Science.gov

Sample records for cell tight junctions

  1. Tight Junction Proteins in Human Schwann Cell Autotypic Junctions

    PubMed Central

    Alanne, Maria H.; Pummi, Kati; Heape, Anthony M.; Grènman, Reidar; Peltonen, Juha; Peltonen, Sirkku

    2009-01-01

    Tight junctions (TJs) form physical barriers in various tissues and regulate paracellular transport of ions, water, and molecules. Myelinating Schwann cells form highly organized structures, including compact myelin, nodes of Ranvier, paranodal regions, Schmidt-Lanterman incisures, periaxonal cytoplasmic collars, and mesaxons. Autotypic TJs are formed in non-compacted myelin compartments between adjacent membrane lamellae of the same Schwann cell. Using indirect immunofluorescence and RT-PCR, we analyzed the expression of adherens junction (E-cadherin) and TJ [claudins, zonula occludens (ZO)-1, occludin] components in human peripheral nerve endoneurium, showing clear differences with published rodent profiles. Adult nerve paranodal regions contained E-cadherin, claudin-1, claudin-2, and ZO-1. Schmidt-Lanterman incisures contained E-cadherin, claudin-1, claudin-2, claudin-3, claudin-5, ZO-1, and occludin. Mesaxons contained E-cadherin, claudin-1, claudin-2, claudin-3, ZO-1, and occludin. None of the proteins studied were associated with nodal inter-Schwann cell junctions. Fetal nerve expression of claudin-1, claudin-3, ZO-1, and occludin was predominantly punctate, with a mesaxonal labeling pattern, but paranodal (ZO-1, claudin-3) and Schmidt-Lanterman incisure (claudins-1 and -3) expression profiles typical of compact myelin were visible by gestational week 37. The clear differences observed between human and published rodent nerve profiles emphasize the importance of human studies when translating the results of animal models to human diseases. (J Histochem Cytochem 57:523–529, 2009) PMID:19153196

  2. Tricellulin deficiency affects tight junction architecture and cochlear hair cells

    PubMed Central

    Nayak, Gowri; Lee, Sue I.; Yousaf, Rizwan; Edelmann, Stephanie E.; Trincot, Claire; Van Itallie, Christina M.; Sinha, Ghanshyam P.; Rafeeq, Maria; Jones, Sherri M.; Belyantseva, Inna A.; Anderson, James M.; Forge, Andrew; Frolenkov, Gregory I.; Riazuddin, Saima

    2013-01-01

    The two compositionally distinct extracellular cochlear fluids, endolymph and perilymph, are separated by tight junctions that outline the scala media and reticular lamina. Mutations in TRIC (also known as MARVELD2), which encodes a tricellular tight junction protein known as tricellulin, lead to nonsyndromic hearing loss (DFNB49). We generated a knockin mouse that carries a mutation orthologous to the TRIC coding mutation linked to DFNB49 hearing loss in humans. Tricellulin was absent from the tricellular junctions in the inner ear epithelia of the mutant animals, which developed rapidly progressing hearing loss accompanied by loss of mechanosensory cochlear hair cells, while the endocochlear potential and paracellular permeability of a biotin-based tracer in the stria vascularis were unaltered. Freeze-fracture electron microscopy revealed disruption of the strands of intramembrane particles connecting bicellular and tricellular junctions in the inner ear epithelia of tricellulin-deficient mice. These ultrastructural changes may selectively affect the paracellular permeability of ions or small molecules, resulting in a toxic microenvironment for cochlear hair cells. Consistent with this hypothesis, hair cell loss was rescued in tricellulin-deficient mice when generation of normal endolymph was inhibited by a concomitant deletion of the transcription factor, Pou3f4. Finally, comprehensive phenotypic screening showed a broader pathological phenotype in the mutant mice, which highlights the non-redundant roles played by tricellulin. PMID:23979167

  3. Tight Junctions Go Viral!

    PubMed Central

    Torres-Flores, Jesús M.; Arias, Carlos F.

    2015-01-01

    Tight junctions (TJs) are highly specialized membrane domains involved in many important cellular processes such as the regulation of the passage of ions and macromolecules across the paracellular space and the establishment of cell polarity in epithelial cells. Over the past few years there has been increasing evidence that different components of the TJs can be hijacked by viruses in order to complete their infectious cycle. Viruses from at least nine different families of DNA and RNA viruses have been reported to use TJ proteins in their benefit. For example, TJ proteins such as JAM-A or some members of the claudin family of proteins are used by members of the Reoviridae family and hepatitis C virus as receptors or co-receptors during their entry into their host cells. Reovirus, in addition, takes advantage of the TJ protein Junction Adhesion Molecule-A (JAM-A) to achieve its hematogenous dissemination. Some other viruses are capable of regulating the expression or the localization of TJ proteins to induce cell transformation or to improve the efficiency of their exit process. This review encompasses the importance of TJs for viral entry, replication, dissemination, and egress, and makes a clear statement of the importance of studying these proteins to gain a better understanding of the replication strategies used by viruses that infect epithelial and/or endothelial cells. PMID:26404354

  4. Chitosan encapsulation modulates the effect of capsaicin on the tight junctions of MDCK cells.

    PubMed

    Kaiser, M; Pereira, S; Pohl, L; Ketelhut, S; Kemper, B; Gorzelanny, C; Galla, H-J; Moerschbacher, B M; Goycoolea, F M

    2015-01-01

    Capsaicin has known pharmacological effects including the ability to reversibly open cellular tight junctions, among others. The aim of this study was to develop a strategy to enhance the paracellular transport of a substance with low permeability (FITC-dextran) across an epithelial cell monolayer via reversible opening of cellular tight junctions using a nanosystem comprised by capsaicin and of chitosan. We compared the biophysical properties of free capsaicin and capsaicin-loaded chitosan nanocapsules, including their cytotoxicity towards epithelial MDCK-C7 cells and their effect on the integrity of tight junctions, membrane permeability and cellular uptake. The cytotoxic response of MDCK-C7 cells to capsaicin at a concentration of 500 μM, which was evident for the free compound, is not observable following its encapsulation. The interaction between nanocapsules and the tight junctions of MDCK-C7 cells was investigated by impedance spectroscopy, digital holographic microscopy and structured illumination fluorescence microscopy. The nanocapsules modulated the interaction between capsaicin and tight junctions as shown by the different time profile of trans-epithelial electrical resistance and the enhanced permeability of monolayers incubated with FITC-dextran. Structured illumination fluorescence microscopy showed that the nanocapsules were internalized by MDCK-C7 cells. The capsaicin-loaded nanocapsules could be further developed as drug nanocarriers with enhanced epithelial permeability. PMID:25970096

  5. Chitosan encapsulation modulates the effect of capsaicin on the tight junctions of MDCK cells

    PubMed Central

    Kaiser, M.; Pereira, S.; Pohl, L.; Ketelhut, S.; Kemper, B.; Gorzelanny, C.; Galla, H. -J.; Moerschbacher, B. M.; Goycoolea, F. M.

    2015-01-01

    Capsaicin has known pharmacological effects including the ability to reversibly open cellular tight junctions, among others. The aim of this study was to develop a strategy to enhance the paracellular transport of a substance with low permeability (FITC-dextran) across an epithelial cell monolayer via reversible opening of cellular tight junctions using a nanosystem comprised by capsaicin and of chitosan. We compared the biophysical properties of free capsaicin and capsaicin-loaded chitosan nanocapsules, including their cytotoxicity towards epithelial MDCK-C7 cells and their effect on the integrity of tight junctions, membrane permeability and cellular uptake. The cytotoxic response of MDCK-C7 cells to capsaicin at a concentration of 500 μM, which was evident for the free compound, is not observable following its encapsulation. The interaction between nanocapsules and the tight junctions of MDCK-C7 cells was investigated by impedance spectroscopy, digital holographic microscopy and structured illumination fluorescence microscopy. The nanocapsules modulated the interaction between capsaicin and tight junctions as shown by the different time profile of trans-epithelial electrical resistance and the enhanced permeability of monolayers incubated with FITC-dextran. Structured illumination fluorescence microscopy showed that the nanocapsules were internalized by MDCK-C7 cells. The capsaicin-loaded nanocapsules could be further developed as drug nanocarriers with enhanced epithelial permeability. PMID:25970096

  6. Reversible Opening of Intercellular Junctions of Intestinal Epithelial and Brain Endothelial Cells With Tight Junction Modulator Peptides.

    PubMed

    Bocsik, Alexandra; Walter, Fruzsina R; Gyebrovszki, Andrea; Fülöp, Lívia; Blasig, Ingolf; Dabrowski, Sebastian; Ötvös, Ferenc; Tóth, András; Rákhely, Gábor; Veszelka, Szilvia; Vastag, Monika; Szabó-Révész, Piroska; Deli, Mária A

    2016-02-01

    The intercellular junctions restrict the free passage of hydrophilic compounds through the paracellular clefts. Reversible opening of the tight junctions of biological barriers is investigated as one of the ways to increase drug delivery to the systemic circulation or the central nervous system. Six peptides, ADT-6, HAV-6, C-CPE, 7-mer (FDFWITP, PN-78), AT-1002, and PN-159, acting on different integral membrane and linker junctional proteins were tested on Caco-2 intestinal epithelial cell line and a coculture model of the blood-brain barrier. All peptides tested in nontoxic concentrations showed a reversible tight junctions modulating effect and were effective to open the paracellular pathway for the marker molecules fluorescein and albumin. The change in the structure of cell-cell junctions was verified by immunostaining for occludin, claudin-4,-5, ZO-1, β-catenin, and E-cadherin. Expression levels of occludin and claudins were measured in both models. We could demonstrate a selectivity of C-CPE, ADT-6, and HAV-6 peptides for epithelial cells and 7-mer and AT-1002 peptides for brain endothelial cells. PN-159 was the most effective modulator of junctional permeability in both models possibly acting via claudin-1 and -5. Our results indicate that these peptides can be effectively and selectively used as potential pharmaceutical excipients to improve drug delivery across biological barriers. PMID:26869428

  7. Human alveolar epithelial cells expressing tight junctions to model the air-blood barrier.

    PubMed

    Kuehn, Anna; Kletting, Stephanie; de Souza Carvalho-Wodarz, Cristiane; Repnik, Urska; Griffiths, Gareth; Fischer, Ulrike; Meese, Eckart; Huwer, Hanno; Wirth, Dagmar; May, Tobias; Schneider-Daum, Nicole; Lehr, Claus-Michael

    2016-01-01

    This paper describes a new human alveolar epithelial cell line (hAELVi - human Alveolar Epithelial Lentivirus immortalized) with type I-like characteristics and functional tight junctions, suitable to model the air-blood barrier of the peripheral lung. Primary human alveolar epithelial cells were immortalized by a novel regimen, grown as monolayers on permeable filter supports and characterized morphologically, biochemically and biophysically. hAELVi cells maintain the capacity to form tight intercellular junctions, with high trans-epithelial electrical resistance (> 1000 Ω*cm²). The cells could be kept in culture over several days, up to passage 75, under liquid-liquid as well as air-liquid conditions. Ultrastructural analysis and real time PCR revealed type I-like cell properties, such as the presence of caveolae, expression of caveolin-1, and absence of surfactant protein C. Accounting for the barrier properties, inter-digitations sealed with tight junctions and desmosomes were also observed. Low permeability of the hydrophilic marker sodium fluorescein confirmed the suitability of hAELVi cells for in vitro transport studies across the alveolar epithelium. These results suggest that hAELVi cells reflect the essential features of the air-blood barrier, as needed for an alternative to animal testing to study absorption and toxicity of inhaled drugs, chemicals and nanomaterials. PMID:26985677

  8. Brain barriers: Crosstalk between complex tight junctions and adherens junctions

    PubMed Central

    Tietz, Silvia

    2015-01-01

    Unique intercellular junctional complexes between the central nervous system (CNS) microvascular endothelial cells and the choroid plexus epithelial cells form the endothelial blood–brain barrier (BBB) and the epithelial blood–cerebrospinal fluid barrier (BCSFB), respectively. These barriers inhibit paracellular diffusion, thereby protecting the CNS from fluctuations in the blood. Studies of brain barrier integrity during development, normal physiology, and disease have focused on BBB and BCSFB tight junctions but not the corresponding endothelial and epithelial adherens junctions. The crosstalk between adherens junctions and tight junctions in maintaining barrier integrity is an understudied area that may represent a promising target for influencing brain barrier function. PMID:26008742

  9. Influenza virus damages the alveolar barrier by disrupting epithelial cell tight junctions.

    PubMed

    Short, Kirsty R; Kasper, Jennifer; van der Aa, Stijn; Andeweg, Arno C; Zaaraoui-Boutahar, Fatiha; Goeijenbier, Marco; Richard, Mathilde; Herold, Susanne; Becker, Christin; Scott, Dana P; Limpens, Ronald W A L; Koster, Abraham J; Bárcena, Montserrat; Fouchier, Ron A M; Kirkpatrick, Charles James; Kuiken, Thijs

    2016-03-01

    A major cause of respiratory failure during influenza A virus (IAV) infection is damage to the epithelial-endothelial barrier of the pulmonary alveolus. Damage to this barrier results in flooding of the alveolar lumen with proteinaceous oedema fluid, erythrocytes and inflammatory cells. To date, the exact roles of pulmonary epithelial and endothelial cells in this process remain unclear.Here, we used an in vitro co-culture model to understand how IAV damages the pulmonary epithelial-endothelial barrier. Human epithelial cells were seeded on the upper half of a transwell membrane while human endothelial cells were seeded on the lower half. These cells were then grown in co-culture and IAV was added to the upper chamber.We showed that the addition of IAV (H1N1 and H5N1 subtypes) resulted in significant barrier damage. Interestingly, we found that, while endothelial cells mounted a pro-inflammatory/pro-coagulant response to a viral infection in the adjacent epithelial cells, damage to the alveolar epithelial-endothelial barrier occurred independently of endothelial cells. Rather, barrier damage was associated with disruption of tight junctions amongst epithelial cells, and specifically with loss of tight junction protein claudin-4.Taken together, these data suggest that maintaining epithelial cell integrity is key in reducing pulmonary oedema during IAV infection. PMID:26743480

  10. Electrophysiological effects of chilotoquine on tight junctions of immature rat Sertoli cells in vitro.

    PubMed

    Okanlawon, A; Dym, M

    1999-01-01

    We investigated the effect of CQ, an antimalarial drug with antiprotease activity, and NH4Cl, a related amines on the development of intercellular tight junctions in cultured immature rat Sertoli cells. Sertoli cells were seeded in serum-free defined medium at a density of 3 x 10(6) cells/0.64 cm2/well on Matrigel-covered Millicell-HA filters. CQ (1 microM and 2 microM) or NH4Cl (6.25 mM and 12 mM) was added to the outer (basal) compartment of the bicameral system either on day 1 or day 7 of the culture. Formation of tight junctions was monitored by measurement of the transepithelial resistance (TER) at 24 hr intervals using an impedance meter. TER in untreated controls was 50 omega/cm2 on day 1, increased progressively to 80 omega/cm2 by day 7 and plateaued until day 12. The cells treated from day 1 with CQ showed dose-dependent progressive increase in TER until day 12, reaching 191 omega/cm2 in cells treated with 1 microM concentration. In cells treated with CQ starting from day 7 of culture onwards, TER patterns were similar to those noted following exposure to chloroquine from day 1. Also in cultures containing NH4Cl, in comparison to the control, the increase in TER was significantly higher. These observations demonstrate that CQ and HN4Cl promote tight junction formation between immature rat Sertoli cells invitro suggesting that antiproteases may be involved in the formation of blood-testis barrier. PMID:11205819

  11. Lipoxin A4 prevents tight junction disruption and delays the colonization of cystic fibrosis bronchial epithelial cells by Pseudomonas aeruginosa.

