, M

    2001-03-23

    The objectives of this study were to prepare the lactose granules by various granulation methods using polyethylene glycol 6000 (PEG 6000) as a binder and to evaluate the effects of granulation methods on the compressibility and compactibility of granules in tabletting. Lactose was granulated by seven granulation methods -- four wet granulations including wet massing granulation, wet high-speed mixer granulation, wet fluidized bed granulation and wet tumbling fluidized bed granulation; and three melt granulations including melt high-speed mixer granulation, melt fluidized bed granulation and melt tumbling fluidized bed granulation. The loose density, angle of repose, granule size distribution, mean diameter of granules, and the tensile strength and porosity of tablets were evaluated. The compactibilities of granules were varied by the granulation methods. However, the difference in compactibility of granules could not be explained due to the difference in compressibility, since there was no difference in Heckel plots due to granulation methods. Among their granule properties, the loose density of granules seemed to have a correlation with the tablet strength regardless of the granulation methods.

  4. Sensorimotor Representations in Cerebellar Granule Cells in Larval Zebrafish Are Dense, Spatially Organized, and Non-temporally Patterned.

    PubMed

    Knogler, Laura D; Markov, Daniil A; Dragomir, Elena I; Štih, Vilim; Portugues, Ruben

    2017-05-08

    A fundamental question in neurobiology is how animals integrate external sensory information from their environment with self-generated motor and sensory signals in order to guide motor behavior and adaptation. The cerebellum is a vertebrate hindbrain region where all of these signals converge and that has been implicated in the acquisition, coordination, and calibration of motor activity. Theories of cerebellar function postulate that granule cells encode a variety of sensorimotor signals in the cerebellar input layer. These models suggest that representations should be high-dimensional, sparse, and temporally patterned. However, in vivo physiological recordings addressing these points have been limited and in particular have been unable to measure the spatiotemporal dynamics of population-wide activity. In this study, we use both calcium imaging and electrophysiology in the awake larval zebrafish to investigate how cerebellar granule cells encode three types of sensory stimuli as well as stimulus-evoked motor behaviors. We find that a large fraction of all granule cells are active in response to these stimuli, such that representations are not sparse at the population level. We find instead that most responses belong to only one of a small number of distinct activity profiles, which are temporally homogeneous and anatomically clustered. We furthermore identify granule cells that are active during swimming behaviors and others that are multimodal for sensory and motor variables. When we pharmacologically change the threshold of a stimulus-evoked behavior, we observe correlated changes in these representations. Finally, electrophysiological data show no evidence for temporal patterning in the coding of different stimulus durations. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  5. Stimulation of insulin release by glucose is associated with an increase in the number of docked granules in the beta-cells of rat pancreatic islets.

    PubMed

    Straub, Susanne G; Shanmugam, Geetha; Sharp, Geoffrey W G

    2004-12-01

    Electron microscopy and quantitative stereological techniques were used to study the dynamics of the docked granule pool in the rat pancreatic beta-cell. The mean number of granules per beta-cell was 11,136. After equilibration in RPMI containing 5.6 mmol/l glucose, 6.4% of the granules (approximately 700) were docked at the plasma membrane (also measured as [means +/- SE] 4.3 +/- 0.6 docked granules per 10 microm of plasma membrane at the perimeter of the cell sections). After a 40-min exposure to 16.7 mmol/l glucose, 10.2% of the granules (approximately 1,060) were docked (6.4 +/- 0.8 granules per 10 microm of plasma membrane). Thus, the docked pool increased by 50% during stimulation with glucose. Islets were also exposed to 16.7 mmol/l glucose in the absence or presence of 10 micromol/l nitrendipine. In the absence and presence of nitrendipine, there were 6.1 +/- 0.7 and 6.3 +/- 0.6 granules per 10 microm of membrane, respectively. Thus, glucose increased granule docking independently of increased [Ca2+]i and exocytosis. The data suggest a limit to the number of docking sites. As the rate of docking exceeded the rate of exocytosis, docking is not rate limiting for insulin release. Only with extremely high release rates, glucose stimulation after a 4-h incubation with a high concentration of fatty acid-free BSA, was the docked granule pool reduced in size.

  6. Secretory vesicles of immune cells contain only a limited number of interleukin 6 molecules.

    PubMed

    Verboogen, Daniëlle R J; Ter Beest, Martin; Honigmann, Alf; van den Bogaart, Geert

    2018-05-01

    Immune cells communicate by releasing large quantities of cytokines. Although the mechanisms of cytokine secretion are increasingly understood, quantitative knowledge of the number of cytokines per vesicle is still lacking. Here, we measured with quantitative microscopy the release rate of vesicles potentially carrying interleukin-6 (IL-6) in human dendritic cells. By comparing this to the total secreted IL-6, we estimate that secretory vesicles contain about 0.5-3 IL-6 molecules, but with a large spread among cells/donors. Moreover, IL-6 did not accumulate within most cells, indicating that synthesis and not trafficking is the bottleneck for IL-6 production. IL-6 accumulated in the Golgi apparatus only in ~ 10% of the cells. Understanding how immune cells produce cytokines is important for designing new immunomodulatory drugs. © 2018 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  7. The integrity of the RRGDL sequence of the proprotein convertase PC1 is critical for its zymogen and C-terminal processing and for its cellular trafficking.

    PubMed Central

    Lusson, J; Benjannet, S; Hamelin, J; Savaria, D; Chrétien, M; Seidah, N G

    1997-01-01

    In order to define the functional importance of the conserved RRGDL motif in the P-domain of the mammalian proprotein convertases(PCs) we generated and cellularly expressed three mutant PC1 vaccinia-virus (VV) recombinants: ARGDL-PC1, RAGDL-PC1 and RRGEL-PC1. Functionally, these mutants caused a decreased level of processing of pro-opiomelanocortin (POMC) into beta-lipotropic pituitary hormone (beta-LPH), especially in the constitutively secreting BSC40 cells. Pulse-chase analyses demonstrated that, in part, this effect was due to both an increased degradation of the mutant PC1s within the endoplasmic reticulum and to a diminished level of zymogen processing in the same compartment. In addition, within cells containing secretory granules such as PC12 and GH4C1 cells, such mutations prevented the C-terminal auto-processing of PC1 into the fully mature 66 kDa form stored in the secretory granules of regulated cells. Since the 66 kDa PC1 is the most active form of the enzyme, it is proposed that the RRGDL sequence is critical for the generation of maximal intracellular PC1 activity. In regulated cells, co-expression of POMC with PC1 or its mutants together with the general PC inhibitor alpha1-antitrypsin Portland (alpha1-PDX), which acts primarily within the constitutive secretory pathway, demonstrated that the latter completely inhibited the formation of beta-LPH by PC1 mutants, whereas it only partially inhibited the ability of wild-type PC1 to process POMC. This suggests that RRGDL mutations prevent PC1 from entering secretory granules and hence the formation of the 66 kDa PC1, and result in the mis-sorting of PC1 mutants towards the constitutive secretory pathway. This conclusion was further supported by immunocytochemical data demonstrating that RRGDL mutants exhibit an intracellular localization pattern different from that of the granule-associated wild-type PC1,but similar to that of the Golgi-localized convertase PC5-B. PMID:9307023

  8. Biogenesis of zinc storage granules in Drosophila melanogaster.

    PubMed

    Tejeda-Guzmán, Carlos; Rosas-Arellano, Abraham; Kroll, Thomas; Webb, Samuel M; Barajas-Aceves, Martha; Osorio, Beatriz; Missirlis, Fanis

    2018-03-19

    Membrane transporters and sequestration mechanisms concentrate metal ions differentially into discrete subcellular microenvironments for use in protein cofactors, signalling, storage or excretion. Here we identify zinc storage granules as the insect's major zinc reservoir in principal Malpighian tubule epithelial cells of Drosophila melanogaster The concerted action of Adaptor Protein-3, Rab32, HOPS and BLOC complexes as well as of the white-scarlet (ABCG2-like) and ZnT35C (ZnT2/ZnT3/ZnT8-like) transporters is required for zinc storage granule biogenesis. Due to lysosome-related organelle defects caused by mutations in the homologous human genes, patients with Hermansky-Pudlak syndrome may lack zinc granules in beta pancreatic cells, intestinal paneth cells and presynaptic vesicles of hippocampal mossy fibers. © 2018. Published by The Company of Biologists Ltd.

  9. Protein quality control in the early secretory pathway

    PubMed Central

    Anelli, Tiziana; Sitia, Roberto

    2008-01-01

    Eukaryotic cells are able to discriminate between native and non-native polypeptides, selectively transporting the former to their final destinations. Secretory proteins are scrutinized at the endoplasmic reticulum (ER)–Golgi interface. Recent findings reveal novel features of the underlying molecular mechanisms, with several chaperone networks cooperating in assisting the maturation of complex proteins and being selectively induced to match changing synthetic demands. ‘Public' and ‘private' chaperones, some of which enriched in specializes subregions, operate for most or selected substrates, respectively. Moreover, sequential checkpoints are distributed along the early secretory pathway, allowing efficiency and fidelity in protein secretion. PMID:18216874

  10. PHB granules are attached to the nucleoid via PhaM in Ralstonia eutropha

    PubMed Central

    2012-01-01

    Background Poly(3-hydroxybutyrate) (PHB) granules are important storage compounds of carbon and energy in many prokaryotes which allow survival of the cells in the absence of suitable carbon sources. Formation and subcellular localization of PHB granules was previously assumed to occur randomly in the cytoplasm of PHB accumulating bacteria. However, contradictionary results on subcellular localization of PHB granules in Ralstonia eutropha were published, recently. Results Here, we provide evidence by transmission electron microscopy that PHB granules are localized in close contact to the nucleoid region in R. eutropha during growth on nutrient broth. Binding of PHB granules to the nucleoid is mediated by PhaM, a PHB granule associated protein with phasin-like properties that is also able to bind to DNA and to phasin PhaP5. Over-expression of PhaM resulted in formation of many small PHB granules that were always attached to the nucleoid region. In contrast, PHB granules of ∆phaM strains became very large and distribution of granules to daughter cells was impaired. Association of PHB granules to the nucleoid region was prevented by over-expression of PhaP5 and clusters of several PHB granules were mainly localized near the cell poles. Conclusion Subcellular localization of PHB granules is controlled in R. eutropha and depends on the presence and concentrations of at least two PHB granule associated proteins, PhaM and PhaP5. PMID:23157596

  11. Procaspase-activating compound 1 induces a caspase-3-dependent cell death in cerebellar granule neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aziz, Gulzeb; Akselsen, Oyvind W.; Hansen, Trond V.

    2010-09-15

    Procaspase-activating compound 1, PAC-1, has been introduced as a direct activator of procaspase-3 and has been suggested as a therapeutic agent against cancer. Its activation of procaspase-3 is dependent on the chelation of zinc. We have tested PAC-1 and an analogue of PAC-1 as zinc chelators in vitro as well as their ability to activate caspase-3 and induce cell death in chicken cerebellar granule neuron cultures. These neurons are non-dividing, primary cells with normal caspase-3. The results reported herein show that PAC-1 chelates zinc, activates procaspase-3, and leads to caspase-3-dependent cell death in neurons, as the specific caspase-3-inhibitor Ac-DEVD-cmk inhibitedmore » both the caspase-3 activity and cell death. Thus, chicken cerebellar granule neurons is a suitable model to study mechanisms of interference with apoptosis of PAC-1 and similar compounds. Furthermore, the present study also raises concern about potential neurotoxicity of PAC-1 if used in cancer therapy.« less

  12. Autophagy meets fused in sarcoma-positive stress granules.

    PubMed

    Matus, Soledad; Bosco, Daryl A; Hetz, Claudio

    2014-12-01

    Mutations in fused in sarcoma and/or translocated in liposarcoma (FUS, TLS or FUS) are linked to familial cases of amyotrophic lateral sclerosis (ALS). Mutant FUS selectively accumulates into discrete cytosolic structures known as stress granules under various stress conditions. In addition, mutant FUS expression can alter the dynamics and morphology of stress granules. Although the link between mutant FUS and stress granules is well established, the mechanisms modulating stress granule formation and disassembly in the context of ALS are poorly understood. In this issue of Neurobiology of Aging, Ryu et al. uncover the impact of autophagy on the potential toxicity of mutant FUS-positive stress granules. The authors provide evidence indicating that enhanced autophagy activity reduces the number of stress granules, which in the case of cells containing mutant FUS-positive stress granules, is neuroprotective. Overall, this study identifies an intersection between the proteostasis network and alterations in RNA metabolism in ALS through the dynamic assembly and disassembly of stress granules. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Neurite outgrowth of murine cerebellar granule cells can be enhanced by aniracetam with or without alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA).

    PubMed

    Fushiki, S; Matsumoto, K; Nagata, A

    1995-10-27

    To assess the neurotrophic effects of a nootropic drug, aniracetam, we studied neurite extension of mouse cerebellar granule cells in culture with low or with high K+ under different combinations of drugs and then immunohistochemically stained the cells with an antibody against L1, a neural cell adhesion molecule on cerebellar granule cells. Quantitative analyses using parameters of the total neurite length, maximal neurite length and number of branches disclosed that aniracetam, in the presence of high K+ and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), significantly enhanced neurite extension of cultured granule neurons. Aniracetam alone also stimulated neurite extension of cerebellar granule cells at a longer period of culture with low K+ showing a bell-shaped dose response curve with maximal effects at 10 microM. Aniracetam may influence remodeling of the neural network after injury.

  14. Loss of protohaem IX farnesyltransferase in mature dentate granule cells impairs short-term facilitation at mossy fibre to CA3 pyramidal cell synapses.

    PubMed

    Booker, Sam A; Campbell, Graham R; Mysiak, Karolina S; Brophy, Peter J; Kind, Peter C; Mahad, Don J; Wyllie, David J A

    2017-03-15

    Neurodegenerative disorders can exhibit dysfunctional mitochondrial respiratory chain complex IV activity. Conditional deletion of cytochrome c oxidase, the terminal enzyme in the respiratory electron transport chain of mitochondria, from hippocampal dentate granule cells in mice does not affect low-frequency dentate to CA3 glutamatergic synaptic transmission. High-frequency dentate to CA3 glutamatergic synaptic transmission and feedforward inhibition are significantly attenuated in cytochrome c oxidase-deficient mice. Intact presynaptic mitochondrial function is critical for the short-term dynamics of mossy fibre to CA3 synaptic function. Neurodegenerative disorders are characterized by peripheral and central symptoms including cognitive impairments which have been associated with reduced mitochondrial function, in particular mitochondrial respiratory chain complex IV or cytochrome c oxidase activity. In the present study we conditionally removed a key component of complex IV, protohaem IX farnesyltransferase encoded by the COX10 gene, in granule cells of the adult dentate gyrus. Utilizing whole-cell patch-clamp recordings from morphologically identified CA3 pyramidal cells from control and complex IV-deficient mice, we found that reduced mitochondrial function did not result in overt deficits in basal glutamatergic synaptic transmission at the mossy-fibre synapse because the amplitude, input-output relationship and 50 ms paired-pulse facilitation were unchanged following COX10 removal from dentate granule cells. However, trains of stimuli given at high frequency (> 20 Hz) resulted in dramatic reductions in short-term facilitation and, at the highest frequencies (> 50 Hz), also reduced paired-pulse facilitation, suggesting a requirement for adequate mitochondrial function to maintain glutamate release during physiologically relevant activity patterns. Interestingly, local inhibition was reduced, suggesting the effect observed was not restricted to synapses

  15. Purification of a factor from the granules of a rat natural killer cell line (RNK) that reduces tumor cell growth and changes tumor morphology. Molecular identity with a granule serine protease (RNKP-1).

    PubMed

    Sayers, T J; Wiltrout, T A; Sowder, R; Munger, W L; Smyth, M J; Henderson, L E

    1992-01-01

    We have purified a protein from the granules of the rat NK leukemia cell line (RNK) that is cytostatic to a variety of tumor cells. This protein shows no species specificity because certain tumor cell lines of mouse, rat, and human origin were equally sensitive to its growth inhibitory effects. Treatment of sensitive cells resulted in a rounding of the cells followed by homotypic aggregation into large aggregates. The granule protein was distinct from cytolysin, Na-Cbz-Lys-thiobenzylester-esterase, or leukolexin. It had a molecular mass of 29 to 31 kDa, bound strongly to heparin, was inactivated by heating at 70 degrees C for 5 min or reduction, but was stable to trypsin treatment. By using molecular sieve chromatography, heparin agarose chromatography, and reverse phase HPLC, this protein was purified to homogeneity. The first 33 amino acids of the N-terminal amino acid sequence showed complete identity to the sequence predicted from a rat serine protease gene recently cloned and designated RNKP-1. Therefore we have purified a novel serine protease and demonstrated that it has effects on the growth and morphology of certain tumor cells. Other serine proteases that were structurally related and have substantial homology with RNKP-1 at the amino acid level showed neither growth inhibitory properties nor affected the morphology of the tumor target cells we used.

  16. Detection of component segregation in granules manufactured by high shear granulation with over-granulation conditions using near-infrared chemical imaging.

    PubMed

    Koide, Tatsuo; Nagato, Takuya; Kanou, Yoshiyuki; Matsui, Kou; Natsuyama, Susumu; Kawanishi, Toru; Hiyama, Yukio

    2013-01-30

    The objective of this study was to evaluate the high shear granulation process using near-infrared (NIR) chemical imaging technique and to make the findings available for pharmaceutical development. We prepared granules and tablets made under appropriate- and over-granulation conditions with high shear granulation and observed these granules and tablets using NIR chemical imaging system. We found an interesting phenomenon: lactose agglomeration and segregation of ingredients occurred in experimental tablets when over-granulation conditions, including greater impeller rotation speeds and longer granulation times, were employed. Granules prepared using over-granulation conditions were larger and had progressed to the consolidation stage; segregation between ethenzamide and lactose occurred within larger granules. The segregation observed here is not detectable using conventional analytical technologies such as high pressure liquid chromatography (HPLC) because the content of the granules remained uniform despite the segregation. Therefore, granule visualization using NIR chemical imaging is an effective method for investigating and evaluating the granulation process. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Iron and cell death in Parkinson's disease: a nuclear microscopic study into iron-rich granules in the parkinsonian substantia nigra of primate models

    NASA Astrophysics Data System (ADS)

    Thong, P. S. P.; Watt, F.; Ponraj, D.; Leong, S. K.; He, Y.; Lee, T. K. Y.

    1999-10-01

    Parkinson's disease is a degenerative brain disease characterised by a loss of cells in the substantia nigra (SN) region of the brain and accompanying biochemical changes such as inhibition of mitochondrial function, increased iron concentrations and decreased glutathione levels in the parkinsonian SN. Though the aetiology of the disease is still unknown, the observed biochemical changes point to the involvement of oxidative stress. In particular, iron is suspected to play a role by promoting free radical production, leading to oxidative stress and cell death. The increase in iron in the parkinsonian SN has been confirmed by several research groups, both in human post-mortem brains and in brain tissue from parkinsonian animal models. However, the question remains as to whether the observed increase in iron is a cause or a consequence of the SN cell death process. Our previous study using unilaterally 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP)-lesioned monkeys in a time sequence experiment has shown that the increase in bulk iron concentrations follow rather than precede dopaminergic cell death. However, changes in the localised iron concentrations, which may play a more direct role in SN cell death, may not be reflected at the bulk level. Indeed, we have observed iron-rich granules in parkinsonian SNs. From this time sequence study into the iron content of iron-rich granules in the SNs of an untreated control and unilaterally MPTP-lesioned parkinsonian models, we present the following observations: (1) Iron-rich granules are found in both control and parkinsonian SNs and are variable in size and iron content in any one model. (2) These iron-rich granules may be associated with neuromelanin granules found in the SN and are known to accumulate transition metal ions such as iron. (3) The early onset of bulk SN cell loss (35%) was accompanied by a significant elevation of iron in granules found in the MPTP-injected SN compared to the contra-lateral SN. This

  18. The secretory pathway at 50: a golden anniversary for some momentous grains of silver.

    PubMed

    Matlin, Karl S; Caplan, Michael J

    2017-01-15

    The secretory pathway along which newly synthesized secretory and membrane proteins traffic through the cell was revealed in two articles published 50 years ago. This discovery was the culmination of decades of effort to unite the power of biochemical and morphological methodologies in order to elucidate the dynamic nature of the cell's biosynthetic machinery. The secretory pathway remains a central paradigm of modern cell biology. Its elucidation 50 years ago inspired tremendous multidisciplinary and on-going efforts to understand the machinery that makes it run, the adaptations that permit it to serve the needs of specialized cell types, and the pathological consequences that arise when it is perturbed. © 2017 Matlin and Caplan. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. Intracellular ion concentrations and cell volume during cholinergic stimulation of eccrine secretory coil cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takemura, T.; Sato, F.; Saga, K.

    Methacholine (MCh)-induced changes in intracellular concentrations of Na, K, and Cl (( Na)i, (K)i, and (Cl)i, respectively) and in cellular dry mass (a measure of cell shrinkage) were examined in isolated monkey eccrine sweat secretory coils by electron probe X-ray microanalysis using the peripheral standard method. To further confirm the occurrence of cell shrinkage during MCh stimulation, the change in cell volume of dissociated clear and dark cells were directly determined under a light microscope equipped with differential interference contrast (DIC) optics. X-ray microanalysis revealed a biphasic increase in cellular dry mass in clear cells during continuous MCh stimulation; anmore » initial increase of dry mass to 158% (of control) followed by a plateau at 140%, which correspond to the decrease in cell volume of 37 and 29%, respectively. The latter agrees with the MCh-induced cell shrinkage of 29% in dissociated clear cells. The MCh-induced increase in dry mass in myoepithelial cells was less than half that of clear cells. During the steady state of MCh stimulation, both (K+)i and (Cl)i of clear cells decreased by about 45%, whereas (Na)i increased in such a way to maintain the sum of (Na) i + (K)i constant. There was a small (12-15 mM) increase in (Na)i and a decrease in (K)i in myoepithelial cells during stimulation with MCh. Dissociated dark cells failed to significantly shrink during MCh stimulation. The decrease in (Cl)i in the face of constant (Na)i + (K)i suggests the accumulation of unknown anion(s) inside the clear cell during MCh stimulation.« less

  20. Solar granulation and statistical crystallography: A modeling approach using size-shape relations

    NASA Technical Reports Server (NTRS)

    Noever, D. A.

    1994-01-01

    The irregular polygonal pattern of solar granulation is analyzed for size-shape relations using statistical crystallography. In contrast to previous work which has assumed perfectly hexagonal patterns for granulation, more realistic accounting of cell (granule) shapes reveals a broader basis for quantitative analysis. Several features emerge as noteworthy: (1) a linear correlation between number of cell-sides and neighboring shapes (called Aboav-Weaire's law); (2) a linear correlation between both average cell area and perimeter and the number of cell-sides (called Lewis's law and a perimeter law, respectively) and (3) a linear correlation between cell area and squared perimeter (called convolution index). This statistical picture of granulation is consistent with a finding of no correlation in cell shapes beyond nearest neighbors. A comparative calculation between existing model predictions taken from luminosity data and the present analysis shows substantial agreements for cell-size distributions. A model for understanding grain lifetimes is proposed which links convective times to cell shape using crystallographic results.

  1. Polyhydroxyalkanoate (PHA) Granules Have no Phospholipids.

    PubMed

    Bresan, Stephanie; Sznajder, Anna; Hauf, Waldemar; Forchhammer, Karl; Pfeiffer, Daniel; Jendrossek, Dieter

    2016-05-25

    Polyhydroxybutyrate (PHB) granules, also designated as carbonosomes, are supra-molecular complexes in prokaryotes consisting of a PHB polymer core and a surface layer of structural and functional proteins. The presence of suspected phospholipids in the surface layer is based on in vitro data of isolated PHB granules and is often shown in cartoons of the PHB granule structure in reviews on PHB metabolism. However, the in vivo presence of a phospholipid layer has never been demonstrated. We addressed this topic by the expression of fusion proteins of DsRed2EC and other fluorescent proteins with the phospholipid-binding domain (LactC2) of lactadherin in three model organisms. The fusion proteins specifically localized at the cell membrane of Ralstonia eutropha but did not co-localize with PHB granules. The same result was obtained for Pseudomonas putida, a species that accumulates another type of polyhydroxyalkanoate (PHA) granules related to PHB. Notably, DsRed2EC-LactC2 expressed in Magnetospirillum gryphiswaldense was detected at the position of membrane-enclosed magnetosome chains and at the cytoplasmic membrane but not at PHB granules. In conclusion, the carbonosomes of representatives of α-proteobacteria, β-proteobacteria and γ-proteobacteria have no phospholipids in vivo and we postulate that the PHB/PHA granule surface layers in natural producers generally are free of phospholipids and consist of proteins only.

  2. Polyhydroxyalkanoate (PHA) Granules Have no Phospholipids

    PubMed Central

    Bresan, Stephanie; Sznajder, Anna; Hauf, Waldemar; Forchhammer, Karl; Pfeiffer, Daniel; Jendrossek, Dieter

    2016-01-01

    Polyhydroxybutyrate (PHB) granules, also designated as carbonosomes, are supra-molecular complexes in prokaryotes consisting of a PHB polymer core and a surface layer of structural and functional proteins. The presence of suspected phospholipids in the surface layer is based on in vitro data of isolated PHB granules and is often shown in cartoons of the PHB granule structure in reviews on PHB metabolism. However, the in vivo presence of a phospholipid layer has never been demonstrated. We addressed this topic by the expression of fusion proteins of DsRed2EC and other fluorescent proteins with the phospholipid-binding domain (LactC2) of lactadherin in three model organisms. The fusion proteins specifically localized at the cell membrane of Ralstonia eutropha but did not co-localize with PHB granules. The same result was obtained for Pseudomonas putida, a species that accumulates another type of polyhydroxyalkanoate (PHA) granules related to PHB. Notably, DsRed2EC-LactC2 expressed in Magnetospirillum gryphiswaldense was detected at the position of membrane-enclosed magnetosome chains and at the cytoplasmic membrane but not at PHB granules. In conclusion, the carbonosomes of representatives of α-proteobacteria, β-proteobacteria and γ-proteobacteria have no phospholipids in vivo and we postulate that the PHB/PHA granule surface layers in natural producers generally are free of phospholipids and consist of proteins only. PMID:27222167

  3. Identification of SNAREs that mediate zymogen granule exocytosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickett, James A.; Campos-Toimil, Manuel; Thomas, Paul

    2007-08-03

    A secretagogue-stimulated pancreatic acinar cell releases digestive enzymes from its apical pole. We attempted to identify the SNAREs involved in zymogen granule exocytosis. Antibodies against syntaxins 2 and 3, SNAP-23 and VAMP 8, and the corresponding recombinant SNAREs, inhibited amylase secretion from streptolysin O-permeabilised acini; other anti-SNARE antibodies and SNAREs had no effect. Botulinum neurotoxin C, which cleaved syntaxin 2 and (to a lesser extent) syntaxin 3, but not syntaxins 4, 7 or 8, also inhibited exocytosis. We propose that syntaxin 2, SNAP-23 and VAMP 8 mediate primary granule-plasma membrane fusion. Syntaxin 3 may be involved in secondary granule-granule fusion.

  4. Physicochemical characteristics of insulin secretion granules

    PubMed Central

    Coore, H. G.; Hellman, B.; Pihl, E.; Täljedal, I.-B.

    1969-01-01

    β-Granules were prepared from micro-dissected pancreatic islets of obese–hyperglycaemic mice. This fraction contained 60% of the insulin, 30% of the cytochrome oxidase, 16% of the acid phosphatase activity and 20% of the protein present in whole islets. The isolated granules retained a heavy metal during fractionation. Optimum conditions for granule stability were low ionic strength and pH6, the granules being unexpectedly fragile at pH7·4. The stability of the granules was unaffected by sucrose in the concentration range 50–320mm, but 1% (w/v) sodium deoxycholate released all insulin. A solubilizing effect was also noted with ATP and citrate. Spinning through 1·6m-sucrose yielded a further purification in relation to mitochondria and acid-phosphatase-carrying particles but virtually no purification in relation to protein. Electron microscopy revealed that the major contaminants were rough-surfaced vesicles and membranes. A separation of granules from acid phosphatase was achieved by phase distribution in polyethylene glycol and dextran. The location of the enzyme to the interphase was so pronounced in systems buffered with lithium phosphate that the technique may be used for future purification of acid-phosphatase-carrying particles from the β-cells. ImagesPLATE 1 PMID:4887194

  5. Convergent evolution of germ granule nucleators: A hypothesis.

    PubMed

    Kulkarni, Arpita; Extavour, Cassandra G

    2017-10-01

    Germ cells have been considered "the ultimate stem cell" because they alone, during normal development of sexually reproducing organisms, are able to give rise to all organismal cell types. Morphological descriptions of a specialized cytoplasm termed 'germ plasm' and associated electron dense ribonucleoprotein (RNP) structures called 'germ granules' within germ cells date back as early as the 1800s. Both germ plasm and germ granules are implicated in germ line specification across metazoans. However, at a molecular level, little is currently understood about the molecular mechanisms that assemble these entities in germ cells. The discovery that in some animals, the gene products of a small number of lineage-specific genes initiate the assembly (also termed nucleation) of germ granules and/or germ plasm is the first step towards facilitating a better understanding of these complex biological processes. Here, we draw on research spanning over 100years that supports the hypothesis that these nucleator genes may have evolved convergently, allowing them to perform analogous roles across animal lineages. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Zinc sulfide in intestinal cell granules of Ancylostoma caninum adults

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gianotti, A.J.; Clark, D.T.; Dash, J.

    1991-04-01

    A source of confusion has existed since the turn of the century about the reddish brown, weakly birefringent 'sphaerocrystals' located in the intestines of strongyle nematodes, Strongylus and Ancylostoma. X-ray diffraction and energy dispersive spectrometric analyses were used for accurate determination of the crystalline order and elemental composition of the granules in the canine hookworm Ancylostoma caninum. The composition of the intestinal pigmented granules was identified unequivocally as zinc sulfide. It seems most probable that the granules serve to detoxify high levels of metallic ions (specifically zinc) present due to the large intake of host blood.

  7. Retention of secretory proteins in an intermediate compartment and disappearance of the Golgi complex in an END4 mutant of Chinese hamster ovary cells

    PubMed Central

    1992-01-01

    Mutant V.24.1, a member of the End4 complementation group of temperature-sensitive CHO cells, is defective in secretion at the restrictive temperature (Wang, R.-H., P. A. Colbaugh, C.-Y. Kao, E. A. Rutledge, and R. K. Draper. 1990. J. Biol. Chem. 265:20179-20187; Presley, J. F., R. K. Draper, and D. T. Brown. 1991. J. Virol. 65:1332- 1339). We have further investigated the secretory lesion and report three main findings. First, the block in secretion is not due to aberrant folding or oligomerization of secretory proteins in the endoplasmic reticulum because the hemagglutinin of influenza virus folded and oligomerized at the same rate in mutant and parental cells at the restrictive temperature. Second, secretory proteins accumulated in a compartment intermediate between the ER and the Golgi. Several lines of evidence support this conclusion, the most direct being the colocalization by immunofluorescence microscopy of influenza virus hemagglutinin with a 58-kD protein that is known to reside in an intermediate compartment. Third, at the resolution of fluorescence microscopy, the Golgi complex in the mutant cells vanished at the restrictive temperature. PMID:1577851

  8. Drosophila germ granules are structured and contain homotypic mRNA clusters

    PubMed Central

    Trcek, Tatjana; Grosch, Markus; York, Andrew; Shroff, Hari; Lionnet, Timothée; Lehmann, Ruth

    2015-01-01

    Germ granules, specialized ribonucleoprotein particles, are a hallmark of all germ cells. In Drosophila, an estimated 200 mRNAs are enriched in the germ plasm, and some of these have important, often conserved roles in germ cell formation, specification, survival and migration. How mRNAs are spatially distributed within a germ granule and whether their position defines functional properties is unclear. Here we show, using single-molecule FISH and structured illumination microscopy, a super-resolution approach, that mRNAs are spatially organized within the granule whereas core germ plasm proteins are distributed evenly throughout the granule. Multiple copies of single mRNAs organize into ‘homotypic clusters' that occupy defined positions within the center or periphery of the granule. This organization, which is maintained during embryogenesis and independent of the translational or degradation activity of mRNAs, reveals new regulatory mechanisms for germ plasm mRNAs that may be applicable to other mRNA granules. PMID:26242323

  9. Somato-synaptic variation of GABA(A) receptors in cultured murine cerebellar granule cells: investigation of the role of the alpha6 subunit.

    PubMed

    Mellor, J R; Wisden, W; Randall, A D

    2000-07-10

    Electrophysiological investigation of cultured cerebellar murine granule cells revealed differences between the GABA(A) receptors at inhibitory synapses and those on the cell body. Specifically, mIPSCs decayed more rapidly than cell body receptors deactivated, the mean single channel conductance at the synapse (32 pS) was greater than that at cell body (21 pS) and only cell body receptors were sensitive to Zn(2+) (150 microM), which depressed response amplitude by 82+/-5% and almost doubled the rate of channel deactivation. The GABA(A) receptor alpha6 subunit is selectively expressed in cerebellar granule cells. Although concentrated at synapses, it is also found on extrasynaptic membranes. Using a mouse line (Deltaalpha6lacZ) lacking this subunit, we investigated its role in the somato-synaptic differences in GABA(A) receptor function. All differences between cell body and synaptic GABA(A) receptors observed in wild-type (WT) granule cells persisted in Deltaalpha6lacZ cells, thus demonstrating that they are not specifically due to the cellular distribution of the alpha6 subunit. However, mIPSCs from WT and Deltaalpha6lacZ cells differed in both their kinetics (faster decay in WT cells) and underlying single channel conductance (32 pS WT, 25 pS Deltaalpha6lacZ). This provides good evidence for a functional contribution of the alpha6 subunit to postsynaptic GABA(A) receptors in these cells. Despite this, deactivation kinetics of mIPSCs in WT and Deltaalpha6lacZ granule cells exhibited similar benzodiazepene (BDZ) sensitivity. This suggests that the enhanced BDZ-induced ataxia seen in Deltaalpha6lacZ mice may reflect physiological activity at extrasynaptic receptors which, unlike those at synapses, display differential BDZ-sensitivity in WT and Deltaalpha6lacZ granule cells (Jones, A.M., Korpi, E.R., McKernan, R.M., Nusser, Z., Pelz, R., Makela, R., Mellor, J.R., Pollard, S., Bahn, S., Stephenson, F.A., Randall, A.D., Sieghart, W., Somogyi, P., Smith, A.J.H., Wisden

  10. Illuminating cellular structure and function in the early secretory pathway by multispectral 3D imaging in living cells

    NASA Astrophysics Data System (ADS)

    Rietdorf, Jens; Stephens, David J.; Squire, Anthony; Simpson, Jeremy; Shima, David T.; Paccaud, Jean-Pierre; Bastiaens, Philippe I.; Pepperkok, Rainer

    2000-04-01

    Membrane traffic between the endoplasmic reticulum (ER) and the Golgi complex is regulated by two vesicular coat complexes, COPII and COPI. COPII has been implicated in selective packaging of anterograde cargo into coated transport vesicles budding from the ER. COPI-coated vesicles are proposed to mediate recycling of proteins from the Golgi complex to the ER. We have used multi spectral 3D imaging to visualize COPI and COPII behavior simultaneously with various GFP-tagged secretory markers in living cells. This shows that COPII and COPI act sequentially whereby COPI association with anterograde transport complexes is involved in microtubule-based transport and the en route segregation of ER recycling molecules from secretory cargo within TCS in transit to the Golgi complex. We have also investigated the possibility to discriminate spectrally GFP fusion proteins by fluorescence lifetime imaging. This shows that at least two, and possibly up to three GFP fusion proteins can be discriminated and localized in living cells using a single excitation wavelength and a single broad band emission filter.

  11. Secretory pathway Ca2+/Mn2+-ATPase isoform 2 and lactation: specific localization of plasmalemmal and secretory pathway Ca2+ pump isoforms in the mammary gland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faddy, Helen M.; Smart, Chanel E.; Xu, Ren

    2008-04-09

    The supply of calcium to the developing neonate via milk is an important physiological process. Until recently the mechanism for the enrichment of milk with calcium was thought to be almost entirely mediated via the secretory pathway. However, recent studies suggest that a specific isoform of the plasma membrane calcium ATPase, PMCA2, is the primary mechanism for calcium transport into milk, highlighting a major role for apical calcium transport. We compared the expression of the recently identified secretory calcium ATPase, SPCA2, and SPCA1, in the mouse mammary gland during different stages of development. SPCA2 levels increased over 35 fold duringmore » lactation, while SPCA1 increased only a modest two fold. The potential importance of SPCA2 in lactation was also highlighted by its localization to luminal secretory cells of the mammary gland during lactation, while SPCA1 was expressed throughout the cells of the mammary gland. We also observed major differences in the localization of PMCA2 and PMCA1 during lactation. Using the SCp2 mouse mammary epithelial cell 3D culture model, differences in the sub-cellular distribution of PMCA2 and PMCA1 were clear. These studies highlight the likely specific roles of PMCA2 and SPCA2 in lactation, and link the recently characterized SPCA2 calcium pump to the supply of calcium into milk and the regulation of Golgi resident enzymes important in lactation. They also indicate that calcium transport into milk is a complex interplay between apical and secretory pathways.« less

  12. Side Effects of Neem Oil on the Midgut Endocrine Cells of the Green Lacewing Ceraeochrysa claveri (Navás) (Neuroptera: Chrysopidae).

