Science.gov

Sample records for cell surface n-linked

  1. The Mouse C2C12 Myoblast Cell Surface N-Linked Glycoproteome

    PubMed Central

    Gundry, Rebekah L.; Raginski, Kimberly; Tarasova, Yelena; Tchernyshyov, Irina; Bausch-Fluck, Damaris; Elliott, Steven T.; Boheler, Kenneth R.; Van Eyk, Jennifer E.; Wollscheid, Bernd

    2009-01-01

    Endogenous regeneration and repair mechanisms are responsible for replacing dead and damaged cells to maintain or enhance tissue and organ function, and one of the best examples of endogenous repair mechanisms involves skeletal muscle. Although the molecular mechanisms that regulate the differentiation of satellite cells and myoblasts toward myofibers are not fully understood, cell surface proteins that sense and respond to their environment play an important role. The cell surface capturing technology was used here to uncover the cell surface N-linked glycoprotein subproteome of myoblasts and to identify potential markers of myoblast differentiation. 128 bona fide cell surface-exposed N-linked glycoproteins, including 117 transmembrane, four glycosylphosphatidylinositol-anchored, five extracellular matrix, and two membrane-associated proteins were identified from mouse C2C12 myoblasts. The data set revealed 36 cluster of differentiation-annotated proteins and confirmed the occupancy for 235 N-linked glycosylation sites. The identification of the N-glycosylation sites on the extracellular domain of the proteins allowed for the determination of the orientation of the identified proteins within the plasma membrane. One glycoprotein transmembrane orientation was found to be inconsistent with Swiss-Prot annotations, whereas ambiguous annotations for 14 other proteins were resolved. Several of the identified N-linked glycoproteins, including aquaporin-1 and β-sarcoglycan, were found in validation experiments to change in overall abundance as the myoblasts differentiate toward myotubes. Therefore, the strategy and data presented shed new light on the complexity of the myoblast cell surface subproteome and reveal new targets for the clinically important characterization of cell intermediates during myoblast differentiation into myotubes. PMID:19656770

  2. Modulation of ecotropic murine retroviruses by N-linked glycosylation of the cell surface receptor/amino acid transporter.

    PubMed Central

    Wang, H; Klamo, E; Kuhmann, S E; Kozak, S L; Kavanaugh, M P; Kabat, D

    1996-01-01

    The cell surface receptor for ecotropic host-range (infection limited to mice or rats) murine leukemia viruses (MuLVs) is the widely expressed system y+ transporter for cationic amino acids (CAT-1). Like other retroviruses, ecotropic MuLV infection eliminates virus-binding sites from cell surfaces and results in complete interference to superinfection. Surprisingly, infection causes only partial (ca 40 to 60%) loss of mouse CAT-1 transporter activity. The NIH/Swiss mouse CAT-1 (mCAT-1) contains 622 amino acids with 14 hydrophobic potential membrane-spanning sequences, and it is known that the third extracellular loop from the amino terminus is required for virus binding. Although loop 3 is hypervariable in different species and mouse strains, consistent with its proposed role in virus-host coevolution, loop 3 sequences of both susceptible and resistant species contain consensus sites for N-linked glycosylation. Both of the consensus sites in loop 3 of mCAT-1 are known to be glycosylated and to contain oligosaccharides with diverse sizes (J. W. Kim and J. M. Cunningham, J. Biol. Chem. 268:16316-16320, 1993). We confirmed by several lines of evidence that N-linked glycosylation occludes a potentially functional virus-binding site in the CAT-1 protein of hamsters, thus contributing to resistance of that species. To study the role of receptor glycosylation in animals susceptible to infection, we eliminated loop 3 glycosylation sites by mutagenesis of an mCAT-1 cDNA clone, and we expressed wild-type and mutant receptors in mink fibroblasts and Xenopus oocytes. These receptors had indistinguishable transport properties, as determined by kinetic and voltage-jump electrophysiological studies of arginine uptake in oocytes and by analyses Of L-[3H]arginine uptake in mink cells. Bindings of ecotropic envelope glycoprotein gp7O to the accessible receptor sites on surfaces of mink cells expressing wild-type or mutant mCAT-1 were not significantly different in kinetics or in

  3. Recombinant sialidase NanA (rNanA) cleaves α2-3 linked sialic acid of host cell surface N-linked glycoprotein to promote Edwardsiella tarda infection.

    PubMed

    Chigwechokha, Petros Kingstone; Tabata, Mutsumi; Shinyoshi, Sayaka; Oishi, Kazuki; Araki, Kyosuke; Komatsu, Masaharu; Itakura, Takao; Shiozaki, Kazuhiro

    2015-11-01

    Edwardsiella tarda is one of the major pathogenic bacteria affecting both marine and freshwater fish species. Sialidase NanA expressed endogenously in E. tarda is glycosidase removing sialic acids from glycoconjugates. Recently, the relationship of NanA sialidase activity to E. tarda infection has been reported, however, the mechanism with which sialidase NanA aids the pathogenicity of E. tarda remained unclear. Here, we comprehensively determined the biochemical properties of NanA towards various substrates in vitro to provide novel insights on the potential NanA target molecule at the host cell. GAKS cell pretreated with recombinant NanA showed increased susceptibility to E. tarda infection. Moreover, sialidase inhibitor treated E. tarda showed a significantly reduced ability to infect GAKS cells. These results indicate that NanA-induced desialylation of cell surface glycoconjugates is essential for the initial step of E. tarda infection. Among the natural substrates, NanA exhibited the highest activity towards 3-sialyllactose, α2-3 linked sialic acid carrying sialoglycoconjugates. Supporting this finding, intact GAKS cell membrane exposed to recombinant NanA showed changes of glycoconjugates only in α2-3 sialo-linked glycoproteins, but not in glycolipids and α2-6 sialo-linked glycoproteins. Lectin staining of cell surface glycoprotein provided further evidence that α2-3 sialo-linkage of the N-linked glycoproteins was the most plausible target of NanA sialidase. To confirm the significance of α2-3 sialo-linkage desialylation for E. tarda infection, HeLa cells which possessed lower amount of α2-3 sialo-linkage glycoprotein were used for infection experiment along with GAKS cells. As a result, infection of HeLa cells by E. tarda was significantly reduced when compared to GAKS cells. Furthermore, E. tarda infection was significantly inhibited by mannose pretreatment suggesting that the bacterium potentially recognizes and binds to mannose or mannose containing

  4. Archaeal surface appendages: their function and the critical role of N-linked glycosylation in their assembly

    NASA Astrophysics Data System (ADS)

    Jarrell, Ken F.; Nair, Divya B.; Jones, Gareth M.; Aizawa, S.-I.; Chong, James J. P.; Stark, Meg; Logan, Susan M.; Vinogradov, Evgeny; Kelly, John F.

    2011-10-01

    Many cultivated archaea are extremophiles and, as such, various archaea inhabit some of the most inhospitable niches on the planet in terms of temperature, pH, salinity and anaerobiosis. Different archaeal species have been shown to produce a number of unusual and sometimes unique surface structures. The best studied of these are flagella which are fundamentally different from bacterial flagella and instead bear numerous similarities to bacterial type IV pili in their structure and likely assembly. The major structural proteins, flagellins, are made as preproteins with type IV pilin-like signal peptides processed by a specific signal peptidase. In addition, the flagellins are glycoproteins with attached N-linked glycans. Both of these posttranslational modifications have been studied in the anaerobic archaeon, Methanococcus maripaludis, an organism which also possesses other surface appendages, an unusual version of type IV pili, whose major constituents are also glycoproteins. Analysis of mutants unable to make either or both of flagella and pili demonstrated that both are essential for attachment to surfaces. A number of mutants defective in the assembly and biosynthesis of the tetrasaccharide N-linked to the flagellins have been isolated. Investigations of these mutants by electron microscopy, mass spectrometry and motility assays have demonstrated that flagellins possessing no attached glycan or a glycan truncated to a single sugar cannot assemble flagella on their surface. Mutants which can attach a glycan of 2 or 3 sugars to flagellins assemble flagella but they are impaired in their swimming compared with wildtype cells which attach the tetrasaccharide to their flagellins.

  5. Pulse-chase analysis of N-linked sugar chains from glycoproteins in mammalian cells.

    PubMed

    Avezov, Edward; Ron, Efrat; Izenshtein, Yana; Adan, Yosef; Lederkremer, Gerardo Z

    2010-01-01

    Attachment of the Glc3Man9GlcNAc2 precursor oligosaccharide to nascent polypeptides in the ER is a common modification for secretory proteins. Although this modification was implicated in several biological processes, additional aspects of its function are emerging, with recent evidence of its role in the production of signals for glycoprotein quality control and trafficking. Thus, phenomena related to N-linked glycans and their processing are being intensively investigated. Methods that have been recently developed for proteomic analysis have greatly improved the characterization of glycoprotein N-linked glycans. Nevertheless, they do not provide insight into the dynamics of the sugar chain processing involved. For this, labeling and pulse-chase analysis protocols are used that are usually complex and give very low yields. We describe here a simple method for the isolation and analysis of metabolically labeled N-linked oligosaccharides. The protocol is based on labeling of cells with [2-(3)H] mannose, denaturing lysis and enzymatic release of the oligosaccharides from either a specifically immunoprecipitated protein of interest or from the general glycoprotein pool by sequential treatments with endo H and N-glycosidase F, followed by molecular filtration (Amicon). In this method the isolated oligosaccharides serve as an input for HPLC analysis, which allows discrimination between various glycan structures according to the number of monosaccharide units comprising them, with a resolution of a single monosaccharide. Using this method we were able to study high mannose N-linked oligosaccharide profiles of total cell glycoproteins after pulse-chase in normal conditions and under proteasome inhibition. These profiles were compared to those obtained from an immunoprecipitated ER-associated degradation (ERAD) substrate. Our results suggest that most NIH 3T3 cellular glycoproteins are relatively stable and that most of their oligosaccharides are trimmed to Man9-8GlcNAc2

  6. Studies on N-linked glycoprotein synthesis in differentiating muscle cells

    SciTech Connect

    Miller, K.R.

    1986-01-01

    All N-linked glycoproteins share a common pathway with respect to the acquisition of their oligosaccharide chains. Isolated membranes from undifferentiated (UND) and differentiated (DIF) C/sub 2/ cells, which have the capability of differentiating from mononucleated myoblasts to contracting myotubes, were utilized to examine dolichol-linked oligosaccharide synthesis. A characterization of the glycosyltransferases involved in the early stages of lipid-linked oligosaccaride synthesis revealed that while UND cells demonstrated a greater ability to synthesize Dol-PP-GN/sub (1-2), Dol-P-Man, and Dol-P-Glc than did DIF cells, the presence of exogenous Dol-P plus detergent either reversed or equalized product formation. The ability to synthesize the larger dolichol-oligosaccharides was demonstrated both in whole cells and in isolated membranes from UND and DIF cells. Pulse-chase experiments, using (/sup 3/H)-glucosamine to metabolically label the N-acetylglucosamine residues demonstrated the precursor-product relationship between the dolichol-oligosaccharide intermediates in whole cell studies. DIF cells appear to be more efficient than UND cells for extending the smaller oligosaccharide intermediates to the tetradecasaccharide which would be transferred to protein. Membranes isolated from cells metabolically labeled with (/sup 3/H)-mannose were subject to pronase digestion, and the resulting glycopeptide analyzed by serial lectin affinity chromatography.

  7. Contribution of N-linked glycans on HSV-2 gB to cell–cell fusion and viral entry

    SciTech Connect

    Luo, Sukun; Hu, Kai; He, Siyi; Wang, Ping; Zhang, Mudan; Huang, Xin; Du, Tao; Zheng, Chunfu; Liu, Yalan; Hu, Qinxue

    2015-09-15

    HSV-2 is the major cause of genital herpes and its infection increases the risk of HIV-1 acquisition and transmission. HSV-2 glycoprotein B together with glycoproteins D, H and L are indispensable for viral entry, of which gB, as a class III fusogen, plays an essential role. HSV-2 gB has seven potential N-linked glycosylation (N-CHO) sites, but their significance has yet to be determined. For the first time, we systematically analyzed the contributions of N-linked glycans on gB to cell–cell fusion and viral entry. Our results demonstrated that, of the seven potential N-CHO sites on gB, mutation at N390, N483 or N668 decreased cell–cell fusion and viral entry, while mutation at N133 mainly affected protein expression and the production of infectious virus particles by blocking the transport of gB from the endoplasmic reticulum to Golgi. Our findings highlight the significance of N-linked glycans on HSV-2 gB expression and function. - Highlights: • N-linked glycan at N133 is important for gB intracellular trafficking and maturation. • N-linked glycans at N390, N483 and N668 on gB are necessary for optimal cell–cell fusion. • N-linked glycans at N390, N483 and N668 on gB are necessary for optimal viral entry.

  8. Glucosamine Modulates T Cell Differentiation through Down-regulating N-Linked Glycosylation of CD25.

    PubMed

    Chien, Ming-Wei; Lin, Ming-Hong; Huang, Shing-Hwa; Fu, Shin-Huei; Hsu, Chao-Yuan; Yen, B Lin-Ju; Chen, Jiann-Torng; Chang, Deh-Ming; Sytwu, Huey-Kang

    2015-12-01

    Glucosamine has immunomodulatory effects on autoimmune diseases. However, the mechanism(s) through which glucosamine modulates different T cell subsets and diseases remain unclear. We demonstrate that glucosamine impedes Th1, Th2, and iTreg but promotes Th17 differentiation through down-regulating N-linked glycosylation of CD25 and subsequently inhibiting its downstream Stat5 signaling in a dose-dependent manner. The effect of glucosamine on T helper cell differentiation was similar to that induced by anti-IL-2 treatment, further supporting an IL-2 signaling-dependent modulation. Interestingly, excess glucose rescued this glucosamine-mediated regulation, suggesting a functional competition between glucose and glucosamine. High-dose glucosamine significantly decreased Glut1 N-glycosylation in Th1-polarized cells. This finding suggests that both down-regulated IL-2 signaling and Glut1-dependent glycolytic metabolism contribute to the inhibition of Th1 differentiation by glucosamine. Finally, glucosamine treatment inhibited Th1 cells in vivo, prolonged the survival of islet grafts in diabetic recipients, and exacerbated the severity of EAE. Taken together, our results indicate that glucosamine interferes with N-glycosylation of CD25, and thereby attenuates IL-2 downstream signaling. These effects suggest that glucosamine may be an important modulator of T cell differentiation and immune homeostasis. PMID:26468284

  9. Release and preparation of intact and unreduced N-linked oligosaccharides from Sf-9 insect cells.

    PubMed

    Wolff, M W; Murhammer, D W; Linhardt, R J

    1999-02-01

    Glycosylation, the addition of carbohydrates to a peptide backbone, is the most extensive cotranslational and posttranslational modification made to proteins by eukaryotic cells. The glycosylation profile of a recombinant glycoprotein can significantly affect its biological activity, which is particularly important when being used in human therapeutic applications. Therefore, defining glycan structures to ensure consistency of recombinant glycoproteins among different batches is critical. In this study we describe a method to prepare N-linked glycans derived from insect cell glycoproteins for structural analysis by capillary electrophoresis. Briefly, glycoproteins obtained from uninfected Spodoptera frugiperda Sf-9 insect cells were precipitated with ammonium sulfate and the glycans were chemically cleaved by hydrazinolysis. Following the regeneration of the glycan reducing terminal residue and the removal of contaminating proteins and peptides, the glycans were fluorescently labeled by reductive amination. Fluorescent labeling greatly enhanced the detection limit of the glycan structures determined by capillary electrophoresis. Five major glycan structures were found that migrated between tetra-mannosylated hexasaccharide and nonamannosylated undecasaccharide standards. Upon alpha-mannosidase digestion the number of glycan structures was reduced to two major structures with shorter migration times than the undigested glycans. None of the glycans were susceptible to hexosaminidase or galactosidase treatment. These results are consistent with the majority of previous results demonstrating hypermannosylated glycan structures in Sf-9 insect cells. PMID:10069429

  10. Mapping N-linked Glycosylation Sites in the Secretome and Whole Cells of Aspergillus niger Using Hydrazide Chemistry and Mass Spectrometry

    SciTech Connect

    Wang, Lu; Aryal, Uma K.; Dai, Ziyu; Mason, Alisa C.; Monroe, Matthew E.; Tian, Zhixin; Zhou, Jianying; Su, Dian; Weitz, Karl K.; Liu, Tao; Camp, David G.; Smith, Richard D.; Baker, Scott E.; Qian, Weijun

    2012-01-01

    Protein glycosylation is known to play an essential role in both cellular functions and the secretory pathways; however, little information is available on the dynamics of glycosylated N-linked glycosites of fungi. Herein we present the first extensive mapping of glycosylated N-linked glycosites in industrial strain Aspergillus niger by applying an optimized solid phase enrichment of glycopeptide protocol using hydrazide modified magnetic beads. The enrichment protocol was initially optimized using mouse plasma and A. niger secretome samples, which was then applied to profile N-linked glycosites from both the secretome and whole cell lysates of A. niger. A total of 847 unique N-linked glycosites and 330 N-linked glycoproteins were confidently identified by LC-MS/MS. Based on gene ontology analysis, the identified N-linked glycoproteins in the whole cell lysate were primarily localized in the plasma membrane, endoplasmic reticulum, golgi apparatus, lysosome, and storage vacuoles. The identified N-linked glycoproteins are involved in a wide range of biological processes including gene regulation and signal transduction, protein folding and assembly, protein modification and carbohydrate metabolism. The extensive coverage of glycosylated N-linked glycosites along with identification of partial N-linked glycosylation in those enzymes involving in different biochemical pathways provide useful information for functional studies of N-linked glycosylation and their biotechnological applications in A. niger.

  11. Site-specific analysis of N-linked oligosaccharides of recombinant lysosomal arylsulfatase A produced in different cell lines.

    PubMed

    Schröder, Stephan; Matthes, Frank; Hyden, Pia; Andersson, Claes; Fogh, Jens; Müller-Loennies, Sven; Braulke, Thomas; Gieselmann, Volkmar; Matzner, Ulrich

    2010-02-01

    Metachromatic leukodystrophy (MLD) is a lysosomal storage disease caused by a deficiency of the lysosomal enzyme arylsulfatase A (ASA). Enzyme replacement therapy (ERT) is a therapeutic option for MLD and other lysosomal disorders. This therapy depends on N-linked oligosaccharide-mediated delivery of intravenously injected recombinant enzyme to the lysosomes of patient cells. Because of the importance of N-linked oligosaccharide side chains in ERT, we examined the composition of the three N-linked glycans of four different recombinant ASAs in a site-specific manner. Depending on the culture conditions and the cell line expressing the enzyme, we detected a high variability of the high-mannose-type N-glycans which prevail at all glycosylation sites. Our data show that the composition of the glycans is largely determined by substantial trimming in the medium. The susceptibility for trimming is different for the glycans at the three N-glycosylation sites. Interestingly, which of the glycans is most susceptible to trimming also depends on production conditions. CHO cells cultured under bioreactor conditions yielded recombinant ASA with the most preserved N-glycan structures, the highest mannose-6-phosphate content and the highest similarity to non-recombinant enzyme. Notably, roughly one-third of the N-glycans released from the three glycosylation sites were fucosylated. In the last years, numerous recombinant lysosomal enzymes were used for preclinical ERT trials. Our data show that the oligosaccharide structures were very different in these trials making it difficult to draw common conclusions from the various investigations. PMID:19864504

  12. Sialylation of N-linked glycans influences the immunomodulatory effects of IgM on T cells.

    PubMed

    Colucci, Manuela; Stöckmann, Henning; Butera, Alessia; Masotti, Andrea; Baldassarre, Antonella; Giorda, Ezio; Petrini, Stefania; Rudd, Pauline M; Sitia, Roberto; Emma, Francesco; Vivarelli, Marina

    2015-01-01

    Human serum IgM Abs are composed of heavily glycosylated polymers with five glycosylation sites on the μ (heavy) chain and one glycosylation site on the J chain. In contrast to IgG glycans, which are vital for a number of biological functions, virtually nothing is known about structure-function relationships of IgM glycans. Natural IgM is the earliest Ig produced and recognizes multiple Ags with low affinity, whereas immune IgM is induced by Ag exposure and is characterized by a higher Ag specificity. Natural anti-lymphocyte IgM is present in the serum of healthy individuals and increases in inflammatory conditions. It is able to inhibit T cell activation, but the underlying molecular mechanism is not understood. In this study, to our knowledge, we show for the first time that sialylated N-linked glycans induce the internalization of IgM by T cells, which in turn causes severe inhibition of T cell responses. The absence of sialic acid residues abolishes these inhibitory activities, showing a key role of sialylated N-glycans in inducing the IgM-mediated immune suppression. PMID:25422509

  13. Structure of the N-linked oligosaccharides of MHC class I molecules from cells deficient in the antigenic peptide transporter. Implications for the site of peptide association.

    PubMed

    Hayes, B K; Esquivel, F; Bennink, J R; Yewdell, J W; Varki, A

    1995-10-15

    Class I molecules are N-linked glycoproteins encoded by the MHC. They carry cytosolic protein-derived peptides to the cell surface, displaying them to enable immune surveillance of cellular processes. Peptides are delivered to class I molecules by the transporter associated with Ag processing (TAP). Peptide association is known to occur before exposure of class I molecules to the medial Golgi-processing enzyme alpha-mannosidase II, but there is limited information regarding the location or timing of peptide binding within the earlier regions of the endoplasmic reticulum (ER)-Golgi pathway. A reported association of newly synthesized class I molecules with the ER chaperonin calnexin raises the possibility of persistence of the monoglycosylated N-linked oligosaccharide (NLO) Glc1Man8GlcNAc2, known to be recognized by this lectin. To explore these matters, we determined the structure of the NLOs on the subset of newly synthesized class I molecules awaiting the loading of peptide. We pulse-labeled murine MHC H-2Db class I molecules in RMA/S cells, which lack one of the TAP subunits, causing the great majority of the molecules to be retained for prolonged periods in an early secretory compartment, awaiting peptide binding. MHC molecules pulse-labeled with [3H]glucosamine were isolated, the NLOs specifically released and structurally analyzed by a variety of techniques. Within the chosen window of biosynthetic time, most Db molecules from parental RMA cells carried mature NLOs of the biantennary complex-type, with one to two sialic acid residues. In RMA/S cells, such chains were in the minority, the majority consisting of the precursor forms Man8GlcNAc2 and Man9GlcNAc2. No glucosylated forms were detected, nor were the later processing intermediates Man5-7GlcNAc2 or GlcNAc1Man4-5GlcNAc2. Thus, most Db molecules in TAP-deficient cells are retained in an early compartment of the secretory pathway, before the point of first access to the Golgi alpha-mannosidase I, which

  14. Characterization of N-Linked Glycosylation in a Monoclonal Antibody Produced in NS0 Cells Using Capillary Electrophoresis with Laser-Induced Fluorescence Detection

    PubMed Central

    Hamm, Melissa; Wang, Yang; Rustandi, Richard R.

    2013-01-01

    The N-linked glycosylation in recombinant monoclonal antibodies (mAb) occurs at Asn297 on the Fc region in the CH2 domain. Glycosylation heterogeneities have been well documented to affect biological activities such as antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) through their interaction with Fc-receptors. Hence, it is critical to monitor and characterize the N-linked glycosylation profile in a therapeutic protein such as a mAb for product consistency. In one approach, the glycans are first released from the mAb using an enzyme specific digestion, such as Protein N-Glycosidase F (PNGase) and subsequently they are labeled using a fluorophore, for example, 8-aminopyrene-1,3,6-trisulfonic acid (APTS) . Here we have applied this approach and used Capillary Electrophoresis with Laser-Induced Fluorescence detection (CE-LIF) to analyze a recombinant mAb produced in murine myeloma (NS0) cells. The technique provides short analysis times, efficient separations, and high sensitivity. CE-LIF peak identification was done by a combination of glycan standards and treatment with various exoglycosidases. Furthermore, the APTS-labeled glycans were also analyzed using hydrophilic interaction chromatography (HILIC) high performance liquid chromatography (HPLC) to aid identification of minor peaks by sample collection and off-line mass spectrometry (MS) analysis. PMID:24276024

  15. Resveratrol triggers ER stress-mediated apoptosis by disrupting N-linked glycosylation of proteins in ovarian cancer cells.

    PubMed

    Gwak, HyeRan; Kim, Soochi; Dhanasekaran, Danny N; Song, Yong Sang

    2016-02-28

    Malignant tumors have a high glucose demand and alter cellular metabolism to survive. Herein, focusing on the utility of glucose metabolism as a therapeutic target, we found that resveratrol induced endoplasmic reticulum (ER) stress-mediated apoptosis by interrupting protein glycosylation in a cancer-specific manner. Our results indicated that resveratrol suppressed the hexosamine biosynthetic pathway and interrupted protein glycosylation through GSK3β activation. Application of either biochemical intermediates of the hexosamine pathway or small molecular inhibitors of GSK3β reversed the effects of resveratrol on the disruption of protein glycosylation. Additionally, an ER UDPase, ectonucleoside triphosphate diphosphohydrolase 5 (ENTPD5), modulated protein glycosylation by Akt attenuation in response to resveratrol. By inhibition or overexpression of Akt functions, we confirmed that the glycosylation activities were dependent on ENTPD5 expression and regulated by the action of Akt in ovarian cancer cells. Resveratrol-mediated disruption of protein glycosylation induced cellular apoptosis as indicated by the up-regulation of GADD153, followed by the activation of ER-stress sensors (PERK and ATF6α). Thus, our results provide novel insight into cancer cell metabolism and protein glycosylation as a therapeutic target for cancers. PMID:26704305

  16. Cell-free synthesis of enzymically active tissue-type plasminogen activator. Protein folding determines the extent of N-linked glycosylation.

    PubMed Central

    Bulleid, N J; Bassel-Duby, R S; Freedman, R B; Sambrook, J F; Gething, M J

    1992-01-01

    Tissue-type plasminogen activator (t-PA) is synthesized in mammalian cells as a mixture of two forms that differ in their extent of N-linked glycosylation. We have investigated the mechanism underlying this variation in glycosylation, using a cell-free system that consists of a rabbit reticulocyte lysate optimized for the formation of disulphide bonds and supplemented with dog pancreas microsomal membranes. Molecules of human t-PA synthesized in vitro are enzymically active and responsive to natural activators and inhibitors, and are glycosylated in a pattern identical with that of the protein produced in vivo. This demonstrates that t-PA synthesized in vitro folds into the same conformation as the protein synthesized in vivo. We show that the extent of glycosylation of individual t-PA molecules is dependent on the state of folding of the polypeptide chain, since the probability of addition of an oligosaccharide side chain at Asn-184 is decreased under conditions that promote the formation of enzymically active molecules. This variation in glycosylation is independent of the rate of protein synthesis. Images Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:1520279

  17. Regulation of AMPA receptor GluR1 subunit surface expression by a 4. 1N-linked actin cytoskeletal association.

    PubMed

    Shen, L; Liang, F; Walensky, L D; Huganir, R L

    2000-11-01

    The synaptic localization, clustering, and immobilization of neurotransmitter receptors and ion channels play important roles in synapse formation and synaptic transmission. Although several proteins have been identified that interact with AMPA receptors and that may regulate their synaptic targeting, little is known about the interaction of AMPA receptors with the cytoskeleton. In studies examining the interaction of the AMPA receptor GluR1 subunit with neuronal proteins, we determined that GluR1 interacts with the 4.1G and 4.1N proteins, homologs of the erythrocyte membrane cytoskeletal protein 4.1. Using the yeast two-hybrid system and a heterologous cell system, we demonstrated that both 4.1G and 4.1N bind to a membrane proximal region of the GluR1 C terminus, and that a region within the C-terminal domain of 4.1G or 4.1N is sufficient to mediate the interaction. We also found that 4.1N can associate with GluR1 in vivo and colocalizes with AMPA receptors at excitatory synapses. Disruption of the interaction of GluR1 with 4.1N or disruption of actin filaments decreased the surface expression of GluR1 in heterologous cells. Moreover, disruption of actin filaments in cultured cortical neurons dramatically reduced the level of surface AMPA receptors. These results suggest that protein 4.1N may link AMPA receptors to the actin cytoskeleton. PMID:11050113

  18. Conserved Role of an N-Linked Glycan on the Surface Antigen of Human Immunodeficiency Virus Type 1 Modulating Virus Sensitivity to Broadly Neutralizing Antibodies against the Receptor and Coreceptor Binding Sites

    PubMed Central

    Townsley, Samantha; Li, Yun; Kozyrev, Yury; Cleveland, Brad

    2015-01-01

    ABSTRACT HIV-1 establishes persistent infection in part due to its ability to evade host immune responses. Occlusion by glycans contributes to masking conserved sites that are targets for some broadly neutralizing antibodies (bNAbs). Previous work has shown that removal of a highly conserved potential N-linked glycan (PNLG) site at amino acid residue 197 (N7) on the surface antigen gp120 of HIV-1 increases neutralization sensitivity of the mutant virus to CD4 binding site (CD4bs)-directed antibodies compared to its wild-type (WT) counterpart. However, it is not clear if the role of the N7 glycan is conserved among diverse HIV-1 isolates and if other glycans in the conserved regions of HIV-1 Env display similar functions. In this work, we examined the role of PNLGs in the conserved region of HIV-1 Env, particularly the role of the N7 glycan in a panel of HIV-1 strains representing different clades, tissue origins, coreceptor usages, and neutralization sensitivities. We demonstrate that the absence of the N7 glycan increases the sensitivity of diverse HIV-1 isolates to CD4bs- and V3 loop-directed antibodies, indicating that the N7 glycan plays a conserved role masking these conserved epitopes. However, the effect of the N7 glycan on virus sensitivity to neutralizing antibodies directed against the V2 loop epitope is isolate dependent. These findings indicate that the N7 glycan plays an important and conserved role modulating the structure, stability, or accessibility of bNAb epitopes in the CD4bs and coreceptor binding region, thus representing a potential target for the design of immunogens and therapeutics. IMPORTANCE N-linked glycans on the HIV-1 envelope protein have been postulated to contribute to viral escape from host immune responses. However, the role of specific glycans in the conserved regions of HIV-1 Env in modulating epitope recognition by broadly neutralizing antibodies has not been well defined. We show here that a single N-linked glycan plays a

  19. Cell Wall N-Linked Mannoprotein Biosynthesis Requires Goa1p, a Putative Regulator of Mitochondrial Complex I in Candida albicans

    PubMed Central

    She, Xiaodong; Calderone, Richard; Kruppa, Michael; Lowman, Douglas; Williams, David; Zhang, Lili; Gao, Ying; Khamooshi, Kasra; Liu, Weida; Li, Dongmei

    2016-01-01

    The Goa1p of Candida albicans regulates mitochondrial Complex I (CI) activities in its role as a putative CI accessory protein. Transcriptional profiling of goa1∆ revealed a down regulation of genes encoding β-oligomannosyl transferases. Herein, we present data on cell wall phenotypes of goa1∆ (strain GOA31). We used transmission electron microscopy (TEM), GPC/MALLS, and NMR to compare GOA31 to a gene-reconstituted strain (GOA32) and parental cells. We note by TEM a reduction in outer wall fibrils, increased inner wall transparency, and the loss of a defined wall layer close to the plasma membrane. GPC-MALLS revealed a reduction in high and intermediate Mw mannan by 85% in GOA31. A reduction of β-mannosyl but not α-mannosyl linkages was noted in GOA31 cells. β-(1,6)-linked glucan side chains were branched about twice as often but were shorter in length for GOA31. We conclude that mitochondrial CI energy production is highly integrated with cell wall formation. Our data also suggest that not all cell wall biosynthetic processes are dependent upon Goa1p even though it provides high levels of ATP to cells. The availability of both broadly conserved and fungal-specific mutants lacking CI subunit proteins should be useful in assessing functions of fungal-specific functions subunit proteins. PMID:26809064

  20. Functional analysis of N-linked glycosylation mutants of the measles virus fusion protein synthesized by recombinant vaccinia virus vectors.

    PubMed Central

    Alkhatib, G; Shen, S H; Briedis, D; Richardson, C; Massie, B; Weinberg, R; Smith, D; Taylor, J; Paoletti, E; Roder, J

    1994-01-01

    The role of N-linked glycosylation in the biological activity of the measles virus (MV) fusion (F) protein was analyzed by expressing glycosylation mutants with recombinant vaccinia virus vectors. There are three potential N-linked glycosylation sites located on the F2 subunit polypeptide of MV F, at asparagine residues 29, 61, and 67. Each of the three potential glycosylation sites was mutated separately as well as in combination with the other sites. Expression of mutant proteins in mammalian cells showed that all three sites are used for the addition of N-linked oligosaccharides. Cell surface expression of mutant proteins was reduced by 50% relative to the wild-type level when glycosylation at either Asn-29 or Asn-61 was abolished. Despite the similar levels of cell surface expression, the Asn-29 and Asn-61 mutant proteins had different biological activities. While the Asn-61 mutant was capable of inducing syncytium formation, the Asn-29 mutant protein did not exhibit any significant cell fusion activity. Inactivation of the Asn-67 glycosylation site also reduced cell surface transport of mutant protein but had little effect on its ability to cause cell fusion. However, when the Asn-67 mutation was combined with mutations at either of the other two sites, cleavage-dependent activation, cell surface expression, and cell fusion activity were completely abolished. Our data show that the loss of N-linked oligosaccharides markedly impaired the proteolytic cleavage, stability, and biological activity of the MV F protein. The oligosaccharide side chains in MV F are thus essential for optimum conformation of the extracellular F2 subunit that is presumed to bind cellular membranes. Images PMID:8107215

  1. Role of N-linked oligosaccharides in the biosynthetic processing of the cystic fibrosis membrane conductance regulator.

    PubMed

    Chang, Xiu-Bao; Mengos, April; Hou, Yue-Xian; Cui, Liying; Jensen, Timothy J; Aleksandrov, Andrei; Riordan, John R; Gentzsch, Martina

    2008-09-01

    The epithelial chloride channel CFTR is a glycoprotein that is modified by two N-linked oligosaccharides. The most common mutant CFTR protein in patients with cystic fibrosis, DeltaF508, is misfolded and retained by ER quality control. As oligosaccharide moieties of glycoproteins are known to mediate interactions with ER lectin chaperones, we investigated the role of N-linked glycosylation in the processing of wild-type and DeltaF508 CFTR. We found that N-glycosylation and ER lectin interactions are not major determinants of trafficking of wild-type and DeltaF508 from the ER to the plasma membrane. Unglycosylated CFTR, generated by removal of glycosylation sites or treatment of cells with the N-glycosylation inhibitor tunicamycin, did not bind calnexin, but did traffic to the cell surface and exhibited chloride channel activity. Most importantly, unglycosylated DeltaF508 CFTR still could not escape quality control in the early secretory pathway and remained associated with the ER. However, the absence of N-linked oligosaccharides did reduce the stability of wild-type CFTR, causing significantly more-rapid turnover in post-ER compartments. Surprisingly, the individual N-linked carbohydrates do not play equivalent roles and modulate the fate of the wild-type protein in different ways in its early biosynthetic pathway. PMID:18682497

  2. Role of N-linked oligosaccharides in the biosynthetic processing of the cystic fibrosis membrane conductance regulator

    PubMed Central

    Chang, Xiu-bao; Mengos, April; Hou, Yue-xian; Cui, Liying; Jensen, Timothy J.; Aleksandrov, Andrei; Riordan, John R.; Gentzsch, Martina

    2009-01-01

    Summary The epithelial chloride channel CFTR is a glycoprotein that is modified by two N-linked oligosaccharides. The most common mutant CFTR protein in patients with cystic fibrosis, ΔF508, is misfolded and retained by ER quality control. As oligosaccharide moieties of glycoproteins are known to mediate interactions with ER lectin chaperones, we investigated the role of N-linked glycosylation in the processing of wild-type and ΔF508 CFTR. We found that N-glycosylation and ER lectin interactions are not major determinants of trafficking of wild-type and ΔF508 from the ER to the plasma membrane. Unglycosylated CFTR, generated by removal of glycosylation sites or treatment of cells with the N-glycosylation inhibitor tunicamycin, did not bind calnexin, but did traffic to the cell surface and exhibited chloride channel activity. Most importantly, unglycosylated Δ F508 CFTR still could not escape quality control in the early secretory pathway and remained associated with the ER. However, the absence of N-linked oligosaccharides did reduce the stability of wild-type CFTR, causing significantly more-rapid turnover in post-ER compartments. Surprisingly, the individual N-linked carbohydrates do not play equivalent roles and modulate the fate of the wild-type protein in different ways in its early biosynthetic pathway. PMID:18682497

  3. Canine herpesvirus ORF2 is a membrane protein modified by N-linked glycosylation.

    PubMed

    Nishikawa, Yoshifumi; Kimura, Michiko; Xuan, Xuenan; Makala, Levi; Nagasawa, Hideyuki; Mikami, Takeshi; Otsuka, Haruki

    2002-07-01

    Canine herpesvirus (CHV) ORF2, located downstream of the glycoprotein C (gC) gene, has homologues with some of the alphaherpesviruses. To characterize CHV OFR2, a recombinant CHV carrying a LacZ gene in the ORF2 locus, and recombinant vaccinia virus expressing ORF2 protein were constructed. Northern blot analysis revealed ORF2 and a gamma2 class late gene, and its protein product was detectable in CHV-infected cells reacted with ORF2 protein antiserum. Tunicamycin and N-glycosidase F treatment revealed that the ORF2 protein was modified by N-linked glycosylation. Fractionation and immune fluorescence analyses of the CHV-infected cells showed the ORF2 as a membrane protein transportable to the surface of infected cells. In vitro, the ORF2 protein did not affect viral replication and cell-to-cell viral spreading. Present findings represent the first evidence pointing to the CHV ORF2 as a membrane protein modified by an N-linked glycosylation. PMID:12135784

  4. A MALDI Imaging Mass Spectrometry Workflow for Spatial Profiling Analysis of N-linked Glycan Expression in Tissues

    PubMed Central

    Powers, Thomas W.; Jones, E. Ellen; Betesh, Lucy R.; Romano, Patrick; Gao, Peng; Copland, John A.; Mehta, Anand S.; Drake, Richard R.

    2013-01-01

    A new Matrix Assisted Laser Desorption Ionization Imaging Mass Spectrometry (MALDI-IMS) method to spatially profile the location and distribution of multiple N-linked glycan species in tissues is described. Application of an endoglycosidase, peptide N-glycosidase F (PNGaseF), directly on tissues followed by incubation releases N-linked glycan species amenable to detection by MALDI-IMS. The method has been designed to simultaneously profile the multiple glycan species released from intracellular organelle and cell surface glycoproteins, while maintaining histopathology compatible preparation workflows. A recombinant PNGaseF enzyme was sprayed uniformly across mouse brain tissue slides, incubated for two hours, then sprayed with 2,5-dihydroxybenzoic acid matrix for MALDI-IMS analysis. Using this basic approach, global snapshots of major cellular N-linked glycoforms were detected, including their tissue localization and distribution, structure and relative abundance. Off-tissue extraction and modification of glycans from similarly processed tissues and further mass spectrometry or HPLC analysis was done to assign structural designations. MALDI-IMS has primarily been utilized to spatially profile proteins, lipids, drug and small molecule metabolites in tissues, but it has not been previously applied to N-linked glycan analysis. The translatable MALDI-IMS glycan profiling workflow described herein can readily be applied to any tissue type of interest. From a clinical diagnostics perspective, the ability to differentially profile N glycans and correlate their molecular expression to histopathological changes can offer new approaches to identifying novel disease related targets for biomarker and therapeutic applications. PMID:24050758

  5. Evidence that maturation of the N-linked glycans of the respiratory syncytial virus (RSV) glycoproteins is required for virus-mediated cell fusion: The effect of {alpha}-mannosidase inhibitors on RSV infectivity

    SciTech Connect

    McDonald, Terence P.; Jeffree, Chris E.; Li, Ping; Rixon, Helen W. McL.; Brown, Gaie; Aitken, James D.; MacLellan, Kirsty; Sugrue, Richard J. . E-mail: rjsugrue@ntu.edu.sg

    2006-07-05

    Glycan heterogeneity of the respiratory syncytial virus (RSV) fusion (F) protein was demonstrated by proteomics. The effect of maturation of the virus glycoproteins-associated glycans on virus infectivity was therefore examined using the {alpha}-mannosidase inhibitors deoxymannojirimycin (DMJ) and swainsonine (SW). In the presence of SW the N-linked glycans on the F protein appeared in a partially mature form, whereas in the presence of DMJ no maturation of the glycans was observed. Neither inhibitor had a significant effect on G protein processing or on the formation of progeny virus. Although the level of infectious virus and syncytia formation was not significantly affected by SW-treatment, DMJ-treatment correlated with a one hundred-fold reduction in virus infectivity. Our data suggest that glycan maturation of the RSV glycoproteins, in particular those on the F protein, is an important step in virus maturation and is required for virus infectivity.

  6. Probing the Role of N-Linked Glycans in the Stability and Activity of Fungal Cellobiohydrolases by Mutational Analysis

    SciTech Connect

    Adney, W. S.; Jeoh, T.; Beckham, G. T.; Chou,Y. C.; Baker, J. O.; Michener, W.; Brunecky, R.; Himmel, M. E.

    2009-01-01

    The filamentous fungi Trichoderma reesei and Penicillium funiculosum produce highly effective enzyme mixtures that degrade the cellulose and hemicellulose components of plant cell walls. Many fungal species produce a glycoside hydrolase family 7 (Cel7A) cellobiohydrolase, a class of enzymes that catalytically process from the reducing end of cellulose. A direct amino acid comparison of these two enzymes shows that they not only have high amino acid homology, but also contain analogous N-linked glycosylation sites on the catalytic domain. We have previously shown (Jeoh et al. in Biotechnol Biofuels, 1:10, 2008) that expression of T. reesei cellobiohydrolase I in a commonly used industrial expression host, Aspergillus niger var. awamori, results in an increase in the amount of N-linked glycosylation of the enzyme, which negatively affects crystalline cellulose degradation activity as well as thermal stability. This complementary study examines the significance of individual N-linked glycans on the surface of the catalytic domain of Cel7A cellobiohydrolases from T. reesei and P. funiculosum by genetically adding or removing N-linked glycosylation motifs using site directed mutagenesis. Modified enzymes, expressed in A. niger var. awamori, were tested for activity and thermal stability. It was concluded that N-linked glycans in peptide loops that form part of the active site tunnel have the greatest impact on both thermal stability and enzymatic activity on crystalline cellulose for both the T. reesei and P. funiculosum Cel7A enzymes. Specifically, for the Cel7A T. reesei enzyme expressed in A. niger var. awamori, removal of the N384 glycosylation site yields a mutant with 70% greater activity after 120 h compared to the heterologously expressed wild type T. reesei enzyme. In addition, similar activity improvements were found to be associated with the addition of a new glycosylation motif at N194 in P. funiculosum. This mutant also exhibits 70% greater activity after

  7. Production of secretory and extracellular N-linked glycoproteins in Escherichia coli.

    PubMed

    Fisher, Adam C; Haitjema, Charles H; Guarino, Cassandra; Çelik, Eda; Endicott, Christine E; Reading, Craig A; Merritt, Judith H; Ptak, A Celeste; Zhang, Sheng; DeLisa, Matthew P

    2011-02-01

    The Campylobacter jejuni pgl gene cluster encodes a complete N-linked protein glycosylation pathway that can be functionally transferred into Escherichia coli. In this system, we analyzed the interplay between N-linked glycosylation, membrane translocation and folding of acceptor proteins in bacteria. We developed a recombinant N-glycan acceptor peptide tag that permits N-linked glycosylation of diverse recombinant proteins expressed in the periplasm of glycosylation-competent E. coli cells. With this "glycosylation tag," a clear difference was observed in the glycosylation patterns found on periplasmic proteins depending on their mode of inner membrane translocation (i.e., Sec, signal recognition particle [SRP], or twin-arginine translocation [Tat] export), indicating that the mode of protein export can influence N-glycosylation efficiency. We also established that engineered substrate proteins targeted to environments beyond the periplasm, such as the outer membrane, the membrane vesicles, and the extracellular medium, could serve as substrates for N-linked glycosylation. Taken together, our results demonstrate that the C. jejuni N-glycosylation machinery is compatible with distinct secretory mechanisms in E. coli, effectively expanding the N-linked glycome of recombinant E. coli. Moreover, this simple glycosylation tag strategy expands the glycoengineering toolbox and opens the door to bacterial synthesis of a wide array of recombinant glycoprotein conjugates. PMID:21131519

  8. cap alpha. -D-Mannopyranosylmethyl-P-nitrophenyltriazene effects on the degradation and biosynthesis of N-linked oligosaccharide chains on. cap alpha. /sub 1/-acid glycoprotein by liver cells

    SciTech Connect

    Docherty, P.A.; Aronson, N.N. Jr.

    1986-05-01

    The effects of ..cap alpha..-D-mannopyranosylmethyl-p-nitrophenyltriazene (..cap alpha..-ManMNT) on the degradation and processing of oligosaccharide chains on ..cap alpha../sub 1/-acid glycoprotein (AGP) were studied. Addition of the triazene to a perfused liver blocked the complete degradation of endocytosed N-acetyl (/sup 14/C)glucosamine-labeled asialo-AGP and caused the accumulation of Man/sub 2/GlcNAc/sub 1/ fragments in the lysosome-enriched fraction of the liver homogenate. This compound also reduced the reincorporation of lysosomally-derived (/sup 14/C)GlcNAc into newly secreted glycoproteins. Cultured hepatocytes treated with the inhibitor synthesized and secreted fully-glycosylated AGP. However, the N-linked oligosaccharide chains on AGP secreted by the ..cap alpha..-ManMNT-treated hepatocytes remained sensitive to digestion with endoglycosidase H, were resistant to neuraminidase, and consisted of Man/sub 9-7/GlcNAc/sub 2/ structures as analyzed by high resolution Bio-Gel P-4 chromatography. As measured by their resistance to cleavage by endoglycosidase H, the normal processing of all six carbohydrate chains on AGP to the complex form did not completely resume until nearly 24 h after triazene treatment. Since ManMNT is likely to irreversibly inactivate ..cap alpha..-D-mannosidases, the return of AGP to secretory forms with complex chains after 24 h probably resulted from synthesis of new processing enzymes.

  9. Cell surface and secreted protein profiles of human thyroid cancer cell lines reveal distinct glycoprotein patterns.

    PubMed

    Arcinas, Arthur; Yen, Ten-Yang; Kebebew, Electron; Macher, Bruce A

    2009-08-01

    Cell surface proteins have been shown to be effective therapeutic targets. In addition, shed forms of these proteins and secreted proteins can serve as biomarkers for diseases, including cancer. Thus, identification of cell surface and secreted proteins has been a prime area of interest in the proteomics field. Most cell surface and secreted proteins are known to be glycosylated, and therefore, a proteomics strategy targeting these proteins was applied to obtain proteomic profiles from various thyroid cancer cell lines that represent the range of thyroid cancers of follicular cell origin. In this study, we oxidized the carbohydrates of secreted proteins and those on the cell surface with periodate and isolated them via covalent coupling to hydrazide resin. The glycoproteins obtained were identified from tryptic peptides and N-linked glycopeptides released from the hydrazide resin using two-dimensional liquid chromatography-tandem mass spectrometry in combination with the gas phase fractionation. Thyroid cancer cell lines derived from papillary thyroid cancer (TPC-1), follicular thyroid cancer (FTC-133), Hurthle cell carcinoma (XTC-1), and anaplastic thyroid cancer (ARO and DRO-1) were evaluated. An average of 150 glycoproteins were identified per cell line, of which more than 57% are known cell surface or secreted glycoproteins. The usefulness of the approach for identifying thyroid cancer associated biomarkers was validated by the identification of glycoproteins (e.g., CD44, galectin 3 and metalloproteinase inhibitor 1) that have been found to be useful markers for thyroid cancer. In addition to glycoproteins that are commonly expressed by all of the cell lines, we identified others that are only expressed in the more well-differentiated thyroid cancer cell lines (follicular, Hurthle cell and papillary), or by cell lines derived from undifferentiated tumors that are uniformly fatal forms of thyroid cancer (i.e., anaplastic). On the basis of the results obtained, a

  10. N-Linked Protein Glycosylation in the Endoplasmic Reticulum

    PubMed Central

    Breitling, Jörg; Aebi, Markus

    2013-01-01

    The attachment of glycans to asparagine residues of proteins is an abundant and highly conserved essential modification in eukaryotes. The N-glycosylation process includes two principal phases: the assembly of a lipid-linked oligosaccharide (LLO) and the transfer of the oligosaccharide to selected asparagine residues of polypeptide chains. Biosynthesis of the LLO takes place at both sides of the endoplasmic reticulum (ER) membrane and it involves a series of specific glycosyltransferases that catalyze the assembly of the branched oligosaccharide in a highly defined way. Oligosaccharyltransferase (OST) selects the Asn-X-Ser/Thr consensus sequence on polypeptide chains and generates the N-glycosidic linkage between the side-chain amide of asparagine and the oligosaccharide. This ER-localized pathway results in a systemic modification of the proteome, the basis for the Golgi-catalyzed modification of the N-linked glycans, generating the large diversity of N-glycoproteome in eukaryotic cells. This article focuses on the processes in the ER. Based on the highly conserved nature of this pathway we concentrate on the mechanisms in the eukaryotic model organism Saccharomyces cerevisiae. PMID:23751184

  11. The cell-surface interaction.

    PubMed

    Hayes, J S; Czekanska, E M; Richards, R G

    2012-01-01

    The realm of surface-dependent cell and tissue responses is the foundation of orthopaedic-device-related research. However, to design materials that elicit specific responses from tissues is a complex proposition mainly because the vast majority of the biological principles controlling the interaction of cells with implants remain largely ambiguous. Nevertheless, many surface properties, such as chemistry and topography, can be manipulated in an effort to selectively control the cell-material interaction. On the basis of this information there has been much research in this area, including studies focusing on the structure and composition of the implant interface, optimization of biological and chemical coatings and elucidation of the mechanisms involved in the subsequent cell-material interactions. Although a wealth of information has emerged, it also advocates the complexity and dynamism of the cell-material interaction. Therefore, this chapter aims to provide the reader with an introduction to the basic concepts of the cell-material interaction and to provide an insight into the factors involved in determining the cell and tissue response to specific surface features, with specific emphasis on surface microtopography. PMID:21984613

  12. Complex N-Linked Glycans Serve as a Determinant for Exosome/Microvesicle Cargo Recruitment*

    PubMed Central

    Liang, Yaxuan; Eng, William S.; Colquhoun, David R.; Dinglasan, Rhoel R.; Graham, David R.; Mahal, Lara K.

    2014-01-01

    Exosomes, also known as microvesicles (EMVs), are nano-sized membranous particles secreted from nearly all mammalian cell types. These nanoparticles play critical roles in many physiological processes including cell-cell signaling, immune activation, and suppression and are associated with disease states such as tumor progression. The biological functions of EMVs are highly dependent on their protein composition, which can dictate pathogenicity. Although some mechanisms have been proposed for the regulation of EMV protein trafficking, little attention has been paid to N-linked glycosylation as a potential sorting signal. Previous work from our laboratory found a conserved glycan signature for EMVs, which differed from that of the parent cell membranes, suggesting a potential role for glycosylation in EMV biogenesis. In this study, we further explore the role of glycosylation in EMV protein trafficking. We identify EMV glycoproteins and demonstrate alteration of their recruitment as a function of their glycosylation status upon pharmacological manipulation. Furthermore, we show that genetic manipulation of the glycosylation levels of a specific EMV glycoprotein, EWI-2, directly impacts its recruitment as a function of N-linked glycan sites. Taken together, our data provide strong evidence that N-linked glycosylation directs glycoprotein sorting into EMVs. PMID:25261472

  13. Cell Wall Mannan and Cell Surface Hydrophobicity in Candida albicans Serotype A and B Strains

    PubMed Central

    Masuoka, James; Hazen, Kevin C.

    2004-01-01

    Cell surface hydrophobicity contributes to the pathogenesis of the opportunistic fungal pathogen Candida albicans. Previous work demonstrated a correlation between hydrophobicity status and changes in the acid-labile, phosphodiester-linked β-1,2-oligomannoside components of the N-linked glycans of cell wall mannoprotein. Glycan composition also defines the two major serotypes, A and B, of C. albicans strains. Here, we show that the cell surface hydrophobicity of the two serotypes is qualitatively different, suggesting that the serotypes may differ in how they modulate cell surface hydrophobicity status. The cell wall mannoproteins from hydrophilic and hydrophobic cells of both serotypes were compared to determine whether the glycan differences due to serotype affect the glycan differences due to hydrophobicity status. Composition analysis showed that the protein, hexose, and phosphate contents of the mannoprotein fraction did not differ significantly among the strains tested. Electrophoretic profiles of the acid-labile mannan differed only with hydrophobicity status, not serotype, though some strain-specific differences were observed. Furthermore, a newly available β-1,2-oligomannoside ladder allowed unambiguous identification of acid-labile mannan components. Finally, to assess whether the acid-stable mannan also affects cell surface hydrophobicity status, this fraction was fragmented into its component branches by acetolysis. The electrophoretic profiles of the acid-stable branches were very similar regardless of hydrophobicity status. However, differences were observed between serotypes. These results support and extend our current model that modification of the acid-labile β-1,2-oligomannoside chain length but not modification of the acid-stable region is one common mechanism by which switching of cell surface hydrophobicity status of C. albicans strains occurs. PMID:15501748

  14. Contribution of leptin receptor N-linked glycans to leptin binding.

    PubMed

    Kamikubo, Yuichi; Dellas, Claudia; Loskutoff, David J; Quigley, James P; Ruggeri, Zaverio M

    2008-03-15

    The extracellular domain of the human leptin receptor (Ob-R) contains 20 potential N-glycosylation sites whose role in leptin binding remains to be elucidated. We found that a mammalian cell-expressed sOb-R (soluble Ob-R) fragment (residues 22-839 of the extracellular domain) bound leptin with a dissociation constant of 1.8 nM. This binding was inhibited by Con A (concanavalin A) or wheatgerm agglutinin. Treatment of sOb-R with peptide N-glycosidase F reduced leptin binding by approximately 80% concurrently with N-linked glycan removal. The human megakaryoblastic cell line, MEG-01, expresses two forms of the Ob-R, of approx. 170 and 130 kDa molecular mass. Endo H (endoglycosidase H) treatment and cell culture with alpha-glucosidase inhibitors demonstrated that N-linked glycans are of the complex mature type in the 170 kDa form and of the high-mannose type in the 130 kDa form. Both isoforms bound leptin, but not after peptide N-glycosidase F treatment. An insect-cell-expressed sOb-R fragment, consisting of the Ig (immunoglobulin), CRH2 (second cytokine receptor homology) and FNIII (fibronectin type III) domains, bound leptin with affinity similar to that of the entire extracellular domain, but this function was abolished after N-linked glycan removal. The same treatment had no effect on the leptin-binding activity of the isolated CRH2 domain. Our findings show that N-linked glycans within Ig and/or FNIII domains regulate Ob-R function, but are not involved in essential interactions with the ligand. PMID:17983356

  15. Characterization of N-linked protein glycosylation in Helicobacter pullorum.

    PubMed

    Jervis, Adrian J; Langdon, Rebecca; Hitchen, Paul; Lawson, Andrew J; Wood, Alison; Fothergill, Joanne L; Morris, Howard R; Dell, Anne; Wren, Brendan; Linton, Dennis

    2010-10-01

    The first bacterial N-linked glycosylation system was discovered in Campylobacter jejuni, and the key enzyme involved in the coupling of glycan to asparagine residues within the acceptor sequon of the glycoprotein is the oligosaccharyltransferase PglB. Emerging genome sequence data have revealed that pglB orthologues are present in a subset of species from the Deltaproteobacteria and Epsilonproteobacteria, including three Helicobacter species: H. pullorum, H. canadensis, and H. winghamensis. In contrast to C. jejuni, in which a single pglB gene is located within a larger gene cluster encoding the enzymes required for the biosynthesis of the N-linked glycan, these Helicobacter species contain two unrelated pglB genes (pglB1 and pglB2), neither of which is located within a larger locus involved in protein glycosylation. In complementation experiments, the H. pullorum PglB1 protein, but not PglB2, was able to transfer C. jejuni N-linked glycan onto an acceptor protein in Escherichia coli. Analysis of the characterized C. jejuni N-glycosylation system with an in vitro oligosaccharyltransferase assay followed by matrix-assisted laser desorption ionization (MALDI) mass spectrometry demonstrated the utility of this approach, and when applied to H. pullorum, PglB1-dependent N glycosylation with a linear pentasaccharide was observed. This reaction required an acidic residue at the -2 position of the N-glycosylation sequon, as for C. jejuni. Attempted insertional knockout mutagenesis of the H. pullorum pglB2 gene was unsuccessful, suggesting that it is essential. These first data on N-linked glycosylation in a second bacterial species demonstrate the similarities to, and fundamental differences from, the well-studied C. jejuni system. PMID:20581208

  16. Glucose persistence on high-mannose oligosaccharides selectively inhibits the macroautophagic sequestration of N-linked glycoproteins.

    PubMed Central

    Ogier-Denis, E; Bauvy, C; Cluzeaud, F; Vandewalle, A; Codogno, P

    2000-01-01

    The macroautophagic-lysosomal pathway is a bulk degradative process for cytosolic proteins and organelles including the endoplasmic reticulum (ER). We have previously shown that the human colonic carcinoma HT-29 cell population is characterized by a high rate of autophagic degradation of N-linked glycoproteins substituted with ER-type glycans. In the present work we demonstrate that glucosidase inhibitors [castanospermine (CST) and deoxynojirimycin] have a stabilizing effect on newly synthesized glucosylated N-linked glycoproteins and impaired their lysosomal delivery as shown by subcellular fractionation on Percoll gradients. The inhibition of macroautophagy was restricted to N-linked glycoproteins because macroautophagic parameters such as the rate of sequestration of cytosolic markers and the fractional volume occupied by autophagic vacuoles were not affected in CST-treated cells. The protection of glucosylated glycoproteins from autophagic sequestration was also observed in inhibitor-treated Chinese hamster ovary (CHO) cells and in Lec23 cells (a CHO mutant deficient in glucosidase I activity). The interaction of glucosylated glycoproteins with the ER chaperone binding protein (BiP) was prolonged in inhibitor-treated cells in comparison with untreated CHO cells. These results show that the removal of glucose from N-glycans of glycoproteins is a key event for their delivery to the autophagic pathway and that interaction with BiP could prevent or delay newly synthesized glucosylated N-linked glycoproteins from being sequestered by the autophagic pathway. PMID:10642502

  17. Regulation of the Axillary Osmidrosis-Associated ABCC11 Protein Stability by N-Linked Glycosylation: Effect of Glucose Condition

    PubMed Central

    Toyoda, Yu; Takada, Tappei; Miyata, Hiroshi; Ishikawa, Toshihisa; Suzuki, Hiroshi

    2016-01-01

    ATP-binding cassette C11 (ABCC11) is a plasma membrane protein involved in the transport of a variety of lipophilic anions. ABCC11 wild-type is responsible for the high-secretion phenotypes in human apocrine glands, such as that of wet-type ear wax, and the risk of axillary osmidrosis. We have previously reported that mature ABCC11 is a glycoprotein containing two N-linked glycans at Asn838 and Asn844. However, little is known about the role of N-linked glycosylation in the regulation of ABCC11 protein. In the current study, we investigated the effects of N-linked glycosylation on the protein level and localization of ABCC11 using polarized Madin-Darby canine kidney II cells. When the N-linked glycosylation in ABCC11-expressing cells was chemically inhibited by tunicamycin treatment, the maturation of ABCC11 was suppressed and its protein level was significantly decreased. Immunoblotting analyses demonstrated that the protein level of the N-linked glycosylation-deficient mutant (N838Q and N844Q: Q838/844) was about half of the ABCC11 wild-type level. Further biochemical studies with the Q838/844 mutant showed that this glycosylation-deficient ABCC11 was degraded faster than wild-type probably due to the enhancement of the MG132-sensitive protein degradation pathway. Moreover, the incubation of ABCC11 wild-type-expressing cells in a low-glucose condition decreased mature, glycosylated ABCC11, compared with the high-glucose condition. On the other hand, the protein level of the Q838/844 mutant was not affected by glucose condition. These results suggest that N-linked glycosylation is important for the protein stability of ABCC11, and physiological alteration in glucose may affect the ABCC11 protein level and ABCC11-related phenotypes in humans, such as axillary osmidrosis. PMID:27281343

  18. Regulation of the Axillary Osmidrosis-Associated ABCC11 Protein Stability by N-Linked Glycosylation: Effect of Glucose Condition.

    PubMed

    Toyoda, Yu; Takada, Tappei; Miyata, Hiroshi; Ishikawa, Toshihisa; Suzuki, Hiroshi

    2016-01-01

    ATP-binding cassette C11 (ABCC11) is a plasma membrane protein involved in the transport of a variety of lipophilic anions. ABCC11 wild-type is responsible for the high-secretion phenotypes in human apocrine glands, such as that of wet-type ear wax, and the risk of axillary osmidrosis. We have previously reported that mature ABCC11 is a glycoprotein containing two N-linked glycans at Asn838 and Asn844. However, little is known about the role of N-linked glycosylation in the regulation of ABCC11 protein. In the current study, we investigated the effects of N-linked glycosylation on the protein level and localization of ABCC11 using polarized Madin-Darby canine kidney II cells. When the N-linked glycosylation in ABCC11-expressing cells was chemically inhibited by tunicamycin treatment, the maturation of ABCC11 was suppressed and its protein level was significantly decreased. Immunoblotting analyses demonstrated that the protein level of the N-linked glycosylation-deficient mutant (N838Q and N844Q: Q838/844) was about half of the ABCC11 wild-type level. Further biochemical studies with the Q838/844 mutant showed that this glycosylation-deficient ABCC11 was degraded faster than wild-type probably due to the enhancement of the MG132-sensitive protein degradation pathway. Moreover, the incubation of ABCC11 wild-type-expressing cells in a low-glucose condition decreased mature, glycosylated ABCC11, compared with the high-glucose condition. On the other hand, the protein level of the Q838/844 mutant was not affected by glucose condition. These results suggest that N-linked glycosylation is important for the protein stability of ABCC11, and physiological alteration in glucose may affect the ABCC11 protein level and ABCC11-related phenotypes in humans, such as axillary osmidrosis. PMID:27281343

  19. Cell Surface Analysis Techniques: What Do Cell Preparation Protocols Do to Cell Surface Properties?

    PubMed Central

    Pembrey, Richard S.; Marshall, Kevin C.; Schneider, René P.

    1999-01-01

    Cell surface analysis often requires manipulation of cells prior to examination. The most commonly employed procedures are centrifugation at different speeds, changes of media during washing or final resuspension, desiccation (either air drying for contact angle measurements or freeze-drying for sensitive spectroscopic analysis, such as X-ray photoelectron spectroscopy), and contact with hydrocarbon (hydrophobicity assays). The effects of these procedures on electrophoretic mobility, adhesion to solid substrata, affinity to a number of Sepharose columns, structural integrity, and cell viability were systematically investigated for a range of model organisms, including carbon- and nitrogen-limited Psychrobacter sp. strain SW8 (glycocalyx-bearing cells), Escherichia coli (gram-negative cells without a glycocalyx), and Staphylococcus epidermidis (gram-positive cells without a glycocalyx). All of the cell manipulation procedures severely modified the physicochemical properties of cells, but with each procedure some organisms were more susceptible than others. Considerable disruption of cell surfaces occurred when organisms were placed in contact with a hydrocarbon (hexadecane). The majority of cells became nonculturable after air drying and freeze-drying. Centrifugation at a high speed (15,000 × g) modified many cell surface parameters significantly, although cell viability was considerably affected only in E. coli. The type of washing or resuspension medium had a strong influence on the values of cell surface parameters, particularly when high-salt solutions were compared with low-salt buffers. The values for parameters obtained with different methods that allegedly measure similar cell surface properties did not correlate for most cells. These results demonstrate that the methods used to prepare cells for cell surface analysis need to be critically investigated for each microorganism so that the final results obtained reflect the nature of the in situ microbial cell

  20. Studying N-linked glycosylation of receptor tyrosine kinases.

    PubMed

    Itkonen, Harri M; Mills, Ian G

    2015-01-01

    Metabolic alterations have been identified as a frequent event in cancer. This is often associated with increased flux through glycolysis, and also a secondary pathway to glycolysis, hexosamine biosynthetic pathway (HBP). HBP provides substrate for N-linked glycosylation, which occurs in the endoplasmic reticulum and the Golgi apparatus. N-linked glycosylation supports protein folding and correct sorting of proteins to plasma membrane and secretion. This process generates complex glycoforms, which can be recognized by other proteins and glycosylation of receptor tyrosine kinases (RTK) can also regulate their plasma-membrane retention time. Of special interest for experimental biologists, plants produce proteins, termed lectins, which bind with high specificity to glyco-conjugates. For the purposes of molecular biology, plant lectins can be conjugated to different moieties, such as agarose beads, which enable precipitation of specifically glycosylated proteins. In this chapter, we describe in detail how to perform pull-down experiments with commercially available lectins to identify changes in the glycosylation of RTKs. PMID:25319893

  1. Hydrophobic derivatization of N-linked glycans for increased ion abundance in electrospray ionization mass spectrometry.

    PubMed

    Walker, S Hunter; Lilley, Laura M; Enamorado, Monica F; Comins, Daniel L; Muddiman, David C

    2011-08-01

    A library of neutral, hydrophobic reagents was synthesized for use as derivatizing agents in order to increase the ion abundance of N-linked glycans in electrospray ionization mass spectrometry (ESI MS). The glycans are derivatized via hydrazone formation and are shown to increase the ion abundance of a glycan standard more than 4-fold. Additionally, the data show that the systematic addition of hydrophobic surface area to the reagent increases the glycan ion abundance, a property that can be further exploited in the analysis of glycans. The results of this study will direct the future synthesis of hydrophobic reagents for glycan analysis using the correlation between hydrophobicity and theoretical non-polar surface area calculation to facilitate the development of an optimum tag for glycan derivatization. The compatibility and advantages of this method are demonstrated by cleaving and derivatizing N-linked glycans from human plasma proteins. The ESI-MS signal for the tagged glycans are shown to be significantly more abundant, and the detection of negatively charged sialylated glycans is enhanced. PMID:21953184

  2. Hydrophobic Derivatization of N-linked Glycans for Increased Ion Abundance in Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Walker, S. Hunter; Lilley, Laura M.; Enamorado, Monica F.; Comins, Daniel L.; Muddiman, David C.

    2011-08-01

    A library of neutral, hydrophobic reagents was synthesized for use as derivatizing agents in order to increase the ion abundance of N-linked glycans in electrospray ionization mass spectrometry (ESI MS). The glycans are derivatized via hydrazone formation and are shown to increase the ion abundance of a glycan standard more than 4-fold. Additionally, the data show that the systematic addition of hydrophobic surface area to the reagent increases the glycan ion abundance, a property that can be further exploited in the analysis of glycans. The results of this study will direct the future synthesis of hydrophobic reagents for glycan analysis using the correlation between hydrophobicity and theoretical non-polar surface area calculation to facilitate the development of an optimum tag for glycan derivatization. The compatibility and advantages of this method are demonstrated by cleaving and derivatizing N-linked glycans from human plasma proteins. The ESI-MS signal for the tagged glycans are shown to be significantly more abundant, and the detection of negatively charged sialylated glycans is enhanced.

  3. Probe microscopy: Scanning below the cell surface

    NASA Astrophysics Data System (ADS)

    Sahin, Ozgur

    2008-08-01

    Conventional atomic force microscopy probes only the surface of specimens. A related technique called scanning near-field ultrasonic holography can now image nanoparticles buried below the surfaces of cells, which could prove useful in nanotoxicology.

  4. Surface Functionalization for Protein and Cell Patterning

    NASA Astrophysics Data System (ADS)

    Colpo, Pascal; Ruiz, Ana; Ceriotti, Laura; Rossi, François

    The interaction of biological systems with synthetic material surfaces is an important issue for many biological applications such as implanted devices, tissue engineering, cell-based sensors and assays, and more generally biologic studies performed ex vivo. To ensure reliable outcomes, the main challenge resides in the ability to design and develop surfaces or artificial micro-environment that mimic 'natural environment' in interacting with biomolecules and cells without altering their function and phenotype. At this effect, microfabrication, surface chemistry and material science play a pivotal role in the design of advanced in-vitro systems for cell culture applications. In this chapter, we discuss and describe different techniques enabling the control of cell-surface interactions, including the description of some techniques for immobilization of ligands for controlling cell-surface interactions and some methodologies for the creation of well confined cell rich areas.

  5. Diffusing colloidal probes of cell surfaces.

    PubMed

    Duncan, Gregg A; Fairbrother, D Howard; Bevan, Michael A

    2016-05-25

    Measurements and analyses are reported to quantify dynamic and equilibrium interactions between colloidal particles and live cell surfaces using dark field video microscopy. Two-dimensional trajectories of micron-sized polyethylene glycol (PEG)-coated silica colloids relative to adherent epithelial breast cancer cell perimeters are determined allowing measurement of position dependent diffusivities and interaction potentials. PEG was chosen as the material system of interest to assess non-specific interactions with cell surfaces and establishes a basis for investigation of specific interactions in future studies. Analysis of measured potential energies on cell surfaces reveals the spatial dependence in cell topography. With the measured cell topography and models for particle-cell surface hydrodynamic interactions, excellent agreement is obtained between theoretical and measured colloidal transport on cell surfaces. Quantitative analyses of association lifetimes showed that PEG coatings act to stabilize colloids above the cell surface through net repulsive, steric interactions. Our results demonstrate a self-consistent analysis of diffusing colloidal probe interactions due to conservative and non-conservative forces to characterize biophysical cell surface properties. PMID:27117575

  6. N-linked (N-) Glycoproteomics of Urimary Exosomes*

    PubMed Central

    Saraswat, Mayank; Joenväära, Sakari; Musante, Luca; Peltoniemi, Hannu; Holthofer, Harry; Renkonen, Risto

    2015-01-01

    Epithelial cells lining the urinary tract secrete urinary exosomes (40–100 nm) that can be targeted to specific cells modulating their functionality. One potential targeting mechanism is adhesion between vesicle surface glycoproteins and target cells. This makes the glycopeptide analysis of exosomes important. Exosomes reflect the physiological state of the parent cells; therefore, they are a good source of biomarkers for urological and other diseases. Moreover, the urine collection is easy and noninvasive and urinary exosomes give information about renal and systemic organ systems. Accordingly, multiple studies on proteomic characterization of urinary exosomes in health and disease have been published. However, no systematic analysis of their glycoproteomic profile has been carried out to date, whereas a conserved glycan signature has been found for exosomes from urine and other sources including T cell lines and human milk. Here, we have enriched and identified the N-glycopeptides from these vesicles. These enriched N-glycopeptides were solved for their peptide sequence, glycan composition, structure, and glycosylation site using collision-induced dissociation MS/MS (CID-tandem MS) data interpreted by a publicly available software GlycopeptideId. Released glycans from the same sample was also analyzed with MALDI-MS. We have identified the N-glycoproteome of urinary exosomes. In total 126 N-glycopeptides from 51 N-glycosylation sites belonging to 37 glycoproteins were found in our results. The peptide sequences of these N-glycopeptides were identified unambiguously and their glycan composition (for 125 N-glycopeptides) and structures (for 87 N-glycopeptides) were proposed. A corresponding glycomic analysis with released N-glycans was also performed. We identified 66 unique nonmodified N-glycan compositions and in addition 13 sulfated/phosphorylated glycans were also found. This is the first systematic analysis of N-glycoproteome of urinary exosomes. PMID

  7. Unconventional N-Linked Glycosylation Promotes Trimeric Autotransporter Function in Kingella kingae and Aggregatibacter aphrophilus

    PubMed Central

    Rempe, Katherine A.; Spruce, Lynn A.; Porsch, Eric A.; Seeholzer, Steven H.; Nørskov-Lauritsen, Niels

    2015-01-01

    ABSTRACT Glycosylation is a widespread mechanism employed by both eukaryotes and bacteria to increase the functional diversity of their proteomes. The nontypeable Haemophilus influenzae glycosyltransferase HMW1C mediates unconventional N-linked glycosylation of the adhesive protein HMW1, which is encoded in a two-partner secretion system gene cluster that also encodes HMW1C. In this system, HMW1 is modified in the cytoplasm by sequential transfer of hexose residues. In the present study, we examined Kingella kingae and Aggregatibacter aphrophilus homologues of HMW1C that are not encoded near a gene encoding an obvious acceptor protein. We found both homologues to be functional glycosyltransferases and identified their substrates as the K. kingae Knh and the A. aphrophilus EmaA trimeric autotransporter proteins. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed multiple sites of N-linked glycosylation on Knh and EmaA. Without glycosylation, Knh and EmaA failed to facilitate wild-type levels of bacterial autoaggregation or adherence to human epithelial cells, establishing that glycosylation is essential for proper protein function. PMID:26307167

  8. Role of envelope N-linked glycosylation in Ross River virus virulence and transmission.

    PubMed

    Nelson, Michelle A; Herrero, Lara J; Jeffery, Jason A L; Hoehn, Marion; Rudd, Penny A; Supramaniam, Aroon; Kay, Brian H; Ryan, Peter A; Mahalingam, Suresh

    2016-05-01

    With an expanding geographical range and no specific treatments, human arthritogenic alphaviral disease poses a significant problem worldwide. Previous in vitro work with Ross River virus (RRV) demonstrated that alphaviral N-linked glycosylation contributes to type I IFN (IFN-αβ) induction in myeloid dendritic cells. This study further evaluated the role of alphaviral N-linked glycans in vivo, assessing the effect of glycosylation on pathogenesis in a mouse model of RRV-induced disease and on viral infection and dissemination in a common mosquito vector, Aedes vigilax. A viral mutant lacking the E1-141 glycosylation site was attenuated for virus-induced disease, with reduced myositis and higher levels of IFN-γ induction at peak disease contributing to improved viral clearance, suggesting that glycosylation of the E1 glycoprotein plays a major role in the pathogenesis of RRV. Interestingly, RRV lacking E2-200 glycan had significantly reduced replication in the mosquito vector A. vigilax, whereas loss of either of the E1 or E2-262 glycans had little effect on the competence of the mosquito vector. Overall, these results indicate that glycosylation of the E1 and E2 glycoproteins of RRV provides important determinants of viral virulence and immunopathology in the mammalian host and replication in the mosquito vector. PMID:26813162

  9. Antileukemic Activity of 2-Deoxy-d-Glucose through Inhibition of N-Linked Glycosylation in Acute Myeloid Leukemia with FLT3-ITD or c-KIT Mutations.

