Science.gov

Sample records for cell selection devices

  1. Medical devices; immunology and microbiology devices; classification of the immunomagnetic circulating cancer cell selection and enumeration system. Final rule.

    PubMed

    2004-05-11

    The Food and Drug Administration (FDA) is classifying the Immunomagnetic Circulating Cancer Cell Selection and Enumeration System device into class II (special controls). The special control that will apply to the device is the guidance document entitled "Class II Special Controls Guidance Document: Immunomagnetic Circulating Cancer Cell Selection and Enumeration System." The agency is taking this action in response to a petition submitted under the Federal Food, Drug, and Cosmetic Act (the act) as amended by the Medical Device Amendments of 1976 (the amendments), the Safe Medical Devices Act of 1990 (the SMDA), the Food and Drug Administration Modernization Act of 1997 (FDAMA), and the Medical Device User Fee and Modernization Act of 2002 (MDUFMA). The agency is classifying the device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device. Elsewhere in this issue of the Federal Register, FDA is publishing a notice of availability of a guidance document that is the special control for this device. PMID:15137395

  2. Cell Selection Game for Densely-Deployed Sensor and Mobile Devices In 5G Networks Integrating Heterogeneous Cells and the Internet of Things.

    PubMed

    Wang, Lusheng; Wang, Yamei; Ding, Zhizhong; Wang, Xiumin

    2015-01-01

    With the rapid development of wireless networking technologies, the Internet of Things and heterogeneous cellular networks (HCNs) tend to be integrated to form a promising wireless network paradigm for 5G. Hyper-dense sensor and mobile devices will be deployed under the coverage of heterogeneous cells, so that each of them could freely select any available cell covering it and compete for resource with others selecting the same cell, forming a cell selection (CS) game between these devices. Since different types of cells usually share the same portion of the spectrum, devices selecting overlapped cells can experience severe inter-cell interference (ICI). In this article, we study the CS game among a large amount of densely-deployed sensor and mobile devices for their uplink transmissions in a two-tier HCN. ICI is embedded with the traditional congestion game (TCG), forming a congestion game with ICI (CGI) and a congestion game with capacity (CGC). For the three games above, we theoretically find the circular boundaries between the devices selecting the macrocell and those selecting the picocells, indicated by the pure strategy Nash equilibria (PSNE). Meanwhile, through a number of simulations with different picocell radii and different path loss exponents, the collapse of the PSNE impacted by severe ICI (i.e., a large number of picocell devices change their CS preferences to the macrocell) is profoundly revealed, and the collapse points are identified. PMID:26393617

  3. Cell Selection Game for Densely-Deployed Sensor and Mobile Devices In 5G Networks Integrating Heterogeneous Cells and the Internet of Things

    PubMed Central

    Wang, Lusheng; Wang, Yamei; Ding, Zhizhong; Wang, Xiumin

    2015-01-01

    With the rapid development of wireless networking technologies, the Internet of Things and heterogeneous cellular networks (HCNs) tend to be integrated to form a promising wireless network paradigm for 5G. Hyper-dense sensor and mobile devices will be deployed under the coverage of heterogeneous cells, so that each of them could freely select any available cell covering it and compete for resource with others selecting the same cell, forming a cell selection (CS) game between these devices. Since different types of cells usually share the same portion of the spectrum, devices selecting overlapped cells can experience severe inter-cell interference (ICI). In this article, we study the CS game among a large amount of densely-deployed sensor and mobile devices for their uplink transmissions in a two-tier HCN. ICI is embedded with the traditional congestion game (TCG), forming a congestion game with ICI (CGI) and a congestion game with capacity (CGC). For the three games above, we theoretically find the circular boundaries between the devices selecting the macrocell and those selecting the picocells, indicated by the pure strategy Nash equilibria (PSNE). Meanwhile, through a number of simulations with different picocell radii and different path loss exponents, the collapse of the PSNE impacted by severe ICI (i.e., a large number of picocell devices change their CS preferences to the macrocell) is profoundly revealed, and the collapse points are identified. PMID:26393617

  4. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.

    PubMed

    Heremans, Paul; Cheyns, David; Rand, Barry P

    2009-11-17

    Thin-film blends or bilayers of donor- and acceptor-type organic semiconductors form the core of heterojunction organic photovoltaic cells. Researchers measure the quality of photovoltaic cells based on their power conversion efficiency, the ratio of the electrical power that can be generated versus the power of incident solar radiation. The efficiency of organic solar cells has increased steadily in the last decade, currently reaching up to 6%. Understanding and combating the various loss mechanisms that occur in processes from optical excitation to charge collection should lead to efficiencies on the order of 10% in the near future. In organic heterojunction solar cells, the generation of photocurrent is a cascade of four steps: generation of excitons (electrically neutral bound electron-hole pairs) by photon absorption, diffusion of excitons to the heterojunction, dissociation of the excitons into free charge carriers, and transport of these carriers to the contacts. In this Account, we review our recent contributions to the understanding of the mechanisms that govern these steps. Starting from archetype donor-acceptor systems of planar small-molecule heterojunctions and solution-processed bulk heterojunctions, we outline our search for alternative materials and device architectures. We show that non-planar phthalocynanines have appealing absorption characteristics but also have reduced charge carrier transport. As a result, the donor layer needs to be ultrathin, and all layers of the device have to be tuned to account for optical interference effects. Using these optimization techniques, we illustrate cells with 3.1% efficiency for the non-planar chloroboron subphthalocyanine donor. Molecules offering a better compromise between absorption and carrier mobility should allow for further improvements. We also propose a method for increasing the exciton diffusion length by converting singlet excitons into long-lived triplets. By doping a polymer with a

  5. Selective Deposition of Insulating Metal Oxide in Perovskite Solar Cells with Enhanced Device Performance.

    PubMed

    Yue, Youfeng; Yang, Xudong; Wu, Yongzhen; Salim, Noviana Tjitra; Islam, Ashraful; Noda, Takeshi; Han, Liyuan

    2015-08-24

    We report a simple methodology for the selective deposition of an insulating layer on the nanoparticulate TiO2 (np-TiO2) mesoporous layer of perovskite solar cells. The deposited MgO insulating layer mainly covered the bottom part of the np-TiO2 layer with less coverage at the top. The so-called quasi-top-open structure is introduced to act as an efficient hole-blocking layer to prevent charge recombination at the physical contact of the transparent conducting oxide with the perovskite. This leads to an open-circuit voltage higher than that of the reference cell with a compact TiO2 hole-blocking layer. Moreover, such a quasi-top-open structure can facilitate the electron injection from perovskite into the np-TiO2 mesoporous layer and improve the spectral response at longer wavelength because of the less covered insulating layer at the top. This work provides an alternative way to fabricate perovskite solar cells without the need to use a conventional compact TiO2 layer. PMID:26230988

  6. Microfluidic Cell Culture Device

    NASA Technical Reports Server (NTRS)

    Takayama, Shuichi (Inventor); Cabrera, Lourdes Marcella (Inventor); Heo, Yun Seok (Inventor); Smith, Gary Daniel (Inventor)

    2014-01-01

    Microfluidic devices for cell culturing and methods for using the same are disclosed. One device includes a substrate and membrane. The substrate includes a reservoir in fluid communication with a passage. A bio-compatible fluid may be added to the reservoir and passage. The reservoir is configured to receive and retain at least a portion of a cell mass. The membrane acts as a barrier to evaporation of the bio-compatible fluid from the passage. A cover fluid may be added to cover the bio-compatible fluid to prevent evaporation of the bio-compatible fluid.

  7. Liver Cell Culture Devices

    PubMed Central

    Andria, B.; Bracco, A.; Cirino, G.; Chamuleau, R. A. F. M.

    2010-01-01

    In the last 15 years many different liver cell culture devices, consisting of functional liver cells and artificial materials, have been developed. They have been devised for numerous different applications, such as temporary organ replacement (a bridge to liver transplantation or native liver regeneration) and as in vitro screening systems in the early stages of the drug development process, like assessing hepatotoxicity, hepatic drug metabolism, and induction/inhibition studies. Relevant literature is summarized about artificial human liver cell culture systems by scrutinizing PubMed from 2003 to 2009. Existing devices are divided in 2D configurations (e.g., static monolayer, sandwich, perfused cells, and flat plate) and 3D configurations (e.g., liver slices, spheroids, and different types of bioreactors). The essential features of an ideal liver cell culture system are discussed: different types of scaffolds, oxygenation systems, extracellular matrixes (natural and artificial), cocultures with nonparenchymal cells, and the role of shear stress problems. Finally, miniaturization and high-throughput systems are discussed. All these factors contribute in their own way to the viability and functionality of liver cells in culture. Depending on the aim for which they are designed, several good systems are available for predicting hepatotoxicity and hepatic metabolism within the general population. To predict hepatotoxicity in individual cases genomic analysis might be essential as well. PMID:26998397

  8. 76 FR 51038 - Draft Guidance for Industry: Cell Selection Devices for Point of Care Production of Minimally...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-17

    ... Point of Care Production of Minimally Manipulated Autologous Peripheral Blood Stem Cells; Withdrawal of... Autologous Peripheral Blood Stem Cells (PBSCs)'' dated July 2007. DATES: August 17, 2011. FOR FURTHER... Care Production of Minimally Manipulated Autologous Peripheral Blood Stem Cells (PBSCs).'' FDA...

  9. Solar cell device

    SciTech Connect

    Nishiura, M.; Haruki, H.; Miyagi, M.; Sakai, H.; Uchida, Y.

    1984-06-26

    A solar cell array is equipped with serially or parallel connected reverse polarity diodes formed simultaneously with the array. The diodes are constituted by one or more solar cells of the array which may be shaded to prevent photoelectric conversion, and which are electrically connected in reverse polarity with respect to the remaining cells.

  10. Device for monitoring cell voltage

    DOEpatents

    Doepke, Matthias; Eisermann, Henning

    2012-08-21

    A device for monitoring a rechargeable battery having a number of electrically connected cells includes at least one current interruption switch for interrupting current flowing through at least one associated cell and a plurality of monitoring units for detecting cell voltage. Each monitoring unit is associated with a single cell and includes a reference voltage unit for producing a defined reference threshold voltage and a voltage comparison unit for comparing the reference threshold voltage with a partial cell voltage of the associated cell. The reference voltage unit is electrically supplied from the cell voltage of the associated cell. The voltage comparison unit is coupled to the at least one current interruption switch for interrupting the current of at least the current flowing through the associated cell, with a defined minimum difference between the reference threshold voltage and the partial cell voltage.

  11. Exercise Device Would Exert Selectable Constant Resistance

    NASA Technical Reports Server (NTRS)

    Smith, Damon C.

    2003-01-01

    An apparatus called the resistive exercise device (RED) has been proposed to satisfy a requirement for exercise equipment aboard the International Space Station (ISS) that could passively exert a selectable constant load on both the outward and return strokes. The RED could be used alone; alternatively, the RED could be used in combination with another apparatus called the treadmill with vibration isolation and stabilization (TVIS), in which case the combination would be called the subject load device (SLD). The basic RED would be a passive device, but it could incorporate an electric motor to provide eccentric augmentation (augmentation to make the load during inward movement greater than the load during outward movement). The RED concept represents a unique approach to providing a constant but selectable resistive load for exercise for the maintenance and development of muscles. Going beyond the original ISS application, the RED could be used on Earth as resistive weight training equipment. The advantage of the RED over conventional weight-lifting equipment is that it could be made portable and lightweight.

  12. Whole Blood Cell Staining Device

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.; Clift, Vaughan L.; McDonald, Kelly E.

    2000-01-01

    An apparatus and method for staining particular cell markers is disclosed. The apparatus includes a flexible tube that is reversibly pinched into compartments with one or more clamps. Each compartment of the tube contains a separate reagent and is in selective fluid communication with adjoining compartments.

  13. Assembly For Moving a Robotic Device Along Selected Axes

    NASA Technical Reports Server (NTRS)

    Nowlin, Brentley Craig (Inventor); Koch, Lisa Danielle (Inventor)

    2001-01-01

    An assembly for moving a robotic device along selected axes includes a programmable logic controller (PLC) for controlling movement of the device along selected axes to effect movement of the device to a selected disposition. The PLC includes a plurality of single axis motion control modules, and a central processing unit (CPU) in communication with the motion control modules. A human-machine interface is provided for operator selection of configurations of device movements and is in communication with the CPU. A motor drive is in communication with each of the motion control modules and is operable to effect movement of the device along the selected axes to obtain movement of the device to the selected disposition.

  14. Device for wavelength-selective imaging

    DOEpatents

    Frangioni, John V.

    2010-09-14

    An imaging device captures both a visible light image and a diagnostic image, the diagnostic image corresponding to emissions from an imaging medium within the object. The visible light image (which may be color or grayscale) and the diagnostic image may be superimposed to display regions of diagnostic significance within a visible light image. A number of imaging media may be used according to an intended application for the imaging device, and an imaging medium may have wavelengths above, below, or within the visible light spectrum. The devices described herein may be advantageously packaged within a single integrated device or other solid state device, and/or employed in an integrated, single-camera medical imaging system, as well as many non-medical imaging systems that would benefit from simultaneous capture of visible-light wavelength images along with images at other wavelengths.

  15. Acoustophoretic sorting of viable mammalian cells in a microfluidic device.

    PubMed

    Yang, Allen H J; Soh, H Tom

    2012-12-18

    We report the first use of ultrasonic acoustophoresis for the label-free separation of viable and nonviable mammalian cells within a microfluidic device. Cells that have undergone apoptosis are physically smaller than viable cells, and our device exploits this fact to achieve efficient sorting based on the strong size dependence of acoustic radiation forces within a microchannel. As a model, we have selectively enriched viable MCF-7 breast tumor cells from heterogeneous mixtures of viable and nonviable cells. We found that this mode of separation is gentle and enables efficient, label-free isolation of viable cells from mixed samples containing 10(6) cells/mL at flow rates of up to 12 mL/h. We have extensively characterized the device, and we report the effects of piezoelectric voltage and sample flow rate on device performance and describe how these parameters can be tuned to optimize recovery, purity, or throughput. PMID:23157478

  16. 21 CFR 864.6160 - Manual blood cell counting device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Manual blood cell counting device. 864.6160... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6160 Manual blood cell counting device. (a) Identification. A manual blood cell counting device is a device used...

  17. Multi-junction solar cell device

    DOEpatents

    Friedman, Daniel J.; Geisz, John F.

    2007-12-18

    A multi-junction solar cell device (10) is provided. The multi-junction solar cell device (10) comprises either two or three active solar cells connected in series in a monolithic structure. The multi-junction device (10) comprises a bottom active cell (20) having a single-crystal silicon substrate base and an emitter layer (23). The multi-junction device (10) further comprises one or two subsequent active cells each having a base layer (32) and an emitter layer (23) with interconnecting tunnel junctions between each active cell. At least one layer that forms each of the top and middle active cells is composed of a single-crystal III-V semiconductor alloy that is substantially lattice-matched to the silicon substrate (22). The polarity of the active p-n junction cells is either p-on-n or n-on-p. The present invention further includes a method for substantially lattice matching single-crystal III-V semiconductor layers with the silicon substrate (22) by including boron and/or nitrogen in the chemical structure of these layers.

  18. 21 CFR 864.6160 - Manual blood cell counting device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Manual blood cell counting device. 864.6160... blood cell counting device. (a) Identification. A manual blood cell counting device is a device used to count red blood cells, white blood cells, or blood platelets. (b) Classification. Class I...

  19. 21 CFR 864.6160 - Manual blood cell counting device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Manual blood cell counting device. 864.6160... blood cell counting device. (a) Identification. A manual blood cell counting device is a device used to count red blood cells, white blood cells, or blood platelets. (b) Classification. Class I...

  20. 21 CFR 864.6160 - Manual blood cell counting device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Manual blood cell counting device. 864.6160... blood cell counting device. (a) Identification. A manual blood cell counting device is a device used to count red blood cells, white blood cells, or blood platelets. (b) Classification. Class I...

  1. 21 CFR 864.6160 - Manual blood cell counting device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Manual blood cell counting device. 864.6160... blood cell counting device. (a) Identification. A manual blood cell counting device is a device used to count red blood cells, white blood cells, or blood platelets. (b) Classification. Class I...

  2. Multiple cell photoresponsive amorphous alloys and devices

    SciTech Connect

    Ovshinsky, S.R.; Adler, D.

    1990-01-02

    This patent describes an improved photoresponsive tandem multiple solar cell device. The device comprising: at least a first and second superimposed cell of various materials. The first cell being formed of a silicon alloy material. The second cell including an amorphous silicon alloy semiconductor cell body having an active photoresponsive region in which radiation can impinge to produce charge carriers, the amorphous cell body including at least one density of states reducing element. The element being fluorine. The amorphous cell body further including a band gap adjusting element therein at least in the photoresponsive region to enhance the radiation absorption thereof, the adjusting element being germanium: the second cell being a multi-layer body having deposited semiconductor layers of opposite (p and n) conductivity type; and the first cell being formed with the second cell in substantially direct Junction contact therebetween. The first and second cells designed to generate substantially matched currents from each cell from a light source directed through the first cell and into the second cell.

  3. Selectively-etched nanochannel electrophoretic and electrochemical devices

    DOEpatents

    Surh, Michael P.; Wilson, William D.; Barbee, Jr., Troy W.; Lane, Stephen M.

    2006-06-27

    Nanochannel electrophoretic and electrochemical devices having selectively-etched nanolaminates located in the fluid transport channel. The normally flat surfaces of the nanolaminate having exposed conductive (metal) stripes are selectively-etched to form trenches and baffles. The modifications of the prior utilized flat exposed surfaces increase the amount of exposed metal to facilitate electrochemical redox reaction or control the exposure of the metal surfaces to analytes of large size. These etched areas variously increase the sensitivity of electrochemical detection devices to low concentrations of analyte, improve the plug flow characteristic of the channel, and allow additional discrimination of the colloidal particles during cyclic voltammetry.

  4. Selectively-etched nanochannel electrophoretic and electrochemical devices

    SciTech Connect

    Surh, Michael P.; Wilson, William D.; Barbee, Jr., Troy W.; Lane, Stephen M.

    2004-11-16

    Nanochannel electrophoretic and electrochemical devices having selectively-etched nanolaminates located in the fluid transport channel. The normally flat surfaces of the nanolaminate having exposed conductive (metal) stripes are selectively-etched to form trenches and baffles. The modifications of the prior utilized flat exposed surfaces increase the amount of exposed metal to facilitate electrochemical redox reaction or control the exposure of the metal surfaces to analytes of large size. These etched areas variously increase the sensitivity of electrochemical detection devices to low concentrations of analyte, improve the plug flow characteristic of the channel, and allow additional discrimination of the colloidal particles during cyclic voltammetry.

  5. 21 CFR 864.5260 - Automated cell-locating device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Automated cell-locating device. 864.5260 Section... § 864.5260 Automated cell-locating device. (a) Identification. An automated cell-locating device is a device used to locate blood cells on a peripheral blood smear, allowing the operator to identify...

  6. 21 CFR 864.5260 - Automated cell-locating device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Automated cell-locating device. 864.5260 Section... § 864.5260 Automated cell-locating device. (a) Identification. An automated cell-locating device is a device used to locate blood cells on a peripheral blood smear, allowing the operator to identify...

  7. 21 CFR 864.5260 - Automated cell-locating device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Automated cell-locating device. 864.5260 Section... § 864.5260 Automated cell-locating device. (a) Identification. An automated cell-locating device is a device used to locate blood cells on a peripheral blood smear, allowing the operator to identify...

  8. 21 CFR 864.5260 - Automated cell-locating device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated cell-locating device. 864.5260 Section... § 864.5260 Automated cell-locating device. (a) Identification. An automated cell-locating device is a device used to locate blood cells on a peripheral blood smear, allowing the operator to identify...

  9. 21 CFR 864.5260 - Automated cell-locating device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Automated cell-locating device. 864.5260 Section... § 864.5260 Automated cell-locating device. (a) Identification. An automated cell-locating device is a device used to locate blood cells on a peripheral blood smear, allowing the operator to identify...

  10. Microfluidic device for acoustic cell lysis

    DOEpatents

    Branch, Darren W.; Cooley, Erika Jane; Smith, Gennifer Tanabe; James, Conrad D.; McClain, Jaime L.

    2015-08-04

    A microfluidic acoustic-based cell lysing device that can be integrated with on-chip nucleic acid extraction. Using a bulk acoustic wave (BAW) transducer array, acoustic waves can be coupled into microfluidic cartridges resulting in the lysis of cells contained therein by localized acoustic pressure. Cellular materials can then be extracted from the lysed cells. For example, nucleic acids can be extracted from the lysate using silica-based sol-gel filled microchannels, nucleic acid binding magnetic beads, or Nafion-coated electrodes. Integration of cell lysis and nucleic acid extraction on-chip enables a small, portable system that allows for rapid analysis in the field.

  11. Designing Passivating, Carrier-Selective Contacts for Photovoltaic Devices

    SciTech Connect

    Boccard, Matthieu; Koswatta, Priyaranga; Holman, Zachary

    2015-04-06

    "The first step towards building a high-efficiency solar cell is to develop an absorber with few recombination-active defects. Many photovoltaic technologies have already achieved this (monocrystalline Si, III-V materials grown on lattice-matched substrates, perovskites, polycrystalline CdTe and CIGS); those that have not (a-Si:H, organics) have been limited to low open-circuit voltage. The second step is to develop contacts that both inhibit surface recombination and allow for low-resistance collection of either only electrons or only holes. For most photovoltaic technologies, this step is both more difficult and less explored than the first, and we are unaware of a prescribed methodology for selecting materials for contacts to solar cells. We elucidate a unified, conceptual understanding of contacts within which existing contacting schemes can be interpreted and future contacting schemes can be imagined. Whereas a split of the quasi-Fermi levels of holes and electrons is required in the absorber of any solar cell to generate a voltage, carriers are eventually collected through a metallic wire in which no such quasi-Fermi-level split exists. We define a contact to be all layers between the bulk of the absorber and the recombination-active interface through which carriers are extracted. The quasi-Fermi levels must necessarily collapse at this interface, and thus the transition between maximal quasi-Fermi-level splitting (in the absorber) and no splitting occurs entirely in the contact. Depending on the solar cell architecture, the contact will usually extend from the surface of the absorber to the surface of a metal or transparent conductive oxide layer, and may include deposited or diffused doped layers (e.g., as in crystalline and thin-film Si cells) and heterostructure buffer layers (e.g., the CdS layer in a CdTe device). We further define a passivating contact as one that enables high quasi-Fermi-level splitting in the absorber (large “internal” voltage

  12. Power selective optical filter devices and optical systems using same

    DOEpatents

    Koplow, Jeffrey P

    2014-10-07

    In an embodiment, a power selective optical filter device includes an input polarizer for selectively transmitting an input signal. The device includes a wave-plate structure positioned to receive the input signal, which includes at least one substantially zero-order, zero-wave plate. The zero-order, zero-wave plate is configured to alter a polarization state of the input signal passing in a manner that depends on the power of the input signal. The zero-order, zero-wave plate includes an entry and exit wave plate each having a fast axis, with the fast axes oriented substantially perpendicular to each other. Each entry wave plate is oriented relative to a transmission axis of the input polarizer at a respective angle. An output polarizer is positioned to receive a signal output from the wave-plate structure and selectively transmits the signal based on the polarization state.

  13. Cell lysis and DNA extraction in microfabricated devices

    NASA Astrophysics Data System (ADS)

    Prinz, Christelle; Tegenfeldt, Jonas; Austin, Robert

    2002-03-01

    We are developing a microfabricated device to lyse single cells and extract the DNA. The chip consists of two parts: a diffuse mixer combined with a dielectrophoretic trap. We are working with E. coli which have been made osmoticaly unstable before loading into the chip. The cells are lysed by osmotic shock in the mixer. The lysate is then passed to the dielectrophoretic trap. Attempts to separate the genomic DNA from the lysate fragments by selectively trapping the DNA using dielectrophoresis have been made. We have encountered cell sticking problems and are investingating surface modifications using Polyethylene glycol to solve this problem.

  14. Novel Hydrogen Purification Device Integrated with PEM Fuel Cells

    SciTech Connect

    Joseph Schwartz; Hankwon Lim; Raymond Drnevich

    2010-12-31

    A prototype device containing twelve membrane tubes was designed, built, and demonstrated. The device produced almost 300 scfh of purified hydrogen at 200 psig feed pressure. The extent of purification met the program target of selectively removing enough impurities to enable industrial-grade hydrogen to meet purity specifications for PEM fuel cells. An extrusion process was developed to produce substrate tubes. Membranes met several test objectives, including completing 20 thermal cycles, exceeding 250 hours of operating life, and demonstrating a flux of 965 scfh/ft2 at 200 psid and 400 C.

  15. Cell loss in integrated microfluidic device.

    PubMed

    Zhu, Liang; Peh, Xue Li; Ji, Hong Miao; Teo, Cheng Yong; Feng, Han Hua; Liu, Wen-Tso

    2007-10-01

    Cell loss during sample transporting from macro-components to micro-components in integrated microfluidic devices can considerably deteriorate cell detection sensitivity. This intrinsic cell loss was studied and effectively minimized through (a) increasing the tubing diameter connecting the sample storage and the micro-device, (b) applying a hydrodynamic focusing approach for sample delivering to reduce cells contacting and adhesion on the walls of micro-channel and chip inlet; (c) optimizing the filter design with a zigzag arrangement of pillars (13 microm in chamber depth and 0.8 microm in gap) to prolong the effective filter length, and iv) the use of diamond shaped pillar instead of normally used rectangular shape to reduce the gap length between any two given pillar (i.e. pressure drop) at the filter region. Cell trapping and immunofluorescent detection of 12 Giardia lamblia and 12 Cryptosporidium parvum cells in 150 microl solution and 50 MCF-7 breast cancer cells in 150 microl solution was completed within 15 min with trapping efficiencies improved from 79+/-11%, 50.8+/-5.5% and 41.3+/-3.6% without hydrodynamic focusing, respectively, to 90.8+/-5.8%, 89.8+/-16.6% and 77.0+/-9.2% with hydrodynamic focusing. PMID:17541747

  16. Microfluidic devices for cell cultivation and proliferation

    PubMed Central

    Tehranirokh, Masoomeh; Kouzani, Abbas Z.; Francis, Paul S.; Kanwar, Jagat R.

    2013-01-01

    Microfluidic technology provides precise, controlled-environment, cost-effective, compact, integrated, and high-throughput microsystems that are promising substitutes for conventional biological laboratory methods. In recent years, microfluidic cell culture devices have been used for applications such as tissue engineering, diagnostics, drug screening, immunology, cancer studies, stem cell proliferation and differentiation, and neurite guidance. Microfluidic technology allows dynamic cell culture in microperfusion systems to deliver continuous nutrient supplies for long term cell culture. It offers many opportunities to mimic the cell-cell and cell-extracellular matrix interactions of tissues by creating gradient concentrations of biochemical signals such as growth factors, chemokines, and hormones. Other applications of cell cultivation in microfluidic systems include high resolution cell patterning on a modified substrate with adhesive patterns and the reconstruction of complicated tissue architectures. In this review, recent advances in microfluidic platforms for cell culturing and proliferation, for both simple monolayer (2D) cell seeding processes and 3D configurations as accurate models of in vivo conditions, are examined. PMID:24273628

  17. Cell biology apps for Apple devices.

    PubMed

    Stark, Louisa A

    2012-01-01

    Apps for touch-pad devices hold promise for guiding and supporting learning. Students may use them in the classroom or on their own for didactic instruction, just-in-time learning, or review. Since Apple touch-pad devices (i.e., iPad and iPhone) have a substantial share of the touch-pad device market (Campbell, 2012), this Feature will explore cell biology apps available from the App Store. My review includes iPad and iPhone apps available in June 2012, but does not include courses, lectures, podcasts, audiobooks, texts, or other books. I rated each app on a five-point scale (1 star = lowest; 5 stars = highest) for educational and production values; I also provide an overall score. PMID:22949420

  18. 21 CFR 864.5300 - Red cell indices device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell...

  19. 21 CFR 864.5300 - Red cell indices device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell...

  20. 21 CFR 864.5300 - Red cell indices device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell...

  1. 21 CFR 864.5300 - Red cell indices device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell...

  2. 21 CFR 864.5300 - Red cell indices device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell...

  3. Game theory-based mode cooperative selection mechanism for device-to-device visible light communication

    NASA Astrophysics Data System (ADS)

    Liu, Yuxin; Huang, Zhitong; Li, Wei; Ji, Yuefeng

    2016-03-01

    Various patterns of device-to-device (D2D) communication, from Bluetooth to Wi-Fi Direct, are emerging due to the increasing requirements of information sharing between mobile terminals. This paper presents an innovative pattern named device-to-device visible light communication (D2D-VLC) to alleviate the growing traffic problem. However, the occlusion problem is a difficulty in D2D-VLC. This paper proposes a game theory-based solution in which the best-response dynamics and best-response strategies are used to realize a mode-cooperative selection mechanism. This mechanism uses system capacity as the utility function to optimize system performance and selects the optimal communication mode for each active user from three candidate modes. Moreover, the simulation and experimental results show that the mechanism can attain a significant improvement in terms of effectiveness and energy saving compared with the cases where the users communicate via only the fixed transceivers (light-emitting diode and photo diode) or via only D2D.

  4. The science guiding selection of an aerosol delivery device.

    PubMed

    Myers, Timothy R

    2013-11-01

    Aerosol therapy continues to be considered as one of the cornerstones of the profession of respiratory care, even after 60 years. Aerosol therapy serves as a critical intervention for both exacerbations and chronic maintenance for a variety of respiratory care conditions. Aerosol therapy uniquely blends both the art and science of medicine together to produce the practical and necessary clinical outcomes for patients with respiratory diseases. This review was presented as part of the New Horizons Symposium on how to guide the scientific selection of an appropriate aerosol device. PMID:24155355

  5. Reversible (unitized) PEM fuel cell devices

    SciTech Connect

    Mitlitsky, F; Myers, B; Smith, W F; Weisberg, Molter, T M

    1999-06-01

    Regenerative fuel cells (RFCs) are enabling for many weight-critical portable applications, since the packaged specific energy (>400 Wh/kg) of properly designed lightweight RFC systems is several-fold higher than that of the lightest weight rechargeable batteries. RFC systems can be rapidly refueled (like primary fuel cells), or can be electrically recharged (like secondary batteries) if a refueling infrastructure is not conveniently available. Higher energy capacity systems with higher performance, reduced weight, and freedom from fueling infrastructure are the features that RFCs promise for portable applications. Reversible proton exchange membrane (PEM) fuel cells, also known as unitized regenerative fuel cells (URFCs), or reversible regenerative fuel cells, are RFC systems which use reversible PEM cells, where each cell is capable of operating both as a fuel cell and as an electrolyzer. URFCs further economize portable device weight, volume, and complexity by combining the functions of fuel cells and electrolyzers in the same hardware, generally without any system performance or efficiency reduction. URFCs are being made in many forms, some of which are already small enough to be portable. Lawrence Livermore National Laboratory (LLNL) has worked with industrial partners to design, develop, and demonstrate high performance and high cycle life URFC systems. LLNL is also working with industrial partners to develop breakthroughs in lightweight pressure vessels that are necessary for URFC systems to achieve the specific energy advantages over rechargeable batteries. Proton Energy Systems, Inc. (Proton) is concurrently developing and commercializing URFC systems (UNIGEN' product line), in addition to PEM electrolyzer systems (HOGEN' product line), and primary PEM fuel cell systems. LLNL is constructing demonstration URFC units in order to persuade potential sponsors, often in their own conference rooms, that advanced applications based on URFC s are feasible. Safety

  6. Nanostructured Semiconductor Device Design in Solar Cells

    NASA Astrophysics Data System (ADS)

    Dang, Hongmei

    We demonstrate the use of embedded CdS nanowires in improving spectral transmission loss and the low mechanical and electrical robustness of planar CdS window layer and thus enhancing the quantum efficiency and the reliability of the CdS-CdTe solar cells. CdS nanowire window layer enables light transmission gain at 300nm-550nm. A nearly ideal spectral response of quantum efficiency at a wide spectrum range provides an evidence for improving light transmission in the window layer and enhancing absorption and carrier generation in absorber. Nanowire CdS/CdTe solar cells with Cu/graphite/silver paste as back contacts, on SnO2/ITO-soda lime glass substrates, yield the highest efficiency of 12% in nanostructured CdS-CdTe solar cells. Reliability is improved by approximately 3 times over the cells with the traditional planar CdS counterpart. Junction transport mechanisms are delineated for advancing the basic understanding of device physics at the interface. Our results prove the efficacy of this nanowire approach for enhancing the quantum efficiency and the reliability in windowabsorber type solar cells (CdS-CdTe, CdS-CIGS and CdS-CZTSSe etc) and other optoelectronic devices. We further introduce MoO3-x as a transparent, low barrier back contact. We design nanowire CdS-CdTe solar cells on flexible foils of metals in a superstrate device structure, which makes low-cost roll-to-roll manufacturing process feasible and greatly reduces the complexity of fabrication. The MoO3 layer reduces the valence band offset relative to the CdTe, and creates improved cell performance. Annealing as-deposited MoO3 in N 2 reduces series resistance from 9.98 O/cm2 to 7.72 O/cm2, and hence efficiency of the nanowire solar cell is improved from 9.9% to 11%, which efficiency comparable to efficiency of planar counterparts. When the nanowire solar cell is illuminated from MoO 3-x /Au side, it yields an efficiency of 8.7%. This reduction in efficiency is attributed to decrease in Jsc from 25.5m

  7. Left ventricular assist device patient selection: do risk scores help?

    PubMed Central

    Cowger, Jennifer

    2015-01-01

    Mechanical circulatory support (MCS) and left ventricular assist device (LVAD) implantation is becoming increasingly utilized in the advanced heart failure (HF) population. Until further developments are made in this continually evolving field, the need for appropriate patient selection is fueled by our knowledge that the less sick do better. Due to the evolution of MCS technology, and the importance of patient selection to outcomes, risk scores and classification schemes have been developed to provide a structure for medical decision making. As clinical experience grows, technology improves, and further favorable clinical characteristics are identified, it is incumbent upon the HF community to continually hone these instruments. The magnitude of such tools cannot be understated when it comes to aiding in the informed consent and shared-decision making process for patients, families, and the healthcare team. Many risk models that have attempted to address which groups of patients will be successful focus on short term mortality and not long term survival or quality of life. The benefits and pitfalls of these models and their potential implications for patient selection and MCS therapy will be reviewed here. PMID:26793327

  8. Local doping of graphene devices by selective hydrogen adsorption

    SciTech Connect

    Park, Min; Park, Yung Woo E-mail: kbh37@incheon.ac.kr; Yun, Yong Ju; Jun, Yongseok; Lee, Minwoo; Jeong, Dae Hong; Kim, Byung Hoon E-mail: kbh37@incheon.ac.kr

    2015-01-15

    N-type graphene fabricated by exposure to hydrogen gas has been previously studied. Based on this property of graphene, herein, we demonstrate local doping in single-layer graphene using selective adsorption of dissociative hydrogen at 350 K. A graphene field effect transistor was produced covered with PMMA on half of the graphene region. The charge neutrality point of the PMMA-window region shifted to a negative gate voltage (V{sub G}) region prominently compared with that of the PMMA-covered region. Consequently, a single graphene p-n junction was obtained by measuring the V{sub G}-dependent resistance of the whole graphene region. This method presents opportunities for developing and controlling the electronic structure of graphene and device applications.

  9. Methods and devices based on brillouin selective sideband amplification

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    2003-01-01

    Opto-electronic devices and techniques using Brillouin scattering to select a sideband in a modulated optical carrier signal for amplification. Two lasers respectively provide a carrier signal beam and a Brillouin pump beam which are fed into an Brillouin optical medium in opposite directions. The relative frequency separation between the lasers is adjusted to align the frequency of the backscattered Brillouin signal with a desired sideband in the carrier signal to effect a Brillouin gain on the sideband. This effect can be used to implement photonic RF signal mixing and conversion with gain, conversion from phase modulation to amplitude modulation, photonic RF frequency multiplication, optical and RF pulse generation and manipulation, and frequency-locking of lasers.

  10. Nanolaminate microfluidic device for mobility selection of particles

    SciTech Connect

    Surh, Michael P.; Wilson, William D.; Barbee, Jr., Troy W.; Lane, Stephen M.

    2006-10-10

    A microfluidic device made from nanolaminate materials that are capable of electrophoretic selection of particles on the basis of their mobility. Nanolaminate materials are generally alternating layers of two materials (one conducting, one insulating) that are made by sputter coating a flat substrate with a large number of layers. Specific subsets of the conducting layers are coupled together to form a single, extended electrode, interleaved with other similar electrodes. Thereby, the subsets of conducting layers may be dynamically charged to create time-dependent potential fields that can trap or transport charge colloidal particles. The addition of time-dependence is applicable to all geometries of nanolaminate electrophoretic and electrochemical designs from sinusoidal to nearly step-like.

  11. How do I perform hematopoietic progenitor cell selection?

    PubMed

    Avecilla, Scott T; Goss, Cheryl; Bleau, Sharon; Tonon, Jo-Ann; Meagher, Richard C

    2016-05-01

    Graft-versus-host disease remains the most important source of morbidity and mortality associated with allogeneic stem cell transplantation. The implementation of hematopoietic progenitor cell (HPC) selection is employed by some stem cell processing facilities to mitigate this complication. Current cell selection methods include reducing the number of unwanted T cells (negative selection) and/or enriching CD34+ hematopoietic stem/progenitors (positive selection) using immunomagnetic beads subjected to magnetic fields within columns to separate out targeted cells. Unwanted side effects of cell selection as a result of T-cell reduction are primary graft failure, increased infection rates, delayed immune reconstitution, possible disease relapse, and posttransplant lymphoproliferative disease. The Miltenyi CliniMACS cell isolation system is the only device currently approved for clinical use by the Food and Drug Administration. It uses magnetic microbeads conjugated with a high-affinity anti-CD34 monoclonal antibody capable of binding to HPCs in marrow, peripheral blood, or umbilical cord blood products. The system results in significantly improved CD34+ cell recoveries (50%-100%) and consistent 3-log CD3+ T-cell reductions compared to previous generations of CD34+ cell selection procedures. In this article, the CliniMACS procedure is described in greater detail and the authors provide useful insight into modifications of the system. Successful implementation of cell selection procedures can have a significant positive clinical effect by greatly increasing the pool of donors for recipients requiring transplants. However, before a program implements cell selection techniques, it is important to consider the time and financial resources required to properly and safely perform these procedures. PMID:26919388

  12. Lateral Programmable Metallization Cell Devices And Applications

    NASA Astrophysics Data System (ADS)

    Ren, Minghan

    2011-12-01

    Programmable Metallization Cell (PMC) is a technology platform which utilizes mass transport in solid or liquid electrolyte coupled with electrochemical (redox) reactions to form or remove nanoscale metallic electrodeposits on or in the electrolyte. The ability to redistribute metal mass and form metallic nanostructure in or on a structure in situ, via the application of a bias on laterally placed electrodes, creates a large number of promising applications. A novel PMC-based lateral microwave switch was fabricated and characterized for use in microwave systems. It has demonstrated low insertion loss, high isolation, low voltage operation, low power and low energy consumption, and excellent linearity. Due to its non-volatile nature the switch operates with fewer biases and its simple planar geometry makes possible innovative device structures which can be potentially integrated into microwave power distribution circuits. PMC technology is also used to develop lateral dendritic metal electrodes. A lateral metallic dendritic network can be grown in a solid electrolyte (GeSe) or electrodeposited on SiO2 or Si using a water-mediated method. These dendritic electrodes grown in a solid electrolyte (GeSe) can be used to lower resistances for applications like self-healing interconnects despite its relatively low light transparency; while the dendritic electrodes grown using water-mediated method can be potentially integrated into solar cell applications, like replacing conventional Ag screen-printed top electrodes as they not only reduce resistances but also are highly transparent. This research effort also laid a solid foundation for developing dendritic plasmonic structures. A PMC-based lateral dendritic plasmonic structure is a device that has metallic dendritic networks grown electrochemically on SiO2 with a thin layer of surface metal nanoparticles in liquid electrolyte. These structures increase the distribution of particle sizes by connecting pre-deposited Ag

  13. Selecting Cells for Bioartificial Liver Devices and the Importance of a 3D Culture Environment: A Functional Comparison between the HepaRG and C3A Cell Lines.

    PubMed

    van Wenum, Martien; Adam, Aziza A A; Hakvoort, Theodorus B M; Hendriks, Erik J; Shevchenko, Valery; van Gulik, Thomas M; Chamuleau, Robert A F M; Hoekstra, Ruurdtje

    2016-01-01

    Recently, the first clinical trials on Bioartificial Livers (BALs) loaded with a proliferative human hepatocyte cell source have started. There are two cell lines that are currently in an advanced state of BAL development; HepaRG and HepG2/C3A. In this study we aimed to compare both cell lines on applicability in BALs and to identify possible strategies for further improvement. We tested both cell lines in monolayer- and BAL cultures on growth characteristics, hepatic differentiation, nitrogen-, carbohydrate-, amino acid- and xenobiotic metabolism. Interestingly, both cell lines adapted the hepatocyte phenotype more closely when cultured in BALs; e.g. monolayer cultures produced lactate, while BAL cultures showed diminished lactate production (C3A) or conversion to elimination (HepaRG), and urea cycle activity increased upon BAL culturing in both cell lines. HepaRG-BALs outperformed C3A-BALs on xenobiotic metabolism, ammonia elimination and lactate elimination, while protein synthesis was comparable. In BAL cultures of both cell lines ammonia elimination correlated positively with glutamine production and glutamate consumption, suggesting ammonia elimination was mainly driven by the balance between glutaminase and glutamine synthetase activity. Both cell lines lacked significant urea cycle activity and both required multiple culture weeks before reaching optimal differentiation in BALs. In conclusion, culturing in BALs enhanced hepatic functionality of both cell lines and from these, the HepaRG cells are the most promising proliferative cell source for BAL application. PMID:27489500

  14. Selecting Cells for Bioartificial Liver Devices and the Importance of a 3D Culture Environment: A Functional Comparison between the HepaRG and C3A Cell Lines

    PubMed Central

    van Wenum, Martien; Adam, Aziza A.A.; Hakvoort, Theodorus B.M.; Hendriks, Erik J.; Shevchenko, Valery; van Gulik, Thomas M.; Chamuleau, Robert A.F.M.; Hoekstra, Ruurdtje

    2016-01-01

    Recently, the first clinical trials on Bioartificial Livers (BALs) loaded with a proliferative human hepatocyte cell source have started. There are two cell lines that are currently in an advanced state of BAL development; HepaRG and HepG2/C3A. In this study we aimed to compare both cell lines on applicability in BALs and to identify possible strategies for further improvement. We tested both cell lines in monolayer- and BAL cultures on growth characteristics, hepatic differentiation, nitrogen-, carbohydrate-, amino acid- and xenobiotic metabolism. Interestingly, both cell lines adapted the hepatocyte phenotype more closely when cultured in BALs; e.g. monolayer cultures produced lactate, while BAL cultures showed diminished lactate production (C3A) or conversion to elimination (HepaRG), and urea cycle activity increased upon BAL culturing in both cell lines. HepaRG-BALs outperformed C3A-BALs on xenobiotic metabolism, ammonia elimination and lactate elimination, while protein synthesis was comparable. In BAL cultures of both cell lines ammonia elimination correlated positively with glutamine production and glutamate consumption, suggesting ammonia elimination was mainly driven by the balance between glutaminase and glutamine synthetase activity. Both cell lines lacked significant urea cycle activity and both required multiple culture weeks before reaching optimal differentiation in BALs. In conclusion, culturing in BALs enhanced hepatic functionality of both cell lines and from these, the HepaRG cells are the most promising proliferative cell source for BAL application. PMID:27489500

  15. On-Demand Cell Internal Short Circuit Device

    NASA Technical Reports Server (NTRS)

    Darcy, Eric; Keyser, Matthew

    2014-01-01

    A device implantable in Li-ion cells that can generate a hard internal short circuit on-demand by exposing the cell to 60?C has been demonstrated to be valuable for expanding our understanding of cell responses. The device provides a negligible impact to cell performance and enables the instigation of the 4 general categories of cell internal shorts to determine relative severity and cell design susceptibility. Tests with a 18650 cell design indicates that the anode active material short to the aluminum cathode current collector tends to be more catastrophic than the 3 other types of internal shorts. Advanced safety features (such as shutdown separators) to prevent or mitigate the severity of cell internal shorts can be verified with this device. The hard short success rate achieved to date in 18650 cells is about 80%, which is sufficient for using these cells in battery assemblies for field-failure-relevant, cell-cell thermal runaway propagation verification tests

  16. IDEA. VOCES: A Mnemonic Device to Cue Mood Selection after Impersonal Expressions.

    ERIC Educational Resources Information Center

    Chandler, Paul Michael

    1996-01-01

    Providing language learners with mnemonic devices assists retention and recall of vocabulary and structural items. This idea provides one such memory device to assist beginning and intermediate students who struggle with mood selection after impersonal expressions. (five references) (Author)

  17. Method and apparatus for monitoring a hydrocarbon-selective catalytic reduction device

    DOEpatents

    Schmieg, Steven J; Viola, Michael B; Cheng, Shi-Wai S; Mulawa, Patricia A; Hilden, David L; Sloane, Thompson M; Lee, Jong H

    2014-05-06

    A method for monitoring a hydrocarbon-selective catalytic reactor device of an exhaust aftertreatment system of an internal combustion engine operating lean of stoichiometry includes injecting a reductant into an exhaust gas feedstream upstream of the hydrocarbon-selective catalytic reactor device at a predetermined mass flowrate of the reductant, and determining a space velocity associated with a predetermined forward portion of the hydrocarbon-selective catalytic reactor device. When the space velocity exceeds a predetermined threshold space velocity, a temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is determined, and a threshold temperature as a function of the space velocity and the mass flowrate of the reductant is determined. If the temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is below the threshold temperature, operation of the engine is controlled to regenerate the hydrocarbon-selective catalytic reactor device.

  18. Short protection device for stack of electrolytic cells

    DOEpatents

    Katz, M.; Schroll, C.R.

    1984-11-29

    The present invention relates to a device for preventing the electrical shorting of a stack of electrolytic cells during an extended period of operation. The device has application to fuel cell and other electrolytic cell stacks operating in low or high temperature corrosive environments. It is of particular importance for use in a stack of fuel cells operating with molten metal carbonate electrolyte for the production of electric power. Also, the device may have application in similar technology involving stacks of electrolytic cells for electrolysis to decompose chemical compounds.

  19. Selective and non-selective deposition of thick polysilicon layers for adaptive mirror device

    NASA Astrophysics Data System (ADS)

    Bartek, M.; Vdovin, G. V.; Wolffenbuttel, R. F.

    1997-09-01

    Two IC-process-compatible fabrication schemes, based on the selective and non-selective deposition of a thick polysilicon layer in an epitaxial reactor, are used for adaptive micromirror device fabrication. The micromirror consists of a composite diaphragm (a 0960-1317/7/3/014/img1 square-shaped silicon nitride membrane on which an additional 0960-1317/7/3/014/img2 thick polycrystalline silicon layer with a circular aperture is formed) coated with a 0960-1317/7/3/014/img3 reflective aluminium layer on a bulk micromachined 10.5 mm by 10.5 mm square silicon frame. The additional polycrystalline silicon layer with a circular aperture improves the optical properties of a deflected square-shaped silicon nitride membrane resulting from anisotropic KOH etching.

  20. Non PN junction solar cells using carrier selective contacts

    NASA Astrophysics Data System (ADS)

    Bowden, Stuart; Ghosh, Kunal; Honsberg, Christiana

    2013-03-01

    A novel device concept utilizing the approach of selectively extracting carriers at the respective contacts is outlined in the work. The dominant silicon solar cell technology is based on a diffused, top-contacted p-n junction on a relatively thick silicon wafer for both commercial and laboratory solar cells. The VOC and hence the efficiency of a diffused p-n junction solar cell is limited by the emitter recombination current and a value of 720 mV is considered to be the upper limit. The value is more than 100 mV smaller than the thermodynamic limit of VOC as applicable for silicon based solar cells. Also, in diffused junction the use of thin wafers (< 50 um) are problematic because of the requirement of high temperature processing steps. But a number of roadmaps have identified solar cells manufactured on thinner silicon wafers to achieve lower cost and higher efficiency. The carrier selective contact device provides a novel alternative to diffused p-n junction solar cells by eliminating the need for complementary doping to form the emitter and hence it allows the solar cells to achieve a VOC of greater than 720 mV. Also, the complete device structure can be fabricated with low temperature thin film deposition or organic coating on silicon substrates and thus epitaxially grown silicon or kerfless silicon, in addition to standard silicon wafers can be utilized.

  1. Fluid technology (selected components, devices, and systems): A compilation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Developments in fluid technology and hydraulic equipment are presented. The subjects considered are: (1) the use of fluids in the operation of switches, amplifiers, and servo devices, (2) devices and data for laboratory use in the study of fluid dynamics, and (3) the use of fluids as controls and certain methods of controlling fluids.

  2. Wireless induction heating in a microfluidic device for cell lysis.

    PubMed

    Baek, Seung-ki; Min, Junghong; Park, Jung-Hwan

    2010-04-01

    A wireless induction heating system in a microfluidic device was devised for cell lysis to extract DNA and RNA from Escherichia coli. The thermal responses of nickel, iron and copper heating units were studied by applying an alternating magnetic field as a function of geometry of unit, strength of magnetic field, and kind of metal. Heating units were prepared by cutting metal film using a fiber laser, and the units were integrated into a microchannel system using a soft lithographic process. Variation and distribution of temperature on the surface of the heating units was observed using a thermographic camera and temperature labels. The amount of protein released from E. coli by thermal lysis was determined by protein concentration measurement. Hemoglobin released from red blood cells was observed using colorimetric intensity measurement. Extracted DNA was quantified by real-time polymerase chain reaction, and the profile was compared with that of a positive control of ultrasonically disrupted E. coli. The stability of RNA extracted by induction heating was quantified by the measurement of 23S/16S rRNA ratio and comparison with that by normal RNA extraction kit as a gold standard. A solid-shaped nickel structure was selected as the induction heating element in the microfluidic device because of the relatively small influence of geometries and faster thermal response.The amount of protein extracted from E. coli and hemoglobin released from red blood cells by induction heating of the nickel unit in the microfluidic device was proportional to the strength of the applied magnetic field. The lysis of E. coli by induction heating was as effective as lysis of DNA by the ultrasonication method because the threshold cycle values of the sample were compatible with those of the positive control as measured by ultrasonication. Thermal lysis of E. coli by induction heating represents a reasonable alternative to a commercial RNA extraction method as shown by the comparative

  3. Device research task (processing and high-efficiency solar cells)

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This task has been expanded since the last 25th Project Integration Meeting (PIM) to include process research in addition to device research. The objective of this task is to assist the Flat-plate Solar Array (FSA) Project in meeting its near- and long-term goals by identifying and implementing research in the areas of device physics, device structures, measurement techniques, material-device interactions, and cell processing. The research efforts of this task are described and reflect the deversity of device research being conducted. All of the contracts being reported are either completed or near completion and culminate the device research efforts of the FSA Project. Optimazation methods and silicon solar cell numerical models, carrier transport and recombination parameters in heavily doped silicon, development and analysis of silicon solar cells of near 20% efficiency, and SiN sub x passivation of silicon surfaces are discussed.

  4. Deformability and size-based cancer cell separation using an integrated microfluidic device.

    PubMed

    Pang, Long; Shen, Shaofei; Ma, Chao; Ma, Tongtong; Zhang, Rui; Tian, Chang; Zhao, Lei; Liu, Wenming; Wang, Jinyi

    2015-11-01

    Cell sorting by filtration techniques offers a label-free approach for cell separation on the basis of size and deformability. However, filtration is always limited by the unpredictable variation of the filter hydrodynamic resistance due to cell accumulation and clogging in the microstructures. In this study, we present a new integrated microfluidic device for cell separation based on the cell size and deformability by combining the microstructure-constricted filtration and pneumatic microvalves. Using this device, the cell populations sorted by the microstructures can be easily released in real time for subsequent analysis. Moreover, the periodical sort and release of cells greatly avoided cell accumulation and clogging and improved the selectivity. Separation of cancer cells (MCF-7, MDA-MB-231 and MDA231-LM2) with different deformability showed that the mixture of the less flexible cells (MCF-7) and the flexible cells (MDA-MB-231 and MDA231-LM2) can be well separated with more than 75% purity. Moreover, the device can be used to separate cancer cells from the blood samples with more than 90% cell recovery and more than 80% purity. Compared with the current filtration methods, the device provides a new approach for cancer cell separation with high collection recovery and purity, and also, possesses practical potential to be applied as a sample preparation platform for fundamental studies and clinical applications. PMID:26366443

  5. Microfluidic application-specific integrated device for monitoring direct cell-cell communication via gap junctions between individual cell pairs

    NASA Astrophysics Data System (ADS)

    Lee, Philip J.; Hung, Paul J.; Shaw, Robin; Jan, Lily; Lee, Luke P.

    2005-05-01

    Direct cell-cell communication between adjacent cells is vital for the development and regulation of functional tissues. However, current biological techniques are difficult to scale up for high-throughput screening of cell-cell communication in an array format. In order to provide an effective biophysical tool for the analysis of molecular mechanisms of gap junctions that underlie intercellular communication, we have developed a microfluidic device for selective trapping of cell-pairs and simultaneous optical characterizations. Two different cell populations can be brought into membrane contact using an array of trapping channels with a 2μm by 2μm cross section. Device operation was verified by observation of dye transfer between mouse fibroblasts (NIH3T3) placed in membrane contact. Integration with lab-on-a-chip technologies offers promising applications for cell-based analytical tools such as drug screening, clinical diagnostics, and soft-state biophysical devices for the study of gap junction protein channels in cellular communications. Understanding electrical transport mechanisms via gap junctions in soft membranes will impact quantitative biomedical sciences as well as clinical applications.

  6. Ventricular assist device selection: which one and when?

    PubMed Central

    Stulak, John M.; Lim, Ju Yong; Maltais, Simon

    2014-01-01

    Advances in mechanical circulatory support have significantly expanded the treatment options for patients with heart failure, whether acute or chronic. There are numerous devices available that offer patients short-, intermediate-, and long-term duration of support depending on their clinical needs and cardiac recovery. Each device has its own technical considerations and the decision which device to use depends on several factors, including what is available, the degree of support required, and expected duration of support. Additional issues that need to be considered in choosing level of support include right heart function, respiratory failure, and multi-organ derangements. A widespread availability of short-term ventricular assist devices and timely institution for effective hemodynamic support will translate into improved patient outcomes whether that is successful transfer to a tertiary care facility or recovery of inherent cardiac function. Implantable ventricular assist devices have and will continue to evolve into smaller and more durable devices, and the future for patients with advanced heart failure looks ever-more promising. PMID:25559830

  7. Provision Of Carbon Nanotube Bucky Paper Cages For Immune Shielding Of Cells, Tissues, and Medical Devices

    NASA Technical Reports Server (NTRS)

    Loftus, David J. (Inventor)

    2006-01-01

    System and method for enclosing cells and/or tissue, for purposes of growth, cell differentiation, suppression of cell differentiation, biological processing and/or transplantation of cells and tissues (biological inserts), and for secretion, sensing and monitoring of selected chemical substances and activation of gene expression of biological inserts implanted into a human body. Selected cells and/or tissue are enveloped in a "cage" that is primarily carbon nanotube Bucky paper, with a selected thickness and porosity. Optionally, selected functional groups, proteins and/or peptides are attached to the carbon nanotube cage, or included within the cage, to enhance the growth and/or differentiation of the cells and/or tissue, to select for certain cellular sub-populations, to optimize certain functions of the cells and/or tissue and/or to optimize the passage of chemicals across the cage surface(s). A cage system is also used as an immuns shield and to control operation of a nano-device or macroscopic device, located within the cage, to provide or transform a selected chemical and/or a selected signal.

  8. Intracavity Microfluidic Laser Device for Single Cell Analysis

    NASA Astrophysics Data System (ADS)

    Gourley, Paul

    2015-03-01

    An intracavity microfluidic laser device has been developed to study bioparticles ranging in size from 50 nm to 20 μm (virons to organelles to whole cells). The versatile device can be operated used in several modes including static or flowing fluids, with or without molecular labels, and microscopic imaging and/or spectroscopy. It enables advantageous new ways to perform analyses of bioparticles for applications including cell biology, detection of disease and pathogens, environmental monitoring, pharmaceuticals, agriculture, and food processing. This talk will briefly summarize the physics of the device including its laser optics, fluid dynamics, and intracavity light interaction with cells. The talk will then focus on results of a study of mitochondria in normal and cancer liver cells. The study examines the transformation of intracellular and isolated mitochondria from the normal to disease state. The results highlight the unique utility of the device to rapidly assess biophysical changes arising from altered biomolecular states of cells and organelles.

  9. Technical and Practical Considerations for Device Selection in Locoregional Ablative Therapy

    PubMed Central

    Zivin, Sean P.; Gaba, Ron C.

    2014-01-01

    Percutaneous ablation therapy is an essential component of contemporary interventional oncologic therapy of primary and secondary malignancies. The growing armamentarium of available ablation technologies calls for thorough understanding of the different ablation modalities to optimize device selection in individual clinical settings. The goal of the current article is to provide direction on ablative device selection by reviewing device mechanisms of action, advantages and disadvantages, and practical considerations in real-life case scenarios. PMID:25053866

  10. Device simulation of cuprous oxide heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Takiguchi, Yuki; Miyajima, Shinsuke

    2015-11-01

    We developed a device simulation model of cuprous oxide (Cu2O)-based heterojunction solar cells. The developed model well reproduces the reported experimental current density-voltage characteristics and the external quantum efficiency results. By using the model, we explored structures for high-efficiency Cu2O-based heterojunction solar cells. It was found that the electron affinity of the buffer layer between transparent conducting oxide and Cu2O significantly affects solar cell performance. Surface recombination on the rear side of the device can be suppressed by employing a highly doped back surface layer. Our device simulation demonstrates a conversion efficiency of 16% without any optical confinement structure.

  11. Selection of mammalian cells based on their cell-cycle phase using dielectrophoresis

    PubMed Central

    Kim, Unyoung; Shu, Chih-Wen; Dane, Karen Y.; Daugherty, Patrick S.; Wang, Jean Y. J.; Soh, H. T.

    2007-01-01

    An effective, noninvasive means of selecting cells based on their phase within the cell cycle is an important capability for biological research. Current methods of producing synchronous cell populations, however, tend to disrupt the natural physiology of the cell or suffer from low synchronization yields. In this work, we report a microfluidic device that utilizes the dielectrophoresis phenomenon to synchronize cells by exploiting the relationship between the cell's volume and its phase in the cell cycle. The dielectrophoresis activated cell synchronizer (DACSync) device accepts an asynchronous mixture of cells at the inlet, fractionates the cell populations according to the cell-cycle phase (G1/S and G2/M), and elutes them through different outlets. The device is gentle and efficient; it utilizes electric fields that are 1–2 orders of magnitude below those used in electroporation and enriches asynchronous tumor cells in the G1 phase to 96% in one round of sorting, in a continuous flow manner at a throughput of 2 × 105 cells per hour per microchannel. This work illustrates the feasibility of using laminar flow and electrokinetic forces for the efficient, noninvasive separation of living cells. PMID:18093921

  12. Novel cell culture device enabling three-dimensional cell growth and improved cell function.

    PubMed

    Bokhari, Maria; Carnachan, Ross J; Cameron, Neil R; Przyborski, Stefan A

    2007-03-23

    A better understanding of cell biology and cell-cell interactions requires three-dimensional (3-D) culture systems that more closely represent the natural structure and function of tissues in vivo. Here, we present a novel device that provides an environment for routine 3-D cell growth in vitro. We have developed a thin membrane of polystyrene scaffold with a well defined and uniform porous architecture and have adapted this material for cell culture applications. We have exemplified the application of this technology by growing HepG2 liver cells on 2- and 3-D substrates. The performance of HepG2 cells grown on scaffolds was significantly enhanced compared to functional activity of cells grown on 2-D plastic. The incorporation of thin membranes of porous polystyrene to create a novel device has been successfully demonstrated as a new 3-D cell growth technology for routine use in cell culture. PMID:17276400

  13. Transversal and longitudinal mode selections in double-corrugation coaxial slow-wave devices

    NASA Astrophysics Data System (ADS)

    Ge, Xingjun; Zhong, Huihuang; Qian, Baoliang; Liu, Lie; Liu, Yonggui; Li, Limin; Shu, Ting; Zhang, Jiande

    2009-06-01

    To reduce the dimensions of relativistic backward wave oscillators (RBWOs) operating in the low frequency regime of less than 2 GHz, the theory of transversal and longitudinal mode selections are introduced in this paper. The transversal mode selection is achieved using the property of "surface wave" of the coaxial slow-wave structure (SWS) to excite the quasi transverse electromagnetic (quasi-TEM) mode without the higher transverse magnetic (TM) modes and it is proved that the coaxial SWS may decrease the transversal dimension of the SWS sections. In addition, the S-parameter method is employed to investigate the longitudinal resonant characteristic of the finite-length SWS, and the scheme of longitudinal mode selection is put forward. It is proposed that the introduction of a well-designed coaxial extractor to slow-wave devices can help to achieve the longitudinal mode selection and reduce the period number of the SWS, which not only can make the devices more compact, but also can avoid the destructive competition between various longitudinal modes, therefore can enhance the efficiency and stabilize the frequency. To sum up, the physical mechanisms of transversal and longitudinal mode selections ensure that the microwave is produced with a single mode and a narrow band. Based on the above discussion, a compact L-band coaxial RBWO is investigated and optimized in detail with the particle-in-cell KARAT code (V. P. Tarakanov, Berkeley Research Associates, Inc., 1992). In simulation, the L-band coaxial RBWO, driven by a 700 kV, 11 kA electron beam, comes to a nonlinear steady state in 20 ns. High-power microwave of quasi-TEM mode is generated with an average power of 2.66 GW, a frequency of 1.6 GHz, and power conversion efficiency of 34.5% in durations of 30-60 ns.

  14. Transversal and longitudinal mode selections in double-corrugation coaxial slow-wave devices

    SciTech Connect

    Ge Xingjun; Zhong Huihuang; Qian Baoliang; Liu Lie; Liu Yonggui; Li Limin; Shu Ting; Zhang Jiande

    2009-06-15

    To reduce the dimensions of relativistic backward wave oscillators (RBWOs) operating in the low frequency regime of less than 2 GHz, the theory of transversal and longitudinal mode selections are introduced in this paper. The transversal mode selection is achieved using the property of ''surface wave'' of the coaxial slow-wave structure (SWS) to excite the quasi transverse electromagnetic (quasi-TEM) mode without the higher transverse magnetic (TM) modes and it is proved that the coaxial SWS may decrease the transversal dimension of the SWS sections. In addition, the S-parameter method is employed to investigate the longitudinal resonant characteristic of the finite-length SWS, and the scheme of longitudinal mode selection is put forward. It is proposed that the introduction of a well-designed coaxial extractor to slow-wave devices can help to achieve the longitudinal mode selection and reduce the period number of the SWS, which not only can make the devices more compact, but also can avoid the destructive competition between various longitudinal modes, therefore can enhance the efficiency and stabilize the frequency. To sum up, the physical mechanisms of transversal and longitudinal mode selections ensure that the microwave is produced with a single mode and a narrow band. Based on the above discussion, a compact L-band coaxial RBWO is investigated and optimized in detail with the particle-in-cell KARAT code (V. P. Tarakanov, Berkeley Research Associates, Inc., 1992). In simulation, the L-band coaxial RBWO, driven by a 700 kV, 11 kA electron beam, comes to a nonlinear steady state in 20 ns. High-power microwave of quasi-TEM mode is generated with an average power of 2.66 GW, a frequency of 1.6 GHz, and power conversion efficiency of 34.5% in durations of 30-60 ns.

  15. Microfluidic device for high-yield pairing and fusion of stem cells with somatic cells

    NASA Astrophysics Data System (ADS)

    Gel, Murat; Hirano, Kunio; Oana, Hidehiro; Kotera, Hidetoshi; Tada, Takashi; Washizu, Masao

    2011-12-01

    Electro cell fusion has significant potential as a biotechnology tool with applications ranging from antibody production to cellular reprogramming. However due to low fusion efficiency of the conventional electro fusion methodology the true potential of the technique has not been reached. In this paper, we report a new method which takes cell fusion efficiency two orders magnitude higher than the conventional electro fusion method. The new method, based on one-toone pairing, fusion and selection of fused cells was developed using a microfabricated device. The device was composed of two microfluidic channels, a micro slit array and a petri dish integrated with electrodes. The electrodes positioned in each channel were used to generate electric field lines concentrating in the micro slits. Cells were introduced into channels and brought in to contact through the micro slit array using dielectrophoresis. The cells in contact were fused by applying a DC pulse to electrodes. As the electric field lines were concentrated at the micro slits the membrane potential was induced only at the vicinity of the micro slits, namely only at the cell-cell contact point. This mechanism assured the minimum damage to cells in the fusion as well as the ability to control the strength and location of induced membrane potential. We introduced mouse embryonic stem cells and mouse embryonic fibroblasts to the microfluidic channels and demonstrated high-yield fusion (> 80%). Post-fusion study showed the method can generate viable hybrids of stem cells and embryonic fibroblasts. Multinucleated hybrid cells adhering on the chip surface were routinely obtained by using this method and on-chip culturing.

  16. A microfluidic device enabling high-efficiency single cell trapping.

    PubMed

    Jin, D; Deng, B; Li, J X; Cai, W; Tu, L; Chen, J; Wu, Q; Wang, W H

    2015-01-01

    Single cell trapping increasingly serves as a key manipulation technique in single cell analysis for many cutting-edge cell studies. Due to their inherent advantages, microfluidic devices have been widely used to enable single cell immobilization. To further improve the single cell trapping efficiency, this paper reports on a passive hydrodynamic microfluidic device based on the "least flow resistance path" principle with geometry optimized in line with corresponding cell types. Different from serpentine structure, the core trapping structure of the micro-device consists of a series of concatenated T and inverse T junction pairs which function as bypassing channels and trapping constrictions. This new device enhances the single cell trapping efficiency from three aspects: (1) there is no need to deploy very long or complicated channels to adjust flow resistance, thus saving space for each trapping unit; (2) the trapping works in a "deterministic" manner, thus saving a great deal of cell samples; and (3) the compact configuration allows shorter flowing path of cells in multiple channels, thus increasing the speed and throughput of cell trapping. The mathematical model of the design was proposed and optimization of associated key geometric parameters was conducted based on computational fluid dynamics (CFD) simulation. As a proof demonstration, two types of PDMS microfluidic devices were fabricated to trap HeLa and HEK-293T cells with relatively significant differences in cell sizes. Experimental results showed 100% cell trapping and 90% single cell trapping over 4 × 100 trap sites for these two cell types, respectively. The space saving is estimated to be 2-fold and the cell trapping speed enhancement to be 3-fold compared to previously reported devices. This device can be used for trapping various types of cells and expanded to trap cells in the order of tens of thousands on 1-cm(2) scale area, as a promising tool to pattern large-scale single cells on specific

  17. Method for fabricating pixelated silicon device cells

    SciTech Connect

    Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose Luis; Nelson, Jeffrey S.; Anderson, Benjamin John

    2015-08-18

    A method, apparatus and system for flexible, ultra-thin, and high efficiency pixelated silicon or other semiconductor photovoltaic solar cell array fabrication is disclosed. A structure and method of creation for a pixelated silicon or other semiconductor photovoltaic solar cell array with interconnects is described using a manufacturing method that is simplified compared to previous versions of pixelated silicon photovoltaic cells that require more microfabrication steps.

  18. Sickle Cell: A Selected Resource Bibliography.

    ERIC Educational Resources Information Center

    National Center for Education in Maternal and Child Health, Washington, DC.

    This annotated, selective bibliography lists the following types of educational and informational material on both sickle cell disease and trait: (1) professional education materials; (2) fact sheets, pamphlets, and brochures; and (3) audiovisual material. A selected list of references is provided for the following topic areas: (1) genetic…

  19. A Strip Cell in Pyroelectric Devices.

    PubMed

    Siao, An-Shen; Chao, Ching-Kong; Hsiao, Chun-Ching

    2016-01-01

    The pyroelectric effect affords the opportunity to convert temporal temperature fluctuations into usable electrical energy in order to develop abundantly available waste heat. A strip pyroelectric cell, used to enhance temperature variation rates by lateral temperature gradients and to reduce cell capacitance to further promote the induced voltage, is described as a means of improving pyroelectric energy transformation. A precision dicing saw was successfully applied in fabricating the pyroelectric cell with a strip form. The strip pyroelectric cell with a high-narrow cross section is able to greatly absorb thermal energy via the side walls of the strips, thereby inducing lateral temperature gradients and increasing temperature variation rates in a thicker pyroelectric cell. Both simulation and experimentation show that the strip pyroelectric cell improves the electrical outputs of pyroelectric cells and enhances the efficiency of pyroelectric harvesters. The strip-type pyroelectric cell has a larger temperature variation when compared to the trenched electrode and the original type, by about 1.9 and 2.4 times, respectively. The measured electrical output of the strip type demonstrates a conspicuous increase in stored energy as compared to the trenched electrode and the original type, by of about 15.6 and 19.8 times, respectively. PMID:26999134

  20. A Strip Cell in Pyroelectric Devices

    PubMed Central

    Siao, An-Shen; Chao, Ching-Kong; Hsiao, Chun-Ching

    2016-01-01

    The pyroelectric effect affords the opportunity to convert temporal temperature fluctuations into usable electrical energy in order to develop abundantly available waste heat. A strip pyroelectric cell, used to enhance temperature variation rates by lateral temperature gradients and to reduce cell capacitance to further promote the induced voltage, is described as a means of improving pyroelectric energy transformation. A precision dicing saw was successfully applied in fabricating the pyroelectric cell with a strip form. The strip pyroelectric cell with a high-narrow cross section is able to greatly absorb thermal energy via the side walls of the strips, thereby inducing lateral temperature gradients and increasing temperature variation rates in a thicker pyroelectric cell. Both simulation and experimentation show that the strip pyroelectric cell improves the electrical outputs of pyroelectric cells and enhances the efficiency of pyroelectric harvesters. The strip-type pyroelectric cell has a larger temperature variation when compared to the trenched electrode and the original type, by about 1.9 and 2.4 times, respectively. The measured electrical output of the strip type demonstrates a conspicuous increase in stored energy as compared to the trenched electrode and the original type, by of about 15.6 and 19.8 times, respectively. PMID:26999134

  1. A Two-Stage Microfluidic Device for the Isolation and Capture of Circulating Tumor Cells

    NASA Astrophysics Data System (ADS)

    Cook, Andrew; Belsare, Sayali; Giorgio, Todd; Mu, Richard

    2014-11-01

    Analysis of circulating tumor cells (CTCs) can be critical for studying how tumors grow and metastasize, in addition to personalizing treatment for cancer patients. CTCs are rare events in blood, making it difficult to remove CTCs from the blood stream. Two microfluidic devices have been developed to separate CTCs from blood. The first is a double spiral device that focuses cells into streams, the positions of which are determined by cell diameter. The second device uses ligand-coated magnetic nanoparticles that selectively attach to CTCs. The nanoparticles then pull CTCs out of solution using a magnetic field. These two devices will be combined into a single 2-stage microfluidic device that will capture CTCs more efficiently than either device on its own. The first stage depletes the number of blood cells in the sample by size-based separation. The second stage will magnetically remove CTCs from solution for study and culturing. Thus far, size-based separation has been achieved. Research will also focus on understanding the equations that govern fluid dynamics and magnetic fields in order to determine how the manipulation of microfluidic parameters, such as dimensions and flow rate, will affect integration and optimization of the 2-stage device. NSF-CREST: Center for Physics and Chemistry of Materials. HRD-0420516; Department of Defense, Peer Reviewed Medical Research Program Award W81XWH-13-1-0397.