    PubMed

    Scudeler, E L; Santos, D C

    2014-04-01

    We described the ultrastructure of Ceraeochrysa claveri (Navás) midgut endocrine cells in larva, pupa, and adult, and evaluated the side effects of ingested neem oil, a botanical insecticide obtained from the seeds of the neem tree (Azadirachta indica), on these cells. During the larval period, C. claveri were fed (ad libitum) Diatraea saccharalis (F.) eggs treated with neem oil at concentrations of 0.5%, 1%, or 2%. Transmission electron microscopy showed that two subtypes of endocrine cells, namely granular and vesicular, occurred in the midgut epithelium during the three stages of the life cycle. Both cell types did not reach the midgut lumen and were positioned basally in the epithelium. The endocrine cells did not show extensive infoldings of the basal plasma membrane, and there were numerous secretory granules in the basal region of the cytoplasm. In the granular endocrine cells, the granules were completely filled with a dense matrix. In the vesicular endocrine cells, the main secretory products consisted of haloed vesicles. Ultrastructural examination indicated that only the granular endocrine cells exhibited signs of morphologic changes of cell injury present in all life cycle stages after the larvae were chronically exposed to neem oil by ingestion. The major cellular damage consisted of dilatation and vesiculation of the rough endoplasmic reticulum and the development of smooth endoplasmic reticulum and mitochondrial swelling. Our data suggest that cytotoxic effects on midgut endocrine cells can contribute to a generalized disruption of the physiological processes in this organ due to a general alteration of endocrine function.

  13. Tumors of the endocrine/neuroendocrine system: an overview.

    PubMed

    Erlandson, R A; Nesland, J M

    1994-01-01

    For the sake of discussion, the markedly diversified tumors of the endocrine/neuroendocrine system are classified as those originating in classic epithelial endocrine organs (eg, adrenal cortical adenomas), from the diffuse endocrine cells (eg, jejunal carcinoid tumors), or from clusters of these cells (eg, islet cell tumors); and those arising from neurosecretory neurons (eg, neuroblastoma) or paraganglia (eg, carotid body tumor). Although traditional transmission electron microscopy is useful for identifying neurosecretory or endosecretory granules as such, with few exceptions (eg, insulin-containing granules with a complex paracrystalline core) it is not possible to ascribe a granule type (size, shape, or ultrastructure) to a distinct nosologic entity or secretory product because of their overlapping fine structures in different cell types. Immunoelectron microscopy methods utilizing colloidal gold-labeled secondary antibodies can be used to localize virtually any antigen (peptide or neuroamine) to a specific neurosecretory or endosecretory granule or other cell structure. General endocrine/neuroendocrine cell markers such as neuron-specific enolase, the chromogranins, and synaptophysin are useful in identifying neuroendocrine differentiation in a neoplasm using routine immunohistochemical procedures. The current relevance of the APUD concept of Pearse as well as the biologic importance of endocrine/neuroendocrine secretory products such as bombesin and insulinlike growth factors also are discussed.

  14. Regulation of platelet granule exocytosis by S-nitrosylation

    PubMed Central

    Morrell, Craig N.; Matsushita, Kenji; Chiles, Kelly; Scharpf, Robert B.; Yamakuchi, Munekazu; Mason, Rebecca J. A.; Bergmeier, Wolfgang; Mankowski, Joseph L.; Baldwin, William M.; Faraday, Nauder; Lowenstein, Charles J.

    2005-01-01

    Nitric oxide (NO) regulates platelet activation by cGMP-dependent mechanisms and by mechanisms that are not completely defined. Platelet activation includes exocytosis of platelet granules, releasing mediators that regulate interactions between platelets, leukocytes, and endothelial cells. Exocytosis is mediated in part by N-ethylmaleimide-sensitive factor (NSF), an ATPase that disassembles complexes of soluble NSF attachment protein receptors. We now demonstrate that NO inhibits exocytosis of dense granules, lysosomal granules, and α-granules from human platelets by S-nitrosylation of NSF. Platelets lacking endothelial NO synthase show increased rolling on venules, increased thrombosis in arterioles, and increased exocytosis in vivo. Regulation of exocytosis is thus a mechanism by which NO regulates thrombosis. PMID:15738422

  15. RFP tags for labeling secretory pathway proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Liyang; Zhao, Yanhua; Zhang, Xi

    2014-05-09

    Highlights: • Membrane protein Orai1 can be used to report the fusion properties of RFPs. • Artificial puncta are affected by dissociation constant as well as pKa of RFPs. • Among tested RFPs mOrange2 is the best choice for secretory protein labeling. - Abstract: Red fluorescent proteins (RFPs) are useful tools for live cell and multi-color imaging in biological studies. However, when labeling proteins in secretory pathway, many RFPs are prone to form artificial puncta, which may severely impede their further uses. Here we report a fast and easy method to evaluate RFPs fusion properties by attaching RFPs to anmore » environment sensitive membrane protein Orai1. In addition, we revealed that intracellular artificial puncta are actually colocalized with lysosome, thus besides monomeric properties, pKa value of RFPs is also a key factor for forming intracellular artificial puncta. In summary, our current study provides a useful guide for choosing appropriate RFP for labeling secretory membrane proteins. Among RFPs tested, mOrange2 is highly recommended based on excellent monomeric property, appropriate pKa and high brightness.« less

  16. Progressive quality control of secretory proteins in the early secretory compartment by ERp44

    PubMed Central

    Sannino, Sara; Anelli, Tiziana; Cortini, Margherita; Masui, Shoji; Degano, Massimo; Fagioli, Claudio; Inaba, Kenji; Sitia, Roberto

    2014-01-01

    ERp44 is a pH-regulated chaperone of the secretory pathway. In the acidic milieu of the Golgi, its C-terminal tail changes conformation, simultaneously exposing the substrate-binding site for cargo capture and the RDEL motif for ER retrieval via interactions with cognate receptors. Protonation of cysteine 29 in the active site allows tail movements in vitro and in vivo. Here we show that also conserved histidines in the C-terminal tail regulate ERp44 in vivo. Mutants lacking these histidines are hyperactive in retaining substrates. Surprisingly, they are also O-glycosylated and partially secreted. Co-expression of client proteins prevents secretion of the histidine mutants, forcing tail opening and RDEL accessibility. Client-induced RDEL exposure allows retrieval of proteins from distinct stations along the secretory pathway, as indicated by the changes in O-glycosylation patterns upon over-expression of different partners. The ensuing gradients may help optimising folding and assembly of different cargoes. Endogenous ERp44 is O-glycosylated and secreted by human primary endometrial cells, suggesting possible pathophysiological roles of these processes. PMID:25097228

  17. Vascular endothelial growth factor receptor 1 (VEGFR1) tyrosine kinase signaling facilitates granulation tissue formation with recruitment of VEGFR1+ cells from bone marrow.

    PubMed

    Park, Keiichi; Amano, Hideki; Ito, Yoshiya; Mastui, Yoshio; Kamata, Mariko; Yamazaki, Yasuharu; Takeda, Akira; Shibuya, Masabumi; Majima, Masataka

    2018-06-01

    Vascular endothelial growth factor (VEGF)-A facilitates wound healing. VEGF-A binds to VEGF receptor 1 (VEGFR1) and VEGFR2 and induces wound healing through the receptor's tyrosine kinase (TK) domain. During blood flow recovery and lung regeneration, expression of VEGFR1 is elevated. However, the precise mechanism of wound healing, especially granulation formation on VEGFR1, is not well understood. We hypothesized that VEGFR1-TK signaling induces wound healing by promoting granulation tissue formation. A surgical sponge implantation model was made by implanting a sponge disk into dorsal subcutaneous tissue of mice. Granulation formation was estimated from the weight of the sponge and the granulation area from the immunohistochemical analysis of collagen I. The expression of fibroblast markers was estimated from the expression of transforming growth factor-beta (TGF-β) and cellular fibroblast growth factor-2 (FGF-2) using real-time PCR (polymerase chain reaction) and from the immunohistochemical analysis of S100A4. VEGFR1 TK knockout (TK -/- ) mice exhibited suppressed granulation tissue formation compared to that in wild-type (WT) mice. Expression of FGF-2, TGF-β, and VEGF-A was significantly suppressed in VEGFR1 TK -/- mice, and the accumulation of VEGFR1 + cells in granulation tissue was reduced in VEGFR1 TK -/- mice compared to that in WT mice. The numbers of VEGFR1 + cells and S100A4 + cells derived from bone marrow (BM) were higher in WT mice transplanted with green fluorescent protein (GFP) transgenic WT BM than in VEGFR1 TK -/- mice transplanted with GFP transgenic VEGFR1 TK -/- BM. These results indicated that VEGFR1-TK signaling induced the accumulation of BM-derived VEGFR1 + cells expressing F4/80 and S100A4 and contributed to granulation formation around the surgically implanted sponge area in a mouse model.

  18. Functional Characterization of Monomeric GTPase Rab1 in the Secretory Pathway of Leishmania.

    PubMed

    Bahl, Surbhi; Parashar, Smriti; Malhotra, Himanshu; Raje, Manoj; Mukhopadhyay, Amitabha

    2015-12-11

    Leishmania secretes a large number of its effectors to the extracellular milieu. However, regulation of the secretory pathway in Leishmania is not well characterized. Here, we report the cloning, expression, and characterization of the Rab1 homologue from Leishmania. We have found that LdRab1 localizes in Golgi in Leishmania. To understand the role of LdRab1 in the secretory pathway of Leishmania, we have generated transgenic parasites overexpressing GFP-LdRab1:WT, GFP-LdRab1:Q67L (a GTPase-deficient dominant positive mutant of Rab1), and GFP-LdRab1:S22N (a GDP-locked dominant negative mutant of Rab1). Surprisingly, our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N does not disrupt the trafficking and localization of hemoglobin receptor in Leishmania. To determine whether the Rab1-dependent secretory pathway is conserved in parasites, we have analyzed the role of LdRab1 in the secretion of secretory acid phosphatase and Ldgp63 in Leishmania. Our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N significantly inhibits the secretion of secretory acid phosphatase by Leishmania. We have also found that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N retains RFP-Ldgp63 in Golgi and blocks the secretion of Ldgp63, whereas the trafficking of RFP-Ldgp63 in GFP-LdRab1:WT-expressing cells is unaltered in comparison with control cells. Taken together, our results have shown that the Rab1-regulated secretory pathway is well conserved, and hemoglobin receptor trafficking follows an Rab1-independent secretory pathway in Leishmania. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Functional Characterization of Monomeric GTPase Rab1 in the Secretory Pathway of Leishmania*

    PubMed Central

    Bahl, Surbhi; Parashar, Smriti; Malhotra, Himanshu; Raje, Manoj; Mukhopadhyay, Amitabha

    2015-01-01

    Leishmania secretes a large number of its effectors to the extracellular milieu. However, regulation of the secretory pathway in Leishmania is not well characterized. Here, we report the cloning, expression, and characterization of the Rab1 homologue from Leishmania. We have found that LdRab1 localizes in Golgi in Leishmania. To understand the role of LdRab1 in the secretory pathway of Leishmania, we have generated transgenic parasites overexpressing GFP-LdRab1:WT, GFP-LdRab1:Q67L (a GTPase-deficient dominant positive mutant of Rab1), and GFP-LdRab1:S22N (a GDP-locked dominant negative mutant of Rab1). Surprisingly, our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N does not disrupt the trafficking and localization of hemoglobin receptor in Leishmania. To determine whether the Rab1-dependent secretory pathway is conserved in parasites, we have analyzed the role of LdRab1 in the secretion of secretory acid phosphatase and Ldgp63 in Leishmania. Our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N significantly inhibits the secretion of secretory acid phosphatase by Leishmania. We have also found that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N retains RFP-Ldgp63 in Golgi and blocks the secretion of Ldgp63, whereas the trafficking of RFP-Ldgp63 in GFP-LdRab1:WT-expressing cells is unaltered in comparison with control cells. Taken together, our results have shown that the Rab1-regulated secretory pathway is well conserved, and hemoglobin receptor trafficking follows an Rab1-independent secretory pathway in Leishmania. PMID:26499792

  20. Scanning and transmission electron microscopic analysis of ampullary segment of oviduct during estrous cycle in caprines.

    PubMed

    Sharma, R K; Singh, R; Bhardwaj, J K

    2015-01-01

    The ampullary segment of the mammalian oviduct provides suitable milieu for fertilization and development of zygote before implantation into uterus. It is, therefore, in the present study, the cyclic changes in the morphology of ampullary segment of goat oviduct were studied during follicular and luteal phases using scanning and transmission electron microscopy techniques. Topographical analysis revealed the presence of uniformly ciliated ampullary epithelia, concealing apical processes of non-ciliated cells along with bulbous secretory cells during follicular phase. The luteal phase was marked with decline in number of ciliated cells with increased occurrence of secretory cells. The ultrastructure analysis has demonstrated the presence of indented nuclear membrane, supranuclear cytoplasm, secretory granules, rough endoplasmic reticulum, large lipid droplets, apically located glycogen masses, oval shaped mitochondria in the secretory cells. The ciliated cells were characterized by the presence of elongated nuclei, abundant smooth endoplasmic reticulum, oval or spherical shaped mitochondria with crecentric cristae during follicular phase. However, in the luteal phase, secretory cells were possessing highly indented nucleus with diffused electron dense chromatin, hyaline nucleosol, increased number of lipid droplets. The ciliated cells had numerous fibrous granules and basal bodies. The parallel use of scanning and transmission electron microscopy techniques has enabled us to examine the cyclic and hormone dependent changes occurring in the topography and fine structure of epithelium of ampullary segment and its cells during different reproductive phases that will be great help in understanding major bottle neck that limits success rate in vitro fertilization and embryo transfer technology. © Wiley Periodicals, Inc.

  1. Oil Secretory System in Vegetative Organs of Three Arnica Taxa: Essential Oil Synthesis, Distribution and Accumulation.

    PubMed

    Kromer, Krystyna; Kreitschitz, Agnieszka; Kleinteich, Thomas; Gorb, Stanislav N; Szumny, Antoni

    2016-05-01

    Arnica, a genus including the medicinal species A. montana, in its Arbo variety, and A. chamissonis, is among the plants richest in essential oils used as pharmaceutical materials. Despite its extensive use, the role of anatomy and histochemistry in the internal secretory system producing the essential oil is poorly understood. Anatomical sections allowed differentiation between two forms of secretory structures which differ according to their distribution in plants. The first axial type is connected to the vascular system of all vegetative organs and forms canals lined with epithelial cells. The second cortical type is represented by elongated intercellular spaces filled with oil formed only between the cortex cells of roots and rhizomes at maturity, with canals lacking an epithelial layer.Only in A. montana rhizomes do secretory structures form huge characteristic reservoirs. Computed tomography illustrates their spatial distribution and fusiform shape. The axial type of root secretory canals is formed at the interface between the endodermis and cortex parenchyma, while, in the stem, they are located in direct contact with veinal parenchyma. The peripheral phloem parenchyma cells are arranged in strands around sieve tube elements which possess a unique ability to accumulate large amounts of oil bodies. The cells of phloem parenchyma give rise to the aforementioned secretory structures while the lipid components (triacylglycerols) stored there support the biosynthesis of essential oils by later becoming a medium in which these oils are dissolved. The results indicate the integrity of axial secretory structures forming a continuous system in vegetative plant organs. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Secretory IgA: Designed for Anti-Microbial Defense

    PubMed Central

    Brandtzaeg, Per

    2013-01-01

    Prevention of infections by vaccination remains a compelling goal to improve public health. Mucosal vaccines would make immunization procedures easier, be better suited for mass administration, and most efficiently induce immune exclusion – a term coined for non-inflammatory antibody shielding of internal body surfaces, mediated principally by secretory immunoglobulin A (SIgA). The exported antibodies are polymeric, mainly IgA dimers (pIgA), produced by local plasma cells (PCs) stimulated by antigens that target the mucose. SIgA was early shown to be complexed with an epithelial glycoprotein – the secretory component (SC). A common SC-dependent transport mechanism for pIgA and pentameric IgM was then proposed, implying that membrane SC acts as a receptor, now usually called the polymeric Ig receptor (pIgR). From the basolateral surface, pIg-pIgR complexes are taken up by endocytosis and then extruded into the lumen after apical cleavage of the receptor – bound SC having stabilizing and innate functions in the secretory antibodies. Mice deficient for pIgR show that this is the only receptor responsible for epithelial export of IgA and IgM. These knockout mice show a variety of defects in their mucosal defense and changes in their intestinal microbiota. In the gut, induction of B-cells occurs in gut-associated lymphoid tissue, particularly the Peyer’s patches and isolated lymphoid follicles, but also in mesenteric lymph nodes. PC differentiation is accomplished in the lamina propria to which the activated memory/effector B-cells home. The airways also receive such cells from nasopharynx-associated lymphoid tissue but by different homing receptors. This compartmentalization is a challenge for mucosal vaccination, as are the mechanisms used by the mucosal immune system to discriminate between commensal symbionts (mutualism), pathobionts, and overt pathogens (elimination). PMID:23964273

  3. The effect of the chopper on granules from wet high-shear granulation using a PMA-1 granulator.

    PubMed

    Briens, Lauren; Logan, Ryan

    2011-12-01

    Chopper presence and then chopper speed was varied during wet high shear granulation of a placebo formulation using a PMA-1 granulator while also varying the impeller speed. The granules were extensively analyzed for differences due to the chopper. The effect of the chopper on the granules varied with impeller speed from no effect at a low impeller speed of 300 rpm to flow interruptions at an impeller speed of 700 rpm to minimal impact at very high impeller speeds as caking at the bowl perimeter obscured the effect of the chopper on the flow pattern. Differences in the granule flowability were minimal. However, it was concluded that the largest fraction of optimal granules would be obtained at an impeller speed of 700 rpm with the chopper at 1,000 rpm allowing balances between flow establishment, segregation, and centrifugal forces.

  4. Accumulation of PHA granules in Cupriavidus necator as seen by confocal fluorescence microscopy.

    PubMed

    Mravec, Filip; Obruca, Stanislav; Krzyzanek, Vladislav; Sedlacek, Petr; Hrubanova, Kamila; Samek, Ota; Kucera, Dan; Benesova, Pavla; Nebesarova, Jana

    2016-05-01

    Many bacteria are capable of accumulating intracellular granules of polyhydroxyalkanoates (PHA). In this work, we developed confocal microscopy analysis of bacterial cells to study changes in the diameters of cells as well as PHA granules during growth and PHA accumulation in the bacterium Cupriavidus necator H16 (formerly Ralstonia eutropha). The cell envelope was stained by DiD(®) fluorescent probe and PHA granules by Nile Red. Signals from both probes were separated based on their spectral and fluorescence life-time properties. During growth and PHA accumulation, bacterial cells increased their length but the width of the cells remained constant. The volume fraction of PHA granules in cells increased during PHA accumulation, nevertheless, its value did not exceed 40 vol. % regardless of the PHA weight content. It seems that bacterial cultures lengthen the cells in order to control the PHA volume portion. However, since similar changes in cell length were also observed in a PHA non-accumulating mutant, it seems that there is no direct control mechanism, which regulates the prolongation of the cells with respect to PHA granules volume. It is more likely that PHA biosynthesis and the length of cells are influenced by the same external stimuli such as nutrient limitation. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Mechanism of the formation of hollow spherical granules using a high shear granulator.

    PubMed

    Asada, Takumi; Nishikawa, Mitsunori; Ochiai, Yasushi; Noguchi, Shuji; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-05-30

    Recently, we have developed a novel granulation technology to manufacture hollow spherical granules (HSGs) for controlled-release formulations; however, the mechanism of the granulation is still unclear. The aim of this study is to determine the mechanism of the formation of the HSGs using a high shear granulator. Samples of granulated material were collected at various times during granulation and were investigated using scanning electron microscope and X-ray computed tomography. It was observed that the granulation proceeded by drug layering to the polymer, followed by formation of a hollow in the granule. In addition, it was also found that generation of a crack in the adhered drug layer and air flow into the granules might be involved in forming the hollow in the structure. Observation of the granulation of formulations with different types of drugs and polymers indicated that negative pressure in the granules occurred and the granules caved in when the hollow was formed. The hollow-forming speed and the shell density of the hollow granules depended on the particular drug and polymer. Taken together, the granulation mechanism of HSGs was determined and this information will be valuable for HSGs technology development. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Statistical properties of solar granulation from the SOUP instrument on Spacelab 2

    NASA Astrophysics Data System (ADS)

    Topka, K.; Title, A.; Tarbell, T.; Ferguson, S.; Shine, R.

    1988-11-01

    The Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 collected movies of solar granulation completely free from atmospheric blurring, and are not degraded by pointint jitter (the pointing stability was 0.003 sec root mean square). The movies illustrate that the solar five minute oscillation has a major role in the appearance of solar granulation and that exploding granules are a common feature of the granule evolution. Using 3-D Fourier filtering techniques the oscillations were removed and it was demonstrated that the autocorrelation lifetime of granulation is a factor of two greater in magnetic field regions than in field-free quiet sun. Horizontal velocities were measured and flow patterns were observed on the scale of meso- and super granulation. In quiet regions the mean flow velocity is 370 m/s while in the magnetic regions it is about 125 m/s. It was also found that the root mean square (RMS) fluctuating horizonal velocity field is substantially greater in quiet sun than in strong magnetic field regions. By superimposing the location of exploding granules on the average flow maps it was found that they appear almost exclusively in the center of mesogranulation size flow cells. Because of the nonuniformity of the distribution of exploding granules, the evolution of the granulation pattern in mesogranule cell centers and boundaries differs fundamentally. It is clear from this study there is neither a typical granule nor a typical granule evolution.

  7. Statistical properties of solar granulation from the SOUP instrument on Spacelab 2

    NASA Technical Reports Server (NTRS)

    Topka, K.; Title, A.; Tarbell, T.; Ferguson, S.; Shine, R.

    1988-01-01

    The Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 collected movies of solar granulation completely free from atmospheric blurring, and are not degraded by pointint jitter (the pointing stability was 0.003 sec root mean square). The movies illustrate that the solar five minute oscillation has a major role in the appearance of solar granulation and that exploding granules are a common feature of the granule evolution. Using 3-D Fourier filtering techniques the oscillations were removed and it was demonstrated that the autocorrelation lifetime of granulation is a factor of two greater in magnetic field regions than in field-free quiet sun. Horizontal velocities were measured and flow patterns were observed on the scale of meso- and super granulation. In quiet regions the mean flow velocity is 370 m/s while in the magnetic regions it is about 125 m/s. It was also found that the root mean square (RMS) fluctuating horizonal velocity field is substantially greater in quiet sun than in strong magnetic field regions. By superimposing the location of exploding granules on the average flow maps it was found that they appear almost exclusively in the center of mesogranulation size flow cells. Because of the nonuniformity of the distribution of exploding granules, the evolution of the granulation pattern in mesogranule cell centers and boundaries differs fundamentally. It is clear from this study there is neither a typical granule nor a typical granule evolution.

  8. [Semiquantitative measurement of progesterone receptors in luteal-phase-defect endometrial cells during secretory phase].

    PubMed

    Ma, Q; Han, Z; Huang, W

    1998-03-01

    To investigate the changes of endometrial progesterone receptor (PR) of luteal-phase-defect (LPD) patients during the secretory phase, thirteen patients with complaints of infertility or habitual abortion were studied. During the early-mid secretory phase, endometrial tissue was obtained by dilatation and curettage (D & C) for histological and receptor study: meanwhile serum E2, P, FSH, LH and PRL were measured. Based on histologic diagnosis, the patients were divided into two groups: the LPD group (n = 7) and the normal control group(n = 6). PR content was determined by immunohisto-chemical (IHC) assay. The results showed that during the early-mid luteal phase a significantly low PR content on endometrial glandular nucleus was observed in LPD group, compared with normal control(6.75 +/- 2.57 vs 9.50 +/- 1.64 P < 0.05), but no difference in serum progesterone was noted between the two groups. These findings suggest that during early-mid secretory phase, PR content on endometrial glandular nucleus decreases in LPD cases, which results in deficient response of endometrium to proper stimulus of progesterone. This change may cause endometrial secretory deficiency and blockade of embreyo implantation. That is why infertility or habitual abortion happened.

  9. Differential gene expression in dentate granule cells in mesial temporal lobe epilepsy with and without hippocampal sclerosis.

    PubMed

    Griffin, Nicole G; Wang, Yu; Hulette, Christine M; Halvorsen, Matt; Cronin, Kenneth D; Walley, Nicole M; Haglund, Michael M; Radtke, Rodney A; Skene, J H Pate; Sinha, Saurabh R; Heinzen, Erin L

    2016-03-01

    Hippocampal sclerosis is the most common neuropathologic finding in cases of medically intractable mesial temporal lobe epilepsy. In this study, we analyzed the gene expression profiles of dentate granule cells of patients with mesial temporal lobe epilepsy with and without hippocampal sclerosis to show that next-generation sequencing methods can produce interpretable genomic data from RNA collected from small homogenous cell populations, and to shed light on the transcriptional changes associated with hippocampal sclerosis. RNA was extracted, and complementary DNA (cDNA) was prepared and amplified from dentate granule cells that had been harvested by laser capture microdissection from surgically resected hippocampi from patients with mesial temporal lobe epilepsy with and without hippocampal sclerosis. Sequencing libraries were sequenced, and the resulting sequencing reads were aligned to the reference genome. Differential expression analysis was used to ascertain expression differences between patients with and without hippocampal sclerosis. Greater than 90% of the RNA-Seq reads aligned to the reference. There was high concordance between transcriptional profiles obtained for duplicate samples. Principal component analysis revealed that the presence or absence of hippocampal sclerosis was the main determinant of the variance within the data. Among the genes up-regulated in the hippocampal sclerosis samples, there was significant enrichment for genes involved in oxidative phosphorylation. By analyzing the gene expression profiles of dentate granule cells from surgically resected hippocampal specimens from patients with mesial temporal lobe epilepsy with and without hippocampal sclerosis, we have demonstrated the utility of next-generation sequencing methods for producing biologically relevant results from small populations of homogeneous cells, and have provided insight on the transcriptional changes associated with this pathology. Wiley Periodicals, Inc. © 2016

  10. [Expansion of secretory cells in the fallopian tubal epithelium in the early stages of the pathogenesis of ovarian serous carcinomas].

    PubMed

    Asaturova, A V; Ezhova, L S; Faizullina, N M; Adamyan, L V; Khabas, G N; Sannikova, M V

    to investigate the frequency of the types of fallopian tubal secretory cell expansion (SCE) in diseases of the reproductive organs and to determine the immunophenotype and biological role of the cells in the early stages of the pathogenesis of high-grade ovarian serous carcinomas (HGOSC). The investigation enrolled 287 patients with extraovarian diseases and ovarian serous tumors varying in grade, whose fallopian tubes were morphologically and immunohistochemically examined using p53, Ki-67, PAX2, Bcl-2, beta-catenin, and ALDH1 markers. The material was statistically processed applying the Mann-Whitney test and χ2 test. The rate of secretory cell proliferation (SCP) (more than 10 consecutive secretory cells) and that of secretory cell overgrowth (SCO) (more than 30 consecutive secretory cells) increase with age in all investigated reproductive system diseases. The rate of SCP in the corpus fimbriatum of the patients with HGOSC was 5.9 times higher than that in those with extraovarian disease (p<0.01); when comparing the same patient groups, that of SCO was 3.4 times higher (p<0.05). The immunohistochemical characteristics of the investigated lesions (in scores) were as follows: PAX2 was expressed in the intact epithelium (2.8), in SCP (1.3), in SCO (1.2), in serous tubal intraepithelial carcinoma (STIC) (1.0), and in HGOSC (0.9); Bcl-2 was in the intact epithelium (2.2), in SCP (2.1), STIC (0.9), and in HGOSC (0.6), β-catenin was in the intact epithelium (0.5), in SCP (2.85), in SCO (2.95), in STIC (0.6), and in HGOSC (0.5); ALDH1 was in the intact epithelium (0.5), in SCP (2.91), in SCO (2.92), in STIC (1.2), and in HGOSC (0.6). There were statistically significant differences with a 95% confidence interval (p<0.05) for: 1) PAX2 between the intact epithelium and pathology (fallopian tube lesions and HGOSC); 2) Bcl-2 between the intact epithelium and SCE (SCP and SCO) and between SCE and HGOSC; 3) beta-catenin between the intact epithelium and SCE (SCP and SCO

  11. Rapid microwave fixation of rat mast cells. I. Localization of granule chymase with an ultrastructural postembedding immunogold technique.

    PubMed

    Login, G R; Galli, S J; Morgan, E; Arizono, N; Schwartz, L B; Dvorak, A M

    1987-11-01

    We defined the ultrastructural localization of chymase in rat peritoneal mast cells using standard aldehyde fixation and a newly described microwave fixation method (Login GR, Dvorak AM: Microwave energy fixation for electron microscopy. Am J Pathol 120: 230, 1985; Login GR, Stavinoha WB, Dvorak AM: Ultrafast microwave energy fixation for electron microscopy. J Histochem Cytochem 34:381, 1986) and postembedding immunogold labeling. Thin sections were exposed first to goat IgG anti-rat chymase and second to gold-conjugated rabbit Ig directed against goat IgG. By transmission electron microscopy, gold particles were localized to the matrix of cytoplasmic granules. Control sections treated with nonimmune sera did not exhibit labeling of mast cells. Thin sections treated simultaneously with purified rat mast cell chymase and anti-chymase antibody in competition studies, showed a marked reduction in granule staining. These findings demonstrate that a microwave fixation method can be used to rapidly fix cell suspensions for postembedding immunocytochemical studies.

  12. Glycosaminoglycan synthesis by adult rat submandibular salivary-gland secretory units.

    PubMed

    Cutler, L S; Christian, C P; Rendell, J K

    1987-01-01

    The synthesis of glycosaminoglycans (GAG) by a preparation of purified, functional submandibular-gland secretory units (acini and intercalated ducts) was examined. Such units were isolated from Sprague-Dawley rats by digestion of minced gland with hyaluronidase and collagenase followed by gentle sieving of the digest through a graded series of Teflon screens. They incorporated amino acids into exocrine proteins which could be released by stimulation with isoproterenol as in vivo, indicating their functional integrity. Secretory units, incubated for 2 h in medium containing [35S]-sodium sulphate alone or in combination with [3H]-glucosamine, were then washed, homogenized and digested in pronase. The resulting material was then sequentially digested by specific enzymic and chemical procedures and analysed by chromatography on Sephadex G-50 columns to identify the various GAG synthesized. Secretory units synthesized a GAG mixture which was 20-25 per cent hyaluronic acid, 70-75 per cent heparan sulphate, and only 3-5 per cent chondroitin or dermatan sulphates, similar to that synthesized in vivo. No GAG was present in the secretory material, suggesting that all the GAG synthesized was destined for the basement membrane or cell surface.

  13. Differential Alterations in Excitatory and Inhibitory Networks Involving Dentate Granule Cells Following Chronic Treatment with Distinct Classes of NMDAR Antagonists in Hippocampal Slice Cultures

    DTIC Science & Technology

    2010-03-08

    1992; Jung and McNaughton, 1993); (2) low incidence of recurrent excitatory synapses between granule cells (Molnar and Nadler, 1999; Okazaki et al...neurons, dentate granule cells have a relatively more negative resting membrane potential and exhibit low-frequency firing (Staley et al., 1992; Jung ...inhibition plays a dual role in brain function and possibly seizure occurrence through balancing excitation and synchronizing neuronal firing. An

  14. A prohormone convertase cleavage site within a predicted alpha-helix mediates sorting of the neuronal and endocrine polypeptide VGF into the regulated secretory pathway.

    PubMed

    Garcia, Angelo L; Han, Shan-Kuo; Janssen, William G; Khaing, Zin Z; Ito, Timothy; Glucksman, Marc J; Benson, Deanna L; Salton, Stephen R J

    2005-12-16

    Distinct intracellular pathways are involved in regulated and constitutive protein secretion from neuronal and endocrine cells, yet the peptide signals and molecular mechanisms responsible for targeting and retention of soluble proteins in secretory granules are incompletely understood. By using confocal microscopy and subcellular fractionation, we examined trafficking of the neuronal and endocrine peptide precursor VGF that is stored in large dense core vesicles and undergoes regulated secretion. VGF cofractionated with secretory vesicle membranes but was not detected in detergent-resistant lipid rafts. Deletional analysis using epitope-tagged VGF suggested that the C-terminal 73-amino acid fragment of VGF, containing two predicted alpha-helical loops and four potential prohormone convertase (PC) cleavage sites, was necessary and sufficient with an N-terminal signal peptide-containing domain, for large dense core vesicle sorting and regulated secretion from PC12 and INS-1 cells. Further transfection analysis identified the sorting sequence as a compact C-terminal alpha-helix and embedded 564RRR566 PC cleavage site; mutation of the 564RRR566 PC site in VGF-(1-65): GFP:VGF-(545-617) blocked regulated secretion, whereas disruption of the alpha-helix had no effect. Mutation of the adjacent 567HFHH570 motif, a charged region that might enhance PC cleavage in acidic environments, also blocked regulated release. Finally, inhibition of PC cleavage in PC12 cells using the membrane-permeable synthetic peptide chloromethyl ketone (decanoyl-RVKR-CMK) blocked regulated secretion of VGF. Our studies define a critical RRR-containing C-terminal domain that targets VGF into the regulated pathway in neuronal PC12 and endocrine INS-1 cells, providing additional support for the proposed role that PCs and their cleavage sites play in regulated peptide secretion.

  15. High-shear granulation as a manufacturing method for cocrystal granules.

    PubMed

    Rehder, Sönke; Christensen, Niels Peter Aae; Rantanen, Jukka; Rades, Thomas; Leopold, Claudia S

    2013-11-01

    Cocrystal formation allows the tailoring of physicochemical as well as of mechanical properties of an API. However, there is a lack of large-scale manufacturing methods of cocrystals. Therefore, the objective of this work was to examine the suitability of high-shear wet granulation as a manufacturing method for cocrystal granules on a batch scale. Furthermore, the cocrystal granules were characterized regarding their mechanical properties as well as their dissolution behavior. High-shear wet granulation was found to be a feasible manufacturing method for cocrystal granules. Cocrystal formation depended on the exposure time of the solids to the granulation liquid (water), the amount of liquid, the impeller speed of the granulator, and on the excipients (hydroxyl propylcellulose, microcrystalline cellulose, calcium hydrogenphosphate) used in the formulation. Storage stability was strongly influenced by the excipients, since in presence of calcium hydrogenphosphate, the poorly water-soluble salt calcium tartrate monohydrate was formed at high relative humidity. Interestingly, compactability was increased by cocrystal formation compared to that of the reference granules (piracetam and the respective excipients). The drug release was slightly decreased by cocrystal formation, most likely due to the lower solubility of the cocrystal. In the presence of calcium hydrogenphosphate however, no influence of cocrystal formation on either compactability or on drug release were observed, compared with the reference tablets. It was concluded that high-shear wet granulation is a valuable, however complex, manufacturing method for cocrystals. Cocrystal formation may influence compactability and drug release and thus affect drug performance and should be investigated during pre-formulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Analysis of carbohydrate storage granules in the diazotrophic cyanobacterium Cyanothece sp. PCC 7822

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welkie, David G.; Sherman, Debra M.; Chrisler, William B.

    The unicellular diazotrophic cyanobacteria of the genus Cyanothece demonstrate oscillations in nitrogenase activity and H 2 production when grown under 12h light-12h dark cycles. We established that Cyanothece sp. PCC 7822 allows for the construction of knock-out mutants and our objective was to improve the growth characteristics of this strain and to identify the nature of the intracellular storage granules. We report the physiological and morphological effects of reduction in nitrate and phosphate concentrations in BG-11 media on this strain. We developed a series of BG-11-derived growth media and monitored batch culture growth, nitrogenase activity and nitrogenase-mediated hydrogen production, culturemore » synchronicity, and intracellular storage content. Reduction in NaNO3 and K 2HPO 4 concentrations from 17.6 and 0.23 mM to 4.41 and 0.06 mM, respectively, improved growth characteristics such as cell size and uniformity, and enhanced the rate of cell division. Cells grown in this low NP BG-11 were less complex, a parameter that related to the composition of the intracellular storage granules. Cells grown in low NP BG-11 had less polyphosphate, fewer polyhydroxybutyrate granules and many smaller granules became evident. Biochemical analysis and transmission electron microscopy using the histocytochemical PATO technique demonstrated that these small granules contained glycogen. The glycogen levels and the number of granules per cell correlated nicely with a 2.3 to 3.3-fold change from the minimum at L0 to the maximum at D0. The differences in granule morphology and enzymes between Cyanothece ATCC 51142 and Cyanothece PCC 7822 provide insights into the formation of large starch-like granules in some cyanobacteria.« less

  17. A highly Ca2+-sensitive pool of granules is regulated by glucose and protein kinases in insulin-secreting INS-1 cells.

    PubMed

    Yang, Yan; Gillis, Kevin D

    2004-12-01

    We have used membrane capacitance measurements and carbon-fiber amperometry to assay exocytosis triggered by photorelease of caged Ca(2+) to directly measure the Ca(2+) sensitivity of exocytosis from the INS-1 insulin-secreting cell line. We find heterogeneity of the Ca(2+) sensitivity of release in that a small proportion of granules makes up a highly Ca(2+)-sensitive pool (HCSP), whereas the bulk of granules have a lower sensitivity to Ca(2+). A substantial HCSP remains after brief membrane depolarization, suggesting that the majority of granules with high sensitivity to Ca(2+) are not located close to Ca(2+) channels. The HCSP is enhanced in size by glucose, cAMP, and a phorbol ester, whereas the Ca(2+)-sensitive rate constant of exocytosis from the HCSP is unaffected by cAMP and phorbol ester. The effects of cAMP and phorbol ester on the HCSP are mediated by PKA and PKC, respectively, because they can be blocked with specific protein kinase inhibitors. The size of the HCSP can be enhanced by glucose even in the presence of high concentrations of phorbol ester or cAMP, suggesting that glucose can increase granule pool sizes independently of activation of PKA or PKC. The effects of PKA and PKC on the size of the HCSP are not additive, suggesting they converge on a common mechanism. Carbon-fiber amperometry was used to assay quantal exocytosis of serotonin (5-HT) from insulin-containing granules following preincubation of INS-1 cells with 5-HT and a precursor. The amount or kinetics of release of 5-HT from each granule is not significantly different between granules with higher or lower sensitivity to Ca(2+), suggesting that granules in these two pools do not differ in morphology or fusion kinetics. We conclude that glucose and second messengers can modulate insulin release triggered by a high-affinity Ca(2+) sensor that is poised to respond to modest, global elevations of [Ca(2+)](i).