    PubMed

    Larrue, Clément; Saland, Estelle; Vergez, François; Serhan, Nizar; Delabesse, Eric; Mansat-De Mas, Véronique; Hospital, Marie-Anne; Tamburini, Jérôme; Manenti, Stéphane; Sarry, Jean Emmanuel; Récher, Christian

    2015-10-01

    We assessed the antileukemic activity of 2-deoxy-d-glucose (2-DG) through the modulation of expression of receptor tyrosine kinases (RTK) commonly mutated in acute myeloid leukemia (AML). We used human leukemic cell lines cells, both in vitro and in vivo, as well as leukemic samples from AML patients to demonstrate the role of 2-DG in tumor cell growth inhibition. 2-DG, through N-linked glycosylation inhibition, affected the cell-surface expression and cellular signaling of both FTL3-ITD and mutated c-KIT and induced apoptotic cell death. Leukemic cells harboring these mutated RTKs (MV4-11, MOLM-14, Kasumi-1, and TF-1 c-KIT D816V) were the most sensitive to 2-DG treatment in vitro as compared with nonmutated cells. 2-DG activity was also demonstrated in leukemic cells harboring FLT3-TKD mutations resistant to the tyrosine kinase inhibitor (TKI) quizartinib. Moreover, the antileukemic activity of 2-DG was particularly marked in c-KIT-mutated cell lines and cell samples from core binding factor-AML patients. In these cells, 2-DG inhibited the cell-surface expression of c-KIT, abrogated STAT3 and MAPK-ERK pathways, and strongly downregulated the expression of the receptor resulting in a strong in vivo effect in NOD/SCID mice xenografted with Kasumi-1 cells. Finally, we showed that 2-DG decreases Mcl-1 protein expression in AML cells and induces sensitization to both the BH3 mimetic inhibitor of Bcl-xL, Bcl-2 and Bcl-w, ABT-737, and cytarabine. In conclusion, 2-DG displays a significant antileukemic activity in AML with FLT3-ITD or KIT mutations, opening a new therapeutic window in a subset of AML with mutated RTKs. PMID:26206337

  10. Exposure of phosphatidylserine on the cell surface.

    PubMed

    Nagata, S; Suzuki, J; Segawa, K; Fujii, T

    2016-06-01

    Phosphatidylserine (PtdSer) is a phospholipid that is abundant in eukaryotic plasma membranes. An ATP-dependent enzyme called flippase normally keeps PtdSer inside the cell, but PtdSer is exposed by the action of scramblase on the cell's surface in biological processes such as apoptosis and platelet activation. Once exposed to the cell surface, PtdSer acts as an 'eat me' signal on dead cells, and creates a scaffold for blood-clotting factors on activated platelets. The molecular identities of the flippase and scramblase that work at plasma membranes have long eluded researchers. Indeed, their identity as well as the mechanism of the PtdSer exposure to the cell surface has only recently been revealed. Here, we describe how PtdSer is exposed in apoptotic cells and in activated platelets, and discuss PtdSer exposure in other biological processes. PMID:26891692

  11. Solar cell having improved back surface reflector

    NASA Astrophysics Data System (ADS)

    Chai, A. T.

    1982-10-01

    The operating temperature is reduced and the output of a solar cell is increased by using a solar cell which carries electrodes in a grid finger pattern on its back surface. These electrodes are sintered at the proper temperature to provide good ohmic contact. After sintering, a reflective material is deposited on the back surface by vacuum evaporation. Thus, the application of the back surface reflector is separate from the back contact formation. Back surface reflectors formed in conjunction with separate grid finger configuration back contacts are more effective than those formed by full back metallization of the reflector material.

  12. High vacuum cells for classical surface techniques

    SciTech Connect

    Martinez, Imee Su; Baldelli, Steven

    2010-04-15

    Novel glass cells were designed and built to be able to perform surface potential and surface tension measurements in a contained environment. The cells can withstand pressures of approximately 1x10{sup -6} Torr, providing a reasonable level of control in terms of the amounts of volatile contaminants during experimentation. The measurements can take several hours; thus the cells help maintain the integrity of the sample in the course of the experiment. To test for the feasibility of the cell design, calibration measurements were performed. For the surface potential cell, the modified TREK 6000B-7C probe exhibited performance comparable to its unmodified counterpart. The correlation measurements between applied potential on the test surface and the measured potential showed R-values very close to 1 as well as standard deviation values of less than 1. Results also demonstrate improved measurement values for experiments performed in vacuum. The surface tension cell, on the other hand, which was used to perform the pendant drop method, was tested on common liquids and showed percentage errors of 0.5% when compared to literature values. The fabricated cells redefine measurements using classical surface techniques, providing unique and novel methods of sample preparation, premeasurement preparation, and sample analysis at highly beneficial expenditure cost.

  13. Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli.

    PubMed

    Feldman, Mario F; Wacker, Michael; Hernandez, Marcela; Hitchen, Paul G; Marolda, Cristina L; Kowarik, Michael; Morris, Howard R; Dell, Anne; Valvano, Miguel A; Aebi, Markus

    2005-02-22

    Campylobacter jejuni has a general N-linked protein glycosylation system that can be functionally transferred to Escherichia coli. In this study, we engineered E. coli cells in a way that two different pathways, protein N-glycosylation and lipopolysaccharide (LPS) biosynthesis, converge at the step in which PglB, the key enzyme of the C. jejuni N-glycosylation system, transfers O polysaccharide from a lipid carrier (undecaprenyl pyrophosphate) to an acceptor protein. PglB was the only protein of the bacterial N-glycosylation machinery both necessary and sufficient for the transfer. The relaxed specificity of the PglB oligosaccharyltransferase toward the glycan structure was exploited to create novel N-glycan structures containing two distinct E. coli or Pseudomonas aeruginosa O antigens. PglB-mediated transfer of polysaccharides might be valuable for in vivo production of O polysaccharides-protein conjugates for use as antibacterial vaccines. PMID:15703289

  14. Low-Reflectance Surfaces For Solar Cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.; Fatemi, Navid; Jenkins, Phillip P.

    1994-01-01

    Improved method for increasing solar cell efficiency has potential application for space-based and terrestrial solar power systems and optoelectronic devices. Etched low-angle grooves help recover reflected light. Light reflected from v-grooved surface trapped in cover glass and adhesive by total internal reflection. Reflected light redirected onto surface, and greater fraction of incident light absorbed, producing more electrical energy in InP solar photovoltaic cell.

  15. Functional dynamics of cell surface membrane proteins

    NASA Astrophysics Data System (ADS)

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules.

  16. Surface Charge Visualization at Viable Living Cells.

    PubMed

    Perry, David; Paulose Nadappuram, Binoy; Momotenko, Dmitry; Voyias, Philip D; Page, Ashley; Tripathi, Gyanendra; Frenguelli, Bruno G; Unwin, Patrick R

    2016-03-01

    Scanning ion conductance microscopy (SICM) is demonstrated to be a powerful technique for quantitative nanoscale surface charge mapping of living cells. Utilizing a bias modulated (BM) scheme, in which the potential between a quasi-reference counter electrode (QRCE) in an electrolyte-filled nanopipette and a QRCE in bulk solution is modulated, it is shown that both the cell topography and the surface charge present at cellular interfaces can be measured simultaneously at high spatial resolution with dynamic potential measurements. Surface charge is elucidated by probing the properties of the diffuse double layer (DDL) at the cellular interface, and the technique is sensitive at both low-ionic strength and under typical physiological (high-ionic strength) conditions. The combination of experiments that incorporate pixel-level self-referencing (calibration) with a robust theoretical model allows for the analysis of local surface charge variations across cellular interfaces, as demonstrated on two important living systems. First, charge mapping at Zea mays root hairs shows that there is a high negative surface charge at the tip of the cell. Second, it is shown that there are distinct surface charge distributions across the surface of human adipocyte cells, whose role is the storage and regulation of lipids in mammalian systems. These are new features, not previously recognized, and their implications for the functioning of these cells are highlighted. PMID:26871001

  17. Structure and functions of fungal cell surfaces

    NASA Technical Reports Server (NTRS)

    Nozawa, Y.

    1984-01-01

    A review with 24 references on the biochemistry, molecular structure, and function of cell surfaces of fungi, especially dermatophytes: the chemistry and structure of the cell wall, the effect of polyene antibiotics on the morphology and function of cytoplasmic membranes, and the chemical structure and function of pigments produced by various fungi are discussed.

  18. Probes for anionic cell surface detection

    DOEpatents

    Smith, Bradley D.

    2013-03-05

    Embodiments of the present invention are generally directed to compositions comprising a class of molecular probes for detecting the presence of anionic cell surfaces. Embodiments include compositions that are enriched for these compositions and preparations, particularly preparations suitable for use as laboratory/clinical reagents and diagnostic indicators, either alone or as part of a kit. An embodiment of the invention provides for a highly selective agent useful in the discernment and identification of dead or dying cells, such as apoptotic cells, in a relatively calcium-free environment. An embodiment of the invention provides a selective agent for the identification of bacteria in a mixed population of bacterial cells and nonbacterial cells.

  19. Cell Adhesion on Surface-Functionalized Magnesium.

    PubMed

    Wagener, Victoria; Schilling, Achim; Mainka, Astrid; Hennig, Diana; Gerum, Richard; Kelch, Marie-Luise; Keim, Simon; Fabry, Ben; Virtanen, Sannakaisa

    2016-05-18

    The biocompatibility of commercially pure magnesium-based (cp Mg) biodegradable implants is compromised of strong hydrogen evolution and surface alkalization due to high initial corrosion rates of cp Mg in the physiological environment. To mitigate this problem, the addition of corrosion-retarding alloying elements or coating of implant surfaces has been suggested. In the following work, we explored the effect of organic coatings on long-term cell growth. cp Mg was coated with aminopropyltriehtoxysilane + vitamin C (AV), carbonyldiimidazole (CDI), or stearic acid (SA). All three coatings have been previously suggested to reduce initial corrosion and to enhance protein adsorption and hence cell adhesion on magnesium surfaces. Endothelial cells (DH1+/+) and osteosarcoma cells (MG63) were cultured on coated samples for up to 20 days. To quantify Mg corrosion, electrochemical impedance spectroscopy (EIS) was measured after 1, 3, and 5 days of cell culture. We also investigated the speed of initial cell spreading after seeding using fluorescently labeled fibroblasts (NIH/3T3). Hydrogen evolution after contact with cell culture medium was markedly decreased on AV- and SA-coated Mg compared to uncoated Mg. These coatings also showed improved cell adhesion and spreading after 24 h of culture comparable to tissue-treated plastic surfaces. On AV-coated cp Mg, a confluent layer of endothelial cells formed after 5 days and remained intact for up to 20 days. Together, these data demonstrate that surface coating with AV is a viable strategy for improving long-term biocompatibility of cp Mg-based implants. EIS measurements confirmed that the presence of a confluent cell layer increased the corrosion resistance. PMID:27089250

  20. Dysregulated expression of cell surface glycoprotein CDCP1 in prostate cancer

    PubMed Central

    Yang, Lifang; Dutta, Sucharita M.; Troyer, Dean A.; Lin, Jefferson B.; Lance, Raymond A.; Nyalwidhe, Julius O.; Drake, Richard R; Semmes, O. John

    2015-01-01

    CUB-domain-containing protein 1 (CDCP1) is a trans-membrane protein regulator of cell adhesion with a potent pro-migratory function in tumors. Given that proteolytic cleavage of the ectodomain correlates with outside-in oncogenic signaling, we characterized glycosylation in the context of cellular processing and expression of CDCP1 in prostate cancer. We detected 135 kDa full-length and proteolytic processed 70 kDa species in a panel of PCa cell models. The relative expression of full-length CDCP1 correlated with the metastatic potential of syngeneic cell models and an increase in surface membrane expression of CDCP1 was observed in tumor compared to adjacent normal prostate tissues. We demonstrated that glycosylation of CDCP1 is a prerequisite for protein stability and plasma membrane localization, and that the expression level and extent of N-glycosylation of CDCP1 correlated with metastatic status. Interestingly, complex N-linked glycans with sialic acid chains were restricted to the N-terminal half of the ectodomain and absent in the truncated species. Characterization of the extracellular expression of CDCP1 identified novel circulating forms and revealed that extracellular vesicles provide additional processing pathways. Employing immunoaffinity mass spectrometry, we detected elevated levels of circulating CDCP1 in patient urine with high-risk disease. Our results establish that differential glycosylation, cell surface presentation and extracellular expression of CDCP1 are hallmarks of PCa progression. PMID:26497208

  1. Automated Glycan Sequencing from Tandem Mass Spectra of N-Linked Glycopeptides.

    PubMed

    Yu, Chuan-Yih; Mayampurath, Anoop; Zhu, Rui; Zacharias, Lauren; Song, Ehwang; Wang, Lei; Mechref, Yehia; Tang, Haixu

    2016-06-01

    Mass spectrometry has become a routine experimental tool for proteomic biomarker analysis of human blood samples, partly due to the large availability of informatics tools. As one of the most common protein post-translational modifications (PTMs) in mammals, protein glycosylation has been observed to alter in multiple human diseases and thus may potentially be candidate markers of disease progression. While mass spectrometry instrumentation has seen advancements in capabilities, discovering glycosylation-related markers using existing software is currently not straightforward. Complete characterization of protein glycosylation requires the identification of intact glycopeptides in samples, including identification of the modification site as well as the structure of the attached glycans. In this paper, we present GlycoSeq, an open-source software tool that implements a heuristic iterated glycan sequencing algorithm coupled with prior knowledge for automated elucidation of the glycan structure within a glycopeptide from its collision-induced dissociation tandem mass spectrum. GlycoSeq employs rules of glycosidic linkage as defined by glycan synthetic pathways to eliminate improbable glycan structures and build reasonable glycan trees. We tested the tool on two sets of tandem mass spectra of N-linked glycopeptides cell lines acquired from breast cancer patients. After employing enzymatic specificity within the N-linked glycan synthetic pathway, the sequencing results of GlycoSeq were highly consistent with the manually curated glycan structures. Hence, GlycoSeq is ready to be used for the characterization of glycan structures in glycopeptides from MS/MS analysis. GlycoSeq is released as open source software at https://github.com/chpaul/GlycoSeq/ . PMID:27111718

  2. Dendritic Cell Responses to Surface Properties of Clinical Titanium Surfaces

    PubMed Central

    Kou, Peng Meng; Schwartz, Zvi; Boyan, Barbara D.

    2010-01-01

    Dendritic cells (DCs) play pivotal roles in responding to foreign entities during an innate immune response and initiating effective adaptive immunity as well as maintaining immune tolerance. The sensitivity of DCs to foreign stimuli also makes them useful cells to assess the inflammatory response to biomaterials. Elucidating the material property-DC phenotype relationships using a well-defined biomaterial system is expected to provide criteria for immuno-modulatory biomaterial design. Clinical titanium (Ti) substrates, including pretreatment (PT), sand-blasted and acid-etched (SLA), and modified SLA (modSLA), with different roughness and surface energy were used to treat DCs and resulted in differential DC responses. PT and SLA induced a mature DC (mDC) phenotype, while modSLA promoted a non-inflammatory environment by supporting an immature DC (iDC) phenotype based on surface marker expression, cytokine production profiles and cell morphology. Principal component analysis (PCA) confirmed these experimental results, and it also indicated that the non-stimulating property of modSLA covaried with certain surface properties, such as high surface hydrophilicity, % oxygen and % Ti of the substrates. In addition to the previous research that demonstrated the superior osteogenic property of modSLA compared to PT and SLA, the result reported herein indicates that modSLA may further benefit implant osteo-integration by reducing local inflammation and its associated osteoclastogenesis. PMID:20977948

  3. Roles for glycosylation of cell surface receptors involved in cellular immune recognition.

    PubMed

    Rudd, P M; Wormald, M R; Stanfield, R L; Huang, M; Mattsson, N; Speir, J A; DiGennaro, J A; Fetrow, J S; Dwek, R A; Wilson, I A

    1999-10-22

    The majority of cell surface receptors involved in antigen recognition by T cells and in the orchestration of the subsequent cell signalling events are glycoproteins. The length of a typical N-linked sugar is comparable with that of an immunoglobulin domain (30 A). Thus, by virtue of their size alone, oligosaccharides may be expected to play a significant role in the functions and properties of the cell surface proteins to which they are attached. A databank of oligosaccharide structures has been constructed from NMR and crystallographic data to aid in the interpretation of crystal structures of glycoproteins. As unambiguous electron density can usually only be assigned to the glycan cores, the remainder of the sugar is then modelled into the crystal lattice by superimposing the appropriate oligosaccharide from the database. This approach provides insights into the roles that glycosylation might play in cell surface receptors, by providing models that delineate potential close packing interactions on the cell surface. It has been proposed that the specific recognition of antigen by T cells results in the formation of an immunological synapse between the T cell and the antigen-presenting cell. The cell adhesion glycoproteins, such as CD2 and CD48, help to form a cell junction, providing a molecular spacer between opposing cells. The oligosaccharides located on the membrane proximal domains of CD2 and CD48 provide a scaffold to orient the binding faces, which leads to increased affinity. In the next step, recruitment of the peptide major histocompatibility complex (pMHC) by the T-cell receptors (TCRs) requires mobility on the membrane surface. The TCR sugars are located such that they could prevent non-specific aggregation. Importantly, the sugars limit the possible geometry and spacing of TCR/MHC clusters which precede cell signalling. We postulate that, in the final stage, the sugars could play a general role in controlling the assembly and stabilisation of the

  4. Progenitor cells for ocular surface regenerative therapy.

    PubMed

    Casaroli-Marano, Ricardo P; Nieto-Nicolau, Nuria; Martínez-Conesa, Eva M

    2013-01-01

    The integrity and normal function of the corneal epithelium are essential for maintaining the cornea's transparency and vision. The existence of a cell population with progenitor characteristics in the limbus maintains a dynamic of constant epithelial repair and renewal. Currently, cell-based therapies for bio-replacement, such as cultured limbal epithelial transplantation and cultured oral mucosal epithelial transplantation, present very encouraging clinical results for treating limbal stem cell deficiencies. Another emerging therapeutic strategy consists of obtaining and implementing human progenitor cells of different origins using tissue engineering methods. The development of cell-based therapies using stem cells, such as human adult mesenchymal stromal cells, represents a significant breakthrough in the treatment of certain eye diseases and also offers a more rational, less invasive and more physiological approach to ocular surface regeneration. PMID:23257987

  5. Surface cell immobilization within perfluoroalkoxy microchannels

    NASA Astrophysics Data System (ADS)

    Stojkovič, Gorazd; Krivec, Matic; Vesel, Alenka; Marinšek, Marjan; Žnidaršič-Plazl, Polona

    2014-11-01

    Perfluoroalkoxy (PFA) is one of the most promising materials for the fabrication of cheap, solvent resistant and reusable microfluidic chips, which have been recently recognized as effective tools for biocatalytic process development. The application of biocatalysts significantly depends on efficient immobilization of enzymes or cells within the reactor enabling long-term biocatalyst use. Functionalization of PFA microchannels by 3-aminopropyltriethoxysilane (ATPES) and glutaraldehyde was used for rapid preparation of microbioreactors with surface-immobilized cells. X-ray photoelectron spectroscopy and scanning electron microscopy were used to accurately monitor individual treatment steps and to select conditions for cell immobilization. The optimized protocol for Saccharomyces cerevisiae immobilization on PFA microchannel walls comprised ethanol surface pretreatment, 4 h contacting with 10% APTES aqueous solution, 10 min treatment with 1% glutaraldehyde and 20 min contacting with cells in deionized water. The same protocol enabled also immobilization of Escherichia coli, Pseudomonas putida and Bacillus subtilis cells on PFA surface in high densities. Furthermore, the developed procedure has been proved to be very efficient also for surface immobilization of tested cells on other materials that are used for microreactor fabrication, including glass, polystyrene, poly (methyl methacrylate), polycarbonate, and two olefin-based polymers, namely Zeonor® and Topas®.

  6. Biomolecular strategies for cell surface engineering

    NASA Astrophysics Data System (ADS)

    Wilson, John Tanner

    Islet transplantation has emerged as a promising cell-based therapy for the treatment of diabetes, but its clinical efficacy remains limited by deleterious host responses that underlie islet destruction. In this dissertation, we describe the assembly of ultrathin conformal coatings that confer molecular-level control over the composition and biophysicochemical properties of the islet surface with implications for improving islet engraftment. Significantly, this work provides novel biomolecular strategies for cell surface engineering with broad biomedical and biotechnological applications in cell-based therapeutics and beyond. Encapsulation of cells and tissue offers a rational approach for attenuating deleterious host responses towards transplanted cells, but a need exists to develop cell encapsulation strategies that minimize transplant volume. Towards this end, we endeavored to generate nanothin films of diverse architecture with tunable properties on the extracellular surface of individual pancreatic islets through a process of layer-by-layer (LbL) self assembly. We first describe the formation of poly(ethylene glycol) (PEG)-rich conformal coatings on islets via LbL self assembly of poly(L-lysine)-g-PEG(biotin) and streptavidin. Multilayer thin films conformed to the geometrically and chemically heterogeneous islet surface, and could be assembled without loss of islet viability or function. Significantly, coated islets performed comparably to untreated controls in a murine model of allogenic intraportal islet transplantation, and, to our knowledge, this is the first study to report in vivo survival and function of nanoencapsulated cells or cell aggregates. Based on these findings, we next postulated that structurally similar PLL-g-PEG copolymers comprised of shorter PEG grafts might be used to initiate and propagate the assembly of polyelectrolyte multilayer (PEM) films on pancreatic islets, while simultaneously preserving islet viability. Through control of PLL

  7. N-linked glycosylation of GP5 of porcine reproductive and respiratory syndrome virus is critically important for virus replication in vivo.

    PubMed

    Wei, Zuzhang; Lin, Tao; Sun, Lichang; Li, Yanhua; Wang, Xiaoming; Gao, Fei; Liu, Runxia; Chen, Chunyan; Tong, Guangzhi; Yuan, Shishan

    2012-09-01

    It has been proposed that the N-linked glycan addition at certain sites in GP5 of porcine reproductive and respiratory syndrome virus (PRRSV) is important for production of infectious viruses and viral infectivity. However, such specific N-linked glycosylation sites do not exist in some field PRRSV isolates. This implies that the existence of GP5-associated glycan per se is not vital to the virus life cycle. In this study, we found that mutation of individual glycosylation sites at N30, N35, N44, and N51 in GP5 did not affect virus infectivity in cultured cells. However, the mutants carrying multiple mutations at N-linked glycosylation sites in GP5 had significantly reduced virus yields compared with the wild-type (wt) virus. As a result, no viremia and antibody response were detected in piglets that were injected with a mutant without all N-linked glycans in GP5. These results suggest that the N-linked glycosylation of GP5 is critically important for virus replication in vivo. The study also showed that removal of N44-linked glycan from GP5 increased the sensitivity of mutant virus to convalescent-phase serum samples but did not elicit a high-level neutralizing antibody response to wt PRRSV. The results obtained from the present study have made significant contributions to better understanding the importance of glycosylation of GP5 in the biology of PRRSV. PMID:22761373

  8. Cell Surface Glycan Changes in the Spontaneous Epithelial-Mesenchymal Transition of Equine Amniotic Multipotent Progenitor Cells.

    PubMed

    Lange-Consiglio, Anna; Accogli, Gianluca; Cremonesi, Fausto; Desantis, Salvatore

    2014-01-01

    Amniotic epithelial cells (AECs) spontaneously transform into amniotic mesenchymal cells (AMCs) in vitro during cell culture. Glycocalyx was analyzed to identify the glycan pattern in AECs, AMCs and epithelial-mesenchymal transdifferentiated cells (EMTCs). Pure cell cultures were derived using cloned AEC and AMC cell lines obtained by the dilution technique from amniotic membranes. Mesenchymal cells generated by differentiation of clonal epithelial cells were considered transdifferentiated. Immunocytoscreen, in vitro multipotent differentiation and molecular characterization of EMTCs were performed. In combination with saponification and sialidase digestion, a panel of 12 lectins was used to analyze the glycan pattern of AEC, AMC and EMTC glycocalyx. Cytokeratin cell markers were lost in EMTCs and typical mesenchymal markers, such as vimentin, appeared. These cells retained their differentiation potential. Lectin histochemistry revealed a cell-specific glycan profile. Galactose (Gal)β1,4GlcNAc, Neu5Acα2,6Gal/GalNAc and N-acetyl neuraminic (sialic) acid (NeuNAc)α2,3Galβ1,3(±NeuNAcα2,6)GalNAc were highly expressed on the surface of all the amniotic cell cultures. AECs expressed asialoglycans with terminal GalNAc and GlcNAc. More highly mannosylated N-linked glycans and NeuNAcα2,3Galβ1,3GalNAc in O-linked glycans were expressed by EMTCs, but these cells had fewer glycans ending with fucose (Fuc), Gal, GlcNAc and GalNAc than AECs. GlcNAc- and GalNAc-terminating glycans were similarly expressed on the glycocalyx of the mesenchymal cell populations (EMTCs and AMCs). These results demonstrate for the first time that the spontaneous epithelial-mesenchymal transition (EMT) of equine amnion cells is characterized by cell surface glycan remodeling and that glycosylation changes result in a cell type-specific glycan profile. The glycopattern of equine amnion spontaneous EMTCs differs from EMT of tumoral cells. PMID:26337136

  9. Vesicle trafficking and cell surface membrane patchiness.

    PubMed

    Tang, Q; Edidin, M

    2001-07-01

    Membrane proteins and lipids often appear to be distributed in patches on the cell surface. These patches are often assumed to be membrane domains, arising from specific molecular associations. However, a computer simulation (Gheber and Edidin, 1999) shows that membrane patchiness may result from a combination of vesicle trafficking and dynamic barriers to lateral mobility. The simulation predicts that the steady-state patches of proteins and lipids seen on the cell surface will decay if vesicle trafficking is inhibited. To test this prediction, we compared the apparent sizes and intensities of patches of class I HLA molecules, integral membrane proteins, before and after inhibiting endocytic vesicle traffic from the cell surface, either by incubation in hypertonic medium or by expression of a dominant-negative mutant dynamin. As predicted by the simulation, the apparent sizes of HLA patches increased, whereas their intensities decreased after endocytosis and vesicle trafficking were inhibited. PMID:11423406

  10. Surface texturing and patterning in solar cells

    SciTech Connect

    Green, M.A.

    1993-11-01

    Surface texture can perform a number of functions in modern solar cell design. The most obvious function is in control of reflection from surfaces on which sunlight is incident. However, texture can also be used to influence the fate of light that is refracted into the cell. Light steering by surface texture can ensure this refracted light is absorbed in regions of the cell which are most responsive. When used with rear reflectors, surface texture can help trap weakly absorbed light into the cell, increasing the effective path length or optical thickness of the cell by factors of 30--60. Two general types of texture are considered. One involves macroscopic features of controlled shape designed to control the direction of interacting light. The other is based on the use of irregular features of size comparable to wavelength of the light. These can be very effective in scattering light into a wide range of directions. Non-optical uses of texture are also briefly described. 62 refs., 22 figs.

  11. Production of cell surface and secreted glycoproteins in mammalian cells.

    PubMed

    Seiradake, Elena; Zhao, Yuguang; Lu, Weixian; Aricescu, A Radu; Jones, E Yvonne

    2015-01-01

    Mammalian protein expression systems are becoming increasingly popular for the production of eukaryotic secreted and cell surface proteins. Here we describe methods to produce recombinant proteins in adherent or suspension human embryonic kidney cell cultures, using transient transfection or stable cell lines. The protocols are easy to scale up and cost-efficient, making them suitable for protein crystallization projects and other applications that require high protein yields. PMID:25502196

  12. New method for the determination of protein N-linked homocysteine.

    PubMed

    Jakubowski, Hieronim

    2008-09-15

    Homocysteine (Hcy) is incorporated into protein via a reaction of the thioester Hcy-thiolactone with epsilon-amino group of a protein lysine residue. This reaction leads to impairment and alteration of protein's function and has been implicated in atherothrombotic disease. However, the data regarding N-linked Hcy content in proteins are limited, mostly due to a lack of facile assays. Here I describe a new sensitive assay for the determination of protein N-linked Hcy and demonstrate its utility for individual proteins and biological fluids. N-linked Hcy is liberated from proteins by acid hydrolysis and converted to Hcy-thiolactone, which is then purified and quantified by high-performance liquid chromatography on a cation exchange column. The quantification is by fluorescence after postcolumn derivatization with o-phthaldialdehyde. Using this assay, the levels of N-linked Hcy in individual pure proteins were found to vary from as high as 0.470-0.515 mol/mol protein for human and equine ferritins to as low as 0.00006 mol/mol protein for chicken lysozyme. Hemoglobins from a variety of species contained more N-linked Hcy than did corresponding albumins (0.0127-0.0828 vs. 0.0027-0.0086 mol/mol). Normal human plasma and milk were found to contain submicromolar concentrations of protein N-linked Hcy, whereas cow milk and whey contained micromolar concentrations of protein N-linked Hcy. PMID:18571492

  13. Modification of the Campylobacter jejuni N-linked glycan by EptC protein-mediated addition of phosphoethanolamine.

    PubMed

    Scott, Nichollas E; Nothaft, Harald; Edwards, Alistair V G; Labbate, Maurizio; Djordjevic, Steven P; Larsen, Martin R; Szymanski, Christine M; Cordwell, Stuart J

    2012-08-24

    Campylobacter jejuni is the major worldwide cause of bacterial gastroenteritis. C. jejuni possesses an extensive repertoire of carbohydrate structures that decorate both protein and non-protein surface-exposed structures. An N-linked glycosylation system encoded by the pgl gene cluster mediates the synthesis of a rigidly conserved heptasaccharide that is attached to protein substrates or released as free oligosaccharide in the periplasm. Removal of N-glycosylation results in reduced virulence and impeded host cell attachment. Since the N-glycan is conserved, the N-glycosylation system is also an attractive option for glycoengineering recombinant vaccines in Escherichia coli. To determine whether non-canonical N-glycans are present in C. jejuni, we utilized high throughput glycoproteomics to characterize C. jejuni JHH1 and identified 93 glycosylation sites, including 34 not previously reported. Interrogation of these data allowed the identification of a phosphoethanolamine (pEtN)-modified variant of the N-glycan that was attached to multiple proteins. The pEtN moiety was attached to the terminal GalNAc of the canonical N-glycan. Deletion of the pEtN transferase eptC removed all evidence of the pEtN-glycan but did not globally influence protein reactivity to patient sera, whereas deletion of the pglB oligosaccharyltransferase significantly reduced reactivity. Transfer of eptC and the pgl gene cluster to E. coli confirmed the addition of the pEtN-glycan to a target C. jejuni protein. Significantly reduced, yet above background levels of pEtN-glycan were also observed in E. coli not expressing eptC, suggesting that endogenous E. coli pEtN transferases can mediate the addition of pEtN to N-glycans. The addition of pEtN must be considered in the context of glycoengineering and may alter C. jejuni glycan-mediated structure-function interactions. PMID:22761430

  14. Glycopeptide Capture for Cell Surface Proteomics

    PubMed Central

    Lee, M. C. Gilbert; Sun, Bingyun

    2014-01-01

    Cell surface proteins, including extracellular matrix proteins, participate in all major cellular processes and functions, such as growth, differentiation, and proliferation. A comprehensive characterization of these proteins provides rich information for biomarker discovery, cell-type identification, and drug-target selection, as well as helping to advance our understanding of cellular biology and physiology. Surface proteins, however, pose significant analytical challenges, because of their inherently low abundance, high hydrophobicity, and heavy post-translational modifications. Taking advantage of the prevalent glycosylation on surface proteins, we introduce here a high-throughput glycopeptide-capture approach that integrates the advantages of several existing N-glycoproteomics means. Our method can enrich the glycopeptides derived from surface proteins and remove their glycans for facile proteomics using LC-MS. The resolved N-glycoproteome comprises the information of protein identity and quantity as well as their sites of glycosylation. This method has been applied to a series of studies in areas including cancer, stem cells, and drug toxicity. The limitation of the method lies in the low abundance of surface membrane proteins, such that a relatively large quantity of samples is required for this analysis compared to studies centered on cytosolic proteins. PMID:24836557

  15. Solar cell having improved front surface metallization

    SciTech Connect

    Lillington, D.R.; Mardesich, N.; Dill, H.G.; Garlick, G.F.J.

    1987-09-15

    This patent describes a solar cell comprising: a first layer of gallium arsenide semiconductor material of an N+ conductivity; a second layer of gallium arsenide semiconductor material of an N conductivity overlying the first layer; a third layer of gallium arsenide semiconductor material of a P conductivity overlying the N conductivity layer and forming a P-N junction therebetween. A layer of aluminium gallium arsenide semiconductor material of a p conductivity overlying the front major surface of the P conductivity third layer and having an exposed surface essentially parallel to the front major surface and at least one edge; a plurality of metallic contact lines made of a first metal alloy composition and being spaced apart by a first predetermined distance traversing the exposed surface and extending through the aluminium gallium arsenide layer to the front major surface and making electrical contact to the third layer; a plurality of longitudinally disposed metallic grid lines made of a second metal alloy composition and being spaced apart by a second predetermined distance located on the exposed surface of the aluminium gallium arsenide layer and which cross the metallic contact lines and make electrical contact to the metallic lines; a flat metallic strip disposed on the aluminium gallium arsenide layer exposed surface near the edge, the strip electrically coupling the metallic grid lines to one another; and a back contact located on the back major surface.

  16. Galactosyltransferase 4 is a major control point for glycan branching in N-linked glycosylation

    PubMed Central

    McDonald, Andrew G.; Hayes, Jerrard M.; Bezak, Tania; Głuchowska, Sonia A.; Cosgrave, Eoin F. J.; Struwe, Weston B.; Stroop, Corné J. M.; Kok, Han; van de Laar, Teun; Rudd, Pauline M.; Tipton, Keith F.; Davey, Gavin P.

    2014-01-01

    ABSTRACT Protein N-glycosylation is a common post-translational modification that produces a complex array of branched glycan structures. The levels of branching, or antennarity, give rise to differential biological activities for single glycoproteins. However, the precise mechanism controlling the glycan branching and glycosylation network is unknown. Here, we constructed quantitative mathematical models of N-linked glycosylation that predicted new control points for glycan branching. Galactosyltransferase, which acts on N-acetylglucosamine residues, was unexpectedly found to control metabolic flux through the glycosylation pathway and the level of final antennarity of nascent protein produced in the Golgi network. To further investigate the biological consequences of glycan branching in nascent proteins, we glycoengineered a series of mammalian cells overexpressing human chorionic gonadotropin (hCG). We identified a mechanism in which galactosyltransferase 4 isoform regulated N-glycan branching on the nascent protein, subsequently controlling biological activity in an in vivo model of hCG activity. We found that galactosyltransferase 4 is a major control point for glycan branching decisions taken in the Golgi of the cell, which might ultimately control the biological activity of nascent glycoprotein. PMID:25271059

  17. Evidence that cell surface beta 1,4-galactosyltransferase spontaneously galactosylates an underlying laminin substrate during fibroblast migration.

    PubMed

    Begovac, P C; Shi, Y X; Mansfield, D; Shur, B D

    1994-12-16

    beta 1,4-Galactosyltransferase is unusual among the glycosyltransferases in that a subpopulation exists on the cell surface in addition to its traditional biosynthetic location within the Golgi complex. On the cell surface, galactosyltransferase is expressed in spatially restricted, cell type-specific domains, where it functions as a receptor for extracellular oligosaccharide ligands during selected cellular interactions. For example, galactosyltransferase is found on the leading and trailing edges of migrating cells, where it facilitates lamellipodia formation and cell spreading by binding to specific N-linked oligosaccharides within laminin. Although the ability of galactosyltransferase to serve as a laminin receptor is well documented, it is unclear whether it functions solely in a lectin-like capacity to bind laminin glycoside ligands or uses its intrinsic catalytic activity to release itself from and modify its oligosaccharide substrate. In this study, we determined whether cell surface galactosyltransferase spontaneously galactosylates laminin matrices during cell migration using endogenous galactose donors. Cells were prelabeled with [3H]galactose, washed, and transferred in small clusters onto laminin matrices. The prelabeled cells migrated out from the cell cluster, during which time they deposited covalently bound [3H]galactose residues onto the laminin matrix. The degree of galactosylation was both laminin- and time-dependent and required actively migrating, intact cells. The radioactivity released from the 3H-galactosylated laminin by acid hydrolysis comigrated with authentic galactose standards on paper chromatography. In parallel assays, there was no radioactivity deposited on laminin matrices when cells were prelabeled with [3H]fucose or [3H]leucine. Furthermore, [3H]galactosylation was dependent upon galactosyltransferase-mediated cell migration, since prelabeled cells did not deposit [3H]galactose when migrating on fibronectin, upon which migration

  18. Engineering novel cell surface chemistry for selective tumor cell targeting

    SciTech Connect

    Bertozzi, C.R. |

    1997-12-31

    A common feature of many different cancers is the high expression level of the two monosaccharides sialic acid and fucose within the context of cell-surface associated glycoconjugates. A correlation has been made between hypersialylation and/or hyperfucosylation and the highly metastatic phenotype. Thus, a targeting strategy based on sialic acid or fucose expression would be a powerful tool for the development of new cancer cell-selective therapies and diagnostic agents. We have discovered that ketone groups can be incorporated metabolically into cell-surface associated sialic acids. The ketone is can be covalently ligated with hydrazide functionalized proteins or small molecules under physiological conditions. Thus, we have discovered a mechanism to selectively target hydrazide conjugates to highly sialylated cells such as cancer cells. Applications of this technology to the generation of novel cancer cell-selective toxins and MRI contrast reagents will be discussed, in addition to progress towards the use of cell surface fucose residues as vehicles for ketone expression.

  19. Functional analysis of the Campylobacter jejuni N-linked protein glycosylation pathway.

    PubMed

    Linton, Dennis; Dorrell, Nick; Hitchen, Paul G; Amber, Saba; Karlyshev, Andrey V; Morris, Howard R; Dell, Anne; Valvano, Miguel A; Aebi, Markus; Wren, Brendan W

    2005-03-01

    We describe in this report the characterization of the recently discovered N-linked glycosylation locus of the human bacterial pathogen Campylobacter jejuni, the first such system found in a species from the domain Bacteria. We exploited the ability of this locus to function in Escherichia coli to demonstrate through mutational and structural analyses that variant glycan structures can be transferred onto protein indicating the relaxed specificity of the putative oligosaccharyltransferase PglB. Structural data derived from these variant glycans allowed us to infer the role of five individual glycosyltransferases in the biosynthesis of the N-linked heptasaccharide. Furthermore, we show that C. jejuni- and E. coli-derived pathways can interact in the biosynthesis of N-linked glycoproteins. In particular, the E. coli encoded WecA protein, a UDP-GlcNAc: undecaprenylphosphate GlcNAc-1-phosphate transferase involved in glycolipid biosynthesis, provides for an alternative N-linked heptasaccharide biosynthetic pathway bypassing the requirement for the C. jejuni-derived glycosyltransferase PglC. This is the first experimental evidence that biosynthesis of the N-linked glycan occurs on a lipid-linked precursor prior to transfer onto protein. These findings provide a framework for understanding the process of N-linked protein glycosylation in Bacteria and for devising strategies to exploit this system for glycoengineering. PMID:15752194

  20. Specificity of human galectins on cell surfaces.

    PubMed

    Rapoport, E M; Bovin, N V

    2015-07-01

    Galectins are β-galactoside-binding proteins sharing homology in amino acid sequence of their carbohydrate-recognition domain. Their carbohydrate specificity outside cells has been studied previously. The main conclusion of these studies was that several levels of glycan ligand recognition exist for galectins: (i) disaccharide Galβ1-4GlcNAc (LN, N-acetyllactosamine) binds stronger than β-galactopyranose; (ii) substitution at O-2 and O-3 of galactose residue as well as core fragments ("right" from GlcNAc) provides significant increase in affinity; (iii) similarly glycosylated proteins can differ significantly in affinity to galectins. Information about the natural cellular receptors of galectins is limited. Until recently, it was impossible to study specificity of cell-bound galectins. A model based on controlled incorporation of a single protein into glycocalyx of cells and subsequent interaction of loaded cells with synthetic glycoprobes measured by flow cytometry made this possible recently. In this review, data about glycan specificity of proto-, chimera-, and tandem-repeat type galectins on the cell surface are systematized, and comparative analysis of the results with data on specificity of galectins in artificial systems was performed. The following conclusions from these studies were made: (i) cellular galectins have practically no ability to bind disaccharide LNn, but display affinity to 3'-substituted oligolactosamines and oligomers LNn; (ii) tandem-repeat type galectins recognize another disaccharide, namely Galβ1-3GlcNAc (Le(c)); (iii) on the cell surface, tandem-repeat type galectins conserve the ability to display high affinity to blood group antigens of ABH system; (iv) in general, when galectins are immersed into glycocalyx, they are more selective regarding glycan interactions. Thus, we conclude that competitive interaction of galectins with cell microenvironment (endogenous cell glycans) is the main factor providing selectivity of galectins in

  1. Mutation of a Single Envelope N-Linked Glycosylation Site Enhances the Pathogenicity of Bovine Leukemia Virus

    PubMed Central

    Bouzar, Amel Baya; Jacques, Jean-Rock; Cosse, Jean-Philippe; Gillet, Nicolas; Callebaut, Isabelle; Reichert, Michal

    2015-01-01

    ABSTRACT Viruses have coevolved with their host to ensure efficient replication and transmission without inducing excessive pathogenicity that would indirectly impair their persistence. This is exemplified by the bovine leukemia virus (BLV) system in which lymphoproliferative disorders develop in ruminants after latency periods of several years. In principle, the equilibrium reached between the virus and its host could be disrupted by emergence of more pathogenic strains. Intriguingly but fortunately, such a hyperpathogenic BLV strain was never observed in the field or designed in vitro. In this study, we sought to understand the role of envelope N-linked glycosylation with the hypothesis that this posttranslational modification could either favor BLV infection by allowing viral entry or allow immune escape by using glycans as a shield. Using reverse genetics of an infectious molecular provirus, we identified a N-linked envelope glycosylation site (N230) that limits viral replication and pathogenicity. Indeed, mutation N230E unexpectedly leads to enhanced fusogenicity and protein stability. IMPORTANCE Infection by retroviruses requires the interaction of the viral envelope protein (SU) with a membrane-associated receptor allowing fusion and release of the viral genomic RNA into the cell. We show that N-linked glycosylation of the bovine leukemia virus (BLV) SU protein is, as expected, essential for cell infection in vitro. Consistently, mutation of all glycosylation sites of a BLV provirus destroys infectivity in vivo. However, single mutations do not significantly modify replication in vivo. Instead, a particular mutation at SU codon 230 increases replication and accelerates pathogenesis. This unexpected observation has important consequences in terms of disease control and managing. PMID:26085161

  2. Cell Surface Markers in HTLV-1 Pathogenesis

    PubMed Central

    Kress, Andrea K.; Grassmann, Ralph; Fleckenstein, Bernhard

    2011-01-01

    The phenotype of HTLV-1-transformed CD4+ T lymphocytes largely depends on defined viral effector molecules such as the viral oncoprotein Tax. In this review, we exemplify the expression pattern of characteristic lineage markers, costimulatory receptors and ligands of the tumor necrosis factor superfamily, cytokine receptors, and adhesion molecules on HTLV-1-transformed cells. These molecules may provide survival signals for the transformed cells. Expression of characteristic surface markers might therefore contribute to persistence of HTLV-1-transformed lymphocytes and to the development of HTLV-1-associated disease. PMID:21994790

  3. A Human Pluripotent Stem Cell Surface N-Glycoproteome Resource Reveals Markers, Extracellular Epitopes, and Drug Targets

    PubMed Central

    Boheler, Kenneth R.; Bhattacharya, Subarna; Kropp, Erin M.; Chuppa, Sandra; Riordon, Daniel R.; Bausch-Fluck, Damaris; Burridge, Paul W.; Wu, Joseph C.; Wersto, Robert P.; Chan, Godfrey Chi Fung; Rao, Sridhar; Wollscheid, Bernd; Gundry, Rebekah L.

    2014-01-01

    Summary Detailed knowledge of cell-surface proteins for isolating well-defined populations of human pluripotent stem cells (hPSCs) would significantly enhance their characterization and translational potential. Through a chemoproteomic approach, we developed a cell-surface proteome inventory containing 496 N-linked glycoproteins on human embryonic (hESCs) and induced PSCs (hiPSCs). Against a backdrop of human fibroblasts and 50 other cell types, >100 surface proteins of interest for hPSCs were revealed. The >30 positive and negative markers verified here by orthogonal approaches provide experimental justification for the rational selection of pluripotency and lineage markers, epitopes for cell isolation, and reagents for the characterization of putative hiPSC lines. Comparative differences between the chemoproteomic-defined surfaceome and the transcriptome-predicted surfaceome directly led to the discovery that STF-31, a reported GLUT-1 inhibitor, is toxic to hPSCs and efficient for selective elimination of hPSCs from mixed cultures. PMID:25068131

  4. Comparative structural study of N-linked oligosaccharides of urinary and recombinant erythropoietins.

    PubMed

    Tsuda, E; Goto, M; Murakami, A; Akai, K; Ueda, M; Kawanishi, G; Takahashi, N; Sasaki, R; Chiba, H; Ishihara, H

    1988-07-26

    The structures of the N-linked oligosaccharides of the urinary erythropoietin (u-EPO) purified from urine of aplastic anemic patients were analyzed and compared with those for recombinant erythropoietin (r-EPO) prepared with baby hamster kidney (BHK) cells. Asparagine-linked neutral oligosaccharides were released from each EPO protein by N-oligosaccharide glycopeptidase (almond) digestion. The reducing ends of the oligosaccharide chains thus obtained were aminated with a fluorescent reagent, 2-aminopyridine, and the mixture of pyridylamino derivatives of the oligosaccharides was separated by high-performance liquid chromatography (HPLC) on an ODS silica column. More than 8 and 13 kinds of oligosaccharide fractions for u-EPO and r-EPO (BHK), respectively, were completely separated by the one-step HPLC procedure. The structure of each oligosaccharide thus isolated was analyzed by a combination of sequential exoglycosidase digestion and another kind of HPLC with an amide-silica column. Furthermore, high-resolution proton nuclear magnetic resonance (1H NMR) spectroscopy and methylation analyses were carried out in the case of r-EPO (BHK).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3179269

  5. Mass Spectrometric Quantification of N-Linked Glycans by Reference to Exogenous Standards.

    PubMed

    Mehta, Nickita; Porterfield, Mindy; Struwe, Weston B; Heiss, Christian; Azadi, Parastoo; Rudd, Pauline M; Tiemeyer, Michael; Aoki, Kazuhiro

    2016-09-01

    Environmental and metabolic processes shape the profile of glycoprotein glycans expressed by cells, whether in culture, developing tissues, or mature organisms. Quantitative characterization of glycomic changes associated with these conditions has been achieved historically by reductive coupling of oligosaccharides to various fluorophores following release from glycoprotein and subsequent HPLC or capillary electrophoretic separation. Such labeling-based approaches provide a robust means of quantifying glycan amount based on fluorescence yield. Mass spectrometry, on the other hand, has generally been limited to relative quantification in which the contribution of the signal intensity for an individual glycan is expressed as a percent of the signal intensity summed over the total profile. Relative quantification has been valuable for highlighting changes in glycan expression between samples; sensitivity is high, and structural information can be derived by fragmentation. We have investigated whether MS-based glycomics is amenable to absolute quantification by referencing signal intensities to well-characterized oligosaccharide standards. We report the qualification of a set of N-linked oligosaccharide standards by NMR, HPLC, and MS. We also demonstrate the dynamic range, sensitivity, and recovery from complex biological matrices for these standards in their permethylated form. Our results indicate that absolute quantification for MS-based glycomic analysis is reproducible and robust utilizing currently available glycan standards. PMID:27432553

  6. Complicated N-linked glycans in simple organisms

    PubMed Central

    Schiller, Birgit; Hykollari, Alba; Yan, Shi; Paschinger, Katharina; Wilson, Iain B. H.

    2013-01-01

    Although countless genomes have now been sequenced, the glycomes of the vast majority of eukaryotes still present a series of unmapped frontiers. However, strides are being made in a few groups of invertebrate and unicellular organisms as regards their N-glycans and N-glycosylation pathways. Thereby, the traditional classification of glycan structures inevitably approaches its boundaries. Indeed, the glycomes of these organisms are rich in surprises including a multitude of modifications of the core regions of N-glycans and unusual antennae. From the actually rather limited glycomic information we have, it is nevertheless obvious that the biotechnological, developmental and immunological relevance of these modifications, especially in insect cell lines, model organisms and parasites means that deciphering unusual glycomes is of more than just academic interest. PMID:22944671

  7. Cell surface receptors for CCN proteins.

    PubMed

    Lau, Lester F

    2016-06-01

    The CCN family (CYR61; CTGF; NOV; CCN1-6; WISP1-3) of matricellular proteins in mammals is comprised of six homologous members that play important roles in development, inflammation, tissue repair, and a broad range of pathological processes including fibrosis and cancer. Despite considerable effort to search for a high affinity CCN-specific receptor akin to growth factor receptors, no such receptor has been found. Rather, CCNs bind several groups of multi-ligand receptors as characteristic of other matricellular proteins. The most extensively documented among CCN-binding receptors are integrins, including αvβ3, αvβ5, α5β1, α6β1, αIIbβ3, αMβ2, and αDβ2, which mediate diverse CCN functions in various cell types. CCNs also bind cell surface heparan sulfate proteoglycans (HSPGs), low density liproprotein receptor-related proteins (LRPs), and the cation-independent mannose-6-phosphate (M6P) receptor, which are endocytic receptors that may also serve as co-receptors in cooperation with other cell surface receptors. CCNs have also been reported to bind FGFR-2, Notch, RANK, and TrkA, potentially altering the affinities of these receptors for their ligands. The ability of CCNs to bind a multitude of receptors in various cell types may account for the remarkable versatility of their functions, and underscore the diverse signaling pathways that mediate their activities. PMID:27098435

  8. Analysis of N-linked oligosaccharide chains of glycoproteins on nitrocellulose sheets using lectin-peroxidase reagents.

    PubMed

    Kijimoto-Ochiai, S; Katagiri, Y U; Ochiai, H

    1985-05-15

    A rapid and convenient method was established for analysis of the N-linked carbohydrate chains of glycoproteins on nitrocellulose sheets. Proteins were separated by polyacrylamide gel electrophoresis, transferred to nitrocellulose sheets, reacted with peroxidase-coupled lectins, and detected by color development of the enzyme reaction. Four glycoproteins having N-linked oligosaccharide chains were used as test materials: Taka-amylase A (which has a high-mannose-type chain), ovalbumin (high-mannose-type chains and hybrid-type chains), transferrin (biantennary chains of complex type), and fetuin (triantennary chains of complex type and O-linked-type chains). Concanavalin A interacted with Taka-amylase A, transferrin, and ovalbumin but barely interacted with fetuin. After treatment of the glycoproteins on a nitrocellulose sheet with endo-beta-N-acetylglucosaminidase H, transferrin reacted with concanavalin A but Taka-amylase A and ovalbumin did not. Wheat germ agglutinin interacted with Taka-amylase A but not ovalbumin; therefore, they were distinguishable from each other. Fetuin and transferrin were detected by Ricinus communis agglutinin or peanut agglutinin after removal of sialic acid by treatment with neuraminidase or by weak-acid hydrolysis. Erythroagglutinating Phaseolus vulgaris agglutinin detected fetuin and transferrin. Thus, the combined use of these procedures distinguished the four different types of N-linked glycoproteins. This method was also applied to the analysis of membrane glycoproteins from sheep red blood cells. The terminally positioned sugars of sialic acid, alpha-fucose, alpha-galactose, and alpha-N-acetylgalactosamine were also detected with lectins from Limulus polyphemus, Lotus tetragonolobus, Maclura pomifera, and Dolichos biflorus, respectively. PMID:2411164

  9. Yeast cell-surface expression of chitosanase from Paenibacillus fukuinensis.

    PubMed

    Fukuda, Takeshi; Isogawa, Danya; Takagi, Madoka; Kato-Murai, Michiko; Kimoto, Hisashi; Kusaoke, Hideo; Ueda, Mitsuyoshi; Suye, Shin-Ichiro

    2007-11-01

    To produce chitoorigosaccharides using chitosan, we attempted to construct Paenibacillus fukuinensis chitosanase-displaying yeast cells as a whole-cell biocatalyst through yeast cell-surface engineering. The localization of the chitosanase on the yeast cell surface was confirmed by immunofluorescence labeling of cells. The chitosanase activity of the constructed yeast was investigated by halo assay and the dinitrosalicylic acid method. PMID:17986777

  10. CZTSSe thin film solar cells: Surface treatments

    NASA Astrophysics Data System (ADS)

    Joglekar, Chinmay Sunil

    Chalcopyrite semiconducting materials, specifically CZTS, are a promising alternative to traditional silicon solar cell technology. Because of the high absorption coefficient; films of the order of 1 micrometer thickness are sufficient for the fabrication of solar cells. Liquid based synthesis methods are advantageous because they are easily scalable using the roll to roll manufacturing techniques. Various treatments are explored in this study to enhance the performance of the selenized CZTS film based solar cells. Thiourea can be used as a sulfur source and can be used to tune band gap of CZTSSe. Bromine etching can be used to manipulate the thickness of sintered CZTSSe film. The etching treatment creates recombination centers which lead to poor device performance. Various after treatments were used to improve the performance of the devices. It was observed that the performance of the solar cell devices could not be improved by any of the after treatment steps. Other surface treatment processes are explored including KCN etching and gaseous H2S treatments. Hybrid solar cells which included use of CIGS nanoparticles at the interface between CZTSSe and CdS are also explored.

  11. The criticality of high-resolution N-linked carbohydrate assays and detailed characterization of antibody effector function in the context of biosimilar development.

    PubMed

    Brady, Lowell J; Velayudhan, Jyoti; Visone, Devi B; Daugherty, Ken C; Bartron, Jeff L; Coon, Michael; Cornwall, Cabot; Hinckley, Peter J; Connell-Crowley, Lisa

    2015-01-01

    Accurate measurement and functional characterization of antibody Fc domain N-linked glycans is critical to successful biosimilar development. Here, we describe the application of methods to accurately quantify and characterize the N-linked glycans of 2 IgG1 biosimilars with effector function activity, and show the potential pitfalls of using assays with insufficient resolution. Accurate glycan assessment was combined with glycan enrichment using lectin chromatography or production with glycosylation inhibitors to produce enriched pools of key glycan species for subsequent assessment in cell-based antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity effector function assays. This work highlights the challenges of developing high-quality biosimilar candidates and the need for modern biotechnology capabilities. These results show that high-quality analytics, combined with sensitive cell-based assays to study in vivo mechanisms of action, is an essential part of biosimilar development. PMID:25898160

  12. The criticality of high-resolution N-linked carbohydrate assays and detailed characterization of antibody effector function in the context of biosimilar development

    PubMed Central

    Brady, Lowell J; Velayudhan, Jyoti; Visone, Devi B; Daugherty, Ken C; Bartron, Jeff L; Coon, Michael; Cornwall, Cabot; Hinckley, Peter J; Connell-Crowley, Lisa

    2015-01-01

    Accurate measurement and functional characterization of antibody Fc domain N-linked glycans is critical to successful biosimilar development. Here, we describe the application of methods to accurately quantify and characterize the N-linked glycans of 2 IgG1 biosimilars with effector function activity, and show the potential pitfalls of using assays with insufficient resolution. Accurate glycan assessment was combined with glycan enrichment using lectin chromatography or production with glycosylation inhibitors to produce enriched pools of key glycan species for subsequent assessment in cell-based antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity effector function assays. This work highlights the challenges of developing high-quality biosimilar candidates and the need for modern biotechnology capabilities. These results show that high-quality analytics, combined with sensitive cell-based assays to study in vivo mechanisms of action, is an essential part of biosimilar development. PMID:25898160

  13. Production, characterization, and pharmacokinetic properties of antibodies with N-linked mannose-5 glycans.

    PubMed

    Yu, Marcella; Brown, Darren; Reed, Chae; Chung, Shan; Lutman, Jeff; Stefanich, Eric; Wong, Anne; Stephan, Jean-Philippe; Bayer, Robert

    2012-01-01

    The effector functions of therapeutic antibodies are strongly affected by the specific glycans added to the Fc domain during post-translational processing. Antibodies bearing high levels of N-linked mannose-5 glycan (Man5) have been reported to exhibit enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) compared with antibodies with fucosylated complex or hybrid glycans. To better understand the relationship between antibodies with high levels of Man5 and their biological activity in vivo, we developed an approach to generate substantially homogeneous antibodies bearing the Man5 glycoform. A mannosidase inhibitor, kifunensine, was first incorporated in the cell culture process to generate antibodies with a distribution of high mannose glycoforms. Antibodies were then purified and treated with a mannosidase for trimming to Man5 in vitro. This 2-step approach can consistently generate antibodies with > 99% Man5 glycan. Antibodies bearing varying levels of Man5 were studied to compare ADCC and Fcγ receptor binding, and they showed enhanced ADCC activity and increased binding affinity to the FcγRIIIA. In addition, the clearance rate of antibodies bearing Man8/9 and Man5 glycans was determined in a pharmacokinetics study in mice. When compared with historical data, the antibodies bearing the high mannose glycoform exhibited faster clearance rate compared with antibodies bearing the fucosylated complex glycoform, while the pharmacokinetic properties of antibodies with Man8/9 and Man5 glycoforms appeared similar. In addition, we identified the presence of a mannosidase in mouse serum that converted most Man8/9 to Man6 after 24 h. PMID:22699308

  14. Knowledge discovery of cell-cell and cell-surface interactions

    NASA Astrophysics Data System (ADS)

    Su, Jing

    High-throughput cell culture is an emerging technology that shows promise as a tool for research in tissue engineering, drug discovery, and medical diagnostics. An important, but overlooked, challenge is the integration of experimental methods with information processing suitable for handling large databases of cell-cell and cell-substrate interactions. In this work the traditional global descriptions of cell behaviors and surface characteristics was shown insufficient for investigating short-distance cell-to-cell and cell-to-surface interactions. Traditional summary metrics cannot distinguish information of cell near neighborhood from the average, global features, thus often is not suitable for studying distance-sensitive cell behaviors. The problem of traditional summary metrics was addressed by introducing individual-cell based local metrics that emphasize cell local environment. An individual-cell based local data analysis method was established. Contact inhibition of cell proliferation was used as a benchmark for the effectiveness of the local metrics and the method. Where global, summary metrics were unsuccessful, the local metrics successfully and quantitatively distinguished the contact inhibition effects of MC3T3-E1 cells on PLGA, PCL, and TCPS surfaces. In order to test the new metrics and analysis method in detail, a model of cell contact inhibition was proposed. Monte Carlo simulation was performed for validating the individual-cell based local data analysis method as well as the cell model itself. The simulation results well matched with the experimental observations. The parameters used in the cell model provided new descriptions of both cell behaviors and surface characteristics. Based on the viewpoint of individual cells, the local metrics and local data analysis method were extended to the investigation of cell-surface interactions, and a new high-throughput screening and knowledge discovery method on combinatorial libraries, local cell

  15. Cell surface lectin array: parameters affecting cell glycan signature.

    PubMed

    Landemarre, Ludovic; Cancellieri, Perrine; Duverger, Eric

    2013-04-01

    Among the "omics", glycomics is one of the most complex fields and needs complementary strategies of analysis to decipher the "glycan dictionary". As an alternative method, which has developed since the beginning of the 21st century, lectin array technology could generate relevant information related to glycan motifs, accessibility and a number of other valuable insights from molecules (purified and non-purified) or cells. Based on a cell line model, this study deals with the key parameters that influence the whole cell surface glycan interaction with lectin arrays and the consequences on the interpretation and reliability of the results. The comparison between the adherent and suspension forms of Chinese Hamster Ovary (CHO) cells, showed respective glycan signatures, which could be inhibited specifically by neoglycoproteins. The modifications of the respective glycan signatures were also revealed according to the detachment modes and cell growth conditions. Finally the power of lectin array technology was highlighted by the possibility of selecting and characterizing a specific clone from the mother cell line, based on the slight difference determination in the respective glycan signatures. PMID:22899543

  16. Supplemental Analysis for N-linked Sugars in Adult Pig Islets.

    PubMed

    Eguchi, H; Kawamura, T; Kashiyama, N; Matsuura, R; Sakai, R; Nakahata, K; Lo, P-C; Asada, M; Maeda, A; Goto, M; Toyoda, M; Okuyama, H; Miyagawa, S

    2016-05-01

    The pig pancreas is considered to be one of the most suitable sources of islets for clinical xenotransplantation. However, after producing α1-3galactosyltransferase knockout pigs, most of the organs of these pigs showed less antigenicity to the human body. Wild-type adult pig islets (APIs) that originally produced negligible levels of α-Gal, different from neonatal porcine islet-like cell clusters, showed a clear antigenicity to human serum. Concerning the so-called non-Gal epitopes, many studies related to glycoproteins and glycolipids are ongoing in efforts to identify them. However, our knowledge of non-Gal glycoantigens remains incomplete. In our previous study, N-glycans were isolated from APIs, and the structures of 28 of the N-glycans were detected. In this study, to identify additional structures, further analyses were performed by liquid chromatography-mass spectrometry (LC-MS). N-glycans were isolated from APIs by the method described by O'Neil et al with minor modifications and LC-MS-based structural analyses were then performed. The detected N-glycan peaks in the LC-MS spectra were selected using the FLexAnalysis software program and the structures of the glycans were predicted using the GlyocoMod Tool. The API preparation contained 11 peaks and 16 structures were then nominated as containing N-linked sugars. Among them, 5 sulfated glycans were estimated, confirming the existence of sulfate structures in N-glycans in API. In addition, these data may supplement several N-glycan structures that contain two deoxyhexose units, such as fucose, to our previous report. The data herein will be helpful for future studies of antigenicity associated with API. PMID:27320609

  17. Calculation of cell volumes and surface areas in MCNP

    SciTech Connect

    Hendricks, J.S.

    1980-01-01

    MCNP is a general Monte Carlo neutron-photon particle transport code which treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces, and some special fourth-degree surfaces. It is necessary to calculate cell volumes and surface areas so that cell masses, fluxes, and other important information can be determined. The volume/area calculation in MCNP computes cell volumes and surface areas for cells and surfaces rotationally symmetric about any arbitrary axis. 5 figures, 1 table.

  18. Functional analysis of N-linking oligosaccharyl transferase enzymes encoded by deep-sea vent proteobacteria.

    PubMed

    Mills, Dominic C; Jervis, Adrian J; Abouelhadid, Sherif; Yates, Laura E; Cuccui, Jon; Linton, Dennis; Wren, Brendan W

    2016-04-01

    Bacterial N-linking oligosaccharyl transferases (OTase enzymes) transfer lipid-linked glycans to selected proteins in the periplasm and were first described in the intestinal pathogen Campylobacter jejuni, a member of the ε-proteobacteria-subdivision of bacteria. More recently, orthologues from other ε-proteobacterial Campylobacter and Helicobacter species and a δ-proteobacterium, Desulfovibrio desulfuricans, have been described, suggesting that these two subdivisions of bacteria may be a source of further N-linked protein glycosylation systems. Whole-genome sequencing of both ε- and δ-proteobacteria from deep-sea vent habitats, a rich source of species from these subdivisions, revealed putative ORFs encoding OTase enzymes and associated adjacent glycosyltransferases similar to the C. jejuni N-linked glycosylation locus. We expressed putative OTase ORFs from the deep-sea vent species Nitratiruptor tergarcus, Sulfurovum lithotrophicum and Deferribacter desulfuricans in Escherichia coli and showed that they were able to functionally complement the C. jejuni OTase, CjPglB. The enzymes were shown to possess relaxed glycan specificity, transferring diverse glycan structures and demonstrated different glycosylation sequon specificities. Additionally, a permissive D. desulfuricans acceptor protein was identified, and we provide evidence that the N-linked glycan synthesized by N. tergarcus and S. lithotrophicum contains an acetylated sugar at the reducing end. This work demonstrates that deep-sea vent bacteria encode functional N-glycosylation machineries and are a potential source of biotechnologically important OTase enzymes. PMID:26610891

  19. Functional analysis of N-linking oligosaccharyl transferase enzymes encoded by deep-sea vent proteobacteria

    PubMed Central

    Mills, Dominic C.; Jervis, Adrian J.; Abouelhadid, Sherif; Yates, Laura E.; Cuccui, Jon; Linton, Dennis; Wren, Brendan W.

    2016-01-01

    Bacterial N-linking oligosaccharyl transferases (OTase enzymes) transfer lipid-linked glycans to selected proteins in the periplasm and were first described in the intestinal pathogen Campylobacter jejuni, a member of the ε-proteobacteria-subdivision of bacteria. More recently, orthologues from other ε-proteobacterial Campylobacter and Helicobacter species and a δ-proteobacterium, Desulfovibrio desulfuricans, have been described, suggesting that these two subdivisions of bacteria may be a source of further N-linked protein glycosylation systems. Whole-genome sequencing of both ε- and δ-proteobacteria from deep-sea vent habitats, a rich source of species from these subdivisions, revealed putative ORFs encoding OTase enzymes and associated adjacent glycosyltransferases similar to the C. jejuni N-linked glycosylation locus. We expressed putative OTase ORFs from the deep-sea vent species Nitratiruptor tergarcus, Sulfurovum lithotrophicum and Deferribacter desulfuricans in Escherichia coli and showed they were able to functionally complement the C. jejuni OTase, CjPglB . The enzymes were shown to possess relaxed glycan specificity, transferring diverse glycan structures and demonstrated different glycosylation sequon specificities. Additionally a permissive D. desulfuricans acceptor protein was identified, and we provide evidence that the N-linked glycan synthesised by N. tergarcus and S. lithotrophicum contains an acetylated sugar at the reducing end. This work demonstrates that deep-sea vent bacteria encode functional N-glycosylation machineries and are a potential source of biotechnologically important OTase enzymes. PMID:26610891

  20. Cell surface interaction of annexin A2 and galectin-3 modulates epidermal growth factor receptor signaling in Her-2 negative breast cancer cells.

    PubMed

    Shetty, Praveenkumar; Bargale, Anil; Patil, Basavraj R; Mohan, Rajashekar; Dinesh, U S; Vishwanatha, Jamboor K; Gai, Pramod B; Patil, Vidya S; Amsavardani, T S

    2016-01-01

    Overexpression and activation of tyrosine kinase receptors like EGFR and Src regulate the progression and metastasis of Her-2 negative breast cancer. Recently we have reported the role of cell membrane interaction of phospholipid-binding protein annexin A2 (AnxA2) and EGFR in regulating cellular signaling in the activation of angiogenesis, matrix degradation, invasion, and cancer metastasis. Beta-galactoside-specific animal lectin galectin-3 is an apoptosis inhibitor, and cell surface-associated extracellular galectin-3 also has a role in cell migration, cancer progression, and metastasis. Similar expression pattern and membrane co-localization of these two proteins made us to hypothesize in the current study that galectin-3 and AnxA2 interaction is critical for Her-2 negative breast cancer progression. By various experimental analyses, we confirm that glycosylated AnxA2 at the membrane surface interacts with galectin-3. N-linked glycosylation inhibitor tunicamycin treatment convincingly blocked AnxA2 membrane translocation and its association with galectin-3. To analyze whether this interaction has any functional relevance, we tried to dissociate this interaction with purified plant lectin from chickpea (Cicer arietinum agglutinin). This highly specific 30 kDa plant lectin could dissociate AnxA2 from endogenous lectin galectin-3 interaction at the cell surface. This dissociation could down-regulate Bcl-2 family proteins, cell proliferation, and migration simultaneously triggering cell apoptosis. Targeting this interaction of membrane surface glycoprotein and its animal lectin in Her-2 negative breast cancer may be of therapeutic value. PMID:26438086

  1. M135R is a novel cell surface virulence factor of myxoma virus.

    PubMed

    Barrett, John W; Sypula, Joanna; Wang, Fuan; Alston, Lindsay R; Shao, Zhuhong; Gao, Xiujuan; Irvine, Timothy S; McFadden, Grant

    2007-01-01

    Myxoma virus (MV) encodes a cell surface protein (M135R) that is predicted to mimic the host alpha/beta interferon receptor (IFN-alpha/beta-R) and thus prevent IFN-alpha/beta from triggering a host antiviral response. This prediction is based on sequence similarity to B18R, the viral IFN-alpha/beta-R from vaccinia virus (VV), which has been demonstrated to bind and inhibit type I interferons. However, M135R is only half the size of VV B18R. All other poxvirus-encoded IFN-alpha/beta-R homologs align only to the amino-terminal half of M135R. Peptide antibodies raised against M135R were used for immunoblotting and immunofluorescence and indicate that M135R is expressed as an early gene and that the product is a cell surface N-linked glycoprotein that is not secreted. In contrast to the predicted properties of M135R as an inhibitor of type I interferon, all binding and inhibition assays designed to demonstrate whether M135R can interact with IFN-alpha/beta have been negative. However, pathogenesis studies with a targeted M135-knockout MV construct (vMyx135KO) indicate that the deletion of M135R severely attenuates MV pathogenesis in the European rabbit. We propose that M135R is an important immunomodulatory virulence factor for myxomatosis but that the target immune ligand is not from the predicted type I interferon family and remains to be identified. PMID:17065210

  2. Cell interactions with laser-modified polymer surfaces.

    PubMed

    Ball, M D; Sherlock, R; Glynn, T

    2004-04-01

    The performance of a polymeric biomaterial depends on the bulk and surface properties. Often, however, the suitability of the surface properties is compromised in favour of the bulk properties. Altering the surface properties of these materials will have a profound effect on how cells and proteins interact with them. Here, we have used an excimer laser to modify the surface wettability of nylon 12. The surface treatment is rapid, cost-effective and can cause reproducible changes in the surface structure of the polymers. Polymers were treated with short wavelength ( < 200 nm) UV light. These wavelengths have sufficient photon energy (6.4eV) to cause bond scission at the material surface. This results in a surface reorganisation with incorporation of oxygen. Surface wettability changes were confirmed using contact angle measurements. Cell interactions with the surfaces were examined using 3T3 fibroblast and HUVEC cells. Cells morphology was examined using a confocal laser scanning microscope (CLSM). Cell activity and cell number on the treated nylon were assessed using biochemical assays for up to seven days. Both fibroblasts and endothelial cells initially proliferated better on treated compared with untreated samples. However, over seven days activity decreased for both cell types on the control samples and endothelial cell activity and cell number also decreased on the treated polymer. PMID:15332615

  3. Facile cell patterning on an albumin-coated surface.

    PubMed

    Yamazoe, Hironori; Uemura, Toshimasa; Tanabe, Toshizumi

    2008-08-19

    Fabrication of micropatterned surfaces to organize and control cell adhesion and proliferation is an indispensable technique for cell-based technologies. Although several successful strategies for creating cellular micropatterns on substrates have been demonstrated, a complex multistep process and requirements for special and expensive equipment or materials limit their prevalence as a general experimental tool. To circumvent these problems, we describe here a novel facile fabrication method for a micropatterned surface for cell patterning by utilizing the UV-induced conversion of the cell adhesive property of albumin, which is the most abundant protein in blood plasma. An albumin-coated surface was prepared by cross-linking albumin with ethylene glycol diglycidyl ether and subsequent casting of the cross-linked albumin solution on the cell culture dish. While cells did not attach to the albumin surface prepared in this way, UV exposure renders the surface cell-adhesive. Thus, surface micropatterning was achieved simply by exposing the albumin-coated surface to UV light through a mask with the desired pattern. Mouse fibroblast L929 cells were inoculated on the patterned albumin substrates, and cells attached and spread in a highly selective manner according to the UV-irradiated pattern. Although detailed investigation of the molecular-level mechanism concerning the change in cell adhesiveness of the albumin-coated surface is required, the present results would give a novel facile method for the fabrication of cell micropatterned surfaces. PMID:18627191

  4. Basic surface properties of mononuclear cells from Didelphis marsupialis.

    PubMed

    Nacife, V P; de Meirelles, M de N; Silva Filho, F C

    1998-01-01

    The electrostatic surface charge and surface tension of mononuclear cells/monocytes obtained from young and adult marsupials (Didelphis marsupialis) were investigated by using cationized ferritin and colloidal iron hydroxyde, whole cell electrophoresis, and measurements of contact angles. Anionic sites were found distributed throughout the entire investigated cell surfaces. The results revealed that the anionic character of the cells is given by electrostatic charges corresponding to -18.8 mV (cells from young animals) and -29.3 mV (cells from adult animals). The surface electrostatic charge decreased from 10 to 65.2% after treatment of the cells with each one of trypsin, neuraminidase and phospholipase C. The hydrophobic nature of the mononuclear cell surfaces studied by using the contact angle method revealed that both young and adult cells possess cell surfaces of high hidrofilicity since the angles formed with drops of saline water were 42.5 degrees and 40.8 degrees, respectively. Treatment of the cells with trypsin or neuraminidase rendered their surfaces more hydrophobic, suggesting that sialic acid-containing glycoproteins are responsible for most of the hydrophilicity observed in the mononuclear cell surfaces from D. marsupialis. PMID:9921307

  5. Surface cell differentiation controls tissue surface tension and tissue positioning during zebrafish gastrulation

    NASA Astrophysics Data System (ADS)

    Krens, S. F. G.

    2011-03-01

    Differences in tissue surface tension (TST) between different tissue types are thought to guide tissue organization and cell sorting in development. Measurements of TST have been useful to predict the outcome of in vitro cell sorting and envelopment experiments. However, the outcome of cell sorting experiments in vitro often substantially differs from tissue positioning in vivo, raising questions as to the actual contribution of TST to tissue positioning within the developing embryo. Here, we show that surface tension of germ layer tissues during zebrafish gastrulation critically relies on the differentiation of their surface cells. We also show that surface differentiation of the different germ layer tissues varies and is considerably different between the situation in vitro and in vivo, explaining the apparent dissimilar outcome of cell segregation between these two situations. To analyze germ layer TST as a function of surface cell differentiation, we interfere with surface cell properties of germ layer aggregates by misexpressing genes involved in surface cell differentiation specifically within surface cells using the GAL4-UAS system, and measure tissue surface tension using both parallel plate compression and micropipette aspiration techniques. Our data provides evidence in favor of a critical function of surface cell differentiation in modulating TST and subsequently tissue positioning within the developing embryo.

  6. Melittin interaction with sulfated cell surface sugars.

    PubMed

    Klocek, Gabriela; Seelig, Joachim

    2008-03-01

    Melittin is a 26-residue cationic peptide with cytolytic and antimicrobial properties. Studies on the action mechanism of melittin have focused almost exclusively on the membrane-perturbing properties of this peptide, investigating in detail the melittin-lipid interaction. Here, we report physical-chemical studies on an alternative mechanism by which melittin could interact with the cell membrane. As the outer surface of many cells is decorated with anionic (sulfated) glycosaminoglycans (GAGs), a strong Coulombic interaction between the two oppositely charged molecules can be envisaged. Indeed, the present study using isothermal titration calorimetry reveals a high affinity of melittin for several GAGs, that is, heparan sulfate (HS), dermatan sulfate, and heparin. The microscopic binding constant of melittin for HS is 2.4 x 10 (5) M (-1), the reaction enthalpy is Delta H melittin (0) = -1.50 kcal/mol, and the peptide-to-HS stoichiometry is approximately 11 at 10 mM Tris, 100 mM NaCl at pH 7.4 and 28 degrees C. Delta H melittin (0) is characterized by a molar heat capacity of Delta C P (0) = -227 cal mol (-1) K (-1). The large negative heat capacity change indicates that hydrophobic interactions must also be involved in the binding of melittin to HS. Circular dichroism spectroscopy demonstrates that the binding of the peptide to HS induces a conformational change to a predominantly alpha-helical structure. A model for the melittin-HS complex is presented. Melittin binding was compared with that of magainin 2 and nisin Z to HS. Magainin 2 is known for its antimicrobial properties, but it does not cause lysis of the eukaryotic cells. Nisin Z shows activity against various Gram-positive bacteria. Isothermal titration calorimetry demonstrates that magainin 2 and nisin Z do not bind to HS (5-50 degrees C, 10 mM Tris, and 100 mM NaCl at pH 7.4). PMID:18220363

  7. Cell Surface Markers in Colorectal Cancer Prognosis

    PubMed Central

    Belov, Larissa; Zhou, Jerry; Christopherson, Richard I.