  2. Polymer selection and cell design for electric-vehicle supercapacitors

    SciTech Connect

    Mastragostino, M.; Arbizzani, C.; Paraventi, R.; Zanelli, A.

    2000-02-01

    Supercapacitors are devices for applications requiring high operating power levels, such as secondary power sources in electric vehicles (EVs) to provide peak power for acceleration and hill climbing. While electronically conducting polymers yield different redox supercapacitor configurations, devices with the n-doped polymer as the negative electrode and the p-doped polymer as the positive one are the most promising for EV applications. Indeed, this type of supercapacitor has a high operating potential, is able to deliver all the doping charge and, when charged, has both electrodes in the conducting (p- and n-doped) states. This study reports selection criteria for polymer materials and cell design for high performance EV supercapacitors and experimental results of selected polymer materials.

  3. Microchamber Device for Detection of Transporter Activity of Adherent Cells

    PubMed Central

    Tsugane, Mamiko; Uejima, Etsuko; Suzuki, Hiroaki

    2015-01-01

    We present a method to detect the transporter activity of intact adherent cells using a microchamber device. When adherent cells are seeded onto the poly-di-methyl siloxane substrate having microchambers with openings smaller than the size of a cell, the cells form a confluent layer that covers the microchambers, creating minute, confined spaces. As substances exported across the cell membrane accumulate, transporter activity can be detected by observing the fluorescence intensity increase in the microchamber. We tested the microchamber device with HeLa cells over-expressing MDR1, an ATP-binding cassette transporter, and succeeded in detecting the transport of fluorescence-conjugated paclitaxel, the anti-cancer drug, at the single-cell level. PMID:25853126

  4. Cell stretching devices as research tools: engineering and biological considerations.

    PubMed

    Kamble, Harshad; Barton, Matthew J; Jun, Myeongjun; Park, Sungsu; Nguyen, Nam-Trung

    2016-08-16

    Cells within the human body are subjected to continuous, cyclic mechanical strain caused by various organ functions, movement, and growth. Cells are well known to have the ability to sense and respond to mechanical stimuli. This process is referred to as mechanotransduction. A better understanding of mechanotransduction is of great interest to clinicians and scientists alike to improve clinical diagnosis and understanding of medical pathology. However, the complexity involved in in vivo biological systems creates a need for better in vitro technologies, which can closely mimic the cells' microenvironment using induced mechanical strain. This technology gap motivates the development of cell stretching devices for better understanding of the cell response to mechanical stimuli. This review focuses on the engineering and biological considerations for the development of such cell stretching devices. The paper discusses different types of stretching concepts, major design consideration and biological aspects of cell stretching and provides a perspective for future development in this research area. PMID:27440436

  5. Wireless Communication of Intraoral Devices and Its Optimal Frequency Selection

    PubMed Central

    Park, Hangue; Ghovanloo, Maysam

    2015-01-01

    This paper explores communication methods and frequencies for wireless intraoral electronic devices, by using an intraoral tongue drive system (iTDS) as a practical example. Because intraoral devices do not meet the operating conditions of the body channel communication, we chose radio frequency communication. We evaluated and compared three frequencies in industrial, scientific, and medical bands (27 MHz, 433.9 MHz, and 2.48 GHz) in terms of their data link performance based on path loss and radiation patterns over horizontal and vertical planes. To do so, we dynamically minimize the impedance mismatch caused by the varying oral environment by applying the adaptive impedance matching technique to 433.9 MHz and 2.48 GHz bands. Experimental results showed that 27 MHz has the smallest path loss in the near-field up to 39 cm separation between transmitter and receiver antennas. However, 433.9 MHz shows the best performance beyond 39 cm and offers a maximum operating distance of 123 cm with 0 dBm transmitter output power. These distances were obtained by a bit error rate test and verified by a link budget analysis and full functionality test of the iTDS with computer access. PMID:26236039

  6. The NANIVID: a new device for cancer cell migration studies

    NASA Astrophysics Data System (ADS)

    Raja, Waseem K.; Cady, Nathaniel C.; Castracane, James; Gligorijevic, Bojana; van Rheenen, Jacobus W.; Condeelis, John S.

    2008-02-01

    Cancerous tumors are dynamic microenvironments that require unique analytical tools for their study. Better understanding of tumor microenvironments may reveal mechanisms behind tumor progression and generate new strategies for diagnostic marker development, which can be used routinely in histopathological analysis. Previous studies have shown that cell invasion and intravasation are related to metastatic potential and have linked these activities to gene expression patterns seen in migratory and invasive tumor cells in vivo. Existing analytical methods for tumor microenvironments include collection of tumor cells through a catheter needle loaded with a chemical or protein attractant (chemoattractant). This method has some limitations and restrictions, including time constraints of cell collection, long term anesthetization, and in vivo imaging inside the catheter. In this study, a novel implantable device was designed to replace the catheter-based method. The 1.5mm x 0.5mm x 0.24mm device is designed to controllably release chemoattractants for stimulation of tumor cell migration and subsequent cell capture. Devices were fabricated using standard microfabrication techniques and have been shown to mediate controlled release of bovine serum albumin (BSA) and epidermal growth factor (EGF). Optically transparent indium tin oxide (ITO) electrodes have been incorporated into the device for impedance-based measurement of cell density and have been shown to be compatible with in vivo multi-photon imaging of cell migration.

  7. Modeling selective attention using a neuromorphic analog VLSI device.

    PubMed

    Indiveri, G

    2000-12-01

    Attentional mechanisms are required to overcome the problem of flooding a limited processing capacity system with information. They are present in biological sensory systems and can be a useful engineering tool for artificial visual systems. In this article we present a hardware model of a selective attention mechanism implemented on a very large-scale integration (VLSI) chip, using analog neuromorphic circuits. The chip exploits a spike-based representation to receive, process, and transmit signals. It can be used as a transceiver module for building multichip neuromorphic vision systems. We describe the circuits that carry out the main processing stages of the selective attention mechanism and provide experimental data for each circuit. We demonstrate the expected behavior of the model at the system level by stimulating the chip with both artificially generated control signals and signals obtained from a saliency map, computed from an image containing several salient features. PMID:11112258

  8. Bead-Selected Antitumor Genetic Cell Vaccines

    PubMed Central

    Herrero, MJ; R, Botella; R, Algás; Marco, FM; Aliño, SF

    2008-01-01

    Cancer vaccines have always been in the scope of gene therapy research. One of the most successful approaches has been working with genetically modified tumor cells. However, to become a clinical reality, tumor cells must suffer a long and risky process from the extraction from the patient to the reimplantation as a vaccine. In this work, we explain our group’s approach to reduce the cell number required to achieve an immune response against a melanoma murine model, employing bead-selected B16 tumor cells expressing GM-CSF and B7.2. PMID:21892287

  9. CRISPR transcriptional repression devices and layered circuits in mammalian cells

    PubMed Central

    Kiani, Samira; Beal, Jacob; Ebrahimkhani, Mohammad R; Huh, Jin; Hall, Richard N; Xie, Zhen; Li, Yinqing; Weiss, Ron

    2014-01-01

    A key obstacle to creating sophisticated genetic circuits has been the lack of scalable device libraries. Here we present a modular transcriptional repression architecture based on clustered regularly interspaced palindromic repeats (CRISPR) system and examine approaches for regulated expression of guide RNAs in human cells. Subsequently we demonstrate that CRISPR regulatory devices can be layered to create functional cascaded circuits, which provide a valuable toolbox for engineering purposes. PMID:24797424

  10. CRISPR transcriptional repression devices and layered circuits in mammalian cells.

    PubMed

    Kiani, Samira; Beal, Jacob; Ebrahimkhani, Mohammad R; Huh, Jin; Hall, Richard N; Xie, Zhen; Li, Yinqing; Weiss, Ron

    2014-07-01

    A key obstacle to creating sophisticated genetic circuits has been the lack of scalable device libraries. Here we present a modular transcriptional repression architecture based on clustered regularly interspaced palindromic repeats (CRISPR) system and examine approaches for regulated expression of guide RNAs in human cells. Subsequently we demonstrate that CRISPR regulatory devices can be layered to create functional cascaded circuits, which provide a valuable toolbox for engineering purposes. PMID:24797424

  11. DNA analysis on microfabricated electrophoretic devices with bubble cells.

    PubMed

    Tseng, Wei-Lung; Lin, Yang-Wei; Chen, Ko-Chun; Chang, Huan-Tsung

    2002-08-01

    Microfluidic devices with bubble cells have been fabricated on poly(methyl methacrylate) (PMMA) plates and have been employed for the analysis of DNA using polyethylene oxide (PEO) solutions. First, the separation channel was fabricated using a wire-imprinting method. Then, wires with greater sizes or a razor blade glued in a polycarbonate plate was used to fabricate bubble cells, with sizes of 190-650 microm. The improvements in resolution and sensitivity have been achieved for large DNA (> 603 base pair, bp) using such devices, which depend on the geometry of the bubble cell. The main contributor for optimal resolution is mainly due to DNA migration at lower electric field strengths inside the bubble cell. On the other hand, slight losses of resolution for small DNA fragments have been found mainly due to diffusion, supported by the loss of resolution when separating two small solutes. With a bubble cell of 75 microm (width) x 500 microm (depth), the sensitivity improvement up to 17-fold has been achieved for the 271 bp fragment in the separation of PhiX-174/HaeIII DNA restriction fragments. We have also found that a microfluidic device with a bubble cell of 360 microm x 360 microm is appropriate for DNA analysis. Such a device has been used for separating DNA ranging from 8 to 2176 bp and polymerase chain reaction (PCR) products amplified after 30 cycles, with rapidity and improvements in the sensitivity as well as resolution. PMID:12210206

  12. Towards autonomous lab-on-a-chip devices for cell phone biosensing.

    PubMed

    Comina, Germán; Suska, Anke; Filippini, Daniel

    2016-03-15

    Modern cell phones are a ubiquitous resource with a residual capacity to accommodate chemical sensing and biosensing capabilities. From the different approaches explored to capitalize on such resource, the use of autonomous disposable lab-on-a-chip (LOC) devices-conceived as only accessories to complement cell phones-underscores the possibility to entirely retain cell phones' ubiquity for distributed biosensing. The technology and principles exploited for autonomous LOC devices are here selected and reviewed focusing on their potential to serve cell phone readout configurations. Together with this requirement, the central aspects of cell phones' resources that determine their potential for analytical detection are examined. The conversion of these LOC concepts into universal architectures that are readable on unaccessorized phones is discussed within this context. PMID:26569446

  13. Broadening cell selection criteria with micropallet arrays of adherent cells.

    PubMed

    Wang, Yuli; Young, Grace; Aoto, Phillip C; Pai, Jeng-Hao; Bachman, Mark; Li, G P; Sims, Christopher E; Allbritton, Nancy L

    2007-10-01

    A host of technologies exists for the separation of living, nonadherent cells, with separation decisions typically based on fluorescence or immunolabeling of cells. Methods to separate adherent cells as well as to broaden the range of possible sorting criteria would be of high value and complementary to existing strategies. Cells were cultured on arrays of releasable pallets. The arrays were screened and individual cell(s)/pallets were released and collected. Conventional fluorescence and immunolabeling of cells were compatible with the pallet arrays, as were separations based on gene expression. By varying the size of the pallet and the number of cells cultured on the array, single cells or clonal colonies of cells were isolated from a heterogeneous population. Since cells remained adherent throughout the isolation process, separations based on morphologic characteristics, for example cell shape, were feasible. Repeated measurements of each cell in an array were performed permitting the selection of cells based on their temporal behavior, e.g. growth rate. The pallet array system provides the flexibility to select and collect adherent cells based on phenotypic and temporal criteria and other characteristics not accessible by alternative methods. PMID:17559133

  14. Nanostructured photovoltaic devices for next generation solar cell

    NASA Astrophysics Data System (ADS)

    Kim, Sung Jin

    2008-10-01

    As the search for alternative sources of energy other than petroleum continues to expand, solar energy conversion has already been identified as one of the most promising technologies. In the past few years there has been extensive research focused on the next generation solar cells that can exceed the Shockley-Queisser limit (a model that predicts the maximum achievable efficiency for a given material with a given bandgap). Moreover, nanoengineering approaches to enhance solar power conversion efficiency have started to receive considerable interest. Even in the most efficient commercially available solar devices utilizing crystalline silicon, a major portion of the absorbed ultraviolet photon energy is wasted as heat. Furthermore, this heat is detrimental to device reliability. Colloidal nanocrystal quantum dots (NQDs) offer the exciting prospect of simultaneously manipulating device and material structures and processes to enable more efficient solar energy conversion. Most importantly, these colloidal nanocrystal quantum dots are amenable to inexpensive fabrication techniques such as dip coating or spray coating of the constituent nanoscale materials onto various substrates. This dissertation focuses on the development of nanostructured photovoltaic devices, that exhibit multiple exciton generation, and that exploit the wide absorption spectra enabled by the quantum dots for next generation highly efficient, low cost, solar cells. Firstly, multiple exciton generation and subsequent electrical extraction from a thin film photoconductive device constructed from PbSe NQDs is demonstrated. As an extension of this work, this PbSe NQD photoconductor was used in a tandem structure with a polymer solar cell to demonstrate multiple carrier extraction the application of an external electric field. This structure exhibited improved device durability from UV irradiation due to the self-passivating effect provided by the PbSe layer. In order to achieve better exciton

  15. Advanced Silicon Solar Cell Device Physics and Design

    NASA Astrophysics Data System (ADS)

    Deceglie, Michael Gardner

    A fundamental challenge in the development and deployment of solar photovoltaic technology is a reduction in cost enabling direct competition with fossil-fuel-based energy sources. A key driver in this cost reduction is optimized device efficiency, because increased energy output leverages all photovoltaic system costs, from raw materials and module manufacturing to installation and maintenance. To continue progress toward higher conversion efficiencies, solar cells are being fabricated with increasingly complex designs, including engineered nanostructures, heterojunctions, and novel contacting and passivation schemes. Such advanced designs require a comprehensive and unified understanding of the optical and electrical device physics at the microscopic scale. This thesis focuses on a microscopic understanding of solar cell optoelectronic performance and its impact on cell optimization. We consider this in three solar cell platforms: thin-film crystalline silicon, amorphous/crystalline silicon heterojunctions, and thin-film cells with nanophotonic light trapping. The work described in this thesis represents a powerful design paradigm, based on a detailed physical understanding of the mechanisms governing solar cell performance. Furthermore, we demonstrate the importance of understanding not just the individual mechanisms, but also their interactions. Such an approach to device optimization is critical for the efficiency and competitiveness of future generations of solar cells.

  16. Nanostructured cavity devices for extracellular stimulation of HL-1 cells.

    PubMed

    Czeschik, Anna; Rinklin, Philipp; Derra, Ulrike; Ullmann, Sabrina; Holik, Peter; Steltenkamp, Siegfried; Offenhäusser, Andreas; Wolfrum, Bernhard

    2015-01-01

    Microelectrode arrays (MEAs) are state-of-the-art devices for extracellular recording and stimulation on biological tissue. Furthermore, they are a relevant tool for the development of biomedical applications like retina, cochlear and motor prostheses, cardiac pacemakers and drug screening. Hence, research on functional cell-sensor interfaces, as well as the development of new surface structures and modifications for improved electrode characteristics, is a vivid and well established field. However, combining single-cell resolution with sufficient signal coupling remains challenging due to poor cell-electrode sealing. Furthermore, electrodes with diameters below 20 µm often suffer from a high electrical impedance affecting the noise during voltage recordings. In this study, we report on a nanocavity sensor array for voltage-controlled stimulation and extracellular action potential recordings on cellular networks. Nanocavity devices combine the advantages of low-impedance electrodes with small cell-chip interfaces, preserving a high spatial resolution for recording and stimulation. A reservoir between opening aperture and electrode is provided, allowing the cell to access the structure for a tight cell-sensor sealing. We present the well-controlled fabrication process and the effect of cavity formation and electrode patterning on the sensor's impedance. Further, we demonstrate reliable voltage-controlled stimulation using nanostructured cavity devices by capturing the pacemaker of an HL-1 cell network. PMID:25939765

  17. Diffusion phenomena of cells and biomolecules in microfluidic devices

    PubMed Central

    Yildiz-Ozturk, Ece; Yesil-Celiktas, Ozlem

    2015-01-01

    Biomicrofluidics is an emerging field at the cross roads of microfluidics and life sciences which requires intensive research efforts in terms of introducing appropriate designs, production techniques, and analysis. The ultimate goal is to deliver innovative and cost-effective microfluidic devices to biotech, biomedical, and pharmaceutical industries. Therefore, creating an in-depth understanding of the transport phenomena of cells and biomolecules becomes vital and concurrently poses significant challenges. The present article outlines the recent advancements in diffusion phenomena of cells and biomolecules by highlighting transport principles from an engineering perspective, cell responses in microfluidic devices with emphases on diffusion- and flow-based microfluidic gradient platforms, macroscopic and microscopic approaches for investigating the diffusion phenomena of biomolecules, microfluidic platforms for the delivery of these molecules, as well as the state of the art in biological applications of mammalian cell responses and diffusion of biomolecules. PMID:26180576

  18. Transport Mechanisms of Circulating Tumor Cells in Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Rangharajan, Kaushik; Conlisk, A. T.; Prakash, Shaurya

    2014-11-01

    Lab-on-a-chip (LoC) devices are becoming an essential tool for several emerging point-of-care healthcare needs and applications. Among the plethora of challenging problems in the personalized healthcare domain, early detection of cancer continues to be a challenge. For instance, identification of most tumors occurs by the time the tumor comprises approximately 1 billion cells, with poor prognosis for metastatic disease. The key obstacle in identifying and subsequent capture of circulating tumor cells (CTCs) is that the amount of CTCs in the blood stream is ~1 in 109 cells. The fundamental challenge in design and fabrication of microfluidic devices arises due to lack of information on suitable sorting needed for sample preparation before any labeling or capture scheme can be employed. Moreover, the ability to study these low concentration cells relies on knowledge of their physical and chemical properties, of which the physical properties are poorly understood. Also, nearly all existing microfluidic mixers were developed for aqueous electrolyte solutions to enhance mixing in traditional low Re flows. However, no systematic studies have developed design rules for particle mixing. Therefore, we present a numerical model to discuss design rules for microscale mixers and sorters for particle sorting for high efficiency antibody labeling of CTCs along with presenting a pathway for a device to capture CTCs without the need for labeling based on particle electrical properties. NSF Nanoscale Science and Engineering Center (NSEC) for the Affordable Nanoengineering of Polymeric Biomedical Devices EEC-0914790.

  19. Microfluidic shear devices for quantitative analysis of cell adhesion.

    PubMed

    Lu, Hang; Koo, Lily Y; Wang, Wechung M; Lauffenburger, Douglas A; Griffith, Linda G; Jensen, Klavs F

    2004-09-15

    We describe the design, construction, and characterization of microfluidic devices for studying cell adhesion and cell mechanics. The method offers multiple advantages over previous approaches, including a wide range of distractive forces, high-throughput performance, simplicity in experimental setup and control, and potential for integration with other microanalytic modules. By manipulating the geometry and surface chemistry of the microdevices, we are able to vary the shear force and the biochemistry during an experiment. The dynamics of cell detachment under different conditions can be captured simultaneously using time-lapse videomicroscopy. We demonstrate assessment of cell adhesion to fibronectin-coated substrates as a function of the shear stress or fibronectin concentration in microchannels. Furthermore, a combined perfusion-shear device is designed to maintain cell viability for long-term culture as well as to introduce exogenous reagents for biochemical studies of cell adhesion regulation. In agreement with established literature, we show that fibroblasts cultured in the combined device reduced their adhesion strength to the substrate in response to epidermal growth factor stimulation. PMID:15362881

  20. Pruning a decision tree for selecting computer-related assistive devices for people with disabilities.

    PubMed

    Chi, Chia-Fen; Tseng, Li-Kai; Jang, Yuh

    2012-07-01

    Many disabled individuals lack extensive knowledge about assistive technology, which could help them use computers. In 1997, Denis Anson developed a decision tree of 49 evaluative questions designed to evaluate the functional capabilities of the disabled user and choose an appropriate combination of assistive devices, from a selection of 26, that enable the individual to use a computer. In general, occupational therapists guide the disabled users through this process. They often have to go over repetitive questions in order to find an appropriate device. A disabled user may require an alphanumeric entry device, a pointing device, an output device, a performance enhancement device, or some combination of these. Therefore, the current research eliminates redundant questions and divides Anson's decision tree into multiple independent subtrees to meet the actual demand of computer users with disabilities. The modified decision tree was tested by six disabled users to prove it can determine a complete set of assistive devices with a smaller number of evaluative questions. The means to insert new categories of computer-related assistive devices was included to ensure the decision tree can be expanded and updated. The current decision tree can help the disabled users and assistive technology practitioners to find appropriate computer-related assistive devices that meet with clients' individual needs in an efficient manner. PMID:22552588

  1. Thermophotovoltaic conversion using selective infrared line emitters and large band gap photovoltaic devices

    DOEpatents

    Brandhorst, Jr., Henry W.; Chen, Zheng

    2000-01-01

    Efficient thermophotovoltaic conversion can be performed using photovoltaic devices with a band gap in the 0.75-1.4 electron volt range, and selective infrared emitters chosen from among the rare earth oxides which are thermally stimulated to emit infrared radiation whose energy very largely corresponds to the aforementioned band gap. It is possible to use thermovoltaic devices operating at relatively high temperatures, up to about 300.degree. C., without seriously impairing the efficiency of energy conversion.

  2. Acoustic Devices for Particle and Cell Manipulation and Sensing

    PubMed Central

    Qiu, Yongqiang; Wang, Han; Demore, Christine E. M.; Hughes, David A.; Glynne-Jones, Peter; Gebhardt, Sylvia; Bolhovitins, Aleksandrs; Poltarjonoks, Romans; Weijer, Kees; Schönecker, Andreas; Hill, Martyn; Cochran, Sandy

    2014-01-01

    An emerging demand for the precise manipulation of cells and particles for applications in cell biology and analytical chemistry has driven rapid development of ultrasonic manipulation technology. Compared to the other manipulation technologies, such as magnetic tweezing, dielectrophoresis and optical tweezing, ultrasonic manipulation has shown potential in a variety of applications, with its advantages of versatile, inexpensive and easy integration into microfluidic systems, maintenance of cell viability, and generation of sufficient forces to handle particles, cells and their agglomerates. This article briefly reviews current practice and reports our development of various ultrasonic standing wave manipulation devices, including simple devices integrated with high frequency (>20 MHz) ultrasonic transducers for the investigation of biological cells and complex ultrasonic transducer array systems to explore the feasibility of electronically controlled 2-D and 3-D manipulation. Piezoelectric and passive materials, fabrication techniques, characterization methods and possible applications are discussed. The behavior and performance of the devices have been investigated and predicted with computer simulations, and verified experimentally. Issues met during development are highlighted and discussed. To assist long term practical adoption, approaches to low-cost, wafer level batch-production and commercialization potential are also addressed. PMID:25123465

  3. Acoustic devices for particle and cell manipulation and sensing.

    PubMed

    Qiu, Yongqiang; Wang, Han; Demore, Christine E M; Hughes, David A; Glynne-Jones, Peter; Gebhardt, Sylvia; Bolhovitins, Aleksandrs; Poltarjonoks, Romans; Weijer, Kees; Schönecker, Andreas; Hill, Martyn; Cochran, Sandy

    2014-01-01

    An emerging demand for the precise manipulation of cells and particles for applications in cell biology and analytical chemistry has driven rapid development of ultrasonic manipulation technology. Compared to the other manipulation technologies, such as magnetic tweezing, dielectrophoresis and optical tweezing, ultrasonic manipulation has shown potential in a variety of applications, with its advantages of versatile, inexpensive and easy integration into microfluidic systems, maintenance of cell viability, and generation of sufficient forces to handle particles, cells and their agglomerates. This article briefly reviews current practice and reports our development of various ultrasonic standing wave manipulation devices, including simple devices integrated with high frequency (>20 MHz) ultrasonic transducers for the investigation of biological cells and complex ultrasonic transducer array systems to explore the feasibility of electronically controlled 2-D and 3-D manipulation. Piezoelectric and passive materials, fabrication techniques, characterization methods and possible applications are discussed. The behavior and performance of the devices have been investigated and predicted with computer simulations, and verified experimentally. Issues met during development are highlighted and discussed. To assist long term practical adoption, approaches to low-cost, wafer level batch-production and commercialization potential are also addressed. PMID:25123465

  4. A Stretching Device for High Resolution Live-Cell Imaging

    PubMed Central

    Huang, Lawrence; Mathieu, Pattie S.; Helmke, Brian P.

    2012-01-01

    Several custom-built and commercially available devices are available to investigate cellular responses to substrate strain. However, analysis of structural dynamics by microscopy in living cells during stretch is not readily feasible. We describe a novel stretch device optimized for high-resolution live-cell imaging. The unit assembles onto standard inverted microscopes and applies constant magnitude or cyclic stretch at physiological magnitudes to cultured cells on elastic membranes. Interchangeable modular indenters enable delivery of equibiaxial and uniaxial stretch profiles. Strain analysis performed by tracking fluorescent microspheres adhered onto the substrate demonstrated reproducible application of stretch profiles. In endothelial cells transiently expressing EGFP-vimentin and paxillin-DsRed2 and subjected to constant magnitude equibiaxial stretch, the 2-D strain tensor demonstrated efficient transmission through the extracellular matrix and focal adhesions. Decreased transmission to the intermediate filament network was measured, and a heterogeneous spatial distribution of maximum stretch magnitude revealed discrete sites of strain focusing. Spatial correlation of vimentin and paxillin displacement vectors provided an estimate of the extent of mechanical coupling between the structures. Interestingly, switching the spatial profile of substrate strain reveals that actin-mediated edge ruffling is not desensitized to repeated mechano-stimulation. These initial observations show that the stretch device is compatible with live-cell microscopy and is a novel tool for measuring dynamic structural remodeling under mechanical strain. PMID:20195762

  5. Institutional decision-making to select patient care devices: identifying venues to promote patient safety.

    PubMed

    Keselman, Alla; Patel, Vimla L; Johnson, Todd R; Zhang, Jiajie

    2003-01-01

    Many medical errors that involve drug infusion devices are related to classic interface problems. Although manufacturers are becoming increasingly aware of human factors design considerations, many devices that are currently on the market are still sub-optimal for human use. This places significant responsibility for device selection on institutional purchasing groups. Theories of naturalistic decision-making point to many potential strengths and pitfalls of group decision-making processes that may affect the final outcome. This paper describes a retrospective analysis of decision-making process for infusion pump selection in a large hospital and focuses on factors related to patient safety. Through a series of detailed interviews and a study of relevant documentation we characterized the nature of the decision-making, patterns of communication, and the roles of different participants. Findings show that although the process involves a number of different professional groups and committees, the information flow among them is restricted. This results in inadequate representation of critical device usability considerations in the decision-making process. While all participants view device safety as an important consideration in the selection process, administrators (who are the final decision-makers) tend to equate safety with technical accuracy and reliability, paying less attention to the role of human factors in safe device use. Findings suggest that collaborative communication technology and automated evidence-based guidelines could provide support to institutional decision-making, ensuring that the process is efficient, effective, and ultimately safe for the patients. PMID:14552845

  6. [Wearable Medical Devices' MCU Selection Analysis Based on the ARM Cortex-MO+ Architecture].

    PubMed

    Wu, Zaoquan; Liu, Mengxing; Qin, Liping; Ye, Shuming; Chen, Hang

    2015-03-01

    According to the characteristics of low cost, high performance, high integration and long battery life of wearable medical devices, the mainstream low-power microcontroller(MCU) series were compared, and came to the conclusion that the MCU series based on ARM Cortex-M0+ architecture were suitable for the development of wearable medical devices. In aspects of power consumption, operational performance, integrated peripherals and cost, the MCU series based on Cortex-M0+ architecture of primary semiconductor companies were compared, aimed at providing the guides of MCU selection for wearable medical devices. PMID:26524785

  7. A Mechanically Tunable Microfluidic Cell-Trapping Device

    PubMed Central

    Zhu, Jing; Shang, Junyi; Olsen, Timothy; Liu, Kun; Brenner, David; Lin, Qiao

    2015-01-01

    Controlled manipulation, such as isolation, positioning and trapping of cells, is important in basic biological research and clinical diagnostics. Micro/nanotechnologies have been enabling more effective and efficient cell trapping than possible with conventional platforms. Currently available micro/nanoscale methods for cell trapping, however, still lack flexibility in precisely controlling the number of trapped cells. We exploited the large compliance of elastomers to create an array of cell-trapping microstructures, whose dimensions can be mechanically modulated by inducing uniformly distributed strain via application of external force on the chip. The device consists of two elastomer polydimethylsiloxane (PDMS) sheets, one of which bears dam-like, cup-shaped geometries to physically capture cells. The mechanical modulation is used to tune the characteristics of cell trapping to capture a predetermined number of cells, from single cells to multiple cells. Thus, enhanced utility and flexibility for practical applications can be attained, as demonstrated by tunable trapping of MCF-7 cells, a human breast cancer cell line. PMID:25821347

  8. Improved selectivity from a wavelength addressable device for wireless stimulation of neural tissue

    PubMed Central

    Seymour, Elif Ç.; Freedman, David S.; Gökkavas, Mutlu; Özbay, Ekmel; Sahin, Mesut; Ünlü, M. Selim

    2014-01-01

    Electrical neural stimulation with micro electrodes is a promising technique for restoring lost functions in the central nervous system as a result of injury or disease. One of the problems related to current neural stimulators is the tissue response due to the connecting wires and the presence of a rigid electrode inside soft neural tissue. We have developed a novel, optically activated, microscale photovoltaic neurostimulator based on a custom layered compound semiconductor heterostructure that is both wireless and has a comparatively small volume (<0.01 mm3). Optical activation provides a wireless means of energy transfer to the neurostimulator, eliminating wires and the associated complications. This neurostimulator was shown to evoke action potentials and a functional motor response in the rat spinal cord. In this work, we extend our design to include wavelength selectivity and thus allowing independent activation of devices. As a proof of concept, we fabricated two different microscale devices with different spectral responsivities in the near-infrared region. We assessed the improved addressability of individual devices via wavelength selectivity as compared to spatial selectivity alone through on-bench optical measurements of the devices in combination with an in vivo light intensity profile in the rat cortex obtained in a previous study. We show that wavelength selectivity improves the individual addressability of the floating stimulators, thus increasing the number of devices that can be implanted in close proximity to each other. PMID:24600390

  9. Highly Multiplexed RNA Aptamer Selection using a Microplate-based Microcolumn Device

    PubMed Central

    Reinholt, Sarah J.; Ozer, Abdullah; Lis, John T.; Craighead, Harold G.

    2016-01-01

    We describe a multiplexed RNA aptamer selection to 19 different targets simultaneously using a microcolumn-based device, MEDUSA (Microplate-based Enrichment Device Used for the Selection of Aptamers), as well as a modified selection process, that significantly reduce the time and reagents needed for selections. We exploited MEDUSA’s reconfigurable design between parallel and serially-connected microcolumns to enable the use of just 2 aliquots of starting library, and its 96-well microplate compatibility to enable the continued use of high-throughput techniques in downstream processes. Our modified selection protocol allowed us to perform the equivalent of a 10-cycle selection in the time it takes for 4 traditional selection cycles. Several aptamers were discovered with nanomolar dissociation constants. Furthermore, aptamers were identified that not only bound with high affinity, but also acted as inhibitors to significantly reduce the activity of their target protein, mouse decapping exoribonuclease (DXO). The aptamers resisted DXO’s exoribonuclease activity, and in studies monitoring DXO’s degradation of a 30-nucleotide substrate, less than 1 μM of aptamer demonstrated significant inhibition of DXO activity. This aptamer selection method using MEDUSA helps to overcome some of the major challenges with traditional aptamer selections, and provides a platform for high-throughput selections that lends itself to process automation. PMID:27432610

  10. Highly Multiplexed RNA Aptamer Selection using a Microplate-based Microcolumn Device.

    PubMed

    Reinholt, Sarah J; Ozer, Abdullah; Lis, John T; Craighead, Harold G

    2016-01-01

    We describe a multiplexed RNA aptamer selection to 19 different targets simultaneously using a microcolumn-based device, MEDUSA (Microplate-based Enrichment Device Used for the Selection of Aptamers), as well as a modified selection process, that significantly reduce the time and reagents needed for selections. We exploited MEDUSA's reconfigurable design between parallel and serially-connected microcolumns to enable the use of just 2 aliquots of starting library, and its 96-well microplate compatibility to enable the continued use of high-throughput techniques in downstream processes. Our modified selection protocol allowed us to perform the equivalent of a 10-cycle selection in the time it takes for 4 traditional selection cycles. Several aptamers were discovered with nanomolar dissociation constants. Furthermore, aptamers were identified that not only bound with high affinity, but also acted as inhibitors to significantly reduce the activity of their target protein, mouse decapping exoribonuclease (DXO). The aptamers resisted DXO's exoribonuclease activity, and in studies monitoring DXO's degradation of a 30-nucleotide substrate, less than 1 μM of aptamer demonstrated significant inhibition of DXO activity. This aptamer selection method using MEDUSA helps to overcome some of the major challenges with traditional aptamer selections, and provides a platform for high-throughput selections that lends itself to process automation. PMID:27432610

  11. Engineering novel cell surface chemistry for selective tumor cell targeting

    SciTech Connect

    Bertozzi, C.R. |

    1997-12-31

    A common feature of many different cancers is the high expression level of the two monosaccharides sialic acid and fucose within the context of cell-surface associated glycoconjugates. A correlation has been made between hypersialylation and/or hyperfucosylation and the highly metastatic phenotype. Thus, a targeting strategy based on sialic acid or fucose expression would be a powerful tool for the development of new cancer cell-selective therapies and diagnostic agents. We have discovered that ketone groups can be incorporated metabolically into cell-surface associated sialic acids. The ketone is can be covalently ligated with hydrazide functionalized proteins or small molecules under physiological conditions. Thus, we have discovered a mechanism to selectively target hydrazide conjugates to highly sialylated cells such as cancer cells. Applications of this technology to the generation of novel cancer cell-selective toxins and MRI contrast reagents will be discussed, in addition to progress towards the use of cell surface fucose residues as vehicles for ketone expression.

  12. Microgravity-Enhanced Stem Cell Selection

    NASA Technical Reports Server (NTRS)

    Claudio, Pier Paolo; Valluri, Jagan

    2011-01-01

    Stem cells, both embryonic and adult, promise to revolutionize the practice of medicine in the future. In order to realize this potential, a number of hurdles must be overcome. Most importantly, the signaling mechanisms necessary to control the differentiation of stem cells into tissues of interest remain to be elucidated, and much of the present research on stem cells is focused on this goal. Nevertheless, it will also be essential to achieve large-scale expansion and, in many cases, assemble cells in 3D as transplantable tissues. To this end, microgravity analog bioreactors can play a significant role. Microgravity bioreactors were originally conceived as a tool to study the cellular responses to microgravity. However, the technology can address some of the shortcomings of conventional cell culture systems; namely, the deficiency of mass transport in static culture and high mechanical shear forces in stirred systems. Unexpectedly, the conditions created in the vessel were ideal for 3D cell culture. Recently, investigators have demonstrated the capability of the microgravity bioreactors to expand hematopoietic stem cells compared to static culture, and facilitate the differentiation of umbilical cord stem cells into 3D liver aggregates. Stem cells are capable of differentiating into functional cells. However, there are no reliable methods to induce the stem cells to form specific cells or to gain enough cells for transplantation, which limits their application in clinical therapy. The aim of this study is to select the best experimental setup to reach high proliferation levels by culturing these cells in a microgravity-based bioreactor. In typical cell culture, the cells sediment to the bottom surface of their container and propagate as a one-cell-layer sheet. Prevention of such sedimentation affords the freedom for self-assembly and the propagation of 3D tissue arrays. Suspension of cells is easily achievable using stirred technologies. Unfortunately, in

  13. Nanostructured cavity devices for extracellular stimulation of HL-1 cells

    NASA Astrophysics Data System (ADS)

    Czeschik, Anna; Rinklin, Philipp; Derra, Ulrike; Ullmann, Sabrina; Holik, Peter; Steltenkamp, Siegfried; Offenhäusser, Andreas; Wolfrum, Bernhard

    2015-05-01

    Microelectrode arrays (MEAs) are state-of-the-art devices for extracellular recording and stimulation on biological tissue. Furthermore, they are a relevant tool for the development of biomedical applications like retina, cochlear and motor prostheses, cardiac pacemakers and drug screening. Hence, research on functional cell-sensor interfaces, as well as the development of new surface structures and modifications for improved electrode characteristics, is a vivid and well established field. However, combining single-cell resolution with sufficient signal coupling remains challenging due to poor cell-electrode sealing. Furthermore, electrodes with diameters below 20 µm often suffer from a high electrical impedance affecting the noise during voltage recordings. In this study, we report on a nanocavity sensor array for voltage-controlled stimulation and extracellular action potential recordings on cellular networks. Nanocavity devices combine the advantages of low-impedance electrodes with small cell-chip interfaces, preserving a high spatial resolution for recording and stimulation. A reservoir between opening aperture and electrode is provided, allowing the cell to access the structure for a tight cell-sensor sealing. We present the well-controlled fabrication process and the effect of cavity formation and electrode patterning on the sensor's impedance. Further, we demonstrate reliable voltage-controlled stimulation using nanostructured cavity devices by capturing the pacemaker of an HL-1 cell network.Microelectrode arrays (MEAs) are state-of-the-art devices for extracellular recording and stimulation on biological tissue. Furthermore, they are a relevant tool for the development of biomedical applications like retina, cochlear and motor prostheses, cardiac pacemakers and drug screening. Hence, research on functional cell-sensor interfaces, as well as the development of new surface structures and modifications for improved electrode characteristics, is a vivid and

  14. High-Throughput Microfluidic Device for Rare Cell Isolation

    PubMed Central

    Yang, Daniel; Leong, Serena; Lei, Andy; Sohn, Lydia L.

    2016-01-01

    Enumerating and analyzing circulating tumor cells (CTCs)—cells that have been shed from primary solid tumors—can potentially be used to determine patient prognosis and track the progression of disease. There is a great challenge to create an effective platform that can isolate these cells, as they are extremely rare: only 1-10 CTCs are present in a 7.5mL of a cancer patient's peripheral blood. We have developed a novel microfluidic system that can isolate CTC populations label free. Our system consists of a multistage separator that employs inertial migration to sort cells based on size. We demonstrate the feasibility of our device by sorting colloids that are comparable in size to red blood cells (RBCs) and CTCs. PMID:26937065

  15. High-Efficiency Solar Cell Concepts: Physics, Materials, and Devices

    SciTech Connect

    Mascarenhas, A.; Francoeur, S.; Seong, M. J.; Fluegel, B.; Zhang, Y.; Wanlass, M. W.

    2005-01-01

    Over the past three decades, significant progress has been made in the area of high-efficiency multijunction solar cells, with the effort primarily directed at current-matched solar cells in tandem. The key materials issues here have been obtaining semiconductors with the required bandgaps for sequential absorption of light in the solar spectrum and that are lattice matched to readily available substrates. The GaInP/GaAs/Ge cell is a striking example of success achieved in this area. Recently, several new approaches for high-efficiency solar cell design have emerged, that involve novel methods for tailoring alloy bandgaps, as well as alternate technologies for hetero-epitaxy of III-V's on Si. The advantages and difficulties expected to be encountered with each approach will be discussed, addressing both the materials issues and device physics whilst contrasting them with other fourth-generation solar cell concepts.

  16. High-throughput microfluidic device for rare cell isolation

    NASA Astrophysics Data System (ADS)

    Yang, Daniel; Leong, Serena; Lei, Andy; Sohn, Lydia L.

    2015-06-01

    Enumerating and analyzing circulating tumor cells (CTCs)—cells that have been shed from primary solid tumors—can potentially be used to determine patient prognosis and track the progression of disease. There is a great challenge to create an effective platform that can isolate these cells, as they are extremely rare: only 1-10 CTCs are present in a 7.5mL of a cancer patient's peripheral blood. We have developed a novel microfluidic system that can isolate CTC populations label free. Our system consists of a multistage separator that employs inertial migration to sort cells based on size. We demonstrate the feasibility of our device by sorting colloids that are comparable in size to red blood cells (RBCs) and CTCs.

  17. AC Electrokinetic Cell Separation on a Microfluidic Device

    NASA Astrophysics Data System (ADS)

    Gagnon, Zachary; Chang, Hsueh-Chia

    2009-03-01

    Rapid cell separation and collection is demonstrated through the integration of electrokinetic pumps, dielectrophoretic (DEP) traps and field driven valves into a well designed microfluidic channel loop. We present the ground-up design and analysis of this fully functional microfluidic device for the rapid separation and collection of live and dead yeast cells and malaria red blood cells (RBCs) at low concentrations. DEP cell sorting and concentration schemes are based on the exploitation of cell specific DEP crossover frequencies (cof's). A rigorous DEP study of yeast and RBCs is presented and used to determine optimal conditions for cell separation. By utilizing a glutaraldehyde crosslinking cell fixation reaction that is sensitive to cell membrane protein concentration, we demonstrate the ability to further amplify these differences between healthy and unhealthy cells as well as stabilize their DEP cof's. Pumping is achieved with a new type of electrokinetic flow, AC electrothermal electro-osmosis (ETEO) and is shown to scale inversely with the field induced debye length and drive fluid velocities in excess of 6 mm/sec. The well characterized electrokinetic phenomena are integrated into a microchannel loop with a specifically designed electrode field penetration length for low concentration cell separation and concentration.

  18. An electromagnetic cell-stretching device for mechanotransduction studies of olfactory ensheathing cells.

    PubMed

    Harshad, Kamble; Jun, Myeongjun; Park, Sungsu; Barton, Matthew J; Vadivelu, Raja K; St John, James; Nguyen, Nam-Trung

    2016-06-01

    Olfactory ensheathing cells (OECs) are primary candidates for cell transplantation therapy to repair spinal cord injury (SCI). However, the post transplantation survival of these cells remains a major hurdle for a success using this therapy. Mechanical stimuli may contribute to the maintenance of these cells and thus, mechanotransduction studies of OECs may serve as a key benefit to identify strategies for improvement in cell transplantation. We developed an electromagnetic cell stretching device based on a single sided uniaxial stretching approach to apply tensile strain to OECs in culture. This paper reports the design, simulation and characterisation of the stretching device with preliminary experimental observations of OECs in vitro. The strain field of the deformable membrane was investigated both experimentally and numerically. Heterogeneity of the device provided an ideal platform for establishing strain requirement for the OEC culture. The cell stretching system developed may serve as a tool in exploring the mechanobiology of OECs for future SCI transplantation research. PMID:27194027

  19. Investigation of frequency-selective devices based on a microstrip 2D photonic crystal

    NASA Astrophysics Data System (ADS)

    Belyaev, B. A.; Khodenkov, S. A.; Shabanov, V. F.

    2016-04-01

    The frequency-selective properties of structures based on a 2D microstrip photonic crystal have been investigated theoretically and experimentally. It is shown that various microwave devices, including diplexers, bandpass filters, and double bandpass filters, can be designed based on these structures.

  20. Selection of respiratory protection devices for use in very high concentrations of airborne plutonium.

    PubMed

    Bianconi, C J

    2000-08-01

    This paper focuses on the proper selection of respiratory protection devices for use in very high concentrations of airborne plutonium. Special attention is given to the determination of levels at which airborne plutonium presents a hazard that is immediately dangerous to life or health. PMID:10910403

  1. Annealing of Solar Cells and Other Thin Film Devices

    NASA Technical Reports Server (NTRS)

    Escobar, Hector; Kuhlman, Franz; Dils, D. W.; Lush, G. B.; Mackey, Willie R. (Technical Monitor)

    2001-01-01

    Annealing is a key step in most semiconductor fabrication processes, especially for thin films where annealing enhances performance by healing defects and increasing grain sizes. We have employed a new annealing oven for the annealing of CdTe-based solar cells and have been using this system in an attempt to grow US on top of CdTe by annealing in the presence of H2S gas. Preliminary results of this process on CdTe solar cells and other thin-film devices will be presented.

  2. Solid-state devices for detection of DNA, protein biomarkers and cells

    NASA Astrophysics Data System (ADS)

    Asghar, Waseem

    Nanobiotechnology and BioMEMS have had tremendous impact on biosensing in the areas of cancer cell detection and therapeutics, disease diagnostics, proteomics and DNA analysis. Diseases are expressed on all levels including DNA, protein, cell and tissue. Therefore it is very critical to develop biosensors at each level. The power of the nanotechnology lies in the fact that we can fabricate devices on all scales from micro to nano. This dissertation focuses on four areas: 1) Development of nanopore sensors for DNA analysis; 2) Development of micropore sensors for early detection of circulating tumor cells (CTCs) from whole blood; 3) Synthesis of nano-textured substrates for cancer isolation and tissue culture applications; 4) Fabrication of nanoscale break-junctions. All of these sensors are fabricated using standard silicon processing techniques. Pulsed plasma polymer deposition is also utilized to control the density of the biosensor surface charges. These devices are then used for efficient detection of DNA, proteins and cells, and can be potentially used in point-of-care systems. Overall, our designed biosensing platforms offer improved selectivity, yield and reliability. Novel approaches to nanopore shrinking are simple, reliable and do not change the material composition around the pore boundary. The micropores provide a direct interface to distinguish CTCs from normal cell without requiring fluorescent dyes and surface functionalization. Nano-textured surfaces and break-junctions can be used for enhanced adhesion of cells and selective detection of proteins respectively.

  3. Microfluidic device for mechanical dissociation of cancer cell aggregates into single cells

    PubMed Central

    Pennell, Marissa; Troiani, Marco; Haun, Jered B.

    2014-01-01

    Tumors tissues house a diverse array of cell types, requiring powerful cell-based analysis methods to characterize different cell subtypes. Tumor tissue is dissociated into single cells by treatment with proteolytic enzymes, followed by mechanical disruption using vortexing or pipetting. These procedures can be incomplete and require significant time, and the latter mechanical treatments are poorly defined and controlled. Here, we present a novel microfluidic device to improve mechanical dissociation of digested tissue and cell aggregates into single cells. The device design includes a network of branching channels that range in size from millimeters down to hundreds of microns. The channels also contain flow constrictions that generate well-defined regions of high shear force, which we refer to as “hydrodynamic micro-scalpels,” to progressively disaggregate tissue fragments and clusters into single cells. We show using in vitro cancer cell models that the microfluidic device significantly enhances cell recovery in comparison to mechanical disruption by pipetting and vortexing digestion with trypsin or incubation with EDTA. Notably, the device enabled superior results to be obtained after shorter proteolytic digestion times, resulting in fully viable cells in less than ten minutes. The device could also be operated under enzyme-free conditions that could better maintain expression of certain surface markers. The microfluidic format is advantageous because it enables application of well-defined mechanical forces and rapid processing times. Furthermore, it may be possible to directly integrate downstream processing and detection operations to create integrated cell-based analysis platforms. The enhanced capabilities enabled by our novel device may help promote applications of single cell detection and purification techniques to tumor tissue specimens, advancing the current understanding of cancer biology and enabling molecular diagnostics in clinical settings

  4. Cell-free protein synthesis in microfluidic array devices.

    PubMed

    Mei, Qian; Fredrickson, Carl K; Simon, Andrew; Khnouf, Ruba; Fan, Z Hugh

    2007-01-01

    We report the development of a microfluidic array device for continuous-exchange, cell-free protein synthesis. The advantages of protein expression in the microfluidic array include (1) the potential to achieve high-throughput protein expression, matching the throughput of gene discovery; (2) more than 2 orders of magnitude reduction in reagent consumption, decreasing the cost of protein synthesis; and (3) the possibility to integrate with detection for rapid protein analysis, eliminating the need to harvest proteins. The device consists of an array of units, and each unit can be used for production of an individual protein. The unit comprises a tray chamber for in vitro protein expression and a well chamber as a nutrient reservoir. The tray is nested in the well, and they are separated by a dialysis membrane and connected through a microfluidic connection that provides a means to supply nutrients and remove the reaction byproducts. The device is demonstrated by synthesis of green fluorescent protein, chloramphenicol acetyl-transferase, and luciferase. Protein expression in the device lasts 5-10 times longer and the production yield is 13-22 times higher than in a microcentrifuge tube. In addition, we studied the effects of the operation temperature and hydrostatic flow on the protein production yield. PMID:17924644

  5. CMOS compatible electrode materials selection in oxide-based memory devices

    NASA Astrophysics Data System (ADS)

    Zhuo, V. Y.-Q.; Li, M.; Guo, Y.; Wang, W.; Yang, Y.; Jiang, Y.; Robertson, J.

    2016-07-01

    Electrode materials selection guidelines for oxide-based memory devices are constructed from the combined knowledge of observed device operation characteristics, ab-initio calculations, and nano-material characterization. It is demonstrated that changing the top electrode material from Ge to Cr to Ta in the Ta2O5-based memory devices resulted in a reduction of the operation voltages and current. Energy Dispersed X-ray (EDX) Spectrometer analysis clearly shows that the different top electrode materials scavenge oxygen ions from the Ta2O5 memory layer at various degrees, leading to different oxygen vacancy concentrations within the Ta2O5, thus the observed trends in the device performance. Replacing the Pt bottom electrode material with CMOS compatible materials (Ru and Ir) further reduces the power consumption and can be attributed to the modification of the Schottky barrier height and oxygen vacancy concentration at the electrode/oxide interface. Both trends in the device performance and EDX results are corroborated by the ab-initio calculations which reveal that the electrode material tunes the oxygen vacancy concentration via the oxygen chemical potential and defect formation energy. This experimental-theoretical approach strongly suggests that the proper selection of CMOS compatible electrode materials will create the critical oxygen vacancy concentration to attain low power memory performance.

  6. Microfluidic Device for Studying Tumor Cell Extravasation in Cancer Metastasis

    SciTech Connect

    Lin, Henry K; Thundat, Thomas George; Evans III, Boyd Mccutchen; Datar, Ram H; Reese, Benjamin E; Zheng, Siyang

    2010-01-01

    Metastasis is the process by which cancer spreads to form secondary tumors at downstream locations throughout the body. This uncontrolled spreading is the leading cause of death in patients with epithelial cancers and is the main reason that suppressing and targeting cancer has proven to be so challenging. Tumor cell extravasation is one of the key steps in cancer s progression towards a metastatic state. This occurs when circulating tumor cells found within the blood stream are able to transmigrate through the endothelium lining and basement membrane of the vasculature to form metastatic tumors at secondary sites within the body. Predicting the likelihood of this occurrence in patients, or being able to determine specific markers involved in this process could lead to preventative measures targeting these types of cancer; moreover, this may lead to the discovery of novel anti-metastatic drugs. We have developed a microfluidic device that has shown the extravasation of fluorescently labeled tumor cells across an endothelial cell lined membrane coated with matrigel followed by the formation of colonies. This device provides the advantages of combining a controlled environment, mimicking that found within the body, with real-time monitoring capabilities allowing for the study of these biomarkers and cellular interactions along with other potential mechanisms involved in the process of extravasation.

  7. Left atrial appendage closure: patient, device and post-procedure drug selection.

    PubMed

    Tzikas, Apostolos; Bergmann, Martin W

    2016-05-17

    Left atrial appendage closure (LAAC), a device-based therapy for stroke prevention in patients with atrial fibrillation, is considered an alternative to oral anticoagulation therapy, particularly for patients at high risk of bleeding. Proof of concept has been demonstrated by the PROTECT AF and PREVAIL trials which evaluated the WATCHMAN device (Boston Scientific, Marlborough, MA, USA) versus warfarin, showing favourable outcome for the device group. The most commonly used devices for LAAC are the WATCHMAN and its successor, the WATCHMAN FLX (Boston Scientific) and the AMPLATZER Cardiac Plug and more recently the AMPLATZER Amulet device (both St. Jude Medical, St. Paul, MN, USA). The procedure is typically performed via a transseptal puncture under fluoroscopic and echocardiographic guidance. Technically, it is considered quite demanding due to the anatomic variability and fragility of the appendage. Careful material manipulation, adequate operator training, and good cardiac imaging and device sizing allow a safe, uneventful procedure. Post-procedure antithrombotic drug selection is based on the patient's history, indication and quality of LAAC. PMID:27174112

  8. Cell structure for electrochemical devices and method of making same

    DOEpatents

    Kaun, Thomas D.

    2007-03-27

    An electrochemical device comprising alternating layers of positive and negative electrodes separated from each other by separator layers. The electrode layers extend beyond the periphery of the separator layers providing superior contact between the electrodes and battery terminals, eliminating the need for welding the electrode to the terminal. Electrical resistance within the battery is decreased and thermal conductivity of the cell is increased allowing for superior heat removal from the battery and increased efficiency. Increased internal pressure within the battery can be alleviated without damaging or removing the battery from service while keeping the contents of the battery sealed off from the atmosphere by a pressure release system. Nonoperative cells within a battery assembly can also be removed from service by shorting the nonoperative cell thus decreasing battery life.

  9. Development of an electronic device quality aluminum antimonide (AlSb) semiconductor for solar cell applications

    SciTech Connect

    Sherohman, John W; Yee, Jick Hong; Combs, III, Arthur W

    2014-11-11

    Electronic device quality Aluminum Antimonide (AlSb)-based single crystals produced by controlled atmospheric annealing are utilized in various configurations for solar cell applications. Like that of a GaAs-based solar cell devices, the AlSb-based solar cell devices as disclosed herein provides direct conversion of solar energy to electrical power.

  10. Medical Devices; hematology and pathology devices; reclassification of automated blood cell separator device operating by filtration principle from class III to class II. Final rule.

    PubMed

    2003-02-28

    The Food and Drug Administration (FDA) is reclassifying the automated blood cell separator (ABCS) device operating by filtration principle, intended for routine collection of blood and blood components, from class III to class II (special controls). The special control requirement for this device is an annual report with emphasis on adverse reactions to be filed by the manufacturer for a minimum of 3 years. The agency is taking this action in response to a petition submitted under the Federal Food, Drug, and Cosmetic Act (the act) as amended by the Medical Device Amendments of 1976 (the 1976 amendments), the Safe Medical Devices Act of 1990 (the SMDA), and the Food and Drug Administration Modernization Act of 1997 (FDAMA). The agency is reclassifying the automated blood cell separator devices operating by filtration principle into class II (special controls) because special controls, in addition to general controls, are capable of providing a reasonable assurance of safety and effectiveness of the device. PMID:12617085

  11. Mechanical phenotyping of tumor cells using a microfluidic cell squeezer device

    NASA Astrophysics Data System (ADS)

    Khan, Zeina S.; Kamyabi, Nabiollah; Vanapalli, Siva A.

    2013-03-01

    Studies have indicated that cancer cells have distinct mechanical properties compared to healthy cells. We are investigating the potential of cell mechanics as a biophysical marker for diagnostics and prognosis of cancer. To establish the significance of mechanical properties for cancer diagnostics, a high throughput method is desired. Although techniques such as atomic force microscopy are very precise, they are limited in throughput for cellular mechanical property measurements. To develop a device for high throughput mechanical characterization of tumor cells, we have fabricated a microfludic cell squeezer device that contains narrow micrometer-scale pores. Fluid flow is used to drive cells into these pores mimicking the flow-induced passage of circulating tumor cells through microvasculature. By integrating high speed imaging, the device allows for the simultaneous characterization of five different parameters including the blockage pressure, cell velocity, cell size, elongation and the entry time into squeezer. We have tested a variety of in vitro cell lines, including brain and prostate cancer cell lines, and have found that the entry time is the most sensitive measurement capable of differentiating between cell lines with differing invasiveness.

  12. Surface Design for Efficient Capturing of Rare Cells in Microfluidic Device

    NASA Astrophysics Data System (ADS)

    Liu, Yaling; Depietro, Dan; Thomas, Antony; Chen, Chi-Mon; Yang, Shu

    2011-11-01

    This work aims to design, fabricate, and characterize a micro-patterned surface that will be integrated into microfluidic devices to enhance particle and rare cell capture efficiency. Capture of ultralow concentration of circulating tumor cells in a blood sample is of vital importance for early diagnostics of cancer diseases. Despite the significant progress achieved in development of cell capture techniques, the enhancement in capture efficiency is still limited and often accompanied with drawbacks such as low throughput, low selectivity, pre-diluting requirement, and cell viability issues. The goal of this work is to design a biomimetic surface that could significantly enhance particle/cell capture efficacy through computational modeling, surface patterning, and microfluidic integration and testing. A PDMS surface with microscale ripples is functionalized with epithelial cell adhesion molecule (EpCAM) to capture prostate cancer PC3 cells. Our microfluid chip with micropatterns has shown significantly higher cell capture efficiency and selectivity compared to the chips with plane surface or classical herringbone-grooves.

  13. Surface Design for Efficient Capturing of Rare Cells in Microfluidic Device

    NASA Astrophysics Data System (ADS)

    Liu, Yaling; Thomas, Antony; Chen, Chi-Mon; Yang, Shu

    2012-02-01

    This work aims to design, fabricate, and characterize a micro-patterned surface that will be integrated into microfluidic devices to enhance particle and rare cell capture efficiency. Capture of ultralow concentration of circulating tumor cells in a blood sample is of vital importance for early diagnostics of cancer diseases. Despite the significant progress achieved in development of cell capture techniques, the enhancement in capture efficiency is still limited and often accompanied with drawbacks such as low throughput, low selectivity, pre-diluting requirement, and cell viability issues. The goal of this work is to design a biomimetic surface that could significantly enhance particle/cell capture efficacy through computational modeling, surface patterning, and microfluidic integration and testing. A PDMS surface with microscale ripples is functionalized with epithelial cell adhesion molecule (EpCAM) to capture prostate cancer PC3 cells. Our microfluid chip with micropatterns has shown significantly higher cell capture efficiency and selectivity compared to the chips with plane surface or classical herringbone-grooves.

  14. Particle Trajectories in Rotating Wall Cell Culture Devices

    NASA Technical Reports Server (NTRS)

    Ramachandran N.; Downey, J. P.

    1999-01-01

    Cell cultures are extremely important to the medical community since such cultures provide an opportunity to perform research on human tissue without the concerns inherent in experiments on individual humans. Development of cells in cultures has been found to be greatly influenced by the conditions of the culture. Much work has focused on the effect of the motions of cells in the culture relative to the solution. Recently rotating wall vessels have been used with success in achieving improved cellular cultures. Speculation and limited research have focused on the low shear environment and the ability of rotating vessels to keep cells suspended in solution rather than floating or sedimenting as the primary reasons for the improved cellular cultures using these devices. It is widely believed that the cultures obtained using a rotating wall vessel simulates to some degree the effect of microgravity on cultures. It has also been speculated that the microgravity environment may provide the ideal acceleration environment for culturing of cellular tissues due to the nearly negligible levels of sedimentation and shear possible. This work predicts particle trajectories of cells in rotating wall vessels of cylindrical and annular design consistent with the estimated properties of typical cellular cultures. Estimates of the shear encountered by cells in solution and the interactions with walls are studied. Comparisons of potential experiments in ground and microgravity environments are performed.

  15. A microfluidic device for uniform-sized cell spheroids formation, culture, harvesting and flow cytometry analysis.

    PubMed

    Patra, Bishnubrata; Chen, Ying-Hua; Peng, Chien-Chung; Lin, Shiang-Chi; Lee, Chau-Hwang; Tung, Yi-Chung

    2013-01-01

    Culture of cells as three-dimensional (3D) aggregates, named spheroids, possesses great potential to improve in vitro cell models for basic biomedical research. However, such cell spheroid models are often complicated, cumbersome, and expensive compared to conventional Petri-dish cell cultures. In this work, we developed a simple microfluidic device for cell spheroid formation, culture, and harvesting. Using this device, cells could form uniformly sized spheroids due to strong cell-cell interactions and the spatial confinement of microfluidic culture chambers. We demonstrated cell spheroid formation and culture in the designed devices using embryonic stem cells, carcinoma cells, and fibroblasts. We further scaled up the device capable of simultaneously forming and culturing 5000 spheroids in a single chip. Finally, we demonstrated harvesting of the cultured spheroids from the device with a simple setup. The harvested spheroids possess great integrity, and the cells can be exploited for further flow cytometry assays due to the ample cell numbers. PMID:24396525

  16. Sodium selectivity of Reissner's membrane epithelial cells

    PubMed Central

    2011-01-01

    Background Sodium absorption by Reissner's membrane is thought to contribute to the homeostasis of the volume of cochlear endolymph. It was previously shown that the absorptive transepithelial current was blocked by amiloride and benzamil. The most commonly-observed target of these drugs is the epithelial sodium channel (ENaC), which is composed of the three subunits α-,β- and γ-ENaC. However, other less-selective cation channels have also been observed to be sensitive to benzamil and amiloride. The aim of this study was to determine whether Reissner's membrane epithelial cells could support parasensory K+ absorption via amiloride- and benzamil-sensitive electrogenic pathways. Results We determined the molecular and functional expression of candidate cation channels with gene array (GEO GSE6196), RT-PCR, and whole-cell patch clamp. Transcript expression analysis of Reissner's membrane detected no amiloride-sensitive acid-sensing ion channels (ASIC1a, ASIC2a, ASIC2b) nor amiloride-sensitive cyclic-nucleotide gated channels (CNGA1, CNGA2, CNGA4, CNGB3). By contrast, α-,β- and γ-ENaC were all previously reported as present in Reissner's membrane. The selectivity of the benzamil-sensitive cation currents was observed in whole-cell patch clamp recordings under Cl--free conditions where cations were the only permeant species. The currents were carried by Na+ but not K+, and the permeability of Li+ was greater than that of Na+ in Reissner's membrane. Complete replacement of bath Na+ with the inpermeable cation NMDG+ led to the same inward current as with benzamil in a Na+ bath. Conclusions These results are consistent with the amiloride/benzamil-sensitive absorptive flux of Reissner's membrane mediated by a highly Na+-selective channel that has several key characteristics in common with αβγ-ENaC. The amiloride-sensitive pathway therefore absorbs only Na+ in this epithelium and does not provide a parasensory K+ efflux route from scala media. PMID:21284860

  17. DNA Translocation and Cell Electroporation in Micro and Nanofluidic Devices

    NASA Astrophysics Data System (ADS)

    Gupta, Cherry

    The cell membrane is made of a thin (˜ 5nm) lipid bilayer which serves as an effective insulator and diffusion barrier for entities external to the cell from entering the cell. However, for research, diagnostic and therapeutic purposes, there is a need to deliver molecules of interest to the interior of live cells. This is usually accomplished by two methods: (a) carrier mediated delivery which consists of encapsulating the gene/molecule of interest either in an empty viral capsid or in chemically formulated lipoplex or polyplex nanoparticles, or (b) physical methods of delivery, which include the use of different kinds of forces to create reversible pores on the cell membrane (sonoporation, electroporation) or directly inject molecules to the cell cytosol (Gene Gun, microinjection). Of the aforementioned techniques, electroporation is the most commonly used due to it simplicity and ease of use. Our group recently demonstrated a nanochannel based electroporation (NEP) technique, in which two microchannels (˜40 m diameter) are connected by a nanochannel (˜ 200-400 mum diameter) in the center. A cell is positioned in one microchannel such that it makes contact with the nanochannel and transfection agents are placed in the other microchannel. An external electric field applied across the device locally porates the cell where it touches the nancohannel and drives the transfection agents into the cell. Besides maintaining high cell viability and achieving dose control, an important feature of NEP is the delivery of large molecules such as plasmids and quantum dots directly into the cell cytosol. In contrast, delivery of large plasmids during bulk electroporation, wherein cells and genes/plasmids are mixed in a buffered medium and an external electric field is applied across the mixture which electroporates the cells, is via formation of cell membrane bound aggregates which get endocytosed post pulsation. Various mechanisms of DNA transport across the membrane have

  18. Ultra-thin solid oxide fuel cells: Materials and devices

    NASA Astrophysics Data System (ADS)

    Kerman, Kian

    Solid oxide fuel cells are electrochemical energy conversion devices utilizing solid electrolytes transporting O2- that typically operate in the 800 -- 1000 °C temperature range due to the large activation barrier for ionic transport. Reducing electrolyte thickness or increasing ionic conductivity can enable lower temperature operation for both stationary and portable applications. This thesis is focused on the fabrication of free standing ultrathin (<100 nm) oxide membranes of prototypical O 2- conducting electrolytes, namely Y2O3-doped ZrO2 and Gd2O3-doped CeO2. Fabrication of such membranes requires an understanding of thin plate mechanics coupled with controllable thin film deposition processes. Integration of free standing membranes into proof-of-concept fuel cell devices necessitates ideal electrode assemblies as well as creative processing schemes to experimentally test devices in a high temperature dual environment chamber. We present a simple elastic model to determine stable buckling configurations for free standing oxide membranes. This guides the experimental methodology for Y 2O3-doped ZrO2 film processing, which enables tunable internal stress in the films. Using these criteria, we fabricate robust Y2O3-doped ZrO2 membranes on Si and composite polymeric substrates by semiconductor and micro-machining processes, respectively. Fuel cell devices integrating these membranes with metallic electrodes are demonstrated to operate in the 300 -- 500 °C range, exhibiting record performance at such temperatures. A model combining physical transport of electronic carriers in an insulating film and electrochemical aspects of transport is developed to determine the limits of performance enhancement expected via electrolyte thickness reduction. Free standing oxide heterostructures, i.e. electrolyte membrane and oxide electrodes, are demonstrated. Lastly, using Y2O3-doped ZrO2 and Gd2O 3-doped CeO2, novel electrolyte fabrication schemes are explored to develop oxide

  19. Wave-plate structures, power selective optical filter devices, and optical systems using same

    DOEpatents

    Koplow, Jeffrey P.

    2012-07-03

    In an embodiment, an optical filter device includes an input polarizer for selectively transmitting an input signal. The device includes a wave-plate structure positioned to receive the input signal, which includes first and second substantially zero-order, zero-wave plates arranged in series with and oriented at an angle relative to each other. The first and second zero-wave plates are configured to alter a polarization state of the input signal passing in a manner that depends on the power of the input signal. Each zero-wave plate includes an entry and exit wave plate each having a fast axis, with the fast axes oriented substantially perpendicular to each other. Each entry wave plate is oriented relative to a transmission axis of the input polarizer at a respective angle. An output polarizer is positioned to receive a signal output from the wave-plate structure and selectively transmits the signal based on the polarization state.

  20. Selected applications of planar permanent magnet multipoles in FEL insertion device design

    SciTech Connect

    Tatchyn, R.

    1993-08-01

    In recent work, a new class of magnetic multipoles based on planar configurations of permanent magnet (PM) material has been developed. These structures, in particular the quadrupole and sextupole, feature fully open horizontal apertures, and are comparable in effectiveness to conventional iron multipole structures. In this paper results of recent measurements of planar PM quadrupoles and sextupoles are reported and selected applications to FEL insertion device design are considered.

  1. Light induced polaron formation in perovskite solar cell devices

    NASA Astrophysics Data System (ADS)

    Neukirch, Amanda; Nie, Wanyi; Blancon, Jean-Christophe; Appavoo, Kannatassen; Tsai, Hsinhan; Chhowalla, Manish; Alam, Muhammad; Sfeir, Matthew; Katan, Claudine; Even, Jacky; Crochet, Jared; Gupta, Gautum; Mohite, Aditya; Tretiak, Sergei

    The need for a low-cost, clean, and abundant source of energy has generated large amounts of research in solution processed solar cell materials. The lead halide perovskite has rapidly developed as a serious candidate for the active layer of photovoltaic devices. The efficiencies of devices made with this material have increased from 3.5% to over 20% in around 5 years. Despite the remarkable progress associated with perovskite materials, there are still fundamental questions regarding their lack of photo-stability over prolonged solar irradiation that need to be addressed. Recent experiments on photo-degradation under constant illumination have found fast self-healing by resting the device in the dark for less than 1 minute. Density functional theory and symmetry analysis show that localized charge states couple to local structural lattice distortions and methyl ammonium quasistatic configurations. Once translational symmetry is lost, additional bonding configurations become symmetry allowed, triggering localized charges in the vicinity over time under constant illumination, thus seeding the formation of macroscopic charged domains and preventing efficient charge extraction. Here we present an in-depth study of polaron formation and binding energy at the atomistic level.