    PubMed

    Higgins, Gerard; Fustero Torre, Coral; Tyrrell, Jean; McNally, Paul; Harvey, Brian J; Urbach, Valerie

    2016-06-01

    The specialized proresolution lipid mediator lipoxin A4 (LXA4) is abnormally produced in cystic fibrosis (CF) airways. LXA4 increases the CF airway surface liquid height and stimulates airway epithelial repair and tight junction formation. We report here a protective effect of LXA4 (1 nM) against tight junction disruption caused by Pseudomonas aeruginosa bacterial challenge together with a delaying action against bacterial invasion in CF airway epithelial cells from patients with CF and immortalized cell lines. Bacterial invasion and tight junction integrity were measured by gentamicin exclusion assays and confocal fluorescence microscopy in non-CF (NuLi-1) and CF (CuFi-1) bronchial epithelial cell lines and in primary CF cultures, grown under an air/liquid interface, exposed to either a clinical or laboratory strains of P. aeruginosa LXA4 delayed P. aeruginosa invasion and transepithelial migration in CF and normal bronchial epithelial cell cultures. These protective effects of LXA4 were inhibited by the ALX/FPR2 lipoxin receptor antagonist BOC-2. LXA4 prevented the reduction in mRNA biosynthesis and protein abundance of the tight junction protein ZO-1 and reduced tight junction disruption induced by P. aeruginsosa inoculation. In conclusion, LXA4 plays a protective role in bronchial epithelium by stimulating tight junction repair and by delaying and reducing the invasion of CF bronchial epithelial cells by P. aeruginsosa. PMID:27084849

  12. The tight junction: a multifunctional complex.

    PubMed

    Schneeberger, Eveline E; Lynch, Robert D

    2004-06-01

    Multicellular organisms are separated from the external environment by a layer of epithelial cells whose integrity is maintained by intercellular junctional complexes composed of tight junctions, adherens junctions, and desmosomes, whereas gap junctions provide for intercellular communication. The aim of this review is to present an updated overview of recent developments in the area of tight junction biology. In a relatively short time, our knowledge of the tight junction has evolved from a relatively simple view of it being a permeability barrier in the paracellular space and a fence in the plane of the plasma membrane to one of it acting as a multicomponent, multifunctional complex that is involved in regulating numerous and diverse cell functions. A group of integral membrane proteins-occludin, claudins, and junction adhesion molecules-interact with an increasingly complex array of tight junction plaque proteins not only to regulate paracellular solute and water flux but also to integrate such diverse processes as gene transcription, tumor suppression, cell proliferation, and cell polarity. PMID:15151915

  13. Exercise regulation of intestinal tight junction proteins.

    PubMed

    Zuhl, Micah; Schneider, Suzanne; Lanphere, Katherine; Conn, Carole; Dokladny, Karol; Moseley, Pope

    2014-06-01

    Gastrointestinal distress, such as diarrhoea, cramping, vomiting, nausea and gastric pain are common among athletes during training and competition. The mechanisms that cause these symptoms are not fully understood. The stress of heat and oxidative damage during exercise causes disruption to intestinal epithelial cell tight junction proteins resulting in increased permeability to luminal endotoxins. The endotoxin moves into the blood stream leading to a systemic immune response. Tight junction integrity is altered by the phosphoylation state of the proteins occludin and claudins, and may be regulated by the type of exercise performed. Prolonged exercise and high-intensity exercise lead to an increase in key phosphorylation enzymes that ultimately cause tight junction dysfunction, but the mechanisms are different. The purpose of this review is to (1) explain the function and physiology of tight junction regulation, (2) discuss the effects of prolonged and high-intensity exercise on tight junction permeability leading to gastrointestinal distress and (3) review agents that may increase or decrease tight junction integrity during exercise. PMID:23134759

  14. Alterations in cell cholesterol content modulate Ca(2+)-induced tight junction assembly by MDCK cells.

    PubMed

    Stankewich, M C; Francis, S A; Vu, Q U; Schneeberger, E E; Lynch, R D

    1996-08-01

    Transepithelial electrical resistance (TER), a measure of tight junction (TJ) barrier function, develops more rapidly and reaches higher values after preincubation of MDCK cells for 24 h with 2 microM Lovastatin (lova), an inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase. While this effect was attributed to a 30% fall in cholesterol (CH), possible effects of lova on the supply of prenyl group precursors could not be excluded. In the current study, strategies were devised to examine effects on TER of agents that simultaneously lower CH and increase the flux of intermediates through the CH biosynthetic pathway. Zaragozic acid, 20 microM, an inhibitor of squalene synthase known to increase the synthesis of isoprenoids and levels of prenylated proteins, lowered cell CH by 30% after 24 h, while accelerating development of TER in the same manner as lova. TER was also enhanced, despite a 23% increase in the rate of [3H]acetate incorporation into CH, when total CH was reduced by 45% during a 2-h incubation with 2 mM methyl beta-cyclodextrin (MBCD), an agent that stimulates CH efflux from cells. The fact that the rate of TER development was diminished when cell CH content was elevated by incubation with a complex of CH and MBCD is further evidence that this sterol modulates development of the epithelial barrier. Cell associated CH derived from the complex was similar to endogenous CH with respect to its accessibility to cholesterol oxidase. Lova's effect on TER was diminished when 5 micrograms/mL of CH was added to the medium during the last 11 h of incubation with lova. PMID:8869884

  15. Current trends in salivary gland tight junctions.

    PubMed

    Baker, Olga J

    2016-01-01

    Tight junctions form a continuous intercellular barrier between epithelial cells that is required to separate tissue spaces and regulate selective movement of solutes across the epithelium. They are composed of strands containing integral membrane proteins (e.g., claudins, occludin and tricellulin, junctional adhesion molecules and the coxsackie adenovirus receptor). These proteins are anchored to the cytoskeleton via scaffolding proteins such as ZO-1 and ZO-2. In salivary glands, tight junctions are involved in polarized saliva secretion and barrier maintenance between the extracellular environment and the glandular lumen. This review seeks to provide an overview of what is currently known, as well as the major questions and future research directions, regarding tight junction expression, organization and function within salivary glands. PMID:27583188

  16. Tight junction protein expression and barrier properties of immortalized mouse brain microvessel endothelial cells.

    PubMed

    Brown, Rachel C; Morris, Andrew P; O'Neil, Roger G

    2007-01-26

    Understanding the molecular and biochemical mechanisms regulating the blood-brain barrier is aided by in vitro model systems. Many studies have used primary cultures of brain microvessel endothelial cells for this purpose. However, primary cultures limit the generation of material for molecular and biochemical assays since cells grow slowly, are prone to contamination by other neurovascular unit cells, and lose blood-brain barrier characteristics when passaged. To address these issues, immortalized cell lines have been generated. In these studies, we assessed the suitability of the immortalized mouse brain endothelial cell line, bEnd3, as a blood-brain barrier model. RT-PCR and immunofluorescence indicated expression of multiple tight junction proteins. bEnd3 cells formed barriers to radiolabeled sucrose, and responded like primary cultures to disrupting stimuli. Exposing cells to serum-free media on their basolateral side significantly decreased paracellular permeability; astrocyte-conditioned media did not enhance barrier properties. The serum-free media-induced decrease in permeability was correlated with an increase in claudin-5 and zonula occludens-1 immunofluorescence at cell-cell contracts. We conclude that bEnd3 cells are an attractive candidate as a model of the blood-brain barrier due to their rapid growth, maintenance of blood-brain barrier characteristics over repeated passages, formation of functional barriers and amenability to numerous molecular interventions. PMID:17169347

  17. Molecular organization of tricellular tight junctions.

    PubMed

    Furuse, Mikio; Izumi, Yasushi; Oda, Yukako; Higashi, Tomohito; Iwamoto, Noriko

    2014-01-01

    When the apicolateral border of epithelial cells is compared with a polygon, its sides correspond to the apical junctional complex, where cell adhesion molecules assemble from the plasma membranes of two adjacent cells. On the other hand, its vertices correspond to tricellular contacts, where the corners of three cells meet. Vertebrate tricellular contacts have specialized structures of tight junctions, termed tricellular tight junctions (tTJs). tTJs were identified by electron microscopic observations more than 40 years ago, but have been largely forgotten in epithelial cell biology since then. The identification of tricellulin and angulin family proteins as tTJ-associated membrane proteins has enabled us to study tTJs in terms of not only the paracellular barrier function but also unknown characteristics of epithelial cell corners via molecular biological approaches. PMID:25097825

  18. Roles of NMDARs in maintenance of the mouse cerebrovascular endothelial cell-constructed tight junction barrier.

    PubMed

    Chen, Jui-Tai; Chen, Tyng-Guey; Chang, Yung-Chia; Chen, Cheng-Yu; Chen, Ruei-Ming

    2016-01-01

    Glutamate can activate NMDA receptor (NMDAR) and subsequently induces excitotoxic neuron loss. However, roles of NMDARs in the blood-brain barrier (BBB) are little known. This study used a mouse cerebrovascular endothelial cell (MCEC) model to evaluate the effects of NMDAR activation on maintenance of the BBB and its possible mechanisms. Analysis of confocal microscopy revealed expressions of NMDAR subunits, GluN1 and GLUN2B, in MCECs. An immunoblot assay further showed the existence of GluN1 in plasma membranes of MCECs. In brain tissues, a confocal microscopic analysis demonstrated co-localization of GluN1 and factor VIII, a biomarker of MCECs. In addition, GluN1 mRNA was detected in MCECs and the brain. Functional assays showed that exposure of MCECs to NMDA increased calcium influx. Separately, NMDA suppressed transendothelial electrical resistance values, levels of occludin, and occludin tight junctions. As to the mechanism, NMDA stimulated sequential phosphorylations of extracellular signal-regulated kinase (ERK)1/2 and mitogen-activated ERK (MEK)1. Interestingly, amounts of matrix metalloproteinase (MMP)2 and MMP9 in MCECs were augmented by NMDA. The NMDA-induced alterations in ERK1/2 phosphorylation and occludin levels were reversed by pretreatment with PD98059, a MEK inhibitor, and MK-801, a NMDAR antagonist, respectively. Therefore, this study shows the functional presence of NMDARs in MCECs, and NMDAR activation can disrupt the MCEC-constructed tight junction barrier via activation of the MEK1/2-ERK1/2 signaling pathway and upregulation of MMP2/9 expressions. PMID:26655082

  19. Claudin-11 and occludin are major contributors to Sertoli cell tight junction function, in vitro.

    PubMed

    McCabe, Mark J; Foo, Caroline Fh; Dinger, Marcel E; Smooker, Peter M; Stanton, Peter G

    2016-01-01

    The Sertoli cell tight junction (TJ) is the key component of the blood-testis barrier, where it sequesters developing germ cells undergoing spermatogenesis within the seminiferous tubules. Hormonally regulated claudin-11 is a critical transmembrane protein involved in barrier function and its murine knockout results in infertility. We aimed to assess quantitatively the significance of the contribution of claudin-11 to TJ function, in vitro, using siRNA-mediated gene silencing. We also conducted an analysis of the contribution of occludin, another intrinsic transmembrane protein of the TJ. Silencing of claudin-11 and/or occludin was conducted using siRNA in an immature rat Sertoli cell culture model. Transepithelial electrical resistance was used to assess quantitatively TJ function throughout the culture. Two days after siRNA treatment, cells were fixed for immunocytochemical localization of junction proteins or lyzed for RT-PCR assessment of mRNA expression. Silencing of claudin-11, occludin, or both resulted in significant decreases in TJ function of 55% (P < 0.01), 51% (P < 0.01), and 62% (P < 0.01), respectively. Data were concomitant with significant decreases in mRNA expression and marked reductions in the localization of targeted proteins to the Sertoli cell TJ. We provide quantitative evidence that claudin-11 contributes significantly (P < 0.01) to Sertoli cell TJ function in vitro. Interestingly, occludin, which is hormonally regulated but not implicated in infertility until late adulthood, is also a significant (P < 0.01) contributor to barrier function. Our data are consistent with in vivo studies that clearly demonstrate a role for these proteins in maintaining normal TJ barrier structure and function. PMID:26585695

  20. Claudin-11 and occludin are major contributors to Sertoli cell tight junction function, in vitro

    PubMed Central

    McCabe, Mark J; Foo, Caroline FH; Dinger, Marcel E; Smooker, Peter M; Stanton, Peter G

    2016-01-01

    The Sertoli cell tight junction (TJ) is the key component of the blood-testis barrier, where it sequesters developing germ cells undergoing spermatogenesis within the seminiferous tubules. Hormonally regulated claudin-11 is a critical transmembrane protein involved in barrier function and its murine knockout results in infertility. We aimed to assess quantitatively the significance of the contribution of claudin-11 to TJ function, in vitro, using siRNA-mediated gene silencing. We also conducted an analysis of the contribution of occludin, another intrinsic transmembrane protein of the TJ. Silencing of claudin-11 and/or occludin was conducted using siRNA in an immature rat Sertoli cell culture model. Transepithelial electrical resistance was used to assess quantitatively TJ function throughout the culture. Two days after siRNA treatment, cells were fixed for immunocytochemical localization of junction proteins or lyzed for RT-PCR assessment of mRNA expression. Silencing of claudin-11, occludin, or both resulted in significant decreases in TJ function of 55% (P < 0.01), 51% (P < 0.01), and 62% (P < 0.01), respectively. Data were concomitant with significant decreases in mRNA expression and marked reductions in the localization of targeted proteins to the Sertoli cell TJ. We provide quantitative evidence that claudin-11 contributes significantly (P < 0.01) to Sertoli cell TJ function in vitro. Interestingly, occludin, which is hormonally regulated but not implicated in infertility until late adulthood, is also a significant (P < 0.01) contributor to barrier function. Our data are consistent with in vivo studies that clearly demonstrate a role for these proteins in maintaining normal TJ barrier structure and function. PMID:26585695

  1. TRAF4 Is a Novel Phosphoinositide-Binding Protein Modulating Tight Junctions and Favoring Cell Migration

    PubMed Central

    Rousseau, Adrien; McEwen, Alastair G.; Poussin-Courmontagne, Pierre; Rognan, Didier; Nominé, Yves; Rio, Marie-Christine; Tomasetto, Catherine; Alpy, Fabien

    2013-01-01

    Tumor necrosis factor (TNF) receptor-associated factor 4 (TRAF4) is frequently overexpressed in carcinomas, suggesting a specific role in cancer. Although TRAF4 protein is predominantly found at tight junctions (TJs) in normal mammary epithelial cells (MECs), it accumulates in the cytoplasm of malignant MECs. How TRAF4 is recruited and functions at TJs is unclear. Here we show that TRAF4 possesses a novel phosphoinositide (PIP)-binding domain crucial for its recruitment to TJs. Of interest, this property is shared by the other members of the TRAF protein family. Indeed, the TRAF domain of all TRAF proteins (TRAF1 to TRAF6) is a bona fide PIP-binding domain. Molecular and structural analyses revealed that the TRAF domain of TRAF4 exists as a trimer that binds up to three lipids using basic residues exposed at its surface. Cellular studies indicated that TRAF4 acts as a negative regulator of TJ and increases cell migration. These functions are dependent from its ability to interact with PIPs. Our results suggest that TRAF4 overexpression might contribute to breast cancer progression by destabilizing TJs and favoring cell migration. PMID:24311986

  2. Effect of chum salmon egg lectin on tight junctions in Caco-2 cell monolayers.

    PubMed

    Nemoto, Ryo; Yamamoto, Shintaro; Ogawa, Tomohisa; Naude, Ryno; Muramoto, Koji

    2015-01-01

    The effect of a chum salmon egg lectin (CSL3) on tight junction (TJ) of Caco-2 cell monolayers was investigated. The lectin opened TJ as indicated by the decrease of the transepithelial electrical resistance (TER) value and the increase of the permeation of lucifer yellow, which is transported via the TJ-mediated paracellular pathway. The effects of CSL3 were inhibited by the addition of 10 mM L-rhamnose or D-galactose which were specific sugars for CSL3. The lectin increased the intracellular Ca2+ of Caco-2 cell monolayers, that could be inhibited by the addition of L-rhamnose. The fluorescence immunostaining of β-actin in Caco-2 cell monolayers revealed that the cytoskeleton was changed by the CSL3 treatment, suggesting that CSL3 depolymerized β-actin to cause reversible TJ structural and functional disruption. Although Japanese jack bean lectin and wheat germ lectin showed similar effects in the decrease of the TER values and the increase of the intracellular Ca2+, they could not be inhibited by the same concentrations of simple sugars, such as D-glucose and N-acetyl-D-glucosamine. PMID:25951005