  18. Compressibility and compactibility of granules produced by wet and dry granulation.

    PubMed

    Bacher, C; Olsen, P M; Bertelsen, P; Sonnergaard, J M

    2008-06-24

    The bulk properties, compactibility and compressibility of granules produced by wet and dry granulation were compared applying a rotary tablet press, three different morphological forms of calcium carbonate and two particle sizes of sorbitol. Granules from both granulation methods possessed acceptable flow properties; however, the ground (Mikhart) and cubic (Scoralite) calcium carbonate demonstrated better die-filling abilities in the tablet press than the scalenhedral calcium carbonate (Sturcal). The wet processed granules showed in general larger compression properties. This was explained as these granules were mechanical stronger and had a higher initial porosity. In some cases, a large particle surface area of calcium carbonate and sorbitol resulted in a small, insignificant improvement of the consolidation characteristics. A correlation between the compression and compaction characteristics was demonstrated.

  19. New Insights into PhaM-PhaC-Mediated Localization of Polyhydroxybutyrate Granules in Ralstonia eutropha H16

    PubMed Central

    Bresan, Stephanie

    2017-01-01

    ABSTRACT The formation and localization of polyhydroxybutyrate (PHB) granules in Ralstonia eutropha are controlled by PhaM, which interacts both with the PHB synthase (PhaC) and with the bacterial nucleoid. Here, we studied the importance of proline and lysine residues of two C-terminal PAKKA motifs in PhaM for their importance in attaching PHB granules to DNA by in vitro and in vivo methods. Substitution of the lysine residues but not of the proline residues resulted in detachment of formed PHB granules from the nucleoid. Instead, formation of PHB granule clusters at polar regions of the rod-shaped cells and an unequal distribution of PHB granules to daughter cells were observed. The formation of PHB granules was studied by the expression of chromosomally anchored gene fusions of fluorescent proteins with PhaM and PhaC in different backgrounds. PhaM and PhaC fusions showed a distinct colocalization at formed PHB granules in the nucleoid region of the wild type. In a ΔphaC background, PhaM and the catalytically inactive PhaCC319A protein were not able to form fluorescent foci, indicating that correct positioning requires the formation of PHB. Furthermore, time-lapse experiments revealed that PhaC and PhaM proteins detach from formed PHB granules at later stages, resulting in a nonhomogeneous population of PHB granules. This could explain why growth of individual PHB granules stops under PHB-permissive conditions at a certain size. IMPORTANCE PHB granules are storage compounds for carbon and energy in many prokaryotes. Equal distribution of accumulated PHB granules during cell division is therefore important for optimal fitness of the daughter cells. In R. eutropha, PhaM is responsible for maximal activity of PHB synthase, for initiation of PHB granule formation at discrete regions in the cells, and for association of formed PHB granules with the nucleoid. Here we found that four lysine residues of C-terminal PhaM sequence motifs are essential for association of

  20. Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression.

    PubMed

    Pascual, Marta; Abasolo, Ibane; Mingorance-Le Meur, Ana; Martínez, Albert; Del Rio, José A; Wright, Christopher V E; Real, Francisco X; Soriano, Eduardo

    2007-03-20

    We report in this study that, in the cerebellum, the pancreatic transcription factor Ptf1a is required for the specific generation of Purkinje cells (PCs) and interneurons. Moreover, granule cell progenitors in the external GCL (EGL) appear to be unaffected by deletion of Ptf1a. Cell lineage analysis in Ptf1a(Cre/Cre) mice was used to establish that, in the absence of Ptf1a expression, ventricular zone progenitors, normally fated to produce PCs and interneurons, aberrantly migrate to the EGL and express typical markers of these cells, such as Math1, Reelin, and Zic1/2. Furthermore, these cells have a fine structure typical of EGL progenitors, indicating that they adopt an EGL-like cell phenotype. These findings indicate that Ptf1a is necessary for the specification and normal production of PCs and cerebellar interneurons. Moreover, our results suggest that Ptf1a is also required for the suppression of the granule cell specification program in cerebellar ventricular zone precursors.

  1. Somatic Arc protein expression in hippocampal granule cells is increased in response to environmental change but independent of task-specific learning.

    PubMed

    Cleland, J P; Willis, E F; Bartlett, P F; Vukovic, J

    2017-09-29

    Activated neurons express immediate-early genes, such as Arc. Expression of Arc in the hippocampal granule cell layer, an area crucial for spatial learning and memory, is increased during acquisition of spatial learning; however, it is unclear whether this effect is related to the task-specific learning process or to nonspecific aspects of the testing procedure (e.g. exposure to the testing apparatus and exploration of the environment). Herein, we show that Arc-positive cells numbers are increased to the same extent in the granule cell layer after both acquisition of a single spatial learning event in the active place avoidance task and exploration of the testing environment, as compared to naïve (i.e. caged) mice. Repeated exposure the testing apparatus and environment did not reduce Arc expression. Furthermore, Arc expression did not correlate with performance in both adult and aged animals, suggesting that exploration of the testing environment, rather than the specific acquisition of the active place avoidance task, induces Arc expression in the dentate granule cell layer. These findings thus suggest that Arc is an experience-induced immediate-early gene.

  2. Progressive quality control of secretory proteins in the early secretory compartment by ERp44.

    PubMed

    Sannino, Sara; Anelli, Tiziana; Cortini, Margherita; Masui, Shoji; Degano, Massimo; Fagioli, Claudio; Inaba, Kenji; Sitia, Roberto

    2014-10-01

    ERp44 is a pH-regulated chaperone of the secretory pathway. In the acidic milieu of the Golgi, its C-terminal tail changes conformation, simultaneously exposing the substrate-binding site for cargo capture and the RDEL motif for ER retrieval through interactions with cognate receptors. Protonation of cysteine 29 in the active site allows tail movements in vitro and in vivo. Here, we show that conserved histidine residues in the C-terminal tail also regulate ERp44 in vivo. Mutants lacking these histidine residues retain substrates more efficiently. Surprisingly, they are also O-glycosylated and partially secreted. Co-expression of client proteins prevents secretion of the histidine mutants, forcing tail opening and RDEL accessibility. Client-induced RDEL exposure allows retrieval of proteins from distinct stations along the secretory pathway, as indicated by the changes in O-glycosylation patterns upon overexpression of different partners. The ensuing gradients might help to optimize folding and assembly of different cargoes. Endogenous ERp44 is O-glycosylated and secreted by human primary endometrial cells, suggesting possible pathophysiological roles of these processes. © 2014. Published by The Company of Biologists Ltd.

  3. Perinatal Asphyxia Reduces Dentate Granule Cells and Exacerbates Methamphetamine-Induced Hyperlocomotion in Adulthood

    PubMed Central

    Wakuda, Tomoyasu; Matsuzaki, Hideo; Suzuki, Katsuaki; Iwata, Yasuhide; Shinmura, Chie; Suda, Shiro; Iwata, Keiko; Yamamoto, Shigeyuki; Sugihara, Genichi; Tsuchiya, Kenji J.; Ueki, Takatoshi; Nakamura, Kazuhiko; Nakahara, Daiichiro; Takei, Nori; Mori, Norio

    2008-01-01

    Background Obstetric complications have been regarded as a risk factor for schizophrenia later in life. One of the mechanisms underlying the association is postulated to be a hypoxic process in the brain in the offspring around the time of birth. Hippocampus is one of the brain regions implicated in the late-onset dopaminergic dysfunction associated with hypoxic obstetric complications. Methodology/Principal Findings We used an animal model of perinatal asphyxia, in which rat pups were exposed to 15 min of intrauterine anoxia during Cesarean section birth. At 6 and 12 weeks after birth, the behavior of the pups was assessed using a methamphetamine-induced locomotion test. In addition, the histopathology of the hippocampus was examined by means of stereology. At 6 weeks, there was no change in the methamphetamine-induced locomotion. However, at 12 weeks of age, we found an elevation in methamphetamine-induced locomotor activity, which was associated with an increase of dopamine release in the nucleus accumbens. At the same age, we also found a reduction of the dentate granule cells of the hippocampus. Conclusions/Significance These results suggest that the dopaminergic dysregulation after perinatal asphyxia is associated with a reduction in hippocampal dentate granule cells, and this may partly contribute to the pathogenesis of schizophrenia. PMID:18985150

  4. Lack of effect of mossy fiber-released zinc on granule cell GABA(A) receptors in the pilocarpine model of epilepsy.

    PubMed

    Molnár, P; Nadler, J V

    2001-05-01

    The recurrent mossy fiber pathway of the dentate gyrus expands dramatically in the epileptic brain and serves as a mechanism for synchronization of granule cell epileptiform activity. It has been suggested that this pathway also promotes epileptiform activity by inhibiting GABA(A) receptor function through release of zinc. Hippocampal slices from pilocarpine-treated rats were used to evaluate this hypothesis. The rats had developed status epilepticus after pilocarpine administration, followed by robust recurrent mossy fiber growth. The ability of exogenously applied zinc to depress GABA(A) receptor function in dentate granule cells depended on removal of polyvalent anions from the superfusion medium. Under these conditions, 200 microM zinc reduced the amplitude of the current evoked by applying muscimol to the proximal portion of the granule cell dendrite (23%). It also reduced the mean amplitude (31%) and frequency (36%) of miniature inhibitory postsynaptic currents. Nevertheless, repetitive mossy fiber stimulation (10 Hz for 1 s, 100 Hz for 1 s, or 10 Hz for 5 min) at maximal intensity did not affect GABA(A) receptor-mediated currents evoked by photorelease of GABA onto the proximal portion of the dendrite, where recurrent mossy fiber synapses were located. These results could not be explained by stimulation-induced depletion of zinc from the recurrent mossy fiber boutons. Negative results were obtained even during exposure to conditions that promoted transmitter release and synchronized granule cell activity (6 mM [K(+)](o), nominally Mg(2+)-free medium, 33 degrees C). These results suggest that zinc released from the recurrent mossy fiber pathway did not reach a concentration at postsynaptic GABA(A) receptors sufficient to inhibit agonist-evoked activation.

  5. Generation of functional human pancreatic β cells in vitro

    PubMed Central

    Pagliuca, Felicia W.; Millman, Jeffrey R.; Gürtler, Mads; Segel, Michael; Van Dervort, Alana; Ryu, Jennifer Hyoje; Peterson, Quinn P.; Greiner, Dale; Melton, Douglas A.

    2015-01-01

    Summary The generation of insulin-producing pancreatic β cells from stem cells in vitro would provide an unprecedented cell source for drug discovery and cell transplantation therapy in diabetes. However, insulin-producing cells previously generated from human pluripotent stem cells (hPSC) lack many functional characteristics of bona fide β cells. Here we report a scalable differentiation protocol that can generate hundreds of millions of glucose-responsive β cells from hPSC in vitro. These stem cell derived β cells (SC-β) express markers found in mature β cells, flux Ca2+ in response to glucose, package insulin into secretory granules and secrete quantities of insulin comparable to adult β cells in response to multiple sequential glucose challenges in vitro. Furthermore, these cells secrete human insulin into the serum of mice shortly after transplantation in a glucose-regulated manner, and transplantation of these cells ameliorates hyperglycemia in diabetic mice. PMID:25303535

  6. Endogenous neurotrophin-3 regulates short-term plasticity at lateral perforant path-granule cell synapses.

    PubMed

    Kokaia, M; Asztely, F; Olofsdotter, K; Sindreu, C B; Kullmann, D M; Lindvall, O

    1998-11-01

    In the adult brain, neurotrophin-3 (NT-3) is mainly localized in dentate granule cells, and its expression is decreased by various stimuli, e.g., seizure activity. We have examined the role of endogenous NT-3 for excitatory synaptic transmission at lateral perforant path-dentate granule cell synapses using hippocampal slices from NT-3 knock-out (+/-) and wild-type (+/+) mice. Paired-pulse facilitation (PPF) and also short-term synaptic plasticity induced by a brief, high-frequency train of afferent stimulation were reduced, but the expression of long-term potentiation was not affected in the NT-3+/- mice. Incubation of the slices with recombinant NT-3 reversed the deficit in PPF through a mechanism requiring de novo protein synthesis, implying that the impaired short-term plasticity does not result from a developmental alteration. No changes of overall presynaptic release probability, measured by the progressive block of NMDA receptor-mediated synaptic currents by MK-801, or desensitization of AMPA receptors were detected. Because NT-3 expression is reduced after focal seizures, impaired short-term facilitation may represent a protective response that limits the propagation of epileptiform activity from the entorhinal cortex to the hippocampus.

  7. Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules

    PubMed Central

    Kroschwald, Sonja; Maharana, Shovamayee; Mateju, Daniel; Malinovska, Liliana; Nüske, Elisabeth; Poser, Ina; Richter, Doris; Alberti, Simon

    2015-01-01

    RNA-protein (RNP) granules have been proposed to assemble by forming solid RNA/protein aggregates or through phase separation into a liquid RNA/protein phase. Which model describes RNP granules in living cells is still unclear. In this study, we analyze P bodies in budding yeast and find that they have liquid-like properties. Surprisingly, yeast stress granules adopt a different material state, which is reminiscent of solid protein aggregates and controlled by protein disaggregases. By using an assay to ectopically nucleate RNP granules, we further establish that RNP granule formation does not depend on amyloid-like aggregation but rather involves many promiscuous interactions. Finally, we show that stress granules have different properties in mammalian cells, where they show liquid-like behavior. Thus, we propose that the material state of RNP granules is flexible and that the solid state of yeast stress granules is an adaptation to extreme environments, made possible by the presence of a powerful disaggregation machine. DOI: http://dx.doi.org/10.7554/eLife.06807.001 PMID:26238190

  8. Immunohistochemical localization of hepatopancreatic phospholipase A2 in Hexaplex Trunculus digestive cells

    PubMed Central

    2011-01-01

    Background Mammalian sPLA2-IB localization cell are well characterized. In contrast, much less is known about aquatic primitive ones. The aquatic world contains a wide variety of living species and, hence represents a great potential for discovering new lipolytic enzymes and the mode of digestion of lipid food. Results The marine snail digestive phospholipase A2 (mSDPLA2) has been previously purified from snail hepatopancreas. The specific polyclonal antibodies were prepared and used for immunohistochimical and immunofluorescence analysis in order to determine the cellular location of mSDPLA2. Our results showed essentially that mSDPLA2 was detected inside in specific vesicles tentatively named (mSDPLA2+) granules of the digestive cells. No immunolabelling was observed in secretory zymogene-like cells. This immunocytolocalization indicates that lipid digestion in the snail might occur in specific granules inside the digestive cells. Conclusion The cellular location of mSDPLA2 suggests that intracellular phospholipids digestion, like other food components digestion of snail diet, occurs in these digestive cells. The hepatopancreas of H. trunculus has been pointed out as the main region for digestion, absorption and storage of lipids. PMID:21631952

  9. Immunohistochemical localization of hepatopancreatic phospholipase A2 in Hexaplex trunculus digestive cells.

    PubMed

    Zarai, Zied; Boulais, Nicholas; Karray, Aida; Misery, Laurent; Bezzine, Sofiane; Rebai, Tarek; Gargouri, Youssef; Mejdoub, Hafedh

    2011-06-01

    Mammalian sPLA2-IB localization cell are well characterized. In contrast, much less is known about aquatic primitive ones. The aquatic world contains a wide variety of living species and, hence represents a great potential for discovering new lipolytic enzymes and the mode of digestion of lipid food. The marine snail digestive phospholipase A2 (mSDPLA2) has been previously purified from snail hepatopancreas. The specific polyclonal antibodies were prepared and used for immunohistochimical and immunofluorescence analysis in order to determine the cellular location of mSDPLA2. Our results showed essentially that mSDPLA2 was detected inside in specific vesicles tentatively named (mSDPLA2+) granules of the digestive cells. No immunolabelling was observed in secretory zymogene-like cells. This immunocytolocalization indicates that lipid digestion in the snail might occur in specific granules inside the digestive cells. The cellular location of mSDPLA2 suggests that intracellular phospholipids digestion, like other food components digestion of snail diet, occurs in these digestive cells. The hepatopancreas of H. trunculus has been pointed out as the main region for digestion, absorption and storage of lipids.

  10. Granule size control and targeting in pulsed spray fluid bed granulation.

    PubMed

    Ehlers, Henrik; Liu, Anchang; Räikkönen, Heikki; Hatara, Juha; Antikainen, Osmo; Airaksinen, Sari; Heinämäki, Jyrki; Lou, Honxiang; Yliruusi, Jouko

    2009-07-30

    The primary aim of the study was to investigate the effects of pulsed liquid feed on granule size. The secondary aim was to increase knowledge of this technique in granule size targeting. Pulsed liquid feed refers to the pump changing between on- and off-positions in sequences, called duty cycles. One duty cycle consists of one on- and off-period. The study was performed with a laboratory-scale top-spray fluid bed granulator with duty cycle length and atomization pressure as studied variables. The liquid feed rate, amount and inlet air temperature were constant. The granules were small, indicating that the powder has only undergone ordered mixing, nucleation and early growth. The effect of atomizing pressure on granule size depends on inlet air relative humidity, with premature binder evaporation as a reason. The duty cycle length was of critical importance to the end product attributes, by defining the extent of intermittent drying and rewetting. By varying only the duty cycle length, it was possible to control granule nucleation and growth, with a wider granule size target range in increased relative humidity. The present study confirms that pulsed liquid feed in fluid bed granulation is a useful tool in end product particle size targeting.

  11. Purification, crystallization and preliminary X-ray crystallographic analysis of a cysteine-rich secretory protein (CRISP) from Naja atra venom.

    PubMed

    Wang, Yu-Ling; Goh, King-Xiang; Wu, Wen-guey; Chen, Chun-Jung

    2004-10-01

    Cysteine-rich secretory proteins (CRISPs) play an important role in the innate immune system and are transcriptionally regulated by androgens in several tissues. The proteins are mostly found in the epididymis and granules of mammals, whilst a number of snake venoms also contain CRISP-family proteins. The natrin protein from the venom of Naja atra (Taiwan cobra), which belongs to a family of CRISPs and has a cysteine-rich C-terminal amino-acid sequence, has been purified using a three-stage chromatography procedure and crystals suitable for X-ray analysis have been obtained using the hanging-drop vapour-diffusion method. X-ray diffraction data were collected to 1.58 A resolution using synchrotron radiation; the crystals belong to space group C222(1), with unit-cell parameters a = 59.172, b = 65.038, c = 243.156 A. There are two protein molecules in the asymmetric unit and the Matthews coefficient is estimated to be 2.35 A3 Da(-1), corresponding to a solvent content of 47.60%.

  12. Caprin-1 is a target of the deafness gene Pou4f3 and is recruited to stress granules in cochlear hair cells in response to ototoxic damage

    PubMed Central

    Towers, Emily R.; Kelly, John J.; Sud, Richa; Gale, Jonathan E.; Dawson, Sally J.

    2011-01-01

    The POU4 family of transcription factors are required for survival of specific cell types in different sensory systems. Pou4f3 is essential for the survival of auditory sensory hair cells and several mutations in human POU4F3 cause hearing loss. Thus, genes regulated by Pou4f3 are likely to be essential for hair cell survival. We performed a subtractive hybridisation screen in an inner-ear-derived cell line to find genes with differential expression in response to changes in Pou4f3 levels. The screen identified the stress-granule-associated protein Caprin-1 as being downregulated by Pou4f3. We demonstrated that this regulation occurs through the direct interaction of Pou4f3 with binding sites in the Caprin-1 5′ flanking sequence, and describe the expression pattern of Caprin-1 mRNA and protein in the cochlea. Moreover, we found Caprin-1-containing stress granules are induced in cochlear hair cells following aminoglycoside-induced damage. This is the first report of stress granule formation in mammalian hair cells and suggests that the formation of Caprin-1-containing stress granules is a key damage response to a clinically relevant ototoxic agent. Our results have implications for the understanding of aminoglycoside-induced hearing loss and provide further evidence that stress granule formation is a fundamental cellular stress response. PMID:21402877

  13. Analysis of Membrane Protein Topology in the Plant Secretory Pathway.

    PubMed

    Guo, Jinya; Miao, Yansong; Cai, Yi

    2017-01-01

    Topology of membrane proteins provides important information for the understanding of protein function and intermolecular associations. Integrate membrane proteins are generally transported from endoplasmic reticulum (ER) to Golgi and downstream compartments in the plant secretory pathway. Here, we describe a simple method to study membrane protein topology along the plant secretory pathway by transiently coexpressing a fluorescent protein (XFP)-tagged membrane protein and an ER export inhibitor protein, ARF1 (T31N), in tobacco BY-2 protoplast. By fractionation, microsome isolation, and trypsin digestion, membrane protein topology could be easily detected by either direct confocal microscopy imaging or western-blot analysis using specific XFP antibodies. A similar strategy in determining membrane protein topology could be widely adopted and applied to protein analysis in a broad range of eukaryotic systems, including yeast cells and mammalian cells.

  14. Calcium-dependent transferrin receptor recycling in bovine chromaffin cells.

    PubMed

    Knight, Derek E

    2002-04-01

    The release of regulated secretory granules is known to be calcium dependent. To examine the Ca2+-dependence of other exocytic fusion events, transferrin recycling in bovine chromaffin cells was examined. Internalised 125I-transferrin was released constitutively from cells with a half-time of about 7 min. Secretagogues that triggered catecholamine secretion doubled the rate of 125I-transferrin release, the time courses of the two triggered secretory responses being similar. The triggered 125I-transferrin release came from recycling endosomes rather than from sorting endosomes or a triggered secretory vesicle pool. Triggered 125I-transferrin release, like catecholamine secretion from the same cells, was calcium dependent but the affinities for calcium were very different. The extracellular calcium concentrations that gave rise to half-maximal evoked secretion were 0.1 mm for 125I-transferrin and 1.0 mm for catecholamine, and the intracellular concentrations were 0.1 microm and 1 microm, respectively. There was significant 125I-transferrin recycling in the virtual absence of intracellular Ca2+, but the rate increased when Ca2+ was raised above 1 nm, and peaked at 1 microm when the rate had doubled. Botulinum toxin type D blocked both transferrin recycling and catecholamine secretion. These results indicate that a major component of the vesicular transport required for the constitutive recycling of transferrin in quiescent cells is calcium dependent and thus under physiological control, and also that some of the molecular machinery involved in transferrin recycling/fusion processes is shared with that for triggered neurosecretion.

  15. Granulation of fine powder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ching-Fong

    A mixture of fine powder including thorium oxide was converted to granulated powder by forming a first-green-body and heat treating the first-green-body at a high temperature to strengthen the first-green-body followed by granulation by crushing or milling the heat-treated first-green-body. The granulated powder was achieved by screening through a combination of sieves to achieve the desired granule size distribution. The granulated powder relies on the thermal bonding to maintain its shape and structure. The granulated powder contains no organic binder and can be stored in a radioactive or other extreme environment. The granulated powder was pressed and sintered to formmore » a dense compact with a higher density and more uniform pore size distribution.« less

  16. Incorporation of a circulating protein into megakaryocyte and platelet granules

    NASA Technical Reports Server (NTRS)

    Handagama, P. J.; George, J. N.; Shuman, M. A.; McEver, R. P.; Bainton, D. F.

    1987-01-01

    To determine whether or not proteins circulating in plasma can be incorporated into megakaryocytes and platelets, horseradish peroxidase (HRP) was injected intravenously into guinea pigs and these cells were examined for its uptake by electron microscopy and cytochemistry. Enriched samples of megakaryocytes enabled ultrastructural analysis of large numbers of these rare cells. In megakaryocytes, 50% of alpha granules contained HRP between 75 min and 7 hr after injection. At 24 hr, 25% of the megakaryocyte granules were peroxidase-positive, less were positive by 48 hr, and there were none at 4 days. Thus, the findings demonstrate that a circulating protein can be endocytosed by megakaryocytes and rapidly packaged into alpha granules. Platelet granules also contain HRP by 7 hr after injection, and they can secrete it in response to thrombin. Unfortunately, our present studies do not allow us to distinguish between direct endocytosis by the platelet and/or shedding of new platelets from recently labeled megakaryocytes. It is concluded that while some alpha granule proteins are synthesized by megakaryocytes, others may be acquired from plasma by endocytosis. In addition to providing evidence that some of the proteins of alpha granules may be of exogenous origin, this study has allowed the definition of a pathway whereby plasma proteins may be temporarily sequestered in megakaryocytes before reentering the circulation in platelets.

  17. Granules harboring translationally active mRNAs provide a platform for P-body formation following stress.

    PubMed

    Lui, Jennifer; Castelli, Lydia M; Pizzinga, Mariavittoria; Simpson, Clare E; Hoyle, Nathaniel P; Bailey, Kathryn L; Campbell, Susan G; Ashe, Mark P

    2014-11-06

    The localization of mRNA to defined cytoplasmic sites in eukaryotic cells not only allows localized protein production but also determines the fate of mRNAs. For instance, translationally repressed mRNAs localize to P-bodies and stress granules where their decay and storage, respectively, are directed. Here, we find that several mRNAs are localized to granules in unstressed, actively growing cells. These granules play a key role in the stress-dependent formation of P-bodies. Specific glycolytic mRNAs are colocalized in multiple granules per cell, which aggregate during P-body formation. Such aggregation is still observed under conditions or in mutants where P-bodies do not form. In unstressed cells, the mRNA granules appear associated with active translation; this might enable a coregulation of protein expression from the same pathways or complexes. Parallels can be drawn between this coregulation and the advantage of operons in prokaryotic systems. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Brucella Modulates Secretory Trafficking via Multiple Type IV Secretion Effector Proteins

    PubMed Central

    Myeni, Sebenzile; Child, Robert; Ng, Tony W.; Kupko, John J.; Wehrly, Tara D.; Porcella, Stephen F.; Knodler, Leigh A.; Celli, Jean

    2013-01-01

    The intracellular pathogenic bacterium Brucella generates a replicative vacuole (rBCV) derived from the endoplasmic reticulum via subversion of the host cell secretory pathway. rBCV biogenesis requires the expression of the Type IV secretion system (T4SS) VirB, which is thought to translocate effector proteins that modulate membrane trafficking along the endocytic and secretory pathways. To date, only a few T4SS substrates have been identified, whose molecular functions remain unknown. Here, we used an in silico screen to identify putative T4SS effector candidate proteins using criteria such as limited homology in other bacterial genera, the presence of features similar to known VirB T4SS effectors, GC content and presence of eukaryotic-like motifs. Using β-lactamase and CyaA adenylate cyclase reporter assays, we identified eleven proteins translocated into host cells by Brucella, five in a VirB T4SS-dependent manner, namely BAB1_0678 (BspA), BAB1_0712 (BspB), BAB1_0847 (BspC), BAB1_1671 (BspE) and BAB1_1948 (BspF). A subset of the translocated proteins targeted secretory pathway compartments when ectopically expressed in HeLa cells, and the VirB effectors BspA, BspB and BspF inhibited protein secretion. Brucella infection also impaired host protein secretion in a process requiring BspA, BspB and BspF. Single or combined deletions of bspA, bspB and bspF affected Brucella ability to replicate in macrophages and persist in the liver of infected mice. Taken together, these findings demonstrate that Brucella modulates secretory trafficking via multiple T4SS effector proteins that likely act coordinately to promote Brucella pathogenesis. PMID:23950720

  19. Phleum pratense pollen starch granules induce humoral and cell-mediated immune responses in a rat model of allergy.

    PubMed

    Motta, A; Peltre, G; Dormans, J A M A; Withagen, C E T; Lacroix, G; Bois, F; Steerenberg, P A

    2004-02-01

    Timothy grass (Phleum pratense) pollen allergens are an important cause of allergic symptoms. However, pollen grains are too large to penetrate the deeper airways. Grass pollen is known to release allergen-bearing starch granules (SG) upon contact with water. These granules can create an inhalable allergenic aerosol capable of triggering an early asthmatic response and are implicated in thunderstorm-associated asthma. We studied the humoral (IgE) and bronchial lymph node cells reactivities to SG from timothy grass pollen in pollen-sensitized rats. Brown-Norway rats were sensitized (day 0) and challenged (day 21) intratracheally with intact pollen and kept immunized by pollen intranasal instillation by 4 weeks intervals during 3 months. Blood and bronchial lymph nodes were collected 7 days after the last intranasal challenge. SG were purified from fresh timothy grass pollen using 5 microm mesh filters. To determine the humoral response (IgE) to SG, we developed an original ELISA inhibition test, based on competition between pollen allergens and purified SG. The cell-mediated response to SG in the bronchial lymph node cells was determined by measuring the uptake of [3H]thymidine in a proliferation assay. An antibody response to SG was induced, and purified SG were able to inhibit the IgE ELISA absorbance by 45%. Pollen extract and intact pollen gave inhibitions of 55% and 52%, respectively. A cell-mediated response was also found, as pollen extract, intact pollen and SG triggered proliferation of bronchial lymph node cells. It was confirmed that timothy grass pollen contains allergen-loaded SG, which are released upon contact with water. These granules were shown to be recognized by pollen-sensitized rats sera and to trigger lymph node cell proliferation in these rats. These data provide new arguments supporting the implication of grass pollen SG in allergic asthma.

  20. Synthetic mast-cell granules as adjuvants to promote and polarize immunity in lymph nodes

    NASA Astrophysics Data System (ADS)

    St. John, Ashley L.; Chan, Cheryl Y.; Staats, Herman F.; Leong, Kam W.; Abraham, Soman N.

    2012-03-01

    Granules of mast cells (MCs) enhance adaptive immunity when, on activation, they are released as stable particles. Here we show that submicrometre particles modelled after MC granules augment immunity when used as adjuvants in vaccines. The synthetic particles, which consist of a carbohydrate backbone with encapsulated inflammatory mediators such as tumour necrosis factor, replicate attributes of MCs in vivo including the targeting of draining lymph nodes and the timed release of the encapsulated mediators. When used as an adjuvant during vaccination of mice with haemagglutinin from the influenza virus, the particles enhanced adaptive immune responses and increased survival of mice on lethal challenge. Furthermore, differential loading of the particles with the cytokine IL-12 directed the character of the response towards Th1 lymphocytes. The synthetic MC adjuvants replicate and enhance the functions of MCs during vaccination, and can be extended to polarize the resulting immunity.

  1. Effect of steroid hormones on Bufo arenarum oviduct. Ultrastructural study.

    PubMed

    Medina, Marcela Fátima; Crespo, Claudia Alejandra; Ramos, Inés; Cisint, Susana Beatriz; Fernández, Silvia Nélida

    2007-06-01

    The endocrine regulation of the mucosa of the oviductal pars convoluta was analyzed by ultrastructural studies demonstrating that ovariectomy, together with a decrease in ovarian steroids circulating levels, caused a marked regression in this portion of Bufo arenarum oviduct. Twenty-five days after ovariectomy, a decrease in the depth of the epithelial and glandular layers was observed due to the notable loss of secretory cells, whose number was clearly smaller than in nonovariectomized females. The remaining secretory cells showed involution signs, with few secretory granules in their cytoplasm, little endoplasmic reticulum near poorly developed Golgi complexes and a large amount of lipid droplets. Cells in an advanced autolysis state were found in the lumen. These characteristics evidence a nonfunctional state of the pars convoluta. Treatment with 5alpha-dihydrotestosterone (DHT) completely reversed the ovariectomy effect, inducing pars convoluta growths and restoring the characteristics of epithelial and glandular secretory cells in the whole pars convoluta, with micrographs similar to the control. These same effects were observed after treatment with estradiol-17beta (E2), progesterone (P) o E(2)+P in the glandular layer of the whole pars convoluta, but only in the epithelial layer of the most anterior region of this duct. In the secretory cells of other segments these treatments induced the formation of granules of high electron density and homogeneous aspect. Each steroid had a particular effect on the pars convoluta. Although E2 and DHT induced the development of the organoids involved in the proteins biosynthesis, P and DHT acted as secretagogues. (c) 2007 Wiley-Liss, Inc.

  2. E-cadherin can replace N-cadherin during secretory-stage enamel development.

    PubMed

    Guan, Xiaomu; Bidlack, Felicitas B; Stokes, Nicole; Bartlett, John D

    2014-01-01

    N-cadherin is a cell-cell adhesion molecule and deletion of N-cadherin in mice is embryonic lethal. During the secretory stage of enamel development, E-cadherin is down-regulated and N-cadherin is specifically up-regulated in ameloblasts when groups of ameloblasts slide by one another to form the rodent decussating enamel rod pattern. Since N-cadherin promotes cell migration, we asked if N-cadherin is essential for ameloblast cell movement during enamel development. The enamel organ, including its ameloblasts, is an epithelial tissue and for this study a mouse strain with N-cadherin ablated from epithelium was generated. Enamel from wild-type (WT) and N-cadherin conditional knockout (cKO) mice was analyzed. μCT and scanning electron microscopy showed that thickness, surface structure, and prism pattern of the cKO enamel looked identical to WT. No significant difference in hardness was observed between WT and cKO enamel. Interestingly, immunohistochemistry revealed the WT and N-cadherin cKO secretory stage ameloblasts expressed approximately equal amounts of total cadherins. Strikingly, E-cadherin was not normally down-regulated during the secretory stage in the cKO mice suggesting that E-cadherin can compensate for the loss of N-cadherin. Previously it was demonstrated that bone morphogenetic protein-2 (BMP2) induces E- and N-cadherin expression in human calvaria osteoblasts and we show that the N-cadherin cKO enamel organ expressed significantly more BMP2 and significantly less of the BMP antagonist Noggin than did WT enamel organ. The E- to N-cadherin switch at the secretory stage is not essential for enamel development or for forming the decussating enamel rod pattern. E-cadherin can substitute for N-cadherin during these developmental processes. Bmp2 expression may compensate for the loss of N-cadherin by inducing or maintaining E-cadherin expression when E-cadherin is normally down-regulated. Notably, this is the first demonstration of a natural endogenous

  3. Ebola Virus Does Not Induce Stress Granule Formation during Infection and Sequesters Stress Granule Proteins within Viral Inclusions.

    PubMed

    Nelson, Emily V; Schmidt, Kristina M; Deflubé, Laure R; Doğanay, Sultan; Banadyga, Logan; Olejnik, Judith; Hume, Adam J; Ryabchikova, Elena; Ebihara, Hideki; Kedersha, Nancy; Ha, Taekjip; Mühlberger, Elke

    2016-08-15

    A hallmark of Ebola virus (EBOV) infection is the formation of viral inclusions in the cytoplasm of infected cells. These viral inclusions contain the EBOV nucleocapsids and are sites of viral replication and nucleocapsid maturation. Although there is growing evidence that viral inclusions create a protected environment that fosters EBOV replication, little is known about their role in the host response to infection. The cellular stress response is an effective antiviral strategy that leads to stress granule (SG) formation and translational arrest mediated by the phosphorylation of a translation initiation factor, the α subunit of eukaryotic initiation factor 2 (eIF2α). Here, we show that selected SG proteins are sequestered within EBOV inclusions, where they form distinct granules that colocalize with viral RNA. These inclusion-bound (IB) granules are functionally and structurally different from canonical SGs. Formation of IB granules does not indicate translational arrest in the infected cells. We further show that EBOV does not induce formation of canonical SGs or eIF2α phosphorylation at any time postinfection but is unable to fully inhibit SG formation induced by different exogenous stressors, including sodium arsenite, heat, and hippuristanol. Despite the sequestration of SG marker proteins into IB granules, canonical SGs are unable to form within inclusions, which we propose might be mediated by a novel function of VP35, which disrupts SG formation. This function is independent of VP35's RNA binding activity. Further studies aim to reveal the mechanism for SG protein sequestration and precise function within inclusions. Although progress has been made developing antiviral therapeutics and vaccines against the highly pathogenic Ebola virus (EBOV), the cellular mechanisms involved in EBOV infection are still largely unknown. To better understand these intracellular events, we investigated the cellular stress response, an antiviral pathway manipulated by

  4. Ultrastructural evaluation of adenocarcinomas derived from apocrine glands of the anal sac associated with hypercalcemia in dogs.

    PubMed

    Meuten, D J; Capen, C C; Kociba, G J; Chew, D J; Cooper, B J

    1982-05-01

    Adenocarcinomas derived from apocrine glands of the anal sac and associated with persistent hypercalcemia in dogs were composed of tumor cells with numerous profiles of rough endoplasmic reticulum, clusters of free ribosomes, and a prominent Golgi apparatus. Neoplastic cells contained microtubules, microfilaments, tonofibrils, and had two types of electron-dense granules. Large lysosomelike dense bodies ranged from 0.6 to 2.2 microns in diameter and had a poorly delineated limiting membrane. Small granules (150-400 nm in diameter) had a sharply delineated limiting membrane with a narrow submembranous space and a homogeneous dense core. These smaller granules usually were located near the apexes of neoplastic cells, whereas the larger granules were situated near the base of cells. Apocrine cells in glands of the anal sac from control dogs that were in the secretory phase were columnar and had large dilated profiles of rough endoplasmic reticulum. Membranes of the endoplasmic reticulum fused with the plasmalemma and appeared to secrete their product directly into the lumens of acini, characteristic of merocrine secretion. Apical blebs of electron-lucent cytoplasm pinched off from nonneoplastic aprocine cells and were released into glandular lumens. Similar electron-lucent cytoplasmic blebs were present at the apexes of tumor cells. Myoepithelial cells were present between the epithelial cells and basement membrane in normal apocrine glands and were absent in neoplasms derived from these glands. Identification of the contents of the secretory-like granules in tumor cells and characterization of the hypercalcemic factor in the plasma or tumor tissue from dogs with this syndrome will help explain the pathogenesis of hypercalcemia associated with malignancy in animals and man.

  5. Starch granule formation and protein deposition in wheat (Triticum aestivum L.) starchy endosperm cells is altered by high temperature during grain fill

    NASA Astrophysics Data System (ADS)

    Hurkman, William J.; Wood, Delilah F.