  2. Selectively bonded polymeric glaucoma drainage device for reliable regulation of intraocular pressure.

    PubMed

    Moon, Seunghwan; Im, Seongmin; An, Jaeyong; Park, Chang Ju; Kim, Hwang Gyun; Park, Sang Woo; Kim, Hyoung Ihl; Lee, Jong-Hyun

    2012-04-01

    A novel glaucoma drainage device (GDD) using a polymeric micro check valve with no reverse flow is presented for the effective regulation of intraocular pressure (IOP). A significant functional improvement was achieved by reducing the possible incidence of hypotony, as the proposed GDD only drains aqueous humor at a certain cracking pressure or higher. The device consists of three biocompatible polymer layers: a top layer (cover), an intermediate layer (membrane), and a bottom layer (base plate with a cannula). All three layers, made of soft polydimethylsiloxane (PDMS), were bonded together to realize the thin GDDs. The bottom layer was selectively coated with chromium (Cr)/gold (Au) to prevent stiction between the valve seat and the valve orifice so that the device could show enhanced reliability in operation and high yield in production. Two types of polymeric devices were fabricated; one was a glaucoma drainage device for humans (GDDH) and the other was a glaucoma drainage device for animals (GDDA). From subsequent in vitro tests, the cracking pressures were 18.33 ± 0.66 mmHg (mean ± standard deviation) for GDDH and 12.42 mmHg for GDDA, both of which were very close to the corresponding normal IOPs. From in vivo tests of GDDA, the IOP of all implanted devices was properly regulated within the target pressure (10-15 mmHg). The experimental results showed that the proposed polymeric GDD has high potential for use in the treatment of glaucoma disease in terms of its repeatability of the cracking pressure and patients' relief from post-operative discomfort. PMID:22094823

  3. Microfluidic device with asymmetric electrodes for cell and reagent delivery

    NASA Astrophysics Data System (ADS)

    Lee, Daniel; Xu, Guolin; Tay, Hong Kiat; Yang, Chun; Ying, Jackie Y.

    2006-12-01

    We present the design and fabrication of a micro-electromechanical system (MEMS) device for cell and particle delivery using a combination of AC electrokinetic fluidic flow and negative dielectrophoresis (DEP) force. An array of interdigitated asymmetric microelectrode pairs were used in the planar device. The electrodes produced a net charge in the surrounding fluid, generating an AC electrokinetic fluidic motion. A non-uniform electric field with low actuation frequency from the microelectrode pairs resulted in a negative DEP force, which was responsible for pushing delivery particles away from sedimentation. The experimental results showed that the flow velocity increased rapidly from 267 μm/min to 394 μm/min when the applied frequency was increased from 10 kHz to 70 kHz for a cell-suspending medium buffer solution with a conductivity of 4.7 μS/cm. A maximum delivery velocity of 801 μm/min was obtained when the buffer conductivity was increased to 47 μS/cm with an actuation frequency of 100 kHz.

  4. Particle compositions with a pre-selected cell internalization mode

    NASA Technical Reports Server (NTRS)

    Decuzzi, Paolo (Inventor); Ferrari, Mauro (Inventor)

    2012-01-01

    A method of formulating a particle composition having a pre-selected cell internalization mode involves selecting a target cell having surface receptors and obtaining particles that have i) surface moieties, that have an affinity for or are capable of binding to the surface receptors of the cell and ii) a preselected shape, where a surface distribution of the surface moieties on the particles and the shape of the particles are effective for the pre-selected cell internalization mode.

  5. Selectivity of Direct Methanol Fuel Cell Membranes

    PubMed Central

    Aricò, Antonino S.; Sebastian, David; Schuster, Michael; Bauer, Bernd; D’Urso, Claudia; Lufrano, Francesco; Baglio, Vincenzo

    2015-01-01

    Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion® were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK), new generation perfluorosulfonic acid (PFSA) systems, and composite zirconium phosphate–PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA) was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC). The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA) was higher than the benchmark Nafion® 115-based MEA (77 mW·cm−2 vs. 64 mW·cm−2). This result was due to a lower methanol crossover (47 mA·cm−2 equivalent current density for s-PEEK vs. 120 mA·cm−2 for Nafion® 115 at 60 °C as recorded at OCV with 2 M methanol) and a suitable area specific resistance (0.15 Ohm cm2 for s-PEEK vs. 0.22 Ohm cm2 for Nafion® 115). PMID:26610582

  6. Manufacturing process and material selection in concurrent collaborative design of MEMS devices

    NASA Astrophysics Data System (ADS)

    Zha, Xuan F.; Du, H.

    2003-09-01

    In this paper we present knowledge of an intensive approach and system for selecting suitable manufacturing processes and materials for microelectromechanical systems (MEMS) devices in concurrent collaborative design environment. In the paper, fundamental issues on MEMS manufacturing process and material selection such as concurrent design framework, manufacturing process and material hierarchies, and selection strategy are first addressed. Then, a fuzzy decision support scheme for a multi-criteria decision-making problem is proposed for estimating, ranking and selecting possible manufacturing processes, materials and their combinations. A Web-based prototype advisory system for the MEMS manufacturing process and material selection, WebMEMS-MASS, is developed based on the client-knowledge server architecture and framework to help the designer find good processes and materials for MEMS devices. The system, as one of the important parts of an advanced simulation and modeling tool for MEMS design, is a concept level process and material selection tool, which can be used as a standalone application or a Java applet via the Web. The running sessions of the system are inter-linked with webpages of tutorials and reference pages to explain the facets, fabrication processes and material choices, and calculations and reasoning in selection are performed using process capability and material property data from a remote Web-based database and interactive knowledge base that can be maintained and updated via the Internet. The use of the developed system including operation scenario, use support, and integration with an MEMS collaborative design system is presented. Finally, an illustration example is provided.

  7. Sorting on the basis of deformability of single cells in a femtosecond laser fabricated optofluidic device

    NASA Astrophysics Data System (ADS)

    Bragheri, F.; Paiè, P.; Yang, T.; Nava, G.; Martınez Vázquez, R.; Di Tano, M.; Veglione, M.; Minzioni, P.; Mondello, C.; Cristiani, I.; Osellame, R.

    2015-03-01

    Optical stretching is a powerful technique for the mechanical phenotyping of single suspended cells that exploits cell deformability as an inherent functional marker. Dual-beam optical trapping and stretching of cells is a recognized tool to investigate their viscoelastic properties. The optical stretcher has the ability to deform cells through optical forces without physical contact or bead attachment. In addition, it is the only method that can be combined with microfluidic delivery, allowing for the serial, high-throughput measurement of the optical deformability and the selective sorting of single specific cells. Femtosecond laser micromachining can fabricate in the same chip both the microfluidic channel and the optical waveguides, producing a monolithic device with a very precise alignment between the components and very low sensitivity to external perturbations. Femtosecond laser irradiation in a fused silica chip followed by chemical etching in hydrofluoric acid has been used to fabricate the microfluidic channels where the cells move by pressure-driven flow. With the same femtosecond laser source two optical waveguides, orthogonal to the microfluidic channel and opposing each other, have been written inside the chip. Here we present an optimized writing process that provides improved wall roughness of the micro-channels allowing high-quality imaging. In addition, we will show results on cell sorting on the basis of mechanical properties in the same device: the different deformability exhibited by metastatic and tumorigenic cells has been exploited to obtain a metastasis-cells enriched sample. The enrichment is verified by exploiting, after cells collection, fluorescence microscopy.

  8. Cancer Cell Analyses at the Single Cell-Level Using Electroactive Microwell Array Device

    PubMed Central

    Kobayashi, Marina; Kim, Soo Hyeon; Nakamura, Hiroko; Kaneda, Shohei; Fujii, Teruo

    2015-01-01

    Circulating tumor cells (CTCs), shed from primary tumors and disseminated into peripheral blood, are playing a major role in metastasis. Even after isolation of CTCs from blood, the target cells are mixed with a population of other cell types. Here, we propose a new method for analyses of cell mixture at the single-cell level using a microfluidic device that contains arrayed electroactive microwells. Dielectrophoretic (DEP) force, induced by the electrodes patterned on the bottom surface of the microwells, allows efficient trapping and stable positioning of single cells for high-throughput biochemical analyses. We demonstrated that various on-chip analyses including immunostaining, viability/apoptosis assay and fluorescent in situ hybridization (FISH) at the single-cell level could be conducted just by applying specific reagents for each assay. Our simple method should greatly help discrimination and analysis of rare cancer cells among a population of blood cells. PMID:26558904

  9. Cancer Cell Analyses at the Single Cell-Level Using Electroactive Microwell Array Device.

    PubMed

    Kobayashi, Marina; Kim, Soo Hyeon; Nakamura, Hiroko; Kaneda, Shohei; Fujii, Teruo

    2015-01-01

    Circulating tumor cells (CTCs), shed from primary tumors and disseminated into peripheral blood, are playing a major role in metastasis. Even after isolation of CTCs from blood, the target cells are mixed with a population of other cell types. Here, we propose a new method for analyses of cell mixture at the single-cell level using a microfluidic device that contains arrayed electroactive microwells. Dielectrophoretic (DEP) force, induced by the electrodes patterned on the bottom surface of the microwells, allows efficient trapping and stable positioning of single cells for high-throughput biochemical analyses. We demonstrated that various on-chip analyses including immunostaining, viability/apoptosis assay and fluorescent in situ hybridization (FISH) at the single-cell level could be conducted just by applying specific reagents for each assay. Our simple method should greatly help discrimination and analysis of rare cancer cells among a population of blood cells. PMID:26558904

  10. Separating Beads and Cells in Multi-channel Microfluidic Devices Using Dielectrophoresis and Laminar Flow

    PubMed Central

    Millet, Larry J.; Park, Kidong; Watkins, Nicholas N.; Hsia, K. Jimmy; Bashir, Rashid

    2011-01-01

    Microfluidic devices have advanced cell studies by providing a dynamic fluidic environment on the scale of the cell for studying, manipulating, sorting and counting cells. However, manipulating the cell within the fluidic domain remains a challenge and requires complicated fabrication protocols for forming valves and electrodes, or demands specialty equipment like optical tweezers. Here, we demonstrate that conventional printed circuit boards (PCB) can be used for the non-contact manipulation of cells by employing dielectrophoresis (DEP) for bead and cell manipulation in laminar flow fields for bioactuation, and for cell and bead separation in multichannel microfluidic devices. First, we present the protocol for assembling the DEP electrodes and microfluidic devices, and preparing the cells for DEP. Then, we characterize the DEP operation with polystyrene beads. Lastly, we show representative results of bead and cell separation in a multichannel microfluidic device. In summary, DEP is an effective method for manipulating particles (beads or cells) within microfluidic devices. PMID:21339720

  11. Device Modeling and Characterization for CIGS Solar Cells

    NASA Astrophysics Data System (ADS)

    Song, Sang Ho

    We studied the way to achieve high efficiency and low cost of CuIn1-xGaxSe2 (CIGS) solar cells. The Fowler-Nordheim (F-N) tunneling currents at low bias decreased the shunt resistances and degraded the fill factor and efficiency. The activation energies of majority traps were directly related with F-N tunneling currents by the energy barriers. Air anneals decreased the efficiency from 7.74% to 5.18% after a 150 °C, 1000 hour anneal. The decrease of shunt resistance due to F-N tunneling and the increase of series resistance degrade the efficiencies of solar cells. Air anneal reduces the free carrier densities by the newly generated Cu interstitial defects (Cui). Mobile Cui defects induce the metastability in CIGS solar cell. Since oxygen atoms are preferred to passivate the Se vacancies thus Cu interstitial defects explains well metastability of CIGS solar cells. Lattice mismatch and misfit stress between layers in CIGS solar cells can explain the particular effects of CIGS solar cells. The misfits of 35.08° rotated (220/204) CIGS to r-plane (102) MoSe2 layers are 1% ˜ -4% lower than other orientation and the lattice constants of two layers in short direction are matched at Ga composition x=0.35. This explains well the preferred orientation and the maximum efficiency of Ga composition effects. Misfit between CIGS and CdS generated the dislocations in CdS layer as the interface traps. Thermionic emission currents due to interface traps limit the open circuit voltage at high Ga composition. The trap densities were calculated by critical thickness and dislocation spacing and the numerical device simulation results were well matched with the experimental results. A metal oxide broken-gap p-n heterojunction is suggested for tunnel junction for multi-junction polycrystalline solar cells and we examined the characteristics of broken-gap tunnel junction by numerical simulation. Ballistic transport mechanism explains well I-V characteristics of broken-gap junction. P

  12. A bioMEMS device for the study of mechanical properties of cells

    NASA Astrophysics Data System (ADS)

    Sanders, Joseph M.; Butt, Logan; Clark, Ashley; Williams, James; Padgen, Michael; Leung, Edison; Keely, Patricia; Condeelis, John S.; Aguirre-Ghiso, Julio; Castracane, James

    2015-03-01

    The tumor microenvironment is a complex system which is not fully understood. New technologies are needed to provide a better understanding of the role of the tumor microenvironment in promoting metastasis. The Nano Intravital Device, or NANIVID, has been developed as an optically transparent, implantable tool to study the tumor microenvironment. Two etched glass substrates are sealed using a thin polymer membrane to create a reservoir with a single outlet. This reservoir is loaded with a custom hydrogel blend that contains selected factors for delivery to the tumor microenvironment. When the device is implanted in the tumor, the hydrogel swells and releases these entrapped molecules, forming a sustained concentration gradient. The NANIVID has previously been successful in manipulating the tumor microenvironment both in vitro as well as in vivo. As metastatic cells intravasate, it has been shown that some are able to do so unscathed and reach their new location, while others are cleaved during the process1. There appears to be a correlation between cell migration and the mechanical properties of these cells. It is believed that these properties can be detected in real time by atomic force microscopy. In this study, metastatic MTLn3 rat mammary cells are seeded onto 1-dimensional microfibers and directed up a stable gradient of growth factor. The NANIVID device is placed behind our AFM tip, where it generates a stable chemotactic gradient of epidermal growth factor. Scanning confocal laser microscopy is also used to monitor movement of the cells over time. This experiment will shed light on the mechanical changes in metastatic cells as they undergo directed migration.

  13. Mode-selective vibrational modulation of charge transport in organic electronic devices

    NASA Astrophysics Data System (ADS)

    Bakulin, Artem A.; Lovrincic, Robert; Yu, Xi; Selig, Oleg; Bakker, Huib J.; Rezus, Yves L. A.; Nayak, Pabitra K.; Fonari, Alexandr; Coropceanu, Veaceslav; Brédas, Jean-Luc; Cahen, David

    2015-08-01

    The soft character of organic materials leads to strong coupling between molecular, nuclear and electronic dynamics. This coupling opens the way to influence charge transport in organic electronic devices by exciting molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such approach has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be modulated by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1,500-1,700 cm-1 region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. This presents a new tool for studying electron-phonon coupling and charge dynamics in (bio)molecular materials.

  14. Manufacturing and wetting low-cost microfluidic cell separation devices

    PubMed Central

    Pawell, Ryan S.; Inglis, David W.; Barber, Tracie J.; Taylor, Robert A.

    2013-01-01

    Deterministic lateral displacement (DLD) is a microfluidic size-based particle separation or filter technology with applications in cell separation and enrichment. Currently, there are no cost-effective manufacturing methods for this promising microfluidic technology. In this fabrication paper, however, we develop a simple, yet robust protocol for thermoplastic DLD devices using regulatory-approved materials and biocompatible methods. The final standalone device allowed for volumetric flow rates of 660 μl min−1 while reducing the manufacturing time to <1 h. Optical profilometry and image analysis were employed to assess manufacturing accuracy and precision; the average replicated post height was 0.48% less than the average post height on the master mold and the average replicated array pitch was 1.1% less than the original design with replicated posts heights of 62.1 ± 5.1 μm (mean ± 6 standard deviations) and replicated array pitches of 35.6 ± 0.31 μm. PMID:24404077

  15. Continuous medium exchange and cell isolation by size-selective passage through slanted micro-obstacles

    NASA Astrophysics Data System (ADS)

    Song, Seungjeong; Choi, Sungyoung

    2014-02-01

    The ability to isolate cells from contaminant particles such as cellular debris and simultaneously exchange the carrier medium of the cells is important for obtaining experimental integrity and optimal cell health. Although microfluidic manipulation techniques have demonstrated their ability to exchange the carrier medium of cells, they still require large device footprint (typically several cm2) that makes it difficult for them to be integrated into microfluidic systems. Here, we report a microfluidic device that overcomes the limitation by utilizing size-selective passage through slanted obstacles. A gap formed underneath the obstacles allows passage of small contaminant particles, while directing larger cells along the periphery of the obstacles. We demonstrated the utility of our device in a small device footprint of 0.05 mm2 for efficient exchange of the carrier medium of mammalian cells, and achieved isolation of the cells from 1 µm diameter contaminant particles in 4.4 ms with an enrichment factor of 834, an isolation purity of ≈70%, and a throughput of 465 cells min-1.

  16. Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices

    PubMed Central

    Zebda, A.; Cosnier, S.; Alcaraz, J.-P.; Holzinger, M.; Le Goff, A.; Gondran, C.; Boucher, F.; Giroud, F.; Gorgy, K.; Lamraoui, H.; Cinquin, P.

    2013-01-01

    We describe the first implanted glucose biofuel cell (GBFC) that is capable of generating sufficient power from a mammal's body fluids to act as the sole power source for electronic devices. This GBFC is based on carbon nanotube/enzyme electrodes, which utilize glucose oxidase for glucose oxidation and laccase for dioxygen reduction. The GBFC, implanted in the abdominal cavity of a rat, produces an average open-circuit voltage of 0.57 V. This implanted GBFC delivered a power output of 38.7 μW, which corresponded to a power density of 193.5 μW cm−2 and a volumetric power of 161 μW mL−1. We demonstrate that one single implanted enzymatic GBFC can power a light-emitting diode (LED), or a digital thermometer. In addition, no signs of rejection or inflammation were observed after 110 days implantation in the rat. PMID:23519113

  17. Experimenting with microbial fuel cells for powering implanted biomedical devices.

    PubMed

    Roxby, Daniel N; Nham Tran; Pak-Lam Yu; Nguyen, Hung T

    2015-08-01

    Microbial Fuel Cell (MFC) technology has the ability to directly convert sugar into electricity by using bacteria. Such a technology could be useful for powering implanted biomedical devices that require a surgery to replace their batteries every couple of years. In steps towards this, parameters such as electrode configuration, inoculation size, stirring of the MFC and single versus dual chamber reactor configuration were tested for their effect on MFC power output. Results indicate that a Top-Bottom electrode configuration, stirring and larger amounts of bacteria in single chamber MFCs, and smaller amounts of bacteria in dual chamber MFCs give increased power outputs. Finally, overall dual chamber MFCs give several fold larger MFC power outputs. PMID:26736845

  18. Single glucose biofuel cells implanted in rats power electronic devices.

    PubMed

    Zebda, A; Cosnier, S; Alcaraz, J-P; Holzinger, M; Le Goff, A; Gondran, C; Boucher, F; Giroud, F; Gorgy, K; Lamraoui, H; Cinquin, P

    2013-01-01

    We describe the first implanted glucose biofuel cell (GBFC) that is capable of generating sufficient power from a mammal's body fluids to act as the sole power source for electronic devices. This GBFC is based on carbon nanotube/enzyme electrodes, which utilize glucose oxidase for glucose oxidation and laccase for dioxygen reduction. The GBFC, implanted in the abdominal cavity of a rat, produces an average open-circuit voltage of 0.57 V. This implanted GBFC delivered a power output of 38.7 μW, which corresponded to a power density of 193.5 μW cm(-2) and a volumetric power of 161 μW mL(-1). We demonstrate that one single implanted enzymatic GBFC can power a light-emitting diode (LED), or a digital thermometer. In addition, no signs of rejection or inflammation were observed after 110 days implantation in the rat. PMID:23519113

  19. Modularity of select riboswitch expression platforms enables facile engineering of novel genetic regulatory devices

    PubMed Central

    Ceres, Pablo; Garst, Andrew D.; Marcano-Velázquez, Joan G.; Batey, Robert T.

    2013-01-01

    RNA-based biosensors and regulatory devices have received significant attention for their potential in a broad array of synthetic biology applications. One of the primary difficulties in engineering these molecules is the lack of facile methods to link sensory modules, or aptamers, to readout domains. Such efforts typically require extensive screening or selection of sequences that facilitate interdomain communication. Bacteria have evolved a widespread form of gene regulation known as riboswitches that perform this task with sufficient fidelity to control expression of biosynthetic and transport proteins essential for normal cellular homeostasis. In this work, we demonstrate that select riboswitch readout domains, called expression platforms, are modular in that they can host a variety of natural and synthetic aptamers to create novel chimeric RNAs that regulate transcription both in vitro and in vivo. Importantly, this technique does not require selection of device-specific “communication modules” required to transmit ligand binding to the regulatory domain, enabling rapid engineering of novel functional RNAs. PMID:23654267

  20. Modularity of select riboswitch expression platforms enables facile engineering of novel genetic regulatory devices.

    PubMed

    Ceres, Pablo; Garst, Andrew D; Marcano-Velázquez, Joan G; Batey, Robert T

    2013-08-16

    RNA-based biosensors and regulatory devices have received significant attention for their potential in a broad array of synthetic biology applications. One of the primary difficulties in engineering these molecules is the lack of facile methods to link sensory modules, or aptamers, to readout domains. Such efforts typically require extensive screening or selection of sequences that facilitate interdomain communication. Bacteria have evolved a widespread form of gene regulation known as riboswitches that perform this task with sufficient fidelity to control expression of biosynthetic and transport proteins essential for normal cellular homeostasis. In this work, we demonstrate that select riboswitch readout domains, called expression platforms, are modular in that they can host a variety of natural and synthetic aptamers to create novel chimeric RNAs that regulate transcription both in vitro and in vivo. Importantly, this technique does not require selection of device-specific "communication modules" required to transmit ligand binding to the regulatory domain, enabling rapid engineering of novel functional RNAs. PMID:23654267

  1. Purging peripheral blood progenitor cell grafts from lymphoma cells: quantitative comparison of immunomagnetic CD34+ selection systems.

    PubMed

    Paulus, U; Dreger, P; Viehmann, K; von Neuhoff, N; Schmitz, N

    1997-01-01

    Autologous peripheral blood progenitor cell (PBPC) transplantation is increasingly being used for treatment of indolent lymphomas. Since involvement of bone marrow and peripheral blood is frequent and methods to reduce the lymphoma cell load of PBPC grafts are thus highly desirable, we have studied purging of PBPC comparing two immunomagnetic CD34+ selection systems (VarioMACS, Miltenyi Biotech; Bergisch Gladbach, Germany, and Isolex50 System, Baxter; Irvine, CA). Samples of freshly collected mobilized PBPCs were contaminated with BALM-3 or KARPAS422 lymphoma cells that had been labeled with the fluorescent DNA stain Hoechst 33342. The mixture was subjected to separation with the two devices and the resulting "CD34+" fractions were screened for lymphoma cells by limiting dilution using fluorescence microscopy and by polymerase chain reaction amplification of t(14;18) or CDRIII-rearrangements. Both devices yielded comparable purities (MACS 97% [87%-99%]; Isolex 97% [84%-99%]) and recoveries of CD34+ cells (MACS 56% [30%-81%]; Isolex 45% [24%-63%]). The overall depletion of lymphoma cells was 3.9 log (2.6-5.9), however, residual contaminating cells were seen in every single experiment. The purging efficacy was dependent on the type of contaminating lymphoma cell (BALM-3: 4.4 log [3.7-4.8]; KARPAS422: 3.2 log [2.6-4.2]; p = 0.018), whereas the type of selection system used or the percentage of CD34+ cells in the starting material had no influence. We conclude that excellent purification of CD34+ cells leading to a vigorous depletion of lymphoma cells can be achieved with both CD34+ selection systems investigated. However, the efficacy of purging may greatly differ between individual lymphomas, and complete eradication of contaminating cells from PBPC grafts may rarely be achieved with CD34+ selection alone. PMID:9253114

  2. Gene transfer and protein dynamics in stem cells using single cell electroporation in a microfluidic device.

    PubMed

    Valero, A; Post, J N; van Nieuwkasteele, J W; Ter Braak, P M; Kruijer, W; van den Berg, A

    2008-01-01

    There is great interest in genetic modification of bone marrow-derived mesenchymal stem cells (MSC), not only for research purposes but also for use in (autologous) patient-derived-patient-used transplantations. A major drawback of bulk methods for genetic modifications of (stem) cells, like bulk-electroporation, is its limited yield of DNA transfection (typically then 10%). This is even more limited when cells are present at very low numbers, as is the case for stem cells. Here we present an alternative technology to transfect cells with high efficiency (>75%), based on single cell electroporation in a microfluidic device. In a first experiment we show that we can successfully transport propidium iodide (PI) into single mouse myoblastic C2C12 cells. Subsequently, we show the use of this microfluidic device to perform successful electroporation of single mouse myoblastic C2C12 cells and single human MSC with vector DNA encoding a green fluorescent-erk1 fusion protein (EGFP-ERK1 (MAPK3)). Finally, we performed electroporation in combination with live imaging of protein expression and dynamics in response to extracellular stimuli, by fibroblast growth factor (FGF-2). We observed nuclear translocation of EGFP-ERK1 in both cell types within 15 min after FGF-2 stimulation. Due to the successful and promising results, we predict that microfluidic devices can be used for highly efficient small-scale 'genetic modification' of cells, and biological experimentation, offering possibilities to study cellular processes at the single cell level. Future applications might be small-scale production of cells for therapeutic application under controlled conditions. PMID:18094762

  3. An integrated microfluidic device for rapid cell lysis and DNA purification of epithelial cell samples.

    PubMed

    Ha, Seung-Mo; Cho, Woong; Ahn, Yoomin; Hwang, Seung Yong

    2011-05-01

    In this paper, we describe the design and fabrication of a microfluidic device for cell lysis and DNA purification, and the results of device tests using a real sample of buccal cells. Cell lysis was thermally executed for two minutes at 80 degrees C in a serpentine type microreactor (20 microL) using an Au microheater with a microsensor. The DNA was then mixed with other residual products and purified by a new filtration process involving micropillars and 50-80 microm microbeads. The entire process of sample loading, cell lysis, DNA purification, and sample extraction was successfully completed in the microchip within five minutes. Sample preparation within the microchip was verified by performing a SY158 gene PCR analysis and gel electrophoresis on the products obtained from the chip. The new purification method enhanced DNA purity from 0.93 to 1.62 after purification. PMID:21780436

  4. Optimization of Organic Solar Cells: Materials, Devices and Interfaces

    NASA Astrophysics Data System (ADS)

    Zhou, Nanjia

    Due to the increasing demand for sustainable clean energy, photovoltaic cells have received intensified attention in the past decade in both academia and industry. Among the types of cells, organic photovoltaic (OPV) cells offer promise as alternatives to conventional inorganic-type solar cells owning to several unique advantages such as low material and fabrication cost. To maximize power conversion efficiencies (PCEs), extensive research efforts focus on frontier molecular orbital (FMO) energy engineering of photoactive materials. Towards this objective, a series of novel donor polymers incorporating a new building block, bithiophene imide (BTI) group are developed, with narrow bandgap and low-lying highest occupied molecular orbital (HOMO) energies to increase short circuit current density, Jsc, and open circuit voltage, Voc.. Compared to other PV technologies, OPVs often suffer from large internal recombination loss and relatively low fill factors (FFs) <70%. Through a combination of materials design and device architecture optimization strategies to improve both microscopic and macroscopic thin film morphology, OPVs with PCEs up to 8.7% and unprecedented FF approaching 80% are obtained. Such high FF are close to those typically achieved in amorphous Si solar cells. Systematic variations of polymer chemical structures lead to understanding of structure-property relationships between polymer geometry and the resulting blend film morphology characteristics which are crucial for achieving high local mobilities and long carrier lifetimes. Instead of using fullerene as the acceptors, an alternative type of OPV is developed employing a high electron mobility polymer, P(NDI2OD-T2), as the acceptor. To improve the all-polymer blend film morphology, the influence of basic solvent properties such as solvent boiling point and solubility on polymer phase separation and charge transport properties is investigated, yielding to a high PCE of 2.7% for all-polymer solar cells

  5. Digital Cell Counting Device Integrated with a Single-Cell Array

    PubMed Central

    Saeki, Tatsuya; Hosokawa, Masahito; Lim, Tae-kyu; Harada, Manabu; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2014-01-01

    In this paper, we present a novel cell counting method accomplished using a single-cell array fabricated on an image sensor, complementary metal oxide semiconductor sensor. The single-cell array was constructed using a microcavity array, which can trap up to 7,500 single cells on microcavities periodically arranged on a plane metallic substrate via the application of a negative pressure. The proposed method for cell counting is based on shadow imaging, which uses a light diffraction pattern generated by the microcavity array and trapped cells. Under illumination, the cell-occupied microcavities are visualized as shadow patterns in an image recorded by the complementary metal oxide semiconductor sensor due to light attenuation. The cell count is determined by enumerating the uniform shadow patterns created from one-on-one relationships with single cells trapped on the microcavities in digital format. In the experiment, all cell counting processes including entrapment of non-labeled HeLa cells from suspensions on the array and image acquisition of a wide-field-of-view of 30 mm2 in 1/60 seconds were implemented in a single integrated device. As a result, the results from the digital cell counting had a linear relationship with those obtained from microscopic observation (r2 = 0.99). This platform could be used at extremely low cell concentrations, i.e., 25–15,000 cells/mL. Our proposed system provides a simple and rapid miniaturized cell counting device for routine laboratory use. PMID:24551208

  6. Separation of Cells using a Fluidic MEMS Device and a Quantitative Analysis of Cell Movement

    NASA Astrophysics Data System (ADS)

    Isoda, Takaaki; Ishida, Yasuaki

    Fluidic micro electro mechanical system (fluidic MEMS) devices, composed of a micro pump, mixer, valve, reactor, sensor and an electric circuit on a chip, have been widely applied in biotechnology and medical analyses. This study describes the design and fabrication of a fluidic MEMS device that can separate living leukocyte cells from a single droplet of blood (< 1μl). The chip was constructed from two substrate materials sandwiched together to form a gap with an upper hydrophilic (glass) surface and a lower hydrophobic (acrylic resin) surface. A blood sample was flowed into the gap (40μm) between the two substrates driven by the difference in surface tension of the two materials. Leukocyte cells were left adhered to the lower hydrophobic surface, whereas red corpuscles flowed toward the exit of the fluidic MEMS device. The separation rate of the red corpuscles has been achieved to 91 ± 9% in a unit area of 0.1 mm2. Further, the change in an area of a living leukocyte cell separated in the chip, was quantitatively analyzed. This study proposes a method for separating and measuring living cells in a fluidic MEMS device.

  7. Nylon-3 Polymers that Enable Selective Culture of Endothelial Cells

    PubMed Central

    Liu, Runhui; Chen, Xinyu; Gellman, Samuel H.; Masters, Kristyn S.

    2014-01-01

    Substrates that selectively encourage the growth of specific cell types are valuable for the engineering of complex tissues. Some cell-selective peptides have been identified from extracellular matrix proteins; these peptides have proven useful for biomaterials-based approaches to tissue repair or regeneration. However, there are very few examples of synthetic materials that display selectivity in supporting cell growth. We describe nylon-3 polymers that support in vitro culture of endothelial cells, but do not support the culture of smooth muscle cells or fibroblasts. These materials may be promising for vascular biomaterials applications. PMID:24156536

  8. Modeling Selective Elimination of Quiescent Cancer Cells from Bone Marrow

    PubMed Central

    Cavnar, Stephen P.; Rickelmann, Andrew D.; Meguiar, Kaille F.; Xiao, Annie; Dosch, Joseph; Leung, Brendan M.; Cai Lesher-Perez, Sasha; Chitta, Shashank; Luker, Kathryn E.; Takayama, Shuichi; Luker, Gary D.

    2015-01-01

    Patients with many types of malignancy commonly harbor quiescent disseminated tumor cells in bone marrow. These cells frequently resist chemotherapy and may persist for years before proliferating as recurrent metastases. To test for compounds that eliminate quiescent cancer cells, we established a new 384-well 3D spheroid model in which small numbers of cancer cells reversibly arrest in G1/G0 phase of the cell cycle when cultured with bone marrow stromal cells. Using dual-color bioluminescence imaging to selectively quantify viability of cancer and stromal cells in the same spheroid, we identified single compounds and combination treatments that preferentially eliminated quiescent breast cancer cells but not stromal cells. A treatment combination effective against malignant cells in spheroids also eliminated breast cancer cells from bone marrow in a mouse xenograft model. This research establishes a novel screening platform for therapies that selectively target quiescent tumor cells, facilitating identification of new drugs to prevent recurrent cancer. PMID:26408255

  9. NIR-Selective electrochromic heteromaterial frameworks: a platform to understand mesoscale transport phenomena in solid-state electrochemical devices

    SciTech Connect

    Williams, TE; Chang, CM; Rosen, EL; Garcia, G; Runnerstrom, EL; Williams, BL; Koo, B; Buonsanti, R; Milliron, DJ; Helms, BA

    2014-01-01

    We report here the first solid-state, NIR-selective electrochromic devices. Critical to device performance is the arrangement of nanocrystal-derived electrodes into heteromaterial frameworks, where hierarchically porous ITO nanocrystal active layers are infiltrated by an ion-conducting polymer electrolyte with mesoscale periodicity. Enhanced coloration efficiency and transport are realized over unarchitectured electrodes in devices, paving the way towards new smart windows technologies.

  10. Personalized chemotherapy profiling using cancer cell lines from selectable mice

    PubMed Central

    Kamiyama, Hirohiko; Rauenzahn, Sherri; Shim, Joong Sup; Karikari, Collins A.; Feldmann, Georg; Hua, Li; Kamiyama, Mihoko; Schuler, F. William; Lin, Ming-Tseh; Beaty, Robert M.; Karanam, Balasubramanyam; Liang, Hong; Mullendore, Michael E.; Mo, Guanglan; Hidalgo, Manuel; Jaffee, Elizabeth; Hruban, Ralph H.; Jinnah, H. A.; Roden, Richard B. S.; Jimeno, Antonio; Liu, Jun O.; Maitra, Anirban; Eshleman, James R.

    2013-01-01

    Purpose High-throughput chemosensitivity testing of low-passage cancer cell lines can be used to prioritize agents for personalized chemotherapy. However, generating cell lines from primary cancers is difficult, because contaminating stromal cells overgrow the malignant cells. Experimental Design We produced a series of hypoxanthine phosphoribosyl transferase (hprt)-null immunodeficient mice. During growth of human cancers in these mice, hprt-null murine stromal cells replace their human counterparts. Results Pancreatic and ovarian cancers explanted from these mice were grown in selection media to produce pure human cancer cell lines. We screened one cell line with a 3,131-drug panel and identified seventy-seven FDA approved drugs with activity, including two novel drugs to which the cell line was uniquely sensitive. Xenografts of this carcinoma were selectively responsive to both drugs. Conclusion Chemotherapy can be personalized using patient-specific cell lines derived in biochemically selectable mice. PMID:23340293

  11. Doped Interlayers for Improved Selectivity in Bulk Herterojunction Organic Photovoltaic Devices

    DOE PAGESBeta

    Mauger, Scott A.; Glasser, Melodie P.; Tremolet de Villers, Bertrand J.; Duong, Vincent V.; Ayzner, Alexander L.; Olson, Dana C.

    2016-01-21

    Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is less selective for holes in inverted-architecture organic photovoltaic (OPV) than it is in a conventional-architecture OPV device due differences between the interfacial-PSS concentration at the top and bottom of the PEDOT:PSS layer. In this work, thin layers of polysulfonic acids are inserted between the P3HT:ICBA bulk heterojunction (BHJ) active layer and PEDOT:PSS to create a higher concentration of acid at this interface and, therefore, mimic the distribution of materials present in a conventional device. Upon thermal annealing, this acid layer oxidizes P3HT, creating a thin p-type interlayer of P3HT+/acid- on top of the BHJ. Using x-raymore » absorption spectroscopy, Kelvin probe and ellipsometry measurements, this P3HT+/acid- layer is shown to be insoluble in water, indicating it remains intact during the subsequent deposition of PEDOT:PSS. Current density - voltage measurements show this doped interlayer reduces injected dark current while increasing both open-circuit voltage and fill factor through the creation of a more hole selective BHJ-PEDOT:PSS interface.« less

  12. Study of Chemotaxis and Cell-Cell Interactions in Cancer with Microfluidic Devices.

    PubMed

    Sai, Jiqing; Rogers, Matthew; Hockemeyer, Kathryn; Wikswo, John P; Richmond, Ann

    2016-01-01

    Microfluidic devices have very broad applications in biological assays from simple chemotaxis assays to much more complicated 3D bioreactors. In this chapter, we describe the design and methods for performing chemotaxis assays using simple microfluidic chemotaxis chambers. With these devices, using real-time video microscopy we can examine the chemotactic responses of neutrophil-like cells under conditions of varying gradient steepness or flow rate and then utilize software programs to calculate the speed and angles of cell migration as gradient steepness and flow are varied. Considering the shearing force generated on the cells by the constant flow that is required to produce and maintain a stable gradient, the trajectories of the cell migration will reflect the net result of both shear force generated by flow and the chemotactic force resulting from the chemokine gradient. Moreover, the effects of mutations in chemokine receptors or the presence of inhibitors of intracellular signals required for gradient sensing can be evaluated in real time. We also describe a method to monitor intracellular signals required for cells to alter cell polarity in response to an abrupt switch in gradient direction. Lastly, we demonstrate an in vitro method for studying the interactions of human cancer cells with human endothelial cells, fibroblasts, and leukocytes, as well as environmental chemokines and cytokines, using 3D microbioreactors that mimic the in vivo microenvironment. PMID:26921940

  13. Optofluidic Cell Selection from Complex Microbial Communities for Single-Genome Analysis

    PubMed Central

    Landry, Zachary C.; Giovanonni, Stephen J.; Quake, Stephen R.; Blainey, Paul C.

    2013-01-01

    Genetic analysis of single cells is emerging as a powerful approach for studies of heterogeneous cell populations. Indeed, the notion of homogeneous cell populations is receding as approaches to resolve genetic and phenotypic variation between single cells are applied throughout the life sciences. A key step in single-cell genomic analysis today is the physical isolation of individual cells from heterogeneous populations, particularly microbial populations, which often exhibit high diversity. Here, we detail the construction and use of instrumentation for optical trapping inside microfluidic devices to select individual cells for analysis by methods including nucleic acid sequencing. This approach has unique advantages for analyses of rare community members, cells with irregular morphologies, small quantity samples, and studies that employ advanced optical microscopy. PMID:24060116

  14. Probing the mechanical properties of brain cancer cells using a microfluidic cell squeezer device

    PubMed Central

    Khan, Z. S.; Vanapalli, S. A.

    2013-01-01

    Despite being invasive within surrounding brain tissues and the central nervous system, little is known about the mechanical properties of brain tumor cells in comparison with benign cells. Here, we present the first measurements of the peak pressure drop due to the passage of benign and cancerous brain cells through confined microchannels in a “microfluidic cell squeezer” device, as well as the elongation, speed, and entry time of the cells in confined channels. We find that cancerous and benign brain cells cannot be differentiated based on speeds or elongation. We have found that the entry time into a narrow constriction is a more sensitive indicator of the differences between malignant and healthy glial cells than pressure drops. Importantly, we also find that brain tumor cells take a longer time to squeeze through a constriction and migrate more slowly than benign cells in two dimensional wound healing assays. Based on these observations, we arrive at the surprising conclusion that the prevailing notion of extraneural cancer cells being more mechanically compliant than benign cells may not apply to brain cancer cells. PMID:24403988

  15. Bring-Your-Own-Device: Turning Cell Phones into Forces for Good

    ERIC Educational Resources Information Center

    Imazeki, Jennifer

    2014-01-01

    Over the last few years, classroom response systems (or "clickers") have become increasingly common. Although most systems require students to use a standalone handheld device, bring-your-own-device (BYOD) systems allow students to use devices they already own (e.g., a cell phone, tablet or laptop) to submit responses via text message or…

  16. Engineered three-dimensional microfluidic device for interrogating cell-cell interactions in the tumor microenvironment

    PubMed Central

    Hockemeyer, K.; Janetopoulos, C.; Terekhov, A.; Hofmeister, W.; Vilgelm, A.; Costa, Lino; Wikswo, J. P.; Richmond, A.

    2014-01-01

    Stromal cells in the tumor microenvironment play a key role in the metastatic properties of a tumor. It is recognized that cancer-associated fibroblasts (CAFs) and endothelial cells secrete factors capable of influencing tumor cell migration into the blood or lymphatic vessels. We developed a microfluidic device that can be used to image the interactions between stromal cells and tumor cell spheroids in a three dimensional (3D) microenvironment while enabling external control of interstitial flow at an interface, which supports endothelial cells. The apparatus couples a 200-μm channel with a semicircular well to mimic the interface of a blood vessel with the stroma, and the design allows for visualization of the interactions of interstitial flow, endothelial cells, leukocytes, and fibroblasts with the tumor cells. We observed that normal tissue-associated fibroblasts (NAFs) contribute to the “single file” pattern of migration of tumor cells from the spheroid in the 3D microenvironment. In contrast, CAFs induce a rapid dispersion of tumor cells out of the spheroid with migration into the 3D matrix. Moreover, treatment of tumor spheroid cultures with the chemokine CXCL12 mimics the effect of the CAFs, resulting in similar patterns of dispersal of the tumor cells from the spheroid. Conversely, addition of CXCL12 to co-cultures of NAFs with tumor spheroids did not mimic the effects observed with CAF co-cultures, suggesting that NAFs produce factors that stabilize the tumor spheroids to reduce their migration in response to CXCL12. PMID:25379090

  17. Engineered three-dimensional microfluidic device for interrogating cell-cell interactions in the tumor microenvironment.

    PubMed

    Hockemeyer, K; Janetopoulos, C; Terekhov, A; Hofmeister, W; Vilgelm, A; Costa, Lino; Wikswo, J P; Richmond, A

    2014-07-01

    Stromal cells in the tumor microenvironment play a key role in the metastatic properties of a tumor. It is recognized that cancer-associated fibroblasts (CAFs) and endothelial cells secrete factors capable of influencing tumor cell migration into the blood or lymphatic vessels. We developed a microfluidic device that can be used to image the interactions between stromal cells and tumor cell spheroids in a three dimensional (3D) microenvironment while enabling external control of interstitial flow at an interface, which supports endothelial cells. The apparatus couples a 200-μm channel with a semicircular well to mimic the interface of a blood vessel with the stroma, and the design allows for visualization of the interactions of interstitial flow, endothelial cells, leukocytes, and fibroblasts with the tumor cells. We observed that normal tissue-associated fibroblasts (NAFs) contribute to the "single file" pattern of migration of tumor cells from the spheroid in the 3D microenvironment. In contrast, CAFs induce a rapid dispersion of tumor cells out of the spheroid with migration into the 3D matrix. Moreover, treatment of tumor spheroid cultures with the chemokine CXCL12 mimics the effect of the CAFs, resulting in similar patterns of dispersal of the tumor cells from the spheroid. Conversely, addition of CXCL12 to co-cultures of NAFs with tumor spheroids did not mimic the effects observed with CAF co-cultures, suggesting that NAFs produce factors that stabilize the tumor spheroids to reduce their migration in response to CXCL12. PMID:25379090

  18. Microfluidic device with chemical gradient for single-cell cytotoxicity assays.

    PubMed

    Hosokawa, Masahito; Hayashi, Takuma; Mori, Tetsushi; Yoshino, Tomoko; Nakasono, Satoshi; Matsunaga, Tadashi

    2011-05-15

    Here, we report the fabrication of a chemical gradient microfluidic device for single-cell cytotoxicity assays. This device consists of a microfluidic chemical gradient generator and a microcavity array that enables entrapment of cells with high efficiency at 88 ± 6% of the loaded cells. A 2-fold logarithmic chemical gradient generator that is capable of generating a serial 2-fold gradient was designed and then integrated with the microcavity array. High density single-cell entrapment was demonstrated in the device without cell damage, which was performed in 30 s. Finally, we validated the feasibility of this device to perform cytotoxicity assays by exposing cells to potassium cyanide (0-100 μM KCN). The device captured images of 4000 single cells affected by 6 concentrations of KCN and determined cell viability by counting the effected cells. Image scanning of the microcavity array was completed within 10 min using a 10× objective lens and a motorized stage. Aligning cells on the microcavity array eases cell counting, observation, imaging, and evaluation of singular cells. Thus, this platform was able to determine the cytotoxicity of chemicals at a single-cell level, as well as trace the cytotoxicity over time. This device and method will be useful for cytotoxicity analysis and basic biomedical research. PMID:21526753

  19. Nondestructive method for detecting defects in photodetector and solar cell devices

    DOEpatents

    Not Available

    The invention described herein is a method for locating semiconductor device defects and for measuring the internal resistance of such devices by making use of the intrinsic distributed resistance nature of the devices. The method provides for forward-biasing a solar cell or other device while it is scanning with an optical spot. The forward-biasing is achieved with either an illuminator light source or an external current source.

  20. Nondestructive method for detecting defects in photodetector and solar cell devices

    DOEpatents

    Sawyer, David E.

    1981-01-01

    The invention described herein is a method for locating semiconductor device defects and for measuring the internal resistance of such devices by making use of the intrinsic distributed resistance nature of the devices. The method provides for forward-biasing a solar cell or other device while it is scanning with an optical spot. The forward-biasing is achieved with either an illuminator light source or an external current source.

  1. The Use of Application Blanks as Pre-Screening Devices in Employee Selection: An Assessment of Practices in Public Schools.

    ERIC Educational Resources Information Center

    Bredeson, Paul V.

    1988-01-01

    Reports on a study of the use of employment application blanks as prescreening devices in public school employee selection. Findings suggest two major areas for further research. The first relates to legal compliance with Equal Opportunity Employment guidelines. The second concerns information relevancy to personnel selection. (JAM)

  2. Uniaxial cell stretching device for live-cell imaging of mechanosensitive cellular functions

    NASA Astrophysics Data System (ADS)

    Shao, Yue; Tan, Xinyu; Novitski, Roman; Muqaddam, Mishaal; List, Paul; Williamson, Laura; Fu, Jianping; Liu, Allen P.

    2013-11-01

    External mechanical stretch plays an important role in regulating cellular behaviors through intracellular mechanosensitive and mechanotransductive machineries such as the F-actin cytoskeleton (CSK) structures and focal adhesions (FAs) anchoring the F-actin CSK to the extracellular environment. Studying the mechanoresponsive behaviors of the F-actin CSK and FAs in response to cell stretch has great importance for further understanding mechanotransduction and mechanobiology. In this work, we developed a novel cell stretching device combining dynamic directional cell stretch with in situ subcellular live-cell imaging. Using a cam and follower mechanism and applying a standard mathematical model for cam design, we generated different dynamic stretch outputs. By examining stretch-mediated FA dynamics under step-function static stretch and the realignment of cell morphology and the F-actin CSK under cyclic stretch, we demonstrated successful applications of our cell stretching device for mechanobiology studies where external stretch plays an important role in regulating subcellular molecular dynamics and cellular phenotypes.

  3. Uniaxial cell stretching device for live-cell imaging of mechanosensitive cellular functions

    PubMed Central

    Shao, Yue; Tan, Xinyu; Novitski, Roman; Muqaddam, Mishaal; List, Paul; Williamson, Laura; Fu, Jianping; Liu, Allen P.

    2013-01-01

    External mechanical stretch plays an important role in regulating cellular behaviors through intracellular mechanosensitive and mechanotransductive machineries such as the F-actin cytoskeleton (CSK) structures and focal adhesions (FAs) anchoring the F-actin CSK to the extracellular environment. Studying the mechanoresponsive behaviors of the F-actin CSK and FAs in response to cell stretch has great importance for further understanding mechanotransduction and mechanobiology. In this work, we developed a novel cell stretching device combining dynamic directional cell stretch with in situ subcellular live-cell imaging. Using a cam and follower mechanism and applying a standard mathematical model for cam design, we generated different dynamic stretch outputs. By examining stretch-mediated FA dynamics under step-function static stretch and the realignment of cell morphology and the F-actin CSK under cyclic stretch, we demonstrated successful applications of our cell stretching device for mechanobiology studies where external stretch plays an important role in regulating subcellular molecular dynamics and cellular phenotypes. PMID:24289415

  4. Interdigited dual-cell position-sensitive device

    NASA Astrophysics Data System (ADS)

    Shie, Jin-Shown

    1992-10-01

    A special one-dimensional position-sensitive device for detection of a light-spot location is designed and fabricated. The device is composed of a pair of photodiodes with complementarily interdigited comb configuration. The width of comb teeth is characterized by a designated distributive function, hence, the coordination information of a light spot falling upon the device can be determined by photo-induced currents of the two diodes. This device is useful as the position sensing element in camera-autofocus application.

  5. Targeting Mitochondria with Avocatin B Induces Selective Leukemia Cell Death.

    PubMed

    Lee, Eric A; Angka, Leonard; Rota, Sarah-Grace; Hanlon, Thomas; Mitchell, Andrew; Hurren, Rose; Wang, Xiao Ming; Gronda, Marcela; Boyaci, Ezel; Bojko, Barbara; Minden, Mark; Sriskanthadevan, Shrivani; Datti, Alessandro; Wrana, Jeffery L; Edginton, Andrea; Pawliszyn, Janusz; Joseph, Jamie W; Quadrilatero, Joe; Schimmer, Aaron D; Spagnuolo, Paul A

    2015-06-15

    Treatment regimens for acute myeloid leukemia (AML) continue to offer weak clinical outcomes. Through a high-throughput cell-based screen, we identified avocatin B, a lipid derived from avocado fruit, as a novel compound with cytotoxic activity in AML. Avocatin B reduced human primary AML cell viability without effect on normal peripheral blood stem cells. Functional stem cell assays demonstrated selectivity toward AML progenitor and stem cells without effects on normal hematopoietic stem cells. Mechanistic investigations indicated that cytotoxicity relied on mitochondrial localization, as cells lacking functional mitochondria or CPT1, the enzyme that facilitates mitochondria lipid transport, were insensitive to avocatin B. Furthermore, avocatin B inhibited fatty acid oxidation and decreased NADPH levels, resulting in ROS-dependent leukemia cell death characterized by the release of mitochondrial proteins, apoptosis-inducing factor, and cytochrome c. This study reveals a novel strategy for selective leukemia cell eradication based on a specific difference in mitochondrial function. PMID:26077472

  6. Ion-Selective Detection with Glass Nanopipette for Living Cells

    NASA Astrophysics Data System (ADS)

    Takami, T.; Son, J. W.; Kang, E. J.; Deng, X. L.; Kawai, T.; Lee, S.-W.; Park, B. H.

    2013-05-01

    We developed a method to probe local ion concentration with glass nanopipette in which poly(vinyl chloride) membrane containing ionophore for separate ion detection is prepared. Here we demonstrate how ion-selective detections are available for living cells such as HeLa cell, rat vascular myocyte, and neuron cell.

  7. RAPID COMMUNICATION: Selective epitaxial fabrication of TBCCO microstrip devices and structures

    NASA Astrophysics Data System (ADS)

    Stevens, C. J.; Grovenor, C. R. M.; Edwards, D. J.

    2000-12-01

    Tl-based high-temperature superconductors have attractive properties for applications in a range of high-frequency analogue and digital technologies. While the patterning of Tl-containing superconductors is a vital part of thin-film device preparation, the high degree of toxicity of Tl makes conventional patterning of Tl-containing films, which produce some toxic waste products, unattractive. Patterning of a Tl-free precursor before thallination is possible; but the precursor films can react with aqueous solutions, resulting in degraded superconductor properties. In order to achieve a high-resolution pattern with no chemical processing of the Tl-containing films and no exposure of precursor material to water we have successfully developed a selective growth technique based on patterning a buried SiN layer.

  8. Mode-selective vibrational modulation of charge transport in organic electronic devices

    PubMed Central

    Bakulin, Artem A.; Lovrincic, Robert; Yu, Xi; Selig, Oleg; Bakker, Huib J.; Rezus, Yves L. A.; Nayak, Pabitra K.; Fonari, Alexandr; Coropceanu, Veaceslav; Brédas, Jean-Luc; Cahen, David

    2015-01-01

    The soft character of organic materials leads to strong coupling between molecular, nuclear and electronic dynamics. This coupling opens the way to influence charge transport in organic electronic devices by exciting molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such approach has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be modulated by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1,500–1,700 cm−1 region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. This presents a new tool for studying electron–phonon coupling and charge dynamics in (bio)molecular materials. PMID:26246039

  9. Mode-selective vibrational modulation of charge transport in organic electronic devices.

    PubMed

    Bakulin, Artem A; Lovrincic, Robert; Yu, Xi; Selig, Oleg; Bakker, Huib J; Rezus, Yves L A; Nayak, Pabitra K; Fonari, Alexandr; Coropceanu, Veaceslav; Brédas, Jean-Luc; Cahen, David

    2015-01-01

    The soft character of organic materials leads to strong coupling between molecular, nuclear and electronic dynamics. This coupling opens the way to influence charge transport in organic electronic devices by exciting molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such approach has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be modulated by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1,500-1,700 cm(-1) region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. This presents a new tool for studying electron-phonon coupling and charge dynamics in (bio)molecular materials. PMID:26246039

  10. A Single Eu-Doped In₂O₃ Nanobelt Device for Selective H₂S Detection.

    PubMed

    Chen, Weiwu; Liu, Yingkai; Qin, Zhaojun; Wu, Yuemei; Li, Shuanghui; Ai, Peng

    2015-01-01

    Eu-doped In₂O₃ nanobelts (Eu-In₂O₃ NBs) and pure In₂O₃ nanobelts (In₂O₃ NBs) are synthesized by the carbon thermal reduction method. Single nanobelt sensors are fabricated via an ion beam deposition system with a mesh-grid mask. The gas-sensing response properties of the Eu-In₂O₃ NB device and its undoped counterpart are investigated with several kinds of gases (including H₂S, CO, NO₂, HCHO, and C₂H₅OH) at different concentrations and different temperatures. It is found that the response of the Eu-In₂O₃ NB device to 100 ppm of H₂S is the best among these gases and the sensitivity reaches 5.74, which is five times that of pure In₂O₃ NB at 260 °C. We also found that the former has an excellent sensitive response and great selectivity to H₂S compared to the latter. Besides, there is a linear relationship between the response and H₂S concentration when its concentration changes from 5 to 100 ppm and from 100 to 1000 ppm. The response/recovery time is quite short and remains stable with an increase of H₂S concentration. These results mean that the doping of Eu can improve the gas-sensing performance of In₂O₃ NB effectually. PMID:26633404

  11. The selection of the appropriate computer interface device for patients with high cervical cord injury.

    PubMed

    Kim, Dong-Goo; Lee, Bum-Suk; Lim, Sung Eun; Kim, Dong-A; Hwang, Sung Il; Yim, You-Lim; Park, Jeong Mi

    2013-06-01

    In order to determine the most suitable computer interfaces for patients with high cervical cord injury, we report three cases of applications of special input devices. The first was a 49-year-old patient with neurological level of injury (NLI) C4, American Spinal Injury Association Impairment Scale (ASIA)-A. He could move the cursor by using a webcam-based Camera Mouse. Moreover, clicking the mouse could only be performed by pronation of the forearm on the modified Micro Light Switch. The second case was a 41-year-old patient with NLI C3, ASIA-A. The SmartNav 4AT which responds according to head movements could provide stable performance in clicking and dragging. The third was a 13-year-old patient with NLI C1, ASIA-B. The IntegraMouse enabling clicking and dragging with fine movements of the lips. Selecting the appropriate interface device for patients with high cervical cord injury could be considered an important part of rehabilitation. We expect the standard proposed in this study will be helpful. PMID:23869346

  12. The Selection of the Appropriate Computer Interface Device for Patients With High Cervical Cord Injury

    PubMed Central

    Kim, Dong-Goo; Lim, Sung Eun; Kim, Dong-A; Hwang, Sung Il; Yim, You-lim; Park, Jeong Mi

    2013-01-01

    In order to determine the most suitable computer interfaces for patients with high cervical cord injury, we report three cases of applications of special input devices. The first was a 49-year-old patient with neurological level of injury (NLI) C4, American Spinal Injury Association Impairment Scale (ASIA)-A. He could move the cursor by using a webcam-based Camera Mouse. Moreover, clicking the mouse could only be performed by pronation of the forearm on the modified Micro Light Switch. The second case was a 41-year-old patient with NLI C3, ASIA-A. The SmartNav 4AT which responds according to head movements could provide stable performance in clicking and dragging. The third was a 13-year-old patient with NLI C1, ASIA-B. The IntegraMouse enabling clicking and dragging with fine movements of the lips. Selecting the appropriate interface device for patients with high cervical cord injury could be considered an important part of rehabilitation. We expect the standard proposed in this study will be helpful. PMID:23869346

  13. Theta phase precession and phase selectivity: a cognitive device description of neural coding

    NASA Astrophysics Data System (ADS)

    Zalay, Osbert C.; Bardakjian, Berj L.

    2009-06-01

    Information in neural systems is carried by way of phase and rate codes. Neuronal signals are processed through transformative biophysical mechanisms at the cellular and network levels. Neural coding transformations can be represented mathematically in a device called the cognitive rhythm generator (CRG). Incoming signals to the CRG are parsed through a bank of neuronal modes that orchestrate proportional, integrative and derivative transformations associated with neural coding. Mode outputs are then mixed through static nonlinearities to encode (spatio) temporal phase relationships. The static nonlinear outputs feed and modulate a ring device (limit cycle) encoding output dynamics. Small coupled CRG networks were created to investigate coding functionality associated with neuronal phase preference and theta precession in the hippocampus. Phase selectivity was found to be dependent on mode shape and polarity, while phase precession was a product of modal mixing (i.e. changes in the relative contribution or amplitude of mode outputs resulted in shifting phase preference). Nonlinear system identification was implemented to help validate the model and explain response characteristics associated with modal mixing; in particular, principal dynamic modes experimentally derived from a hippocampal neuron were inserted into a CRG and the neuron's dynamic response was successfully cloned. From our results, small CRG networks possessing disynaptic feedforward inhibition in combination with feedforward excitation exhibited frequency-dependent inhibitory-to-excitatory and excitatory-to-inhibitory transitions that were similar to transitions seen in a single CRG with quadratic modal mixing. This suggests nonlinear modal mixing to be a coding manifestation of the effect of network connectivity in shaping system dynamic behavior. We hypothesize that circuits containing disynaptic feedforward inhibition in the nervous system may be candidates for interpreting upstream rate codes to

  14. A co-culture device with a tunable stiffness to understand combinatorial cell-cell and cell-matrix interactions.

    PubMed

    Rao, Nikhil; Grover, Gregory N; Vincent, Ludovic G; Evans, Samantha C; Choi, Yu Suk; Spencer, Katrina H; Hui, Elliot E; Engler, Adam J; Christman, Karen L

    2013-11-01

    Cell behavior on 2-D in vitro cultures is continually being improved to better mimic in vivo physiological conditions by combining niche cues including multiple cell types and substrate stiffness, which are well known to impact cell phenotype. However, no system exists in which a user can systematically examine cell behavior on a substrate with a specific stiffness (elastic modulus) in culture with a different cell type, while maintaining distinct cell populations. We demonstrate the modification of a silicon reconfigurable co-culture system with a covalently linked hydrogel of user-defined stiffness. This device allows the user to control whether two separate cell populations are in contact with each other or only experience paracrine interactions on substrates of controllable stiffness. To illustrate the utility of this device, we examined the role of substrate stiffness combined with myoblast co-culture on adipose derived stem cell (ASC) differentiation and found that the presence of myoblasts and a 10 kPa substrate stiffness increased ASC myogenesis versus co-culture on stiff substrates. As this example highlights, this technology better controls the in vitro microenvironment, allowing the user to develop a more thorough understanding of the combined effects of cell-cell and cell-matrix interactions. PMID:24061208

  15. Comparative analysis of selected fuel cell vehicles

    SciTech Connect

    1993-05-07

    Vehicles powered by fuel cells operate more efficiently, more quietly, and more cleanly than internal combustion engines (ICEs). Furthermore, methanol-fueled fuel cell vehicles (FCVs) can utilize major elements of the existing fueling infrastructure of present-day liquid-fueled ICE vehicles (ICEVs). DOE has maintained an active program to stimulate the development and demonstration o fuel cell technologies in conjunction with rechargeable batteries in road vehicles. The purpose of this study is to identify and assess the availability of data on FCVs, and to develop a vehicle subsystem structure that can be used to compare both FCVs and ICEV, from a number of perspectives--environmental impacts, energy utilization, materials usage, and life cycle costs. This report focuses on methanol-fueled FCVs fueled by gasoline, methanol, and diesel fuel that are likely to be demonstratable by the year 2000. The comparative analysis presented covers four vehicles--two passenger vehicles and two urban transit buses. The passenger vehicles include an ICEV using either gasoline or methanol and an FCV using methanol. The FCV uses a Proton Exchange Membrane (PEM) fuel cell, an on-board methanol reformer, mid-term batteries, and an AC motor. The transit bus ICEV was evaluated for both diesel and methanol fuels. The transit bus FCV runs on methanol and uses a Phosphoric Acid Fuel Cell (PAFC) fuel cell, near-term batteries, a DC motor, and an on-board methanol reformer. 75 refs.

  16. Adhesion and Interfacial Fracture: From Organic Light Emitting Devices and Photovoltaic Cells to Solar Lanterns for Developing Regions

    NASA Astrophysics Data System (ADS)

    Tong, Tiffany Michelle

    From that “ah-ha!” moment when a new technology is first conceived until the time that it reaches the hands of consumers, products undergo numerous iterations of research, development, testing, and redesign in order to create an end-product that is relevant, desirable, functional, and affordable. One crucial step, particularly for electronic devices, is a rigorous testing stage to ensure that a product will be able to withstand regular wear-and-tear. An understanding of how, when, and under what conditions a technology will fail is important in improving device performance and creating high quality products that consumers trust. Understanding that success is inherently tied to failure, this thesis focuses on studies of mechanical failure related to two types of electronic devices: solar cells and light emitting devices. By considering the interfaces that are relevant to the next generation of solar cells and light emitting devices that are built using organic conducting polymers, an atomic force microscopy test is introduced to characterize and rank the relative interfacial adhesion between layers at the nano-scale. These results have implications for material selection that can enhance device processing and performance. This method is then linked to fracture mechanics techniques that determine critical loading forces that induce separation and, hence, mechanical failure between layers of these devices. These results demonstrate the effect of nano-scale interactions on macro-scale behavior, and are particularly valuable in product testing as flexible electronics gain interest. Finally, a case study is conducted in Rural Kenya that measures the impact of commercially-available LED lanterns that are charged by solar panels on a community that is disconnected from the power grid. By demonstrating the value of these lanterns for the community, the role of device reliability and lifetime is examined in underscoring the critical need for proper device testing before

  17. Plasma engineering models of tandem mirror devices with high-field test-cell inserts

    SciTech Connect

    Fenstermacher, M.E.; Campbell, R.B.

    1985-04-03

    Plasma physics and engineering models of tandem mirror devices operated with a high-field technology test-cell insert in the central cell, which have been incorporated recently in the TMRBAR tandem mirror reactor physics code, are described. The models include particle and energy balance in the test-cell region as well as the interactions between the test-cell particles and those flowing through the entire device. The code calculations yield consistent operating parameters for the test-cell, central cell, and end cell systems. A benchmark case for the MFTF-..cap alpha..+T configuration is presented which shows good agreement between the code results and previous calculations.

  18. Full device analysis of novel metamaterial coated PN and MIS solar cells using numerical methods

    NASA Astrophysics Data System (ADS)

    Mandel, Isroel; Gollub, Jonah N.; Sarantos, Chris; Pishbin, Nafiseh; Crouse, David T.

    2012-02-01

    In this work we describe how to model the efficiency of solar cells with novel metamaterial coatings optimized for light harvesting. Full device modeling is implemented using optical and electrical simulations. As a proof of concept, we simulate the operation of a metamaterial contact on a first generation monocrystalline silicon solar cell. We compare device characteristics and efficiencies to standard antireflective coatings applied to a grid contact cell. The effects of the metamaterial contact on silicon solar cell efficiencies is discussed for PN junction and metal-insulator-semiconductor cell structures. It is found that the metal-insulator-semiconductor solar cell designed performs better than the PN junction cell.

  19. Integrated microfluidic device for single-cell trapping and spectroscopy

    PubMed Central

    Liberale, C.; Cojoc, G.; Bragheri, F.; Minzioni, P.; Perozziello, G.; La Rocca, R.; Ferrara, L.; Rajamanickam, V.; Di Fabrizio, E.; Cristiani, I.

    2013-01-01

    Optofluidic microsystems are key components towards lab-on-a-chip devices for manipulation and analysis of biological specimens. In particular, the integration of optical tweezers (OT) in these devices allows stable sample trapping, while making available mechanical, chemical and spectroscopic analyses. PMID:23409249

  20. Cell selectivity to laser-induced photoacoustic injury of skin.

    PubMed

    Yashima, Y; McAuliffe, D J; Flotte, T J

    1990-01-01

    Cell selectivity to photoacoustic injury induced by argon-fluoride excimer laser (193 nm) was studied. Rats were irradiated through air or water and a 2.5 mm aperture. The laser was adjusted to deliver 150 mJ/cm2 at the skin surface with 12 and 24 pulses. Immediate damage was assessed by transmission electron microscopy. Cell selectivity was observed in dermis and epidermis. Fibroblasts showed alteration of nuclear chromatin and cytoplasmic organelles, while some of the migratory cells adjacent to fibroblasts did not. Similar difference of damage was observed between keratinocytes and Langerhans cells in epidermis. Considering the relationship between cells and their microenvironment in tissue, this selectivity may be due to the difference of acoustical coupling of propagation of acoustic waves rather than to differential sensitivity of the cells to damage. PMID:2345477

  1. T Cell Adolescence: Maturation Events Beyond Positive Selection.

    PubMed

    Hogquist, Kristin A; Xing, Yan; Hsu, Fan-Chi; Shapiro, Virginia Smith

    2015-08-15

    Single-positive thymocytes that successfully complete positive and negative selection must still undergo one final step, generally termed T cell maturation, before they gain functional competency and enter the long-lived T cell pool. Maturation initiates after positive selection in single-positive thymocytes and continues in the periphery in recent thymic emigrants, before these newly produced T cells gain functional competency and are ready to participate in the immune response as peripheral naive T cells. Recent work using genetically altered mice demonstrates that T cell maturation is not a single process, but a series of steps that occur independently and sequentially after positive selection. This review focuses on the changes that occur during T cell maturation, as well as the molecules and pathways that are critical at each step. PMID:26254267

  2. Advancing tandem solar cells by spectrally selective multilayer intermediate reflectors.

    PubMed

    Hoffmann, Andre; Paetzold, Ulrich W; Zhang, Chao; Merdzhanova, Tsvetelina; Lambertz, Andreas; Ulbrich, Carolin; Bittkau, Karsten; Rau, Uwe

    2014-08-25

    Thin-film silicon tandem solar cells are composed of an amorphous silicon top cell and a microcrystalline silicon bottom cell, stacked and connected in series. In order to match the photocurrents of the top cell and the bottom cell, a proper photon management is required. Up to date, single-layer intermediate reflectors of limited spectral selectivity are applied to match the photocurrents of the top and the bottom cell. In this paper, we design and prototype multilayer intermediate reflectors based on aluminum doped zinc oxide and doped microcrystalline silicon oxide with a spectrally selective reflectance allowing for improved current matching and an overall increase of the charge carrier generation. The intermediate reflectors are successfully integrated into state-of-the-art tandem solar cells resulting in an increase of overall short-circuit current density by 0.7 mA/cm(2) in comparison to a tandem solar cell with the standard single-layer intermediate reflector. PMID:25322181

  3. Target selection: invasion, mapping and cell choice.

    PubMed

    Holt, C E; Harris, W A

    1998-02-01

    Recent research has shown that changes in the concentration of particular molecules lead axons to invade their target, and that concentration changes in other molecules at the borders of the target prevent axons from leaving the target area. After invasion, topographic and lamina-specific cues guide axons to the correct location within the target field. At the level of a single cell or part of a cell, the evidence raises the possibility that axon targeting might be a combinatorial affair whereby specific axons compare the relative concentrations of several molecules on the surface of postsynaptic cells in order to choose a particular target. Both proteins and carbohydrates of various classes play major roles in these processes. PMID:9568397

  4. Femtosecond laser machined microfluidic devices for imaging of cells during chemotaxis

    PubMed Central

    Costa, L.; Terekhov, A.; Rajput, D.; Hofmeister, W.; Jowhar, D.; Wright, G.; Janetopoulos, C.