    2011-01-01

    The classification of colorectal cancers (CRC) is currently based largely on histologically determined tumour characteristics, such as differentiation status and tumour stage, i.e., depth of tumour invasion, involvement of regional lymph nodes and the occurrence of metastatic spread to other organs. These are the conventional prognostic factors for patient survival and often determine the requirement for adjuvant therapy after surgical resection of the primary tumour. However, patients with the same CRC stage can have very different disease-related outcomes. For some, surgical removal of early-stage tumours leads to full recovery, while for others, disease recurrence and metastasis may occur regardless of adjuvant therapy. It is therefore important to understand the molecular processes that lead to disease progression and metastasis and to find more reliable prognostic markers and novel targets for therapy. This review focuses on cell surface proteins that correlate with tumour progression, metastasis and patient outcome, and discusses some of the challenges in finding prognostic protein markers in CRC. PMID:21339979

  8. A Mass Spectrometric-Derived Cell Surface Protein Atlas

    PubMed Central

    Bausch-Fluck, Damaris; Hofmann, Andreas; Bock, Thomas; Frei, Andreas P.; Cerciello, Ferdinando; Jacobs, Andrea; Moest, Hansjoerg; Omasits, Ulrich; Gundry, Rebekah L.; Yoon, Charles; Schiess, Ralph; Schmidt, Alexander; Mirkowska, Paulina; Härtlová, Anetta; Van Eyk, Jennifer E.; Bourquin, Jean-Pierre; Aebersold, Ruedi; Boheler, Kenneth R.; Zandstra, Peter; Wollscheid, Bernd

    2015-01-01

    Cell surface proteins are major targets of biomedical research due to their utility as cellular markers and their extracellular accessibility for pharmacological intervention. However, information about the cell surface protein repertoire (the surfaceome) of individual cells is only sparsely available. Here, we applied the Cell Surface Capture (CSC) technology to 41 human and 31 mouse cell types to generate a mass-spectrometry derived Cell Surface Protein Atlas (CSPA) providing cellular surfaceome snapshots at high resolution. The CSPA is presented in form of an easy-to-navigate interactive database, a downloadable data matrix and with tools for targeted surfaceome rediscovery (http://wlab.ethz.ch/cspa). The cellular surfaceome snapshots of different cell types, including cancer cells, resulted in a combined dataset of 1492 human and 1296 mouse cell surface glycoproteins, providing experimental evidence for their cell surface expression on different cell types, including 136 G-protein coupled receptors and 75 membrane receptor tyrosine-protein kinases. Integrated analysis of the CSPA reveals that the concerted biological function of individual cell types is mainly guided by quantitative rather than qualitative surfaceome differences. The CSPA will be useful for the evaluation of drug targets, for the improved classification of cell types and for a better understanding of the surfaceome and its concerted biological functions in complex signaling microenvironments. PMID:25894527

  9. Calreticulin: Roles in Cell-Surface Protein Expression

    PubMed Central

    Jiang, Yue; Dey, Sandeepa; Matsunami, Hiroaki

    2014-01-01

    In order to perform their designated functions, proteins require precise subcellular localizations. For cell-surface proteins, such as receptors and channels, they are able to transduce signals only when properly targeted to the cell membrane. Calreticulin is a multi-functional chaperone protein involved in protein folding, maturation, and trafficking. However, evidence has been accumulating that calreticulin can also negatively regulate the surface expression of certain receptors and channels. In these instances, depletion of calreticulin enhances cell-surface expression and function. In this review, we discuss the role of calreticulin with a focus on its negative effects on the expression of cell-surface proteins. PMID:25230046

  10. Theory of back-surface-field solar cells

    NASA Technical Reports Server (NTRS)

    Vonroos, O.

    1979-01-01

    Report describes simple concise theory of back-surface-field (BSF) solar cells (npp + junctions) based on Shockley's depletion-layer approximation and cites superiority of two-junction devices over conventional unijunction cells.

  11. Morphology and movement of corneal surface cells in humans.

    PubMed

    Mathers, W D; Lemp, M A

    1992-06-01

    We examined the morphology of the corneal surface epithelial cells in 13 eyes of 13 subjects using specular microscopy. We determined cell area, perimeter, and shape comparing the central cornea with the inferior and superior periphery. We found surface epithelial cells are significantly smaller in the central cornea. The cells measured 560 +/- 93 square microns in the central cornea, 850 +/- 135 square microns in the superior cornea and 777 +/- 176 square microns in the inferior cornea (p less than .005). Newly emerged surface cells are smaller and are thought to enlarge with time. We postulate that lid shearing forces are greater in the central cornea and contribute to epithelial cell exfoliation. We further postulate that preferential shearing of central corneal surface cells is an important factor driving the centripetal movement of corneal epithelial cells. PMID:1505196

  12. Glycomic and Proteomic Profiling of Pancreatic Cyst Fluids Identifies Hyperfucosylated Lactosamines on the N-linked Glycans of Overexpressed Glycoproteins*

    PubMed Central

    Mann, Benjamin F.; Goetz, John A.; House, Michael G.; Schmidt, C. Max; Novotny, Milos V.

    2012-01-01

    Pancreatic cancer is now the fourth leading cause of cancer deaths in the United States, and it is associated with an alarmingly low 5-year survival rate of 5%. However, a patient's prognosis is considerably improved when the malignant lesions are identified at an early stage of the disease and removed by surgical resection. Unfortunately, the absence of a practical screening strategy and clinical diagnostic test for identifying premalignant lesions within the pancreas often prevents early detection of pancreatic cancer. To aid in the development of a molecular screening system for early detection of the disease, we have performed glycomic and glycoproteomic profiling experiments on 21 pancreatic cyst fluid samples, including fluids from mucinous cystic neoplasms and intraductal papillary mucinous neoplasms, two types of mucinous cysts that are considered high risk to undergo malignant transformation. A total of 80 asparagine-linked (N-linked) glycans, including high mannose and complex structures, were identified. Of special interest was a series of complex N-linked glycans containing two to six fucose residues, located predominantly as substituents on β-lactosamine extensions. Following the observation of these “hyperfucosylated” glycans, bottom-up proteomics experiments utilizing a label-free quantitative approach were applied to the investigation of two sets of tryptically digested proteins derived from the cyst fluids: 1) all soluble proteins in the raw samples and 2) a subproteome of the soluble cyst fluid proteins that were selectively enriched for fucosylation through the use of surface-immobilized Aleuria aurantia lectin. A comparative analysis of these two proteomic data sets identified glycoproteins that were significantly enriched by lectin affinity. Several candidate glycoproteins that appear hyperfucosylated were identified, including triacylglycerol lipase and pancreatic α-amylase, which were 20- and 22-fold more abundant, respectively

  13. Versatile metal-organic framework-functionalized magnetic graphene nanoporous composites: As deft matrix for high-effective extraction and purification of the N-linked glycans.

    PubMed

    Wang, Jiaxi; Wang, Yanan; Gao, Mingxia; Zhang, Xiangmin; Yang, Pengyuan

    2016-08-17

    The highly selective enrichment of N-linked glycans from complex biological sample is still very important but challenging task due to the ultra-low abundance, complicated structures and strong ion suppress effect caused by distractors such as proteins, peptides and salts. Here, we firstly present a novel metal-organic frameworks (MOFs)-functionalized magnetic nanoporous carbon-graphene composites (C-magG@ZIF-8) synthesized through a smart process. The obtained materials enjoy the unique properties including strong magnetic responsiveness, a large sum of graphitized carbon pore, remarkable biocompatibility and large specific surface area. By virtue of these unique properties, the C-magG@ZIF-8 composites displayed excellent selectivity and sensitivity, good recyclability and incredible size exclusion ability (roughly 2000 times) in the N-linked glycans analysis. Furthermore, 48 N-linked glycans were clearly identified from the normal human serum treated with the C-magG@ZIF-8. There is reason to believe that our smart strategy offers new possibilities for preparing the MOFs-functionalized composites for large-scale characterization of glycoproteomics by mass spectrometry analysis. PMID:27286768

  14. Single cell profiling of surface carbohydrates on Bacillus cereus.

    PubMed

    Wang, Congzhou; Ehrhardt, Christopher J; Yadavalli, Vamsi K

    2015-02-01

    Cell surface carbohydrates are important to various bacterial activities and functions. It is well known that different types of Bacillus display heterogeneity of surface carbohydrate compositions, but detection of their presence, quantitation and estimation of variation at the single cell level have not been previously solved. Here, using atomic force microscopy (AFM)-based recognition force mapping coupled with lectin probes, the specific carbohydrate distributions of N-acetylglucosamine and mannose/glucose were detected, mapped and quantified on single B. cereus surfaces at the nanoscale across the entire cell. Further, the changes of the surface carbohydrate compositions from the vegetative cell to spore were shown. These results demonstrate AFM-based 'recognition force mapping' as a versatile platform to quantitatively detect and spatially map key bacterial surface biomarkers (such as carbohydrate compositions), and monitor in situ changes in surface biochemical properties during intracellular activities at the single cell level. PMID:25505137

  15. Cowpea mosaic virus nanoparticles target surface vimentin on cancer cells

    PubMed Central

    Steinmetz, Nicole F; Cho, Choi-Fong; Ablack, Amber; Lewis, John D; Manchester, Marianne

    2011-01-01

    Aims Vimentin, a type III intermediate filament, is upregulated during epithelial–mesenchymal transition and tumor progression. Vimentin is surface-expressed on cells involved in inflammation; the function remains unknown. We investigated the expression of surface vimentin on cancer cells and evaluated targeting nanoparticles to tumors exploiting vimentin. Materials & methods Cowpea mosaic virus nanoparticles that interact with surface vimentin were used as probes. Tumor homing was tested using the chick chorioallantoic membrane model with human tumor xenografts. Results & discussion Surface vimentin levels varied during cell cycle and among the cell lines tested. Surface vimentin expression correlated with cowpea mosaic virus uptake, underscoring the utility of cowpea mosaic virus to detect invasive cancer cells. Targeting to tumor xenografts was observed; homing was based on the enhanced permeability and retention effect. Our data provide novel insights into the role of surface vimentin in cancer and targeting nanoparticles in vivo. PMID:21385137

  16. Single cell profiling of surface carbohydrates on Bacillus cereus

    PubMed Central

    Wang, Congzhou; Ehrhardt, Christopher J.; Yadavalli, Vamsi K.

    2015-01-01

    Cell surface carbohydrates are important to various bacterial activities and functions. It is well known that different types of Bacillus display heterogeneity of surface carbohydrate compositions, but detection of their presence, quantitation and estimation of variation at the single cell level have not been previously solved. Here, using atomic force microscopy (AFM)-based recognition force mapping coupled with lectin probes, the specific carbohydrate distributions of N-acetylglucosamine and mannose/glucose were detected, mapped and quantified on single B. cereus surfaces at the nanoscale across the entire cell. Further, the changes of the surface carbohydrate compositions from the vegetative cell to spore were shown. These results demonstrate AFM-based ‘recognition force mapping’ as a versatile platform to quantitatively detect and spatially map key bacterial surface biomarkers (such as carbohydrate compositions), and monitor in situ changes in surface biochemical properties during intracellular activities at the single cell level. PMID:25505137

  17. The intrinsic and extrinsic effects of N-linked glycans on glycoproteostasis

    PubMed Central

    Hebert, Daniel N.; Lamriben, Lydia; Powers, Evan T.; Kelly, Jeffery W.

    2014-01-01

    Proteins that traffic through the eukaryotic secretory pathway are commonly modified with N-linked carbohydrates. These bulky amphipathic modifications at asparagines intrinsically enhance solubility and folding energetics through carbohydrate-protein interactions. N-linked glycans can also extrinsically enhance glycoprotein folding by utilizing the glycoprotein homeostasis or “glycoproteostasis” network, comprising numerous glycan binding and/or modification enzymes or proteins that synthesize, transfer, sculpt and utilize N-linked glycans to direct folding vs. degradation, and trafficking of nascent N-glycoproteins through the cellular secretory pathway. If protein maturation is perturbed by misfolding and/or aggregation, stress pathways are often activated that result in transcriptional remodeling of the secretory pathway, in an attempt to alleviate the insult(s). The inability to achieve glycoproteostasis is linked to several pathologies, including amyloidoses, cystic fibrosis, and lysosomal storage diseases. Recent progress on genetic and pharmacologic adaptation of the glycoproteostasis network provides hope that drugs can be developed for these maladies in the near future. PMID:25325701

  18. Biochemical evidence for an alternate pathway in N-linked glycoprotein biosynthesis

    PubMed Central

    Larkin, Angelyn; Chang, Michelle M.; Whitworth, Garrett E.; Imperiali, Barbara

    2013-01-01

    Asparagine-linked glycosylation is a complex protein modification conserved among all three domains of life. Herein we report the in vitro analysis of N-linked glycosylation from the methanogenic archaeon Methanococcus voltae. Using a suite of synthetic and semisynthetic substrates, we show that AglK initiates N-linked glycosylation in M. voltae through the formation of α-linked dolichyl monophosphate N-acetylglucosamine (Dol-P-GlcNAc), which contrasts with the polyprenyl-diphosphate intermediates that feature in both eukaryotes and bacteria. Intriguingly, AglK exhibits high sequence homology to dolichyl-phosphate β-glucosyltransferases, including Alg5 in eukaryotes, suggesting a common evolutionary origin. The combined action of the first two enzymes, AglK and AglC, afforded an α-linked Dol-P-glycan that serves as a competent substrate for the archaeal oligosaccharyl transferase AglB. These studies provide the first biochemical evidence revealing that despite the apparent similarity of the overall pathways, there are actually two general strategies to achieve N-linked glycoproteins across the domains of life. PMID:23624439

  19. Investigation of ovarian cancer associated sialylation changes in N-linked glycopeptides by quantitative proteomics

    PubMed Central

    2012-01-01

    Background In approximately 80% of patients, ovarian cancer is diagnosed when the patient is already in the advanced stages of the disease. CA125 is currently used as the marker for ovarian cancer; however, it lacks specificity and sensitivity for detecting early stage disease. There is a critical unmet need for sensitive and specific routine screening tests for early diagnosis that can reduce ovarian cancer lethality by reliably detecting the disease at its earliest and treatable stages. Results In this study, we investigated the N-linked sialylated glycopeptides in serum samples from healthy and ovarian cancer patients using Lectin-directed Tandem Labeling (LTL) and iTRAQ quantitative proteomics methods. We identified 45 N-linked sialylated glycopeptides containing 46 glycosylation sites. Among those, ten sialylated glycopeptides were significantly up-regulated in ovarian cancer patients’ serum samples. LC-MS/MS analysis of the non-glycosylated peptides from the same samples, western blot data using lectin enriched glycoproteins of various ovarian cancer type samples, and PNGase F (+/−) treatment confirmed the sialylation changes in the ovarian cancer samples. Conclusion Herein, we demonstrated that several proteins are aberrantly sialylated in N-linked glycopeptides in ovarian cancer and detection of glycopeptides with abnormal sialylation changes may have the potential to serve as biomarkers for ovarian cancer. PMID:22856521

  20. Targeting Negative Surface Charges of Cancer Cells by Multifunctional Nanoprobes.

    PubMed

    Chen, Bingdi; Le, Wenjun; Wang, Yilong; Li, Zhuoquan; Wang, Dong; Ren, Lei; Lin, Ling; Cui, Shaobin; Hu, Jennifer J; Hu, Yihui; Yang, Pengyuan; Ewing, Rodney C; Shi, Donglu; Cui, Zheng

    2016-01-01

    A set of electrostatically charged, fluorescent, and superparamagnetic nanoprobes was developed for targeting cancer cells without using any molecular biomarkers. The surface electrostatic properties of the established cancer cell lines and primary normal cells were characterized by using these nanoprobes with various electrostatic signs and amplitudes. All twenty two randomly selected cancer cell lines of different organs, but not normal control cells, bound specifically to the positively charged nanoprobes. The relative surface charges of cancer cells could be quantified by the percentage of cells captured magnetically. The activities of glucose metabolism had a profound impact on the surface charge level of cancer cells. The data indicate that an elevated glycolysis in the cancer cells led to a higher level secretion of lactate. The secreted lactate anions are known to remove the positive ions, leaving behind the negative changes on the cell surfaces. This unique metabolic behavior is responsible for generating negative cancer surface charges in a perpetuating fashion. The metabolically active cancer cells are shown to a unique surface electrostatic pattern that can be used for recovering cancer cells from the circulating blood and other solutions. PMID:27570558

  1. Targeting Negative Surface Charges of Cancer Cells by Multifunctional Nanoprobes

    PubMed Central

    Chen, Bingdi; Le, Wenjun; Wang, Yilong; Li, Zhuoquan; Wang, Dong; Ren, Lei; Lin, Ling; Cui, Shaobin; Hu, Jennifer J.; Hu, Yihui; Yang, Pengyuan; Ewing, Rodney C.; Shi, Donglu; Cui, Zheng

    2016-01-01

    A set of electrostatically charged, fluorescent, and superparamagnetic nanoprobes was developed for targeting cancer cells without using any molecular biomarkers. The surface electrostatic properties of the established cancer cell lines and primary normal cells were characterized by using these nanoprobes with various electrostatic signs and amplitudes. All twenty two randomly selected cancer cell lines of different organs, but not normal control cells, bound specifically to the positively charged nanoprobes. The relative surface charges of cancer cells could be quantified by the percentage of cells captured magnetically. The activities of glucose metabolism had a profound impact on the surface charge level of cancer cells. The data indicate that an elevated glycolysis in the cancer cells led to a higher level secretion of lactate. The secreted lactate anions are known to remove the positive ions, leaving behind the negative changes on the cell surfaces. This unique metabolic behavior is responsible for generating negative cancer surface charges in a perpetuating fashion. The metabolically active cancer cells are shown to a unique surface electrostatic pattern that can be used for recovering cancer cells from the circulating blood and other solutions. PMID:27570558

  2. Characterization of N-Glycan Structures on the Surface of Mature Dengue 2 Virus Derived from Insect Cells

    PubMed Central

    Yang, J; Ye, W; Wang, Y; Chen, W; Jia, Z; Xu, Z; Li, Z; Zhang, F

    2015-01-01

    DENV envelope glycoprotein (E) is responsible for interacting with host cell receptors and is the main target for the development of a dengue vaccine based on an induction of neutralizing antibodies. It is well known that DENV E glycoprotein has two potential N-linked glycosylation sites at Asn67 and Asn153. The N-glycans of E glycoprotein have been shown to influence the proper folding of the protein, its cellular localization, its interactions with receptors and its immunogenicity. However, the precise structures of the N-glycans that are attached to E glycoprotein remain elusive, although the crystal structure of DENV E has been determined. This study characterized the structures of envelope protein N-linked glycans on mature DENV-2 particles derived from insect cells via an integrated method that used both lectin microarray and MALDI-TOF-MS. By combining these methods, a high heterogeneity of DENV N-glycans was found. Five types of N-glycan were identified on DENV-2, including mannose, GalNAc, GlcNAc, fucose and sialic acid; high mannose-type N-linked oligosaccharides and the galactosylation of N-glycans were the major structures that were found. Furthermore, a complex between a glycan on DENV and the carbohydrate recognition domain (CRD) of DC-SIGN was mimicked with computational docking experiments. For the first time, this study provides a comprehensive understanding of the N-linked glycan profile of whole DENV-2 particles derived from insect cells. PMID:26208004

  3. Cell Surface-based Sensing with Metallic Nanoparticles

    PubMed Central

    Jiang, Ziwen; Rotello, Vincent M.

    2015-01-01

    Metallic nanoparticles provide versatile scaffolds for biosensing applications. In this review, we focus on the use of metallic nanoparticles for cell surface sensings. Examples of the use of both specific recognition and array-based “chemical nose” approaches to cell surface sensing will be discussed. PMID:25853985

  4. Investigation of back surface fields effect on bifacial solar cells

    NASA Astrophysics Data System (ADS)

    Sepeai, Suhaila; Sulaiman, M. Y.; Sopian, Kamaruzzaman; Zaidi, Saleem H.

    2012-11-01

    A bifacial solar cell, in contrast with a conventional monofacial solar cell, produces photo-generated current from both front and back sides. Bifacial solar cell is an attractive candidate for enhancing photovoltaic (PV) market competitiveness as well as supporting the current efforts to increase efficiency and lower material costs. This paper reports on the fabrication of bifacial solar cells using phosphorus-oxytrichloride (POCl3) emitter formation on p-type, nanotextured silicon (Si) wafer. Backside surface field was formed through Al-diffusion using conventional screen-printing process. Bifacial solar cells with a structure of n+pp+ with and without back surface field (BSF) were fabricated in which silicon nitride (SiN) anti reflection and passivation films were coated on both sides, followed by screen printing of Argentum (Ag) and Argentum/Aluminum (Ag/Al) on front and back contacts, respectively. Bifacial solar cells without BSF exhibited open circuit voltage (VOC) of 535 mV for front and 480 mV for back surface. With Al-alloyed BSF bifacial solar cells, the VOC improved to 580 mV for the front surface and 560 mV for the back surface. Simulation of bifacial solar cells using PC1D and AFORS software demonstrated good agreement with experimental results. Simulations showed that best bifacial solar cells are achieved through a combination of high lifetime wafer, low recombination back surface field, reduced contact resistance, and superior surface passivation.

  5. Cell surface morphology in epithelial malignancy and its precursor lesions.

    PubMed

    Kenemans, P; Davina, J H; de Haan, R W; van der Zanden, P; Vooys, G P; Stolk, J G; Stadhouders, A M

    1981-01-01

    The cell surface organization of cancer cells is of potentially great significance, as it may not only allow (early) diagnosis, but as it may also harbour markers for refined prognosis (degree of oncogenetic and metastatic potential), and targets for selective cancer (chemo- and immuno) therapy. With these aspects in mind, the present review deals with SEM work done on (pre-) malignant cells, both in vivo and in vitro, and in animal models. Attention, however, is focused on human cancer cells. Cancer cells in vitro may lose many of their original malignant characteristics, and show adaptations to culture conditions. Many other factors have been shown to influence cell surface morphology, such as cell cycle, cell contacts, and preparations technique. Cancer cells differ in their surface morphology from normal cells, and have an extra ordinary amount of surface activity. Human malignant epithelial cells show abundant long. pleomorphic microvilli, especially those present in effusions. In squamous epithelium (bladder, cervix) microridge system present on normal superficial cells are progressively replaced by microvilli which increase in number and degree of pleomorphism during experimental and clinical oncogenesis. The question of whether or not the appearance of long. Pleomorphic microvilli reflects an irreversible alteration of the epithelium, and thus provides an early marker of irreversible neoplastic transformation is considered and assessed on the basis of our work with (pre-) malignant cells of the human uterine cervix. Although SEM has contributed significantly to the description of oncogenesis, up to now it has no early diagnostic, prognostic or therapeutic significance. PMID:7199203

  6. Attachment of human primary osteoblast cells to modified polyethylene surfaces.

    PubMed

    Poulsson, Alexandra H C; Mitchell, Stephen A; Davidson, Marcus R; Johnstone, Alan J; Emmison, Neil; Bradley, Robert H

    2009-04-01

    Ultra-high-molecular-weight polyethylene (UHMWPE) has a long history of use in medical devices, primarily for articulating surfaces due to its inherent low surface energy which limits tissue integration. To widen the applications of UHMWPE, the surface energy can be increased. The increase in surface energy would improve the adsorption of proteins and attachment of cells to allow tissue integration, thereby allowing UHMWPE to potentially be used for a wider range of implants. The attachment and function of human primary osteoblast-like (HOB) cells to surfaces of UHMWPE with various levels of incorporated surface oxygen have been investigated. The surface modification of the UHMWPE was produced by exposure to a UV/ozone treatment. The resulting surface chemistry was studied using X-ray photoelectron spectroscopy (XPS), and the topography and surface structure were probed by atomic force microscopy (AFM) and scanning electron microscopy (SEM), which showed an increase in surface oxygen from 11 to 26 atom % with no significant change to the surface topography. The absolute root mean square roughness of both untreated and UV/ozone-treated surfaces was within 350-450 nm, and the water contact angles decreased with increasing oxygen incorporation, i.e., showing an increase in surface hydrophilicity. Cell attachment and functionality were assessed over a 21 day period for each cell-surface combination studied; these were performed using SEM and the alamarBlue assay to study cell attachment and proliferation and energy-dispersive X-ray (EDX) analysis to confirm extracellular mineral deposits, and total protein assay to examine the intra- and extracellular protein expressed by the cells. HOB cells cultured for 21 days on the modified UHMWPE surfaces with 19 and 26 atom % oxygen incorporated showed significantly higher cell densities compared to cells cultured on tissue culture polystyrene (TCPS) from day 3 onward. This indicated that the cells attached and proliferated more

  7. Beyond the cell surface: new mechanisms of receptor function.

    PubMed

    Ibáñez, Carlos F

    2010-05-21

    The text book view of cell surface receptors depicts them at the top of a vertical chain of command that starts with ligand binding and proceeds in a lineal fashion towards the cell nucleus. Although pedagogically useful, this view is incomplete and recent findings suggest that the extracellular domain of cell surface receptors can be a transmitter as much as a receiver in intercellular communication. GFRalpha1 is a GPI-anchored receptor for GDNF (glial cell line-derived neurotrophic factor), a neuronal growth factor with widespread functions in the developing and adult nervous system. GFRalpha1 partners with transmembrane proteins, such as the receptor tyrosine kinase RET or the cell adhesion molecule NCAM, for intracellular transmission of the GDNF signal. In addition to this canonical role, GFRalpha1 can also engage in horizontal interactions and thereby modify the function of other cell surface components. GFRalpha1 can also function as a ligand-induced adhesion cell molecule, mediating homophilic cell-cell interactions in response to GDNF. Finally, GFRalpha1 can also be released from the cell surface and act at a distance as a soluble factor together with its ligand. This plethora of unconventional mechanisms is likely to be a feature common to several other receptors and considerably expands our view of cell surface receptor function. PMID:20494105

  8. Surface effects in high voltage silicon solar cells

    NASA Technical Reports Server (NTRS)

    Meulenberg, A.; Arndt, R. A.

    1982-01-01

    The surface of low-resistivity silicon solar cells appears to be a major source of dark diffusion current. This region, consisting of the interface and the adjacent heavily doped layer, therefore, prevents attainment of the high open-circuit voltages expected from these cells. This paper describes the experimental effort carried out to reduce the various contributions of dark current from the surface. Analysis of results from this effort points to means of improving cell voltages by changing processing and structures.

  9. Analysis of the cell surface expression of cytokine receptors using the surface protein biotinylation method.

    PubMed

    Pavel, Mahmud Arif; Lam, Clarissa; Kashyap, Parul; Salehi-Najafabadi, Zahra; Singh, Gurpreet; Yu, Yong

    2014-01-01

    Cytokines are pleiotropic, low-molecular-weight proteins that regulate the immune responses to infection and inflammation. They stimulate the immune responses by binding to cytokine receptors on the cell plasma membrane. Thus, knowledge of the expression level of particular cytokine receptors on cell surface is crucial for understanding the cytokine function and regulation. One of the techniques to explore the membrane embedded cytokine receptors is cell surface biotinylation. Biotinylated surface proteins can be rapidly purified through the strong interaction between biotin and streptavidin. Here, we describe the procedure for surface biotinylation and purification of biotinylated cytokine receptors for further downstream analysis. PMID:24908305

  10. Cell Surface Proteome of Dental Pulp Stem Cells Identified by Label-Free Mass Spectrometry.

    PubMed

    Niehage, Christian; Karbanová, Jana; Steenblock, Charlotte; Corbeil, Denis; Hoflack, Bernard

    2016-01-01

    Multipotent mesenchymal stromal cells (MSCs) are promising tools for regenerative medicine. They can be isolated from different sources based on their plastic-adherence property. The identification of reliable cell surface markers thus becomes the Holy Grail for their prospective isolation. Here, we determine the cell surface proteomes of human dental pulp-derived MSCs isolated from single donors after culture expansion in low (2%) or high (10%) serum-containing media. Cell surface proteins were tagged on intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin, which allows their enrichment by streptavidin pull-down. For the proteomic analyses, we first compared label-free methods to analyze cell surface proteomes i.e. composition, enrichment and proteomic differences, and we developed a new mathematical model to determine cell surface protein enrichment using a combinatorial gene ontology query. Using this workflow, we identified 101 cluster of differentiation (CD) markers and 286 non-CD cell surface proteins. Based on this proteome profiling, we identified 14 cell surface proteins, which varied consistently in abundance when cells were cultured under low or high serum conditions. Collectively, our analytical methods provide a basis for identifying the cell surface proteome of dental pulp stem cells isolated from single donors and its evolution during culture or differentiation. Our data provide a comprehensive cell surface proteome for the precise identification of dental pulp-derived MSC populations and their isolation for potential therapeutic intervention. PMID:27490675

  11. Cell Surface Proteome of Dental Pulp Stem Cells Identified by Label-Free Mass Spectrometry

    PubMed Central

    Niehage, Christian; Karbanová, Jana; Steenblock, Charlotte

    2016-01-01

    Multipotent mesenchymal stromal cells (MSCs) are promising tools for regenerative medicine. They can be isolated from different sources based on their plastic-adherence property. The identification of reliable cell surface markers thus becomes the Holy Grail for their prospective isolation. Here, we determine the cell surface proteomes of human dental pulp-derived MSCs isolated from single donors after culture expansion in low (2%) or high (10%) serum-containing media. Cell surface proteins were tagged on intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin, which allows their enrichment by streptavidin pull-down. For the proteomic analyses, we first compared label-free methods to analyze cell surface proteomes i.e. composition, enrichment and proteomic differences, and we developed a new mathematical model to determine cell surface protein enrichment using a combinatorial gene ontology query. Using this workflow, we identified 101 cluster of differentiation (CD) markers and 286 non-CD cell surface proteins. Based on this proteome profiling, we identified 14 cell surface proteins, which varied consistently in abundance when cells were cultured under low or high serum conditions. Collectively, our analytical methods provide a basis for identifying the cell surface proteome of dental pulp stem cells isolated from single donors and its evolution during culture or differentiation. Our data provide a comprehensive cell surface proteome for the precise identification of dental pulp-derived MSC populations and their isolation for potential therapeutic intervention. PMID:27490675

  12. Carbohydrate moieties of the. cap alpha. /sub 1/-adrenergic receptor (. cap alpha. /sub 1/-R): complex type glycosylation of N-linked oligosaccharides

    SciTech Connect

    Sawutz, D.G.; Lanier, S.M.; Warren, C.D.; Homcy, C.J.; Graham, R.M.

    1987-05-01

    The binding subunit of the ..cap alpha../sub 1/-R has been identified as a M/sub r/ = 80,000 peptide in several tissues. Adsorption of the ..cap alpha../sub 1/-R to a WGA lectin-agarose resin suggests that the receptor protein is glycosylated. In this study, they investigated the nature of the carbohydrate linkage to the ..cap alpha../sub 1/-R peptide. The ..cap alpha../sub 1/-R in DDT/sub 1/ MF-2 whole cells was photolabeled with /sup 125/I-azido-prazosin, the cells were lysed in the presence of DNAase, and cell membranes were treated with exo- and endoglycohydrolases prior to SDS-PAGE and autoradiography. Removal of terminal sialic acid residues by neuraminidase decreased the receptor M/sub r/ by 4000; however ..cap alpha..-mannosidase was without effect indicating complex type glycosylation of the receptor-protein. Similar results were observed for the rat hepatic membrane ..cap alpha../sub 1/-R. After deglycosylation of N-linked carbohydrates at asparagine residues by N-glycanase a specifically labeled peptide at a M/sub r/ = 50,000 was observed in DDT/sub 1/ MF-2 cells. Treatment of photolabeled ..cap alpha../sub 1/-R with endo-..beta..-N-acetylglucosaminidase F or H had no effect. These results indicate that the ..cap alpha../sub 1/-R is heavily glycosylated, the major oligosaccharide moiety being of the complex type, N-linked to asparagine residues and that the peptide backbone has a M/sub r/ < 50,000. By contrast, the ..cap alpha../sub 2/-R has a peptide backbone of M/sub r/ = 38,000 and N-linked oligosaccharides of the hybrid type.

  13. Cell Surface Changes Associated with Cellular Immune Reactions in Drosophila

    NASA Astrophysics Data System (ADS)

    Nappi, Anthony J.; Silvers, Michael

    1984-09-01

    In Drosophila melanogaster a temperature-induced change in immune competence accompanies cell surface alterations that cause its blood cells to adhere and to encapsulate a parasite. At 29 degrees C the blood cells of the tumorous-lethal (Tuml) mutant show a high degree of immune competence and encapsulate the eggs of the parasitic wasp Leptopilina heterotoma. At 21 degrees C the blood cells are essentially immune incompetent. High percentages of lectin binding cells were found under conditions which potentiated cellular encapsulation responses. Some immune reactive blood cells did not bind lectin. The low percentages of lectin binding cells in susceptible hosts suggest that developing parasites alter the cell surface of the blood cells of immune reactive hosts.

  14. Cell surface changes associated with cellular immune reactions in Drosophila.

    PubMed

    Nappi, A J; Silvers, M

    1984-09-14

    In Drosophila melanogaster a temperature-induced change in immune competence accompanies cell surface alterations that cause its blood cells to adhere and to encapsulate a parasite. At 29 degrees C the blood cells of the tumorous-lethal (Tuml) mutant show a high degree of immune competence and encapsulate the eggs of the parasitic wasp Leptopilina heterotoma. At 21 degrees C the blood cells are essentially immune incompetent. High percentages of lectin binding cells were found under conditions which potentiated cellular encapsulation responses. Some immune reactive blood cells did not bind lectin. The low percentages of lectin binding cells in susceptible hosts suggest that developing parasites alter the cell surface of the blood cells of immune reactive hosts. PMID:6433482

  15. Surface Plasmon Resonance for Cell-Based Clinical Diagnosis

    PubMed Central

    Yanase, Yuhki; Hiragun, Takaaki; Ishii, Kaori; Kawaguchi, Tomoko; Yanase, Tetsuji; Kawai, Mikio; Sakamoto, Kenji; Hide, Michihiro

    2014-01-01

    Non-invasive real-time observations and the evaluation of living cell conditions and functions are increasingly demanded in life sciences. Surface plasmon resonance (SPR) sensors detect the refractive index (RI) changes on the surface of sensor chips in label-free and on a real-time basis. Using SPR sensors, we and other groups have developed techniques to evaluate living cells' reactions in response to stimuli without any labeling in a real-time manner. The SPR imaging (SPRI) system for living cells may visualize single cell reactions and has the potential to expand application of SPR cell sensing for clinical diagnosis, such as multi-array cell diagnostic systems and detection of malignant cells among normal cells in combination with rapid cell isolation techniques. PMID:24618778

  16. Rapidly rendering cells phagocytic through a cell surface display technique and concurrent Rac activation.

    PubMed

    Onuma, Hiroki; Komatsu, Toru; Arita, Makoto; Hanaoka, Kenjiro; Ueno, Tasuku; Terai, Takuya; Nagano, Tetsuo; Inoue, Takanari

    2014-07-15

    Cell surfaces represent a platform through which extracellular signals that determine diverse cellular processes, including migration, division, adhesion, and phagocytosis, are transduced. Techniques to rapidly reconfigure the surface properties of living cells should thus offer the ability to harness these cellular functions. Although the molecular mechanism of phagocytosis is well characterized, the minimal molecular players that are sufficient to activate this elaborate process remain elusive. We developed and implemented a technique to present a molecule of interest at the cell surface in an inducible manner on a time scale of minutes. We simultaneously induced the cell surface display of the C2 domain of milk fat globule epidermal growth factor factor 8 (MFG-E8) and activated the intracellular small guanosine triphosphatase Rac, which stimulates actin polymerization at the cell periphery. The C2 domain binds to phosphatidylserine, a lipid exposed on the surface of apoptotic cells. By integrating the stimulation of these two processes, we converted HeLa cells into a phagocytic cell line that bound to and engulfed apoptotic human Jurkat cells. Inducing either the cell surface display of the C2 domain or activating Rac alone was not sufficient to stimulate phagocytosis, which suggests that attachment to the target cell and actin reorganization together constitute the minimal molecular events that are needed to induce phagocytosis. This cell surface display technique might be useful as part of a targeted, cell-based therapy in which unwanted cells with characteristic surface molecules could be rapidly consumed by engineered cells. PMID:25028719

  17. Rapidly rendering cells phagocytic through a cell-surface display technique and concurrent Rac activation

    PubMed Central

    Onuma, Hiroki; Arita, Makoto; Hanaoka, Kenjiro; Ueno, Tasuku; Terai, Takuya; Nagano, Tetsuo

    2014-01-01

    Cell surfaces represent a platform through which extracellular signals that determine diverse cellular processes, including migration, division, adhesion, and phagocytosis, are transduced. Techniques to rapidly reconfigure the surface properties of living cells should thus offer the ability to harness these cellular functions. Although the molecular mechanism of phagocytosis is well-characterized, the minimal molecular players that are sufficient to activate this elaborate process remain elusive. We developed and implemented a technique to present a molecule of interest at the cell surface in an inducible manner on a timescale of minutes. We simultaneously induced the cell-surface display of the C2 domain of milk fat globule-EGF factor 8 (MFG-E8) and activated the intracellular small guanosine triphosphatase Rac, which stimulates actin polymerization at the cell periphery. The C2 domain binds to phosphatidylserine, a lipid exposed on the surface of apoptotic cells. By integrating the stimulation of these two processes, we converted HeLa cells into a phagocytic cell line that bound to and engulfed apoptotic human Jurkat cells. Inducing either the cell-surface display of the C2 domain or activating Rac alone was not sufficient to stimulate phagocytosis, which suggests that attachment to the target cell and actin reorganization together constitute the minimal molecular events that are needed to induce phagocytosis. This cell-surface display technique might be useful as part of a targeted, cell-based therapy in which unwanted cells with characteristic surface molecules could be rapidly consumed by engineered cells. PMID:25028719

  18. Surface-modified gold nanorods for specific cell targeting

    NASA Astrophysics Data System (ADS)

    Wang, Chan-Ung; Arai, Yoshie; Kim, Insun; Jang, Wonhee; Lee, Seonghyun; Hafner, Jason H.; Jeoung, Eunhee; Jung, Deokho; Kwon, Youngeun

    2012-05-01

    Gold nanoparticles (GNPs) have unique properties that make them highly attractive materials for developing functional reagents for various biomedical applications including photothermal therapy, targeted drug delivery, and molecular imaging. For in vivo applications, GNPs need to be prepared with very little or negligible cytotoxicitiy. Most GNPs are, however, prepared using growth-directing surfactants such as cetyl trimethylammonium bromide (CTAB), which are known to have considerable cytotoxicity. In this paper, we describe an approach to remove CTAB to a non-toxic concentration. We optimized the conditions for surface modification with methoxypolyethylene glycol thiol (mPEG), which replaced CTAB and formed a protective layer on the surface of gold nanorods (GNRs). The cytotoxicities of pristine and surface-modified GNRs were measured in primary human umbilical vein endothelial cells and human cell lines derived from hepatic carcinoma cells, embryonic kidney cells, and thyroid papillary carcinoma cells. Cytotoxicity assays revealed that treating cells with GNRs did not significantly affect cell viability except for thyroid papillary carcinoma cells. Thyroid cancer cells were more susceptible to residual CTAB, so CTAB had to be further removed by dialysis in order to use GNRs for thyroid cell targeting. PEGylated GNRs are further modified to present monoclonal antibodies that recognize a specific surface marker, Na-I symporter, for thyroid cells. Antibody-conjugated GNRs specifically targeted human thyroid cells in vitro.

  19. Evolutionary interactions between N-linked glycosylation sites in the HIV-1 envelope.

    PubMed

    Poon, Art F Y; Lewis, Fraser I; Pond, Sergei L Kosakovsky; Frost, Simon D W

    2007-01-19

    The addition of asparagine (N)-linked polysaccharide chains (i.e., glycans) to the gp120 and gp41 glycoproteins of human immunodeficiency virus type 1 (HIV-1) envelope is not only required for correct protein folding, but also may provide protection against neutralizing antibodies as a "glycan shield." As a result, strong host-specific selection is frequently associated with codon positions where nonsynonymous substitutions can create or disrupt potential N-linked glycosylation sites (PNGSs). Moreover, empirical data suggest that the individual contribution of PNGSs to the neutralization sensitivity or infectivity of HIV-1 may be critically dependent on the presence or absence of other PNGSs in the envelope sequence. Here we evaluate how glycan-glycan interactions have shaped the evolution of HIV-1 envelope sequences by analyzing the distribution of PNGSs in a large-sequence alignment. Using a "covarion"-type phylogenetic model, we find that the rates at which individual PNGSs are gained or lost vary significantly over time, suggesting that the selective advantage of having a PNGS may depend on the presence or absence of other PNGSs in the sequence. Consequently, we identify specific interactions between PNGSs in the alignment using a new paired-character phylogenetic model of evolution, and a Bayesian graphical model. Despite the fundamental differences between these two methods, several interactions are jointly identified by both. Mapping these interactions onto a structural model of HIV-1 gp120 reveals that negative (exclusive) interactions occur significantly more often between colocalized glycans, while positive (inclusive) interactions are restricted to more distant glycans. Our results imply that the adaptive repertoire of alternative configurations in the HIV-1 glycan shield is limited by functional interactions between the N-linked glycans. This represents a potential vulnerability of rapidly evolving HIV-1 populations that may provide useful glycan

  20. Functional Divergence in the Role of N-Linked Glycosylation in Smoothened Signaling

    PubMed Central

    Marada, Suresh; Navarro, Gemma; Truong, Ashley; Stewart, Daniel P.; Arensdorf, Angela M.; Nachtergaele, Sigrid; Angelats, Edgar; Opferman, Joseph T.; Rohatgi, Rajat; McCormick, Peter J.; Ogden, Stacey K.

    2015-01-01

    The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice. PMID:26291458

  1. Surface passivation of high efficiency silicon solar cells

    NASA Astrophysics Data System (ADS)

    Aberle, A.; Warta, W.; Knobloch, J.; Voss, B.

    Theoretically and experimentally determined design guides for significantly reducing recombination at the emitter and rear surfaces of full-area Al-BSF (back-surface region) and oxide-passivated bifacial cells are given. The impact of emitter thickness and surface dopant concentration on emitter saturation current and solar cell efficiency is outlined. A modified emitter structure (locally deep diffused below the metal contacts) is predicted to have superior performance. Measured Voc values reveal the potential of deep emitter cells to achieve efficiencies above 20 percent in spite of high metallization factors. Experimentally, a strong dependence of passivation quality on oxide thickness and base doping concentration is found. The BSF quality of a diffused aluminum layer decreases strongly with increasing drive-in time. For SiO2-passivated rear surfaces of bifacial cells, measurements of the dependence of the surface recombination velocity on the excess carrier concentration are presented.

  2. Effect of Stratification on Surface Properties of Corneal Epithelial Cells

    PubMed Central

    Yáñez-Soto, Bernardo; Leonard, Brian C.; Raghunathan, Vijay Krishna; Abbott, Nicholas L.; Murphy, Christopher J.

    2015-01-01

    Purpose The purpose of this study was to determine the influence of mucin expression in an immortalized human corneal epithelial cell line (hTCEpi) on the surface properties of cells, such as wettability, contact angle, and surface heterogeneity. Methods hTCEpi cells were cultured to confluence in serum-free medium. The medium was then replaced by stratification medium to induce mucin biosynthesis. The mucin expression profile was analyzed using quantitative PCR and Western blotting. Contact angles were measured using a two-immiscible liquid method, and contact angle hysteresis was evaluated by tilting the apparatus and recording advancing and receding contact angles. The spatial distribution of mucins was evaluated with fluorescently labeled lectin. Results hTCEpi cells expressed the three main ocular mucins (MUC1, MUC4, and MUC16) with a maximum between days 1 and 3 of the stratification process. Upon stratification, cells caused a very significant increase in contact angle hysteresis, suggesting the development of spatially discrete and heterogeneously distributed surface features, defined by topography and/or chemical functionality. Although atomic force microscopy measurements showed no formation of appreciable topographic features on the surface of the cells, we observed a significant increase in surface chemical heterogeneity. Conclusions The surface chemical heterogeneity of the corneal epithelium may influence the dynamic behavior of tear film by “pinning” the contact line between the cellular surface and aqueous tear film. Engineering the surface properties of corneal epithelium could potentially lead to novel treatments in dry eye disease. PMID:26747762

  3. Multijunction Solar Cell Technology for Mars Surface Applications

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Mardesich, Nick; Ewell, Richard C.; Mueller, Robert L.; Endicter, Scott; Aiken, Daniel; Edmondson, Kenneth; Fetze, Chris

    2006-01-01

    Solar cells used for Mars surface applications have been commercial space qualified AM0 optimized devices. Due to the Martian atmosphere, these cells are not optimized for the Mars surface and as a result operate at a reduced efficiency. A multi-year program, MOST (Mars Optimized Solar Cell Technology), managed by JPL and funded by NASA Code S, was initiated in 2004, to develop tools to modify commercial AM0 cells for the Mars surface solar spectrum and to fabricate Mars optimized devices for verification. This effort required defining the surface incident spectrum, developing an appropriate laboratory solar simulator measurement capability, and to develop and test commercial cells modified for the Mars surface spectrum. This paper discusses the program, including results for the initial modified cells. Simulated Mars surface measurements of MER cells and Phoenix Lander cells (2007 launch) are provided to characterize the performance loss for those missions. In addition, the performance of the MER rover solar arrays is updated to reflect their more than two (2) year operation.

  4. Heterojunction solar cell with passivated emitter surface

    DOEpatents

    Olson, Jerry M.; Kurtz, Sarah R.

    1994-01-01

    A high-efficiency heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer.

  5. Heterojunction solar cell with passivated emitter surface

    DOEpatents

    Olson, J.M.; Kurtz, S.R.

    1994-05-31

    A high-efficiency heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer. 1 fig.

  6. The endomembrane requirement for cell surface repair

    NASA Technical Reports Server (NTRS)

    McNeil, Paul L.; Miyake, Katsuya; Vogel, Steven S.

    2003-01-01

    The capacity to reseal a plasma membrane disruption rapidly is required for cell survival in many physiological environments. Intracellular membrane (endomembrane) is thought to play a central role in the rapid resealing response. We here directly compare the resealing response of a cell that lacks endomembrane, the red blood cell, with that of several nucleated cells possessing an abundant endomembrane compartment. RBC membrane disruptions inflicted by a mode-locked Ti:sapphire laser, even those initially smaller than hemoglobin, failed to reseal rapidly. By contrast, much larger laser-induced disruptions made in sea urchin eggs, fibroblasts, and neurons exhibited rapid, Ca(2+)-dependent resealing. We conclude that rapid resealing is not mediated by simple physiochemical mechanisms; endomembrane is required.

  7. Modelling cell motility and chemotaxis with evolving surface finite elements

    PubMed Central

    Elliott, Charles M.; Stinner, Björn; Venkataraman, Chandrasekhar

    2012-01-01

    We present a mathematical and a computational framework for the modelling of cell motility. The cell membrane is represented by an evolving surface, with the movement of the cell determined by the interaction of various forces that act normal to the surface. We consider external forces such as those that may arise owing to inhomogeneities in the medium and a pressure that constrains the enclosed volume, as well as internal forces that arise from the reaction of the cells' surface to stretching and bending. We also consider a protrusive force associated with a reaction–diffusion system (RDS) posed on the cell membrane, with cell polarization modelled by this surface RDS. The computational method is based on an evolving surface finite-element method. The general method can account for the large deformations that arise in cell motility and allows the simulation of cell migration in three dimensions. We illustrate applications of the proposed modelling framework and numerical method by reporting on numerical simulations of a model for eukaryotic chemotaxis and a model for the persistent movement of keratocytes in two and three space dimensions. Movies of the simulated cells can be obtained from http://homepages.warwick.ac.uk/∼maskae/CV_Warwick/Chemotaxis.html. PMID:22675164

  8. Mutations in GFPT1 that underlie limb-girdle congenital myasthenic syndrome result in reduced cell-surface expression of muscle AChR.

    PubMed

    Zoltowska, Katarzyna; Webster, Richard; Finlayson, Sarah; Maxwell, Susan; Cossins, Judith; Müller, Juliane; Lochmüller, Hanns; Beeson, David

    2013-07-15

    Mutations in GFPT1 underlie a congenital myasthenic syndrome (CMS) characterized by a limb-girdle pattern of muscle weakness. Glutamine-fructose-6-phosphate transaminase 1 (GFPT1) is a key rate-limiting enzyme in the hexosamine biosynthetic pathway providing building blocks for the glycosylation of proteins and lipids. It is expressed ubiquitously and it is not readily apparent why mutations in this gene should cause a syndrome with symptoms restricted to muscle and, in particular, to the neuromuscular junction. Data from a muscle biopsy obtained from a patient with GFPT1 mutations indicated that there were reduced endplate acetylcholine receptors. We, therefore, further investigated the relationship between identified mutations in GFPT1 and expression of the muscle acetylcholine receptor. Cultured myotubes derived from two patients with GFPT1 mutations showed a significant reduction in cell-surface AChR expression (Pt1 P < 0.0001; Pt2 P = 0.0097). Inhibition of GFPT1 enzymatic activity or siRNA silencing of GFPT1 expression both resulted in reduced AChR cell-surface expression. Western blot and gene-silencing experiments indicate this is due to reduced steady-state levels of AChR α, δ, ε, but not β subunits rather than altered transcription of AChR-subunit RNA. Uridine diphospho-N-acetylglucosamine, a product of the hexosamine synthetic pathway, acts as a substrate at an early stage in the N-linked glycosylation pathway. Similarity between CMS due to GFPT1 mutations and CMS due to DPAGT1 mutations would suggest that reduced endplate AChR due to defective N-linked glycosylation is a primary disease mechanism in this disorder. PMID:23569079

  9. Implant Surface Design Regulates Mesenchymal Stem Cell Differentiation and Maturation.

    PubMed

    Boyan, B D; Cheng, A; Olivares-Navarrete, R; Schwartz, Z

    2016-03-01

    Changes in dental implant materials, structural design, and surface properties can all affect biological response. While bulk properties are important for mechanical stability of the implant, surface design ultimately contributes to osseointegration. This article reviews the surface parameters of dental implant materials that contribute to improved cell response and osseointegration. In particular, we focus on how surface design affects mesenchymal cell response and differentiation into the osteoblast lineage. Surface roughness has been largely studied at the microscale, but recent studies have highlighted the importance of hierarchical micron/submicron/nanosurface roughness, as well as surface roughness in combination with surface wettability. Integrins are transmembrane receptors that recognize changes in the surface and mediate downstream signaling pathways. Specifically, the noncanonical Wnt5a pathway has been implicated in osteoblastic differentiation of cells on titanium implant surfaces. However, much remains to be elucidated. Only recently have studies been conducted on the differences in biological response to implants based on sex, age, and clinical factors; these all point toward differences that advocate for patient-specific implant design. Finally, challenges in implant surface characterization must be addressed to optimize and compare data across studies. An understanding of both the science and the biology of the materials is crucial for developing novel dental implant materials and surface modifications for improved osseointegration. PMID:26927483

  10. B-cell acquisition of antigen: Sensing the surface.

    PubMed

    Knight, Andrew M

    2015-06-01

    B-cell antigen receptor (BCR) recognition and acquisition of antigen by B cells is the essential first step in the generation of effective antibody responses. As B-cell-mediated antigen presentation is also believed to play a significant role in the activation of CD4(+) Th-cell responses, considerable effort has focused on clarifying the nature of antigen/BCR interactions. Following earlier descriptions of interactions of soluble antigens with the BCR, it is now clear that B cells also recognize, physically extract and present antigens that are tethered to, or integral components of, the surfaces or extracellular matrix of other cells. In this issue of the European Journal of Immunology, Zeng et al. [Eur. J. Immunol. 2015. 45: XXXX-XXXX] examine how the physical property or "stiffness" of the surface displaying antigens to B cells influences the B-cell response. This commentary reports that antigen tethered on "less stiff" surfaces induces increased B-cell activation and antibody responses. I then infer how "sensing the surface" by B cells may represent a new component of the immune system's ability to detect "damage," and how this understanding may influence approaches to clinical therapies where immune activity is either unwanted or desired. PMID:25929718

  11. Fibronectin adsorption, cell adhesion, and proliferation on nanostructured tantalum surfaces.

    PubMed

    Dolatshahi-Pirouz, A; Jensen, T; Kraft, David Christian; Foss, Morten; Kingshott, Peter; Hansen, John Lundsgaard; Larsen, Arne Nylandsted; Chevallier, Jacques; Besenbacher, Flemming

    2010-05-25

    The interaction between dental pulp derived mesenchymal stem cells (DP-MSCs) and three different tantalum nanotopographies with and without a fibronectin coating is examined: sputter-coated tantalum surfaces with low surface roughness <0.2 nm, hut-nanostructured surfaces with a height of 2.9 +/- 0.6 nm and a width of 35 +/- 8 nm, and dome structures with a height of 13 +/- 2 nm and a width of 52 +/- 14 nm. Using ellipsometry, the adsorption and the availability of fibronectin cell-binding domains on the tantalum surfaces were examined, as well as cellular attachment, proliferation, and vinculin focal adhesion spot assembly on the respective surfaces. The results showed the highest fibronectin mass uptake on the hut structures, with a slightly higher availability of cell-binding domains and the most pronounced formation of vinculin focal adhesion spots as compared to the other surfaces. The proliferation of DP-MSCs was found to be significantly higher on dome and hut surfaces coated with fibronectin compared to the uncoated flat tantalum surfaces. Consequently, the results presented in this study indicate that fibronectin-coated nanotopographies with a vertical dimension of less than 5 nm influence cell adhesion. This rather interesting behavior is argued to originate from the more available fibronectin cell-binding domains observed on the hut structures. PMID:20443575

  12. Surface morphology of hamster (Mesocricetus auratus) decidual cells in vitro.

    PubMed

    Shukla, R; Pande, S; Mehrotra, P K; Maitra, S C; Kamboj, V P

    1995-02-01

    Cell surface morphology of hamster decidual cells isolated from day 8 implantation swellings was studied, using both phase-contrast and scanning electron microscopy. Two kinds of cells, fibroblastic and epithelioid, were identified in cultures examined by phase-contrast microscopy. Fibroblastic cells were spindle-shaped, having pointed or blunt terminals on one end and bifid or webbed projections at the other end. Epithelioid cells, on the other hand, were flat and discoid, having a distinctively ruffled plasma membrane. Further, the plasma membrane of epithelioid cells formed rope-like or flange-like processes. The significance of such adaptations is discussed. PMID:7877182

  13. Polyisoprenol specificity in the Campylobacter jejuni N-linked glycosylation pathway.

    PubMed

    Chen, Mark M; Weerapana, Eranthie; Ciepichal, Ewa; Stupak, Jacek; Reid, Christopher W; Swiezewska, Ewa; Imperiali, Barbara

    2007-12-18

    Campylobacter jejuni contains a general N-linked glycosylation pathway in which a heptasaccharide is sequentially assembled onto a polyisoprenyl diphosphate carrier and subsequently transferred to the asparagine side chain of an acceptor protein. The enzymes in the pathway function at a membrane interface and have in common amphiphilic membrane-bound polyisoprenyl-linked substrates. Herein, we examine the potential role of the polyisoprene component of the substrates by investigating the relative substrate efficiencies of polyisoprene-modified analogues in individual steps of the pathway. Chemically defined substrates for PglC, PglJ, and PglB are prepared via semisynthetic approaches. The substrates included polyisoprenols of varying length, double bond geometry, and degree of saturation for probing the role of the hydrophobic polyisoprene in substrate specificity. Kinetic analysis reveals that all three enzymes exhibit distinct preferences for the polyisoprenyl carrier whereby cis-double bond geometry and alpha-unsaturation of the native substrate are important features, while the precise polyisoprene length may be less critical. These findings suggest that the polyisoprenyl carrier plays a specific role in the function of these enzymes beyond a purely physical role as a membrane anchor. These studies underscore the potential of the C. jejuni N-linked glycosylation pathway as a system for investigating the biochemical and biophysical roles of polyisoprenyl carriers common to prokaryotic and eukaryotic glycosylation. PMID:18034500

  14. RAPID RELEASE OF N-LINKED GLYCANS FROM GLYCOPROTEINS BY PRESSURE CYCLING TECHNOLOGY

    PubMed Central

    Szabo, Zoltan; Guttman, András; Karger, Barry L.

    2010-01-01

    The standard, well-established sample preparation protocol to release N-linked glycans from glycoproteins for downstream analysis requires relatively long deglycosylation times (from several hours to overnight) and relatively high endoglycosidase concentration (1:250 – 1:500 enzyme:substrate molar ratio). In this paper, we significantly improve this standard protocol by the use of pressure cycling technology (PCT) to increase the speed and decrease the relative amount of PNGase F during the release of N-linked glycans from denatured glycoproteins. With the application of pressure cycling from atmospheric to as high as 30 kPsi, >95% release of the asparagine linked glycans from bovine ribonuclease B, human transferrin and polyclonal human immunoglobulin was rapidly achieved in a few minutes using as low as 1:2500 enzyme:substrate molar ratio. The deglycosylation rate was first examined by SDS-PAGE at the protein level. The released glycans were then quantitated by capillary electrophoresis with laser induced fluorescence detection (CE-LIF). This new sample preparation protocol readily supports large scale glycan analysis of biopharmaceuticals with rapid deglycosylation times. PMID:20170179

  15. The cell surface environment for pathogen recognition and entry

    PubMed Central

    Stow, Jennifer L; Condon, Nicholas D

    2016-01-01

    The surface of mammalian cells offers an interface between the cell interior and its surrounding milieu. As part of the innate immune system, macrophages have cell surface features optimised for probing and sampling as they patrol our tissues for pathogens, debris or dead cells. Their highly dynamic and constantly moving cell surface has extensions such as lamellipodia, filopodia and dorsal ruffles that help detect pathogens. Dorsal ruffles give rise to macropinosomes for rapid, high volume non-selective fluid sampling, receptor internalisation and plasma membrane turnover. Ruffles can also generate phagocytic cups for the receptor-mediated uptake of pathogens or particles. The membrane lipids, actin cytoskeleton, receptors and signalling proteins that constitute these cell surface domains are discussed. Although the cell surface is designed to counteract pathogens, many bacteria, viruses and other pathogens have evolved to circumvent or hijack these cell structures and their underlying machinery for entry and survival. Nevertheless, these features offer important potential for developing vaccines, drugs and preventative measures to help fight infection. PMID:27195114

  16. Modulated surface nanostructures for enhanced light trapping and reduced surface reflection of crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Tayagaki, Takeshi; Hoshi, Yusuke; Hirai, Yuji; Matsuo, Yasutaka; Usami, Noritaka

    2016-05-01

    We demonstrated the fabrication of modulated surface nanostructures as a new surface texture design for thin wafer solar cells. Using a combination of conventional alkali etching and colloidal lithography, we fabricated surface textures with micrometer and nanometre scales on a Si substrate. These modulated surface nanostructures exhibit reduced surface reflection in a broad spectral range, compared with conventional micrometer textures. We investigated optical absorption using a rigorous coupled wave analysis simulation, which revealed a significant reduction in surface reflection over a broad spectral range and efficient light trapping (comparable to that of conventional micrometer-scale textures) for the modulated nanostructures. We found that the modulated surface nanostructures have a high potential of improving the performance of thin wafer crystalline Si solar cells.

  17. Standing surface acoustic wave (SSAW)-based cell washing

    PubMed Central

    Li, Sixing; Ding, Xiaoyun; Mao, Zhangming; Chen, Yuchao; Nama, Nitesh; Guo, Feng; Li, Peng; Wang, Lin; Cameron, Craig E.; Huang, Tony Jun

    2014-01-01

    Cell/bead washing is an indispensable sample preparation procedure used in various cell studies and analytical processes. In this article, we report a standing surface acoustic wave (SSAW)-based microfluidic device for cell and bead washing in a continuous flow. In our approach, the acoustic radiation force generated in a SSAW field is utilized to actively extract cells or beads from their original medium. A unique configuration of tilted-angle standing surface acoustic wave (taSSAW) is employed in our device, enabling us to wash beads with >98% recovery rate and >97% washing efficiency. We also demonstrate the functionality of our device by preparing high-purity (>97%) white blood cells from lysed blood samples through cell washing. Our SSAW-based cell/bead washing device has the advantages of label-free manipulation, simplicity, high biocompatibility, high recovery rate, and high washing efficiency. It can be useful for many lab-on-a-chip applications. PMID:25372273

  18. Recent Insights into Cell Surface Heparan Sulphate Proteoglycans and Cancer.

    PubMed

    Couchman, John R; Multhaupt, Hinke; Sanderson, Ralph D

    2016-01-01

    A small group of cell surface receptors are proteoglycans, possessing a core protein with one or more covalently attached glycosaminoglycan chains. They are virtually ubiquitous and their chains are major sites at which protein ligands of many types interact. These proteoglycans can signal and regulate important cell processes, such as adhesion, migration, proliferation, and differentiation. Since many protein ligands, such as growth factors, morphogens, and cytokines, are also implicated in tumour progression, it is increasingly apparent that cell surface proteoglycans impact tumour cell behaviour. Here, we review some recent advances, emphasising that many tumour-related functions of proteoglycans are revealed only after their modification in processes subsequent to synthesis and export to the cell surface. These include enzymes that modify heparan sulphate structure, recycling of whole or fragmented proteoglycans into exosomes that can be paracrine effectors or biomarkers, and lateral interactions between some proteoglycans and calcium channels that impact the actin cytoskeleton. PMID:27408707

  19. Recent Insights into Cell Surface Heparan Sulphate Proteoglycans and Cancer

    PubMed Central

    Couchman, John R; Multhaupt, Hinke; Sanderson, Ralph D.

    2016-01-01

    A small group of cell surface receptors are proteoglycans, possessing a core protein with one or more covalently attached glycosaminoglycan chains. They are virtually ubiquitous and their chains are major sites at which protein ligands of many types interact. These proteoglycans can signal and regulate important cell processes, such as adhesion, migration, proliferation, and differentiation. Since many protein ligands, such as growth factors, morphogens, and cytokines, are also implicated in tumour progression, it is increasingly apparent that cell surface proteoglycans impact tumour cell behaviour. Here, we review some recent advances, emphasising that many tumour-related functions of proteoglycans are revealed only after their modification in processes subsequent to synthesis and export to the cell surface. These include enzymes that modify heparan sulphate structure, recycling of whole or fragmented proteoglycans into exosomes that can be paracrine effectors or biomarkers, and lateral interactions between some proteoglycans and calcium channels that impact the actin cytoskeleton. PMID:27408707

  20. Investigation of the competition between cell/surface and cell/cell interactions during neuronal cell culture on a micro-engineered surface.

    PubMed

    Béduer, Amélie; Gonzales-Calvo, Inès; Vieu, Christophe; Loubinoux, Isabelle; Vaysse, Laurence

    2013-11-01

    To investigate the respective roles of topography and cell/cell interactions in the development of a guided neuronal network on an engineered surface, micropatterned PDMS substrates were generated with different microgrooves geometry and investigated for the influence of cell density on neurite outgrowth and alignment. Through this systematic investigation, using a human neuronal stem cell line, the rules of neuronal network development and guiding could be learned. The results show that when cell density is increased the influence on neuritic outgrowth and alignment is very different for the various grooves geometries. The data emphasized the competition, in neurite development, between physical cues brought by surface topographical features and cell to cell communications. These results can be of particular interest for designing functional neuronal networks with a controlled architecture. PMID:24039002

  1. Early cell response to contact with biomaterial's surface.

    PubMed

    Komorowski, Piotr; Walkowiak-Przybyło, Magdalena; Walkowiak, Bogdan

    2016-07-01

    Most biomaterials at present have sufficient mechanical properties; however compliance with standards for biocompatibility is often not sufficient in clinical practice. This may be due to the complexity of biological systems in general and the diversity of individual responses to these materials by implant recipients. Significant improvement of biocompatibility must involve surface modification of implants, which in the future will make it possible to introduce individually selected types of surface modification for individual recipients. The key to this technology seems to be understanding the processes occurring at the site of contact of the implant with the tissue. Processes resulting from the stress generated by the contact of the biomaterial surfaces were observed with endothelial cells line EA.hy926, and it was demonstrated that differently modified surfaces of medical steel (polished medical steel and medical steel coated with Parylene C and nanocrystalline diamond) cause diverse cellular response in cells grown on these surfaces, on both the cellular (cell morphology and cell survival) and molecular (transcriptome and proteome profiles) levels. The herein presented observations are a good starting point not only for further research and the development of far-reaching personalization of medical implants, but also to study the potential use of cells as a specific sensor capable of recognizing different surfaces with which these cells come into contact. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 880-893, 2016. PMID:25951795

  2. Multi-scale cell/surface interaction on modified titanium aluminum vanadium surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Jianbo

    This dissertation presents a series of experimental studies of the effects of multi-scale cell/surface interactions on modified Ti-6Al-4V surfaces. These include laser-grooved surfaces; porous structures and RGD-coated laser-grooved surfaces. A nano-second DPSS UV lasers with a Gaussian pulse energy profile was used to introduce the desired micro-groove geometries onto Ti-6Al-4V surfaces. This was done without inducing micro-cracks or significant changes in surface chemistry within the heat affected zones. The desired 8-12 mum groove depths and widths were achieved by the control of pulse frequency, scan speed, and the lens focal length that controls spot size. The interactions between human osteosarcoma (HOS) cells and laser-grooved Ti-6Al-4V surfaces were investigated after 48 hours of cell culture. The cell behavior, including cell spreading, alignment and adhesion, was elucidated using scanning electronic microscopy (SEM), immuno-fluorescence staining and enzymatic detachment. Contact guidance was shown to increase as grooved spacing decreased. For the range of micro-groove geometries studied, micro-grooves with groove spacings of 20 mum provided the best combination of cell orientation and adhesion. Short-term adhesion experiments (15 mins to 1 day) also revealed that there is a positive correlation between cell orientation and cell adhesion. Contact guidance on the micro-grooved surfaces is shown to be enhanced by nano- and micro-scale asperities that provide sites for the attachment of lamellopodia during cell locomotion and spreading. Contact guidance is also promoted by the geometrical confinement provided by laser grooves. An experimental study of initial cell spreading and ingrowth into Ti-6Al-4V porous structures was also carried out on porous structures with different pore sizes and geometries. A combination of SEM, the tetrazolium salt (MTT) colorimetric assay and enzymatic detachment were used to study cell spreading and adhesion. The extent of cell

  3. The cell surface GRP78 facilitates the invasion of hepatocellular carcinoma cells.

    PubMed

    Zhang, Xiu-Xiu; Li, Hong-Dan; Zhao, Song; Zhao, Liang; Song, Hui-Juan; Wang, Guan; Guo, Qing-Jun; Luan, Zhi-Dong; Su, Rong-Jian

    2013-01-01

    Invasion is a major characteristic of hepatocellular carcinoma and one of the main causes of refractory to treatment. We have previously reported that GRP78 promotes the invasion of hepatocellular carcinoma although the mechanism underlying this change remains uncertain. In this paper, we explored the role of the cell surface GRP78 in the regulation of cancer cell invasion in hepatocellular carcinoma cells. We found that neutralization of the endogenous cell surface GRP78 with the anti-GRP78 antibody inhibited the adhesion and invasion in hepatocellular carcinoma cell lines Mahlavu and SMMC7721. However, forced expression of the cell surface GRP78 facilitated the adhesion and invasion in SMMC7721. We further demonstrated that inhibition of the endogenous cell surface GRP78 specifically inhibited the secretion and activity of MMP-2 but did not affect the secretion and activity of MMP-9. We also found that inhibition of the cell surface GRP78 increased E-Cadherin expression and decreased N-Cadherin level. On the contrary, forced expression of the cell surface GRP78 increased N-Cadherin expression and decreased E-Cadherin level, suggesting that the cell surface GRP78 plays critical role in the regulation of EMT process. These findings suggest that the cell surface GRP78 plays a stimulatory role in the invasion process and may be a potential anti-invasion target for the treatment of hepatocellular carcinoma. PMID:24383061

  4. Oxide modified air electrode surface for high temperature electrochemical cells

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.

    1992-01-01

    An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.

  5. Responses of fibroblasts and glial cells to nanostructured platinum surfaces

    NASA Astrophysics Data System (ADS)

    Pennisi, C. P.; Sevcencu, C.; Dolatshahi-Pirouz, A.; Foss, M.; Lundsgaard Hansen, J.; Nylandsted Larsen, A.; Zachar, V.; Besenbacher, F.; Yoshida, K.

    2009-09-01

    The chronic performance of implantable neural prostheses is affected by the growth of encapsulation tissue onto the stimulation electrodes. Encapsulation is associated with activation of connective tissue cells at the electrode's metallic contacts, usually made of platinum. Since surface nanotopography can modulate the cellular responses to materials, the aim of the present work was to evaluate the 'in vitro' responses of connective tissue cells to platinum strictly by modulating its surface nanoroughness. Using molecular beam epitaxy combined with sputtering, we produced platinum nanostructured substrates consisting of irregularly distributed nanopyramids and investigated their effect on the proliferation, cytoskeletal organization and cellular morphology of primary fibroblasts and transformed glial cells. Cells were cultured on these substrates and their responses to surface roughness were studied. After one day in culture, the fibroblasts were more elongated and their cytoskeleton less mature when cultured on rough substrates. This effect increased as the roughness of the surface increased and was associated with reduced cell proliferation throughout the observation period (4 days). Morphological changes also occurred in glial cells, but they were triggered by a different roughness scale and did not affect cellular proliferation. In conclusion, surface nanotopography modulates the responses of fibroblasts and glial cells to platinum, which may be an important factor in optimizing the tissue response to implanted neural electrodes.

  6. Directing neuronal cell growth on implant material surfaces by microstructuring.

    PubMed

    Reich, Uta; Fadeeva, Elena; Warnecke, Athanasia; Paasche, Gerrit; Müller, Peter; Chichkov, Boris; Stöver, Timo; Lenarz, Thomas; Reuter, Günter

    2012-05-01

    For best hearing sensation, electrodes of auditory prosthesis must have an optimal electrical contact to the respective neuronal cells. To improve the electrode-nerve interface, microstructuring of implant surfaces could guide neuronal cells toward the electrode contact. To this end, femtosecond laser ablation was used to generate linear microgrooves on the two currently relevant cochlear implant materials, silicone elastomer and platinum. Silicone surfaces were structured by two different methods, either directly, by laser ablation or indirectly, by imprinting using laser-microstructured molds. The influence of surface structuring on neurite outgrowth was investigated utilizing a neuronal-like cell line and primary auditory neurons. The pheochromocytoma cell line PC-12 and primary spiral ganglion cells were cultured on microstructured auditory implant materials. The orientation of neurite outgrowth relative to the microgrooves was determined. Both cell types showed a preferred orientation in parallel to the microstructures on both, platinum and on molded silicone elastomer. Interestingly, microstructures generated by direct laser ablation of silicone did not influence the orientation of either cell type. This shows that differences in the manufacturing procedures can affect the ability of microstructured implant surfaces to guide the growth of neurites. This is of particular importance for clinical applications, since the molding technique represents a reproducible, economic, and commercially feasible manufacturing procedure for the microstructured silicone surfaces of medical implants. PMID:22287482

  7. Expanding the diversity of unnatural cell surface sialic acids

    SciTech Connect

    Luchansky, Sarah J.; Goon, Scarlett; Bertozzi, Carolyn R.

    2003-10-30

    Novel chemical reactivity can be introduced onto cell surfaces through metabolic oligosaccharide engineering. This technique exploits the substrate promiscuity of cellular biosynthetic enzymes to deliver unnatural monosaccharides bearing bioorthogonal functional groups into cellular glycans. For example, derivatives of N-acetylmannosamine (ManNAc) are converted by the cellular biosynthetic machinery into the corresponding sialic acids and subsequently delivered to the cell surface in the form of sialoglycoconjugates. Analogs of N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine (GalNAc) are also metabolized and incorporated into cell surface glycans, likely through the sialic acid and GalNAc salvage pathways, respectively. Furthermore, GlcNAc analogs can be incorporated into nucleocytoplasmic proteins in place of {beta}-O-GlcNAc residues. These pathways have been exploited to integrate unique electrophiles such as ketones and azides into the target glycoconjugate class. These functional groups can be further elaborated in a chemoselective fashion by condensation with hydrazides and by Staudinger ligation, respectively, thereby introducing detectable probes onto the cell. In conclusion, sialic acid derivatives are efficient vehicles for delivery of bulky functional groups to cell surfaces and masking of their hydroxyl groups improves their cellular uptake and utilization. Furthermore, the successful introduction of photoactivatable aryl azides into cell surface glycans opens up new avenues for studying sialic acid-binding proteins and elucidating the role of sialic acid in essential processes such as signaling and cell adhesion.

  8. Heparanase: Busy at the cell surface

    PubMed Central

    Fux, Liat; Ilan, Neta; Sanderson, Ralph D.; Vlodavsky, Israel

    2009-01-01

    Heparanase activity is strongly implicated in structural remodeling of the extracellular matrix underlying tumor and endothelial cells that leads to cellular invasion. In addition, heparanase augments signaling cascades leading to enhanced phosphorylation of selected protein kinases and increased gene transcription associated with aggressive tumor progression. This function is apparently independent of heparan sulfate and enzyme activity and is mediated by a novel protein domain localized at the heparanase C-terminus (C-domain). Moreover, the functional repertoire of heparanase is expanded by its regulation of syndecan clustering, shedding, and mitogen binding. Recently, modified glycol-split heparin that inhibits heparanase activity was demonstrated to profoundly inhibit the progression of tumor xenografts produced by myeloma and carcinoma cells thus moving anti-heparanase therapy closer to reality. PMID:19733083

  9. Amplified effect of surface charge on cell adhesion by nanostructures

    NASA Astrophysics Data System (ADS)

    Xu, Li-Ping; Meng, Jingxin; Zhang, Shuaitao; Ma, Xinlei; Wang, Shutao

    2016-06-01

    Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration.Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration. Electronic supplementary information (ESI) available: Experimental details, SEM, KFM AFM, chemical modification and characterization. See DOI: 10.1039/c6nr00649c

  10. Transforming ocular surface stem cell research into successful clinical practice

    PubMed Central

    Sangwan, Virender S; Jain, Rajat; Basu, Sayan; Bagadi, Anupam B; Sureka, Shraddha; Mariappan, Indumathi; MacNeil, Sheila

    2014-01-01

    It has only been a quarter of a century since the discovery of adult stem cells at the human corneo-scleral limbus. These limbal stem cells are responsible for generating a constant and unending supply of corneal epithelial cells throughout life, thus maintaining a stable and uniformly refractive corneal surface. Establishing this hitherto unknown association between ocular surface disease and limbal dysfunction helped usher in therapeutic approaches that successfully addressed blinding conditions such as ocular burns, which were previously considered incurable. Subsequent advances in ocular surface biology through basic science research have translated into innovations that have made the surgical technique of limbal stem cell transplantation simpler and more predictable. This review recapitulates the basic biology of the limbus and the rationale and principles of limbal stem cell transplantation in ocular surface disease. An evidence-based algorithm is presented, which is tailored to clinical considerations such as laterality of affliction, severity of limbal damage and concurrent need for other procedures. Additionally, novel findings in the form of factors influencing the survival and function of limbal stem cells after transplantation and the possibility of substituting limbal cells with epithelial stem cells of other lineages is also discussed. Finally this review focuses on the future directions in which both basic science and clinical research in this field is headed. PMID:24492499

  11. Zinc uptake by brain cells: `surface' versus `bulk'

    NASA Astrophysics Data System (ADS)

    DeStasio, Gelsomina; Pochon, S.; Lorusso, G. F.; Tonner, B. P.; Mercanti, Delio; Ciotti, M. Teresa; Oddo, Nino; Galli, Paolo; Perfetti, P.; Margaritondo, G.