    2010-06-01

    High temperatures during wheat grain fill decrease starch and protein levels, adversely affecting wheat yield and flour quality. To determine the effect of high temperature on starchy endosperm cell development, grain (Triticum aestivum L. 'Butte 86') was produced under a 24/17°C or 37/28°C day/night regimen imposed from flowering to maturity and starch and protein deposition examined using scanning electron microscopy. The high temperature regimen shortened the duration of grain fill from 40 to 18 days. Under the 37/28°C regimen, A- and B-type starch granules decreased in size. A-type starch granules also exhibited pitting, suggesting enhanced action of starch degradative enzymes. Under both temperature regimens, protein bodies originated early in development and coalesced during mid to late development to form a continuous protein matrix surrounding the starch granules. Under the 37/28°C regimen, the proportion of protein matrix increased in endosperm cells of mature grain. Taken together, the changes in starch granule number and size and in protein matrix amount provide clues for understanding how high temperature during grain fill can affect end use properties of wheat flour.

  6. Localization of SERBP1 in stress granules and nucleoli.

    PubMed

    Lee, Yu-Jen; Wei, Hung-Ming; Chen, Ling-Yun; Li, Chuan

    2014-01-01

    SERPINE1 mRNA-binding protein 1 (SERBP1) is an arginine-methylated RNA-binding protein whose modification affects protein interaction and intracellular localization. In the present study, we show that, under normal growth conditions without stress, SERBP1 interacts with arginine-methylated and stress granule-associated proteins such as heterogeneous nuclear ribonucleoprotein A1, fragile X mental retardation protein and fragile X mental retardation syndrome-related protein 1 in an RNA-dependent manner. We also show that, after arsenite treatment, a proportion of full-length SERBP1 protein co-localizes with the typical stress granule marker T-cell intracellular antigen-1 in the cytoplasmic stress granules. Truncated SERBP1 with an N-terminal, central RG or C-terminal deletion, or single-domain segments comprising the N-terminal, central or C-terminal region, were recruited to stress granules upon arsenite treatment but with reduced efficiency. In addition, upon arsenite treatment, the localization of SERBP1 changed from a diffuse cytoplasmic localization to nuclear-dominant (concentrated in the nucleolus) A similar distribution was observed when cells were treated with the methylation inhibitor adenosine periodate, and was also detected for N- or C-terminal domain deletions and all three single-domain fragments even without stress induction. We further demonstrate that adenosine periodate treatment delays the association/dissociation of SERBP1 with stress granules. Hypomethylation retains SERBP1 in the nucleus/nucleolus regardless of arsenite treatment. Our study indicates that arginine methylation is correlated with recruitment of SERBP to stress granules and nucleoli and its retention therein. To our knowledge, this is the first report of an RNA-binding protein that is shifted simultaneously to cytoplasmic stress granules and nucleoli, two ribonucleoprotein-enriched subcellular compartments, upon stress. © 2013 FEBS.

  7. CSR-1 and P granules suppress sperm-specific transcription in the C. elegans germline

    PubMed Central

    Campbell, Anne C.; Updike, Dustin L.

    2015-01-01

    Germ granules (P granules) in C. elegans are required for fertility and function to maintain germ cell identity and pluripotency. Sterility in the absence of P granules is often accompanied by the misexpression of soma-specific proteins and the initiation of somatic differentiation in germ cells. To investigate whether this is caused by the accumulation of somatic transcripts, we performed mRNA-seq on dissected germlines with and without P granules. Strikingly, we found that somatic transcripts do not increase in the young adult germline when P granules are impaired. Instead, we found that impairing P granules causes sperm-specific mRNAs to become highly overexpressed. This includes the accumulation of major sperm protein (MSP) transcripts in germ cells, a phenotype that is suppressed by feminization of the germline. A core component of P granules, the endo-siRNA-binding Argonaute protein CSR-1, has recently been ascribed with the ability to license transcripts for germline expression. However, impairing CSR-1 has very little effect on the accumulation of its mRNA targets. Instead, we found that CSR-1 functions with P granules to prevent MSP and sperm-specific mRNAs from being transcribed in the hermaphrodite germline. These findings suggest that P granules protect germline integrity through two different mechanisms, by (1) preventing the inappropriate expression of somatic proteins at the level of translational regulation, and by (2) functioning with CSR-1 to limit the domain of sperm-specific expression at the level of transcription. PMID:25968310

  8. CSR-1 and P granules suppress sperm-specific transcription in the C. elegans germline.

    PubMed

    Campbell, Anne C; Updike, Dustin L

    2015-05-15

    Germ granules (P granules) in C. elegans are required for fertility and function to maintain germ cell identity and pluripotency. Sterility in the absence of P granules is often accompanied by the misexpression of soma-specific proteins and the initiation of somatic differentiation in germ cells. To investigate whether this is caused by the accumulation of somatic transcripts, we performed mRNA-seq on dissected germlines with and without P granules. Strikingly, we found that somatic transcripts do not increase in the young adult germline when P granules are impaired. Instead, we found that impairing P granules causes sperm-specific mRNAs to become highly overexpressed. This includes the accumulation of major sperm protein (MSP) transcripts in germ cells, a phenotype that is suppressed by feminization of the germline. A core component of P granules, the endo-siRNA-binding Argonaute protein CSR-1, has recently been ascribed with the ability to license transcripts for germline expression. However, impairing CSR-1 has very little effect on the accumulation of its mRNA targets. Instead, we found that CSR-1 functions with P granules to prevent MSP and sperm-specific mRNAs from being transcribed in the hermaphrodite germline. These findings suggest that P granules protect germline integrity through two different mechanisms, by (1) preventing the inappropriate expression of somatic proteins at the level of translational regulation, and by (2) functioning with CSR-1 to limit the domain of sperm-specific expression at the level of transcription. © 2015. Published by The Company of Biologists Ltd.

  9. The resident macrophages in murine pancreatic islets are constantly probing their local environment, capturing beta cell granules and blood particles.

    PubMed

    Zinselmeyer, Bernd H; Vomund, Anthony N; Saunders, Brian T; Johnson, Michael W; Carrero, Javier A; Unanue, Emil R

    2018-06-01

    We studied here the interactions between the resident macrophages of pancreatic islets with beta cells and the blood vasculature. We also examined the immunological consequences of such interactions. Islets were isolated from C57BL/6 mice expressing CX3C motif chemokine receptor 1-green fluorescent protein (CX3CR-GFP) and examined live by two-photon microscopy. Islets were also examined by electron microscopy to study the relationship of the intra-islet macrophages with the beta cells. In NOD.Rag1 -/- mice and young (non-diabetic) male mice, the acquisition of beta cell granules was tested functionally by probing with CD4 + T cells directed against insulin epitopes. Two-photon microscopy showed that the islet resident macrophages were in close contact with blood vessels and had extensive filopodial activity. Some filopodia had direct access to the vessel lumen and captured microparticles. Addition of glucose at high concentration reduced the degree of filopodia sampling of islets. This finding applied to in vivo injection of glucose or to in vitro cultures. Ultrastructural examination showed the close contacts of macrophages with beta cells. Such macrophages contained intact dense core granules. Functional studies in NOD mice indicated that the macrophages presented insulin peptides to insulin-reactive T cells. Presentation was increased after glucose challenge either ex vivo or after an in vivo pulse. In agreement with the morphological findings, presentation was not affected by insulin receptor blockade. Islet resident macrophages are highly active, sampling large areas of the islets and blood contents and capturing beta cell granules. After such interactions, macrophages present immunogenic insulin to specific autoreactive T cells.

  10. Slow fusion pore expansion creates a unique reaction chamber for co-packaged cargo

    PubMed Central

    Bittner, Mary A.; Lawrence, Daniel A.

    2017-01-01

    A lumenal secretory granule protein, tissue plasminogen activator (tPA), greatly slows fusion pore dilation and thereby slows its own discharge. We investigated another outcome of the long-lived narrow fusion pore: the creation of a nanoscale chemical reaction chamber for granule contents in which the pH is suddenly neutralized upon fusion. Bovine adrenal chromaffin cells endogenously express both tPA and its primary protein inhibitor, plasminogen activator inhibitor 1 (PAI). We found by immunocytochemistry that tPA and PAI are co-packaged in the same secretory granule. It is known that PAI irreversibly and covalently inactivates tPA at neutral pH. We demonstrate with zymography that the acidic granule lumen protects tPA from inactivation by PAI. Immunocytochemistry, total internal reflection fluorescence (TIRF) microscopy, and polarized TIRF microscopy demonstrated that co-packaged PAI and tPA remain together in granules for many seconds in the nanoscale reaction chamber, more than enough time to inhibit tPA and create a new secreted protein species. PMID:28882880

  11. Influence of metronidazole particle properties on granules prepared in a high-shear mixer-granulator.

    PubMed

    Di Martino, Piera; Censi, Roberta; Malaj, Ledjan; Martelli, Sante; Joiris, Etienne; Barthélémy, Christine

    2007-02-01

    Metronidazole is a good example of high-dose drug substance with poor granulating and tableting properties. Tablets are generally produced by liquid granulation; however, the technological process failure is quite frequent. In order to verify how the metronidazole particle characteristics can influence granule properties, three metronidazole batches differing for crystal habit, mean particle size, BET surface area and wettability were selected, primarily designed according to their different elongation ratio: needle-shaped, stick-shaped, and isodimensional. In the presence of lactose monohydrate and pregelatinized maize starch, respectively as diluent and binder, they were included in a formula for wet granulation in a high-shear mixer-granulator. In order to render the process comparable as far as possible, all parameters and experimental conditions were maintained constant. Four granule batches were obtained: granules from placebo (G-placebo), granules from needle-shaped crystals (G-needle-shaped), granules from stick-shaped crystals (G-stick-shaped), and granules from isodimensional crystals (G-isodimensional). Different granule properties were considered, in particular concerning porosity, friability, loss on drying (LOD), and flowability. In order to study their tabletability and compressibility, the different granules obtained were then compressed in a rotary press. The best tabletability was obtained with the isodimensional batch, while the poorest was exhibited by the stick-shaped one. Differences in tabletability are in good accordance with compressibility results: to a better tabletability corresponds an important granule ability to undergo a volume reduction as a result of an applied pressure. In particular, it was proposed that the greatest compressibility of the G-isodimensional must be related to the greatest granule porosity percentage.

  12. Similar GABAergic inputs in dentate granule cells born during embryonic and adult neurogenesis.

    PubMed

    Laplagne, Diego A; Kamienkowski, Juan E; Espósito, M Soledad; Piatti, Verónica C; Zhao, Chunmei; Gage, Fred H; Schinder, Alejandro F

    2007-05-01

    Neurogenesis in the dentate gyrus of the hippocampus follows a unique temporal pattern that begins during embryonic development, peaks during the early postnatal stages and persists through adult life. We have recently shown that dentate granule cells born in early postnatal and adult mice acquire a remarkably similar afferent connectivity and firing behavior, suggesting that they constitute a homogeneous functional population [Laplagne et al. (2006)PLoS Biol., 4, e409]. Here we extend our previous study by comparing mature neurons born in the embryonic and adult hippocampus, with a focus on intrinsic membrane properties and gamma-aminobutyric acid (GABA)ergic synaptic inputs. For this purpose, dividing neuroblasts of the ventricular wall were retrovirally labeled with green fluorescent protein at embryonic day 15 (E15), and progenitor cells of the subgranular zone were labeled with red fluorescent protein in the same mice at postnatal day 42 (P42, adulthood). Electrophysiological properties of mature neurons born at either stage were then compared in the same brain slices. Evoked and spontaneous GABAergic postsynaptic responses of perisomatic and dendritic origin displayed similar characteristics in both neuronal populations. Miniature GABAergic inputs also showed similar functional properties and pharmacological profile. A comparative analysis of the present data with our previous observations rendered no significant differences among GABAergic inputs recorded from neurons born in the embryonic, early postnatal and adult mice. Yet, embryo-born neurons showed a reduced membrane excitability, suggesting a lower engagement in network activity. Our results demonstrate that granule cells of different age, location and degree of excitability receive GABAergic inputs of equivalent functional characteristics.

  13. Neurotoxic effects of indocyanine green -cerebellar granule cell culture viability study

    PubMed Central

    Toczylowska, Beata; Zieminska, Elzbieta; Goch, Grazyna; Milej, Daniel; Gerega, Anna; Liebert, Adam

    2014-01-01

    The aim of this study was to examine neurotoxicity indocyanine green (ICG). We assessed viability of primary cerebellar granule cell culture (CGC) exposed to ICG to test two mechanisms that could be the first triggers causing neuronal toxicity: imbalance in calcium homeostasis and the degree of oligomerization of ICG molecules. We have observed this imbalance in CGC after exposure to 75-125μΜ ICG and dose and application sequence dependent protective effect of Gadovist on surviving neurons in vitro when used with ICG. Spectroscopic studies suggest the major cause of toxicity of the ICG is connected with oligomers formation. ICG at concentration of 25 μM (which is about 4 times higher than the highest concentration of ICG in the brain applied in in-vivo human studies) is not neurotoxic in the cell culture. PMID:24688815

  14. Leucine-enkephalin-like immunoreactivity is localized in luteinizing hormone-producing cells in the axolotl (Ambystoma mexicanum) pituitary.

    PubMed

    Suzuki, Hirohumi; Yamamoto, Toshiharu

    2014-02-01

    In this study, we used immunohistochemical techniques to determine the cell type of leucine-enkephalin (Leu-ENK)-immunoreactive cells in the axolotl (Ambystoma mexicanum) pituitary. Immunoreactive cells were scattered throughout the pars distalis except for the dorso-caudal portion. These cells were immuno-positive for luteinizing hormone (LH), but they were immuno-negative for adrenocorticotrophic, growth, and thyroid-stimulating hormones, as well as prolactin. Immunoelectron microscopy demonstrated that Leu-ENK-like substance and LH co-localized within the same secretory granules. Leu-ENK secreted from gonadotrophs may participate in LH secretion in an autocrine fashion, and/or may participate in the release of sex steroids together with LH. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Object/Context-Specific Memory Deficits Associated with Loss of Hippocampal Granule Cells after Adrenalectomy in Rats

    ERIC Educational Resources Information Center

    Spanswick, Simon C.; Sutherland, Robert J.

    2010-01-01

    Chronic adrenalectomy (ADX) causes a gradual and selective loss of granule cells in the dentate gyrus (DG) of the rat. Here, we administered replacement corticosterone to rats beginning 10 wk after ADX. We then tested them in three discrimination tasks based on object novelty, location, or object/context association. Only during testing of the…

  16. Mast cell granules modulate alveolar macrophage respiratory-burst activity and eicosanoid metabolism.

    PubMed

    Rock, M J; Despot, J; Lemanske, R F

    1990-10-01

    Alveolar macrophages (AMs) and mast cells reside in the airway, and both have been demonstrated to contribute independently to allergic inflammatory responses through the generation of respiratory-burst metabolites and the release of biologically active mediators, respectively. Since mast cell granules (MCGs) contain mediators that could potentially interact with the AM respiratory burst, we investigated the effects of isolated MCGs on this important inflammatory pathway of the AM. MCGs and AMs were obtained by peritoneal and tracheoalveolar lavage, respectively, of Sprague-Dawley rats. First, the overall respiratory-burst activity was measured by luminal-enhanced chemiluminescence (CL), and second, the individual oxygen species contributing to CL (superoxide anion [O2-], hydrogen peroxide [H2O2], and hypochlorous acid) were measured. MCGs alone enhanced AM CL responses to an equivalent degree compared to zymosan-stimulated AMs. However, AMs preincubated with MCGs followed by zymosan stimulation significantly and synergistically enhanced the CL responses. This enhanced CL was not due to an increased production of O2-, H2O2, or hypochlorous acid; in fact, there were decreased measured amounts of O2- and H2O2 from zymosan-stimulated AMs in the presence of MCGs, most likely caused by the content of granules of superoxide dismutase and peroxidase, respectively. The lipoxygenase inhibitor, nordihydroguaiaretic acid, completely abolished the enhanced CL of AM preincubated with MCGs and subsequently stimulated by zymosan, but O2- production was not affected by nordihydroguaiaretic acid. Taken together, these results suggest that derivatives of arachidonic acid metabolism, most likely those of the lipoxygenase pathway, are responsible for the enhanced AM CL response observed in the presence of MCGs. Thus, mast cell-macrophage interactions may be important within the airway in enhancing the generation of mediators that contribute to tissue inflammation and bronchospasm.

  17. The granule cell density of the dentate gyrus following administration of Urtica dioica extract to young diabetic rats.

    PubMed

    Fazeli, S A; Gharravi, A M; Ghafari, S; Jahanshahi, M; Golalipour, M J

    2008-08-01

    Urtica dioica L. Stinging nettle has long been known worldwide as a medicinal plant. To study the benefits of the nettle in diabetic encephalopathy, the granule cell density of the dentate gyrus of diabetic rats was studied following administration of Urtica dioica extract. A total of 24 male albino Wistar rats were allocated equally to normal, diabetic, preventive and treatment groups. Hyperglycaemia was induced by streptozotocin (80 mg/kg) in the animals of the diabetic and treatment groups. One week after injection of the streptozotocin the animals in the treatment group received a hydroalcoholic extract of Urtica dioica (100 mg/kg/day) for 4 weeks intraperitoneally. The rats of the preventive group received hydroalcoholic extract of U. dioica (100 mg/kg/day) IP for the first 5 days and an injection of streptozotocin (80 mg/kg) on the 6th day. After 5 weeks of study all the rats were sacrificed and coronal sections were taken from the dorsal hippocampal formation of the right cerebral hemispheres and stained with cresyl violet. The area densities of the granule cells were measured and compared in the four groups. The density was lower in the diabetic rats compared with the controls (p > 0.05). The preventive group showed lower cell density than the controls (p > 0.05). The densities in the treated rats were higher than in the diabetic rats (p > 0.05). Furthermore, the control and treated rats showed similar densities (p > 0.05). It seems that U. dioica extract can help compensate for granule cell loss in the diabetic rat dentate gyrus, which can ameliorate cognitive impairment in diabetes. However, preventive use of the extract showed no significant benefit.

  18. Identification of ER proteins involved in the functional organisation of the early secretory pathway in Drosophila cells by a targeted RNAi screen.

    PubMed

    Kondylis, Vangelis; Tang, Yang; Fuchs, Florian; Boutros, Michael; Rabouille, Catherine

    2011-02-23

    In Drosophila, the early secretory apparatus comprises discrete paired Golgi stacks in close proximity to exit sites from the endoplasmic reticulum (tER sites), thus forming tER-Golgi units. Although many components involved in secretion have been identified, the structural components sustaining its organisation are less known. Here we set out to identify novel ER resident proteins involved in the of tER-Golgi unit organisation. To do so, we designed a novel screening strategy combining a bioinformatics pre-selection with an RNAi screen. We first selected 156 proteins exhibiting known or related ER retention/retrieval signals from a list of proteins predicted to have a signal sequence. We then performed a microscopy-based primary and confirmation RNAi screen in Drosophila S2 cells directly scoring the organisation of the tER-Golgi units. We identified 49 hits, most of which leading to an increased number of smaller tER-Golgi units (MG for "more and smaller Golgi") upon depletion. 16 of them were validated and characterised, showing that this phenotype was not due to an inhibition in secretion, a block in G2, or ER stress. Interestingly, the MG phenotype was often accompanied by an increase in the cell volume. Out of 6 proteins, 4 were localised to the ER. This work has identified novel proteins involved in the organisation of the Drosophila early secretory pathway. It contributes to the effort of assigning protein functions to gene annotation in the secretory pathway, and analysis of the MG hits revealed an enrichment of ER proteins. These results suggest a link between ER localisation, aspects of cell metabolism and tER-Golgi structural organisation.

  19. Secretory meningioma: clinicopathologic features of eight cases.

    PubMed

    Nishio, S; Morioka, T; Suzuki, S; Hirano, K; Fukui, M

    2001-07-01

    The clinical and morphological features of eight patients with meningothelial meningiomas with numerous pseudopsammoma bodies (secretory meningiomas) are presented. The six female and two male patients ranged in age from 43 to 68 years. Tumours were located at the petroclival region in two, the lateral parasellar region in two, the petrous apex in one and the sphenoid ridge in three patients. On magnetic resonance imaging, they were iso or hypointense on T1-weighted images, and hyper or isointense on T 2-weighted images. Peritumoral brain edema was absent in five cases, and was mild to moderate in three cases. Serum carcinoembryonic antigen (CEA) levels were measured preoperatively in three patients, with one having an elevated serum CEA level which re turned to normal following tumour resection. Immunohistochemical analysis on the resected tumour tissues, pseudopsammoma bodies and surrounding tumour cells were shown to be CEA-positive. Ultrastructurally, pseudopsammoma bodies were composed of granular and filamentous materials located predominantly in the intracellular lumina, which were lined by microvilli. While these morphological features of focal epithelial and secretory differentiation of tumour cells call attention to the broad spectrum of differentiation properties of meningiomas, the biological behavior of the eight tumours reported herein corresponded to those of meningiomas in general. Copyright 2001 Harcourt Publishers Ltd.

  20. Aspergillus oryzae AoSO is a novel component of stress granules upon heat stress in filamentous fungi.

    PubMed

    Huang, Hsiang-Ting; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2013-01-01

    Stress granules are a type of cytoplasmic messenger ribonucleoprotein (mRNP) granule formed in response to the inhibition of translation initiation, which typically occurs when cells are exposed to stress. Stress granules are conserved in eukaryotes; however, in filamentous fungi, including Aspergillus oryzae, stress granules have not yet been defined. For this reason, here we investigated the formation and localization of stress granules in A. oryzae cells exposed to various stresses using an EGFP fusion protein of AoPab1, a homolog of Saccharomyces cerevisiae Pab1p, as a stress granule marker. Localization analysis showed that AoPab1 was evenly distributed throughout the cytoplasm under normal growth conditions, and accumulated as cytoplasmic foci mainly at the hyphal tip in response to stress. AoSO, a homolog of Neurospora crassa SO, which is necessary for hyphal fusion, colocalized with stress granules in cells exposed to heat stress. The formation of cytoplasmic foci of AoSO was blocked by treatment with cycloheximide, a known inhibitor of stress granule formation. Deletion of the Aoso gene had effects on the formation and localization of stress granules in response to heat stress. Our results suggest that AoSO is a novel component of stress granules specific to filamentous fungi. The authors would specially like to thank Hiroyuki Nakano and Kei Saeki for generously providing experimental and insightful opinions.

  1. On the so-called membrane coating granules in keratinized lichen planus lesions of the buccal mucosa.

    PubMed

    El-Labban, N G; Wood, R D

    1982-11-01

    Serial sections of the so-called membrane-coating granules have been examined in keratinized oral epithelium of lichen planus lesions. As with 'granules' apparent in non-keratinized epithelium, it is found they do not represent specialized intra-cytoplasmic organelles, but are the result of sectioning at different areas, levels and planes through the plasma membrane of interdigitating cell processes. Such 'granules' appear mostly in the superficial, but not deep, part of the cytoplasm of the upper prickle cells. This is considered to be due to topographic differences between the upper and under surfaces of these cells and the presence of narrower intercellular spaces than those between deeper epithelial cells. Such arrangement often results in cell processes in sections appearing free in the superficial part of the cell below. The appearance of 'granules' arises when the plane of section is not at right angles to the two plasma membranes surrounding these processes.

  2. Distribution of binder in granules produced by means of twin screw granulation.

    PubMed

    Fonteyne, Margot; Fussell, Andrew Luke; Vercruysse, Jurgen; Vervaet, Chris; Remon, Jean Paul; Strachan, Clare; Rades, Thomas; De Beer, Thomas

    2014-02-28

    According to the quality by design principle processes may not remain black-boxes and full process understanding is required. The granule size distribution of granules produced via twin screw granulation is often found to be bimodal. The aim of this study was to gain a better understanding of binder distribution within granules produced via twin screw granulation in order to investigate if an inhomogeneous spread of binder is causing this bimodal size distribution. Theophylline-lactose-polyvinylpyrrolidone K30 (PVP) (30-67.5-2.5%, w/w) was used as a model formulation. The intra-granular distribution of PVP was evaluated by means of hyperspectral coherent anti-Stokes Raman scattering (CARS) microscopy. For the evaluated formulation, no PVP rich zones were detected when applying a lateral spatial resolution of 0.5 μm, indicating that PVP is homogenously distributed within the granules. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. TIA-1 Self-Multimerization, Phase Separation, and Recruitment into Stress Granules Are Dynamically Regulated by Zn2.

    PubMed

    Rayman, Joseph B; Karl, Kevin A; Kandel, Eric R

    2018-01-02

    Stress granules are non-membranous structures that transiently form in the cytoplasm during cellular stress, where they promote translational repression of non-essential RNAs and modulate cell signaling by sequestering key signal transduction proteins. These and other functions of stress granules facilitate an adaptive cellular response to environmental adversity. A key component of stress granules is the prion-related RNA-binding protein, T cell intracellular antigen-1 (TIA-1). Here, we report that recombinant TIA-1 undergoes rapid multimerization and phase separation in the presence of divalent zinc, which can be reversed by the zinc chelator, TPEN. Similarly, the formation and maintenance of TIA-1-positive stress granules in arsenite-treated cells are inhibited by TPEN. In addition, Zn 2+ is released in cells treated with arsenite, before stress granule formation. These findings suggest that Zn 2+ is a physiological ligand of TIA-1, acting as a stress-inducible second messenger to promote multimerization of TIA-1 and subsequent localization into stress granules. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Identification of a multifunctional protein, PhaM, that determines number, surface to volume ratio, subcellular localization and distribution to daughter cells of poly(3-hydroxybutyrate), PHB, granules in Ralstonia eutropha H16.

    PubMed

    Pfeiffer, Daniel; Wahl, Andreas; Jendrossek, Dieter

    2011-11-01

    A two-hybrid approach was applied to screen for proteins with the ability to interact with PHB synthase (PhaC1) of Ralstonia eutropha. The H16_A0141 gene (phaM) was identified in the majority of positive clones. PhaM (26.6 kDa) strongly interacted with PhaC1 and with phasin PhaP5 but not with PhaP1 or other PHB granule-associated proteins. A ΔphaM mutant accumulated only one or two large PHB granules instead of three to six medium-sized PHB granules of the wild type, and distribution of granules to daughter cells was disordered. All three phenotypes (number, size and distribution of PHB granules) were reversed by reintroduction of phaM. Purified PhaM revealed DNA-binding properties in gel mobility shift experiments. Expression of a fusion of the yellow fluorescent protein (eYfp) with PhaM resulted in formation of many small fluorescent granules that were bound to the nucleoid region. Remarkably, an eYfp-PhaP5 fusion localized at the cell poles in a PHB-negative background and overexpression of eYfp-PhaP5 in the wild type conferred binding of PHB granules to the cell poles. In conclusion, subcellular localization of PHB granules in R. eutropha depends on a concerted expression of at least three PHB granule-associated proteins, namely PhaM, PhaP5 and PHB synthase PhaC1. © 2011 Blackwell Publishing Ltd.

  5. Dynamin-related protein-1 controls fusion pore dynamics during platelet granule exocytosis.

    PubMed

    Koseoglu, Secil; Dilks, James R; Peters, Christian G; Fitch-Tewfik, Jennifer L; Fadel, Nathalie A; Jasuja, Reema; Italiano, Joseph E; Haynes, Christy L; Flaumenhaft, Robert

    2013-03-01

    Platelet granule exocytosis serves a central role in hemostasis and thrombosis. Recently, single-cell amperometry has shown that platelet membrane fusion during granule exocytosis results in the formation of a fusion pore that subsequently expands to enable the extrusion of granule contents. However, the molecular mechanisms that control platelet fusion pore expansion and collapse are not known. We identified dynamin-related protein-1 (Drp1) in platelets and found that an inhibitor of Drp1, mdivi-1, blocked exocytosis of both platelet dense and α-granules. We used single-cell amperometry to monitor serotonin release from individual dense granules and, thereby, measured the effect of Drp1 inhibition on fusion pore dynamics. Inhibition of Drp1 increased spike width and decreased prespike foot events, indicating that Drp1 influences fusion pore formation and expansion. Platelet-mediated thrombus formation in vivo after laser-induced injury of mouse cremaster arterioles was impaired after infusion of mdivi-1. These results demonstrate that inhibition of Drp1 disrupts platelet fusion pore dynamics and indicate that Drp1 can be targeted to control thrombus formation in vivo.

  6. HDAC6 regulates the dynamics of lytic granules in cytotoxic T lymphocytes

    PubMed Central

    Núñez-Andrade, Norman; Iborra, Salvador; Trullo, Antonio; Moreno-Gonzalo, Olga; Calvo, Enrique; Catalán, Elena; Menasche, Gaël; Sancho, David; Vázquez, Jesús; Yao, Tso-Pang

    2016-01-01

    HDAC6 is a tubulin deacetylase involved in many cellular functions related to cytoskeleton dynamics including cell migration and autophagy. In addition, HDAC6 affects antigen-dependent CD4+ T cell activation. In this study, we show that HDAC6 contributes to the cytotoxic function of CD8+ T cells. Immunization studies revealed defective cytotoxic activity in vivo in the absence of HDAC6. Adoptive transfer of wild-type or Hdac6-/- CD8+ T cells to Rag1-/- mice demonstrated specific impairment in CD8+ T cell responses against vaccinia infection. Mechanistically, HDAC6-deficient cytotoxic T lymphocytes (CTLs) showed defective in vitro cytolytic activity related to altered dynamics of lytic granules, inhibited kinesin 1 – dynactin mediated terminal transport of lytic granules to the immune synapse and deficient exocytosis, but not to target cell recognition, T cell receptor (TCR) activation or interferon (IFNγ) production. Our results establish HDAC6 as an effector of the immune cytotoxic response that acts by affecting the dynamics, transport and secretion of lytic granules by CTLs. PMID:26869226

  7. Linking local circuit inhibition to olfactory behavior: a critical role for granule cells in olfactory discrimination.

    PubMed

    Strowbridge, Ben W

    2010-02-11

    In this issue of Neuron, Abraham et al. report a direct connection between inhibitory function and olfactory behavior. Using molecular methods to alter glutamate receptor subunit composition in olfactory bulb granule cells, the authors found a selective modulation in the time required for difficult, but not simple, olfactory discrimination tasks. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Live-cell imaging of multiple endogenous mRNAs permits the direct observation of RNA granule dynamics.

    PubMed

    Yatsuzuka, Kenji; Sato, Shin-Ichi; Pe, Kathleen Beverly; Katsuda, Yousuke; Takashima, Ippei; Watanabe, Mizuki; Uesugi, Motonari

    2018-06-08

    Here, we developed two pairs of high-contrast chemical probes and their RNA aptamers with distinct readout channels that permitted simultaneous live-cell imaging of endogenous β-actin and cortactin mRNAs. Application of this technology allowed the direct observation of the formation process of stress granules, protein-RNA assemblies essential for cellular response to the environment.

  9. The functional morphology of color changing in a spider: development of ommochrome pigment granules.

    PubMed

    Insausti, Teresita C; Casas, Jérôme

    2008-03-01

    Studies on the formation of ommochrome pigment granules are very few, despite their generalized occurrence as screening pigments in insect eyes. This is particularly true for ommochrome granules responsible for epidermal coloration. The aims of this study were to characterize the localization of major body pigments in a color changing mimetic spider, Misumena vatia (Thomisidae), and to describe the formation and location of ommochrome pigment granules responsible for the spider's color change from white to yellow. The unpigmented cuticula of this spider is transparent. Both the guanine localized in guanine cells in the opisthosoma and the uric acid localized in epidermis cells in the prosoma are responsible for the white coloration. The bright yellow color is due to the combination of ommochrome pigment granules and the white reflectance from coincident guanine and/or uric acid. The formation of ommochrome pigment granules in epidermis cells proceeds via three distinctive steps. Translucent, UV fluorescent, progranules (type I) are produced by a dense network of endoplasmic reticulum associated with numerous mitochondria and glycogen rosettes. These progranules are present in white spiders only, and regularly distributed in the cytoplasm. The merging of several progranules of type I into a transient state (progranule type II) leads to the formation of granules (type III) characterized by their lack of fluorescence, their spherical sections and their osmophilic-electron-dense contents. They are found in yellow spiders and in the red stripes on the body sides. Their color varies from yellow to red. Thus, white spiders contain only type I granules, yellow tinted spiders contain type II and III granules and bright yellow spiders contain only type III granules. We present a synthetic view of the ontogeny of ommochrome granules. We discuss the physiology of color changing and the nature of the chemical compounds in the different types of granules. Extended studies on the

  10. A histidine-rich linker region in peptidylglycine α-amidating monooxygenase has the properties of a pH sensor.

    PubMed

    Vishwanatha, Kurutihalli; Bäck, Nils; Mains, Richard E; Eipper, Betty A

    2014-05-02

    Decreasing luminal pH is thought to play a role in the entry of newly synthesized and endocytosed membrane proteins into secretory granules. The two catalytic domains of peptidylglycine α-amidating monooxygenase (PAM), a type I integral membrane protein, catalyze the sequential reactions that convert peptidyl-Gly substrates into amidated products. We explored the hypothesis that a conserved His-rich cluster (His-Gly-His-His) in the linker region connecting its two catalytic domains senses pH and affects PAM trafficking by mutating these His residues to Ala (Ala-Gly-Ala-Ala; H3A). Purified recombinant wild-type and H3A linker peptides were examined using circular dichroism and tryptophan fluorescence; mutation of the His cluster largely eliminated its pH sensitivity. An enzymatically active PAM protein with the same mutations (PAM-1/H3A) was expressed in HEK293 cells and AtT-20 corticotrope tumor cells. Metabolic labeling followed by immunoprecipitation revealed more rapid loss of newly synthesized PAM-1/H3A than PAM-1; although release of newly synthesized monofunctional PHM/H3A was increased, release of soluble bifunctional PAM/H3A, a product of the endocytic pathway, was decreased. Surface biotinylation revealed rapid loss of PAM-1/H3A, with no detectable return of the mutant protein to secretory granules. Consistent with its altered endocytic trafficking, little PAM-1/H3A was subjected to regulated intramembrane proteolysis followed by release of a small nuclear-targeted cytosolic fragment. AtT-20 cells expressing PAM-1/H3A adopted the morphology of wild-type AtT-20 cells; secretory products no longer accumulated in the trans-Golgi network and secretory granule exocytosis was more responsive to secretagogue.

  11. In Vivo Anomalous Diffusion and Weak Ergodicity Breaking of Lipid Granules

    NASA Astrophysics Data System (ADS)

    Jeon, Jae-Hyung; Tejedor, Vincent; Burov, Stas; Barkai, Eli; Selhuber-Unkel, Christine; Berg-Sørensen, Kirstine; Oddershede, Lene; Metzler, Ralf

    2011-01-01

    Combining extensive single particle tracking microscopy data of endogenous lipid granules in living fission yeast cells with analytical results we show evidence for anomalous diffusion and weak ergodicity breaking. Namely we demonstrate that at short times the granules perform subdiffusion according to the laws of continuous time random walk theory. The associated violation of ergodicity leads to a characteristic turnover between two scaling regimes of the time averaged mean squared displacement. At longer times the granule motion is consistent with fractional Brownian motion.

  12. Secretory immunity with special reference to the oral cavity

    PubMed Central

    Brandtzaeg, Per

    2013-01-01

    The two principal antibody classes present in saliva are secretory IgA (SIgA) and IgG; the former is produced as dimeric IgA by local plasma cells (PCs) in the stroma of salivary glands and is transported through secretory epithelia by the polymeric Ig receptor (pIgR), also named membrane secretory component (SC). Most IgG in saliva is derived from the blood circulation by passive leakage mainly via gingival crevicular epithelium, although some may be locally produced in the gingiva or salivary glands. Gut-associated lymphoid tissue (GALT) and nasopharynx-associated lymphoid tissue (NALT) do not contribute equally to the pool of memory/effector B cells differentiating to mucosal PCs throughout the body. Thus, enteric immunostimulation may not be the best way to activate the production of salivary IgA antibodies although the level of specific SIgA in saliva may still reflect an intestinal immune response after enteric immunization. It remains unknown whether the IgA response in submandibular/sublingual glands is better related to B-cell induction in GALT than the parotid response. Such disparity is suggested by the levels of IgA in submandibular secretions of AIDS patients, paralleling their highly upregulated intestinal IgA system, while the parotid IgA level is decreased. Parotid SIgA could more consistently be linked to immune induction in palatine tonsils/adenoids (human NALT) and cervical lymph nodes, as supported by the homing molecule profile observed after immune induction at these sites. Several other variables influence the levels of antibodies in salivary secretions. These include difficulties with reproducibility and standardization of immunoassays, the impact of flow rate, acute or chronic stress, protein loss during sample handling, and uncontrolled admixture of serum-derived IgG and monomeric IgA. Despite these problems, saliva is an easily accessible biological fluid with interesting scientific and clinical potentials. PMID:23487566

  13. Characterisation of secretory calcium-binding phosphoprotein-proline-glutamine-rich 1: a novel basal lamina component expressed at cell-tooth interfaces.

    PubMed

    Moffatt, Pierre; Wazen, Rima M; Dos Santos Neves, Juliana; Nanci, Antonio

    2014-12-01

    Functional genomic screening of the rat enamel organ (EO) has led to the identification of a number of secreted proteins expressed during the maturation stage of amelogenesis, including amelotin (AMTN) and odontogenic ameloblast-associated (ODAM). In this study, we characterise the gene, protein and pattern of expression of a related protein called secretory calcium-binding phosphoprotein-proline-glutamine-rich 1 (SCPPPQ1). The Scpppq1 gene resides within the secretory calcium-binding phosphoprotein (Scpp) cluster. SCPPPQ1 is a highly conserved, 75-residue, secreted protein rich in proline, leucine, glutamine and phenylalanine. In silico data mining has revealed no correlation to any known sequences. Northern blotting of various rat tissues suggests that the expression of Scpppq1 is restricted to tooth and associated tissues. Immunohistochemical analyses show that the protein is expressed during the late maturation stage of amelogenesis and in the junctional epithelium where it localises to an atypical basal lamina at the cell-tooth interface. This discrete localisation suggests that SCPPPQ1, together with AMTN and ODAM, participates in structuring the basal lamina and in mediating attachment of epithelia cells to mineralised tooth surfaces.