    2013-01-01

    Microfluidic devices designed for chemotaxis assays were fabricated on fused silica substrates using femtosecond laser micromachining. These devices have built-in chemical concentration gradient forming structures and are ideally suited for establishing passive diffusion gradients over extended periods of time. Multiple gradient forming structures, with identical or distinct gradient forming characteristics, can be integrated into a single device, and migrating cells can be directly observed using an inverted microscope. In this paper, the design, fabrication, and operation of these devices are discussed. Devices with minimal structure sizes ranging from 3 to 7 lm are presented. The use of these devices to investigate the migration of Dictyostelium discoideum cells toward the chemoattractant folic acid is presented as an example of the devices' utility. PMID:24532962

  5. Cell stimulus and lysis in a microfluidic device with segmented gas-liquid flow.

    PubMed

    El-Ali, Jamil; Gaudet, Suzanne; Günther, Axel; Sorger, Peter K; Jensen, Klavs F

    2005-06-01

    We describe a microfluidic device with rapid stimulus and lysis of mammalian cells for resolving fast transient responses in cell signaling networks. The device uses segmented gas-liquid flow to enhance mixing and has integrated thermoelectric heaters and coolers to control the temperature during cell stimulus and lysis. Potential negative effects of segmented flow on cell responses are investigated in three different cell types, with no morphological changes and no activation of the cell stress-sensitive mitogen activated protein kinases observed. Jurkat E6-1 cells are stimulated in the device using alpha-CD3, and the resulting activations of ERK and JNK are presented for different time points. Stimulation of cells performed on chip results in pathway activation identical to that of conventionally treated cells under the same conditions. PMID:15924398

  6. Spatially Selective Reagent Delivery into Cancer Cells Using a Two-Layer Microfluidic Culture System

    PubMed Central

    Liu, Yan; Butler, W. Boyd; Pappas, Dimitri

    2012-01-01

    In this work, we demonstrate a two-layer microfluidic system capable of spatially selective delivery of drugs and other reagents under low shear stress. Loading occurs by hydrodynamically focusing a reagent stream over a particular region of the cell culture. The system consisted of a cell culture chamber and fluid flow channel, which were located in different layers to reduce shear stress on cells. Cells in the center of the culture chamber were exposed to parallel streams of laminar flow, which allowed fast changes to be made to the cellular environment. The shear force was reduced to 2.7 dyn/cm2 in the two-layer device (vs. 6.0 dyn/cm2 in a one-layer device). Cells in the side of the culture chamber were exposed to the side streams of buffer; the shear force was further reduced to a greater extent since the sides of the culture chamber were separated from the main fluid path. The channel shape and flow rate of the multiple streams were optimized for spatially-controlled reagent delivery. The boundaries between streams were well controlled at a flow rate of 0.1 mL/h, which was optimized for all streams. We demonstrated multi-reagent delivery to different regions of the same culture well, as well as selective treatment of cancer cells with a built in control group in the same well. In the case of apoptosis induction using staurosporine, 10% of cells remained viable after 24 hours of exposure. Cells in the same chamber, but not exposed to staurosporine, had a viability of 90%. This chip allows dynamic observation of cellular behavior immediately after drug delivery, as well as long-term drug treatment with the benefit of large cell numbers, device simplicity, and low shear stress. PMID:22882832

  7. An Inverted Dielectrophoretic Device for Analysis of Attached Single Cell Mechanics

    PubMed Central

    Urbano, Rebecca Lownes; Clyne, Alisa Morss

    2016-01-01

    Dielectrophoresis (DEP), the force induced on a polarizable body by a non-uniform electric field, has been widely used to manipulate single cells in suspension and analyze their stiffness. However, most cell types do not naturally exist in suspension but instead require attachment to the tissue extracellular matrix in vivo. Cells alter their cytoskeletal structure when they attach to a substrate, which impacts cell stiffness. It is therefore critical to be able to measure mechanical properties of cells attached to a substrate. We present a novel inverted quadrupole dielectrophoretic device capable of measuring changes in the mechanics of single cells attached to a micropatterned polyacrylamide gel. The device is positioned over a cell of defined size, a directed DEP pushing force is applied, and cell centroid displacement is dynamically measured by optical microscopy. Using this device, single endothelial cells showed greater centroid displacement in response to applied DEP pushing force following actin cytoskeleton disruption by cytochalasin D. In addition, transformed mammary epithelial cell (MCF10A-NeuT) showed greater centroid displacement in response to applied DEP pushing force compared to untransformed cells (MCF10A). DEP device measurements were confirmed by showing that the cells with greater centroid displacement also had a lower elastic modulus by atomic force microscopy. The current study demonstrates that an inverted DEP device can determine changes in single attached cell mechanics on varied substrates. PMID:26738543

  8. An inverted dielectrophoretic device for analysis of attached single cell mechanics.

    PubMed

    Lownes Urbano, Rebecca; Morss Clyne, Alisa

    2016-02-01

    Dielectrophoresis (DEP), the force induced on a polarizable body by a non-uniform electric field, has been widely used to manipulate single cells in suspension and analyze their stiffness. However, most cell types do not naturally exist in suspension but instead require attachment to the tissue extracellular matrix in vivo. Cells alter their cytoskeletal structure when they attach to a substrate, which impacts cell stiffness. It is therefore critical to be able to measure mechanical properties of cells attached to a substrate. We present a novel inverted quadrupole dielectrophoretic device capable of measuring changes in the mechanics of single cells attached to a micropatterned polyacrylamide gel. The device is positioned over a cell of defined size, a directed DEP pushing force is applied, and cell centroid displacement is dynamically measured by optical microscopy. Using this device, single endothelial cells showed greater centroid displacement in response to applied DEP pushing force following actin cytoskeleton disruption by cytochalasin D. In addition, transformed mammary epithelial cell (MCF10A-NeuT) showed greater centroid displacement in response to applied DEP pushing force compared to untransformed cells (MCF10A). DEP device measurements were confirmed by showing that the cells with greater centroid displacement also had a lower elastic modulus by atomic force microscopy. The current study demonstrates that an inverted DEP device can determine changes in single attached cell mechanics on varied substrates. PMID:26738543

  9. Selectable-Tip Corrosion-Testing Electrochemical Cell

    NASA Technical Reports Server (NTRS)

    Lomness, Janice; Hintze, Paul

    2008-01-01

    The figure depicts aspects of an electrochemical cell for pitting- corrosion tests of material specimens. The cell is designed to generate a region of corrosion having a pit diameter determined by the diameter of a selectable tip. The average depth of corrosion is controlled by controlling the total electric charge passing through the cell in a test. The cell is also designed to produce minimal artifacts associated with crevice corrosion. There are three selectable tips, having diameters of 0.1 in. (0.254 cm), 0.3 in. (0.762 cm), and 0.6 in. (1.524 cm), respectively.

  10. Modeling and simulation of speed selection on left ventricular assist devices.

    PubMed

    Tzallas, Alexandros T; Katertsidis, Nikolaos S; Karvounis, Evaggelos C; Tsipouras, Markos G; Rigas, George; Goletsis, Yorgos; Zielinski, Krzysztof; Fresiello, Libera; Molfetta, Arianna Di; Ferrari, Gianfranco; Terrovitis, John V; Trivella, Maria Giovanna; Fotiadis, Dimitrios I

    2014-08-01

    The control problem for LVADs is to set pump speed such that cardiac output and pressure perfusion are within acceptable physiological ranges. However, current technology of LVADs cannot provide for a closed-loop control scheme that can make adjustments based on the patient's level of activity. In this context, the SensorART Speed Selection Module (SSM) integrates various hardware and software components in order to improve the quality of the patients' treatment and the workflow of the specialists. It enables specialists to better understand the patient-device interactions, and improve their knowledge. The SensorART SSM includes two tools of the Specialist Decision Support System (SDSS); namely the Suction Detection Tool and the Speed Selection Tool. A VAD Heart Simulation Platform (VHSP) is also part of the system. The VHSP enables specialists to simulate the behavior of a patient׳s circulatory system, using different LVAD types and functional parameters. The SDSS is a web-based application that offers specialists with a plethora of tools for monitoring, designing the best therapy plan, analyzing data, extracting new knowledge and making informative decisions. In this paper, two of these tools, the Suction Detection Tool and Speed Selection Tool are presented. The former allows the analysis of the simulations sessions from the VHSP and the identification of issues related to suction phenomenon with high accuracy 93%. The latter provides the specialists with a powerful support in their attempt to effectively plan the treatment strategy. It allows them to draw conclusions about the most appropriate pump speed settings. Preliminary assessments connecting the Suction Detection Tool to the VHSP are presented in this paper. PMID:24907416

  11. Biological therapies for cardiac arrhythmias: can genes and cells replace drugs and devices?

    PubMed

    Cho, Hee Cheol; Marbán, Eduardo

    2010-03-01

    Cardiac rhythm disorders reflect failures of impulse generation and/or conduction. With the exception of ablation methods that yield selective endocardial destruction, present therapies are nonspecific and/or palliative. Progress in understanding the underlying biology opens up prospects for new alternatives. This article reviews the present state of the art in gene- and cell-based therapies to correct cardiac rhythm disturbances. We begin with the rationale for such approaches, briefly discuss efforts to address aspects of tachyarrhythmia, and review advances in creating a biological pacemaker to cure bradyarrhythmia. Insights gained bring the field closer to a paradigm shift away from devices and drugs, and toward biologics, in the treatment of rhythm disorders. PMID:20203316

  12. Distinct interactions select and maintain a specific cell fate

    PubMed Central

    Dončić, Andreas; Falleur-Fettig, Melody; Skotheim, Jan M.

    2011-01-01

    The ability to specify and maintain discrete cell fates is essential for development. However, the dynamics underlying selection and stability of distinct cell types remains poorly understood. Here, we provide a quantitative single-cell analysis of commitment dynamics during the mating-mitosis switch in budding yeast. Commitment to division corresponds precisely to activating the G1 cyclin positive feedback loop in competition with the cyclin inhibitor Far1. Cyclin-dependent phosphorylation and inhibition of the mating pathway scaffold Ste5 is required to ensure exclusive expression of the mitotic transcriptional program after cell cycle commitment. Failure to commit exclusively results in coexpression of both cell cycle and pheromone-induced genes, and a morphologically-mixed inviable cell fate. Thus, specification and maintenance of a cellular state are performed by distinct interactions, which is likely a consequence of disparate reaction rates and may be a general feature of the interlinked regulatory networks responsible for selecting cell fates. PMID:21855793

  13. High-Throughput Microfluidic Device for Circulating Tumor Cell Isolation from Whole Blood

    PubMed Central

    Yang, Daniel K.; Leong, Serena; Sohn, Lydia L.

    2016-01-01

    Circulating tumor cells (CTCs) are promising markers to determine cancer patient prognosis and track disease response to therapy. We present a multi-stage microfluidic device we have developed that utilizes inertial and Dean drag forces for isolating CTCs from whole blood. We demonstrate a 94.2% ± 2.1% recovery of cancer cells with our device when screening whole blood spiked with MCF-7 GFP cells.

  14. T cell adolescence: maturation events beyond positive selection1

    PubMed Central

    Hogquist, Kristin A.; Xing, Yan; Hsu, Fan-Chi; Shapiro, Virginia Smith

    2015-01-01

    Single positive (SP) thymocytes that successfully complete positive and negative selection must still undergo one final step, generally termed T cell maturation, before they gain functional competency and enter the long-lived T cell pool. Maturation initiates after positive selection in SP thymocytes, and continues in the periphery in recent thymic emigrants (RTEs), before these newly produced T cells gain functional competency and are ready to participate in the immune response as peripheral naïve T cells. Recent work using genetically altered mice demonstrates that T cell maturation is not a single process, but a series of steps that occur independently and sequentially after positive selection. This review will focus on the changes that occur during T maturation, and the molecules and pathways that are critical at each step. PMID:26254267

  15. Selective cell proliferation can be controlled with CPC particle coatings

    PubMed Central

    Szivek, J.A.; Margolis, D.S.; Schnepp, A.B.; Grana, W.A.; Williams, S.K.

    2008-01-01

    To develop implantable, engineered, cartilage constructs supported by a scaffold, techniques to encourage rapid tissue growth into, and on the scaffold are essential. Preliminary studies indicated that human endothelial cells proliferated at different rates on different calcium phosphate ceramic (CPC) particles. Judicious selection of particles may encourage specific cell proliferation, leading to an ordered growth of tissues for angiogenesis, osteogenesis, and chondrogenesis. The goal of this study was to identify CPC surfaces that encourage bone and vascular cell growth, and other surfaces that support chondrocyte growth while inhibiting proliferation of vascular cells. Differences in bone and vascular cell proliferation were observed when using epoxy without embedded CPCs to encourage bone cells, and when three CPCs were tested, which encouraged vascular cell proliferation. One of these (CPC 7) also substantially depressed cartilage cell proliferation. Only one small-diameter crystalline CPC (CPC 2) supported rapid chondrocyte proliferation, and maintained the cartilage cell phenotype. PMID:17252549

  16. Sickle cell disease: selected aspects of pathophysiology.

    PubMed

    Alexy, T; Sangkatumvong, S; Connes, P; Pais, E; Tripette, J; Barthelemy, J C; Fisher, T C; Meiselman, H J; Khoo, M C; Coates, T D

    2010-01-01

    Sickle cell disease (SCD), a genetically-determined pathology due to an amino acid substitution (i.e., valine for glutamic acid) on the beta-chain of hemoglobin, is characterized by abnormal blood rheology and periods of painful vascular occlusive crises. Sickle cell trait (SCT) is a typically benign variant in which only one beta chain is affected by the mutation. Although both SCD and SCT have been the subject of numerous studies, information related to neurological function and transfusion therapy is still incomplete: an overview of these areas is presented. An initial section provides pertinent background information on the pathology and clinical significance of these diseases. The roles of three factors in the clinical manifestations of the diseases are then discussed: hypoxia, autonomic nervous system regulation and blood rheology. The possibility of a causal relationship between these three factors and sudden death is also examined. It is concluded that further studies in these specific areas are warranted. It is anticipated that the outcome of such research is likely to provide valuable insights into the pathophysiology of SCD and SCT and will lead to improved clinical management and enhanced quality of life. PMID:20364061

  17. Peptide fibrils with altered stability, activity, and cell selectivity

    PubMed Central

    Chen, Long; Liang, Jun F.

    2014-01-01

    Peptides have some unique and superior features compared to proteins. However, the use of peptides as therapeutics is hampered by their low stability and cell selectivity. In this study, a new lytic peptide (CL-1, FLGALFRALSRLL) was constructed. Under the physiological condition, peptide CL-1 self-assembled into dynamically stable aggregates with fibrils-like structures. Aggregated CL-1 demonstrated dramatically altered activity and stability in comparison with single molecule CL-1 and other lytic peptides: when incubated with co-cultured bacteria and tissue cells, CL-1 aggregates killed bacteria selectively but spared co-cultured human cells; CL-1 aggregates kept intact in human serum for more than five hours. Peptide-cell interaction studies performed on lipid monolayers and live human tissue cells revealed that in comparison with monomeric CL-1, aggregated CL-1 had decreased cell affinity and membrane insertion capability on tissue cells. A dynamic process involving aggregate dissociation and rearrangement seemed to be an essential step for membrane bound CL-1 aggregates to realize its cytotoxicity to tissue cells. Our study suggests that peptide aggregation could be as important as the charge and secondary structure of a peptide in affecting peptide-cell interactions. Controlling peptide self-assembly represents a new way to increase the stability and cell selectivity of bioactive peptides for wide biomedical applications. PMID:23713839

  18. Thousand-fold volumetric concentration of live cells with a recirculating acoustofluidic device.

    PubMed

    Jakobsson, Ola; Oh, Seung Soo; Antfolk, Maria; Eisenstein, Michael; Laurell, Thomas; Soh, H Tom

    2015-08-18

    The ability to concentrate cells from dilute samples into smaller volumes is an essential process step for most biological assays. Volumetric concentration is typically achieved via centrifugation, but this technique is not well suited for handling small number of cells, especially outside of the laboratory setting. In this work, we describe a novel device that combines acoustofluidics with a recirculating architecture to achieve >1000-fold enrichment of cells in a label-free manner, at high volumetric throughput (>500 μL min(-1)) and with high recovery (>98.7%). We demonstrate that our device can be used with a wide variety of different cell types and show that this concentration strategy does not affect cell viability. Importantly, our device could be readily adopted to serve as a "sample preparation" module that can be integrated with other microfluidic devices to allow analysis of dilute cellular samples in large volumes. PMID:26226316

  19. Method for forming a cell separator for use in bipolar-stack energy storage devices

    DOEpatents

    Mayer, Steven T.; Feikert, John H.; Kaschmitter, James L.; Pekala, Richard W.

    1994-01-01

    An improved multi-cell electrochemical energy storage device, such as a battery, fuel cell, or double layer capacitor using a cell separator which allows cells to be stacked and interconnected with low electrical resistance and high reliability while maximizing packaging efficiency. By adding repeating cells, higher voltages can be obtained. The cell separator is formed by applying an organic adhesive on opposing surfaces of adjacent carbon electrodes or surfaces of aerogel electrodes of a pair of adjacent cells prior to or after pyrolysis thereof to form carbon aerogel electrodes. The cell separator is electronically conductive, but ionically isolating, preventing an electrolytic conduction path between adjacent cells in the stack.

  20. Method for forming a cell separator for use in bipolar-stack energy storage devices

    DOEpatents

    Mayer, S.T.; Feikert, J.H.; Kaschmitter, J.L.; Pekala, R.W.

    1994-08-09

    An improved multi-cell electrochemical energy storage device, such as a battery, fuel cell, or double layer capacitor using a cell separator which allows cells to be stacked and interconnected with low electrical resistance and high reliability while maximizing packaging efficiency. By adding repeating cells, higher voltages can be obtained. The cell separator is formed by applying an organic adhesive on opposing surfaces of adjacent carbon electrodes or surfaces of aerogel electrodes of a pair of adjacent cells prior to or after pyrolysis thereof to form carbon aerogel electrodes. The cell separator is electronically conductive, but ionically isolating, preventing an electrolytic conduction path between adjacent cells in the stack. 2 figs.

  1. Cell separator for use in bipolar-stack energy storage devices

    DOEpatents

    Mayer, Steven T.; Feikert, John H.; Kachmitter, James L.; Pekala, Richard W.

    1995-01-01

    An improved multi-cell electrochemical energy storage device, such as a battery, fuel cell, or double layer capacitor using a cell separator which allows cells to be stacked and interconnected with low electrical resistance and high reliability while maximizing packaging efficiency. By adding repeating cells, higher voltages can be obtained. The cell separator is formed by applying an organic adhesive on opposing surfaces of adjacent carbon electrodes or surfaces of aerogel electrodes of a pair of adjacent cells prior to or after pyrolysis thereof to form carbon aerogel electrodes. The cell separator is electronically conductive, but ionically isolating, preventing an electrolytic conduction path between adjacent cells in the stack.

  2. Oncotripsy: Targeting cancer cells selectively via resonant harmonic excitation

    NASA Astrophysics Data System (ADS)

    Heyden, S.; Ortiz, M.

    2016-07-01

    We investigate a method of selectively targeting cancer cells by means of ultrasound harmonic excitation at their resonance frequency, which we refer to as oncotripsy. The geometric model of the cells takes into account the cytoplasm, nucleus and nucleolus, as well as the plasma membrane and nuclear envelope. Material properties are varied within a pathophysiologically-relevant range. A first modal analysis reveals the existence of a spectral gap between the natural frequencies and, most importantly, resonant growth rates of healthy and cancerous cells. The results of the modal analysis are verified by simulating the fully-nonlinear transient response of healthy and cancerous cells at resonance. The fully nonlinear analysis confirms that cancerous cells can be selectively taken to lysis by the application of carefully tuned ultrasound harmonic excitation while simultaneously leaving healthy cells intact.

  3. Evidence-Based Selection of Candidates for the Levonorgestrel Intrauterine Device (IUD)

    PubMed Central

    Callegari, Lisa S.; Darney, Blair G.; Godfrey, Emily M.; Sementi, Olivia; Dunsmoor-Su, Rebecca; Prager, Sarah W.

    2014-01-01

    Background Recent evidence-based guidelines expanded the definition of appropriate candidates for the levonorgestrel-releasing intrauterine system (LNG-IUS). We investigated correlates of evidence-based selection of candidates for the LNG-IUS by physicians who offer insertion. Methods We conducted a mixed-mode (online and mail) survey of practicing family physicians and obstetrician-gynecologists in Seattle. Results A total of 269 physicians responded to the survey (44% response rate). Of the 217 respondents who inserted intrauterine devices, half or fewer routinely recommended the LNG-IUS to women who are nulliparous, younger than 20 years old, or have a history of sexually transmitted infections (STIs). In multivariable analyses, training/resident status was positively associated with recommending the LNG-IUS to women <20 years old (adjusted odds ratio [aOR], 3.6; 95% confidence interval [CI], 1.6–8.0) and women with history of STI (aOR, 3.7; 95% CI, 1.6–8.4). Perceived risk of infection or infertility was negatively associated with recommending the LNG-IUS to nulliparous women (aOR, 0.2; 95% CI, 0.1–0.5) and women with a history of STI (aOR, 0.3; 95% CI, 0.1–0.8). Conclusions Many family physicians and obstetrician-gynecologists who insert the LNG-IUS are overly restrictive in selecting candidates, although those who train residents are more likely to follow evidence-based guidelines. Interventions that address negative bias and perceptions of risks, in addition to improving knowledge, are needed to promote wider use of the LNG-IUS. PMID:24390883

  4. Soft fibrin gels promote selection and growth of tumorigenic cells

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Tan, Youhua; Zhang, Huafeng; Zhang, Yi; Xu, Pingwei; Chen, Junwei; Poh, Yeh-Chuin; Tang, Ke; Wang, Ning; Huang, Bo

    2012-08-01

    The identification of stem-cell-like cancer cells through conventional methods that depend on stem cell markers is often unreliable. We developed a mechanical method for selecting tumorigenic cells by culturing single cancer cells in fibrin matrices of ~100 Pa in stiffness. When cultured within these gels, primary human cancer cells or single cancer cells from mouse or human cancer cell lines grew within a few days into individual round colonies that resembled embryonic stem cell colonies. Subcutaneous or intravenous injection of 10 or 100 fibrin-cultured cells in syngeneic or severe combined immunodeficiency mice led to the formation of solid tumours at the site of injection or at the distant lung organ much more efficiently than control cancer cells selected using conventional surface marker methods or cultured on conventional rigid dishes or on soft gels. Remarkably, as few as ten such cells were able to survive and form tumours in the lungs of wild-type non-syngeneic mice.

  5. Select forms of tumor cell apoptosis induce dendritic cell maturation.

    PubMed

    Demaria, Sandra; Santori, Fabio R; Ng, Bruce; Liebes, Leonard; Formenti, Silvia C; Vukmanovic, Stanislav

    2005-03-01

    Dendritic cells (DC) play a crucial role in initiating immune responses to tumors. DC can efficiently present antigens from apoptotic tumor cells, but apoptotic cells are thought to lack the inflammatory signals required to induce DC maturation. Here, we show that apoptosis of 67NR mouse carcinoma cells via the Fas (CD95) pathway or induced by the anticancer drug bortezomib (PS-341) but not by ultraviolet irradiation is associated with the production of maturation signals for DC. These data have important implications for the effects of chemotherapy on antitumor immunity in solid and hematologic malignancies. PMID:15569694

  6. A Microfluidic Device to Sort Cells Based on Dynamic Response to a Stimulus

    PubMed Central

    Mathuru, Ajay Sriram; Burkholder, William F.; Jesuthasan, Suresh J.

    2013-01-01

    Single cell techniques permit the analysis of cellular properties that are obscured by studying the average behavior of cell populations. One way to determine how gene expression contributes to phenotypic differences among cells is to combine functional analysis with transcriptional profiling of single cells. Here we describe a microfluidic device for monitoring the responses of single cells to a ligand and then collecting cells of interest for transcriptional profiling or other assays. As a test, cells from the olfactory epithelium of zebrafish were screened by calcium imaging to identify sensory neurons that were responsive to the odorant L-lysine. Single cells were subsequently recovered for transcriptional profiling by qRT-PCR. Responsive cells all expressed TRPC2 but not OMP, consistent with known properties of amino-acid sensitive olfactory neurons. The device can be adapted for other areas in biology where there is a need to sort and analyze cells based on their signaling responses. PMID:24250795

  7. Adhesion in flexible organic and hybrid organic/inorganic light emitting device and solar cells

    SciTech Connect

    Yu, D.; Kwabi, D.; Akogwu, O.; Du, J.; Oyewole, O. K.; Tong, T.; Anye, V. C.; Rwenyagila, E.; Asare, J.; Fashina, A.; Soboyejo, W. O.

    2014-08-21

    This paper presents the results of an experimental study of the adhesion between bi-material pairs that are relevant to organic light emitting devices, hybrid organic/inorganic light emitting devices, organic bulk heterojunction solar cells, and hybrid organic/inorganic solar cells on flexible substrates. Adhesion between the possible bi-material pairs is measured using force microscopy (AFM) techniques. These include: interfaces that are relevant to organic light emitting devices, hybrid organic/inorganic light emitting devices, bulk heterojunction solar cells, and hybrid combinations of titanium dioxide (TiO{sub 2}) and poly(3-hexylthiophene). The results of AFM measurements are incorporated into the Derjaguin-Muller-Toporov model for the determination of adhesion energies. The implications of the results are then discussed for the design of robust organic and hybrid organic/inorganic electronic devices.

  8. Rehabilitation counsellors: incorporation of assistive technology device selection and referrals into professional practice.

    PubMed

    Barzegarian, Behnush; Sax, Caren L

    2011-01-01

    PURPOSE. The purpose of this study was to determine how well graduates of a rehabilitation counselling master programme were prepared to work with clients in assistive technology (AT) device selection or referral of resources. Specifically, inquiry was conducted as to how graduates have incorporated AT into their professional practice, their level of comfort with exploring AT solutions, and whether they felt additional training was needed. METHODS. The methodology used was an online survey of multiple choice and text boxes sent to rehabilitation counselling graduates. Descriptive statistics and cross tabulations were used to provide the range of responses. Trends were analysed to highlight differences between various factors. RESULTS. Responses indicated that graduates did find the dedicated AT course helpful in learning about the AT process. However, a number of respondents were not comfortable in participating in the AT process and were not incorporating the AT process into their work. CONCLUSIONS. Future studies should explore the role of AT acquisition from the perspective of rehabilitation counsellors and also examine why graduates are not incorporating the AT process. Respondents indicated the need for continuing education and professional development in this area. PMID:21561317

  9. CD6 modulates thymocyte selection and peripheral T cell homeostasis.

    PubMed

    Orta-Mascaró, Marc; Consuegra-Fernández, Marta; Carreras, Esther; Roncagalli, Romain; Carreras-Sureda, Amado; Alvarez, Pilar; Girard, Laura; Simões, Inês; Martínez-Florensa, Mario; Aranda, Fernando; Merino, Ramón; Martínez, Vanesa-Gabriela; Vicente, Rubén; Merino, Jesús; Sarukhan, Adelaida; Malissen, Marie; Malissen, Bernard; Lozano, Francisco

    2016-07-25

    The CD6 glycoprotein is a lymphocyte surface receptor putatively involved in T cell development and activation. CD6 facilitates adhesion between T cells and antigen-presenting cells through its interaction with CD166/ALCAM (activated leukocyte cell adhesion molecule), and physically associates with the T cell receptor (TCR) at the center of the immunological synapse. However, its precise role during thymocyte development and peripheral T cell immune responses remains to be defined. Here, we analyze the in vivo consequences of CD6 deficiency. CD6(-/-) thymi showed a reduction in both CD4(+) and CD8(+) single-positive subsets, and double-positive thymocytes exhibited increased Ca(2+) mobilization to TCR cross-linking in vitro. Bone marrow chimera experiments revealed a T cell-autonomous selective disadvantage of CD6(-/-) T cells during development. The analysis of TCR-transgenic mice (OT-I and Marilyn) confirmed that abnormal T cell selection events occur in the absence of CD6. CD6(-/-) mice displayed increased frequencies of antigen-experienced peripheral T cells generated under certain levels of TCR signal strength or co-stimulation, such as effector/memory (CD4(+)TEM and CD8(+)TCM) and regulatory (T reg) T cells. The suppressive activity of CD6(-/-) T reg cells was diminished, and CD6(-/-) mice presented an exacerbated autoimmune response to collagen. Collectively, these data indicate that CD6 modulates the threshold for thymocyte selection and the generation and/or function of several peripheral T cell subpopulations, including T reg cells. PMID:27377588

  10. Phylogenic analysis of adhesion related genes Mad1 revealed a positive selection for the evolution of trapping devices of nematode-trapping fungi

    PubMed Central

    Li, Juan; Liu, Yue; Zhu, Hongyan; Zhang, Ke-Qin

    2016-01-01

    Adhesions, the major components of the extracellular fibrillar polymers which accumulate on the outer surface of adhesive traps of nematode-trapping fungi, are thought to have played important roles during the evolution of trapping devices. Phylogenetic analyses based on the genes related to adhesive materials can be of great importance for understanding the evolution of trapping devices. Recently, AoMad1, one homologous gene of the entomopathogenic fungus Metarhizium anisopliae cell wall protein MAD1, has been functionally characterized as involved in the production of adhesions in the nematode-trapping fungus Arthrobotrys oligospora. In this study, we cloned Mad1 homologous genes from nematode-trapping fungi with various trapping devices. Phylogenetic analyses suggested that species which formed nonadhesive constricting ring (CR) traps more basally placed and species with adhesive traps evolved along two lineages. Likelihood ratio tests (LRT) revealed that significant positive selective pressure likely acted on the ancestral trapping devices including both adhesive and mechanical traps, indicating that the Mad1 genes likely played important roles during the evolution of nematode-trapping fungi. Our study provides new insights into the evolution of trapping devices of nematode-trapping fungi and also contributes to understanding the importance of adhesions during the evolution of nematode-trapping fungi. PMID:26941065

  11. A Pathway Toward Tumor Cell-Selective CPPs?

    PubMed

    Alves, Isabel D; Carré, Manon; Lavielle, Solange

    2015-01-01

    Despite the great potential of CPPs in therapeutics and diagnosis, their application still suffers from a non-negligible drawback: a complete lack of cell-type specificity. In the innumerous routes proposed for CPP cell entry there is common agreement that electrostatic interactions between cationic CPPs and anionic components in membranes, including lipids and glycosaminoglycans, play a crucial role. Tumor cells have been shown to overexpress certain glycosaminoglycans at the cell membrane surface and to possess a higher amount of anionic lipids in their outer leaflet when compared with healthy cells. Such molecules confer tumor cell membranes an enhanced anionic character, a property that could be exploited by CPPs to preferentially target these cells. Herein, these aspects are discussed in an attempt to confer CPPs certain selectivity toward cancer cells. PMID:26202276

  12. Reliability Through Life of Internal Protection Devices in Small-Cell ABSL Batteries

    NASA Technical Reports Server (NTRS)

    Neubauer, Jeremy; Ng, Ka Lok; Bennetti, Andrea; Pearson, Chris; Rao, gopal

    2007-01-01

    This viewgraph presentation reviews a reliability analysis of small cell protection batteries. The contents include: 1) The s-p Topology; 2) Cell Level Protection Devices; 3) Battery Level Fault Protection; 4) Large Cell Comparison; and 5) Battery Level Testing and Results.

  13. The cell-stretcher: A novel device for the mechanical stimulation of cell populations.

    PubMed

    Seriani, S; Del Favero, G; Mahaffey, J; Marko, D; Gallina, P; Long, C S; Mestroni, L; Sbaizero, O

    2016-08-01

    Mechanical stimulation appears to be a critical modulator for many aspects of biology, both of living tissue and cells. The cell-stretcher, a novel device for the mechanical uniaxial stimulation of populations of cells, is described. The system is based on a variable stroke cam-lever-tappet mechanism which allows the delivery of cyclic stimuli with frequencies of up to 10 Hz and deformation between 1% and 20%. The kinematics is presented and a simulation of the dynamics of the system is shown, in order to compute the contact forces in the mechanism. The cells, following cultivation and preparation, are plated on an ad hoc polydimethylsiloxane membrane which is then loaded on the clamps of the cell-stretcher via force-adjustable magnetic couplings. In order to show the viability of the experimentation and biocompatibility of the cell-stretcher, a set of two in vitro tests were performed. Human epithelial carcinoma cell line A431 and Adult Mouse Ventricular Fibroblasts (AMVFs) from a dual reporter mouse were subject to 0.5 Hz, 24 h cyclic stretching at 15% strain, and to 48 h stimulation at 0.5 Hz and 15% strain, respectively. Visual analysis was performed on A431, showing definite morphological changes in the form of cellular extroflections in the direction of stimulation compared to an unstimulated control. A cytometric analysis was performed on the AMVF population. Results show a post-stimulation live-dead ratio deviance of less than 6% compared to control, which proves that the environment created by the cell-stretcher is suitable for in vitro experimentation. PMID:27587132

  14. The cell-stretcher: A novel device for the mechanical stimulation of cell populations

    NASA Astrophysics Data System (ADS)

    Seriani, S.; Del Favero, G.; Mahaffey, J.; Marko, D.; Gallina, P.; Long, C. S.; Mestroni, L.; Sbaizero, O.

    2016-08-01

    Mechanical stimulation appears to be a critical modulator for many aspects of biology, both of living tissue and cells. The cell-stretcher, a novel device for the mechanical uniaxial stimulation of populations of cells, is described. The system is based on a variable stroke cam-lever-tappet mechanism which allows the delivery of cyclic stimuli with frequencies of up to 10 Hz and deformation between 1% and 20%. The kinematics is presented and a simulation of the dynamics of the system is shown, in order to compute the contact forces in the mechanism. The cells, following cultivation and preparation, are plated on an ad hoc polydimethylsiloxane membrane which is then loaded on the clamps of the cell-stretcher via force-adjustable magnetic couplings. In order to show the viability of the experimentation and biocompatibility of the cell-stretcher, a set of two in vitro tests were performed. Human epithelial carcinoma cell line A431 and Adult Mouse Ventricular Fibroblasts (AMVFs) from a dual reporter mouse were subject to 0.5 Hz, 24 h cyclic stretching at 15% strain, and to 48 h stimulation at 0.5 Hz and 15% strain, respectively. Visual analysis was performed on A431, showing definite morphological changes in the form of cellular extroflections in the direction of stimulation compared to an unstimulated control. A cytometric analysis was performed on the AMVF population. Results show a post-stimulation live-dead ratio deviance of less than 6% compared to control, which proves that the environment created by the cell-stretcher is suitable for in vitro experimentation.

  15. Highly sensitive and selective odorant sensor using living cells expressing insect olfactory receptors

    PubMed Central

    Misawa, Nobuo; Mitsuno, Hidefumi; Kanzaki, Ryohei; Takeuchi, Shoji

    2010-01-01

    This paper describes a highly sensitive and selective chemical sensor using living cells (Xenopus laevis oocytes) within a portable fluidic device. We constructed an odorant sensor whose sensitivity is a few parts per billion in solution and can simultaneously distinguish different types of chemicals that have only a slight difference in double bond isomerism or functional group such as ─OH, ─CHO and ─C(═O)─. We developed a semiautomatic method to install cells to the fluidic device and achieved stable and reproducible odorant sensing. In addition, we found that the sensor worked for multiple-target chemicals and can be integrated with a robotic system without any noise reduction systems. Our developed sensor is compact and easy to replace in the system. We believe that the sensor can potentially be incorporated into a portable system for monitoring environmental and physical conditions. PMID:20798064

  16. 49 CFR 236.311 - Signal control circuits, selection through track relays or devices functioning as track relays...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Signal control circuits, selection through track relays or devices functioning as track relays and through signal mechanism contacts and time releases at automatic interlocking. 236.311 Section 236.311 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL...

  17. 49 CFR 236.311 - Signal control circuits, selection through track relays or devices functioning as track relays...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Signal control circuits, selection through track relays or devices functioning as track relays and through signal mechanism contacts and time releases at automatic interlocking. 236.311 Section 236.311 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL...

  18. 49 CFR 236.311 - Signal control circuits, selection through track relays or devices functioning as track relays...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Signal control circuits, selection through track relays or devices functioning as track relays and through signal mechanism contacts and time releases at automatic interlocking. 236.311 Section 236.311 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL...

  19. 49 CFR 236.311 - Signal control circuits, selection through track relays or devices functioning as track relays...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Signal control circuits, selection through track relays or devices functioning as track relays and through signal mechanism contacts and time releases at automatic interlocking. 236.311 Section 236.311 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL...

  20. 49 CFR 236.311 - Signal control circuits, selection through track relays or devices functioning as track relays...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Signal control circuits, selection through track relays or devices functioning as track relays and through signal mechanism contacts and time releases at automatic interlocking. 236.311 Section 236.311 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL...

  1. Development path and current status of the NANIVID: a new device for cancer cell studies

    PubMed Central

    Raja, Waseem Khan; Padgen, Michael R.; Williams, James K.; Gertler, Frank B.; Wyckoff, Jeffrey B.; Condeelis, John S.; Castracane, James

    2014-01-01

    Cancer cells create a unique microenvironment in vivo that enables migration to distant organs. To better understand the tumor micro-environment, special tools and devices are required to monitor the interactions between different cell types and the effects of particular chemical gradients. Our study presents the design and optimization of a versatile chemotaxis device, the nano-intravital device (NANIVID), which consists of etched and bonded glass substrates that create a soluble factor reservoir. The device contains a customized hydrogel blend that is loaded with epidermal growth factor (EGF), which diffuses from the outlet to create a chemotactic gradient that can be sustained for many hours in order to attract specific cells to the device. A microelectrode array is under development for quantification of cell collection and will be incorporated into future device generations. Additionally, the NANIVID can be modified to generate gradients of other soluble factors in order to initiate controlled changes to the microenvironment including the induction of hypoxia, manipulation of extracellular matrix stiffness, etc. The focus of the article is to present the design and optimization of the device towards wide ranging applications of cancer cell dynamics in vitro and, ultimately, implantation for in vivo investigations. PMID:25419258

  2. Positive selection of self-antigen-specific CD8+ T cells by hematopoietic cells.

    PubMed

    Yamada, Hisakata; Shibata, Kensuke; Sakuraba, Koji; Fujimura, Kenjiro; Yoshikai, Yasunobu

    2013-08-01

    In contrast to thymic epithelial cells, which induce the positive selection of conventional CD8(+) T cells, hematopoietic cells (HCs) select innate CD8(+) T cells whose Ag specificity is not fully understood. Here we show that CD8(+) T cells expressing an H-Y Ag-specific Tg TCR were able to develop in mice in which only HCs expressed MHC class I, when HCs also expressed the H-Y Ag. These HC-selected self-specific CD8(+) T cells resemble innate CD8(+) T cells in WT mice in terms of the expression of memory markers and effector functions, but are phenotypically distinct from the thymus-independent CD8(+) T-cell population. The peripheral maintenance of H-Y-specific CD8(+) T cells required presentation of the self-Ag and IL-15 on HCs. HC-selected CD8(+) T cells in mice lacking the Tg TCR also showed these features. Furthermore, by using MHC class I tetramers with a male Ag peptide, we found that self-Ag-specific CD8(+) T cells in TCR non-Tg mice could develop via HC-induced positive selection, supporting results obtained from H-Y TCR Tg mice. These findings indicate the presence of self-specific CD8(+) T cells that are positively selected by HCs in the peripheral T-cell repertoire. PMID:23636825

  3. An analysis of B cell selection mechanisms in germinal centers.

    PubMed

    Meyer-Hermann, Michael E; Maini, Philip K; Iber, Dagmar

    2006-09-01

    Affinity maturation of antibodies during immune responses is achieved by multiple rounds of somatic hypermutation and subsequent preferential selection of those B cells that express B cell receptors with improved binding characteristics for the antigen. The mechanism underlying B cell selection has not yet been defined. By employing an agent-based model, we show that for physiologically reasonable parameter values affinity maturation can be driven by competition for neither binding sites nor antigen--even in the presence of competing secreted antibodies. Within the tested mechanisms, only clonal competition for T cell help or a refractory time for the interaction of centrocytes with follicular dendritic cells is found to enable affinity maturation while generating the experimentally observed germinal centre characteristics and tolerating large variations in the initial antigen density. PMID:16707510

  4. Building Cell Selectivity into CPP-Mediated Strategies

    PubMed Central

    Martín, Irene; Teixidó, Meritxell; Giralt, Ernest

    2010-01-01

    There is a pressing need for more effective and selective therapies for cancer and other diseases. Consequently, much effort is being devoted to the development of alternative experimental approaches based on selective systems, which are designed to be specifically directed against target cells. In addition, a large number of highly potent therapeutic molecules are being discovered. However, they do not reach clinical trials because of their low delivery, poor specificity or their incapacity to bypass the plasma membrane. Cell-penetrating peptides (CPPs) are an open door for cell-impermeable compounds to reach intracellular targets. Putting all these together, research is sailing in the direction of the design of systems with the capacity to transport new drugs into a target cell. Some CPPs show cell type specificity while others require modifications or form part of more sophisticated drug delivery systems. In this review article we summarize several strategies for directed drug delivery involving CPPs that have been reported in the literature.

  5. An evaluation of selected oral fluid point-of-collection drug-testing devices.

    PubMed

    Crouch, Dennis J; Walsh, J M; Flegel, Ron; Cangianelli, Leo; Baudys, Jakub; Atkins, Randy

    2005-01-01

    Point-of-collection oral fluids drug-testing devices are being marketed for a variety of medico-legal purposes where they may complement existing technologies and be used to detect drugs following recent ingestion. To assess the utility of these devices for use in drugged-driving investigations, we performed a laboratory evaluation of four devices and those results were published previously. In the study reported here, two more devices, Oratect(R) (Branan) and Uplink(R) (OraSure), were evaluated for their ability to detect amphetamines, cocaine, opiates, and cannabinoids. An additional device, Drugwipe (Securtec), was evaluated for the detection of cocaine and cannabinoids. Each of the devices was assessed for their ability to meet the manufacturers' claimed cutoff concentrations and to meet cutoffs proposed for federal workplace programs. In general, the Branan and OraSure devices detected amphetamine, methamphetamine, opiates, and cannabinoid metabolite (THC-COOH) well in the concentration ranges approximating those proposed by the Substance Abuse and Mental Health Services Administration (SAMHSA), but all three devices performed poorly in detecting Delta9-tetrahydrocannabinol (THC) at the proposed SAMHSA cutoff. The ability to accurately and reliably detect cocaine was dependent on the individual device, and the Branan and Securetec devices were more effective than OraSure at detecting parent cocaine. PMID:15975256

  6. A novel method to isolate mesenchymal stem cells from bone marrow in a closed system using a device made by nonwoven fabric.

    PubMed

    Ito, Kinya; Aoyama, Tomoki; Fukiage, Kenichi; Otsuka, Seiji; Furu, Moritoshi; Jin, Yonghui; Nasu, Akira; Ueda, Michiko; Kasai, Yasunari; Ashihara, Eishi; Kimura, Shinya; Maekawa, Taira; Kobayashi, Akira; Yoshida, Shinya; Niwa, Hideo; Otsuka, Takanobu; Nakamura, Takashi; Toguchida, Junya

    2010-02-01

    Bone marrow stromal cells (BMSCs) include cells with multidirectional differentiation potential described as mesenchymal stem cells. For clinical use, it is important to develop a way to isolate BMSCs from bone marrow in a closed system without centrifugation. After screening 200 biomaterials, we developed a device containing a nonwoven fabric filter composed of rayon and polyethylene. The filter selectively traps BMSCs among mononuclear cells in bone marrow based on affinity, not cell size. The cells are then recovered by the retrograde flow. Using canine and human bone marrow cells, the biological properties of BMSCs isolated by the device were compared with those obtained by conventional methods using centrifugation. The total number isolated by the device was larger, as was the number of CD106(+)/STRO-1(+) double-positive cells. The cells showed osteogenic, chondrogenic, and adipogenic differentiation potential in vitro. Finally, the direct transplantation of cells isolated by the device without in vitro cultivation accelerated bone regeneration in a canine model of osteonecrosis in vivo. The proposed method is rapid and efficient, does not require a biological clean area, and will be useful for the clinical application of mesenchymal stem cells in bone marrow. PMID:19364273

  7. High-throughput microfluidic device for single cell analysis using multiple integrated soft lithographic pumps.

    PubMed

    Patabadige, Damith E W; Mickleburgh, Tom; Ferris, Lorin; Brummer, Gage; Culbertson, Anne H; Culbertson, Christopher T

    2016-05-01

    The ability to accurately control fluid transport in microfluidic devices is key for developing high-throughput methods for single cell analysis. Making small, reproducible changes to flow rates, however, to optimize lysis and injection using pumps external to the microfluidic device are challenging and time-consuming. To improve the throughput and increase the number of cells analyzed, we have integrated previously reported micropumps into a microfluidic device that can increase the cell analysis rate to ∼1000 cells/h and operate for over an hour continuously. In order to increase the flow rates sufficiently to handle cells at a higher throughput, three sets of pumps were multiplexed. These pumps are simple, low-cost, durable, easy to fabricate, and biocompatible. They provide precise control of the flow rate up to 9.2 nL/s. These devices were used to automatically transport, lyse, and electrophoretically separate T-Lymphocyte cells loaded with Oregon green and 6-carboxyfluorescein. Peak overlap statistics predicted the number of fully resolved single-cell electropherograms seen. In addition, there was no change in the average fluorescent dye peak areas indicating that the cells remained intact and the dyes did not leak out of the cells over the 1 h analysis time. The cell lysate peak area distribution followed that expected of an asynchronous steady-state population of immortalized cells. PMID:26887846

  8. Centrifugal Filter Device for Detection of Rare Cells With Immuno-Binding.

    PubMed

    Chen, Chih-Chung; Chen, Yu-An; Yao, Da-Jeng

    2015-12-01

    Many investigations have shown circulating tumor cells (CTCs) to serve as a significant biomarker of cancer progression and for cancer treatment. Multiple blood samples detection of CTCs during a course of treatment might facilitate a choice by a medical doctor of an effective drug and a treatment for particular patients. A simple and cost-effective method to identify the trend of decreasing CTCs during a treatment with various therapies is in great demand. A novel multilayer, concentric filter device combined with an immune-binding method enables the enrichment and detection of rare cells in a mass cell population with a separation based on size. Such separation implemented with a filter is among the most efficient, simple and inexpensive methods to isolate cells, but its main disadvantages are clogging, deformation of cells, and a requirement of a significant difference of size between targeted rare cells and normal cells. We designed a concentric filter device and an immune-binding method to create a significant size difference of target cells, and increased the efficiency of separation to identify rare cells with a simple miniature centrifuge in the laboratory. The enrichment of target rare cells from a mass cell population and the detection were demonstrated on mixing targeted MCF-7 blast cancer cells and Jurkat blood cells in ratio 1:1 000 000. The device is prospectively applicable for the detection of circulating tumor cells in a clinical application. PMID:26452287

  9. Ozone selectively inhibits growth of human cancer cells

    SciTech Connect

    Sweet, F.; Kao, M.S.; Lee, S.C.; Hagar, W.L.; Sweet, W.E.

    1980-08-01

    The growth of human cancer cells from lung, breast, and uterine tumors was selectively inhibited in a dose-dependent manner by ozone at 0.3 to 0.8 part per million of ozone in ambient air during 8 days of culture. Human lung diploid fibroblasts served as noncancerous control cells. The presence of ozone at 0.3 to 0.5 part per million inhibited cancer cell growth 40 and 60 percent, respectively. The noncancerous lung cells were unaffected at these levels. Exposure to ozone at 0.8 part per million inhibited cancer cell growth more than 90 percent and control cell growth less than 50 percent. Evidently, the mechanisms for defense against ozone damage are impaired in human cancer cells.

  10. Development path and current status of the NANIVID: a new device for cancer cell studies

    NASA Astrophysics Data System (ADS)

    Raja, Waseem Khan; Padgen, Michael R.; Williams, James K.; Wyckoff, Jeffrey; Condeelis, John; Castracane, James

    2011-02-01

    Cancer cells create a unique microenvironment in vivo which enables migration to distant organs. To better understand the tumor microenvironment, special tools and devices are required to monitor the interactions between different cell types and the effects of particular chemical gradients. This study presents the design and optimization of a new, versatile chemotaxis device called the NANIVID (NANo IntraVital Device). The device is fabricated using BioMEMS techniques and consists of etched and bonded Pyrex substrates, a soluble factor reservoir, fluorescent tracking beads and a microelectrode array for cell quantification. The reservoir contains a customized hydrogel blend loaded with EGF which diffuses out of the hydrogel to create a chemotactic gradient. This reservoir sustains a steady release of growth factor into the surrounding environment for many hours and establishes a concentration gradient that attracts specific cells to the device. In addition to a cell collection tool, the NANIVID can be modified to act as a delivery vehicle for the local generation of alternate soluble factor gradients to initiate controlled changes to the microenvironment such as hypoxia, ECM stiffness and etc. The focus of this study is to design and optimize the new device for wide ranging studies of breast cancer cell dynamics in vitro and ultimately, implantation for in vivo work.

  11. Identification of compounds selectively killing multidrug resistant cancer cells

    PubMed Central

    Türk, Dóra; Hall, Matthew D.; Chu, Benjamin F.; Ludwig, Joseph A.; Fales, Henry M.; Gottesman, Michael M.; Szakács, Gergely

    2009-01-01

    There is a great need for the development of novel chemotherapeutic agents that overcome the emergence of multidrug resistance in cancer. We catalogued the National Cancer Institute’s Developmental Therapeutics Program (DTP) drug repository in search of compounds showing increased toxicity in multidrug resistant (MDR) cells. By comparing the sensitivity of parental cell lines with multidrug resistant derivatives, we identified 22 compounds possessing MDR-selective activity. Analysis of structural congeners led to the identification of 15 additional drugs showing increased toxicity in Pgp-expressing cells. Analysis of MDR-selective compounds led to the formulation of structure activity relationships (SAR) and pharmacophore models. This data mining coupled with experimental data points to a possible mechanism of action linked to metal chelation. Taken together, the discovery of the MDR-selective compound set demonstrates the robustness of the developing field of MDR-targeting therapy as a new strategy for resolving Pgp-mediated multidrug resistance. PMID:19843850

  12. Selective Cell Growth on Fibronectin-Carbon Nanotube Hybrid Nanostructures

    NASA Astrophysics Data System (ADS)

    Namgung, Seon; Park, Sung Young; Lee, Byung Yang; Lee, Minbaek; Nam, Jwa-Min; Hong, Seunghun

    2008-03-01

    Carbon nanotubes (CNT) have been considered a promising material for biological applications including biosensors, therapeutic application, and nano-structured scaffolds. However, there are still controversies associated with toxicity and biocompatibility of CNTs on live cells. Here, we report general strategy to functionalize CNTs with cell adhesion molecules (fibronectins) for selective and stable adhesion of cells on CNTs. Interestingly, more fibronectins were adsorbed and activated on CNTs rather than on hydrophobic self assembled monolayers (SAMs) or bare substrates (SiO2). We demonstrate the functionality of fibronectins on CNTs with immunofluorescence and molecule-level force measurement study using atomic force microscopy (AFM). These fibronectin-CNT hybrid nanostructures were successfully applied to attract cells selectively onto predefined regions on the substrate. Our strategy was generally available on various cell types including mesenchymal stem cells, KB cells, and NIH3T3 fibroblast cells (Advanced Materials 19, 2530-2534 (2007)). We will also discuss about its impacts on cell biology combined with CNTs.

  13. Development of microfluidic-based cell collection devices for in vitro and in vivo use

    NASA Astrophysics Data System (ADS)

    Butt, Logan; Entenberg, Dave; Hemachandra, L. P. Madhubhani; Strohmayer, Matthew; Keely, Patricia; Aguirre-Ghiso, Julio; Condeelis, John S.; Castracane, James

    2016-03-01

    The NANIVID - or Nano Intravital Device - is an implantable delivery tool designed to locally affect the tumor microenvironment in vivo. This technology is being redesigned and validated as a cell collection tool for the study of metastatic cancer cells. A methodology has been developed to facilitate this transition, consisting of microfluidic analysis of the device microchannels and a series of cell-related collection experiments building up to in vivo collection. Single-chamber designs were first used to qualitatively demonstrate the feasibility of cell collection ex vivo. This was followed by the development and implementation of devices containing a second, negative-control chamber for quantitative analysis. This work sets the foundation for in vivo cancer cell migration studies utilizing the NANIVID.

  14. Developing robust, hydrogel-based, nanofiber-enabled encapsulation devices (NEEDs) for cell therapies.

    PubMed

    An, Duo; Ji, Yewei; Chiu, Alan; Lu, Yen-Chun; Song, Wei; Zhai, Lei; Qi, Ling; Luo, Dan; Ma, Minglin

    2015-01-01

    Cell encapsulation holds enormous potential to treat a number of hormone deficient diseases and endocrine disorders. We report a simple and universal approach to fabricate robust, hydrogel-based, nanofiber-enabled encapsulation devices (NEEDs) with macroscopic dimensions. In this design, we take advantage of the well-known capillary action that holds wetting liquid in porous media. By impregnating the highly porous electrospun nanofiber membranes of pre-made tubular or planar devices with hydrogel precursor solutions and subsequent crosslinking, we obtained various nanofiber-enabled hydrogel devices. This approach is broadly applicable and does not alter the water content or the intrinsic chemistry of the hydrogels. The devices retained the properties of both the hydrogel (e.g. the biocompatibility) and the nanofibers (e.g. the mechanical robustness). The facile mass transfer was confirmed by encapsulation and culture of different types of cells. Additional compartmentalization of the devices enabled paracrine cell co-cultures in single implantable devices. Lastly, we provided a proof-of-concept study on potential therapeutic applications of the devices by encapsulating and delivering rat pancreatic islets into chemically-induced diabetic mice. The diabetes was corrected for the duration of the experiment (8 weeks) before the implants were retrieved. The retrieved devices showed minimal fibrosis and as expected, live and functional islets were observed within the devices. This study suggests that the design concept of NEEDs may potentially help to overcome some of the challenges in the cell encapsulation field and therefore contribute to the development of cell therapies in future. PMID:25453936

  15. Preparation of cell-encapsulation devices in confined microenvironment.

    PubMed

    Mazzitelli, Stefania; Capretto, Lorenzo; Quinci, Federico; Piva, Roberta; Nastruzzi, Claudio

    2013-11-01

    The entrapment of cells into hydrogel microdevice in form of microparticles or microfibers is one of the most appealing and useful tools for cell-based therapy and tissue engineering. Cell encapsulation procedures allow the immunoisolation of cells from the surrounding environment, after their transplantation and the maintenance of the normal cellular physiology. Factors affecting the efficacy of microdevices, which include size, size distribution, morphology, and porosity are all highly dependent on the method of preparation. In this respect, microfluidic based methods offer a promising strategy to fabricate highly uniform and morphologically controlled microdevices with tunable chemical and mechanical properties. In the current review, various cell microencapsulation procedures, based on a microfluidics, are critically analyzed with a special focus on the effect of the procedure on the morphology, viability and functions of the embedded cells. Moreover, a brief introduction about the optimal characteristics of microdevice intended for cell encapsulation, together with the currently used materials for the production is reported. A further challenging application of microfluidics for the development of "living microchip" is also presented. Finally, the limitations, challenging and future work on the microfluidic approach are also discussed. PMID:23933618

  16. Mammosphere culture of cancer stem cells in a microfluidic device

    NASA Astrophysics Data System (ADS)

    Saadin, Katayoon; White, Ian M.

    2012-03-01

    It is known that tumor-initiating cells with stem-like properties will form spherical colonies - termed mammospheres - when cultured in serum-free media on low-attachment substrates. Currently this assay is performed in commercially available 96-well trays with low-attachment surfaces. Here we report a novel microsystem that features on-chip mammosphere culture on low attachment surfaces. We have cultured mammospheres in this microsystem from well-studied human breast cancer cell lines. To enable the long-term culture of these unattached cells, we have integrated diffusion-based delivery columns that provide zero-convection delivery of reagents, such as fresh media, staining agents, or drugs. The multi-layer system consists of parallel cell-culture chambers on top of a low-attachment surface, connected vertically with a microfluidic reagent delivery layer. This design incorporates a reagent reservoir, which is necessary to reduce evaporation from the cell culture micro-chambers. The development of this microsystem will lead to the integration of mammosphere culture with other microfluidic functions, including circulating tumor cell recovery and high throughput drug screening. This will enable the cancer research community to achieve a much greater understanding of these tumor initiating cancer stem cells.

  17. Evaluation of transition metal oxide as carrier-selective contacts for silicon heterojunction solar cells

    SciTech Connect

    Ding, L.; Boccard, Matthieu; Holman, Zachary; Bertoni, M.

    2015-04-06

    "Reducing light absorption in the non-active solar cell layers, while enabling the extraction of the photogenerated minority carriers at quasi-Fermi levels are two key factors to improve current generation and voltage, and therefore efficiency of silicon heterojunction solar devices. To address these two critical aspects, transition metal oxide materials have been proposed as alternative to the n- and p-type amorphous silicon used as electron and hole selective contacts, respectively. Indeed, transition metal oxides such as molybdenum oxide, titanium oxide, nickel oxide or tungsten oxide combine a wide band gap typically over 3 eV with a band structure and theoretical band alignment with silicon that results in high transparency to the solar spectrum and in selectivity for the transport of only one carrier type. Improving carrier extraction or injection using transition metal oxide has been a topic of investigation in the field of organic solar cells and organic LEDs; from these pioneering works a lot of knowledge has been gained on materials properties, ways to control these during synthesis and deposition, and their impact on device performance. Recently, the transfer of some of this knowledge to silicon solar cells and the successful application of some metal oxide to contact heterojunction devices have gained much attention. In this contribution, we investigate the suitability of various transition metal oxide films (molybdenum oxide, titanium oxide, and tungsten oxide) deposited either by thermal evaporation or sputtering as transparent hole or electron selective transport layer for silicon solar cells. In addition to systematically characterize their optical and structural properties, we use photoemission spectroscopy to relate compound stoichiometry to band structure and characterize band alignment to silicon. The direct silicon/metal oxide interface is further analyzed by quasi-steady state photoconductance decay method to assess the quality of surface

  18. Single cell studies of mouse embryonic stem cell (mESC) differentiation by electrical impedance measurements in a microfluidic device.

    PubMed

    Zhou, Ying; Basu, Srinjan; Laue, Ernest; Seshia, Ashwin A

    2016-07-15

    Biological populations of cells show considerable cell-to-cell variability. Study of single cells and analysis of cell heterogeneity are considered to be critical in understanding biological processes such as stem cell differentiation and cancer development. Recent advances in lab-on-a-chip techniques have allowed single-cell capture in microfluidic channels with the possibility of precise environmental control and high throughput of experiments with minimal usage of samples and reagents. In recent years, label-free techniques such as electrical impedance spectroscopy have emerged as a non-invasive approach to studying cell properties. In this study, we have designed and fabricated a microfluidic device that combines hydrodynamic trapping of single cells in pre-defined locations with the capability of running electrical impedance measurements within the same device. We have measured mouse embryonic stem cells (mESCs) at different states during differentiation (t=0h, 24h and 48h) and quantitatively analysed the changes in electrical parameters of cells during differentiation. A marked increase in the magnitude of the cell impedance is found during cell differentiation, which can be attributed to an increase in cell size. The analysis of the measurements shows that the nucleus-to-cytoplasm ratio decreases during this process. The degree of cell heterogeneity is observed to be the highest when the cells are at the transition state (24h), compare with cells at undifferentiated (0h) and fully differentiated (48h) states. The device enables highly efficient single cell trapping and provides sensitive, label-free electrical impedance measurements of individual cells, enabling the possibility of quantitatively analysing their physical state as well as studying the associated heterogeneity of a cell population. PMID:26963790

  19. Single cell studies of mouse embryonic stem cell (mESC) differentiation by electrical impedance measurements in a microfluidic device

    PubMed Central

    Zhou, Ying; Basu, Srinjan; Laue, Ernest; Seshia, Ashwin A.

    2016-01-01

    Biological populations of cells show considerable cell-to-cell variability. Study of single cells and analysis of cell heterogeneity are considered to be critical in understanding biological processes such as stem cell differentiation and cancer development. Recent advances in lab-on-a-chip techniques have allowed single-cell capture in microfluidic channels with the possibility of precise environmental control and high throughput of experiments with minimal usage of samples and reagents. In recent years, label-free techniques such as electrical impedance spectroscopy have emerged as a non-invasive approach to studying cell properties. In this study, we have designed and fabricated a microfluidic device that combines hydrodynamic trapping of single cells in pre-defined locations with the capability of running electrical impedance measurements within the same device. We have measured mouse embryonic stem cells (mESCs) at different states during differentiation (t=0 h, 24 h and 48 h) and quantitatively analysed the changes in electrical parameters of cells during differentiation. A marked increase in the magnitude of the cell impedance is found during cell differentiation, which can be attributed to an increase in cell size. The analysis of the measurements shows that the nucleus-to-cytoplasm ratio decreases during this process. The degree of cell heterogeneity is observed to be the highest when the cells are at the transition state (24 h), compare with cells at undifferentiated (0 h) and fully differentiated (48 h) states. The device enables highly efficient single cell trapping and provides sensitive, label-free electrical impedance measurements of individual cells, enabling the possibility of quantitatively analysing their physical state as well as studying the associated heterogeneity of a cell population. PMID:26963790

  20. Comparison of Chip Inlet Geometry in Microfluidic Devices for Cell Studies.

    PubMed

    Sun, Yung-Shin

    2016-01-01

    Micro-fabricated devices integrated with fluidic components provide an in vitro platform for cell studies best mimicking the in vivo micro-environment. These devices are capable of creating precise and controllable surroundings of pH value, temperature, salt concentration, and other physical or chemical stimuli. Various cell studies such as chemotaxis and electrotaxis can be performed by using such devices. Moreover, microfluidic chips are designed and fabricated for applications in cell separations such as circulating tumor cell (CTC) chips. Usually, there are two most commonly used inlets in connecting the microfluidic chip to sample/reagent loading tubes: the vertical (top-loading) inlet and the parallel (in-line) inlet. Designing this macro-to-micro interface is believed to play an important role in device performance. In this study, by using the commercial COMSOL Multiphysics software, we compared the cell capture behavior in microfluidic devices with different inlet types and sample flow velocities. Three different inlets were constructed: the vertical inlet, the parallel inlet, and the vertically parallel inlet. We investigated the velocity field, the flow streamline, the cell capture rate, and the laminar shear stress in these inlets. It was concluded that the inlet should be designed depending on the experimental purpose, i.e., one wants to maximize or minimize cell capture. Also, although increasing the flow velocity could reduce cell sedimentation, too high shear stresses are thought harmful to cells. Our findings indicate that the inlet design and flow velocity are crucial and should be well considered in fabricating microfluidic devices for cell studies. PMID:27314318

  1. A microfluidic device for epigenomic profiling using 100 cells.

    PubMed

    Cao, Zhenning; Chen, Changya; He, Bing; Tan, Kai; Lu, Chang

    2015-10-01

    The sensitivity of chromatin immunoprecipitation (ChIP) assays poses a major obstacle for epigenomic studies of low-abundance cells. Here we present a microfluidics-based ChIP-seq protocol using as few as 100 cells via drastically improved collection of high-quality ChIP-enriched DNA. Using this technology, we uncovered many new enhancers and super enhancers in hematopoietic stem and progenitor cells from mouse fetal liver, suggesting that enhancer activity is highly dynamic during early hematopoiesis. PMID:26214128

  2. A microfluidic device for epigenomic profiling using 100 cells

    PubMed Central

    Cao, Zhenning; Chen, Changya; He, Bing; Tan, Kai; Lu, Chang

    2015-01-01

    The sensitivity of chromatin immunoprecipitation (ChIP) assays poses a major obstacle for epigenomic studies of low-abundance cells. Here we present a microfluidics-based ChIP-Seq protocol using as few as 100 cells via drastically improved collection of high-quality ChIP-enriched DNA. Using this technology, we uncovered many novel enhancers and super enhancers in hematopoietic stem and progenitor cells from mouse fetal liver, suggesting that enhancer activity is highly dynamic during early hematopoiesis. PMID:26214128

  3. Selective Label-free Electrokinetic Cell Tracker (SELECT): a novel liquid platform for cell characterization

    NASA Astrophysics Data System (ADS)

    Taruvai Kalyana Kumar, Rajeshwari; de Mello Gindri, Izabelle; Kinnamon, David; Kanchustambham, Pradyotha; Rodrigues, Danieli; Prasad, Shalini; BiomaterialsOsseointegration; Novel Engineering Lab Collaboration

    2015-03-01

    Characterization and analysis of rare cells provide critical cues for early diagnosis of diseases. Electrokinetic cell separation has been previously established to have greater efficiency when compared to traditional flow cytometry methods. It has been shown by many researchers that buffer solutions in which cells are suspended in, have enormous effects on producing required dielectrophoretic (DEP) forces to characterize cells. Most commonly used suspension buffers used are deionized water and cell media. However, these solutions exhibit high level of intrinsic noise, which greatly masks the electrokinetic signals from cells under study. Ionic liquids (ILs) show promise towards the creation of conductive fluids with required electrical properties. The goal of this project is to design and test ILs for enhancing DEP forces on cells while creating an environment for preserving their integrity. We analyzed two methylimidazolium based ILs as suspension medium for cell separation. These dicationic ILs possess slight electrical and structural differences with high thermal stability. The two ILs were tested for cytotoxicity using HeLa and bone cells. The effects of electrical neutrality, free charge screening due to ILs towards enhanced electrokinetic signals from cells were studied with improved system resolution and no harmful effects.

  4. The selection and function of cell type-specific enhancers.

    PubMed

    Heinz, Sven; Romanoski, Casey E; Benner, Christopher; Glass, Christopher K

    2015-03-01

    The human body contains several hundred cell types, all of which share the same genome. In metazoans, much of the regulatory code that drives cell type-specific gene expression is located in distal elements called enhancers. Although mammalian genomes contain millions of potential enhancers, only a small subset of them is active in a given cell type. Cell type-specific enhancer selection involves the binding of lineage-determining transcription factors that prime enhancers. Signal-dependent transcription factors bind to primed enhancers, which enables these broadly expressed factors to regulate gene expression in a cell type-specific manner. The expression of genes that specify cell type identity and function is associated with densely spaced clusters of active enhancers known as super-enhancers. The functions of enhancers and super-enhancers are influenced by, and affect, higher-order genomic organization. PMID:25650801

  5. A microwell array device capable of measuring single-cell oxygen consumption rates

    PubMed Central

    Molter, Timothy W.; McQuaide, Sarah C.; Suchorolski, Martin T.; Strovas, Tim J.; Burgess, Lloyd W.; Meldrum, Deirdre R.; Lidstrom, Mary E.

    2009-01-01

    Due to interest in cell population heterogeneity, the development of new technology and methodologies for studying single cells has dramatically increased in recent years. The ideal single cell measurement system would be high throughput for statistical relevance, would measure the most important cellular parameters, and minimize disruption of normal cell function. We have developed a microwell array device capable of measuring single cell oxygen consumption rates (OCR). This OCR device is able to diffusionally isolate single cells and enables the quantitative measurement of oxygen consumed by a single cell with fmol/min resolution in a non-invasive and relatively high throughput manner. A glass microwell array format containing fixed luminescent sensors allows for future incorporation of additional cellular parameter sensing capabilities. To demonstrate the utility of the OCR device, we determined the oxygen consumption rates of a small group of single cells (12 to 18) for three different cells lines: murine macrophage cell line RAW264.7, human epithelial lung cancer cell line A549, and human Barrett’s esophagus cell line CP-D. PMID:20084089

  6. Hole-selective and impedance characteristics of an aqueous solution-processable MoO3 layer for solution-processable organic semiconducting devices

    NASA Astrophysics Data System (ADS)

    Moon, Byung Seuk; Lee, Soo-Hyoung; Huh, Yoon Ho; Park, Byoungchoo

    2015-02-01

    We herein report an investigation of aqueous solution-processable molybdenum-oxide (MoO3) hole-selective layers fabricated for solution-processable organic semiconducting devices. A homogeneous MoO3 layer was successfully deposited via spin-coating using aqueous solutions of ammonium heptamolybdate as a MoO3 precursor. The use of the solution-processable MoO3 layer as a hole-injecting layer (HIL) on an indium-tin-oxide (ITO) anode in solution-processable organic light-emitting diodes (OLEDs) resulted in excellent device performance in terms of the brightness (maximum brightness of 37,000 cd m-2) and the efficiency (peak efficiency of 25.2 cd A-1), comparable to or better than those of a reference OLED with a conventional poly(ethylenedioxy thiophene):poly(styrene sulfonate) (PEDOT:PSS) HIL. Such good device performance is attributed to the water-processable MoO3 hole-selective layers, which allowed the formation of a high-quality film and provided good matching of the energy levels between adjacent layers with improved hole-injecting properties, impedance characteristics, and stability. Furthermore, polymer solar cells (PSCs) with a MoO3 layer used as a hole-collecting layer (HCL) showed improved power conversion efficiency (3.81%), which was higher than that obtained using the PEDOT:PSS HCL. These results clearly indicate the benefits of using a water-processable MoO3 layer, which effectively acts as a hole-selective layer on an ITO anode and provides good hole-injection/collection, electron-blocking and energy-level-matching properties, and improved stability. They, therefore, offer considerable promise as an alternative to a conventional PEDOT:PSS layer in the production of high-performance solution-processable organic semiconducting devices.

  7. Directional summation in non-direction selective retinal ganglion cells.

    PubMed

    Abbas, Syed Y; Hamade, Khaldoun C; Yang, Ellen J; Nawy, Scott; Smith, Robert G; Pettit, Diana L

    2013-01-01

    Retinal ganglion cells receive inputs from multiple bipolar cells which must be integrated before a decision to fire is made. Theoretical studies have provided clues about how this integration is accomplished but have not directly determined the rules regulating summation of closely timed inputs along single or multiple dendrites. Here we have examined dendritic summation of multiple inputs along On ganglion cell dendrites in whole mount rat retina. We activated inputs at targeted locations by uncaging glutamate sequentially to generate apparent motion along On ganglion cell dendrites in whole mount retina. Summation was directional and dependent13 on input sequence. Input moving away from the soma (centrifugal) resulted in supralinear summation, while activation sequences moving toward the soma (centripetal) were linear. Enhanced summation for centrifugal activation was robust as it was also observed in cultured retinal ganglion cells. This directional summation was dependent on hyperpolarization activated cyclic nucleotide-gated (HCN) channels as blockade with ZD7288 eliminated directionality. A computational model confirms that activation of HCN channels can override a preference for centripetal summation expected from cell anatomy. This type of direction selectivity could play a role in coding movement similar to the axial selectivity seen in locust ganglion cells which detect looming stimuli. More generally, these results suggest that non-directional retinal ganglion cells can discriminate between input sequences independent of the retina network. PMID:23516351

  8. Directional Summation in Non-direction Selective Retinal Ganglion Cells

    PubMed Central

    Abbas, Syed Y.; Hamade, Khaldoun C.; Yang, Ellen J.; Nawy, Scott; Smith, Robert G.; Pettit, Diana L.