    1996-08-01

    The uptake of zinc by cerebellar rat cultures upon exposure to 0022-3727/29/8/023/img12 solutions was comparatively investigated using two well known condensed matter physics techniques: synchrotron photoelectron spectromicroscopy and inductively coupled plasma atomic emission spectroscopy. The objective was to apply a strategy - well known in surface physics - to distinguish between `surface' and `bulk' phenomena. The results clearly demonstrate that exposure significantly enhances the bulk (cell cytoplasm) Zn concentration with respect to the physiological level, whereas the effect on the surface (cell membrane) is negligible.

  12. Oxidation of cell surface thiol groups by contact sensitizers triggers the maturation of dendritic cells.

    PubMed

    Kagatani, Saori; Sasaki, Yoshinori; Hirota, Morihiko; Mizuashi, Masato; Suzuki, Mie; Ohtani, Tomoyuki; Itagaki, Hiroshi; Aiba, Setsuya

    2010-01-01

    p38 mitogen-activated protein kinase (MAPK) has a crucial role in the maturation of dendritic cells (DCs) by sensitizers. Recently, it has been reported that the oxidation of cell surface thiols by an exogenous impermeant thiol oxidizer can phosphorylate p38 MAPK. In this study, we examined whether sensitizers oxidize cell surface thiols of monocyte-derived DCs (MoDCs). When cell surface thiols were quantified by flow cytometry using Alexa fluor maleimide, all the sensitizers that we examined decreased cell surface thiols on MoDCs. To examine the effects of decreased cell surface thiols by sensitizers on DC maturation, we analyzed the effects of an impermeant thiol oxidizer, o-phenanthroline copper complex (CuPhen). The treatment of MoDCs with CuPhen decreased cell surface thiols, phosphorylated p38 MAPK, and induced MoDC maturation, that is, the augmentation of CD83, CD86, HLA-DR, and IL-8 mRNA, as well as the downregulation of aquaporin-3 mRNA. The augmentation of CD86 was significantly suppressed when MoDCs were pretreated with N-acetyl-L-cystein or treated with SB203580. Finally, we showed that epicutaneous application of 2,4-dinitrochlorobenzene on mouse skin significantly decreased cell surface thiols of Langerhans cells in vivo. These data suggest that the oxidation of cell surface thiols has some role in triggering DC maturation by sensitizers. PMID:19641517

  13. Sialylation of cell surface glycoconjugates is essential for osteoclastogenesis.

    PubMed

    Takahata, Masahiko; Iwasaki, Norimasa; Nakagawa, Hiroaki; Abe, Yuichiro; Watanabe, Takuya; Ito, Manabu; Majima, Tokifumi; Minami, Akio

    2007-07-01

    Sialic acid, which is located at the end of the carbohydrate moiety of cell surface glycoconjugates, is involved in many biologic responses, such as intercellular reactions and virus-cell fusion, especially in hematopoietic cells. Here we provide experimental evidence that the sialic acid of cell surface glycoconjugates has a role in osteoclast differentiation. Lectin histochemical study demonstrated the existence of both alpha (2,3)-linked-sialic acid and alpha (2,6)-linked-sialic acid in mouse bone marrow-derived macrophages and in the RAW264.7 macrophage cell line, which are osteoclast precursors. Flow cytometric analysis of surface lectin staining revealed the kinetics of these sialic acids during osteoclastogenesis: alpha (2,3)-linked-sialic acid was abundantly expressed throughout osteoclastogenesis, whereas alpha (2,6)-linked-sialic acid levels declined at the terminal stage of osteoclast differentiation. To investigate the role of sialic acid in osteoclast differentiation, we performed an osteoclastogenesis assay with or without exogenous sialidase treatment. Desialylated cells formed TRAP-positive mononuclear cells, but did not become multinuclear cells despite the normal expression of osteoclast markers such as cathepsin K, integrin beta3, and nuclear factor-ATc1. Flow cytometric analysis also demonstrated that exogenous sialidase effectively removed alpha (2,6)-linked-sialic acid, but only slightly changed the alpha (2,3)-linked-sialic acid content, suggesting that alpha (2,6)-linked-sialic acid might be involved in osteoclast differentiation. Findings from knockdown analysis using small interfering RNA oligonucleotides against alpha 2,6-sialyltransferase support this idea: alpha (2,6)-linked-sialic acid-deficient cells markedly inhibit the formation of multinuclear osteoclasts. Our findings suggest that alpha (2,6)-linked-sialic acid of cell surface glycoconjugates has a role in osteoclast differentiation, possibly via its role in the cell-cell fusion

  14. Surface strategies for control of neuronal cell adhesion: A review

    NASA Astrophysics Data System (ADS)

    Roach, P.; Parker, T.; Gadegaard, N.; Alexander, M. R.

    2010-06-01

    Material engineering methods have been used for many years to develop biomedical devices for use within the body to augment, repair or replace damaged tissues ranging from contact lenses to heart valves. Here we review the findings gathered from the wide and varied surface analytical approaches applied to study the interaction between biology and man-made materials. The key material characteristics identified to be important for biological recognition are surface chemistry, topography and compliance. Model surfaces with controlled chemistry and topography have provided insight into biological response to various types of topographical features over a wide range of length scales from nano to micrometres, along with 3D matrices that have been used as scaffolds to support cells for tissue formation. The cellular response to surfaces with localised areas of patterned chemistry and to those presenting gradually changing chemistry are discussed. Where previous reviews have been structured around specific classes of surface modification, e.g. self-assembly, or have broadly examined the response of various cells to numerous surfaces, we aim in this article to focus in particular on the tissues involved in the nervous system whilst providing a broad overview of key issues from the field of cell and protein surface interactions with surfaces. The goal of repair and treatment of diseases related to the central and peripheral nervous systems rely on understanding the local interfacial environment and controlling responses at the cellular level. The role of the protein layer deposited from serum containing media onto man-made surfaces is discussed. We highlight the particular problems associated with the repair of the nervous system, and review how neuronal attachment and axon guidance can be accomplished using various surface cues when cultured with single and multiple cell types. We include a brief glossary of techniques discussed in the body of this article aimed at the

  15. Antifouling property of highly oleophobic substrates for solar cell surfaces

    NASA Astrophysics Data System (ADS)

    Fukada, Kenta; Nishizawa, Shingo; Shiratori, Seimei

    2014-03-01

    Reduction of solar cell conversion efficiency by bird spoor or oil smoke is a common issue. Maintaining the surface of solar cells clean to retain the incident light is of utmost importance. In this respect, there has been growing interest in the area of superhydrophobicity for developing water repelling and self-cleaning surfaces. This effect is inspired by lotus leaves that have micro papillae covered with hydrophobic wax nanostructures. Superhydrophobic surfaces on transparent substrates have been developed for removing contaminants from solar cell surfaces. However, oil cannot be removed by superhydrophobic effect. In contrast, to prevent bird spoor, a highly oleophobic surface is required. In a previous study, we reported transparent-type fabrics comprising nanoparticles with a nano/micro hierarchical structure that ensured both oleophobicity and transparency. In the current study, we developed new highly oleophobic stripes that were constructed into semi-transparent oleophobic surfaces for solar cells. Solar cell performance was successfully maintained; the total transmittance was a key factor for determining conversion efficiency.

  16. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles.

    PubMed

    Stephan, Matthias T; Moon, James J; Um, Soong Ho; Bershteyn, Anna; Irvine, Darrell J

    2010-09-01

    A major limitation of cell therapies is the rapid decline in viability and function of the transplanted cells. Here we describe a strategy to enhance cell therapy via the conjugation of adjuvant drug-loaded nanoparticles to the surfaces of therapeutic cells. With this method of providing sustained pseudoautocrine stimulation to donor cells, we elicited marked enhancements in tumor elimination in a model of adoptive T cell therapy for cancer. We also increased the in vivo repopulation rate of hematopoietic stem cell grafts with very low doses of adjuvant drugs that were ineffective when given systemically. This approach is a simple and generalizable strategy to augment cytoreagents while minimizing the systemic side effects of adjuvant drugs. In addition, these results suggest therapeutic cells are promising vectors for actively targeted drug delivery. PMID:20711198

  17. The role of nitric oxide in ocular surface cells.

    PubMed

    Kim, Jae Chan; Park, Gun Sic; Kim, Jin Kook; Kim, Young Myeong

    2002-06-01

    The role of nitric oxide (NO) in the ocular surface remains unknown. We investigated the conditions leading to an increase of NO generation in tear and the main sources of NO in ocular surface tissue. We evaluated the dual action (cell survival or cell death) of NO depending on its amount. We measured the concentration of nitrite plus nitrate in the tears of ocular surface diseases and examined the main source of nitric oxide synthase (NOS). When cultured human corneal fibroblast were treated with NO producing donor with or without serum, the viabilities of cells was studied. We found that the main sources of NO in ocular surface tissue were corneal epithelium, fibroblast, endothelium, and inflammatory cells. Three forms of NOS (eNOS, bNOS, and iNOS) were expressed in experimentally induced inflammation. In the fibroblast culture system, the NO donor (SNAP, S-nitroso-N-acetyl-D, L-penicillamine) prevented the death of corneal fibroblast cells caused by serum deprivation in a dose dependent manner up to 500 micrometer SNAP, but a higher dose decreased cell viability. This study suggested that NO might act as a double-edged sword in ocular surface diseases depending on the degree of inflammation related with NO concentration. PMID:12068145

  18. Surface modified stainless steels for PEM fuel cell bipolar plates

    DOEpatents

    Brady, Michael P [Oak Ridge, TN; Wang, Heli [Littleton, CO; Turner, John A [Littleton, CO

    2007-07-24

    A nitridation treated stainless steel article (such as a bipolar plate for a proton exchange membrane fuel cell) having lower interfacial contact electrical resistance and better corrosion resistance than an untreated stainless steel article is disclosed. The treated stainless steel article has a surface layer including nitrogen-modified chromium-base oxide and precipitates of chromium nitride formed during nitridation wherein oxygen is present in the surface layer at a greater concentration than nitrogen. The surface layer may further include precipitates of titanium nitride and/or aluminum oxide. The surface layer in the treated article is chemically heterogeneous surface rather than a uniform or semi-uniform surface layer exclusively rich in chromium, titanium or aluminum. The precipitates of titanium nitride and/or aluminum oxide are formed by the nitriding treatment wherein titanium and/or aluminum in the stainless steel are segregated to the surface layer in forms that exhibit a low contact resistance and good corrosion resistance.

  19. Cell surface recycling in yeast: mechanisms and machineries.

    PubMed

    MacDonald, Chris; Piper, Robert C

    2016-04-15

    Sorting internalized proteins and lipids back to the cell surface controls the supply of molecules throughout the cell and regulates integral membrane protein activity at the surface. One central process in mammalian cells is the transit of cargo from endosomes back to the plasma membrane (PM) directly, along a route that bypasses retrograde movement to the Golgi. Despite recognition of this pathway for decades we are only beginning to understand the machinery controlling this overall process. The budding yeastSaccharomyces cerevisiae, a stalwart genetic system, has been routinely used to identify fundamental proteins and their modes of action in conserved trafficking pathways. However, the study of cell surface recycling from endosomes in yeast is hampered by difficulties that obscure visualization of the pathway. Here we briefly discuss how recycling is likely a more prevalent process in yeast than is widely appreciated and how tools might be built to better study the pathway. PMID:27068957

  20. Characterization of the O- and N-linked oligosaccharides in glycoproteins synthesized by Schistosoma mansoni

    SciTech Connect

    Nyame, A.K.

    1987-01-01

    The structures of the O- and N-linked oligosaccharides in glycoproteins synthesized by larval and adult schistosomes of Schistosoma mansoni have been investigated. Mechanically transformed schistosomula or adult schistosomes were incubated in media containing either (/sup 3/H)mannose, (/sup 3/H)glucosamine or (/sup 3/H)galactose for 48 and 24 hr, respectively, to radiolabel metabolically the oligosaccharide moieties of newly synthesized glycoproteins. Analyses of the radiolabeled glycoproteins by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS/PAGE) and fluorography demonstrated that numerous glycoproteins from 48-hr old schistosomula and adult schistosomes were labeled by both the (/sup 3/H)mannose and (/sup 3/H)glucosamine precursors. The (/sup 3/H)galactose precursor was incorporated into numerous glycoproteins in adult schistosomes; however, few, if any, glycoproteins in schistosomula were labeled by this radioactive sugar precursor.

  1. N-linked glycan changes of serum haptoglobin β chain in liver disease patients.

    PubMed

    Zhang, Shu; Shu, Hong; Luo, Kaixuan; Kang, Xiaonan; Zhang, Ying; Lu, Haojie; Liu, Yinkun

    2011-05-01

    Human haptoglobin is a serum glycoprotein secreted by the liver with four potential N-glycosylation sites on its β chain. Many studies have reported glycan changes of haptoglobin in diseases such as breast cancer and pancreatic cancer. The objective of our study is to analyze N-linked glycan alterations of serum haptoglobin β chain obtained from patients with the hepatitis B virus (HBV), liver cirrhosis (LC) and hepatocellular carcinoma (HCC). MALDI-QIT-TOF mass spectrometry revealed the intensity of m/z 1809.6, identified as a fucosylated glycan, was much higher in samples from patients with LC and HCC relative to the patients with HBV and healthy controls. Compared with LC patients, triantennary glycan was elevated and the biantennary structure was decreased in the haptoglobin β chain of HCC patients. Thus, alterations in the glycan structure of the haptoglobin β chain may constitute significant spectral signatures of cirrhosis and HCC disease. PMID:21380457

  2. Surface modification of closed plastic bags for adherent cell cultivation

    NASA Astrophysics Data System (ADS)

    Lachmann, K.; Dohse, A.; Thomas, M.; Pohl, S.; Meyring, W.; Dittmar, K. E. J.; Lindenmeier, W.; Klages, C.-P.

    2011-07-01

    In modern medicine human mesenchymal stem cells are becoming increasingly important. However, a successful cultivation of this type of cells is only possible under very specific conditions. Of great importance, for instance, are the absence of contaminants such as foreign microbiological organisms, i.e., sterility, and the chemical functionalization of the ground on which the cells are grown. As cultivation of these cells makes high demands, a new procedure for cell cultivation has been developed in which closed plastic bags are used. For adherent cell growth chemical functional groups have to be introduced on the inner surface of the plastic bag. This can be achieved by a new, atmospheric-pressure plasma-based method presented in this paper. The method which was developed jointly by the Fraunhofer IST and the Helmholtz HZI can be implemented in automated equipment as is also shown in this contribution. Plasma process gases used include helium or helium-based gas mixtures (He + N2 + H2) and vapors of suitable film-forming agents or precursors such as APTMS, DACH, and TMOS in helium. The effect of plasma treatment is investigated by FTIR-ATR spectroscopy as well as surface tension determination based on contact angle measurements and XPS. Plasma treatment in nominally pure helium increases the surface tension of the polymer foil due to the presence of oxygen traces in the gas and oxygen diffusing through the gas-permeable foil, respectively, reacting with surface radical centers formed during contact with the discharge. Primary amino groups are obtained on the inner surface by treatment in mixtures with nitrogen and hydrogen albeit their amount is comparably small due to diffusion of oxygen through the gas-permeable bag, interfering with the plasma-amination process. Surface modifications introducing amino groups on the inner surface turned out to be most efficient in the promotion of cell growth.

  3. Development of exosome surface display technology in living human cells.

    PubMed

    Stickney, Zachary; Losacco, Joseph; McDevitt, Sophie; Zhang, Zhiwen; Lu, Biao

    2016-03-25

    Surface display technology is an emerging key player in presenting functional proteins for targeted drug delivery and therapy. Although a number of technologies exist, a desirable mammalian surface display system is lacking. Exosomes are extracellular vesicles that facilitate cell-cell communication and can be engineered as nano-shuttles for cell-specific delivery. In this study, we report the development of a novel exosome surface display technology by exploiting mammalian cell secreted nano-vesicles and their trans-membrane protein tetraspanins. By constructing a set of fluorescent reporters for both the inner and outer surface display on exosomes at two selected sites of tetraspanins, we demonstrated the successful exosomal display via gene transfection and monitoring fluorescence in vivo. We subsequently validated our system by demonstrating the expected intracellular partitioning of reporter protein into sub-cellular compartments and secretion of exosomes from human HEK293 cells. Lastly, we established the stable engineered cells to harness the ability of this robust system for continuous production, secretion, and uptake of displayed exosomes with minimal impact on human cell biology. In sum, our work paved the way for potential applications of exosome, including exosome tracking and imaging, targeted drug delivery, as well as exosome-mediated vaccine and therapy. PMID:26902116

  4. Biosensing based on surface plasmon resonance and living cells.

    PubMed

    Chabot, Vincent; Cuerrier, Charles M; Escher, Emanuel; Aimez, Vincent; Grandbois, Michel; Charette, Paul G

    2009-02-15

    We propose the combination of surface plasmon resonance (SPR) with living cells as a biosensing method. Our detection scheme is based on the premise that cellular activity induced by external agents is often associated with changes in cellular morphology, which in turn should lead to a variation of the effective refractive index at the interface between the cell membrane and the metal layer. We monitored surface plasmon resonance signals originating from a gold surface coated with cells on a custom apparatus after injection of various agents known to influence cellular activity and morphology. Specifically, we evaluated three types of stimulation: response to an endotoxin (lipopolysaccharides), a chemical toxin (sodium azide) and a physiological agonist (thrombin). A comparison with phase contrast microscopy reveals that SPR signal variations are associated with the induction of cell death for lipopolysaccharides treatment and a contraction of the cell body for sodium azide. Thrombin-induced cellular response shows a rapid decrease of the measured laser reflectance over 5min followed by a return to the original value. For this treatment, phase contrast micrographs relate the first phase of the SPR variation to cell contraction and increase of the intercellular gaps, whereas the recovery phase can be associated with a spreading of the cell on the sensing surface. Hence, the SPR signal is very consistent with the cellular response normally observed for these treatments. This confirms the validity of the biosensing method, which could be applied to a large variety of cellular responses involving shape remodeling induced by external agents. PMID:18845432

  5. Subcellular localization of glycosidases and glycosyltransferases involved in the processing of N-linked oligosaccharides

    SciTech Connect

    Sturm, A.; Johnson, K.D.; Szumilo, T.; Elbein, A.D.; Chrispeels, M.J.

    1987-11-01

    Using isopycnic sucrose gradients, we have ascertained the subcellular location of several enzymes involved in the processing of the N-linked oligosaccharides of glycoproteins in developing cotyledons of the common bean, Phaseolus vulgaris. All are localized in the endoplasmic reticulum (ER) or Golgi complex as determined by co-sedimentation with the ER marker, NADH-cytochrome c reductase, or the Golgi marker, glucan synthase I. Glucosidase activity, which removes glucose residues from Glc/sub 3/Man/sub 9/(GlcNAc)/sub 2/, was found exclusively in the ER. All other processing enzymes, which act subsequent to the glucose trimming steps, are associates with Golgi. These include mannosidase I (removes 1-2 mannose residues from Man/sub 6-9/(GlcNAc)/sub 2/), mannosidase II (removes mannose residues from GlcNAcMan/sub 5/(GlcNAc)/sub 2/), and fucosyltransferase (transfers a fucose residue to the Asn-linked GlcNAc of appropriate glycans). The authors have previously reported the localization of two other glycan modifying enzymes (GlcNAc-transferase and xylosyltranferase activities) in the Golgi complex. Attempts at subfractionation of the Golgi fraction on shallow sucrose gradients yielded similar patterns of distribution for all the Golgi processing enzymes. Subfractionation on Percoll gradients resulted in two peaks of the Golgi marker enzyme inosine diphosphatase, whereas the glycan processing enzymes were all enriched in the peak of lower density. These results do not lend support to the hypothesis that N-linked oligosaccharide processing enzymes are associated with Golgi cisternae of different densities.

  6. N-linked oligosaccharides are responsible for rat striatal dopamine D2 receptor heterogeneity

    SciTech Connect

    Clagett-Dame, M.; McKelvy, J.F. )

    1989-10-01

    The glycoprotein nature of the binding subunit of the dopamine D2 receptor in rat striatum has been examined by photoaffinity labeling receptor preparations with N-(p-azido-m-(125I)iodophenethyl)spiperone followed by treatment of crude membrane receptor or receptor fractions isolated from sodium dodecyl sulfate (SDS) polyacrylamide gels with endo- and exoglycosidases. The major photoaffinity labeled protein migrates as a heterogeneous species on 10% SDS polyacrylamide gels and ranges from 130,000 to 75,000 relative molecular mass (Mr). This heterogeneity can be explained by glycosylation of the receptor by complex-type N-linked oligosaccharides. Three fractions of labeled receptor were isolated from SDS polyacrylamide gels over a range of 130,000 to 75,000 Mr; after digestion with peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine amidase, all fractions yielded a single peptide approximately 40,000 Mr. Treatment of photoaffinity labeled membranes with alpha-mannosidase was without effect. The dopamine D2 receptor appears to contain substantial amounts of sialic acid as treatment of photoaffinity labeled membranes with neuraminidase increased the receptor mobility on SDS polyacrylamide gels to a species of 50,000-54,000 Mr. Treatment of the receptor with neuraminidase followed by endo-alpha-N-acetylgalactosaminidase did not change the electrophoretic migration pattern from that seen after neuraminidase treatment alone, suggesting that the binding peptide contains no serine- or threonine-linked oligosaccharides. A smaller binding peptide of approximately 31,000 Mr is also apparent in crude photoaffinity labeled membranes. This material also contains N-linked oligosaccharide.

  7. Effect of hydroxyapatite surface morphology on cell adhesion.

    PubMed

    Iwamoto, Takashi; Hieda, Yohki; Kogai, Yasumichi

    2016-12-01

    We obtained hydroxyapatite (HAp) materials as a block by mixing HAp nanoparticles and polymer, and then calcining the mixtures. The surface morphology of the HAp materials was tuned by varying heat treatment conditions. After calcining the mixtures at 1200 or 800°C for 4h, the surface morphology of the HAp materials was flat or convexo-concave, respectively. The flat surface morphology, which showed micrometer-ordered grain boundaries, was formed by the aggregation of HAp nanoparticles. On the other hand, the convexo-concave surface morphology resulted from the agglomeration of HAp nanoparticles after heat treatment at 800°C for 4h with nanometer-ordered particle size. We tested cell adhesion to HAp materials with flat or convexo-concave surface morphology and found that cells adhered well to the flat HAp materials but not to the convexo-concave HAp materials. This technique for selectively preparing HAp materials with flat or convexo-concave surface morphology was very easy because we merely mixed commercial HAp nanoparticles with polymer and then calcined the mixtures. As a result, the heat treatment temperature affected the surface morphology of our HAp materials, and their surface morphologies contributed to cell adhesion independently of other material properties. PMID:27612825

  8. Enhanced cell attachment using a novel cell culture surface presenting functional domains from extracellular matrix proteins

    PubMed Central

    Cooke, M. J.; Phillips, S. R.; Shah, D. S.H.; Athey, D.; Lakey, J. H.

    2008-01-01

    Many factors contribute to the creation and maintenance of a realistic environment for cell growth in vitro, e.g. the consistency of the growth medium, the addition of supplements, and the surface on which the cells grow. The nature of the surface on which cells are cultured plays an important role in their ability to attach, proliferate, migrate and function. Components of the extracellular matrix (ECM) are often used to coat glass or plastic surfaces to enhance cell attachment in vitro. Fragments of ECM molecules can be immobilised on surfaces in order to mimic the effects seen by whole molecules. In this study we evaluate the application of a novel technology for the immobilisation of functional domains of known ECM proteins in a controlled manner on a surface. By examining the adherence of cultured PC12 cells to alternative growth surfaces, we show that surfaces coated with motifs from collagen I, collagen IV, fibronectin and laminin can mimic surfaces coated with the corresponding whole molecules. Furthermore, we show that the adherence of cells can be controlled by modifying the hydropathic properties of the surface to either enhance or inhibit cell attachment. Collectively, these data demonstrate the application of a new technology to enable optimisation of cell growth in the tissue culture laboratory. PMID:19002844

  9. Enhanced cell attachment using a novel cell culture surface presenting functional domains from extracellular matrix proteins.

    PubMed

    Cooke, M J; Phillips, S R; Shah, D S H; Athey, D; Lakey, J H; Przyborski, S A

    2008-02-01

    Many factors contribute to the creation and maintenance of a realistic environment for cell growth in vitro, e.g. the consistency of the growth medium, the addition of supplements, and the surface on which the cells grow. The nature of the surface on which cells are cultured plays an important role in their ability to attach, proliferate, migrate and function. Components of the extracellular matrix (ECM) are often used to coat glass or plastic surfaces to enhance cell attachment in vitro. Fragments of ECM molecules can be immobilised on surfaces in order to mimic the effects seen by whole molecules. In this study we evaluate the application of a novel technology for the immobilisation of functional domains of known ECM proteins in a controlled manner on a surface. By examining the adherence of cultured PC12 cells to alternative growth surfaces, we show that surfaces coated with motifs from collagen I, collagen IV, fibronectin and laminin can mimic surfaces coated with the corresponding whole molecules. Furthermore, we show that the adherence of cells can be controlled by modifying the hydropathic properties of the surface to either enhance or inhibit cell attachment. Collectively, these data demonstrate the application of a new technology to enable optimisation of cell growth in the tissue culture laboratory. PMID:19002844

  10. Engineered microtopographies and surface chemistries direct cell attachment and function

    NASA Astrophysics Data System (ADS)

    Magin, Chelsea Marie

    Harrison, in 1914, first recognized that cells respond to physicochemical cues such as substratum topography when he observed that fibroblasts elongated while cultured on spider silk. Recently, techniques developed in the micro-electronics industry have been used to create molds for producing microscaled topographies with various shapes and spatial arrangements. Although these patterning techniques are well-established, very little is known about the mechanisms underlying cell sensing and response to microtopographies. In this work cellular micro-environments with varying surface topographies and chemistries were evaluated with marine organisms and mammalian cells to investigate cellular sensing and response. Biofouling---the accumulation of micro-organisms, plants, and animals on submerged surfaces---is an environmental and economic concern. Engineered topographies, replicated in polydimethylsiloxane elastomer (PDMSe) and functionalized poly(ethylene glycol)-dimethacrylate (PEGDMA) hydrogels, were evaluated for inhibition of marine fouling organism attachment. Microtopographies replicated in PDMSe inhibited attachment of the marine bacterium, Cobetia marina up to 99% versus smooth. The average normalized attachment densities of cells of C. marina and zoospores of the green algae Ulva on PDMSe topographies scaled inversely with the Engineered Roughness Index (ERIII), a representation of surface energy. Attachment densities of Ulva from four assays and C. marina from two growth phases to PDMSe surfaces scaled inversely with one equation: ERI II multiplied by the Reynolds number of the organism (Re) (R 2 = 0.77). The same microtopographies created in PDMSe reduced the initial attachment density and attachment strength of cells of the diatoms Navicula incerta and Seminavis robusta compared to smooth PDMSe. The average normalized attachment density of Navicula after exposure to shear stress (48 Pa) was correlated with the contact area between the diatom and a

  11. Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis.

    PubMed

    Dhonukshe, Pankaj; Baluska, Frantisek; Schlicht, Markus; Hlavacka, Andrej; Samaj, Jozef; Friml, Jirí; Gadella, Theodorus W J

    2006-01-01

    Dividing plant cells perform a remarkable task of building a new cell wall within the cytoplasm in a few minutes. A long-standing paradigm claims that this primordial cell wall, known as the cell plate, is generated by delivery of newly synthesized material from Golgi apparatus-originated secretory vesicles. Here, we show that, in diverse plant species, cell surface material, including plasma membrane proteins, cell wall components, and exogenously applied endocytic tracers, is rapidly delivered to the forming cell plate. Importantly, this occurs even when de novo protein synthesis is blocked. In addition, cytokinesis-specific syntaxin KNOLLE as well as plasma membrane (PM) resident proteins localize to endosomes that fuse to initiate the cell plate. The rate of endocytosis is strongly enhanced during cell plate formation, and its genetic or pharmacological inhibition leads to cytokinesis defects. Our results reveal that endocytic delivery of cell surface material significantly contributes to cell plate formation during plant cytokinesis. PMID:16399085

  12. Quantum Efficiency Loss after PID Stress: Wavelength Dependence on Cell Surface and Cell Edge

    SciTech Connect

    Oh, Jaewon; Bowden, Stuart; TamizhMani, GovindaSamy; Hacke, Peter

    2015-06-14

    It is known that the potential induced degradation (PID) stress of conventional p-base solar cells affects power, shunt resistance, junction recombination, and quantum efficiency (QE). One of the primary solutions to address the PID issue is a modification of chemical and physical properties of antireflection coating (ARC) on the cell surface. Depending on the edge isolation method used during cell processing, the ARC layer near the edges may be uniformly or non-uniformly damaged. Therefore, the pathway for sodium migration from glass to the cell junction could be either through all of the ARC surface if surface and edge ARC have low quality or through the cell edge if surface ARC has high quality but edge ARC is defective due to certain edge isolation process. In this study, two PID susceptible cells from two different manufacturers have been investigated. The QE measurements of these cells before and after PID stress were performed at both surface and edge. We observed the wavelength dependent QE loss only in the first manufacturer's cell but not in the second manufacturer's cell. The first manufacturer's cell appeared to have low quality ARC whereas the second manufacturer's cell appeared to have high quality ARC with defective edge. To rapidly screen a large number of cells for PID stress testing, a new but simple test setup that does not require laminated cell coupon has been developed and is used in this investigation.

  13. A Generalizable Platform for the Photoactivation of Cell Surface Receptors.

    PubMed

    Duc, Thinh Nguyen; Huse, Morgan

    2015-11-20

    Polarized signal transduction from cell surface receptors plays a central role in the development and homeostasis of multicellular organisms, and it also contributes to cellular dysfunction in many disease states. Understanding the molecular and cellular bases of polarized signaling requires experimental methods that provide precise spatiotemporal control of receptor activation. However, we currently lack strategies for inducing both sustained and spatially constrained signal transduction. In the present study, we combined synthetic and cell biological tools to develop a generalizable photoactivation approach for the stimulation of cell surface receptors. Our system, which is based upon the local decaging of a "universal" peptide ligand, is particularly well suited for the live imaging of single cells. We anticipate that it will greatly facilitate future mechanistic analyses of polarized signal transduction in a variety of cell types. PMID:26295186

  14. Micropatterned Azopolymer Surfaces Modulate Cell Mechanics and Cytoskeleton Structure.

    PubMed

    Rianna, Carmela; Ventre, Maurizio; Cavalli, Silvia; Radmacher, Manfred; Netti, Paolo A

    2015-09-30

    Physical and chemical characteristics of materials are important regulators of cell behavior. In particular, cell elasticity is a fundamental parameter that reflects the state of a cell. Surface topography finely modulates cell fate and function via adhesion mediated signaling and cytoskeleton generated forces. However, how topographies alter cell mechanics is still unclear. In this work we have analyzed the mechanical properties of peripheral and nuclear regions of NIH-3T3 cells on azopolymer substrates with different topographic patterns. Micrometer scale patterns in the form of parallel ridges or square lattices of surface elevations were encoded on light responsive azopolymer films by means of contactless optical methods. Cell mechanics was investigated by atomic force microscopy (AFM). Cells and consequently the cell cytoskeleton were oriented along the linear patterns affecting cytoskeletal structures, e.g., formation of actin stress fibers. Our data demonstrate that topographic substrate patterns are recognized by cells and mechanical information is transferred by the cytoskeleton. Furthermore, cytoskeleton generated forces deform the nucleus, changing its morphology that appears to be related to different mechanical properties in the nuclear region. PMID:26372777

  15. Calcium phosphate surfaces promote osteogenic differentiation of mesenchymal stem cells

    PubMed Central

    Müller, Petra; Bulnheim, Ulrike; Diener, Annette; Lüthen, Frank; Teller, Marianne; Klinkenberg, Ernst-Dieter; Neumann, Hans-Georg; Nebe, Barbara; Liebold, Andreas; Steinhoff, Gustav; Rychly, Joachim

    2008-01-01

    Abstract Although studies in vivo revealed promising results in bone regeneration after implantation of scaffolds together with osteogenic progenitor cells, basic questions remain how material surfaces control the biology of mesenchymal stem cells (MSC). We used human MSC derived from bone marrow and studied the osteogenic differentiation on calcium phosphate surfaces. In osteogenic differentiation medium MSC differentiated to osteoblasts on hydroxyapatite and BONITmatrix®, a degradable xerogel composite, within 14 days. Cells revealed a higher alkaline phosphatase (ALP) activity and increased RNA expression of collagen I and osteocalcin using real-time RTPCR compared with cells on tissue culture plastic. To test whether material surface characteristics alone are able to stimulate osteogenic differentiation, MSC were cultured on the materials in expansion medium without soluble additives for osteogenic differentiation. Indeed, cells on calcium phosphate without osteogenic differentiation additives developed to osteoblasts as shown by increased ALP activity and expression of osteogenic genes, which was not the case on tissue culture plastic. Because we reasoned that the stimulating effect on osteogenesis by calcium phosphate surfaces depends on an altered cell–extracellular matrix interaction we studied the dynamic behaviour of focal adhesions using cells transfected with GFP labelled vinculin. On BONITmatrix®, an increased mobility of focal adhesions was observed compared with cells on tissue culture plastic. In conclusion, calcium phosphate surfaces are able to drive MSC to osteoblasts in the absence of osteogenic differentiation supplements in the medium. An altered dynamic behaviour of focal adhesions on calcium phosphate surfaces might be involved in the molecular mechanisms which promote osteogenic differentiation. PMID:18366455

  16. Effects of surface viscoelasticity on cellular responses of endothelial cells

    PubMed Central

    Hosseini, Motahare-Sadat; Katbab, Ali Asghar

    2014-01-01

    Background: One area of nanoscience deals with nanoscopic interactions between nanostructured materials and biological systems. To elucidate the effects of the substrate surface morphology and viscoelasticity on cell proliferation, fractal analysis was performed on endothelial cells cultured on nanocomposite samples based on silicone rubber (SR) and various concentrations of organomodified nanoclay (OC). Methods: The nanoclay/SR ratio was tailored to enhance cell behavior via changes in sample substrate surface roughness and viscoelasticity. Results: Surface roughness of the cured SR filled with negatively-charged nanosilicate layers had a greater effect than elasticity on cell growth. The surface roughness of SR nanocomposite samples increased with increasing the OC content, leading to enhanced cell growth and extracellular matrix (ECM) remodeling. This was consistent with the decrease in SR segmental motions and damping factor as the primary viscoelastic parameters by the nanosilicate layers with increasing clay concentrations. Conclusions: The inclusion of clay nanolayers affected the growth and behavior of endothelial cells on microtextured SR. PMID:26989733

  17. Investigation of the Cell Surface Proteome of Human Periodontal Ligament Stem Cells.

    PubMed

    Xiong, Jimin; Menicanin, Danijela; Zilm, Peter S; Marino, Victor; Bartold, P Mark; Gronthos, Stan

    2016-01-01

    The present study examined the cell surface proteome of human periodontal ligament stem cells (PDLSC) compared to human fibroblasts. Cell surface proteins were prelabelled with CyDye before processing to extract the membrane lysates, which were separated using 2D electrophoresis. Selected differentially expressed protein "spots" were identified using Mass spectrometry. Four proteins were selected for validation: CD73, CD90, Annexin A2, and sphingosine kinase 1 previously associated with mesenchymal stem cells. Flow cytometric analysis found that CD73 and CD90 were highly expressed by human PDLSC and gingival fibroblasts but not by keratinocytes, indicating that these antigens could be used as potential markers for distinguishing between mesenchymal cells and epithelial cell populations. Annexin A2 was also found to be expressed at low copy number on the cell surface of human PDLSC and gingival fibroblasts, while human keratinocytes lacked any cell surface expression of Annexin A2. In contrast, sphingosine kinase 1 expression was detected in all the cell types examined using immunocytochemical analysis. These proteomic studies form the foundation to further define the cell surface protein expression profile of PDLSC in order to better characterise this cell population and help develop novel strategies for the purification of this stem cell population. PMID:27579043

  18. Investigation of the Cell Surface Proteome of Human Periodontal Ligament Stem Cells

    PubMed Central

    Xiong, Jimin; Menicanin, Danijela; Marino, Victor

    2016-01-01

    The present study examined the cell surface proteome of human periodontal ligament stem cells (PDLSC) compared to human fibroblasts. Cell surface proteins were prelabelled with CyDye before processing to extract the membrane lysates, which were separated using 2D electrophoresis. Selected differentially expressed protein “spots” were identified using Mass spectrometry. Four proteins were selected for validation: CD73, CD90, Annexin A2, and sphingosine kinase 1 previously associated with mesenchymal stem cells. Flow cytometric analysis found that CD73 and CD90 were highly expressed by human PDLSC and gingival fibroblasts but not by keratinocytes, indicating that these antigens could be used as potential markers for distinguishing between mesenchymal cells and epithelial cell populations. Annexin A2 was also found to be expressed at low copy number on the cell surface of human PDLSC and gingival fibroblasts, while human keratinocytes lacked any cell surface expression of Annexin A2. In contrast, sphingosine kinase 1 expression was detected in all the cell types examined using immunocytochemical analysis. These proteomic studies form the foundation to further define the cell surface protein expression profile of PDLSC in order to better characterise this cell population and help develop novel strategies for the purification of this stem cell population. PMID:27579043

  19. A rapid and selective assay for measuring cell surface hydrophobicity of brewer's yeast cells.

    PubMed

    Straver, M H; Kijne, J W

    1996-03-15

    A rapid and selective assay was developed to measure cell surface hydrophobicity of brewer's yeast cells. During this so-called magnobead assay, bottom-fermenting yeast cells adhere to paramagnetic, polystyrene-coated latex beads which can easily be removed from the cell suspension by using a (samarium-cobalt) magnet. At pH 4 center dot 5, electrostatic repulsion between yeast cells and latex beads was found to be minimal and yeast cell adhesion was predominantly based on hydrophobic interactions. The percentage of cells adhering to the beads could be calculated and provided a measure for cell surface hydrophobicity. Cell surface hydrophobicity measured by the magnobead assay was found to yield similar results, as did determination of contact angles of water droplets on a layer of yeast cells, a standard method for measuring surface hydrophobicity. However, the magnobead assay has the following advantages: (i) it is a quick and simple method, and, more significantly, (ii) hydrophobicity can be measured under physiological conditions. Use of the magnobead assay confirmed that a higher level of cell surface hydrophobicity is correlated with stronger flocculence of brewer's lager yeast cells. PMID:8904332

  20. Apoptotic epithelial cells control the abundance of Treg cells at barrier surfaces.

    PubMed

    Nakahashi-Oda, Chigusa; Udayanga, Kankanam Gamage Sanath; Nakamura, Yoshiyuki; Nakazawa, Yuta; Totsuka, Naoya; Miki, Haruka; Iino, Shuichi; Tahara-Hanaoka, Satoko; Honda, Shin-ichiro; Shibuya, Kazuko; Shibuya, Akira

    2016-04-01

    Epithelial tissues continually undergo apoptosis. Commensal organisms that inhabit the epithelium influence tissue homeostasis, in which regulatory T cells (Treg cells) have a central role. However, the physiological importance of epithelial cell apoptosis and how the number of Treg cells is regulated are both incompletely understood. Here we found that apoptotic epithelial cells negatively regulated the commensal-stimulated proliferation of Treg cells. Gut commensals stimulated CX3CR1(+)CD103(-)CD11b(+) dendritic cells (DCs) to produce interferon-β (IFN-β), which augmented the proliferation of Treg cells in the intestine. Conversely, phosphatidylserine exposed on apoptotic epithelial cells suppressed IFN-β production by the DCs via inhibitory signaling mediated by the cell-surface glycoprotein CD300a and thus suppressed Treg cell proliferation. Our findings reveal a regulatory role for apoptotic epithelial cells in maintaining the number of Treg cell and tissue homeostasis. PMID:26855029

  1. NMR spectroscopy and perfusion of mammalian cells using surface microprobes.

    PubMed

    Ehrmann, Klaus; Pataky, Kristopher; Stettler, Matthieu; Wurm, Florian Maria; Brugger, Jürgen; Besse, Pierre-André; Popovic, Radivoje

    2007-03-01

    NMR spectra of mammalian cells are taken using surface microprobes that are based on microfabricated planar coils. The surface microprobe resembles a miniaturized Petri dish commonly used in biological research. The diameter of the planar coils is 1 mm. Chinese Hamster Ovaries are immobilized in a uniform layer on the microprobe surface or patterned by an ink-jet printer in the centre of the microcoil, where the rf-field of the planar microcoil is most uniform. The acquired NMR spectra show the prevalent metabolites found in mammalian cells. The volumes of the detected samples range from 25 nL to 1 nL (or 50,000 to 1800 cells). With an extended set-up that provides fluid inlets and outlets to the microprobe, the cells can be perfused within the NMR-magnet while constantly taking NMR spectra. Perfusion of the cells opens the way to increased cell viability for long acquisitions or to analysis of the cells' response to environmental change. PMID:17330170

  2. Surface properties and early murine pre-osteoblastic cell responses of phosphoric acid modified titanium surface

    PubMed Central

    Osathanon, Thanaphum; Sawangmake, Chenphop; Ruangchainicom, Nanticha; Wutikornwipak, Pavitra; Kantukiti, Panisa; Nowwarote, Nunthawan; Pavasant, Prasit

    2015-01-01

    Aims The present study investigated the surface properties and murine pre-osteoblast cell (MC3T3-E1) responses of phosphoric acid (H3PO4) treated commercially pure titanium. Methods Titanium discs were treated with various concentration of H3PO4 (5%, 10%, and 20%; v/v) at 90 °C for 30 min. Surface properties were evaluated by profilometer, contact angle meter, and scanning electron microscopy (SEM) with energy dispersive X-rays. MC3T3-E1 attachment and spreading were evaluated by SEM and phalloidin immunohistochemistry staining. Results Surface roughness and wettability were not statistically difference among all experimental and control groups. Phosphate and oxygen were detected on H3PO4 treated surfaces. At 20 min, cell attachment was significantly higher in 10% and 20% H3PO4 treated groups compared to the control. Cells exhibited orientated-cytoskeleton fibers on 20% H3PO4 modified titanium surface. Though, there was no difference in cell spreading stage among all treatment groups. Conclusion H3PO4 treatment on titanium may influence early cell response, particularly on attachment and spreading. PMID:26937362

  3. Cell surface engineering of microorganisms towards adsorption of heavy metals.

    PubMed

    Li, Peng-Song; Tao, Hu-Chun

    2015-06-01

    Heavy metal contamination has become a worldwide environmental concern due to its toxicity, non-degradability and food-chain bioaccumulation. Conventional physical and chemical treatment methods for heavy metal removal have disadvantages such as cost-intensiveness, incomplete removal, secondary pollution and the lack of metal specificity. Microbial biomass-based biosorption is one of the approaches gaining increasing attention because it is effective, cheap, and environmental friendly and can work well at low concentrations. To enhance the adsorption properties of microbial cells to heavy metal ions, the cell surface display of various metal-binding proteins/peptides have been performed using a cell surface engineering approach. The surface engineering of Gram-negative bacteria, Gram-positive bacteria and yeast towards the adsorption of heavy metals are reviewed in this article. The problems and future perspectives of this technology are discussed. PMID:23915280

  4. A Rapid Method for Refolding Cell Surface Receptors and Ligands

    PubMed Central

    Zhai, Lu; Wu, Ling; Li, Feng; Burnham, Robert S.; Pizarro, Juan C.; Xu, Bin

    2016-01-01

    Production of membrane-associated cell surface receptors and their ligands is often a cumbersome, expensive, and time-consuming process that limits detailed structural and functional characterization of this important class of proteins. Here we report a rapid method for refolding inclusion-body-based, recombinant cell surface receptors and ligands in one day, a speed equivalent to that of soluble protein production. This method efficiently couples modular on-column immobilized metal ion affinity purification and solid-phase protein refolding. We demonstrated the general utility of this method for producing multiple functionally active immunoreceptors, ligands, and viral decoys, including challenging cell surface proteins that cannot be produced using typical dialysis- or dilution-based refolding approaches. PMID:27215173

  5. Entry Kinetics and Cell-Cell Transmission of Surface-Bound Retroviral Vector Particles

    PubMed Central

    O’Neill, Lee S.; Skinner, Amy M.; Woodward, Josha A.; Kurre, Peter

    2010-01-01

    Background Transduction with recombinant Human Immunodeficiency Virus (HIV) -1 derived lentivirus vectors is a multi-step process initiated by surface attachment and subsequent receptor-directed uptake into the target cell. We previously reported the retention of vesicular stomatitis virus G protein (VSV-G) pseudotyped particles on murine progenitor cells and their delayed cell-cell transfer. Methods To examine the underlying mechanism in more detail we used a combination of approaches focused on investigating the role of receptor-independent factors in modulating attachment. Results Studies of synchronized transduction herein reveal cell-type specific rates of vector particle clearance with substantial delays during particle entry into murine hematopoietic progenitor cells. The observed uptake kinetics from the surface of the 1° cell correlate inversely with the magnitude of transfer to 2° targets, corresponding with our initial observation of preferential cell-cell transfer in the context of brief vector exposures. We further demonstrate that vector particle entry into cells is associated with the cell–type specific abundance of extracellular matrix fibronectin. Residual particle – ECM binding and 2° transfer can be competitively disrupted by heparin exposure without affecting murine progenitor homing and repopulation. Conclusions While cellular attachment factors, including fibronectin, aid gene transfer by colocalizing particles to cells and disfavoring early dissociation from targets, they also appear to stabilize particles on the cell surface. Our study highlights the inadvertent consequences for cell entry and cell-cell transfer. PMID:20440757

  6. Cell surface expression and biosynthesis of epithelial Na+ channels.

    PubMed Central

    Prince, L S; Welsh, M J

    1998-01-01

    The epithelial Na+ channel (ENaC) complex is composed of three homologous subunits: alpha, beta and gamma. Mutations in ENaC subunits can increase the number of channels on the cell surface, causing a hereditary form of hypertension called Liddle's syndrome, or can decrease channel activity, causing pseudohypoaldosteronism type I, a salt-wasting disease of infancy. To investigate surface expression, we studied ENaC subunits expressed in COS-7 and HEK293 cells. Using surface biotinylation and protease sensitivity, we found that when individual ENaC subunits are expressed alone, they traffic to the cell surface. The subunits are glycosylated with high-mannose oligosaccharides, but seem to have the carbohydrate removed before they reach the cell surface. Moreover, subunits form a complex that cannot be disrupted by several non-ionic detergents. The pattern of glycosylation and detergent solubility/insolubility persists when the N-teminal and C-terminal cytoplasmic regions of ENaC are removed. With co-expression of all three ENaC subunits, the insoluble complex is the predominant species. These results show that ENaC and its family members are unique in their trafficking, biochemical characteristics and post-translational modifications. PMID:9841884

  7. Autonomous molecular cascades for evaluation of cell surfaces.

    PubMed

    Rudchenko, Maria; Taylor, Steven; Pallavi, Payal; Dechkovskaia, Alesia; Khan, Safana; Butler, Vincent P; Rudchenko, Sergei; Stojanovic, Milan N

    2013-08-01

    Molecular automata are mixtures of molecules that undergo precisely defined structural changes in response to sequential interactions with inputs. Previously studied nucleic acid-based automata include game-playing molecular devices (MAYA automata) and finite-state automata for the analysis of nucleic acids, with the latter inspiring circuits for the analysis of RNA species inside cells. Here, we describe automata based on strand-displacement cascades directed by antibodies that can analyse cells by using their surface markers as inputs. The final output of a molecular automaton that successfully completes its analysis is the presence of a unique molecular tag on the cell surface of a specific subpopulation of lymphocytes within human blood cells. PMID:23892986

  8. An electrochemical surface plasmon resonance imaging system targeting cell analysis

    NASA Astrophysics Data System (ADS)

    Zhang, L. L.; Chen, X.; Wei, H. T.; Li, H.; Sun, J. H.; Cai, H. Y.; Chen, J. L.; Cui, D. F.

    2013-08-01

    This paper presents an electrochemical-surface plasmon resonance imaging (EC-SPRI) system, enabling the characterization of optical and electrical properties of cells, simultaneously. The developed surface plasmon resonance (SPR) imaging system was capable of imaging micro cavities with a dimension of 10 μm × 10 μm and differentiated glycerol solutions with a group of refractive indices (RIs). Furthermore, the EC-SPRI system was used to image A549 cells, suggesting corresponding RI and morphology changes during the cell death process. In the end, electrochemical and SPR methods were used in combination, recording oxidation peaks of A549 cells in the cyclic voltage curves and SPR response unit increase, simultaneously.

  9. Role of cell surface oligosaccharides of mouse mammary tumor cell lines in cancer metastasis.

    PubMed

    Zhao, Yunxue; Li, Jing; Wang, Jingjian; Xing, Yanli; Geng, Meiyu

    2007-06-01

    Malignant transformation is associated with changes in the glycosylation of cell surface proteins and lipids. In tumor cells, alterations in cellular glycosylation may play a key role in their metastatic behaviour. In the present study, we have assessed the relationship between cell surface oligosaccharides and the metastasis ability of mouse mammary tumor cell lines 67NR and 4TO7. The cell surface oligosaccharides have been analyzed using specific binding assays with some plant lectins and the metastasis ability has been studied using transwell migration and invasion assays. In addition, we investigated the role of terminal sialic acids in the metastatic potential (cell adhesion on fibronectin, cell migration and invasion) in the 4TO7 cells on treatment with neuraminidase. The cell lines used in study have different metastasis abilities in vivo - the 67NR form primary tumors, but no tumor cells are detectable in any distant tissues, while cells of the 4TO7 line are able to spread to lung. In vitro metastasis experiments have revealed higher ability of adhesion, cell migration and invasion in the 4TO7 cells than the 67NR cells. Specific lectins binding assays show that the 4TO7 cells expressed more high-mannose type, multi-antennary complex-type N-glycans, beta-1,6-GlcNAc-branching, alpha-2,6-linked sialic acids, N-acetylgalactosamine and galactosyl(beta-1,3)-N-acetylgalactosamine. Removal of sialic acids on treatment with neuraminidase decreases adhesion, but increases the migration and has shown no significant change in the invasion ability of the 4TO7 cells. The study suggests that the sialic acids are not crucial for the cell migration and invasion in the 4TO7 cells. The findings provide the new insights in understanding the role of cell surface oligosaccharides in cancer metastasis. PMID:17650582

  10. Chemical Characterization of N-Linked Oligosaccharide As the Antigen Epitope Recognized by an Anti-Sperm Auto-Monoclonal Antibody, Ts4

    PubMed Central

    Yoshitake, Hiroshi; Hashii, Noritaka; Kawasaki, Nana; Endo, Shuichiro; Takamori, Kenji; Hasegawa, Akiko; Fujiwara, Hiroshi; Araki, Yoshihiko

    2015-01-01

    Ts4, an anti-sperm auto-monoclonal antibody, possesses immunoreactivity to the acrosomal region of mouse epididymal spermatozoa. In addition, the mAb shows specific immunoreactivity to reproduction-related regions such as testicular germ cells and early embryo. Our qualitative study previously showed that the antigen epitope for Ts4 contained a N-linked common oligosaccharide (OS) chain on testicular glycoproteins as determined by Western blotting for testicular glycoproteins after treatment with several glycohydrolases. Since the distribution of the Ts4-epitope is unique, the OS chain in Ts4-epitope may have role(s) in the reproductive process. The aim of this study was to clarify the molecular structure of the Ts4-epitope, particularly its OS moiety. Using Ts4 immunoprecipitation combined with liquid chromatography and multiple-stage mass spectrometry, the candidate carbohydrate structure in the Ts4-epitope is proposed to be N-linked fucosylated agalacto-biantennary with bisecting N-acetylglucosamine (GlcNAc) or with N-acetylgalactosamine-GlcNAc motif. Further binding analyses using various lectins against the mouse testicular Ts4-immunoprecipitants revealed that Phaseolus vulgaris erythroagglutinin and Pisum sativum agglutinin showed positive staining of the bands corresponding to Ts4 reactive proteins. Moreover, the immunoreactivity of Ts4 against the testicular extract was completely abrogated after digestion with β-N-acetylglucosaminidase. These results show that the Ts4-epitope contains agalacto-biantennary N-glycan with bisecting GlcNAc carrying fucose residues. PMID:26222427

  11. 3D Surface Topology Guides Stem Cell Adhesion and Differentiation

    PubMed Central

    Viswanathan, Priyalakshmi; Ondeck, Matthew G.; Chirasatitsin, Somyot; Nghamkham, Kamolchanok; Reilly, Gwendolen C.; Engler, Adam J.; Battaglia, Giuseppe

    2015-01-01

    Polymerized high internal phase emulsion (polyHIPE) foams are extremely versatile materials for investigating cell-substrate interactions in vitro. Foam morphologies can be controlled by polymerization conditions to result in either open or closed pore structures with different levels of connectivity, consequently enabling the comparison between 2D and 3D matrices using the same substrate with identical surface chemistry conditions. Additionally, here we achieve the control of pore surface topology (i.e. how different ligands are clustered together) using amphiphilic block copolymers as emulsion stabilisers. We demonstrate that adhesion of human mesenchymal progenitor (hES-MP) cells cultured on polyHIPE foams is dependent on foam surface topology and chemistry but is independent of porosity and interconnectivity. We also demonstrate that the interconnectivity, architecture and surface topology of the foams has an effect on the osteogenic differentiation potential of hES-MP cells. Together these data demonstrate that the adhesive heterogeneity of a 3D scaffold could regulate not only mesenchymal stem cell attachment but also cell behavior in the absence of soluble growth factors. PMID:25818420

  12. An update on cell surface proteins containing extensin-motifs.

    PubMed

    Borassi, Cecilia; Sede, Ana R; Mecchia, Martin A; Salgado Salter, Juan D; Marzol, Eliana; Muschietti, Jorge P; Estevez, Jose M

    2016-01-01

    In recent years it has become clear that there are several molecular links that interconnect the plant cell surface continuum, which is highly important in many biological processes such as plant growth, development, and interaction with the environment. The plant cell surface continuum can be defined as the space that contains and interlinks the cell wall, plasma membrane and cytoskeleton compartments. In this review, we provide an updated view of cell surface proteins that include modular domains with an extensin (EXT)-motif followed by a cytoplasmic kinase-like domain, known as PERKs (for proline-rich extensin-like receptor kinases); with an EXT-motif and an actin binding domain, known as formins; and with extracellular hybrid-EXTs. We focus our attention on the EXT-motifs with the short sequence Ser-Pro(3-5), which is found in several different protein contexts within the same extracellular space, highlighting a putative conserved structural and functional role. A closer understanding of the dynamic regulation of plant cell surface continuum and its relationship with the downstream signalling cascade is a crucial forthcoming challenge. PMID:26475923

  13. The Role of Surface Receptor Density in Surface-Initiated Polymerizations for Cancer Cell Isolation.

    PubMed

    Lilly, Jacob L; Berron, Brad J

    2016-06-01

    Fluid biopsies potentially offer a minimally invasive alternative to traditional tissue biopsies for the continual monitoring of metastatic cancer. Current established technologies for isolating circulating tumor cells (CTCs) suffer from poor purity and yield and require fixatives that preclude the collection of viable cells for longitudinal analyses of biological function. Antigen specific lysis (ASL) is a rapid, high-purity method of cell isolation based on targeted protective coatings on antigen-presenting cells and lysis depletion of unprotected antigen-negative cells. In ASL, photoinitiators are specifically labeled on cell surfaces that enable subsequent surface-initiated polymerization. Critically, the significant determinants of process yield have yet to be investigated for this emerging technology. In this work, we show that the labeling density of photoinitiators is strongly correlated with the yield of intact cells during ASL by flow cytometry analysis. Results suggest ASL is capable of delivering ∼25% of targeted cells after isolation using traditional antibody labeling approaches. Monomer formulations of two molecular weights of PEG-diacrylate (Mn ∼ 575 and 3500) are examined. The gelation response during ASL polymerization is also investigated via protein microarray analogues on planar glass. Finally, a density threshold of photoinitiator labeling required for protection during lysis is determined for both monomer formulations. These results indicate ASL is a promising technology for high yield CTC isolation for rare-cell function assays and fluid biopsies. PMID:27206735

  14. Simplified fabrication of back surface electric field silicon cells and novel characteristics of such cells

    NASA Technical Reports Server (NTRS)

    Mandelkorn, J.; Lamneck, J. H., Jr.

    1972-01-01

    An investigation of the characteristics and behavior of 10 ohm-cm silicon cells having abnormally high open-circuit voltages was made. The cells studied were made by a new, highly simplified, contact fabrication process which creates both a contact and a thin electric field region at the cell back surface without the need for phosphorus layer removal. These cells had open-circuit voltages of about 0.58 V and their performance as a function of thickness, temperature, and 1 MeV electron irradiation is detailed. The study showed that 10 ohm-cm back-surface-field cells can have the high initial efficiencies and desirable temperature behavior of low resistivity cells. Thin back-surface-field cells were made and showed, in addition, much greater radiation damage resistance. A mechanism is proposed to explain the results.

  15. Simplified fabrication of back surface electric field silicon cells and novel characteristics of such cells.

    NASA Technical Reports Server (NTRS)

    Mandelkorn, J.; Lamneck, J. H., Jr.

    1972-01-01

    An investigation of the characteristics and behavior of 10 ohm-cm silicon cells having abnormally high open-circuit voltages was made. The cells studied were made by a new, highly simplified, contact fabrication process which creates both a contact and a thin electric field region at the cell back surface without the need for phosphorus layer removal. These cells had open-circuit voltages of about 0.58 V and their performance as a function of thickness, temperature, and 1 MeV electron irradiation is detailed. The study showed that 10 ohm-cm back-surface-field cells can have the high initial efficiencies and desirable temperature behavior of low resistivity cells. Thin back-surface-field cells were made and showed, in addition, much greater radiation damage resistance. A mechanism is proposed to explain the results.

  16. Detection of cytoplasmic and surface membrane markers in cells of some human hematopoietic cell lines.

    PubMed

    Koníková, E; Babusíková, O; Kusenda, J; Glasová, M

    1992-01-01

    The cells of some human leukemia-lymphoma T cell lines (JURKAT, MOLT4), B cell lines (DAUDI, U-266) and of myeloid U-937 cell line were characterized for their surface membrane and cytoplasmic marker profiles. The usefulness of some fixation and permeabilization methods of cell membrane for detection of cytoplasmic markers by flow cytometry was studied. The methods of cell fixation in suspension were found to be more sensitive than the methods of cell fixation in smears. With the very short buffered formaldehyde-acetone (BFA) fixation used in this study an optimal penetration of the monoclonal antibodies (MoAbs) through the plasma membrane and specific binding to the appropriate structures were achieved. CD22 antigen was detected in cytoplasm but not on membrane of DAUDI cells. In another B cell line, U-266, CD22 antigen was present both in cell membrane and cytoplasm. The marker corresponding to anti-CD19 MoAb was detected in cytoplasm but was absent on membrane of U-266 cells. Furthermore, the antigen estimated by anti-CD3 MoAb could be detected intracellularly in cells of both T cell lines tested, while it was absent on cell membrane of these cells. The phenotypic study of U-937 cells showed that the majority of cells expressed myeloid associated antigens. In our study the CD14 marker detected on cell surface membrane of U-937 cells was missing in their cytoplasm. The surface antigens remained intact after BFA fixation enabling a simultaneous detection of membrane and cytoplasmic markers in double immunofluorescence studies. Through this combination of markers minor cell populations could be detected. Human hematopoietic cell lines could serve as a reliable model system for a rapid and quantitative immunodiagnosis. PMID:1491722

  17. Leukocyte Cell Surface Proteinases: Regulation of Expression, Functions, and Mechanisms of Surface Localization

    PubMed Central

    Owen, Caroline A.

    2008-01-01

    A number of proteinases are expressed on the surface of leukocytes including members of the serine, metallo-, and cysteine proteinase superfamilies. Some proteinases are anchored to the plasma membrane of leukocytes by a transmembrane domain or a glycosyl phosphatidyl inositol (GPI) anchor. Other proteinases bind with high affinity to classical receptors, or with lower affinity to integrins, proteoglycans, or other leukocyte surface molecules. Leukocyte surface levels of proteinases are regulated by: 1) cytokines, chemokines, bacterial products, and growth factors which stimulate synthesis and/or release of proteinase by cells; 2) the availability of surface binding sites for proteinases; and/or 3) internalization or shedding of surface-bound proteinases. The binding of proteinases to leukocyte surfaces serves many functions including: 1) concentrating the activity of proteinases to the immediate pericellular environment; 2) facilitating pro-enzyme activation; 3) increasing proteinase stability and retention in the extracellular space; 4) regulating leukocyte function by proteinases signaling through cell surface binding sites or other surface proteins; and 5) protecting proteinases from inhibition by extracellular proteinase inhibitors. There is strong evidence that membrane-associated proteinases on leukocytes play critical roles in wound healing, inflammation, extracellular matrix remodeling, fibrinolysis, and coagulation. This review will outline the biology of membrane-associated proteinases expressed by leukocytes and their roles in physiologic and pathologic processes. PMID:18329945

  18. Cell surface energy, contact angles and phase partition. II. Bacterial cells in biphasic aqueous mixtures.

    PubMed

    Gerson, D F; Akit, J

    1980-11-01

    Partition coefficients in biphasic mixtures of poly(ethylene glycol) and Dextran are compared to cell surface energies obtained from contact angles of each liquid phase on cell layers. Linear relationships are observed between these two independent measurements for a variety of bacterial cells. The results demonstrate the importance of interfacial phenomena and contact angles in the phase-partition process. PMID:6159003

  19. Immunomic Screening of Cell Surface Molecules on Undifferentiated Human Dental Pulp Stem Cells.

    PubMed

    Hwang, Hyo-In; Lee, Tae-Hyung; Kang, Kyung-Jung; Ryu, Chun-Jeih; Jang, Young-Joo

    2015-08-15

    Human adult dental pulp tissue is a source of adult stem cells that have a potential to differentiate into various tissues, although the primary cell suspensions cultured from pulp tissue are mixtures of both stem cell and nonstem cell populations with heterogeneous phenotypes and various differentiation efficiencies. Therefore, cell surface protein markers on dental pulp stem cells are critical for detection and purification of stem cell populations. Yet, little is known about the cell surface molecules that are specifically associated with the undifferentiated and progenitor state of human adult dental pulp stem cells (hDPSCs). Presently, cell surface proteins expressed on hDPSCs were assessed by screening surface molecules specifically expressed on dentinogenic progenitors. Using a decoy immunization strategy, a set of monoclonal antibodies (MAbs) was generated against undifferentiated pulp progenitor cells. Forty-five hybridomas produced MAbs that interacted weakly, if at all, to differentiated pulp cells. Of these, 19 MAbs (18 IgG, 1 IgM) recognized surface molecules on undifferentiated hDPSCs. By multicolor flow cytometric analysis, 40%-60% of newly identified MAb-positive cells were demonstrated to be positive for the CD44 and CD90 mesenchymal markers. When MAb-positive cells were sorted from the heterogeneous pulp cell suspension, mineralization efficiency was increased three to five times compared with MAb-negative cells. The results suggest that the decoy immunization is an efficient method for isolation of MAbs against dentinogenic progenitors. These MAbs will be helpful for identification and enrichment of hDPSCs for efficient dentin regeneration. PMID:25919113

  20. Surface expression and function of Cav3.2 T-type calcium channels are controlled by asparagine-linked glycosylation.

    PubMed

    Weiss, Norbert; Black, Stefanie A G; Bladen, Chris; Chen, Lina; Zamponi, Gerald W

    2013-08-01

    Low-voltage-activated T-type calcium channels play important roles in neuronal physiology where they control cellular excitability and synaptic transmission. Alteration in T-type channel expression has been linked to various pathophysiological conditions such as pain arising from diabetic neuropathy. In the present study, we looked at the role of asparagine (N)-linked glycosylation on human Cav3.2 T-type channel expression and function. Manipulation of N-glycans on cells expressing a recombinant Cav3.2 channel revealed that N-linked glycosylation is critical for proper functional expression of the channel. Using site-directed mutagenesis to disrupt the canonical N-linked glycosylation sites of Cav3.2 channel, we show that glycosylation at asparagine N192 is critical for channel expression at the surface, whereas glycosylation at asparagine N1466 controls channel activity. Moreover, we demonstrate that N-linked glycosylation of Cav3.2 not only controls surface expression and activity of the channel but also underlies glucose-dependent potentiation of T-type Ca(2+) current. Our data suggest that N-linked glycosylation of T-type channels may play an important role in aberrant upregulation of T-type channel activity in response to glucose elevations. PMID:23503728

  1. Transcriptional Profiling of Bipotential Embryonic Liver Cells to Identify Liver Progenitor Cell Surface Markers

    PubMed Central

    Ochsner, Scott A.; Strick-Marchand, Hélène; Qiu, Qiong; Venable, Susan; Dean, Adam; Wilde, Margaret; Weiss, Mary C.; Darlington, Gretchen J.

    2010-01-01

    The ability to purify to homogeneity a population of hepatic progenitor cells from adult liver is critical for their characterization prior to any therapeutic application. As a step in this direction, we have used a bipotential liver cell line from 14 days postcoitum mouse embryonic liver to compile a list of cell surface markers expressed specifically by liver progenitor cells. These cells, known as bipotential mouse embryonic liver (BMEL) cells, proliferate in an undifferentiated state and are capable of differentiating into hepatocyte-like and cholangiocyte-like cells in vitro. Upon transplantation, BMEL cells are capable of differentiating into hepatocytes and cholangiocytes in vivo. Microarray and Gene Ontology (GO) analysis of gene expression in the 9A1 and 14B3 BMEL cell lines grown under proliferating and differentiating conditions was used to identify cell surface markers preferentially expressed in the bipotential undifferentiated state. This analysis revealed that proliferating BMEL cells express many genes involved in cell cycle regulation, whereas differentiation of BMEL cells by cell aggregation causes a switch in gene expression to functions characteristic of mature hepatocytes. In addition, microarray data and protein analysis indicated that the Notch signaling pathway could be involved in maintaining BMEL cells in an undifferentiated stem cell state. Using GO annotation, a list of cell surface markers preferentially expressed on undifferentiated BMEL cells was generated. One marker, Cd24a, is specifically expressed on progenitor oval cells in livers of diethyl 1,4-dihydro-2,4,6-trimethyl-3,5-pyridinedicarboxylate-treated animals. We therefore consider Cd24a expression a candidate molecule for purification of hepatic progenitor cells. PMID:17641245

  2. Comparison of biological activities of human antithrombins with high-mannose or complex-type nonfucosylated N-linked oligosaccharides.

    PubMed

    Yamada, Tsuyoshi; Kanda, Yutaka; Takayama, Makoto; Hashimoto, Akitoshi; Sugihara, Tsutomu; Satoh-Kubota, Ai; Suzuki-Takanami, Eri; Yano, Keiichi; Iida, Shigeru; Satoh, Mitsuo

    2016-05-01

    The structure of the N-linked oligosaccharides attached to antithrombin (AT) has been shown to affect its anticoagulant activity and pharmacokinetics. Human AT has biantennary complex-type oligosaccharides with the unique feature of lacking a core fucose, which affects its biological activities by changing its heparin-binding affinity. In human plasma, AT circulates as a mixture of the α-form bearing four oligosaccharides and the β-form lacking an oligosaccharide at Asn135. However, it remains unclear how the immature high-mannose-type oligosaccharides produced by mammalian cells affect biological activities of AT. Here, we succeeded in directly comparing the activities between the high-mannose and complex types. Interestingly, although there were no substantial differences in thrombin inhibitory activity, the high-mannose type showed higher heparin-binding affinity. The anticoagulant activities were increased by heparin and correlated with the heparin-binding affinity, resulting in the strongest anticoagulant activity being displayed in the β-form with the high-mannose type. In pharmacokinetic profiling, the high-mannose type showed a much shorter plasma half-life than the complex type. The β-form was found to have a prolonged plasma half-life compared with the α-form for the high-mannose type; conversely, the α-form showed a longer half-life than the β-form for the complex-type. The present study highlights that AT physiological activities are strictly controlled not only by a core fucose at the reducing end but also by the high-mannose-type structures at the nonreducing end. The β-form with the immature high-mannose type appears to function as a more potent anticoagulant than the AT typically found in human plasma, once it emerges in the blood. PMID:26747427

  3. Comparative proteomics and glycoproteomics reveal increased N-linked glycosylation and relaxed sequon specificity in Campylobacter jejuni NCTC11168 O.

    PubMed

    Scott, Nichollas E; Marzook, N Bishara; Cain, Joel A; Solis, Nestor; Thaysen-Andersen, Morten; Djordjevic, Steven P; Packer, Nicolle H; Larsen, Martin R; Cordwell, Stuart J

    2014-11-01

    Campylobacter jejuni is a major cause of bacterial gastroenteritis. C. jejuni encodes a protein glycosylation (Pgl) locus responsible for the N-glycosylation of membrane-associated proteins. We examined two variants of the genome sequenced strain NCTC11168: O, a representative of the original clinical isolate, and GS, a laboratory-adapted relative of O. Comparative proteomics by iTRAQ and two-dimensional liquid chromatography coupled to tandem mass spectrometry (2D-LC-MS/MS) allowed the confident identification of 1214 proteins (73.9% of the predicted C. jejuni proteome), of which 187 were present at statistically significant altered levels of abundance between variants. Proteins associated with the O variant included adhesins (CadF and FlpA), proteases, capsule biosynthesis, and cell shape determinants as well as six proteins encoded by the Pgl system, including the PglK flippase and PglB oligosaccharyltransferase. Lectin blotting highlighted specific glycoproteins more abundant in NCTC11168 O, whereas others remained unaltered. Hydrophilic interaction liquid chromatography (HILIC) and LC-MS/MS identified 30 completely novel glycosites from 15 proteins. A novel glycopeptide from a 14 kDa membrane protein (Cj0455c) was identified that did not contain the C. jejuni N-linked sequon D/E-X-N-X-S/T (X ≠ Pro) but that instead contained a sequon with leucine at the -2 position. Occupied atypical sequons were also observed in Cj0958c (OxaA; Gln at the -2 position) and Cj0152c (Ala at the +2 position). The relative O and GS abundances of 30 glycopeptides were determined by label-free quantitation, which revealed a >100-fold increase in the atypical glycopeptide from Cj0455c in isolate O. Our data provide further evidence for the importance of the Pgl system in C. jejuni. PMID:25093254

  4. Front surface passivation of silicon solar cells with antireflection coating

    NASA Technical Reports Server (NTRS)

    Crotty, G.; Daud, T.; Kachare, R.

    1987-01-01

    It is demonstrated that the deposition and postdeposition sintering of an antireflection (AR) coating in hydrogen acts to passivate silicon solar cells. Cells with and without an SiO2 passivating layer, coated with a TiO(x)/Al2O3 AR coating, showed comparable enhancements in short-wavelength spectral response and in open-circuit voltage Voc after sintering at 400 C for 5 min in a hydrogen ambient. The improvement in Voc of cells without SiO2 is attributed to front-surface passivation by the AR coating during processing.