  3. Identification and dynamic regulation of tight junction protein expression in human neural stem cells.

    PubMed

    Watters, Andrea K; Rom, Slava; Hill, Jeremy D; Dematatis, Marie K; Zhou, Yu; Merkel, Steven F; Andrews, Allison M; Cena, Jonathan; Potula, Raghava; Skuba, Andrew; Son, Young-Jin; Persidsky, Yuri; Ramirez, Servio H

    2015-06-15

    Recent reports indicate that neural stem cells (NSCs) exist in a cluster-like formation in close proximity to cerebral microvessels. Similar appearing clusters can be seen ex vivo in NSC cultures termed neurospheres. It is known that this neurosphere configuration is important for preserving stemness and a proliferative state. How NSCs form neurospheres or neuroclusters remains largely undetermined. In this study, we show that primary human NSCs express the tight junction proteins (TJPs): zonula occludens-1 (ZO-1), occludin, claudin-1, -3, -5, and -12. The relative mRNA expression was measured by quantitative polymerase chain reaction, and protein expression was confirmed by flow cytometry and immunofluorescence microscopy. Our results show that downregulation of TJPs occurs as neuronal differentiation is induced, suggesting that control of TJPs may be tied to the neuronal differentiation program. Importantly, upon specific knockdown of the accessory TJP, ZO-1, undifferentiated NSCs showed decreased levels of key stem cell markers. Taken together, our results indicate that TJPs possibly aid in maintaining the intercellular configuration of NSCs and that reduction in TJP expression consequently affects the stemness status. PMID:25892136

  4. Tight junction between endothelial cells: the interaction between nanoparticles and blood vessels.

    PubMed

    Zhang, Yue; Yang, Wan-Xi

    2016-01-01

    Since nanoparticles are now widely applied as food additives, in cosmetics and other industries, especially in medical therapy and diagnosis, we ask here whether nanoparticles can cause several adverse effects to human health. In this review, based on research on nanotoxicity, we mainly discuss the negative influence of nanoparticles on blood vessels in several aspects and the potential mechanism for nanoparticles to penetrate endothelial layers of blood vessels, which are the sites of phosphorylation of tight junction proteins (claudins, occludins, and ZO (Zonula occludens)) proteins, oxidative stress and shear stress. We propose a connection between the presence of nanoparticles and the regulation of the tight junction, which might be the key approach for nanoparticles to penetrate endothelial layers and then have an impact on other tissues and organs. PMID:27335757

  5. The tight junction protein CAR regulates cardiac conduction and cell–cell communication

    PubMed Central

    Lisewski, Ulrike; Shi, Yu; Wrackmeyer, Uta; Fischer, Robert; Chen, Chen; Schirdewan, Alexander; Jüttner, Rene; Rathjen, Fritz; Poller, Wolfgang; Radke, Michael H.; Gotthardt, Michael

    2008-01-01

    The Coxsackievirus-adenovirus receptor (CAR) is known for its role in virus uptake and as a protein of the tight junction. It is predominantly expressed in the developing brain and heart and reinduced upon cardiac remodeling in heart disease. So far, the physiological functions of CAR in the adult heart are largely unknown. We have generated a heart-specific inducible CAR knockout (KO) and found impaired electrical conduction between atrium and ventricle that increased with progressive loss of CAR. The underlying mechanism relates to the cross talk of tight and gap junctions with altered expression and localization of connexins that affect communication between CAR KO cardiomyocytes. Our results indicate that CAR is not only relevant for virus uptake and cardiac remodeling but also has a previously unknown function in the propagation of excitation from the atrium to the ventricle that could explain the association of arrhythmia and Coxsackievirus infection of the heart. PMID:18794341

  6. Tight junction between endothelial cells: the interaction between nanoparticles and blood vessels

    PubMed Central

    Zhang, Yue

    2016-01-01

    Summary Since nanoparticles are now widely applied as food additives, in cosmetics and other industries, especially in medical therapy and diagnosis, we ask here whether nanoparticles can cause several adverse effects to human health. In this review, based on research on nanotoxicity, we mainly discuss the negative influence of nanoparticles on blood vessels in several aspects and the potential mechanism for nanoparticles to penetrate endothelial layers of blood vessels, which are the sites of phosphorylation of tight junction proteins (claudins, occludins, and ZO (Zonula occludens)) proteins, oxidative stress and shear stress. We propose a connection between the presence of nanoparticles and the regulation of the tight junction, which might be the key approach for nanoparticles to penetrate endothelial layers and then have an impact on other tissues and organs. PMID:27335757

  7. Role of stretch on tight junction structure in alveolar epithelial cells.

    PubMed

    Cavanaugh, K J; Oswari, J; Margulies, S S

    2001-11-01

    Previous studies have demonstrated that high tidal volumes can cause interstitial and alveolar edema, with degradation of pulmonary epithelial barrier integrity. Separate studies have shown that F-actin disruption and decreased intracellular ATP (ATP(i)) levels in the nonpulmonary epithelium can increase tight junction (TJ) permeability. We hypothesized that large epithelial stretch perturbs ATP(i) and actin architecture, each of which adversely affects TJ structure, and thus increases TJ permeability. Primary alveolar epithelial cells were subjected to a uniform 25% or 37% change in surface area (DeltaSA), cyclic biaxial stretch (15 cycles/min) for 1 h, or treated with either glycolytic metabolic inhibitors or cytoskeletal disrupting agents. Unstretched, untreated cells served as controls. Changes in the TJ proteins occludin and ZO-1 were determined by immunocytochemical evaluation. A stretch amplitude of 25% DeltaSA did not produce any significant cytologic changes compared with controls, but an amplitude of 37% DeltaSA stretch resulted in significant decreases in the intensity of the peripheral occludin band, the degree of cell-cell attachment (CCA), and total cellular occludin content. ATP depletion significantly diminished the occludin band intensity and decreased CCA. Actin disruption did not affect TJ protein band intensities (although the occludin distribution became punctate) but altered CCA. Untreated cells stretched cyclically at 25% or 50% DeltaSA for 1 h had significantly decreased ATP(i) compared with unstretched controls. These results suggest that stretch-induced ATP(i) reduction and actin perturbation disrupt TJ structure and CCA, which may lead to the alveolar flooding associated with high tidal volumes. PMID:11713100

  8. Tight junction, selective permeability, and related diseases.

    PubMed

    Krug, Susanne M; Schulzke, Jörg D; Fromm, Michael

    2014-12-01

    The tight junction forms a barrier against unlimited paracellular passage but some of the tight junction proteins just do the opposite, they form extracellular channels zigzagging between lateral membranes of neighboring cells. All of these channel-forming proteins and even some of the barrier formers exhibit selectivity, which means that they prefer certain substances over others. All channel formers exhibit at least one of the three types of selectivity: for cations (claudin-2, -10b, -15), for anions (claudin-10a, -17) or for water (claudin-2). Also some, but not all, barrier-forming claudins are charge-selective (claudin-4, -8, -14). Moreover, occludin and tricellulin turned out to be relevant for barrier formation against macromolecule passage. Tight junction proteins are dysregulated or can be genetically defective in numerous diseases, which may lead to three effects: (i) impaired paracellular transport e.g. causing magnesium loss in the kidney, (ii) increased paracellular transport of solutes and water e.g. causing leak-flux diarrhea in the intestine, and (iii) increased permeability to large molecules e.g. unwanted intestinal pathogen uptake fueling inflammatory processes. This review gives an overview on the properties of tight junction proteins featuring selective permeability, and in this context explains how these proteins induce or aggravate diseases. PMID:25220018

  9. Tight junction proteins expression and modulation in immune cells and multiple sclerosis

    PubMed Central

    Mandel, Ilana; Paperna, Tamar; Glass-Marmor, Lea; Volkowich, Anat; Badarny, Samih; Schwartz, Ilya; Vardi, Pnina; Koren, Ilana; Miller, Ariel

    2012-01-01

    Abstract The tight junction proteins (TJPs) are major determinants of endothelial cells comprising physiological vascular barriers such as the blood–brain barrier, but little is known about their expression and role in immune cells. In this study we assessed TJP expression in human leukocyte subsets, their induction by immune activation and modulation associated with autoimmune disease states and therapies. A consistent expression of TJP complexes was detected in peripheral blood leukocytes (PBLs), predominantly in B and T lymphocytes and monocytes, whereas the in vitro application of various immune cell activators led to an increase of claudin 1 levels, yet not of claudin 5. Claudins 1 and 5 levels were elevated in PBLs of multiple sclerosis (MS) patients in relapse, relative to patients in remission, healthy controls and patients with other neurological disorders. Interestingly, claudin 1 protein levels were elevated also in PBLs of patients with type 1 diabetes (T1D). Following glucocorticoid treatment of MS patients in relapse, RNA levels of JAM3 and CLDN5 and claudin 5 protein levels in PBLs decreased. Furthermore, a correlation between CLDN5 pre-treatment levels and clinical response phenotype to interferon-β therapy was detected. Our findings indicate that higher levels of leukocyte claudins are associated with immune activation and specifically, increased levels of claudin 5 are associated with MS disease activity. This study highlights a potential role of leukocyte TJPs in physiological states, and autoimmunity and suggests they should be further evaluated as biomarkers for aberrant immune activity and response to therapy in immune-mediated diseases such as MS. PMID:21762372

  10. The tight junction protein ZO-2 and Janus kinase 1 mediate intercellular communications in vascular smooth muscle cells

    SciTech Connect

    Tkachuk, Natalia; Tkachuk, Sergey; Patecki, Margret; Kusch, Angelika; Korenbaum, Elena; Haller, Hermann; Dumler, Inna

    2011-07-08

    Highlights: {yields} The tight junction protein ZO-2 associates with Jak1 in vascular smooth muscle cells via ZO-2 N-terminal fragment. {yields} Jak1 mediates ZO-2 tyrosine phosphorylation and ZO-2 localization to the sites of homotypic intercellular contacts. {yields} The urokinase receptor uPAR regulates ZO-2/Jak1 functional association. {yields} The ZO-2/Jak1/uPAR signaling complex is required for vascular smooth muscle cells functional network formation. -- Abstract: Recent evidence points to a multifunctional role of ZO-2, the tight junction protein of the MAGUK (membrane-associated guanylate kinase-like) family. Though ZO-2 has been found in cell types lacking tight junction structures, such as vascular smooth muscle cells (VSMC), little is known about ZO-2 function in these cells. We provide evidence that ZO-2 mediates specific homotypic cell-to-cell contacts between VSMC. Using mass spectrometry we found that ZO-2 is associated with the non-receptor tyrosine kinase Jak1. By generating specific ZO-2 constructs we further found that the N-terminal fragment of ZO-2 molecule is responsible for this interaction. Adenovirus-based expression of Jak1 inactive mutant demonstrated that Jak1 mediates ZO-2 tyrosine phosphorylation. By means of RNA silencing, expression of Jak1 mutant form and fluorescently labeled ZO-2 fusion protein we further specified that active Jak1, but not Jak1 inactive mutant, mediates ZO-2 localization to the sites of intercellular contacts. We identified the urokinase receptor uPAR as a pre-requisite for these cellular events. Functional requirement of the revealed signaling complex for VSMC network formation was confirmed in experiments using Matrigel and in contraction assay. Our findings imply involvement of the ZO-2 tight junction independent signaling complex containing Jak1 and uPAR in VSMC intercellular communications. This mechanism may contribute to vascular remodeling in occlusive cardiovascular diseases and in arteriogenesis.

  11. Zoledronic acid suppresses metastasis of esophageal squamous cell carcinoma cells through upregulating the tight junction protein occludin.

    PubMed

    Lin, Canfeng; Xin, Shubo; Qin, Xin; Li, Haijun; Lin, Lianxing; You, Yanjie

    2016-08-01

    We have previously demonstrated the radio-sensitizing effect of zoledronic acid (ZOL), a third generation bisphosphonate, on human esophageal squamous cell carcinoma (ESCC) cells. Here we show that ZOL suppresses metastatic progression of ESCC cells mainly through up-regulating the tight junction protein occludin. Exposure to ZOL at lower concentrations dramatically reduced migration and invasion of ESCC cells. In addition, ZOL treatment decreased the expression of mesenchymal markers, vimentin and N-cadherin, while increased the expression of the tight junction protein occludin. Moreover, ectopic expression of Slug, a well-known transcriptional repressor of occludin, partially but significantly abrogated the effect of ZOL on occludin expression and subsequently rescued the malignant metastatic phenotype, suggesting that Slug is one of the mediators underlying the anti-metastatic effect of ZOL. The present study is the first to report the significance of ZOL on ESCC metastasis. These data are promising for the future application of this drug regimen in patients with ESCC. PMID:26204820

  12. HIV-Associated Disruption of Tight and Adherens Junctions of Oral Epithelial Cells Facilitates HSV-1 Infection and Spread

    PubMed Central

    Sufiawati, Irna; Tugizov, Sharof M.

    2014-01-01

    Herpes simplex virus (HSV) types 1 and 2 are the most common opportunistic infections in HIV/AIDS. In these immunocompromised individuals, HSV-1 reactivates and replicates in oral epithelium, leading to oral disorders such as ulcers, gingivitis, and necrotic lesions. Although the increased risk of HSV infection may be mediated in part by HIV-induced immune dysfunction, direct or indirect interactions of HIV and HSV at the molecular level may also play a role. In this report we show that prolonged interaction of the HIV proteins tat and gp120 and cell-free HIV virions with polarized oral epithelial cells leads to disruption of tight and adherens junctions of epithelial cells through the mitogen-activated protein kinase signaling pathway. HIV-induced disruption of oral epithelial junctions facilitates HSV-1 paracellular spread between the epithelial cells. Furthermore, HIV-associated disruption of adherens junctions exposes sequestered nectin-1, an adhesion protein and critical receptor for HSV envelope glycoprotein D (gD). Exposure of nectin-1 facilitates binding of HSV-1 gD, which substantially increases HSV-1 infection of epithelial cells with disrupted junctions over that of cells with intact junctions. Exposed nectin-1 from disrupted adherens junctions also increases the cell-to-cell spread of HSV-1 from infected to uninfected oral epithelial cells. Antibodies to nectin-1 and HSV-1 gD substantially reduce HSV-1 infection and cell-to-cell spread, indicating that HIV-promoted HSV infection and spread are mediated by the interaction of HSV gD with HIV-exposed nectin-1. Our data suggest that HIV-associated disruption of oral epithelial junctions may potentiate HSV-1 infection and its paracellular and cell-to-cell spread within the oral mucosal epithelium. This could be one of the possible mechanisms of rapid development of HSV-associated oral lesions in HIV-infected individuals. PMID:24586397

  13. HIV-associated disruption of tight and adherens junctions of oral epithelial cells facilitates HSV-1 infection and spread.