  14. Fine structure and development of the collar enamel in gars, Lepisosteus oculatus, Actinopterygii

    NASA Astrophysics Data System (ADS)

    Sasagawa, Ichiro; Ishiyama, Mikio; Yokosuka, Hiroyuki; Mikami, Masato

    2008-06-01

    The fine structure of collar enamel and the cells constituting the enamel organ during amelogenesis in Lepisosteus oculatus was observed by light, scanning electron and transmission electron microscopy. In the enamel, slender crystals were arranged perpendicular to the surface and the stripes that were parallel to the surface were observed, suggesting that the enamel in Lepisosteus shares common morphological features with that in sarcopterygian fish and amphibians. Ameloblasts containing developed Golgi apparatus, rough endoplasmic reticulum (rER) and secretory granules were found in the secretory stage. In the maturation stage, a ruffled border was not seen at the distal end of the ameloblasts, while many mitochondria and lysosome-like granules were obvious in the distal cytoplasm. The enamel organ consisted of the outer dental epithelial cells, stratum reticulum cells and ameloblasts, but there was no stratum intermedium. It is likely that the ameloblasts have less absorptive function in comparison with the inner dental epithelial cells facing cap enameloid.

  15. Disruption of centrifugal inhibition to olfactory bulb granule cells impairs olfactory discrimination.

    PubMed

    Nunez-Parra, Alexia; Maurer, Robert K; Krahe, Krista; Smith, Richard S; Araneda, Ricardo C

    2013-09-03

    Granule cells (GCs) are the most abundant inhibitory neuronal type in the olfactory bulb and play a critical role in olfactory processing. GCs regulate the activity of principal neurons, the mitral cells, through dendrodendritic synapses, shaping the olfactory bulb output to other brain regions. GC excitability is regulated precisely by intrinsic and extrinsic inputs, and this regulation is fundamental for odor discrimination. Here, we used channelrhodopsin to stimulate GABAergic axons from the basal forebrain selectively and show that this stimulation generates reliable inhibitory responses in GCs. Furthermore, selective in vivo inhibition of GABAergic neurons in the basal forebrain by targeted expression of designer receptors exclusively activated by designer drugs produced a reversible impairment in the discrimination of structurally similar odors, indicating an important role of these inhibitory afferents in olfactory processing.

  16. Tonic Inhibitory Control of Dentate Gyrus Granule Cells by α5-Containing GABAA Receptors Reduces Memory Interference.

    PubMed

    Engin, Elif; Zarnowska, Ewa D; Benke, Dietmar; Tsvetkov, Evgeny; Sigal, Maksim; Keist, Ruth; Bolshakov, Vadim Y; Pearce, Robert A; Rudolph, Uwe

    2015-10-07

    Interference between similar or overlapping memories formed at different times poses an important challenge on the hippocampal declarative memory system. Difficulties in managing interference are at the core of disabling cognitive deficits in neuropsychiatric disorders. Computational models have suggested that, in the normal brain, the sparse activation of the dentate gyrus granule cells maintained by tonic inhibitory control enables pattern separation, an orthogonalization process that allows distinct representations of memories despite interference. To test this mechanistic hypothesis, we generated mice with significantly reduced expression of the α5-containing GABAA (α5-GABAARs) receptors selectively in the granule cells of the dentate gyrus (α5DGKO mice). α5DGKO mice had reduced tonic inhibition of the granule cells without any change in fast phasic inhibition and showed increased activation in the dentate gyrus when presented with novel stimuli. α5DGKO mice showed impairments in cognitive tasks characterized by high interference, without any deficiencies in low-interference tasks, suggesting specific impairment of pattern separation. Reduction of fast phasic inhibition in the dentate gyrus through granule cell-selective knock-out of α2-GABAARs or the knock-out of the α5-GABAARs in the downstream CA3 area did not detract from pattern separation abilities, which confirms the anatomical and molecular specificity of the findings. In addition to lending empirical support to computational hypotheses, our findings have implications for the treatment of interference-related cognitive symptoms in neuropsychiatric disorders, particularly considering the availability of pharmacological agents selectively targeting α5-GABAARs. Interference between similar memories poses a significant limitation on the hippocampal declarative memory system, and impaired interference management is a cognitive symptom in many disorders. Thus, understanding mechanisms of successful

  17. Independent Transport and Sorting of Functionally Distinct Protein Families in Tetrahymena thermophila Dense Core Secretory Granules▿ †

    PubMed Central

    Rahaman, Abdur; Miao, Wei; Turkewitz, Aaron P.

    2009-01-01

    Dense core granules (DCGs) in Tetrahymena thermophila contain two protein classes. Proteins in the first class, called granule lattice (Grl), coassemble to form a crystalline lattice within the granule lumen. Lattice expansion acts as a propulsive mechanism during DCG release, and Grl proteins are essential for efficient exocytosis. The second protein class, defined by a C-terminal β/γ-crystallin domain, is poorly understood. Here, we have analyzed the function and sorting of Grt1p (granule tip), which was previously identified as an abundant protein in this family. Cells lacking all copies of GRT1, together with the closely related GRT2, accumulate wild-type levels of docked DCGs. Unlike cells disrupted in any of the major GRL genes, ΔGRT1 ΔGRT2 cells show no defect in secretion, indicating that neither exocytic fusion nor core expansion depends on GRT1. These results suggest that Grl protein sorting to DCGs is independent of Grt proteins. Consistent with this, the granule core lattice in ΔGRT1 ΔGRT2 cells appears identical to that in wild-type cells by electron microscopy, and the only biochemical component visibly absent is Grt1p itself. Moreover, gel filtration showed that Grl and Grt proteins in cell homogenates exist in nonoverlapping complexes, and affinity-isolated Grt1p complexes do not contain Grl proteins. These data demonstrate that two major classes of proteins in Tetrahymena DCGs are likely to be independently transported during DCG biosynthesis and play distinct roles in granule function. The role of Grt1p may primarily be postexocytic; consistent with this idea, DCG contents from ΔGRT1 ΔGRT2 cells appear less adhesive than those from the wild type. PMID:19684282

  18. Persistent Nav1.6 current at axon initial segments tunes spike timing of cerebellar granule cells

    PubMed Central

    Osorio, Nancy; Cathala, Laurence; Meisler, Miriam H; Crest, Marcel; Magistretti, Jacopo; Delmas, Patrick

    2010-01-01

    Cerebellar granule (CG) cells generate high-frequency action potentials that have been proposed to depend on the unique properties of their voltage-gated ion channels. To address the in vivo function of Nav1.6 channels in developing and mature CG cells, we combined the study of the developmental expression of Nav subunits with recording of acute cerebellar slices from young and adult granule-specific Scn8a KO mice. Nav1.2 accumulated rapidly at early-formed axon initial segments (AISs). In contrast, Nav1.6 was absent at early postnatal stages but accumulated at AISs of CG cells from P21 to P40. By P40–P65, both Nav1.6 and Nav1.2 co-localized at CG cell AISs. By comparing Na+ currents in mature CG cells (P66–P74) from wild-type and CG-specific Scn8a KO mice, we found that transient and resurgent Na+ currents were not modified in the absence of Nav1.6 whereas persistent Na+ current was strongly reduced. Action potentials in conditional Scn8a KO CG cells showed no alteration in threshold and overshoot, but had a faster repolarization phase and larger post-spike hyperpolarization. In addition, although Scn8a KO CG cells kept their ability to fire action potentials at very high frequency, they displayed increased interspike-interval variability and firing irregularity in response to sustained depolarization. We conclude that Nav1.6 channels at axon initial segments contribute to persistent Na+ current and ensure a high degree of temporal precision in repetitive firing of CG cells. PMID:20173079

  19. Granule swelling and cleavage of mitogen-activated protein kinases in human neutrophils undergoing apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Takayuki, E-mail: tkato@med.osaka-cu.ac.jp; Ikemoto, Masaru; Hato, Fumihiko

    2009-04-10

    Extracellular signal-regulated kinase and p38 have been shown to be cleaved in human neutrophils undergoing apoptosis induced by tumor necrosis factor-{alpha} and cycloheximide. However, the cleavage products of these molecules were undetected when apoptotic neutrophils were pretreated with phenylmethylsulfonyl fluoride or disrupted by nitrogen cavitation before preparation of cell lysates. The electron microscopy revealed that granules in apoptotic neutrophils were significantly swollen than those in control cells. These findings suggest that granule membrane may become destabilized during neutrophil apoptosis, leading to rapid proteolysis of these molecules by granule-derived serine proteases during preparation of cell lysates with the conventional lysis buffer.

  20. Reduction of the immunostainable length of the hippocampal dentate granule cells' primary cilia in 3xAD-transgenic mice producing human A{beta}{sub 1-42} and tau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakravarthy, Balu, E-mail: Balu.Chakravarthy@nrc-cnrc.gc.ca; Gaudet, Chantal; Menard, Michel

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer A{beta} and tau-induced neurofibrillary tangles play a key role in Alzheimer's disease. Black-Right-Pointing-Pointer A{beta}{sub 1-42} and mutant tau protein together reduce the primary cilium length. Black-Right-Pointing-Pointer This shortening likely reduces cilium-dependent neurogenesis and memory function. Black-Right-Pointing-Pointer This provides a model of an A{beta}/tau targeting of a neuronal signaling organelle. -- Abstract: The hippocampal dentate gyrus is one of the two sites of continuous neurogenesis in adult rodents and humans. Virtually all dentate granule cells have a single immobile cilium with a microtubule spine or axoneme covered with a specialized cell membrane loaded with receptors such as the somatostatinmore » receptor 3 (SSTR3), and the p75 neurotrophin receptor (p75{sup NTR}). The signals from these receptors have been reported to stimulate neuroprogenitor proliferation and the post-mitotic maturation of newborn granule cells into functioning granule cells. We have found that in 6-24-months-old triple transgenic Alzheimer's disease model mice (3xTg-AD) producing both A{beta}{sub 1-42} and the mutant human tau protein tau{sub P301L,} the dentate granule cells still had immunostainable SSTR3- and p75{sup NTR}-bearing cilia but they were only half the length of the immunostained cilia in the corresponding wild-type mice. However, the immunostainable length of the granule cell cilia was not reduced either in 2xTg-AD mice accumulating large amounts of A{beta}{sub 1-42} or in mice accumulating only a mutant human tau protein. Thus it appears that a combination of A{beta}{sub 1-42} and tau protein accumulation affects the levels of functionally important receptors in 3xTg-AD mice. These observations raise the important possibility that structural and functional changes in granule cell cilia might have a role in AD.« less

  1. Apigenin suppresses the senescence-associated secretory phenotype and paracrine effects on breast cancer cells.

    PubMed

    Perrott, Kevin M; Wiley, Christopher D; Desprez, Pierre-Yves; Campisi, Judith

    2017-04-01

    Apigenin (4',5,7,-trihydroxyflavone) is a flavonoid found in certain herbs, fruits, and vegetables. Apigenin can attenuate inflammation, which is associated with many chronic diseases of aging. Senescent cells-stressed cells that accumulate with age in mammals-display a pro-inflammatory senescence-associated secretory phenotype (SASP) that can drive or exacerbate several age-related pathologies, including cancer. Flavonoids, including apigenin, were recently shown to reduce the SASP of a human fibroblast strain induced to senesce by bleomycin. Here, we confirm that apigenin suppresses the SASP in three human fibroblast strains induced to senesce by ionizing radiation, constitutive MAPK (mitogen-activated protein kinase) signaling, oncogenic RAS, or replicative exhaustion. Apigenin suppressed the SASP in part by suppressing IL-1α signaling through IRAK1 and IRAK4, p38-MAPK, and NF-κB. Apigenin was particularly potent at suppressing the expression and secretion of CXCL10 (IP10), a newly identified SASP factor. Further, apigenin-mediated suppression of the SASP substantially reduced the aggressive phenotype of human breast cancer cells, as determined by cell proliferation, extracellular matrix invasion, and epithelial-mesenchymal transition. Our results support the idea that apigenin is a promising natural product for reducing the impact of senescent cells on age-related diseases such as cancer.

  2. Electrophoretic separation of cells and particles from rat pituitary and rat spleen

    NASA Technical Reports Server (NTRS)

    Hymer, Wesley C.

    1993-01-01

    There are 3 parts to the IML-2 TX-101 experiment. Part 1 is a pituitary cell culture experiment. Part 2 is a pituitary cell separation experiment using the Japanese free flow electrophoresis unit (FFEU). Part 3 is a pituitary secretory granule separation experiment using the FFEU. The objectives of this three part experiment are: (1) to determine the kinetics of production of biologically active growth hormone (GH) and prolactin (PRL) in rat pituitary GH and PRL cells in microgravity (micro-g); (2) to investigate three mechanisms by which a micro-g-induced lesion in hormone production may occur; and (3) to determine the quality of separations of pituitary cells and organelles by continuous flow electrophoresis (CFE) in micro-g under conditions where buoyancy-induced convection is eliminated.

  3. Atrial granular cells of the snail Achatina fulica release proteins into hemolymph after stimulation of the heart nerve.

    PubMed

    Shabelnikov, Sergej V; Bystrova, Olga A; Ivanov, Vadim A; Margulis, Boris A; Martynova, Marina

    2009-10-01

    The atrium of the gastropod mollusc Achatina fulica receives rich innervation and contains numerous granular cells (GCs). We studied the atrial innervation and discovered that axon profiles typical in appearance of peptidergic neurons form close unspecialized membrane contacts with GCs. Then, we investigated, at both morphological and biochemical levels, the effect of electrical stimulation of the heart nerve on GCs of Achatina heart perfused in situ. The ultrastructural study demonstrated changes in granule morphology consistent with secretion. These events included alteration of granule content, intracellular granule fusion and formation of complex degranulation channels, within which the granule matrix solubilized. It was shown that electrical stimulation resulted in a significant increase of the total protein concentration in the perfusate. Furthermore, SDS-PAGE analysis of the perfusate revealed three new proteins with molecular masses of 16, 22, and 57 kDa. Affinity-purified polyclonal antibodies against the 16 kDa protein were obtained; the whole-mount immunofluorescence technique revealed the presence of this protein in the granules of atrial GCs. In GCs of the stimulated atrium, a progressive loss of their granular content was observed. The results suggest that the central nervous system can modulate the secretory activity of the atrial GCs through non-synaptic pathways.

  4. Maintained LTP and Memory Are Lost by Zn2+ Influx into Dentate Granule Cells, but Not Ca2+ Influx.

    PubMed

    Takeda, Atsushi; Tamano, Haruna; Hisatsune, Marie; Murakami, Taku; Nakada, Hiroyuki; Fujii, Hiroaki

    2018-02-01

    The idea that maintained LTP and memory are lost by either increase in intracellular Zn 2+ in dentate granule cells or increase in intracellular Ca 2+ was examined to clarify significance of the increases induced by excess synapse excitation. Both maintained LTP and space memory were impaired by injection of high K + into the dentate gyrus, but rescued by co-injection of CaEDTA, which blocked high K + -induced increase in intracellular Zn 2+ but not high K + -induced increase in intracellular Ca 2+ . High K + -induced disturbances of LTP and intracellular Zn 2+ are rescued by co-injection of 6-cyano-7-nitroquinoxakine-2,3-dione, an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonist, but not by co-injection of blockers of NMDA receptors, metabotropic glutamate receptors, and voltage-dependent calcium channels. Furthermore, AMPA impaired maintained LTP and the impairment was also rescued by co-injection of CaEDTA, which blocked increase in intracellular Zn 2+ , but not increase in intracellular Ca 2+ . NMDA and glucocorticoid, which induced Zn 2+ release from the internal stores, did not impair maintained LTP. The present study indicates that increase in Zn 2+ influx into dentate granule cells through AMPA receptors loses maintained LTP and memory. Regulation of Zn 2+ influx into dentate granule cells is more critical for not only memory acquisition but also memory retention than that of Ca 2+ influx.

  5. Ultrastructural evaluation of adenocarcinomas derived from apocrine glands of the anal sac associated with hypercalcemia in dogs.

    PubMed Central

    Meuten, D. J.; Capen, C. C.; Kociba, G. J.; Chew, D. J.; Cooper, B. J.

    1982-01-01

    Adenocarcinomas derived from apocrine glands of the anal sac and associated with persistent hypercalcemia in dogs were composed of tumor cells with numerous profiles of rough endoplasmic reticulum, clusters of free ribosomes, and a prominent Golgi apparatus. Neoplastic cells contained microtubules, microfilaments, tonofibrils, and had two types of electron-dense granules. Large lysosomelike dense bodies ranged from 0.6 to 2.2 microns in diameter and had a poorly delineated limiting membrane. Small granules (150-400 nm in diameter) had a sharply delineated limiting membrane with a narrow submembranous space and a homogeneous dense core. These smaller granules usually were located near the apexes of neoplastic cells, whereas the larger granules were situated near the base of cells. Apocrine cells in glands of the anal sac from control dogs that were in the secretory phase were columnar and had large dilated profiles of rough endoplasmic reticulum. Membranes of the endoplasmic reticulum fused with the plasmalemma and appeared to secrete their product directly into the lumens of acini, characteristic of merocrine secretion. Apical blebs of electron-lucent cytoplasm pinched off from nonneoplastic aprocine cells and were released into glandular lumens. Similar electron-lucent cytoplasmic blebs were present at the apexes of tumor cells. Myoepithelial cells were present between the epithelial cells and basement membrane in normal apocrine glands and were absent in neoplasms derived from these glands. Identification of the contents of the secretory-like granules in tumor cells and characterization of the hypercalcemic factor in the plasma or tumor tissue from dogs with this syndrome will help explain the pathogenesis of hypercalcemia associated with malignancy in animals and man. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 PMID:7200729

  6. Ethanol impairs activation of retinoic acid receptors in cerebellar granule cells in a rodent model of fetal alcohol spectrum disorders.

    PubMed

    Kumar, Ambrish; Singh, Chandra K; DiPette, Donald D; Singh, Ugra S

    2010-05-01

    Ethanol is the main addictive and neurotoxic constituent of alcohol. Ethanol exposure during embryonic development causes dysfunction of the central nervous system (CNS) and leads to fetal alcohol spectrum disorders. The cerebellum is one of the CNS regions that are particularly vulnerable to ethanol toxic effects. Retinoic acid (RA) is a physiologically active metabolite of vitamin A that is locally synthesized in the cerebellum. Studies have shown that RA is required for neuronal development, but it remains unknown if ethanol impairs RA signaling and thus induces neuronal malformations. In this study, we tested the hypothesis that ethanol impairs the expression and activation of RA receptors in cerebellum and in cerebellar granule cells. The cerebellum of ethanol unexposed and exposed pups was used to study the expression of retinoic acid receptors (RARs or RXRs) by immunohistochemistry and by Western blot analysis. We also studied the effect of ethanol on expression of RA receptors in the cerebellar granule cells. Activation of RA receptors (DNA-binding activities) in response to high-dose ethanol was determined by electrophoretic mobility shift and supershift assays. Findings from these studies demonstrated that ethanol exposure reduced the expression of RARalpha/gamma while it increased the expression of RXRalpha/gamma in the cerebellum and in cerebellar granule neurons. Immuno-histological studies further strengthened the expression pattern of RA receptors in response to ethanol. The DNA-binding activity of RARs was reduced, while DNA-binding activity of RXRs was increased in response to ethanol exposure. For the first time, our studies have demonstrated that high-dose ethanol affects the expression and activation of RA receptors, which could impair the signaling events and induce harmful effects on the survival and differentiation of cerebellar granule cells. Taken together, these findings could provide insight into the treatment options for brain defects

  7. Vesicle-associated membrane protein 7 (VAMP-7) is essential for target cell killing in a natural killer cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcet-Palacios, Marcelo; Odemuyiwa, Solomon O.; Coughlin, Jason J.

    2008-02-15

    Natural killer cells recognize and induce apoptosis in foreign, transformed or virus-infected cells through the release of perforin and granzymes from secretory lysosomes. Clinically, NK-cell mediated killing is a major limitation to successful allo- and xenotransplantation. The molecular mechanisms that regulate the fusion of granzyme B-containing secretory lysosomes to the plasma membrane in activated NK cells, prior to target cell killing, are not fully understood. Using the NK cell line YT-Indy as a model, we have investigated the expression of SNAP REceptors (SNAREs), both target (t-) and vesicular (v-) SNAREs, and their function in granzyme B-mediated target cell killing. Ourmore » data showed that YT-Indy cells express VAMP-7 and SNAP-23, but not VAMP-2. VAMP-7 was associated with granzyme B-containing lysosomal granules. Using VAMP-7 small interfering RNA (siRNA), we successfully knocked down the expression of VAMP-7 protein in YT-Indy to less than 10% of untreated cells in 24 h. VAMP7-deficient YT-Indy cells activated via co-culture with Jurkat cells released <1 ng/mL of granzyme B, compared to 1.5-2.5 {mu}g/mL from controls. Using Jurkat cells as targets, we showed a 7-fold reduction in NK cell-mediated killing by VAMP-7 deficient YT-Indy cells. Our results show that VAMP-7 is a crucial component of granzyme B release and target cell killing in the NK cell line YT-Indy. Thus, targeting VAMP-7 expression specifically with siRNA, following transplantation, may be a viable strategy for preventing NK cell-mediated transplant rejection, in vivo.« less

  8. Thin-section ratiometric Ca2+ images obtained by optical sectioning of fura-2 loaded mast cells

    PubMed Central

    1992-01-01

    The availability of the ratiometric Ca2+ indicator dyes, fura-2, and indo-1, and advances in digital imaging and computer technology have made it possible to detect Ca2+ changes in single cells with high temporal and spatial resolution. However, the optical properties of the conventional epifluorescence microscope do not produce a perfect image of the specimen. Instead, the observed image is a spatial low pass filtered version of the object and is contaminated with out of focus information. As a result, the image has reduced contrast and an increased depth of field. This problem is especially important for measurements of localized Ca2+ concentrations. One solution to this problem is to use a scanning confocal microscope which only detects in focus information, but this approach has several disadvantages for low light fluorescence measurements in living cells. An alternative approach is to use digital image processing and a deblurring algorithm to remove the out of focus information by using a knowledge of the point spread function of the microscope. All of these algorithms require a stack of two-dimensional images taken at different focal planes, although the "nearest neighbor deblurring" algorithm only requires one image above and below the image plane. We have used a modification of this scheme to construct a simple inverse filter, which extracts optical sections comparable to those of the nearest neighbors scheme, but without the need for adjacent image sections. We have used this "no neighbors" processing scheme to deblur images of fura-2-loaded mast cells from beige mice and generate high resolution ratiometric Ca2+ images of thin sections through the cell. The shallow depth of field of these images is demonstrated by taking pairs of images at different focal planes, 0.5-microns apart. The secretory granules, which exclude the fura-2, appear in focus in all sections and distinct changes in their size and shape can be seen in adjacent sections. In addition, we

  9. A tissue engineered human endometrial stroma that responds to cues for secretory differentiation, decidualization and menstruation

    PubMed Central

    Schutte, Stacey C.; Taylor, Robert N.

    2012-01-01

    Objective To show the responsiveness of a tissue engineered human endometrial stroma to combinations of hormones mimicking the secretory and menstrual phases of the cycle. Design In vitro experimental study Setting University uterine biology research laboratory Cells Telomerase immortalized human endometrial stromal cells Interventions The stromal cells were cultured in monolayers (2D) or encapsulated in a collagen I hydrogel (3D) to create a simplified tissue engineered stroma. The cells and tissues were exposed to hormone treatments mimicking early and late secretory phases, decidualization and steroid withdrawal conditions to recapitulate menstruation. Main Outcome Measure(s) Morphological and biochemical markers of decidualization and collagenase activity Result(s) The 3D tissue is capable of manifesting changes in morphology and biochemical markers of decidualization similar to 2D culture and characteristic of endometrial stroma in vivo. Unlike 2D culture, the 3D tissue responded to steroid withdrawal by increased collagenase activity and tissue breakdown. Conclusion(s) 3D tissue engineered endometrial stroma can mimic secretory and menstrual phases of the cycle and may be useful for studying uterine receptivity and menstruation in a physiological endocrine environment. PMID:22306710

  10. Copper trafficking to the secretory pathway

    PubMed Central

    Lutsenko, Svetlana

    2017-01-01

    Copper (Cu) is indispensible for growth and development of human organisms. It is required for such fundamental and ubiquitous processes as respiration and protection against reactive oxygen species. Cu also enables catalytic activity of enzymes that critically contribute to the functional identity of many cells and tissues. Pigmentation, production of norepinephrine by the adrenal gland, the key steps in the formation of connective tissue, neuroendocrine signaling, wound healing – all these processes require Cu and depend on Cu entering the secretory pathway. To reach the Cu-dependent enzymes in a lumen of the trans-Golgi network and various vesicular compartments, Cu undertakes a complex journey crossing the extracellular and intracellular membranes and staying firmly on course while traveling in a cytosol. The proteins that assist Cu in this journey by mediating its entry, distribution, and export, have been identified. The accumulating data also indicate that the current model of cellular Cu homeostasis is still a “skeleton” that has to be fleshed out with many new details. This review summarizes recent data on the mechanisms responsible for Cu transfer to the secretory pathway. The emerging new concepts and gaps in our knowledge are discussed. PMID:27603756

  11. Cellular and molecular mechanism for secretory autophagy.

    PubMed

    Kimura, Tomonori; Jia, Jingyue; Claude-Taupin, Aurore; Kumar, Suresh; Choi, Seong Won; Gu, Yuexi; Mudd, Michal; Dupont, Nicolas; Jiang, Shanya; Peters, Ryan; Farzam, Farzin; Jain, Ashish; Lidke, Keith A; Adams, Christopher M; Johansen, Terje; Deretic, Vojo

    2017-06-03

    Macroautophagy/autophagy plays a role in unconventional secretion of leaderless cytosolic proteins. Whether and how secretory autophagy diverges from conventional degradative autophagy is unclear. We have shown that the prototypical secretory autophagy cargo IL1B/IL-1β (interleukin 1 β) is recognized by TRIM16, and that this first to be identified secretory autophagy receptor interacts with the R-SNARE SEC22B to jointly deliver cargo to the MAP1LC3B-II-positive sequestration membranes. Cargo secretion is unaffected by knockdowns of STX17, a SNARE catalyzing autophagosome-lysosome fusion as a prelude to cargo degradation. Instead, SEC22B in combination with plasma membrane syntaxins completes cargo secretion. Thus, secretory autophagy diverges from degradative autophagy by using specialized receptors and a dedicated SNARE machinery to bypass fusion with lysosomes.

  12. Identification of ER Proteins Involved in the Functional Organisation of the Early Secretory Pathway in Drosophila Cells by a Targeted RNAi Screen

    PubMed Central

    Kondylis, Vangelis; Tang, Yang; Fuchs, Florian; Boutros, Michael; Rabouille, Catherine

    2011-01-01

    Background In Drosophila, the early secretory apparatus comprises discrete paired Golgi stacks in close proximity to exit sites from the endoplasmic reticulum (tER sites), thus forming tER-Golgi units. Although many components involved in secretion have been identified, the structural components sustaining its organisation are less known. Here we set out to identify novel ER resident proteins involved in the of tER-Golgi unit organisation. Results To do so, we designed a novel screening strategy combining a bioinformatics pre-selection with an RNAi screen. We first selected 156 proteins exhibiting known or related ER retention/retrieval signals from a list of proteins predicted to have a signal sequence. We then performed a microscopy-based primary and confirmation RNAi screen in Drosophila S2 cells directly scoring the organisation of the tER-Golgi units. We identified 49 hits, most of which leading to an increased number of smaller tER-Golgi units (MG for “more and smaller Golgi”) upon depletion. 16 of them were validated and characterised, showing that this phenotype was not due to an inhibition in secretion, a block in G2, or ER stress. Interestingly, the MG phenotype was often accompanied by an increase in the cell volume. Out of 6 proteins, 4 were localised to the ER. Conclusions This work has identified novel proteins involved in the organisation of the Drosophila early secretory pathway. It contributes to the effort of assigning protein functions to gene annotation in the secretory pathway, and analysis of the MG hits revealed an enrichment of ER proteins. These results suggest a link between ER localisation, aspects of cell metabolism and tER-Golgi structural organisation. PMID:21383842

  13. Modification of drug release from acetaminophen granules by melt granulation technique - consideration of release kinetics.

    PubMed

    Uhumwangho, M U; Okor, R S

    2006-01-01

    Acetaminophen granules have been formed by a melt granulation process with the objective of retarding drug release for prolonged action formulations. The waxes used were goat wax, carnuba wax and glyceryl monostearate. In the melt granulation procedure, acetaminophen powder was triturated with the melted waxes and passed through a sieve of mesh 10 (aperture size 710 microm). The content of wax in resulting granules ranged from 10 to 40%w/w. Acetaminophen granules were also formed by the convectional method of wet granulation with starch mucilage (20%w/w). The granules were subjected to in-vitro drug release tests. The release data were subjected to analysis by three different well-established mathematical models (release kinetics) namely, - zero order flux, first order, and the Higuchi square root of time relationship. The convectional granules exhibited an initial zero order flux (first 55%) followed by a first order release profile (the remaining 45%). The pattern of drug release from the melt granulations was consistent with the first order kinetic and the Higuchi square root of time relationship, indicating a diffusion-controlled release mechanism. The first order release rate constant of the convectional granules was 1.95 +/- 0.02 h(-1). After melt granulation (wax content, 20%w/w) the rate constants dropped drastically to 0.130+/-0.001 h(-1) (goat wax), 0.120+/-0.003 h(-1) (carnuba wax), and 0.130+/-0.002 h(-1) (glyceryl monosterate) indicating that all three waxes were equivalent in retarding drug release from the melt granulations.

  14. Application of tumbling melt granulation (TMG) method to prepare controlled-release fine granules.

    PubMed

    Maejima, T; Kubo, M; Osawa, T; Nakajima, K; Kobayashi, M

    1998-03-01

    The tumbling melt granulation (TMG) method was applied to prepare controlled-release fine granules of diltiazem hydrochloride (DH). The entire process, from the preparation of the cores by the adherence of DH to the sucrose crystal to the subsequent coating of the controlled-release layer, was performed without using any solvent. A mixture of meltable material, talc, and ethylcellulose was used for the controlled-release layer and controlled-release fine granules approximately 400 microns in diameter were obtained with excellent producibility. The dissolution rate of DH from these fine granules was similar to that of a once-a-day dosage form obtained in the market; further, the dependency of the dissolution profile on pH of the media was less. Thus, it was concluded that this TMG method was very useful for preparing not only controlled-release beads of granule size (usually 500 to 1400 microns) but also fine granules.

  15. Mechanisms of transport and exocytosis of dense-core granules containing tissue plasminogen activator in developing hippocampal neurons.

    PubMed

    Silverman, Michael A; Johnson, Scooter; Gurkins, Dmitri; Farmer, Meredith; Lochner, Janis E; Rosa, Patrizia; Scalettar, Bethe A

    2005-03-23

    Dense-core granules (DCGs) are organelles found in specialized secretory cells, including neuroendocrine cells and neurons. Neuronal DCGs facilitate many critical processes, including the transport and secretion of proteins involved in learning, and yet their transport and exocytosis are poorly understood. We have used wide-field and total internal reflection fluorescence microscopy, in conjunction with transport theory, to visualize the transport and exocytosis of DCGs containing a tissue plasminogen activator-green fluorescent protein hybrid in cell bodies, neurites, and growth cones of developing hippocampal neurons and to quantify the roles that diffusion, directed motion, and immobility play in these processes. Our results demonstrate that shorter-ranged transport of DCGs near sites of exocytosis in hippocampal neurons and neuroendocrine cells differs markedly. Specifically, the immobile fraction of DCGs within growth cones and near the plasma membrane of hippocampal neurons is small and relatively unaltered by actin disruption, unlike in neuroendocrine cells. Moreover, transport of DCGs in these domains of hippocampal neurons is unusually heterogeneous, being significantly rapid and directed as well as slow and diffusive. Our results also demonstrate that exocytosis is preceded by substantial movement and heterogeneous transport; this movement may facilitate delivery of DCG cargo in hippocampal neurons, given the relatively low abundance of neuronal DCGs. In addition, the extensive mobility of DCGs in hippocampal neurons argues strongly against the hypothesis that cortical actin is a major barrier to membrane-proximal DCGs in these cells. Instead, our results suggest that extended release of DCG cargo from hippocampal neurons arises from heterogeneity in DCG mobility.

  16. Silencing of secretory clusterin sensitizes NSCLC cells to V-ATPase inhibitors by downregulating survivin.

    PubMed

    Kim, Young-Sun; Jin, Hyeon-Ok; Hong, Sung-Eun; Song, Jie-Young; Hwang, Chang-Sun; Park, In-Chul

    2018-01-08

    Secretory clusterin (sCLU) is a stress-associated protein that confers resistance to therapy when overexpressed. In this study, we observed that the V-ATPase inhibitors bafilomycin A1 and concanamycin A significantly stimulated sCLU protein expression. Knockdown of sCLU with siRNA sensitized non-small cell lung cancer (NSCLC) cells to bafilomycin A1, suggesting that sCLU expression renders cells resistant to V-ATPase inhibitors. The dual PI3K/AKT and mTOR inhibitor BEZ235 suppressed sCLU expression and enhanced cell sensitivity induced by bafilomycin A1. Notably, sCLU knockdown further decreased the expression of the survivin protein by bafilomycin A1, and the ectopic expression of survivin alleviated the cell sensitivity by bafilomycin A1 and sCLU depletion, suggesting that increased sensitivity to sCLU depletion in the cells with V-ATPase inhibitors is due, at least in part, to the down-regulation of survivin. Taken together, we demonstrated that the depletion of sCLU expression enhances the sensitivity of NSCLC cells to V-ATPase inhibitors by decreasing survivin expression. Inhibition of the PI3K/AKT/mTOR pathway enhances the sensitivity of NSCLC cells to V-ATPase inhibitors, leading to decreased sCLU and survivin expression. Thus, we suggest that a combination of PI3K/AKT/mTOR inhibitors with V-ATPase inhibitors might be an effective approach for NSCLC treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Coordinated activation of the secretory pathway during notochord formation in the Xenopus embryo.

    PubMed

    Tanegashima, Kosuke; Zhao, Hui; Rebbert, Martha L; Dawid, Igor B

    2009-11-01

    We compared the transcriptome in the developing notochord of Xenopus laevis embryos with that of other embryonic regions. A coordinated and intense activation of a large set of secretory pathway genes was observed in the notochord, but not in notochord precursors in the axial mesoderm at early gastrula stage. The genes encoding Xbp1 and Creb3l2 were also activated in the notochord. These two transcription factors are implicated in the activation of secretory pathway genes during the unfolded protein response, where cells react to the stress of a build-up of unfolded proteins in their endoplasmic reticulum. Xbp1 and Creb3l2 are differentially expressed but not differentially activated in the notochord. Reduction of expression of Xbp1 or Creb3l2 by injection of antisense morpholinos led to strong deficits in notochord but not somitic muscle development. In addition, the expression of some, but not all, genes encoding secretory proteins was inhibited by injection of xbp1 morpholinos. Furthermore, expression of activated forms of Xbp1 or Creb3l2 in animal explants could activate a similar subset of secretory pathway genes. We conclude that coordinated activation of a battery of secretory pathway genes mediated by Xbp1 and Creb/ATF factors is a characteristic and necessary feature of notochord formation.

  18. Weibel-Palade bodies at a glance.

    PubMed

    McCormack, Jessica J; Lopes da Silva, Mafalda; Ferraro, Francesco; Patella, Francesca; Cutler, Daniel F

    2017-11-01

    The vascular environment can rapidly alter, and the speed with which responses to both physiological and pathological changes are required necessitates the existence of a highly responsive system. The endothelium can quickly deliver bioactive molecules by regulated exocytosis of its secretory granules, the Weibel-Palade bodies (WPBs). WPBs include proteins that initiate both haemostasis and inflammation, as well those that modulate blood pressure and angiogenesis. WPB formation is driven by von Willebrand factor, their most abundant protein, which controls both shape and size of WPBs. WPB are generated in a range of sizes, with the largest granules over ten times the size of the smallest. In this Cell Science at a Glance and the accompanying poster, we discuss the emerging mechanisms by which WPB size is controlled and how this affects the ability of this organelle to modulate haemostasis. We will also outline the different modes of exocytosis and their polarity that are currently being explored, and illustrate that these large secretory organelles provide a model for how elements of secretory granule biogenesis and exocytosis cooperate to support a complex and diverse set of functions. © 2017. Published by The Company of Biologists Ltd.

  19. 5-HT1A Receptors on Mature Dentate Gyrus Granule Cells are Critical for the Antidepressant Response

    PubMed Central

    Samuels, Benjamin Adam; Anacker, Christoph; Hu, Alice; Levinstein, Marjorie R.; Pickenhagen, Anouchka; Tsetsenis, Theodore; Madroñal, Noelia; Donaldson, Zoe R.; Drew, Liam John; Dranovsky, Alex; Gross, Cornelius T.; Tanaka, Kenji F.; Hen, René

    2015-01-01

    Selective serotonin reuptake inhibitors (SSRIs) are widely used antidepressants, but the mechanisms by which they influence behavior are only partially resolved. Adult hippocampal neurogenesis is necessary for some of the responses to SSRIs, but it is unknown whether the mature dentate gyrus granule cells (mature DG GCs) also contribute. We deleted Serotonin 1A receptor (5HT1AR; a receptor required for the SSRI response) specifically from DG GCs and found that the effects of the SSRI fluoxetine on behavior and the Hypothalamic-Pituitary-Adrenal (HPA) axis were abolished. By contrast, mice lacking 5HT1ARs only in young adult born granule cells (abGCs) showed normal fluoxetine responses. Importantly, 5HT1AR deficient mice engineered to express functional 5HT1ARs only in DG GCs responded to fluoxetine, indicating that 5HT1ARs in DG GCs are sufficient to mediate an antidepressant response. Taken together, these data indicate that both mature DG GCs and young abGCs must be engaged for an antidepressant response. PMID:26389840

  20. Influence of granulating method on physical and mechanical properties, compression behavior, and compactibility of lactose and microcrystalline cellulose granules.