  5. Tracking surface glycans on live cancer cells with single molecule sensitivity**

    PubMed Central

    Jiang, Hao; English, Brian P.; Hazan, Rachel B.; Wu, Peng

    2015-01-01

    Using a combination of metabolically labeled glycans, bioorthogonal Cu(I)-catalyzed azide-alkyne cycloaddition and controlled bleaching of fluorescent probes conjugated to azide or alkyne tagged glycans, we achieve a sufficiently low spatial density of dye labeled glycans enabling dynamic single-molecule tracking and super-resolution imaging of N-linked sialic acids and O-linked GalNAc on the membrane of live cells. Analysis of the trajectories of these dye labeled glycans in mammary cancer cells reveal constrained diffusion of both N- and O-linked glycans which we interpret as reflecting the mobility of the glycan rather than caused by transient immobilization due to spatial inhomogeneities on the plasma membrane. Stochastic optical reconstruction microscopy (STORM) imaging reveals the structure of dynamic membrane nanotubes. PMID:25515330

  6. Cell-surface GRP78 facilitates colorectal cancer cell migration and invasion.

    PubMed

    Li, Zongwei; Zhang, Lichao; Zhao, Yarui; Li, Hanqing; Xiao, Hong; Fu, Rong; Zhao, Chao; Wu, Haili; Li, Zhuoyu

    2013-05-01

    Glucose regulated protein 78 (GRP78) is predominantly located in the endoplasmic reticulum as a molecular chaperone. It has also been found on the membranes of some cancer cells, acting as a receptor for a wide variety of ligands. However, its presence on colorectal cancer (CRC) cell surface and its role in CRC metastatic progression remain elusive. Here we reported that GRP78 was predominantly present in the form of clustering aggregates on CRC cell surfaces, and its surface abundance was strongly correlated with CRC differentiation stage. Interestingly, we observed that cell-surface GRP78 had an interaction with the ECM adhesion molecule β1-integrin and was involved in cell-matrix adhesion through regulation of focal adhesion kinase (FAK). Moreover, the present data also implicated that surface GRP78 promoted the cell invasion process, and this effect was at least partly mediated through its association with uPA-uPAR protease system. Together, our data suggests that surface GRP78 promotes CRC cell migration and invasion by regulating cell-matrix adhesion and ECM degradation, which is independent of its signaling receptor function. PMID:23485528

  7. N-linked glycosylation of native and recombinant cauliflower xyloglucan endotransglycosylase 16A.

    PubMed Central

    Henriksson, Hongbin; Denman, Stuart E; Campuzano, Iain D G; Ademark, Pia; Master, Emma R; Teeri, Tuula T; Brumer, Harry

    2003-01-01

    The gene encoding a XET (xyloglucan endotransglycosylase) from cauliflower ( Brassica oleracea var. botrytis ) florets has been cloned and sequenced. Sequence analysis indicated a high degree of similarity to other XET enzymes belonging to glycosyl hydrolase family 16 (GH16). In addition to the conserved GH16 catalytic sequence motif EIDFE, there exists one potential N-linked glycosylation site, which is also highly conserved in XET enzymes from this family. Purification of the corresponding protein from extracts of cauliflower florets allowed the fractionation of a single, pure glycoform, which was analysed by MS techniques. Accurate protein mass determination following the enzymic deglycosylation of this glycoform indicated the presence of a high-mannose-type glycan of the general structure GlcNAc2Man6. LC/MS and MS/MS (tandem MS) analysis provided supporting evidence for this structure and confirmed that the glycosylation site (underlined) was situated close to the predicted catalytic residues in the conserved sequence YLSSTNNEHDEIDFEFLGNRTGQPVILQTNVFTGGK. Heterologous expression in Pichia pastoris produced a range of protein glycoforms, which were, on average, more highly mannosylated than the purified native enzyme. This difference in glycosylation did not influence the apparent enzymic activity of the enzyme significantly. However, the removal of high-mannose glycosylation in recombinant cauliflower XET by endoglycosidase H, quantified by electrospray-ionization MS, caused a 40% decrease in the transglycosylation activity of the enzyme. No hydrolytic activity was detected in native or heterologously expressed BobXET16A, even when almost completely deglycosylated. PMID:12826015

  8. N-Linked Glycosylation in Archaea: a Structural, Functional, and Genetic Analysis

    PubMed Central

    Ding, Yan; Meyer, Benjamin H.; Albers, Sonja-Verena; Kaminski, Lina; Eichler, Jerry

    2014-01-01

    SUMMARY N-glycosylation of proteins is one of the most prevalent posttranslational modifications in nature. Accordingly, a pathway with shared commonalities is found in all three domains of life. While excellent model systems have been developed for studying N-glycosylation in both Eukarya and Bacteria, an understanding of this process in Archaea was hampered until recently by a lack of effective molecular tools. However, within the last decade, impressive advances in the study of the archaeal version of this important pathway have been made for halophiles, methanogens, and thermoacidophiles, combining glycan structural information obtained by mass spectrometry with bioinformatic, genetic, biochemical, and enzymatic data. These studies reveal both features shared with the eukaryal and bacterial domains and novel archaeon-specific aspects. Unique features of N-glycosylation in Archaea include the presence of unusual dolichol lipid carriers, the use of a variety of linking sugars that connect the glycan to proteins, the presence of novel sugars as glycan constituents, the presence of two very different N-linked glycans attached to the same protein, and the ability to vary the N-glycan composition under different growth conditions. These advances are the focus of this review, with an emphasis on N-glycosylation pathways in Haloferax, Methanococcus, and Sulfolobus. PMID:24847024

  9. A novel CFTR disease-associated mutation causes addition of an extra N-linked oligosaccharide.

    PubMed

    Hämmerle, M M; Aleksandrov, A A; Chang, X B; Riordan, J R

    2000-11-01

    We have examined the influence of a novel missense mutation in the fourth extracytoplasmic loop (EL4) of CFTR detected in a patient with cystic fibrosis. This substitution (T908N) creates a consensus sequence (N X S/T) for addition of an N-linked oligosaccharide chain near the C-terminal end of EL4. Oligosaccharyl transferase generally does not have access to this consensus sequence if it is closer than about twelve amino acids from the membrane. However, the T908N site is used, even though it is within four residues of the predicted membrane interface and the oligosaccharide chain added binds calnexin, a resident chaperone of the ER membrane. The chloride channel activity of this variant CFTR is abnormal as evidenced by a reduced rate of (36)Cl(-) efflux and a noisy single channel open state. This may reflect some displacement of the membrane spanning sequence C-terminal of EL4 since it contains residues influencing the ion pore. PMID:11443282

  10. Identification of perivitelline N-linked glycans as mediators of sperm-egg interaction in chickens.

    PubMed

    Robertson, L; Wishart, G J; Horrocks, A J

    2000-11-01

    This study demonstrates that carbohydrates play an essential role in sperm-egg interactions in birds. Sperm-egg interaction was measured in vitro as the ability of spermatozoa to hydrolyse a small hole in the inner perivitelline layer, the equivalent of the mammalian zona pellucida. Preincubation with Triticum vulgaris lectin (WGA) and succinyl-WGA (S-WGA) at 10 microgram ml(-1) resulted in complete inhibition of sperm-egg interaction, whereas at the same concentration a range of other lectins (Canavalia ensiformis (Con A), Arachis hypogea (PNA), Ulex europaeus II (UEA II), Solanum tuberosum (STA), Tetragonolobus purpureas (LTA) and Pisum sativum (PSA)) were unable to inhibit sperm egg interaction significantly, although fluorescein-labelled derivatives of these lectins were found to stain the inner perivitelline layer. Significant inhibition of sperm-egg interaction was achieved by the addition of N-acetyl-D-glucosamine and fucoidin to the assay mixture; however, D-glucose, D-galactose, D-fucose and L-fucose had no significant effect on sperm-egg interaction. Pretreatment of the inner perivitelline layer with N-glycanase significantly reduced sperm-egg interaction, whereas treatment with O-glycanase had no effect. These results demonstrate that N-linked glycans play an essential role in sperm-egg interaction in chickens. PMID:11058456

  11. Ion Mobility-Mass Spectrometry Analysis of Serum N-linked Glycans from Esophageal Adenocarcinoma Phenotypes

    PubMed Central

    Gaye, M. M.; Valentine, S. J.; Hu, Y.; Mirjankar, N.; Hammoud, Z. T.; Mechref, Y.; Lavine, B. K.; Clemmer, D. E.

    2012-01-01

    Three disease phenotypes, Barrett’s esophagus (BE), high-grade dysplasia (HGD), esophageal adenocarcinoma (EAC), and a set of normal control (NC) serum samples are examined using a combination of ion mobility spectrometry (IMS), mass spectrometry (MS) and principal component analysis (PCA) techniques. Samples from a total of 136 individuals were examined, including: 7 characterized as BE, 12 as HGD, 56 as EAC and 61 as NC. In typical datasets it was possible to assign ~20 to 30 glycan ions based on MS measurements. Ion mobility distributions for these ions show multiple features. In some cases, such as the [S1H5N4+3Na]3+ and [S1F1H5N4+3Na]3+ glycan ions, the ratio of intensities of high-mobility features to low-mobility features vary significantly for different groups. The degree to which such variations in mobility profiles can be used to distinguish phenotypes is evaluated for eleven N-linked glycan ions. An outlier analysis on each sample class followed by an unsupervised PCA using a genetic algorithm for pattern recognition reveals that EAC samples are separated from NC samples based on 46 features originating from the 11-glycan composite IMS distribution. PMID:23126309

  12. MAGIC-web: a platform for untargeted and targeted N-linked glycoprotein identification.

    PubMed

    Lih, T Mamie; Choong, Wai-Kok; Chen, Chen-Chun; Cheng, Cheng-Wei; Lin, Hsin-Nan; Chen, Ching-Tai; Chang, Hui-Yin; Hsu, Wen-Lian; Sung, Ting-Yi

    2016-07-01

    MAGIC-web is the first web server, to the best of our knowledge, that performs both untargeted and targeted analyses of mass spectrometry-based glycoproteomics data for site-specific N-linked glycoprotein identification. The first two modules, MAGIC and MAGIC+, are designed for untargeted and targeted analysis, respectively. MAGIC is implemented with our previously proposed novel Y1-ion pattern matching method, which adequately detects Y1- and Y0-ion without prior information of proteins and glycans, and then generates in silico MS(2) spectra that serve as input to a database search engine (e.g. Mascot) to search against a large-scale protein sequence database. On top of that, the newly implemented MAGIC+ allows users to determine glycopeptide sequences using their own protein sequence file. The third module, Reports Integrator, provides the service of combining protein identification results from Mascot and glycan-related information from MAGIC-web to generate a complete site-specific protein-glycan summary report. The last module, Glycan Search, is designed for the users who are interested in finding possible glycan structures with specific numbers and types of monosaccharides. The results from MAGIC, MAGIC+ and Reports Integrator can be downloaded via provided links whereas the annotated spectra and glycan structures can be visualized in the browser. MAGIC-web is accessible from http://ms.iis.sinica.edu.tw/MAGIC-web/index.html. PMID:27084943

  13. Distinguishing Cancerous Liver Cells Using Surface-Enhanced Raman Spectroscopy.

    PubMed

    Huang, Jing; Liu, Shupeng; Chen, Zhenyi; Chen, Na; Pang, Fufei; Wang, Tingyun

    2016-02-01

    Raman spectroscopy has been widely used in biomedical research and clinical diagnostics. It possesses great potential for the analysis of biochemical processes in cell studies. In this article, the surface-enhanced Raman spectroscopy (SERS) of normal and cancerous liver cells incubated with SERS active substrates (gold nanoparticle) was measured using confocal Raman microspectroscopy technology. The chemical components of the cells were analyzed through statistical methods for the SERS spectrum. Both the relative intensity ratio and principal component analysis (PCA) were used for distinguishing the normal liver cells (QSG-7701) from the hepatoma cells (SMMC-7721). The relative intensity ratio of the Raman spectra peaks such as I937/I1209, I1276/I1308, I1342/I1375, and I1402/I1435 was set as the judge boundary, and the sensitivity and the specificity using PCA method were calculated. The results indicated that the surface-enhanced Raman spectrum could provide the chemical information for distinguishing the normal cells from the cancerous liver cells and demonstrated that SERS technology possessed the possible applied potential for the diagnosis of liver cancer. PMID:25432931

  14. Microarrays for the evaluation of cell-biomaterial surface interactions

    NASA Astrophysics Data System (ADS)

    Thissen, H.; Johnson, G.; McFarland, G.; Verbiest, B. C. H.; Gengenbach, T.; Voelcker, N. H.

    2007-01-01

    The evaluation of cell-material surface interactions is important for the design of novel biomaterials which are used in a variety of biomedical applications. While traditional in vitro test methods have routinely used samples of relatively large size, microarrays representing different biomaterials offer many advantages, including high throughput and reduced sample handling. Here, we describe the simultaneous cell-based testing of matrices of polymeric biomaterials, arrayed on glass slides with a low cell-attachment background coating. Arrays were constructed using a microarray robot at 6 fold redundancy with solid pins having a diameter of 375 μm. Printed solutions contained at least one monomer, an initiator and a bifunctional crosslinker. After subsequent UV polymerisation, the arrays were washed and characterised by X-ray photoelectron spectroscopy. Cell culture experiments were carried out over 24 hours using HeLa cells. After labelling with CellTracker ® Green for the final hour of incubation and subsequent fixation, the arrays were scanned. In addition, individual spots were also viewed by fluorescence microscopy. The evaluation of cell-surface interactions in high-throughput assays as demonstrated here is a key enabling technology for the effective development of future biomaterials.

  15. Multijunction Solar Cells Optimized for the Mars Surface Solar Spectrum

    NASA Technical Reports Server (NTRS)

    Edmondson, Kenneth M.; Fetzer, Chris; Karam, Nasser H.; Stella, Paul; Mardesich, Nick; Mueller, Robert

    2007-01-01

    This paper gives an update on the performance of the Mars Exploration Rovers (MER) which have been continually performing for more than 3 years beyond their original 90-day missions. The paper also gives the latest results on the optimization of a multijunction solar cell that is optimized to give more power on the surface of Mars.

  16. Interactions of macromolecules with the mammalian cell surface.

    PubMed

    Wall, J; Ayoub, F; O'Shea, P

    1995-07-01

    The characterisation of fluoresceinphosphatidylethanolamine (FPE) as a real-time indicator of the electrostatic nature of the cell membrane surface is described. The conditions appropriate for the labelling of cell membranes and the implementation of FPE as a tool to monitor the interactions of various proteins and peptides with membranes are outlined. Some complications attributed to the erythrocyte glycocalyx are examined. In addition it is shown using neuraminidase as an example, that some types of enzyme-catalysed reactions on the cell surface may be monitored in real time. It is also shown that information concerning the binding of several proteins such as serum albumin and monoclonal antibodies are accessible with this technique. The albumin in particular is shown to exhibit a saturation of binding, the analysis of which indicates that the dissociation constant for erythrocytes was determined to be 8 microM and for lymphocytes to be almost 3 microM. On the basis of this comparison together with artificial membranes, the membrane protein components of the lymphocyte surface are implicated in the binding of albumin or the erythrocyte membrane proteins reduce the affinity of the cell surface for albumin. PMID:7593308

  17. Structure of a bacterial cell surface decaheme electron conduit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits...

  18. Ocular surface reconstruction using stem cell and tissue engineering.

    PubMed

    Nakamura, Takahiro; Inatomi, Tsutomu; Sotozono, Chie; Koizumi, Noriko; Kinoshita, Shigeru

    2016-03-01

    Most human sensory information is gained through eyesight, and integrity of the ocular surface, including cornea and conjunctiva, is known to be indispensable for good vision. It is believed that severe damage to corneal epithelial stem cells results in devastating ocular surface disease, and many researchers and scientists have tried to reconstruct the ocular surface using medical and surgical approaches. Ocular surface reconstruction via regenerative therapy is a newly developed medical field that promises to be the next generation of therapeutic modalities, based on the use of tissue-specific stem cells to generate biological substitutes and improve tissue functions. The accomplishment of these objectives depends on three key factors: stem cells, which have highly proliferative capacities and longevities; the substrates determining the environmental niche; and growth factors that support them appropriately. This manuscript describes the diligent development of ocular surface reconstruction using tissue engineering techniques, both past and present, and discusses and validates their future use for regenerative therapy in this field. PMID:26187034

  19. N-linked glycolipids by Staudinger coupling of glycosylated alkyl diazides with fatty acids.

    PubMed

    Salman, Salih Mahdi; Heidelberg, Thorsten; Bin Tajuddin, Hairul Anuar

    2013-06-28

    Aiming for new glycolipids with enhanced chemical stability and close structural similarity to natural cell membrane lipids for the development of a drug delivery system, we have synthesized double amide analogs of glyco-glycerolipids. The synthesis applied a Staudinger reaction based coupling of a 1,3-diazide with fatty acid chlorides. While the concept furnished the desired glucosides in reasonable yields, the corresponding lactosides formed a tetrahydropyrimidine based 1:1 coupling product instead. This unexpected coupling result likely originates from steric hindrance at the iminophosphorane intermediate and provides an interesting core structure for potentially bioactive surfactants. The assembly behavior of both glycolipid types was investigated by optical polarizing microscopy, DSC and surface tension studies. PMID:23685811

  20. Methods To Identify Aptamers against Cell Surface Biomarkers

    PubMed Central

    Cibiel, Agnes; Dupont, Daniel Miotto; Ducongé, Frédéric

    2011-01-01

    Aptamers are nucleic acid-based ligands identified through a process of molecular evolution named SELEX (Systematic Evolution of Ligands by Exponential enrichment). During the last 10-15 years, numerous aptamers have been developed specifically against targets present on or associated with the surface of human cells or infectious pathogens such as viruses, bacteria, fungi or parasites. Several of the aptamers have been described as potent probes, rivalling antibodies, for use in flow cytometry or microscopy. Some have also been used as drugs by inhibiting or activating functions of their targets in a manner similar to neutralizing or agonistic antibodies. Additionally, it is straightforward to conjugate aptamers to other agents without losing their affinity and they have successfully been used in vitro and in vivo to deliver drugs, siRNA, nanoparticles or contrast agents to target cells. Hence, aptamers identified against cell surface biomarkers represent a promising class of ligands. This review presents the different strategies of SELEX that have been developed to identify aptamers for cell surface-associated proteins as well as some of the methods that are used to study their binding on living cells.

  1. Cell Surface Vimentin Is an Attachment Receptor for Enterovirus 71

    PubMed Central

    Du, Ning; Cong, Haolong; Tian, Hongchao; Zhang, Hua; Zhang, Wenliang; Song, Lei

    2014-01-01

    ABSTRACT Enterovirus 71 (EV71) is a highly transmissible pathogenic agent that causes severe central nervous system diseases in infected infants and young children. Here, we reported that EV71 VP1 protein could bind to vimentin intermediate filaments expressed on the host cell surface. Soluble vimentin or an antibody against vimentin could inhibit the binding of EV71 to host cells. Accompanied with the reduction of vimentin expression on the cell surface, the binding of EV71 to cells was remarkably decreased. Further evidence showed that the N terminus of vimentin is responsible for the interaction between EV71 and vimentin. These results indicated that vimentin on the host cell surface may serve as an attachment site that mediated the initial binding and subsequently increased the infectivity of EV71. IMPORTANCE This study delivers important findings on the roles of vimentin filaments in relation to EV71 infection and provides information that not only improves our understanding of EV71 pathogenesis but also presents us with potentially new strategies for the treatment of diseases caused by EV71 infections. PMID:24623428

  2. Cell Surface Nucleolin Facilitates Enterovirus 71 Binding and Infection

    PubMed Central

    Su, Pei-Yi; Wang, Ya-Fang; Huang, Sheng-Wen; Lo, Yu-Chih; Wang, Ya-Hui; Wu, Shang-Rung; Shieh, Dar-Bin; Wang, Jen-Ren; Lai, Ming-Der

    2015-01-01

    ABSTRACT Because the pathogenesis of enterovirus 71 (EV71) remains mostly ambiguous, identifying the factors that mediate viral binding and entry to host cells is indispensable to ultimately uncover the mechanisms that underlie virus infection and pathogenesis. Despite the identification of several receptors/attachment molecules for EV71, the binding, entry, and infection mechanisms of EV71 remain unclear. Herein, we employed glycoproteomic approaches to identify human nucleolin as a novel binding receptor for EV71. Glycoproteins purified by lectin chromatography from the membrane extraction of human cells were treated with sialidase, followed by immunoprecipitation with EV71 particles. Among the 16 proteins identified by tandem mass spectrometry analysis, cell surface nucleolin attracted our attention. We found that EV71 interacted directly with nucleolin via the VP1 capsid protein and that an antinucleolin antibody reduced the binding of EV71 to human cells. In addition, the knockdown of cell surface nucleolin decreased EV71 binding, infection, and production in human cells. Furthermore, the expression of human nucleolin on the cell surface of a mouse cell line increased EV71 binding and conferred EV71 infection and production in the cells. These results strongly indicate that human nucleolin can mediate EV71 binding to and infection of cells. Our findings also demonstrate that the use of glycoproteomic approaches is a reliable methodology to discover novel receptors for pathogens. IMPORTANCE Outbreaks of EV71 have been reported in Asia-Pacific countries and have caused thousands of deaths in young children during the last 2 decades. The discovery of new EV71-interacting molecules to understand the infection mechanism has become an emergent issue. Hence, this study uses glycoproteomic approaches to comprehensively investigate the EV71-interacting glycoproteins. Several EV71-interacting glycoproteins are identified, and the role of cell surface nucleolin in

  3. Cell-surface markers for colon adenoma and adenocarcinoma

    PubMed Central

    Sewda, Kamini; Coppola, Domenico; Enkemann, Steven; Yue, Binglin; Kim, Jongphil; Lopez, Alexis S.; Wojtkowiak, Jonathan W.; Stark, Valerie E.; Morse, Brian; Shibata, David; Vignesh, Shivakumar; Morse, David L.

    2016-01-01

    Early detection of colorectal cancer (CRC) is crucial for effective treatment. Among CRC screening techniques, optical colonoscopy is widely considered the gold standard. However, it is a costly and invasive procedure with a low rate of compliance. Our long-term goal is to develop molecular imaging agents for the non-invasive detection of CRC by molecular imaging-based colonoscopy using CT, MRI or fluorescence. To achieve this, cell surface targets must be identified and validated. Here, we report the discovery of cell-surface markers that distinguish CRC from surrounding tissues that could be used as molecular imaging targets. Profiling of mRNA expression microarray data from patient tissues including adenoma, adenocarcinoma, and normal gastrointestinal tissues was used to identify potential CRC specific cell-surface markers. Of the identified markers, six were selected for further validation (CLDN1, GPR56, GRM8, LY6G6D/F, SLCO1B3 and TLR4). Protein expression was confirmed by immunohistochemistry of patient tissues. Except for SLCO1B3, diffuse and low expression was observed for each marker in normal colon tissues. The three markers with the greatest protein overexpression were CLDN1, LY6G6D/F and TLR4, where at least one of these markers was overexpressed in 97% of the CRC samples. GPR56, LY6G6D/F and SLCO1B3 protein expression was significantly correlated with the proximal tumor location and with expression of mismatch repair genes. Marker expression was further validated in CRC cell lines. Hence, three cell-surface markers were discovered that distinguish CRC from surrounding normal tissues. These markers can be used to develop imaging or therapeutic agents targeted to the luminal surface of CRC. PMID:26894861

  4. Microbial cell surface characteristics: Elucidating attachment/detachment using hydrophobicity and electrokinetic measurements

    EPA Science Inventory

    The surface properties of microorganisms play an important role in their behavior within the environment. Electrophoretic mobility and cell surface hydrophobicity of bacterial cells influence their initial interaction with surfaces and mediate their stability within an aqueous su...

  5. Evaluating cell-surface expression and measuring activation of mammalian odorant receptors in heterologous cells

    PubMed Central

    Zhuang, Hanyi; Matsunami, Hiroaki

    2009-01-01

    A fundamental question in olfaction is which odorant receptors (ORs) are activated by a given odorant. A major roadblock to investigate odorant-OR relationship in mammals has been an inability to express ORs in heterologous cells suitable for screening active ligands for ORs. The discovery of the receptor-transporting protein (RTP) family has facilitated the effective cell-surface expression of ORs in heterologous cells. The establishment of a robust heterologous expression system for mammalian ORs facilitates the high-throughput “deorphanization” of these receptors by matching them to their cognate ligands. This protocol details the method used for evaluating the cell-surface expression and measuring the functional activation of ORs of transiently-expressed mammalian odorant receptors in HEK293T cells. The stages of odorant receptor cell-surface expression include cell culture preparation, transfer of cells, transfection, and immunocytochemistry/flow cytometry, odorant stimulation, and luciferase assay. This protocol can be completed in a period of 3 days from transfer of cells to cell-surface expression detection and/or measurement of functional activation. PMID:18772867

  6. N-linked Glycosylation of Classical Swine Fever Virus Strain Brescia Erns Glycoprotein Alters Virulence in Swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Erns is one of the three envelope glycoproteins of Classical Swine Fever Virus (CSFV). We recently reported the influence of glycosylation of E2 in the virulence of CSFV strain Brescia. Here, we studied the effect of Erns N-linked glycosylation pattern on virulence of CSFV strain Brescia in swine. ...

  7. Analysis of cell surface alterations in Legionella pneumophila cells treated with human apolipoprotein E.

    PubMed

    Palusinska-Szysz, Marta; Zdybicka-Barabas, Agnieszka; Cytryńska, Małgorzata; Wdowiak-Wróbel, Sylwia; Chmiel, Elżbieta; Gruszecki, Wiesław I

    2015-03-01

    Binding of human apolipoprotein E (apoE) to Legionella pneumophila lipopolysaccharide was analysed at the molecular level by Fourier-transform infrared spectroscopy, thereby providing biophysical evidence for apoE-L. pneumophila lipopolysaccharide interaction. Atomic force microscopy imaging of apoE-exposed L. pneumophila cells revealed alterations in the bacterial cell surface topography and nanomechanical properties in comparison with control bacteria. The changes induced by apoE binding to lipopolysaccharide on the surface of L. pneumophila cells may participate in: (1) impeding the penetration of host cells by the bacteria; (2) suppression of pathogen intracellular growth and eventually; and (3) inhibition of the development of infection. PMID:25176171

  8. N-linked glycosylation of N48 is required for equilibrative nucleoside transporter 1 (ENT1) function.

    PubMed

    Bicket, Alex; Coe, Imogen R

    2016-08-01

    Human equilibrative nucleoside transporter 1 (hENT1) transports nucleosides and nucleoside analogue drugs across cellular membranes and is necessary for the uptake of many anti-cancer, anti-parasitic and anti-viral drugs. Previous work, and in silico prediction, suggest that hENT1 is glycosylated at Asn(48) in the first extracellular loop of the protein and that glycosylation plays a role in correct localization and function of hENT1. Site-directed mutagenesis of wild-type (wt) hENT1 removed potential glycosylation sites. Constructs (wt 3xFLAG-hENT1, N48Q-3xFLAG-hENT1 or N288Q-3xFLAG-hENT2) were transiently transfected into HEK293 cells and cell lysates were treated with or without peptide-N-glycosidase F (PNGase-F), followed by immunoblotting analysis. Substitution of N48 prevents hENT1 glycosylation, confirming a single N-linked glycosylation site. N48Q-hENT1 protein is found at the plasma membrane in HEK293 cells but at lower levels compared with wt hENT1 based on S-(4-nitrobenzyl)-6-thioinosine (NBTI) binding analysis (wt 3xFLAG-ENT1 Bmax, 41.5±2.9 pmol/mg protein; N48Q-3xFLAG-ENT1 Bmax, 13.5±0.45 pmol/mg protein) and immunofluorescence microscopy. Although present at the membrane, chloroadenosine transport assays suggest that N48Q-hENT1 is non-functional (wt 3xFLAG-ENT1, 170.80±44.01 pmol/mg protein; N48Q-3xFLAG-ENT1, 57.91±17.06 pmol/mg protein; mock-transfected 74.31±19.65 pmol/mg protein). Co-immunoprecipitation analyses suggest that N48Q ENT1 is unable to interact with self or with wt hENT1. Based on these data we propose that glycosylation at N48 is critical for the localization, function and oligomerization of hENT1. PMID:27480168

  9. N-linked glycosylation of N48 is required for equilibrative nucleoside transporter 1 (ENT1) function

    PubMed Central

    Bicket, Alex; Coe, Imogen R.

    2016-01-01

    Human equilibrative nucleoside transporter 1 (hENT1) transports nucleosides and nucleoside analogue drugs across cellular membranes and is necessary for the uptake of many anti-cancer, anti-parasitic and anti-viral drugs. Previous work, and in silico prediction, suggest that hENT1 is glycosylated at Asn48 in the first extracellular loop of the protein and that glycosylation plays a role in correct localization and function of hENT1. Site-directed mutagenesis of wild-type (wt) hENT1 removed potential glycosylation sites. Constructs (wt 3xFLAG-hENT1, N48Q-3xFLAG-hENT1 or N288Q-3xFLAG-hENT2) were transiently transfected into HEK293 cells and cell lysates were treated with or without peptide–N-glycosidase F (PNGase-F), followed by immunoblotting analysis. Substitution of N48 prevents hENT1 glycosylation, confirming a single N-linked glycosylation site. N48Q-hENT1 protein is found at the plasma membrane in HEK293 cells but at lower levels compared with wt hENT1 based on S-(4-nitrobenzyl)-6-thioinosine (NBTI) binding analysis (wt 3xFLAG-ENT1 Bmax, 41.5±2.9 pmol/mg protein; N48Q-3xFLAG-ENT1 Bmax, 13.5±0.45 pmol/mg protein) and immunofluorescence microscopy. Although present at the membrane, chloroadenosine transport assays suggest that N48Q-hENT1 is non-functional (wt 3xFLAG-ENT1, 170.80±44.01 pmol/mg protein; N48Q-3xFLAG-ENT1, 57.91±17.06 pmol/mg protein; mock-transfected 74.31±19.65 pmol/mg protein). Co-immunoprecipitation analyses suggest that N48Q ENT1 is unable to interact with self or with wt hENT1. Based on these data we propose that glycosylation at N48 is critical for the localization, function and oligomerization of hENT1. PMID:27480168

  10. EMA: a developmentally regulated cell-surface glycoprotein of CNS neurons that is concentrated at the leading edge of growth cones.

    PubMed

    Baumrind, N L; Parkinson, D; Wayne, D B; Heuser, J E; Pearlman, A L

    1992-08-01

    To identify cell-surface molecules that mediate interactions between neurons and their environment during neural development, we used monoclonal antibody techniques to define a developmentally regulated antigen in the central nervous system of the mouse. The antibody we produced (2A1) immunolabels cells throughout the central nervous system; we analyzed its distribution in the developing cerebral cortex, where it is expressed on cells very soon after they complete mitosis and leave the periventricular proliferative zone. Expression continues into adult life. The antibody also labels the epithelium of the choroid plexus and the renal proximal tubules, but does not label neurons of the peripheral nervous system in the dorsal root ganglia. In dissociated cell culture of embryonic cerebral cortex, 2A1 labels the surface of neurons but not glia. Immunolabeling of neurons in tissue culture is particularly prominent on the edge of growth cones, including filopodia and the leading edge of lamellipodia, when observed with either immunofluorescence or freeze-etch immunoelectron microscopy. Immunopurification with 2A1 of a CHAPS-extracted membrane preparation from brains of neonatal mice produces a broad (32-36 kD) electrophoretic band and a less prominent 70 kD band that are sensitive to N-glycosidase but not endoglycosidase H. Thus the 2A1 antibody recognizes a developmentally regulated, neuronal cell surface glycoprotein (or glycoproteins) with complex N-linked oligosaccharide side chains. We have termed the glycoprotein antigen EMA because of its prominence on the edge membrane of growth cones. EMA is similar to the M6 antigen (Lagenaur et al: J. Neurobiol. 23:71-88, 1992) in apparent molecular weight, distribution in tissue sections, and immunoreactivity on Western blots, suggesting that the two antigens are similar or identical. Expression of EMA is a very early manifestation of neuronal differentiation; its distribution on growth cones suggests a role in mediating the

  11. Proteomics and glycoproteomics of pluripotent stem-cell surface proteins.

    PubMed

    Sun, Bingyun

    2015-03-01

    Pluripotent stem cells are a unique cell type with promising potential in regenerative and personalized medicine. Yet the difficulty to understand and coax their seemingly stochastic differentiation and spontaneous self-renewal have largely limited their clinical applications. A call has been made by numerous researchers for a better characterization of surface proteins on these cells, in search of biomarkers that can dictate developmental stages and lineage specifications, and can help formulate mechanistic insight of stem-cell fate choices. In the past two decades, proteomics has gained significant recognition in profiling surface proteins at high throughput. This review will summarize the impact of these studies on stem-cell biology, and discuss the used proteomic techniques. A systematic comparison of all the techniques and their results is also attempted here to help reveal pros, cons, and the complementarity of the existing methods. This awareness should assist in selecting suitable strategies for stem-cell related research, and shed light on technical improvements that can be explored in the future. PMID:25211708

  12. Sorption of heavy metals by prepared bacterial cell surfaces

    SciTech Connect

    Churchill, S.A.; Walters, J.V.; Churchill, P.F.

    1995-10-01

    Prepared biomass from two Gram-negative and one Gram-positive bacterial strains was examined for single, binary, and quaternary mixtures of polyvalent metal cation binding to cell surfaces. The biosorption of {sub 24}Cr{sup 3+}, {sub 27}Co{sup 2+}, {sub 28}Ni{sup 2+}, and {sub 29}Cu{sup 2+} for each bacterial cell type was evaluated using a batch equilibrium method. The binding of each metal by all three bacterial cells could be described by the Freundlich sorption model. The isotherm binding constants suggest that E. coli cells are the most efficient at binding copper, chromium, and nickel; and M. luteus adsorbs cobalt most efficiently. The K-values for copper bound to P. aeruginosa and E. coli are > 2-fold and > 8-fold greater, respectively, than previous reported for intact cells. The general metal-affinity series observed was Cr{sup 3+} > Cu{sup 2+} > Ni{sup 2+} > Co{sup 2+}. There was a marked lower affinity of all biosorbents for Co{sup 2+} and Ni{sup 2+}. M. luteus and E. coli had a strong preference for Co{sup 2+} over Ni{sup 2+}. Metal-binding enhancement could be ascribed to increased cell barrier surface porosity to metal-bearing solutions.

  13. TeO2 slow surface acoustic wave Bragg cell

    NASA Astrophysics Data System (ADS)

    Yao, Shi-Kay

    1991-08-01

    A newly discovered slow acoustic surface wave (SAW) on a (-110) cut TeO2 surface is reported focusing on its properties studied using a PC based numerical method. It is concluded that the slow SAW is rather tolerant to crystal surface orientation errors and has unusually deep penetration of its shear component into the thickness of substrate, about 47 wavelengths for a half amplitude point. The deep shear field is considered to be beneficial for surface acoustooptic interaction with free propagating focused laser beams. Rotation of the substrate about the z-axis makes it possible to adjust a slow SAW velocity with the potential advantage of trading acoustic velocity for less acoustic attenuation. Wider-bandwidth long signal processing time Bragg cells may be feasible utilizing this trade-off. The slow SAW device is characterized by an extremely low power consumption which might be useful for compact portable or avionics signal processing equipment applications.

  14. Glycobiology of the cell surface: Its debt to cell electrophoresis 1940-65.

    PubMed

    Cook, Geoffrey M W

    2016-06-01

    This Review describes how in the period 1940-1959 cell electrophoresis (in the earlier literature often referred to as 'microelectrophoresis') was used to explore the surface chemistry of cells. Using the erythrocyte as a suitable model for the study of biological membranes, the early investigators were agreed on the presence of negatively charged groups at the surface of this cell. The contemporary dogma was that these were phosphate groups associated with phospholipids. Work in the 1960s, particularly on changes in the electrokinetic properties of erythrocytes following treatment with proteolytic enzymes, lead to the realization that the negatively charged groups at the red cell surface are predominantly due to sialic acids carried on glycoproteins. It quickly became apparent from cell electrophoresis that sialic acids have a ubiquitous presence on the surface of animal cells. This finding required that any complete model of the plasma membrane must include glycosylated molecules at the cell periphery, thus laying the foundations for the field termed 'Glycobiology of the Cell Surface'. PMID:26717803

  15. Surface code—biophysical signals for apoptotic cell clearance

    NASA Astrophysics Data System (ADS)

    Biermann, Mona; Maueröder, Christian; Brauner, Jan M.; Chaurio, Ricardo; Janko, Christina; Herrmann, Martin; Muñoz, Luis E.

    2013-12-01

    Apoptotic cell death and the clearance of dying cells play an important and physiological role in embryonic development and normal tissue turnover. In contrast to necrosis, apoptosis proceeds in an anti-inflammatory manner. It is orchestrated by the timed release and/or exposure of so-called ‘find-me’, ‘eat me’ and ‘tolerate me’ signals. Mononuclear phagocytes are attracted by various ‘find-me’ signals, including proteins, nucleotides, and phospholipids released by the dying cell, whereas the involvement of granulocytes is prevented via ‘stay away’ signals. The exposure of anionic phospholipids like phosphatidylserine (PS) by apoptotic cells on the outer leaflet of the plasma membrane is one of the main ‘eat me’ signals. PS is recognized by a number of innate receptors as well as by soluble bridging molecules on the surface of phagocytes. Importantly, phagocytes are able to discriminate between viable and apoptotic cells both exposing PS. Due to cytoskeleton remodeling PS has a higher lateral mobility on the surfaces of apoptotic cells thereby promoting receptor clustering on the phagocyte. PS not only plays an important role in the engulfment process, but also acts as ‘tolerate me’ signal inducing the release of anti-inflammatory cytokines by phagocytes. An efficient and fast clearance of apoptotic cells is required to prevent secondary necrosis and leakage of intracellular danger signals into the surrounding tissue. Failure or prolongation of the clearance process leads to the release of intracellular antigens into the periphery provoking inflammation and development of systemic inflammatory autoimmune disease like systemic lupus erythematosus. Here we review the current findings concerning apoptosis-inducing pathways, important players of apoptotic cell recognition and clearance as well as the role of membrane remodeling in the engulfment of apoptotic cells by phagocytes.

  16. Surface modified alginate microcapsules for 3D cell culture

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Wen; Kuo, Chiung Wen; Chueh, Di-Yen; Chen, Peilin

    2016-06-01

    Culture as three dimensional cell aggregates or spheroids can offer an ideal platform for tissue engineering applications and for pharmaceutical screening. Such 3D culture models, however, may suffer from the problems such as immune response and ineffective and cumbersome culture. This paper describes a simple method for producing microcapsules with alginate cores and a thin shell of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) to encapsulate mouse induced pluripotent stem (miPS) cells, generating a non-fouling surface as an effective immunoisolation barrier. We demonstrated the trapping of the alginate microcapsules in a microwell array for the continuous observation and culture of a large number of encapsulated miPS cells in parallel. miPS cells cultured in the microcapsules survived well and proliferated to form a single cell aggregate. Droplet formation of monodisperse microcapsules with controlled size combined with flow cytometry provided an efficient way to quantitatively analyze the growth of encapsulated cells in a high-throughput manner. The simple and cost-effective coating technique employed to produce the core-shell microcapsules could be used in the emerging field of cell therapy. The microwell array would provide a convenient, user friendly and high-throughput platform for long-term cell culture and monitoring.

  17. Anomalous cell surface structure of sickle cell anemia erythrocytes as demonstrated by cell surface labeling and endo-beta-galactosidase treatment

    SciTech Connect

    Fukuda, M.; Fukuda, M.N.; Hakomori, S.; Papayannopoulou, T.

    1981-01-01

    Erythrocyte surface glycoproteins from patients with various types of sickle cell anemia have been analyzed and compared with those from normal individuals. By hemagglutination with various anti-carbohydrate antibodies, sickle cells showed profound increase of i antigens and moderate increase of GlcNAc beta 1 leads to 3Gal beta 1 leads to 3 Glc structure, whereas antigenicity toward globosidic structure was unchanged. In parallel to these findings, erythrocytes of sickle cell patients have additional sialylated lactosaminoglycan in Band 3. Thus, it can be concluded that erythrocytes of sickle cell patients are characterized by an altered cell surface structure which does not appear to be due to topographical changes of cell surface membrane. It is possible that the anemia or the ''stress'' hematopoiesis in these patients is responsible for these changes.

  18. Establishment of cell surface engineering and its development.

    PubMed

    Ueda, Mitsuyoshi

    2016-07-01

    Cell surface display of proteins/peptides has been established based on mechanisms of localizing proteins to the cell surface. In contrast to conventional intracellular and extracellular (secretion) expression systems, this method, generally called an arming technology, is particularly effective when using yeasts as a host, because the control of protein folding that is often required for the preparation of proteins can be natural. This technology can be employed for basic and applied research purposes. In this review, I describe various strategies for the construction of engineered yeasts and provide an outline of the diverse applications of this technology to industrial processes such as the production of biofuels and chemicals, as well as bioremediation and health-related processes. Furthermore, this technology is suitable for novel protein engineering and directed evolution through high-throughput screening, because proteins/peptides displayed on the cell surface can be directly analyzed using intact cells without concentration and purification. Functional proteins/peptides with improved or novel functions can be created using this beneficial, powerful, and promising technique. PMID:27305282

  19. Polar/apolar compounds induce leukemia cell differentiation by modulating cell-surface potential.

    PubMed Central

    Arcangeli, A; Carlà, M; Del Bene, M R; Becchetti, A; Wanke, E; Olivotto, M

    1993-01-01

    The mechanism of action of polar/apolar inducers of cell differentiation, such as dimethyl sulfoxide and hexamethylene-bisacetamide, is still obscure. In this paper evidence is provided that their effects on murine erythroleukemia cells are modulated by various extracellular cations as a precise function of the cation effects on membrane surface potential. The interfacial effects of the inducers were directly measured on the charged electrode, showing that both dimethyl sulfoxide and hexamethylene-bisacetamide, at the effective concentrations for cell differentiation and within the physiological range of charge density, adsorb at the charged surface and produce a potential shift. A linear correlation was found between this shift and the inducer effects on cell differentiation. Besides offering a different interpretation of the mechanism of action of the inducers, these findings indicate that surface potential has a signaling function. They may also be relevant to cancer treatments based on tumor-cell commitment to terminal differentiation. Images Fig. 1 PMID:8516337

  20. Pharmacological induction of cell surface GRP78 contributes to apoptosis in triple negative breast cancer cells.

    PubMed

    Raiter, Annat; Yerushalmi, Rinat; Hardy, Britta

    2014-11-30

    Breast cancer tumor with triple-negative receptors (estrogen, progesterone and Her 2, receptors) is the most aggressive and deadly subtype, with high rates of disease recurrence and poor survival. Here, we show that induction in cell surface GRP78 by doxorubicin and tunicamycin was associated with CHOP/GADD153 upregulation and increase in apoptosis in triple negative breast cancer tumor cells. GRP78 is a major regulator of the stress induced unfolded protein response pathway and CHOP/GADD153 is a pro-apoptotic transcription factor associated exclusively with stress induced apoptosis. The blocking of cell surface GRP78 by anti-GRP78 antibody prevented apoptosis, suggesting that induction of cell surface GRP78 by doxorubicin and tunicamycin is required for apoptosis. A better understanding of stress induction of apoptotic signaling in triple negative breast cancer cells may help to define new therapeutic strategies. PMID:25360516

  1. Stable isotope labeling of oligosaccharide cell surface antigens

    SciTech Connect

    Unkefer, C.J.; Silks, L.A. III; Martinez, R.A.

    1998-12-31

    The overall goal of this Laboratory Directed Research and Development (LDRD) project was to develop new methods for synthesis of {sup 13}C-labeled oligosaccharides that are required for nuclear magnetic resonance (NMR) studies of their solution conformation. Oligosaccharides are components of the cell`s outer surface and are involved in important processes such as cell-cell recognition and adhesion. Recently, Danishefsky and coworkers at Slone-Kettering Cancer Center developed a method for the solid-phase chemical synthesis of oligosaccharides. The specific goal of this LDRD project was to prepare uniform {sup 13}C-labeled aldohexose precursors required for the solid-phase synthesis of the Lewis blood-group antigenic determinants. We report the synthesis of {sup 13}C-labeled D-glucal, D-galactal and Fucosyl precursors. We have been collaborating with the Danishefsky group on the synthesis of the Lewis oligosaccharides and the NMR analysis of their solution conformation.

  2. Structural characterization of the N-linked pentasaccharide decorating glycoproteins of the halophilic archaeon Haloferax volcanii.

    PubMed

    Kandiba, Lina; Lin, Chia-Wei; Aebi, Markus; Eichler, Jerry; Guerardel, Yann

    2016-07-01

    N-Glycosylation is a post-translational modification performed in all three domains of life. In the halophilic archaea Haloferax volcanii, glycoproteins such as the S-layer glycoprotein are modified by an N-linked pentasaccharide assembled by a series of Agl (archaeal glycosylation) proteins. In the present study, mass spectrometry (MS) and nuclear magnetic resonance spectroscopy were used to define the structure of this glycan attached to at least four of the seven putative S-layer glycoprotein N-glycosylation sites, namely Asn-13, Asn-83, Asn-274 and Asn-279. Such approaches detected a trisaccharide corresponding to glucuronic acid (GlcA)-β1,4-GlcA-β1,4-glucose-β1-Asn, a tetrasaccharide corresponding to methyl-O-4-GlcA-β-1,4-galacturonic acid-α1,4-GlcA-β1,4-glucose-β1-Asn, and a pentasaccharide corresponding to hexose-1,2-[methyl-O-4-]GlcA-β-1,4-galacturonic acid-α1,4-GlcA-β1,4-glucose-β1-Asn, with previous MS and radiolabeling experiments showing the hexose at the non-reducing end of the pentasaccharide to be mannose. The present analysis thus corrects the earlier assignment of the penultimate sugar as a methyl ester of a hexuronic acid, instead revealing this sugar to be a methylated GlcA. The assignments made here are in good agreement with what was already known of the Hfx. volcanii N-glycosylation pathway from previous genetic and biochemical efforts while providing new insight into the process. PMID:26863921

  3. Quantum-radiative cooling for solar cells with textured surface

    NASA Astrophysics Data System (ADS)

    Gilman, Boris; Ivanov, Igor

    2004-11-01

    Efficient technique of Quantum Radiative Cooling (QRC) of textured Solar Cells and Modules is described that is capable of Solar Module (SM) temperature reduction by 5-20C, resulting in 3-10% efficiency increase. Novel methods are based on the quantum assisted IR emission from the surface covered by either multi-layer coatings made of Si-nitride, SiO or Si oxy-nitride films or specifically designed insulating sun-transparent chamber (QRC zone) that contains Selective Emissive (SE) gas or gas mix. QRC zone is mounted on the top of Solar Module replacing existing lamination coatings. To enhance the efficiency of QRC some specific methods and fabrication procedures are proposed to form an electricly charged textured surface that provide a high Electric Field at the surface thus enhancing IR emissivity from the surface. Such procedure can be also used to form the field Induced Surface Barriers in the Si-based Solar Cells that can substitute the existing diffused Emitters resulting in significant reduction of the Cycle Time as well as prospective Fabrication Cost.

  4. Characterization of atrial natriuretic peptide degradation by cell-surface peptidase activity on endothelial cells

    NASA Technical Reports Server (NTRS)

    Frost, S. J.; Whitson, P. A.

    1993-01-01

    Atrial natriuretic peptide (ANP) is a fluid-regulating peptide hormone that promotes vasorelaxation, natriuresis, and diuresis. The mechanisms for the release of ANP and for its clearance from the circulation play important roles in modulating its biological effects. Recently, we have reported that the cell surface of an endothelial cell line, CPA47, could degrade 125I-ANP in the presence of EDTA. In this study, we have characterized this degradation of 125I-ANP. The kinetics of ANP degradation by the surface of CPA47 cells were first order, with a Km of 320 +/- 60 nM and Vmax of 35 +/- 14 pmol of ANP degraded/10 min/10(5) cells at pH 7.4. ANP is degraded by the surface of CPA47 cells over a broad pH range from 7.0-8.5. Potato carboxypeptidase inhibitor and bestatin inhibited 125I-ANP degradation, suggesting that this degradative activity on the surface of CPA47 cells has exopeptidase characteristics. The selectivity of CPA47 cell-surface degradation of ANP was demonstrated when 125I-ANP degradation was inhibited in the presence of neuropeptide Y and angiotensin I and II but not bradykinin, bombesin, endothelin-1, or substance P. The C-terminal amino acids phe26 and tyr28 were deduced to be important for ANP interaction with the cell-surface peptidase(s) based on comparison of the IC50 of various ANP analogues and other natriuretic peptides for the inhibition of ANP degradation. These data suggest that a newly characterized divalent cation-independent exopeptidase(s) that selectively recognizes ANP and some other vasoactive peptides exists on the surface of endothelial cells.

  5. The cell surface expressed nucleolin is a glycoprotein that triggers calcium entry into mammalian cells

    SciTech Connect

    Losfeld, Marie-Estelle; Khoury, Diala El; Mariot, Pascal; Carpentier, Mathieu; Krust, Bernard; Briand, Jean-Paul; Mazurier, Joel; Hovanessian, Ara G.; Legrand, Dominique

    2009-01-15

    Nucleolin is an ubiquitous nucleolar phosphoprotein involved in fundamental aspects of transcription regulation, cell proliferation and growth. It has also been described as a shuttling molecule between nucleus, cytosol and the cell surface. Several studies have demonstrated that surface nucleolin serves as a receptor for various extracellular ligands implicated in cell proliferation, differentiation, adhesion, mitogenesis and angiogenesis. Previously, we reported that nucleolin in the extranuclear cell compartment is a glycoprotein containing N- and O-glycans. In the present study, we show that glycosylation is an essential requirement for surface nucleolin expression, since it is prevented when cells are cultured in the presence of tunicamycin, an inhibitor of N-glycosylation. Accordingly, surface but not nuclear nucleolin is radioactively labeled upon metabolic labeling of cells with [{sup 3}H]glucosamine. Besides its well-demonstrated role in the internalization of specific ligands, here we show that ligand binding to surface nucleolin could also induce Ca{sup 2+} entry into cells. Indeed, by flow cytometry, microscopy and patch-clamp experiments, we show that the HB-19 pseudopeptide, which binds specifically surface nucleolin, triggers rapid and intense membrane Ca{sup 2+} fluxes in various types of cells. The use of several drugs then indicated that Store-Operated Ca{sup 2+} Entry (SOCE)-like channels are involved in the generation of these fluxes. Taken together, our findings suggest that binding of an extracellular ligand to surface nucleolin could be involved in the activation of signaling pathways by promoting Ca{sup 2+} entry into cells.

  6. Evaluation of the Impact of Codon Optimization and N-Linked Glycosylation on Functional Immunogenicity of Pfs25 DNA Vaccines Delivered by In Vivo Electroporation in Preclinical Studies in Mice

    PubMed Central

    Datta, Dibyadyuti; Bansal, Geetha P.; Kumar, Rajesh; Ellefsen, Barry; Hannaman, Drew

    2015-01-01

    Plasmodium falciparum sexual stage surface antigen Pfs25 is a well-established candidate for malaria transmission-blocking vaccine development. Immunization with DNA vaccines encoding Pfs25 has been shown to elicit potent antibody responses in mice and nonhuman primates. Studies aimed at further optimization have revealed improved immunogenicity through the application of in vivo electroporation and by using a heterologous prime-boost approach. The goal of the studies reported here was to systematically evaluate the impact of codon optimization, in vivo electroporation, and N-linked glycosylation on the immunogenicity of Pfs25 encoded by DNA vaccines. The results from this study demonstrate that while codon optimization and in vivo electroporation greatly improved functional immunogenicity of Pfs25 DNA vaccines, the presence or absence of N-linked glycosylation did not significantly impact vaccine efficacy. These findings suggest that N-glycosylation of Pfs25 encoded by DNA vaccines is not detrimental to overall transmission-blocking efficacy. PMID:26135972

  7. Cell surface markers on epithelial-Burkitt hybrid cells superinfected with Epstein-Barr virus.

    PubMed

    Glaser, R; Lenoir, G; Ferrone, S; Pellegrino, M A; de-Thé, G

    1977-07-01

    Attempts were made to superinfect two epithelial-Burkitt hybrid cell lines, designated D98/HR-1 and D98/Raji, with Epstein-Barr virus (EBV) and to investigate the expression of some cell surfacr markers including histocompatibility antigens, and the presence of B-cell markers, such as receptors for the third complement component and for monkey red blood cells. Successful superinfection of D98/HR-1 cells with EBV was made evident by the expression of early antigen and, to a lesser extent, virus capsid antigen. Only a rare D98/Raji cell was found to be positive for early antigen. The histocompatibility antigens of the parental cell lines D98, HR-1, and Raji were expressed on the surfaces of the hybrid cells. Receptors for third complement components b and d were not detected on the hybrid cells or on the D98P OR HR-1 cell lines; they were found, however, on the Raji cells, indicating that EBV receptors and complement receptors can be separated. The significance of the infection of the hybrid cells with EBV and the expression of cell surface markers is described. PMID:193641

  8. Fibronectin and asialoglyprotein receptor mediate hepatitis B surface antigen binding to the cell surface.

    PubMed

    Yang, Jing; Wang, Feng; Tian, Linlin; Su, Jing; Zhu, Xiangqian; Lin, Li; Ding, Xiaoran; Wang, Xuejun; Wang, Shengqi

    2010-06-01

    Both fibronectin and the asialoglycoprotein receptor (ASGPR) have been identified by some investigators as partners for hepatitis B virus (HBV) envelope proteins. Because fibronectin is a natural ligand for ASGPR, we speculated that HBV might attach to ASGPR expressed on the hepatocyte surface via fibronectin. To test this hypothesis, we first confirmed by co-immunoprecipitation that ASGPR, fibronectin and HBsAg bind to each other in HepG2.2.15 cells, and possible binding domains were identified by GST pull-down. In addition, by measuring binding of HBsAg to cells, we found that ASGPR and fibronectin enhanced the binding capability of HBsAg to HepG2 cells, and even to 293T and CHO cells, which normally do not bind HBV. In conclusion, our findings suggest that both fibronectin and ASGPR mediate HBsAg binding to the cell surface, which provides further evidence for the potential roles of these two proteins in mediating HBV binding to liver cells. PMID:20364278

  9. The ability of Hepatitis B surface antigen DNA vaccine to elicit cell-mediated immune responses, but not antibody responses, was affected by the deglysosylation of S antigen.

    PubMed

    Xing, Yiping; Huang, Zuhu; Lin, Yan; Li, Jun; Chou, Te-Hui; Lu, Shan; Wang, Shixia

    2008-09-19

    Hepatitis B Virus (HBV) infection remains a major worldwide infectious disease with serious long-term morbidity and mortality. The limited selections of drug treatment are not able to control the progress of disease in people with active and persistent HBV infection. Immunotherapy to control the degree of viral infection is one possible alternative solution to this challenge. HBV DNA vaccines, with their strong ability to induce cell-mediated immune responses, offer an attractive option. HBV surface protein is important in viral immunity. Re-establishing anti-S immunity in chronic HBV infected patients will bring significant benefit to the patients. Previous studies have shown that HBV S DNA vaccines are immunogenic in a number of animal studies. In the current study, we further investigated the effect of glycosylation to the expression and immunogenicity of S DNA vaccines. Our results demonstrate that deglycosylation at the two potential N-linked glycosylation sites in S protein resulted in a significant decrease of S-specific cell-mediated immune responses, but did not affect anti-S antibody responses. This finding provides important direction to the development of S DNA vaccines to elicit the optimal and balanced antibody and cell-mediated immune responses to treat people with HBV chronic infections. PMID:18462847

  10. Bacterial Cell Surface Adsorption of Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Jiao, Y.; Park, D.; Reed, D.; Fujita, Y.; Yung, M.; Anderko, A.; Eslamimanesh, A.

    2015-12-01

    Rare earth elements (REE) play a critical role in many emerging clean energy technologies, including high-power magnets, wind turbines, solar panels, hybrid/electric vehicle batteries and lamp phosphors. In order to sustain demand for such technologies given current domestic REE shortages, there is a need to develop new approaches for ore processing/refining and recycling of REE-containing materials. To this end, we have developed a microbially-mediated bioadsorption strategy with application towards enrichment of REE from complex mixtures. Specifically, the bacterium Caulobacter crescentus was genetically engineered to display lanthanide binding tags (LBTs), short peptides that possess high affinity and specificity for rare earth elements, on its cell surface S-layer protein. Under optimal conditions, LBT-displayed cells adsorbed greater than 5-fold more REE than control cells lacking LBTs. Competition binding experiments with a selection of REEs demonstrated that our engineered cells could facilitate separation of light- from heavy- REE. Importantly, binding of REE onto our engineered strains was much more favorable compared to non-REE metals. Finally, REE bound to the cell surface could be stripped off using citrate, providing an effective and non-toxic REE recovery method. Together, this data highlights the potential of our approach for selective REE enrichment from REE containing mixtures.

  11. Cdon, a cell surface protein, mediates oligodendrocyte differentiation and myelination.

    PubMed

    Wang, Li-Chun; Almazan, Guillermina

    2016-06-01

    During central nervous system development, oligodendrocyte progenitors (OLPs) establish multiple branched processes and axonal contacts to initiate myelination. A complete understanding of the molecular signals implicated in cell surface interaction to initiate myelination/remyelination is currently lacking. The objective of our study was to assess whether Cdon, a cell surface protein that was shown to participate in muscle and neuron cell development, is involved in oligodendrocyte (OLG) differentiation and myelination. Here, we demonstrate that endogenous Cdon protein is expressed in OLPs, increasing in the early differentiation stages and decreasing in mature OLGs. Immunocytochemistry of endogenous Cdon showed localization on both OLG cell membranes and cellular processes exhibiting puncta- or varicosity-like structures. Cdon knockdown with siRNA decreased protein levels by 62% as well as two myelin-specific proteins, MBP and MAG. Conversely, overexpression of full-length rat Cdon increased myelin proteins in OLGs. The complexity of OLGs branching and contact point numbers with axons were also increased in Cdon overexpressing cells growing alone or in coculture with dorsal root ganglion neurons (DRGNs). Furthermore, myelination of DRGNs was decreased when OLPs were transfected with Cdon siRNA. Altogether, our results suggest that Cdon participates in OLG differentiation and myelination, most likely in the initial stages of development. GLIA 2016;64:1021-1033. PMID:26988125

  12. Mysterious hexagonal pyramids on the surface of Pyrobaculum cells.

    PubMed

    Rensen, Elena; Krupovic, Mart; Prangishvili, David

    2015-11-01

    In attempts to induce putative temperate viruses, we UV-irradiated cells of the hyperthermophilic archaeon Pyrobaculum oguniense. Virus replication could not be detected; however, we observed the development of pyramidal structures with 6-fold symmetry on the cell surface. The hexagonal basis of the pyramids was continuous with the cellular cytoplasmic membrane and apparently grew via the gradual expansion of the 6 triangular lateral faces, ultimately protruding through the S-layer. When the base of these isosceles triangles reached approximately 200 nm in length, the pyramids opened like flower petals. The origin and function of these mysterious nanostructures remain unknown. PMID:26115814

  13. Surface photovoltage method extended to silicon solar cell junction

    NASA Technical Reports Server (NTRS)

    Wang, E. Y.; Baraona, C. R.; Brandhorst, H. W., Jr.

    1974-01-01

    The conventional surface photovoltage (SPV) method is extended to the measurement of the minority carrier diffusion length in diffused semiconductor junctions of the type used in a silicon solar cell. The minority carrier diffusion values obtained by the SPV method agree well with those obtained by the X-ray method. Agreement within experimental error is also obtained between the minority carrier diffusion lengths in solar cell diffusion junctions and in the same materials with n-regions removed by etching, when the SPV method was used in the measurements.

  14. Probing and Mapping Electrode Surfaces in Solid Oxide Fuel Cells

    PubMed Central

    Blinn, Kevin S.; Li, Xiaxi; Liu, Mingfei; Bottomley, Lawrence A.; Liu, Meilin

    2012-01-01

    Solid oxide fuel cells (SOFCs) are potentially the most efficient and cost-effective solution to utilization of a wide variety of fuels beyond hydrogen 1-7. The performance of SOFCs and the rates of many chemical and energy transformation processes in energy storage and conversion devices in general are limited primarily by charge and mass transfer along electrode surfaces and across interfaces. Unfortunately, the mechanistic understanding of these processes is still lacking, due largely to the difficulty of characterizing these processes under in situ conditions. This knowledge gap is a chief obstacle to SOFC commercialization. The development of tools for probing and mapping surface chemistries relevant to electrode reactions is vital to unraveling the mechanisms of surface processes and to achieving rational design of new electrode materials for more efficient energy storage and conversion2. Among the relatively few in situ surface analysis methods, Raman spectroscopy can be performed even with high temperatures and harsh atmospheres, making it ideal for characterizing chemical processes relevant to SOFC anode performance and degradation8-12. It can also be used alongside electrochemical measurements, potentially allowing direct correlation of electrochemistry to surface chemistry in an operating cell. Proper in situ Raman mapping measurements would be useful for pin-pointing important anode reaction mechanisms because of its sensitivity to the relevant species, including anode performance degradation through carbon deposition8, 10, 13, 14 ("coking") and sulfur poisoning11, 15 and the manner in which surface modifications stave off this degradation16. The current work demonstrates significant progress towards this capability. In addition, the family of scanning probe microscopy (SPM) techniques provides a special approach to interrogate the electrode surface with nanoscale resolution. Besides the surface topography that is routinely collected by AFM and STM

  15. Interfacing biomembrane mimetic polymer surfaces with living cells Surface modification for reliable bioartificial liver

    NASA Astrophysics Data System (ADS)

    Iwasaki, Yasuhiko; Takami, Utae; Sawada, Shin-ichi; Akiyoshi, Kazunari

    2008-11-01

    The surface design used for reducing nonspecific biofouling is one of the most important issues for the fabrication of medical devices. We present here a newly synthesized a carbohydrate-immobilized phosphorylcholine polymer for surface modification of medical devices to control the interface with living cells. A random copolymer composed of 2-methacryloyloxyethyl phosphorylcholine (MPC), n-butyl methacrylate (BMA), and 2-lactobionamidoethyl methacrylate (LAMA) was synthesized by conventional radical polymerization. The monomer feeding ratio in the copolymer was adjusted to 24/75/1 (MPC/BMA/LAMA). The copolymer (PMBL1.0) could be coated by solvent evaporation from an ethanol solution. Cells of the human hepatocellular liver carcinoma cell line (HepG2) having asialoglycoprotein receptors (ASGPRs) were seeded on PMBL1.0 or poly(BMA) (PBMA)-coated PET plates. On PBMA, many adherent cells were observed and were well spread with monolayer adhesion. HepG2 adhesion was observed on PMBL1.0 because the cell has ASGPRs. Furthermore, some of the cells adhering to PMBL1.0 had a spheroid formation and similarly shaped spheroids were scattered on the surface. According to confocal laser microscopic observation after 96 h cultivation, it was found that albumin production preferentially occurred in the center of the spheroid. The albumin production of the cells that adhered to PBMA was sparse. The amount of albumin production per unit cell that adhered to PMBL1.0 was determined by ELISA and was significantly higher than that which adhered to PBMA. Long-term cultivation of HepG2 was also performed using hollow fiber mini-modules coated with PMBL1.0. The concentration of albumin produced from HepG2 increased continuously for one month. In the mini-module, the function of HepG2 was effectively preserved for that period. On the hollow fiber membrane, spheroid formation of HepG2 cells was also observed. In conclusion, PMBL1.0 can provide a suitable surface for the cultivation of

  16. Cell separation using tilted-angle standing surface acoustic waves

    PubMed Central

    Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2014-01-01

    Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼97%. We illustrate that taSSAW is capable of effectively separating particles–cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological–biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice. PMID:25157150

  17. Cell surface nucleolin antagonist causes endothelial cell apoptosis and normalization of tumor vasculature.

    PubMed

    Fogal, Valentina; Sugahara, Kazuki N; Ruoslahti, Erkki; Christian, Sven

    2009-01-01

    Nucleolin is specifically transported to the surface of proliferating endothelial cells in vitro and in vivo. In contrast to its well defined functions in the nucleus and cytoplasm, the function of cell surface nucleolin is poorly defined. We have previously identified the nucleolin-binding antibody NCL3 that specifically binds to cell surface nucleolin on angiogenic blood vessels in vivo and is internalized into the cell. Here, we show that NCL3 inhibits endothelial tube formation in vitro as well as angiogenesis in the matrigel plaque assay and subcutaneous tumor models in vivo. Intriguingly, the specific targeting of proliferating endothelial cells by NCL3 in subcutaneous tumor models leads to the normalization of the tumor vasculature and as a result to an increase in tumor oxygenation. Treatment of endothelial cells with anti-nucleolin antibody NCL3 leads to a decrease of mRNA levels of the anti-apoptotic molecule Bcl-2 and as a consequence induces endothelial cell apoptosis as evidenced by PARP cleavage. These data reveal a novel mode of action for anti-angiogenic therapy and identify cell surface nucleolin as a novel target for combinatorial chemotherapy. PMID:19225898

  18. Cytoplasmic and surface membrane phenotypic markers in cells of B cell chronic lymphocytic leukemia.

    PubMed

    Koníková, E; Babusíková, O; Mesárosová, A; Kusenda, J; Glasová, M

    1994-01-01

    Peripheral blood cells of twenty-six patients with B cell chronic lymphocytic leukemia (B-CLL) were characterized for their surface membrane and cytoplasmic marker profiles using flow cytometry and fluorescence microscopy. According to surface membrane marker analysis three distinct immunophenotypic subgroups of B-CLL were identified: group I (SIg+, MR+, CD5+, B Ag+, T Ag-; 19 cases), group II (SIg+, MR+, CD5+, B Ag+, TAg+; 3 cases), group III (SIg-, MR+, CD5+, B Ag+, T Ag-; 4 cases). Cells from all patients were positive for the CD19 antigen and at least one of other B cell antigens. Cells from all patients expressed also CD5 and HLA-DR antigens and formed mouse rosettes (MR). Great heterogeneity was found in the membrane and cytoplasmic marking by anti-CD22 MoAb. In four of 23 patients tested, CD22 antigen was expressed in the cytoplasm of CLL cells while it was absent on surface membrane of these cells. This finding was discussed from the point of certain cell heterogeneity in the followed B-CLL cases. Cytoplasmic immunoglobulin (CyIg) detection showed to be very important especially in group III of followed B-CLL cases with undetectable surface immunoglobulins (SIg). Cytoplasmic antigens and immunoglobulin determinations are useful in phenotyping every B-CLL patient, as well as in the immunological study of different maturation stages of B lymphocytes. PMID:8208317

  19. Interaction of Human Tumor Viruses with Host Cell Surface Receptors and Cell Entry

    PubMed Central

    Schäfer, Georgia; Blumenthal, Melissa J.; Katz, Arieh A.

    2015-01-01

    Currently, seven viruses, namely Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpes virus (KSHV), high-risk human papillomaviruses (HPVs), Merkel cell polyomavirus (MCPyV), hepatitis B virus (HBV), hepatitis C virus (HCV) and human T cell lymphotropic virus type 1 (HTLV-1), have been described to be consistently associated with different types of human cancer. These oncogenic viruses belong to distinct viral families, display diverse cell tropism and cause different malignancies. A key to their pathogenicity is attachment to the host cell and entry in order to replicate and complete their life cycle. Interaction with the host cell during viral entry is characterized by a sequence of events, involving viral envelope and/or capsid molecules as well as cellular entry factors that are critical in target cell recognition, thereby determining cell tropism. Most oncogenic viruses initially attach to cell surface heparan sulfate proteoglycans, followed by conformational change and transfer of the viral particle to secondary high-affinity cell- and virus-specific receptors. This review summarizes the current knowledge of the host cell surface factors and molecular mechanisms underlying oncogenic virus binding and uptake by their cognate host cell(s) with the aim to provide a concise overview of potential target molecules for prevention and/or treatment of oncogenic virus infection. PMID:26008702

  20. Enhancing Cell therapies from the Outside In: Cell Surface Engineering Using Synthetic Nanomaterials

    PubMed Central

    Stephan, Matthias T.; Irvine, Darrell J.

    2011-01-01

    Therapeutic treatments based on the injection of living cells are in clinical use and preclinical development for diseases ranging from cancer to cardiovascular disease to diabetes. To enhance the function of therapeutic cells, a variety of chemical and materials science strategies are being developed that engineer the surface of therapeutic cells with new molecules, artificial receptors, and multifunctional nanomaterials, synthetically endowing donor cells with new properties and functions. These approaches offer a powerful complement to traditional genetic engineering strategies for enhancing the function of living cells. PMID:21826117

  1. Enhancing Cell therapies from the Outside In: Cell Surface Engineering Using Synthetic Nanomaterials.

    PubMed

    Stephan, Matthias T; Irvine, Darrell J

    2011-06-01

    Therapeutic treatments based on the injection of living cells are in clinical use and preclinical development for diseases ranging from cancer to cardiovascular disease to diabetes. To enhance the function of therapeutic cells, a variety of chemical and materials science strategies are being developed that engineer the surface of therapeutic cells with new molecules, artificial receptors, and multifunctional nanomaterials, synthetically endowing donor cells with new properties and functions. These approaches offer a powerful complement to traditional genetic engineering strategies for enhancing the function of living cells. PMID:21826117

  2. Biointerface: protein enhanced stem cells binding to implant surface.

    PubMed

    Chrzanowski, W; Kondyurin, A; Lee, Jae Ho; Lord, Megan S; Bilek, M M M; Kim, Hae-Won

    2012-09-01

    The number of metallic implantable devices placed every year is estimated at 3.7 million. This number has been steadily increasing over last decades at a rate of around 8 %. In spite of the many successes of the devices the implantation of biomaterial into tissues almost universally leads to the development of an avascular sac, which consists of fibrous tissue around the device and walls off the implant from the body. This reaction can be detrimental to the function of implant, reduces its lifetime, and necessitates repeated surgery. Clearly, to reduce the number of revision surgeries and improve long-term implant function it is necessary to enhance device integration by modulating cell adhesion and function. In this paper we have demonstrated that it is possible to enhance stem cell attachment using engineered biointerfaces. To create this functional interface, samples were coated with polymer (as a precursor) and then ion implanted to create a reactive interface that aids the binding of biomolecules--fibronectin. Both AFM and XPS analyses confirmed the presence of protein layers on the samples. The amount of protein was significant greater for the ion implanted surfaces and was not disrupted upon washing with detergent, hence the formation of strong bonds with the interface was confirmed. While, for non ion implanted surfaces, a decrease of protein was observed after washing with detergent. Finally, the number of stem cells attached to the surface was enhanced for ion implanted surfaces. The studies presented confirm that the developed bionterface with immobilised fibronectin is an effective means to modulate stem cell attachment. PMID:22714559

  3. Cell-surface prion protein interacts with glycosaminoglycans.

    PubMed Central

    Pan, Tao; Wong, Boon-Seng; Liu, Tong; Li, Ruliang; Petersen, Robert B; Sy, Man-Sun

    2002-01-01

    We used ELISA and flow cytometry to study the binding of prion protein PrP to glycosaminoglycans (GAGs). We found that recombinant human PrP (rPrP) binds GAGs including chondroitin sulphate A, chondroitin sulphate B, hyaluronic acid, and heparin. rPrP binding to GAGs occurs via the N-terminus, a region known to bind divalent cations. Additionally, rPrP binding to GAGs is enhanced in the presence of Cu2+ and Zn2+, but not Ca2+ and Mn2+. rPrP binds heparin strongest, and the binding is inhibited by certain heparin analogues, including heparin disaccharide and sulphate-containing monosaccharides, but not by acetylated heparin. Full-length normal cellular prion protein (PrPC), but not N-terminally truncated PrPC species, from human brain bind GAGs in a similar Cu2+/Zn2+-enhanced fashion. We found that GAGs specifically bind to a synthetic peptide corresponding to amino acid residues 23-35 in the N-terminus of rPrP. We further demonstrated that while both wild-type PrPC and an octapeptide-repeat-deleted mutant PrP produced by transfected cells bound heparin at the cell surface, the PrP N-terminal deletion mutant and non-transfectant control failed to bind heparin. Binding of heparin to wild-type PrPC on the cell surface results in a reduction of the level of cell-surface PrPC. These results provide strong evidence that PrPC is a surface receptor for GAGs. PMID:12186633

  4. Advances in the theory and application of BSF cells. [Back Surface Field solar cells

    NASA Technical Reports Server (NTRS)

    Mandelkorn, J.; Lamneck, J. H.

    1975-01-01

    A study to determine the influence of fabrication processes and bulk material properties on the behavior of back surface field (BSF) cells is reported. It is concluded that a photovoltage is generated at the p(+), p back junction of the cell. The concept of majority carrier collection is proposed as a possible mechanism for this generation. Advantages accruing to the advent of BSF cells are outlined.

  5. Structure of a Bacterial Cell Surface Decaheme Electron Conduit

    SciTech Connect

    Clarke, Thomas A.; Edwards, Marcus; Gates, Andrew J.; Hall, Andrea; White, Gaye; Bradley, Justin; Reardon, Catherine L.; Shi, Liang; Beliaev, Alex S.; Marshall, Matthew J.; Wang, Zheming; Watmough, Nicholas; Fredrickson, Jim K.; Zachara, John M.; Butt, Julea N.; Richardson, David J.

    2011-05-23

    Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves deca-heme cytochromes that are located on the bacterial cell surface at the termini of trans-outermembrane (OM) electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular inter-cytochrome electron exchange along ‘nanowire’ appendages. We present a 3.2 Å crystal structure of one of these deca-heme cytochromes, MtrF, that allows the spatial organization of the ten hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65 Å octa-heme chain transects the length of the protein and is bisected by a planar 45 Å tetra-heme chain that connects two extended Greek key split β-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g. minerals), soluble substrates (e.g. flavins) and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface.

  6. Actomyosin contractility controls cell surface area of oligodendrocytes

    PubMed Central

    Kippert, Angelika; Fitzner, Dirk; Helenius, Jonne; Simons, Mikael

    2009-01-01

    Background To form myelin oligodendrocytes expand and wrap their plasma membrane multiple times around an axon. How is this expansion controlled? Results Here we show that cell surface area depends on actomyosin contractility and is regulated by physical properties of the supporting matrix. Moreover, we find that chondroitin sulfate proteoglycans (CSPG), molecules associated with non-permissive growth properties within the central nervous system (CNS), block cell surface spreading. Most importantly, the inhibitory effects of CSPG on plasma membrane extension were completely prevented by treatment with inhibitors of actomyosin contractility and by RNAi mediated knockdown of myosin II. In addition, we found that reductions of plasma membrane area were accompanied by changes in the rate of fluid-phase endocytosis. Conclusion In summary, our results establish a novel connection between endocytosis, cell surface extension and actomyosin contractility. These findings open up new possibilities of how to promote the morphological differentiation of oligodendrocytes in a non-permissive growth environment. See related minireview by Bauer and ffrench-Constant: PMID:19781079

  7. Hydrophobic and Electrostatic Cell Surface Properties of Thermophilic Dairy Streptococci

    PubMed Central

    van der Mei, H. C.; de Vries, J.; Busscher, H. J.

    1993-01-01

    Microbial adhesion to hydrocarbons (MATH) and microelectrophoresis were done in 10 mM potassium phosphate solutions to characterize the surfaces of thermophilic dairy streptococci, isolated from pasteurizers. Regardless of whether they were grown (in M17 broth) with lactose, sucrose, or glucose added, strains were relatively hydrophilic (showing low initial removal rates by hexadecane) and slightly negatively charged. A tendency exists for cells grown with sucrose added to be more hydrophilic than cells grown with glucose or lactose added. Also, the lowest isoelectric points, i.e., the pH values for which the zeta potentials are zero, were measured for strains with glucose added to the growth medium. The isoelectric points for the strains were all rather high, between pH 3 and 5, indicative of protein-rich surfaces, although X-ray photoelectron spectroscopy did not measure excessively large amounts of nitrogen on the cell surfaces. Both MATH and microelectrophoresis were done as a function of pH. Maxima in hydrophobicity were observed at certain pH values. Usually these pH values were in the range of the isoelectric points of the cells. Thus it appears that MATH measures an interplay of hydrophobicity and electrostatic interactions. MATH measures solely hydrophobicity only when electrostatic interactions are absent, i.e., close to the isoelectric points of the cells. Considering that these thermophilic streptococci are all rather hydrophilic, a possible pathway to prevent fouling in the pasteurization process might be to render the heat exchanger plates of the pasteurizer more hydrophobic. PMID:16349127

  8. The distribution of cell surface proteins on spreading cells. Comparison of theory with experiment.

    PubMed Central

    Goldstein, B; Wiegel, F W

    1988-01-01

    Bretscher (1983) has shown that on uniformly spread giant HeLa cells, the receptors for low density lipoprotein (LDL) and transferrin are concentrated toward the periphery of the cells. To explain these nonuniform distributions, he proposed that on giant HeLa cells, recycling receptors return to the cell surface at the cell's leading edge. Since the distribution of coated pits on these cells is uniform, Bretscher and Thomson (1983) proposed that there is a bulk membrane flow toward the cell centers. Here we present a mathematical model that allows us to predict the distribution of cell surface proteins on a thin circular cell, when exocytosis occurs at the cell periphery and endocytosis occurs uniformly over the cell surface. We show that on such a cell, a bulk membrane flow will be generated, whose average velocity is zero at the cell center and increases linearly with the distance from the cell center. Our model predicts that proteins that aggregate in coated pits will have concentrations that are maximal at the cell periphery. We fit our theory to the data of Bretscher and Thomson (1983) on the distribution of ferritin receptors for the following cases: the receptors move by diffusion alone; they move by bulk membrane flow alone; they move by a combination of diffusion and bulk membrane flow. From our fits we show that tau m greater than 3.5 tau p, where tau m and tau p are the lifetimes of the membrane and the ferritin receptor on the cell surface, and that tau pD less than 6.9 X 10(-7) cm2, where D is the ferritin receptor diffusion coefficient. Surprisingly, we obtain the best fits to the data when we neglect membrane flow. Our model predicts that for proteins that are excluded from coated pits, the protein concentration will be Gaussian, being maximal at the cell center and decreasing with the distance from the cell center. If on giant HeLa cells a protein with such a distribution could be found, it would strongly support Bretcher's proposal that there is an

  9. Fixation and stabilization of Escherichia coli cells displaying genetically engineered cell surface proteins

    SciTech Connect

    Freeman, A.; Abramov, S.; Georgiou, G.