    PubMed

    Sufiawati, Irna; Tugizov, Sharof M

    2014-01-01

    Herpes simplex virus (HSV) types 1 and 2 are the most common opportunistic infections in HIV/AIDS. In these immunocompromised individuals, HSV-1 reactivates and replicates in oral epithelium, leading to oral disorders such as ulcers, gingivitis, and necrotic lesions. Although the increased risk of HSV infection may be mediated in part by HIV-induced immune dysfunction, direct or indirect interactions of HIV and HSV at the molecular level may also play a role. In this report we show that prolonged interaction of the HIV proteins tat and gp120 and cell-free HIV virions with polarized oral epithelial cells leads to disruption of tight and adherens junctions of epithelial cells through the mitogen-activated protein kinase signaling pathway. HIV-induced disruption of oral epithelial junctions facilitates HSV-1 paracellular spread between the epithelial cells. Furthermore, HIV-associated disruption of adherens junctions exposes sequestered nectin-1, an adhesion protein and critical receptor for HSV envelope glycoprotein D (gD). Exposure of nectin-1 facilitates binding of HSV-1 gD, which substantially increases HSV-1 infection of epithelial cells with disrupted junctions over that of cells with intact junctions. Exposed nectin-1 from disrupted adherens junctions also increases the cell-to-cell spread of HSV-1 from infected to uninfected oral epithelial cells. Antibodies to nectin-1 and HSV-1 gD substantially reduce HSV-1 infection and cell-to-cell spread, indicating that HIV-promoted HSV infection and spread are mediated by the interaction of HSV gD with HIV-exposed nectin-1. Our data suggest that HIV-associated disruption of oral epithelial junctions may potentiate HSV-1 infection and its paracellular and cell-to-cell spread within the oral mucosal epithelium. This could be one of the possible mechanisms of rapid development of HSV-associated oral lesions in HIV-infected individuals. PMID:24586397

  14. Production of ammonium by Helicobacter pylori mediates occludin processing and disruption of tight junctions in Caco-2 cells.

    PubMed

    Lytton, Simon D; Fischer, Wolfgang; Nagel, Wolfram; Haas, Rainer; Beck, Franz X

    2005-10-01

    Tight junctions, paracellular permeability barriers that define epithelial cell polarity, play an essential role in transepithelial transport, cell-cell adhesion and lymphocyte transmigration. They are also important for the maintenance of innate immune defence and intestinal antigen uptake. Ammonium (NH4+) is elevated in the gastric aspirates of Helicobacter pylori-infected patients and has been implicated in the disruption of tight-junction functional integrity and the induction of gastric mucosal damage during H. pylori infection. The precise mechanism of the effect of ammonium and the molecular targets of ammonium in host tissue are not yet identified. To study the effects of ammonium on epithelial tight junctions, the human colon carcinoma cell line Caco-2 was cultured on permeable supports and the transepithelial resistance (TER) was measured at different time intervals following exposure to ammonium salts or H. pylori-derived ammonium. A biphasic response to treatment with ammonium was found. Acute exposure to ammonium salts or NH3/NH4+ derived from urea metabolism by wild-type H. pylori resulted in a 20-30 % decrease in TER. After 24 h, the NH4Cl-treated cells showed a partial recovery of TER. In contrast, the control culture, or cultures that were exposed to supernatants derived from urease-deficient H. pylori, showed no significant decrease in TER. Occludin-specific immunoblots revealed the expression of a low-molecular-weight form of occludin of 42 kDa upon NH3/NH4+ exposure. The results indicate that modulation of tight-junction function by H. pylori is ammonium-dependent and linked to the accumulation of a low-molecular-weight and detergent-soluble form of occludin. PMID:16207910

  15. Angelica archengelica extract induced perturbation of rat skin and tight junctional protein (ZO-1) of HaCaT cells

    PubMed Central

    Kaushal, N.; Naz, S.; Tiwary, AK.

    2011-01-01

    Background and purpose of the study Herbal enhancers compared to the synthetic ones have shown less toxis effects. Coumarins have been shown at concentrations inhibiting phospoliphase C-Y (Phc-Y) are able to enhance tight junction (TJ) permeability due to hyperpoalation of Zonolous Occludense-1 (ZO-1) proteins. The purpose of this study was to evaluate the influence of ethanolic extract of Angelica archengelica (AA-E) which contain coumarin on permeation of repaglinide across rat epidermis and on the tight junction plaque protein ZO-1 in HaCaT cells. Methods Transepidermal water loss (TEWL) from the rat skin treated with different concentrations of AA-E was assessed by Tewameter. Scanning and Transmission Electron Microscopy (TEM) on were performed on AA-E treated rat skin portions. The possibility of AA-E influence on the architecture of tight junctions by adverse effect on the cytoplasmic ZO-1 in HaCaT cells was investigated. Finally, the systemic delivery of repaglinide from the optimized transdermal formulation was investigated in rats. Results The permeation of repaglinide across excised rat epidermis was 7-fold higher in the presence of AA-E (5% w/v) as compared to propylene glycol:ethanol (7:3) mixture. The extract was found to perturb the lipid microconstituents in both excised and viable rat skin, although, the effect was less intense in the later. The enhanced permeation of repaglinide across rat epidermis excised after treatment with AA-E (5% w/v) for different periods was in concordance with the high TEWL values of similarly treated viable rat skin. Further, the observed increase in intercellular space, disordering of lipid structure and corneocyte detachment indicated considerable effect on the ultrastructure of rat epidermis. Treatment of HaCaT cell line with AA-E (0.16% w/v) for 6 hrs influenced ZO-1 as evidenced by reduced immunofluorescence of anti-TJP1 (ZO-1) antibody in Confocal Laser Scanning Microscopy studies (CLSM) studies. The plasma

  16. Tricellular Tight Junctions in the Inner Ear

    PubMed Central

    2016-01-01

    Tight junctions (TJs) are structures that seal the space between the epithelial cell sheets. In the inner ear, the barrier function of TJs is indispensable for the separation of the endolymphatic and perilymphatic spaces, which is essential for the generation and maintenance of the endocochlear potential (EP). TJs are formed by the intercellular binding of membrane proteins, known as claudins, and mutations in these proteins cause deafness in humans and mice. Within the epithelial cell sheet, however, a bound structure is present at the site where the corners of three cells meet (tricellular tight junctions (tTJs)), and the maintenance of the barrier function at this location cannot be explained by the claudins alone. Tricellulin and the angulin family of proteins (angulin-1/LSR, angulin-2/ILDR1, and angulin-3/ILDR2) have been identified as tTJ-associated proteins. Tricellulin and ILDR1 are localized at the tTJ and alterations in these proteins have been reported to be involved in deafness. In this review, we will present the current state of knowledge for tTJs. PMID:27195292

  17. Tricellular Tight Junctions in the Inner Ear.

    PubMed

    Kitajiri, Shin-Ichiro; Katsuno, Tatsuya

    2016-01-01

    Tight junctions (TJs) are structures that seal the space between the epithelial cell sheets. In the inner ear, the barrier function of TJs is indispensable for the separation of the endolymphatic and perilymphatic spaces, which is essential for the generation and maintenance of the endocochlear potential (EP). TJs are formed by the intercellular binding of membrane proteins, known as claudins, and mutations in these proteins cause deafness in humans and mice. Within the epithelial cell sheet, however, a bound structure is present at the site where the corners of three cells meet (tricellular tight junctions (tTJs)), and the maintenance of the barrier function at this location cannot be explained by the claudins alone. Tricellulin and the angulin family of proteins (angulin-1/LSR, angulin-2/ILDR1, and angulin-3/ILDR2) have been identified as tTJ-associated proteins. Tricellulin and ILDR1 are localized at the tTJ and alterations in these proteins have been reported to be involved in deafness. In this review, we will present the current state of knowledge for tTJs. PMID:27195292

  18. Transmissible gastroenteritis virus and porcine epidemic diarrhoea virus infection induces dramatic changes in the tight junctions and microfilaments of polarized IPEC-J2 cells.

    PubMed

    Zhao, Shanshan; Gao, Junkai; Zhu, Liqi; Yang, Qian

    2014-11-01

    Viral infection converts the normal constitution of a cell to optimise viral entry, replication, and virion production. These conversions contain alterations or disruptions of the tight and adherens junctions between cells as part of their pathogenesis, and reorganise cellular microfilaments that initiate, sustain and spread the viral infections and so on. Using porcine epidemic diarrhoea virus (PEDV), transmissible gastroenteritis virus (TGEV) and a model of normal intestinal epithelial cells (IPEC-J2), we researched the interaction between tight and adherens junctions and microfilaments of IPEC-J2 cells with these viruses. In our work, the results showed that IPEC-J2 cells were susceptible to TGEV and PEDV infection. And TGEV could impair the barrier integrity of IPEC-J2 cells at early stages of infection through down-regulating some proteins of tight and adherens junctions, while PEDV cloud cause a slight of damage in the integrity of epithelial barrier. In addition, they also could affect the microfilaments remodelling of IPEC-J2 cells, and the drug-interfered microfilaments could inhibit viral replication and release. Furthermore, PEDV+TGEV co-infection was more aggravating to damage of tight junctions and remodelling of microfilaments than their single infection. Finally, the PEDV and TGEV infection affected the MAPK pathway, and inhibition of MAPK pathway regulated the changes of tight junctions and microfilaments of cells. These studies provide a new insight from the perspective of the epithelial barrier and microfilaments into the pathogenesis of PEDV and TGEV. PMID:25173696

  19. Cortisol affects tight junction morphology between pavement cells of rainbow trout gills in single-seeded insert culture.

    PubMed

    Sandbichler, Adolf Michael; Farkas, Julia; Salvenmoser, Willi; Pelster, Bernd

    2011-12-01

    A primary culture system of rainbow trout gill pavement cells grown on permeable support (single-seeded insert, SSI) was used to examine histological and physiological changes induced by the addition of the corticosteroid hormone cortisol. Pavement cell epithelia were cultured under symmetrical conditions (L15 apical/L15 basolateral) and developed a high transepithelial resistance (TER, 6.84 ± 1.99 kΩ cm(2), mean ± SEM) with a low phenol red diffusion rate (PRD, 0.15 ± 0.03 μmol l(-1)/day). Addition of cortisol to the basolateral compartment increased TER twofold and reduced PRD threefold over a 5-day period. A similar increase in TER could be seen after 24 h apical freshwater (FW) in control cultures. In cortisol-treated cultures FW exposure did not change TER, but PRD increased significantly. Histochemical staining of the cytoskeleton of cells in SSI culture revealed a morphological partitioning into a single mucosal layer of polarized, polygonal cells featuring cortical F-actin rings which were comparable to F-actin rings of epithelial cells on the lamellar and filamental surface, and several unorganized serosal layers of cells with F-actin stress fibers. Addition of cortisol increased cell density by 18% and in the mucosal layer it led to smaller, less polygonal cells with increased height and increased cell contact area. In transmission electron microscopic images two pairs of cytoplasmatic electron-dense structures confining the zonula occludens apically and basally toward the zonula adhaerens were found. Addition of cortisol increased the distance between those paired structures, hence led to deeper tight junctions. The cortisol-induced increase in barrier properties, therefore, involves a structural fortification of the tight junctions which was not generally modified by a short 24-h apical freshwater stress. These results identify cortisol as a regulator of tight junction morphology between pavement cells of euryhaline fish such as the

  20. Epithelial tight junctions in intestinal inflammation.

    PubMed

    Schulzke, Joerg D; Ploeger, Svenja; Amasheh, Maren; Fromm, Anja; Zeissig, Sebastian; Troeger, Hanno; Richter, Jan; Bojarski, Christian; Schumann, Michael; Fromm, Michael

    2009-05-01

    The epithelium in inflamed intestinal segments of patients with Crohn's disease is characterized by a reduction of tight junction strands, strand breaks, and alterations of tight junction protein content and composition. In ulcerative colitis, epithelial leaks appear early due to micro-erosions resulting from upregulated epithelial apoptosis and in addition to a prominent increase of claudin-2. Th1-cytokine effects by interferon-gamma in combination with TNFalpha are important for epithelial damage in Crohn's disease, while interleukin-13 (IL-13) is the key effector cytokine in ulcerative colitis stimulating apoptosis and upregulation of claudin-2 expression. Focal lesions caused by apoptotic epithelial cells contribute to barrier disturbance in IBD by their own conductivity and by confluence toward apoptotic foci or erosions. Another type of intestinal barrier defect can arise from alpha-hemolysin harboring E. coli strains among the physiological flora, which can gain pathologic relevance in combination with proinflammatory cytokines under inflammatory conditions. On the other hand, intestinal barrier impairment can also result from transcellular antigen translocation via an initial endocytotic uptake into early endosomes, and this is intensified by proinflammatory cytokines as interferon-gamma and may thus play a relevant role in the onset of IBD. Taken together, barrier defects contribute to diarrhea by a leak flux mechanism (e.g., in IBD) and can cause mucosal inflammation by luminal antigen uptake. Immune regulation of epithelial functions by cytokines may cause barrier dysfunction not only by tight junction impairments but also by apoptotic leaks, transcytotic mechanisms, and mucosal gross lesions. PMID:19538319

  1. Effects of phenol on barrier function of a human intestinal epithelial cell line correlate with altered tight junction protein localization.

    PubMed

    McCall, Ingrid C; Betanzos, Abigail; Weber, Dominique A; Nava, Porfirio; Miller, Gary W; Parkos, Charles A

    2009-11-15

    Phenol contamination of soil and water has raised concerns among people living near phenol-producing factories and hazardous waste sites containing the chemical. Phenol, particularly in high concentrations, is an irritating and corrosive substance, making mucosal membranes targets of toxicity in humans. However, few data on the effects of phenol after oral exposure exist. We used an in vitro model employing human intestinal epithelial cells (SK-CO15) cultured on permeable supports to examine effects of phenol on epithelial barrier function. We hypothesized that phenol disrupts epithelial barrier by altering tight junction (TJ) protein expression. The dose-response effect of phenol on epithelial barrier function was determined using transepithelial electrical resistance (TER) and FITC-dextran permeability measurements. We studied phenol-induced changes in cell morphology and expression of several tight junction proteins by immunofluorescence and Western blot analysis. Effects on cell viability were assessed by MTT, Trypan blue, propidium iodide and TUNEL staining. Exposure to phenol resulted in decreased TER and increased paracellular flux of FITC-dextran in a dose-dependent manner. Delocalization of claudin-1 and ZO-1 from TJs to cytosol correlated with the observed increase in permeability after phenol treatment. Additionally, the decrease in TER correlated with changes in the distribution of a membrane raft marker, suggesting phenol-mediated effects on membrane fluidity. Such observations were independent of effects of phenol on cell viability as enhanced permeability occurred at doses of phenol that did not cause cell death. Overall, these findings suggest that phenol may affect transiently the lipid bilayer of the cell membrane, thus destabilizing TJ-containing microdomains. PMID:19679145

  2. Effects of phenol on barrier function of a human intestinal epithelial cell line correlate with altered tight junction protein localization

    SciTech Connect

    McCall, Ingrid C.; Betanzos, Abigail; Weber, Dominique A.; Nava, Porfirio; Miller, Gary W.; Parkos, Charles A.

    2009-11-15

    Phenol contamination of soil and water has raised concerns among people living near phenol-producing factories and hazardous waste sites containing the chemical. Phenol, particularly in high concentrations, is an irritating and corrosive substance, making mucosal membranes targets of toxicity in humans. However, few data on the effects of phenol after oral exposure exist. We used an in vitro model employing human intestinal epithelial cells (SK-CO15) cultured on permeable supports to examine effects of phenol on epithelial barrier function. We hypothesized that phenol disrupts epithelial barrier by altering tight junction (TJ) protein expression. The dose-response effect of phenol on epithelial barrier function was determined using transepithelial electrical resistance (TER) and FITC-dextran permeability measurements. We studied phenol-induced changes in cell morphology and expression of several tight junction proteins by immunofluorescence and Western blot analysis. Effects on cell viability were assessed by MTT, Trypan blue, propidium iodide and TUNEL staining. Exposure to phenol resulted in decreased TER and increased paracellular flux of FITC-dextran in a dose-dependent manner. Delocalization of claudin-1 and ZO-1 from TJs to cytosol correlated with the observed increase in permeability after phenol treatment. Additionally, the decrease in TER correlated with changes in the distribution of a membrane raft marker, suggesting phenol-mediated effects on membrane fluidity. Such observations were independent of effects of phenol on cell viability as enhanced permeability occurred at doses of phenol that did not cause cell death. Overall, these findings suggest that phenol may affect transiently the lipid bilayer of the cell membrane, thus destabilizing TJ-containing microdomains.

  3. Effects of phenol on barrier function of a human intestinal epithelial cell line correlate with altered tight junction protein localization

    PubMed Central

    McCall, Ingrid C.; Betanzos, Abigail; Weber, Dominique A.; Nava, Porfirio; Miller, Gary W.; Parkos, Charles A.