    PubMed

    Horisawa, E; Danjo, K; Sunada, H

    2000-06-01

    The physical and mechanical properties of lactose (LC) and microcrystalline cellulose (MCC) granules prepared by various granulating methods were determined, and their effects on the compression and strength of the tablets were examined. From the force-displacement curve obtained in a crushing test on a single granule, all LC granules appeared brittle, and MCC granules were somewhat plastically deformable. Inter-granular porosity epsilon inter clearly decreased with greater spherical granule shape for both materials. Decrease in intragranular porosity epsilon intra enhanced the crushing force of a single granule Fg. Agitating granulation brought about the most compactness and hardness of granules. In granule compression tests, the initial slope of Heckel plots K1 appeared closely related to ease of filling voids in a granule bed by the slippage or rolling of granules. The reciprocal of the slope in the succeeding step 1/K2 in compression of MCC granules indicated positive correlation to Fg, while in LC granules, no such obvious relation was evident. 1/K2 differed only slightly among granulating methods. Tensile strength of tablets Tt obtained by compression of various LC granules was low as a whole and was little influenced by granulating method. For MCC granules, which are plastically deformable, tablet strength greatly depended on granulation. Granules prepared by extruding or dry granulation gave strong tablets. Tablets prepared from granules made by the agitating method showed particularly low Tt. From stereomicroscopic observation, the contact area between granule particles in a tablet appeared smaller; this would explain the decrease in inter-granular bond formation.

  1. TDP-43 is directed to stress granules by sorbitol, a novel physiological osmotic and oxidative stressor.

    PubMed

    Dewey, Colleen M; Cenik, Basar; Sephton, Chantelle F; Dries, Daniel R; Mayer, Paul; Good, Shannon K; Johnson, Brett A; Herz, Joachim; Yu, Gang

    2011-03-01

    TDP-43, or TAR DNA-binding protein 43, is a pathological marker of a spectrum of neurodegenerative disorders, including amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions. TDP-43 is an RNA/DNA-binding protein implicated in transcriptional and posttranscriptional regulation. Recent work also suggests that TDP-43 associates with cytoplasmic stress granules, which are transient structures that form in response to stress. In this study, we establish sorbitol as a novel physiological stressor that directs TDP-43 to stress granules in Hek293T cells and primary cultured glia. We quantify the association of TDP-43 with stress granules over time and show that stress granule association and size are dependent on the glycine-rich region of TDP-43, which harbors the majority of pathogenic mutations. Moreover, we establish that cells harboring wild-type and mutant TDP-43 have distinct stress responses: mutant TDP-43 forms significantly larger stress granules, and is incorporated into stress granules earlier, than wild-type TDP-43; in striking contrast, wild-type TDP-43 forms more stress granules over time, but the granule size remains relatively unchanged. We propose that mutant TDP-43 alters stress granule dynamics, which may contribute to the progression of TDP-43 proteinopathies.

  2. The combined effect of wet granulation process parameters and dried granule moisture content on tablet quality attributes.

    PubMed

    Gabbott, Ian P; Al Husban, Farhan; Reynolds, Gavin K

    2016-09-01

    A pharmaceutical compound was used to study the effect of batch wet granulation process parameters in combination with the residual moisture content remaining after drying on granule and tablet quality attributes. The effect of three batch wet granulation process parameters was evaluated using a multivariate experimental design, with a novel constrained design space. Batches were characterised for moisture content, granule density, crushing strength, porosity, disintegration time and dissolution. Mechanisms of the effect of the process parameters on the granule and tablet quality attributes are proposed. Water quantity added during granulation showed a significant effect on granule density and tablet dissolution rate. Mixing time showed a significant effect on tablet crushing strength, and mixing speed showed a significant effect on the distribution of tablet crushing strengths obtained. The residual moisture content remaining after granule drying showed a significant effect on tablet crushing strength. The effect of moisture on tablet tensile strength has been reported before, but not in combination with granulation parameters and granule properties, and the impact on tablet dissolution was not assessed. Correlations between the energy input during granulation, the density of granules produced, and the quality attributes of the final tablets were also identified. Understanding the impact of the granulation and drying process parameters on granule and tablet properties provides a basis for process optimisation and scaling. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Influence of experimental hypokinesia on gastric secretory function

    NASA Technical Reports Server (NTRS)

    Markova, O. O.; Vavryshchuk, V. I.; Rozvodovskyy, V. I.; Proshcheruk, V. A.

    1980-01-01

    The gastric secretory function of rats was studied in 4, 8, 16 and 30 day hypokinesia. Inhibition of both the gastric juice secretory and acid producing functions was found. The greatest inhibition was observed on day 8 of limited mobility. By days 16 and 30 of the experiment, a tendency of the gastric secretory activity to return to normal was observed, although it remained reduced.

  4. Glomerular and Mitral-Granule Cell Microcircuits Coordinate Temporal and Spatial Information Processing in the Olfactory Bulb.

    PubMed

    Cavarretta, Francesco; Marasco, Addolorata; Hines, Michael L; Shepherd, Gordon M; Migliore, Michele

    2016-01-01

    The olfactory bulb processes inputs from olfactory receptor neurons (ORNs) through two levels: the glomerular layer at the site of input, and the granule cell level at the site of output to the olfactory cortex. The sequence of action of these two levels has not yet been examined. We analyze this issue using a novel computational framework that is scaled up, in three-dimensions (3D), with realistic representations of the interactions between layers, activated by simulated natural odors, and constrained by experimental and theoretical analyses. We suggest that the postulated functions of glomerular circuits have as their primary role transforming a complex and disorganized input into a contrast-enhanced and normalized representation, but cannot provide for synchronization of the distributed glomerular outputs. By contrast, at the granule cell layer, the dendrodendritic interactions mediate temporal decorrelation, which we show is dependent on the preceding contrast enhancement by the glomerular layer. The results provide the first insights into the successive operations in the olfactory bulb, and demonstrate the significance of the modular organization around glomeruli. This layered organization is especially important for natural odor inputs, because they activate many overlapping glomeruli.

  5. Ablation of human skin mast cells in situ by lysosomotropic agents.

    PubMed

    Hagforsen, Eva; Paivandy, Aida; Lampinen, Maria; Weström, Simone; Calounova, Gabriela; Melo, Fabio R; Rollman, Ola; Pejler, Gunnar

    2015-07-01

    Mast cells are known to have a detrimental impact on numerous types of inflammatory skin diseases such as contact dermatitis, atopic eczema and cutaneous mastocytosis. Regimens that dampen skin mast cell-mediated activities can thus offer an attractive therapeutic option under such circumstances. As mast cells are known to secrete a large array of potentially pathogenic compounds, both from preformed stores in secretory lysosomes (granules) and after de novo synthesis, mere inhibition of degranulation or interference with individual mast cell mediators may not be sufficient to provide an effective blockade of harmful mast cell activities. An alternative strategy may therefore be to locally reduce skin mast cell numbers. Here, we explored the possibility of using lysosomotropic agents for this purpose, appreciating the fact that mast cell granules contain bioactive compounds prone to trigger apoptosis if released into the cytosolic compartment. Based on this principle, we show that incubation of human skin punch biopsies with the lysosomotropic agents siramesine or Leu-Leu methyl ester preferably ablated the mast cell population, without causing any gross adverse effects on the skin morphology. Subsequent analysis revealed that mast cells treated with lysosomotropic agents predominantly underwent apoptotic rather than necrotic cell death. In summary, this study raises the possibility of using lysosomotropic agents as a novel approach to targeting deleterious mast cell populations in cutaneous mastocytosis and other skin disorders negatively influenced by mast cells. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Granule fraction inhomogeneity of calcium carbonate/sorbitol in roller compacted granules.

    PubMed

    Bacher, C; Olsen, P M; Bertelsen, P; Sonnergaard, J M

    2008-02-12

    The granule fraction inhomogeneity of roller compacted granules was examined on mixtures of three different morphologic forms of calcium carbonate and three particle sizes of sorbitol. The granule fraction inhomogeneity was determined by the distribution of the calcium carbonate in each of the 10 size fractions between 0 and 2000 microm and by calculating the demixing potential. Significant inhomogeneous occurrence of calcium carbonate in the size fractions was demonstrated, depending mostly on the particles sizes of sorbitol but also on the morphological forms of calcium carbonate. The heterogeneous distribution of calcium carbonate was related to the decrease in compactibility of roller compacted granules in comparison to the ungranulated materials. This phenomenon was explained by a mechanism where fracturing of the ribbon during granulation occurred at the weakest interparticulate bonds (the calcium carbonate: calcium carbonate bonds) and consequently exposed the weakest areas of bond formation on the surface of the granules. Accordingly, the non-uniform allocation of the interparticulate attractive forces in a tablet would cause a lowering of the compactibility. Furthermore, the ability of the powder to agglomerate in the roller compactor was demonstrated to be related to the ability of the powder to be compacted into a tablet, thus the most compactable calcium carbonate and the smallest sized sorbitol improved the homogeneity by decreasing the demixing potential.

  7. Isolated Rat Hepatocyte Couplets: A Primary Secretory Unit for Electrophysiologic Studies of Bile Secretory Function

    NASA Astrophysics Data System (ADS)

    Graf, J.; Gautam, A.; Boyer, J. L.

    1984-10-01

    Hepatocyte couplets were isolated by collagenase perfusion from rat liver. Between adjacent cells, the bile canaliculus forma a closed space into which secretion occurs. As in intact liver, Mg2+-ATPase is localized at the canalicular lumen, the organic anion fluorescein is excreted, and secretion is modified by osmotic gradients. By passing a microelectrode through one cell into the canalicular vacuole, a transepithelial potential profile was obtained. In 27 cell couplets the steady-state intracellular (-26.3 ± 5.3 mV) and intracanalicular (-5.9 ± 3.3 mV) potentials were recorded at 37 degrees C with reference to the external medium. Input resistances were determined within the cell (86 ± 23 MΩ ) and in the bile canalicular lumen (32 ± 17 MΩ ) by passing current pulses through the microelectrode. These data define electrical driving forces for ion transport across the sinusoidal, canalicular, and paracellular barriers and indicate ion permeation across a leaky paracellular junctional pathway. These findings indicate that the isolated hepatocyte couplet is an effective model for electrophysiologic studies of bile secretory function.

  8. Effervescent Granules Prepared Using Eucommia ulmoides Oliv. and Moso Bamboo Leaves: Hypoglycemic Activity in HepG2 Cells

    PubMed Central

    Li, Xiang-Zhou

    2016-01-01

    Eucommia ulmoides Oliv. (E. ulmoides Oliv.) and moso bamboo (Phyllostachys pubescens) leaves are used as folk medicines in central-western China to treat diabetes. To investigate the hypoglycemic activity of the effervescent granules prepared using E. ulmoides Oliv. and moso bamboo leaves (EBEG) in HepG2 cells, EBEG were prepared with 5% of each of polysaccharides and chlorogenic acids from moso bamboo and E. ulmoides Oliv. leaves, respectively. HepG2 cells cultured in a high-glucose medium were classified into different groups. The results displayed EBEG-treated cells showed better glucose utilization than the negative controls; thus, the hypoglycemic effect of EBEG was much greater than that of granules prepared using either component alone, thereby indicating that this effect was due to a synergistic action of the components. Further, glucose consumption levels in the cells treated with EBEG (156.35% at 200 μg/mL) and the positive controls (metformin, 162.29%; insulin, 161.52%) were similar. Thus, EBEG exhibited good potential for use as a natural antidiabetic agent. The hypoglycemic effect of EBEG could be due to the synergistic action of polysaccharides from the moso bamboo leaves and chlorogenic acids from E. ulmoides Oliv. leaves via the inhibition of alpha-glucosidase and glucose-6-phosphate displacement enzyme. PMID:27656239

  9. [The structure of the gastric mucosa of the llamas (Lama guanocoe and Lama lamae). I. Forestomach].

    PubMed

    Luciano, L; Voss-Wermbter, G; Behnke, M; von Engelhardt, W; Reale, E

    1979-01-01

    The mucous membrane of the first and second compartments (ventral regions) as well as of the third compartment of Lama guanacoe and Lama lamae stomach shows tubular glands opening into pits. Below the surface epithelium blood capillaries of the fenestrated type form a regular network, each mesh of which surrounds a gastric pit. From a morphological point of view (thin section and freeze-fracture replicas) the columnar cells of the surface epithelium and those of the pits closest to the capillaries are largely similar to the epithelial cells of the rabbit gallbladder. This similarity suggests that at the level of the columnar cells sodium-dependent water reabsorption occurs. This reabsorption has already been demonstrated in the abovementioned compartments by physiological methods. The surface and foveolae epithelial cells as well as some cells of the tubular glands have a secretory function. Their secretory granules contain mucosubstances, as indicated by light-(PAS- and Alcian blue reactions) and electron microscopic (PA-TCH-Ag-reaction) histochemistry. The secretory granules originate from the Golgi complex which shows a positive histochemical reaction in its innermost sacculi at the electron microscope level. Endocrine cells (s. second part of this investigation) are rare. The mucosal membrane of each muscular lip separating the glandular sacs in the first compartment shows a stratified, not keratinized, squamous epithelium.

  10. Probing the role of nonmuscle tropomyosin isoforms in intracellular granule movement by microinjection of monoclonal antibodies

    PubMed Central

    1989-01-01

    Chicken embryo fibroblast (CEF) cells were microinjected with several different monoclonal antibodies that recognize certain nonmuscle isoforms of tropomyosin. Immediately after injection, cells were recorded with a time-lapse video imaging system; later analysis of the tapes revealed that particles in cells injected with one of these antibodies (CG1, specific for CEF tropomyosin isoforms 1 and 3) showed a dramatic decrease in instantaneous speed while moving, distance moved per saltation, and proportion of time spent in motion. Injection of Fab fragments of CG1 resulted in similar changes in the pattern of granule movement. This inhibition of granule movement by CG1 antibody was reversible; at 2.5 h after injection, granules in injected cells had already reached three-fourths of normal speed. The speed of granule movement in cells injected either with antibody specific for tropomyosin isoforms not present in CEF cells, or with CG1 antibody preabsorbed with tropomyosin, was not significantly different from the speed of granules in uninjected cells. When cells were injected with CG1 or Fab fragments of CG1, fixed, and counter-stained with rabbit antibodies to reveal the microtubule, microfilament, and intermediate filament systems, no obvious differences from the patterns normally seen in uninjected cells were observed. Examination of the ultrastructure of injected cells by EM confirmed the presence of apparently intact and normal microtubule, actin, and intermediate filament networks. These experiments suggest that tropomyosin may play an important role in the movement of vesicles and organelles in the cell cytoplasm. Also, we have shown previously that the CG1 determinant can undergo a motility-dependent change in reactivity, that may be important for the regulatory function of nonmuscle tropomyosin (Hegmann, T. E., J. L.-C. Lin, and J. J.-C. Lin. 1988. J. Cell Biol. 106:385-393). Therefore, in addition to postulated microtubule-based motors, microfilaments may

  11. Studies on the transport of secretory granules in the magnocellular hypothalamic neurons of the rat. II. Action of vincristine on axonal flow and neurotubules in the paraventricular and supraoptic nuclei.

    PubMed

    Flament-Durand, J; Couck, A M; Dustin, P

    1975-11-26

    Intrathecal administration of 20 mug of vincristine sulphate in the rat induced in vivo the formation of paracrystalline inclusions mainly in axonal processes. This is associated with an impairment in the migration of neurosecretory granules as shown by their accumulation in the perikarya of the magnocellular neurons. The granules are intermixed with numerous dense bodies of various shape, sometimes with a fibrillar content, and probably of lysosomal origin. In addition to the impairment of the flow of neurosecretory granules, there is also a striking accumulation of mitochondria and synaptic vesicles, and an apparent proliferation of the smooth endoplasmic reticulum. In the posterior lobe, the axonal endings contain a large number of neurosecretory granules, intermingled with bodies of varying shapes and electron density. Occasionally, a dense membrane surrounding a group of elementary granules is observed, reacting positively for acid phosphatase. This suggests an attempted crinophagia.

  12. GRA12, a Toxoplasma dense granule protein associated with the intravacuolar membranous nanotubular network.

    PubMed

    Michelin, Adeline; Bittame, Amina; Bordat, Yann; Travier, Laetitia; Mercier, Corinne; Dubremetz, Jean-François; Lebrun, Maryse

    2009-02-01

    The intracellular protozoan parasite Toxoplasma gondii develops within the parasitophorous vacuole (PV), an intracellular niche in which it secretes proteins from secretory organelles named dense granules and rhoptries. Here, we describe a new dense granule protein that should now be referred to as GRA12, and that displays no homology with other proteins. Immunofluorescence and immuno-electron microscopy showed that GRA12 behaves similarly to both GRA2 and GRA6. It is secreted into the PV from the anterior pole of the parasite soon after the beginning of invasion, transits to the posterior invaginated pocket of the parasite where a membranous tubulovesicular network is first assembled, and finally resides throughout the vacuolar space, associated with the mature membranous nanotubular network. GRA12 fails to localise at the parasite posterior end in the absence of GRA2. Within the vacuolar space, like the other GRA proteins, GRA12 exists in both a soluble and a membrane-associated form. Using affinity chromatography experiments, we showed that in both the parasite and the PV soluble fractions, GRA12 is purified with the complex of GRA proteins associated with a tagged version of GRA2 and that this association is lost in the PV membranous fraction.

  13. [Preparation and evaluation of taste masked orally disintegrating tablets with granules made by the wet granulation method].

    PubMed

    Kawano, Yayoi; Ito, Akihiko; Sasatsu, Masanaho; Machida, Yoshiharu; Onishi, Hiraku

    2010-12-01

    Using furosemide (FU) as a model drug, we examined the wet granulation method as a way to improve the taste masking and physical characteristics of orally disintegrating tablets (ODTs). In the wet granulation method, yogurt powder (YO) was used as a corrective and maltitol (MA) was used as a binding agent. The taste masked FU tablets were prepared using the direct compression method. Microcrystalline cellulose (Avicel® PH-302) and mannitol were added as excipients at a mixing ratio of 1/1 by weight. Based on the results of sensory test on taste, the prepared granules markedly improved the taste of FU, and a sufficient masking effect was obtained at the YO/FU ratio of 1 or more. Furthermore, it was found that the masking effect achieved by YO granules made with the wet granulation method was similar to or better than that produced by the granules made with dry granulation method. All types of tablets displayed sufficient hardness (over 3.5×10(-2) kN), and rapidly disintegrating tablets were obtained with YO granules produced at a mixing ratio of FU/YO=1/1, which disintegrated within 20 s. Disintegration time lengthened as the mixing ratio of YO to FU increased. In the mixing ratio of FU/YO=1/1, the hardness of tablets with granules made by the wet granulation method exceeded that of tablets with granules made by the dry granulation method, with minimal differences in disintegration time. The hardness and disintegration time of the tablets with granules made by the wet granulation method could be controlled by varying the compression force. In conclusion, YO was found to be a useful additive for masking unpleasant tastes. FU ODTs with improved taste, rapid disintegration and greater hardness could be prepared with YO-containing granules made by the wet granulation method using MA as a binding agent.

  14. [A method for the primary culture of fibroblasts isolated from human airway granulation tissues].

    PubMed

    Chen, Nan; Zhang, Jie; Xu, Min; Wang, Yu-ling; Pei, Ying-hua

    2013-04-01

    To establish a feasible method to culture primary fibroblasts isolated from human airway granulation tissues, and therefore to provide experimental data for the investigation of the pathogenesis of benign airway stenosis. The granulation tissues were collected from 6 patients during routine bronchoscopy at our department of Beijing Tiantan Hospital from April to June 2011. Primary fibroblasts were obtained by culturing the explanted tissues. Cell growth was observed under inverted microscope. All of these 6 primary cultures were successful. Fibroblast-like cells were observed to migrate from the tissue pieces 3 d after inoculation. After 9-11 d of culture, cells reached to 90% confluence and could be sub-cultured. After passage, the cells were still in a typical elongated spindle-shape and grew well. The cells could be sub-cultured further when they formed a monolayer. Explant culture is a reliable method for culturing primary fibroblasts from human airway granulation tissues.

  15. Ultrastructural Evidence of Serous Gland Polymorphism in the Skin of the Tungara Frog Engystomops pustulosus (Anura Leptodactylidae).

    PubMed

    Delfino, Giovanni; Giachi, Filippo; Malentacchi, Cecilia; Nosi, Daniele

    2015-09-01

    Three types of serous products were detected in the syncytial cutaneous glands of the leptodactylid tungara frog, Engystomops pustulosus: type Ia, granules with wide halos and variable density cores; type Ib, high density granules without halos; and type II, vesicles containing a finely dispersed product. Ultrastructural evidence revealed that these products were manufactured by different serous gland types and excluded that they represented different steps in the secretory cycle of a single gland type. Indeed, secretory maturation affecting the products released by the Golgi apparatus proceeded through different mechanisms: confluence (vesicles), interactions between syncytium and secretory product (type Ib granules), and a combination of both processes (type Ia granules). In conclusion, this investigation of secretory maturation was shown to be a suitable approach for the identification of serous gland polymorphism and demonstrated that the tungara frog belongs to the minority of anuran species characterized by this peculiar morpho-functional trait. © 2015 Wiley Periodicals, Inc.

  16. Post-secretory fate of host defence components in mucus.

    PubMed

    Salathe, Matthias; Forteza, Rosanna; Conner, Gregory E

    2002-01-01

    Airway mucus is a complex mixture of secretory products that provide a multifaceted defence against infection. Among many antimicrobial substances, mucus contains a peroxidase identical to milk lactoperoxidase (LPO) that is produced by goblet cells and submucosal glands. Airway secretions contain the substrates for LPO, namely thiocyanate and hydrogen peroxide, at concentrations sufficient for production of the biocidal compound hypothiocyanite, a fact confirmed by us in vitro. In vivo, inhibition of airway LPO in sheep significantly inhibits bacterial clearance, suggesting that the LPO system is a major contributor to host defences. Since secretory products including LPO are believed to be steadily removed by mucociliary clearance, their amount and availability on the surface is thought to be controlled solely by secretion. In contrast to this paradigm, new data suggest that LPO and other substances are retained at the ciliary border of the airway epithelium by binding to surface-associated hyaluronan, thereby providing an apical, fully active enzyme pool. Thus, hyaluronan, secreted from submucosal gland cells, plays a previously unrecognized pivotal role in mucosal host defence by retaining LPO and possibly other substances important for first line host defence at the apical surface 'ready for use' and protected from ciliary clearance.

  17. Syntaxin-4 mediates exocytosis of pre-docked and newcomer insulin granules underlying biphasic glucose-stimulated insulin secretion in human pancreatic beta cells.

    PubMed

    Xie, Li; Zhu, Dan; Dolai, Subhankar; Liang, Tao; Qin, Tairan; Kang, Youhou; Xie, Huanli; Huang, Ya-Chi; Gaisano, Herbert Y

    2015-06-01

    Of the four exocytotic syntaxins (Syns), much is now known about the role of Syn-1A (pre-docked secretory granules [SGs]) and Syn-3 (newcomer SGs) in insulin exocytosis. Some work was reported on Syn-4's role in biphasic glucose-stimulated insulin secretion (GSIS), but its precise role in insulin SG exocytosis remains unclear. In this paper we examine this role in human beta cells. Endogenous function of Syn-4 in human islets was assessed by knocking down its expression with lentiviral single hairpin RNA (lenti-shRNA)-RFP. Biphasic GSIS was determined by islet perifusion assay. Single-cell analysis of exocytosis of red fluorescent protein (RFP)-positive beta cells (exhibiting near-total depletion of Syn-4) was by patch clamp capacitance measurements (Cm) and total internal reflection fluorescence microscopy (TIRFM), the latter to further assess single SG behaviour. Co-immunoprecipitations were conducted on INS-1 cells to assess exocytotic complexes. Syn-4 knockdown (KD) of 77% in human islets caused a concomitant reduction in cognate Munc18c expression (46%) without affecting expression of other exocytotic proteins; this resulted in reduction of GSIS in the first phase (by 42%) and the second phase (by 40%). Cm of RFP-tagged Syn-4-KD beta cells showed severe inhibition in the readily releasable pool (by 71%) and mobilisation from reserve pools (by 63%). TIRFM showed that Syn-4-KD-induced inhibition of first-phase GSIS was attributed to reduction in exocytosis of both pre-docked and newcomer SGs (which undergo minimal residence or docking time at the plasma membrane before fusion). Second-phase inhibition was attributed to reduction in newcomer SGs. Stx-4 co-immunoprecipitated Munc18c, VAMP2 and VAMP8, suggesting that these exocytotic complexes may be involved in exocytosis of pre-docked and newcomer SGs. Syn-4 is involved in distinct molecular machineries that influence exocytosis of both pre-docked and newcomer SGs in a manner functionally redundant to Syn-1A and

  18. PC5-A-mediated processing of pro-neurotensin in early compartments of the regulated secretory pathway of PC5-transfected PC12 cells.

    PubMed

    Barbero, P; Rovère, C; De Bie, I; Seidah, N; Beaudet, A; Kitabgi, P

    1998-09-25

    Among the members of the proprotein convertase (PC) family, PC1 and PC2 have well established roles as prohormone convertases. Another good candidate for this role is PC5-A that has been shown to be present in the regulated secretory pathway of certain neuroendocrine tissues, but evidence that it can process prohormones is lacking. To determine whether PC5-A could function as a prohormone convertase and to compare its cleavage specificity with that of PC1 and PC2, we stably transfected the rat pheochromocytoma PC12 cell line with PC5-A and analyzed the biosynthesis and subcellular localization of the enzyme, as well as its ability to process pro-neurotensin/neuromedin N (pro-NT/NN) into active peptides. Our data showed that in transfected PC12 cells, PC5-A was converted from its 126-kDa precursor form into a 117-kDa mature form and, to a lesser extent, into a C-terminally truncated 65-kDa form of the 117-kDa product. Metabolic and immunochemical studies showed that PC5-A was sorted to early compartments of the regulated secretory pathway where it colocalized with immunoreactive NT. Furthermore, pro-NT/NN was processed in these compartments according to a pattern that differed from that previously described in PC1- and PC2-transfected PC12 cells. This pattern resembled that previously reported for pro-NT/NN processing in the adrenal medulla, a tissue known to express high levels of PC5-A. Altogether, these data demonstrate for the first time the ability of PC5-A to function as a prohormone convertase in the regulated secretory pathway and suggest a role for this enzyme in the physiological processing of pro-NT/NN.

  19. Secretory expression of Lentinula edodes intracellular laccase by yeast high-cell-density system: sub-milligram production of difficult-to-express secretory protein.

    PubMed

    Kurose, Takeshi; Saito, Yuta; Kimata, Koichi; Nakagawa, Yuko; Yano, Akira; Ito, Keisuke; Kawarasaki, Yasuaki

    2014-06-01

    While a number of heterologous expression systems have been reported for extracellular laccases, there are few for the intracellular counterparts. The Lentinula edodes intracellular laccase Lcc4 is an industrially potential enzyme with its unique substrate specificity. The heterologous production of the intracellular laccase, however, had been difficult because of its expression-dependent toxicity. We previously demonstrated that recombinant yeast cells synthesized and, interestingly, secreted Lcc4 only when they were suspended to an inducing medium in a high cell-density (J. Biosci. Bioeng., 113, 154-159, 2012). The high cell-density system was versatile and applicable to other difficult-to-express secretory proteins. Nevertheless, the system's great dependence on aeration, which was a practical obstacle to scale-up production of the enzyme and some other proteins, left the secretion pathway and enzymatic properties of the Lcc4 uncharacterized. In this report, we demonstrate a successful production of Lcc4 by applying a jar-fermentor to the high cell-density system. The elevated yield (0.6 mg L(-1)) due to the sufficient aeration allowed us to prepare and purify the enzyme to homogeneity. The enzyme had been secreted as a hyper-glycosylated protein, resulting in smear band-formations in SDS-PAGE. The amino acid sequencing analysis suggested that the N-terminal 17 residues had been recognized as a secretion signal. The recombinant enzyme showed similar enzymatic properties to the naturally occurring Lcc4. The characteristics of the scale-upped expression system, which includes helpful information for the potential users, have also been described. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Stress granule formation via ATP depletion-triggered phase separation

    NASA Astrophysics Data System (ADS)

    Wurtz, Jean David; Lee, Chiu Fan

    2018-04-01

    Stress granules (SG) are droplets of proteins and RNA that form in the cell cytoplasm during stress conditions. We consider minimal models of stress granule formation based on the mechanism of phase separation regulated by ATP-driven chemical reactions. Motivated by experimental observations, we identify a minimal model of SG formation triggered by ATP depletion. Our analysis indicates that ATP is continuously hydrolysed to deter SG formation under normal conditions, and we provide specific predictions that can be tested experimentally.

  1. DAZL is essential for stress granule formation implicated in germ cell survival upon heat stress.

    PubMed

    Kim, Byunghyuk; Cooke, Howard J; Rhee, Kunsoo

    2012-02-01

    Mammalian male germ cells should be maintained below body temperature for proper development. Here, we investigated how male germ cells respond to heat stress. A short exposure of mouse testes to core body temperature induced phosphorylation of eIF2α and the formation of stress granules (SGs) in male germ cells. We observed that DAZL, a germ cell-specific translational regulator, was translocated to SGs upon heat stress. Furthermore, SG assembly activity was significantly diminished in the early male germ cells of Dazl-knockout mice. The DAZL-containing SGs played a protective role against heat stress-induced apoptosis by the sequestration of specific signaling molecules, such as RACK1, and the subsequent blockage of the apoptotic MAPK pathway. Based on these results, we propose that DAZL is an essential component of the SGs, which prevent male germ cells from undergoing apoptosis upon heat stress.

  2. Surface Modification of Porous Titanium Granules for Improving Bioactivity.

    PubMed

    Karaji, Zahra Gorgin; Houshmand, Behzad; Faghihi, Shahab

    The highly porous titanium granules are currently being used as bone substitute material and for bone tissue augmentation. However, they suffer from weak bone bonding ability. The aim of this study was to create a nanostructured surface oxide layer on irregularly shaped titanium granules to improve their bioactivity. This could be achieved using optimized electrochemical anodic oxidation (anodizing) and heat treatment processes. The anodizing process was done in an ethylene glycol-based electrolyte at an optimized condition of 60 V for 3 hours. The anodized granules were subsequently annealed at 450°C for 1 hour. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD) were used to characterize the surface structure and morphology of the granules. The in vitro bioactivity of the samples was evaluated by immersion of specimens in simulated body fluid (SBF) for 1, 2, and 3 weeks. The human osteoblastic sarcoma cell line, MG63, was used to evaluate cell viability on the samples using dimethylthiazol-diphenyl tetrazolium bromide (MTT) assay. The results demonstrated the formation of amorphous nanostructured titanium oxide after anodizing, which transformed to crystalline anatase and rutile phases upon heat treatment. After immersion in SBF, spherical aggregates of amorphous calcium phosphate were formed on the surface of the anodized sample, which turned into crystalline hydroxyapatite on the surface of the anodized annealed sample. No cytotoxicity was detected among the samples. It is suggested that anodic oxidation followed by heat treatment could be used as an effective surface treatment procedure to improve bioactivity of titanium granules implemented for bone tissue repair and augmentation.

  3. Secretory IgM Exacerbates Tumor Progression by Inducing Accumulations of MDSCs in Mice.

    PubMed

    Tang, Chih-Hang Anthony; Chang, Shiun; Hashimoto, Ayumi; Chen, Yi-Ju; Kang, Chang Won; Mato, Anthony R; Del Valle, Juan R; Gabrilovich, Dmitry I; Hu, Chih-Chi Andrew

    2018-06-01

    Chronic lymphocytic leukemia (CLL) cells can secrete immunoglobulin M. However, it is not clear whether secretory IgM (sIgM) plays a role in disease progression. We crossed the Eμ-TCL1 mouse model of CLL, in which the expression of human TCL1 oncogene was driven by the V(H) promoter-Ig(H)-Eμ enhancer, with MD4 mice whose B cells produced B-cell receptor (membrane-bound IgM) and sIgM with specificity for hen egg lysozyme (HEL). CLL cells that developed in these MD4/Eμ-TCL1 mice reactivated a parental Ig gene allele and secreted IgM, and did not recognize HEL. The MD4/Eμ-TCL1 mice had reduced survival, increased myeloid-derived suppressor cells (MDSC), and decreased numbers of T cells. We tested whether sIgM could contribute to the accumulation of MDSCs by crossing μS -/- mice, which could not produce sIgM, with Eμ-TCL1 mice. The μS -/- /Eμ-TCL1 mice survived longer than Eμ-TCL1 mice and developed decreased numbers of MDSCs which were less able to suppress proliferation of T cells. We targeted the synthesis of sIgM by deleting the function of XBP-1s and showed that targeting XBP-1s genetically or pharmacologically could lead to decreased sIgM, accompanied by decreased numbers and reduced functions of MDSCs in MD4/Eμ-TCL1 mice. Additionally, MDSCs from μS -/- mice grafted with Lewis lung carcinoma were inefficient suppressors of T cells, resulting in slower tumor growth. These results demonstrate that sIgM produced by B cells can upregulate the functions of MDSCs in tumor-bearing mice to aggravate cancer progression. In a mouse model of CLL, production of secretory IgM led to more MDSCs, fewer T cells, and shorter survival times for the mice. Thus, secretory IgM may aggravate the progression of this cancer. Cancer Immunol Res; 6(6); 696-710. ©2018 AACR . ©2018 American Association for Cancer Research.

  4. Aspiration biopsy of mammary analogue secretory carcinoma of accessory parotid gland: another diagnostic dilemma in matrix-containing tumors of the salivary glands.

    PubMed

    Levine, Pascale; Fried, Karen; Krevitt, Lane D; Wang, Beverly; Wenig, Bruce M

    2014-01-01

    Mammary analogue secretory carcinoma (MASC) is a newly described rare salivary gland tumor, which shares morphologic features with acinic cell carcinoma, low-grade cystadenocarcinoma, and secretory carcinoma of the breast. This is the first reported case of MASC of an accessory parotid gland detected by aspiration biopsy with radiologic and histologic correlation in a 34-year-old patient. Sonographically-guided aspiration biopsy showed cytologic features mimicking those of low-grade mucoepidermoid carcinoma, including sheets of bland epithelial cells, dissociated histiocytoid cells with intracytoplasmic mucinous material, and spindle cells lying in a web-like matrix. Histologic sections showed a circumscribed tumor with microcystic spaces lined by bland uniform epithelial cells and containing secretory material. The tumor cells expressed mammaglobin and BRST-2. The cytologic features, differential diagnosis, and pitfalls are discussed. The pathologic stage was pT1N0. The patient showed no evidence of disease at 1 year follow-up. Copyright © 2012 Wiley Periodicals, Inc.

  5. Unique Asymmetric Protrusion of Nerve Cord in the Amphioxus, Branchiostoma belcheri

    NASA Astrophysics Data System (ADS)

    Nozaki, Masumi; Terakado, Kiyoshi; Kubokawa, Kaoru

    The amphioxus is the only surviving prevertebrate segmented chordate. In this animal Hatschek's pit has long been regarded as a putative homologue of the adenohypophysis because of the presence of secretory granules and immunoreactive cells to vertebrate gonadotrophic hormone in this organ. We found that the nerve cord extends a protrusion to the pit along the right side of the notochord. Furthermore, secretory granules were found not only in the pit but also in the protrusion of the nerve cord. These results suggest that Hatschek's pit and the nerve protrusion are homologous to the adenohypophysis and neurohypophysis, respectively. We believe that this is an evidence for the presence of the neuroendocrine link between the central nervous system and Hatschek's pit in the amphioxus.

  6. Ulex europaeus agglutinin-I binds to developing gastrin cells.

    PubMed

    Ge, Z H; Blom, J; Larsson, L I

    1998-03-01

    We have previously reported that antropyloric gastrin (G) and somatostatin (D) cells derive from precursor (G/D) cells that coexpress both hormones. We have now analyzed this endocrine cell pedigree for binding of Ulex europaeus agglutinin-I (UEA-I), which previously has been reported to represent a useful marker for cell differentiation. Subpopulations of G/D, D, and G cells were all found to express UEA-I binding. Labelling with bromodeoxyuridine showed that UEA-I positive G cells possessed a higher labelling index than UEA-I negative G cells. These data suggest that the UEA-I positive G cells represent maturing cells still involved in DNA synthesis and cell division. Electron microscopically, specific UEA-I binding sites were localized to the secretory granules and the apical cell membrane of G cells. We conclude that UEA-I represents a differentiation marker for G cells. Moreover, the presence of UEA-I binding sites in these cells may be relevant for Helicobacter pylori-mediated disturbances of gastric acid secretion and gastrin hypersecretion.

  7. A yeast mutant defective at an early stage in import of secretory protein precursors into the endoplasmic reticulum

    PubMed Central

    1987-01-01

    We have devised a genetic selection for mutant yeast cells that fail to translocate secretory protein precursors into the lumen of the endoplasmic reticulum (ER). Mutant cells are selected by a procedure that requires a signal peptide-containing cytoplasmic enzyme chimera to remain in contact with the cytosol. This approach has uncovered a new secretory mutant, sec61, that is thermosensitive for growth and that accumulates multiple secretory and vacuolar precursor proteins that have not acquired any detectable posttranslational modifications associated with translocation into the ER. Preproteins that accumulate at the sec61 block sediment with the particulate fraction, but are exposed to the cytosol as judged by sensitivity to proteinase K. Thus, the sec61 mutation defines a gene that is required for an early cytoplasmic or ER membrane-associated step in protein translocation. PMID:3305520

  8. Analysis of the release process of phenylpropanolamine hydrochloride from ethylcellulose matrix granules V. Release properties of ethylcellulose layered matrix granules.