    2013-01-01

    Retinal ganglion cells receive inputs from multiple bipolar cells which must be integrated before a decision to fire is made. Theoretical studies have provided clues about how this integration is accomplished but have not directly determined the rules regulating summation of closely timed inputs along single or multiple dendrites. Here we have examined dendritic summation of multiple inputs along On ganglion cell dendrites in whole mount rat retina. We activated inputs at targeted locations by uncaging glutamate sequentially to generate apparent motion along On ganglion cell dendrites in whole mount retina. Summation was directional and dependent13 on input sequence. Input moving away from the soma (centrifugal) resulted in supralinear summation, while activation sequences moving toward the soma (centripetal) were linear. Enhanced summation for centrifugal activation was robust as it was also observed in cultured retinal ganglion cells. This directional summation was dependent on hyperpolarization activated cyclic nucleotide-gated (HCN) channels as blockade with ZD7288 eliminated directionality. A computational model confirms that activation of HCN channels can override a preference for centripetal summation expected from cell anatomy. This type of direction selectivity could play a role in coding movement similar to the axial selectivity seen in locust ganglion cells which detect looming stimuli. More generally, these results suggest that non-directional retinal ganglion cells can discriminate between input sequences independent of the retina network. PMID:23516351

  9. Cold Atmospheric Plasma for Selectively Ablating Metastatic Breast Cancer Cells

    PubMed Central

    Wang, Mian; Holmes, Benjamin; Cheng, Xiaoqian; Zhu, Wei; Keidar, Michael; Zhang, Lijie Grace

    2013-01-01

    Traditional breast cancer treatments such as surgery and radiotherapy contain many inherent limitations with regards to incomplete and nonselective tumor ablation. Cold atomospheric plasma (CAP) is an ionized gas where the ion temperature is close to room temperature. It contains electrons, charged particles, radicals, various excited molecules, UV photons and transient electric fields. These various compositional elements have the potential to either enhance and promote cellular activity, or disrupt and destroy them. In particular, based on this unique composition, CAP could offer a minimally-invasive surgical approach allowing for specific cancer cell or tumor tissue removal without influencing healthy cells. Thus, the objective of this research is to investigate a novel CAP-based therapy for selectively bone metastatic breast cancer treatment. For this purpose, human metastatic breast cancer (BrCa) cells and bone marrow derived human mesenchymal stem cells (MSCs) were separately treated with CAP, and behavioral changes were evaluated after 1, 3, and 5 days of culture. With different treatment times, different BrCa and MSC cell responses were observed. Our results showed that BrCa cells were more sensitive to these CAP treatments than MSCs under plasma dose conditions tested. It demonstrated that CAP can selectively ablate metastatic BrCa cells in vitro without damaging healthy MSCs at the metastatic bone site. In addition, our study showed that CAP treatment can significantly inhibit the migration and invasion of BrCa cells. The results suggest the great potential of CAP for breast cancer therapy. PMID:24040051

  10. Short protection device for stack of electrolytic cells

    DOEpatents

    Katz, Murray; Schroll, Craig R.

    1985-10-22

    Electrical short protection is provided in an electrolytic cell stack by the combination of a thin, nonporous ceramic shield and a noble metal foil disposed on opposite sides of the sealing medium in a gas manifold gasket. The thin ceramic shield, such as alumina, is placed between the porous gasket and the cell stack face at the margins of the negative end plate to the most negative cells to impede ion current flow. The noble metal foil, for instance gold, is electrically coupled to the negative potential of the stack to collect positive ions at a harmless location away from the stack face. Consequently, corrosion products from the stack structure deposit on the foil rather than on the stack face to eliminate electrical shorting of cells at the negative end of the stack.

  11. Magnetic micro-device for manipulating PC12 cell migration and organization.

    PubMed

    Alon, N; Havdala, T; Skaat, H; Baranes, K; Marcus, M; Levy, I; Margel, S; Sharoni, A; Shefi, O

    2015-05-01

    Directing neuronal migration and growth has an important impact on potential post traumatic therapies. Magnetic manipulation is an advantageous method for remotely guiding cells. In the present study, we have generated highly localized magnetic fields with controllable magnetic flux densities to manipulate neuron-like cell migration and organization at the microscale level. We designed and fabricated a unique miniaturized magnetic device composed of an array of rectangular ferromagnetic bars made of permalloy (Ni80Fe20), sputter-deposited onto glass substrates. The asymmetric shape of the magnets enables one to design a magnetic landscape with high flux densities at the poles. Iron oxide nanoparticles were introduced into PC12 cells, making the cells magnetically sensitive. First, we manipulated the cells by applying an external magnetic field. The magnetic force was strong enough to direct PC12 cell migration in culture. Based on time lapse observations, we analysed the movement of the cells and estimated the amount of MNPs per cell. We plated the uploaded cells on the micro-patterned magnetic device. The cells migrated towards the high magnetic flux zones and aggregated at the edges of the patterned magnets, corroborating that the cells with magnetic nanoparticles are indeed affected by the micro-magnets and attracted to the bars' magnetic poles. Our study presents an emerging method for the generation of pre-programmed magnetic micro-'hot spots' to locate and direct cellular growth, setting the stage for implanted magnetic devices. PMID:25792133

  12. Quantitative Study of Cell Invasion Process under Extracellular Stimulation of Cytokine in a Microfluidic Device

    PubMed Central

    Lei, Kin Fong; Tseng, Hsueh-Peng; Lee, Chia-Yi; Tsang, Ngan-Ming

    2016-01-01

    Cell invasion is the first step of cancer metastasis that is the primary cause of death for cancer patients and defined as cell movement through extracellular matrix (ECM). Investigation of the correlation between cell invasive and extracellular stimulation is critical for the inhabitation of metastatic dissemination. Conventional cell invasion assay is based on Boyden chamber assay, which has a number of limitations. In this work, a microfluidic device incorporating with impedance measurement technique was developed for quantitative investigation of cell invasion process. The device consisted of 2 reservoirs connecting with a microchannel filled with hydrogel. Malignant cells invaded along the microchannel and impedance measurement was concurrently conducted by measuring across electrodes located at the bottom of the microchannel. Therefore, cell invasion process could be monitored in real-time and non-invasive manner. Also, cell invasion rate was then calculated to study the correlation between cell invasion and extracellular stimulation, i.e., IL-6 cytokine. Results showed that cell invasion rate was directly proportional to the IL-6 concentration. The microfluidic device provides a reliable and convenient platform for cell-based assays to facilitate more quantitative assessments in cancer research. PMID:27150137

  13. Quantitative Study of Cell Invasion Process under Extracellular Stimulation of Cytokine in a Microfluidic Device.

    PubMed

    Lei, Kin Fong; Tseng, Hsueh-Peng; Lee, Chia-Yi; Tsang, Ngan-Ming

    2016-01-01

    Cell invasion is the first step of cancer metastasis that is the primary cause of death for cancer patients and defined as cell movement through extracellular matrix (ECM). Investigation of the correlation between cell invasive and extracellular stimulation is critical for the inhabitation of metastatic dissemination. Conventional cell invasion assay is based on Boyden chamber assay, which has a number of limitations. In this work, a microfluidic device incorporating with impedance measurement technique was developed for quantitative investigation of cell invasion process. The device consisted of 2 reservoirs connecting with a microchannel filled with hydrogel. Malignant cells invaded along the microchannel and impedance measurement was concurrently conducted by measuring across electrodes located at the bottom of the microchannel. Therefore, cell invasion process could be monitored in real-time and non-invasive manner. Also, cell invasion rate was then calculated to study the correlation between cell invasion and extracellular stimulation, i.e., IL-6 cytokine. Results showed that cell invasion rate was directly proportional to the IL-6 concentration. The microfluidic device provides a reliable and convenient platform for cell-based assays to facilitate more quantitative assessments in cancer research. PMID:27150137

  14. Quantitative Study of Cell Invasion Process under Extracellular Stimulation of Cytokine in a Microfluidic Device

    NASA Astrophysics Data System (ADS)

    Lei, Kin Fong; Tseng, Hsueh-Peng; Lee, Chia-Yi; Tsang, Ngan-Ming

    2016-05-01

    Cell invasion is the first step of cancer metastasis that is the primary cause of death for cancer patients and defined as cell movement through extracellular matrix (ECM). Investigation of the correlation between cell invasive and extracellular stimulation is critical for the inhabitation of metastatic dissemination. Conventional cell invasion assay is based on Boyden chamber assay, which has a number of limitations. In this work, a microfluidic device incorporating with impedance measurement technique was developed for quantitative investigation of cell invasion process. The device consisted of 2 reservoirs connecting with a microchannel filled with hydrogel. Malignant cells invaded along the microchannel and impedance measurement was concurrently conducted by measuring across electrodes located at the bottom of the microchannel. Therefore, cell invasion process could be monitored in real-time and non-invasive manner. Also, cell invasion rate was then calculated to study the correlation between cell invasion and extracellular stimulation, i.e., IL-6 cytokine. Results showed that cell invasion rate was directly proportional to the IL-6 concentration. The microfluidic device provides a reliable and convenient platform for cell-based assays to facilitate more quantitative assessments in cancer research.

  15. A simple packed bed device for antibody labelled rare cell capture from whole blood.

    PubMed

    Kralj, Jason G; Arya, Chandamany; Tona, Alessandro; Forbes, Thomas P; Munson, Matthew S; Sorbara, Lynn; Srivastava, Sudhir; Forry, Samuel P

    2012-12-01

    We have developed a system to isolate rare cells from whole blood using commercially available components and simple microfluidics. We characterized the capture of MCF-7 cells spiked into whole human blood using this system to demonstrate that enrichment and enumeration studies give results similar to in situ surface-modified devices while reducing fabrication and operation complexity. PMID:23079718

  16. Micro 3D cell culture systems for cellular behavior studies: Culture matrices, devices, substrates, and in-situ sensing methods.

    PubMed

    Choi, Jonghoon; Lee, Eun Kyu; Choo, Jaebum; Yuh, Junhan; Hong, Jong Wook

    2015-09-01

    Microfabricated systems equipped with 3D cell culture devices and in-situ cellular biosensing tools can be a powerful bionanotechnology platform to investigate a variety of biomedical applications. Various construction substrates such as plastics, glass, and paper are used for microstructures. When selecting a construction substrate, a key consideration is a porous microenvironment that allows for spheroid growth and mimics the extracellular matrix (ECM) of cell aggregates. Various bio-functionalized hydrogels are ideal candidates that mimic the natural ECM for 3D cell culture. When selecting an optimal and appropriate microfabrication method, both the intended use of the system and the characteristics and restrictions of the target cells should be carefully considered. For highly sensitive and near-cell surface detection of excreted cellular compounds, SERS-based microsystems capable of dual modal imaging have the potential to be powerful tools; however, the development of optical reporters and nanoprobes remains a key challenge. We expect that the microsystems capable of both 3D cell culture and cellular response monitoring would serve as excellent tools to provide fundamental cellular behavior information for various biomedical applications such as metastasis, wound healing, high throughput screening, tissue engineering, regenerative medicine, and drug discovery and development. PMID:26358782

  17. Building-Integrated Solar Energy Devices based on Wavelength Selective Films

    NASA Astrophysics Data System (ADS)

    Ulavi, Tejas

    A potentially attractive option for building integrated solar is to employ hybrid solar collectors which serve dual purposes, combining solar thermal technology with either thin film photovoltaics or daylighting. In this study, two hybrid concepts, a hybrid photovoltaic/thermal (PV/T) collector and a hybrid 'solar window', are presented and analyzed to evaluate technical performance. In both concepts, a wavelength selective film is coupled with a compound parabolic concentrator (CPC) to reflect and concentrate the infrared portion of the solar spectrum onto a tubular absorber. The visible portion of the spectrum is transmitted through the concentrator to either a thin film Cadmium Telluride (CdTe) solar panel for electricity generation or into the interior space for daylighting. Special attention is given to the design of the hybrid devices for aesthetic building integration. An adaptive concentrator design based on asymmetrical truncation of CPCs is presented for the hybrid solar window concept. The energetic and spectral split between the solar thermal module and the PV or daylighting module are functions of the optical properties of the wavelength selective film and the concentrator geometry, and are determined using a Monte Carlo Ray-Tracing (MCRT) model. Results obtained from the MCRT can be used in conjugation with meteorological data for specific applications to study the impact of CPC design parameters including the half-acceptance angle thetac, absorber diameter D and truncation on the annual thermal and PV/daylighting efficiencies. The hybrid PV/T system is analyzed for a rooftop application in Phoenix, AZ. Compared to a system of the same area with independent solar thermal and PV modules, the hybrid PV/T provides 20% more energy, annually. However, the increase in total delivered energy is due solely to the addition of the thermal module and is achieved at an expense of a decrease in the annual electrical efficiency from 8.8% to 5.8% due to shading by

  18. Inkjet printing of protein microarrays on freestanding polymeric nanofilms for spatio-selective cell culture environment.

    PubMed

    Fujie, Toshinori; Desii, Andrea; Ventrelli, Letizia; Mazzolai, Barbara; Mattoli, Virgilio

    2012-12-01

    In the last years, an increasing interest in bio-hybrid systems for what concerns the precise control of cell-material interactions has emerged. This trend leads towards the development of new nano-structured devices such as bioMEMS, tissue-engineering scaffolds, biosensors, etc. In the present study, we focused on the development of a spatio-selective cell culture environment based on the inkjet printing of bio-patterns on polymeric ultra-thin films (nanofilms) composed of poly(methylmethacrylate) (PMMA). Freestanding PMMA nanofilms having hundreds-of-nm thickness were prepared by spin-coating. Different shapes of cell adhesion promoters such as poly (L-lysine) (PLL) were micropatterned by inkjet printing. Moreover, to promote cell adhesion, the surface of PLL microarrays was modified with fibronectin via electorostatic interaction. The selective deposition of C2C12 skeletal muscle cells was confirmed and their viability was qualitatively assessed after 24 h. The combination of muscular cells with protein micropatterned freestanding nanofilm is beneficial for the implementation of new bio-hybrid system in muscular tissue engineering. PMID:22986760

  19. Selecting agonists from single cells infected with combinatorial antibody libraries.

    PubMed

    Zhang, Hongkai; Yea, Kyungmoo; Xie, Jia; Ruiz, Diana; Wilson, Ian A; Lerner, Richard A

    2013-05-23

    We describe a system for direct selection of antibodies that are receptor agonists. Combinatorial antibody libraries in lentiviruses are used to infect eukaryotic cells that contain a fluorescent reporter system coupled to the receptor for which receptor agonist antibodies are sought. In this embodiment of the method, very large numbers of candidate antibodies expressing lentivirus and eukaryotic reporter cells are packaged together in a format where each is capable of replication, thereby forging a direct link between genotype and phenotype. Following infection, cells that fluoresce are sorted and the integrated genes encoding the agonist antibodies recovered. We validated the system by illustrating its ability to generate rapidly potent antibody agonists that are complete thrombopoietin phenocopies. The system should be generalizable to any pathway where its activation can be linked to production of a selectable phenotype. PMID:23706638

  20. Metabolic selection of glycosylation defects in human cells

    SciTech Connect

    Yarema, Kevin J.; Goon, Scarlett; Bertozzi, Carolyn R.

    2000-08-01

    Changes in glycosylation are often associated with disease progression, but the genetic and metabolic basis of these events is rarely understood in detail at a molecular level. This report describes a novel metabolism-based approach to the selection of mutants in glycoconjugate biosynthesis that has provided insight into regulatory mechanisms for oligosaccharide expression and metabolic flux. Unnatural intermediates are used to challenge a specific pathway and cell-surface expression of their metabolic products provides a readout of flux in that pathway and a basis for selecting genetic mutants. The approach was applied to the sialic acid metabolic pathway in human cells, yielding novel mutants with phenotypes related to the inborn metabolic defect sialuria and metastatic tumor cells.

  1. Microfluidic Device for Stem Cell Differentiation and Localized Electroporation of Postmitotic Neurons

    PubMed Central

    Kang, Wonmo; Giraldo-Vela, Juan P.; Nathamgari, S. Shiva P.; McGuire, Tammy; McNaughton, Rebecca L.; Kessler, John A.; Espinosa, Horacio D.

    2014-01-01

    New techniques to deliver of nucleic acids and other molecules for gene editing and gene expression profiling, which can be performed with minimal perturbation to cell growth or differentiation, are essential for advancing biological research. Studying cells in their natural state, with temporal control, is particularly important for primary cells that are derived by differentiation from stem cells and are adherent, e.g., neurons. Existing high-throughput transfection methods either require cells to be in suspension or are highly toxic and limited to a single transfection per experiment. Here we present a microfluidic device that couples on-chip culture of adherent cells and transfection by localized electroporation. Integrated microchannels allow long-term cell culture on the device and repeated temporal transfection. The microfluidic device was validated by first performing electroporation of HeLa and HT1080 cells, with transfection efficiencies of ~95% for propidium iodide and up to 50% for plasmids. Application to primary cells was demonstrated by on-chip differentiation of neural stem cells and transfection of postmitotic neurons with a green fluorescent protein plasmid. PMID:25205561

  2. Selective growth of catalyst-free ZnO nanowire arrays on Al:ZnO for device application

    SciTech Connect

    Chung, T. F.; Luo, L. B.; He, Z. B.; Leung, Y. H.; Shafiq, I.; Yao, Z. Q.; Lee, S. T.

    2007-12-03

    Vertically aligned ZnO nanowire (NW) arrays have been synthesized selectively on patterned aluminum-doped zinc oxide (AZO) layer deposited on silicon substrates without using any metal catalysts. The growth region was defined by conventional photolithography with an insulating template. Careful control of the types of template materials and growth conditions allows good alignment and growth selectivity for ZnO NW arrays. Sharp ultraviolet band-edge peak observed in the photoluminescence spectra of the patterned ZnO NW arrays reveals good optical qualities. The current-voltage characteristics of ZnO NWs/AZO/p-Si device suggest that patterned and aligned ZnO NW arrays on AZO may be used in optoelectronic devices.

  3. Nanostructured Electron-Selective Interlayer for Efficient Inverted Organic Solar Cells.

    PubMed

    Song, Jiyun; Lim, Jaehoon; Lee, Donggu; Thambidurai, M; Kim, Jun Young; Park, Myeongjin; Song, Hyung-Jun; Lee, Seonghoon; Char, Kookheon; Lee, Changhee

    2015-08-26

    We report a unique nanostructured electron-selective interlayer comprising of In-doped ZnO (ZnO:In) and vertically aligned CdSe tetrapods (TPs) for inverted polymer:fullerene bulkheterojunction (BHJ) solar cells. With dimension-controlled CdSe TPs, the direct inorganic electron transport pathway is provided, resulting in the improvement of the short circuit current and fill factor of devices. We demonstrate that the enhancement is attributed to the roles of CdSe TPs that reduce the recombination losses between the active layer and buffer layer, improve the hole-blocking as well as electron-transporting properties, and simultaneously improve charge collection characteristics. As a result, the power conversion efficiency of PTB7:PC70BM based solar cell with nanostructured CdSe TPs increases to 7.55%. We expect this approach can be extended to a general platform for improving charge extraction in organic solar cells. PMID:26238224

  4. Multiple cell photoresponsive amorphous photo voltaic devices including graded ban gaps

    SciTech Connect

    Ovshinsky, S.R.; Adler, D.

    1990-09-04

    This patent describes an improved photoresponsive tandem multiple cell device. It comprises: at least first and second superimposed solar cells; the first cell being formed of an amorphous silicon alloy material; the second amorphous silicon alloy cell having an active photoresponsive region in which radiation can impinge to produce charge carriers. The amorphous silicon alloy cell body including at least one element for reducing the density of defect states to about 10{sup 16} defects per cubic centimeter and a band gap adjusting element graded through at least a portion of the photoresponsive region thereof to enhance the radiation absorption; the adjusting element being germanium, and the band gap of the cell being adjusted for a specified photoresponse wavelength threshold function different from the first cell; the second cell being a multi-layer body having deposited silicon alloy layers of opposite (p and n) conductivity type; and the first cell being formed with the second cell in substantially direct junction contact therebetween.

  5. Selectivity for multiple stimulus features in retinal ganglion cells.

    PubMed

    Fairhall, Adrienne L; Burlingame, C Andrew; Narasimhan, Ramesh; Harris, Robert A; Puchalla, Jason L; Berry, Michael J

    2006-11-01

    Under normal viewing conditions, retinal ganglion cells transmit to the brain an encoded version of the visual world. The retina parcels the visual scene into an array of spatiotemporal features, and each ganglion cell conveys information about a small set of these features. We study the temporal features represented by salamander retinal ganglion cells by stimulating with dynamic spatially uniform flicker and recording responses using a multi-electrode array. While standard reverse correlation methods determine a single stimulus feature--the spike-triggered average--multiple features can be relevant to spike generation. We apply covariance analysis to determine the set of features to which each ganglion cell is sensitive. Using this approach, we found that salamander ganglion cells represent a rich vocabulary of different features of a temporally modulated visual stimulus. Individual ganglion cells were sensitive to at least two and sometimes as many as six features in the stimulus. While a fraction of the cells can be described by a filter-and-fire cascade model, many cells have feature selectivity that has not previously been reported. These reverse models were able to account for 80-100% of the information encoded by ganglion cells. PMID:16914609

  6. Phototoxic aptamers selectively enter and kill epithelial cancer cells

    PubMed Central

    Ferreira, Cátia S. M.; Cheung, Melissa C.; Missailidis, Sotiris; Bisland, Stuart; Gariépy, Jean

    2009-01-01

    The majority of cancers arise from malignant epithelial cells. We report the design of synthetic oligonucleotides (aptamers) that are only internalized by epithelial cancer cells and can be precisely activated by light to kill such cells. Specifically, phototoxic DNA aptamers were selected to bind to unique short O-glycan-peptide signatures on the surface of breast, colon, lung, ovarian and pancreatic cancer cells. These surface antigens are not present on normal epithelial cells but are internalized and routed through endosomal and Golgi compartments by cancer cells, thus providing a focused mechanism for their intracellular delivery. When modified at their 5′ end with the photodynamic therapy agent chlorin e6 and delivered to epithelial cancer cells, these aptamers exhibited a remarkable enhancement (>500-fold increase) in toxicity upon light activation, compared to the drug alone and were not cytotoxic towards cell types lacking such O-glycan-peptide markers. Our findings suggest that these synthetic oligonucleotide aptamers can serve as delivery vehicles in precisely routing cytotoxic cargoes to and into epithelial cancer cells. PMID:19103663

  7. Biopolymer as an electron selective layer for inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Jin Tan, Mein; Zhong, Shu; Wang, Rui; Zhang, Zhongxing; Chellappan, Vijila; Chen, Wei

    2013-08-01

    In this work, a solution-processable electron selective layer is introduced for inverted polymer solar cells (PSCs). Cationic biopolymer poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) is used as a solution-processable work function modifier of indium-tin-oxide transparent conducting electrode to yield efficient inverted PSCs of 3.3% under AM1.5G illumination, with poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester as the active layer. Devices using PDMAEMA exhibit greater stability in ambient "working conditions" as compared to devices using ZnO, retaining 90% of peak power conversion efficiency after 8 weeks. Therefore, PDMAEMA has great potential as a universal work function modifier material with high robustness.

  8. Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions

    PubMed Central

    Ross, Alexandra P; Webster, Thomas J

    2013-01-01

    Current titanium-based implants are often anodized in sulfuric acid (H2SO4) for color coding purposes. However, a crucial parameter in selecting the material for an orthopedic implant is the degree to which it will integrate into the surrounding bone. Loosening at the bone–implant interface can cause catastrophic failure when motion occurs between the implant and the surrounding bone. Recently, a different anodization process using hydrofluoric acid has been shown to increase bone growth on commercially pure titanium and titanium alloys through the creation of nanotubes. The objective of this study was to compare, for the first time, the influence of anodizing a titanium alloy medical device in sulfuric acid for color coding purposes, as is done in the orthopedic implant industry, followed by anodizing the device in hydrofluoric acid to implement nanotubes. Specifically, Ti6Al4V model implant samples were anodized first with sulfuric acid to create color-coding features, and then with hydrofluoric acid to implement surface features to enhance osteoblast functions. The material surfaces were characterized by visual inspection, scanning electron microscopy, contact angle measurements, and energy dispersive spectroscopy. Human osteoblasts were seeded onto the samples for a series of time points and were measured for adhesion and proliferation. After 1 and 2 weeks, the levels of alkaline phosphatase activity and calcium deposition were measured to assess the long-term differentiation of osteoblasts into the calcium depositing cells. The results showed that anodizing in hydrofluoric acid after anodizing in sulfuric acid partially retains color coding and creates unique surface features to increase osteoblast adhesion, proliferation, alkaline phosphatase activity, and calcium deposition. In this manner, this study provides a viable method to anodize an already color coded, anodized titanium alloy to potentially increase bone growth for numerous implant applications

  9. Insulin-Producing Endocrine Cells Differentiated In Vitro From Human Embryonic Stem Cells Function in Macroencapsulation Devices In Vivo

    PubMed Central

    Ambruzs, Dana M.; Moorman, Mark A.; Bhoumik, Anindita; Cesario, Rosemary M.; Payne, Janice K.; Kelly, Jonathan R.; Haakmeester, Carl; Srijemac, Robert; Wilson, Alistair Z.; Kerr, Justin; Frazier, Mauro A.; Kroon, Evert J.; D’Amour, Kevin A.

    2015-01-01

    The PEC-01 cell population, differentiated from human embryonic stem cells (hESCs), contains pancreatic progenitors (PPs) that, when loaded into macroencapsulation devices (to produce the VC-01 candidate product) and transplanted into mice, can mature into glucose-responsive insulin-secreting cells and other pancreatic endocrine cells involved in glucose metabolism. We modified the protocol for making PEC-01 cells such that 73%–80% of the cell population consisted of PDX1-positive (PDX1+) and NKX6.1+ PPs. The PPs were further differentiated to islet-like cells (ICs) that reproducibly contained 73%–89% endocrine cells, of which approximately 40%–50% expressed insulin. A large fraction of these insulin-positive cells were single hormone-positive and expressed the transcription factors PDX1 and NKX6.1. To preclude a significant contribution of progenitors to the in vivo function of ICs, we used a simple enrichment process to remove remaining PPs, yielding aggregates that contained 93%–98% endocrine cells and 1%–3% progenitors. Enriched ICs, when encapsulated and implanted into mice, functioned similarly to the VC-01 candidate product, demonstrating conclusively that in vitro-produced hESC-derived insulin-producing cells can mature and function in vivo in devices. A scaled version of our suspension culture was used, and the endocrine aggregates could be cryopreserved and retain functionality. Although ICs expressed multiple important β cell genes, the cells contained relatively low levels of several maturity-associated markers. Correlating with this, the time to function of ICs was similar to PEC-01 cells, indicating that ICs required cell-autonomous maturation after delivery in vivo, which would occur concurrently with graft integration into the host. Significance Type 1 diabetes (T1D) affects approximately 1.25 million people in the U.S. alone and is deadly if not managed with insulin injections. This paper describes the production of insulin

  10. Dynamic monitoring of single cell lysis in an impedance-based microfluidic device.

    PubMed

    Zhou, Ying; Basu, Srinjan; Laue, Ernest D; Seshia, Ashwin A

    2016-08-01

    A microfluidic device that is capable of trapping and sensing dynamic variations in the electrical properties of individual cells is demonstrated. The device is applied to the real-time recording of impedance measurements of mouse embryonic stem cells (mESCs) during the process of membrane lysis, with the resulting changes in the electrical properties of cells during this process being quantitatively tracked over time. It is observed that the impedance magnitude decreases dramatically after cell membrane lysis. A significant shift in the phase spectrum is also observed during the time course of this process. By fitting experimental data to physical models, the electrical parameters of cells can be extracted and parameter variations quantified during the process. In the cell lysis experiments, the equivalent conductivity of the cell membrane is found to increase significantly due to pore formation in the membrane during lysis. An increase in the specific capacitance of the membrane is also observed. On the other hand, the conductivity of the cytoplasm is observed to decrease, which may be explained the fact that excess water enters the cell through the gradual permeabilization of the membrane during lysis. Cells can be trapped in the device for periods up to several days, and their electrical response can be monitored by real-time impedance measurements in a label-free and non-invasive manner. Furthermore, due to the highly efficient single cell trapping capacity of the device, a number of cells can be trapped and held in separate wells for concurrent parallel experiments, allowing for the possibility of stepped parametric experiments and studying cell heterogeneity by combining measurements across the array. PMID:27299468

  11. Device modeling of dye-sensitized solar cells.

    PubMed

    Bisquert, Juan; Marcus, Rudolph A

    2014-01-01

    We review the concepts and methods of modeling of the dye-sensitized solar cell, starting from fundamental electron transfer theory, and using phenomenological transport-conservation equations. The models revised here are aimed at describing the components of the current-voltage curve of the solar cell, based on small perturbation experimental methods, and to such an end, a range of phenomena occurring in the nanoparticulate electron transport materials, and at interfaces, are covered. Disorder plays a major role in the definition of kinetic parameters, and we introduce single particle as well as collective function definitions of diffusion coefficient and electron lifetime. Based on these fundamental considerations, applied tools of analysis of impedance spectroscopy are described, and we outline in detail the theory of recombination via surface states that is successful to describe the measured recombination resistance and lifetime. PMID:24085559

  12. Carrier-selective contacts for Si solar cells

    NASA Astrophysics Data System (ADS)

    Feldmann, F.; Simon, M.; Bivour, M.; Reichel, C.; Hermle, M.; Glunz, S. W.

    2014-05-01

    Carrier-selective contacts (i.e., minority carrier mirrors) are one of the last remaining obstacles to approaching the theoretical efficiency limit of silicon solar cells. In the 1980s, it was already demonstrated that n-type polysilicon and semi-insulating polycrystalline silicon emitters form carrier-selective emitters which enabled open-circuit voltages (Voc) of up to 720 mV. Albeit promising, to date a polysilicon emitter solar cell having a high fill factor (FF) has not been demonstrated yet. In this work, we report a polysilicon emitter related solar cell achieving both a high Voc = 694 mV and FF = 81%. The passivation mechanism of these so-called tunnel oxide passivated contacts will be outlined and the impact of TCO (transparent conductive oxide) deposition on the injection-dependent lifetime characteristic of the emitter as well as its implications on FF will be discussed. Finally, possible transport paths across the tunnel oxide barrier will be discussed and it will be shown that the passivating oxide layer does not lead to a relevant resistive loss and thus does not limit the solar cell's carrier transport. Contrary to amorphous silicon-based heterojunction solar cells, this structure also shows a good thermal stability and, thus, could be a very appealing option for next generation high-efficiency silicon solar cells.

  13. Subtractive Cell-SELEX Selection of DNA Aptamers Binding Specifically and Selectively to Hepatocellular Carcinoma Cells with High Metastatic Potential

    PubMed Central

    Chen, Hao; Yuan, Chun-Hui; Yang, Yi-Fei; Yin, Chang-Qing; Guan, Qing; Wang, Fu-Bing; Tu, Jian-Cheng

    2016-01-01

    Relapse and metastasis are two key risk factors of hepatocellular carcinoma (HCC) prognosis; thus, it is emergent to develop an early and accurate detection method for prognostic evaluation of HCC after surgery. In this study, we sought to acquire oligonucleotide DNA aptamers that specifically bind to HCC cells with high metastatic potential. Two HCC cell lines derived from the same genetic background but with different metastatic potential were employed: MHCC97L (low metastatic properties) as subtractive targets and HCCLM9 (high metastatic properties) as screening targets. To mimic a fluid combining environment, initial DNA aptamers library was firstly labelled with magnetic nanoparticles using biotin-streptavidin system and then applied for aptamers selection. Through 10-round selection with subtractive Cell-SELEX, six aptamers, LY-1, LY-13, LY-46, LY-32, LY-27/45, and LY-7/43, display high affinity to HCCLM9 cells and do not bind to MHCC97L cells, as well as other tumor cell lines, including breast cancer, lung cancer, colon adenocarcinoma, gastric cancer, and cervical cancer, suggesting high specificity for HCCLM9 cells. Thus, the aptamers generated here will provide solid basis for identifying new diagnostic targets to detect HCC metastasis and also may provide valuable clues for developing new targeted therapeutics. PMID:27119081

  14. Light trapping in thin film solar cells using photonic engineering device concepts

    NASA Astrophysics Data System (ADS)

    Mutitu, James Gichuhi

    In this era of uncertainty concerning future energy solutions, strong reservations have arisen over the continued use and pursuit of fossil fuels and other conventional sources of energy. Moreover, there is currently a strong and global push for the implementation of stringent measures, in order to reduce the amount of green house gases emitted by every nation. As a consequence, there has emerged a sudden and frantic rush for new renewable energy solutions. In this world of renewable energy technologies is where we find photovoltaic (PV) technology today. However, as is, there are still many issues that need to be addressed before solar energy technologies become economically viable and available to all people, in every part of the world. This renewed interest in the development of solar electricity, has led to the advancement of new avenues that address the issues of cost and efficiency associated with PV. To this end, one of the prominent approaches being explored is thin film solar cell (TFSC) technology, which offers prospects of lower material costs and enables larger units of manufacture than conventional wafer based technology. However, TFSC technologies suffer from one major problem; they have lower efficiencies than conventional wafer based solar cell technologies. This lesser efficiency is based on a number of reasons, one of which is that with less material, there is less volume for the absorption of incident photons. This shortcoming leads to the need for optical light trapping; which is concerned with admitting the maximum amount of light into the solar cell and keeping the light within the structure for as long as possible. In this thesis, I present the fundamental scientific ideas, practice and methodology behind the application of photonic engineering device concepts to increase the light trapping capacity of thin film solar cells. In the introductory chapters, I develop the basic ideas behind light trapping in a sequential manner, where the effects

  15. System, device, and methods for real-time screening of live cells, biomarkers, and chemical signatures

    DOEpatents

    Sundaram, S Kamakshi [Richland, WA; Riley, Brian J [West Richland, WA; Weber, Thomas J [Richland, WA; Sacksteder, Colette A [West Richland, WA; Addleman, R Shane [Benton City, WA

    2011-06-07

    An ATR-FTIR device and system are described that defect live-cell responses to stimuli and perturbations in real-time. The system and device can monitor perturbations resulting from exposures to various physical, chemical, and biological materials in real-time, as well as those sustained over a long period of time, including those associated with stimuli having unknown modes-of-action (e.g. nanoparticles). The device and system can also be used to identify specific chemical species or substances that profile cellular responses to these perturbations.

  16. A design handbook for phase change thermal control and energy storage devices. [selected paraffins

    NASA Technical Reports Server (NTRS)

    Humphries, W. R.; Griggs, E. I.

    1977-01-01

    Comprehensive survey is given of the thermal aspects of phase change material devices. Fundamental mechanisms of heat transfer within the phase change device are discussed. Performance in zero-g and one-g fields are examined as it relates to such a device. Computer models for phase change materials, with metal fillers, undergoing conductive and convective processes are detailed. Using these models, extensive parametric data are presented for a hypothetical configuration with a rectangular phase change housing, using straight fins as the filler, and paraffin as the phase change material. These data are generated over a range of realistic sizes, material properties, and thermal boundary conditions. A number of illustrative examples are given to demonstrate use of the parametric data. Also, a complete listing of phase change material property data are reproduced herein as an aid to the reader.

  17. Selected fault testing of electronic isolation devices used in nuclear power plant operation

    SciTech Connect

    Villaran, M.; Hillman, K.; Taylor, J.; Lara, J.; Wilhelm, W.

    1994-05-01

    Electronic isolation devices are used in nuclear power plants to provide electrical separation between safety and non-safety circuits and systems. Major fault testing in an earlier program indicated that some energy may pass through an isolation device when a fault at the maximum credible potential is applied in the transverse mode to its output terminals. During subsequent field qualification testing of isolators, concerns were raised that the worst case fault, that is, the maximum credible fault (MCF), may not occur with a fault at the maximum credible potential, but rather at some lower potential. The present test program investigates whether problems can arise when fault levels up to the MCF potential are applied to the output terminals of an isolator. The fault energy passed through an isolated device during a fault was measured to determine whether the levels are great enough to potentially damage or degrade performance of equipment on the input (Class 1E) side of the isolator.

  18. Excellent nonlinearity of a selection device based on anti-series connected Zener diodes for ultrahigh-density bipolar RRAM arrays.

    PubMed

    Li, Yingtao; Li, Rongrong; Fu, Liping; Gao, Xiaoping; Wang, Yang; Tao, Chunlan

    2015-10-23

    A crossbar array is usually used for the high-density application of a resistive random access memory (RRAM) device. However, the cross-talk interference limits the increase in the integration density. In this paper, anti-series connected Zener diodes as a selection device are proposed for bipolar RRAM arrays. Simulation results show that, by using the anti-series connected Zener diodes as a selection device, the readout margin is sufficiently improved compared to that obtained without a selection device or with anti-parallel connected diodes as the selection device. The maximum size of the crossbar arrays with anti-series connected Zener diodes as a selection device over 1 TB is estimated by theoretical simulation. In addition, the feasibility of using the anti-series connected Zener diodes as a selection device for bipolar RRAM is demonstrated experimentally. These results indicate that anti-series connected Zener diodes as a selection device opens up great opportunities to realize ultrahigh-density bipolar RRAM arrays. PMID:26422279

  19. Selective Cell Targeting with Light-Absorbing Microparticles and Nanoparticles

    PubMed Central

    Pitsillides, Costas M.; Joe, Edwin K.; Wei, Xunbin; Anderson, R. Rox; Lin, Charles P.

    2003-01-01

    We describe a new method for selective cell targeting based on the use of light-absorbing microparticles and nanoparticles that are heated by short laser pulses to create highly localized cell damage. The method is closely related to chromophore-assisted laser inactivation and photodynamic therapy, but is driven solely by light absorption, without the need for photochemical intermediates (particularly singlet oxygen). The mechanism of light-particle interaction was investigated by nanosecond time-resolved microscopy and by thermal modeling. The extent of light-induced damage was investigated by cell lethality, by cell membrane permeability, and by protein inactivation. Strong particle size dependence was found for these interactions. A technique based on light to target endogenous particles is already being exploited to treat pigmented cells in dermatology and ophthalmology. With exogenous particles, phamacokinetics and biodistribution studies are needed before the method can be evaluated against photodynamic therapy for cancer treatment. However, particles are unique, unlike photosensitizers, in that they can remain stable and inert in cells for extended periods. Thus they may be particularly useful for prelabeling cells in engineered tissue before implantation. Subsequent irradiation with laser pulses will allow control of the implanted cells (inactivation or modulation) in a noninvasive manner. PMID:12770906

  20. Regulated selection of germinal-center cells into the memory B cell compartment.

    PubMed

    Shinnakasu, Ryo; Inoue, Takeshi; Kometani, Kohei; Moriyama, Saya; Adachi, Yu; Nakayama, Manabu; Takahashi, Yoshimasa; Fukuyama, Hidehiro; Okada, Takaharu; Kurosaki, Tomohiro

    2016-07-01

    Despite the importance of memory B cells in protection from reinfection, how such memory cells are selected and generated during germinal-center (GC) reactions remains unclear. We found here that light-zone (LZ) GC B cells with B cell antigen receptors (BCRs) of lower affinity were prone to enter the memory B cell pool. Mechanistically, cells in this memory-prone fraction had higher expression of the transcriptional repressor Bach2 than that of their counterparts with BCRs of higher affinity. Haploinsufficiency of Bach2 resulted in reduced generation of memory B cells, independently of suppression of the gene encoding the transcription factor Blimp-1. Bach2 expression in GC cells was inversely correlated with the strength of help provided by T cells. Thus, we propose an instructive model in which weak help from T cells maintains relatively high expression of Bach2, which predisposes GC cells to enter the memory pool. PMID:27158841

  1. Conductivity based on selective etch for GaN devices and applications thereof

    SciTech Connect

    Zhang, Yu; Sun, Qian; Han, Jung

    2015-12-08

    This invention relates to methods of generating NP gallium nitride (GaN) across large areas (>1 cm.sup.2) with controlled pore diameters, pore density, and porosity. Also disclosed are methods of generating novel optoelectronic devices based on porous GaN. Additionally a layer transfer scheme to separate and create free-standing crystalline GaN thin layers is disclosed that enables a new device manufacturing paradigm involving substrate recycling. Other disclosed embodiments of this invention relate to fabrication of GaN based nanocrystals and the use of NP GaN electrodes for electrolysis, water splitting, or photosynthetic process applications.

  2. Cell separator for use in bipolar-stack energy storage devices

    DOEpatents

    Mayer, S.T.; Feikert, J.H.; Kachmitter, J.L.; Pekala, R.W.

    1995-02-28

    An improved multi-cell electrochemical energy storage device is described, such as a battery, fuel cell, or double layer capacitor using a cell separator which allows cells to be stacked and interconnected with low electrical resistance and high reliability while maximizing packaging efficiency. By adding repeating cells, higher voltages can be obtained. The cell separator is formed by applying an organic adhesive on opposing surfaces of adjacent carbon electrodes or surfaces of aerogel electrodes of a pair of adjacent cells prior to or after pyrolysis thereof to form carbon aerogel electrodes. The cell separator is electronically conductive, but ionically isolating, preventing an electrolytic conduction path between adjacent cells in the stack. 2 figs.

  3. Characterization of two subpopulations of the PICM-19 porcine liver stem cell line for use in cell-based extracorporeal liver assistance devices.

    PubMed

    Talbot, Neil C; Caperna, Thomas J; Willard, Ryan R; Meekin, John H; Garrett, Wesley M

    2010-06-01

    Two cell lines, PICM-19H and PICM-19B, were derived from the bipotent PICM-19 pig liver stem cell line and assessed for their potential application in artificial liver devices (ALD). The study included assessments of growth rate and cell density in culture, morphological features, serum protein production, gamma-glutamyltranspeptidase (GGT) activity and hepatocyte detoxification functions, i.e., inducible P450 activity, ammonia clearance, and urea production. The PICM-19H cell line was derived by temperature selection at 33-34 degrees C. After each passage, PICM-19H cells grew to a nearly confluent monolayer of cells of hepatocyte morphology, i.e., cuboidal cells with centrally located nuclei joined by biliary canaliculi. No differentiation and self-organization into multi-cellular bile ductules, as observed in the parental PICM-19 cell line, occurred within the PICM-19H cell monolayers. The PICM-19H cells contained numerous mitochondria, Golgi apparatus, smooth and rough endoplasmic reticulum, vesicular bodies and occasional lipid vacuoles. The cells had a doubling time of 48-72 h and reached a final density of 1.5 x 10(5) cells/cm(2) at approximately10 d post-passage from a 1:6 split ratio. PICM-19H cells displayed inducible P450 activity, cleared ammonia, and produced urea in a glutamine-free medium. The PICM-19B cells were colony-cloned after spontaneous generation from the PICM-19 parental cell line. PICM-19B cells grew as a tightly knit dome-forming monolayer with no visible biliary canaliculi. Their doubling time was 48-72 h with a final cell density of 2.6 x 10(5) cells/cm(2). Ultrastructural analysis of the PICM-19B monolayers showed the roughly cuboidal cells displayed basal-apical polarization and were joined by tight junction-like complexes. Other ultrastructure features were similar to those of PICM-19H cells except that they possessed numerous cell bodies resembling mucus vacuoles. The PICM-19B cells had relatively high levels of GGT activity, but did

  4. Adipose-derived stem cells: selecting for translational success

    PubMed Central

    Johal, Kavan S; Lees, Vivien C; Reid, Adam J

    2016-01-01

    We have witnessed a rapid expansion of in vitro characterization and differentiation of adipose-derived stem cells, with increasing translation to both in vivo models and a breadth of clinical specialties. However, an appreciation of the truly heterogeneous nature of this unique stem cell group has identified a need to more accurately delineate subpopulations by any of a host of methods, to include functional properties or surface marker expression. Cells selected for improved proliferative, differentiative, angiogenic or ischemia-resistant properties are but a few attributes that could prove beneficial for targeted treatments or therapies. Optimizing cell culture conditions to permit re-introduction to patients is critical for clinical translation. PMID:25562354

  5. A device to study the effects of stretch gradients on cell behavior.

    PubMed

    Richardson, William J; Metz, Richard P; Moreno, Michael R; Wilson, Emily; Moore, James E

    2011-10-01

    Mechanical forces are key regulators of cell function with varying loads capable of modulating behaviors such as alignment, migration, phenotype modulation, and others. Historically, cell-stretching experiments have employed mechanically simple environments (e.g., uniform uniaxial or equibiaxial stretches). However, stretch distributions in vivo can be highly non-uniform, particularly in cases of disease or subsequent to interventional treatments. Herein, we present a cell-stretching device capable of subjecting cells to controllable gradients in biaxial stretch via radial deformation of circular elastomeric membranes. By including either a defect or a rigid fixation at the center of the membrane, various gradients are generated. Capabilities of the device were quantified by tracking marked positions of the membrane while applying various loads, and experimental feasibility was assessed by conducting preliminary experiments with 3T3 fibroblasts and 10T1/2 cells subjected to 24 h of cyclic stretch. Quantitative real-time PCR was used to measure changes in mRNA expression of a profile of genes representing the major smooth muscle phenotypes. Genes associated with the contractile state were both upregulated (e.g., calponin) and downregulated (e.g., α-2-actin), and genes associated with the synthetic state were likewise both upregulated (e.g., SKI-like oncogene) and downregulated (e.g., collagen III). In addition, cells aligned with an orientation perpendicular to the maximal stretch direction. We have developed an in vitro cell culture device that can produce non-uniform stretch environments similar to in vivo mechanics. Cells stretched with this device showed alignment and altered mRNA expression indicative of phenotype modulation. Understanding these processes as they relate to in vivo pathologies could enable a more accurately targeted treatment to heal or inhibit disease, either through implantable device design or pharmaceutical approaches. PMID:22070333

  6. The cell injury device: a high-throughput platform for traumatic brain injury research.

    PubMed

    Jowers, Casey T; Taberner, Andrew J; Dragunow, Mike; Anderson, Iain A

    2013-08-15

    A novel, automated system for delivering controlled scratch-induced trauma to brain cells cultured in multi-well plates was created and characterized. The system is equipped with high-throughput imaging and analysis capabilities, enabling quantitative measurements of cell migration. The scratch-area coefficient of variation of the device was between 3.9% and 8.4%, a significant improvement over traditional manual methods, which provided a scratch-area coefficient of variation of between 10.7% and 19.6%. The device's inexpensive imaging and analysis capabilities were comparable to a well-known system, the Discovery-1 (Molecular Devices), with no significant difference found between the two. When used for drug screening, the gap area of Neuro2a cells after 72h was significantly larger in samples containing UO126 (20μM), averaging 0.89mm(2)±0.21mm(2); compared with an average vehicle control gap area of 0.42mm(2)±0.1mm(2). A gradient response could also be detected among samples with increasing UO126 concentrations (0-20μM), due to decreased migration and/or proliferation of cells into the gap over the time period. Our device provides an inexpensive method for delivering a standardized, closely controlled pressure/scratch to brain cells cultured in multi-well plates. The system provides more consistent patterns of scratch-induced trauma to cultured cells when compared to traditional methods. This device is an effective platform for quantifying the injury response of cells, and has applications in testing the effectiveness of drugs on cell migration and proliferation which might potentially treat traumatic brain injury. PMID:23660525

  7. Selection of Phage Display Peptides Targeting Human Pluripotent Stem Cell-Derived Progenitor Cell Lines.

    PubMed

    Bignone, Paola A; Krupa, Rachel A; West, Michael D; Larocca, David

    2016-01-01

    The ability of human pluripotent stem cells (hPS) to both self-renew and differentiate into virtually any cell type makes them a promising source of cells for cell-based regenerative therapies. However, stem cell identity, purity, and scalability remain formidable challenges that need to be overcome for translation of pluripotent stem cell research into clinical applications. Directed differentiation from hPS cells is inefficient and residual contamination with pluripotent cells that have the potential to form tumors remains problematic. The derivation of scalable (self-renewing) embryonic progenitor stem cell lines offers a solution because they are well defined and clonally pure. Clonally pure progenitor stem cell lines also provide a means for identifying cell surface targeting reagents that are useful for identification, tracking, and repeated derivation of the corresponding progenitor stem cell types from additional hPS cell sources. Such stem cell targeting reagents can then be applied to the manufacture of genetically diverse banks of human embryonic progenitor cell lines for drug screening, disease modeling, and cell therapy. Here we present methods to identify human embryonic progenitor stem cell targeting peptides by selection of phage display libraries on clonal embryonic progenitor cell lines and demonstrate their use for targeting quantum dots (Qdots) for stem cell labeling. PMID:25410289

  8. On-chip lysis of mammalian cells through a handheld corona device.

    PubMed

    Escobedo, C; Bürgel, S C; Kemmerling, S; Sauter, N; Braun, T; Hierlemann, A

    2015-07-21

    On-chip lysis is required in many lab-on-chip applications involving cell studies. In these applications, the complete disruption of the cellular membrane and a high lysis yield is essential. Here, we present a novel approach to lyse cells on-chip through the application of electric discharges from a corona handheld device. The method only requires a microfluidic chip and a low-cost corona device. We demonstrate the effective lysis of BHK and eGFP HCT 116 cells in the sub-second time range using an embedded microelectrode. We also show cell lysis of non-adherent K562 leukemia cells without the use of an electrode in the chip. Cell lysis has been assessed through the use of bright-field microscopy, high-speed imaging and cell-viability fluorescence probes. The experimental results show effective cell lysis without any bubble formation or significant heating. Due to the simplicity of both the components involved and the lysis procedure, this technique offers an inexpensive lysis option with the potential for integration into lab-on-a-chip devices. PMID:26055165

  9. Progress and challenges in macroencapsulation approaches for type 1 diabetes (T1D) treatment: Cells, biomaterials, and devices.

    PubMed

    Song, Shang; Roy, Shuvo

    2016-07-01

    Macroencapsulation technology has been an attractive topic in the field of treatment for Type 1 diabetes due to mechanical stability, versatility, and retrievability of the macro-capsule design. Macro-capsules can be categorized into extravascular and intravascular devices, in which solute transport relies either on diffusion or convection, respectively. Failure of macroencapsulation strategies can be due to limited regenerative capacity of the encased insulin-producing cells, sub-optimal performance of encapsulation biomaterials, insufficient immunoisolation, excessive blood thrombosis for vascular perfusion devices, and inadequate modes of mass transfer to support cell viability and function. However, significant technical advancements have been achieved in macroencapsulation technology, namely reducing diffusion distance for oxygen and nutrients, using pro-angiogenic factors to increase vascularization for islet engraftment, and optimizing membrane permeability and selectivity to prevent immune attacks from host's body. This review presents an overview of existing macroencapsulation devices and discusses the advances based on tissue-engineering approaches that will stimulate future research and development of macroencapsulation technology. Biotechnol. Bioeng. 2016;113: 1381-1402. © 2015 Wiley Periodicals, Inc. PMID:26615050

  10. Cell biology, molecular embryology, Lamarckian and Darwinian selection as evolvability.

    PubMed

    Hoenigsberg, H

    2003-01-01

    The evolvability of vertebrate systems involves various mechanisms that eventually generate cooperative and nonlethal functional variation on which Darwinian selection can operate. It is a truism that to get vertebrate animals to develop a coherent machine they first had to inherit the right multicellular ontogeny. The ontogeny of a metazoan involves cell lineages that progressively deny their own capacity for increase and for totipotency in benefit of the collective interest of the individual. To achieve such cell altruism Darwinian dynamics rescinded its original unicellular mandate to reproduce. The distinction between heritability at the level of the cell lineage and at the level of the individual is crucial. However, its implications have seldom been explored in depth. While all out reproduction is the Darwinian measure of success among unicellular organisms, a high replication rate of cell lineages within the organism may be deleterious to the individual as a functional unit. If a harmoniously functioning unit is to evolve, mechanisms must have evolved whereby variants that increase their own replication rate by failing to accept their own somatic duties are controlled. For questions involving organelle origins, see Godelle and Reboud, 1995 and Hoekstra, 1990. In other words, modifiers of conflict that control cell lineages with conflicting genes and new mutant replication rates that deviate from their somatic duties had to evolve. Our thesis is that selection at the level of the (multicellular) individual must have opposed selection at the level of the cell lineage. The metazoan embryo is not immune to this conflict especially with the evolution of set-aside cells and other modes of self-policing modifiers (Blackstone and Ellison, 1998; Ransick et al., 1996. In fact, the conflict between the two selection processes permitted a Lamarckian soma-to-germline feedback loop. This new element in metazoan ontogeny became the evolvability of the vertebrate adaptive

  11. Spheroid Formation and Evaluation of Hepatic Cells in a Three-Dimensional Culture Device

    PubMed Central

    Miyamoto, Yoshitaka; Ikeuchi, Masashi; Noguchi, Hirofumi; Yagi, Tohru; Hayashi, Shuji

    2015-01-01

    In drug discovery, it is very important to evaluate liver cells within an organism. Compared to 2D culture methods, the development of 3D culture techniques for liver cells has been successful in maintaining long-term liver functionality with the formation of a hepatic-specific structure. The key to performing drug testing is the establishment of a stable in vitro evaluation system. In this article, we report a Tapered Stencil for Cluster Culture (TASCL) device developed to create liver spheroids in vitro. The TASCL device will be applied as a toxicity evaluation system for drug discovery. The TASCL device was created with an overall size of 10 mm × 10 mm, containing 400 microwells with a top aperture (500 µm × 500 µm) and a bottom aperture (300 µm diameter circular) per microwell. We evaluated the formation, recovery, and size of HepG2 spheroids in the TASCL device. The formation and recovery were both nearly 100%, and the size of the HepG2 spheroids increased with an increase in the initial cell seeding density. There were no significant differences in the sizes of the spheroids among the microwells. In addition, the HepG2 spheroids obtained using the TASCL device were alive and produced albumin. The morphology of the HepG2 spheroids was investigated using FE-SEM. The spheroids in the microwells exhibited perfectly spherical aggregation. In this report, by adjusting the size of the microwells of the TASCL device, uniform HepG2 spheroids were created, and the device facilitated more precise measurements of the liver function per HepG2 spheroid. Our TASCL device will be useful for application as a toxicity evaluation system for drug testing. PMID:26858908

  12. Spheroid Formation and Evaluation of Hepatic Cells in a Three-Dimensional Culture Device.

    PubMed

    Miyamoto, Yoshitaka; Ikeuchi, Masashi; Noguchi, Hirofumi; Yagi, Tohru; Hayashi, Shuji

    2015-12-17

    In drug discovery, it is very important to evaluate liver cells within an organism. Compared to 2D culture methods, the development of 3D culture techniques for liver cells has been successful in maintaining long-term liver functionality with the formation of a hepatic-specific structure. The key to performing drug testing is the establishment of a stable in vitro evaluation system. In this article, we report a Tapered Stencil for Cluster Culture (TASCL) device developed to create liver spheroids in vitro. The TASCL device will be applied as a toxicity evaluation system for drug discovery. The TASCL device was created with an overall size of 10 mm × 10 mm, containing 400 microwells with a top aperture (500 µm × 500 µm) and a bottom aperture (300 µm diameter circular) per microwell. We evaluated the formation, recovery, and size of HepG2 spheroids in the TASCL device. The formation and recovery were both nearly 100%, and the size of the HepG2 spheroids increased with an increase in the initial cell seeding density. There were no significant differences in the sizes of the spheroids among the microwells. In addition, the HepG2 spheroids obtained using the TASCL device were alive and produced albumin. The morphology of the HepG2 spheroids was investigated using FE-SEM. The spheroids in the microwells exhibited perfectly spherical aggregation. In this report, by adjusting the size of the microwells of the TASCL device, uniform HepG2 spheroids were created, and the device facilitated more precise measurements of the liver function per HepG2 spheroid. Our TASCL device will be useful for application as a toxicity evaluation system for drug testing. PMID:26858908

  13. Fuel cell crimp-resistant cooling device with internal coil

    NASA Technical Reports Server (NTRS)

    Wittel, deceased, Charles F. (Inventor)

    1986-01-01

    A cooling assembly for fuel cells having a simplified construction whereby coolant is efficiently circulated through a conduit arranged in serpentine fashion in a channel within a member of such assembly. The channel is adapted to cradle a flexible, chemically inert, conformable conduit capable of manipulation into a variety of cooling patterns without crimping or otherwise restricting of coolant flow. The conduit, when assembled with the member, conforms into intimate contact with the member for good thermal conductivity. The conduit is non-corrodible and can be constructed as a single, manifold-free, continuous coolant passage means having only one inlet and one outlet. The conduit has an internal coil means which enables it to be bent in small radii without crimping.

  14. Formulation of selected renal cells for implantation into a kidney.

    PubMed

    Halberstadt, Craig; Robbins, Neil; McCoy, Darell W; Guthrie, Kelly I; Bruce, Andrew T; Knight, Toyin A; Payne, Richard G

    2013-01-01

    Delivery of cells to organs has primarily relied on formulating the cells in a nonviscous liquid carrier. We have developed a methodology to isolate selected renal cells (SRC) that have provided functional stability to damaged kidneys in preclinical models (Kelley et al. Poster presentation at 71st scientific sessions of American diabetes association , 2011; Kelley et al. Oral presentation given at Tissue Engineering and Regenerative Medicine International Society (TERMIS)-North America annual conference, 2010; Presnell et al. Tissue Eng Part C Methods 17:261-273, 2011; Kelley et al. Am J Physiol Renal Physiol 299:F1026-F1039, 2010). In order to facilitate SRC injection into the kidney of patients who have chronic kidney disease, we have developed a strategy to immobilize the cells in a hydrogel matrix. This hydrogel (gelatin) supports cells by maintaining them in a three-dimensional state during storage and shipment (both at cold temperatures) while facilitating the delivery of cells by liquefying when engrafting into the kidney. This chapter will define a method for the formulation of the kidney epithelial cells within a hydrogel. PMID:23494437

  15. Thymic Selection of T Cells as Diffusion with Intermittent Traps

    NASA Astrophysics Data System (ADS)

    Košmrlj, Andrej

    2011-04-01

    T cells orchestrate adaptive immune responses by recognizing short peptides derived from pathogens, and by distinguishing them from self-peptides. To ensure the latter, immature T cells (thymocytes) diffuse within the thymus gland, where they encounter an ensemble of self-peptides presented on (immobile) antigen presenting cells. Potentially autoimmune T cells are eliminated if the thymocyte binds sufficiently strongly with any such antigen presenting cell. We model thymic selection of T cells as a random walker diffusing in a field of immobile traps that intermittently turn "on" and "off". The escape probability of potentially autoimmune T cells is equivalent to the survival probability of such a random walker. In this paper we describe the survival probability of a random walker on a d-dimensional cubic lattice with randomly placed immobile intermittent traps, and relate it to the result of a well-studied problem where traps are always "on". Additionally, when switching between the trap states is slow, we find a peculiar caging effect for the survival probability.

  16. CRK proteins selectively regulate T cell migration into inflamed tissues

    PubMed Central

    Huang, Yanping; Clarke, Fiona; Karimi, Mobin; Roy, Nathan H.; Williamson, Edward K.; Okumura, Mariko; Mochizuki, Kazuhiro; Chen, Emily J.H.; Park, Tae-Ju; Debes, Gudrun F.; Zhang, Yi; Curran, Tom; Kambayashi, Taku; Burkhardt, Janis K.

    2015-01-01

    Effector T cell migration into inflamed sites greatly exacerbates tissue destruction and disease severity in inflammatory diseases, including graft-versus-host disease (GVHD). T cell migration into such sites depends heavily on regulated adhesion and migration, but the signaling pathways that coordinate these functions downstream of chemokine receptors are largely unknown. Using conditional knockout mice, we found that T cells lacking the adaptor proteins CRK and CRK-like (CRKL) exhibit reduced integrin-dependent adhesion, chemotaxis, and diapedesis. Moreover, these two closely related proteins exhibited substantial functional redundancy, as ectopic expression of either protein rescued defects in T cells lacking both CRK and CRKL. We determined that CRK proteins coordinate with the RAP guanine nucleotide exchange factor C3G and the adhesion docking molecule CASL to activate the integrin regulatory GTPase RAP1. CRK proteins were required for effector T cell trafficking into sites of inflammation, but not for migration to lymphoid organs. In a murine bone marrow transplantation model, the differential migration of CRK/CRKL-deficient T cells resulted in efficient graft-versus-leukemia responses with minimal GVHD. Together, the results from our studies show that CRK family proteins selectively regulate T cell adhesion and migration at effector sites and suggest that these proteins have potential as therapeutic targets for preventing GVHD. PMID:25621495

  17. Class I MHC molecules on hematopoietic cells can support intrathymic positive selection of T cell receptor transgenic T cells

    PubMed Central

    Zerrahn, Jens; Volkmann, Ariane; Coles, Mark C.; Held, Werner; Lemonnier, Francois A.; Raulet, David H.

    1999-01-01

    The identity of cells that mediate positive selection of CD8+ T cells was investigated in two T cell receptor (TCR) transgenic systems. Irradiated β2-microglobulin mutant mice or mice with mutations in both the Kb and Db genes were repopulated with fetal liver cells from class I+ TCR transgenic mice. In the case of the 2C TCR, mature transgene-expressing CD8+ T cells appeared in the thymuses of the chimeras and in larger numbers in the peripheral lymphoid organs. These CD8+ T cells were functional, exhibited a naive, resting phenotype, and were mostly thymus-dependent. Their development depended on donor cell class I expression. These results establish that thymic hematopoietic cells can direct positive selection of CD8+ T cells expressing a conventional TCR. In contrast, no significant development of HY (male antigen)–TCR+ CD8+ T cells was observed in class I+ into class I-deficient chimeras. These data suggest that successful positive selection directed by hematopoietic cells depends on specific properties of the TCR or its thymic ligands. The possibility that hematopoietic cell-induced, positive selection occurs only with TCRs that exhibit relatively high avidity interactions with selecting ligands in the thymus is discussed. PMID:10500200

  18. Autophagy variation within a cell population determines cell fate through selective degradation of Fap-1.

    PubMed

    Gump, Jacob M; Staskiewicz, Leah; Morgan, Michael J; Bamberg, Alison; Riches, David W H; Thorburn, Andrew

    2014-01-01

    Autophagy regulates cell death both positively and negatively, but the molecular basis for this paradox remains inadequately characterized. We demonstrate here that transient cell-to-cell variations in autophagy can promote either cell death or survival depending on the stimulus and cell type. By separating cells with high and low basal autophagy using flow cytometry, we demonstrate that autophagy determines which cells live or die in response to death receptor activation. We have determined that selective autophagic degradation of the phosphatase Fap-1 promotes Fas apoptosis in Type I cells, which do not require mitochondrial permeabilization for efficient apoptosis. Conversely, autophagy inhibits apoptosis in Type II cells (which require mitochondrial involvement) or on treatment with TRAIL in either Type I or II cells. These data illustrate that differences in autophagy in a cell population determine cell fate in a stimulus- and cell-type-specific manner. This example of selective autophagy of an apoptosis regulator may represent a general mechanism for context-specific regulation of cell fate by autophagy. PMID:24316673

  19. Microfluidic devices with permeable polymer barriers for capture and transport of biomolecules and cells

    PubMed Central

    Lee, Ho Suk; Chu, Wai Keung; Zhang, Kun

    2013-01-01

    We report a method for fabricating permeable polymer microstructure barriers in polydimethylsiloxane (PDMS) microfluidic devices and the use of the devices to capture and transport DNA and cells. The polymer microstructure in a desired location in a fluidic channel is formed in situ by the polymerization of acrylamide and polyethylene diacrylate cross-linker (PEG-DA) monomer in a solution which is trapped in the location using a pair of PDMS valves. The porous polymer microstructure provides a mechanical barrier to convective fluid flow in the channel or between two microfluidic chambers while it still conducts ions or small charged species under an electric field, allowing for the rapid capture and transport of biomolecules and cells by electrophoresis. We have demonstrated the application of the devices for the rapid capture and efficient release of bacteriophage λ genomic DNA, solution exchange and for the transport and capture of HeLa cells. Our devices will enable the multi-step processing of biomolecules and cells or individual cells within a single microfluidic chamber. PMID:23828542

  20. Circulating tumor cell detection using carbon nanotube devices: specific versus non-specific interactions

    PubMed Central

    King, Benjamin C.; Burkhead, Thomas; Panchapakesan, Balaji

    2013-01-01

    Detection of circulating tumor cells (CTCs) from patient blood samples offers a desirable alternative to invasive tissue biopsies for screening of malignant carcinomas. A rigorous CTC detection method must identify CTCs from millions of other formed elements in blood and distinguish them from healthy tissue cells also present in the blood. CTCs are known to overexpress certain surface receptors, many of which aid them in invading other tissue, and these provide an avenue for their detection. We have developed carbon nanotube (CNT) thin film devices to specifically detect these receptors in intact cells. The CNT sidewalls are functionalized with antibodies specific to Epithelial Cell Adhesion Molecule (EpCAM), a marker overexpressed by breast and other carcinomas. Specific binding of EpCAM to anti-EpCAM causes a change in the local charge environment of the CNT surface which produces a characteristic electrical signal. Two cell lines are tested in the device: MCF7, a mammary adenocarcinoma line which overexpresses EpCAM, and MCF10A, a non-tumorigenic mammary epithelial line which does not. Introduction of MCF7s causes significant changes in the electrical conductance of the devices due to specific binding and associated charge environment change near the CNT sidewalls. Introduction of MCF10A displays a different profile due to purely nonspecific interactions. The profile of specific vs. nonspecific interaction signatures using carbon based devices will guide development of this diagnostic tool towards clinical sample volumes.

  1. Electromechanical cell lysis using a portable audio device: enabling challenging sample preparation at the point-of-care.

    PubMed

    Buser, J R; Wollen, A; Heiniger, E K; Byrnes, S A; Kauffman, P C; Ladd, P D; Yager, P

    2015-05-01

    Audio sources are ubiquitously available on portable electronic devices, including cell phones. Here we demonstrate lysis of Mycobacterium marinum and Staphylococcus epidermidis bacteria utilizing a portable audio device coupled with a simple and inexpensive electromagnetic coil. The resulting alternating magnetic field rotates a magnet in a tube with the sample and glass beads, lysing the cells and enabling sample preparation for these bacteria anywhere there is a cell phone, mp3 player, laptop, or other device with a headphone jack. PMID:25797443

  2. T cell receptor interactions with class I heavy-chain influence T cell selection

    PubMed Central

    Kuhns, Scott T.; Tallquist, Michelle D.; Johnson, Aaron J.; Mendez-Fernandez, Yanice; Pease, Larry R.

    2000-01-01

    The interaction of the T cell receptor (TCR) with peptide in the binding site of the major histocompatibility complex molecule provides the basis for T cell recognition during immune surveillance, repertoire development, and tolerance. Little is known about the extent to which repertoire selection is influenced directly by variation of the structure of the class I heavy chain. We find that the 2C TCR, normally positively selected in the context of the Kb molecule, is minimally selected into the CD8 lineage in the absence of antigen-processing genes. This finding underscores the importance of peptides in determining the positive-selecting class I ligands in the thymus. In contrast, Kbm3, a variant class I molecule that normally exerts a negative selection pressure on 2C-bearing T cells, positively selects 2C transgenic T cells into the CD8 lineage in an antigen-processing gene-deficient environment. These findings indicate that structural changes in the heavy chain can have direct influence in T cell recognition, from which we conclude that the nature of TCR interaction with class I heavy chain influences the array of TCRs selected during development of the functional adult repertoire. PMID:10639152

  3. Prolonged Drug Selection of Breast Cancer Cells and Enrichment of Cancer Stem Cell Characteristics

    PubMed Central

    Calcagno, Anna Maria; Salcido, Crystal D.; Gillet, Jean-Pierre; Wu, Chung-Pu; Fostel, Jennifer M.; Mumau, Melanie D.; Gottesman, Michael M.; Varticovski, Lyuba

    2010-01-01

    Background Cancer stem cells are presumed to have virtually unlimited proliferative and self-renewal abilities and to be highly resistant to chemotherapy, a feature that is associated with overexpression of ATP-binding cassette transporters. We investigated whether prolonged continuous selection of cells for drug resistance enriches cultures for cancer stem–like cells. Methods Cancer stem cells were defined as CD44+/CD24− cells that could self-renew (ie, generate cells with the tumorigenic CD44+/CD24− phenotype), differentiate, invade, and form tumors in vivo. We used doxorubicin-selected MCF-7/ADR cells, weakly tumorigenic parental MCF-7 cells, and MCF-7/MDR, an MCF-7 subline with forced expression of ABCB1 protein. Cells were examined for cell surface markers and side-population fractions by microarray and flow cytometry, with in vitro invasion assays, and for ability to form mammospheres. Xenograft tumors were generated in mice to examine tumorigenicity (n = 52). The mRNA expression of multidrug resistance genes was examined in putative cancer stem cells and pathway analysis of statistically significantly differentially expressed genes was performed. All statistical tests were two-sided. Results Pathway analysis showed that MCF-7/ADR cells express mRNAs from ABCB1 and other genes also found in breast cancer stem cells (eg, CD44, TGFB1, and SNAI1). MCF-7/ADR cells were highly invasive, formed mammospheres, and were tumorigenic in mice. In contrast to parental MCF-7 cells, more than 30% of MCF-7/ADR cells had a CD44+/CD24− phenotype, could self-renew, and differentiate (ie, produce CD44+/CD24− and CD44+/CD24+ cells) and overexpressed various multidrug resistance–linked genes (including ABCB1, CCNE1, and MMP9). MCF-7/ADR cells were statistically significantly more invasive in Matrigel than parental MCF-7 cells (MCF-7 cells = 0.82 cell per field and MCF-7/ADR = 7.51 cells per field, difference = 6.69 cells per field, 95% confidence interval = 4.82 to 8

  4. Development of microarray device for functional evaluation of PC12D cell axonal extension ability

    NASA Astrophysics Data System (ADS)

    Nakamachi, Eiji; Yanagimoto, Junpei; Murakami, Shinya; Morita, Yusuke

    2014-04-01

    In this study, we developed a microarray bio-MEMS device that could trap PC12D (rat pheochromocytoma cells) cells to examine the intercellular interaction effect on the cell activation and the axonal extension ability. This is needed to assign particular patterns of PC12D cells to establish a cell functional evaluation technique. This experimental observation-based technique can be used for design of the cell sheet and scaffold for peripheral and central nerve regeneration. We have fabricated a micropillar-array bio-MEMS device, whose diameter was approximately 10 μm, by using thick photoresist SU-8 on the glass slide substrate. A maximum trapped PC12D cell ratio, 48.5%, was achieved. Through experimental observation of patterned PC12D "bi-cells" activation, we obtained the following results. Most of the PC12D "bi-cells" which had distances between 40 and 100 μm were connected after 24 h with a high probability. On the other hand, "bi-cells" which had distances between 110 and 200 μm were not connected. In addition, we measured axonal extension velocities in cases where the intercellular distance was between 40 and 100 μm. A maximum axonal extension velocity, 86.4 μm/h, was obtained at the intercellular distance of 40 μm.