    1996-12-05

    A large biotechnological potential is inherent in the display of proteins. Applications such as immobilized whole-cell biocatalysts or cellular adsorbents require cell fixation to prevent disintegration, stabilization of the anchored protein from leakage, denaturation or proteolysis, and total loss of cell viability, preventing medium and potential product contamination with cells. In this article the authors describe the adaptation of a simple two-stage chemical crosslinking procedure based on bi-layer encagement for stabilizing Escherichia coli cells expressing an Lpp-OmpA-{beta}-lactamase fusion that displays {beta}-lactamase on the cell surface. Bilayer crosslinking and coating the bacteria with a polymeric matrix is accomplished by treating the cells first with either glutaraldehyde or polyglutaraldehyde, followed by secondary crosslinking with polyacrylamide hydrazide. These treatments resulted in a 5- to 25-fold reduction of the thermal inactivation rate constant at 55 C of surface anchored {beta}-lactamase and completely prevented the deterioration of the cells for at least a week of storage at 4 C. The stabilization procedure developed paves the way to scalable biotechnological applications of E. coli displaying surface anchored proteins as whole-cell biocatalysts and adsorbents.

  10. Cell Surface Access Is Modulated by Tethered Bottlebrush Proteoglycans.

    PubMed

    Chang, Patrick S; McLane, Louis T; Fogg, Ruth; Scrimgeour, Jan; Temenoff, Johnna S; Granqvist, Anna; Curtis, Jennifer E

    2016-06-21

    The hyaluronan-rich pericellular matrix (PCM) plays physical and chemical roles in biological processes ranging from brain plasticity, to adhesion-dependent phenomena such as cell migration, to the onset of cancer. This study investigates how the spatial distribution of the large negatively charged bottlebrush proteoglycan, aggrecan, impacts PCM morphology and cell surface access. The highly localized pericellular milieu limits transport of nanoparticles in a size-dependent fashion and sequesters positively charged molecules on the highly sulfated side chains of aggrecan. Both rat chondrocyte and human mesenchymal stem cell PCMs possess many unused binding sites for aggrecan, showing a 2.5x increase in PCM thickness from ∼7 to ∼18 μm when provided exogenous aggrecan. Yet, full extension of the PCM occurs well below aggrecan saturation. Hence, cells equipped with hyaluronan-rich PCM can in principle manipulate surface accessibility or sequestration of molecules by tuning the bottlebrush proteoglycan content to alter PCM porosity and the number of electrostatic binding sites. PMID:27332132

  11. Extracellular Protease Digestion to Evaluate Membrane Protein Cell Surface Localization

    PubMed Central

    Besingi, Richard N.; Clark, Patricia L.

    2016-01-01

    Membrane proteins play crucial roles in signaling and as anchors for cell surface display. Proper secretion of a membrane protein can be evaluated by its susceptibility to digestion by an extracellular protease, but this requires a crucial control to confirm membrane integrity during digestion. This protocol describes how to use this approach to determine how efficiently a protein is secreted to the outer surface of Gram-negative bacteria. Its success relies upon careful selection of an appropriate intracellular reporter protein that will remain undigested if the membrane barrier remains intact, but is rapidly digested when cells are lysed prior to evaluation. Reporter proteins that are resistant to proteases (e.g. maltose-binding protein) do not return accurate results; in contrast, proteins that are more readily digested (e.g. SurA) serve as more sensitive reporters of membrane integrity, yielding more accurate measurements of membrane protein localization. Similar considerations apply when evaluating membrane protein localization in other contexts, including eukaryotic cells and organelle membranes. Evaluating membrane protein localization using this approach requires only standard biochemistry laboratory equipment for cell lysis, gel electrophoresis and western blotting. After expression of the protein of interest, this procedure can be completed in 4 h. PMID:26584447

  12. Mechanics of Bacterial Cells and Initial Surface Colonisation.

    PubMed

    Aguayo, Sebastian; Bozec, Laurent

    2016-01-01

    The mechanical properties of bacterial cells play an important role in crucial bacterial processes such as cell growth, colonisation and biofilm formation. Recent developments in the field of nanotechnology and atomic force microscopy (AFM) have made it possible to observe, characterise and understand the nanomechanic behaviour of live bacterial cells as never before. Unlike traditional techniques, AFM makes it possible to employ living bacteria in their physiological environment with minimal or no sample preparation. The technique of AFM nanoindentation opens new possibilities to study bacterial cell wall stiffness under different mechanical and buffer conditions. Also, by attaching bacterial cells to functionalised AFM cantilevers, single-cell force spectroscopy (SCFS) can be used to measure the adhesion of bacteria to biological and non-biological substrates at the nano-newton and pico-newton scale, and provide specific information on receptor-ligand interactions. By studying the biophysics of the bacterial-surface interaction with the abovementioned techniques, it has been possible to gain new insight on the early stages of bacterial colonisation and biofilm formation. PMID:27193547

  13. Atomic Force Microscopy in Microbiology: New Structural and Functional Insights into the Microbial Cell Surface

    PubMed Central

    2014-01-01

    ABSTRACT Microbial cells sense and respond to their environment using their surface constituents. Therefore, understanding the assembly and biophysical properties of cell surface molecules is an important research topic. With its ability to observe living microbial cells at nanometer resolution and to manipulate single-cell surface molecules, atomic force microscopy (AFM) has emerged as a powerful tool in microbiology. Here, we survey major breakthroughs made in cell surface microbiology using AFM techniques, emphasizing the most recent structural and functional insights. PMID:25053785

  14. Surface Morphological Studies on Nerve Cells by AFM

    NASA Astrophysics Data System (ADS)

    Durkaya, Goksel; Zhong, Lei; Rehder, Vincent; Dietz, Nikolaus

    2009-03-01

    Surface morphological properties of fixed and living nerve cells removed from the buccal ganglion of Helisoma trivolvis have been studied by using Atomic Force Microscopy (AFM). Identified, individual neurons were removed from the buccal ganglion of Helisoma trivolvis and plated into poly-L-lysine coated glass cover-slips. The growth of the nerve cells was stopped and fixed with 0.1% Glutaraldehyde and 4% Formaldehyde solution after extension of growth cones at the tip of the axons. Topography and softness of growth cone filopodia and overlying lamellopodium (veil) were probed by AFM. Information obtained from AFM's amplitude and phase channels have been used for determination of softness of the region probed. The results of structural studies on the cells are linked to their mechanical properties and internal molecular density distribution.

  15. Development of living cell force sensors for the interrogation of cell surface interactions

    NASA Astrophysics Data System (ADS)

    Brown, Scott Chang

    The measurement of cell surface interactions, or cell interaction forces, are critical for the early diagnosis and prevention of disease, the design of targeted drug and gene delivery vehicles, the development of next-generation implant materials, and much more. However, the technologies and devices that are currently available are highly limited with respect to the dynamic force range over which they can measure cell-cell or cell-substratum interactions, and with their ability to adequately mimic biologically relevant systems. Consequently, research efforts that involve cell surface interactions have been limited. In this dissertation, existing tools for research at the nanoscale (i.e., atomic force microscopy microcantilevers) are modified to develop living cell force sensors that allow for the highly sensitive measurement of cell-mediated interactions over the entire range of forces expected in biotechnology (and nano-biotechnology) research (from a single to millions of receptor-ligand bonds). Several force sensor motifs have been developed that can be used to measure interactions using single adherent cells, single suspension culture cell, and cell monolayers (tissues) over a wide range of interaction conditions (e.g., approach velocity, shear rate, contact time) using a conventional atomic force microscope. This new tool has been applied to study the pathogenesis of spontaneous pneumothorax and the interaction of cells with 14 man-made interfaces. Consequently, a new hypothesis of the interactions that manifest spontaneous pneumothorax has been developed. Additionally, these findings have the potential to lead to the development of tools for data mining materials and surfaces for unique cell interactions that could have an immense societal impact.

  16. Short-chain ceramides depress integrin cell surface expression and function in colorectal cancer cells.

    PubMed

    Morad, Samy A F; Bridges, Lance C; Almeida Larrea, Alex D; Mayen, Anthony L; MacDougall, Matthew R; Davis, Traci S; Kester, Mark; Cabot, Myles C

    2016-07-01

    Colorectal cancer (CRC) is highly metastatic, significantly so to liver, a characteristic that embodies one of the most challenging aspects of treatment. The integrin family of cell-cell and cell-matrix adhesion receptors plays a central role in migration and invasion, functions that underlie metastatic potential. In the present work we sought to determine the impact of ceramide, which plays a key modulatory role in cancer suppression, on integrin cell surface expression and function in CRC cells in order to reveal possible ceramide-centric effects on tumor cell motility. Human CRC cells LoVo, HT-29, and HCT-116 were employed, which represent lines established from primary and metastatic sites. A cell-permeable, short-chain analog, C6-ceramide, was used as ceramide mimic. Exposure of cells to C6-ceramide (24 h) promoted a dose-dependent (2.5-10 µM) decrease in the expression of cell surface β1 and β4 integrin subunits in all cell lines; at 10 µM C6-ceramide, the decreases ranged from 30 to 50% of the control. Expression of cell surface αVβ6 integrin, which is associated with advanced invasion in CRC, was also suppressed by C6-ceramide. Decreases in integrin expression translated to diminished cellular adhesion, 50% of the control at 5 µM C6-ceramide, and markedly reduced cellular migration, approximately 30-40% of the control in all cell lines. Physicochemical examination revealed potent efficacy of nano-formulated C6-ceramide, but inferior activity of dihydro-C6-ceramide and L-C6-ceramide, compared to the unsaturated counterpart and the natural d-enantiomer, respectively. These studies demonstrate novel actions of ceramides that may have application in suppression of tumor metastasis, in addition to their known tumor suppressor effects. PMID:27045476

  17. RPE cell surface proteins in normal and dystrophic rats

    SciTech Connect

    Clark, V.M.; Hall, M.O.

    1986-02-01

    Membrane-bound proteins in plasma membrane enriched fractions from cultured rat RPE were analyzed by two-dimensional gel electrophoresis. Membrane proteins were characterized on three increasingly specific levels. Total protein was visualized by silver staining. A maximum of 102 separate proteins were counted in silver-stained gels. Glycoproteins were labeled with 3H-glucosamine or 3H-fucose and detected by autoradiography. Thirty-eight fucose-labeled and 61-71 glucosamine-labeled proteins were identified. All of the fucose-labeled proteins were labeled with glucosamine-derived radioactivity. Proteins exposed at the cell surface were labeled by lactoperoxidase-catalyzed radioiodination prior to preparation of membranes for two-dimensional analysis. Forty separate 125I-labeled surface proteins were resolved by two-dimensional electrophoresis/autoradiography. Comparison with the glycoprotein map showed that a number of these surface labeled proteins were glycoproteins. Two-dimensional maps of total protein, fucose-labeled, and glucosamine-labeled glycoproteins, and 125I-labeled surface proteins of membranes from dystrophic (RCS rdy-p+) and normal (Long Evans or RCS rdy+p+) RPE were compared. No differences in the total protein or surface-labeled proteins were observed. However, the results suggest that a 183K glycoprotein is more heavily glycosylated with glucosamine and fucose in normal RPE membranes as compared to membranes from dystrophic RPE.

  18. Cell-Surface Protein Profiling Identifies Distinctive Markers of Progenitor Cells in Human Skeletal Muscle.

    PubMed

    Uezumi, Akiyoshi; Nakatani, Masashi; Ikemoto-Uezumi, Madoka; Yamamoto, Naoki; Morita, Mitsuhiro; Yamaguchi, Asami; Yamada, Harumoto; Kasai, Takehiro; Masuda, Satoru; Narita, Asako; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi; Fukada, So-Ichiro; Nishino, Ichizo; Tsuchida, Kunihiro

    2016-08-01

    Skeletal muscle contains two distinct stem/progenitor populations. One is the satellite cell, which acts as a muscle stem cell, and the other is the mesenchymal progenitor, which contributes to muscle pathogeneses such as fat infiltration and fibrosis. Detailed and accurate characterization of these progenitors in humans remains elusive. Here, we performed comprehensive cell-surface protein profiling of the two progenitor populations residing in human skeletal muscle and identified three previously unrecognized markers: CD82 and CD318 for satellite cells and CD201 for mesenchymal progenitors. These markers distinguish myogenic and mesenchymal progenitors, and enable efficient isolation of the two types of progenitors. Functional study revealed that CD82 ensures expansion and preservation of myogenic progenitors by suppressing excessive differentiation, and CD201 signaling favors adipogenesis of mesenchymal progenitors. Thus, cell-surface proteins identified here are not only useful markers but also functionally important molecules, and provide valuable insight into human muscle biology and diseases. PMID:27509136

  19. The N-X-S/T consensus sequence is required but not sufficient for bacterial N-linked protein glycosylation.

    PubMed

    Nita-Lazar, Mihai; Wacker, Michael; Schegg, Belinda; Amber, Saba; Aebi, Markus

    2005-04-01

    In the Gram-negative bacterium Campylobacter jejuni there is a pgl (protein glycosylation) locus-dependent general N-glycosylation system of proteins. One of the proteins encoded by pgl locus, PglB, a homolog of the eukaryotic oligosaccharyltransferase component Stt3p, is proposed to function as an oligosaccharyltransferase in this prokaryotic system. The sequence requirements of the acceptor polypeptide for N-glycosylation were analyzed by reverse genetics using the reconstituted glycosylation of the model protein AcrA in Escherichia coli. As in eukaryotes, the N-X-S/T sequon is an essential but not a sufficient determinant for N-linked protein glycosylation. This conclusion was supported by the analysis of a novel C. jejuni glycoprotein, HisJ. Export of the polypeptide to the periplasm was required for glycosylation. Our data support the hypothesis that eukaryotic and bacterial N-linked protein glycosylation are homologous processes. PMID:15574802

  20. Comprehensive analysis of protein glycosylation by solid-phase extraction of N-linked glycans and glycosite-containing peptides

    PubMed Central

    Sun, Shisheng; Shah, Punit; Eshghi, Shadi Toghi; Yang, Weiming; Trikannad, Namita; Yang, Shuang; Chen, Lijun; Aiyetan, Paul; Höti, Naseruddin; Zhang, Zhen; Chan, Daniel W; Zhang, Hui

    2016-01-01

    Comprehensive characterization of protein glycosylation is critical for understanding the structure and function of glycoproteins. However, due to the complexity and heterogeneity of glycoprotein conformations, current glycoprotein analyses focus mainly on either the de-glycosylated glycosylation site (glycosite)-containing peptides or the released glycans. Here, we describe a chemoenzymatic method called solid phase extraction of N-linked glycans and glycosite-containing peptides (NGAG) for the comprehensive characterization of glycoproteins that is able to determine glycan heterogeneity for individual glycosites in addition to providing information about the total N-linked glycan, glycosite-containing peptide and glycoprotein content of complex samples. The NGAG method can also be applied to quantitatively detect glycoprotein alterations in total and site-specific glycan occupancies. PMID:26571101

  1. Comprehensive analysis of protein glycosylation by solid-phase extraction of N-linked glycans and glycosite-containing peptides.

    PubMed

    Sun, Shisheng; Shah, Punit; Eshghi, Shadi Toghi; Yang, Weiming; Trikannad, Namita; Yang, Shuang; Chen, Lijun; Aiyetan, Paul; Höti, Naseruddin; Zhang, Zhen; Chan, Daniel W; Zhang, Hui

    2016-01-01

    Comprehensive characterization of protein glycosylation is critical for understanding the structure and function of glycoproteins. However, due to the complexity and heterogeneity of glycoprotein conformations, current glycoprotein analyses focus mainly on either the de-glycosylated glycosylation site (glycosite)-containing peptides or the released glycans. Here, we describe a chemoenzymatic method called solid phase extraction of N-linked glycans and glycosite-containing peptides (NGAG) for the comprehensive characterization of glycoproteins that is able to determine glycan heterogeneity for individual glycosites in addition to providing information about the total N-linked glycan, glycosite-containing peptide and glycoprotein content of complex samples. The NGAG method can also be applied to quantitatively detect glycoprotein alterations in total and site-specific glycan occupancies. PMID:26571101

  2. Estrogen inhibits cell cycle progression and retinoblastoma phosphorylation in rhesus ovarian surface epithelial cell culture

    SciTech Connect

    Wright, Jay W.; Stouffer, Richard L.; Rodland, Karin D.

    2003-10-31

    Estrogen promotes the growth of some ovarian cancer cells at nanomolar concentrations, but has been shown to inhibit growth of normal ovarian surface epithelial (OSE) cells at micromolar concentrations (1μg/ml). OSE cells express the estrogen receptor (ER)-α, and are the source of 90% of various cancers. The potential sensitivity of OSE cells to estrogen stresses the importance of understanding the estrogen-dependent mechanisms at play in OSE proliferation and transformation, as well as in anticancer treatment. We investigated the effects of estradiol on cell proliferation in vitro, and demonstrate an intracellular locus of action of estradiol in cultured rhesus ovarian surface epithelial (RhOSE) cells. We show that ovarian and breast cells are growth-inhibited by micromolar concentration of estradiol and that this inhibition correlates with estrogen receptor expression. We further show that normal rhesus OSE cells do not activate ERK or Akt in response to estradiol nor does estradiol block the ability of serum to stimulate ERK or induce cyclin D expression. Contrarily, estradiol inhibits serum-dependent retinoblastoma protein (Rb) phosphorylation and blocks DNA synthesis. This inhibition does not formally arrest cells and is reversible within hours of estrogen withdrawal. Our data are consistent with growth inhibition by activation of Rb and indicate that sensitivity to hormone therapy in anticancer treatment can be modulated by cell cycle regulators downstream of the estrogen receptor.

  3. Hexabromocyclododecane Decreases Tumor-cell-binding Capacity and Cell-Surface Protein Expression of Human Natural Killer Cells

    PubMed Central

    Hinkson, Natasha C.; Whalen, Margaret M.

    2010-01-01

    Hexabromocyclododecane (HBCD) is a flame retardant that decreases the lytic function of human natural killer (NK) cells. NK cells defend against tumor cells and virally infected cells. Thus, HBCD has the potential to increase cancer incidence and viral infections. NK cells must bind to their targets for lysis to occur. Thus, concentrations of HBCD that decrease lytic function were examined for their ability to alter NK binding to tumor targets. Levels of HBCD that caused a loss of binding function were examined for effects on expression of cell surface proteins needed for binding. NK cells exposed to HBCD for 24 h, 48 h, or 6 days or to HBCD for 1 h followed by 24 h, 48 h, or 6 days in HBCD-free media were examined for binding function and cell surface protein expression. The results indicated that exposure of NK cells to 10 μM HBCD for 24 h (which caused a greater than 90% loss of lytic function) caused a very significant decrease in NK cell binding function (70.9%), and in CD16 and CD56 cell-surface protein expression (57.8%, and 24.6% respectively). NK cells exposed to 10 μM HBCD for 1 h followed by 24 h in HBCD-free media (which caused a 89.3% loss of lytic function) showed decreased binding function (79.2%), and CD 16 expression (48.1%). Results indicate that HBCD exposures decreased binding function as well as cell-surface marker expression in NK cells and that these changes may explain the losses of lytic function induced by certain HBCD exposures. PMID:19938002

  4. High cell-surface density of HER2 deforms cell membranes.

    PubMed

    Chung, Inhee; Reichelt, Mike; Shao, Lily; Akita, Robert W; Koeppen, Hartmut; Rangell, Linda; Schaefer, Gabriele; Mellman, Ira; Sliwkowski, Mark X

    2016-01-01

    Breast cancers (BC) with HER2 overexpression (referred to as HER2 positive) progress more aggressively than those with normal expression. Targeted therapies against HER2 can successfully delay the progression of HER2-positive BC, but details of how this overexpression drives the disease are not fully understood. Using single-molecule biophysical approaches, we discovered a new effect of HER2 overexpression on disease-relevant cell biological changes in these BC. We found HER2 overexpression causes deformation of the cell membranes, and this in turn disrupts epithelial features by perturbing cell-substrate and cell-cell contacts. This membrane deformation does not require receptor signalling activities, but results from the high levels of HER2 on the cell surface. Our finding suggests that early-stage morphological alterations of HER2-positive BC cells during cancer progression can occur in a physical and signalling-independent manner. PMID:27599456

  5. N-Linked Glycosyl Auxiliary-Mediated Native Chemical Ligation on Aspartic Acid: Application towards N-Glycopeptide Synthesis.

    PubMed

    Chai, Hua; Le Mai Hoang, Kim; Vu, Minh Duy; Pasunooti, Kalyan; Liu, Chuan-Fa; Liu, Xue-Wei

    2016-08-22

    A practical approach towards N-glycopeptide synthesis using an auxiliary-mediated dual native chemical ligation (NCL) has been developed. The first NCL connects an N-linked glycosyl auxiliary to the thioester side chain of an N-terminal aspartate oligopeptide. This intermediate undergoes a second NCL with a C-terminal thioester oligopeptide. Mild cleavage provides the desired N-glycopeptide. PMID:27444333

  6. Cancer cell uptake behavior of Au nanoring and its localized surface plasmon resonance induced cell inactivation

    NASA Astrophysics Data System (ADS)

    Chu, Che-Kuan; Tu, Yi-Chou; Chang, Yu-Wei; Chu, Chih-Ken; Chen, Shih-Yang; Chi, Ting-Ta; Kiang, Yean-Woei; Yang, Chih-Chung

    2015-02-01

    Au nanorings (NRIs), which have the localized surface plasmon resonance (LSPR) wavelength around 1058 nm, either with or without linked antibodies, are applied to SAS oral cancer cells for cell inactivation through the LSPR-induced photothermal effect when they are illuminated by a laser of 1065 nm in wavelength. Different incubation times of cells with Au NRIs are considered for observing the variations of cell uptake efficiency of Au NRI and the threshold laser intensity for cell inactivation. In each case of incubation time, the cell sample is washed for evaluating the total Au NRI number per cell adsorbed and internalized by the cells based on inductively coupled plasma mass spectrometry measurement. Also, the Au NRIs remaining on cell membrane are etched with KI/I2 solution to evaluate the internalized Au NRI number per cell. The threshold laser intensities for cell inactivation before washout, after washout, and after KI/I2 etching are calibrated from the circular area sizes of inactivated cells around the illuminated laser spot center with various laser power levels. By using Au NRIs with antibodies, the internalized Au NRI number per cell increases monotonically with incubation time up to 24 h. However, the number of Au NRI remaining on cell membrane reaches a maximum at 12 h in incubation time. The cell uptake behavior of an Au NRI without antibodies is similar to that with antibodies except that the uptake NRI number is significantly smaller and the incubation time for the maximum NRI number remaining on cell membrane is delayed to 20 h. By comparing the threshold laser intensities before and after KI/I2 etching, it is found that the Au NRIs remaining on cell membrane cause more effective cancer cell inactivation, when compared with the internalized Au NRIs.

  7. Genetic ablation of N-linked glycosylation reveals two key folding pathways for R345W fibulin-3, a secreted protein associated with retinal degeneration

    PubMed Central

    Hulleman, John D.; Kelly, Jeffery W.

    2015-01-01

    An R345W mutation in the N-glycoprotein, fibulin-3 (F3), results in inefficient F3 folding/secretion and higher intracellular F3 levels. Inheritance of this mutation causes the retinal dystrophy malattia leventinese. N-Linked glycosylation is a common cotranslational protein modification that can regulate protein folding efficiency and energetics. Therefore, we explored how N-glycosylation alters the protein homeostasis or proteostasis of wild-type (WT) and R345W F3 in ARPE-19 cells. Enzymatic and lectin binding assays confirmed that WT and R345W F3 are both primarily N-glycosylated at Asn249. Tunicamycin treatment selectively reduced R345W F3 secretion by 87% (vs. WT F3). Genetic elimination of F3 N-glycosylation (via an N249Q mutation) caused R345W F3 to aggregate intracellularly and adopt an altered secreted conformation. The endoplasmic reticulum (ER) chaperones GRP78 (glucose-regulated protein 78) and GRP94 (glucose-regulated protein 94), and the ER lectins calnexin and calreticulin were identified as F3 binding partners by immunoprecipitation. Significantly more N249Q and N249Q/R345W F3 interacted with GRP94, while substantially less N249Q and N249Q/R345W interacted with the ER lectins than their N-glycosylated counterparts. Inhibition of GRP94 ATPase activity reduced only N249Q/R345W F3 secretion (by 62%), demonstrating this variant’s unique reliance on GRP94 for secretion. These observations suggest that R345W F3, but not WT F3, requires N-glycosylation to acquire a stable, native-like structure.—Hulleman, J. D., Kelly, J. W. Genetic ablation of N-linked glycosylation reveals two key folding pathways for R345W fibulin-3, a secreted protein associated with retinal degeneration. PMID:25389134

  8. MAGIC: an automated N-linked glycoprotein identification tool using a Y1-ion pattern matching algorithm and in silico MS² approach.

    PubMed

    Lynn, Ke-Shiuan; Chen, Chen-Chun; Lih, T Mamie; Cheng, Cheng-Wei; Su, Wan-Chih; Chang, Chun-Hao; Cheng, Chia-Ying; Hsu, Wen-Lian; Chen, Yu-Ju; Sung, Ting-Yi

    2015-02-17

    Glycosylation is a highly complex modification influencing the functions and activities of proteins. Interpretation of intact glycopeptide spectra is crucial but challenging. In this paper, we present a mass spectrometry-based automated glycopeptide identification platform (MAGIC) to identify peptide sequences and glycan compositions directly from intact N-linked glycopeptide collision-induced-dissociation spectra. The identification of the Y1 (peptideY0 + GlcNAc) ion is critical for the correct analysis of unknown glycoproteins, especially without prior knowledge of the proteins and glycans present in the sample. To ensure accurate Y1-ion assignment, we propose a novel algorithm called Trident that detects a triplet pattern corresponding to [Y0, Y1, Y2] or [Y0-NH3, Y0, Y1] from the fragmentation of the common trimannosyl core of N-linked glycopeptides. To facilitate the subsequent peptide sequence identification by common database search engines, MAGIC generates in silico spectra by overwriting the original precursor with the naked peptide m/z and removing all of the glycan-related ions. Finally, MAGIC computes the glycan compositions and ranks them. For the model glycoprotein horseradish peroxidase (HRP) and a 5-glycoprotein mixture, a 2- to 31-fold increase in the relative intensities of the peptide fragments was achieved, which led to the identification of 7 tryptic glycopeptides from HRP and 16 glycopeptides from the mixture via Mascot. In the HeLa cell proteome data set, MAGIC processed over a thousand MS(2) spectra in 3 min on a PC and reported 36 glycopeptides from 26 glycoproteins. Finally, a remarkable false discovery rate of 0 was achieved on the N-glycosylation-free Escherichia coli data set. MAGIC is available at http://ms.iis.sinica.edu.tw/COmics/Software_MAGIC.html . PMID:25629585

  9. Cell surface properties of HLA antigens on Epstein-Barr virus-transformed cell lines.

    PubMed Central

    Smith, L M; Petty, H R; Parham, P; McConnell, H M

    1982-01-01

    A number of monoclonal antibodies have been used to investigate the distributions and rates of lateral motion of the HLA-A,B, and-DR antigens on several Epstein--Barr virus-transformed B-cell lines. The lateral diffusion coefficients (D) of fluorescein conjugates of the monoclonal antibodies bound to the cell surface were determined by fluorescence recovery after pattern photobleaching. Ds of HLA-A and-B were found to be comparable and of the order of 10(-9) to 10(-10) cm2/sec for each of the seven monoclonal antibodies and four cell lines examined. The HLA antigens appear to be monomeric on the cell surface based on experiments using mixtures of arsanilic acid-conjugated and fluorescein-conjugated antibodies. Four monoclonal antibodies against DR antigens were examined. Two of these, Genox 3.53 and L243, labeled the cell surface uniformly and gave Ds comparable to those obtained for the HLA-A and -B antigens. The other two, DA2 and 2.06, rapidly patched on the cell surface and were immobile. The DA2, L243, and Genox 3.53 antibodies bound outside of the caps formed with the arsanilic acid-conjugated 2.06 antibody and a second-step rhodamine-conjugated rabbit anti-arsanilate antibody. This is consistent with recent biochemical evidence that there are multiple distinct antigens coded for by the HLA-DR region. Images PMID:6281776

  10. Yeast cell surface display for lipase whole cell catalyst and its applications

    SciTech Connect

    Liu, Yun; Zhang, Rui; Lian, Zhongshuai; Wang, Shihui; Wright, Aaron T.

    2014-08-01

    The cell surface display technique allows for the expression of target proteins or peptides on the microbial cell surface by fusing an appropriate protein as an anchoring motif. Yeast display systems, such as Pichia pastoris, Yarowia lipolytica and Saccharomyces cerevisiae, are ideal, alternative and extensive display systems with the advantage of simple genetic manipulation and post-translational modification of expressed heterologous proteins. Engineered yeasts show high performance characteristics and variant utilizations. Herein, we comprehensively summarize the variant factors affecting lipase whole cell catalyst activity and display efficiency, including the structure and size of target proteins, screening anchor proteins, type and chain length of linkers, and the appropriate matching rules among the above-mentioned display units. Furthermore, we also address novel approaches to enhance stability and activity of recombinant lipases, such as VHb gene co-expression, multi-enzyme co-display technique, and the micro-environmental interference and self-assembly techniques. Finally, we represent the variety of applications of whole cell surface displayed lipases on yeast cells in non-aqueous phases, including synthesis of esters, PUFA enrichment, resolution of chiral drugs, organic synthesis and biofuels. We demonstrate that the lipase surface display technique is a powerful tool for functionalizing yeasts to serve as whole cell catalysts, and increasing interest is providing an impetus for broad application of this technique.

  11. Selective Differentiation into Hematopoietic and Cardiac Cells from Pluripotent Stem Cells Based on the Expression of Cell Surface Markers.

    PubMed

    Okada, Atsumasa; Tashiro, Katsuhisa; Yamaguchi, Tomoko; Kawabata, Kenji

    2016-01-01

    Flk1-expressing (+) mesodermal cells are useful source for the generation of hematopoietic cells and cardiomyocytes from pluripotent stem cells (PSCs). However, they have been reported as a heterogenous population that includes hematopoietic and cardiac progenitors. Therefore, to provide a method for a highly efficient production of hematopoietic cells and cardiomyocytes, cell surface markers are often used for separating these progenitors in Flk1(+) cells. Our recent study has shown that the expression of coxsackievirus and adenovirus receptor (CAR), a tight junction component molecule, could divide mouse and human PSC- and mouse embryo-derived Flk1(+) cells into Flk1(+)CAR(-) and Flk1(+)CAR(+) cells. Flk1(+)CAR(-) and Flk1(+)CAR(+) cells efficiently differentiated into hematopoietic cells and cardiomyocytes, respectively. These results indicate that CAR is a novel cell surface marker for separating PSC-derived Flk1(+) mesodermal cells into hematopoietic and cardiac progenitors. We herein describe a differentiation method from PSCs into hematopoietic cells and cardiomyocytes based on CAR expression. PMID:26138986

  12. Surface deformation and shear flow in ligand mediated cell adhesion

    NASA Astrophysics Data System (ADS)

    Sircar, Sarthok; Roberts, Anthony; Sarthok Sircar / Anthony Roberts Collaboration

    We present a unified, multiscale model to study the attachment/detachment dynamics of two deforming, near spherical cells, coated with binding ligands and subject to a slow, homogeneous shear flow in a viscous fluid medium. The binding ligands on the surface of the cells experience attractive and repulsive forces in an ionic medium and exhibit finite resistance to rotation via bond tilting. The microscale drag forces and couples describing the fluid flow inside the small separation gap between the cells, are calculated using a combination of methods in lubrication theory and previously published numerical results. For a select range of material and fluid parameters, a hysteretic transition of the sticking probability curves (i.e., the function g*) between the adhesion phase (when g*>0.5) and the fragmentation phase (when g*<0.5) is attributed to a nonlinear relation between the total nanoscale binding forces and the separation gap between the cells. We show that adhesion is favored in highly ionic fluids, increased deformability of the cells, elastic binders and a higher fluid shear rate (until a critical value). Continuation of the limit points (i.e., the turning points where the slope of the function g* changes sign within a select range of critical shear SS is supported by the Adelaide University startup funds and AR is supported by the Australian Research Council Discovery Grant DP150102385.

  13. Surface Functionalized Graphene Biosensor on Sapphire for Cancer Cell Detection.

    PubMed

    Joe, Daniel J; Hwang, Jeonghyun; Johnson, Christelle; Cha, Ho-Young; Lee, Jo-Won; Shen, Xiling; Spencer, Michael G; Tiwari, Sandip; Kim, Moonkyung

    2016-01-01

    Graphene has several unique physical, optical and electrical properties such as a two-dimensional (2D) planar structure, high optical transparency and high carrier mobility at room temperature. These make graphene interesting for electrical biosensing. Using a catalyst-free chemical vapor deposition (CVD) method, graphene film is grown on a sapphire substrate. There is a single or a few sheets as confirmed by Raman spectroscopy and atomic force microscopy (AFM). Electrical graphene biosensors are fabricated to detect large-sized biological analytes such as cancer cells. Human colorectal carcinoma cells are sensed by the resistance change of an active bio-functionalized graphene device as the cells are captured by the immobilized antibody surface. The functionalized sensors show an increase in resistance as large as ~20% of the baseline with a small number of adhered cells. This study suggests that the bio-functionalized electrical graphene sensors on sapphire, which is a highly transparent material, can potentially detect circulating tumor cells (CTCs) and monitor cellular electrical behavior while being compatible with fluorescence-based optical-detection bioassays. PMID:27398439

  14. Detecting Bacterial Surface Organelles on Single Cells Using Optical Tweezers.

    PubMed

    Zakrisson, Johan; Singh, Bhupender; Svenmarker, Pontus; Wiklund, Krister; Zhang, Hanqing; Hakobyan, Shoghik; Ramstedt, Madeleine; Andersson, Magnus

    2016-05-10

    Bacterial cells display a diverse array of surface organelles that are important for a range of processes such as intercellular communication, motility and adhesion leading to biofilm formation, infections, and bacterial spread. More specifically, attachment to host cells by Gram-negative bacteria are mediated by adhesion pili, which are nanometers wide and micrometers long fibrous organelles. Since these pili are significantly thinner than the wavelength of visible light, they cannot be detected using standard light microscopy techniques. At present, there is no fast and simple method available to investigate if a single cell expresses pili while keeping the cell alive for further studies. In this study, we present a method to determine the presence of pili on a single bacterium. The protocol involves imaging the bacterium to measure its size, followed by predicting the fluid drag based on its size using an analytical model, and thereafter oscillating the sample while a single bacterium is trapped by an optical tweezer to measure its effective fluid drag. Comparison between the predicted and the measured fluid drag thereby indicate the presence of pili. Herein, we verify the method using polymer coated silica microspheres and Escherichia coli bacteria expressing adhesion pili. Our protocol can in real time and within seconds assist single cell studies by distinguishing between piliated and nonpiliated bacteria. PMID:27088225

  15. The Development of Retrosynthetic Glycan Libraries to Profile and Classify the Human Serum N-Linked Glycome

    PubMed Central

    Kronewitter, Scott R.; An, Hyun Joo; de Leoz, Maria Lorna; Lebrilla, Carlito B.; Miyamoto, Suzanne; Leiserowitz, Gary S.

    2009-01-01

    Annotation of the human serum N-linked glycome is a formidable challenge but is necessary for disease marker discovery. A new theoretical glycan library was constructed and proposed to provide all possible glycan compositions in serum. It was developed based on established glycobiology and retrosynthetic state-transition networks. We find that at least 331 compositions are possible in the serum N-linked glycome. By pairing the theoretical glycan mass library with a high mass accuracy and high-resolution mass spectrometry, human serum glycans were effectively profiled. Correct isotopic envelope deconvolution to monoisotopic masses and the high mass accuracy instruments drastically reduced the amount of false composition assignments. The high throughput capacity enabled by this library permitted the rapid glycan profiling of large control populations. With the use of the library, a human serum glycan mass profile was developed from 46 healthy individuals. This paper presents a theoretical N-linked glycan mass library that was used for accurate high throughput human serum glycan profiling. Rapid methods for evaluating a patient’s glycome are instrumental for studying glycan based markers. PMID:19452454

  16. Cell Surface Differentiation Antigens of the Malignant T Cell in Sezary Syndrome and Mycosis Fungoides

    PubMed Central

    Haynes, Barton F.; Bunn, Paul; Mann, Dean; Thomas, Charles; Eisenbarth, George S.; Minna, John; Fauci, Anthony S.

    1981-01-01

    Using a panel of monoclonal antibodies and rabbit heteroantisera, we have studied the cell surface markers of peripheral blood (PB) Sezary cells from six patients with mycosis fungoides or Sezary syndrome, disease grouped within the spectrum of cutaneous T cell lymphomas (CTCL). Furthermore, we have studied two cell lines (Hut 78 and Hut 102) derived from malignant Sezary T cells from CTCL patients. The monoclonal antibody 3A1 defines a major human PB T cell subset (85% of PB T cells) while the antigen defined by the monoclonal antibody 4F2 is present on a subset (70%) of activated PB T cells and on circulating PB monocytes. In contrast to normal subjects in whom 60-70% of circulating PB mononuclear cells were 3A1+ T cells, PB mononuclear cells from six CTCL patients studied had an average of only 10.6±3.2% 3A1+ T cells. Whereas 85% of E-rosette positive cells from normal individuals were 3A1+, virtually all E-rosette positive T cells from the Sezary patients were 3A1-. Two patients with high numbers of circulating Sezary T cells had both aneuploid and diploid PB T cell populations present; after separation of PB T cells into 3A1+ and 3A1- cell suspensions, all 3A1- cells were found to be aneuploid. In contrast to normal resting PB T cells which were 4F2-, all PB Sezary cells were 4F2+, suggesting a state of activation. The 3A1 antigen was on a variety of acute lymphoblastic leukemia T cell lines (HSB-2, RPMI-8402, MOLT4, CEM) but was absent on the Hut 78 and Hut 102 Sezary T cell lines. Using rabbit anti-human T and anti-human Ia (p23, 30) antisera, we found that all malignant Sezary PB cells tested were killed by anti-T cell antiserum plus complement but not by anti-Ia plus complement. In contrast, Sezary cell lines Hut 78 and 102, were killed by both anti-T cell antiserum and anti-Ia plus complement. Similar to 3A1- normal PB T cells, 3A1- Sezary PB T cells proliferated poorly to phytohemagglutinin and concanavalin A. However, 3A1- Sezary T cells were able to

  17. A reclaiming process for solar cell silicon wafer surfaces.

    PubMed

    Pa, P S

    2011-01-01

    The low yield of epoxy film and Si3N4 thin-film deposition is an important factor in semiconductor production. A new design system using a set of three lamination-shaped electrodes as a machining tool and micro electro-removal as a precision reclaiming process of the Si3N4 layer and epoxy film removal from silicon wafers of solar cells surface is presented. In the current experiment, the combination of the small thickness of the anode and cathodes corresponds to a higher removal rate for the thin films. The combination of the short length of the anode and cathodes combined with enough electric power produces fast electroremoval. A combination of the small edge radius of the anode and cathodes corresponds to a higher removal rate. A higher feed rate of silicon wafers of solar cells combined with enough electric power produces fast removal. A precise engineering technology constructed a clean production approach for the removal of surface microstructure layers from silicon wafers is to develop a mass production system for recycling defective or discarded silicon wafers from solar cells that can reduce pollution and lower cost. PMID:21446525

  18. "Race for the Surface": Eukaryotic Cells Can Win.

    PubMed

    Pham, Vy T H; Truong, Vi Khanh; Orlowska, Anna; Ghanaati, Shahram; Barbeck, Mike; Booms, Patrick; Fulcher, Alex J; Bhadra, Chris M; Buividas, Ričardas; Baulin, Vladimir; Kirkpatrick, C James; Doran, Pauline; Mainwaring, David E; Juodkazis, Saulius; Crawford, Russell J; Ivanova, Elena P

    2016-08-31

    With an aging population and the consequent increasing use of medical implants, managing the possible infections arising from implant surgery remains a global challenge. Here, we demonstrate for the first time that a precise nanotopology provides an effective intervention in bacterial cocolonization enabling the proliferation of eukaryotic cells on a substratum surface, preinfected by both live Gram-negative, Pseudomonas aeruginosa, and Gram-positive, Staphylococcus aureus, pathogenic bacteria. The topology of the model black silicon (bSi) substratum not only favors the proliferation of eukaryotic cells but is biocompatible, not triggering an inflammatory response in the host. The attachment behavior and development of filopodia when COS-7 fibroblast cells are placed in contact with the bSi surface are demonstrated in the dynamic study, which is based on the use of real-time sequential confocal imaging. Bactericidal nanotopology may enhance the prospect for further development of inherently responsive antibacterial nanomaterials for bionic applications such as prosthetics and implants. PMID:27494044

  19. SPE (tm) regenerative hydrogen/oxygen fuel cells for extraterrestrial surface and microgravity applications

    NASA Technical Reports Server (NTRS)

    Mcelroy, J. F.

    1990-01-01

    Viewgraphs on SPE regenerative hydrogen/oxygen fuel cells for extraterrestrial surface and microgravity applications are presented. Topics covered include: hydrogen-oxygen regenerative fuel cell energy storage system; electrochemical cell reactions; SPE cell voltage stability; passive water removal SPE fuel cell; fuel cell performance; SPE water electrolyzers; hydrophobic oxygen phase separator; hydrophilic/electrochemical hydrogen phase separator; and unitized regenerative fuel cell.

  20. Cell surface glycopeptides from human intestinal epithelial cell lines derived from normal colon and colon adenocarcinomas

    SciTech Connect

    Youakim, A.; Herscovics, A.

    1985-11-01

    The cell surface glycopeptides from an epithelial cell line (CCL 239) derived from normal human colon were compared with those from three cell lines (HCT-8R, HCT-15, and CaCo-2) derived independently from human colonic adenocarcinomas. Cells were incubated with D-(2-TH)mannose or L-(5,6-TH)fucose for 24 h and treated with trypsin to release cell surface components which were then digested exhaustively with Pronase and fractionated on Bio-Gel P-6 before and after treatment with endo-beta-N-acetylglucosaminidase H. The most noticeable difference between the labeled glycopeptides from the tumor and CCL 239 cells was the presence in the former of an endo-beta-N-acetylglucosaminidase H-resistant high molecular weight glycopeptide fraction which was eluted in the void volume of Bio-Gel P-6. This fraction was obtained with both labeled mannose and fucose as precursors. However, acid hydrolysis of this fraction obtained after incubation with (2-TH)mannose revealed that as much as 60-90% of the radioactivity was recovered as fucose. Analysis of the total glycopeptides (cell surface and cell pellet) obtained after incubation with (2-TH)mannose showed that from 40-45% of the radioactivity in the tumor cells and less than 10% of the radioactivity in the CCL 239 cells was recovered as fucose. After incubation of the HCT-8R cells with D-(1,6-TH)glucosamine and L-(1- UC)fucose, strong acid hydrolysis of the labeled glycopeptide fraction excluded from Bio-Gel P-6 produced TH-labeled N-acetylglucosamine and N-acetylgalactosamine.

  1. Rapid localized cell trapping on biodegradable polymers using cell surface derivatization and microfluidic networking.

    PubMed

    Sinclair, Jason; Salem, Aliasger K

    2006-03-01

    Spatial control over cell attachment is essential for controlling cell behavior and engineering cell-based sensor arrays. Here we report on a patterning procedure that can be utilized on a wide range of adherent and non-adherent cell types without the need to identify the exact peptide sequence or extracellular matrix (ECM) necessary for optimal cell attachment. This is achieved by converting native sialic residues present on the surface of most cells into non-native aldehydes using a mild sodium periodate treatment. The aldehyde groups are then reacted with biotin hydrazide to produce biotinylated cells. Avidin is patterned onto the surface of a biotinylated biodegradable block copolymer, polylactide-poly(ethylene glycol)-biotin (PLA-PEG-biotin) by microfluidic networking using a PDMS stamp. The biotinylated cells then bind specifically to the patterned avidin regions. The PEG that is presented from the PLA-PEG-biotin copolymer in the regions without avidin immobilization minimizes cell binding in the non-patterned regions. PMID:16307795

  2. Surface and allied studies in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1984-01-01

    Measuring small-signal admittance versus frequency and forward bias voltage together with a new transient measurement apparently provides the most reliable and flexible method available for determining back surface recombination velocity and low-injection lifetime of the quasineutral base region of silicon solar cells. The new transient measurement reported here is called short-circuit-current decay (SCCD). In this method, forward voltage equal to about the open-circuit or the maximum power voltage establishes excess holes and electrons in the junction transition region and in the quasineutral regions. The sudden application of a short circuit causes an exiting of the excess holes and electrons in the transition region within about ten picoseconds. From observing the slope and intercept of the subsequent current decay, the base lifetime and surface recombination velocity can be determined. The admittance measurement previously mentioned then enters to increase accuracy particularly for devices for which the diffusion length exceeds the base thickness.

  3. Silicon solar cells with polysilicon emitters and back surface fields

    NASA Astrophysics Data System (ADS)

    Du, Jiang; Berndt, Lyall P.; Tarr, N. Garry

    2010-06-01

    The first solar cells using in-situ doped polysilicon contacts to form both emitter and back surface field (BSF) regions are reported. The use of polysilicon contacts permits extremely low thermal budget processing (maximum 850°C 5 sec for dopant activation), preserving substrate properties. The effectiveness of the BSF is best seen with backside illumination, where the photocurrent under natural sunlight is found to be over 30% of that obtained with frontside illumination, even though the substrate thickness is comparable to the minority carrier diffusion length. The applicability of the structure to bifacial operation is considered.

  4. Surface and allied studies in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1984-01-01

    Significant improvements were made in the short-circuit current-decay method of measuring the recombination lifetime tau and the back surface recombination velocity S of the quasineutral base of silicon solar cells. The improvements include a circuit implementation that increases the speed of switching from the forward-voltage to the short-circuit conditions. They also include a supplementation of this method by some newly developed techniques employing small-signal admittance as a function of frequency omega. This supplementation is highly effective for determining tau for cases in which the diffusion length L greatly exceeds the base thickness W. Representative results on different solar cells are reported. Some advances made in the understanding of passivation provided by the polysilicon/silicon heterojunction are outlined. Recent measurements demonstrate that S 10,000 cm/s derive from this method of passivation.

  5. Surface plasmon enhanced cell microscopy with blocked random spatial activation

    NASA Astrophysics Data System (ADS)

    Son, Taehwang; Oh, Youngjin; Lee, Wonju; Yang, Heejin; Kim, Donghyun

    2016-03-01

    We present surface plasmon enhanced fluorescence microscopy with random spatial sampling using patterned block of silver nanoislands. Rigorous coupled wave analysis was performed to confirm near-field localization on nanoislands. Random nanoislands were fabricated in silver by temperature annealing. By analyzing random near-field distribution, average size of localized fields was found to be on the order of 135 nm. Randomly localized near-fields were used to spatially sample F-actin of J774 cells (mouse macrophage cell-line). Image deconvolution algorithm based on linear imaging theory was established for stochastic estimation of fluorescent molecular distribution. The alignment between near-field distribution and raw image was performed by the patterned block. The achieved resolution is dependent upon factors including the size of localized fields and estimated to be 100-150 nm.

  6. Las1 Is an Essential Nuclear Protein Involved in Cell Morphogenesis and Cell Surface Growth

    PubMed Central

    Doseff, A. I.; Arndt, K. T.

    1995-01-01

    Saccharomyces cerevisiae mutations that cause a requirement for SSD1-v for viability were isolated, yielding one new gene, LAS1, and three previously identified genes, SIT4, BCK1/SLK1, and SMP3. Three of these genes, LAS1, SIT4, and BCK1/SLK1, encode proteins that have roles in bud formation or morphogenesis. LAS1 is essential and loss of LAS1 function causes the cells to arrest as 80% unbudded cells and 20% large budded cells that accumulate many vesicles at the mother-daughter neck. Overexpression of LAS1 results in extra cell surface projections in the mother cell, alterations in actin and SPA2 localization, and the accumulation of electron-dense structures along the periphery of both the mother cell and the bud. The nuclear localization of LAS1 suggests a role of LAS1 for regulating bud formation and morphogenesis via the expression of components that function directly in these processes. PMID:8582632

  7. Neisseria lactamica selectively induces mitogenic proliferation of the naive B cell pool via cell surface Ig.

    PubMed

    Vaughan, Andrew T; Brackenbury, Louise S; Massari, Paola; Davenport, Victoria; Gorringe, Andrew; Heyderman, Robert S; Williams, Neil A

    2010-09-15

    Neisseria lactamica is a commensal bacteria that colonizes the human upper respiratory tract mucosa during early childhood. In contrast to the closely related opportunistic pathogen Neisseria meningitidis, there is an absence of adaptive cell-mediated immunity to N. lactamica during the peak age of carriage. Instead, outer membrane vesicles derived from N. lactamica mediate a B cell-dependent proliferative response in mucosal mononuclear cells that is associated with the production of polyclonal IgM. We demonstrate in this study that this is a mitogenic human B cell response that occurs independently of T cell help and any other accessory cell population. The ability to drive B cell proliferation is a highly conserved property and is present in N. lactamica strains derived from diverse clonal complexes. CFSE staining of purified human tonsillar B cells demonstrated that naive IgD(+) and CD27(-) B cells are selectively induced to proliferate by outer membrane vesicles, including the innate CD5(+) subset. Neither purified lipooligosaccharide nor PorB from N. lactamica is likely to be responsible for this activity. Prior treatment of B cells with pronase to remove cell-surface Ig or treatment with BCR-specific Abs abrogated the proliferative response to N. lactamica outer membrane vesicles, suggesting that this mitogenic response is dependent upon the BCR. PMID:20709949

  8. Cell-surface translational dynamics of nicotinic acetylcholine receptors

    PubMed Central

    Barrantes, Francisco J.

    2014-01-01

    Synapse efficacy heavily relies on the number of neurotransmitter receptors available at a given time. In addition to the equilibrium between the biosynthetic production, exocytic delivery and recycling of receptors on the one hand, and the endocytic internalization on the other, lateral diffusion and clustering of receptors at the cell membrane play key roles in determining the amount of active receptors at the synapse. Mobile receptors traffic between reservoir compartments and the synapse by thermally driven Brownian motion, and become immobilized at the peri-synaptic region or the synapse by: (a) clustering mediated by homotropic inter-molecular receptor–receptor associations; (b) heterotropic associations with non-receptor scaffolding proteins or the subjacent cytoskeletal meshwork, leading to diffusional “trapping,” and (c) protein-lipid interactions, particularly with the neutral lipid cholesterol. This review assesses the contribution of some of these mechanisms to the supramolecular organization and dynamics of the paradigm neurotransmitter receptor of muscle and neuronal cells -the nicotinic acetylcholine receptor (nAChR). Currently available information stemming from various complementary biophysical techniques commonly used to interrogate the dynamics of cell-surface components is critically discussed. The translational mobility of nAChRs at the cell surface differs between muscle and neuronal receptors in terms of diffusion coefficients and residence intervals at the synapse, which cover an ample range of time regimes. A peculiar feature of brain α7 nAChR is its ability to spend much of its time confined peri-synaptically, vicinal to glutamatergic (excitatory) and GABAergic (inhibitory) synapses. An important function of the α7 nAChR may thus be visiting the territories of other neurotransmitter receptors, differentially regulating the dynamic equilibrium between excitation and inhibition, depending on its residence time in each domain. PMID

  9. TGM2 A Cell Surface Marker in Esophageal Adenocarcinomas

    PubMed Central

    Leicht, Deborah T.; Kausar, Tasneem; Wang, Zhuwen; Ferrer-Torres, Daysha; Wang, Thomas D.; Thomas, Dafydd G.; Lin, Jules; Chang, Andrew C.; Lin, Lin; Beer, David G.

    2014-01-01

    Introduction Esophageal adenocarcinomas (EAC) are aggressive cancers that are increasing in incidence and associated with a poor prognosis. The identification of highly expressed genes in EAC relative to metaplastic Barrett’s esophagus (BE) may provide new targets for novel early cancer detection strategies using endoscopically administered, fluorescently labeled peptides. Methods Gene expression analysis of BE and EACs were used to identify the cell surface marker transglutaminase 2 (TGM2) as overexpressed in cancer. The expression of two major isoforms of TGM2 was determined by qRT-polymerase chain reaction in an independent cohort of 128 EACs. Protein expression was confirmed by tissue microarrays and immunoblot analysis of EAC cell lines. TGM2 DNA copy number was assessed using single nucleotide polymorphism microarrays and confirmed by qPCR. TGM2 expression in neoadjuvantly treated EACs and following small interfering RNA-mediated knockdown in cisplatin-treated EAC cells was used to determine its possible role in chemoresistance. Results TGM2 is overexpressed in 15 EACs relative to 26 BE samples. Overexpression of both TGM2 isoforms was confirmed in 128 EACs and associated with higher tumor stage, poor differentiation, and increased inflammatory and desmoplastic response. Tissue microarrays and immunohistochemistry confirmed elevated TGM2 protein expression in EAC. Single nucleotide polymorphism and qPCR analysis revealed increased TGM2 gene copy number as one mechanism underlying elevated TGM2 expression. TGM2 was highly expressed in resistant EAC after patient treatment with neoadjuvant chemotherapy/radiation suggesting a role for TGM2 in chemoresistance. Conclusion TGM2 may be a useful cell surface biomarker for early detection of EAC. PMID:24828664

  10. The neural cell adhesion molecule (NCAM) heparin binding domain binds to cell surface heparan sulfate proteoglycans.

    PubMed

    Kallapur, S G; Akeson, R A

    1992-12-01

    The neural cell adhesion molecule (NCAM) has been strongly implicated in several aspects of neural development. NCAM mediated adhesion has been proposed to involve a homophilic interaction between NCAMs on adjacent cells. The heparin binding domain (HBD) is an amino acid sequence within NCAM and has been shown to be involved in NCAM mediated adhesion but the relationship of this domain to NCAM segments mediating homophilic adhesion has not been defined. In the present study, a synthetic peptide corresponding to the HBD has been used as a substrate to determine its role in NCAM mediated adhesion. A neural cell line expressing NCAM (B35) and its derived clone which does not express NCAM (B35 clone 3) adhered similarly to plates coated with HBD peptide. A polyclonal antiserum to NCAM inhibited B35 cell-HBD peptide adhesion by only 10%, a value not statistically different from inhibition caused by preimmune serum. Both these experiments suggested no direct NCAM-HBD interactions. To test whether the HBD peptide bound to cell surface heparan sulfate proteoglycans (HSPG), HSPG synthesis was inhibited using beta-D-xyloside. After treatment, B35 cell adhesion to the HBD peptide, but not to control substrates, was significantly decreased. B35 cell adhesion to the HBD peptide could be inhibited by 10(-7) M heparin but not chondroitin sulfate. Preincubation of the substrate (HBD peptide) with heparin caused dramatic reduction of B35 cell-HBD peptide adhesion whereas preincubation of B35 cells with heparin caused only modest reductions in cell-HBD adhesion. Furthermore, inhibition of HSPG sulfation with sodium chlorate also decreased the adhesion of B35 cells to the HBD peptide. These results strongly suggest that, within the assay system, the NCAM HBD does not participate in homophilic interactions but binds to cell surface heparan sulfate proteoglycan. This interaction potentially represents an important mechanism of NCAM adhesion and further supports the view that NCAM has

  11. An Entirely Cell-based System to Generate Single-Chain Antibodies Against Cell Surface Receptors

    PubMed Central

    Lipes, Barbara D.; Chen, Yu-Hsun; Ma, HongZheng; Staats, Herman F.; Kenan, Daniel J.; Gunn, Michael Dee

    2008-01-01

    Summary The generation of recombinant antibodies (Abs) using phage display is a proven method to obtain a large variety of Abs that bind with high affinity to a given antigen (Ag). Traditionally, the generation of single chain Abs depends on the use of recombinant proteins in several stages of the procedure. This can be a problem, especially in the case of cell surface receptors, because Abs generated and selected against recombinant proteins may not bind the same protein expressed on a cell surface in its native form and because the expression of some receptors as recombinant proteins is problematic. To overcome these difficulties, we developed a strategy to generate single chain Abs that does not require the use of recombinant protein at any stage of the procedure. In this strategy, stably transfected cells are used for the immunization of mice, measuring Ab responses to immunization, panning the phage library, high throughput screening of arrayed phage clones, and characterization of recombinant single chain variable regions (scFvs). This strategy was used to generate a panel of single chain Abs specific for the innate immunity receptor Toll-like receptor 2 (TLR2). Once generated, individual scFvs were subcloned into an expression vector allowing the production of recombinant Abs in insect cells, thus avoiding the contamination of recombinant Abs with microbial products. This cell-based system efficiently generates Abs that bind to native molecules on the cell surface, bypasses the requirement of recombinant protein production, and avoids risks of microbial component contamination. PMID:18455737

  12. T-Cell Artificial Focal Triggering Tools: Linking Surface Interactions with Cell Response

    PubMed Central

    Carpentier, Benoît; Pierobon, Paolo; Hivroz, Claire; Henry, Nelly

    2009-01-01

    T-cell activation is a key event in the immune system, involving the interaction of several receptor ligand pairs in a complex intercellular contact that forms between T-cell and antigen-presenting cells. Molecular components implicated in contact formation have been identified, but the mechanism of activation and the link between molecular interactions and cell response remain poorly understood due to the complexity and dynamics exhibited by whole cell-cell conjugates. Here we demonstrate that simplified model colloids grafted so as to target appropriate cell receptors can be efficiently used to explore the relationship of receptor engagement to the T-cell response. Using immortalized Jurkat T cells, we monitored both binding and activation events, as seen by changes in the intracellular calcium concentration. Our experimental strategy used flow cytometry analysis to follow the short time scale cell response in populations of thousands of cells. We targeted both T-cell receptor CD3 (TCR/CD3) and leukocyte-function-associated antigen (LFA-1) alone or in combination. We showed that specific engagement of TCR/CD3 with a single particle induced a transient calcium signal, confirming previous results and validating our approach. By decreasing anti-CD3 particle density, we showed that contact nucleation was the most crucial and determining step in the cell-particle interaction under dynamic conditions, due to shear stress produced by hydrodynamic flow. Introduction of LFA-1 adhesion molecule ligands at the surface of the particle overcame this limitation and elucidated the low TCR/CD3 ligand density regime. Despite their simplicity, model colloids induced relevant biological responses which consistently echoed whole cell behavior. We thus concluded that this biophysical approach provides useful tools for investigating initial events in T-cell activation, and should enable the design of intelligent artificial systems for adoptive immunotherapy. PMID:19274104

  13. Measurement of diffusion length and surface recombination velocity in Interdigitated Back Contact (IBC) and Front Surface Field (FSF) solar cells

    NASA Astrophysics Data System (ADS)

    Verlinden, Pierre; Van de Wiele, Fernand

    1985-03-01

    A method is proposed for measuring the diffusion length and surface recombination velocity of Interdigitated Back Contact (IBC) solar cells by means of a simple linear regression on experimental quantum efficiency values versus the inverse of the absorption coefficient. This method is extended to the case of Front Surface Field (FSF) solar cells. Under certain conditions, the real or the effective surface recombination velocity may be measured.

  14. Responses of endothelial cells, smooth muscle cells, and platelets dependent on the surface topography of polytetrafluoroethylene.

    PubMed

    Lamichhane, Sujan; Anderson, Jordan A; Remund, Tyler; Sun, Hongli; Larson, Mark K; Kelly, Patrick; Mani, Gopinath

    2016-09-01

    In this study, the effect of different structures (flat, expanded, and electrospun) of polytetrafluoroethylene (PTFE) on the interactions of endothelial cells (ECs), smooth muscle cells (SMCs), and platelets was investigated. In addition, the mechanisms that govern the interactions between ECs, SMCs, and platelets with different structures of PTFE were discussed. The surface characterizations showed that the different structures of PTFE have the same surface chemistry, similar surface wettability and zeta potential, but uniquely different surface topography. The viability, proliferation, morphology, and phenotype of ECs and SMCs interacted with different structures of PTFE were investigated. Expanded PTFE (ePTFE) provided a relatively better surface for the growth of ECs. In case of SMC interactions, although all the different structures of PTFE inhibited SMC growth, a maximum inhibitory effect was observed for ePTFE. In case of platelet interactions, the electrospun PTFE provided a better surface for preventing the adhesion and activation of platelets. Thus, this study demonstrated that the responses of ECs, SMCs, and platelets strongly dependent on the surface topography of the PTFE. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2291-2304, 2016. PMID:27119260

  15. Association of cell surface heparan sulfate proteoglycans of Schwann cells with extracellular matrix proteins.

    PubMed

    Carey, D J; Crumbling, D M; Stahl, R C; Evans, D M

    1990-11-25

    The terminal differentiation of Schwann cells is dependent on contact with basement membrane. The present study was undertaken to investigate the role of cell surface heparan sulfate proteoglycans (HSPGs) in mediating Schwann cell responses to extracellular matrix contact. Phosphatidylinositol-specific phospholipase C-releasable cell surface HSPGs purified from cultures of neonatal rat Schwann cells were subjected to affinity chromatography on immobilized laminin and fibronectin. Binding of the HSPG to both affinity matrices was observed. The strength of the association, however, was sensitive to the ionic strength of the buffer. In 0.1 M Tris-HCl, HSPG binding was essentially irreversible whereas in physiological ionic strength buffer (e.g. 0.142 M NaCl, 10 mM Tris), weaker binding was detected as a delay in elution of the HSPG from the affinity columns. Further studies of HSPG-laminin binding suggested that the binding was mediated by the glycosaminoglycan chains of the proteoglycans. Results of equilibrium gel filtration chromatography provided additional evidence for a reversible association of the HSPG and laminin with a Kd of approximately 1 x 10(-6) M. When Schwann cells were plated on plastic dishes coated with laminin, the cells attached and extended long slender processes. Inclusion of heparin, but not chondroitin sulfate, in the assay medium resulted in partial inhibition of process extension, but at concentrations of heparin which were higher than that needed to disrupt laminin-HSPG association in vitro. Addition of anti-integrin receptor antibodies resulted in more extensive inhibition of laminin-dependent process extension. Anti-integrin antibodies plus heparin essentially totally inhibited laminin-dependent process extension. These results demonstrate that cell surface HSPGs are capable of reversible association with extracellular matrix molecules and suggest that HSPG-laminin interactions play a role in laminin-dependent Schwann cell spreading. PMID

  16. Ultrastructure of the Bacteroides nodosus cell envelope layers and surface.

    PubMed Central

    Every, D; Skerman, T M

    1980-01-01

    The surface structure and cell envelope layers of various virulent Bacteroides nodosus strains were examined by light microscopy and by electron microscopy by using negative staining, thin-section, and freeze-fracture-etch techniques. Three surface structures were described: pili and a diffuse material, both of which emerged from one or both poles of the bacteria (depending on the stage of growth and division), and large rodlike structures (usually 30 to 40 nm in diameter) associated with a small proportion of the bacterial population. No capsule was detected. The cell envelope consisted of four layers: a plasma membrane, a peptidoglycan layer, an outer membrane, and an outermost additional layer. The additional layer was composed of subunits, generally hexagonally packed with center-to-center spacing of 6 to 7 nm. The outer membrane and plasma membrane freeze-fractured through their hydrophobic regions revealing four fracture faces with features similar to those of other gram-negative bacteria. However, some unusual features were seen on the fracture faces of the outer membrane: large raised ring structure (11 to 12 nm in diameter) on cw 3 at the poles of the bacteria; complementary pits or ring-shaped depressions on cw 2; and small raised ring structures (7 to 8 nm in diameter) all over cw 2. Images PMID:6154040

  17. Engineered antifouling microtopographies: surface pattern effects on cell distribution.

    PubMed

    Decker, Joseph T; Sheats, Julian T; Brennan, Anthony B

    2014-12-23

    Microtopography has been observed to lead to altered attachment behavior for marine fouling organisms; however, quantification of this phenomenon is lacking in the scientific literature. Here, we present quantitative measurement of the disruption of normal attachment behavior of the fouling algae Ulva linza by antifouling microtopographies. The distribution of the diatom Navicula incerta was shown to be unaffected by the presence of topography. The radial distribution function was calculated for both individual zoospores and cells as well as aggregates of zoospores from attachment data for a variety topographic configurations and at a number of different attachment densities. Additionally, the screening distance and maximum values were mapped according to the location of zoospore aggregates within a single unit cell. We found that engineered topographies decreased the distance between spore aggregates compared to that for a smooth control surface; however, the distributions for individual spores were unchanged. We also found that the local attachment site geometry affected the screening distance for aggregates of zoospores, with certain geometries decreasing screening distance and others having no measurable effect. The distribution mapping techniques developed and explored in this article have yielded important insight into the design parameters for antifouling microtopographies that can be implemented in the next generation of antifouling surfaces. PMID:25420235

  18. Engineering Cell Instructive Materials To Control Cell Fate and Functions through Material Cues and Surface Patterning.

    PubMed

    Ventre, Maurizio; Netti, Paolo A

    2016-06-22

    Mastering the interaction between cells and extracellular environment is a fundamental prerequisite in order to engineer functional biomaterial interfaces able to instruct cells with specific commands. Such advanced biomaterials might find relevant application in prosthesis design, tissue engineering, diagnostics and stem cell biology. Because of the highly complex, dynamic, and multifaceted context, a thorough understanding of the cell-material crosstalk has not been achieved yet; however, a variety of material features including biological cues, topography, and mechanical properties have been proved to impact the strength and the nature of the cell-material interaction, eventually affecting cell fate and functions. Although the nature of these three signals may appear very different, they are equated by their participation in the same material-cytoskeleton crosstalk pathway as they regulate cell adhesion events. In this work we present recent and relevant findings on the material-induced cell responses, with a particular emphasis on how the presentation of biochemical/biophysical signals modulates cell behavior. Finally, we summarize and discuss the literature data to draw out unifying elements concerning cell recognition of and reaction to signals displayed by material surfaces. PMID:26693600

  19. Dynamic interplay between adhesion surfaces in carcinomas: Cell-cell and cell-matrix crosstalk

    PubMed Central

    Smith, Yvonne E; Vellanki, Sri HariKrishna; Hopkins, Ann M

    2016-01-01

    Cell-cell and cell-matrix signaling and communication between adhesion sites involve mechanisms which are required for cellular functions during normal development and homeostasis; however these cellular functions and mechanisms are often deregulated in cancer. Aberrant signaling at cell-cell and cell-matrix adhesion sites often involves downstream mediators including Rho GTPases and tyrosine kinases. This review discusses these molecules as putative mediators of cellular crosstalk between cell-cell and cell-matrix adhesion sites, in addition to their attractiveness as therapeutic targets in cancer. Interestingly, inter-junctional crosstalk mechanisms are frequently typified by the way in which bacterial and viral pathogens opportunistically infect or intoxicate mammalian cells. This review therefore also discusses the concept of learning from pathogen-host interaction studies to better understand coordinated communication between cell-cell and cell-matrix adhesion sites, in addition to highlighting the potential therapeutic usefulness of exploiting pathogens or their products to tap into inter-junctional crosstalk. Taken together, we feel that increased knowledge around mechanisms of cell-cell and cell-matrix adhesion site crosstalk and consequently a greater understanding of their therapeutic targeting offers a unique opportunity to contribute to the emerging molecular revolution in cancer biology. PMID:26981196

  20. Dynamic interplay between adhesion surfaces in carcinomas: Cell-cell and cell-matrix crosstalk.

    PubMed

    Smith, Yvonne E; Vellanki, Sri HariKrishna; Hopkins, Ann M

    2016-02-26

    Cell-cell and cell-matrix signaling and communication between adhesion sites involve mechanisms which are required for cellular functions during normal development and homeostasis; however these cellular functions and mechanisms are often deregulated in cancer. Aberrant signaling at cell-cell and cell-matrix adhesion sites often involves downstream mediators including Rho GTPases and tyrosine kinases. This review discusses these molecules as putative mediators of cellular crosstalk between cell-cell and cell-matrix adhesion sites, in addition to their attractiveness as therapeutic targets in cancer. Interestingly, inter-junctional crosstalk mechanisms are frequently typified by the way in which bacterial and viral pathogens opportunistically infect or intoxicate mammalian cells. This review therefore also discusses the concept of learning from pathogen-host interaction studies to better understand coordinated communication between cell-cell and cell-matrix adhesion sites, in addition to highlighting the potential therapeutic usefulness of exploiting pathogens or their products to tap into inter-junctional crosstalk. Taken together, we feel that increased knowledge around mechanisms of cell-cell and cell-matrix adhesion site crosstalk and consequently a greater understanding of their therapeutic targeting offers a unique opportunity to contribute to the emerging molecular revolution in cancer biology. PMID:26981196

  1. Surface charge characteristics of cells from malignant cell lines and normal cell lines of the human hematopoietic system.

    PubMed

    Marikovsky, Y; Ben-Bassat, H; Leibovich, S J; Cividalli, L; Fischler, H; Danon, D

    1979-02-01

    Cells from malignant and normal lines of human hematopoietic origin were studied for their surface charge characteristics with the use of the following criteria: 1) the electron microscopic appearance of cell membranes after labeling with cationized ferritin (CF) either before or after glutaraldehyde fixation, 2) electrophoretic mobility, 3) total sialic acid content, and 4) agglutinability with poly-L-lysine (PLL). CF induced a time-dependent redistribution of surface receptors in unfixed malignant cells but not in unfixed normal cells. After 10 seconds of labeling with CF, both normal and malignant unfixed cells showed a uniform and even labeling pattern. After 5 minutes of labeling, malignant cells exhibited a highly pronounced pattern of clusters and patches, as distinct from a random and even pattern exhibited by normal cells. Both normal and malignant cells after fixation exhibited an equivalent random and even labeling pattern with CF, independent of the duration of labeling. The malignant cells studied possessed less sialic acid, had a lower electric mobility, and were agglutinated more readily with PLL than were the normal cells. PMID:310907

  2. Decreased tumorigenicity correlates with expression of altered cell surface carbohydrates in Lec9 CHO cells.

    PubMed Central

    Ripka, J; Shin, S; Stanley, P

    1986-01-01

    To investigate a role for surface carbohydrates in cellular malignancy, 15 different glycosylation-defective CHO cell mutants were examined for their tumorigenic and metastatic capacities after subcutaneous injection into nude mice. Most of the glycosylation mutants displayed similar or slightly decreased tumorigenicity compared with parental CHO cells. Neither parental CHO cells nor any of the mutants were observed to metastasize. However, independent isolates of one mutant type, Lec9, showed a dramatic reduction in tumor formation. The altered carbohydrates expressed at the surface of Lec9 cells appeared to be responsible for their loss of tumorigenicity, because revertants for lectin resistance were able to form tumors, and a double mutant (Lec9.Lec1) that expressed a Lec1 glycosylation phenotype also formed tumors. Finally, Lec9 cells were able to form tumors in gamma-irradiated nude mice, suggesting that recognition by an irradiation-sensitive host cell(s) was responsible for their reduced tumorigenicity in untreated nude mice. PMID:3785164

  3. Influence of surfaces modified with biomimetic extracellular matrices on adhesion and proliferation of mesenchymal stem cells and osteosarcoma cells.

    PubMed

    Cai, Rong; Kawazoe, Naoki; Chen, Guoping

    2015-02-01

    Preparation of surfaces modified with biomimetic extracellular matrices (ECMs) is important for investigation of the interaction between ECMs and cells. In the present study, surfaces modified with ECMs from normal somatic cells, stem cells and tumor cells were prepared by cell culture method. The ECMs derived from bone marrow-derived mesenchymal stem cells (MSCs), dermal fibroblasts (FBs), osteoblasts (OBs) and MG63 osteosarcoma cells were deposited on the surfaces of cell-culture polystyrene plates (TCPS). The ECMs from different cell types had different compositions. The effects of the ECM-deposited surfaces on the adhesion, spreading and proliferation of MSCs and MG63 human osteosarcoma cells were dependent on the type of both ECMs and cells. The surfaces deposited with ECMs from MSCs, FBs and OBs promoted cell adhesion more strongly than surfaces deposited with ECMs from MG63 cells and TCPS. Compared to TCPS, the ECM-deposited surfaces promoted proliferation of MSCs while they inhibited the proliferation of MG63 cells. PMID:25516267

  4. Substrate recognition by the cell surface palmitoyl transferase DHHC5

    PubMed Central

    Howie, Jacqueline; Reilly, Louise; Fraser, Niall J.; Vlachaki Walker, Julia M.; Wypijewski, Krzysztof J.; Ashford, Michael L. J.; Calaghan, Sarah C.; McClafferty, Heather; Tian, Lijun; Shipston, Michael J.; Boguslavskyi, Andrii; Shattock, Michael J.; Fuller, William

    2014-01-01

    The cardiac phosphoprotein phospholemman (PLM) regulates the cardiac sodium pump, activating the pump when phosphorylated and inhibiting it when palmitoylated. Protein palmitoylation, the reversible attachment of a 16 carbon fatty acid to a cysteine thiol, is catalyzed by the Asp-His-His-Cys (DHHC) motif-containing palmitoyl acyltransferases. The cell surface palmitoyl acyltransferase DHHC5 regulates a growing number of cellular processes, but relatively few DHHC5 substrates have been identified to date. We examined the expression of DHHC isoforms in ventricular muscle and report that DHHC5 is among the most abundantly expressed DHHCs in the heart and localizes to caveolin-enriched cell surface microdomains. DHHC5 coimmunoprecipitates with PLM in ventricular myocytes and transiently transfected cells. Overexpression and silencing experiments indicate that DHHC5 palmitoylates PLM at two juxtamembrane cysteines, C40 and C42, although C40 is the principal palmitoylation site. PLM interaction with and palmitoylation by DHHC5 is independent of the DHHC5 PSD-95/Discs-large/ZO-1 homology (PDZ) binding motif, but requires a ∼120 amino acid region of the DHHC5 intracellular C-tail immediately after the fourth transmembrane domain. PLM C42A but not PLM C40A inhibits the Na pump, indicating PLM palmitoylation at C40 but not C42 is required for PLM-mediated inhibition of pump activity. In conclusion, we demonstrate an enzyme–substrate relationship for DHHC5 and PLM and describe a means of substrate recruitment not hitherto described for this acyltransferase. We propose that PLM palmitoylation by DHHC5 promotes phospholipid interactions that inhibit the Na pump. PMID:25422474

  5. Galectin-1-mediated cell adhesion, invasion and cell death in human anaplastic large cell lymphoma: regulatory roles of cell surface glycans.