    2010-01-01

    Phenol contamination of soil and water has raised concerns among people living near phenol-producing factories and hazardous waste sites containing the chemical. Phenol, particularly in high concentrations, is an irritating and corrosive substance, making mucosal membranes targets of toxicity in humans. However, few data on the effects of phenol after oral exposure exist. We used an in vitro model employing human intestinal epithelial cells (SK-CO15) cultured on permeable supports to examine effects of phenol on epithelial barrier function. We hypothesized that phenol disrupts epithelial barrier by altering tight junction (TJ) protein expression. The dose-response effect of phenol on epithelial barrier function was determined using transepithelial electrical resistance (TER) and FITC-dextran permeability measurements. We studied phenol-induced changes in cell morphology and expression of several tight junction proteins by immunofluorescence and Western blot analysis. Effects on cell viability were assessed by MTT, Trypan blue, propidium iodide and TUNEL staining. Exposure to phenol resulted in decreased TER and increased paracellular flux of FITC-dextran in a dose-dependent manner. Delocalization of claudin-1 and ZO-1 from TJs to cytosol correlated with the observed increase in permeability after phenol treatment. Additionally, the decrease in TER correlated with changes in the distribution of a membrane raft marker, suggesting phenol-mediated effects on membrane fluidity. Such observations were independent of effects of phenol on cell viability as enhanced permeability occurred at doses of phenol that did not cause cell death. Overall, these findings suggest that phenol may affect transiently the lipid bilayer of the cell membrane, thus destabilizing TJ-containing microdomains. PMID:19679145

  4. Lecithin-Bound Iodine Prevents Disruption of Tight Junctions of Retinal Pigment Epithelial Cells under Hypoxic Stress

    PubMed Central

    Sugimoto, Masahiko; Kondo, Mineo

    2016-01-01

    Aim. We investigated whether lecithin-bound iodine (LBI) can protect the integrity of tight junctions of retinal pigment epithelial cells from hypoxia. Method. Cultured human retinal pigment epithelial (ARPE-19) cells were pretreated with LBI. To mimic hypoxic conditions, cells were incubated with CoCl2. We compared the integrity of the tight junctions (TJs) of control to cells with either LBI alone, CoCl2 alone, or LBI + CoCl2. The levels of cytokines in the conditioned media were also determined. Results. Significant decrease in the zonula occludens-1 (ZO-1) intensity in the CoCl2 group compared to the control (5787.7 ± 4126.4 in CoCl2 group versus 29244.6 ± 2981.2 in control; average ± standard deviation). But the decrease was not significant in the LBI + CoCl2 (27189.0 ± 11231.1). The levels of monocyte chemoattractant protein-1 (MCP-1) and Chemokine (C-C Motif) Ligand 11 (CCL-11) were significantly higher in the CoCl2 than in the control (340.8 ± 43.3 versus 279.7 ± 68.3 pg/mL for MCP-1, and 15.2 ± 12.9 versus 12.5 ± 6.1 pg/mL for CCL-11. With LBI pretreatment, the levels of both cytokines were decreased to 182.6 ± 23.8 (MCP-1) and 5.46 ± 1.9 pg/mL for CCL-11). Blockade of MCP-1 or CCL-11 also shows similar result representing TJ protection from hypoxic stress. Conclusions. LBI results in a protective action from hypoxia. PMID:27340563

  5. The density of small tight junction pores varies among cell types and is increased by expression of claudin-2.

    PubMed

    Van Itallie, Christina M; Holmes, Jennifer; Bridges, Arlene; Gookin, Jody L; Coccaro, Maria R; Proctor, William; Colegio, Oscar R; Anderson, James M

    2008-02-01

    Epithelial tight junctions contain size- and charge-selective pores that control the paracellular movement of charged and noncharged solutes. Claudins influence the charge selectivity and electrical resistance of junctions, but there is no direct evidence describing pore composition or whether pore size or density differs among cell types. To characterize paracellular pores independent of influences from charge selectivity, we profiled the ;apparent permeabilities' (P(app)) of a continuous series of noncharged polyethylene glycols (PEGs) across monolayers of five different epithelial cell lines and porcine ileum. We also characterized P(app) of high and low electrical resistance MDCK cell monolayers expressing heterologous claudins. P(app) profiling confirms that the paracellular barrier to noncharged solutes can be modeled as two distinct pathways: high-capacity small pores and a size-independent pathway allowing flux of larger solutes. All cell lines and ileum share a pore aperture of radius 4 A. Using P(app) of a PEG of radius 3.5 A to report the relative pore number provides the novel insight that pore density along the junction varies among cell types and is not necessarily related to electrical resistance. Expression of claudin-2 results in a selective increase in pore number but not size and has no effect on the permeability of PEGs that are larger than the pores; however, neither knockdown of claudin-2 nor overexpression of several other claudins altered either the number of small pores or their size. We speculate that permeability of all small solutes is proportional to pore number but that small electrolytes are subject to further selectivity by the profile of claudins expressed, explaining the dissociation between the P(app) for noncharged solutes and electrical resistance. Although claudins are likely to be components of the small pores, other factors might regulate pore number. PMID:18198187

  6. Somatostatin ameliorates lipopolysaccharide-induced tight junction damage via the ERK-MAPK pathway in Caco2 cells.

    PubMed

    Lei, Shan; Cheng, Tianming; Guo, Yandong; Li, Chen; Zhang, Wendi; Zhi, Fachao

    2014-07-01

    Dysfunction of the epithelial barrier is an important pathogenic factor of inflammatory bowel disease and other inflammatory conditions of the gut. Somatostatin (SST) has been demonstrated to reduce local and systemic inflammation reactions and maintain the integrity of the blood-brain barrier (BBB). To determine the beneficial effect of SST on lipopolysaccharide (LPS)-induced damage of the tight junction (TJ) and its mechanisms, Caco2 cells pretreated with SST (1nM) or MEK inhibitor U0126 (10μM) were exposed to LPS. LPS significantly reduced the expression of TJ proteins in a dose-dependent way. LPS (100μg/ml) greatly induced Caco2 monolayer barrier dysfunction by decreasing transepithelial resistance and increasing epithelial permeability. Pretreatment with SST effectively improved the barrier dysfunction of Caco2 cells. SST significantly increased the expression of TJ proteins occludin and ZO-1 and inhibited the redistribution of TJ proteins due to LPS stimulation. Furthermore, SST decreased the LPS-induced phosphorylation of ERK1/2, and a selective MEK inhibitor markedly protected the barrier function against LPS disturbance by blocking the activation of the ERK-MAPK pathway in Caco2 cells. Besides, LPS significantly increased the mRNA level of SSTR5, which was partly inhibited by pretreatment with SST. In conclusion, the present study indicates that SST protects the Caco2 monolayer barrier against LPS-induced tight junction breakdown by down-regulating the activation of the ERK-MAPK pathway and suppression the activation of SSTR5. PMID:24950815

  7. Enterocytes’ tight junctions: From molecules to diseases

    PubMed Central

    Assimakopoulos, Stelios F; Papageorgiou, Ismini; Charonis, Aristidis

    2011-01-01

    Tight junctions (TJs) are structures between cells where cells appear in the closest possible contact. They are responsible for sealing compartments when epithelial sheets are generated. They regulate the permeability of ions, (macro) molecules and cells via the paracellular pathway. Their structure at the electron microscopic level has been well known since the 1970s; however, only recently has their macromolecular composition been revealed. This review first examines the major macromolecular components of the TJs (occludin, claudins, junctional adhesion molecule and tricellulin) and then the associated macromolecules at the intracellular plaque [zonula occludens (ZO)-1, ZO-2, ZO-3, AF-6, cingulin, 7H6]. Emphasis is given to their interactions in order to begin to understand the mode of assembly of TJs. The functional significance of TJs is detailed and several mechanisms and factors involved are discussed briefly. Emphasis is given to the role of intestinal TJs and the alterations observed or speculated in diverse disease states. Specifically, intestinal TJs may exert a pathogenetic role in intestinal (inflammatory bowel disease, celiac disease) and extraintestinal diseases (diabetes type 1, food allergies, autoimmune diseases). Additionally, intestinal TJs may be secondarily disrupted during the course of diverse diseases, subsequently allowing the bacterial translocation phenomenon and promoting the systemic inflammatory response, which is often associated with clinical deterioration. The major questions in the field are highlighted. PMID:22184542

  8. Overexpression of plastin 3 in Sertoli cells disrupts actin microfilament bundle homeostasis and perturbs the tight junction barrier.

    PubMed

    Li, Nan; Lee, Will M; Cheng, C Yan

    2016-04-01

    Throughout the epithelial cycle of spermatogenesis, actin microfilaments arranged as bundles near the Sertoli cell plasma membrane at the Sertoli cell-cell interface that constitute the blood-testis barrier (BTB) undergo extensive re-organization by converting between bundled and unbundled/branched configuration to give plasticity to the F-actin network. This is crucial to accommodate the transport of preleptotene spermatocytes across the BTB. Herein, we sought to examine changes in the actin microfilament organization at the Sertoli cell BTB using an in vitro model since Sertoli cells cultured in vitro is known to establish a functional tight junction (TJ)-permeability barrier that mimics the BTB in vivo. Plastin 3, a known actin microfilament cross-linker and bundling protein, when overexpressed in Sertoli cells using a mammalian expression vector pCI-neo was found to perturb the Sertoli cell TJ-barrier function even though its overexpression increased the overall actin bundling activity in these cells. Furthermore, plastin 3 overexpression also perturbed the localization and distribution of BTB-associated proteins, such as occludin-ZO1 and N-cadherin-β-catenin, this thus destabilized the barrier function. Collectively, these data illustrate that a delicate balance of actin microfilaments between organized in bundles vs. an unbundled/branched configuration is crucial to confer the homeostasis of the BTB and its integrity. PMID:27559491

  9. Effects of Soybean Agglutinin on Mechanical Barrier Function and Tight Junction Protein Expression in Intestinal Epithelial Cells from Piglets

    PubMed Central

    Pan, Li; Qin, Guixin; Zhao, Yuan; Wang, Jun; Liu, Feifei; Che, Dongsheng

    2013-01-01

    In this study, we sought to investigate the role of soybean agglutinin (SBA) in mediating membrane permeability and the mechanical barrier function of intestinal epithelial cells. The IPEC-J2 cells were cultured and treated with 0, 0.5, 1.0, 1.5, 2.0, 2.5, or 3.0 mg/mL SBA. Transepithelial electrical resistance (TEER) and alkaline phosphatase (AP) activity were measured to evaluate membrane permeability. The results showed a significant decrease in TEER values (p < 0.05) in a time- and dose-dependent manner, and a pronounced increase in AP activity (p < 0.05). Cell growth and cell morphology were used to evaluate the cell viability. A significant cell growth inhibition (p < 0.05) and alteration of morphology were observed when the concentration of SBA was increased. The results of western blotting showed that the expression levels of occludin and claudin-3 were decreased by 31% and 64% compared to those of the control, respectively (p < 0.05). In addition, immunofluorescence labeling indicated an obvious decrease in staining of these targets and changes in their localizations. In conclusion, SBA increased the membrane permeability, inhibited the cell viability and reduced the levels of tight junction proteins (occludin and claudin-3), leading to a decrease in mechanical barrier function in intestinal epithelial cells. PMID:24189218

  10. Junctional Adhesion Molecule A Promotes Epithelial Tight Junction Assembly to Augment Lung Barrier Function

    PubMed Central

    Mitchell, Leslie A.; Ward, Christina; Kwon, Mike; Mitchell, Patrick O.; Quintero, David A.; Nusrat, Asma; Parkos, Charles A.; Koval, Michael

    2016-01-01

    Epithelial barrier function is maintained by tight junction proteins that control paracellular fluid flux. Among these proteins is junctional adhesion molecule A (JAM-A), an Ig fold transmembrane protein. To assess JAM-A function in the lung, we depleted JAM-A in primary alveolar epithelial cells using shRNA. In cultured cells, loss of JAM-A caused an approximately 30% decrease in transepithelial resistance, decreased expression of the tight junction scaffold protein zonula occludens 1, and disrupted junctional localization of the structural transmembrane protein claudin-18. Consistent with findings in other organs, loss of JAM-A decreased β1 integrin expression and impaired filamentous actin formation. Using a model of mild systemic endoxotemia induced by i.p. injection of lipopolysaccharide, we report that JAM-A−/− mice showed increased susceptibility to pulmonary edema. On injury, the enhanced susceptibility of JAM-A−/− mice to edema correlated with increased, transient disruption of claudin-18, zonula occludens 1, and zonula occludens 2 localization to lung tight junctions in situ along with a delay in up-regulation of claudin-4. In contrast, wild-type mice showed no change in lung tight junction morphologic features in response to mild systemic endotoxemia. These findings support a key role of JAM-A in promoting tight junction homeostasis and lung barrier function by coordinating interactions among claudins, the tight junction scaffold, and the cytoskeleton. PMID:25438062

  11. Hormonal regulation of hepatocyte tight junctional permeability

    SciTech Connect

    Lowe, P.J.; Miyai, K.; Steinbach, J.H.; Hardison, W.G.M. Univ. of California, San Diego )

    1988-10-01

    The authors have investigated the effects of hormones on the permeability of the hepatocyte tight junction to two probes, ({sup 14}C)sucrose and horseradish peroxidase, using one-pass perfused rat livers. Using a single injection of horseradish peroxidase the authors have demonstrated that this probe can enter bile by two pathways that are kinetically distinct, a fast pathway, which corresponds to the passage of the probe through the hepatocyte tight junctions, and a slow pathway, which corresponds to the transcytotic entry into bile. The passage of horseradish peroxidase through the hepatocyte tight junctions was confirmed by electron microscopic histochemistry. Vasopressin, epinephrine, and angiotensin II, hormones that act in the hepatocyte through the intracellular mediators calcium, the inositol polyphosphates, and diacylglycerol, increased the bile-to-perfusion fluid ratio of ({sup 14}C)sucrose and the rapid entry of horseradish peroxidase into bile, indicating that the permeability of the tight junctions to these probes was increased. The effect of these hormones was dose dependent and in the cases of angiotensin II and epinephrine was inhibited by the specific inhibitors (Sar{sup 1},Thr{sup 8})angiotensin II and prazosin, respectively. Dibutyryl adenosine 3{prime},5{prime}-cyclic monophosphate did not affect the ({sup 14}C)sucrose bile-to-perfusion fluid ratio or the fast entry of horseradish peroxidase into bile. These results suggest that the hepatocyte tight junction can no longer be considered a static system of pores separating blood from bile. It is rather a dynamic barrier potentially capable of influencing the composition of the bile.

  12. Claudin 28b and F-actin are involved in rainbow trout gill pavement cell tight junction remodeling under osmotic stress.

    PubMed

    Sandbichler, Adolf Michael; Egg, Margit; Schwerte, Thorsten; Pelster, Bernd

    2011-05-01

    Permeability of rainbow trout gill pavement cells cultured on permeable supports (single seeded inserts) changes upon exposure to freshwater or treatment with cortisol. The molecular components of this change are largely unknown, but tight junctions that regulate the paracellular pathway are prime candidates in this adaptational process. Using differential display polymerase chain reaction we found a set of 17 differentially regulated genes in trout pavement cells that had been exposed to freshwater apically for 24 h. Five genes were related to the cell-cell contact. One of these genes was isolated and identified as encoding claudin 28b, an integral component of the tight junction. Immunohistochemical reactivity to claudin 28b protein was concentrated in a circumferential ring colocalized to the cortical F-actin ring. To study the contribution of this isoform to changes in transepithelial resistance and Phenol Red diffusion under apical hypo-or hyperosmotic exposure we quantified the fluorescence signal of this claudin isoform in immunohistochemical stainings together with the fluorescence of phalloidin-probed F-actin. Upon hypo-osmotic stress claudin 28b fluorescence and epithelial tightness remained stable. Under hyperosmotic stress, the presence of claudin 28b at the junction significantly decreased, and epithelial tightness was severely reduced. Cortical F-actin fluorescence increased upon hypo-osmotic stress, whereas hyperosmotic stress led to a separation of cortical F-actin rings and the number of apical crypt-like pores increased. Addition of cortisol to the basolateral medium attenuated cortical F-actin separation and pore formation during hyperosmotic stress and reduced claudin 28b in junctions except after recovery of cells from exposure to freshwater. Our results showed that short-term salinity stress response in cultured trout gill cells was dependent on a dynamic remodeling of tight junctions, which involves claudin 28b and the supporting F-actin ring

  13. Remodeling of Tight Junctions and Enhancement of Barrier Integrity of the CACO-2 Intestinal Epithelial Cell Layer by Micronutrients

    PubMed Central

    Valenzano, Mary Carmen; DiGuilio, Katherine; Mercado, Joanna; Teter, Mimi; To, Julie; Ferraro, Brendan; Mixson, Brittany; Manley, Isabel; Baker, Valerissa; Moore, Beverley A.; Wertheimer, Joshua; Mullin, James M.