    PubMed

    Fukui, Atsuko; Fujii, Ryuta; Yonezawa, Yorinobu; Sunada, Hisakazu

    2008-04-01

    In the pharmaceutical preparation of a controlled release drug, it is very important and necessary to understand the release properties. In previous papers, a combination of the square-root time law and cube-root law equations was confirmed to be a useful equation for qualitative treatment. It was also confirmed that the combination equation could analyze the release properties of layered granules as well as matrix granules. The drug release property from layered granules is different from that of matrix granules. A time lag occurs before release, and the entire release property of layered granules was analyzed using the combination of the square-root time law and cube-root law equations. It is considered that the analysis method is very useful and efficient for both matrix and layered granules. Comparing the granulation methods, it is easier to control the manufacturing process by tumbling granulation (method B) than by tumbling-fluidized bed granulation (method C). Ethylcellulose (EC) layered granulation by a fluidized bed granulator might be convenient for the preparation of controlled release dosage forms as compared with a tumbling granulator, because the layered granules prepared by the fluidized bed granulator can granulate and dry at the same time. The time required for drying by the fluidized bed granulator is shorter than that by the tumbling granulator, so the fluidized bed granulator is convenient for preparation of granules in handling and shorter processing time than the tumbling granulator. It was also suggested that the EC layered granules prepared by the fluidized bed granulator were suitable for a controlled release system as well as the EC matrix granules.

  9. Phenotypic properties and microbial diversity of methanogenic granules from a full-scale upflow anaerobic sludge bed reactor treating brewery wastewater.

    PubMed

    Díaz, Emiliano E; Stams, Alfons J M; Amils, Ricardo; Sanz, José L

    2006-07-01

    Methanogenic granules from an anaerobic bioreactor that treated wastewater of a beer brewery consisted of different morphological types of granules. In this study, the microbial compositions of the different granules were analyzed by molecular microbiological techniques: cloning, denaturing gradient gel electrophoresis and fluorescent in situ hybridization (FISH), and scanning and transmission electron microscopy. We propose here that the different types of granules reflect the different stages in the life cycle of granules. Young granules were small, black, and compact and harbored active cells. Gray granules were the most abundant granules. These granules have a multilayer structure with channels and void areas. The core was composed of dead or starving cells with low activity. The brown granules, which were the largest granules, showed a loose and amorphous structure with big channels that resulted in fractured zones and corresponded to the older granules. Firmicutes (as determined by FISH) and Nitrospira and Deferribacteres (as determined by cloning and sequencing) were the predominant Bacteria. Remarkably, Firmicutes could not be detected in the brown granules. The methanogenic Archaea identified were Methanosaeta concilii (70 to 90% by FISH and cloning), Methanosarcina mazei, and Methanospirillum spp. The phenotypic appearance of the granules reflected the physiological condition of the granules. This may be valuable to easily select appropriate seed sludges to start up other reactors.

  10. Large-scale horizontal flows from SOUP observations of solar granulation

    NASA Technical Reports Server (NTRS)

    November, L. J.; Simon, G. W.; Tarbell, T. D.; Title, A. M.; Ferguson, S. H.

    1987-01-01

    Using high resolution time sequence photographs of solar granulation from the SOUP experiment on Spacelab 2, large scale horizontal flows were observed in the solar surface. The measurement method is based upon a local spatial cross correlation analysis. The horizontal motions have amplitudes in the range 300 to 1000 m/s. Radial outflow of granulation from a sunspot penumbra into surrounding photosphere is a striking new discovery. Both the supergranulation pattern and cellular structures having the scale of mesogranulation are seen. The vertical flows that are inferred by continuity of mass from these observed horizontal flows have larger upflow amplitudes in cell centers than downflow amplitudes at cell boundaries.

  11. Large-scale horizontal flows from SOUP observations of solar granulation

    NASA Astrophysics Data System (ADS)

    November, L. J.; Simon, G. W.; Tarbell, T. D.; Title, A. M.; Ferguson, S. H.

    1987-09-01

    Using high-resolution time-sequence photographs of solar granulation from the SOUP experiment on Spacelab 2 the authors observed large-scale horizontal flows in the solar surface. The measurement method is based upon a local spatial cross correlation analysis. The horizontal motions have amplitudes in the range 300 to 1000 m/s. Radial outflow of granulation from a sunspot penumbra into the surrounding photosphere is a striking new discovery. Both the supergranulation pattern and cellular structures having the scale of mesogranulation are seen. The vertical flows that are inferred by continuity of mass from these observed horizontal flows have larger upflow amplitudes in cell centers than downflow amplitudes at cell boundaries.

  12. Identification of Secretory Odontoblasts Using DMP1-GFP Transgenic Mice

    PubMed Central

    Balic, Anamaria; Mina, Mina

    2011-01-01

    Terminal differentiation of odontoblasts from dental papilla is a long process involving several intermediate steps and changes in the transcriptional profile and expression of proteins secreted by cells in the odontoblast lineage. Transgenic mouse lines in which GFP expression is under the control of tissue-and stage specific promoters have provided powerful experimental tools for identification and isolation of cells at specific stages of differentiation along a lineage. Our previous studies showed utilization of pOBCol3.6GFP and pOBCol2.3GFP animals for identification of odontoblasts at early and late stages of polarization respectively. In the present study we used the DMP1-GFP transgenic animal as an experimental model to examine its expression during the differentiation of odontoblasts from progenitor cells in vivo and in vitro. Our observations showed that DMP1-GFP transgene is first activated in secretory/functional odontoblasts engaged in secretion of predentin and then transiently expressed at high levels in newly differentiated odontoblasts. Expression of DMP1-GFP was down-regulated in highly differentiated odontoblasts. The temporal and spatial pattern of expression of DMP1-GFP transgene closely mimics the expression of endogenous DMP1. This transgenic animal will facilitate studies of gene expression and biological functions in secretory/functional odontoblasts. PMID:21172466

  13. Ultrastructural aspects of feeding and secretion-excretion by the equine parasite Strongylus vulgaris.

    PubMed

    Mobarak, M S; Ryan, M F

    1999-06-01

    Light, scanning, and transmission electron microscopy were employed to provide further data on the putative origins of the immunogenic secretory-excretory product (ESP) of Strongylus vulgaris (Looss 1900). The sharply delineated but superficial attachment to the equine caecum by the mouth leaves behind an oval area devoid of epithelial cells. Attachment does not extend deeply enough to reach the muscularis mucosa layer of the equine intestine. The progressive digestion of the ingested plug of tissue (epithelial cells, blood cells and mucous) was visualized. The coelomocytes, floating cells and membranous structures located in the pseudocoelom and intimately associated with the digestive, excretory and reproductive systems, and with the somatic muscles are described. The secretory-excretory system comprises two, ventrally-located, secretory-excretory glands connected to tubular elements. These glands synthesize granules of various sizes and densities that are delineated.

  14. Continuous melt granulation: Influence of process and formulation parameters upon granule and tablet properties.

    PubMed

    Monteyne, Tinne; Vancoillie, Jochem; Remon, Jean-Paul; Vervaet, Chris; De Beer, Thomas

    2016-10-01

    The pharmaceutical industry has a growing interest in alternative manufacturing models allowing automation and continuous production in order to improve process efficiency and reduce costs. Implementing a switch from batch to continuous processing requires fundamental process understanding and the implementation of quality-by-design (QbD) principles. The aim of this study was to examine the relationship between formulation-parameters (type binder, binder concentration, drug-binder miscibility), process-parameters (screw speed, powder feed rate and granulation temperature), granule properties (size, size distribution, shape, friability, true density, flowability) and tablet properties (tensile strength, friability, dissolution rate) of four different drug-binder formulations using Design of experiments (DOE). Two binders (polyethylene glycol (PEG) and Soluplus®) with a different solid state, semi-crystalline vs amorphous respectively, were combined with two model-drugs, metoprolol tartrate (MPT) and caffeine anhydrous (CAF), both having a contrasting miscibility with the binders. This research revealed that the granule properties of miscible drug-binder systems depended on the powder feed rate and barrel filling degree of the granulator whereas the granule properties of immiscible systems were mainly influenced by binder concentration. Using an amorphous binder, the tablet tensile strength depended on the granule size. In contrast, granule friability was more important for tablet quality using a brittle binder. However, this was not the case for caffeine-containing blends, since these phenomena were dominated by the enhanced compression properties of caffeine Form I, which was formed during granulation. Hence, it is important to gain knowledge about formulation behavior during processing since this influences the effect of process parameters onto the granule and tablet properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Role for the actomyosin complex in regulated exocytosis revealed by intravital microscopy

    PubMed Central

    Masedunskas, Andrius; Sramkova, Monika; Parente, Laura; Sales, Katiuchia Uzzun; Amornphimoltham, Panomwat; Bugge, Thomas H.; Weigert, Roberto

    2011-01-01

    The regulation and the dynamics of membrane trafficking events have been studied primarily in in vitro models that often do not fully reflect the functional complexity found in a living multicellular organism. Here we used intravital microscopy in the salivary glands of live rodents to investigate regulated exocytosis, a fundamental process in all of the secretory organs. We found that β-adrenergic stimulation elicits exocytosis of large secretory granules, which gradually collapse with the apical plasma membrane without any evidence of compound exocytosis, as was previously described. Furthermore, we show that the driving force required to complete the collapse of the granules is provided by the recruitment of F-actin and nonmuscle myosin II on the granule membranes that is triggered upon fusion with the plasma membrane. Our results provide information on the machinery controlling regulated secretion and show that intravital microscopy provides unique opportunities to address fundamental questions in cell biology under physiological conditions. PMID:21808006

  16. A multi-stage process including transient polyploidization and EMT precedes the emergence of chemoresistent ovarian carcinoma cells with a dedifferentiated and pro-inflammatory secretory phenotype.

    PubMed

    Rohnalter, Verena; Roth, Katrin; Finkernagel, Florian; Adhikary, Till; Obert, Julia; Dorzweiler, Kristina; Bensberg, Maike; Müller-Brüsselbach, Sabine; Müller, Rolf

    2015-11-24

    DNA-damaging drugs induce a plethora of molecular and cellular alterations in tumor cells, but their interrelationship is largely obscure. Here, we show that carboplatin treatment of human ovarian carcinoma SKOV3 cells triggers an ordered sequence of events, which precedes the emergence of mitotic chemoresistant cells. The initial phase of cell death after initiation of carboplatin treatment is followed around day 14 by the emergence of a mixed cell population consisting of cycling, cell cycle-arrested and senescent cells. At this stage, giant cells make up >80% of the cell population, p21 (CDKN1A) in strongly induced, and cell numbers remain nearly static. Subsequently, cell death decreases, p21 expression drops to a low level and cell divisions increase, including regular mitoses of giant cells and depolyploidization by multi-daughter divisions. These events are accompanied by the upregulation of stemness markers and a pro-inflammatory secretory phenotype, peaking after approximately 14 days of treatment. At the same time the cells initiate epithelial to mesenchymal transition, which over the subsequent weeks continuously increases, concomitantly with the emergence of highly proliferative, migratory, dedifferentiated, pro-inflammatory and chemoresistant cells (SKOV3-R). These cells are anchorage-independent and grow in a 3D collagen matrix, while cells on day 14 do not survive under these conditions, indicating that SKOV3-R cells were generated thereafter by the multi-stage process described above. This process was essentially recapitulated with the ovarian carcinoma cell line IGROV-1. Our observations suggest that transitory cells characterized by polyploidy, features of stemness and a pro-inflammatory secretory phenotype contribute to the acquisition of chemoresistance.

  17. A multi-stage process including transient polyploidization and EMT precedes the emergence of chemoresistent ovarian carcinoma cells with a dedifferentiated and pro-inflammatory secretory phenotype

    PubMed Central

    Rohnalter, Verena; Roth, Katrin; Finkernagel, Florian; Adhikary, Till; Obert, Julia; Dorzweiler, Kristina; Bensberg, Maike; Müller-Brüsselbach, Sabine; Müller, Rolf

    2015-01-01

    DNA-damaging drugs induce a plethora of molecular and cellular alterations in tumor cells, but their interrelationship is largely obscure. Here, we show that carboplatin treatment of human ovarian carcinoma SKOV3 cells triggers an ordered sequence of events, which precedes the emergence of mitotic chemoresistant cells. The initial phase of cell death after initiation of carboplatin treatment is followed around day 14 by the emergence of a mixed cell population consisting of cycling, cell cycle-arrested and senescent cells. At this stage, giant cells make up >80% of the cell population, p21 (CDKN1A) in strongly induced, and cell numbers remain nearly static. Subsequently, cell death decreases, p21 expression drops to a low level and cell divisions increase, including regular mitoses of giant cells and depolyploidization by multi-daughter divisions. These events are accompanied by the upregulation of stemness markers and a pro-inflammatory secretory phenotype, peaking after approximately 14 days of treatment. At the same time the cells initiate epithelial to mesenchymal transition, which over the subsequent weeks continuously increases, concomitantly with the emergence of highly proliferative, migratory, dedifferentiated, pro-inflammatory and chemoresistant cells (SKOV3-R). These cells are anchorage-independent and grow in a 3D collagen matrix, while cells on day 14 do not survive under these conditions, indicating that SKOV3-R cells were generated thereafter by the multi-stage process described above. This process was essentially recapitulated with the ovarian carcinoma cell line IGROV-1. Our observations suggest that transitory cells characterized by polyploidy, features of stemness and a pro-inflammatory secretory phenotype contribute to the acquisition of chemoresistance. PMID:26503466

  18. Gastroretentive extended-release floating granules prepared using a novel fluidized hot melt granulation (FHMG) technique.

    PubMed

    Zhai, H; Jones, D S; McCoy, C P; Madi, A M; Tian, Y; Andrews, G P

    2014-10-06

    The objective of this work was to investigate the feasibility of using a novel granulation technique, namely, fluidized hot melt granulation (FHMG), to prepare gastroretentive extended-release floating granules. In this study we have utilized FHMG, a solvent free process in which granulation is achieved with the aid of low melting point materials, using Compritol 888 ATO and Gelucire 50/13 as meltable binders, in place of conventional liquid binders. The physicochemical properties, morphology, floating properties, and drug release of the manufactured granules were investigated. Granules prepared by this method were spherical in shape and showed good flowability. The floating granules exhibited sustained release exceeding 10 h. Granule buoyancy (floating time and strength) and drug release properties were significantly influenced by formulation variables such as excipient type and concentration, and the physical characteristics (particle size, hydrophilicity) of the excipients. Drug release rate was increased by increasing the concentration of hydroxypropyl cellulose (HPC) and Gelucire 50/13, or by decreasing the particle size of HPC. Floating strength was improved through the incorporation of sodium bicarbonate and citric acid. Furthermore, floating strength was influenced by the concentration of HPC within the formulation. Granules prepared in this way show good physical characteristics, floating ability, and drug release properties when placed in simulated gastric fluid. Moreover, the drug release and floating properties can be controlled by modification of the ratio or physical characteristics of the excipients used in the formulation.

  19. Secretory cargo sorting by Ca2+-dependent Cab45 oligomerization at the trans-Golgi network

    PubMed Central

    Blank, Birgit; Maiser, Andreas; Emin, Derya; Prescher, Jens; Beck, Gisela; Kienzle, Christine; Bartnik, Kira; Habermann, Bianca; Pakdel, Mehrshad; Leonhardt, Heinrich; Lamb, Don C.

    2016-01-01

    Sorting and export of transmembrane cargoes and lysosomal hydrolases at the trans-Golgi network (TGN) are well understood. However, elucidation of the mechanism by which secretory cargoes are segregated for their release into the extracellular space remains a challenge. We have previously demonstrated that, in a reaction that requires Ca2+, the soluble TGN-resident protein Cab45 is necessary for the sorting of secretory cargoes at the TGN. Here, we report that Cab45 reversibly assembles into oligomers in the presence of Ca2+. These Cab45 oligomers specifically bind secretory proteins, such as COMP and LyzC, in a Ca2+-dependent manner in vitro. In intact cells, mutation of the Ca2+-binding sites in Cab45 impairs oligomerization, as well as COMP and LyzC sorting. Superresolution microscopy revealed that Cab45 colocalizes with secretory proteins and the TGN Ca2+ pump (SPCA1) in specific TGN microdomains. These findings reveal that Ca2+-dependent changes in Cab45 mediate sorting of specific cargo molecules at the TGN. PMID:27138253

  20. Stochastic Seeding Coupled with mRNA Self-Recruitment Generates Heterogeneous Drosophila Germ Granules.

    PubMed

    Niepielko, Matthew G; Eagle, Whitby V I; Gavis, Elizabeth R

    2018-06-18

    The formation of ribonucleoprotein assemblies called germ granules is a conserved feature of germline development. In Drosophila, germ granules form at the posterior of the oocyte in a specialized cytoplasm called the germ plasm, which specifies germline fate during embryogenesis. mRNAs, including nanos (nos) and polar granule component (pgc), that function in germline development are localized to the germ plasm through their incorporation into germ granules, which deliver them to the primordial germ cells. Germ granules are nucleated by Oskar (Osk) protein and contain varying combinations and quantities of their constituent mRNAs, which are organized as spatially distinct, multi-copy homotypic clusters. The process that gives rise to such heterogeneous yet organized granules remains unknown. Here, we show that individual nos and pgc transcripts can populate the same nascent granule, and these first transcripts then act as seeds, recruiting additional like transcripts to form homotypic clusters. Within a granule, homotypic clusters grow independently of each other but depend on the simultaneous acquisition of additional Osk. Although granules can contain multiple clusters of a particular mRNA, granule mRNA content is dominated by cluster size. These results suggest that the accumulation of mRNAs in the germ plasm is controlled by the mRNAs themselves through their ability to form homotypic clusters; thus, RNA self-association drives germ granule mRNA localization. We propose that a stochastic seeding and self-recruitment mechanism enables granules to simultaneously incorporate many different mRNAs while ensuring that each becomes enriched to a functional threshold. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Pathogen-induced secretory diarrhea and its prevention.

    PubMed

    Anand, S; Mandal, S; Patil, P; Tomar, S K

    2016-11-01

    Secretory diarrhea is a historically known serious health implication around the world which primarily originates through pathogenic microorganisms rather than immunological or genetical disorders. This review highlights infective mechanisms of non-inflammatory secretory diarrhea causing pathogens, known therapeutics and their efficacy against them. These non-inflammatory diarrheal pathogens breach cell barriers, induce inflammation, disrupt fluid secretion across the epithelium by alteration in ion transport by faulting cystic fibrosis transmembrane conductance regulator (CFTR), calcium activated chloride channels and ion exchanger functions. Currently, a variety of prevention strategies have been used to treat these symptoms like use of antibacterial drugs, vaccines, fluid and nutritional therapy, probiotics and prebiotics as adjuncts. In progression of the need for a therapy having quick physiological effects, withdrawing the symptoms with a wide and safe therapeutic index, newer antisecretory agents like potent inhibitors, agonists and herbal remedies are some of the interventions which have come into light through greater understanding of the mechanisms and molecular targets involved in intestinal fluid secretion. Although these therapies have their own pros and cons inside the host, the quest for new antisecretory agents has been a successful elucidation to reduce burden of diarrheal disease.

  2. Subcellular glucose exposure biases the spatial distribution of insulin granules in single pancreatic beta cells.

    PubMed

    Terao, Kyohei; Gel, Murat; Okonogi, Atsuhito; Fuke, Ariko; Okitsu, Teru; Tada, Takashi; Suzuki, Takaaki; Nagamatsu, Shinya; Washizu, Masao; Kotera, Hidetoshi

    2014-02-18

    In living tissues, a cell is exposed to chemical substances delivered partially to its surface. Such a heterogeneous chemical environment potentially induces cell polarity. To evaluate this effect, we developed a microfluidic device that realizes spatially confined delivery of chemical substances at subcellular resolution. Our microfluidic device allows simple setup and stable operation for over 4 h to deliver chemicals partially to a single cell. Using the device, we showed that subcellular glucose exposure triggers an intracellular [Ca(2+)] change in the β-cells. In addition, the imaging of a cell expressing GFP-tagged insulin showed that continuous subcellular exposure to glucose biased the spatial distribution of insulin granules toward the site where the glucose was delivered. Our approach illustrates an experimental technique that will be applicable to many biological experiments for imaging the response to subcellular chemical exposure and will also provide new insights about the development of polarity of β-cells.

  3. Subcellular glucose exposure biases the spatial distribution of insulin granules in single pancreatic beta cells

    PubMed Central

    Terao, Kyohei; Gel, Murat; Okonogi, Atsuhito; Fuke, Ariko; Okitsu, Teru; Tada, Takashi; Suzuki, Takaaki; Nagamatsu, Shinya; Washizu, Masao; Kotera, Hidetoshi

    2014-01-01

    In living tissues, a cell is exposed to chemical substances delivered partially to its surface. Such a heterogeneous chemical environment potentially induces cell polarity. To evaluate this effect, we developed a microfluidic device that realizes spatially confined delivery of chemical substances at subcellular resolution. Our microfluidic device allows simple setup and stable operation for over 4 h to deliver chemicals partially to a single cell. Using the device, we showed that subcellular glucose exposure triggers an intracellular [Ca2+] change in the β-cells. In addition, the imaging of a cell expressing GFP-tagged insulin showed that continuous subcellular exposure to glucose biased the spatial distribution of insulin granules toward the site where the glucose was delivered. Our approach illustrates an experimental technique that will be applicable to many biological experiments for imaging the response to subcellular chemical exposure and will also provide new insights about the development of polarity of β-cells. PMID:24535122

  4. RNA granules: the good, the bad and the ugly

    PubMed Central

    Thomas, María Gabriela; Loschi, Mariela; Desbats, María Andrea; Boccaccio, Graciela Lidia

    2010-01-01

    Processing bodies (PBs) and Stress granules (SGs) are the founding members of a new class of RNA granules, known as mRNA silencing foci, as they harbor transcripts circumstantially excluded from the translationally active pool. PBs and SGs are able to release mRNAs thus allowing their translation. PBs are constitutive, but respond to stimuli that affect mRNA translation and decay, whereas SGs are specifically induced upon cellular stress, which triggers a global translational silencing by several pathways, including phosphorylation of the key translation initiation factor elF2alpha, and tRNA cleavage among others. PBs and SGs with different composition may coexist in a single cell. These macromolecular aggregates are highly conserved through evolution, from unicellular organisms to vertebrate neurons. Their dynamics is regulated by several signaling pathways, and depends on microfilaments and microtubules, and the cognate molecular motors myosin, dynein, and kinesin. SGs share features with aggresomes and related aggregates of unfolded proteins frequently present in neurodegenerative diseases, and may play a role in the pathology. Virus infections may induce or impair SG formation. Besides being important for mRNA regulation upon stress, SGs modulate the signaling balancing apoptosis and cell survival. Finally, the formation of nuclear stress bodies (nSBs), which share components with SGs, and the assembly of additional cytosolic aggregates containing RNA—the UV granules and the Ire1 foci—, all them induced by specific cell damage factors, contribute to cell survival. PMID:20813183

  5. In vitro atrazine-exposure inhibits human natural killer cell lytic granule release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowe, Alexander M.; Brundage, Kathleen M.; Center for Immunopathology and Microbial Pathogenesis, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506

    2007-06-01

    The herbicide atrazine is a known immunotoxicant and an inhibitor of human natural killer (NK) cell lytic function. The precise changes in NK cell lytic function following atrazine exposure have not been fully elucidated. The current study identifies the point at which atrazine exerts its affect on the stepwise process of human NK cell-mediated lyses of the K562 target cell line. Using intracellular staining of human peripheral blood lymphocytes, it was determined that a 24-h in vitro exposure to atrazine did not decrease the level of NK cell lytic proteins granzyme A, granzyme B or perforin. Thus, it was hypothesizedmore » that atrazine exposure was inhibiting the ability of the NK cells to bind to the target cell and subsequently inhibit the release of lytic protein from the NK cell. To test this hypothesis, flow cytometry and fluorescent microscopy were employed to analyze NK cell-target cell co-cultures following atrazine exposure. These assays demonstrated no significant decrease in the level of target cell binding. However, the levels of NK intracellular lytic protein retained and the amount of lytic protein released were assessed following a 4-h incubation with K562 target cells. The relative level of intracellular lytic protein was 25-50% higher, and the amount of lytic protein released was 55-65% less in atrazine-treated cells than vehicle-treated cells following incubation with the target cells. These results indicate that ATR exposure inhibits the ability of NK cells to lyse target cells by blocking lytic granule release without affecting the ability of the NK cell to form stable conjugates with target cells.« less

  6. [The C-cell system of the thyroid in rats following a flight on the Kosmos 1667 biosatellite].

    PubMed

    Plakhuta-Plakutina, G I; Dmitrieva, N P; Amirkhanian, E A

    1988-01-01

    Histological, electron-microscopic and morphometric investigations of the thyroid gland of Wistar SPF male rats (aged 3 months) flown for 7 days on Cosmos-1667 showed that its parenchyma was functionally active and changed but little as compared to the controls. However, at an acute stage of adaptation to microgravity C-cells showed morphological signs of their functional decline: the number of low activity cells and cells whose cytoplasm contained secretory granules increased, the volume of nuclei decreased significantly (by 16.2% as compared to the control), and dystrophic changes seen ultrastructurally appeared. These observations together with the results obtained in prolonged animal flights suggest that in microgravity the synthesis and excretion of the hormone calcitonin diminish. In combination with other factors, the functional decline of C-cells inhibits bone neoformation and enhances bone resorption.

  7. ELLI-1, a novel germline protein, modulates RNAi activity and P-granule accumulation in Caenorhabditis elegans

    PubMed Central

    Andralojc, Karolina M.; Kelly, Ashley L.; Tanner, Paige C.

    2017-01-01

    Germ cells contain non-membrane bound cytoplasmic organelles that help maintain germline integrity. In C. elegans they are called P granules; without them, the germline undergoes partial masculinization and aberrant differentiation. One key P-granule component is the Argonaute CSR-1, a small-RNA binding protein that antagonizes accumulation of sperm-specific transcripts in developing oocytes and fine-tunes expression of proteins critical to early embryogenesis. Loss of CSR-1 complex components results in a very specific, enlarged P-granule phenotype. In a forward screen to identify mutants with abnormal P granules, ten alleles were recovered with a csr-1 P-granule phenotype, eight of which contain mutations in known components of the CSR-1 complex (csr-1, ego-1, ekl-1, and drh-3). The remaining two alleles are in a novel gene now called elli-1 (enlarged germline granules). ELLI-1 is first expressed in primordial germ cells during mid-embryogenesis, and continues to be expressed in the adult germline. While ELLI-1 forms cytoplasmic aggregates, they occasionally dock, but do not co-localize with P granules. Instead, the majority of ELLI-1 aggregates accumulate in the shared germline cytoplasm. In elli-1 mutants, several genes that promote RNAi and P-granule accumulation are upregulated, and embryonic lethality, sterility, and RNAi resistance in a hypomorphic drh-3 allele is enhanced, suggesting that ELLI-1 functions with CSR-1 to modulate RNAi activity, P-granule accumulation, and post-transcriptional expression in the germline. PMID:28182654

  8. Plant RNA Regulatory Network and RNA Granules in Virus Infection.

    PubMed

    Mäkinen, Kristiina; Lõhmus, Andres; Pollari, Maija

    2017-01-01

    Regulation of post-transcriptional gene expression on mRNA level in eukaryotic cells includes translocation, translation, translational repression, storage, mRNA decay, RNA silencing, and nonsense-mediated decay. These processes are associated with various RNA-binding proteins and cytoplasmic ribonucleoprotein complexes many of which are conserved across eukaryotes. Microscopically visible aggregations formed by ribonucleoprotein complexes are termed RNA granules. Stress granules where the translationally inactive mRNAs are stored and processing bodies where mRNA decay may occur present the most studied RNA granule types. Diverse RNP-granules are increasingly being assigned important roles in viral infections. Although the majority of the molecular level studies on the role of RNA granules in viral translation and replication have been conducted in mammalian systems, some studies link also plant virus infection to RNA granules. An increasing body of evidence indicates that plant viruses require components of stress granules and processing bodies for their replication and translation, but how extensively the cellular mRNA regulatory network is utilized by plant viruses has remained largely enigmatic. Antiviral RNA silencing, which is an important regulator of viral RNA stability and expression in plants, is commonly counteracted by viral suppressors of RNA silencing. Some of the RNA silencing suppressors localize to cellular RNA granules and have been proposed to carry out their suppression functions there. Moreover, plant nucleotide-binding leucine-rich repeat protein-mediated virus resistance has been linked to enhanced processing body formation and translational repression of viral RNA. Many interesting questions relate to how the pathways of antiviral RNA silencing leading to viral RNA degradation and/or repression of translation, suppression of RNA silencing and viral RNA translation converge in plants and how different RNA granules and their individual

  9. Cysteine Cathepsins in the Secretory Vesicle Produce Active Peptides: Cathepsin L Generates Peptide Neurotransmitters and Cathepsin B Produces Beta-Amyloid of Alzheimer’s Disease

    PubMed Central

    Hook, Vivian; Funkelstein, Lydiane; Wegrzyn, Jill; Bark, Steven; Kindy, Mark; Hook, Gregory

    2011-01-01

    Recent new findings indicate significant biological roles of cysteine cathepsin proteases in secretory vesicles for production of biologically active peptides. Notably, cathepsin L in secretory vesicles has been demonstrated as a key protease for proteolytic processing of proneuropeptides (and prohormones) into active neuropeptides that are released to mediate cell-cell communication in the nervous system for neurotransmission. Moreover, cathepsin B in secretory vesicles has been recently identified as a β-secretase for production of neurotoxic β-amyloid (Aβ) peptides that accumulate in Alzheimer’s disease (AD), participating as a notable factor in the severe memory loss in AD. These secretory vesicle functions of cathepsins L and B for production of biologically active peptides contrasts with the well-known role of cathepsin proteases in lysosomes for the degradation of proteins to result in their inactivation. The unique secretory vesicle proteome indicates proteins of distinct functional categories that provide the intravesicular environment for support of cysteine cathepsin function. Features of the secretory vesicle protein systems insure optimized intravesicular conditions that support the proteolytic activity of cathepsins. These new findings of recently discovered biological roles of cathepsins L and B indicate their significance in human health and disease. PMID:21925292

  10. A Two-Tier Golgi-Based Control of Organelle Size Underpins the Functional Plasticity of Endothelial Cells

    PubMed Central

    Ferraro, Francesco; Kriston-Vizi, Janos; Metcalf, Daniel J.; Martin-Martin, Belen; Freeman, Jamie; Burden, Jemima J.; Westmoreland, David; Dyer, Clare E.; Knight, Alex E.; Ketteler, Robin; Cutler, Daniel F.

    2014-01-01

    Summary Weibel-Palade bodies (WPBs), endothelial-specific secretory granules that are central to primary hemostasis and inflammation, occur in dimensions ranging between 0.5 and 5 μm. How their size is determined and whether it has a functional relevance are at present unknown. Here, we provide evidence for a dual role of the Golgi apparatus in controlling the size of these secretory carriers. At the ministack level, cisternae constrain the size of nanostructures (“quanta”) of von Willebrand factor (vWF), the main WPB cargo. The ribbon architecture of the Golgi then allows copackaging of a variable number of vWF quanta within the continuous lumen of the trans-Golgi network, thereby generating organelles of different sizes. Reducing the WPB size abates endothelial cell hemostatic function by drastically diminishing platelet recruitment, but, strikingly, the inflammatory response (the endothelial capacity to engage leukocytes) is unaltered. Size can thus confer functional plasticity to an organelle by differentially affecting its activities. PMID:24794632

  11. AMPK is activated early in cerebellar granule cells undergoing apoptosis and influences VADC1 phosphorylation status and activity.

    PubMed

    Bobba, A; Casalino, E; Amadoro, G; Petragallo, V A; Atlante, A

    2017-09-01

    The neurodegeneration of cerebellar granule cells, after low potassium induced apoptosis, is known to be temporally divided into an early and a late phase. Voltage-dependent anion channel-1 (VDAC1) protein, changing from the closed inactive state to the active open state, is central to the switch between the early and late phase. It is also known that: (i) VDAC1 can undergo phosphorylation events and (ii) AMP-activated protein kinase (AMPK), the sensor of cellular stress, may have a role in neuronal homeostasis. In the view of this, the involvement of AMPK activation and its correlation with VDAC1 status and activity has been investigated in the course of cerebellar granule cells apoptosis. The results reported in this study show that an increased level of the phosphorylated, active, isoform of AMPK occurs in the early phase, peaks at 3 h and guarantees an increase in the phosphorylation status of VDCA1, resulting in a reduced activity of this latter. However this situation is transient in nature, since, in the late phase, AMPK activation decreases as well as the level of phosphorylated VDAC1. In a less phosphorylated status, VDAC1 fully recovers its gating activity and drives cells along the death route.

  12. Homologs of PROTEIN TARGETING TO STARCH Control Starch Granule Initiation in Arabidopsis Leaves[OPEN

    PubMed Central

    David, Laure C.; Abt, Melanie; Lu, Kuan-Jen

    2017-01-01

    The molecular mechanism that initiates the synthesis of starch granules is poorly understood. Here, we discovered two plastidial proteins involved in granule initiation in Arabidopsis thaliana leaves. Both contain coiled coils and a family-48 carbohydrate binding module (CBM48) and are homologs of the PROTEIN TARGETING TO STARCH (PTST) protein; thus, we named them PTST2 and PTST3. Chloroplasts in mesophyll cells typically contain five to seven granules, but remarkably, most chloroplasts in ptst2 mutants contained zero or one large granule. Chloroplasts in ptst3 had a slight reduction in granule number compared with the wild type, while those of the ptst2 ptst3 double mutant contained even fewer granules than ptst2. The ptst2 granules were larger but similar in morphology to wild-type granules, but those of the double mutant had an aberrant morphology. Immunoprecipitation showed that PTST2 interacts with STARCH SYNTHASE4 (SS4), which influences granule initiation and morphology. Overexpression of PTST2 resulted in chloroplasts containing many small granules, an effect that was dependent on the presence of SS4. Furthermore, isothermal titration calorimetry revealed that the CBM48 domain of PTST2, which is essential for its function, interacts with long maltooligosaccharides. We propose that PTST2 and PTST3 are critical during granule initiation, as they bind and deliver suitable maltooligosaccharide primers to SS4. PMID:28684429

  13. SAMHD1 Inhibits LINE-1 Retrotransposition by Promoting Stress Granule Formation

    PubMed Central

    Xu, Fengwen; Mei, Shan; Le Duff, Yann; Yin, Lijuan; Pang, Xiaojing; Cen, Shan; Jin, Qi; Liang, Chen; Guo, Fei

    2015-01-01

    The SAM domain and HD domain containing protein 1 (SAMHD1) inhibits retroviruses, DNA viruses and long interspersed element 1 (LINE-1). Given that in dividing cells, SAMHD1 loses its antiviral function yet still potently restricts LINE-1, we propose that, instead of blocking viral DNA synthesis by virtue of its dNTP triphosphohydrolase activity, SAMHD1 may exploit a different mechanism to control LINE-1. Here, we report a new activity of SAMHD1 in promoting cellular stress granule assembly, which correlates with increased phosphorylation of eIF2α and diminished eIF4A/eIF4G interaction. This function of SAMHD1 enhances sequestration of LINE-1 RNP in stress granules and consequent blockade to LINE-1 retrotransposition. In support of this new mechanism of action, depletion of stress granule marker proteins G3BP1 or TIA1 abrogates stress granule formation and overcomes SAMHD1 inhibition of LINE-1. Together, these data reveal a new mechanism for SAMHD1 to control LINE-1 by activating cellular stress granule pathway. PMID:26134849

  14. Comparison of low-shear and high-shear granulation processes: effect on implantable calcium phosphate granule properties.

    PubMed

    Chevalier, E; Viana, M; Cazalbou, S; Chulia, D

    2009-10-01

    Calcium phosphate porous ceramics present a great interest not only as complex bone defect fillers but also as drug delivery systems. Most of the methods described in the literature to fabricate pellets are based on compaction, casting into spherical molds, or on processes such as liquid immiscibility or foaming. Despite wet granulation is used in a wide range of applications in pharmaceuticals, food, detergents, fertilizers, and minerals, it is not applied in the biomaterial field to produce granules. In this study physicochemical and in vitro drug delivery properties of implantable calcium phosphate granules, produced by two wet agglomeration processes, were compared. Pellets obtained by high shear granulation (granulation in a Mi-Pro apparatus) were shown to be more spherical and less friable than granules elaborated by low shear process (granulation in a Kenwood apparatus). Although Mi-Pro pellets had a slightly lower porosity compared to Kenwood granules, ibuprofen loading efficiency and dissolution profiles were not statistically different and the release mechanism was mainly controlled by diffusion, in both cases. Mi-Pro pellets appeared to be better candidates as bone defect fillers and local drug delivery systems as far as they were more spherical and less friable than Kenwood agglomerates.