  5. Surface Modified Thread-Based Microfluidic Analytical Device for Selective Potassium Analysis.

    PubMed

    Erenas, Miguel M; de Orbe-Payá, Ignacio; Capitan-Vallvey, Luis Fermin

    2016-05-17

    This paper presents a thread-based microfluidic device (μTAD) that includes ionophore extraction chemistry for the optical recognition of potassium. The device is 1.5 cm × 1.0 cm and includes a cotton thread to transport the aqueous sample via capillary wicking to a 5 mm-long detection area, where the recognition chemistry is deposited that reaches equilibrium in 60 s, changing its color between blue and magenta. A complete characterization of the cotton thread used as well as the sensing element has been carried out. The imaging of the μTAD with a digital camera and the extraction of the H coordinate of the HSV color space used as the analytical parameter make it possible to determine K(I) between 2.4 × 10(-5) and 0.95 M with a precision better than 1.3%. PMID:27077212

  6. Optimization design for selective extraction of size-fractioned DNA sample in microfabricated electrophoresis devices

    NASA Astrophysics Data System (ADS)

    Lin, Rongsheng; Burke, David T.; Burns, Mark A.

    2004-03-01

    In recent years, there has been tremendous interest in developing a highly integrated DNA analysis system using microfabrication techniques. With the success of incorporating sample injection, reaction, separation and detection onto a monolithic silicon device, addition of otherwise time-consuming components in macroworld such as sample preparation is gaining more and more attention. In this paper, we designed and fabricated a miniaturized device, capable of separating size-fractioned DNA sample and extracting the band of interest. In order to obtain pure target band, a novel technique utilizing shaping electric field is demonstrated. Both theoretical analysis and experimental data shows significant agreement in designing appropriate electrode structures to achieve the desired electric field distribution. This technique has a very simple fabrication procedure and can be readily added with other existing components to realize a highly integrated "lab-on-a-chip" system for DNA analysis.

  7. Optimising a vortex fluidic device for controlling chemical reactivity and selectivity

    NASA Astrophysics Data System (ADS)

    Yasmin, Lyzu; Chen, Xianjue; Stubbs, Keith A.; Raston, Colin L.

    2013-07-01

    A vortex fluidic device (VFD) involving a rapidly rotating tube open at one end forms dynamic thin films at high rotational speed for finite sub-millilitre volumes of liquid, with shear within the films depending on the speed and orientation of the tube. Continuous flow operation of the VFD where jet feeds of solutions are directed to the closed end of the tube provide additional tuneable shear from the viscous drag as the liquid whirls along the tube. The versatility of this simple, low cost microfluidic device, which can operate under confined mode or continuous flow is demonstrated in accelerating organic reactions, for model Diels-Alder dimerization of cyclopentadienes, and sequential aldol and Michael addition reactions, in accessing unusual 2,4,6-triarylpyridines. Residence times are controllable for continuous flow processing with the viscous drag dominating the shear for flow rates >0.1 mL/min in a 10 mm diameter tube rotating at >2000 rpm.

  8. A highly selective telomerase inhibitor limiting human cancer cell proliferation

    PubMed Central

    Damm, Klaus; Hemmann, Ulrike; Garin-Chesa, Pilar; Hauel, Norbert; Kauffmann, Iris; Priepke, Henning; Niestroj, Claudia; Daiber, Christine; Enenkel, Barbara; Guilliard, Bernd; Lauritsch, Ines; Müller, Elfriede; Pascolo, Emanuelle; Sauter, Gabriele; Pantic, Milena; Martens, Uwe M.; Wenz, Christian; Lingner, Joachim; Kraut, Norbert; Rettig, Wolfgang J.; Schnapp, Andreas

    2001-01-01

    Telomerase, the ribonucleoprotein enzyme maintaining the telomeres of eukaryotic chromosomes, is active in most human cancers and in germline cells but, with few exceptions, not in normal human somatic tissues. Telomere maintenance is essential to the replicative potential of malignant cells and the inhibition of telomerase can lead to telomere shortening and cessation of unrestrained proliferation. We describe novel chemical compounds which selectively inhibit telomerase in vitro and in vivo. Treatment of cancer cells with these inhibitors leads to progressive telomere shortening, with no acute cytotoxicity, but a proliferation arrest after a characteristic lag period with hallmarks of senescence, including morphological, mitotic and chromosomal aberrations and altered patterns of gene expression. Telomerase inhibition and telomere shortening also result in a marked reduction of the tumorigenic potential of drug-treated tumour cells in a mouse xenograft model. This model was also used to demonstrate in vivo efficacy with no adverse side effects and uncomplicated oral administration of the inhibitor. These findings indicate that potent and selective, non-nucleosidic telomerase inhibitors can be designed as novel cancer treatment modalities. PMID:11742973

  9. Selective-emitter crystalline silicon solar cells using phosphorus paste

    NASA Astrophysics Data System (ADS)

    Jeong, Kyung Taek; Kang, Min Gu; Song, Hee-eun

    2014-11-01

    Selective-emitter structures have been studied to improve the conversion efficiency of crystalline silicon solar cells. However, such structures require additional complicated processes and incur extra cost. In this work, we used phosphorus paste (P-paste) to form a heavily-doped region beneath the grid and POCl3 to create a shallow emitter area. This method should be convenient to use in the solar-cell industry because it requires only additional P paste printing, compared to the case of homogeneous solar cells. Diffusion parameters including the temperature, diffusion time, and ambient gases were optimized. We observed that the spreading of the P paste was affected by the pyramidal size of the textured wafer due to the low viscosity of the P paste. The pyramidal height of the textured silicon surface was optimized at 3 μm to counterbalance the surface reflectance and the spreading of the P paste. The short-circuit current density of the completed selective emitter solar cell was increased, and an improvement of blue response in the internal quantum efficiency was seen while contact properties such as the fill factor deteriorated due to the spreading of the P paste and the thin emitter on top of the pyramid of the textured silicon surface. Double printing of the P paste was applied to solve this contact problem; a fill factor improvement of 2.4% was obtained.

  10. Automatic detection of selective arterial devices for advanced visualization during abdominal aortic aneurysm endovascular repair.

    PubMed

    Lessard, Simon; Kauffmann, Claude; Pfister, Marcus; Cloutier, Guy; Thérasse, Éric; de Guise, Jacques A; Soulez, Gilles

    2015-10-01

    Here we address the automatic segmentation of endovascular devices used in the endovascular repair (EVAR) of abdominal aortic aneurysms (AAA) that deform vascular tissues. Using this approach, the vascular structure is automatically reshaped solving the issue of misregistration observed on 2D/3D image fusion for EVAR guidance. The endovascular devices we considered are the graduated pigtail catheter (PC) used for contrast injection and the stent-graft delivery device (DD). The segmentation of the DD was enhanced using an asymmetric Frangi filter. The segmented geometries were then analysed using their specific features to remove artefacts. The radiopaque markers of the PC were enhanced using a fusion of Hessian and newly introduced gradient norm shift filters. Extensive experiments were performed using a database of images taken during 28 AAA-EVAR interventions. This dataset was divided into two parts: the first half was used to optimize parameters and the second to compile performances using optimal values obtained. The radiopaque markers of the PC were detected with a sensitivity of 88.3% and a positive predictive value (PPV) of 96%. The PC can therefore be positioned with a majority of its markers localized while the artefacts were all located inside the vessel lumen. The major parts of the DD, the dilatator tip and the pusher surfaces, were detected accurately with a sensitivity of 85.9% and a PPV of 88.7%. The less visible part of the DD, the stent enclosed within the sheath, was segmented with a sensitivity of 63.4% because the radiopacity of this region is low and uneven. The centreline of the DD in this stent region was alternatively traced within a 0.74 mm mean error. The automatic segmentation of endovascular devices during EVAR is feasible and accurate; it could be useful to perform elastic registration of the vascular lumen during endovascular repair. PMID:26362721

  11. Selective Interlayers and Contacts in Organic Photovoltaic Cells.

    PubMed

    Ratcliff, Erin L; Zacher, Brian; Armstrong, Neal R

    2011-06-01

    Organic photovoltaic cells (OPVs) are promising solar electric energy conversion systems with impressive recent optimization of active layers. OPV optimization must now be accompanied by the development of new charge-selective contacts and interlayers. This Perspective considers the role of interface science in energy harvesting using OPVs, looking back at early photoelectrochemical (photogalvanic) energy conversion platforms, which suffered from a lack of charge carrier selectivity. We then examine recent platforms and the fundamental aspects of selective harvesting of holes and electrons at opposite contacts. For blended heterojunction OPVs, contact/interlayer design is especially critical because charge harvesting competes with recombination at these same contacts. New interlayer materials can modify contacts to both control work function and introduce selectivity and chemical compatibility with nonpolar active layers and add thermodynamic and kinetic selectivity to charge harvesting. We briefly discuss the surface and interface science required for the development of new interlayer materials and take a look ahead at the challenges yet to be faced in their optimization. PMID:26295432

  12. Mobile biometric device (MBD) technology : summary of selected first responder experiences in pilot projects.

    SciTech Connect

    Aldridge, Chris D.

    2013-06-01

    Mobile biometric devices (MBDs) capable of both enrolling individuals in databases and performing identification checks of subjects in the field are seen as an important capability for military, law enforcement, and homeland security operations. The technology is advancing rapidly. The Department of Homeland Security Science and Technology Directorate through an Interagency Agreement with Sandia sponsored a series of pilot projects to obtain information for the first responder law enforcement community on further identification of requirements for mobile biometric device technology. Working with 62 different jurisdictions, including components of the Department of Homeland Security, Sandia delivered a series of reports on user operation of state-of-the-art mobile biometric devices. These reports included feedback information on MBD usage in both operational and exercise scenarios. The findings and conclusions of the project address both the limitations and possibilities of MBD technology to improve operations. Evidence of these possibilities can be found in the adoption of this technology by many agencies today and the cooperation of several law enforcement agencies in both participating in the pilot efforts and sharing of information about their own experiences in efforts undertaken separately.

  13. Selective modulation of cell response on engineered fractal silicon substrates

    PubMed Central

    Gentile, Francesco; Medda, Rebecca; Cheng, Ling; Battista, Edmondo; Scopelliti, Pasquale E.; Milani, Paolo; Cavalcanti-Adam, Elisabetta A.; Decuzzi, Paolo

    2013-01-01

    A plethora of work has been dedicated to the analysis of cell behavior on substrates with ordered topographical features. However, the natural cell microenvironment is characterized by biomechanical cues organized over multiple scales. Here, randomly rough, self-affinefractal surfaces are generated out of silicon,where roughness Ra and fractal dimension Df are independently controlled. The proliferation rates, the formation of adhesion structures, and the morphology of 3T3 murine fibroblasts are monitored over six different substrates. The proliferation rate is maximized on surfaces with moderate roughness (Ra ~ 40 nm) and large fractal dimension (Df ~ 2.4); whereas adhesion structures are wider and more stable on substrates with higher roughness (Ra ~ 50 nm) and lower fractal dimension (Df ~ 2.2). Higher proliferation occurson substrates exhibiting densely packed and sharp peaks, whereas more regular ridges favor adhesion. These results suggest that randomly roughtopographies can selectively modulate cell behavior. PMID:23492898

  14. OPERATION AND MAINTENANCE OF PARTICULATE CONTROL DEVICES ON SELECTED STEEL AND FERROALLOY PROCESSES

    EPA Science Inventory

    The report deals with the control of fine particulate emission from iron, steel, and ferroalloy plants using electrostatic precipitators, wet scrubbers, and fabric filters (baghouses). It provides information on the selection, operation, and expected performance of conventional a...

  15. Cell-selective labelling of proteomes in Drosophila melanogaster

    PubMed Central

    Erdmann, Ines; Marter, Kathrin; Kobler, Oliver; Niehues, Sven; Abele, Julia; Müller, Anke; Bussmann, Julia; Storkebaum, Erik; Ziv, Tamar; Thomas, Ulrich; Dieterich, Daniela C.

    2015-01-01

    The specification and adaptability of cells rely on changes in protein composition. Nonetheless, uncovering proteome dynamics with cell-type-specific resolution remains challenging. Here we introduce a strategy for cell-specific analysis of newly synthesized proteomes by combining targeted expression of a mutated methionyl-tRNA synthetase (MetRS) with bioorthogonal or fluorescent non-canonical amino-acid-tagging techniques (BONCAT or FUNCAT). Substituting leucine by glycine within the MetRS-binding pocket (MetRSLtoG) enables incorporation of the non-canonical amino acid azidonorleucine (ANL) instead of methionine during translation. Newly synthesized proteins can thus be labelled by coupling the azide group of ANL to alkyne-bearing tags through ‘click chemistry'. To test these methods for applicability in vivo, we expressed MetRSLtoG cell specifically in Drosophila. FUNCAT and BONCAT reveal ANL incorporation into proteins selectively in cells expressing the mutated enzyme. Cell-type-specific FUNCAT and BONCAT, thus, constitute eligible techniques to study protein synthesis-dependent processes in complex and behaving organisms. PMID:26138272

  16. Selective p- and n-Doping of Colloidal PbSe Nanowires To Construct Electronic and Optoelectronic Devices.

    PubMed

    Oh, Soong Ju; Uswachoke, Chawit; Zhao, Tianshuo; Choi, Ji-Hyuk; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2015-07-28

    We report the controlled and selective doping of colloidal PbSe nanowire arrays to define pn junctions for electronic and optoelectronic applications. The nanowires are remotely doped through their surface, p-type by exposure to oxygen and n-type by introducing a stoichiometric imbalance in favor of excess lead. By employing a patternable poly(methyl)methacrylate blocking layer, we define pn junctions in the nanowires along their length. We demonstrate integrated complementary metal-oxide semiconductor inverters in axially doped nanowires that have gains of 15 and a near full signal swing. We also show that these pn junction PbSe nanowire arrays form fast switching photodiodes with photocurrents that can be optimized in a gated-diode structure. Doping of the colloidal nanowires is compatible with device fabrication on flexible plastic substrates, promising a low-cost, solution-based route to high-performance nanowire devices. PMID:26070224

  17. Oxygen-Purged Microfluidic Device to Enhance Cell Viability in Photopolymerized PEG Hydrogel Microparticles.

    PubMed

    Xia, Bingzhao; Krutkramelis, Kaspars; Oakey, John

    2016-07-11

    Encapsulating cells within biocompatible materials is a widely used strategy for cell delivery and tissue engineering. While cells are commonly suspended within bulk hydrogel-forming solutions during gelation, substantial interest in the microfluidic fabrication of miniaturized cell encapsulation vehicles has more recently emerged. Here, we utilize multiphase microfluidics to encapsulate cells within photopolymerized picoliter-volume water-in-oil droplets at high production rates. The photoinitiated polymerization of polyethylene glycol diacrylate (PEGDA) is used to continuously produce solid particles from aqueous liquid drops containing cells and hydrogel forming solution. It is well understood that this photoinitiated addition reaction is inhibited by oxygen. In contrast to bulk polymerization in which ambient oxygen is rapidly and harmlessly consumed, allowing the polymerization reaction to proceed, photopolymerization within air permeable polydimethylsiloxane (PDMS) microfluidic devices allows oxygen to be replenished by diffusion as it is depleted. This sustained presence of oxygen and the consequential accumulation of peroxy radicals produce a dramatic effect upon both droplet polymerization and post-encapsulation cell viability. In this work we employ a nitrogen microjacketed microfluidic device to purge oxygen from flowing fluids during photopolymerization. By increasing the purging nitrogen pressure, oxygen concentration was attenuated, and increased post-encapsulation cell viability was achieved. A reaction-diffusion model was used to predict the cumulative intradroplet concentration of peroxy radicals, which corresponded directly to post-encapsulation cell viability. The nitrogen-jacketed microfluidic device presented here allows the droplet oxygen concentration to be finely tuned during cell encapsulation, leading to high post-encapsulation cell viability. PMID:27285343

  18. Tunable Microfluidic Devices for Hydrodynamic Fractionation of Cells and Beads: A Review

    PubMed Central

    Alvankarian, Jafar; Majlis, Burhanuddin Yeop

    2015-01-01

    The adjustable microfluidic devices that have been developed for hydrodynamic-based fractionation of beads and cells are important for fast performance tunability through interaction of mechanical properties of particles in fluid flow and mechanically flexible microstructures. In this review, the research works reported on fabrication and testing of the tunable elastomeric microfluidic devices for applications such as separation, filtration, isolation, and trapping of single or bulk of microbeads or cells are discussed. Such microfluidic systems for rapid performance alteration are classified in two groups of bulk deformation of microdevices using external mechanical forces, and local deformation of microstructures using flexible membrane by pneumatic pressure. The main advantage of membrane-based tunable systems has been addressed to be the high capability of integration with other microdevice components. The stretchable devices based on bulk deformation of microstructures have in common advantage of simplicity in design and fabrication process. PMID:26610519

  19. Novel concepts for improved communication between nerve cells and silicon electronic devices

    NASA Astrophysics Data System (ADS)

    Huys, Roeland; Braeken, Dries; Van Meerbergen, Bart; Winters, Kurt; Eberle, Wolfgang; Loo, Josine; Tsvetanova, Diana; Chen, Chang; Severi, Simone; Yitzchaik, S.; Spira, M.; Shappir, J.; Callewaert, Geert; Borghs, Gustaaf; Bartic, Carmen

    2008-04-01

    Hybrid integration of living cells and electronic circuits on a chip requires a high-density matrix of sensors and actuators. This matrix must be processable on top of CMOS devices and must be bio-compatible in order to support living cells. Recent studies have shown that the use of nail structures combined with a phagocytosis-like event of the cell can be exploited to improve the electrical coupling between a cell and a sensor. In this paper, two CMOS-compatible fabrication methods for sub-micron nails will be presented. The biocompatibility and proof-of-concept is demonstrated by the culturing of PC12 neuroblastoma cells. Electrical functionality is shown by simultaneous stimulation and recording of pig cardiomyocyte cells. Biocompatibility aspects for more demanding cortical cell cultures have been addressed in a preliminary assessment.

  20. Digital Devices, Distraction, and Student Performance: Does In-Class Cell Phone Use Reduce Learning?

    ERIC Educational Resources Information Center

    Duncan, Douglas K.; Hoekstra, Angel R.; Wilcox, Bethany R.

    2012-01-01

    The recent increase in use of digital devices such as laptop computers, iPads, and web-enabled cell phones has generated concern about how technologies affect student performance. Combining observation, survey, and interview data, this research assesses the effects of technology use on student attitudes and learning. Data were gathered in eight…

  1. A device to facilitate preparation of high-density neural cell cultures in MEAs.

    PubMed

    Mok, S Y; Lim, Y M; Goh, S Y

    2009-05-15

    A device to facilitate high-density seeding of dissociated neural cells on planar multi-electrode arrays (MEAs) is presented in this paper. The device comprises a metal cover with two concentric cylinders-the outer cylinder fits tightly on to the external diameter of a MEA to hold it in place and an inner cylinder holds a central glass tube for introducing a cell suspension over the electrode area of the MEA. An O-ring is placed at the bottom of the inner cylinder and the glass tube to provide a fluid-tight seal between the glass tube and the MEA electrode surface. The volume of cell suspension in the glass tube is varied according to the desired plating density. After plating, the device can be lifted from the MEA without leaving any residue on the contact surface. The device has enabled us to increase and control the plating density of neural cell suspension with low viability, and to prepare successful primary cultures from cryopreserved neurons and glia. The cultures of cryopreserved dissociated cortical neurons that we have grown in this manner remained spontaneously active over months, exhibited stable development and similar network characteristics as reported by other researchers. PMID:19428539

  2. SIMPLE DEVICE TO DELIVER BEADS TO 96-WELL PLATES FOR RAPID RESUSPENSION OF CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic sequencing involves sequence determination of inserts from a large numbers of plasmids of a genomic library. In high throughput DNA sequencing projects, cultures are grown in a 96-deep well plate format, centrifuged, and resuspended. Resuspension of cells was aided by use of a simple devic...

  3. Development of a Single-Cell Migration and Extravasation Platform through Selective Surface Modification.

    PubMed

    Roberts, Steven A; Waziri, Allen E; Agrawal, Nitin

    2016-03-01

    Cell migration through three-dimensional (3D) tissue spaces is integral to many biological and pathological processes, including metastasis. Circulating tumor cells (CTCs) are phenotypically heterogeneous, and in vitro analysis of their extravasation behavior is often impeded by the inability to establish complex tissue-like extracellular matrix (ECM) environments and chemotactic gradients within microfluidic devices. We have developed a novel microfluidic strategy to manipulate surface properties of enclosed microchannels and create 3D ECM structures for real-time observation of individual migrating cells. The wettability of selective interconnected channels is controlled by a plasma pulse, enabling the incorporation of ECM exclusively within the transmigration regions. We applied this approach to collectively analyze CTC-endothelial adhesion, trans-endothelial migration, and subsequent motility of breast cancer cells (MDA-MB-231) through a 3D ECM under artificial gradients of SDF-1α. We observed migration velocities ranging from 5.12 to 12.8 μm/h, which closely correspond to single-cell migration in collagen blocks, but are significantly faster than the migration of cell aggregates. The compartmentalized microchannels separated by the porous ECM makes this in vitro assay versatile and suitable for a variety of applications such as inflammation studies, drug screening, and coculture interactions. PMID:26833093

  4. Integrated microfluidic device for automated single cell analysis using electrophoretic separation and electrospray ionization mass spectrometry.

    PubMed

    Mellors, J Scott; Jorabchi, Kaveh; Smith, Lloyd M; Ramsey, J Michael

    2010-02-01

    A microfabricated fluidic device was developed for the automated real-time analysis of individual cells using capillary electrophoresis (CE) and electrospray ionization-mass spectrometry (ESI-MS). The microfluidic structure incorporates a means for rapid lysis of single cells within a free solution electrophoresis channel, where cellular constituents were separated, and an integrated electrospray emitter for ionization of separated components. The eluent was characterized using mass spectrometry. Human erythrocytes were used as a model system for this study. In this monolithically integrated device, cell lysis occurs at a channel intersection using a combination of rapid buffer exchange and an increase in electric field strength. An electroosmotic pump is incorporated at the end of the electrophoretic separation channel to direct eluent to the integrated electrospray emitter. The dissociated heme group and the alpha and beta subunits of hemoglobin from individual erythrocytes were detected as cells continuously flowed through the device. The average analysis throughput was approximately 12 cells per minute, demonstrating the potential of this method for high-throughput single cell analysis. PMID:20058879

  5. Integrated Microfluidic Device for Automated Single Cell Analysis using Electrophoretic Separation and Electrospray Ionization Mass Spectrometry

    PubMed Central

    Mellors, J. Scott; Jorabchi, Kaveh; Smith, Lloyd M.; Ramsey, J. Michael

    2010-01-01

    A microfabricated fluidic device was developed for the automated real-time analysis of individual cells using capillary electrophoresis (CE) and electrospray ionization-mass spectrometry (ESI-MS). The microfluidic structure incorporates a means for rapid lysis of single cells within a free solution electrophoresis channel where cellular constituents were separated and an integrated electrospray emitter for ionization of separated components. The eluent was characterized using mass spectrometry. Human erythrocytes were used as a model system for this study. In this monolithically integrated device, cell lysis occurs at a channel intersection using a combination of rapid buffer exchange and an increase in electric field strength. An electroosmotic pump is incorporated at the end of the electrophoretic separation channel to direct eluent to the integrated electrospray emitter. The dissociated heme group and the α and β subunits of hemoglobin from individual erythrocytes were detected as cells continuously flowed through the device. The average analysis throughput was approximately 12 cells per minute demonstrating the potential of this method for high-throughput single cell analysis. PMID:20058879

  6. Microfluidic gradient device for studying mesothelial cell migration and the effect of chronic carbon nanotube exposure

    PubMed Central

    Zhang, Hanyuan; Lohcharoenkal, Warangkana; Sun, Jianbo; Li, Xiang; Wang, Liying; Wu, Nianqiang; Rojanasakul, Yon; Liu, Yuxin

    2016-01-01

    Cell migration is one of the crucial steps in many physiological and pathological processes, including cancer development. Our recent studies have shown that carbon nanotubes (CNTs), similarly to asbestos, can induce accelerated cell growth and invasiveness that contribute to their mesothelioma pathogenicity. Malignant mesothelioma is a very aggressive tumor that develops from cells of the mesothelium, and is most commonly caused by exposure to asbestos. CNTs have a similar structure and mode of exposure to asbestos. This has raised a concern regarding the potential carcinogenicity of CNTs, especially in the pleural area which is a key target for asbestos-related diseases. In this paper, a static microfluidic gradient device was applied to study the migration of human pleural mesothelial cells which had been through a long-term exposure (4 months) to subcytotoxic concentration (0.02 μg cm−2) of single-walled CNTs (SWCNTs). Multiple migration signatures of these cells were investigated using the microfluidic gradient device for the first time. During the migration study, we observed that cell morphologies changed from flattened shapes to spindle shapes prior to their migration after their sensing of the chemical gradient. The migration of chronically SWCNT-exposed mesothelial cells was evaluated under different fetal bovine serum (FBS) concentration gradients, and the migration speeds and number of migrating cells were extracted and compared. The results showed that chronically SWCNT-exposed mesothelial cells are more sensitive to the gradient compared to non-SWCNT-exposed cells. The method described here allows simultaneous detection of cell morphology and migration under chemical gradient conditions, and also allows for real-time monitoring of cell motility that resembles in vivo cell migration. This platform would be much needed for supporting the development of more physiologically relevant cell models for better assessment and characterization of the

  7. Microfluidic gradient device for studying mesothelial cell migration and the effect of chronic carbon nanotube exposure

    NASA Astrophysics Data System (ADS)

    Zhang, Hanyuan; Lohcharoenkal, Warangkana; Sun, Jianbo; Li, Xiang; Wang, Liying; Wu, Nianqiang; Rojanasakul, Yon; Liu, Yuxin

    2015-07-01

    Cell migration is one of the crucial steps in many physiological and pathological processes, including cancer development. Our recent studies have shown that carbon nanotubes (CNTs), similarly to asbestos, can induce accelerated cell growth and invasiveness that contribute to their mesothelioma pathogenicity. Malignant mesothelioma is a very aggressive tumor that develops from cells of the mesothelium, and is most commonly caused by exposure to asbestos. CNTs have a similar structure and mode of exposure to asbestos. This has raised a concern regarding the potential carcinogenicity of CNTs, especially in the pleural area which is a key target for asbestos-related diseases. In this paper, a static microfluidic gradient device was applied to study the migration of human pleural mesothelial cells which had been through a long-term exposure (4 months) to subcytotoxic concentration (0.02 µg cm-2) of single-walled CNTs (SWCNTs). Multiple migration signatures of these cells were investigated using the microfluidic gradient device for the first time. During the migration study, we observed that cell morphologies changed from flattened shapes to spindle shapes prior to their migration after their sensing of the chemical gradient. The migration of chronically SWCNT-exposed mesothelial cells was evaluated under different fetal bovine serum (FBS) concentration gradients, and the migration speeds and number of migrating cells were extracted and compared. The results showed that chronically SWCNT-exposed mesothelial cells are more sensitive to the gradient compared to non-SWCNT-exposed cells. The method described here allows simultaneous detection of cell morphology and migration under chemical gradient conditions, and also allows for real-time monitoring of cell motility that resembles in vivo cell migration. This platform would be much needed for supporting the development of more physiologically relevant cell models for better assessment and characterization of the

  8. A neuromorphic VLSI device for implementing 2-D selective attention systems.

    PubMed

    Indiveri, G

    2001-01-01

    Selective attention is a mechanism used to sequentially select and process salient subregions of the input space, while suppressing inputs arriving from nonsalient regions. By processing small amounts of sensory information in a serial fashion, rather than attempting to process all the sensory data in parallel, this mechanism overcomes the problem of flooding limited processing capacity systems with sensory inputs. It is found in many biological systems and can be a useful engineering tool for developing artificial systems that need to process in real-time sensory data. In this paper we present a neuromorphic hardware model of a selective attention mechanism implemented on a very large scale integration (VLSI) chip, using analog circuits. The chip makes use of a spike-based representation for receiving input signals, transmitting output signals and for shifting the selection of the attended input stimulus over time. It can be interfaced to neuromorphic sensors and actuators, for implementing multichip selective attention systems. We describe the characteristics of the circuits used in the architecture and present experimental data measured from the system. PMID:18249973

  9. Design of user interfaces for selective editing of digital photos on touchscreen devices

    NASA Astrophysics Data System (ADS)

    Binder, Thomas; Steiding, Meikel; Wille, Manuel; Kokemohr, Nils

    2013-03-01

    When editing images it is often desirable to apply a filter with a spatially varying strength. With the usual selection tools like gradient, lasso, brush, or quick selection tools, creating masks containing such spatially varying strength values is time-consuming and cumbersome. We present an interactive filtering approach which allows to process photos selectively without the intermediate step of creating a mask containing strength values. In using this approach, the user only needs to place reference points (called control points) on the image and to adjust the spatial influence and filter strength for each control point. The filter is then applied selectively to the image, with strength values interpolated for each pixel between control points. The interpolation is based on a mixture of distances in space, luminance, and color; it is therefore a low-level operation. Since the main goal of the approach is to make selective image editing intuitive, easy, and playful, emphasis is put on the user interface: We describe the process of developing an existing mouse-driven user interface into a touch-driven one. Many question needed to be answered anew, such as how to present a slider widget on a touchscreen. Several variants are discussed and compared.

  10. The IsoStretcher: An isotropic cell stretch device to study mechanical biosensor pathways in living cells.

    PubMed

    Schürmann, S; Wagner, S; Herlitze, S; Fischer, C; Gumbrecht, S; Wirth-Hücking, A; Prölß, G; Lautscham, L A; Fabry, B; Goldmann, W H; Nikolova-Krstevski, V; Martinac, B; Friedrich, O

    2016-07-15

    Mechanosensation in many organs (e.g. lungs, heart, gut) is mediated by biosensors (like mechanosensitive ion channels), which convert mechanical stimuli into electrical and/or biochemical signals. To study those pathways, technical devices are needed that apply strain profiles to cells, and ideally allow simultaneous live-cell microscopy analysis. Strain profiles in organs can be complex and multiaxial, e.g. in hollow organs. Most devices in mechanobiology apply longitudinal uniaxial stretch to adhered cells using elastomeric membranes to study mechanical biosensors. Recent approaches in biomedical engineering have employed intelligent systems to apply biaxial or multiaxial stretch to cells. Here, we present an isotropic cell stretch system (IsoStretcher) that overcomes some previous limitations. Our system uses a rotational swivel mechanism that translates into a radial displacement of hooks attached to small circular silicone membranes. Isotropicity and focus stability are demonstrated with fluorescent beads, and transmission efficiency of elastomer membrane stretch to cellular area change in HeLa/HEK cells. Applying our system to lamin-A overexpressing fibrosarcoma cells, we found a markedly reduced stretch of cell area, indicative of a stiffer cytoskeleton. We also investigated stretch-activated Ca(2+) entry into atrial HL-1 myocytes. 10% isotropic stretch induced robust oscillating increases in intracellular Fluo-4 Ca(2+) fluorescence. Store-operated Ca(2+) entry was not detected in these cells. The Isostretcher provides a useful versatile tool for mechanobiology. PMID:26991603

  11. Selective Inhibition of Collagen Prolyl 4-Hydroxylase in Human Cells

    PubMed Central

    Vasta, James D.; Andersen, Kristen A.; Deck, Kathryn M.; Nizzi, Christopher P.; Eisenstein, Richard S.; Raines, Ronald T.

    2016-01-01

    Collagen is the most abundant protein in animals. Its overproduction is associated with fibrosis and cancer metastasis. The stability of collagen relies on post-translational modifications, the most prevalent being the hydroxylation of collagen strands by collagen prolyl 4-hydroxylases (CP4Hs). Catalysis by CP4Hs enlists an iron cofactor to convert proline residues to 4 hydroxyproline residues, which are essential for the conformational stability of mature collagen. Ethyl 3,4-dihydroxybenzoate (EDHB) is commonly used as a “P4H” inhibitor in cells, but suffers from low potency, poor selectivity, and off-target effects that cause iron deficiency. Dicarboxylates of 2,2′-bipyridine are among the most potent known CP4H inhibitors but suffer from a high affinity for free iron. A screen of biheteroaryl compounds revealed that replacing one pyridyl group with a thiazole moiety retains potency and enhances selectivity. A diester of 2 (5-carboxythiazol-2-yl)pyridine-5-carboxylic acid is bioavailable to human cells and inhibits collagen biosynthesis at concentrations that neither cause general toxicity nor disrupt iron homeostasis. These data anoint a potent and selective probe for CP4H and a potential lead for the development of a new class of antifibrotic and antimetastatic agents. PMID:26535807

  12. Subcortical orientation biases explain orientation selectivity of visual cortical cells

    PubMed Central

    Vidyasagar, Trichur R; Jayakumar, Jaikishan; Lloyd, Errol; Levichkina, Ekaterina V

    2015-01-01

    The primary visual cortex of carnivores and primates shows an orderly progression of domains of neurons that are selective to a particular orientation of visual stimuli such as bars and gratings. We recorded from single-thalamic afferent fibers that terminate in these domains to address the issue whether the orientation sensitivity of these fibers could form the basis of the remarkable orientation selectivity exhibited by most cortical cells. We first performed optical imaging of intrinsic signals to obtain a map of orientation domains on the dorsal aspect of the anaesthetized cat's area 17. After confirming using electrophysiological recordings the orientation preferences of single neurons within one or two domains in each animal, we pharmacologically silenced the cortex to leave only the afferent terminals active. The inactivation of cortical neurons was achieved by the superfusion of either kainic acid or muscimol. Responses of single geniculate afferents were then recorded by the use of high impedance electrodes. We found that the orientation preferences of the afferents matched closely with those of the cells in the orientation domains that they terminated in (Pearson's r = 0.633, n = 22, P = 0.002). This suggests a possible subcortical origin for cortical orientation selectivity. PMID:25855249

  13. A passive-flow microfluidic device for imaging latent HIV activation dynamics in single T cells

    PubMed Central

    Gearhart, Larisa M.; Miller-Jensen, Kathryn

    2015-01-01

    Quantifying cell-to-cell variability in drug response dynamics is important when evaluating therapeutic efficacy. For example, optimizing latency reversing agents (LRAs) for use in a clinical “activate-and-kill” strategy to purge the latent HIV reservoir in patients requires minimizing heterogeneous viral activation dynamics. To evaluate how heterogeneity in latent HIV activation varies across a range of LRAs, we tracked drug-induced response dynamics in single cells via live-cell imaging using a latent HIV–GFP reporter virus in a clonal Jurkat T cell line. To enable these studies in suspension cells, we designed a simple method to capture an array of single Jurkat T cells using a passive-flow microfluidic device. Our device, which does not require external pumps or tubing, can trap hundreds of cells within minutes with a high retention rate over 12 hours of imaging. Using this device, we quantified heterogeneity in viral activation stimulated by transcription factor (TF) activators and histone deacetylase (HDAC) inhibitors. Generally, TF activators resulted in both faster onset of viral activation and faster rates of production, while HDAC inhibitors resulted in more uniform onset times, but more heterogeneous rates of production. Finally, we demonstrated that while onset time of viral gene expression and rate of viral production together predict total HIV activation, rate and onset time were not correlated within the same individual cell, suggesting that these features are regulated independently. Overall, our results reveal drug-specific patterns of noisy HIV activation dynamics not previously identified in static single-cell assays, which may require consideration for the most effective activate-and-kill regime. PMID:26138068

  14. SHAPE SELECTIVE NANOCATALYSTS FOR DIRECT METHANOL FUEL CELL APPLICATIONS

    SciTech Connect

    Murph, S.

    2012-09-12

    While gold and platinum have long been recognized for their beauty and value, researchers at the Savannah River National Laboratory (SRNL) are working on the nano-level to use these elements for creative solutions to our nation's energy and security needs. Multiinterdisciplinary teams consisting of chemists, materials scientists, physicists, computational scientists, and engineers are exploring unchartered territories with shape-selective nanocatalysts for the development of novel, cost effective and environmentally friendly energy solutions to meet global energy needs. This nanotechnology is vital, particularly as it relates to fuel cells.SRNL researchers have taken process, chemical, and materials discoveries and translated them for technological solution and deployment. The group has developed state-of-the art shape-selective core-shell-alloy-type gold-platinum nanostructures with outstanding catalytic capabilities that address many of the shortcomings of the Direct Methanol Fuel Cell (DMFC). The newly developed nanostructures not only busted the performance of the platinum catalyst, but also reduced the material cost and overall weight of the fuel cell.

  15. Kinetics of drug selection systems in mouse embryonic stem cells

    PubMed Central

    2013-01-01

    Background Stable expression of transgenes is an important technique to analyze gene function. Various drug resistance genes, such as neo, pac, hph, zeo, bsd, and hisD, have been equally used as selection markers to isolate a transfectant without considering their dose-dependent characters. Results We quantitatively measured the variation of transgene expression levels in mouse embryonic stem (mES) cells, using a series of bi-cistronic expression vectors that contain Egfp expression cassette linked to each drug resistant gene via IRES with titration of the selective drugs, and found that the transgene expression levels achieved in each system with this vector design are in order, in which pac and zeo show sharp selection of transfectants with homogenously high expression levels. We also showed the importance of the choice of the drug selection system in gene-trap or gene targeting according to this order. Conclusions The results of the present study clearly demonstrated that an appropriate choice of the drug resistance gene(s) is critical for a proper design of the experimental strategy. PMID:23919313

  16. Optimising a vortex fluidic device for controlling chemical reactivity and selectivity

    PubMed Central

    Yasmin, Lyzu; Chen, Xianjue; Stubbs, Keith A.; Raston, Colin L.

    2013-01-01

    A vortex fluidic device (VFD) involving a rapidly rotating tube open at one end forms dynamic thin films at high rotational speed for finite sub-millilitre volumes of liquid, with shear within the films depending on the speed and orientation of the tube. Continuous flow operation of the VFD where jet feeds of solutions are directed to the closed end of the tube provide additional tuneable shear from the viscous drag as the liquid whirls along the tube. The versatility of this simple, low cost microfluidic device, which can operate under confined mode or continuous flow is demonstrated in accelerating organic reactions, for model Diels-Alder dimerization of cyclopentadienes, and sequential aldol and Michael addition reactions, in accessing unusual 2,4,6-triarylpyridines. Residence times are controllable for continuous flow processing with the viscous drag dominating the shear for flow rates >0.1 mL/min in a 10 mm diameter tube rotating at >2000 rpm. PMID:23884385

  17. Incorporation of wavelength selective devices into waveguides with applications to a miniature spectrometer

    SciTech Connect

    Stallard, B.R.; Kaushik, S.; Hadley, G.R.; Fritz, I.J.; Howard, A.J.; Vawter, G.A.; Wendt, J.R.; Corless, R,

    1996-02-01

    This report pertains to a Laboratory Directed Research and Development project which was funded for FY94 and FY95. The goal was to develop building blocks for small, cheap sensors that use optical spectroscopy as a means of detecting chemical analytes. Such sensors can have an impact on a wide variety of technologies, such as: industrial process control, environmental monitors, chemical analysis in medicine, and automotive monitors. We describe work in fabricating and demonstrating a waveguide/grating device that can serve as the wavelength dispersive component in a miniature spectrometer. Also, we describe the invention and modeling of a new way to construct an array of optical interference filters using sub-wavelength lithography to tune the index of refraction of a fixed Fabry-Perot cavity. Next we describe progress in more efficiently calculating the fields in grating devices. Finally we present the invention of a new type of near field optical probe, applicable to scanning microscopy or optical data storage, which is based on a circular grating constructed in a waveguide. This result diverges from the original goal of the project but is quite significant in that it promises to increase the data storage capacity of CD-ROMs by 10 times.

  18. Resistive switching behavior of reduced graphene oxide memory cells for low power nonvolatile device application

    PubMed Central

    Pradhan, Sangram K.; Xiao, Bo; Mishra, Saswat; Killam, Alex; Pradhan, Aswini K.

    2016-01-01

    Graphene Oxide (GO) based low cost flexible electronics and memory cell have recently attracted more attention for the fabrication of emerging electronic devices. As a suitable candidate for resistive random access memory technology, reduced graphene oxide (RGO) can be widely used for non-volatile switching memory applications because of its large surface area, excellent scalability, retention, and endurance properties. We demonstrated that the fabricated metal/RGO/metal memory device exhibited excellent switching characteristics, with on/off ratio of two orders of magnitude and operated threshold switching voltage of less than 1 V. The studies on different cell diameter, thickness, scan voltages and period of time corroborate the reliability of the device as resistive random access memory. The microscopic origin of switching operation is governed by the establishment of conducting filaments due to the interface amorphous layer rupturing and the movement of oxygen in the GO layer. This interesting experimental finding indicates that device made up of thermally reduced GO shows more reliability for its use in next generation electronics devices. PMID:27240537

  19. Resistive switching behavior of reduced graphene oxide memory cells for low power nonvolatile device application

    NASA Astrophysics Data System (ADS)

    Pradhan, Sangram K.; Xiao, Bo; Mishra, Saswat; Killam, Alex; Pradhan, Aswini K.

    2016-05-01

    Graphene Oxide (GO) based low cost flexible electronics and memory cell have recently attracted more attention for the fabrication of emerging electronic devices. As a suitable candidate for resistive random access memory technology, reduced graphene oxide (RGO) can be widely used for non-volatile switching memory applications because of its large surface area, excellent scalability, retention, and endurance properties. We demonstrated that the fabricated metal/RGO/metal memory device exhibited excellent switching characteristics, with on/off ratio of two orders of magnitude and operated threshold switching voltage of less than 1 V. The studies on different cell diameter, thickness, scan voltages and period of time corroborate the reliability of the device as resistive random access memory. The microscopic origin of switching operation is governed by the establishment of conducting filaments due to the interface amorphous layer rupturing and the movement of oxygen in the GO layer. This interesting experimental finding indicates that device made up of thermally reduced GO shows more reliability for its use in next generation electronics devices.

  20. Resistive switching behavior of reduced graphene oxide memory cells for low power nonvolatile device application.

    PubMed

    Pradhan, Sangram K; Xiao, Bo; Mishra, Saswat; Killam, Alex; Pradhan, Aswini K

    2016-01-01

    Graphene Oxide (GO) based low cost flexible electronics and memory cell have recently attracted more attention for the fabrication of emerging electronic devices. As a suitable candidate for resistive random access memory technology, reduced graphene oxide (RGO) can be widely used for non-volatile switching memory applications because of its large surface area, excellent scalability, retention, and endurance properties. We demonstrated that the fabricated metal/RGO/metal memory device exhibited excellent switching characteristics, with on/off ratio of two orders of magnitude and operated threshold switching voltage of less than 1 V. The studies on different cell diameter, thickness, scan voltages and period of time corroborate the reliability of the device as resistive random access memory. The microscopic origin of switching operation is governed by the establishment of conducting filaments due to the interface amorphous layer rupturing and the movement of oxygen in the GO layer. This interesting experimental finding indicates that device made up of thermally reduced GO shows more reliability for its use in next generation electronics devices. PMID:27240537

  1. Passive safety device and internal short tested method for energy storage cells and systems

    DOEpatents

    Keyser, Matthew; Darcy, Eric; Long, Dirk; Pesaran, Ahmad

    2015-09-22

    A passive safety device for an energy storage cell for positioning between two electrically conductive layers of the energy storage cell. The safety device also comprising a separator and a non-conductive layer. A first electrically conductive material is provided on the non-conductive layer. A first opening is formed through the separator between the first electrically conductive material and one of the electrically conductive layers of the energy storage device. A second electrically conductive material is provided adjacent the first electrically conductive material on the non-conductive layer, wherein a space is formed on the non-conductive layer between the first and second electrically conductive materials. A second opening is formed through the non-conductive layer between the second electrically conductive material and another of the electrically conductive layers of the energy storage device. The first and second electrically conductive materials combine and exit at least partially through the first and second openings to connect the two electrically conductive layers of the energy storage device at a predetermined temperature.

  2. Designing and modeling a centrifugal microfluidic device to separate target blood cells

    NASA Astrophysics Data System (ADS)

    Shamloo, Amir; Selahi, AmirAli; Madadelahi, Masoud

    2016-03-01

    The objective of this study is to design a novel and efficient portable lab-on-a-CD (LOCD) microfluidic device for separation of specific cells (target cells) using magnetic beads. In this study the results are shown for neutrophils as target cells. However, other kinds of target cells can be separated in a similar approach. The designed microfluidics can be utilized as a point of care system for neutrophil detection. This microfluidic system employs centrifugal and magnetic forces for separation. After model validation by the experimental data in the literature (that may be used as a design tool for developing centrifugo-magnetophoretic devices), two models are presented for separation of target cells using magnetic beads. The first model consists of one container in the inlet section and two containers in the outlets. Initially, the inlet container is filled with diluted blood sample which is a mixture of red blood cells (RBCs) plus neutrophils which are attached to Magnetic beads. It is shown that by using centrifugal and magnetic forces, this model can separate all neutrophils with recovery factor of ~100%. In the second model, due to excess of magnetic beads in usual experimental analysis (to ensure that all target cells are attached to them) the geometry is improved by adding a third outlet for these free magnetic beads. It is shown that at angular velocity of 45 rad s-1, recovery factor of 100% is achievable for RBCs, free magnetic beads and neutrophils as target cells.

  3. Dielectric response of doped organic semiconductor devices: P3HT:PCBM solar cells

    NASA Astrophysics Data System (ADS)

    Armbruster, Oskar; Lungenschmied, Christoph; Bauer, Siegfried

    2011-08-01

    We introduce a model to account for the dielectric response of doped organic semiconductor devices. In addition to the phenomena observed for undoped devices, mobile charge carriers created by doping can alter the dielectric function of the organic material and hence the dielectric response of the devices. These extrinsic charges may be trapped and contribute to the capacitance on re-emission. We directly model the real part of the dielectric function based on this phenomenon. The imaginary part is obtained via the application of the Kramers-Kronig transformation. We use oxygen-doped poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester- (P3HT:PCBM) based organic solar cells as a model system to test our approach and hence contribute to the understanding of oxygen-induced degradation in these devices. We fit our equations to the measured dielectric data and compare it to Debye relaxation as well as two widely used equivalent circuit models. Together with the device resistance determined from the steady-state current-voltage characteristic around 0V an excellent agreement between the experimental data and our model is achieved for both the real and the imaginary part of the dielectric function over a frequency range covering five orders of magnitude. Unlike the Debye relaxation model or the equivalent circuit approach, our model yields important device parameters such as the dopant concentration.

  4. External circuit integration with electromagnetic particle in cell modeling of plasma focus devices

    SciTech Connect

    Seng, Y. S.; Lee, P.; Rawat, R. S.

    2015-03-15

    The pinch performance of a plasma focus (PF) device is sensitive to the physical conditions of the breakdown phase. It is therefore essential to model and study the initial phase in order to optimize device performance. An external circuit is self consistently coupled to the electromagnetic particle in cell code to model the breakdown and initial lift phase of the United Nations University/International Centre for Theoretical Physics (UNU-ICTP) plasma focus device. Gas breakdown during the breakdown phase is simulated successfully, following a drop in the applied voltage across the device and a concurrent substantial rise in the circuit current. As a result, the plasma becomes magnetized, with the growing value of the magnetic field over time leading to the gradual lift off of the well formed current sheath into the axial acceleration phase. This lifting off, with simultaneous outward sheath motion along the anode and vertical cathode, and the strong magnetic fields in the current sheath region, was demonstrated in this work, and hence validates our method of coupling the external circuit to PF devices. Our method produces voltage waveforms that are qualitatively similar to the observed experimental voltage profiles of the UNU-ICTP device. Values of the mean electron energy before and after voltage breakdown turned out to be different, with the values after breakdown being much lower. In both cases, the electron energy density function turned out to be non-Maxwellian.

  5. Hematology and pathology devices; reclassification of the automated differential cell counter. Final rule.

    PubMed

    2002-01-14

    The Food and Drug Administration (FDA) is reclassifying the automated differential cell counter (ADCC) from class III (premarket approval) into class II (special controls). FDA is also identifying the guidance document entitled "Class II Special Controls Guidance Document: Premarket Notifications for Automated Differential Cell Counters for Immature or Abnormal Blood Cells; Final Guidance for Industry and FDA" as the special control that the agency believes will reasonably ensure the safety and effectiveness of the device. This reclassification is being undertaken based on new information submitted in a reclassification petition from the International Society for Laboratory Hematology (ISLH), under the Federal Food, Drug, and Cosmetic Act (the act), as amended by the Safe Medical Devices Act of 1990 and the FDA Modernization Act of 1997. PMID:11800006

  6. Optimization of material/device parameters of CdTe photovoltaic for solar cells applications

    NASA Astrophysics Data System (ADS)

    Wijewarnasuriya, Priyalal S.

    2016-05-01

    Cadmium telluride (CdTe) has been recognized as a promising photovoltaic material for thin-film solar cell applications due to its near optimum bandgap of ~1.5 eV and high absorption coefficient. The energy gap is near optimum for a single-junction solar cell. The high absorption coefficient allows films as thin as 2.5 μm to absorb more than 98% of the above-bandgap radiation. Cells with efficiencies near 20% have been produced with poly-CdTe materials. This paper examines n/p heterostructure device architecture. The performance limitations related to doping concentrations, minority carrier lifetimes, absorber layer thickness, and surface recombination velocities at the back and front interfaces is assessed. Ultimately, the paper explores device architectures of poly- CdTe and crystalline CdTe to achieve performance comparable to gallium arsenide (GaAs).

  7. Method and device for the detection of phenol and related compounds. [in an electrochemical cell

    NASA Technical Reports Server (NTRS)

    Schiller, J. G.; Liu, C. C. (Inventor)

    1979-01-01

    A method is described which permits the selective oxidation and potentiometric detection of phenol and related compounds in an electrochemical cell. An anode coated with a gel immobilized oxidative enzyme and a cathode are each placed in an electrolyte solution. The potential of the cell is measured by a potentiometer connected to the electrodes.

  8. Separation of biological cells in a microfluidic device using surface acoustic waves (SAWs)

    NASA Astrophysics Data System (ADS)

    Ai, Ye; Marrone, Babetta L.

    2014-03-01

    In this study, a surface acoustic wave (SAW)-based microfluidic device has been developed to separate heterogeneous particle or cell mixtures in a continuous flow using acoustophoresis. The microfluidic device is comprised of two components, a SAW transducer and a microfluidic channel made of polydimethylsiloxane (PDMS). The SAW transducer was fabricated by patterning two pairs of interdigital electrodes on a lithium niobate (LiNbO3) piezoelectric substrate. When exciting the SAW transducer by AC signals, a standing SAW is generated along the cross-section of the channel. Solid particles immersed in the standing SAW field are accordingly pushed to the pressure node arising from the acoustic radiation force acting on the particles, referring to the acoustic particle-focusing phenomenon. Acoustic radiation force highly depends on the particle properties, resulting in different acoustic responses for different types of cells. A numerical model, coupling the piezoelectric effect in the solid substrate and acoustic pressure in the fluid, was developed to provide a better understanding of SAW-based particle manipulation. Separation of two types of fluorescent particles has been demonstrated using the developed SAW-based microfluidic device. An efficient separation of E. coli bacteria from peripheral blood mononuclear cell (PBMC) samples has also been successfully achieved. The purity of separated E. coli bacteria and separated PBMCs were over 95% and 91%, respectively, obtained by a flow cytometric analysis. The developed microfluidic device can efficiently separate E. coli bacteria from biological samples, which has potential applications in biomedical analysis and clinical diagnosis.

  9. Design and Implementation of Functional Nanoelectronic Interfaces With Biomolecules, Cells, and Tissue Using Nanowire Device Arrays

    PubMed Central

    Timko, Brian P.; Cohen-Karni, Tzahi; Qing, Quan; Tian, Bozhi; Lieber, Charles M.

    2010-01-01

    Nanowire FETs (NWFETs) are promising building blocks for nanoscale bioelectronic interfaces with cells and tissue since they are known to exhibit exquisite sensitivity in the context of chemical and biological detection, and have the potential to form strongly coupled interfaces with cell membranes. We present a general scheme that can be used to assemble NWs with rationally designed composition and geometry on either planar inorganic or biocompatible flexible plastic surfaces. We demonstrate that these devices can be used to measure signals from neurons, cardiomyocytes, and heart tissue. Reported signals are in millivolts range, which are equal to or substantially greater than those recorded with either planar FETs or multielectrode arrays, and demonstrate one unique advantage of NW-based devices. Basic studies showing the effect of device sensitivity and cell/substrate junction quality on signal magnitude are presented. Finally, our demonstrated ability to design high-density arrays of NWFETs enables us to map signal at the subcellular level, a functionality not enabled by conventional microfabricated devices. These advances could have broad applications in high-throughput drug assays, fundamental biophysical studies of cellular function, and development of powerful prosthetics. PMID:21785576

  10. A microfluidic device for physical trapping and electrical lysis of bacterial cells

    NASA Astrophysics Data System (ADS)

    Bao, Ning; Lu, Chang

    2008-05-01

    In this letter, we report a simple microfluidic device that integrates the capture of bacterial cells using a microscale bead array and the rapid electrical lysis for release of intracellular materials. We study the retention of Escherichia coli cells with different concentrations in this type of bead array and the optimal electrical parameters for the electroporative release of intracellular proteins. Our design provides a simple solution to the extraction of intracellular materials from a bacterial cell population based entirely on physical methods without applying chemical or biological reagents.

  11. Continuous-flow Ferrohydrodynamic Sorting of Particles and Cells in Microfluidic Devices

    PubMed Central

    Zhu, Taotao; Cheng, Rui; Lee, Sarah A.; Rajaraman, Eashwar; Eiteman, Mark A.; Querec, Troy D.; Unger, Elizabeth R.; Mao, Leidong

    2015-01-01

    A new sorting scheme based on ferrofluid hydrodynamics (ferrohydrodynamics) was used to separate mixtures of particles and live cells simultaneously. Two species of cells, including Escherichia coli and Saccharomyces cerevisiae, as well as fluorescent polystyrene microparticles were studied for their sorting throughput and efficiency. Ferrofluids are stable magnetic nanoparticles suspensions. Under external magnetic fields, magnetic buoyancy forces exerted on particles and cells lead to size-dependent deflections from their laminar flow paths and result in spatial separation. We report the design, modeling, fabrication and characterization of the sorting device. This scheme is simple, low-cost and label-free compared to other existing techniques. PMID:26430394

  12. Continuous Monitoring of Electrical Activity of Pancreatic β-Cells Using Semiconductor-Based Biosensing Devices

    NASA Astrophysics Data System (ADS)

    Sakata, Toshiya; Sugimoto, Haruyo

    2011-02-01

    The electrical activity of rat pancreatic β-cells caused by introduction of glucose was directly and noninvasively detected using a cell-based field-effect transistor (FET). Rat pancreatic β-cells were adhered to the gate sensing surface of the cell-based FET. The principle of cell-based FETs is based on the detection of charge density changes such as pH variation at the interface between the cell membrane and the gate surface. The gate surface potential of pancreatic β-cell-based FET increased continuously after introduction of glucose at a high concentration of 10 mg/ml. This result indicates that the electrical activity of β-cells was successfully monitored on the basis of pH changes, i.e., increase in the concentration of hydrogen ions, at the cell/gate interface using the pancreatic β-cell-based FET. We assume that the pH variation based on hydrogen ion accumulation at the cell/gate interface was induced by activation of respiration accompanied by insulin secretion process following glucose addition. The platform based on the field-effect devices is suitable for application in a real-time, noninvasive, and label-free detection system for cell functional analyses.

  13. Trap-Assisted Transport and Non-Uniform Charge Distribution in Sulfur-Rich PbS Colloidal Quantum Dot-based Solar Cells with Selective Contacts.

    PubMed

    Malgras, Victor; Zhang, Guanran; Nattestad, Andrew; Clarke, Tracey M; Mozer, Attila J; Yamauchi, Yusuke; Kim, Jung Ho

    2015-12-01

    This study reports evidence of dispersive transport in planar PbS colloidal quantum dot heterojunction-based devices as well as the effect of incorporating a MoO3 hole selective layer on the charge extraction behavior. Steady state and transient characterization techniques are employed to determine the complex recombination processes involved in such devices. The addition of a selective contact drastically improves the device efficiency up to 3.15% (especially due to increased photocurrent and decreased series resistance) and extends the overall charge lifetime by suppressing the main first-order recombination pathway observed in device without MoO3. The lifetime and mobility calculated for our sulfur-rich PbS-based devices are similar to previously reported values in lead-rich quantum dots-based solar cells. Nevertheless, strong Shockley-Read-Hall mechanisms appear to keep restricting charge transport, as the equilibrium voltage takes more than 1 ms to be established. PMID:26541422

  14. Nanoelectronics Meets Biology: From Novel Nanoscale Devices for Live Cell Recording to 3D Innervated Tissues†

    PubMed Central

    Duan, Xiaojie; Lieber, Charles M.

    2013-01-01

    High spatio-temporal resolution interfacing between electrical sensors and biological systems, from single live cells to tissues, is crucial for many areas, including fundamental biophysical studies as well as medical monitoring and intervention. This focused review summarizes recent progresses in the development and application of novel nanoscale devices for intracellular electrical recordings of action potentials, and the effort of merging electronic and biological systems seamlessly in three dimension using macroporous nanoelectronic scaffolds. The uniqueness of these nanoscale devices for minimally invasive, large scale, high spatial resolution, and three dimensional neural activity mapping will be highlighted. PMID:23946279

  15. Scalable graphene synthesised by plasma-assisted selective reaction on silicon carbide for device applications

    NASA Astrophysics Data System (ADS)

    Tsai, Hsu-Sheng; Lai, Chih-Chung; Medina, Henry; Lin, Shih-Ming; Shih, Yu-Chuan; Chen, Yu-Ze; Liang, Jenq-Horng; Chueh, Yu-Lun

    2014-10-01

    Graphene, a two-dimensional material with honeycomb arrays of carbon atoms, has shown outstanding physical properties that make it a promising candidate material for a variety of electronic applications. To date, several issues related to the material synthesis and device fabrication need to be overcome. Despite the fact that large-area graphene films synthesised by chemical vapour deposition (CVD) can be grown with relatively few defects, the required transfer process creates wrinkles and polymer residues that greatly reduce its performance in device applications. Graphene synthesised on silicon carbide (SiC) has shown outstanding mobility and has been successfully used to develop ultra-high frequency transistors; however, this fabrication method is limited due to the use of costly ultra-high vacuum (UHV) equipment that can reach temperatures over 1500 °C. Here, we show a simple and novel approach to synthesise graphene on SiC substrates that greatly reduces the temperature and vacuum requirements and allows the use of equipment commonly used in the semiconductor processing industry. In this work, we used plasma treatment followed by annealing in order to obtain large-scale graphene films from bulk SiC. After exposure to N2 plasma, the annealing process promotes the reaction of nitrogen ions with Si and the simultaneous condensation of C on the surface of SiC. Eventually, a uniform, large-scale, n-type graphene film with remarkable transport behaviour on the SiC wafer is achieved. Furthermore, graphene field effect transistors (FETs) with high carrier mobilities on SiC were also demonstrated in this study.Graphene, a two-dimensional material with honeycomb arrays of carbon atoms, has shown outstanding physical properties that make it a promising candidate material for a variety of electronic applications. To date, several issues related to the material synthesis and device fabrication need to be overcome. Despite the fact that large-area graphene films

  16. Scalable graphene synthesised by plasma-assisted selective reaction on silicon carbide for device applications.

    PubMed

    Tsai, Hsu-Sheng; Lai, Chih-Chung; Medina, Henry; Lin, Shih-Ming; Shih, Yu-Chuan; Chen, Yu-Ze; Liang, Jenq-Horng; Chueh, Yu-Lun

    2014-11-21

    Graphene, a two-dimensional material with honeycomb arrays of carbon atoms, has shown outstanding physical properties that make it a promising candidate material for a variety of electronic applications. To date, several issues related to the material synthesis and device fabrication need to be overcome. Despite the fact that large-area graphene films synthesised by chemical vapour deposition (CVD) can be grown with relatively few defects, the required transfer process creates wrinkles and polymer residues that greatly reduce its performance in device applications. Graphene synthesised on silicon carbide (SiC) has shown outstanding mobility and has been successfully used to develop ultra-high frequency transistors; however, this fabrication method is limited due to the use of costly ultra-high vacuum (UHV) equipment that can reach temperatures over 1500 °C. Here, we show a simple and novel approach to synthesise graphene on SiC substrates that greatly reduces the temperature and vacuum requirements and allows the use of equipment commonly used in the semiconductor processing industry. In this work, we used plasma treatment followed by annealing in order to obtain large-scale graphene films from bulk SiC. After exposure to N2 plasma, the annealing process promotes the reaction of nitrogen ions with Si and the simultaneous condensation of C on the surface of SiC. Eventually, a uniform, large-scale, n-type graphene film with remarkable transport behaviour on the SiC wafer is achieved. Furthermore, graphene field effect transistors (FETs) with high carrier mobilities on SiC were also demonstrated in this study. PMID:25307846

  17. Selective apoptotic cell death effects of oral cancer cells treated with destruxin B

    PubMed Central

    2014-01-01

    Background Recent studies have revealed that destruxins (Dtx) have potent cytotoxic activities on individual cancer cells, however, data on oral cancer cells especial human are absent. Methods Destruxin B (DB) was isolated and used to evaluate the selective cytotoxicity with human oral cancer cell lines, GNM (Neck metastasis of gingival carcinoma) and TSCCa (Tongue squamous cell carcinoma) cells, and normal gingival fibroblasts (GF) were also included as controls. Cells were tested with different concentrations of DB for 24, 48, and 72 h by MTT assay. Moreover, the mechanism of cytotoxicity was investigated using caspase-3 Immunofluorescence, annexin V/PI staining, and the expression of caspase-3, Bax, and Bcl-2 by western blotting after treated with different concentrations of DB for 72 h as parameters for apoptosis analyses. Results The results show that DB exhibited significant (p < 0.01) and selective time- and dose-dependent inhibitory effects on GNM and TSCCa cells viability but not on GF cells. The data suggested that DB is capable to induce tumor specific growth inhibition in oral GNM and TSCCa cancer cells via Bax/Bcl-2-mediated intrinsic mitochondrial apoptotic pathway in time- and dose-dependent manners. Conclusions This is the first report on the anti-proliferation effect of DB in oral cancer cells. The results reported here may offer further evidences to the development of DB as a potential complementary chemotherapeutic target for oral cancer complications. PMID:24972848

  18. Preparation of functional human factor V111 in mammalian cells using methotrexate based selection

    SciTech Connect

    Capon, D.J.; Lawn, R.M.; Levinson, A.D.; Vehar, G.A.; Wood, W.I.

    1990-10-23

    This patent describes a process for producing factor VII. It comprises: cotransfecting a mammalian host cell with a DNA sequence encoding factor VIII, a second DNA sequence encoding an amplifiable marker, and a third DNA sequence encoding a selectable marker; growing the transfected cell in a non-selection medium and selecting for such selectable marker resistant cells; and amplifying the amplifiable marker DNA sequence by culturing the selected cells in media containing increasing amounts of selection agent, wherein the host cell is not deficient in the amplifiable marker.

  19. Magnesium Fluoride Electron-Selective Contacts for Crystalline Silicon Solar Cells.

    PubMed

    Wan, Yimao; Samundsett, Chris; Bullock, James; Allen, Thomas; Hettick, Mark; Yan, Di; Zheng, Peiting; Zhang, Xinyu; Cui, Jie; McKeon, Josephine; Javey, Ali; Cuevas, Andres

    2016-06-15

    In this study, we present a novel application of thin magnesium fluoride films to form electron-selective contacts to n-type crystalline silicon (c-Si). This allows the demonstration of a 20.1%-efficient c-Si solar cell. The electron-selective contact is composed of deposited layers of amorphous silicon (∼6.5 nm), magnesium fluoride (∼1 nm), and aluminum (∼300 nm). X-ray photoelectron spectroscopy reveals a work function of 3.5 eV at the MgF2/Al interface, significantly lower than that of aluminum itself (∼4.2 eV), enabling an Ohmic contact between the aluminum electrode and n-type c-Si. The optimized contact structure exhibits a contact resistivity of ∼76 mΩ·cm(2), sufficiently low for a full-area contact to solar cells, together with a very low contact recombination current density of ∼10 fA/cm(2). We demonstrate that electrodes functionalized with thin magnesium fluoride films significantly improve the performance of silicon solar cells. The novel contacts can potentially be implemented also in organic optoelectronic devices, including photovoltaics, thin film transistors, or light emitting diodes. PMID:27219911

  20. Selective Destruction Of Cells Infected With The Human Immunodeficiency Virus

    DOEpatents

    Keener, William K.; Ward, Thomas E.

    2006-03-28

    Compositions and methods for selectively killing a cell containing a viral protease are disclosed. The composition is a varient of a protein synthesis inactivating toxin wherein a viral protease cleavage site is interposed between the A and B chains. The variant of the type II ribosome-inactivating protein is activated by digestion of the viral protease cleavage site by the specific viral protease. The activated ribosome-inactivating protein then kills the cell by inactivating cellular ribosomes. A preferred embodiment of the invention is specific for human immunodeficiency virus (HIV) and uses ricin as the ribosome-inactivating protein. In another preferred embodiment of the invention, the variant of the ribosome-inactivating protein is modified by attachment of one or more hydrophobic agents. The hydrophobic agent facilitates entry of the variant of the ribosome-inactivating protein into cells and can lead to incorporation of the ribosome-inactivating protein into viral particles. Still another preferred embodiment of the invention includes a targeting moiety attached to the variants of the ribosome-inactivating protein to target the agent to HIV infectable cells.

  1. Selective destruction of cells infected with human immunodeficiency virus

    DOEpatents

    Keener, William K.; Ward, Thomas E.

    2003-09-30

    Compositions and methods for selectively killing a cell containing a viral protease are disclosed. The composition is a variant of a protein synthesis inactivating toxin wherein a viral protease cleavage site is interposed between the A and B chains. The variant of the type II ribosome-inactivating protein is activated by digestion of the viral protease cleavage site by the specific viral protease. The activated ribosome-inactivating protein then kills the cell by inactivating cellular ribosomes. A preferred embodiment of the invention is specific for human immunodeficiency virus (HIV) and uses ricin as the ribosome-inactivating protein. In another preferred embodiment of the invention, the variant of the ribosome-inactivating protein is modified by attachment of one or more hydrophobic agents. The hydrophobic agent facilitates entry of the variant of the ribosome-inactivating protein into cells and can lead to incorporation of the ribosome-inactivating protein into viral particles. Still another preferred embodiment of the invention includes a targeting moiety attached to the variants of the ribosome-inactivating protein to target the agent to HIV infectable cells.

  2. “Optical communication with brain cells by means of an implanted duplex micro-device with optogenetics and Ca2+ fluoroimaging”

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takuma; Haruta, Makito; Sasagawa, Kiyotaka; Matsumata, Miho; Eizumi, Kawori; Kitsumoto, Chikara; Motoyama, Mayumi; Maezawa, Yasuyo; Ohta, Yasumi; Noda, Toshihiko; Tokuda, Takashi; Ishikawa, Yasuyuki; Ohta, Jun

    2016-02-01

    To better understand the brain function based on neural activity, a minimally invasive analysis technology in a freely moving animal is necessary. Such technology would provide new knowledge in neuroscience and contribute to regenerative medical techniques and prosthetics care. An application that combines optogenetics for voluntarily stimulating nerves, imaging to visualize neural activity, and a wearable micro-instrument for implantation into the brain could meet the abovementioned demand. To this end, a micro-device that can be applied to the brain less invasively and a system for controlling the device has been newly developed in this study. Since the novel implantable device has dual LEDs and a CMOS image sensor, photostimulation and fluorescence imaging can be performed simultaneously. The device enables bidirectional communication with the brain by means of light. In the present study, the device was evaluated in an in vitro experiment using a new on-chip 3D neuroculture with an extracellular matrix gel and an in vivo experiment involving regenerative medical transplantation and gene delivery to the brain by using both photosensitive channel and fluorescent Ca2+ indicator. The device succeeded in activating cells locally by selective photostimulation, and the physiological Ca2+ dynamics of neural cells were visualized simultaneously by fluorescence imaging.