    2015-01-01

    The micronutrients zinc, quercetin, butyrate, indole and berberine were evaluated for their ability to induce remodeling of epithelial tight junctions (TJs) and enhance barrier integrity in the CACO-2 gastrointestinal epithelial cell culture model. All five of these chemically very diverse micronutrients increased transepithelial electrical resistance (Rt) significantly, but only berberine also improved barrier integrity to the non-electrolyte D-mannitol. Increases of Rt as much as 200% of untreated controls were observed. Each of the five micronutrients also induced unique, signature-like changes in TJ protein composition, suggesting multiple pathways (and TJ arrangements) by which TJ barrier function can be enhanced. Decreases in abundance by as much as 90% were observed for claudin-2, and increases of over 300% could be seen for claudins -5 and -7. The exact effects of the micronutrients on barrier integrity and TJ protein composition were found to be highly dependent on the degree of differentiation of the cell layer at the time it was exposed to the micronutrient. The substratum to which the epithelial layer adheres was also found to regulate the response of the cell layer to the micronutrient. The implications of these findings for therapeutically decreasing morbidity in Inflammatory Bowel Disease are discussed. PMID:26226276

  14. The effect of phytic acid on tight junctions in the human intestinal Caco-2 cell line and its mechanism.

    PubMed

    Fu, Qingxue; Wang, Huizhen; Xia, Mengxin; Deng, Bing; Shen, Hongyi; Ji, Guang; Li, Guowen; Xie, Yan

    2015-12-01

    This study investigated the effect of phytic acid (IP6), a potential absorption enhancer of flavonoid components, on tight junction (TJ) integrity in Caco-2 cell monolayers and its possible mechanisms. Transepithelial electrical resistance (TEER) across the monolayers decreased rapidly, and the flux of fluorescein sodium (a paracellular marker) increased after treating with IP6 in a concentration-dependent manner. Confocal microscopy results showed that IP6 produced a concentration-dependent attenuation in the distribution of occludin, ZO-1, and claudin-1. Immunoblot analysis revealed that IP6 could down-regulate the expression level of these TJ proteins, which resulted in the opening of TJ. Additionally, the divalent cations Ca(2+) and Mg(2+) influenced the IP6-induced distribution of occludin, ZO-1, and claudin-1 in different directions, which enhanced barrier function. In conclusion, IP6 can decrease the integrity of Caco-2 cell monolayers by modulating the TJ proteins' localization and down-regulating the expression levels of TJ proteins including claudin-1, occludin, and ZO-1; the reduction effects of divalent cations such as Ca(2+) and Mg(2+) on the regulation of TJ induced by IP6 should be addressed. The present work will offer some useful guidance for the application of IP6 in drug delivery area. PMID:26385515

  15. Myofibroblast keratinocyte growth factor reduces tight junctional integrity and increases claudin-2 levels in polarized Caco-2 cells

    PubMed Central

    Kim, Tae Il; Poulin, Emily J.; Blask, Elliot; Bukhalid, Raghida; Whitehead, Robert H.; Franklin, Jeffrey L.; Coffey, Robert J.

    2013-01-01

    The colonic epithelium is composed of a polarized monolayer sheathed by a layer of pericryptal myofibroblasts (PCMFs). We mimicked these cellular compartments in vitro to assess the effects of paracrine-acting PCMF-derived factors on tight junction (TJ) integrity, as measured by transepithelial electrical resistance (TER). Co-culture with 18Co PCMFs, or basolateral administration of 18Co conditioned medium (CM), significantly reduced TER of polarized Caco-2 cells. Amongst candidate paracrine factors, only keratinocyte growth factor (KGF) reduced Caco-2 TER; basolateral KGF treatment led to time- and concentration-dependent increases in claudin-2 levels. We also demonstrate amphiregulin (AREG), produced largely by Caco-2 cells, increased claudin-2 levels, leading to epidermal growth factor receptor-mediated TER reduction. We propose that colonic epithelial TJ integrity can be modulated by paracrine KGF and autocrine AREG through increased claudin-2 levels. KGF-regulated claudin-2 induction may have implications for inflammatory bowel disease, where both KGF and claudin-2 are upregulated. PMID:22946653

  16. Prolactin and glucocorticoid signaling induces lactation-specific tight junctions concurrent with β-casein expression in mammary epithelial cells.

    PubMed

    Kobayashi, Ken; Tsugami, Yusaku; Matsunaga, Kota; Oyama, Shoko; Kuki, Chinatsu; Kumura, Haruto

    2016-08-01

    Alveolar mammary epithelial cells (MECs) in mammary glands are highly specialized cells that produce milk for suckling infants. Alveolar MECs also form less permeable tight junctions (TJs) to prevent the leakage of milk components after parturition. In the formation process of less permeable TJs, MECs show a selective downregulation of Cldn4 and a localization change of Cldn3. To investigate what induces less permeable TJs through these compositional changes in Cldns, we focused on two lactogenesis-related hormones: prolactin (Prl) and glucocorticoids. Prl caused a downregulation of Cldn3 and Cldn4 with the formation of leaky TJs in MECs in vitro. Prl-treated MECs also showed low β-casein expression with the activation of STAT5 signaling. By contrast, dexamethasone (Dex), a glucocorticoid analogue, upregulated Cldn3 and Cldn4, concurrent with the formation of less permeable TJs and the activation of glucocorticoid signaling without the expression of β-casein. Cotreatment with Prl and Dex induced the selective downregulation of Cldn4 and the concentration of Cldn3 in the region of TJs concurrent with less permeable TJ formation and high β-casein expression. The inhibition of Prl secretion by bromocriptine in lactating mice induced the upregulation of Cldn3 and Cldn4 concurrent with the downregulation of milk production. These results indicate that the coactivation of Prl and glucocorticoid signaling induces lactation-specific less permeable TJs concurrent with lactogenesis. PMID:27130254

  17. Non-classical testosterone signaling mediated through ZIP9 stimulates claudin expression and tight junction formation in Sertoli cells.

    PubMed

    Bulldan, Ahmed; Dietze, Raimund; Shihan, Mazen; Scheiner-Bobis, Georgios

    2016-08-01

    In the classical signaling pathway, testosterone regulates gene expression by activating the cytosolic/nuclear androgen receptor. In the non-classical pathway, testosterone activates cytosolic signaling cascades that are normally triggered by growth factors. The nature of the receptor involved in this signaling pathway is a source of controversy. In the Sertoli cell line 93RS2, which lacks the classical AR, we determined that testosterone stimulates the non-classical signaling pathway, characterized by the phosphorylation of Erk1/2 and transcription factors CREB and ATF-1. We also demonstrated that testosterone increases the expression of the tight junction (TJ) proteins claudin-1 and claudin-5. Both of these proteins are known to be essential constituents of TJs between Sertoli cells, and as a consequence of their increased expression transepithelial resistance across Sertoli cell monolayers is increased. ZIP9 is a Zn(2+)transporter that was recently shown to be a membrane-bound testosterone receptor. Silencing its expression in 93RS2 Sertoli cells by siRNA completely prevents Erk1/2, CREB, and ATF-1 phosphorylation as well the stimulation of claudin-1 and -5 expression and TJ formation between neighboring cells. The study presented here demonstrates for the first time that in Sertoli cells testosterone acts through the receptor ZIP9 to trigger the non-classical signaling cascade, resulting in increased claudin expression and TJ formation. Since TJ formation is a prerequisite for the maintenance of the blood-testis barrier, the testosterone/ZIP9 effects might be significant for male physiology. Further assessment of these interactions will help to supplement our knowledge concerning the mechanism by which testosterone plays a role in male fertility. PMID:27164415

  18. Claudin heterogeneity and control of lung tight junctions.

    PubMed

    Koval, Michael

    2013-01-01

    Lung epithelial cells interconnected by tight junctions provide a barrier to the free diffusion of solutes into airspaces. Transmembrane tight junction proteins known as claudins are essential for epithelial barrier function. Claudins are regulated through interactions with each other that are coordinated with other transmembrane tight junction proteins and cytosolic scaffold proteins. Of the 14 claudins expressed by the alveolar epithelium, claudin-3, claudin-4, and claudin-18 are the most prominent; each confers unique properties to alveolar barrier function. In particular, a protective role for claudin-4 in preventing lung injury has emerged. By contrast, lung diseases that affect claudin expression and impair barrier function, including alcoholic lung syndrome and sepsis, prime the lung for pulmonary edema. Thus, approaches to restore and/or augment lung claudin expression provide potential targets for promoting healthy barrier function. PMID:23072447

  19. Tight Junction Pore and Leak Pathways: A Dynamic Duo

    PubMed Central

    Raleigh, David R.; Yu, Dan; Turner, Jerrold R.

    2015-01-01

    Tissue barriers that restrict passage of liquids, ions, and larger solutes are essential for the development of multicellular organisms. In simple organisms this allows distinct cell types to interface with the external environment. In more complex species, the diversity of cell types capable of forming barriers increases dramatically. Although the plasma membranes of these barrier-forming cells prevent flux of most hydrophilic solutes, the paracellular, or shunt, pathway between cells must also be sealed. This function is accomplished in vertebrates by the zonula occludens, or tight junction. The tight junction barrier is not absolute but is selectively permeable and is able to discriminate between solutes on the basis of size and charge. Many tight junction components have been identified over the past 20 years, and recent progress has provided new insights into the proteins and interactions that regulate structure and function. This review presents these data in a historical context and proposes an integrated model in which dynamic regulation of tight junction protein interactions determines barrier function. PMID:20936941

  20. The rotavirus surface protein VP8 modulates the gate and fence function of tight junctions in epithelial cells.

    PubMed

    Nava, Porfirio; López, Susana; Arias, Carlos F; Islas, Socorro; González-Mariscal, Lorenza

    2004-11-01

    Rotaviruses constitute a major cause of diarrhea in young mammals. Rotaviruses utilize different integrins as cell receptors, therefore upon their arrival to the intestinal lumen their integrin receptors will be hidden below the tight junction (TJ), on the basolateral membrane. Here we have studied whether the rotavirus outer capsid proteins are capable of opening the paracellular space sealed by the TJ. From the outermost layer of proteins of the rotavirus, 60 spikes formed of protein VP4 are projected. VP4 is essential for virus-cell interactions and is cleaved by trypsin into peptides VP5 and VP8. Here we found that when these peptides are added to confluent epithelial monolayers (Madin-Darby canine kidney cells), VP8 is capable of diminishing in a dose dependent and reversible manner the transepithelial electrical resistance. VP5 exerted no effect. VP8 can also inhibit the development of newly formed TJs in a Ca-switch assay. Treatment with VP8 augments the paracellular passage of non-ionic tracers, allows the diffusion of a fluorescent lipid probe and the apical surface protein GP135, from the luminal to the lateral membrane, and triggers the movement of the basolateral proteins Na+-K+-ATPase, alphanubeta3 integrin and beta1 integrin subunit, to the apical surface. VP8 generates a freeze-fracture pattern of TJs characterized by the appearance of loose end filaments, that correlates with an altered distribution of several TJ proteins. VP8 given orally to diabetic rats allows the enteral administration of insulin, thus indicating that it can be employed to modulate epithelial permeability. PMID:15494377

  1. Severe feed restriction increases permeability of mammary gland cell tight junctions and reduces ethanol stability of milk.

    PubMed

    Stumpf, M T; Fischer, V; McManus, C M; Kolling, G J; Zanela, M B; Santos, C S; Abreu, A S; Montagner, P

    2013-07-01

    A total of twelve lactating Jersey cows were used in a 5-week experiment to determine the effects of severe feed restriction on the permeability of mammary gland cell tight junctions (TJs) and its effects on milk stability to the alcohol test. During the first 2 weeks, cows were managed and fed together and received the same diet according to their nutritional requirements (full diet: 15 kg of sugar cane silage; 5.8 kg of alfalfa hay; 0.16 kg of mineral salt and 6.2 kg of concentrate). In the 3rd week, animals were distributed into two groups of six cows each. One group received the full diet and the other a restricted diet (50% of the full diet). In the 4th and 5th weeks, all animals received the full diet again. Milk composition and other attributes, such as titratable acidity, ethanol stability, pH, density and somatic cell count (SCC) were evaluated. Cortisol levels indicated the stress condition of the cows. Plasma lactose and milk sodium were measured to assess mammary TJ leakiness. Principal factor analysis (PFA) showed that the first two principal factors (PFs) contributed with 44.47% and 20.57% of the total variance in the experiment and, as feeding levels increased, milk stability to the ethanol test became higher and plasma lactose levels decreased, which indicates lower permeability of the mammary gland cell TJ. Correspondence analyses were consistent with PFA and also showed that lower feeding levels were related to reduced milk stability, high plasma lactose, high sodium in milk, low milk lactose (another parameter used to assess TJ permeability) and higher cortisol levels, indicating the stress to which animals were submitted. All observations were grouped in three clusters, with some of the above-mentioned patterns. Feeding restriction was associated with higher permeability of TJ, decreasing milk stability to the ethanol test. PMID:23414830

  2. Glucocorticoids induce transactivation of tight junction genes occludin and claudin-5 in retinal endothelial cells via a novel cis-element.