    PubMed

    Suzuki, Osamu; Abe, Masafumi

    2014-05-01

    Galectin-1 is known to be one of the extracellular matrix proteins. To elucidate the biological roles of galectin-1 in cell adhesion and invasion of human anaplastic large cell lymphoma, we performed cell adhesion and invasion assays using the anaplastic large cell lymphoma cell line H-ALCL, which was previously established in our laboratory. From the cell surface lectin array, treatment with neuraminidase from Arthrobacter ureafaciens which cleaves all linkage types of cell surface sialic acid enhanced Arachis hypogaea (PNA), Helix pomatia (HPA) and Phaseolus vulgaris-L (L-PHA) lectin binding reactivity to cell surface of lymphoma cells suggesting that neuraminidase removes cell surface sialic acid. In cell adhesion and invasion assays treatment with neuraminidase markedly enhanced cell adhesion to galectin-1 and decreased cell invasive capacity through galectin-1. α2,6-linked sialic acid may be involved in masking the effect of the interaction between galectin-1 and cell surface glycans. H-ALCL cells expressed the β-galactoside-α2,6-sialyltransferase ST6Gal1. On resialylation assay by recombinant ST6Gal1 with CMP-Neu5Ac, α2,6-resialylation of L-PHA reactive oligosaccharide by ST6Gal1 resulted in inhibition of H-ALCL cell adhesion to galectin-1 compared to the desialylated H-ALCL cells. On knockdown experiments, knockdown of ST6Gal1 dramatically enhanced cell adhesion to galectin-1. N-glycosylation inhibitor swainsonine treatment resulted in enhancement of cell adhesion to galectin-1. In glycomic analysis using the lectin blocking assay treatment with PNA, Artocarpus integrifolia (Jacalin), Glycine max (SBA), Helix pomatia (HPA), Vicia villosa (VVA), Ulex europaeus (UEA-1), Triticum vulgaris (WGA), Canavalia ensiformis (ConA), Phaseolus vulgaris-L (L-PHA), Phaseolus vulgaris-E4 (E-PHA), Datura stramonium (DSA) lectins resulted in modulation of lymphoma cell to galectin-1 suggesting that several types of glycans may regulate cell adhesion to galectin-1 by

  6. Locally contacted rear surface passivated solar cells by inkjet printing

    NASA Astrophysics Data System (ADS)

    Phiwpha, N.; Fangsuwannarak, T.; Sopitpan, S.

    2014-06-01

    Inkjet printing of photoresist material may provide a new route for low-cost fabrication of patterned oxide passivation layer of solar cells that require fine patterning and simple process. However, printing by liquid-based, environmentally friendly ink and printing device required development efforts aimed at achieving a fine patterning and long used inkjet nozzles under corrosive influence. This work was demonstrated a concept for grooved silicon oxide patterning for rear localized contact of p-n junction solar cells by chemical etching after photoresist patterning obtained. This article reviews the silicon dioxide fabrication on p-Si substrate from sol-gel technique for oxide passivation layer of solar cells. The aluminium was deposited on the patterned oxide layer and then heated at its Al-Si eutectic temperature. Finally, an aluminium-induced solid-phase epitaxial growth of p+ forming into the openings of the oxide passivation layer was presented. The sheet resistance of n-emitter layer, carrier life-time and surface recombination velocity values are investigated. Photoconductive measurements were performed on the prepared samples after each thermal process to measure the effective lifetime of the minority carriers. Carrier lifetime up to 60 microseconds has been measured on c-Si wafer passivated by the opened SiO2 layer. It was shown that the patterned SiO2 passivation has obtained high passivation quality making by the proposed inkjet printing method.

  7. Nutrient-deprived cancer cells preferentially use sialic acid to maintain cell surface glycosylation.

    PubMed

    Badr, Haitham A; AlSadek, Dina M M; Mathew, Mohit P; Li, Chen-Zhong; Djansugurova, Leyla B; Yarema, Kevin J; Ahmed, Hafiz

    2015-11-01

    Cancer is characterized by abnormal energy metabolism shaped by nutrient deprivation that malignant cells experience during various stages of tumor development. This study investigated the response of nutrient-deprived cancer cells and their non-malignant counterparts to sialic acid supplementation and found that cells utilize negligible amounts of this sugar for energy. Instead cells use sialic acid to maintain cell surface glycosylation through complementary mechanisms. First, levels of key metabolites (e.g., UDP-GlcNAc and CMP-Neu5Ac) required for glycan biosynthesis are maintained or enhanced upon Neu5Ac supplementation. In concert, sialyltransferase expression increased at both the mRNA and protein levels, which facilitated increased sialylation in biochemical assays that measure sialyltransferase activity as well as at the whole cell level. In the course of these experiments, several important differences emerged that differentiated the cancer cells from their normal counterparts including resistant to sialic acid-mediated energy depletion, consistently more robust sialic acid-mediated glycan display, and distinctive cell surface vs. internal vesicle display of newly-produced sialoglycans. Finally, the impact of sialic acid supplementation on specific markers implicated in cancer progression was demonstrated by measuring levels of expression and sialylation of EGFR1 and MUC1 as well as the corresponding function of sialic acid-supplemented cells in migration assays. These findings both provide fundamental insight into the biological basis of sialic acid supplementation of nutrient-deprived cancer cells and open the door to the development of diagnostic and prognostic tools. PMID:26295436

  8. Anti-epidermal-cell-surface pemphigus antibody detaches viable epidermal cells from culture plates by activation of proteinase.

    PubMed Central

    Farb, R M; Dykes, R; Lazarus, G S

    1978-01-01

    Immunoglobulin from pemphigus patients binds to the surface of mouse epidermal cells in culture. Cells incubated with the pemphigus antibody are easily detached from culture plates whereas cells incubated with serum from normal patients remain on the plate. Pemphigus antibody-mediated cell detachment is blocked by the addition of the proteinase inhibitors soybean trypsin inhibitor and alpha2-macroglobulin to the culture media. Detachable cells are viable, and activation of the complement cascade is not necessary for cell detachment. The anti-cell-surface antibody of pemphigus appears to disrupt adhesion between viable epidermal cells by activation of proteinase. Images PMID:272663

  9. Cell Surface Glycan Alterations in Epithelial Mesenchymal Transition Process of Huh7 Hepatocellular Carcinoma Cell

    PubMed Central

    Kang, Xiaonan; Sun, Chun; Jiang, Kai; Huang, Li; Lu, Yu; Sui, Jingzhe; Qin, Xue; Liu, Yinkun

    2013-01-01

    Background and Objective Due to recurrence and metastasis, the mortality of Hepatocellular carcinoma (HCC) is high. It is well known that the epithelial mesenchymal transition (EMT) and glycan of cell surface glycoproteins play pivotal roles in tumor metastasis. The goal of this study was to identify HCC metastasis related differential glycan pattern and their enzymatic basis using a HGF induced EMT model. Methodology HGF was used to induce HCC EMT model. Lectin microarray was used to detect the expression of cell surface glycan and the difference was validated by lectin blot and fluorescence cell lectin-immunochemistry. The mRNA expression levels of glycotransferases were determined by qRT-PCR. Results After HGF treatment, the Huh7 cell lost epithelial characteristics and obtained mesenchymal markers. These changes demonstrated that HGF could induce a typical cell model of EMT. Lectin microarray analysis identified a decreased affinity in seven lectins ACL, BPL, JAC, MPL, PHA-E, SNA, and SBA to the glycan of cell surface glycoproteins. This implied that glycan containing T/Tn-antigen, NA2 and bisecting GlcNAc, Siaα2-6Gal/GalNAc, terminal α or βGalNAc structures were reduced. The binding ability of thirteen lectins, AAL, LCA, LTL, ConA, NML, NPL, DBA, HAL, PTL II, WFL, ECL, GSL II and PHA-L to glycan were elevated, and a definite indication that glycan containing terminal αFuc and ± Sia-Le, core fucose, α-man, gal-β(α) GalNAc, β1,6 GlcNAc branching and tetraantennary complex oligosaccharides structures were increased. These results were further validated by lectin blot and fluorescence cell lectin-immunochemistry. Furthermore, the mRNA expression level of Mgat3 decreased while that of Mgat5, FucT8 and β3GalT5 increased. Therefore, cell surface glycan alterations in the EMT process may coincide with the expression of glycosyltransferase. Conclusions The findings of this study systematically clarify the alterations of cell surface glycan in cancer EMT, and

  10. Cell-Surface MMP-9 Protein Is a Novel Functional Marker to Identify and Separate Proangiogenic Cells from Early Endothelial Progenitor Cells Derived from CD133(+) Cells.

    PubMed

    Kanayasu-Toyoda, Toshie; Tanaka, Takeshi; Kikuchi, Yutaka; Uchida, Eriko; Matsuyama, Akifumi; Yamaguchi, Teruhide

    2016-05-01

    To develop cell therapies for ischemic diseases, endothelial progenitor cells (EPCs) have been expected to play a pivotal role in vascular regeneration. It is desirable to use a molecular marker that is related to the function of the cells. Here, a quantitative polymerase chain reaction array revealed that early EPCs derived from CD133(+) cells exhibited significant expression of MMP-9. Some populations of early EPCs expressed MMP-9 on the cell surface and others did not. We also attempted to separate the proangiogenic fraction from early EPCs derived from CD133(+) cells using a functional cell surface marker, and we then analyzed the MMP-9(+) and MMP-9(-) cell fractions. The MMP-9(+) cells not only revealed higher invasion ability but also produced a high amount of IL-8. Moreover, the stimulative effect of MMP-9(+) cells on angiogenesis in vitro and in vivo was prohibited by anti-IL-8 antibody. These data indicate that MMP-9 is one of the useful cell surface markers for the separation of angiogenic cells. Our treatment of early EPCs with hyaluronidase caused not only a downregulation of cell-surface MMP-9 but also a decrease in invasion ability, indicating that membrane-bound MMP-9, which is one of the useful markers for early EPCs, plays an important role in angiogenesis. Stem Cells 2016;34:1251-1262. PMID:26824798

  11. HOS cell adhesion on Ti6Al4V surfaces texturized by laser engraving

    NASA Astrophysics Data System (ADS)

    Sandoval Amador, A.; Carreño Garcia, H.; Escobar Rivero, P.; Peña Ballesteros, D. Y.; Estupiñán Duran, H. A.

    2016-02-01

    The cell adhesion of the implant is determinate by the chemical composition, topography, wettability, surface energy and biocompatibility of the biomaterial. In this work the interaction between human osteosarcoma HOS cells and textured Ti6Al4V surfaces were evaluated. Ti6Al4V surfaces were textured using a CO2 laser in order to obtain circular spots on the surfaces. Test surfaces were uncoated (C1) used as a control surface, and surfaces with points obtained by laser engraving, with 1mm spacing (C2) and 0.5mm (C3). The HOS cells were cultured in RPMI-1640 medium with 10% fetal bovine serum and 1% antibiotics. No cells toxicity after one month incubation time occurred. The increased cell adhesion and cell spreading was observed after 1, 3 and 5 days without significant differences between the sample surfaces (C2 and C3) and control (uncoated) at the end of the experiment.

  12. AMP-Activated Protein Kinase Regulates the Cell Surface Proteome and Integrin Membrane Traffic

    PubMed Central

    Thavarajah, Thanusi; Medvedev, Sergei; Bowden, Peter; Marshall, John G.; Antonescu, Costin N.

    2015-01-01

    The cell surface proteome controls numerous cellular functions including cell migration and adhesion, intercellular communication and nutrient uptake. Cell surface proteins are controlled by acute changes in protein abundance at the plasma membrane through regulation of endocytosis and recycling (endomembrane traffic). Many cellular signals regulate endomembrane traffic, including metabolic signaling; however, the extent to which the cell surface proteome is controlled by acute regulation of endomembrane traffic under various conditions remains incompletely understood. AMP-activated protein kinase (AMPK) is a key metabolic sensor that is activated upon reduced cellular energy availability. AMPK activation alters the endomembrane traffic of a few specific proteins, as part of an adaptive response to increase energy intake and reduce energy expenditure. How increased AMPK activity during energy stress may globally regulate the cell surface proteome is not well understood. To study how AMPK may regulate the cell surface proteome, we used cell-impermeable biotinylation to selectively purify cell surface proteins under various conditions. Using ESI-MS/MS, we found that acute (90 min) treatment with the AMPK activator A-769662 elicits broad control of the cell surface abundance of diverse proteins. In particular, A-769662 treatment depleted from the cell surface proteins with functions in cell migration and adhesion. To complement our mass spectrometry results, we used other methods to show that A-769662 treatment results in impaired cell migration. Further, A-769662 treatment reduced the cell surface abundance of β1-integrin, a key cell migration protein, and AMPK gene silencing prevented this effect. While the control of the cell surface abundance of various proteins by A-769662 treatment was broad, it was also selective, as this treatment did not change the cell surface abundance of the transferrin receptor. Hence, the cell surface proteome is subject to acute

  13. LRP-1–CD44, a New Cell Surface Complex Regulating Tumor Cell Adhesion

    PubMed Central

    Perrot, Gwenn; Langlois, Benoit; Devy, Jérôme; Jeanne, Albin; Verzeaux, Laurie; Almagro, Sébastien; Sartelet, Hervé; Hachet, Cathy; Schneider, Christophe; Sick, Emilie; David, Marion; Khrestchatisky, Michel; Emonard, Hervé; Martiny, Laurent

    2012-01-01

    The low-density lipoprotein receptor-related protein 1 (LRP-1) is a large endocytic receptor mediating the clearance of various molecules from the extracellular matrix. In the field of cancer, LRP-1-mediated endocytosis was first associated with antitumor properties. However, recent results suggested that LRP-1 may coordinate the adhesion-deadhesion balance in malignant cells to support tumor progression. Here, we observed that LRP-1 silencing or RAP (receptor-associated protein) treatment led to accumulation of CD44 at the tumor cell surface. Moreover, we evidenced a tight interaction between CD44 and LRP-1, not exclusively localized in lipid rafts. Overexpression of LRP-1-derived minireceptors indicated that the fourth ligand-binding cluster of LRP-1 is required to bind CD44. Labeling of CD44 with EEA1 and LAMP-1 showed that internalized CD44 is routed through early endosomes toward lysosomes in a LRP-1-dependent pathway. LRP-1-mediated internalization of CD44 was highly reduced under hyperosmotic conditions but poorly affected by membrane cholesterol depletion, revealing that it proceeds mostly via clathrin-coated pits. Finally, we demonstrated that CD44 silencing abolishes RAP-induced tumor cell attachment, revealing that cell surface accumulation of CD44 under LRP-1 blockade is mainly responsible for the stimulation of tumor cell adhesion. Altogether, our data shed light on the LRP-1-mediated internalization of CD44 that appeared critical to define the adhesive properties of tumor cells. PMID:22711991

  14. The neuronal cell-surface molecule mitogenic for Schwann cells is a heparin-binding protein.

    PubMed Central

    Ratner, N; Hong, D M; Lieberman, M A; Bunge, R P; Glaser, L

    1988-01-01

    The cell surface of embryonic peripheral neurons provides a mitogenic stimulus for Schwann cells. We report (i) the solubilization of this mitogenic activity from rat dorsal root ganglion neurons grown in tissue culture and (ii) the solubilization and partial purification of mitogenic activity from neonatal rat brains. Extracted mitogenic activity is peripheral rather than intrinsic to the membrane, stable after extraction, and active as a mitogen in the absence of serum (the most stringent criterion defining the neuronal mitogen). We have previously provided evidence suggesting that a neuronal cell-surface heparan sulfate proteoglycan is required for expression of the neurons' mitogenic activity. We now show that mitogenic activity can be extracted from the membrane dissociated from proteoglycan as assayed by its ability to bind to immobilized heparin. After dissociation, low concentrations of heparin (1 micrograms/ml) inhibit the ability of the mitogen to stimulate Schwann cell division. Basic fibroblast growth factor (FGF) is weakly mitogenic for Schwann cells, but it is not present in mitogenic brain extracts (based on immunoblotting). Immunodepletion experiments with specific antibodies to FGF indicate that the mitogenic activity extracted from neurons is not a form of this heparin-binding mitogen. Acidic FGF is not mitogenic for Schwann cells and is not present in mitogenic brain extracts. We suggest that these and previous data indicate the neurite mitogen is a proteoglycan-growth factor complex that limits mitogenic activity to the axonal surface, protects mitogen against inactivation by other proteoglycans, and provides for effective presentation of mitogen to the Schwann cell. PMID:3413130

  15. Cell Surface GRP78 Accelerated Breast Cancer Cell Proliferation and Migration by Activating STAT3.

    PubMed

    Yao, Xiaoli; Liu, Hua; Zhang, Xinghua; Zhang, Liang; Li, Xiang; Wang, Changhua; Sun, Shengrong

    2015-01-01

    High levels of cell surface glucose regulated protein 78 (sGRP78) have been implicated in cancer growth, survival, metastasis, and chemotherapy resistance. However, the underlying mechanism remains largely unknown. Here we report that the level of sGRP78 expression in human breast tumors gradually increases during cancer progression. Overexpression of GRP78 significantly enhanced its membrane distribution in human MCF-7 breast cancer cells, but had no effect on endoplasmic reticulum (ER) stress. High levels of sGRP78 facilitated cell proliferation and migration, as well as suppressed cell apoptosis. Neutralization of sGRP78 by a specific antibody against GRP78 alleviated sGRP78-induced cell growth and migration. Importantly, high phosphorylation levels of the signal transducer and activator of transcription 3 (STAT3) were found in human breast tumors that express sGRP78 and MCF-7 cells infected with adenovirus encoding human GRP78. Pretreatment with a GRP78 antibody suppressed STAT3 phosphorylation. Furthermore, genetic and pharmacological inhibition of STAT3 reversed the impacts of GRP78 on cell proliferation, apoptosis, and migration. These findings indicate that STAT3 mediates sGRP78-promoted breast cancer cell growth and migration. PMID:25973748

  16. Evolutionary Forces Shaping the Golgi Glycosylation Machinery: Why Cell Surface Glycans Are Universal to Living Cells

    PubMed Central

    Varki, Ajit

    2011-01-01

    Despite more than 3 billion years since the origin of life on earth, the powerful forces of biological evolution seem to have failed to generate any living cell that is devoid of a dense and complex array of cell surface glycans. Thus, cell surface glycans seem to be as essential for life as having a DNA genetic code, diverse RNAs, structural/functional proteins, lipid-based membranes, and metabolites that mediate energy flux and signaling. The likely reasons for this apparently universal law of biology are considered here, and include the fact that glycans have the greatest potential for generating diversity, and thus evading recognition by pathogens. This may also explain why in striking contrast to the genetic code, glycans show widely divergent patterns between taxa. On the other hand, glycans have also been coopted for myriad intrinsic functions, which can vary in their importance for organismal survival. In keeping with these considerations, a significant percentage of the genes in the typical genome are dedicated to the generation and/or turnover of glycans. Among eukaryotes, the Golgi is the subcellular organelle that serves to generate much of the diversity of cell surface glycans, carrying out various glycan modifications of glycoconjugates that transit through the Golgi, en route to the cell surface or extracellular destinations. Here I present an overview of general considerations regarding the selective forces shaping evolution of the Golgi glycosylation machinery, and then briefly discuss the common types of variations seen in each major class of glycans, finally focusing on sialic acids as an extreme example of evolutionary glycan diversity generated by the Golgi. Future studies need to address both the phylogenetic diversity the Golgi and the molecular mechanisms for its rapid responses to intrinsic and environmental stimuli. PMID:21525513

  17. Calreticulin, a potential cell surface receptor involved in cell penetration of anti-DNA antibodies.

    PubMed

    Seddiki, N; Nato, F; Lafaye, P; Amoura, Z; Piette, J C; Mazié, J C

    2001-05-15

    A 50-kDa protein was purified as a potential receptor, using an affinity matrix containing biotinylated F14.6 or H9.3 anti-DNA mAbs derived from autoimmune (New Zealand Black x New Zealand White)F(1) mouse and membrane extracts from cells. This protein was identified as calreticulin (CRT) by microsequencing. Confocal microscopy and FACS analysis showed that CRT was present on the surface of various cells. CRT protein was recognized by a panel of anti-DNA mAbs in ELISA. The binding of F14.6 to lymphocytes and Chinese hamster ovary cells was inhibited by soluble CRT or SPA-600. Thus, the anti-DNA mAbs used in this study bound to CRT, suggesting that CRT may mediate their penetration into the cells and play an important role in lupus pathogenesis. PMID:11342668

  18. A simplified model for dynamics of cell rolling and cell-surface adhesion

    SciTech Connect

    Cimrák, Ivan

    2015-03-10

    We propose a three dimensional model for the adhesion and rolling of biological cells on surfaces. We study cells moving in shear flow above a wall to which they can adhere via specific receptor-ligand bonds based on receptors from selectin as well as integrin family. The computational fluid dynamics are governed by the lattice-Boltzmann method. The movement and the deformation of the cells is described by the immersed boundary method. Both methods are fully coupled by implementing a two-way fluid-structure interaction. The adhesion mechanism is modelled by adhesive bonds including stochastic rules for their creation and rupture. We explore a simplified model with dissociation rate independent of the length of the bonds. We demonstrate that this model is able to resemble the mesoscopic properties, such as velocity of rolling cells.

  19. Cell surface modulation of gene expression in brain cells by down regulation of glucocorticoid receptors

    SciTech Connect

    McGinnis, J.F.; de Vellis, J.

    1981-02-01

    The concentration of glycerol-3-phosphate dehydrogenase (GPDH; sn-glycerol-3-phosphate:NAD/sup +/ 2-oxidoreductase, EC 1.1.1.8) had previously been determined to be regulated by glucocorticoids in rat brain cells in vivo and in cell culture. We now demonstrate that concanavalin A (Con A) can inhibit the induction of GPDH in a dose-dependent manner in C6 rat glioma cells and in primary cultures of rat brain oligodendrocytes. The inhibition specifically prevents the appearance of new molecules of GPDH, although Con A does not significantly inhibit protein synthesis in these cells, nor does it affect the activity of another solube enzyme, lactate dehydrogenase. The ability to block enzyme induction is not limited to Con A, because other lectins also inhibit induction. The molecular mechanism by which Con A inhibits GPDH induction appears to be by the down regulation of the cytoplasmic glucocorticoid receptors, because exposure to Con A results in the loss of more than 90% of the receptor activity. Con A does not inhibit the receptor assay and no direct interaction between the receptor and Con A could be demonstrated. This down regulation is not tumor cell specific and appears to be a general phenomenon, because it occurs in normal oligodendrocytes and even in normal astrocytes (a cell type in which the gene for GPDH is not expressed). The down regulation of glucocorticoid receptors in normal brain cells suggests two important corollaries. First, it demonstrates the existence of a rate-limiting step controlling the glucocorticoid-dependent gene expression in brain cells and possibly represents a regulatory site common to all glucocorticoid target cells. Second, it suggests that the response to glucocorticoids of oligodendrocytes and astrocytes can be regulated in vivo by cell surface contact with endogenous lectins, neighboring cells, or both.

  20. Human epithelial cells exposed to functionalized multiwalled carbon nanotubes: interactions and cell surface modifications.

    PubMed

    Fanizza, C; Casciardi, S; Incoronato, F; Cavallo, D; Ursini, C L; Ciervo, A; Maiello, R; Fresegna, A M; Marcelloni, A M; Lega, D; Alvino, A; Baiguera, S

    2015-09-01

    With the expansion of the production and applications of multiwalled carbon nanotubes (MWCNTs) in several industrial and science branches, the potential adverse effects on human health have attracted attention. Numerous studies have been conducted to evaluate how chemical functionalization may affect MWCNT effects; however, controversial data have been reported, showing either increased or reduced toxicity. In particular, the impact of carboxylation on MWCNT cytotoxicity is far from being completely understood. The aim of this work was the evaluation of the modifications induced by carboxylated-MWCNTs (MWCNTs-COOH) on cell surface and the study of cell-MWCNT-COOH interactions by means of field emission scanning electron microscope (FESEM). Human pulmonary epithelial cells (A549) were incubated with MWCNTs-COOH for different exposure times and concentrations (10 μg/mL for 1, 2, 4 h; 5, 10, 20 μg/mL for 24 h). At short incubation time, MWCNTs-COOH were easily observed associated with plasma membrane and in contact with microvilli. After 24 h exposure, FESEM analysis revealed that MWCNTs-COOH induced evident changes in the cellular surface in comparison to control cells: treated cells showed blebs, holes and a depletion of the microvilli density in association with structure modifications, such as widening and/or lengthening. In particular, an increase of cells showing holes and microvilli structure alterations was observed at 20 μg/mL concentration. FESEM analysis showed nanotube agglomerates, of different sizes, entering into the cell with two different mechanisms: inward bending of the membrane followed by nanotube sinking, and nanotube internalization directly through holes. The observed morphological microvilli modifications, induced by MWCNTs-COOH, could affect epithelial functions, such as the control of surfactant production and secretion, leading to pathological conditions, such as alveolar proteinosis. More detailed studies will be, however, necessary to

  1. EXAFS Study of Uranyl Complexation at Pseudomonas fluorescens Cell Surfaces

    NASA Astrophysics Data System (ADS)

    Bencheikh, R.; Bargar, J. R.; Tebo, B. M.

    2002-12-01

    Little is known about the roles of microbial biomass as a sink and source for uranium in contaminated aquifers, nor of the impact of bacterial biochemistry on uranium speciation in the subsurface. A significant role is implied by the high affinities of both Gram positive and Gram negative cells for binding uranyl (UO2{ 2+}). In the present study, Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy was used to identify membrane functional groups involved in uranyl binding to the Gram negative bacterium Pseudomonas fluorescens from pH 3 to pH 8. Throughout this pH-range, EXAFS spectra can be described primarily in terms of coordination of carboxylic groups to uranyl. U-C distances characteristic of 4-, 5- and 8- membered rings were observed, as well as the possibility of phosphato groups. Both shell-by-shell fits and principle component analyses indicate that the functional groups involved in binding of uranyl to the cell surface do not vary systematically across the pH range investigated. This result contrasts with EXAFS results of uranyl sorbed to Gram positive bacteria, and suggests an important role for long-chain carboxylate-terminated membrane functional groups in binding uranyl.

  2. Specific cell surface labeling of GPCRs using split GFP.

    PubMed

    Jiang, Wen-Xue; Dong, Xu; Jiang, Jing; Yang, Yu-Hong; Yang, Ju; Lu, Yun-Bi; Fang, San-Hua; Wei, Er-Qing; Tang, Chun; Zhang, Wei-Ping

    2016-01-01

    Specific cell surface labeling is essential for visualizing the internalization processes of G-protein coupled receptors (GPCRs) and for gaining mechanistic insight of GPCR functions. Here we present a rapid, specific, and versatile labeling scheme for GPCRs at living-cell membrane with the use of a split green fluorescent protein (GFP). Demonstrated with two GPCRs, GPR17 and CysLT2R, we show that two β-stands (β-stands 10 and 11) derived from a superfolder GFP (sfGFP) can be engineered to one of the three extracellular loop of a GPCR. The complementary fragment of sfGFP has nine β-strands (β-stands 1-9) that carries the mature fluorophore, and can be proteolytically derived from the full-length sfGFP. Separately the GFP fragments are non-fluorescent, but become fluorescent upon assembly, thus allowing specific labeling of the target proteins. The two GFP fragments rapidly assemble and the resulting complex is extremely tight under non-denaturing conditions, which allows real-time and quantitative assessment of the internalized GPCRs. We envision that this labeling scheme will be of great use for labeling other membrane proteins in various biological and pharmacological applications. PMID:26857153

  3. Cell surface alteration in Epstein-Barr virus-transformed cells from patients with extreme insulin resistance

    SciTech Connect

    Gorden, D.L.; Robert, A.; Moncada, V.Y.; Taylor, S.I.; Muehlhauser, J.C.; Carpentier, J.L. )

    1990-08-01

    An abnormality was detected in the morphology of the cell surface of Epstein-Barr virus-transformed lymphocytes of patients with genetic forms of insulin resistance. In cells from two patients with leprechaunism and two patients with type A extreme insulin resistance, scanning electron microscopy demonstrated a decrease in the percentage of the cell surface occupied by microvilli in cells from the patients with leprechaunism and type A insulin resistance compared with control cells. When cells from a healthy control subject and one of the patients with leprechaunism (Lep/Ark-1) were incubated with {sup 125}I-labeled insulin, there was a decrease in the percentage of {sup 125}I-insulin associated with microvilli on the cell surface. Thus, the decreased localization of insulin receptors with the microvillous region of the cell surface was in proportion to the decrease in microvilli.

  4. Nerve cells culture from lumbar spinal cord on surfaces modified by plasma pyrrole polymerization.

    PubMed

    Zuñiga-Aguilar, E; Olayo, R; Ramírez-Fernández, O; Morales, J; Godínez, R

    2014-01-01

    Currently, there are several techniques for modified cell culture surfaces under research to improve cell growth and adhesion. Recently, different methods have been used for surface coating, using biomolecules that enhance cell attachment and growth of nerve cells from spinal cord, such as the use of Poly-DL-Ornithine/Laminin. Plasma-polymerized pyrrole (PPy)-treated surfaces have showed improvement on surfaces biocompatibility with the cells in culture since they do not interfere with any of the biological cell functions. In the present work, we present a novel mouse nerve cell culture technique, using PPy-treated cell culture surfaces. A comparative study of cell survival using Poly-DL-Ornithine/Laminin-treated surfaces was performed. Our results of cell survival when compared with data already reported by other investigators, show that cells cultured on the PPy-modified surface increased survival up to 21 days when compared with Poly-DL-Ornithine/Laminin-coated culture, where 8 days cell survival was obtained. There were electrical and morphological differences in the nerve cells grown in the different surfaces. By comparing the peak ion currents of Poly-DL-Ornithine/Laminin-seeded cells for 8 days with cells grown for 21 days on PPy, an increase of 516% in the Na(+) current and 127% in K(+) currents in cells seeded on PPy were observed. Immunofluorescence techniques showed the presence of cell synapses and culture viability after 21 days. Our results then showed that PPy-modified surfaces are an alternative culture method that increases nerve cells survival from lumbar spinal cord cell culture by preserving its electrical and morphological features. PMID:24650203

  5. Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control.

    PubMed Central

    Hammond, C; Braakman, I; Helenius, A

    1994-01-01

    Using a pulse-chase approach combined with immunoprecipitation, we showed that newly synthesized influenza virus hemagglutinin (HA) and vesicular stomatitis virus G protein associate transiently during their folding with calnexin, a membrane-bound endoplasmic reticulum (ER) chaperone. Inhibitors of N-linked glycosylation (tunicamycin) and glucosidases I and II (castanospermine and 1-deoxynojirimycin) prevented the association, whereas inhibitors of ER alpha-mannosidases did not. Our results indicated that binding of these viral glycoproteins to calnexin correlated closely with the composition of their N-linked oligosaccharide side chains. Proteins with monoglucosylated oligosaccharides were the most likely binding species. On the basis of our data and existing information concerning the role of monoglucosylated oligosaccharides on glycoproteins, we propose that the ER contains a unique folding and quality control machinery in which calnexin acts as a chaperone that binds proteins with partially glucose-trimmed carbohydrate side chains. In this model glucosidases I and II serve as signal modifiers and UDP-glucose:glycoprotein glucosyltransferase, as a folding sensor. Images PMID:8302866

  6. Potential therapeutic target for malignant paragangliomas: ATP synthase on the surface of paraganglioma cells

    PubMed Central

    Fliedner, Stephanie MJ; Yang, Chunzhang; Thompson, Eli; Abu-Asab, Mones; Hsu, Chang-Mei; Lampert, Gary; Eiden, Lee; Tischler, Arthur S; Wesley, Robert; Zhuang, Zhengping; Lehnert, Hendrik; Pacak, Karel

    2015-01-01

    F1FoATP synthase (ATP synthase) is a ubiquitous enzyme complex in eukaryotes. In general it is localized to the mitochondrial inner membrane and serves as the last step in the mitochondrial oxidative phosphorylation of ADP to ATP, utilizing a proton gradient across the inner mitochondrial membrane built by the complexes of the electron transfer chain. However some cell types, including tumors, carry ATP synthase on the cell surface. It was suggested that cell surface ATP synthase helps tumor cells thriving on glycolysis to survive their high acid generation. Angiostatin, aurovertin, resveratrol, and antibodies against the α and β subunits of ATP synthase were shown to bind and selectively inhibit cell surface ATP synthase, promoting tumor cell death. Here we show that ATP synthase β (ATP5B) is present on the cell surface of mouse pheochromocytoma cells as well as tumor cells of human SDHB-derived paragangliomas (PGLs), while being virtually absent on chromaffin primary cells from bovine adrenal medulla by confocal microscopy. The cell surface location of ATP5B was verified in the tissue of an SDHB-derived PGL by immunoelectron microscopy. Treatment of mouse pheochromocytoma cells with resveratrol as well as ATP5B antibody led to statistically significant proliferation inhibition. Our data suggest that PGLs carry ATP synthase on their surface that promotes cell survival or proliferation. Thus, cell surface ATP synthase may present a novel therapeutic target in treating metastatic or inoperable PGLs. PMID:26101719

  7. New insights into the nanometer-scaled cell-surface interspace by cell-sensor measurements

    SciTech Connect

    Lehmann, Mirko . E-mail: mirko.lehmann@micronas.com; Baumann, Werner

    2005-05-01

    The culture of adherent cells on solid surfaces is an established in vitro method, and the adhesion process of a cell is considered as an important trigger for many cellular processes (e.g., polarity and tumor genesis). However, not all of the eliciting biochemical or biophysical reactions are yet understood. Interestingly, there are not much experimental data about the impact that the interspace between an adherent cell and the (solid) substrate has on the cell's behavior. This interspace is mainly built by the basolateral side of epithelial cells and the substrate. This paper gives some new results of non-invasive and non-optical measurements in the interspace. The measurements were made with silicon cell-sensor hybrids. Measurements of acidification, adhesion, and respiration are analyzed in view of the situation in the interspace. The results show that, in general, the release of an ion or molecule on the basolateral side can have much more influence on the biophysical situation than a release of an ion or molecule on the apical side. In particular, the apical acidification (i.e., amount of extruded protons) of, e.g., epithelial tumor cells is several orders of magnitude higher than the basolateral acidification. These experimental results are a simple consequence of the fact that the basolateral volume of the interspace is several orders of magnitudes smaller than the apical volume. These results have the following consequences for the cell adhesion:a)static situation: if a cell is already adhered to a solid substrate, the basolateral and apical release and uptake of molecules have to be considered in a very differentiated way; b)dynamic situation: if the cell is adhering to the substrate, the then built basolateral side changes in a much stronger way than the apical side. This effect is here discussed as a possible eliciting and general mechanism for essential intracellular changes.

  8. Enhancing surface interactions with colon cancer cells on a transferrin-conjugated 3D nanostructured substrate.

    PubMed

    Banerjee, Shashwat S; Paul, Debjani; Bhansali, Sujit G; Aher, Naval D; Jalota-Badhwar, Archana; Khandare, Jayant

    2012-06-11

    A transferrin-conjugated PEG-Fe(3) O(4) nanostructured matrix is developed to explore cellular responses in terms of enhanced cell adhesion, specific interactions between ligands in the matrix and molecular receptors on the cell membrane, comparison of cell shapes on 2D and 3D surfaces, and effect of polymer architecture on cell adhesion. Integration of such advanced synthetic nanomaterials into a functionalized 3D matrix to control cell behavior on surfaces will have implications in nanomedicine. PMID:22434693

  9. [Principles of treatment in ocular burns regarding the ocular surface and limbal stem cells].

    PubMed

    Potop, V; Dumitrache, Marieta

    2005-01-01

    The term ocular surface emphasizes the functional interdependence of the nonkeratinizing epithelium of cornea and conjunctiva. The limbal stem cells are responsible for replacement of corneal epithelium following ocular surface injuries. Over the past decades important advances in the management of chemical injury have occurred based on the application of theories on ocular surface and limbal stem cells. PMID:16245740

  10. Effect of surface potential on epithelial cell adhesion, proliferation and morphology.

    PubMed

    Chang, Hsun-Yun; Kao, Wei-Lun; You, Yun-Wen; Chu, Yi-Hsuan; Chu, Kuo-Jui; Chen, Peng-Jen; Wu, Chen-Yi; Lee, Yu-Hsuan; Shyue, Jing-Jong

    2016-05-01

    Cell adhesion is the basis of individual cell survival, division and motility. Hence, understanding the effects that the surface properties have on cell adhesion, proliferation and morphology are crucial. In particular, surface charge/potential has been identified as an important factor that affects cell behavior. However, how cells respond to incremental changes in surface potential remains unclear. By using binary self-assembled monolayer (SAM) modified Au surfaces that are similar in mechanical/chemical properties and provide a series of surface potentials, the effect of surface potential on the behavior of cells can be studied. In this work, the effect of surface potential on epithelial cells, including human embryonic kidney (HEK293T) and human hepatocellular carcinoma (HepG2), were examined. The results showed that the adhesion density of epithelial cells increased with increasing surface potential, which is similar to but varied more significantly compared with fibroblasts. The proliferation rate is found to be independent of surface potential in both cell types. Furthermore, epithelial cells show no morphological change with respect to surface potential, whereas the morphology of the fibroblasts clearly changed with the surface potential. These differences between the cell types were rationalized by considering the difference in extracellular matrix composition. Laminin-dominant epithelial cells showed higher adhesion density and less morphological change than did fibronectin-dominant fibroblasts because the more significant adsorption of positively charged laminin on the surface enhanced the adhesion of epithelial cells. In contrast, due to the dominance of negatively charged fibronectin that adsorbed weakly on the surface, fibroblasts had to change their morphology to fit the inhomogeneous fibronectin-adsorbed area. PMID:26852101

  11. Surface complexation of neptunium (V) onto whole cells and cell componets of Shewanella alga

    SciTech Connect

    Reed, Donald Timothy; Deo, Randhir P; Rittmann, Bruce E; Songkasiri, Warinthorn

    2008-01-01

    We systematically quantified surface complexation of neptunium(V) onto whole cells of Shewanella alga strain BrY and onto cell wall and extracellular polymeric substances (EPS) of S. alga. We first performed acid and base titrations and used the mathematical model FITEQL with constant-capacitance surface-complexation to determine the concentrations and deprotonation constants of specific surface functional groups. Deprotonation constants most likely corresponded to a carboxyl site associated with amino acids (pK{sub a} {approx} 2.4), a carboxyl group not associated with amino acids (pK{sub a} {approx} 5), a phosphoryl site (pK{sub a} {approx} 7.2), and an amine site (pK{sub a} > 10). We then carried out batch sorption experiments with Np(V) and each of the S. alga components at different pHs. Results show that solution pH influenced the speciation of Np(V) and each of the surface functional groups. We used the speciation sub-model of the biogeochemical model CCBATCH to compute the stability constants for Np(V) complexation to each surface functional group. The stability constants were similar for each functional group on S. alga bacterial whole cells, cell walls, and EPS, and they explain the complicated sorption patterns when they are combined with the aqueous-phase speciation of Np(V). For pH < 8, NpO{sub 2}{sup +} was the dominant form of Np(V), and its log K values for the low-pK{sub a} carboxyl, other carboxyl, and phosphoryl groups were 1.75, 1.75, and 2.5 to 3.1, respectively. For pH greater than 8, the key surface ligand was amine >XNH3+, which complexed with NpO{sub 2}(CO{sub 3}){sub 3}{sup 5-}. The log K for NpO{sub 2}(CO{sub 3}){sub 3}{sup 5-} complexed onto the amine groups was 3.1 to 3.6. All of the log K values are similar to those of Np(V) complexes with aqueous carboxyl and N-containing carboxyl ligands. These results point towards the important role of surface complexation in defining key actinide-microbiological interactions in the subsurface.

  12. Cell-surface proteoglycan in sea urchin primary mesenchyme cell migration

    SciTech Connect

    Lane, M.C.

    1989-01-01

    Early in the development of the sea urchin embryo, the primary mesenchyme cells (PMC) migrate along the basal lamina of the blastocoel. Migration is inhibited in L. pictus embryos cultured in sulfate-free seawater and in S. purpuratus embryos exposed to exogenous {beta}-D-xylosides. An in vitro assay was developed to test the migratory capacity of normal PMC on normal and treated blastocoelic matrix. Sulfate deprivation and exposure to exogenous xyloside render PMC nonmotile on either matrix. Materials removed from the surface of normal PMC by treatment with 1 M urea restored migratory ability to defective cells, whereas a similar preparation isolated from the surface of epithelial cells at the same stage did not. Migration also resumed when cells were removed from the xyloside or returned to normal seawater. The urea extract was partially purified and characterized by radiolabeling, gel electrophoresis, fluorography, ion exchange chromatography, and western blotting. The PMC synthesize a large chondroitin sulfate/dermatan sulfate proteoglycan that is present in an active fraction isolated by chromatography. Chondroitinase ABC digestion of live cells blocked migration reversibly, further supporting the identification of the chondroitin sulfate/dermatan sulfate proteoglycan as the active component in the urea extract. Much of the incorporated sulfate was distributed along the filopodia in {sup 35}SO{sub 4}-labelled PMC by autoradiography. The morphology of normal and treated S. purpuratus PMC was examined by scanning electron microscopy, and differences in spreading, particularly of the extensive filopodia present on the cells, was observed. A model for the role of the chondroitin sulfate/dermatan sulfate proteoglycan in cell detachment during migration is proposed.

  13. Quantitative comparison of a human cancer cell surface proteome between interphase and mitosis

    PubMed Central

    Özlü, Nurhan; Qureshi, Mohammad H; Toyoda, Yusuke; Renard, Bernhard Y; Mollaoglu, Gürkan; Özkan, Nazlı E; Bulbul, Selda; Poser, Ina; Timm, Wiebke; Hyman, Anthony A; Mitchison, Timothy J; Steen, Judith A

    2015-01-01

    The cell surface is the cellular compartment responsible for communication with the environment. The interior of mammalian cells undergoes dramatic reorganization when cells enter mitosis. These changes are triggered by activation of the CDK1 kinase and have been studied extensively. In contrast, very little is known of the cell surface changes during cell division. We undertook a quantitative proteomic comparison of cell surface-exposed proteins in human cancer cells that were tightly synchronized in mitosis or interphase. Six hundred and twenty-eight surface and surface-associated proteins in HeLa cells were identified; of these, 27 were significantly enriched at the cell surface in mitosis and 37 in interphase. Using imaging techniques, we confirmed the mitosis-selective cell surface localization of protocadherin PCDH7, a member of a family with anti-adhesive roles in embryos. We show that PCDH7 is required for development of full mitotic rounding pressure at the onset of mitosis. Our analysis provided basic information on how cell cycle progression affects the cell surface. It also provides potential pharmacodynamic biomarkers for anti-mitotic cancer chemotherapy. PMID:25476450

  14. Increasing binding density of yeast cells by control of surface charge with allylamine grafting to ion modified polymer surfaces.

    PubMed

    Tran, Clara T H; Kondyurin, Alexey; Chrzanowski, Wojciech; Bilek, Marcela M M; McKenzie, David R

    2014-10-01

    Plasma immersion ion implantation (PIII) treatment of polymers creates a biointerface capable of direct covalent immobilization of biomolecules. The immobilization of protein molecules is achieved by covalent bonds formed between embedded radicals on the treated surface and amino acid side chains and cells can be immobilized through cell-wall proteins. The attachment density of negatively charged entities on a PIII treated surface is inhibited by its negative surface charge at neutral pH. To reduce the negative charge of PIII treated surfaces in phosphate buffer (pH 7.4, 11mM), we develop an effective approach of grafting allylamine monomers onto the treated surface. The results reveal reactions between allylamine and radicals on the PIII treated surface. One of these triggers polymerization, increasing the number of amine groups grafted. As a consequence, the PIII treated polystyrene surface after allylamine exposure becomes more hydrophobic and less negatively charged in phosphate buffer. Using yeast cells as an example, we have shown a significant improvement (6-15 times) of cell density immobilized on the PIII treated surface after exposure to allylamine. PMID:25092587

  15. An accessible protocol for solid-phase extraction of N-linked glycopeptides through reductive amination by amine-functionalized magnetic nanoparticles.

    PubMed

    Zhang, Ying; Kuang, Min; Zhang, Lijuan; Yang, Pengyuan; Lu, Haojie

    2013-06-01

    In light of the significance of glycosylation for wealthy biological events, it is important to prefractionate glycoproteins/glycopeptides from complex biological samples. Herein, we reported a novel protocol of solid-phase extraction of glycopeptides through a reductive amination reaction by employing the easily accessible 3-aminopropyltriethoxysilane (APTES)-functionalized magnetic nanoparticles. The amino groups from APTES, which were assembled onto the surface of the nanoparticles through a one-step silanization reaction, could conjugate with the aldehydes from oxidized glycopeptides and, therefore, completed the extraction. To the best of our knowledge, this is the first example of applying the reductive amination reaction into the isolation of glycopeptides. Due to the elimination of the desalting step, the detection limit of glycopeptides was improved by 2 orders of magnitude, compared to the traditional hydrazide chemistry-based solid phase extraction, while the extraction time was shortened to 4 h, suggesting the high sensitivity, specificity, and efficiency for the extraction of N-linked glycopeptides by this method. In the meantime, high selectivity toward glycoproteins was also observed in the separation of Ribonuclease B from the mixtures contaminated with bovine serum albumin. What's more, this technique required significantly less sample volume, as demonstrated in the successful mapping of glycosylation of human colorectal cancer serum with the sample volume as little as 5 μL. Because of all these attractive features, we believe that the innovative protocol proposed here will shed new light on the research of glycosylation profiling. PMID:23659689

  16. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency

    NASA Astrophysics Data System (ADS)

    McMurray, Rebecca J.; Gadegaard, Nikolaj; Tsimbouri, P. Monica; Burgess, Karl V.; McNamara, Laura E.; Tare, Rahul; Murawski, Kate; Kingham, Emmajayne; Oreffo, Richard O. C.; Dalby, Matthew J.

    2011-08-01

    There is currently an unmet need for the supply of autologous, patient-specific stem cells for regenerative therapies in the clinic. Mesenchymal stem cell differentiation can be driven by the material/cell interface suggesting a unique strategy to manipulate stem cells in the absence of complex soluble chemistries or cellular reprogramming. However, so far the derivation and identification of surfaces that allow retention of multipotency of this key regenerative cell type have remained elusive. Adult stem cells spontaneously differentiate in culture, resulting in a rapid diminution of the multipotent cell population and their regenerative capacity. Here we identify a nanostructured surface that retains stem-cell phenotype and maintains stem-cell growth over eight weeks. Furthermore, the study implicates a role for small RNAs in repressing key cell signalling and metabolomic pathways, demonstrating the potential of surfaces as non-invasive tools with which to address the stem cell niche.

  17. Integrin-mediated cell surface recruitment of autotaxin promotes persistent directional cell migration

    PubMed Central

    Wu, Tao; Kooi, Craig Vander; Shah, Pritom; Charnigo, Richard; Huang, Cai; Smyth, Susan S.; Morris, Andrew J.

    2014-01-01

    Autotaxin (ATX) is a secreted lysophospholipase D (lysoPLD) that binds to integrin adhesion receptors. We dissected the roles of integrin binding and lysoPLD activity in stimulation of human breast cancer and mouse aortic vascular smooth muscle cell migration by ATX. We compared effects of wild-type human ATX, catalytically inactive ATX, an integrin binding-defective ATX variant with wild-type lysoPLD activity, the isolated ATX integrin binding N-terminal domain, and a potent ATX selective lysoPLD inhibitor on cell migration using transwell and single-cell tracking assays. Stimulation of transwell migration was reduced (18 or 27% of control, respectively) but not ablated by inactivation of integrin binding or inhibition of lysoPLD activity. The N-terminal domain increased transwell migration (30% of control). ATX lysoPLD activity and integrin binding were necessary for a 3.8-fold increase in the fraction of migrating breast cancer cell step velocities >0.7 μm/min. ATX increased the persistent directionality of single-cell migration 2-fold. This effect was lysoPLD activity independent and recapitulated by the integrin binding N-terminal domain. Integrin binding enables uptake and intracellular sequestration of ATX, which redistributes to the front of migrating cells. ATX binding to integrins and lysoPLD activity therefore cooperate to promote rapid persistent directional cell migration.—Wu, T., Kooi, C. V., Shah, P., Charnigo, R., Huang, C., Smyth, S. S., Morris, A. J. Integrin-mediated cell surface recruitment of autotaxin promotes persistent directional cell migration. PMID:24277575

  18. Self-assembled monolayers of alkanethiolates on surface chemistry groups in osteosarcoma cells

    PubMed Central

    DENG, YING-HU; LI, LI-HUA; HE, JIN; LI, MEI; ZHANG, YU; WANG, XIU-MEI; CUI, FU-ZHAI; XIA, HONG

    2015-01-01

    Cell biomedical behavior is influenced by a number of factors, and the extracellular matrix (ECM) of the cellular microenvironment affects certain cancer cells. In the current study, U-2OS cells were cultured on gold surfaces modified with different terminal chemical groups [methyl (-CH3), amino (-NH2), hydroxyl (-OH) and carboxyl (-COOH)]. The results revealed that different chemical surfaces convey different behaviors. The density of the different functional surfaces was confirmed by atomic force microscopy. Cell morphology, proliferation rate and cell cycle were investigated using scanning electron microscopy, cell counting and flow cytometry. In conclusion, the type of chemical group on a biomaterial is an important property for the growth of osteosarcoma cells; -NH2 and -COOH surfaces sustained visible cell adhesion and promoted cell growth. PMID:25373556

  19. Cell Surface Human Airway Trypsin-Like Protease Is Lost During Squamous Cell Carcinogenesis

    PubMed Central

    DUHAIME, MICHAEL J.; PAGE, KHALIPH O.; VARELA, FAUSTO A.; MURRAY, ANDREW S.; SILVERMAN, MICHAEL E.; ZORATTI, GINA L.; LIST, KARIN

    2016-01-01

    Cancer progression is accompanied by increased levels of extracellular proteases that are capable of remodeling the extracellular matrix, as well as cleaving and activating growth factors and receptors that are involved in pro-cancerous signaling pathways. Several members of the type II transmembrane serine protease (TTSP) family have been shown to play critical roles in cancer progression, however, the expression or function of the TTSP Human Airway Trypsin-like protease (HAT) in carcinogenesis has not been examined. In the present study we aimed to determine the expression of HAT during squamous cell carcinogenesis. HAT transcript is present in several tissues containing stratified squamous epithelium and decreased expression is observed in carcinomas. We determined that HAT protein is consistently expressed on the cell surface in suprabasal/apical layers of squamous cells in healthy cervical and esophageal epithelia. To assess whether HAT protein is differentially expressed in normal tissue versus tissue in different stages of carcinogenesis, we performed a comprehensive immunohistochemical analysis of HAT protein expression levels and localization in arrays of paraffin embedded human cervical and esophageal carcinomas compared to the corresponding normal tissue. We found that HAT protein is expressed in the non-proliferating, differentiated cellular strata and is lost during the dedifferentiation of epithelial cells, a hallmark of squamous cell carcinogenesis. Thus, HAT expression may potentially be useful as a marker for clinical grading and assessment of patient prognosis in squamous cell carcinomas. PMID:26297835

  20. Cell membrane mediated (-)-epicatechin effects on upstream endothelial cell signaling: evidence for a surface receptor.

    PubMed

    Moreno-Ulloa, Aldo; Romero-Perez, Diego; Villarreal, Francisco; Ceballos, Guillermo; Ramirez-Sanchez, Israel

    2014-06-15

    The consumption of cacao-derived products, particularly in the form of dark chocolate is known to provide beneficial cardiovascular effects in normal individuals and in those with vascular dysfunction (reduced nitric oxide [NO] bioavailability and/or synthesis). Upstream mechanisms by which flavonoids exert these effects are poorly understood and may involve the participation of cell membrane receptors. We previously demonstrated that the flavanol (-)-epicatechin (EPI) stimulates NO production via Ca(+2)-independent eNOS activation/phosphorylation. We wished to investigate the plausible participation of a cell surface receptor using a novel cell-membrane impermeable EPI-Dextran conjugate (EPI-Dx). Under Ca(2+)-free conditions, human coronary artery endothelial cells (HCAEC) were treated for 10min with EPI or EPI-Dx at equimolar concentrations (100nM). Results demonstrate that both EPI and EPI-Dx induced the phosphorylation/activation of PI3K, PDK-1, AKT and eNOS. Interestingly, EPI-Dx effects were significantly higher in magnitude than those of EPI alone. The capacity of EPI-Dx to stimulate cell responses supports the existence of an EPI cell membrane receptor mediating eNOS activation. PMID:24794111

  1. Cell Surface Human Airway Trypsin-Like Protease Is Lost During Squamous Cell Carcinogenesis.

    PubMed

    Duhaime, Michael J; Page, Khaliph O; Varela, Fausto A; Murray, Andrew S; Silverman, Michael E; Zoratti, Gina L; List, Karin

    2016-07-01

    Cancer progression is accompanied by increased levels of extracellular proteases that are capable of remodeling the extracellular matrix, as well as cleaving and activating growth factors and receptors that are involved in pro-cancerous signaling pathways. Several members of the type II transmembrane serine protease (TTSP) family have been shown to play critical roles in cancer progression, however, the expression or function of the TTSP Human Airway Trypsin-like protease (HAT) in carcinogenesis has not been examined. In the present study we aimed to determine the expression of HAT during squamous cell carcinogenesis. HAT transcript is present in several tissues containing stratified squamous epithelium and decreased expression is observed in carcinomas. We determined that HAT protein is consistently expressed on the cell surface in suprabasal/apical layers of squamous cells in healthy cervical and esophageal epithelia. To assess whether HAT protein is differentially expressed in normal tissue versus tissue in different stages of carcinogenesis, we performed a comprehensive immunohistochemical analysis of HAT protein expression levels and localization in arrays of paraffin embedded human cervical and esophageal carcinomas compared to the corresponding normal tissue. We found that HAT protein is expressed in the non-proliferating, differentiated cellular strata and is lost during the dedifferentiation of epithelial cells, a hallmark of squamous cell carcinogenesis. Thus, HAT expression may potentially be useful as a marker for clinical grading and assessment of patient prognosis in squamous cell carcinomas. PMID:26297835

  2. An efficient delivery of DAMPs on the cell surface by the unconventional secretion pathway

    SciTech Connect

    Zhu, Haiyan; Wang, Lan; Ruan, Yuanyuan; Zhou, Lei; Zhang, Dongmei; Min, Zhihui; Xie, Jianhui; Yu, Min; Gu, Jianxin

    2011-01-21

    Research highlights: {yields} Hsp60 transported to cell surface through the classical secretory pathway was modified with N-glycosylation. {yields} HSAPB-N18 could efficiently deliver Hsp60 to the cell surface via the unconventional secretory pathway. {yields} Cell surface Hsp60 delivered by HASPB-N18 has a proper conformation. {yields} HASPB-N18 is an efficient delivery signal for other DAMP molecules such as Hsp70 and HMGB1. -- Abstract: Damage-associated molecular patterns (DAMPs) are signals released from dying cells evoking the immune system response in several inflammatory disorders. In normal situations, many of DAMPs are nuclear or cytosolic proteins with defined intracellular function, but they could be found on the cell surface following tissue injury. The biological function of the translocated DAMPs is still not well known and an efficient delivery of these molecules on the cell surface is required to clarify their biological effects. In this study, we demonstrated that an unclassical secretory signal peptide, N-terminal 18 amino acids of HASPB (HASPB-N18), could efficiently deliver Hsp60, Hsp70, and HMGB1 on the cell surface. Furthermore, the delivery of these molecules on the cell surface by HASPB-N18 is not limited to a special cell line because several cell lines could use this delivery signal to deliver these molecules on the cell surface. Moreover, we demonstrated that Hsp60 on the cell surface delivered by HASPB-N18 could be recognized by a soluble form of LOX-1, which implies that DAMPs on the cell surface delivered by HASPB-N18 have a proper conformation during transport. Therefore, delivery of DAMPs by HASPB-N18 is a reliable model to further understand the biological significance of DAMPs on the cell surface.

  3. Micropatterned Hydrogel Surface with High-Aspect-Ratio Features for Cell Guidance and Tissue Growth.

    PubMed

    Hu, Yuhang; You, Jin-Oh; Aizenberg, Joanna

    2016-08-31

    Surface topography has been introduced as a new tool to coordinate cell selection, growth, morphology, and differentiation. The materials explored so far for making such structural surfaces are mostly rigid and impermeable. Hydrogel, on the other hand, was proved a better synthetic media for cell culture because of its biocompatibility, softness, and high permeability. Herein, we fabricated a poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogel substrate with high-aspect-ratio surface microfeatures. Such structural surface could effectively guide the orientation and shape of human mesenchymal stem cells (HMSCs). Notably, on the flat hydrogel surface, cells rounded up, whereas on the microplate patterned hydrogel surface, cells elongated and aligned along the direction parallel to the plates. The microplates were 2 μm thick, 20 μm tall, and 10-50 μm wide. The interplate spacing was 5-15 μm, and the intercolumn spacing was 5 μm. The elongation of cell body was more pronounced on the patterns with narrower interplate spacing and wider plates. The cells behaved like soft solid. The competition between surface energy and elastic energy defined the shape of the cells on the structured surfaces. The soft permeable hydrogel scaffold with surface structures was also demonstrated as being viable for long-term cell culture, and could be used to generate interconnected tissues with finely tuned cell morphology and alignment across a few centimeter sizes. PMID:27089518

  4. Nano-patterned SU-8 surface using nanosphere-lithography for enhanced neuronal cell growth

    NASA Astrophysics Data System (ADS)

    Kim, Eunhee; Yoo, Seung-Jun; Kim, Eunjung; Kwon, Tae-Hwan; Zhang, Li; Moon, Cheil; Choi, Hongsoo

    2016-04-01

    Mimicking the nanoscale surface texture of the extracellular matrix can affect the regulation of cellular behavior, including adhesion, differentiation, and neurite outgrowth. In this study, SU-8-based polymer surfaces with well-ordered nanowell arrays were fabricated using nanosphere lithography with polystyrene nanoparticles. We show that the SU-8 surface with nanowells resulted in similar neuronal development of rat pheochromocytoma (PC12) cells compared with an unpatterned poly-L-lysine (PLL)-coated SU-8 surface. Additionally, even after soaking the substrate in cell culture medium for two weeks, cells on the nanowell SU-8 surface showed long-term neurite outgrowth compared to cells on the PLL-coated SU-8 surface. The topographical surface modification of the nanowell array demonstrates potential as a replacement for cell adhesive material coatings such as PLL, for applications requiring long-term use of polymer-based implantable devices.

  5. Nano-patterned SU-8 surface using nanosphere-lithography for enhanced neuronal cell growth.

    PubMed

    Kim, Eunhee; Yoo, Seung-Jun; Kim, Eunjung; Kwon, Tae-Hwan; Zhang, Li; Moon, Cheil; Choi, Hongsoo

    2016-04-29

    Mimicking the nanoscale surface texture of the extracellular matrix can affect the regulation of cellular behavior, including adhesion, differentiation, and neurite outgrowth. In this study, SU-8-based polymer surfaces with well-ordered nanowell arrays were fabricated using nanosphere lithography with polystyrene nanoparticles. We show that the SU-8 surface with nanowells resulted in similar neuronal development of rat pheochromocytoma (PC12) cells compared with an unpatterned poly-L-lysine (PLL)-coated SU-8 surface. Additionally, even after soaking the substrate in cell culture medium for two weeks, cells on the nanowell SU-8 surface showed long-term neurite outgrowth compared to cells on the PLL-coated SU-8 surface. The topographical surface modification of the nanowell array demonstrates potential as a replacement for cell adhesive material coatings such as PLL, for applications requiring long-term use of polymer-based implantable devices. PMID:26984937

  6. Surface free energy predominates in cell adhesion to hydroxyapatite through wettability.

    PubMed

    Nakamura, Miho; Hori, Naoko; Ando, Hiroshi; Namba, Saki; Toyama, Takeshi; Nishimiya, Nobuyuki; Yamashita, Kimihiro

    2016-05-01

    The initial adhesion of cells to biomaterials is critical in the regulation of subsequent cell behaviors. The purpose of this study was to investigate a mechanism through which the surface wettability of biomaterials can be improved and determine the effects of biomaterial surface characteristics on cellular behaviors. We investigated the surface characteristics of various types of hydroxyapatite after sintering in different atmospheres and examined the effects of various surface characteristics on cell adhesion to study cell-biomaterial interactions. Sintering atmosphere affects the polarization capacity of hydroxyapatite by changing hydroxide ion content and grain size. Compared with hydroxyapatite sintered in air, hydroxyapatite sintered in saturated water vapor had a higher polarization capacity that increased surface free energy and improved wettability, which in turn accelerated cell adhesion. We determined the optimal conditions of hydroxyapatite polarization for the improvement of surface wettability and acceleration of cell adhesion. PMID:26952425

  7. An efficient delivery of DAMPs on the cell surface by the unconventional secretion pathway.

    PubMed

    Zhu, Haiyan; Wang, Lan; Ruan, Yuanyuan; Zhou, Lei; Zhang, Dongmei; Min, Zhihui; Xie, Jianhui; Yu, Min; Gu, Jianxin

    2011-01-21

    Damage-associated molecular patterns (DAMPs) are signals released from dying cells evoking the immune system response in several inflammatory disorders. In normal situations, many of DAMPs are nuclear or cytosolic proteins with defined intracellular function, but they could be found on the cell surface following tissue injury. The biological function of the translocated DAMPs is still not well known and an efficient delivery of these molecules on the cell surface is required to clarify their biological effects. In this study, we demonstrated that an unclassical secretory signal peptide, N-terminal 18 amino acids of HASPB (HASPB-N18), could efficiently deliver Hsp60, Hsp70, and HMGB1 on the cell surface. Furthermore, the delivery of these molecules on the cell surface by HASPB-N18 is not limited to a special cell line because several cell lines could use this delivery signal to deliver these molecules on the cell surface. Moreover, we demonstrated that Hsp60 on the cell surface delivered by HASPB-N18 could be recognized by a soluble form of LOX-1, which implies that DAMPs on the cell surface delivered by HASPB-N18 have a proper conformation during transport. Therefore, delivery of DAMPs by HASPB-N18 is a reliable model to further understand the biological significance of DAMPs on the cell surface. PMID:21168385

  8. Cell surface structures influence lung clearance rate of systemically infused mesenchymal stromal cells.

    PubMed

    Nystedt, Johanna; Anderson, Heidi; Tikkanen, Jonne; Pietilä, Mika; Hirvonen, Tia; Takalo, Reijo; Heiskanen, Annamari; Satomaa, Tero; Natunen, Suvi; Lehtonen, Siri; Hakkarainen, Tanja; Korhonen, Matti; Laitinen, Saara; Valmu, Leena; Lehenkari, Petri

    2013-02-01

    The promising clinical effects of mesenchymal stromal/stem cells (MSCs) rely especially on paracrine and nonimmunogenic mechanisms. Delivery routes are essential for the efficacy of cell therapy and systemic delivery by infusion is the obvious goal for many forms of MSC therapy. Lung adhesion of MSCs might, however, be a major obstacle yet to overcome. Current knowledge does not allow us to make sound conclusions whether MSC lung entrapment is harmful or beneficial, and thus we wanted to explore MSC lung adhesion in greater detail. We found a striking difference in the lung clearance rate of systemically infused MSCs derived from two different clinical sources, namely bone marrow (BM-MSCs) and umbilical cord blood (UCB-MSCs). The BM-MSCs and UCB-MSCs used in this study differed in cell size, but our results also indicated other mechanisms behind the lung adherence. A detailed analysis of the cell surface profiles revealed differences in the expression of relevant adhesion molecules. The UCB-MSCs had higher expression levels of α4 integrin (CD49d, VLA-4), α6 integrin (CD49f, VLA-6), and the hepatocyte growth factor receptor (c-Met) and a higher general fucosylation level. Strikingly, the level of CD49d and CD49f expression could be functionally linked with the lung clearance rate. Additionally, we saw a possible link between MSC lung adherence and higher fibronectin expression and we show that the expression of fibronectin increases with MSC culture confluence. Future studies should aim at developing methods of transiently modifying the cell surface structures in order to improve the delivery of therapeutic cells. PMID:23132820

  9. PAX8 Expression in Ovarian Surface Epithelial Cells

    PubMed Central

    Adler, Emily; Mhawech-Fauceglia, Paulette; Gayther, Simon A; Lawrenson, Kate

    2015-01-01

    High-grade serous ovarian carcinoma (HGSOC) is usually diagnosed at a late stage and is associated with poor prognosis. Understanding early stage disease biology is essential in developing clinical biomarkers to detect HGSOC earlier. While recent studies indicate that HGSOCs arise from fallopian tube secretory epithelial cells (FTSECs), a considerable body of evidence also suggests that HGSOC can also arise from ovarian surface epithelial cells (OSECs). PAX8 is overexpressed in HGSOCs and expressed in FTSECs, but there are conflicting reports about PAX8 expression in OSECs. The purpose of this study was to comprehensively characterize PAX8 expression in a large series of OSECs, and to investigate the role of PAX8 in early HGSOC development. PAX8 protein expression was analyzed in the OSECs of 27 normal ovaries and 7 primary OSEC cultures using immunohistochemistry and immunofluorescent cytochemistry. PAX8 mRNA expression was quantified in 66 primary OSEC cultures. Cellular transformation was evaluated in OSECs expressing a PAX8 construct. PAX8 was expressed by 44-71% of OSECs. Calretinin and E-cadherin were frequently co-expressed with PAX8. Expression of PAX8 in OSECs decreased cellular migration (P=0.028), but had no other effects on cellular transformation. In addition, PAX8 expression was significantly increased (P=0.003) in an in vitro stepwise model of neoplastic transformation. In conclusion, PAX8 is frequently expressed by OSECs and endogenous levels of PAX8 expression are non-transforming. These data indicate that in OSECs PAX8 expression may represent a normal state and that OSECs may represent an origin of HGSOCs. PMID:26079312

  10. Global Transcriptomic Analysis of Model Human Cell Lines Exposed to Surface-Modified Gold Nanoparticles: The Effect of Surface Chemistry

    PubMed Central

    Grzincic, E. M.; Yang, J. A.; Drnevich, J.; Falagan-Lotsch, P.; Murphy, C. J.

    2015-01-01

    Gold nanoparticles (Au NPs) are attractive for biomedical applications not only for their remarkable physical properties, but also for the ease of which their surface chemistry can be manipulated. Many applications involve functionalization of the Au NP surface in order to improve biocompatibility, attach targeting ligands or carry drugs. However, changes in cells exposed to Au NPs of different surface chemistries have been observed, and little is known about how Au NPs and their surface coatings may impact cellular gene expression. The gene expression of two model human cell lines, human dermal fibroblasts (HDF) and prostate cancer cells (PC3) was interrogated by microarray analysis of over 14,000 human genes. The cell lines were exposed to four differently functionalized Au NPs: citrate, poly(allylamine hydrochloride) (PAH), and lipid coatings combined with alkanethiols or PAH. Gene functional annotation categories and weighted gene correlation network analysis were used in order to connect gene expression changes to common cellular functions and to elucidate expression patterns between Au NP samples. Coated Au NPs affect genes implicated in proliferation, angiogenesis, and metabolism in HDF cells, and inflammation, angiogenesis, proliferation apoptosis regulation, survival and invasion in PC3 cells. Subtle changes in surface chemistry, such as the initial net charge, lability of the ligand, and underlying layers greatly influence the degree of expression change and the type of cellular pathway affected. PMID:25491924

  11. Lipopolysaccharide increases cell surface P-glycoprotein that exhibits diminished activity in intestinal epithelial cells.

    PubMed

    Mishra, Jayshree; Zhang, Qiuye; Rosson, Jessica L; Moran, John; Dopp, John M; Neudeck, Brien L

    2008-10-01

    Increasingly, it is recognized that commensal microflora regulate epithelial cell processes through the dynamic interaction of pathogen-associated molecular patterns and host pattern recognition receptors such as Toll-like receptor 4 (TLR4). We therefore investigated the effects of bacterial lipopolysaccharide (LPS) on intestinal P-glycoprotein (P-gp) expression and function. Human SW480 (P-gp+/TLR4+) and Caco-2 (P-gp+/TLR4-) cells were treated with medium control or LPS (100 ng/ml) for 24 h prior to study. P-gp function was assessed by measuring the intracellular concentration of rhodamine 123 (Rh123). To confirm P-gp-specific effects, breast cancer resistance protein (BCRP/ABCG2) and multidrug resistance-associated protein 2 (MRP-2/ABCC2) were also analyzed. Treatment of SW480 cells with LPS led to diminished P-gp activity, which could be prevented with polymyxin B (control: 207+/-16 versus LPS: 402+/-22 versus LPS+polymyxin B: 238+/-26 pmoles Rh123/mg protein, p<0.05 control versus LPS). These effects could be blocked by using polymyxin B and were not seen in the P-gp+/TLR4--Caco-2 cell line (control: 771+/-28 versus LPS: 775+/-59 pmoles Rh123/mg protein). Total cellular levels of P-gp did not change in LPS-treated SW480 cells; however, a significant increase in cell surface P-gp was detected. No change in activity, total protein, or apically located MRP-2 was detected following LPS treatment. Sequence analysis confirmed wild-type status of SW480 cells. These data suggest that activation of TLR4 in intestinal epithelial cells leads to an increase in plasma membrane P-gp that demonstrates a diminished capacity to transport substrate. PMID:18687802

  12. Enhanced cell disruption strategy in the release of recombinant hepatitis B surface antigen from Pichia pastoris using response surface methodology

    PubMed Central

    2012-01-01

    Background Cell disruption strategies by high pressure homogenizer for the release of recombinant Hepatitis B surface antigen (HBsAg) from Pichia pastoris expression cells were optimized using response surface methodology (RSM) based on the central composite design (CCD). The factors studied include number of passes, biomass concentration and pulse pressure. Polynomial models were used to correlate the above mentioned factors to project the cell disruption capability and specific protein release of HBsAg from P. pastoris cells. Results The proposed cell disruption strategy consisted of a number of passes set at 20 times, biomass concentration of 7.70 g/L of dry cell weight (DCW) and pulse pressure at 1,029 bar. The optimized cell disruption strategy was shown to increase cell disruption efficiency by 2-fold and 4-fold for specific protein release of HBsAg when compared to glass bead method yielding 75.68% cell disruption rate (CDR) and HBsAg concentration of 29.20 mg/L respectively. Conclusions The model equation generated from RSM on cell disruption of P. pastoris was found adequate to determine the significant factors and its interactions among the process variables and the optimum conditions in releasing HBsAg when validated against a glass bead cell disruption method. The findings from the study can open up a promising strategy for better recovery of HBsAg recombinant protein during downstream processing. PMID:23039947

  13. Surface-modified CdTe PEC solar cells

    NASA Astrophysics Data System (ADS)

    Mandal, K. C.; Basu, S.; Bose, D. N.

    1986-07-01

    The effect of ruthenium surface modification is shown to improve considerably the properties of p-CdTe PEC solar cells. The dark I-V characteristic shows a decrease in J(0) from 2.8 x 10 to the -7th A/sq cm to 5.1 x 10 to the -8th A/sq cm and a decrease in ideality factor n from 2.72 to 1.54. Under AM 1 illumination, open circuit voltage increased from 0.63 to 0.92 V vs NHE, short-circuit density from 2.17 mA/sq cm to 3.23 mA/sq cm and fill factor FF from 0.38 to 0.48. The minority carrier diffusion length L(n) is shown to increase from 0.72 micron to 0.99 micron after ruthenium modification. The maximum current density obtainable is limited by material resistivity.

  14. Influence of anode surface chemistry on microbial fuel cell operation.

    PubMed

    Santoro, Carlo; Babanova, Sofia; Artyushkova, Kateryna; Cornejo, Jose A; Ista, Linnea; Bretschger, Orianna; Marsili, Enrico; Atanassov, Plamen; Schuler, Andrew J

    2015-12-01

    Self-assembled monolayers (SAMs) modified gold anodes are used in single chamber microbial fuel cells for organic removal and electricity generation. Hydrophilic (N(CH3)3(+), OH, COOH) and hydrophobic (CH3) SAMs are examined for their effect on bacterial attachment, current and power output. The different substratum chemistry affects the community composition of the electrochemically active biofilm formed and thus the current and power output. Of the four SAM-modified anodes tested, N(CH3)3(+) results in the shortest start up time (15 days), highest current achieved (225 μA cm(-2)) and highest MFC power density (40 μW cm(-2)), followed by COOH (150 μA cm(-2) and 37 μW cm(-2)) and OH (83 μA cm(-2) and 27 μW cm(-2)) SAMs. Hydrophobic SAM decreases electrochemically active bacteria attachment and anode performance in comparison to hydrophilic SAMs (CH3 modified anodes 7 μA cm(-2) anodic current and 1.2 μW cm(-2) MFC's power density). A consortium of Clostridia and δ-Proteobacteria is found on all the anode surfaces, suggesting a synergistic cooperation under anodic conditions. PMID:26025340

  15. Surface and allied studies in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1983-01-01

    Two main results are presented. The first deals with a simple method that determines the minority-carrier lifetime and the effective surface recombination velocity of the quasi-neutral base of silicon solar cells. The method requires the observation of only a single transient, and is amenable to automation for in-process monitoring in manufacturing. This method, which is called short-circuit current decay, avoids distortion in the observed transient and consequent inacccuracies that arise from the presence of mobile holes and electrons stored in the p/n junction spacecharge region at the initial instant of the transient. The second main result consists in a formulation of the relevant boundary-value problems that resembles that used in linear two-port network theory. This formulation enables comparisons to be made among various contending methods for measuring material parameters of p/n junction devices, and enables the option of putting the description in the time domain of the transient studies in the form of an infinite series, although closed-form solutions are also possible.

  16. Isolation of N-linked glycopeptides by hydrazine-functionalized magnetic particles.

    PubMed

    Sun, Shisheng; Yang, Ganglong; Wang, Ting; Wang, Qinzhe; Chen, Chao; Li, Zheng

    2010-04-01

    We introduce a novel combination of magnetic particles with hydrazine chemistry, dubbed as hydrazine-functionalized magnetic particles (HFMP) for isolation of glycopeptides. Four methods have been developed and compared for the production of HFMP by hydrazine modification of the surface of the carboxyl and epoxy-silanized magnetic particles, respectively. The evaluation of the capability and specificity of HFMP as well as the optimization of the coupling condition for capturing of glycoproteins were systematically investigated. The results showed that HFMP prepared by adipic dihydrazide functionalization from carboxyl-silanized magnetic particles (HFCA) displayed the maximum capture capacity and isolated efficiency for glycoprotein. When measured with glycoproteins, the capacity of the HFCA (1 g) for coupling bovine fetuin was 130 +/- 5.3 mg. The capability of this method was also confirmed by successful isolation of all formerly glycosylated peptides from standard glycoproteins and identification of their glycosylation sites, which demonstrated the feasibility of the HFCA as an alternative solid support for isolation of glycoproteins/glycopeptides. PMID:20169334

  17. Isolation of a mutant Arabidopsis plant that lacks N-acetyl glucosaminyl transferase I and is unable to synthesize Golgi-modified complex N-linked glycans.