  15. Lysine acetyltransferase NuA4 and acetyl-CoA regulate glucose-deprived stress granule formation in Saccharomyces cerevisiae

    PubMed Central

    Huard, Sylvain; Morettin, Alan; Fullerton, Morgan D.; Côté, Jocelyn

    2017-01-01

    Eukaryotic cells form stress granules under a variety of stresses, however the signaling pathways regulating their formation remain largely unknown. We have determined that the Saccharomyces cerevisiae lysine acetyltransferase complex NuA4 is required for stress granule formation upon glucose deprivation but not heat stress. Further, the Tip60 complex, the human homolog of the NuA4 complex, is required for stress granule formation in cancer cell lines. Surprisingly, the impact of NuA4 on glucose-deprived stress granule formation is partially mediated through regulation of acetyl-CoA levels, which are elevated in NuA4 mutants. While elevated acetyl-CoA levels suppress the formation of glucose-deprived stress granules, decreased acetyl-CoA levels enhance stress granule formation upon glucose deprivation. Further our work suggests that NuA4 regulates acetyl-CoA levels through the Acetyl-CoA carboxylase Acc1. Altogether this work establishes both NuA4 and the metabolite acetyl-CoA as critical signaling pathways regulating the formation of glucose-deprived stress granules. PMID:28231279

  16. Impact of screw configuration on the particle size distribution of granules produced by twin screw granulation.

    PubMed

    Vercruysse, J; Burggraeve, A; Fonteyne, M; Cappuyns, P; Delaet, U; Van Assche, I; De Beer, T; Remon, J P; Vervaet, C

    2015-02-01

    Twin screw granulation (TSG) has been reported by different research groups as an attractive technology for continuous wet granulation. However, in contrast to fluidized bed granulation, granules produced via this technique typically have a wide and multimodal particle size distribution (PSD), resulting in suboptimal flow properties. The aim of the current study was to evaluate the impact of granulator screw configuration on the PSD of granules produced by TSG. Experiments were performed using a 25 mm co-rotating twin screw granulator, being part of the ConsiGma™-25 system (a fully continuous from-powder-to-tablet manufacturing line from GEA Pharma Systems). Besides the screw elements conventionally used for TSG (conveying and kneading elements), alternative designs of screw elements (tooth-mixing-elements (TME), screw mixing elements (SME) and cutters) were investigated using an α-lactose monohydrate formulation granulated with distilled water. Granulation with only conveying elements resulted in wide and multimodal PSD. Using kneading elements, the width of the PSD could be partially narrowed and the liquid distribution was more homogeneous. However, still a significant fraction of oversized agglomerates was obtained. Implementing additional kneading elements or cutters in the final section of the screw configuration was not beneficial. Furthermore, granulation with only TME or SME had limited impact on the width of the PSD. Promising results were obtained by combining kneading elements with SME, as for these configurations the PSD was narrower and shifted to the size fractions suitable for tableting. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Intracellular production of hydrogels and synthetic RNA granules by multivalent enhancers

    PubMed Central

    Nakamura, Hideki; Lee, Albert A.; Afshar, Ali Sobhi; Watanabe, Shigeki; Rho, Elmer; Razavi, Shiva; Suarez, Allison; Lin, Yu-Chun; Tanigawa, Makoto; Huang, Brian; DeRose, Robert; Bobb, Diana; Hong, William; Gabelli, Sandra B.; Goutsias, John; Inoue, Takanari

    2018-01-01

    Non-membrane bound, hydrogel-like entities, such as RNA granules, nucleate essential cellular functions through their unique physico-chemical properties. However, these intracellular hydrogels have not been as extensively studied as their extracellular counterparts, primarily due to technical challenges in probing these materials in situ. Here, by taking advantage of a chemically inducible dimerization paradigm, we developed iPOLYMER, a strategy for rapid induction of protein-based hydrogels inside living cells. A series of biochemical and biophysical characterizations, in conjunction with computational modeling, revealed that the polymer network formed in the cytosol resembles a physiological hydrogel-like entity that behaves as a size-dependent molecular sieve. We studied several properties of the gel and functionalized it with RNA binding motifs that sequester polyadenine-containing nucleotides to synthetically mimic RNA granules. Therefore, we here demonstrate that iPOLYMER presents a unique and powerful approach to synthetically reconstitute hydrogel-like structures including RNA granules in intact cells. PMID:29115293

  18. Identify Secretory Protein of Malaria Parasite with Modified Quadratic Discriminant Algorithm and Amino Acid Composition.

    PubMed

    Feng, Yong-E

    2016-06-01

    Malaria parasite secretes various proteins in infected red blood cell for its growth and survival. Thus identification of these secretory proteins is important for developing vaccine or drug against malaria. In this study, the modified method of quadratic discriminant analysis is presented for predicting the secretory proteins. Firstly, 20 amino acids are divided into five types according to the physical and chemical characteristics of amino acids. Then, we used five types of amino acids compositions as inputs of the modified quadratic discriminant algorithm. Finally, the best prediction performance is obtained by using 20 amino acid compositions, the sensitivity of 96 %, the specificity of 92 % with 0.88 of Mathew's correlation coefficient in fivefold cross-validation test. The results are also compared with those of existing prediction methods. The compared results shown our method are prominent in the prediction of secretory proteins.

  19. Spherical porous hydroxyapatite granules containing composites of magnetic and hydroxyapatite nanoparticles for the hyperthermia treatment of bone tumor.

    PubMed

    Kamitakahara, Masanobu; Ohtoshi, Naohiro; Kawashita, Masakazu; Ioku, Koji

    2016-05-01

    Spherical porous granules of hydroxyapatite (HA) containing magnetic nanoparticles would be suitable for the hyperthermia treatment of bone tumor, because porous HA granules act as a scaffold for bone regeneration, and magnetic nanoparticles generate sufficient heat to kill tumor cells under an alternating magnetic field. Although magnetic nanoparticles are promising heat generators, their small size makes them difficult to support in porous HA ceramics. We prepared micrometer-sized composites of magnetic and HA nanoparticles, and then supported them in porous HA granules composed of rod-like particles. The spherical porous HA granules containing the composites of magnetic and HA nanoparticle were successfully prepared using a hydrothermal process without changing the crystalline phase and heat generation properties of the magnetic nanoparticles. The obtained granules generated sufficient heat for killing tumor cells under an alternating magnetic field (300 Oe at 100 kHz). The obtained granules are expected to be useful for the hyperthermia treatment of bone tumors.

  20. Investigation of Physicochemical Drug Properties to Prepare Fine Globular Granules Composed of Only Drug Substance in Fluidized Bed Rotor Granulation.

    PubMed

    Mise, Ryohei; Iwao, Yasunori; Kimura, Shin-Ichiro; Osugi, Yukiko; Noguchi, Shuji; Itai, Shigeru

    2015-01-01

    The effect of some drug properties (wettability and particle size distribution) on granule properties (mean particle size, particle size distribution, sphericity, and granule strength) were investigated in a high (>97%) drug-loading formulation using fluidized bed rotor granulation. Three drugs: acetaminophen (APAP); ibuprofen (IBU); and ethenzamide (ETZ) were used as model drugs based on their differences in wettability and particle size distribution. Granules with mean particle sizes of 100-200 µm and a narrow particle size distribution (PSD) could be prepared regardless of the drug used. IBU and ETZ granules showed a higher sphericity than APAP granules, while APAP and ETZ granules exhibited higher granule strength than IBU. The relationship between drug and granule properties suggested that the wettability and the PSD of the drugs were critical parameters affecting sphericity and granule strength, respectively. Furthermore, the dissolution profiles of granules prepared with poorly water-soluble drugs (IBU and ETZ) showed a rapid release (80% release in 20 min) because of the improved wettability with granulation. The present study demonstrated for the first time that fluidized bed rotor granulation can prepare high drug-loaded (>97%) globular granules with a mean particle size of less than 200 µm and the relationship between physicochemical drug properties and the properties of the granules obtained could be readily determined, indicating the potential for further application of this methodology to various drugs.

  1. Granules and Golgi vesicles with differential reactivity to ACTH antiserum in the corticotroph of the rat anterior pituitary.

    PubMed

    Weber, E; Voigt, K H; Martin, R

    1978-05-01

    Slices of unembedded rat anterior pituitaries, fixed with a periodate-lysine-paraformaldehyde (PLP) fixative, were incubated with guinea pig antiserum to ACTH and stained with a peroxidase-conjugated IgG fraction of anti-guinea pig gamma-globulin serum from rabbits. The fine structure of the stained cells was identical to that of the ACTH-secreting cell, as described by Siperstein and coworkers. Immunoreactive granules were mainly located at the periphery of the cell. Numerous granules of the inner cytoplasm and also the Golgi complex were nonreactive to the antiserum. The differential labeling for granules and Golgi apparatus peptide.

  2. PD-1 blocks lytic granule polarization with concomitant impairment of integrin outside-in signaling in the natural killer cell immunological synapse.

    PubMed

    Huang, Yu; Chen, Zhiying; Jang, Joon Hee; Baig, Mirza S; Bertolet, Grant; Schroeder, Casey; Huang, Shengjian; Hu, Qian; Zhao, Yong; Lewis, Dorothy E; Qin, Lidong; Zhu, Michael Xi; Liu, Dongfang

    2018-04-18

    The inhibitory receptor programmed cell death protein 1 (PD-1) is upregulated on a variety of immune cells, including natural killer (NK) cells, during chronic viral infection and tumorigenesis. Blockade of PD-1 or its ligands produces durable clinical responses with tolerable side effects in patients with a broad spectrum of cancers. However, the underlying molecular mechanisms of how PD-1 regulates NK cell function remain poorly characterized. We sought to determine the effect of PD-1 signaling on NK cells. PD-1 was overexpressed in CD16-KHYG-1 (a human NK cell line with both antibody-dependent cellular cytotoxicity through CD16 and natural cytotoxicity through NKG2D) cells and stimulated by exposing the cells to NK-sensitive target cells expressing programmed death ligand 1 (PD-L1). PD-1 engagement by PD-L1 specifically blocked NK cell-mediated cytotoxicity without interfering with the conjugation between NK cells and target cells. Further examination showed that PD-1 signaling blocked lytic granule polarization in NK cells, which was accompanied by failure of integrin-linked kinase, a key molecule in the integrin outside-in signaling pathway, to accumulate in the immunological synapse after NK-target cell conjugation. Our results suggest that NK cell cytotoxicity is inhibited by PD-1 engagement, which blocks lytic granule polarization to the NK cell immunological synapse with concomitant impairment of integrin outside-in signaling. This study provides novel mechanistic insights into how PD-1 inhibition disrupts NK cell function. Copyright © 2018 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  3. Chromogranin A: a new proposal for trafficking, processing and induction of granule biogenesis.

    PubMed

    Koshimizu, Hisatsugu; Kim, Taeyoon; Cawley, Niamh X; Loh, Y Peng

    2010-02-25

    Chromogranin A (CgA), a member of the granin family serves several important cell biological roles in (neuro)endocrine cells which are summarized in this review. CgA is a "prohormone" that is synthesized at the rough endoplasmic reticulum and transported into the cisternae of this organelle via its signal peptide. It is then trafficked to the Golgi complex and then to the trans-Golgi network (TGN) where CgA aggregates at low pH in the presence of calcium. The CgA aggregates provide the physical driving force to induce budding of the TGN membrane resulting in dense core granule (DCG) formation. Within the granule, a small amount of the CgA is processed to bioactive peptides, including a predicted C-terminal peptide, serpinin. Upon stimulation, DCGs undergo exocytosis and CgA and its derived peptides are released. Serpinin, acting extracellularly is able to signal the increase in transcription of a serine protease inhibitor, protease nexin-1 (PN-1) that protects DCG proteins against degradation in the Golgi complex, which then enhances DCG biogenesis to replenish those that were released. Thus CgA and its derived peptide, serpinin, plays a significant role in granule formation and regulation of granule biogenesis, respectively, in (neuro) endocrine cells. Published by Elsevier B.V.

  4. Comparative evaluation of different calcium phosphate-based bone graft granules - an in vitro study with osteoblast-like cells.

    PubMed

    Bernhardt, Anne; Lode, Anja; Peters, Fabian; Gelinsky, Michael

    2013-04-01

    Granule-shaped calcium phosphate-based bone graft materials are often required for bone regeneration especially in implant dentistry. Two newly developed bone graft materials are Ceracell(®) , an open-celled highly porous bioceramic from β-tricalcium phosphate (β-TCP) under addition of bioglass and Osseolive(®) , an open porous glass ceramic with the general formula Ca2 KNa(PO4 )2 . The goal of this study was to characterize different modifications of the two bone graft materials in vitro in comparison to already established ceramic bone grafts Cerasorb M(®) , NanoBone(®) and BONIT Matrix(®) . Adhesion and proliferation of SaOS-2 osteoblast-like cells were evaluated quantitatively by determining DNA content and lactate dehydrogenase (LDH) activity and qualitatively by scanning electron microscopy (SEM). In addition, MTT cell-vitality staining was applied to confirm the attachment of viable cells to the different materials. Osteogenic differentiation was evaluated by measurement of alkaline phosphatase (ALP) activity as well as gene expression analysis of osteogenic markers using reverse transcriptase PCR. DNA content and LDH activity revealed good cell attachment and proliferation for Ceracell and Cerasorb M. When pre-incubated with cell-culture medium, also Osseolive showed good cell attachment and proliferation. Attachment and proliferation of osteoblast-like cells on NanoBone and BONIT Matrix was very low, even after pre-incubation with cell-culture medium. Specific ALP activity on Ceracell(®) , Osseolive (®) and Cerasorb M(®) increased with time and expression of bone-related genes ALP, osteonectin, osteopontin and bone sialoprotein II was demonstrated. Ceracell as well as Osseolive granules support proliferation and osteogenic differentiation in vitro and may be promising candidates for in vivo applications. © 2011 John Wiley & Sons A/S.

  5. Investigation into the role of phosphatidylserine in modifying the susceptibility of human lymphocytes to secretory phospholipase A(2) using cells deficient in the expression of scramblase.

    PubMed

    Nelson, Jennifer; Francom, Lyndee L; Anderson, Lynn; Damm, Kelly; Baker, Ryan; Chen, Joseph; Franklin, Sarah; Hamaker, Amy; Izidoro, Izadora; Moss, Eric; Orton, Mikayla; Stevens, Evan; Yeung, Celestine; Judd, Allan M; Bell, John D

    2012-05-01

    Normal human lymphocytes resisted the hydrolytic action of secretory phospholipase A(2) but became susceptible to the enzyme following treatment with a calcium ionophore, ionomycin. To test the hypothesis that this susceptibility requires exposure of the anionic lipid phosphatidylserine on the external face of the cell membrane, experiments were repeated with a human Burkitt's lymphoma cell line (Raji cells). In contrast to normal lymphocytes or S49 mouse lymphoma cells, most of the Raji cells (83%) did not translocate phosphatidylserine to the cell surface upon treatment with ionomycin. Those few that did display exposed phosphatidylserine were hydrolyzed immediately upon addition of phospholipase A(2). Interestingly, the remaining cells were also completely susceptible to the enzyme but were hydrolyzed at a slower rate and after a latency of about 100s. In contradistinction to the defect in phosphatidylserine translocation, Raji cells did display other physical membrane changes upon ionomycin treatment that may be relevant to hydrolysis by phospholipase A(2). These changes were detected by merocyanine 540 and trimethylammonium diphenylhexatriene fluorescence and were common among normal lymphocytes, S49 cells, and Raji cells. The levels of these latter effects corresponded well with the relative rates of hydrolysis among the three cell lines. These results suggested that while phosphatidylserine enhances the rate of cell membrane hydrolysis by secretory phospholipase A(2), it is not an absolute requirement. Other physical properties such as membrane order contribute to the level of membrane susceptibility to the enzyme independent of phosphatidylserine. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Investigation into the Role of Phosphatidylserine in Modifying the Susceptibility of Human Lymphocytes to Secretory Phospholipase A2 using Cells Deficient in the Expression of Scramblase

    PubMed Central

    Nelson, Jennifer; Francom, Lyndee L.; Anderson, Lynn; Damm, Kelly; Baker, Ryan; Chen, Joseph; Franklin, Sarah; Hamaker, Amy; Izidoro, Izadora; Moss, Eric; Orton, Mikayla; Stevens, Evan; Yeung, Celestine; Judd, Allan M.; Bell, John D.

    2012-01-01

    Summary Normal human lymphocytes resisted the hydrolytic action of secretory phospholipase A2 but became susceptible to the enzyme following treatment with a calcium ionophore, ionomycin. To test the hypothesis that this susceptibility requires exposure of the anionic lipid phosphatidylserine on the external face of the cell membrane, experiments were repeated with a human Burkitt’s lymphoma cell line (Raji cells). In contrast to normal lymphocytes or S49 mouse lymphoma cells, most of the Raji cells (83%) did not translocate phosphatidylserine to the cell surface upon treatment with ionomycin. Those few that did display exposed phosphatidylserine were hydrolyzed immediately upon addition of phospholipase A2. Interestingly, the remaining cells were also completely susceptible to the enzyme but were hydrolyzed at a slower rate and after a latency of about 100 s. In contradistinction to the defect in phosphatidylserine translocation, Raji cells did display other physical membrane changes upon ionomycin treatment that may be relevant to hydrolysis by phospholipase A2. These changes were detected by merocyanine 540 and trimethylammonium diphenylhexatriene fluorescence and were common among normal lymphocytes, S49 cells, and Raji cells. The levels of these latter effects corresponded well with the relative rates of hydrolysis among the three cell lines. These results suggested that while phosphatidylserine enhances the rate of cell membrane hydrolysis by secretory phospholipase A2, it is not an absolute requirement. Other physical properties such as membrane order contribute to the level of membrane susceptibility to the enzyme independent of phosphatidylserine. PMID:22266334

  7. Effects of artemisinin sustained-release granules on mixed alga growth and microcystins production and release.

    PubMed

    Ni, Lixiao; Li, Danye; Hu, Shuzhen; Wang, Peifang; Li, Shiyin; Li, Yiping; Li, Yong; Acharya, Kumud

    2015-12-01

    To safely and effectively apply artemisinin sustained-release granules to control and prevent algal water-blooms, the effects of artemisinin and its sustained-release granules on freshwater alga (Scenedesmus obliquus (S. obliquus) and Microcystis aeruginosa (M. aeruginosa)), as well as the production and release of microcystins (MCs) were studied. The results showed that artemisinin sustained-release granules inhibited the growth of M. aeruginosa (above 95% IR) and S. obliquus (about 90% IR), with M. aeruginosa more sensitive. The artemisinin sustained-release granules had a longer inhibition effect on growth of pure algae and algal coexistence than direct artemisinin dosing. The artemisinin sustained-release granules could decrease the production and release of algal toxins due to the continued stress of artemisinin released from artemisinin sustained-release granules. There was no increase in the total amount of MC-LR in the algal cell culture medium.

  8. Intracellular production of hydrogels and synthetic RNA granules by multivalent molecular interactions

    NASA Astrophysics Data System (ADS)

    Nakamura, Hideki; Lee, Albert A.; Afshar, Ali Sobhi; Watanabe, Shigeki; Rho, Elmer; Razavi, Shiva; Suarez, Allister; Lin, Yu-Chun; Tanigawa, Makoto; Huang, Brian; Derose, Robert; Bobb, Diana; Hong, William; Gabelli, Sandra B.; Goutsias, John; Inoue, Takanari

    2018-01-01

    Some protein components of intracellular non-membrane-bound entities, such as RNA granules, are known to form hydrogels in vitro. The physico-chemical properties and functional role of these intracellular hydrogels are difficult to study, primarily due to technical challenges in probing these materials in situ. Here, we present iPOLYMER, a strategy for a rapid induction of protein-based hydrogels inside living cells that explores the chemically inducible dimerization paradigm. Biochemical and biophysical characterizations aided by computational modelling show that the polymer network formed in the cytosol resembles a physiological hydrogel-like entity that acts as a size-dependent molecular sieve. We functionalize these polymers with RNA-binding motifs that sequester polyadenine-containing nucleotides to synthetically mimic RNA granules. These results show that iPOLYMER can be used to synthetically reconstitute the nucleation of biologically functional entities, including RNA granules in intact cells.

  9. Primary cutaneous secretory carcinoma: A previously overlooked low-grade sweat gland carcinoma.

    PubMed

    Llamas-Velasco, Mar; Mentzel, Thomas; Rütten, Arno

    2018-03-01

    Twelve cases of primary cutaneous secretory carcinoma (PCSC) have been published, 9 showing ETV6-NTRK3 translocation, a characteristic finding shared with secretory breast carcinoma and mammary analogue secretory carcinoma. A 34-year-old female presented a solitary nodule on the right groin. Biopsy revealed a secretory carcinoma staining positive with CK7, CAM5.2, mammaglobulin and S100 and negative with GATA3, CK20, podoplanin, calponin and CDX2. ETV6-NTRK3 was demonstrated by Fluorescence in situ hybridization (FISH). PCSC is a rare neoplasm, described in the skin in 2009, that affects more frequently females with a mean age of 42.3 years and it is most commonly located in axilla. Histopathologically, these tumor cells are characterized by bubbly eosinophilic secretions diastase-resistant and bland nuclei and they are arranged in various growth patterns, including microcystic, tubular, solid and papillary. S100, mammoglobin and CK7 are usually positive. We review the main histopathological features to rule out histopathologic mimics such as breast metastasis, salivary tumors, cribriform carcinoma and primary cutaneous adenoid cystic carcinoma. GATA3 negative staining, as in our case, can help to rule out breast metastasis. Moreover, long-term benign follow up (144 months) in this case as well as follow-up data on outcomes from literature review support that PCSC is a low-grade sweat gland carcinoma. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Depolarization- and transmitter-induced changes in intracellular Ca2+ of rat cerebellar granule cells in explant cultures.

    PubMed

    Connor, J A; Tseng, H Y; Hockberger, P E

    1987-05-01

    Digital imaging of the Ca indicator fura-2 has been used to study the responses of developing granule cells in culture to depolarization and transmitter action. Unstimulated cells bathed in Krebs saline exhibited cytoplasmic Ca ion concentrations, [Ca2+], that were generally in the 30-60 nM range. Exposure of cells to high-potassium (25 mM) saline depolarized the membrane potential and produced an immediate rise in [Ca2+] that recovered within 2-3 min in normal saline. The response grew progressively larger over the first 20 d in culture. Transient increases in [Ca2+] to levels greater than 1 microM were observed after 12-14 d in vitro, at which time the cells displayed intense electrical activity when exposed to high K. At this stage, the increases were attenuated by blocking action potential activity with TTX. In TTX-treated or immature cells, in which the transient phase of the Ca change was relatively small, a second exposure to high K typically produced a much larger Ca response that the initial exposure. The duration of this facilitation of the response persisted for periods longer than 5 min. Application of the neurotransmitter GABA induced a transient increase in membrane conductance, with a reversal potential near resting potential (approx. -60 mV), and caused an intracellular Ca2+ increase that outlasted the exposure to GABA by several minutes. Glutamate, or kainate, induced an increase in membrane conductance but with a reversal potential more positive than spike threshold. These agents also elevated intracellular Ca2+, but unlike the case with GABA, this Ca response reversed rapidly upon removal of the transmitter. The facilitatory effect of repeated exposures to high-K saline, as well as the persistent Ca elevation following a brief GABA application, suggests that granule cells possess the capability of displaying activity-dependent changes in Ca levels in culture.

  11. Time-lapse imaging reveals highly dynamic structural maturation of postnatally born dentate granule cells in organotypic entorhino-hippocampal slice cultures

    PubMed Central

    Radic, Tijana; Jungenitz, Tassilo; Singer, Mathias; Beining, Marcel; Cuntz, Hermann; Vlachos, Andreas; Deller, Thomas; Schwarzacher, Stephan W.

    2017-01-01

    Neurogenesis of hippocampal granule cells (GCs) persists throughout mammalian life and is important for learning and memory. How newborn GCs differentiate and mature into an existing circuit during this time period is not yet fully understood. We established a method to visualize postnatally generated GCs in organotypic entorhino-hippocampal slice cultures (OTCs) using retroviral (RV) GFP-labeling and performed time-lapse imaging to study their morphological development in vitro. Using anterograde tracing we could, furthermore, demonstrate that the postnatally generated GCs in OTCs, similar to adult born GCs, grow into an existing entorhino-dentate circuitry. RV-labeled GCs were identified and individual cells were followed for up to four weeks post injection. Postnatally born GCs exhibited highly dynamic structural changes, including dendritic growth spurts but also retraction of dendrites and phases of dendritic stabilization. In contrast, older, presumably prenatally born GCs labeled with an adeno-associated virus (AAV), were far less dynamic. We propose that the high degree of structural flexibility seen in our preparations is necessary for the integration of newborn granule cells into an already existing neuronal circuit of the dentate gyrus in which they have to compete for entorhinal input with cells generated and integrated earlier. PMID:28256620

  12. Breakage and drying behaviour of granules in a continuous fluid bed dryer: Influence of process parameters and wet granule transfer.

    PubMed

    De Leersnyder, F; Vanhoorne, V; Bekaert, H; Vercruysse, J; Ghijs, M; Bostijn, N; Verstraeten, M; Cappuyns, P; Van Assche, I; Vander Heyden, Y; Ziemons, E; Remon, J P; Nopens, I; Vervaet, C; De Beer, T

    2018-03-30

    Although twin screw granulation has already been widely studied in recent years, only few studies addressed the subsequent continuous drying which is required after wet granulation and still suffers from a lack of detailed understanding. The latter is important for optimisation and control and, hence, a cost-effective practical implementation. Therefore, the aim of the current study is to increase understanding of the drying kinetics and the breakage and attrition phenomena during fluid bed drying after continuous twin screw granulation. Experiments were performed on a continuous manufacturing line consisting of a twin-screw granulator, a six-segmented fluid bed dryer, a mill, a lubricant blender and a tablet press. Granulation parameters were fixed in order to only examine the effect of drying parameters (filling time, drying time, air flow, drying air temperature) on the size distribution and moisture content of granules (both of the entire granulate and of size fractions). The wet granules were transferred either gravimetrically or pneumatically from the granulator exit to the fluid bed dryer. After a certain drying time, the moisture content reached an equilibrium. This drying time was found to depend on the applied airflow, drying air temperature and filling time. The moisture content of the granules decreased with an increasing drying time, airflow and drying temperature. Although smaller granules dried faster, the multimodal particle size distribution of the granules did not compromise uniform drying of the granules when the target moisture content was achieved. Extensive breakage of granules was observed during drying. Especially wet granules were prone to breakage and attrition during pneumatic transport, either in the wet transfer line or in the dry transfer line. Breakage and attrition of granules during transport and drying should be anticipated early on during process and formulation development by performing integrated experiments on the granulator

  13. Immunohistochemical localization of Clara cell secretory proteins (CC10-CC26) and Annexin-1 protein in rat major salivary glands

    PubMed Central

    Cecchini, Maria Paola; Merigo, Flavia; Cristofoletti, Mirko; Osculati, Francesco; Sbarbati, Andrea

    2009-01-01

    The oral cavity is continuously bathed by saliva secreted by the major and minor salivary glands. Saliva is the first biological medium to confront external materials that are taken into the body as part of food or drink or inhaled volatile substances, and it contributes to the first line of oral defence. In humans, it has been shown that sputum and a variety of biological fluids contain Clara cell secretory proteins (CC10–CC26). Various studies of the respiratory apparatus have suggested their protective effect against inflammatory response and oxidative stress. Recently, CC10 deficiency has been related to the protein Annexin-1 (ANXA1), which has immunomodulatory and anti-inflammatory properties. Considering the defensive role of both Clara cell secretory proteins and ANXA1 in the respiratory apparatus, and the importance of salivary gland secretion in the first line of oral defence, we decided to evaluate the expression of CC10, CC26 and ANXA1 proteins in rat major salivary glands using immunohistochemistry. CC10 expression was found only in the ductal component of the sublingual gland. Parotid and submandibular glands consistently lacked CC10 immunoreactivity. In the parotid gland, both acinar and ductal cells were always CC26-negative, whereas in the submandibular gland, immunostaining was localized in the ductal component and in the periodic acid Schiff (PAS)-positive area. In the sublingual gland, ductal cells were always positive. Acinar cells were not immunostained at all. ANXA1 was expressed in ductal cells in all three major glands. In parotid and sublingual glands, acinar cells were negative. In submandibular glands, immunostaining was present in the mucous PAS-positive portion, whereas serous acinar cells were consistently negative. The existence of some CC10-CC26–ANXA1-positive cells in rat salivary glandular tissue is an interesting preliminary finding which could support the hypothesis, suggested for airway tissue, that these proteins have a

  14. COBRA-LIKE2, a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE family, plays a role in cellulose deposition in arabidopsis seed coat mucilage secretory cells.

    PubMed

    Ben-Tov, Daniela; Abraham, Yael; Stav, Shira; Thompson, Kevin; Loraine, Ann; Elbaum, Rivka; de Souza, Amancio; Pauly, Markus; Kieber, Joseph J; Harpaz-Saad, Smadar

    2015-03-01

    Differentiation of the maternally derived seed coat epidermal cells into mucilage secretory cells is a common adaptation in angiosperms. Recent studies identified cellulose as an important component of seed mucilage in various species. Cellulose is deposited as a set of rays that radiate from the seed upon mucilage extrusion, serving to anchor the pectic component of seed mucilage to the seed surface. Using transcriptome data encompassing the course of seed development, we identified COBRA-LIKE2 (COBL2), a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE gene family in Arabidopsis (Arabidopsis thaliana), as coexpressed with other genes involved in cellulose deposition in mucilage secretory cells. Disruption of the COBL2 gene results in substantial reduction in the rays of cellulose present in seed mucilage, along with an increased solubility of the pectic component of the mucilage. Light birefringence demonstrates a substantial decrease in crystalline cellulose deposition into the cellulosic rays of the cobl2 mutants. Moreover, crystalline cellulose deposition into the radial cell walls and the columella appears substantially compromised, as demonstrated by scanning electron microscopy and in situ quantification of light birefringence. Overall, the cobl2 mutants display about 40% reduction in whole-seed crystalline cellulose content compared with the wild type. These data establish that COBL2 plays a role in the deposition of crystalline cellulose into various secondary cell wall structures during seed coat epidermal cell differentiation. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. Selective vulnerability of dentate granule cells prior to amyloid deposition in PDAPP mice: digital morphometric analyses.

    PubMed

    Wu, Chi-Cheng; Chawla, Faisal; Games, Dora; Rydel, Russell E; Freedman, Stephen; Schenk, Dale; Young, Warren G; Morrison, John H; Bloom, Floyd E

    2004-05-04

    Increasing evidence from mouse models of Alzheimer's disease shows that overexpression of a mutant form of the amyloid precursor protein (APP) and its product, beta-amyloid peptide, initiate pathological changes before amyloid deposition. To evaluate the cytological basis for one of these early changes, namely reduced volume of the dentate gyrus (DG), we have used high-throughput diOlistic cell loading and 3D neuronal reconstruction to investigate potential dendritic pathology of granule cells (GCs) in 90-day-old PDAPP mice. Labeled GCs from fixed hippocampal slices were selected randomly and imaged digitally by using confocal laser-scanning microscopy. The dendritic complexity of GCs was quantified according to subordinate morphological parameters, including soma position within the granule cell layer (superficial versus deep) and topographic location within the DG (dorsal versus ventral blade) along the anterior-posterior hippocampal axis. Initial analysis, which included all sampled GC types, revealed a 12% reduction of total dendritic length in PDAPP mice compared with littermate controls. Further analysis, performed with refined subgroups, found that superficially located GCs in the dorsal blade were profoundly altered, exhibiting a 23% loss in total dendritic length, whereas neurons in the ventral blade were unaffected. Superficial GCs were particularly vulnerable (a 32% reduction) in the posterior region of the DG. Furthermore, the dendritic reductions of this select group were uniformly localized within middle-to-outer portions of the dentate molecular layer. We conclude that substantial dendritic pathology is evident in 90-day-old PDAPP mice for a spatially defined subset of GCs well before amyloid accumulation occurs.

  16. Selective vulnerability of dentate granule cells prior to amyloid deposition in PDAPP mice: Digital morphometric analyses

    PubMed Central

    Wu, Chi-Cheng; Chawla, Faisal; Games, Dora; Rydel, Russell E.; Freedman, Stephen; Schenk, Dale; Young, Warren G.; Morrison, John H.; Bloom, Floyd E.

    2004-01-01

    Increasing evidence from mouse models of Alzheimer's disease shows that overexpression of a mutant form of the amyloid precursor protein (APP) and its product, β-amyloid peptide, initiate pathological changes before amyloid deposition. To evaluate the cytological basis for one of these early changes, namely reduced volume of the dentate gyrus (DG), we have used high-throughput diOlistic cell loading and 3D neuronal reconstruction to investigate potential dendritic pathology of granule cells (GCs) in 90-day-old PDAPP mice. Labeled GCs from fixed hippocampal slices were selected randomly and imaged digitally by using confocal laser-scanning microscopy. The dendritic complexity of GCs was quantified according to subordinate morphological parameters, including soma position within the granule cell layer (superficial versus deep) and topographic location within the DG (dorsal versus ventral blade) along the anterior-posterior hippocampal axis. Initial analysis, which included all sampled GC types, revealed a 12% reduction of total dendritic length in PDAPP mice compared with littermate controls. Further analysis, performed with refined subgroups, found that superficially located GCs in the dorsal blade were profoundly altered, exhibiting a 23% loss in total dendritic length, whereas neurons in the ventral blade were unaffected. Superficial GCs were particularly vulnerable (a 32% reduction) in the posterior region of the DG. Furthermore, the dendritic reductions of this select group were uniformly localized within middle-to-outer portions of the dentate molecular layer. We conclude that substantial dendritic pathology is evident in 90-day-old PDAPP mice for a spatially defined subset of GCs well before amyloid accumulation occurs. PMID:15118092

  17. Segregation of large granules from close-packed cluster of small granules due to buoyancy.

    PubMed

    Yang, Xian-qing; Zhou, Kun; Qiu, Kang; Zhao, Yue-min

    2006-03-01

    Segregation of large granules in a vibrofluidized granular bed with inhomogeneous granular number density distribution is studied by an event-driven algorithm. Simulation results show that the mean vertical position of large granules decreases with the increase of the density ration of the large granules to the small ones. This conclusion is consistent with the explanation that the net pressure due to the small surrounding particle impacts balances the large granular weight, and indict that the upward movement of the large granules is driven by the buoyancy. The values of temperature, density, and pressure of the systems are also computed by changing the conditions such as heating temperature on the bottom and restitution coefficient of particles. These results indicate that the segregation of large granules also happen in the systems with density inversion or even close-packed cluster of particles floating on a low-density fluid, due to the buoyancy. An equation of state is proposed to explain the buoyancy.

  18. Investigation of the effect of impeller speed on granules formed using a PMA-1 high shear granulator.

    PubMed

    Logan, R; Briens, L

    2012-11-01

    Impeller speed was varied from 300 to 1500 rpm during the wet high shear granulation of a placebo formulation using a new vertical shaft PharmaMATRIX-1 granulator. The resulting granules were extensively analysed for differences caused by the varying impeller speed with emphasis on flowability. Microscopy showed that initial granules were formed primarily from microcrystalline cellulose at all tested impeller speeds. At low impeller speed of 300 rpm in the "bumpy" flow regime, forces from the impeller were insufficient to incorporate all the components of the formulation into the granules and to promote granule growth to a size that significantly improved flowability. The "roping" flow regime at higher impeller speeds promoted granule growth to a median particle size of at least 100 µm that improved the flowability of the mixture. Particle size distribution measurements and advanced indicators based on avalanching behavior, however, showed that an impeller speed of 700 rpm produced the largest fraction of optimal granules with the best flowability potential. This impeller speed allowed good development of "roping" flow for sufficient mixing, collision rates and kinetic energy for collisions while minimizing excessive centrifugal forces that promote buildup around the bowl perimeter.

  19. Costus root granules improve ulcerative colitis through regulation of TGF-β mediation of the PI3K/AKT signaling pathway

    PubMed Central

    Wang, Xiaohong; Li, Dan; Zhang, Yong; Wu, Shuang; Tang, Fang

    2018-01-01

    Ulcerative colitis is a chronic nonspecific inflammatory disease that occurs in the colon and rectum. Costus root is a type of traditional Chinese medicine that exhibits antibacterial properties and serves an inhibitory role in the regeneration of gut bacteria. However, the molecular mechanisms underlying Costus root-mediated improvements in ulcerative colitis remain unclear. A complex formula of Costus root granules was created and investigated in the present study for its therapeutic effects in a rat model of ulcerative colitis. Ingredient dissolution into a traditional water decoction was used as a control. The potential mechanism mediated by Costus root granules was also analyzed in colonic epithelial cells isolated from the experimental rats. The results of the present study demonstrated that Costus root granule treatment inhibited inflammation in colonic tissue. Costus root granule treatment also suppressed the apoptosis of colonic epithelial cells isolated from the rat model of ulcerative colitis. Analyses of the underlying mechanisms of these effects indicated that the administration of Costus root granules increased transforming growth factor β expression, which activated the phosphoinositide 3-kinase/RAC-α serine/threonine-protein kinase signaling pathway in colonic epithelial cells. Notably, the administration of Costus root granules improved stomachache, diarrhea and hematochezia in and increased the body weight of, the ulcerative colitis rats. In conclusion, these results indicate that Costus root granules markedly ameliorate inflammation of the colonic epithelium, decrease the apoptosis of colonic epithelial cells and improve colonic function, which suggests that Costus root granules are an efficient agent for the treatment of ulcerative colitis. PMID:29731832

  20. Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism.

    PubMed

    Wang, Rong; Yu, Zhen; Sunchu, Bharath; Shoaf, James; Dang, Ivana; Zhao, Stephanie; Caples, Kelsey; Bradley, Lynda; Beaver, Laura M; Ho, Emily; Löhr, Christiane V; Perez, Viviana I

    2017-06-01

    Senescent cells contribute to age-related pathology and loss of function, and their selective removal improves physiological function and extends longevity. Rapamycin, an inhibitor of mTOR, inhibits cell senescence in vitro and increases longevity in several species. Nrf2 levels have been shown to decrease with aging and silencing Nrf2 gene induces premature senescence. Therefore, we explored whether Nrf2 is involved in the mechanism by which rapamycin delays cell senescence. In wild-type (WT) mouse fibroblasts, rapamycin increased the levels of Nrf2, and this correlates with the activation of autophagy and a reduction in the induction of cell senescence, as measured by SA-β-galactosidase (β-gal) staining, senescence-associated secretory phenotype (SASP), and p16 and p21 molecular markers. In Nrf2KO fibroblasts, however, rapamycin still decreased β-gal staining and the SASP, but rapamycin did not activate the autophagy pathway or decrease p16 and p21 levels. These observations were further confirmed in vivo using Nrf2KO mice, where rapamycin treatment led to a decrease in β-gal staining and pro-inflammatory cytokines in serum and fat tissue; however, p16 levels were not significantly decreased in fat tissue. Consistent with literature demonstrating that the Stat3 pathway is linked to the production of SASP, we found that rapamycin decreased activation of the Stat3 pathway in cells or tissue samples from both WT and Nrf2KO mice. Our data thus suggest that cell senescence is a complex process that involves at least two arms, and rapamycin uses Nrf2 to regulate cell cycle arrest, but not the production of SASP. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.