    PubMed

    Felinski, Edward A; Cox, Amy E; Phillips, Brett E; Antonetti, David A

    2008-06-01

    Tight junctions between vascular endothelial cells help to create the blood-brain and blood-retinal barriers. Breakdown of the retinal tight junction complex is problematic in several disease states including diabetic retinopathy. Glucocorticoids can restore and/or preserve the endothelial barrier to paracellular permeability, although the mechanism remains unclear. We show that glucocorticoid treatment of primary retinal endothelial cells increases content of the tight junction proteins occludin and claudin-5, co-incident with an increase in barrier properties of endothelial monolayers. The glucocorticoid receptor antagonist RU486 reverses both the glucocorticoid-stimulated increase in occludin content and the increase in barrier properties. Transcriptional activity from the human occludin and claudin-5 promoters increases in retinal endothelial cells upon glucocorticoid treatment, and is dependent on the glucocorticoid receptor (GR) as demonstrated by siRNA. Deletion analysis of the occludin promoter reveals a 205bp sequence responsible for the glucocorticoid response. However, this region does not possess a canonical glucocorticoid response element and does not bind to the GR in a chromatin immunoprecipitation (ChIP) assay. Mutational analysis of this region revealed a novel 40bp occludin enhancer element (OEE), containing two highly conserved regions of 10 and 13 base pairs, that is both necessary and sufficient for glucocorticoid-induced gene expression in retinal endothelial cells. These data suggest a novel mechanism for glucocorticoid induction of vascular endothelial barrier properties through increased occludin and claudin-5 gene expression. PMID:18501346

  3. Enteropathogenic E. coli: breaking the intestinal tight junction barrier

    PubMed Central

    Singh, Anand Prakash; Aijaz, Saima

    2016-01-01

    Enteropathogenic E. coli (EPEC) causes acute intestinal infections in infants in the developing world. Infection typically spreads through contaminated food and water and leads to severe, watery diarrhea. EPEC attaches to the intestinal epithelial cells and directly injects virulence factors which modulate multiple signaling pathways leading to host cell dysfunction. However, the molecular mechanisms that regulate the onset of diarrhea are poorly defined. A major target of EPEC is the host cell tight junction complex which acts as a barrier and regulates the passage of water and solutes through the paracellular space. In this review, we focus on the EPEC effectors that target the epithelial barrier, alter its functions and contribute to leakage through the tight junctions. PMID:27239268

  4. Functional analysis of tight junction organization.

    PubMed

    DiBona, D R

    1985-01-01

    The functional basis of tight junction design has been examined from the point of view that this rate-limiting barrier to paracellular transport is a multicompartment system. Review of the osmotic sensitivity of these structures points to the need for this sort of analysis for meaningful correlation of structure and function under a range of conditions. A similar conclusion is drawn with respect to results from voltage-clamping protocols where reversal of spontaneous transmural potential difference elicits parallel changes in both structure and function in much the same way as does reversal of naturally occurring osmotic gradients. In each case, it becomes necessary to regard the junction as a functionally polarized structure to account for observations of its rectifying properties. Lastly, the details of experimentally-induced junction deformation are examined in light of current theories of its organization; arguments are presented in favor of the view that the primary components of intramembranous organization (as viewed with freeze-fracture techniques) are lipidic rather than proteinaceous. PMID:4088839

  5. Time-dependent effects of low-temperature atmospheric-pressure argon plasma on epithelial cell attachment, viability and tight junction formation in vitro

    NASA Astrophysics Data System (ADS)

    Hoentsch, Maxi; von Woedtke, Thomas; Weltmann, Klaus-Dieter; Nebe, J. Barbara

    2012-01-01

    The application of physical plasma to living tissues is expected to promote wound healing by plasma disinfection and stimulation of tissue regeneration. However, the effects of plasma on healthy cells must be studied and understood. In our experiments we used an argon plasma jet (kINPen®09) to gain insights into time-dependent plasma effects on cell attachment, viability and tight junction formation in vitro. Murine epithelial cells mHepR1 were suspended in complete cell culture medium and were irradiated with argon plasma (direct approach) for 30, 60 and 120 s. Suspecting that physical plasma may exert its effect via the medium, cell culture medium alone was first treated with argon plasma (indirect approach) and immediately afterwards, cells were added and also cultured for 24 h. Cell morphology and vitality were verified using light microscopy and an enzyme-linked immunosorbent assay. Already after 30 s of treatment the mHepR1 cells lost their capability to adhere and the cell vitality decreased with increasing treatment time. Interestingly, the same inhibitory effect was observed in the indirect approach. Furthermore, the argon plasma-treated culture medium-induced large openings of the cell's tight junctions, were verified by the zonula occludens protein ZO-1, which we observed for the first time in confluently grown epithelial cells.

  6. AMP-activated protein kinase regulates the assembly of epithelial tight junctions.

    PubMed

    Zhang, Li; Li, Ji; Young, Lawrence H; Caplan, Michael J

    2006-11-14

    AMP activated protein kinase (AMPK), a sensor of cellular energy status in all eukaryotic cells, is activated by LKB1-dependent phosphorylation. Recent studies indicate that activated LKB1 induces polarity in epithelial cells and that this polarization is accompanied by the formation of tight junction structures. We wished to determine whether AMPK also contributes to the assembly of tight junctions in the epithelial cell polarization process. We found that AMPK is activated during calcium-induced tight junction assembly. Activation of AMPK by 5-aminoimidazole-4-carboxamide ribonucleoside facilitates tight junction assembly under conditions of normal extracellular Ca2+ concentrations and initiates tight junction assembly in the absence of Ca2+ as revealed by the relocation of zonula occludens 1, the establishment of transepithelial electrical resistance, and the paracellular flux assay. Expression of a dominant negative AMPK construct inhibits tight junction assembly in MDCK cells, and this defect in tight junction assembly can be partially ameliorated by rapamycin. These results suggest that AMPK plays a role in the regulation of tight junction assembly. PMID:17088526

  7. Novel role of zonula occludens-1: A tight junction protein closely associated with the odontoblast differentiation of human dental pulp cells.

    PubMed

    Xu, Jue; Shao, Meiying; Pan, Hongying; Wang, Huning; Cheng, Li; Yang, Hui; Hu, Tao

    2016-07-01

    Zonula occludens-1 (ZO-1), a tight junction protein, contributes to the maintenance of the polarity of odontoblasts and junctional complex formation in odontoblast layer during tooth development. However, expression and possible role of ZO-1 in human dental pulp cells (hDPCs) during repair process remains unknown. Here, we investigated the expression of ZO-1 in hDPCs and the relationship with odontoblast differentiation. We found the processes of two adjacent cells were fused and formed junction-like structure using scanning electron microscopy. Fluorescence immunoassay and Western blot confirmed ZO-1 expression in hDPCs. Especially, ZO-1 was high expressed at the cell-cell junction sites. More interestingly, ZO-1 accumulated at the leading edge of lamellipodia in migrating cells when a scratch assay was performed. Furthermore, ZO-1 gradual increased during odontoblast differentiation and ZO-1 silencing greatly inhibited the differentiation. ZO-1 binds directly to actin filaments and RhoA/ROCK signaling mainly regulates cell cytoskeleton, thus RhoA/ROCK might play a role in regulating ZO-1. Lysophosphatidic acid (LPA) and Y-27632 were used to activate and inhibit RhoA/ROCK signaling, respectively, with or without mineralizing medium. In normal cultured hDPCs, RhoA activation increased ZO-1 expression and especially in intercellular contacts, whereas ROCK inhibition attenuated the effects induced by LPA. However, expression of ZO-1 was upregulated by Y-27632 but not significantly affected by LPA after odontoblast differentiation. Hence, ZO-1 highly expresses in cell-cell junctions and is related to odontoblast differentiation, which may contribute to dental pulp repair or even the formation of an odontoblast layer. RhoA/ROCK signaling is involved in the regulation of ZO-1. PMID:27109589

  8. Effects of Human Parvovirus B19 and Bocavirus VP1 Unique Region on Tight Junction of Human Airway Epithelial A549 Cells

    PubMed Central

    Chiu, Chun-Ching; Shi, Ya-Fang; Yang, Jiann-Jou; Hsiao, Yuan-Chao; Tzang, Bor-Show; Hsu, Tsai-Ching

    2014-01-01

    As is widely recognized, human parvovirus B19 (B19) and human bocavirus (HBoV) are important human pathogens. Obviously, both VP1 unique region (VP1u) of B19 and HBoV exhibit the secreted phospholipase A2 (sPLA2)-like enzymatic activity and are recognized to participate in the pathogenesis of lower respiratory tract illnesses. However, exactly how, both VP1u from B19 and HBoV affect tight junction has seldom been addressed. Therefore, this study investigates how B19-VP1u and HBoV-VP1u may affect the tight junction of the airway epithelial A549 cells by examining phospholipase A2 activity and transepithelial electrical resistance (TEER) as well as performing immunoblotting analyses. Experimental results indicate that TEER is more significantly decreased in A549 cells by treatment with TNF-α (10 ng), two dosages of B19-VP1u and BoV-VP1u (400 ng and 4000 ng) or bee venom PLA2 (10 ng) than that of the control. Accordingly, more significantly increased claudin-1 and decreased occludin are detected in A549 cells by treatment with TNF-α or both dosages of HBoV-VP1u than that of the control. Additionally, more significantly decreased Na+/K+ ATPase is observed in A549 cells by treatment with TNF-α, high dosage of B19-VP1u or both dosages of BoV-VP1u than that of the control. Above findings suggest that HBoV-VP1u rather than B19 VP1u likely plays more important roles in the disruption of tight junction in the airway tract. Meanwhile, this discrepancy appears not to be associated with the secreted phospholipase A2 (sPLA2)-like enzymatic activity. PMID:25268969

  9. Claudins and the Modulation of Tight Junction Permeability

    PubMed Central

    Günzel, Dorothee

    2013-01-01

    Claudins are tight junction membrane proteins that are expressed in epithelia and endothelia and form paracellular barriers and pores that determine tight junction permeability. This review summarizes our current knowledge of this large protein family and discusses recent advances in our understanding of their structure and physiological functions. PMID:23589827

  10. Tight junction modulation by chitosan nanoparticles: comparison with chitosan solution.

    PubMed

    Vllasaliu, Driton; Exposito-Harris, Ruth; Heras, Angeles; Casettari, Luca; Garnett, Martin; Illum, Lisbeth; Stolnik, Snow

    2010-11-15

    Present work investigates the potential of chitosan nanoparticles, formulated by the ionic gelation with tripolyphosphate (TPP), to open the cellular tight junctions and in doing so, improve the permeability of model macromolecules. A comparison is made with chitosan solution at equivalent concentrations. Initial work assessed cytotoxicity (through MTS and LDH assays) of chitosan nanoparticles and solutions on Calu-3 cells. Subsequently, a concentration of chitosan nanoparticles and solution exhibiting minimal toxicity was used to investigate the effect on TEER and macromolecular permeability across filter-cultured Calu-3 monolayer. Chitosan nanoparticles and solution were also tested for their effect on the distribution of the tight junction protein, zonnula occludens-1 (ZO-1). Chitosan nanoparticles produced a sharp and reversible decrease in TEER and increased the permeability of two FITC-dextrans (FDs), FD4 (MW 4 kDa) and FD10 (MW 10 kDa), with effects of a similar magnitude to chitosan solution. Chitosan nanoparticles produced changes in ZO-1 distribution similar to chitosan solution, indicating a tight junction effect. While there was no improvement in permeability with chitosan nanoparticles compared to solution, nanoparticles provide the potential for drug incorporation, and hence the possibility for providing controlled drug release and protection from enzymatic degradation. PMID:20727955

  11. Tight Junction Properties Change During Epidermis Development

    PubMed Central

    Celli, A; Zhai, Y; Jiang, YJ; Crumrine, D; Elias, PM; Feingold, KR; Mauro, TM

    2012-01-01

    In terrestrial animals, the epidermal barrier transitions from covering an organism suspended in a liquid environment in utero, to protecting a terrestrial animal postnatally from air and environmental exposure. Tight junctions (TJ) are essential for establishing the epidermal permeability barrier during embryonic development, and modulate normal epidermal development and barrier functions postnatally. We now report that TJ function, as well as claudin-1 and occludin expression, change in parallel during late epidermal development. Specifically, TJ block the paracellular movement of Lanthanum (La3+) early in rat in vivo prenatal epidermal development, at gestational days 18–19, with concurrent upregulation of claudin-1 and occludin. TJ then become more permeable to ions and water as the fetus approaches parturition, concomitant with development of the lipid epidermal permeability barrier, at days 20–21. This sequence is recapitulated in cultured human epidermal equivalents (HEE), as assessed both by ultrastructural studies comparing permeation of large and small molecules, and by the standard electrophysiologic parameter of resistance (R), suggesting further that this pattern of development is intrinsic to mammalian epidermal development. These findings demonstrate that the role of TJ changes during epidermal development, and further suggest that the TJ-based and lipid-based epidermal permeability barriers are interdependent. PMID:22882565

  12. Claudin-2 Knockout by TALEN-Mediated Gene Targeting in MDCK Cells: Claudin-2 Independently Determines the Leaky Property of Tight Junctions in MDCK Cells

    PubMed Central

    Tokuda, Shinsaku; Furuse, Mikio

    2015-01-01

    Tight junctions (TJs) regulate the movements of substances through the paracellular pathway, and claudins are major determinants of TJ permeability. Claudin-2 forms high conductive cation pores in TJs. The suppression of claudin-2 expression by RNA interference in Madin-Darby canine kidney (MDCK) II cells (a low-resistance strain of MDCK cells) was shown to induce a three-fold increase in transepithelial electrical resistance (TER), which, however, was still lower than in high-resistance strains of MDCK cells. Because RNA interference-mediated knockdown is not complete and only reduces gene function, we considered the possibility that the remaining claudin-2 expression in the knockdown study caused the lower TER in claudin-2 knockdown cells. Therefore, we investigated the effects of claudin-2 knockout in MDCK II cells by establishing claudin-2 knockout clones using transcription activator-like effector nucleases (TALENs), a recently developed genome editing method for gene knockout. Surprisingly, claudin-2 knockout increased TER by more than 50-fold in MDCK II cells, and TER values in these cells (3000–4000 Ω·cm2) were comparable to those in the high-resistance strains of MDCK cells. Claudin-2 re-expression restored the TER of claudin-2 knockout cells dependent upon claudin-2 protein levels. In addition, we investigated the localization of claudin-1, -2, -3, -4, and -7 at TJs between control MDCK cells and their respective knockout cells using their TALENs. Claudin-2 and -7 were less efficiently localized at TJs between control and their knockout cells. Our results indicate that claudin-2 independently determines the ‘leaky’ property of TJs in MDCK II cells and suggest the importance of knockout analysis in cultured cells. PMID:25781928

  13. Uropathogenic E. coli Promote a Paracellular Urothelial Barrier Defect Characterized by Altered Tight Junction Integrity, Epithelial Cell Sloughing and Cytokine Release

    PubMed Central

    Wood, M. W.; Breitschwerdt, E. B.; Nordone, S. K.; Linder, K. E.; Gookin, J. L.

    2013-01-01

    Summary The urinary bladder is a common site of bacterial infection with a majority of cases attributed to uropathogenic Escherichia coli. Sequels of urinary tract infections (UTIs) include the loss of urothelial barrier function and subsequent clinical morbidity secondary to the permeation of urine potassium, urea and ammonia into the subepithelium. To date there has been limited research describing the mechanism by which this urothelial permeability defect develops. The present study models acute uropathogenic E. coli infection in vitro using intact canine bladder mucosa mounted in Ussing chambers to determine whether infection induces primarily a transcellular or paracellular permeability defect. The Ussing chamber sustains tissue viability while physically separating submucosal and lumen influences, so this model is ideal for quantitative measurement of transepithelial electrical resistance (TER) to assess alterations of urothelial barrier function. Using this model, changes in both tissue ultrastructure and TER indicated that uropathogenic E. coli infection promotes a paracellular permeability defect associated with the failure of umbrella cell tight junction formation and umbrella cell sloughing. In addition, bacterial interaction with the urothelium promoted secretion of cytokines from the urinary bladder with bioactivity capable of modulating epithelial barrier function including tumour necrosis factor-α, interleukin (IL)-6 and IL-15. IL-15 secretion by the infected bladder mucosa is a novel finding and, because IL-15 plays key roles in reconstitution of tight junction function in damaged intestine, this study points to a potential role for IL-15 in UTI-induced urothelial injury. PMID:22014415

  14. Transforming Growth Factor Beta 1 Induces Tight Junction Disruptions and Loss of Transepithelial Resistance Across Porcine Vas Deferens Epithelial Cells1

    PubMed Central

    Pierucci-Alves, Fernando; Yi, Sheng; Schultz, Bruce D.