    PubMed Central

    von Schaewen, A; Sturm, A; O'Neill, J; Chrispeels, M J

    1993-01-01

    The complex asparagine-linked glycans of plant glycoproteins, characterized by the presence of beta 1-->2 xylose and alpha 1-->3 fucose residues, are derived from typical mannose9(N-acetylglucosamine)2 (Man9GlcNAc2) N-linked glycans through the activity of a series of glycosidases and glycosyl transferases in the Golgi apparatus. By screening leaf extracts with an antiserum against complex glycans, we isolated a mutant of Arabidopsis thaliana that is blocked in the conversion of high-manne to complex glycans. In callus tissues derived from the mutant plants, all glycans bind to concanavalin A. These glycans can be released by treatment with endoglycosidase H, and the majority has the same size as Man5GlcNAc1 glycans. In the presence of deoxymannojirimycin, an inhibitor of mannosidase I, the mutant cells synthesize Man9GlcNAc2 and Man8GlcNAc2 glycans, suggesting that the biochemical lesion in the mutant is not in the biosynthesis of high-mannose glycans in the endoplasmic reticulum but in their modification in the Golgi. Direct enzyme assays of cell extracts show that the mutant cells lack N-acetyl glucosaminyl transferase I, the first enzyme in the pathway of complex glycan biosynthesis. The mutant plants are able to complete their development normally under several environmental conditions, suggesting that complex glycans are not essential for normal developmental processes. By crossing the complex-glycan-deficient strain of A. thaliana with a transgenic strain that expresses the glycoprotein phytohemagglutinin, we obtained a unique strain that synthesizes phytohemagglutinin with two high-mannose glycans, instead of one high-mannose and one complex glycan. PMID:8278542

  18. Isolation of a mutant Arabidopsis plant that lacks N-aetyl glucosaminyl transferase I and is unable to synthesize Golgi-modified complex N-linked glycans

    SciTech Connect

    Schaewen, A. von; O'Neill, J.; Chrispeels, M.J. ); Sturm, A. )

    1993-08-01

    The complex asparagine-linked glycans of plant glycoproteins, characterized by the presence of [beta]1[yields]2 xylose and [alpha]1[yields]3 fucose residues, are derived from typical mannose[sub 9](N-acetylglucosamine)[sub 2] (Man[sub 9]GlcNAc[sub 2]) N-linked glycans through the activity of a series of glycosidases and glycosyl transferases in the Golgi apparatus. By screening leaf extracts with an antiserum against complex glycans, we isolated a mutant of Arbidopsis thaliana that is blocked in the conversion of high-manne to complex glycans. In callus tissues derived from the mutant plants, all glycans bind to concanavalin A. These glycans can be released by treatment with endoglycosidase H, and the majority has the same size as Man[sub 5]GlcNAc[sub 1] glycans. In the presence of deoxymannojirimycin, an inhibitor of mannosidase I, the mutant cells synthesize Man[sub 9]GlcNAc[sub 2] and Man[sub 8]GlcNAc[sub 2] glycans, suggesting that the biochemical lesion in the mutant is not in the biosynthesis of high-mannose glycans in the endoplasmic reticulum but in their modification in the Golgi. Direct enzyme assays of cell extracts show that the mutant cells lack N-acetyl glucosaminyl transferase I, the first enzyme in the pathway of complex glycan biosynthesis. The mutant plants are able to complete their development normally under several environmental conditions, suggesting that complex glycans are not essential for normal developmental processes. By crossing the complex-glycan-deficient strain of A. thaliana with a transgenic strain that expresses the glycoprotein phytohemagglutinin, a unique strain was obtained that synthesizes phytohemagglutinin with two high-mannose glycans, instead of one high-mannose and one complex glycan. 42 refs., 8 figs., 1 tab.

  19. Rapid coating of surfaces with functionalized nanoparticles for regulation of cell behavior.

    PubMed

    Tang, Rui; Moyano, Daniel F; Subramani, Chandramouleeswaran; Yan, Bo; Jeoung, Eunhee; Tonga, Gülen Yesilbag; Duncan, Bradley; Yeh, Yi-Cheun; Jiang, Ziwen; Kim, Chaekyu; Rotello, Vincent M

    2014-05-28

    A robust monolayer of nanoparticles is formed via dip-coating of cell culture plates. These surfaces provide cell type-specific modulation of growth behavior without the uptake of nanoparticles. PMID:24677290

  20. Beauty is Skin Deep: A Surface Monolayer Perspective on Nanoparticle Interactions with Cells and Biomacromolecules**

    PubMed Central

    Saha, Krishnendu; Bajaj, Avinash; Duncan, Bradley; Rotello, Vincent M.

    2012-01-01

    Surface recognition of biosystems is a critical component in the development of novel biosensors, delivery vehicles and for the therapeutic regulation of biological processes. Monolayer-protected nanoparticles present a highly versatile scaffold for selective interaction with biomacromolecules and cells. Through engineering of the monolayer surface, nanoparticles can be tailored for surface recognition of biomolecules and cells. This review highlights recent progress in nanoparticle-biomacromolecule/cellular interactions, emphasizing the effect of the surface monolayer structure on the interactions with proteins, DNA and cell surfaces. The extension of these tailored interactions to hybrid nanomaterials, biosensing platforms and delivery vehicles is also discussed. PMID:21671432

  1. Efficient utilization of complex N-linked glycans is a selective advantage for Bacteroides fragilis in extraintestinal infections

    PubMed Central

    Cao, Yanlu; Rocha, Edson R.; Smith, C. Jeffrey

    2014-01-01

    Bacteroides fragilis is the most common anaerobe isolated from clinical infections, and in this report we demonstrate a characteristic of the species that is critical to their success as an opportunistic pathogen. Among the Bacteroides spp. in the gut, B. fragilis has the unique ability of efficiently harvesting complex N-linked glycans from the glycoproteins common to serum and serous fluid. This activity is mediated by an outer membrane protein complex designated as Don. Using the abundant serum glycoprotein transferrin as a model, it has been shown that B. fragilis alone can rapidly and efficiently deglycosylate this protein in vitro and that transferrin glycans can provide the sole source of carbon and energy for growth in defined media. We then showed that transferrin deglycosylation occurs in vivo when B. fragilis is propagated in the rat tissue cage model of extraintestinal growth, and that this ability provides a competitive advantage in vivo over strains lacking the don locus. PMID:25139987

  2. Cutting edge: cell surface linker for activation of T cells is recruited to microclusters and is active in signaling.

    PubMed

    Balagopalan, Lakshmi; Barr, Valarie A; Kortum, Robert L; Park, Anna K; Samelson, Lawrence E

    2013-04-15

    A controversy has recently emerged regarding the location of the cellular pool of the adapter linker for activation of T cells (LAT) that participates in propagation of signals downstream of the TCR. In one model phosphorylation and direct recruitment of cell surface LAT to activation-induced microclusters is critical for T cell activation, whereas in the other model vesicular, but not surface, LAT participates in these processes. By using a chimeric version of LAT that can be tracked via an extracellular domain, we provide evidence that LAT located at the cell surface can be recruited efficiently to activation-induced microclusters within seconds of TCR engagement. Importantly, we also demonstrate that this pool of LAT at the plasma membrane is rapidly phosphorylated. Our results provide support for the model in which the cell utilizes LAT from the cell surface for rapid responses to TCR stimulation. PMID:23487428

  3. Low Abundant N-linked Glycosylation in Hen Egg White Lysozyme Is Localized at Nonconsensus Sites.

    PubMed

    Asperger, Arndt; Marx, Kristina; Albers, Christian; Molin, Laura; Pinato, Odra

    2015-06-01

    Although wild-type hen egg white lysozyme (HEL) is lacking the consensus sequence motif NX(S/T), in 1995 Trudel et al. (Biochem. Cell Biol. 1995, 73, 307-309) proposed the existence of a low abundant N-glycosylated form of HEL; however, the identity of active glycosylation sites in HEL remained a matter of speculation. For the first time since Trudel's initial work, we report here a comprehensive characterization by means of mass spectrometry of N-glycosylation in wild-type HEL. Our analytical approach comprised ZIC-HILIC enrichment of N-glycopeptides from HEL trypsin digest, deglycosylation by (18)O/PNGase F as well as by various endoglycosidases, and LC-MS/MS analysis of both intact and deglycosylated N-glycopeptides engaging multiple techniques of ionization and fragmentation. A novel data interpretation workflow based on MS/MS spectra classification and glycan database searching enabled the straightforward identification of the asparagine-rich N-glycopeptide [34-45] FESNFNTQATNR and allowed for compositional profiling of its modifying N-glycans. The overall heterogeneity profile of N-glycans in HEL comprised at least 26 different compositions. Results obtained from deglycosylation experiments provided clear evidence of asparagine residues N44 and N39 representing active glycosylation sites in HEL. Both of these sites do not fall into any known N-glycosylation-specific sequence motif but are localized in rarely observed nonconsensus sequons (NXN, NXQ). PMID:25964011

  4. Identification of N-linked carbohydrates from severe acute respiratory syndrome (SARS) spike glycoprotein

    PubMed Central

    Ritchie, Gayle; Harvey, David J.; Feldmann, Friederike; Stroeher, Ute; Feldmann, Heinz; Royle, Louise; Dwek, Raymond A.; Rudd, Pauline M.

    2012-01-01

    N-glycans were released from the SARS coronavirus (SARS-CoV) spike glycoprotein produced in Vero E6 cells and their structures were determined by a combination of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry, negative ion electrospray collision-induced dissociation time-of-flight mass spectrometry and normal-phase high-performance liquid chromatography with exoglycosidase digestion. Major glycans were high-mannose (Man5–9GlcNAc2), hybrid and bi-, tri- and tetra-antennary complex with and without bisecting GlcNAc and core fucose. Complex glycans with fewer than the full complement of galactose residues were present and sialylation was negligible. Treatment with the glucosidase inhibitor N-butyl-deoxynojirimycin (NB-DNJ) inhibited N-glycan processing as evidenced by the appearance of glycans of composition Glc3Man7–9GlcNAc2. However, some complex glycans remained suggesting the presence of an α-endomannosidase. Our data in tissue culture indicate that inhibition of N-glycan processing may be considered as a therapeutic strategy against SARS CoV infections. PMID:20129637

  5. Structure-based Comparative Analysis and Prediction of N-linked Glycosylation Sites in Evolutionarily Distant Eukaryotes

    PubMed Central

    Lam, Phuc Vinh Nguyen; Goldman, Radoslav; Karagiannis, Konstantinos; Narsule, Tejas; Simonyan, Vahan; Soika, Valerii; Mazumder, Raja

    2013-01-01

    The asparagine-X-serine/threonine (NXS/T) motif, where X is any amino acid except proline, is the consensus motif for N-linked glycosylation. Significant numbers of high-resolution crystal structures of glycosylated proteins allow us to carry out structural analysis of the N-linked glycosylation sites (NGS). Our analysis shows that there is enough structural information from diverse glycoproteins to allow the development of rules which can be used to predict NGS. A Python-based tool was developed to investigate asparagines implicated in N-glycosylation in five species: Homo sapiens, Mus musculus, Drosophila melanogaster, Arabidopsis thaliana and Saccharomyces cerevisiae. Our analysis shows that 78% of all asparagines of NXS/T motif involved in N-glycosylation are localized in the loop/turn conformation in the human proteome. Similar distribution was revealed for all the other species examined. Comparative analysis of the occurrence of NXS/T motifs not known to be glycosylated and their reverse sequence (S/TXN) shows a similar distribution across the secondary structural elements, indicating that the NXS/T motif in itself is not biologically relevant. Based on our analysis, we have defined rules to determine NGS. Using machine learning methods based on these rules we can predict with 93% accuracy if a particular site will be glycosylated. If structural information is not available the tool uses structural prediction results resulting in 74% accuracy. The tool was used to identify glycosylation sites in 108 human proteins with structures and 2247 proteins without structures that have acquired NXS/T site/s due to non-synonymous variation. The tool, Structure Feature Analysis Tool (SFAT), is freely available to the public at http://hive.biochemistry.gwu.edu/tools/sfat. PMID:23459159

  6. An Update on Ocular Surface Epithelial Stem Cells: Cornea and Conjunctiva

    PubMed Central

    Ramos, Tiago; Scott, Deborah; Ahmad, Sajjad

    2015-01-01

    The human ocular surface (front surface of the eye) is formed by two different types of epithelia: the corneal epithelium centrally and the conjunctival epithelium that surrounds this. These two epithelia are maintained by different stem cell populations (limbal stem cells for the corneal epithelium and the conjunctival epithelial stem cells). In this review, we provide an update on our understanding of these epithelia and their stem cells systems, including embryology, new markers, and controversy around the location of these stem cells. We also provide an update on the translation of this understanding into clinical applications for the treatment of debilitating ocular surface diseases. PMID:26146504

  7. Engineering of Surface Functionality onto Polystyrene Microcarriers for the Attachment and Growth of Human Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Xiong, Gordon M.; Foord, John S.; Griffiths, Jon-Paul; Parker, Emily M.; Moloney, Mark G.; Choong, Cleo

    2014-08-01

    This work reports the effects of introducing diverse chemical functionalities onto the surface of polystyrene microcarrier beads on their ability to function as injectable cell carriers. Cellular adhesion and proliferation, as well as cellular outgrowths from microcarrier surfaces, using human umbilical vein endothelial cells (HUVECs), were examined in detail. It was observed that initial cell adhesion appeared to be most significantly decreased by hydrophobicity, whilst cell proliferation appeared to be improved in most chemical functional groups over unmodified polystyrene. Overall, our study highlights the importance of surface chemistry in directing the growth and function of human endothelial cells.

  8. Oligonucleotide delivery with cell surface binding and cell penetrating Peptide amphiphile nanospheres.

    PubMed

    Mumcuoglu, Didem; Sardan, Melis; Tekinay, Turgay; Guler, Mustafa O; Tekinay, Ayse B

    2015-05-01

    A drug delivery system designed specifically for oligonucleotide therapeutics can ameliorate the problems associated with the in vivo delivery of these molecules. The internalization of free oligonucleotides is challenging, and cytotoxicity is the main obstacle for current transfection vehicles. To develop nontoxic delivery vehicles for efficient transfection of oligonucleotides, we designed a self-assembling peptide amphiphile (PA) nanosphere delivery system decorated with cell penetrating peptides (CPPs) containing multiple arginine residues (R4 and R8), and a cell surface binding peptide (KRSR), and report the efficiency of this system in delivering G-3129, a Bcl-2 antisense oligonucleotide (AON). PA/AON (peptide amphiphile/antisense oligonucleotide) complexes were characterized with regards to their size and secondary structure, and their cellular internalization efficiencies were evaluated. The effect of the number of arginine residues on the cellular internalization was investigated by both flow cytometry and confocal imaging, and the results revealed that uptake efficiency improved as the number of arginines in the sequence increased. The combined effect of cell penetration and surface binding property on the cellular internalization and its uptake mechanism was also evaluated by mixing R8-PA and KRSR-PA. R8 and R8/KRSR decorated PAs were found to drastically increase the internalization of AONs compared to nonbioactive PA control. Overall, the KRSR-decorated self-assembled PA nanospheres were demonstrated to be noncytotoxic delivery vectors with high transfection rates and may serve as a promising delivery system for AONs. PMID:25828697

  9. Enhanced compatibility of chemically modified titanium surface with periodontal ligament cells

    NASA Astrophysics Data System (ADS)

    Kado, T.; Hidaka, T.; Aita, H.; Endo, K.; Furuichi, Y.

    2012-12-01

    A simple chemical modification method was developed to immobilize cell-adhesive molecules on a titanium surface to improve its compatibility with human periodontal ligament cells (HPDLCs).The polished titanium disk was immersed in 1% (v/v) p-vinylbenzoic acid solution for 2 h to introduce carboxyl groups onto the surface. After rinsing with distilled deionized water, the titanium disk was dipped into 1.47% 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide solution containing 0.1 mg/ml Gly-Arg-Gly-Asp-Ser (GRGDS), human plasma fibronectin (pFN), or type I collagen from calf skin (Col) to covalently immobilize the cell-adhesive molecules on the titanium surface via formation of peptide bonds. X-ray photoelectron spectroscopy analyses revealed that cell-adhesive molecules were successfully immobilized on the titanium surfaces. The Col-immobilized titanium surface revealed higher values regarding nano rough characteristics than the as-polished titanium surface under scanning probe microscopy. The number of HPDLCs attached to both the pFN- and Col-immobilized titanium surfaces was twice that attached to the as-polished titanium surfaces. The cells were larger with the cellular processes that stretched to a greater extent on the pFN- and Col-immobilized titanium surfaces than on the as-polished titanium surface (p < 0.05). HPDLCs on the Col-immobilized titanium surfaces showed more extensive expression of vinculin at the tips of cell projections and more contiguously along the cell outline than on the as-polished, GRGDS-immobilized and pFN-immobilized titanium surfaces. It was concluded that cell-adhesive molecules successfully immobilized on the titanium surface and improved the compatibility of the surface with HPDLCs. The Col-immobilized titanium surface could be used for forming ligament-like tissues around titanium dental implants.

  10. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    SciTech Connect

    Li, Ying; Huang, Xiaohua; An, Yue; Ren, Feng; Yang, Zara Zhuyun; Zhu, Hongmei; Zhou, Lei; He, Xiaowen; Schachner, Melitta; Xiao, Zhicheng; Ma, Keli; Li, Yali

    2013-10-25

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression.

  11. Effects of Polymer Surfaces on Proliferation and Differentiation of Embryonic Stem Cells and Bone Marrow Stem Cells

    NASA Astrophysics Data System (ADS)

    Qin, Sisi; Liao, Wenbin; Ma, Yupo; Simon, Marcia; Rafailovich, Miriam; Stony Brook Medical Center Collaboration; Stony Brook Dental Schoo Collaboration

    2013-03-01

    Currently, proliferation and differentiation of stem cell is usually accomplished either in vivo, or on chemical coated tissue culture petri dish with the presence of feeder cells. Here we investigated whether they can be directly cultured on polymeric substrates, in the absence of additional factors. We found that mouse embryonic stem cells did not require gelatin and could remain in the undifferentiated state without feeder cells at least for four passages on partially sulfonated polystyrene. The modulii of cells was measured and found to be higher for cells plated directly on the polymer surface than for those on the same surface covered with gelatin and feeder cells. When plated with feeder cells, the modulii was not sensitive to gelatin. Whereas the differentiation properties of human bone marrow stem cells, which are not adherent, are less dependent on either chemical or mechanical properties of the substrate. However, they behave differently on different toughness hydrogels as oppose to on polymer coated thin films.

  12. Tracking traction force changes of single cells on the liquid crystal surface.

    PubMed

    Soon, Chin Fhong; Tee, Kian Sek; Youseffi, Mansour; Denyer, Morgan C T

    2015-03-01

    Cell migration is a key contributor to wound repair. This study presents findings indicating that the liquid crystal based cell traction force transducer (LCTFT) system can be used in conjunction with a bespoke cell traction force mapping (CTFM) software to monitor cell/surface traction forces from quiescent state in real time. In this study, time-lapse photo microscopy allowed cell induced deformations in liquid crystal coated substrates to be monitored and analyzed. The results indicated that the system could be used to monitor the generation of cell/surface forces in an initially quiescent cell, as it migrated over the culture substrate, via multiple points of contact between the cell and the surface. Future application of this system is the real-time assaying of the pharmacological effects of cytokines on the mechanics of cell migration. PMID:25808839

  13. Hydrophobic fractal surface from glycerol tripalmitate and the effects on C6 glioma cell growth.

    PubMed

    Zhang, Shanshan; Chen, Xuerui; Yu, Jing; Hong, Biyuan; Lei, Qunfang; Fang, Wenjun

    2016-06-01

    To provide a biomimic environment for glial cell culture, glycerol tripalmitate (PPP) has been used as a raw material to prepare fractal surfaces with different degrees of hydrophobicity. The spontaneous formation of the hydrophobic fractal surfaces was monitored by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The surface morphologies were observed by a scanning electron microscope (SEM), and then the fractal dimension (FD) values of the surfaces were determined with the box-counting method. C6 glioma cells were cultured and compared on different hydrophobic PPP surfaces and poly-L-lysine (PLL)-coated surface. The cell numbers as a function of incubation time on different surfaces during the cell proliferation process were measured, and the cell morphologies were observed under a fluorescence microscope. Influences of hydrophobic fractal surfaces on the cell number and morphology were analyzed. The experimental results show that the cell proliferation rates decrease while the cell morphology complexities increase with the growth of the fractal dimensions of the PPP surfaces. PMID:26970826

  14. Characterization of the Cell Surface Properties of Drinking Water Pathogens by Microbial Adhesion to Hydrocarbon and Electrophoretic Mobility Measurements

    EPA Science Inventory

    The surface characteristics of microbial cells directly influence their mobility and behavior within aqueous environments. The cell surface hydrophobicity (CSH) and electrophoretic mobility (EPM) of microbial cells impact a number of interactions and processes including aggregati...

  15. Endothelial Cell Growth and Differentiation on Collagen-Immobilized Polycaprolactone Nanowire Surfaces.

    PubMed

    Leszczak, Victoria; Baskett, Dominique A; Popat, Ketul C

    2015-06-01

    The success of cardiovascular implants is associated with the development of an endothelium on material surface, critical to the prevention of intimal hyperplasia, calcification and thrombosis. A thorough understanding of the interaction between vascular endothelial cells and the biomaterial involved is essential in order to have a successful application which promotes healing and regeneration through integration with native tissue. In this study, we have developed collagen immobilized nanostructured surfaces with controlled arrays of high aspect ratio nanowires for the growth and maintenance of human microvascular endothelial cells (HMVECs). The nanowire surfaces were fabricated from polycaprolactone using a novel nanotemplating technique, and were immobilized with collagen utilizing an aminolysis method. The collagen immobilized nanowire surfaces were characterized using contact angle measurements, scanning electron microscopy and X-ray photoelectron spectroscopy. Human microvascular endothelial cells were used to evaluate the efficacy of the collagen immobilized nanowire surfaces to promote cell adhesion, proliferation, viability and differentiation. The results presented here indicate significantly higher cellular adhesion, proliferation and viability on nanowire and collagen immobilized surfaces as compared to the control surface. Further, HMVECs have a more elongated body and low shape factor on nanostructured surfaces. The differentiation potential of collagen immobilized nanowire surfaces was also evaluated by immunostaining and western blotting for key endothelial cell markers that are expressed when human microvascular endothelial cells are differentiated. Results indicate that expression of VE-cadherin is increased on collagen immobilized surfaces while the expression of von Willebrand factor is statistically similar on all surfaces. PMID:26353596

  16. Analysis of different approaches for evaluation of surface energy of microbial cells by contact angle goniometry.

    PubMed

    Sharma, P K; Rao, K Hanumantha

    2002-08-01

    Microbial adhesion on solid substrate is important in various fields of science. Mineral-microbe interactions alter the surface chemistry of the minerals and the adhesion of the bacterial cells to mineral surface is a prerequisite in several biobeneficiation processes. Apart from the surface charge and hydrophobic or hydrophilic character of the bacterial cells, the surface energy is a very important parameter influencing their adhesion on solid surfaces. There were many thermodynamic approaches in the literature to evaluate the cells surface energy. Although contact angle measurements with different liquids with known surface tension forms the basis in the calculation of the value of surface energy of solids, the results are different depending on the approach followed. In the present study, the surface energy of 140 bacterial and seven yeast cell surfaces has been studied following Fowkes, Equation of state, Geometric mean and Lifshitz-van der Waals acid-base (LW-AB) approaches. Two independent issues were addressed separately in our analysis. At first, the surface energy and the different components of the surface energy for microbial cells surface are examined. Secondly, the different approaches are evaluated for their internal consistency, similarities and dissimilarities. The Lifshitz-van der Waals component of surface energy for most of the microbial cells is realised to be approximately 40 mJ/m2 +/-10%. Equation of state and Geometric mean approaches do not possess any internal consistency and yield different results. The internal consistency of the LW-AB approach could be checked only by varying the apolar liquid and it evaluates coherent surface energy parameters by doing so. The electron-donor surface energy component remains exactly the same with the change of apolar liquid. This parameter could differentiate between the Gram-positive and Gram-negative bacterial cells. Gram-negative bacterial cells having higher electron-donor parameter had lower

  17. Micro checkerboard patterned polymeric surface with discrete rigidity for studying cell migration

    NASA Astrophysics Data System (ADS)

    Hong, Juhee; Lee, Sujin; Park, Sukho; Lee, Junghoon

    2015-04-01

    The control of cell migration has an important role in processes ranging from developmental morphogenesis to the pathogenesis. In this study, we describe a novel approach to develop a micro-checkerboard patterned polymeric flat surface with discrete surface stiffness. This platform as a culture substrate allows us to explore the mechanism of durotaxis, referred to as the directed cell movement via the gradient of surface stiffness. The flat surface with different rigidity was achieved in two stages of fabrication. First, polydimethylsiloxane (PDMS) was pressed and cured on a glass substrate with trenches of varying depths in a checkerboard arrangement, and then, a thin PDMS layer was spin coated on the previous pattern to make the flat surface. The stiff region is defined by a thin layer (2.5 µm) of PDMS and the soft region is defined by a thick one (7.5 µm). To investigate the migratory cell behavior, the NIH 3T3 cell was cultured. The result demonstrates that a single cell showed clearly a migratory cell behavior toward the stiffer regions driven by the difference of effective surface stiffness. At high cell density, the effect of cell migration on effective surface stiffness decreased with increasing cell-cell interactions. However, cell migration was still dominated by difference of effective surface stiffness while fluctuating at the boundary between the stiff and soft regions. This approach enables us to control the mechanical and topological properties of surface. The developed platform will also offer a useful tool to study cell-substrate interaction mediated by surface stiffness (e.g. mechanotransduction).

  18. Ketone isosteres of 2-N-acetamidosugars as substrates for metabolic cell surface engineering

    SciTech Connect

    Hang, Howard C.; Bertozzi, Carolyn R.

    2000-08-22

    Novel chemical reactivity can be engendered on cell surfaces by the metabolic incorporation of unnatural sugars into cell surface glycoconjuagtes. 2-N-Acetamido sugars such as GalNAc and GlcNAc are abundant components of cell surface glycoconjugates, and hence attractive targets for metabolic cell surface engineering. Here we report (1) the synthesis of isosteric analogs bearing a ketone group in place of the N-acetamido group, and (2) evaluation of their metabolic incorporation into mammalian cell surface glycans. A ketone isostere of GalNAc was metabolized by CHO cells through the salvage pathway and delivered to O-linked glycoproteins on the cell surface. Its residence at the core position of O-linked glycans is suggested by studies with a-benzyl GalNAc, an inhibitor of O-linked oligosaccharide extension. A mutant CHO cell line lacking endogenous UDP-GalNAc demonstrated enhanced metabolism of the GalNAc analog, suggesting that competition with native intermediates might limits enzymatic transformation in mammalian cells. A ketone isostere of GlcNAc could not be detected on CHO or human cell surfaces after incubation. Thus, the enzymes in the GlcNAc salvage pathway might be less permissive of unnatural substrates than those comprising the GalNAc salvage pathway. Alternatively, high levels of endogenous GlcNAc derivatives might compete with the ketone isostere and prevent its incorporation into oligosaccharides.

  19. Endothelialization of Rationally Microtextured Surfaces with Minimal Cell Seeding Under Flow.

    PubMed

    Stefopoulos, Georgios; Robotti, Francesco; Falk, Volkmar; Poulikakos, Dimos; Ferrari, Aldo

    2016-08-01

    The generation of a confluent and functional endothelium at the luminal surface of cardiovascular devices represents the ideal solution to avoid contact between blood and synthetic materials thus allowing the long-term body integration of the implants. Due to the foreseen paucity of source cells in cardiovascular patients, surface engineering strategies to achieve full endothelialization, while minimizing the amount of endothelial cells required to seed the surface leading to prompt and full coverage with an endothelium are necessary. A stable endothelialization is the result of the interplay between endothelial cells, the flow-generated walls shear stress and the substrate topography. Here a novel strategy is designed and validated based on the use of engineered surface textures combined with confined islands of seeded endothelial cells. Upon release of the confinement, the cell island populations are able to migrate on the texture and merge under physiological flow conditions to promptly generate a fully connected endothelium. The interaction between endothelial cells and surface textures supports the process of endothelialization through the stabilization of cell-to-substrate adhesions and cell-to-cell junctions. It is shown that with this approach, when ≈50% of a textured surface is initially covered with cell seeding, the time to full endothelialization compared to an untextured surface is almost halved, underpinning the viability and effectiveness of the method for the quick and stable coverage of cardiovascular implants. PMID:27346806

  20. Neuronal Cell Surface Molecules Mediate Specific Binding to Rabies Virus Glycoprotein Expressed by a Recombinant Baculovirus on the Surfaces of Lepidopteran Cells

    PubMed Central

    Tuffereau, Christine; Benejean, Jacqueline; Alfonso, Anne-Marie Roque; Flamand, Anne; Fishman, Mark C.

    1998-01-01

    The existence of specific rabies virus (RV) glycoprotein (G) binding sites on the surfaces of neuroblastoma cells is demonstrated. Spodoptera frugiperda (Sf21) cells expressing G of the RV strain CVS (Gcvs-Sf21 cells) bind specifically to neuroblastoma cells of different species but not to any other cell type (fibroblast, myoblast, epithelial, or glioma). Attachment to mouse neuroblastoma NG108-15 cells is abolished by previous treatment of Gcvs-Sf21 cells with anti-G antibody. Substitutions for lysine at position 330 and for arginine at position 333 in RV G greatly reduce interaction between Gcvs-Sf21 cells and NG108-15 cells. These data are consistent with in vivo results: an avirulent RV mutant bearing the same double mutation is not able to infect sensory neurons or motoneurons (P. Coulon, J.-P. Ternaux, A. Flamand, and C. Tuffereau, J. Virol. 72:273–278, 1998) after intramuscular inoculation into a mouse. Furthermore, infection of NG108-15 cells by RV but not by vesicular stomatitis virus leads to a reduction of the number of binding sites at the neuronal-cell surface. Our data strongly suggest that these specific attachment sites on neuroblastoma cells represent a neuronal receptor(s) used by RV to infect certain types of neurons in vivo. PMID:9445003

  1. Small-molecule labeling of live cell surfaces for three-dimensional super-resolution microscopy.

    PubMed

    Lee, Marissa K; Rai, Prabin; Williams, Jarrod; Twieg, Robert J; Moerner, W E

    2014-10-01

    Precise imaging of the cell surface of fluorescently labeled bacteria requires super-resolution methods because the size-scale of these cells is on the order of the diffraction limit. In this work, we present a photocontrollable small-molecule rhodamine spirolactam emitter suitable for non-toxic and specific labeling of the outer surface of cells for three-dimensional (3D) super-resolution (SR) imaging. Conventional rhodamine spirolactams photoswitch to the emitting form with UV light; however, these wavelengths can damage cells. We extended photoswitching to visible wavelengths >400 nm by iterative synthesis and spectroscopic characterization to optimize the substitution on the spirolactam. Further, an N-hydroxysuccinimide-functionalized derivative enabled covalent labeling of amines on the surface of live Caulobacter crescentus cells. Resulting 3D SR reconstructions of the labeled cell surface reveal uniform and specific sampling with thousands of localizations per cell and excellent localization precision in x, y, and z. The distribution of cell stalk lengths (a sub-diffraction-sized cellular structure) was quantified for a mixed population of cells. Pulse-chase experiments identified sites of cell surface growth. Covalent labeling with the optimized rhodamine spirolactam label provides a general strategy to study the surfaces of living cells with high specificity and resolution down to 10-20 nm. PMID:25222297

  2. Small-Molecule Labeling of Live Cell Surfaces for Three-Dimensional Super-Resolution Microscopy

    PubMed Central

    2015-01-01

    Precise imaging of the cell surface of fluorescently labeled bacteria requires super-resolution methods because the size-scale of these cells is on the order of the diffraction limit. In this work, we present a photocontrollable small-molecule rhodamine spirolactam emitter suitable for non-toxic and specific labeling of the outer surface of cells for three-dimensional (3D) super-resolution (SR) imaging. Conventional rhodamine spirolactams photoswitch to the emitting form with UV light; however, these wavelengths can damage cells. We extended photoswitching to visible wavelengths >400 nm by iterative synthesis and spectroscopic characterization to optimize the substitution on the spirolactam. Further, an N-hydroxysuccinimide-functionalized derivative enabled covalent labeling of amines on the surface of live Caulobacter crescentus cells. Resulting 3D SR reconstructions of the labeled cell surface reveal uniform and specific sampling with thousands of localizations per cell and excellent localization precision in x, y, and z. The distribution of cell stalk lengths (a sub-diffraction-sized cellular structure) was quantified for a mixed population of cells. Pulse-chase experiments identified sites of cell surface growth. Covalent labeling with the optimized rhodamine spirolactam label provides a general strategy to study the surfaces of living cells with high specificity and resolution down to 10–20 nm. PMID:25222297

  3. Global transcriptomic analysis of model human cell lines exposed to surface-modified gold nanoparticles: the effect of surface chemistry

    NASA Astrophysics Data System (ADS)

    Grzincic, E. M.; Yang, J. A.; Drnevich, J.; Falagan-Lotsch, P.; Murphy, C. J.

    2015-01-01

    Gold nanoparticles (Au NPs) are attractive for biomedical applications not only for their remarkable physical properties, but also for the ease of which their surface chemistry can be manipulated. Many applications involve functionalization of the Au NP surface in order to improve biocompatibility, attach targeting ligands or carry drugs. However, changes in cells exposed to Au NPs of different surface chemistries have been observed, and little is known about how Au NPs and their surface coatings may impact cellular gene expression. The gene expression of two model human cell lines, human dermal fibroblasts (HDF) and prostate cancer cells (PC3) was interrogated by microarray analysis of over 14 000 human genes. The cell lines were exposed to four differently functionalized Au NPs: citrate, poly(allylamine hydrochloride) (PAH), and lipid coatings combined with alkanethiols or PAH. Gene functional annotation categories and weighted gene correlation network analysis were used in order to connect gene expression changes to common cellular functions and to elucidate expression patterns between Au NP samples. Coated Au NPs affect genes implicated in proliferation, angiogenesis, and metabolism in HDF cells, and inflammation, angiogenesis, proliferation apoptosis regulation, survival and invasion in PC3 cells. Subtle changes in surface chemistry, such as the initial net charge, lability of the ligand, and underlying layers greatly influence the degree of expression change and the type of cellular pathway affected.Gold nanoparticles (Au NPs) are attractive for biomedical applications not only for their remarkable physical properties, but also for the ease of which their surface chemistry can be manipulated. Many applications involve functionalization of the Au NP surface in order to improve biocompatibility, attach targeting ligands or carry drugs. However, changes in cells exposed to Au NPs of different surface chemistries have been observed, and little is known about how

  4. Multidimensional profiling of cell surface proteins and nuclear markers

    SciTech Connect

    Han, Ju; Chang, Hang; Andarawewa, Kumari; Yaswen, Paul; Helen Barcellos-Hoff, Mary; Parvin, Bahram

    2009-01-30

    Cell membrane proteins play an important role in tissue architecture and cell-cell communication. We hypothesize that segmentation and multidimensional characterization of the distribution of cell membrane proteins, on a cell-by-cell basis, enable improved classification of treatment groups and identify important characteristics that can otherwise be hidden. We have developed a series of computational steps to (i) delineate cell membrane protein signals and associate them with a specific nucleus; (ii) compute a coupled representation of the multiplexed DNA content with membrane proteins; (iii) rank computed features associated with such a multidimensional representation; (iv) visualize selected features for comparative evaluation through heatmaps; and (v) discriminate between treatment groups in an optimal fashion. The novelty of our method is in the segmentation of the membrane signal and the multidimensional representation of phenotypic signature on a cell-by-cell basis. To test the utility of this method, the proposed computational steps were applied to images of cells that have been irradiated with different radiation qualities in the presence and absence of other small molecules. These samples are labeled for their DNA content and E-cadherin membrane proteins. We demonstrate that multidimensional representations of cell-by-cell phenotypes improve predictive and visualization capabilities among different treatment groups, and identify hidden variables.

  5. Effect of microfabricated microgroove-surface devices on the morphology of mesenchymal stem cells.

    PubMed

    Zhang, Xiangkai; Aoyama, Tomoki; Yasuda, Takashi; Oike, Makoto; Ito, Akira; Tajino, Junichi; Nagai, Momoko; Fujioka, Rune; Iijima, Hirotaka; Yamaguchi, Shoki; Kakinuma, Norihiro; Kuroki, Hiroshi

    2015-12-01

    The surface of a material that is in contact with cells is known to affect cell morphology and function. To develop an appropriate surface for tendon engineering, we used zigzag microgroove surfaces, which are similar to the tenocyte microenvironment. The purpose of this study was to investigate the effect of microgroove surfaces with different ridge angles (RAs), ridge lengths (RLs), ridge widths (RWs), and groove widths (GWs) on human bone marrow-derived mesenchymal stem cell (MSC) shape. Dishes with microgroove surfaces were fabricated using cyclic olefin polymer by injection-compression molding. The other parameters were fixed, and effects of different RAs (180 - 30 °), RLs (5 - 500 μm), RWs (5 - 500 μm), and GWs (5 - 500 μm) were examined. Changes in the zigzag shape of the cell due to different RAs, RLs, RWs, and GWs were observed by optical microscopy and scanning electron microscopy. Cytoskeletal changes were investigated using Phalloidin immunofluorescence staining. As observed by optical microscopy, MSCs changed to a zigzag shape in response to microgroove surfaces with different ridge and groove properties. . As observed by scanning electron microscopy, the cell shape changed at turns in the microgroove surface. Phalloidin immunofluorescence staining indicated that F-actin, not only in cell filopodia but also inside the cell body, changed orientation to conform to the microgrooves. In conclusion, the use of zigzag microgroove surfaces microfabricated by injection-compression molding demonstrated the property of MSCs to alter their shapes to fit the surface. PMID:26573821

  6. Microarray of neuroblastoma cells on the selectively functionalized nanocrystalline diamond thin film surface

    NASA Astrophysics Data System (ADS)

    Park, Young-Sang; Son, Hyeong-Guk; Kim, Dae-Hoon; Oh, Hong-Gi; Lee, Da-Som; Kim, Min-Hye; Lim, Ki-Moo; Song, Kwang-Soup

    2016-01-01

    Nanocrystalline diamond (NCD) film surfaces were modified with fluorine or oxygen by plasma treatment in an O2 or C3F8 gas environment in order to induce wettability. The oxygenated-NCD (O-NCD) film surface was hydrophilic and the fluorinated-NCD (F-NCD) surface was hydrophobic. The efficiency of early cell adhesion, which is dependent on the wettability of the cell culture plate and necessary for the growth and proliferation of cells, was 89.62 ± 3.92% on the O-NCD film and 7.78 ± 0.77% on the F-NCD film surface after 3 h of cell culture. The wettability of the NCD film surface was artificially modified using a metal mask and plasma treatment to fabricate a micro-pattern. Four types of micro-patterns were fabricated (line, circle, mesh, and word) on the NCD film surface. We precisely arrayed the neuroblastoma cells on the micro-patterned NCD film surfaces by controlling the surface wettability and cell seeding density. The neuroblastoma cells adhered and proliferated along the O-NCD film surface.

  7. Cell surface nucleolin serves as receptor for DNA nanoparticles composed of pegylated polylysine and DNA.

    PubMed

    Chen, Xuguang; Kube, Dianne M; Cooper, Mark J; Davis, Pamela B

    2008-02-01

    Compacted DNA nanoparticles deliver transgenes efficiently to the lung following intrapulmonary dosing. Here we show that nucleolin, a protein known to shuttle between the nucleus, cytoplasm, and cell surface, is a receptor for DNA nanoparticles at the cell surface. By using surface plasmon resonance (SPR), we demonstrate that nucleolin binds to DNA nanoparticles directly. The presence of nucleolin on the surface of HeLa and 16HBEo- cells was confirmed by surface biotinylation assay and immunofluorescence. Rhodamine-labeled DNA nanoparticles colocalize with nucleolin on the cell surface, as well as in the cytoplasm and nucleus, but not with transferrin or markers of early endosome or lysosome following cellular uptake. Reducing nucleolin on the cell surface by serum-free medium or siRNA against nucleolin treatment leads to significant reduction in luciferase reporter gene activity, while overexpressing nucleolin has the opposite effect. Competition for binding to DNA nanoparticles with exogenous purified nucleolin decreases the transfection efficiency by 60-90% in a dose-dependent manner. Therefore, the data strongly suggest that cell surface nucleolin serves as a receptor for DNA nanoparticles, and that nucleolin is essential for internalization and/or transport of the nanoparticles from cell surface to the nucleus. PMID:18059369

  8. Recent development of temperature-responsive surfaces and their application for cell sheet engineering

    PubMed Central

    Tang, Zhonglan; Okano, Teruo

    2014-01-01

    Cell sheet engineering, which fabricates sheet-like tissues without biodegradable scaffolds, has been proposed as a novel approach for tissue engineering. Cells have been cultured and proliferate to confluence on a temperature-responsive cell culture surface at 37°C. By decreasing temperature to 20°C, an intact cell sheet can be harvested from the culture surface without enzymatic treatment. This new approach enables cells to keep their cell–cell junction, cell surface proteins and extracellular matrix. Therefore, recovered cell sheet can be easily not only transplanted to host tissue, but also constructed a three-dimensional (3D) tissue by layering cell sheets. Moreover, cell sheet manipulation technology and bioreactor have been combined with the cell sheet technology to fabricate a complex and functional 3D tissue in vitro. So far, cell sheet technology has been applied in regenerative medicine for several tissues, and a number of clinical studies have been performed. In this review, recent advances in the preparation of temperature-responsive cell culture surface, the fabrication of organ-like tissue and the clinical application of cell sheet engineering are summarized and discussed. PMID:26816628

  9. Microfluidic single-cell transcriptional analysis rationally identifies novel surface marker profiles to enhance cell-based therapies.

    PubMed

    Rennert, Robert C; Januszyk, Michael; Sorkin, Michael; Rodrigues, Melanie; Maan, Zeshaan N; Duscher, Dominik; Whittam, Alexander J; Kosaraju, Revanth; Chung, Michael T; Paik, Kevin; Li, Alexander Y; Findlay, Michael; Glotzbach, Jason P; Butte, Atul J; Gurtner, Geoffrey C

    2016-01-01

    Current progenitor cell therapies have only modest efficacy, which has limited their clinical adoption. This may be the result of a cellular heterogeneity that decreases the number of functional progenitors delivered to diseased tissue, and prevents correction of underlying pathologic cell population disruptions. Here, we develop a high-resolution method of identifying phenotypically distinct progenitor cell subpopulations via single-cell transcriptional analysis and advanced bioinformatics. When combined with high-throughput cell surface marker screening, this approach facilitates the rational selection of surface markers for prospective isolation of cell subpopulations with desired transcriptional profiles. We establish the usefulness of this platform in costly and highly morbid diabetic wounds by identifying a subpopulation of progenitor cells that is dysfunctional in the diabetic state, and normalizes diabetic wound healing rates following allogeneic application. We believe this work presents a logical framework for the development of targeted cell therapies that can be customized to any clinical application. PMID:27324848

  10. Survey of Surface Proteins from the Pathogenic Mycoplasma hyopneumoniae Strain 7448 Using a Biotin Cell Surface Labeling Approach

    PubMed Central

    Reolon, Luciano Antonio; Martello, Carolina Lumertz; Schrank, Irene Silveira; Ferreira, Henrique Bunselmeyer

    2014-01-01

    The characterization of the repertoire of proteins exposed on the cell surface by Mycoplasma hyopneumoniae (M. hyopneumoniae), the etiological agent of enzootic pneumonia in pigs, is critical to understand physiological processes associated with bacterial infection capacity, survival and pathogenesis. Previous in silico studies predicted that about a third of the genes in the M. hyopneumoniae genome code for surface proteins, but so far, just a few of them have experimental confirmation of their expression and surface localization. In this work, M. hyopneumoniae surface proteins were labeled in intact cells with biotin, and affinity-captured biotin-labeled proteins were identified by a gel-based liquid chromatography-tandem mass spectrometry approach. A total of 20 gel slices were separately analyzed by mass spectrometry, resulting in 165 protein identifications corresponding to 59 different protein species. The identified surface exposed proteins better defined the set of M. hyopneumoniae proteins exposed to the host and added confidence to in silico predictions. Several proteins potentially related to pathogenesis, were identified, including known adhesins and also hypothetical proteins with adhesin-like topologies, consisting of a transmembrane helix and a large tail exposed at the cell surface. The results provided a better picture of the M. hyopneumoniae cell surface that will help in the understanding of processes important for bacterial pathogenesis. Considering the experimental demonstration of surface exposure, adhesion-like topology predictions and absence of orthologs in the closely related, non-pathogenic species Mycoplasma flocculare, several proteins could be proposed as potential targets for the development of drugs, vaccines and/or immunodiagnostic tests for enzootic pneumonia. PMID:25386928

  11. Survey of surface proteins from the pathogenic Mycoplasma hyopneumoniae strain 7448 using a biotin cell surface labeling approach.

    PubMed

    Reolon, Luciano Antonio; Martello, Carolina Lumertz; Schrank, Irene Silveira; Ferreira, Henrique Bunselmeyer

    2014-01-01

    The characterization of the repertoire of proteins exposed on the cell surface by Mycoplasma hyopneumoniae (M. hyopneumoniae), the etiological agent of enzootic pneumonia in pigs, is critical to understand physiological processes associated with bacterial infection capacity, survival and pathogenesis. Previous in silico studies predicted that about a third of the genes in the M. hyopneumoniae genome code for surface proteins, but so far, just a few of them have experimental confirmation of their expression and surface localization. In this work, M. hyopneumoniae surface proteins were labeled in intact cells with biotin, and affinity-captured biotin-labeled proteins were identified by a gel-based liquid chromatography-tandem mass spectrometry approach. A total of 20 gel slices were separately analyzed by mass spectrometry, resulting in 165 protein identifications corresponding to 59 different protein species. The identified surface exposed proteins better defined the set of M. hyopneumoniae proteins exposed to the host and added confidence to in silico predictions. Several proteins potentially related to pathogenesis, were identified, including known adhesins and also hypothetical proteins with adhesin-like topologies, consisting of a transmembrane helix and a large tail exposed at the cell surface. The results provided a better picture of the M. hyopneumoniae cell surface that will help in the understanding of processes important for bacterial pathogenesis. Considering the experimental demonstration of surface exposure, adhesion-like topology predictions and absence of orthologs in the closely related, non-pathogenic species Mycoplasma flocculare, several proteins could be proposed as potential targets for the development of drugs, vaccines and/or immunodiagnostic tests for enzootic pneumonia. PMID:25386928

  12. A Multichannel Biosensor for Rapid Determination of Cell Surface Glycomic Signatures

    PubMed Central

    2015-01-01

    Cell surface glycosylation serves a fundamental role in dictating cell and tissue behavior. Cell surface glycomes differ significantly, presenting viable biomarkers for identifying cell types and their states. Glycoprofiling is a challenging task, however, due to the complexity of the constituent glycans. We report here a rapid and effective sensor for surface-based cell differentiation that uses a three-channel sensor produced by noncovalent conjugation of a functionalized gold nanoparticle (AuNP) and fluorescent proteins. Wild-type and glycomutant mammalian cells were effectively stratified using fluorescence signatures obtained from a single sensor element. Blinded unknowns generated from the tested cell types were identified with high accuracy (44 out of 48 samples), validating the robustness of the multichannel sensor. Notably, this selectivity-based high-throughput sensor differentiated between cells, employing a nondestructive protocol that required only a single well of a microplate for detection. PMID:26405691

  13. Photoactive branched and linear surface architectures for functional and patterned immobilization of proteins and cells onto surfaces: a comparative study.

    PubMed

    Stegmaier, Petra; del Campo, Aránzazu

    2009-02-01

    Molecular architecture affects the properties of surface layers. Photosensitive silanes with branched architectures allow patterning and coupling of proteins and cells on surfaces while maintaining their biofunctional state. Attachment can be directed to the activated regions of irradiated substrates with high selectivity (see image of mouse fibroblasts). Novel photosensitive silanes with a branched molecular architecture combining three end-functionalized oligoethylene glycol (OEG) and alkyl arms are presented. These molecules are synthesized and applied to the modification of silica surfaces. The resulting layers are tested in their ability for the selective, patterned and functional immobilization of proteins and cells. The results demonstrate and accurately quantify the benefits of branched OEG structures against linear analogues for preventing non-specific interactions with the biological material. Linear structures guarantee high selectivity for the attachment of proteins, however, they fail in the case of cells. Branched structures provide good antifouling properties in both cases and allow the formation of protein patterns with higher densities of the target protein, as well as cell patterns. The results demonstrate the careful balance between surface functionality, composition and architecture that is required for maximizing the performance of any surface-based assay in biology. PMID:19065686

  14. Cell surface nucleolin as a target for anti-cancer therapies.

    PubMed

    Koutsioumpa, Marina; Papadimitriou, Evangelia

    2014-05-01

    A large number of mostly recent reports show enhanced expression of the multi-functional protein nucleolin (NCL) on the surface of activated lymphocytes, angiogenic endothelial and many different types of cancer cells. Translocation of NCL at the external side of the plasma membrane occurs via a secretory pathway independent of the endoplasmic reticulum-Golgi complex, requires intracellular intact actin cytoskeleton, and seems to be mediated by a variety of factors. Cell surface NCL serves as a binding partner of several molecules implicated in cell differentiation, adhesion, and leukocyte trafficking, inflammation, angiogenesis and tumor development, mediating their biological activities and in some cases, leading to their internalization. Accumulating evidence validates cell surface NCL as a strategic target for treatment of cancer, while its property of tumor-specific uptake of targeted ligands seems to be useful for the development of non-invasive imaging tools for the diagnosis of cancer and for the targeted release of chemotherapeutic drugs. The observation that cell surface NCL exists in complexes with several other proteins implicated in tumorigenesis and angiogenesis suggests that targeting cell surface NCL might trigger multi-inhibitory effects, depending on the cell type. This review summarizes papers and patents related to the redistribution and the biological functions of cell surface NCL, with emphasis on the potential importance and advantages of developing efficient anti-cell surface NCL strategies. PMID:24251811

  15. Flagella of Pyrococcus furiosus: multifunctional organelles, made for swimming, adhesion to various surfaces, and cell-cell contacts.

    PubMed

    Näther, Daniela J; Rachel, Reinhard; Wanner, Gerhard; Wirth, Reinhard

    2006-10-01

    Pyrococcus furiosus ("rushing fireball") was named for the ability of this archaeal coccus to rapidly swim at its optimal growth temperature, around 100 degrees C. Early electron microscopic studies identified up to 50 cell surface appendages originating from one pole of the coccus, which have been called flagella. We have analyzed these putative motility organelles and found them to be composed primarily (>95%) of a glycoprotein that is homologous to flagellins from other archaea. Using various electron microscopic techniques, we found that these flagella can aggregate into cable-like structures, forming cell-cell connections between ca. 5% of all cells during stationary growth phase. P. furiosus cells could adhere via their flagella to carbon-coated gold grids used for electron microscopic analyses, to sand grains collected from the original habitat (Porto di Levante, Vulcano, Italy), and to various other surfaces. P. furiosus grew on surfaces in biofilm-like structures, forming microcolonies with cells interconnected by flagella and adhering to the solid supports. Therefore, we concluded that P. furiosus probably uses flagella for swimming but that the cell surface appendages also enable this archaeon to form cable-like cell-cell connections and to adhere to solid surfaces. PMID:16980494

  16. Impurity concentrations and surface charge densities on the heavily doped face of a silicon solar cell

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Hsu, L. C.

    1977-01-01

    Increased solar cell efficiencies are attained by reduction of surface recombination and variation of impurity concentration profiles at the n(+) surface of silicon solar cells. Diagnostic techniques are employed to evaluate the effects of specific materials preparation methodologies on surface and near surface concentrations. It is demonstrated that the MOS C-V method, when combined with a bulk measurement technique, yields more complete concentration data than are obtainable by either method alone. Specifically, new solar cell MOS C-V measurements are combined with bulk concentrations obtained by a successive layer removal technique utilizing measurements of sheet resistivity and Hall coefficient.

  17. Highly efficient industrial large-area black silicon solar cells achieved by surface nanostructured modification

    NASA Astrophysics Data System (ADS)

    Li, Ping; Wei, Yi; Zhao, Zengchao; Tan, Xin; Bian, Jiming; Wang, Yuxuan; Lu, Chunxi; Liu, Aimin

    2015-12-01

    Traditional black silicon solar cells show relatively low efficiencies due to the high surface recombination occurring at the front surfaces. In this paper, we present a surface modification process to suppress surface recombination and fabricate highly efficient industrial black silicon solar cells. The Ag-nanoparticle-assisted etching is applied to realize front surface nanostructures on silicon wafers in order to reduce the surface reflectance. Through a further tetramethylammonium hydroxide (TMAH) treatment, the carrier recombination at and near the surface is greatly suppressed, due to a lower surface dopant concentration after the surface modification. This modified surface presents a low reflectivity in a range of 350-1100 nm. Large-area solar cells with an average conversion efficiency of 19.03% are achieved by using the TMAH treatment of 30 s. This efficiency is 0.18% higher than that of standard silicon solar cells with pyramidal surfaces, and also a remarkable improvement compared with black silicon solar cells without TMAH modifications.

  18. Cell adhesion and growth on surfaces modified by plasma and ion implantation

    NASA Astrophysics Data System (ADS)

    Araujo, W. W. R.; Teixeira, F. S.; da Silva, G. N.; Salvadori, D. M. F.; Salvadori, M. C.

    2014-04-01

    In this study, we show and discuss the results of the interaction of living CHO (Chinese Hamster Ovary) cells, in terms of adhesion and growth on glass, SU-8 (epoxi photoresist), PDMS (polydimethylsiloxane), and DLC (hydrogen free diamond-like carbon) surfaces. Glass, SU-8, and DLC but not PDMS showed to be good surfaces for cell growth. DLC surfaces were treated by oxygen plasma (DLC-O) and sulfur hexafluoride plasma (DLC-F). After 24 h of cell culture, the number of cells on DLC-O was higher than on DLC-F surface. SU-8 with silver implanted, creating nanoparticles 12 nm below the surface, increased significantly the number of cells per unit area.

  19. Adsorption of Amorphous Silica Nanoparticles onto Hydroxyapatite Surfaces Differentially Alters Surfaces Properties and Adhesion of Human Osteoblast Cells.

    PubMed

    Kalia, Priya; Brooks, Roger A; Kinrade, Stephen D; Morgan, David J; Brown, Andrew P; Rushton, Neil; Jugdaohsingh, Ravin

    2016-01-01

    Silicon (Si) is suggested to be an important/essential nutrient for bone and connective tissue health. Silicon-substituted hydroxyapatite (Si-HA) has silicate ions incorporated into its lattice structure and was developed to improve attachment to bone and increase new bone formation. Here we investigated the direct adsorption of silicate species onto an HA coated surface as a cost effective method of incorporating silicon on to HA surfaces for improved implant osseointegration, and determined changes in surface characteristics and osteoblast cell adhesion. Plasma-sprayed HA-coated stainless steel discs were incubated in silica dispersions of different concentrations (0-42 mM Si), at neutral pH for 12 h. Adsorbed Si was confirmed by XPS analysis and quantified by ICP-OES analysis following release from the HA surface. Changes in surface characteristics were determined by AFM and measurement of surface wettability. Osteoblast cell adhesion was determined by vinculin plaque staining. Maximum Si adsorption to the HA coated disc occurred after incubation in the 6 mM silica dispersion and decreased progressively with higher silica concentrations, while no adsorption was observed with dispersions below 6 mM Si. Comparison of the Si dispersions that produced the highest and lowest Si adsorption to the HA surface, by TEM-based analysis, revealed an abundance of small amorphous nanosilica species (NSP) of ~1.5 nm in diameter in the 6 mM Si dispersion, with much fewer and larger NSP in the 42 mM Si dispersions. 29Si-NMR confirmed that the NSPs in the 6 mM silica dispersion were polymeric and similar in composition to the larger NSPs in the 42 mM Si dispersion, suggesting that the latter were aggregates of the former. Amorphous NSP adsorbed from the 6 mM dispersion on to a HA-coated disc surface increased the surface's water contact angle by 53°, whereas that adsorbed from the 42 mM dispersion decreased the contact angle by 18°, indicating increased and decreased

  20. Preparation of hydrophilic monolithic capillary column by in situ photo-polymerization of N-vinyl-2-pyrrolidinone and acrylamide for highly selective and sensitive enrichment of N-linked glycopeptides.

    PubMed

    Jiang, Hao; Yuan, Huiming; Qu, Yanyan; Liang, Yu; Jiang, Bo; Wu, Qi; Deng, Nan; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2016-01-01

    In this study, a novel kind of amide functionalized hydrophilic monolith was synthesized by the in situ photo-polymerization of N-vinyl-2-pyrrolidinone (NVP), acrylamide (AM), and N, N'-methylenebisacrylamide (MBA) in a UV transparent capillary, and successfully applied for hydrophilic interaction chromatography (HILIC) based enrichment of N-linked glycopeptides. With 2 μg of the tryptic digests of IgG as the sample, after enrichment, 18 glycopeptides could be identified by MALDI-TOF/TOF MS analysis. Furthermore, with the mixture of BSA and IgG digests (10,000:1, m/m) as the sample, 6 N-linked glycopeptides were unambiguously identified after enrichment, indicating the high selectivity and good specificity of such material. Moreover, such a monolithic capillary column was also applied for the N-glycosylation sites profiling of 6 μg protein digests from HeLa cells and 1 μL human serum. In total, 530 and 262 unique N-glycosylated peptides were identified, respectively, corresponding to 282 and 124N-glycoproteins, demonstrating its great potential for the large scale glycoproteomics analysis. PMID:26695256

  1. Capture and printing of fixed stromal cell membranes for bioactive display on PDMS surfaces

    PubMed Central

    Lee, Jungwoo; Wang, Jennifer B.; Bersani, Francesca; Parekkadan, Biju

    2013-01-01

    Polydimethylsiloxane (PDMS) has emerged as an extremely useful polymer for various biological applications. The conjugation of PDMS with bioactive molecules to create functional surfaces is feasible, yet limited to single molecule display with imprecise localization of the molecules on PDMS. Here we report a robust technique that can transfer and print the membrane surface of glutaraldehyde-fixed stromal cells intact to a PDMS substrate using an intermediate polyvinylalcohol (PVA) film as a transporter system. The cell-PVA film capturing the entirety of surface molecules can be peeled off and subsequently printed onto PDMS while maintaining the spatial display of the original cell surface molecules. Proof-of-concept studies are described using human bone marrow stromal cell membranes, including the demonstration of bioactivity of transferred membranes to capture and adhere hematopoietic cells. The presented process is applicable to virtually any adherent cell and can broaden the functional display of biomolecules on PDMS for biotechnology applications. PMID:23927769

  2. Interaction of Biofunctionalized Nanoparticles with Receptors on Cell Surfaces: MC Simulations

    NASA Astrophysics Data System (ADS)

    Dormidontova, Elena; Wang, Shihu

    2015-03-01

    One of the areas of active development of modern nanomedicine is drug/gene delivery and imaging application of nanoparticles functionalized by ligands, aptamers or antibodies capable of specific interactions with cell surface receptors. Being a complex multifunctional system different structural aspects of nanoparticles affect their interactions with cell surfaces and the surface properties of cells can be different (e.g. density, distribution and mobility of receptors). Computer simulations allow a systematic investigation of the influence of multiple factors and provide a unified platform for the comparison. Using Monte Carlo simulations we investigate the influence of the nanoparticle properties (nanoparticle size, polymer tether length, polydispersity, density, ligand energy, valence and density) on nanoparticle-cell surface interactions and make predictions regarding favorable nanoparticle design for achieving multiple ligand-receptor binding. We will also discuss the implications of nanoparticle design on the selectivity of attachment to cells with high receptor density while ``ignoring'' cells with a low density of receptors.

  3. Surface effects and electrochemical cell capacitance in desorption electrospray ionization.

    PubMed

    Volný, Michael; Venter, Andre; Smith, Scott A; Pazzi, Marco; Cooks, R Graham

    2008-04-01

    Time resolved measurements show that during a desorption electrospray ionization (DESI) experiment, the current initially rises sharply, followed by an exponential decrease to a relatively steady current. When the high voltage on the spray emitter is switched off, the current drops to negative values, suggesting that the direction of current flow in the equivalent DESI circuit is reversed. These data demonstrate that the DESI source behaves as a dc capacitor and that the addition of a surface between the sprayer and the counter electrode in DESI introduces a new electrically active element into the system. The charging and discharging behavior was observed using different surfaces and it could be seen both by making current measurements on a plate at the entrance to the mass spectrometer as well as by measuring ion current in the linear ion trap within the vacuum system of the mass spectrometer. The magnitude of the steady state current obtained without analyte present on the surface is different for different surface materials, and different capacitor time constants of the equivalent RC circuits were calculated for different DESI surfaces. The PTFE surface has by far the greatest time constant and is also able to produce the highest DESI currents. Surface properties play a crucial role in charge transfer during DESI in addition to the effects of the chemical properties of the analyte. It is suggested that surface energy (wettability) is an important factor controlling droplet behavior on the surface. The experimental data are correlated with critical surface tension values of different materials. It is proposed, based on the results presented, that super-hydrophobic materials with extremely high contact angles have the potential to be excellent DESI substrates. It is also demonstrated, using the example of the neurotransmitter dopamine, that the surface charge that develops during a DESI-MS experiment can cause electrochemical oxidation of the analyte. PMID

  4. Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions.

    PubMed

    Saha, Krishanu; Mei, Ying; Reisterer, Colin M; Pyzocha, Neena Kenton; Yang, Jing; Muffat, Julien; Davies, Martyn C; Alexander, Morgan R; Langer, Robert; Anderson, Daniel G; Jaenisch, Rudolf

    2011-11-15

    The current gold standard for the culture of human pluripotent stem cells requires the use of a feeder layer of cells. Here, we develop a spatially defined culture system based on UV/ozone radiation modification of typical cell culture plastics to define a favorable surface environment for human pluripotent stem cell culture. Chemical and geometrical optimization of the surfaces enables control of early cell aggregation from fully dissociated cells, as predicted from a numerical model of cell migration, and results in significant increases in cell growth of undifferentiated cells. These chemically defined xeno-free substrates generate more than three times the number of cells than feeder-containing substrates per surface area. Further, reprogramming and typical gene-targeting protocols can be readily performed on these engineered surfaces. These substrates provide an attractive cell culture platform for the production of clinically relevant factor-free reprogrammed cells from patient tissue samples and facilitate the definition of standardized scale-up friendly methods for disease modeling and cell therapeutic applications. PMID:22065768

  5. Poly-lactic-glycolic-acid surface nanotopographies selectively decrease breast adenocarcinoma cell functions

    NASA Astrophysics Data System (ADS)

    Zhang, Lijuan; Webster, Thomas J.

    2012-04-01

    The ability of poly(lactic-co-glycolic acid) (PLGA, 50:50 PLG/PGA, wt%) nanotopographies to decrease lung epithelial carcinoma cell functions (including adhesion, proliferation, apoptosis and vascular endothelial growth factor (VEGF) secretion) has been previously reported. Specifically, results demonstrated decreased lung epithelial carcinoma cell VEGF synthesis on 23 nm surface-featured PLGA compared to traditional nanosmooth PLGA. However, clearly, different cell lines could have different behaviors on similar biomaterials. Thus, to investigate the universality of nanopatterned PLGA substrates to inhibit numerous cancer cell functions, here, breast epithelial adenocarcinoma cell (MCF-7) adhesion, proliferation, apoptosis and VEGF secretion were determined on different PLGA nanometer surface topographies. To isolate surface nanotopographical effects from all other surface properties, PLGA surfaces with various nanotopographies but similar chemistry and hydrophobicity were fabricated here. Atomic force microscopy (AFM) verified the varied nanotopographies on the PLGA surfaces prepared in this study. Importantly, results demonstrated for the first time significantly decreased breast adenocarcinoma cell functions (including decreased proliferation rate, increased apoptosis and decreased VEGF synthesis) on 23 nm featured PLGA surfaces compared to all other PLGA surface topographies fabricated (specifically, nanosmooth, 300 and 400 nm surface-featured PLGA surfaces). In contrast, healthy breast epithelial cells proliferated more (24%) on the 23 nm featured PLGA surfaces compared to all other PLGA samples. In summary, these results provided further insights into understanding the role PLGA surface nanotopographies can have on cancer cell functions and, more importantly, open the possibility of using polymer nanotopographies for a wide range of anticancer regenerative medicine applications (without resorting to the use of chemotherapeutics).

  6. Aquatic flower-inspired cell culture platform with simplified medium exchange process for facilitating cell-surface interaction studies.

    PubMed

    Hong, Hyeonjun; Park, Sung Jea; Han, Seon Jin; Lim, Jiwon; Kim, Dong Sung

    2016-02-01

    Establishing fundamentals for regulating cell behavior with engineered physical environments, such as topography and stiffness, requires a large number of cell culture experiments. However, cell culture experiments in cell-surface interaction studies are generally labor-intensive and time-consuming due to many experimental tasks, such as multiple fabrication processes in sample preparation and repetitive medium exchange in cell culture. In this work, a novel aquatic flower-inspired cell culture platform (AFIP) is presented. AFIP aims to facilitate the experiments on the cell-surface interaction studies, especially the medium exchange process. AFIP was devised to capture and dispense cell culture medium based on interactions between an elastic polymer substrate and a liquid medium. Thus, the medium exchange can be performed easily and without the need of other instruments, such as a vacuum suction and pipette. An appropriate design window of AFIP, based on scaling analysis, was identified to provide a criterion for achieving stability in medium exchange as well as various surface characteristics of the petal substrates. The developed AFIP, with physically engineered petal substrates, was also verified to exchange medium reliably and repeatedly. A closed structure capturing the medium was sustained stably during cell culture experiments. NIH3T3 proliferation results also demonstrated that AFIP can be applied to the cell-surface interaction studies as an alternative to the conventional method. PMID:26683462

  7. Glioma cell proliferation controlled by ERK activity-dependent surface expression of PDGFRA.

    PubMed

    Chen, Dongfeng; Zuo, Duo; Luan, Cheng; Liu, Min; Na, Manli; Ran, Liang; Sun, Yingyu; Persson, Annette; Englund, Elisabet; Salford, Leif G; Renström, Erik; Fan, Xiaolong; Zhang, Enming

    2014-01-01

    Increased PDGFRA signaling is an essential pathogenic factor in many subtypes of gliomas. In this context the cell surface expression of PDGFRA is an important determinant of ligand sensing in the glioma microenvironment. However, the regulation of spatial distribution of PDGFRA in glioma cells remains poorly characterized. Here, we report that cell surface PDGFRA expression in gliomas is negatively regulated by an ERK-dependent mechanism, resulting in reduced proliferation of glioma cells. Glioma tumor tissues and their corresponding cell lines were isolated from 14 patients and analyzed by single-cell imaging and flow cytometry. In both cell lines and their corresponding tumor samples, glioma cell proliferation correlated with the extent of surface expression of PDGFRA. High levels of surface PDGFRA also correlated to high tubulin expression in glioma tumor tissue in vivo. In glioma cell lines, surface PDGFRA declined following treatment with inhibitors of tubulin, actin and dynamin. Screening of a panel of small molecule compounds identified the MEK inhibitor U0126 as a potent inhibitor of surface PDGFRA expression. Importantly, U0126 inhibited surface expression in a reversible, dose- and time-dependent manner, without affecting general PDGFRA expression. Treatment with U0126 resulted in reduced co-localization between PDGFRA and intracellular trafficking molecules e.g. clathrin, RAB11 and early endosomal antigen-1, in parallel with enhanced co-localization between PDGFRA and the Golgi cisternae maker, Giantin, suggesting a deviation of PDGFRA from the endosomal trafficking and recycling compartment, to the Golgi network. Furthermore, U0126 treatment in glioma cells induced an initial inhibition of ERK1/2 phosphorylation, followed by up-regulated ERK1/2 phosphorylation concomitant with diminished surface expression of PDGFRA. Finally, down-regulation of surface PDGFRA expression by U0126 is concordant with reduced glioma cell proliferation. These findings

  8. Improvement of early cell adhesion on Thai silk fibroin surface by low energy plasma.

    PubMed

    Amornsudthiwat, Phakdee; Mongkolnavin, Rattachat; Kanokpanont, Sorada; Panpranot, Joongjai; Wong, Chiow San; Damrongsakkul, Siriporn

    2013-11-01

    Low energy plasma has been introduced to treat the surface of Thai silk fibroin which should be enhanced for cell adhesion due to its native hydrophobic surface. Plasma surface treatment could introduce desirable hydrophilic functionalities on the surface without using any chemicals. In this work, nitrogen glow discharge plasma was generated by a low energy AC50Hz power supply system. The plasma operating conditions were optimized to reach the highest nitrogen active species by using optical emission spectroscopy. X-ray photoelectron spectroscopy (XPS) revealed that amine, hydroxyl, ether, and carboxyl groups were induced on Thai silk fibroin surface after plasma treatment. The results on Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopy confirmed that the plasma treated effects were only on the outermost layer since there was no change in the bulk chemistry. The surface topography was insignificantly changed from the detection with atomic force microscopy (AFM). The plasma-treated effects were the improved surface wettability and cell adhesion. After a 90-s treatment, the water contact angle was at 20°, while the untreated surface was at 70°. The early cell adhesion of L929 mouse fibroblast was accelerated. L929 cells only took 3h to reach 100% cell adhesion on 90 s N2 plasma-treated surface, while there was less than 50% cell adhesion on the untreated Thai silk fibroin surface after 6h of culture. The cell adhesion results were in agreement with the cytoskeleton development. L929 F-actin was more evident on 90 s N2 plasma-treated surface than others. It could be concluded that a lower energy AC50Hz plasma system enhanced early L929 mouse fibroblast adhesion on Thai silk fibroin surface without any significant change in surface topography and bulk chemistry. PMID:23893032

  9. Quantification of surface tension and internal pressure generated by single mitotic cells.

    PubMed

    Fischer-Friedrich, Elisabeth; Hyman, Anthony A; Jülicher, Frank; Müller, Daniel J; Helenius, Jonne

    2014-01-01

    During mitosis, adherent cells round up, by increasing the tension of the contractile actomyosin cortex while increasing the internal hydrostatic pressure. In the simple scenario of a liquid cell interior, the surface tension is related to the local curvature and the hydrostatic pressure difference by Laplace's law. However, verification of this scenario for cells requires accurate measurements of cell shape. Here, we use wedged micro-cantilevers to uniaxially confine single cells and determine confinement forces while concurrently determining cell shape using confocal microscopy. We fit experimentally measured confined cell shapes to shapes obeying Laplace's law with uniform surface tension and find quantitative agreement. Geometrical parameters derived from fitting the cell shape, and the measured force were used to calculate hydrostatic pressure excess and surface tension of cells. We find that HeLa cells increase their internal hydrostatic pressure excess and surface tension from ≈ 40 Pa and 0.2 mNm(-1) during interphase to ≈ 400 Pa and 1.6 mNm(-1) during metaphase. The method introduced provides a means to determine internal pressure excess and surface tension of rounded cells accurately and with minimal cellular perturbation, and should be applicable to characterize the mechanical properties of various cellular systems. PMID:25169063

  10. A Dual Receptor and Reporter for Multi-Modal Cell Surface Engineering.

    PubMed

    Luo, Wei; Westcott, Nathan; Dutta, Debjit; Pulsipher, Abigail; Rogozhnikov, Dmitry; Chen, Jean; Yousaf, Muhammad N

    2015-10-16

    The rapid development of new small molecule drugs, nanomaterials, and genetic tools to modulate cellular function through cell surface manipulation has revolutionized the diagnosis, study, and treatment of disorders in human health. Since the cell membrane is a selective gateway barrier that serves as the first line of defense/offense and communication to its environment, new approaches that molecularly engineer or tailor cell membrane surfaces would allow for a new era in therapeutic design, therapeutic delivery, complex coculture tissue construction, and in situ imaging probe tracking technologies. In order to develop the next generation of multimodal therapies, cell behavior studies, and biotechnologies that focus on cell membrane biology, new tools that intersect the fields of chemistry, biology, and engineering are required. Herein, we develop a liposome fusion and delivery strategy to present a novel dual receptor and reporter system at cell surfaces without the use of molecular biology or metabolic biosynthesis. The cell surface receptor is based on bio-orthogonal functional groups that can conjugate a range of ligands while simultaneously reporting the conjugation through the emission of fluorescence. We demonstrate this dual receptor and reporter system by conjugating and tracking various cell surface ligands for temporal control of cell fluorescent signaling, cell-cell interaction, and tissue assembly construction. PMID:26204094

  11. Quantification of surface tension and internal pressure generated by single mitotic cells

    PubMed Central

    Fischer-Friedrich, Elisabeth; Hyman, Anthony A.; Jülicher, Frank; Müller, Daniel J.; Helenius, Jonne

    2014-01-01

    During mitosis, adherent cells round up, by increasing the tension of the contractile actomyosin cortex while increasing the internal hydrostatic pressure. In the simple scenario of a liquid cell interior, the surface tension is related to the local curvature and the hydrostatic pressure difference by Laplace's law. However, verification of this scenario for cells requires accurate measurements of cell shape. Here, we use wedged micro-cantilevers to uniaxially confine single cells and determine confinement forces while concurrently determining cell shape using confocal microscopy. We fit experimentally measured confined cell shapes to shapes obeying Laplace's law with uniform surface tension and find quantitative agreement. Geometrical parameters derived from fitting the cell shape, and the measured force were used to calculate hydrostatic pressure excess and surface tension of cells. We find that HeLa cells increase their internal hydrostatic pressure excess and surface tension from ≈ 40 Pa and 0.2 mNm−1 during interphase to ≈ 400 Pa and 1.6 mNm−1 during metaphase. The method introduced provides a means to determine internal pressure excess and surface tension of rounded cells accurately and with minimal cellular perturbation, and should be applicable to characterize the mechanical properties of various cellular systems. PMID:25169063

  12. Quantification of surface tension and internal pressure generated by single mitotic cells

    NASA Astrophysics Data System (ADS)

    Fischer-Friedrich, Elisabeth; Hyman, Anthony A.; Jülicher, Frank; Müller, Daniel J.; Helenius, Jonne

    2014-08-01

    During mitosis, adherent cells round up, by increasing the tension of the contractile actomyosin cortex while increasing the internal hydrostatic pressure. In the simple scenario of a liquid cell interior, the surface tension is related to the local curvature and the hydrostatic pressure difference by Laplace's law. However, verification of this scenario for cells requires accurate measurements of cell shape. Here, we use wedged micro-cantilevers to uniaxially confine single cells and determine confinement forces while concurrently determining cell shape using confocal microscopy. We fit experimentally measured confined cell shapes to shapes obeying Laplace's law with uniform surface tension and find quantitative agreement. Geometrical parameters derived from fitting the cell shape, and the measured force were used to calculate hydrostatic pressure excess and surface tension of cells. We find that HeLa cells incr