  3. “Optical communication with brain cells by means of an implanted duplex micro-device with optogenetics and Ca2+ fluoroimaging”

    PubMed Central

    Kobayashi, Takuma; Haruta, Makito; Sasagawa, Kiyotaka; Matsumata, Miho; Eizumi, Kawori; Kitsumoto, Chikara; Motoyama, Mayumi; Maezawa, Yasuyo; Ohta, Yasumi; Noda, Toshihiko; Tokuda, Takashi; Ishikawa, Yasuyuki; Ohta, Jun

    2016-01-01

    To better understand the brain function based on neural activity, a minimally invasive analysis technology in a freely moving animal is necessary. Such technology would provide new knowledge in neuroscience and contribute to regenerative medical techniques and prosthetics care. An application that combines optogenetics for voluntarily stimulating nerves, imaging to visualize neural activity, and a wearable micro-instrument for implantation into the brain could meet the abovementioned demand. To this end, a micro-device that can be applied to the brain less invasively and a system for controlling the device has been newly developed in this study. Since the novel implantable device has dual LEDs and a CMOS image sensor, photostimulation and fluorescence imaging can be performed simultaneously. The device enables bidirectional communication with the brain by means of light. In the present study, the device was evaluated in an in vitro experiment using a new on-chip 3D neuroculture with an extracellular matrix gel and an in vivo experiment involving regenerative medical transplantation and gene delivery to the brain by using both photosensitive channel and fluorescent Ca2+ indicator. The device succeeded in activating cells locally by selective photostimulation, and the physiological Ca2+ dynamics of neural cells were visualized simultaneously by fluorescence imaging. PMID:26878910

  4. Water compatible stir-bar devices imprinted with underivatised glyphosate for selective sample clean-up.

    PubMed

    Gomez-Caballero, Alberto; Diaz-Diaz, Goretti; Bengoetxea, Olatz; Quintela, Amaia; Unceta, Nora; Goicolea, M Aranzazu; Barrio, Ramón J

    2016-06-17

    This paper reports the development of stir bars with a new MIP based coating, for the selective sorptive extraction of the herbicide glyphosate (GLYP). Molecular imprinting of the polymer has directly been carried out employing underivatised GLYP as the template molecule. Due to the poor solubility of the target compound in organic solvents, the MIP methodology has been optimised for rebinding in aqueous media, being the synthesis and the rebinding steps carried out in water:methanol mixtures and pure aqueous media. The coating has been developed by radical polymerisation initiated by UV energy, using N-allylthiourea and 2-dimethyl aminoethyl methacrylate as functional monomers and ethylene glycol dimethacrylate as the cross-linker. Mechanical stability of the coating has been improved using 1,3-divinyltetramethyldisiloxane in the polymerisation mixture. Under the optimised conditions, the MIP has demonstrated excellent selectivity for the target compound in the presence of structural analogues, including its major metabolites. The applicability of the proposed method to real matrices has also been assessed using river water and soil samples. Registered mean recoveries ranged from 90.6 to 97.3% and RSD values were below 5% in all cases, what confirmed the suitability of the described methodology for the selective extraction and quantification of GLYP. PMID:27207580

  5. Selective Calcium Sensitivity in Immature Glioma Cancer Stem Cells

    PubMed Central

    Marinescu, Voichita Dana; Segerman, Anna; Schmidt, Linnéa; Hermansson, Annika; Dirks, Peter; Forsberg-Nilsson, Karin; Westermark, Bengt; Uhrbom, Lene; Linnarsson, Sten; Nelander, Sven; Andäng, Michael

    2014-01-01

    Tumor-initiating cells are a subpopulation in aggressive cancers that exhibit traits shared with stem cells, including the ability to self-renew and differentiate, commonly referred to as stemness. In addition, such cells are resistant to chemo- and radiation therapy posing a therapeutic challenge. To uncover stemness-associated functions in glioma-initiating cells (GICs), transcriptome profiles were compared to neural stem cells (NSCs) and gene ontology analysis identified an enrichment of Ca2+ signaling genes in NSCs and the more stem-like (NSC-proximal) GICs. Functional analysis in a set of different GIC lines regarding sensitivity to disturbed homeostasis using A23187 and Thapsigargin, revealed that NSC-proximal GICs were more sensitive, corroborating the transcriptome data. Furthermore, Ca2+ drug sensitivity was reduced in GICs after differentiation, with most potent effect in the NSC-proximal GIC, supporting a stemness-associated Ca2+ sensitivity. NSCs and the NSC-proximal GIC line expressed a larger number of ion channels permeable to potassium, sodium and Ca2+. Conversely, a higher number of and higher expression levels of Ca2+ binding genes that may buffer Ca2+, were expressed in NSC-distal GICs. In particular, expression of the AMPA glutamate receptor subunit GRIA1, was found to associate with Ca2+ sensitive NSC-proximal GICs, and decreased as GICs differentiated along with reduced Ca2+ drug sensitivity. The correlation between high expression of Ca2+ channels (such as GRIA1) and sensitivity to Ca2+ drugs was confirmed in an additional nine novel GIC lines. Calcium drug sensitivity also correlated with expression of the NSC markers nestin (NES) and FABP7 (BLBP, brain lipid-binding protein) in this extended analysis. In summary, NSC-associated NES+/FABP7+/GRIA1+ GICs were selectively sensitive to disturbances in Ca2+ homeostasis, providing a potential target mechanism for eradication of an immature population of malignant cells. PMID:25531110

  6. Turnbuckle diamond anvil cell for high-pressure measurements in a superconducting quantum interference device magnetometer.

    PubMed

    Giriat, Gaétan; Wang, Weiwei; Attfield, J Paul; Huxley, Andrew D; Kamenev, Konstantin V

    2010-07-01

    We have developed a miniature diamond anvil cell for magnetization measurements in a widely used magnetic property measurement system commercial magnetometer built around a superconducting quantum interference device. The design of the pressure cell is based on the turnbuckle principle in which force can be created and maintained by rotating the body of the device while restricting the counterthreaded end-nuts to translational movement. The load on the opposed diamond anvils and the sample between them is generated using a hydraulic press. The load is then locked by rotating the body of the cell with respect to the end-nuts. The dimensions of the pressure cell have been optimized by use of finite element analysis. The cell is approximately a cylinder 7 mm long and 7 mm in diameter and weighs only 1.5 g. Due to its small size the cell thermalizes rapidly. It is capable of achieving pressures in excess of 10 GPa while allowing measurements to be performed with the maximum sensitivity of the magnetometer. The performance of the pressure cell is illustrated by a high pressure magnetic study of Mn(3)[Cr(CN)(6)](2) x xH(2)O Prussian blue analog up to 10.3 GPa. PMID:20687740

  7. Turnbuckle diamond anvil cell for high-pressure measurements in a superconducting quantum interference device magnetometer

    NASA Astrophysics Data System (ADS)

    Giriat, Gaétan; Wang, Weiwei; Attfield, J. Paul; Huxley, Andrew D.; Kamenev, Konstantin V.

    2010-07-01

    We have developed a miniature diamond anvil cell for magnetization measurements in a widely used magnetic property measurement system commercial magnetometer built around a superconducting quantum interference device. The design of the pressure cell is based on the turnbuckle principle in which force can be created and maintained by rotating the body of the device while restricting the counterthreaded end-nuts to translational movement. The load on the opposed diamond anvils and the sample between them is generated using a hydraulic press. The load is then locked by rotating the body of the cell with respect to the end-nuts. The dimensions of the pressure cell have been optimized by use of finite element analysis. The cell is approximately a cylinder 7 mm long and 7 mm in diameter and weighs only 1.5 g. Due to its small size the cell thermalizes rapidly. It is capable of achieving pressures in excess of 10 GPa while allowing measurements to be performed with the maximum sensitivity of the magnetometer. The performance of the pressure cell is illustrated by a high pressure magnetic study of Mn3[Cr(CN)6]2ṡxH2O Prussian blue analog up to 10.3 GPa.

  8. Galactosylated poly(ethyleneglycol)-lithocholic Acid selectively kills hepatoma cells, while sparing normal liver cells.

    PubMed

    Gankhuyag, Nomundelger; Singh, Bijay; Maharjan, Sushila; Choi, Yun-Jaie; Cho, Chong-Su; Cho, Myung-Haing

    2015-06-01

    Delivering drugs selectively to cancer cells but not to nearby normal cells is a major obstacle in drug therapy. In this study, lithocholic acid (LCA), a potent anti-cancer drug, is converted to two forms of poly(ethyleneglycol) (PEG) conjugates, viz., PEG-LCA (PL) and lactobionic acid (LBA) conjugated PEG-LCA (LPL). The latter form contains a galactose ligand in LBA to target the hepatocytes. Both forms are self-assembled to form nanoparticle formulation, and they have high potency than LCA to kill HepG2 cancer cells, sparing normal LO2 cells. Besides, LPL has high specificity to mouse liver cells in vivo. Western blot results confirm that the cell death is occurred through apoptosis induced by LPL nanoparticles. In conclusion, the induction of apoptosis and cell death is much more efficient with LPL nanoparticles than LCA molecules. PMID:25657071

  9. Wood-fired fuel cells in selected buildings

    NASA Astrophysics Data System (ADS)

    McIlveen-Wright, D. R.; McMullan, J. T.; Guiney, D. J.

    of selected buildings in rural areas, with regard to the high cost of importing other fuel, and/or lack of grid electricity, could still make these systems attractive options. Any economic analysis of these systems is beset with severe difficulties. Capital costs of the major system components are not known with any great precision. However, a guideline assessment of the payback period for such CHP systems was made. When the best available capital costs for system components were used, most of these systems were found to have unacceptably long payback periods, particularly where the fuel cell lifetimes are short, but the larger systems show the potential for a reasonable economic return.

  10. A simple microfluidic device to study cell-scale endothelial mechanotransduction.

    PubMed

    Lafaurie-Janvore, Julie; Antoine, Elizabeth E; Perkins, Sidney J; Babataheri, Avin; Barakat, Abdul I

    2016-08-01

    Atherosclerosis is triggered by chronic inflammation of arterial endothelial cells (ECs). Because atherosclerosis develops preferentially in regions where blood flow is disturbed and where ECs have a cuboidal morphology, the interplay between EC shape and mechanotransduction events is of primary interest. In this work we present a simple microfluidic device to study relationships between cell shape and EC response to fluid shear stress. Adhesive micropatterns are used to non-invasively control EC elongation and orientation at both the monolayer and single cell levels. The micropatterned substrate is coupled to a microfluidic chamber that allows precise control of the flow field, high-resolution live-cell imaging during flow experiments, and in situ immunostaining. Using micro particle image velocimetry, we show that cells within the chamber alter the local flow field so that the shear stress on the cell surface is significantly higher than the wall shear stress in regions containing no cells. In response to flow, we observe the formation of lamellipodia in the downstream portion of the EC and cell retraction in the upstream portion. We quantify flow-induced calcium mobilization at the single cell level for cells cultured on unpatterned surfaces or on adhesive lines oriented either parallel or orthogonal to the flow. Finally, we demonstrate flow-induced intracellular calcium waves and show that the direction of propagation of these waves is determined by cell polarization rather than by the flow direction. The combined versatility and simplicity of this microfluidic device renders it very useful for studying relationships between EC shape and mechanosensitivity. PMID:27402497

  11. Microfabricated Polyacrylamide Devices for the Controlled Culture of Growing Cells and Developing Organisms

    PubMed Central

    Gude, Sebastian; Recouvreux, Pierre; van Zon, Jeroen S.; Tans, Sander J.

    2013-01-01

    The ability to spatially confine living cells or small organisms while dynamically controlling their aqueous environment is important for a host of microscopy applications. Here, we show how polyacrylamide layers can be patterned to construct simple microfluidic devices for this purpose. We find that polyacrylamide gels can be molded like PDMS into micron-scale structures that can enclose organisms, while being permeable to liquids, and transparent to allow for microscopic observation. We present a range of chemostat-like devices to observe bacterial and yeast growth, and C. elegans nematode development. The devices can integrate PDMS layers and allow for temporal control of nutrient conditions and the presence of drugs on a minute timescale. We show how spatial confinement of motile C. elegans enables for time-lapse microscopy in a parallel fashion. PMID:24086559

  12. Selective identification of macrophages and cancer cells based on thermal transport through surface-imprinted polymer layers.

    PubMed

    Eersels, Kasper; van Grinsven, Bart; Ethirajan, Anitha; Timmermans, Silke; Jiménez Monroy, Kathia L; Bogie, Jeroen F J; Punniyakoti, Sathya; Vandenryt, Thijs; Hendriks, Jerome J A; Cleij, Thomas J; Daemen, Mat J A P; Somers, Veerle; De Ceuninck, Ward; Wagner, Patrick

    2013-08-14

    In this article, we describe a novel straightforward method for the specific identification of viable cells (macrophages and cancer cell lines MCF-7 and Jurkat) in a buffer solution. The detection of the various cell types is based on changes of the heat transfer resistance at the solid-liquid interface of a thermal sensor device induced by binding of the cells to a surface-imprinted polymer layer covering an aluminum chip. We observed that the binding of cells to the polymer layer results in a measurable increase of heat transfer resistance, meaning that the cells act as a thermally insulating layer. The detection limit was found to be on the order of 10(4) cells/mL, and mutual cross-selectivity effects between the cells and different types of imprints were carefully characterized. Finally, a rinsing method was applied, allowing for the specific detection of cancer cells with their respective imprints while the cross-selectivity toward peripheral blood mononuclear cells was negligible. The concept of the sensor platform is fast and low-cost while allowing also for repetitive measurements. PMID:23820628

  13. High-Purity Isolation and Recovery of Circulating Tumor Cells using Conducting Polymer-deposited Microfluidic Device

    PubMed Central

    Jeon, SeungHyun; Hong, WooYoung; Lee, Eun Sook; Cho, Youngnam

    2014-01-01

    We have developed a conductive nano-roughened microfluidic device and demonstrated its use as an electrically modulated capture and release system for studying rare circulating tumor cells (CTCs). The microchannel surfaces were covalently decorated with epithelial cancer-specific anti-EpCAM antibody by electrochemical deposition of biotin-doped polypyrrole (Ppy), followed by the assembly of streptavidin and biotinylated antibody. Our method utilizes the unique topographical features and excellent electrical activity of Ppy for i) surface-induced preferential recognition and release of CTCs, and ii) selective elimination of non-specifically immobilized white blood cells (WBCs), which are capable of high-purity isolation of CTCs. In addition, the direct incorporation of biotin molecules offers good flexibility, because it allows the modification of channel surfaces with diverse antibodies, in addition to anti-EpCAM, for enhanced detection of multiple types of CTCs. By engineering a series of electrical, chemical, and topographical cues, this simple yet efficient device provides a significant advantage to CTC detection technology as compared with other conventional methods. PMID:25250093

  14. 21 CFR 866.6020 - Immunomagnetic circulating cancer cell selection and enumeration system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Immunomagnetic circulating cancer cell selection... Associated Antigen immunological Test Systems § 866.6020 Immunomagnetic circulating cancer cell selection and enumeration system. (a) Identification. An immunomagnetic circulating cancer cell selection and...

  15. 21 CFR 866.6020 - Immunomagnetic circulating cancer cell selection and enumeration system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Immunomagnetic circulating cancer cell selection... Associated Antigen immunological Test Systems § 866.6020 Immunomagnetic circulating cancer cell selection and enumeration system. (a) Identification. An immunomagnetic circulating cancer cell selection and...

  16. 21 CFR 866.6020 - Immunomagnetic circulating cancer cell selection and enumeration system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Immunomagnetic circulating cancer cell selection... Associated Antigen immunological Test Systems § 866.6020 Immunomagnetic circulating cancer cell selection and enumeration system. (a) Identification. An immunomagnetic circulating cancer cell selection and...

  17. 21 CFR 866.6020 - Immunomagnetic circulating cancer cell selection and enumeration system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Immunomagnetic circulating cancer cell selection... Associated Antigen immunological Test Systems § 866.6020 Immunomagnetic circulating cancer cell selection and enumeration system. (a) Identification. An immunomagnetic circulating cancer cell selection and...

  18. 21 CFR 866.6020 - Immunomagnetic circulating cancer cell selection and enumeration system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Immunomagnetic circulating cancer cell selection... Associated Antigen immunological Test Systems § 866.6020 Immunomagnetic circulating cancer cell selection and enumeration system. (a) Identification. An immunomagnetic circulating cancer cell selection and...

  19. Selection of wires and circuit protective devices for STS Orbiter vehicle payload electrical circuits

    NASA Technical Reports Server (NTRS)

    Gaston, Darilyn M.

    1991-01-01

    Electrical designers of Orbiter payloads face the challenge of determining proper circuit protection/wire size parameters to satisfy Orbiter engineering and safety requirements. This document is the result of a program undertaken to review test data from all available aerospace sources and perform additional testing to eliminate extrapolation errors. The resulting compilation of data was used to develop guidelines for the selection of wire sizes and circuit protection ratings. The purpose is to provide guidance to the engineering to ensure a design which meets Orbiter standards and which should be applicable to any aerospace design.

  20. Shear stress-dependent cell detachment from temperature-responsive cell culture surfaces in a microfluidic device.

    PubMed

    Tang, Zhonglan; Akiyama, Yoshikatsu; Itoga, Kazuyoshi; Kobayashi, Jun; Yamato, Masayuki; Okano, Teruo

    2012-10-01

    A new approach to quantitatively estimate the interaction between cells and material has been proposed by using a microfluidic system, which was made of poly(dimethylsiloxane) (PDMS) chip bonding on a temperature-responsive cell culture surface consisted of poly(N-isopropylacrylamide) (PIPAAm) grafted tissue culture polystyrene (TCPS) (PIPAAm-TCPS) having five parallel test channels for cell culture. This construction allows concurrently generating five different shear forces to apply to cells in individual microchannels having various resistance of each channel and simultaneously gives an identical cell incubation condition to all test channels. NIH/3T3 mouse fibroblast cells (MFCs) and bovine aortic endothelial cells (BAECs) were well adhered and spread on all channels of PIPAAm-TCPS at 37 °C. In our previous study, reducing culture temperature below the lower critical solution temperature (LCST) of PIPAAm (32 °C), cells detach themselves from hydrated PIPAAm grafted surfaces spontaneously. In this study, cell detachment process from hydrated PIPAAm-TCPS was promoted by shear forces applied to cells in microchannels. Shear stress-dependent cell detachment process from PIPAAm-TCPS was evaluated at various shear stresses. Either MFCs or BAECs in the microchannel with the strongest shear stress were found to be detached from the substrate more quickly than those in other microchannels. A cell transformation rate constant C(t) and an intrinsic cell detachment rate constant k(0) were obtained through studying the effect of shear stress on cell detachment with a peeling model. The proposed device and quantitative analysis could be used to assess the possible interaction between cells and PIPAAm layer with a potential application to design a cell sheet culture surface for tissue engineering. PMID:22818649

  1. Integration of Rabbit Adipose Derived Mesenchymal Stem Cells to Hydroxyapatite Burr Hole Button Device for Bone Interface Regeneration

    PubMed Central

    Gayathri, Viswanathan; Harikrishnan, Varma; Mohanan, Parayanthala Valappil

    2016-01-01

    Adipose Derived Mesenchymal Stem Cells, multipotent stem cells isolated from adipose tissue, present close resemblance to the natural in vivo milieu and microenvironment of bone tissue and hence widely used for in bone tissue engineering applications. The present study evaluates the compatibility of tissue engineered hydroxyapatite burr hole button device (HAP-BHB) seeded with Rabbit Adipose Derived Mesenchymal Stem Cells (ADMSCs). Cytotoxicity, oxidative stress response, apoptotic behavior, attachment, and adherence of adipose MSC seeded on the device were evaluated by scanning electron and confocal microscopy. The results of the MTT (3-(4,5-dimethylthiazol)-2,5-diphenyl tetrazolium bromide) assay indicated that powdered device material was noncytotoxic up to 0.5 g/mL on cultured cells. It was also observed that oxidative stress related reactive oxygen species production and apoptosis on cell seeded device were similar to those of control (cells alone) except in 3-day period which showed increased reactive oxygen species generation. Further scanning electron and confocal microscopy indicated a uniform attachment of cells and viability up to 200 μm deep inside the device, respectively. Based on the results, it can be concluded that the in-house developed HAP-BHB device seeded with ADMSCs is nontoxic/safe compatible device for biomedical application and an attractive tissue engineered device for calvarial defect regeneration. PMID:26880922

  2. Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices : cell culture and flow studies with glial cells.

    SciTech Connect

    Peterson, Sophie Louise; Sasaki, Darryl Yoshio; Gourley, Paul Lee; McDonald, Anthony Eugene

    2004-06-01

    Oxygen plasma treatment of poly(dimethylsiloxane) (PDMS) thin films produced a hydrophilic surface that was biocompatible and resistant to biofouling in microfluidic studies. Thin film coatings of PDMS were previously developed to provide protection for semiconductor-based microoptical devices from rapid degradation by biofluids. However, the hydrophobic surface of native PDMS induced rapid clogging of microfluidic channels with glial cells. To evaluate the various issues of surface hydrophobicity and chemistry on material biocompatibility, we tested both native and oxidized PDMS (ox-PDMS) coatings as well as bare silicon and hydrophobic alkane and hydrophilic oligoethylene glycol silane monolayer coated under both cell culture and microfluidic studies. For the culture studies, the observed trend was that the hydrophilic surfaces supported cell adhesion and growth, whereas the hydrophobic ones were inhibitive. However, for the fluidic studies, a glass-silicon microfluidic device coated with the hydrophilic ox-PDMS had an unperturbed flow rate over 14 min of operation, whereas the uncoated device suffered a loss in rate of 12%, and the native PDMS coating showed a loss of nearly 40%. Possible protein modification of the surfaces from the culture medium also were examined with adsorbed films of albumin, collagen, and fibrinogen to evaluate their effect on cell adhesion.

  3. A rapid and selective assay for measuring cell surface hydrophobicity of brewer's yeast cells.

    PubMed

    Straver, M H; Kijne, J W

    1996-03-15

    A rapid and selective assay was developed to measure cell surface hydrophobicity of brewer's yeast cells. During this so-called magnobead assay, bottom-fermenting yeast cells adhere to paramagnetic, polystyrene-coated latex beads which can easily be removed from the cell suspension by using a (samarium-cobalt) magnet. At pH 4 center dot 5, electrostatic repulsion between yeast cells and latex beads was found to be minimal and yeast cell adhesion was predominantly based on hydrophobic interactions. The percentage of cells adhering to the beads could be calculated and provided a measure for cell surface hydrophobicity. Cell surface hydrophobicity measured by the magnobead assay was found to yield similar results, as did determination of contact angles of water droplets on a layer of yeast cells, a standard method for measuring surface hydrophobicity. However, the magnobead assay has the following advantages: (i) it is a quick and simple method, and, more significantly, (ii) hydrophobicity can be measured under physiological conditions. Use of the magnobead assay confirmed that a higher level of cell surface hydrophobicity is correlated with stronger flocculence of brewer's lager yeast cells. PMID:8904332

  4. Fabrication of transplantable corneal epithelial and oral mucosal epithelial cell sheets using a novel temperature-responsive closed culture device.

    PubMed

    Nakajima, Ryota; Kobayashi, Toyoshige; Kikuchi, Tetsutaro; Kitano, Yuriko; Watanabe, Hiroya; Mizutani, Manabu; Nozaki, Takayuki; Senda, Naoko; Saitoh, Kazuo; Takagi, Ryo; Yamato, Masayuki; Okano, Teruo; Takeda, Shizu

    2015-05-01

    Temperature-responsive culture surfaces make it possible to harvest transplantable carrier-free cell sheets. Here, we applied temperature-responsive polymer for polycarbonate surfaces with previously developed closed culture devices for an automated culture system in order to fabricate transplantable stratified epithelial cell sheets. Histological and immunohistochemical analyses and colony-forming assays revealed that corneal epithelial and oral mucosal epithelial cell sheets could be harvested with the temperature-responsive closed culture devices. The results were similar to those obtained using temperature-responsive culture inserts. These results indicate that the novel temperature-responsive closed culture device is useful for fabricating transplantable stratified epithelial cell sheets. PMID:23475606

  5. Use of Surface Enhanced Blocking (SEB) Electrodes for Microbial Cell Lysis in Flow-Through Devices

    PubMed Central

    Talebpour, Abdossamad; Maaskant, Robert; Khine, Aye Aye; Alavie, Tino

    2014-01-01

    By simultaneously subjecting microbial cells to high amplitude pulsed electric fields and flash heating of the cell suspension fluid, effective release of intracellular contents was achieved. The synergistic effect of the applied electric field and elevated temperature on cell lysis in a flow-through device was demonstrated for Gram-negative and Gram-positive bacteria, and Mycobacterium species. The resulting lysate is suitable for downstream nucleic acid amplification and detection without requiring further preparation. The lysis chamber employs surface enhanced blocking electrodes which possess an etched micro-structured surface and a thin layer of dielectric metal oxide which provides a large effective area and blocks transmission of electrical current. The surface enhanced blocking electrodes enable simultaneous suppression of the rapid onset of electric field screening in the bulk of the cell suspension medium and avoidance of undesired electrochemical processes at the electrode-electrolyte interface. In addition the blocking layer ensures the robustness of the cell lysis device in applications involving prolonged flow-through processing of the microbial cells. PMID:25033080

  6. A simple microfluidic device for the deformability assessment of blood cells in a continuous flow.

    PubMed

    Rodrigues, Raquel O; Pinho, Diana; Faustino, Vera; Lima, Rui

    2015-12-01

    Blood flow presents several interesting phenomena in microcirculation that can be used to develop microfluidic devices capable to promote blood cells separation and analysis in continuous flow. In the last decade there have been numerous microfluidic studies focused on the deformation of red blood cells (RBCs) flowing through geometries mimicking microvessels. In contrast, studies focusing on the deformation of white blood cells (WBCs) are scarce despite this phenomenon often happens in the microcirculation. In this work, we present a novel integrative microfluidic device able to perform continuous separation of a desired amount of blood cells, without clogging or jamming, and at the same time, capable to assess the deformation index (DI) of both WBCs and RBCs. To determine the DI of both WBCs and RBCs, a hyperbolic converging microchannel was used, as well as a suitable image analysis technique to measure the DIs of these blood cells along the regions of interest. The results show that the WBCs have a much lower deformability than RBCs when subjected to the same in vitro flow conditions, which is directly related to their cytoskeleton and nucleus contents. The proposed strategy can be easily transformed into a simple and inexpensive diagnostic microfluidic system to simultaneously separate and assess blood cells deformability. PMID:26482154

  7. Performance of miniaturized direct methanol fuel cell (DMFC) devices using micropump for fuel delivery

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Wang, Qing-Ming

    A fuel cell is a device that can convert chemical energy into electricity directly. Among various types of fuel cells, both polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) can work at low temperature (<80 °C). Therefore, they can be used to supply power for commercial portable electronics such as laptop computers, digital cameras, PDAs and cell phones. The focus of this paper is to investigate the performance of a miniaturized DMFC device using a micropump to deliver fuel. The core of this micropump is a piezoelectric ring-type bending actuator and the associated nozzle/diffuser for directing fuel flow. Based on the experimental measurements, it is found that the performance of the fuel cell can be significantly improved if enough fuel flow is induced by the micropump at anode. Three factors may contribute to the performance enhancement including replenishment of methanol, decrease of diffusion resistance and removal of carbon dioxide. In comparison with conventional mini pumps, the size of the piezoelectric micropump is much smaller and the energy consumption is much lower. Thus, it is very viable and effective to use a piezoelectric valveless micropump for fuel delivery in miniaturized DMFC power systems.

  8. Capture of esophageal and breast cancer cells with polymeric microfluidic devices for CTC isolation

    PubMed Central

    OHNAGA, TAKASHI; SHIMADA, YUTAKA; TAKATA, KOJI; OBATA, TSUTOMU; OKUMURA, TOMOYUKI; NAGATA, TAKUYA; KISHI, HIROYUKI; MURAGUCHI, ATSUSHI; TSUKADA, KAZUHIRO

    2016-01-01

    The present study evaluated the capture efficiency of esophageal and breast cancer cells with a modified ‘polymeric circulating tumor cells (CTC)-chip’ microfluidic device, which was developed for the isolation of circulating tumor cells. Esophageal cancer cell lines KYSE150, KYSE220 and KYSE510, and breast cancer cell lines MCF7, SKBR3 and MDA-MB-231 were used for evaluation. The capture efficiencies of the esophageal cancer cell lines in phosphate-buffered saline (PBS) were ~0.9, irrespective of epithelial cell adhesion molecule (EpCAM) expression, which was represented as the mean fluorescent intensity from 528 to 76. In the breast cancer cell lines, efficient capture was observed for MCF7 and SKBR3 in PBS; however, a low value of ~0.1 was obtained for MDA-MB-231. Fluorescent imaging of immunolabeled cells revealed marginal EpCAM expression in MDA-MB-231. Using whole blood, no clogging occurred in the microstructure-modified CTC-chip and efficiency of capture was successfully evaluated. Capture efficiencies for KYSE220 and MCF7 in whole blood were >0.7, but were of either equal or lesser efficiency in comparison to PBS. Therefore, the modified CTC-chip appears useful for clinical application due to its cost, practicality of use, and efficient cancer cell capture. PMID:27073672

  9. Atomistic simulations of electrochemical metallization cells: mechanisms of ultra-fast resistance switching in nanoscale devices

    NASA Astrophysics Data System (ADS)

    Onofrio, Nicolas; Guzman, David; Strachan, Alejandro

    2016-07-01

    We describe a new method that enables reactive molecular dynamics (MD) simulations of electrochemical processes and apply it to study electrochemical metallization cells (ECMs). The model, called EChemDID, extends the charge equilibration method to capture the effect of external electrochemical potential on partial atomic charges and describes its equilibration over connected metallic structures, on-the-fly, during the MD simulation. We use EChemDID to simulate resistance switching in nanoscale ECMs; these devices consist of an electroactive metal separated from an inactive electrode by an insulator and can be reversibly switched to a low-resistance state by the electrochemical formation of a conducting filament between electrodes. Our structures use Cu as the active electrode and SiO2 as the dielectric and have dimensions at the foreseen limit of scalability of the technology, with a dielectric thickness of approximately 1 nm. We explore the effect of device geometry on switching timescales and find that nanowires with an electroactive shell, where ions migrate towards a smaller inactive electrode core, result in faster switching than planar devices. We observe significant device-to-device variability in switching timescales and intermittent switching for these nanoscale devices. To characterize the evolution in the electronic structure of the dielectric as dissolved metallic ions switch the device, we perform density functional theory calculations on structures obtained from an EChemDID MD simulation. These results confirm the appearance of states around the Fermi energy as the metallic filament bridges the electrodes and show that the metallic ions and not defects in the dielectric contribute to the majority of those states.

  10. Atomistic simulations of electrochemical metallization cells: mechanisms of ultra-fast resistance switching in nanoscale devices.

    PubMed

    Onofrio, Nicolas; Guzman, David; Strachan, Alejandro

    2016-08-01

    We describe a new method that enables reactive molecular dynamics (MD) simulations of electrochemical processes and apply it to study electrochemical metallization cells (ECMs). The model, called EChemDID, extends the charge equilibration method to capture the effect of external electrochemical potential on partial atomic charges and describes its equilibration over connected metallic structures, on-the-fly, during the MD simulation. We use EChemDID to simulate resistance switching in nanoscale ECMs; these devices consist of an electroactive metal separated from an inactive electrode by an insulator and can be reversibly switched to a low-resistance state by the electrochemical formation of a conducting filament between electrodes. Our structures use Cu as the active electrode and SiO2 as the dielectric and have dimensions at the foreseen limit of scalability of the technology, with a dielectric thickness of approximately 1 nm. We explore the effect of device geometry on switching timescales and find that nanowires with an electroactive shell, where ions migrate towards a smaller inactive electrode core, result in faster switching than planar devices. We observe significant device-to-device variability in switching timescales and intermittent switching for these nanoscale devices. To characterize the evolution in the electronic structure of the dielectric as dissolved metallic ions switch the device, we perform density functional theory calculations on structures obtained from an EChemDID MD simulation. These results confirm the appearance of states around the Fermi energy as the metallic filament bridges the electrodes and show that the metallic ions and not defects in the dielectric contribute to the majority of those states. PMID:27218609

  11. Characterisation of oxygen permeation into a microfluidic device for cell culture by in situ NMR spectroscopy.

    PubMed

    Yilmaz, Ali; Utz, Marcel

    2016-05-24

    A compact microfluidic device for perfusion culture of mammalian cells under in situ metabolomic observation by NMR spectroscopy is presented. The chip is made from poly(methyl methacrylate) (PMMA), and uses a poly(dimethyl siloxane) (PDMS) membrane to allow gas exchange. It is integrated with a generic micro-NMR detector developed recently by our group [J. Magn. Reson., 2016, 262, 73-80]. While PMMA is an excellent material in the context of NMR, PDMS is known to produce strong background signals. To mitigate this, the device keeps the PDMS away from the detection area. The oxygen permeation into the device is quantified using a flow chemistry approach. A solution of glucose is mixed on the chip with a solution of glucose oxidase, before flowing through the gas exchanger. The resulting concentration of gluconate is measured by (1)H NMR spectroscopy as a function of flow rate. An oxygen equilibration rate constant of 2.4 s(-1) is found for the device, which is easily sufficient to maintain normoxic conditions in a cell culture at low perfusion flow rates. PMID:27149932

  12. A Novel Selectable Islet 1 Positive Progenitor Cell Reprogrammed to Expandable and Functional Smooth Muscle Cells.

    PubMed

    Turner, Elizabeth C; Huang, Chien-Ling; Sawhney, Neha; Govindarajan, Kalaimathi; Clover, Anthony J P; Martin, Kenneth; Browne, Tara C; Whelan, Derek; Kumar, Arun H S; Mackrill, John J; Wang, Shaohua; Schmeckpeper, Jeffrey; Stocca, Alessia; Pierce, William G; Leblond, Anne-Laure; Cai, Liquan; O'Sullivan, Donnchadh M; Buneker, Chirlei K; Choi, Janet; MacSharry, John; Ikeda, Yasuhiro; Russell, Stephen J; Caplice, Noel M

    2016-05-01

    Disorders affecting smooth muscle structure/function may require technologies that can generate large scale, differentiated and contractile smooth muscle cells (SMC) suitable for cell therapy. To date no clonal precursor population that provides large numbers of differentiated SMC in culture has been identified in a rodent. Identification of such cells may also enhance insight into progenitor cell fate decisions and the relationship between smooth muscle precursors and disease states that implicate differentiated SMC.  In this study, we used classic clonal expansion techniques to identify novel self-renewing Islet 1 (Isl-1) positive primitive progenitor cells (PPC) within rat bone marrow that exhibited canonical stem cell markers and preferential differentiation towards a smooth muscle-like fate. We subsequently used molecular tagging to select Isl-1 positive clonal populations from expanded and de novo marrow cell populations. We refer to these previously undescribed cells as the PPC given its stem cell marker profile, and robust self-renewal capacity. PPC could be directly converted into induced smooth muscle cells (iSMC) using single transcription factor (Kruppel-like factor 4) knockdown or transactivator (myocardin) overexpression in contrast to three control cells (HEK 293, endothelial cells and mesenchymal stem cells) where such induction was not possible. iSMC exhibited immuno- and cytoskeletal-phenotype, calcium signaling profile and contractile responses similar to bona fide SMC. Passaged iSMC could be expanded to a scale sufficient for large scale tissue replacement.  PPC and reprogramed iSMC so derived may offer future opportunities to investigate molecular, structure/function and cell-based replacement therapy approaches to diverse cardiovascular, respiratory, gastrointestinal, and genitourinary diseases that have as their basis smooth muscle cell functional aberrancy or numerical loss. Stem Cells 2016;34:1354-1368. PMID:26840832

  13. Development of a microfluidic device for determination of cell osmotic behavior and membrane transport properties.

    PubMed

    Chen, Hsiu-Hung; Purtteman, Jester J P; Heimfeld, Shelly; Folch, Albert; Gao, Dayong

    2007-12-01

    An understanding of cell osmotic behavior and membrane transport properties is indispensable for cryobiology research and development of cell-type-specific, optimal cryopreservation conditions. A microfluidic perfusion system is developed here to measure the kinetic changes of cell volume under various extracellular conditions, in order to determine cell osmotic behavior and membrane transport properties. The system is fabricated using soft lithography and is comprised of microfluidic channels and a perfusion chamber for trapping cells. During experiments, rat basophilic leukemia (RBL-1 line) cells were injected into the inlet of the device, allowed to flow downstream, and were trapped within a perfusion chamber. The fluid continues to flow to the outlet due to suction produced by a Hamilton Syringe. Two sets of experiments have been performed: the cells were perfused by (1) hypertonic solutions with different concentrations of non-permeating solutes and (2) solutions containing a permeating cryoprotective agent (CPA), dimethylsulfoxide (Me(2)SO), plus non-permeating solute (sodium chloride (NaCl)), respectively. From experiment (1), cell osmotically inactive volume (V(b)) and the permeability coefficient of water (L(p)) for RBL cells are determined to be 41% [n=18, correlation coefficient (r(2)) of 0.903] of original/isotonic volume, and 0.32+/-0.05 microm/min/atm (n=8, r(2)>0.963), respectively, for room temperature (22 degrees C). From experiment (2), the permeability coefficient of water (L(p)) and of Me(2)SO (P(s)) for RBL cells are 0.38+/-0.09 microm/min/atm and (0.49+/-0.13) x 10(-3)cm/min (n=5, r(2)>0.86), respectively. We conclude that this device enables us to: (1) readily monitor the changes of extracellular conditions by perfusing single or a group of cells with prepared media; (2) confine cells (or a cell) within a monolayer chamber, which prevents imaging ambiguity, such as cells overlapping or moving out of the focus plane; (3) study individual cell

  14. Semi-empirical device model for Cu2ZnSn(S,Se)4 solar cells

    NASA Astrophysics Data System (ADS)

    Gokmen, Tayfun; Gunawan, Oki; Mitzi, David B.

    2014-07-01

    We present a device model for the hydrazine processed kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cell with a world record efficiency of ˜12.6%. Detailed comparison of the simulation results, performed using wxAMPS software, to the measured device parameters shows that our model captures the vast majority of experimental observations, including VOC, JSC, FF, and efficiency under normal operating conditions, and temperature vs. VOC, sun intensity vs. VOC, and quantum efficiency. Moreover, our model is consistent with material properties derived from various techniques. Interestingly, this model does not have any interface defects/states, suggesting that all the experimentally observed features can be accounted for by the bulk properties of CZTSSe. An electrical (mobility) gap that is smaller than the optical gap is critical to fit the VOC data. These findings point to the importance of tail states in CZTSSe solar cells.

  15. Polymer Solar Cell Device Characteristics Are Independent of Vertical Phase Separation in Active Layers

    NASA Astrophysics Data System (ADS)

    Loo, Yueh-Lin

    2013-03-01

    Preferential segregation of organic semiconductor constituents in multicomponent thin-film active layers has long been speculated to affect the characteristics of bulk-heterojunction polymer solar cells. Using soft-contact lamination and delamination schemes - with which we have been able to remove compositionally well characterized polymer thin films, flip them over so as to reverse their composition profiles, and then transfer them onto existing device platforms - we showed unambiguously that the device performance of P3HT:PCBM solar cells are independent of the interfacial segregation characteristics of the active layers. Temperature-dependent single-carrier diode measurements of the organic semiconductor constituents suggest that the origin of this invariance stems from the fact that P3HT comprises a high density of mid-gap states. Hole carriers in these mid-gap states can in turn recombine with electrons at the electron-collecting interface, effectively promoting electron transfer from the cathode to the active layer.

  16. Kelvin Probe Measurements on Solar Cells and Other Thin Film Devices

    NASA Technical Reports Server (NTRS)

    Delk, John; Dils, D. W.; Lush, G. B.; Mackey, Willie R. (Technical Monitor)

    2001-01-01

    The Kelvin Probe (KP) has been used for years to measure the surface potential of metals and semiconductors. The KP is an elegantly simple but powerful tool invented by Lord Kelvin around the turn of the century. Using changes in surface potentials as a result of changing the intensity and wavelength of illumination, the KP returns data on material parameters such as band gap energies and the energy levels of interface states. We have employed the KP in the study of CdTe-based solar cells and quantum dot-based solar cells, as well as other thin-film devices. We hope eventually that the KP will be used as an in-line testing station for a fabrication process so that unfinished devices that will not meet requirements can be thrown out before the processing is completed, thus saving resources. Results of these studies will be presented.

  17. Using gas modifiers to significantly improve sensitivity and selectivity in a cylindrical FAIMS device.

    PubMed

    Purves, Randy W; Ozog, Allison R; Ambrose, Stephen J; Prasad, Satendra; Belford, Michael; Dunyach, Jean-Jacques

    2014-07-01

    Recent reports describing enhanced performance when using gas additives in a DMS device (planar electrodes) have indicated that comparable benefits are not attainable using FAIMS (cylindrical electrodes), owing to the non-homogeneous electric fields within the analyzer region. In this study, a FAIMS system (having cylindrical electrodes) was modified to allow for controlled delivery of gas additives. An experiment was carried out that illustrates the important distinction between gas modifiers present as unregulated contaminants and modifiers added in a controlled manner. The effect of contamination was simulated by adjusting the ESI needle position to promote incomplete desolvation, thereby permitting ESI solvent vapor into the FAIMS analyzer region, causing signal instability and irreproducible CV values. However, by actively controlling the delivery of the gas modifier, reproducible CV spectra were obtained. The effects of adding different gas modifiers were examined using 15 positive ions having mass-to-charge (m/z) values between 90 and 734. Significant improvements in peak capacity and increases in ion transmission were readily attained by adding acetonitrile vapor, even at trace levels (≤0.1%). Increases in signal intensity were greatest for the low m/z ions; for the six lowest molecular weight species, signal intensities increased by ∼10- to over 100-fold compared with using nitrogen without gas additives, resulting in equivalent or better signal intensities compared with ESI without FAIMS. These results confirm that analytical benefits derived from the addition of gas modifiers reported with a uniform electric field (DMS) also are observed using a non-homogenous electric field (FAIMS) in the analyser region. PMID:24796261

  18. A High Throughput Micro-Chamber Array Device for Single Cell Clonal Cultivation and Tumor Heterogeneity Analysis

    PubMed Central

    Shen, Feng-Min; Zhu, Lian; Ye, Heng; Yang, Yu-Jun; Pang, Dai-Wen; Zhang, Zhi-Ling

    2015-01-01

    Recently, single cell cloning techniques have been gradually developed benefited from their important roles in monoclonal antibody screening, tumor heterogeneity research fields, etc. In this study, we developed a high throughput device containing 1400 lateral chambers to efficiently isolate single cells and carry out long-term single cell clonal cultivation as well as tumor heterogeneity studies. Most of the isolated single cells could proliferate normally nearly as long as three weeks and hundreds of clones could be formed once with one device, which made it possible to study tumor heterogeneity at single cell level. The device was further used to examine tumor heterogeneity such as morphology, growth rate, anti-cancer drug tolerance as well as adenosine triphosphate-binding cassette (ABC) transporter ABCG2 protein expression level. Except for the single cell isolation and tumor heterogeneity studies, the device is expected to be used as an excellent platform for drug screening, tumor biomarker discovering and tumor metastasis assay. PMID:26149707

  19. Neisseria lactamica selectively induces mitogenic proliferation of the naive B cell pool via cell surface Ig.

    PubMed

    Vaughan, Andrew T; Brackenbury, Louise S; Massari, Paola; Davenport, Victoria; Gorringe, Andrew; Heyderman, Robert S; Williams, Neil A

    2010-09-15

    Neisseria lactamica is a commensal bacteria that colonizes the human upper respiratory tract mucosa during early childhood. In contrast to the closely related opportunistic pathogen Neisseria meningitidis, there is an absence of adaptive cell-mediated immunity to N. lactamica during the peak age of carriage. Instead, outer membrane vesicles derived from N. lactamica mediate a B cell-dependent proliferative response in mucosal mononuclear cells that is associated with the production of polyclonal IgM. We demonstrate in this study that this is a mitogenic human B cell response that occurs independently of T cell help and any other accessory cell population. The ability to drive B cell proliferation is a highly conserved property and is present in N. lactamica strains derived from diverse clonal complexes. CFSE staining of purified human tonsillar B cells demonstrated that naive IgD(+) and CD27(-) B cells are selectively induced to proliferate by outer membrane vesicles, including the innate CD5(+) subset. Neither purified lipooligosaccharide nor PorB from N. lactamica is likely to be responsible for this activity. Prior treatment of B cells with pronase to remove cell-surface Ig or treatment with BCR-specific Abs abrogated the proliferative response to N. lactamica outer membrane vesicles, suggesting that this mitogenic response is dependent upon the BCR. PMID:20709949

  20. Diabetes Is Reversed in a Murine Model by Marginal Mass Syngeneic Islet Transplantation Using a Subcutaneous Cell Pouch Device

    PubMed Central

    Pepper, Andrew R.; Pawlick, Rena; Gala-Lopez, Boris; MacGillivary, Amanda; Mazzuca, Delfina M.; White, David J. G.; Toleikis, Philip M.; Shapiro, A. M. James

    2015-01-01

    Background Islet transplantation is a successful β-cell replacement therapy for selected patients with type 1 diabetes mellitus. Although high rates of early insulin independence are achieved routinely, long-term function wanes over time. Intraportal transplantation is associated with procedural risks, requires multiple donors, and does not afford routine biopsy. Stem cell technologies may require potential for retrievability, and graft removal by hepatectomy is impractical. There is a clear clinical need for an alternative, optimized transplantation site. The subcutaneous space is a potential substitute, but transplantation of islets into this site has routinely failed to reverse diabetes. However, an implanted device, which becomes prevascularized before transplantation, may alter this equation. Methods Syngeneic mouse islets were transplanted subcutaneously within Sernova Corp's Cell Pouch (CP). All recipients were preimplanted with CPs 4 weeks before diabetes induction and transplantation. After transplantation, recipients were monitored for glycemic control and glucose tolerance. Results Mouse islets transplanted into the CP routinely restored glycemic control with modest delay and responded well to glucose challenge, comparable to renal subcapsular islet grafts, despite a marginal islet dose, and normoglycemia was maintained until graft explantation. In contrast, islets transplanted subcutaneously alone failed to engraft. Islets within CPs stained positively for insulin, glucagon, and microvessels. Conclusions The CP is biocompatible, forms an environment suitable for islet engraftment, and offers a potential alternative to the intraportal site for islet and future stem cell therapies. PMID:26308506

  1. Growing Uniform Graphene Disks and Films on Molten Glass for Heating Devices and Cell Culture.

    PubMed

    Chen, Yubin; Sun, Jingyu; Gao, Junfeng; Du, Feng; Han, Qi; Nie, Yufeng; Chen, Zhaolong; Bachmatiuk, Alicja; Priydarshi, Manish Kr; Ma, Donglin; Song, Xiuju; Wu, Xiaosong; Xiong, Chunyang; Rümmeli, Mark H; Ding, Feng; Zhang, Yanfeng; Liu, Zhongfan

    2015-12-16

    The direct growth of uniform graphene disks and their continuous film is achieved by exploiting the molten state of glass. The use of molten glass enables highly uniform nucleation and an enhanced growth rate (tenfold) of graphene, as compared to those scenarios on commonly used insulating solids. The obtained graphene glasses show promising application potentials in daily-life scenarios such as smart heating devices and biocompatible cell-culture mediums. PMID:26485212

  2. Glucose microfluidic fuel cell based on silver bimetallic selective catalysts for on-chip applications

    NASA Astrophysics Data System (ADS)

    Cuevas-Muñiz, F. M.; Guerra-Balcázar, M.; Esquivel, J. P.; Sabaté, N.; Arriaga, L. G.; Ledesma-García, J.

    2012-10-01

    A glucose microfluidic fuel cell with outstanding performance at zero flow condition is presented. Polarization tests showed that bimetallic materials based in silver (AuAg/C as anode, PtAg/C as cathode) exhibit tolerance to byproducts and crossover effect. This allowed achieving one of the highest power densities reported for glucose fuel cells, up to a value of 630 μW cm-2 using two separated laminar flows of reactants. Furthermore, the tolerance to crossover effect caused by the selectivity of PtAg/C to oxygen reduction reaction in presence of glucose permitted using a single flow containing a mixture of glucose/oxygen, yielding a performance as high as 270 μW cm-2. Microfluidic fuel cell was further evaluated with a simulated body fluid solution that contained salts commonly present in the human blood plasma, reaching a power of 240 μW cm-2 at zero flow. These results envisage the incorporation of this fuel cell as a portable power source in Lab-on-a-Chip devices without the need of external pumps.

  3. Cell motility regulation on a stepped micro pillar array device (SMPAD) with a discrete stiffness gradient.

    PubMed

    Lee, Sujin; Hong, Juhee; Lee, Junghoon

    2016-02-28

    Our tissues consist of individual cells that respond to the elasticity of their environment, which varies between and within tissues. To better understand mechanically driven cell migration, it is necessary to manipulate the stiffness gradient across a substrate. Here, we have demonstrated a new variant of the microfabricated polymeric pillar array platform that can decouple the stiffness gradient from the ECM protein area. This goal is achieved via a "stepped" micro pillar array device (SMPAD) in which the contact area with the cell was kept constant while the diameter of the pillar bodies was altered to attain the proper mechanical stiffness. Using double-step SU-8 mold fabrication, the diameter of the top of every pillar was kept uniform, whereas that of the bottom was changed, to achieve the desired substrate rigidity. Fibronectin was immobilized on the pillar tops, providing a focal adhesion site for cells. C2C12, HeLa and NIH3T3 cells were cultured on the SMPAD, and the motion of the cells was observed by time-lapse microscopy. Using this simple platform, which produces a purely physical stimulus, we observed that various types of cell behavior are affected by the mechanical stimulus of the environment. We also demonstrated directed cell migration guided by a discrete rigidity gradient by varying stiffness. Interestingly, cell velocity was highest at the highest stiffness. Our approach enables the regulation of the mechanical properties of the polymeric pillar array device and eliminates the effects of the size of the contact area. This technique is a unique tool for studying cellular motion and behavior relative to various stiffness gradients in the environment. PMID:26787193

  4. Solar Innovator | Alta Devices

    SciTech Connect

    Mattos, Laila; Le, Minh

    2012-01-01

    Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

  5. Solar Innovator | Alta Devices

    ScienceCinema

    Mattos, Laila; Le, Minh

    2013-05-29

    Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

  6. Microfluidic devices for cell culture and handling in organ-on-a-chip applications

    NASA Astrophysics Data System (ADS)

    Becker, Holger; Schulz, Ingo; Mosig, Alexander; Jahn, Tobias; Gärtner, Claudia

    2014-03-01

    For many problems in system biology or pharmacology, in-vivo-like models of cell-cell interactions or organ functions are highly sought after. Conventional stationary cell culture in 2D plates quickly reaches its limitations with respect to an in-vivo like expression and function of individual cell types. Microfabrication technologies and microfluidics offer an attractive solution to these problems. The ability to generate flow as well as geometrical conditions for cell culture and manipulation close to the in-vivo situation allows for an improved design of experiments and the modeling of organ-like functionalities. Furthermore, reduced internal volumes lead to a reduction in reagent volumes necessary as well as an increased assay sensitivity. In this paper we present a range of microfluidic devices designed for the co-culturing of a variety of cells. The influence of substrate materials and surface chemistry on the cell morphology and viability for long-term cell culture has been investigated as well as strategies and medium supply for on-chip cell cultivation.

  7. A novel cell-containing device for regenerative medicine: biodegradable nonwoven filters with peripheral blood cells promote wound healing.

    PubMed

    Iwamoto, Ushio; Hori, Hideo; Takami, Yoshihiro; Tokushima, Yasuo; Shinzato, Masanori; Yasutake, Mikitomo; Kitaguchi, Nobuya

    2015-12-01

    The efficacy of skin regeneration devices consisting of nonwoven filters and peripheral blood cells was investigated for wound healing. We previously found that human peripheral blood cells enhanced their production of growth factors, such as transforming growth factor β1 (TGF-β1) and vascular endothelial growth factor, when they were captured on nonwoven filters. Cells on biodegradable filters were expected to serve as a local supply of growth factors and cell sources when they were placed in wounded skin. Nonwoven filters made of biodegradable polylactic acid (PLA) were cut out as 13-mm disks and placed into cell-capturing devices. Mouse peripheral blood was filtered, resulting in PLA filters with mouse peripheral blood cells (m-PBCs) at capture rates of 65.8 ± 5.2%. Then, the filters were attached to full-thickness surgical wounds in a diabetic db/db mouse skin for 14 days as a model of severe chronic wounds. The wound area treated with PLA nonwoven filters with m-PBCs (PLA/B+) was reduced to 8.5 ± 12.2% when compared with day 0, although the non-treated control wounds showed reduction only to 60.6 ± 27.8%. However, the PLA filters without m-PBCs increased the wound area to 162.9 ± 118.7%. By histopathological study, the PLA/B+ groups more effectively accelerated formation of epithelium. The m-PBCs captured on the PLA filters enhanced keratinocyte growth factor (FGF-7) and TGF-β1 productions in vitro, which may be related to wound healing. This device is useful for regeneration of wounded skin and may be adaptable for another application. PMID:26026790

  8. Method of fabricating a back-contact solar cell and device thereof

    DOEpatents

    Li, Bo; Smith, David; Cousins, Peter

    2014-07-29

    Methods of fabricating back-contact solar cells and devices thereof are described. A method of fabricating a back-contact solar cell includes forming an N-type dopant source layer and a P-type dopant source layer above a material layer disposed above a substrate. The N-type dopant source layer is spaced apart from the P-type dopant source layer. The N-type dopant source layer and the P-type dopant source layer are heated. Subsequently, a trench is formed in the material layer, between the N-type and P-type dopant source layers.

  9. Method of fabricating a back-contact solar cell and device thereof

    DOEpatents

    Li, Bo; Smith, David; Cousins, Peter

    2016-08-02

    Methods of fabricating back-contact solar cells and devices thereof are described. A method of fabricating a back-contact solar cell includes forming an N-type dopant source layer and a P-type dopant source layer above a material layer disposed above a substrate. The N-type dopant source layer is spaced apart from the P-type dopant source layer. The N-type dopant source layer and the P-type dopant source layer are heated. Subsequently, a trench is formed in the material layer, between the N-type and P-type dopant source layers.

  10. Targeted erythropoietin selectively stimulates red blood cell expansion in vivo.

    PubMed

    Burrill, Devin R; Vernet, Andyna; Collins, James J; Silver, Pamela A; Way, Jeffrey C

    2016-05-10

    The design of cell-targeted protein therapeutics can be informed by natural protein-protein interactions that use cooperative physical contacts to achieve cell type specificity. Here we applied this approach in vivo to the anemia drug erythropoietin (EPO), to direct its activity to EPO receptors (EPO-Rs) on red blood cell (RBC) precursors and prevent interaction with EPO-Rs on nonerythroid cells, such as platelets. Our engineered EPO molecule was mutated to weaken its affinity for EPO-R, but its avidity for RBC precursors was rescued via tethering to an antibody fragment that specifically binds the human RBC marker glycophorin A (huGYPA). We systematically tested the impact of these engineering steps on in vivo markers of efficacy, side effects, and pharmacokinetics. huGYPA transgenic mice dosed with targeted EPO exhibited elevated RBC levels, with only minimal platelet effects. This in vivo selectivity depended on the weakening EPO mutation, fusion to the RBC-specific antibody, and expression of huGYPA. The terminal plasma half-life of targeted EPO was ∼28.3 h in transgenic mice vs. ∼15.5 h in nontransgenic mice, indicating that huGYPA on mature RBCs acted as a significant drug sink but did not inhibit efficacy. In a therapeutic context, our targeting approach may allow higher restorative doses of EPO without platelet-mediated side effects, and also may improve drug pharmacokinetics. These results demonstrate how rational drug design can improve in vivo specificity, with potential application to diverse protein therapeutics. PMID:27114509

  11. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey (Inventor)

    2015-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  12. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey L. (Inventor)

    2016-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  13. A novel ultrasonic resonance field device for the retention of animal cells.

    PubMed

    Doblhoff-Dier, O; Gaida, T; Katinger, H; Burger, W; Gröschl, M; Benes, E

    1994-01-01

    This article describes two types of flow-through cell retention devices based on the concept of layered piezoelectric resonators. A single-chamber device is compared to a novel optimized steam-sterilizable prototype ultrasonic cell separator with improved acoustic design and an integrated cooling circuit, eliminating the problem of local temperature increase caused by the high amplitudes necessary to achieve the separation of animal cells with low acoustic contrast. This setup yields highly reproducible results and is ideal for studying the long-term effects of ultrasonic sound fields and separation efficiency. The novel two-chamber system has the potential for scaleability due to the reduction in thermal and acoustic flow, increased field stability, and separation efficiency. Finally, the effect of power input on separation and cell viability is reported. Such flow-through cell retention systems could be used as systems to retain biomass within the fermentor or as a substitute for centrifugation, with the major advantage of eliminating high-speed rotational motion. PMID:7765096

  14. The Pharmaceutical Aerosol Deposition Device on Cell Cultures (PADDOCC) in vitro system: design and experimental protocol.

    PubMed

    Hein, Stephanie; Bur, Michael; Kolb, Tobias; Muellinger, Bernhard; Schaefer, Ulrich F; Lehr, Claus-Michael

    2010-08-01

    The development of aerosol medicines typically involves numerous tests on animals, due to the lack of adequate in vitro models. A new in vitro method for testing pharmaceutical aerosol formulations on cell cultures was developed, consisting of an aerosolisation unit fitting a commercial dry powder inhaler (HandiHaler(c), Boehringer Ingelheim, Germany), an air-flow control unit (Akita(c), Activaero, Germany) and a custom-made sedimentation chamber. This chamber holds three Snapwell(c) inserts with monolayers of pulmonary epithelial cells. The whole set-up, referred to as the Pharmaceutical Aerosol Deposition Device On Cell Cultures (PADDOCC) system, aims to mimic the complete process of aerosol drug delivery, encompassing aerosol generation, aerosol deposition onto pulmonary epithelial cells and subsequent drug transport across this biological barrier, to facilitate the investigation of new aerosol formulations in the early stages of development. We describe here, the development of the design and the protocol for this device. By testing aerosol formulations of budesonide and salbutamol sulphate, respectively, reproducible deposition of aerosol particles on, and the integrity of, the pulmonary cell monolayer could be demonstrated. PMID:20822321

  15. Regeneration of the lung: Lung stem cells and the development of lung mimicking devices.

    PubMed

    Schilders, Kim A A; Eenjes, Evelien; van Riet, Sander; Poot, André A; Stamatialis, Dimitrios; Truckenmüller, Roman; Hiemstra, Pieter S; Rottier, Robbert J

    2016-01-01

    Inspired by the increasing burden of lung associated diseases in society and an growing demand to accommodate patients, great efforts by the scientific community produce an increasing stream of data that are focused on delineating the basic principles of lung development and growth, as well as understanding the biomechanical properties to build artificial lung devices. In addition, the continuing efforts to better define the disease origin, progression and pathology by basic scientists and clinicians contributes to insights in the basic principles of lung biology. However, the use of different model systems, experimental approaches and readout systems may generate somewhat conflicting or contradictory results. In an effort to summarize the latest developments in the lung epithelial stem cell biology, we provide an overview of the current status of the field. We first describe the different stem cells, or progenitor cells, residing in the homeostatic lung. Next, we focus on the plasticity of the different cell types upon several injury-induced activation or repair models, and highlight the regenerative capacity of lung cells. Lastly, we summarize the generation of lung mimics, such as air-liquid interface cultures, organoids and lung on a chip, that are required to test emerging hypotheses. Moreover, the increasing collaboration between distinct specializations will contribute to the eventual development of an artificial lung device capable of assisting reduced lung function and capacity in human patients. PMID:27107715

  16. Noise tolerance in wavelength-selective switching of optical differential quadrature-phase-shift-keying pulse train by collinear acousto-optic devices.

    PubMed

    Goto, Nobuo; Miyazaki, Yasumitsu

    2014-06-01

    Optical switching of high-bit-rate quadrature-phase-shift-keying (QPSK) pulse trains using collinear acousto-optic (AO) devices is theoretically discussed. Since the collinear AO devices have wavelength selectivity, the switched optical pulse trains suffer from distortion when the bandwidth of the pulse train is comparable to the pass bandwidth of the AO device. As the AO device, a sidelobe-suppressed device with a tapered surface-acoustic-wave (SAW) waveguide and a Butterworth-type filter device with a lossy SAW directional coupler are considered. Phase distortion of optical pulse trains at 40 to 100  Gsymbols/s in QPSK format is numerically analyzed. Bit-error-rate performance with additive Gaussian noise is also evaluated by the Monte Carlo method. PMID:24922411

  17. Theoretical and experimental study of the role of cell-cell dipole interaction in dielectrophoretic devices: application to polynomial electrodes

    PubMed Central

    2014-01-01

    Background We aimed to investigate the effect of cell-cell dipole interactions in the equilibrium distributions in dielectrophoretic devices. Methods We used a three dimensional coupled Monte Carlo-Poisson method to theoretically study the final distribution of a system of uncharged polarizable particles suspended in a static liquid medium under the action of an oscillating non-uniform electric field generated by polynomial electrodes. The simulated distributions have been compared with experimental ones observed in the case of MDA-MB-231 cells in the same operating conditions. Results The real and simulated distributions are consistent. In both cases the cells distribution near the electrodes is dominated by cell-cell dipole interactions which generate long chains. Conclusions The agreement between real and simulated cells’ distributions demonstrate the method’s reliability. The distribution are dominated by cell-cell dipole interactions even at low density regimes (105 cell/ml). An improved estimate for the density threshold governing the interaction free regime is suggested. PMID:24903282

  18. Improvement of device performance by using zinc oxide in hybrid organic-inorganic solar cells

    NASA Astrophysics Data System (ADS)

    Hayakawa, Akinobu; Sagawa, Takashi

    2016-02-01

    Zinc oxide (ZnO) nanopowder was applied to hybrid solar cells in combination with poly(3-hexylthiophene). Stability tests of the hybrid solar cell with or without encapsulation with glass and UV cut-off films were performed under 1 sun at 63 °C at a relative humidity of 50%. It was found that the sealed cell showed worse device performance in terms of the loss of the open-circuit voltage (Voc), whereas the unsealed cell exposed to air retained an almost constant Voc for more than 3 d under dark and atmospheric conditions. Placement in O2 atmosphere in the dark led to the recovery of Voc. Cation (Sn4+) doping into ZnO was performed, and the loss of Voc was effectively suppressed through the restraint of the supply of the excited electron from the valence band to the conduction band.

  19. A blue-LED-based device for selective photocoagulation of superficial abrasions: theoretical modeling and in vivo validation

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Pini, Roberto; De Siena, Gaetano; Massi, Daniela; Pavone, Francesco S.; Alfieri, Domenico; Cannarozzo, Giovanni

    2010-02-01

    The blue light (~400 nm) emitted by high power Light Emitting Diodes (LED) is selectively absorbed by the haemoglobin content of blood and then converted into heat. This is the basic concept in setting up a compact, low-cost, and easy-to-handle photohaemostasis device for the treatment of superficial skin abrasions. Its main application is in reducing bleeding from superficial capillary vessels during laser induced aesthetic treatments, such as skin resurfacing, thus reducing the treatment time and improving aesthetic results (reduction of scar formation). In this work we firstly present the preliminary modeling study: a Finite Element Model (FEM) of the LED induced photothermal process was set up, in order to estimate the optimal wavelength and treatment time, by studying the temperature dynamics in the tissue. Then, a compact, handheld illumination device has been designed: commercially available high power LEDs emitting in the blue region were mounted in a suitable and ergonomic case. The prototype was tested in the treatment of dorsal excoriations in rats. Thermal effects were monitored by an infrared thermocamera, experimentally evidencing the modest and confined heating effects and confirming the modeling predictions. Objective observations and histopathological analysis performed in a follow-up study showed no adverse reactions and no thermal damage in the treated areas and surrounding tissues. The device was then used in human patients, in order to stop bleeding during Erbium laser skin resurfacing procedure. By inducing LED-based photocoagulation, the overall treatment time was shortened and scar formation was reduced, thus enhancing esthetic effect of the laser procedure.

  20. Single-cell Migration Chip for Chemotaxis-based Microfluidic Selection of Heterogeneous Cell Populations

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Chih; Allen, Steven G.; Ingram, Patrick N.; Buckanovich, Ronald; Merajver, Sofia D.; Yoon, Euisik

    2015-05-01

    Tumor cell migration toward and intravasation into capillaries is an early and key event in cancer metastasis, yet not all cancer cells are imbued with the same capability to do so. This heterogeneity within a tumor is a fundamental property of cancer. Tools to help us understand what molecular characteristics allow a certain subpopulation of cells to spread from the primary tumor are thus critical for overcoming metastasis. Conventional in vitro migration platforms treat populations in aggregate, which leads to a masking of intrinsic differences among cells. Some migration assays reported recently have single-cell resolution, but these platforms do not provide for selective retrieval of the distinct migrating and non-migrating cell populations for further analysis. Thus, to study the intrinsic differences in cells responsible for chemotactic heterogeneity, we developed a single-cell migration platform so that individual cells’ migration behavior can be studied and the heterogeneous population sorted based upon chemotactic phenotype. Furthermore, after migration, the highly chemotactic and non-chemotactic cells were retrieved and proved viable for later molecular analysis of their differences. Moreover, we modified the migration channel to resemble lymphatic capillaries to better understand how certain cancer cells are able to move through geometrically confining spaces.

  1. An Electrochemical Cell for Selective Lithium Capture from Seawater.

    PubMed

    Kim, Joo-Seong; Lee, Yong-Hee; Choi, Seungyeon; Shin, Jaeho; Dinh, Hung-Cuong; Choi, Jang Wook

    2015-08-18

    Lithium (Li) is a core element of Li-ion batteries (LIBs). Recent developments in mobile electronics such as smartphones and tablet PCs as well as advent of large-scale LIB applications including electrical vehicles and grid-level energy storage systems have led to an increase in demand for LIBs, giving rise to a concern on the availability and market price of Li resources. However, the current Lime-Soda process that is responsible for greater than 80% of worldwide Li resource supply is applicable only in certain regions on earth where the Li concentrations are sufficiently high (salt lakes or salt pans). Moreover, not only is the process time-consuming (12-18 months), but post-treatments are also required for the purification of Li. Here, we have devised a location-independent electrochemical system for Li capture, which can operate within a short time period (a few hours to days). By engaging olivine LiFePO4 active electrode that improves interfacial properties via polydopamine coating, the electrochemical cell achieves 4330 times amplification in Li/Na ion selectivity (Li/Na molar ratio of initial solution = 0.01 and Li/Na molar ratio of final electrode = 43.3). In addition, the electrochemical system engages an I(-)/I3(-) redox couple in the other electrode for balancing of the redox states on both electrode sides and sustainable operations of the entire cell. Based on the electrochemical results, key material and interfacial properties that affect the selectivity in Li capture are identified. PMID:25920476

  2. Hedgehog inhibitors selectively target cell migration and adhesion of mantle cell lymphoma in bone marrow microenvironment

    PubMed Central

    Zhang, Han; Chen, Zheng; Neelapu, Sattva S.; Romaguera, Jorge; McCarty, Nami

    2016-01-01

    The clinical benefits of a Hedgehog (Hh) inhibitor, LDE225 (NPV-LDE-225, Erismodegib), have been unclear in hematological cancers. Here, we report that LDE225 selectively inhibited migration and adhesion of mantle cell lymphoma (MCL) to bone marrows via very late antigen-4 (VLA-4) mediated inactivation of focal adhesion kinase (FAK) signaling. LDE225 treatment not only affected MCL cells, but also modulated stromal cells within the bone marrow microenvironment by decreasing their production of SDF-1, IL-6 and VCAM-1, the ligand for VLA-4. Surprisingly, LDE225 treatment alone did not suppress cell proliferation due to increased CXCR4 expression mediated by reactive oxygen species (ROS). The increased ROS/CXCR4 further stimulated autophagy formation. The combination of LDE225 with the autophagy inhibitors further enhanced MCL cell death. Our data, for the first time, revealed LDE225 selectively targets MCL cells migration and adhesion to bone marrows. The ineffectiveness of LDE225 in MCL is due to autophagy formation, which in turn increases cell viability. Inhibiting autophagy will be an effective adjuvant therapy for LDE225 in MCL, especially for advanced MCL patients with bone marrow involvement. PMID:26885608

  3. Hedgehog inhibitors selectively target cell migration and adhesion of mantle cell lymphoma in bone marrow microenvironment.

    PubMed

    Zhang, Han; Chen, Zheng; Neelapu, Sattva S; Romaguera, Jorge; McCarty, Nami

    2016-03-22

    The clinical benefits of a Hedgehog (Hh) inhibitor, LDE225 (NPV-LDE-225, Erismodegib), have been unclear in hematological cancers. Here, we report that LDE225 selectively inhibited migration and adhesion of mantle cell lymphoma (MCL) to bone marrows via very late antigen-4 (VLA-4) mediated inactivation of focal adhesion kinase (FAK) signaling. LDE225 treatment not only affected MCL cells, but also modulated stromal cells within the bone marrow microenvironment by decreasing their production of SDF-1, IL-6 and VCAM-1, the ligand for VLA-4. Surprisingly, LDE225 treatment alone did not suppress cell proliferation due to increased CXCR4 expression mediated by reactive oxygen species (ROS). The increased ROS/CXCR4 further stimulated autophagy formation. The combination of LDE225 with the autophagy inhibitors further enhanced MCL cell death. Our data, for the first time, revealed LDE225 selectively targets MCL cells migration and adhesion to bone marrows. The ineffectiveness of LDE225 in MCL is due to autophagy formation, which in turn increases cell viability. Inhibiting autophagy will be an effective adjuvant therapy for LDE225 in MCL, especially for advanced MCL patients with bone marrow involvement. PMID:26885608

  4. A Single Eu-Doped In2O3 Nanobelt Device for Selective H2S Detection

    PubMed Central

    Chen, Weiwu; Liu, Yingkai; Qin, Zhaojun; Wu, Yuemei; Li, Shuanghui; Ai, Peng

    2015-01-01

    Eu-doped In2O3 nanobelts (Eu-In2O3 NBs) and pure In2O3 nanobelts (In2O3 NBs) are synthesized by the carbon thermal reduction method. Single nanobelt sensors are fabricated via an ion beam deposition system with a mesh-grid mask. The gas-sensing response properties of the Eu-In2O3 NB device and its undoped counterpart are investigated with several kinds of gases (including H2S, CO, NO2, HCHO, and C2H5OH) at different concentrations and different temperatures. It is found that the response of the Eu-In2O3 NB device to 100 ppm of H2S is the best among these gases and the sensitivity reaches 5.74, which is five times that of pure In2O3 NB at 260 °C. We also found that the former has an excellent sensitive response and great selectivity to H2S compared to the latter. Besides, there is a linear relationship between the response and H2S concentration when its concentration changes from 5 to 100 ppm and from 100 to 1000 ppm. The response/recovery time is quite short and remains stable with an increase of H2S concentration. These results mean that the doping of Eu can improve the gas-sensing performance of In2O3 NB effectually. PMID:26633404

  5. Repair of Ischemic Injury by Pluripotent Stem Cell Based Cell Therapy without Teratoma through Selective Photosensitivity

    PubMed Central

    Cho, Seung-Ju; Kim, So-Yeon; Jeong, Ho-Chang; Cheong, Hyeonsik; Kim, Doseok; Park, Soon-Jung; Choi, Jong-Jin; Kim, Hyongbum; Chung, Hyung-Min; Moon, Sung-Hwan; Cha, Hyuk-Jin

    2015-01-01

    Summary Stem-toxic small molecules have been developed to induce selective cell death of pluripotent stem cells (PSCs) to lower the risk of teratoma formation. However, despite their high efficacies, chemical-based approaches may carry unexpected toxicities on specific differentiated cell types. Herein, we took advantage of KillerRed (KR) as a suicide gene, to selectively induce phototoxicity using visible light via the production of reactive oxygen species. PSCs in an undifferentiated state that exclusively expressed KR (KR-PSCs) were eliminated by a single exposure to visible light. This highly selective cell death in KR-PSCs was exploited to successfully inhibit teratoma formation. In particular, endothelial cells from KR-mPSCs remained fully functional in vitro and sufficient to repair ischemic injury in vivo regardless of light exposure, suggesting that a genetic approach in which KR is expressed in a tightly controlled manner would be a viable strategy to inhibit teratoma formation for future safe PSC-based therapies. PMID:26584542

  6. Repair of Ischemic Injury by Pluripotent Stem Cell Based Cell Therapy without Teratoma through Selective Photosensitivity.

    PubMed

    Cho, Seung-Ju; Kim, So-Yeon; Jeong, Ho-Chang; Cheong, Hyeonsik; Kim, Doseok; Park, Soon-Jung; Choi, Jong-Jin; Kim, Hyongbum; Chung, Hyung-Min; Moon, Sung-Hwan; Cha, Hyuk-Jin

    2015-12-01

    Stem-toxic small molecules have been developed to induce selective cell death of pluripotent stem cells (PSCs) to lower the risk of teratoma formation. However, despite their high efficacies, chemical-based approaches may carry unexpected toxicities on specific differentiated cell types. Herein, we took advantage of KillerRed (KR) as a suicide gene, to selectively induce phototoxicity using visible light via the production of reactive oxygen species. PSCs in an undifferentiated state that exclusively expressed KR (KR-PSCs) were eliminated by a single exposure to visible light. This highly selective cell death in KR-PSCs was exploited to successfully inhibit teratoma formation. In particular, endothelial cells from KR-mPSCs remained fully functional in vitro and sufficient to repair ischemic injury in vivo regardless of light exposure, suggesting that a genetic approach in which KR is expressed in a tightly controlled manner would be a viable strategy to inhibit teratoma formation for future safe PSC-based therapies. PMID:26584542

  7. Metastability of copper indium gallium diselenide polycrystalline thin film solar cell devices

    NASA Astrophysics Data System (ADS)

    Lee, Jinwoo

    High efficiency thin film solar cells have the potential for being a world energy solution because of their cost-effectiveness. Looking to the future of solar energy, there is the opportunity and challenge for thin film solar cells. The main theme of this research is to develop a detailed understanding of electronically active defect states and their role in limiting device performance in copper indium gallium diselenide (CIGS) solar cells. Metastability in the CIGS is a good tool to manipulate electronic defect density and thus identify its effect on the device performance. Especially, this approach keeps many device parameters constant, including the chemical composition, grain size, and interface layers. Understanding metastability is likely to lead to the improvement of CIGS solar cells. We observed systematic changes in CIGS device properties as a result of the metastable changes, such as increases in sub-bandgap defect densities and decreases in hole carrier mobilities. Metastable changes were characterized using high frequency admittance spectroscopy, drive-level capacitance profiling (DLCP), and current-voltage measurements. We found two distinctive capacitance steps in the high frequency admittance spectra that correspond to (1) the thermal activation of hole carriers into/out of acceptor defect and (2) a temperature-independent dielectric relaxation freeze-out process and an equivalent circuit analysis was employed to deduce the dielectric relaxation time. Finally, hole carrier mobility was deduced once hole carrier density was determined by DLCP method. We found that metastable defect creation in CIGS films can be made either by light-soaking or with forward bias current injection. The deep acceptor density and the hole carrier density were observed to increase in a 1:1 ratio, which seems to be consistent with the theoretical model of VCu-V Se defect complex suggested by Lany and Zunger. Metastable defect creation kinetics follows a sub-linear power law

  8. Isolation of viable cancer cells in antibody-functionalized microfluidic devices

    PubMed Central

    Zheng, Xiangjun; Jiang, Linan; Schroeder, Joyce; Stopeck, Alison; Zohar, Yitshak

    2014-01-01

    Microfluidic devices functionalized with EpCAM antibodies were utilized for the capture of target cancer cells representing circulating tumor cells (CTCs). The fraction of cancer cells captured from homogeneous suspensions is mainly a function of flow shear rate, and can be described by an exponential function. A characteristic shear rate emerges as the most dominant parameter affecting the cell attachment ratio. Utilizing this characteristic shear rate as a scaling factor, all attachment ratio results for various combinations of receptor and ligand densities collapsed onto a single curve described by the empirical formula. The characteristic shear rate increases with both cell-receptor and surface-ligand densities, and empirical formulae featuring a product of two independent cumulative distributions described well these relationships. The minimum detection limit in isolation of target cancer cells from binary mixtures was experimentally explored utilizing microchannel arrays that allow high-throughput processing of suspensions about 0.5 ml in volume, which are clinically relevant, within a short time. Under a two-step attachment/detachment flow rate, both high sensitivity (almost 1.0) and high specificity (about 0.985) can be achieved in isolating target cancer cells from binary mixtures even for the lowest target/non-target cell concentration ratio of 1:100 000; this is a realistic ratio between CTCs and white blood cells in blood of cancer patients. Detection of CTCs from blood samples was also demonstrated using whole blood from healthy donors spiked with cancer cells. Finally, the viability of target cancer cells released after capture was confirmed by observing continuous cell growth in culture. PMID:24803968

  9. Three-dimensional Cell Culture Devices for Cancer Migration and Drug Testing

    NASA Astrophysics Data System (ADS)

    Ma, Liang

    Porous polymeric materials are widely used to mimic the extracellular matrix (ECM) environment for applications such as 3D cell culturing and tissue engineering. A series of comparative experiments on 3D cell cultures both in PLA porous scaffolds and alginate gels were conducted to create an in vitro tumor model. A novel 3D cell culture device based on porous polymeric material was developed to study cancer migration. Significant cell migration was observed through the porous channel within 1--2 weeks induced by 20% fetal bovine serum (FBS). A three-dimensional micro-scale perfusion-based two-chamber (3D-muPTC) tissue model system was developed to test the cytotoxicity of anticancer drugs by emulating liver metabolism effects in vitro. Hepatoma cells and glioblastoma multiforme (GBM) cancer cells were cultured in porous polymeric scaffolds in two separate chambers, representing the liver and tumor, respectively. The cytotoxic effect of temozolomide (TMZ) was first tested using this system. It was found that the GBM cells showed a much higher viability under the TMZ treatment with liver cells in the system, suggesting that the drug metabolism in liver is affecting the efficacy of the drug. The favorable metabolism effect of cytochrome P450 (CYP) was tested using a prodrug ifosfamide (IFO). Without the liver cells, IFO showed only slight toxicity to GBM cells. Moreover, it was shown that different expression levels of CYP 3A4, a major drug metabolizing enzyme, in liver cells caused significantly different levels of GBM cell viability. Simulation of the flow characteristics in the 3D-muPTC system was conducted using the finite-element analysis approach. The shear stress was predicted in the porous scaffolds under different flow rate conditions. The predicted shear stress effects agreed well with an experimental cell viability study. A low cost organic solvent free approach to fabricating tissue engineering scaffolds was developed by combining the twin-screw extrusion

  10. Isolating highly enriched populations of circulating epithelial cells and other rare cells from blood using a magnetic sweeper device.

    PubMed

    Talasaz, AmirAli H; Powell, Ashley A; Huber, David E; Berbee, James G; Roh, Kyung-Ho; Yu, Wong; Xiao, Wenzhong; Davis, Mark M; Pease, R Fabian; Mindrinos, Michael N; Jeffrey, Stefanie S; Davis, Ronald W

    2009-03-10

    The enumeration of rare circulating epithelial cells (CEpCs) in the peripheral blood of metastatic cancer patients has shown promise for improved cancer prognosis. Moving beyond enumeration, molecular analysis of CEpCs may provide candidate surrogate endpoints to diagnose, treat, and monitor malignancy directly from the blood samples. Thorough molecular analysis of CEpCs requires the development of new sample preparation methods that yield easily accessible and purified CEpCs for downstream biochemical assays. Here, we describe a new immunomagnetic cell separator, the MagSweeper, which gently enriches target cells and eliminates cells that are not bound to magnetic particles. The isolated cells are easily accessible and can be extracted individually based on their physical characteristics to deplete any cells nonspecifically bound to beads. We have shown that our device can process 9 mL of blood per hour and captures >50% of CEpCs as measured in spiking experiments. We have shown that the separation process does not perturb the gene expression of rare cells. To determine the efficiency of our platform in isolating CEpCs from patients, we have isolated CEpCs from all 47 tubes of 9-mL blood samples collected from 17 women with metastatic breast cancer. In contrast, we could not find any circulating epithelial cells in samples from 5 healthy donors. The isolated CEpCs are all stored individually for further molecular analysis. PMID:19234122

  11. Isolating highly enriched populations of circulating epithelial cells and other rare cells from blood using a magnetic sweeper device

    PubMed Central

    Talasaz, AmirAli H.; Powell, Ashley A.; Huber, David E.; Berbee, James G.; Roh, Kyung-Ho; Yu, Wong; Xiao, Wenzhong; Davis, Mark M.; Pease, R. Fabian; Mindrinos, Michael N.; Jeffrey, Stefanie S.; Davis, Ronald W.

    2009-01-01

    The enumeration of rare circulating epithelial cells (CEpCs) in the peripheral blood of metastatic cancer patients has shown promise for improved cancer prognosis. Moving beyond enumeration, molecular analysis of CEpCs may provide candidate surrogate endpoints to diagnose, treat, and monitor malignancy directly from the blood samples. Thorough molecular analysis of CEpCs requires the development of new sample preparation methods that yield easily accessible and purified CEpCs for downstream biochemical assays. Here, we describe a new immunomagnetic cell separator, the MagSweeper, which gently enriches target cells and eliminates cells that are not bound to magnetic particles. The isolated cells are easily accessible and can be extracted individually based on their physical characteristics to deplete any cells nonspecifically bound to beads. We have shown that our device can process 9 mL of blood per hour and captures >50% of CEpCs as measured in spiking experiments. We have shown that the separation process does not perturb the gene expression of rare cells. To determine the efficiency of our platform in isolating CEpCs from patients, we have isolated CEpCs from all 47 tubes of 9-mL blood samples collected from 17 women with metastatic breast cancer. In contrast, we could not find any circulating epithelial cells in samples from 5 healthy donors. The isolated CEpCs are all stored individually for further molecular analysis. PMID:19234122

  12. Comparison between polyethylene glycol and zwitterionic polymers as antifouling coatings on wearable devices for selective antigen capture from biological tissue.

    PubMed

    Robinson, Kye J; Coffey, Jacob W; Muller, David A; Young, Paul R; Kendall, Mark A F; Thurecht, Kristofer J; Grøndahl, Lisbeth; Corrie, Simon R

    2015-01-01

    Selective capture of disease-related proteins in complex biological fluids and tissues is an important aim in developing sensitive protein biosensors for in vivo applications. Microprojection arrays are biomedical devices whose mechanical and chemical properties can be tuned to allow efficient penetration of skin, coupled with highly selective biomarker capture from the complex biological environment of skin tissue. Herein, the authors describe an improved surface modification strategy to produce amine-modified polycarbonate arrays, followed by the attachment of an antifouling poly(sulfobetaine-methacrylate) (pSBMA) polymer or a linear polyethylene glycol (PEG) polymer of comparative molecular weight and hydrodynamic radius. Using a "grafting to" approach, pSBMA and linear PEG coatings yielded comparative antifouling behavior in single protein solutions, diluted plasma, or when applied to mouse flank skin penetrating into the vascularized dermal tissue. Interestingly, the density of immobilized immunoglobulin G (IgG) or bovine serum albumin protein on pSBMA surfaces was significantly higher than that on the PEG surfaces, while the nonspecific adsorption was comparable for each protein. When incubated in buffer or plasma solutions containing dengue non-structural protein 1 (NS1), anti-NS1-IgG-coated pSBMA surfaces captured significantly more NS1 in comparison to PEG-coated devices. Similarly, when wearable microprojection arrays were applied to the skin of dengue-infected mice using the same coatings, the pSBMA-coated devices showed significantly higher capture efficiency (>2-fold increase in signal) than the PEG-coated substrates, which showed comparative signal when applied to naïve mice. In conclusion, zwitterionic pSBMA polymers (of equivalent hydrodynamic radii to PEG) allowed detection of dengue NS1 disease biomarker in a preclinical model of dengue infection, showing significantly higher signal-to-noise ratio in comparison to the PEG controls. The results of

  13. Curcumin and cancer cells: how many ways can curry kill tumor cells selectively?

    PubMed

    Ravindran, Jayaraj; Prasad, Sahdeo; Aggarwal, Bharat B

    2009-09-01

    Cancer is a hyperproliferative disorder that is usually treated by chemotherapeutic agents that are toxic not only to tumor cells but also to normal cells, so these agents produce major side effects. In addition, these agents are highly expensive and thus not affordable for most. Moreover, such agents cannot be used for cancer prevention. Traditional medicines are generally free of the deleterious side effects and usually inexpensive. Curcumin, a component of turmeric (Curcuma longa), is one such agent that is safe, affordable, and efficacious. How curcumin kills tumor cells is the focus of this review. We show that curcumin modulates growth of tumor cells through regulation of multiple cell signaling pathways including cell proliferation pathway (cyclin D1, c-myc), cell survival pathway (Bcl-2, Bcl-xL, cFLIP, XIAP, c-IAP1), caspase activation pathway (caspase-8, 3, 9), tumor suppressor pathway (p53, p21) death receptor pathway (DR4, DR5), mitochondrial pathways, and protein kinase pathway (JNK, Akt, and AMPK). How curcumin selectively kills tumor cells, and not normal cells, is also described in detail. PMID:19590964

  14. A PCNA-Derived Cell Permeable Peptide Selectively Inhibits Neuroblastoma Cell Growth

    PubMed Central

    Gu, Long; Smith, Shanna; Li, Caroline; Hickey, Robert J.; Stark, Jeremy M.; Fields, Gregg B.; Lang, Walter H.; Sandoval, John A.; Malkas, Linda H.

    2014-01-01

    Proliferating cell nuclear antigen (PCNA), through its interaction with various proteins involved in DNA synthesis, cell cycle regulation, and DNA repair, plays a central role in maintaining genome stability. We previously reported a novel cancer associated PCNA isoform (dubbed caPCNA), which was significantly expressed in a broad range of cancer cells and tumor tissues, but not in non-malignant cells. We found that the caPCNA-specific antigenic site lies between L126 and Y133, a region within the interconnector domain of PCNA that is known to be a major binding site for many of PCNA's interacting proteins. We hypothesized that therapeutic agents targeting protein-protein interactions mediated through this region may confer differential toxicity to normal and malignant cells. To test this hypothesis, we designed a cell permeable peptide containing the PCNA L126-Y133 sequence. Here, we report that this peptide selectively kills human neuroblastoma cells, especially those with MYCN gene amplification, with much less toxicity to non-malignant human cells. Mechanistically, the peptide is able to block PCNA interactions in cancer cells. It interferes with DNA synthesis and homologous recombination-mediated double-stranded DNA break repair, resulting in S-phase arrest, accumulation of DNA damage, and enhanced sensitivity to cisplatin. These results demonstrate conceptually the utility of this peptide for treating neuroblastomas, particularly, the unfavorable MYCN-amplified tumors. PMID:24728180

  15. Relationship Between Absorber Layer Properties and Device Operation Modes For High Efficiency Thin Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Ravichandran, Ram; Kokenyesi, Robert; Wager, John; Keszler, Douglas; CenterInverse Design Team

    2014-03-01

    A thin film solar cell (TFSC) can be differentiated into two distinct operation modes based on the transport mechanism. Current TFSCs predominantly exploit diffusion to extract photogenerated minority carriers. For efficient extraction, the absorber layer requires high carrier mobilities and long minority carrier lifetimes. Materials exhibiting a strong optical absorption onset near the fundamental band gap allows reduction of the absorber layer thickness to significantly less than 1 μm. In such a TFSC, a strong intrinsic electric field drives minority carrier extraction, resulting in drift-based transport. The basic device configuration utilized in this simulation study is a heterojunction TFSC with a p-type absorber layer. The diffusion/drift device operation modes are simulated by varying the thickness and carrier concentration of the absorber layer, and device performance between the two modes is compared. In addition, the relationship between device operation mode and transport properties, including carrier mobility and minority carrier lifetime are explored. Finally, candidate absorber materials that enable the advantages of a drift-based TFSC developed within the Center for Inverse Design are presented. School of Electrical Engineering and Computer Science.

  16. Gold Nanoparticles Assisted Photocurrent Enhancement in Hybrid Nanostructures Based Heterojunction Solar Cell Device

    NASA Astrophysics Data System (ADS)

    Long, Gen; Beattie, Michael; Xu, Huizhong; Sadoqi, Mostafa

    In this presentation, we report a first hand study of plasmon enhanced photocurrent observed in hybrid nanostructures based heterojunction solar cell. The heterojunction solar cell was fabricated, using chemically synthesized narrow gap, IV-VI group semiconductor nanoparticles (PbS and PbSe), wide gap semiconductor ZnO nanowires, and gold nanoparticles, by spin-coating onto FTO glasses, in ambient conditions (25C, 1atm). The synthesized nanostructures were characterized by XRD, UV-VIS absorption, SEM, AFM, TEM, solar simulator, etc. Nanostructures of variant sizes were integrated in to the heterojunction devices to study the effects on photocurrent and solar cell performance. The architecture of film stack, i.e., the positions of Au nanoparticles and PbS, PbSe nanoparticles were also studied. We believe that introducing Au nanopartiles with proper size will lead to increase of photocurrent as well as solar cell devices. The authors thank Center for Functional Nanomaterials of DOE for providing facilities access.

  17. A microfluidic device for the hydrodynamic immobilisation of living fission yeast cells for super-resolution imaging☆

    PubMed Central

    Bell, Laurence; Seshia, Ashwin; Lando, David; Laue, Ernest; Palayret, Matthieu; Lee, Steven F.; Klenerman, David

    2014-01-01

    We describe a microfluidic device designed specifically for the reversible immobilisation of Schizosaccharomyces pombe (Fission Yeast) cells to facilitate live cell super-resolution microscopy. Photo-Activation Localisation Microscopy (PALM) is used to create detailed super-resolution images within living cells with a modal accuracy of >25 nm in the lateral dimensions. The novel flow design captures and holds cells in a well-defined array with minimal effect on the normal growth kinetics. Cells are held over several hours and can continue to grow and divide within the device during fluorescence imaging. PMID:25844024

  18. Fiber-optic Singlet Oxygen [1O2 (1Δg)] Generator Device Serving as a Point Selective Sterilizer

    PubMed Central

    Aebisher, David; Zamadar, Matibur; Mahendran, Adaickapillai; Ghosh, Goutam; McEntee, Catherine; Greer, Alexander

    2016-01-01

    Traditionally, Type II heterogeneous photo-oxidations produce singlet oxygen via external irradiation of a sensitizer and external supply of ground-state oxygen. A potential improvement is reported here. A hollow-core fiber-optic device was developed with an “internal” supply of light and flowing oxygen, and a porous photosensitizer-end capped configuration. Singlet oxygen was delivered through the fiber tip. The singlet oxygen steady-state concentration in the immediate vicinity of the probe tip was ca 20 fM by N-benzoyl-DL-methionine trapping. The device is portable and the singlet oxygen-generating tip is maneuverable, which opened the door to simple disinfectant studies. Complete Escherichia coli inactivation was observed in 2 h when the singlet oxygen sensitizing probe tip was immersed in 0.1 mL aqueous samples of 0.1–4.4 × 107 cells. Photobleaching of the probe tip occurred after ca 12 h of use, requiring baking and sensitizer reloading steps for reuse. PMID:20497367

  19. Photovoltaic device

    DOEpatents

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-06-02

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  20. Photovoltaic device

    SciTech Connect

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  1. Effect of Mesostructured Layer upon Crystalline Properties and Device Performance on Perovskite Solar Cells.

    PubMed

    Listorti, Andrea; Juarez-Perez, Emilio J; Frontera, Carlos; Roiati, Vittoria; Garcia-Andrade, Laura; Colella, Silvia; Rizzo, Aurora; Ortiz, Pablo; Mora-Sero, Ivan

    2015-05-01

    One of the most fascinating characteristics of perovskite solar cells (PSCs) is the retrieved obtainment of outstanding photovoltaic (PV) performances withstanding important device configuration variations. Here we have analyzed CH3NH3PbI3-xClx in planar or in mesostructured (MS) configurations, employing both titania and alumina scaffolds, fully infiltrated with perovskite material or presenting an overstanding layer. The use of the MS scaffold induces to the perovskite different structural properties, in terms of grain size, preferential orientation, and unit cell volume, in comparison to the ones of the material grown with no constraints, as we have found out by X-ray diffraction analyses. We have studied the effect of the PSC configuration on photoinduced absorption and time-resolved photoluminescence, complementary techniques that allow studying charge photogeneration and recombination. We have estimated electron diffusion length in the considered configurations observing a decrease when the material is confined in the MS scaffold with respect to a planar architecture. However, the presence of perovskite overlayer allows an overall recovering of long diffusion lengths explaining the record PV performances obtained with a device configuration bearing both the mesostructure and a perovskite overlayer. Our results suggest that performance in devices with perovskite overlayer is mainly ruled by the overlayer, whereas the mesoporous layer influences the contact properties. PMID:26263326

  2. Processing and modeling issues for thin-film solar cell devices. Final report

    SciTech Connect

    Birkmire, R.W.; Phillips, J.E.

    1997-11-01

    During the third phase of the subcontract, IEC researchers have continued to provide the thin film PV community with greater depth of understanding and insight into a wide variety of issues including: the deposition and characterization of CuIn{sub 1-x}Ga{sub x}Se{sub 2}, a-Si, CdTe, CdS, and TCO thin films; the relationships between film and device properties; and the processing and analysis of thin film PV devices. This has been achieved through the systematic investigation of all aspects of film and device production and through the analysis and quantification of the reaction chemistries involved in thin film deposition. This methodology has led to controlled fabrications of 15% efficient CuIn{sub 1-x}Ga{sub x}Se{sub 2} solar cells over a wide range of Ga compositions, improved process control of the fabrication of 10% efficient a-Si solar cells, and reliable and generally applicable procedures for both contacting and doping films. Additional accomplishments are listed below.

  3. Few-Layer MoS₂ p-Type Devices Enabled by Selective Doping Using Low Energy Phosphorus Implantation.

    PubMed

    Nipane, Ankur; Karmakar, Debjani; Kaushik, Naveen; Karande, Shruti; Lodha, Saurabh

    2016-02-23

    P-type doping of MoS2 has proved to be a significant bottleneck in the realization of fundamental devices such as p-n junction diodes and p-type transistors due to its intrinsic n-type behavior. We report a CMOS compatible, controllable and area selective phosphorus plasma immersion ion implantation (PIII) process for p-type doping of MoS2. Physical characterization using SIMS, AFM, XRD and Raman techniques was used to identify process conditions with reduced lattice defects as well as low surface damage and etching, 4X lower than previous plasma based doping reports for MoS2. A wide range of nondegenerate to degenerate p-type doping is demonstrated in MoS2 field effect transistors exhibiting dominant hole transport. Nearly ideal and air stable, lateral homogeneous p-n junction diodes with a gate-tunable rectification ratio as high as 2 × 10(4) are demonstrated using area selective doping. Comparison of XPS data from unimplanted and implanted MoS2 layers shows a shift of 0.67 eV toward lower binding energies for Mo and S peaks indicating p-type doping. First-principles calculations using density functional theory techniques confirm p-type doping due to charge transfer originating from substitutional as well as physisorbed phosphorus in top few layers of MoS2. Pre-existing sulfur vacancies are shown to enhance the doping level significantly. PMID:26789206

  4. Efficient Regular Perovskite Solar Cells Based on Pristine [70]Fullerene as Electron-Selective Contact.

    PubMed

    Collavini, Silvia; Kosta, Ivet; Völker, Sebastian F; Cabanero, German; Grande, Hans J; Tena-Zaera, Ramón; Delgado, Juan Luis

    2016-06-01

    [70]Fullerene is presented as an efficient alternative electron-selective contact (ESC) for regular-architecture perovskite solar cells (PSCs). A smart and simple, well-described solution processing protocol for the preparation of [70]- and [60]fullerene-based solar cells, namely the fullerene saturation approach (FSA), allowed us to obtain similar power conversion efficiencies for both fullerene materials (i.e., 10.4 and 11.4 % for [70]- and [60]fullerene-based devices, respectively). Importantly, despite the low electron mobility and significant visible-light absorption of [70]fullerene, the presented protocol allows the employment of [70]fullerene as an efficient ESC. The [70]fullerene film thickness and its solubility in the perovskite processing solutions are crucial parameters, which can be controlled by the use of this simple solution processing protocol. The damage to the [70]fullerene film through dissolution during the perovskite deposition is avoided through the saturation of the perovskite processing solution with [70]fullerene. Additionally, this fullerene-saturation strategy improves the performance of the perovskite film significantly and enhances the power conversion efficiency of solar cells based on different ESCs (i.e., [60]fullerene, [70]fullerene, and TiO2 ). Therefore, this universal solution processing protocol widens the opportunities for the further development of PSCs. PMID:26991031

  5. Individual Mammalian Cell Magnetic Measurements with a Superconducting Quantum Interference Device

    NASA Astrophysics Data System (ADS)

    Palmstrom, Johanna C.; Brewer, Kimberly; Tee, Sui Seng; Theis, Eric; Rutt, Brian; Moler, Kathryn A.

    2015-03-01

    Magnetism can be introduced into otherwise nonmagnetic cells by the uptake of superparamagnetic iron oxide (SPIO) nanoparticles. SPIO nanoparticles are used in numerous biomedical applications including cellular therapies and targeted drug delivery. Currently there are few tools capable of characterizing individual magnetic nanoparticles and the magnetic properties of individual mammalian cells loaded with SPIO. Our scanning superconducting quantum interference devices (SQUIDs) are good candidates for these measurements due to their high sensitivity to magnetic dipole moments (approx. 200 μb/ √Hz) In this study, we use a scanning SQUID to image the magnetic flux from SPIO loaded H1299 lung cancer cells. We find that the magnetic moment spatially varies inside the cell with each cell having a unique distribution of moments. We also correlate these magnetic images with optical and scanning electron microscope images. These results show that the SQUID is a useful tool for imaging biological magnetism. The visualization of single cell magnetism and the quantification of magnetic dipole moments in magnetically labeled cells can be used to optimize conventional biological magnetic imaging techniques, such as MRI.

  6. Device characterization for design optimization of 4 junction inverted metamorphic concentrator solar cells

    SciTech Connect

    Geisz, John F.; France, Ryan M.; Steiner, Myles A.; Friedman, Daniel J.; García, Iván

    2014-09-26

    Quantitative electroluminescence (EL) and luminescent coupling (LC) analysis, along with more conventional characterization techniques, are combined to completely characterize the subcell JV curves within a fourjunction (4J) inverted metamorphic solar cell (IMM). The 4J performance under arbitrary spectral conditions can be predicted from these subcell JV curves. The internal radiative efficiency (IRE) of each junction has been determined as a function of current density from the external radiative efficiency using optical modeling, but this required the accurate determination of the individual junction current densities during the EL measurement as affected by LC. These measurement and analysis techniques can be applied to any multijunction solar cell. The 4J IMM solar cell used to illustrate these techniques showed excellent junction quality as exhibited by high IRE and a one-sun AM1.5D efficiency of 36.3%. This device operates up to 1000 suns without limitations due to any of the three tunnel junctions.

  7. A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    NASA Astrophysics Data System (ADS)

    Shamloo, Amir; Amirifar, Leyla

    2016-01-01

    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies.

  8. Automatic illumination compensation device based on a photoelectrochemical biofuel cell driven by visible light.

    PubMed

    Yu, You; Han, Yanchao; Xu, Miao; Zhang, Lingling; Dong, Shaojun

    2016-04-28

    Inverted illumination compensation is important in energy-saving projects, artificial photosynthesis and some forms of agriculture, such as hydroponics. However, only a few illumination adjustments based on self-powered biodetectors that quantitatively detect the intensity of visible light have been reported. We constructed an automatic illumination compensation device based on a photoelectrochemical biofuel cell (PBFC) driven by visible light. The PBFC consisted of a glucose dehydrogenase modified bioanode and a p-type semiconductor cuprous oxide photocathode. The PBFC had a high power output of 161.4 μW cm(-2) and an open circuit potential that responded rapidly to visible light. It adjusted the amount of illumination inversely irrespective of how the external illumination was changed. This rational design of utilizing PBFCs provides new insights into automatic light adjustable devices and may be of benefit to intelligent applications. PMID:27076202

  9. Device for equalizing molten electrolyte content in a fuel cell stack

    DOEpatents

    Smith, James L.

    1987-01-01

    A device for equalizing the molten electrolyte content throughout the height of a fuel cell stack is disclosed. The device includes a passageway for electrolyte return with electrolyte wettable wicking material in the opposite end portions of the passageway. One end portion is disposed near the upper, negative end of the stack where electrolyte flooding occurs. The second end portion is placed near the lower, positive end of the stack where electrolyte is depleted. Heating means are provided at the upper portion of the passageway to increase electrolyte vapor pressure in the upper wicking material. The vapor is condensed in the lower passageway portion and conducted as molten electrolyte in the lower wick to the positive end face of the stack. An inlet is provided to inject a modifying gas into the passageway and thereby control the rate of electrolyte return.

  10. Device for equalizing molten electrolyte content in a fuel cell stack

    DOEpatents

    Smith, J.L.

    1985-12-23

    A device for equalizing the molten electrolyte content throughout the height of a fuel cell stack is disclosed. The device includes a passageway for electrolyte return with electrolyte wettable wicking material in the opposite end portions of the passageway. One end portion is disposed near the upper, negative end of the stack where electrolyte flooding occurs. The second end portion is placed near the lower, positive end of the stack where electrolyte is depleted. Heating means are provided at the upper portion of the passageway to increase electrolyte vapor pressure in the upper wicking material. The vapor is condensed in the lower passageway portion and conducted as molten electrolyte in the lower wick to the positive end face of the stack. An inlet is provided to inject a modifying gas into the passageway and thereby control the rate of electrolyte return.

  11. Heating power lowering by downscaling the cell dimensions in nanoscale filamentary resistive switching devices

    NASA Astrophysics Data System (ADS)

    Yin, Qiaonan; Chen, Yan; Xia, Yidong; Xu, Bo; Yin, Jiang; Liu, Zhiguo

    2016-04-01

    In this work, we theoretically investigate the size dependence of the heat process in thermochemical filamentary resistive switching memories of crossbar structure. The equivalent heat resistance of the system increases with the device dimensions scaled down because of the size-dependent electric and thermal conductivity and geometry configurations. The higher equivalent heat resistance by diminishing the cell sizes induces an enhanced self-heating effect of the filament. It promises lower operation voltage and heating power to trigger the thermally activated dissolution of the filament in RESET process. These results strengthen the advantage of filamentary memories in lateral and longitudinal scaling down technologies where less power consumption has long been urged. Our results also show the opposite dependence of the driven electric field on the linewidth and thickness of the device.

  12. Organic light-emitting devices integrated with solar cells: High contrast and energy recycling

    NASA Astrophysics Data System (ADS)

    Yang, Chih-Jen; Cho, Ting-Yi; Lin, Chun-Liang; Wu, Chung-Chih

    2007-04-01

    In this letter, the authors report that by integrating organic light-emitting devices (OLEDs) with solar cells, luminous ambient-light reflection as low as 1.4% (even superior to that achieved with polarizers) can be achieved without compromising the electroluminescence efficiency for high-contrast display applications. Furthermore, in such a configuration, the photon energies of the incident ambient light and the portion of OLED emission not getting outside of the device can be recycled into useful electrical power via the photovoltaic action, instead of being totally wasted as in other reported contrast-enhancement techniques. These features, the authors believe, shall make this technique attractive for high-contrast display applications and portable/mobile electronics that are highly power aware.

  13. Immuno Nanoparticles Integrated Electrical Control of Targeted Cancer Cell Development Using Whole Cell Bioelectronic Device

    PubMed Central

    Hondroulis, Evangelia; Zhang, Rui; Zhang, Chengxiao; Chen, Chunying; Ino, Kosuke; Matsue, Tomokazu; Li, Chen-Zhong

    2014-01-01

    Electrical properties of cells determine most of the cellular functions, particularly ones which occur in the cell's membrane. Manipulation of these electrical properties may provide a powerful electrotherapy option for the treatment of cancer as cancerous cells have been shown to be more electronegative than normal proliferating cells. Previously, we used an electrical impedance sensing system (EIS) to explore the responses of cancerous SKOV3 cells and normal HUVEC cells to low intensity (<2 V/cm) AC electric fields, determining that the optimal frequency for SKOV3 proliferation arrest was 200 kHz, without harming the non-cancerous HUVECs. In this study, to determine if these effects are cell type dependant, human breast adenocarcinoma cells (MCF7) were subjected to a range of frequencies (50 kHz-2 MHz) similar to the previously tested SKOV3. For the MCF7, an optimal frequency of 100 kHz was determined using the EIS, indicating a higher sensitivity towards the applied field. Further experiments specifically targeting the two types of cancer cells using HER2 antibody functionalized gold nanoparticles (HER2-AuNPs) were performed to determine if enhanced electric field strength can be induced via the application of nanoparticles, consequently leading to the killing of the cancerous cells without affecting non cancerous HUVECs and MCF10a providing a platform for the development of a non-invasive cancer treatment without any harmful side effects. The EIS was used to monitor the real-time consequences on cellular viability and a noticeable decrease in the growth profile of the MCF7 was observed with the application of the HER2-AuNPs and the electric fields indicating specific inhibitory effects on dividing cells in culture. To further understand the effects of the externally applied field to the cells, an Annexin V/EthD-III assay was performed to determine the cell death mechanism indicating apoptosis. The zeta potential of the SKOV3 and the MCF7 before and after

  14. Microselection – affinity selecting antibodies against a single rare cell in a heterogeneous population

    PubMed Central

    Sørensen, Morten Dræby; Agerholm, Inge Errebo; Christensen, Britta; Kølvraa, Steen; Kristensen, Peter

    2010-01-01

    Abstract Rare cells not normally present in the peripheral bloodstream, such as circulating tumour cells, have potential applications for development of non-invasive methods for diagnostics or follow up. Obtaining these cells however require some means of discrimination, achievable by cell type specific antibodies. Here we have generated a microselection method allowing antibody selection, by phage display, targeting a single cell in a heterogeneous population. One K562 cell (female origin) was positioned on glass slide among millions of lymphocytes from male donor, identifying the K562 cell by FISH (XX). Several single cell selections were performed on such individual slides. The phage particles bound to the target cell is protected by a minute disc, while inactivating all remaining phage by UV-irradiation; leaving only the phage bound to the target cell viable. We hereby retrieved up to eight antibodies per single cell selection, including three highly K562 cell type specific. PMID:20726925

  15. New biomedical devices with selective peptide recognition properties. Part 1: Characterization and cytotoxicity of molecularly imprinted polymers

    PubMed Central

    Rechichi, A; Cristallini, C; Vitale, U; Ciardelli, G; Barbani, N; Vozzi, G; Giusti, P

    2007-01-01

    Abstract Molecular imprinting is a technique for the synthesis of polymers capable to bind target molecules selectively. The imprinting of large proteins, such as cell adhesion proteins or cell receptors, opens the way to important and innovative biomedical applications. However, such molecules can incur into important conformational changes during the preparation of the imprinted polymer impairing the specificity of the recognition cavities. The “epitope approach” can overcome this limit by adopting, as template, a short peptide sequence representative of an accessible fragment of a larger protein. The resulting imprinted polymer can recognize both the template and the whole molecule thanks to the specific cavities for the epitope. In this work two molecularly imprinted polymer formulations (a macroporous monolith and nanospheres) were obtained using the protected peptide Z-Thr-Ala-Ala-OMe, as template, and Z-Thr-Ile-Leu-OMe, as analogue for the selectivity evaluation, methacrylic acid, as functional monomer, and trimethylolpropane trimethacrylate and pentaerythritol triacrylate (PETRA), as cross-linkers. Polymers were synthesized by precipitation polymerization and characterized by standard techniques. Polymerization and rebinding solutions were analyzed by high performance liquid chromatography. The highly cross-linked polymers retained about 70% of the total template amount, against (20% for the less cross-linked ones). The extracted template amount and the rebinding capacity decreased with the cross-linking degree, while the selectivity showed the opposite behaviour. The PETRA cross-linked polymers showed the best recognition (MIP 2−, α= 1.71) and selectivity (MIP 2+, α′= 5.58) capabilities. The cytotoxicity tests showed normal adhesion and proliferation of fibroblasts cultured in the medium that was put in contact with the imprinted polymers. PMID:18205706

  16. Automatic illumination compensation device based on a photoelectrochemical biofuel cell driven by visible light

    NASA Astrophysics Data System (ADS)

    Yu, You; Han, Yanchao; Xu, Miao; Zhang, Lingling; Dong, Shaojun

    2016-04-01

    Inverted illumination compensation is important in energy-saving projects, artificial photosynthesis and some forms of agriculture, such as hydroponics. However, only a few illumination adjustments based on self-powered biodetectors that quantitatively detect the intensity of visible light have been reported. We constructed an automatic illumination compensation device based on a photoelectrochemical biofuel cell (PBFC) driven by visible light. The PBFC consisted of a glucose dehydrogenase modified bioanode and a p-type semiconductor cuprous oxide photocathode. The PBFC had a high power output of 161.4 μW cm-2 and an open circuit potential that responded rapidly to visible light. It adjusted the amount of illumination inversely irrespective of how the external illumination was changed. This rational design of utilizing PBFCs provides new insights into automatic light adjustable devices and may be of benefit to intelligent applications.Inverted illumination compensation is important in energy-saving projects, artificial photosynthesis and some forms of agriculture, such as hydroponics. However, only a few illumination adjustments based on self-powered biodetectors that quantitatively detect the intensity of visible light have been reported. We constructed an automatic illumination compensation device based on a photoelectrochemical biofuel cell (PBFC) driven by visible light. The PBFC consisted of a glucose dehydrogenase modified bioanode and a p-type semiconductor cuprous oxide photocathode. The PBFC had a high power output of 161.4 μW cm-2 and an open circuit potential that responded rapidly to visible light. It adjusted the amount of illumination inversely irrespective of how the external illumination was changed. This rational design of utilizing PBFCs provides new insights into automatic light adjustable devices and may be of benefit to intelligent applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00759g

  17. Intraclonal Cell Expansion and Selection Driven by B Cell Receptor in Chronic Lymphocytic Leukemia

    PubMed Central

    Colombo, Monica; Cutrona, Giovanna; Reverberi, Daniele; Fabris, Sonia; Neri, Antonino; Fabbi, Marina; Quintana, Giovanni; Quarta, Giovanni; Ghiotto, Fabio; Fais, Franco; Ferrarini, Manlio

    2011-01-01

    The mutational status of the immunoglobulin heavy-chain variable region (IGHV) genes utilized by chronic lymphocytic leukemia (CLL) clones defines two disease subgroups. Patients with unmutated IGHV have a more aggressive disease and a worse outcome than patients with cells having somatic IGHV gene mutations. Moreover, up to 30% of the unmutated CLL clones exhibit very similar or identical B cell receptors (BcR), often encoded by the same IG genes. These “stereotyped” BcRs have been classified into defined subsets. The presence of an IGHV gene somatic mutation and the utilization of a skewed gene repertoire compared with normal B cells together with the expression of stereotyped receptors by unmutated CLL clones may indicate stimulation/selection by antigenic epitopes. This antigenic stimulation may occur prior to or during neoplastic transformation, but it is unknown whether this stimulation/selection continues after leukemogenesis has ceased. In this study, we focused on seven CLL cases with stereotyped BcR Subset #8 found among a cohort of 700 patients; in six, the cells expressed IgG and utilized IGHV4-39 and IGKV1-39/IGKV1D-39 genes, as reported for Subset #8 BcR. One case exhibited special features, including expression of IgM or IgG by different subclones consequent to an isotype switch, allelic inclusion at the IGH locus in the IgM-expressing cells and a particular pattern of cytogenetic lesions. Collectively, the data indicate a process of antigenic stimulation/selection of the fully transformed CLL cells leading to the expansion of the Subset #8 IgG-bearing subclone. PMID:21541442

  18. Array-Based Platform To Select, Release, and Capture Epstein-Barr Virus-Infected Cells Based on Intercellular Adhesion.

    PubMed

    Attayek, Peter J; Hunsucker, Sally A; Wang, Yuli; Sims, Christopher E; Armistead, Paul M; Allbritton, Nancy L

    2015-12-15

    Microraft arrays were developed to select and separate cells based on a complex phenotype, weak intercellular adhesion, without knowledge of cell-surface markers or intracellular proteins. Since the cells were also not competent to bind to a culture surface, a method to encapsulate nonadherent cells within a gelatin plug on the concave microraft surface was developed, enabling release and collection of the cells without the need for cell attachment to the microraft surface. After microraft collection, the gelatin was liquified to release the cell(s) for culture or analysis. A semiautomated release and collection device for the microrafts demonstrated 100 ± 0% collection efficiency of the microraft while increasing throughput 5-fold relative to that of manual release and collection. Using the microraft array platform along with the gelatin encapsulation method, single cells that were not surface-attached were isolated with a 100 ± 0% efficiency and a 96 ± 4% postsort single-cell cloning efficiency. As a demonstration, Epstein-Barr virus-infected lymphoblastoid cell lines (EBV-LCL) were isolated based on their intercellular adhesive properties. The identified cell colonies were collected with a 100 ± 0% sorting efficiency and a postsort viability of 87 ± 3%. When gene expression analysis of the EBV latency-associated gene, EBNA-2, was performed, there was no difference in expression between blasting or weakly adhesive cells and nonblasting or nonadhesive cells. Microraft arrays are a versatile method enabling separation of cells based on complicated and as yet poorly understood cell phenotypes. PMID:26558605

  19. Cytomegalovirus Infection after CD34(+)-Selected Hematopoietic Cell Transplantation.

    PubMed

    Huang, Yao-Ting; Neofytos, Dionysios; Foldi, Julia; Kim, Seong Jin; Maloy, Molly; Chung, Dick; Castro-Malaspina, Hugo; Giralt, Sergio A; Papadopoulos, Esperanza; Perales, Miguel-Angel; Jakubowski, Ann A; Papanicolaou, Genovefa A

    2016-08-01

    The effectiveness of preemptive treatment (PET) for cytomegalovirus (CMV) in recipients of ex vivo T cell-depleted (TCD) hematopoietic cell transplantation (HCT) by CD34(+) selection is not well defined. We analyzed 213 adults who received TCD-HCT at our institution from June 2010 through May 2014. Patients were monitored by a CMV quantitative PCR assay if recipient (R) or donor (D) were CMV seropositive. CMV viremia occurred early (median, 27 days after HCT) in 91 of 213 (42.7%) patients for a 180-day cumulative incidence of 84.5%, 61.8%, and 0 for R+/D+, R+/D-, and R-/D+ patients, respectively. CMV disease occurred in 5% of patients. In Cox regression analysis, R+/D+ status was associated with increased risk for CMV viremia compared with R+/D- (hazard ratio [HR], 1.79, 95% confidence interval [CI], 1.16 to 2.76, P = .01), whereas matched unrelated donor allograft was associated with decreased risk (HR, .62; 95% CI, .39 to .97, P = .04). Of 91 patients with CMV viremia, 52 (57%) had persistent viremia (>28 days duration). Time lag from detection of CMV viremia to PET was associated with incremental risk for persistent viremia (HR, 1.09; 95% CI, 1.01 to 1.18; P = .03). Overall, 166 of 213 (77.9%) patients were alive 1 year after HCT, with no difference between patients with and without CMV viremia or among the different CMV serostatus pairs (P = not significant). CMV viremia occurred in 70% of R + TCD-HCT. Delay in PET initiation was associated with persistent viremia. With PET, CMV R/D serostatus did not adversely impact survival in TCD-HCT on 1-year survival in the present cohort. PMID:27178374

  20. Digital Devices, Distraction and Student Performance - Does Cell Phone Use Reduce Learning?

    NASA Astrophysics Data System (ADS)

    Duncan, Douglas K.; Hoekstra, A. R.; Wilcox, B. R.

    2012-01-01

    The recent increase in the use of digital devices such as laptop computers, iPads and web-enabled cell phones has generated concern about how technologies affect student performance. Combining observation, survey, and interview data, this research assesses the effects of technology use for student attitudes and learning. Data were gathered in eight introductory science courses at one large public university in 2010-2011. Results show a significant negative correlation between in-class cell phone use and overall course grades, corresponding to a drop of 0.36 ± 0.08 on a 4-point scale where 4.0 = A. These findings are consistent with recent research[1] suggesting students cannot multi-task nearly as effectively as they think they can. While 75% of students reported regular cell phone use, observation data suggests undergraduates typically under-report the frequency of in-class digital device use. [1] Ophir, E., Nass, C. and A.D. Wagner. 2009. "Cognitive Control in Media Multi-Taskers.” Proceedings of the National Academy of Sciences, 106: 15583-15587.

  1. Implantable controlled release devices for BMP-7 delivery and suppression of glioblastoma initiating cells.

    PubMed

    Reguera-Nuñez, Elaine; Roca, Carlota; Hardy, Eugenio; de la Fuente, Maria; Csaba, Noemi; Garcia-Fuentes, Marcos

    2014-03-01

    Designing therapeutic devices capable of manipulating glioblastoma initiating cells (GICs) is critical to stop tumor recurrence and its associated mortality. Previous studies have indicated that bone morphogenetic protein-7 (BMP-7) acts as an endogenous suppressor of GICs, and thus, it could become a treatment for this cancer. In this work, we engineer an implantable microsphere system optimized for the controlled release of BMP-7 as a bioinspired therapeutic device against GICs. This microsphere delivery system is based on the formation of a heparin-BMP-7 nanocomplex, first coated with Tetronic(®) and further entrapped in a biodegradable polyester matrix. The obtained microspheres can efficiently encapsulate BMP-7, and release it in a controlled manner with minimum burst effect for over two months while maintaining protein bioactivity. Released BMP-7 showed a remarkable capacity to stop tumor formation in a GICs cell culture model, an effect that could be mediated by forced reprogramming of tumorigenic cells towards a non-tumorigenic astroglial lineage. PMID:24406213

  2. Fully automatic flow-based device for monitoring of drug permeation across a cell monolayer.

    PubMed

    Zelená, Lucie; Marques, Sara S; Segundo, Marcela A; Miró, Manuel; Pávek, Petr; Sklenářová, Hana; Solich, Petr

    2016-01-01

    A novel flow-programming setup based on the sequential injection principle is herein proposed for on-line monitoring of temporal events in cell permeation studies. The permeation unit consists of a Franz cell with its basolateral compartment mixed under mechanical agitation and thermostated at 37 °C. The apical compartment is replaced by commercially available Transwell inserts with a precultivated cell monolayer. The transport of drug substances across epithelial cells genetically modified with the P-glycoprotein membrane transporter (MDCKII-MDR1) is monitored on-line using rhodamine 123 as a fluorescent marker. The permeation kinetics of the marker is obtained in a fully automated mode by sampling minute volumes of solution from the basolateral compartment in short intervals (10 min) up to 4 h. The effect of a P-glycoprotein transporter inhibitor, verapamil as a model drug, on the efficiency of the marker transport across the cell monolayer is thoroughly investigated. The analytical features of the proposed flow method for cell permeation studies in real time are critically compared against conventional batch-wise procedures and microfluidic devices. PMID:26615589

  3. Nanofluidic laboratory-on-chip device for mapping of single molecule DNA extracted from single cells

    NASA Astrophysics Data System (ADS)

    Mahshid, Sara; Berard, Daniel; Sladek, Robert; Leslie, Sabrina; Reisner, Walter

    2014-03-01

    The aim of this project is to create a nanofluidic platform to provide comprehensive maps of single-cell genomes at 1 kbp resolution based on the direct analysis of single 1-10 Mbp extended DNA molecules extracted from individual cells on-chip. We have developed a nanodevice in which all biochemical processing of single cells (cell lysis, DNA purification and fragmentation) is performed in situ. The platform has the following three components: (1) a micro-cavity (50 ×20 micron in dimension) for trapping and biochemical processing of single cells; (2) post arrays (1 micron depth) for untangling the released genomic contents and (3) parallel nanochannel arrays (100 nm) for extension of ~ 1-10 Mbp DNA for high-throughput optical mapping. Moreover, we use ``Convex Lense-Induced Nanoconfinement'' (CLIC) technique for trapping of single cell and dragging DNA into nanochannels. The principle is that a convex lens is pushed down to deform a flexible coverslip lid above the aforesaid platform containing nano/micro patterns, creating a locally confined region that pins molecules in the embedded nano/micro features. CLIC is used to lower the device lid over a cell isolated in the microcavity with an adjustable gap for buffer exchange. The released DNA is untangled using 1 micron-deep post arrays and driven into nanochannel array where its genomic content is revealed. In particular, using CLIC we were able to successfully trap 20 micron lymphoblast cells inside microcavity and lyse the trapped cell to drive out DNA.

  4. Genomic instability, driver genes and cell selection: Projections from cancer to stem cells.

    PubMed

    Ben-David, Uri

    2015-04-01

    Cancer cells and stem cells share many traits, including a tendency towards genomic instability. Human cancers exhibit tumor-specific genomic aberrations, which often affect their malignancy and drug response. During their culture propagation, human pluripotent stem cells (hPSCs) also acquire characteristic genomic aberrations, which may have significant impact on their molecular and cellular phenotypes. These aberrations vary in size from single nucleotide alterations to copy number alterations to whole chromosome gains. A prominent challenge in both cancer and stem cell research is to identify "driver aberrations" that confer a selection advantage, and "driver genes" that underlie the recurrence of these aberrations. Following principles that are already well-established in cancer research, candidate driver genes have also been suggested in hPSCs. Experimental validation of the functional role of such candidates can uncover whether these are bona fide driver genes. The identification of driver genes may bring us closer to a mechanistic understanding of the genomic instability of stem cells. Guided by terminologies and methodologies commonly applied in cancer research, such understanding may have important ramifications for both stem cell and cancer biology. This article is part of a Special Issue entitled: Stress as a fundamental theme in cell plasticity. PMID:25132386

  5. A microfluidic cell-trapping device for single-cell tracking of host-microbe interactions.

    PubMed

    Delincé, Matthieu J; Bureau, Jean-Baptiste; López-Jiménez, Ana Teresa; Cosson, Pierre; Soldati, Thierry; McKinney, John D

    2016-08-16

    The impact of cellular individuality on host-microbe interactions is increasingly appreciated but studying the temporal dynamics of single-cell behavior in this context remains technically challenging. Here we present a microfluidic platform, InfectChip, to trap motile infected cells for high-resolution time-lapse microscopy. This approach allows the direct visualization of all stages of infection, from bacterial uptake to death of the bacterium or host cell, over extended periods of time. We demonstrate the utility of this approach by co-culturing an established host-cell model, Dictyostelium discoideum, with the extracellular pathogen Klebsiella pneumoniae or the intracellular pathogen Mycobacterium marinum. We show that the outcome of such infections is surprisingly heterogeneous, ranging from abortive infection to death of the bacterium or host cell. InfectChip thus provides a simple method to dissect the time-course of host-microbe interactions at the single-cell level, yielding new insights that could not be gleaned from conventional population-based measurements. PMID:27425421

  6. Characterization of a synthetic bacterial self-destruction device for programmed cell death and for recombinant proteins release

    PubMed Central

    2011-01-01

    Background Bacterial cell lysis is a widely studied mechanism that can be achieved through the intracellular expression of phage native lytic proteins. This mechanism can be exploited for programmed cell death and for gentle cell disruption to release recombinant proteins when in vivo secretion is not feasible. Several genetic parts for cell lysis have been developed and their quantitative characterization is an essential step to enable the engineering of synthetic lytic systems with predictable behavior. Results Here, a BioBrick™ lysis device present in the Registry of Standard Biological Parts has been quantitatively characterized. Its activity has been measured in E. coli by assembling the device under the control of a well characterized N-3-oxohexanoyl-L-homoserine lactone (HSL) -inducible promoter and the transfer function, lysis dynamics, protein release capability and genotypic and phenotypic stability of the device have been evaluated. Finally, its modularity was tested by assembling the device to a different inducible promoter, which can be triggered by heat induction. Conclusions The studied device is suitable for recombinant protein release as 96% of the total amount of the intracellular proteins was successfully released into the medium. Furthermore, it has been shown that the device can be assembled to different input devices to trigger cell lysis in response to a user-defined signal. For this reason, this lysis device can be a useful tool for the rational design and construction of complex synthetic biological systems composed by biological parts with known and well characterized function. Conversely, the onset of mutants makes this device unsuitable for the programmed cell death of a bacterial population. PMID:21645422

  7. Lamination of organic solar cells and organic light emitting devices: Models and experiments

    SciTech Connect

    Oyewole, O. K.; Yu, D.; Du, J.; Asare, J.; Fashina, A.; Anye, V. C.; Zebaze Kana, M. G.; Soboyejo, W. O.

    2015-08-21

    In this paper, a combined experimental, computational, and analytical approach is used to provide new insights into the lamination of organic solar cells and light emitting devices at macro- and micro-scales. First, the effects of applied lamination force (on contact between the laminated layers) are studied. The crack driving forces associated with the interfacial cracks (at the bi-material interfaces) are estimated along with the critical interfacial crack driving forces associated with the separation of thin films, after layer transfer. The conditions for successful lamination are predicted using a combination of experiments and computational models. Guidelines are developed for the lamination of low-cost organic electronic structures.

  8. In Vitro Reconstruction of Neuronal Networks Derived from Human iPS Cells Using Microfabricated Devices.

    PubMed

    Takayama, Yuzo; Kida, Yasuyuki S

    2016-01-01

    Morphology and function of the nervous system is maintained via well-coordinated processes both in central and peripheral nervous tissues, which govern the homeostasis of organs/tissues. Impairments of the nervous system induce neuronal disorders such as peripheral neuropathy or cardiac arrhythmia. Although further investigation is warranted to reveal the molecular mechanisms of progression in such diseases, appropriate model systems mimicking the patient-specific communication between neurons and organs are not established yet. In this study, we reconstructed the neuronal network in vitro either between neurons of the human induced pluripotent stem (iPS) cell derived peripheral nervous system (PNS) and central nervous system (CNS), or between PNS neurons and cardiac cells in a morphologically and functionally compartmentalized manner. Networks were constructed in photolithographically microfabricated devices with two culture compartments connected by 20 microtunnels. We confirmed that PNS and CNS neurons connected via synapses and formed a network. Additionally, calcium-imaging experiments showed that the bundles originating from the PNS neurons were functionally active and responded reproducibly to external stimuli. Next, we confirmed that CNS neurons showed an increase in calcium activity during electrical stimulation of networked bundles from PNS neurons in order to demonstrate the formation of functional cell-cell interactions. We also confirmed the formation of synapses between PNS neurons and mature cardiac cells. These results indicate that compartmentalized culture devices are promising tools for reconstructing network-wide connections between PNS neurons and various organs, and might help to understand patient-specific molecular and functional mechanisms under normal and pathological conditions. PMID:26848955

  9. In Vitro Reconstruction of Neuronal Networks Derived from Human iPS Cells Using Microfabricated Devices

    PubMed Central

    Takayama, Yuzo; Kida, Yasuyuki S.

    2016-01-01

    Morphology and function of the nervous system is maintained via well-coordinated processes both in central and peripheral nervous tissues, which govern the homeostasis of organs/tissues. Impairments of the nervous system induce neuronal disorders such as peripheral neuropathy or cardiac arrhythmia. Although further investigation is warranted to reveal the molecular mechanisms of progression in such diseases, appropriate model systems mimicking the patient-specific communication between neurons and organs are not established yet. In this study, we reconstructed the neuronal network in vitro either between neurons of the human induced pluripotent stem (iPS) cell derived peripheral nervous system (PNS) and central nervous system (CNS), or between PNS neurons and cardiac cells in a morphologically and functionally compartmentalized manner. Networks were constructed in photolithographically microfabricated devices with two culture compartments connected by 20 microtunnels. We confirmed that PNS and CNS neurons connected via synapses and formed a network. Additionally, calcium-imaging experiments showed that the bundles originating from the PNS neurons were functionally active and responded reproducibly to external stimuli. Next, we confirmed that CNS neurons showed an increase in calcium activity during electrical stimulation of networked bundles from PNS neurons in order to demonstrate the formation of functional cell-cell interactions. We also confirmed the formation of synapses between PNS neurons and mature cardiac cells. These results indicate that compartmentalized culture devices are promising tools for reconstructing network-wide connections between PNS neurons and various organs, and might help to understand patient-specific molecular and functional mechanisms under normal and pathological conditions. PMID:26848955

  10. Interfacial Morphology and Effects on Device Performance of Organic Bilayer Heterojunction Solar Cells

    PubMed Central

    2015-01-01

    The effects of interface roughness between donor and acceptor in a bilayer heterojunction solar cell were investigated on a polymer–polymer system based on poly(3-hexylthiophene) (P3HT) and poly(dioctylfluorene-alt-benzothiadiazole) (F8BT). Both polymers are known to reorganize into semicrystalline structures when heated above their glass-transition temperature. Here, the bilayers were thermally annealed below glass transition of the bulk polymers (≈140 °C) at temperatures of 90, 100, and 110 °C for time periods from 2 min up to 250 min. No change of crystallinity could be observed at those temperatures. However, X-ray reflectivity and device characteristics reveal a coherent trend upon heat treatment. In X-ray reflectivity investigations, an increasing interface roughness between the two polymers is observed as a function of temperature and annealing time, up to a value of 1 nm. Simultaneously, according bilayer devices show an up to 80% increase of power conversion efficiency (PCE) for short annealing periods at any of the mentioned temperatures. Together, this is in agreement with the expectations for enlargement of the interfacial area. However, for longer annealing times, a decrease of PCE is observed, despite the ongoing increase of interface roughness. The onset of decreasing PCE shifts to shorter durations the higher the annealing temperature. Both, X-ray reflectivity and device characteristics display a significant change at temperatures below the glass transition temperatures of P3HT and F8BT. PMID:26151720

  11. 1-eV GaInNAs solar cells for ultrahigh-frequency multijunction devices

    SciTech Connect

    Friedman, D.J.; Geisz, J.F.; Kurtz, S.R.; Olson, J.M.

    1998-09-01

    The authors demonstrate working prototypes of a GaInNAs-based solar cell lattice-matched to GaAs with photoresponse down to 1 eV. This device is intended for use as the third junction of future-generation ultrahigh-efficiency three- and four-junction devices. Under the AM1.5 direct spectrum with all the light higher in energy than the GaAs band gap filtered out, the prototypes have open-circuit voltages ranging from 0.35 to 0.44 V, short-circuit currents of 1.8 mA/cm{sup 2}, and fill factors from 61--66%. The short-circuit currents are of principal concern: the internal quantum efficiencies rise only to about 0.2. The authors discuss the short diffusion lengths which are the reason for this low photocurrent. As a partial workaround for the poor diffusion lengths, they demonstrate a depletion-width-enhanced variation of one of the prototype devices that grades off decreased voltage for increased photocurrent, with a short-circuit current of 6.5 mA/cm{sup 2} and an open-circuit voltage of 0.29 V.

  12. Selectively Transparent and Conducting Photonic Crystals and their Potential to Enhance the Performance of Thin-Film Silicon-Based Photovoltaics and Other Optoelectronic Devices

    NASA Astrophysics Data System (ADS)

    O'Brien, Paul G.

    2011-12-01

    The byproducts of human engineered energy production are increasing atmospheric CO2 concentrations well above their natural levels and accompanied continual decline in the natural reserves of fossil fuels necessitates the development of green energy alternatives. Solar energy is attractive because it is abundant, can be produced in remote locations and consumed on site. Specifically, thin-film silicon-based photovoltaic (PV) solar cells have numerous inherent advantages including their availability, non-toxicity, and they are relatively inexpensive. However, their low-cost and electrical performance depends on reducing their thickness to as great an extent as possible. This is problematic because their thickness is much less than their absorption length. Consequently, enhanced light trapping schemes must be incorporated into these devices. Herein, a transparent and conducting photonic crystal (PC) intermediate reflector (IR), integrated into the rear side of the cell and serving the dual function as a back-reflector and a spectral splitter, is identified as a promising method of boosting the performance of thin-film silicon-based PV. To this end a novel class of PCs, namely selectively transparent and conducting photonic crystals (STCPC), is invented. These STCPCs are a significant advance over existing 1D PCs because they combine intense wavelength selective broadband reflectance with the transmissive and conductive properties of sputtered ITO. For example, STCPCs are made to exhibit Bragg-reflectance peaks in the visible spectrum of 95% reflectivity and have a full width at half maximum that is greater than 200nm. At the same time, the average transmittance of these STCPCs is greater than 80% over the visible spectrum that is outside their stop-gap. Using wave-optics analysis, it is shown that STCPC intermediate reflectors increase the current generated in micromorph cells by 18%. In comparison, the more conventional IR comprised of a single homogeneous

  13. Separable Bilayer Microfiltration Device for Viable Label-free Enrichment of Circulating Tumour Cells

    PubMed Central

    Zhou, Ming-Da; Hao, Sijie; Williams, Anthony J.; Harouaka, Ramdane A.; Schrand, Brett; Rawal, Siddarth; Ao, Zheng; Brennaman, Randall; Gilboa, Eli; Lu, Bo; Wang, Shuwen; Zhu, Jiyue; Datar, Ram; Cote, Richard; Tai, Yu-Chong; Zheng, Si-Yang

    2014-01-01

    The analysis of circulating tumour cells (CTCs) in cancer patients could provide important information for therapeutic management. Enrichment of viable CTCs could permit performance of functional analyses on CTCs to broaden understanding of metastatic disease. However, this has not been widely accomplished. Addressing this challenge, we present a separable bilayer (SB) microfilter for viable size-based CTC capture. Unlike other single-layer CTC microfilters, the precise gap between the two layers and the architecture of pore alignment result in drastic reduction in mechanical stress on CTCs, capturing them viably. Using multiple cancer cell lines spiked in healthy donor blood, the SB microfilter demonstrated high capture efficiency (78–83%), high retention of cell viability (71–74%), high tumour cell enrichment against leukocytes (1.7–2 × 103), and widespread ability to establish cultures post-capture (100% of cell lines tested). In a metastatic mouse model, SB microfilters successfully enriched viable mouse CTCs from 0.4–0.6 mL whole mouse blood samples and established in vitro cultures for further genetic and functional analysis. Our preliminary studies reflect the efficacy of the SB microfilter device to efficiently and reliably enrich viable CTCs in animal model studies, constituting an exciting technology for new insights in cancer research. PMID:25487434

  14. A portable cell-based optical detection device for rapid detection of Listeria and Bacillus toxins

    NASA Astrophysics Data System (ADS)

    Banerjee, Pratik; Banada, Padmapriya P.; Rickus, Jenna L.; Morgan, Mark T.; Bhunia, Arun K.

    2005-11-01

    A mammalian cell-based optical biosensor was built to detect pathogenic Listeria and Bacillus species. This sensor measures the ability of the pathogens to infect and induce cytotoxicity on hybrid lymphocyte cell line (Ped-2E9) resulting in the release of alkaline phosphatase (ALP) that can be detected optically using a portable spectrophotometer. The Ped-2E9 cells were encapsulated in collagen gel matrices and grown in 48-well plates or in specially designed filtration tube units. Toxin preparations or bacterial cells were introduced and ALP release was assayed after 3-5 h. Pathogenic L. monocytogenes strains or the listeriolysin toxins preparation showed cytotoxicity ranging from 55% - 92%. Toxin preparations (~20 μg/ml) from B. cereus strains showed 24 - 98% cytotoxicity. In contrast, a non-pathogenic L. innocua (F4247) and a B. substilis induced only 2% and 8% cytotoxicity, respectively. This cell-based detection device demonstrates its ability to detect the presence of pathogenic Listeria and Bacillus species and can potentially be used onsite for food safety or in biosecurity application.

  15. Separable Bilayer Microfiltration Device for Viable Label-free Enrichment of Circulating Tumour Cells

    NASA Astrophysics Data System (ADS)

    Zhou, Ming-Da; Hao, Sijie; Williams, Anthony J.; Harouaka, Ramdane A.; Schrand, Brett; Rawal, Siddarth; Ao, Zheng; Brennaman, Randall; Gilboa, Eli; Lu, Bo; Wang, Shuwen; Zhu, Jiyue; Datar, Ram; Cote, Richard; Tai, Yu-Chong; Zheng, Si-Yang

    2014-12-01

    The analysis of circulating tumour cells (CTCs) in cancer patients could provide important information for therapeutic management. Enrichment of viable CTCs could permit performance of functional analyses on CTCs to broaden understanding of metastatic disease. However, this has not been widely accomplished. Addressing this challenge, we present a separable bilayer (SB) microfilter for viable size-based CTC capture. Unlike other single-layer CTC microfilters, the precise gap between the two layers and the architecture of pore alignment result in drastic reduction in mechanical stress on CTCs, capturing them viably. Using multiple cancer cell lines spiked in healthy donor blood, the SB microfilter demonstrated high capture efficiency (78-83%), high retention of cell viability (71-74%), high tumour cell enrichment against leukocytes (1.7-2 × 103), and widespread ability to establish cultures post-capture (100% of cell lines tested). In a metastatic mouse model, SB microfilters successfully enriched viable mouse CTCs from 0.4-0.6 mL whole mouse blood samples and established in vitro cultures for further genetic and functional analysis. Our preliminary studies reflect the efficacy of the SB microfilter device to efficiently and reliably enrich viable CTCs in animal model studies, constituting an exciting technology for new insights in cancer research.

  16. Single cell dual adherent-suspension co-culture micro-environment for studying tumor-stromal interactions with functionally selected cancer stem-like cells.

    PubMed

    Chen, Yu-Chih; Zhang, Zhixiong; Fouladdel, Shamileh; Deol, Yadwinder; Ingram, Patrick N; McDermott, Sean P; Azizi, Ebrahim; Wicha, Max S; Yoon, Euisik

    2016-08-01

    Considerable evidence suggests that cancer stem-like cells (CSCs) are critical in tumor pathogenesis, but their rarity and transience has led to much controversy about their exact nature. Although CSCs can be functionally identified using dish-based tumorsphere assays, it is difficult to handle and monitor single cells in dish-based approaches; single cell-based microfluidic approaches offer better control and reliable single cell derived sphere formation. However, like normal stem cells, CSCs are heavily regulated by their microenvironment, requiring tumor-stromal interactions for tumorigenic and proliferative behaviors. To enable single cell derived tumorsphere formation within a stromal microenvironment, we present a dual adherent/suspension co-culture device, which combines a suspension environment for single-cell tumorsphere assays and an adherent environment for co-culturing stromal cells in close proximity by selectively patterning polyHEMA in indented microwells. By minimizing dead volume and improving cell capture efficiency, the presented platform allows for the use of small numbers of cells (<100 cells). As a proof of concept, we co-cultured single T47D (breast cancer) cells and primary cancer associated fibroblasts (CAF) on-chip for 14 days to monitor sphere formation and growth. Compared to mono-culture, co-cultured T47D have higher tumorigenic potential (sphere formation rate) and proliferation rates (larger sphere size). Furthermore, 96-multiplexed single-cell transcriptome analyses were performed to compare the gene expression of co-cultured and mono-cultured T47D cells. Phenotypic changes observed in co-culture correlated with expression changes in genes associated with proliferation, apoptotic suppression, tumorigenicity and even epithelial-to-mesechymal transition. Combining the presented platform with single cell transcriptome analysis, we successfully identified functional CSCs and investigated the phenotypic and transcriptome effects induced

  17. Device Physics and Recombination in Polymer:Fullerene Bulk-Heterojunction Solar Cells

    NASA Astrophysics Data System (ADS)

    Hawks, Steven Aaron

    My thesis focuses on improving and understanding a relatively new type of solar cell materials system: polymer:fullerene bulk-heterojunction (BHJ) blends. These mixtures have drawn significant interest because they are made from low-cost organic molecules that can be cast from solution, which makes them a potential cheap alternative to traditional solar cell materials like silicon. The drawback, though, is that they are not as efficient at converting sunlight into electricity. My thesis focuses on this issue, and examines the loss processes holding back the efficiency in polymer:fullerene blends as well as investigates new processing methods for overcoming the efficiency limitations. The first chapter introduces the subject of solar cells, and polymer:fullerene solar cells in particular. The second chapter presents a case study on recombination in the high-performance PBDTTT polymer family, wherein we discovered that nongeminate recombination of an anti-Langevin origin was the dominant loss process that ultimately limited the cell efficiency. Electroluminescence measurements revealed that an electron back-transfer process was prevalent in active layers with insufficient PC71BM content. This work ultimately made strong headway in understanding what factors limited the relatively unexplored but highly efficient PBDTTT family of polymers. In the next chapter, I further explore the recombination mechanisms in polymer:fullerene BHJs by examining the dark diode ideality factor as a function of temperature in several polymer:fullerene materials systems. By re-deriving the diode law for a polymer:fullerene device with Shockley-Read-Hall recombination, we were able to confirm that trap-assisted recombination through an exponential band-tail of localized states is the dominant recombination