    2011-01-01

    ABSTRACT Epithelial cells lining the male excurrent duct contribute to male fertility by employing a number of physiological mechanisms that generate a luminal microenvironment conducive to spermatozoa maturation and storage. Among these mechanisms, male duct epithelia establish intercellular tight junctions that constitute a barrier to paracellular diffusion of water, solutes, large molecules, and cells. Mechanisms regulating the male duct epithelial barrier remain unidentified. Transforming growth factor beta (TGFB) is a regulatory cytokine present in high concentrations in human semen. This study examined whether TGFB has any effects on epithelial function exhibited by primary cultures of porcine vas deferens epithelia. TGFB1 exposure caused a 70%–99% decrease in basal transepithelial electrical resistance (RTE, a sensitive indicator of barrier integrity), while a significant decrease in anion secretory response to forskolin was detected at the highest levels of TGFB1 exposure employed. SB431542, a selective TGFB receptor I (TGFBR1) inhibitor, prevented decreases in barrier function. Results also demonstrated that TGFB1 exposure modifies the distribution pattern of tight junction proteins occludin and claudin 7. TGFBR1 is localized at the apical border of the native porcine vas deferens epithelium. Pharmacological inhibition of mitogen-activated protein kinase (MAPK) 11 (also known as p38-MAPK) did not alter the effect of TGFB1 on RTE significantly. These data suggest that epithelia lining the vas deferens are subject to disruptions in the physical barrier if active TGFB becomes bioavailable in the luminal fluid, which might be expected to compromise fertility. PMID:21957188

  15. Detection of Tight Junction Barrier Function In Vivo by Biotin

    PubMed Central

    Ding, Lei; Zhang, Yuguo; Tatum, Rodney; Chen, Yan-Hua

    2011-01-01

    Tight junctions (TJs) are the most apical component of the junctional complexes in mammalian epithelial cells and form selective paracellular barriers restricting the passage of solutes and ions across the epithelial sheets. Claudins, a TJ integral membrane protein family, play a critical role in regulating paracellular barrier permeability. In the in vitro cell culture system, transepithelial electrical resistance (TER) measurement and the flux of radioisotope or fluorescent labeled molecules with different sizes have been widely used to determine the TJ barrier function. In the in vivo system, the tracer molecule Sulfo-NHS-Biotin was initially used in Xenopus embryos system and subsequently was successfully applied to a number of animal tissues in situ and in different organisms under the experimental conditions to examine the functional integrity of TJs by several laboratories. In this chapter, we will describe the detailed procedures of applying biotin as a paracellular tracer molecule to different in vivo systems to assay TJ barrier function. PMID:21717351

  16. Erp29 Attenuates Cigarette Smoke Extract–Induced Endoplasmic Reticulum Stress and Mitigates Tight Junction Damage in Retinal Pigment Epithelial Cells

    PubMed Central

    Huang, Chuangxin; Wang, Joshua J.; Jing, Guangjun; Li, Junhua; Jin, Chenjin; Yu, Qiang; Falkowski, Marek W.; Zhang, Sarah X.

    2015-01-01

    Purpose Endoplasmic reticulum protein 29 (ERp29) is a novel chaperone that was recently found decreased in human retinas with AMD. Herein, we examined the effect of ERp29 on cigarette smoke–induced RPE apoptosis and tight junction disruption. Methods Cultured human RPE (HRPE) cells (ARPE-19) or mouse RPE eyecup explants were exposed to cigarette smoke extract (CSE) for short (up to 24 hours) or long (up to 3 weeks) periods. Expression of ERp29 was up- and downregulated by adenovirus and siRNA, respectively. Endoplasmic reticulum stress markers, apoptosis, and cell death, the expression and distribution of tight junction protein ZO-1, transepithelial electrical resistance (TEER), and F-actin expression were examined. Results Endoplasmic reticulum protein 29 was significantly increased by short-term exposure to CSE in ARPE-19 cells or eyecup explants but was reduced after 3-week exposure. Overexpression of ERp29 increased the levels of GRP78, p58IPK, and Nrf-2, while reducing p-eIF2α and C/EBP homologous protein (CHOP), and protected RPE cells from CSE-induced apoptosis. In contrast, knockdown of ERp29 decreased the levels of p58IPK and Nrf2, but increased p-eIF2α and CHOP and exacerbated CSE-triggered cell death. In addition, overexpression of ERp29 attenuated CSE-induced reduction in ZO-1 and enhanced the RPE barrier function, as measured by TEER. Knockdown of ERp29 decreased the level of ZO-1 protein. These effects were associated with changes in the expression of cytoskeleton F-actin. Conclusions Endoplasmic reticulum protein 29 attenuates CSE-induced ER stress and enhances cell viability and barrier integrity of RPE cells, and therefore may act as a protective mechanism for RPE survival and activity. PMID:26431474

  17. Definitive evidence for the existence of tight junctions in invertebrates.

    PubMed

    Lane, N J; Chandler, H J

    1980-09-01

    Extensive and unequivocal tight junctions are here reported between the lateral borders of the cellular layer that circumscribes the arachnid (spider) central nervous system. This account details the features of these structures, which form a beltlike reticulum that is more complex than the simple linear tight junctions hitherto found in invertebrate tissues and which bear many of the characteristics of vertebrate zonulae occludentes. We also provide evidence that these junctions form the basis of a permeability barrier to exogenous compounds. In thin sections, the tight junctions are identifiable as punctate points of membrane apposition; they are seen to exclude the stain and appear as election- lucent moniliform strands along the lines of membrane fusion in en face views of uranyl-calcium-treated tissues. In freeze-fracture replicas, the regions of close membrane apposition exhibit P-face (PF) ridges and complementary E-face (EF) furrows that are coincident across face transitions, although slightly offset with respect to one another. The free inward diffusion of both ionic and colloidal lanthanum is inhibited by these punctate tight junctions so that they appear to form the basis of a circumferential blood-brain barrier. These results support the contention that tight junctions exist in the tissues of the invertebrata in spite of earlier suggestions that (a) they are unique to vertebrates and (b) septate junctions are the equivalent invertebrate occluding structure. The component tight junctional 8- to 10-nm-particulate PF ridges are intimately intercalated with, but clearly distinct from, inverted gap junctions possessing the 13-nm EF particles typical of arthropods. Hence, no confusion can occur as to which particles belong to each of the two junctional types, as commonly happens with vertebrate tissues, especially in the analysis of developing junctions. Indeed, their coexistance in this way supports the idea, over which there has been some controversy, that

  18. Lactic Acid Bacteria Improves Peyer's Patch Cell-Mediated Immunoglobulin A and Tight-Junction Expression in a Destructed Gut Microbial Environment.

    PubMed

    Kim, Sung Hwan; Jeung, Woonhee; Choi, Il-Dong; Jeong, Ji-Woong; Lee, Dong Eun; Huh, Chul-Sung; Kim, Geun-Bae; Hong, Seong Soo; Shim, Jae-Jung; Lee, Jung Lyoul; Sim, Jae-Hun; Ahn, Young-Tae

    2016-06-28

    To evaluate the effects of lactic acid bacteria (LAB) on Peyer's patch cells, mice were treated with a high dose of kanamycin to disturb the gut microbial environment. The overarching goal was to explore the potential of LAB for use as a dietary probiotic that buffers the negative consequences of antibiotic treatment. In vitro, LAB stimulated the production of immunoglobulin A (IgA) from isolated Peyer's patch cells. Inflammation-related genes (TNF-α, IL-1β, and IL-8) were up-regulated in Caco-2 cells stimulated with lipopolysaccharide (LPS), while tight-junction-related genes (ZO-1 and occludin) were down-regulated; the effects of LPS on inflammatory gene and tight-junction gene expression were reversed by treatment with LAB. Mice treated with a high dose of kanamycin showed increased serum IgE levels and decreases in serum IgA and fecal IgA levels; the number of Peyer's patch cells decreased with kanamycin treatment. However, subsequent LAB treatment was effective in reducing the serum IgE level and recovering the serum IgA and fecal IgA levels, as well as the number of Peyer's patch cells. In addition, ZO-1 and occludin mRNA levels were up-regulated in the ileum tissues of mice receiving LAB treatment. Lactic acid bacteria can enhance the intestinal immune system by improving the integrity of the intestinal barrier and increasing the production of IgA in Peyer's patches. Lactic acid bacteria should be considered a potential probiotic candidate for improving intestinal immunity, particularly in mitigating the negative consequences of antibiotic use. PMID:26975767

  19. Deficiency of Angulin-2/ILDR1, a Tricellular Tight Junction-Associated Membrane Protein, Causes Deafness with Cochlear Hair Cell Degeneration in Mice

    PubMed Central

    Kitajiri, Shin-ichiro; Furuse, Mikio

    2015-01-01

    Tricellular tight junctions seal the extracellular spaces of tricellular contacts, where the vertices of three epithelial cells meet, and are required for the establishment of a strong barrier function of the epithelial cellular sheet. Angulins and tricellulin are known as specific protein components of tricellular tight junctions, where angulins recruit tricellulin. Mutations in the genes encoding angulin-2/ILDR1 and tricellulin have been reported to cause human hereditary deafness DFNB42 and DFNB49, respectively. To investigate the pathogenesis of DFNB42, we analyzed mice with a targeted disruption of Ildr1, which encodes angulin-2/ILDR1. Ildr1 null mice exhibited profound deafness. Hair cells in the cochlea of Ildr1 null mice develop normally, but begin to degenerate by two weeks after birth. Tricellulin localization at tricellular contacts of the organ of Corti in the cochlea was retained in Ildr1 null mice, but its distribution along the depth of tricellular contacts was affected. Interestingly, compensatory tricellular contact localization of angulin-1/LSR was observed in the organ of Corti in Ildr1 null mice although it was hardly detected in the organ of Corti in wild-type mice. The onset of hair cell degeneration in Ildr1 null mice was earlier than that in the reported Tric mutant mice, which mimic one of the tricellulin mutations in DFNB49 deafness. These results indicate that the angulin-2/ILDR1 deficiency causes the postnatal degenerative loss of hair cells in the cochlea, leading to human deafness DFNB42. Our data also suggest that angulin family proteins have distinct functions in addition to their common roles of tricellulin recruitment and that the function of angulin-2/ILDR1 for hearing cannot be substituted by angulin-1/LSR. PMID:25822906

  20. Deficiency of angulin-2/ILDR1, a tricellular tight junction-associated membrane protein, causes deafness with cochlear hair cell degeneration in mice.

    PubMed

    Higashi, Tomohito; Katsuno, Tatsuya; Kitajiri, Shin-Ichiro; Furuse, Mikio

    2015-01-01

    Tricellular tight junctions seal the extracellular spaces of tricellular contacts, where the vertices of three epithelial cells meet, and are required for the establishment of a strong barrier function of the epithelial cellular sheet. Angulins and tricellulin are known as specific protein components of tricellular tight junctions, where angulins recruit tricellulin. Mutations in the genes encoding angulin-2/ILDR1 and tricellulin have been reported to cause human hereditary deafness DFNB42 and DFNB49, respectively. To investigate the pathogenesis of DFNB42, we analyzed mice with a targeted disruption of Ildr1, which encodes angulin-2/ILDR1. Ildr1 null mice exhibited profound deafness. Hair cells in the cochlea of Ildr1 null mice develop normally, but begin to degenerate by two weeks after birth. Tricellulin localization at tricellular contacts of the organ of Corti in the cochlea was retained in Ildr1 null mice, but its distribution along the depth of tricellular contacts was affected. Interestingly, compensatory tricellular contact localization of angulin-1/LSR was observed in the organ of Corti in Ildr1 null mice although it was hardly detected in the organ of Corti in wild-type mice. The onset of hair cell degeneration in Ildr1 null mice was earlier than that in the reported Tric mutant mice, which mimic one of the tricellulin mutations in DFNB49 deafness. These results indicate that the angulin-2/ILDR1 deficiency causes the postnatal degenerative loss of hair cells in the cochlea, leading to human deafness DFNB42. Our data also suggest that angulin family proteins have distinct functions in addition to their common roles of tricellulin recruitment and that the function of angulin-2/ILDR1 for hearing cannot be substituted by angulin-1/LSR. PMID:25822906

  1. Uropathogenic E. coli promote a paracellular urothelial barrier defect characterized by altered tight junction integrity, epithelial cell sloughing and cytokine release.

    PubMed

    Wood, M W; Breitschwerdt, E B; Nordone, S K; Linder, K E; Gookin, J L

    2012-07-01

    The urinary bladder is a common site of bacterial infection with a majority of cases attributed to uropathogenic Escherichia coli. Sequelae of urinary tract infections (UTIs) include the loss of urothelial barrier function and subsequent clinical morbidity secondary to the permeation of urine potassium, urea and ammonia into the subepithelium. To date there has been limited research describing the mechanism by which this urothelial permeability defect develops. The present study models acute uropathogenic E. coli infection in vitro using intact canine bladder mucosa mounted in Ussing chambers to determine whether infection induces primarily a transcellular or paracellular permeability defect. The Ussing chamber sustains tissue viability while physically separating submucosal and lumen influences, so this model is ideal for quantitative measurement of transepithelial electrical resistance (TER) to assess alterations of urothelial barrier function. Using this model, changes in both tissue ultrastructure and TER indicated that uropathogenic E. coli infection promotes a paracellular permeability defect associated with the failure of umbrella cell tight junction formation and umbrella cell sloughing. In addition, bacterial interaction with the urothelium promoted secretion of cytokines from the urinary bladder with bioactivity capable of modulating epithelial barrier function including tumour necrosis factor-α, interleukin (IL)-6 and IL-15. IL-15 secretion by the infected bladder mucosa is a novel finding and, because IL-15 plays key roles in reconstitution of tight junction function in damaged intestine, this study points to a potential role for IL-15 in UTI-induced urothelial injury. PMID:22014415

  2. Tight junction disruption: Helicobacter pylori and dysregulation of the gastric mucosal barrier

    PubMed Central

    Caron, Tyler J; Scott, Kathleen E; Fox, James G; Hagen, Susan J

    2015-01-01

    Long-term chronic infection with Helicobacter pylori (H. pylori) is a risk factor for gastric cancer development. In the multi-step process that leads to gastric cancer, tight junction dysfunction is thought to occur and serve as a risk factor by permitting the permeation of luminal contents across an otherwise tight mucosa. Mechanisms that regulate tight junction function and structure in the normal stomach, or dysfunction in the infected stomach, however, are largely unknown. Although conventional tight junction components are expressed in gastric epithelial cells, claudins regulate paracellular permeability and are likely the target of inflammation or H. pylori itself. There are 27 different claudin molecules, each with unique properties that render the mucosa an intact barrier that is permselective in a way that is consistent with cell physiology. Understanding the architecture of tight junctions in the normal stomach and then changes that occur during infection is important but challenging, because most of the reports that catalog claudin expression in gastric cancer pathogenesis are contradictory. Furthermore, the role of H. pylori virulence factors, such as cytotoxin-associated gene A and vacoulating cytotoxin, in regulating tight junction dysfunction during infection is inconsistent in different gastric cell lines and in vivo, likely because non-gastric epithelial cell cultures were initially used to unravel the details of their effects on the stomach. Hampering further study, as well, is the relative lack of cultured cell models that have tight junction claudins that are consistent with native tissues. This summary will review the current state of knowledge about gastric tight junctions, normally and in H. pylori infection, and make predictions about the consequences of claudin reorganization during H. pylori infection. PMID:26523106

  3. Ischemic preconditioning enhances integrity of coronary endothelial tight junctions

    SciTech Connect

    Li, Zhao; Jin, Zhu-Qiu

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Cardiac tight junctions are present between coronary endothelial cells. Black-Right-Pointing-Pointer Ischemic preconditioning preserves the structural and functional integrity of tight junctions. Black-Right-Pointing-Pointer Myocardial edema is prevented in hearts subjected to ischemic preconditioning. Black-Right-Pointing-Pointer Ischemic preconditioning enhances translocation of ZO-2 from cytosol to cytoskeleton. -- Abstract: Ischemic preconditioning (IPC) is one of the most effective procedures known to protect hearts against ischemia/reperfusion (IR) injury. Tight junction (TJ) barriers occur between coronary endothelial cells. TJs provide barrier function to maintain the homeostasis of the inner environment of tissues. However, the effect of IPC on the structure and function of cardiac TJs remains unknown. We tested the hypothesis that myocardial IR injury ruptures the structure of TJs and impairs endothelial permeability whereas IPC preserves the structural and functional integrity of TJs in the blood-heart barrier. Langendorff hearts from C57BL/6J mice were prepared and perfused with Krebs-Henseleit buffer. Cardiac function, creatine kinase release, and myocardial edema were measured. Cardiac TJ function was evaluated by measuring Evans blue-conjugated albumin (EBA) content in the extravascular compartment of hearts. Expression and translocation of zonula occludens (ZO)-2 in IR and IPC hearts were detected with Western blot. A subset of hearts was processed for the observation of ultra-structure of cardiac TJs with transmission electron microscopy. There were clear TJs between coronary endothelial cells of mouse hearts. IR caused the collapse of TJs whereas IPC sustained the structure of TJs. IR increased extravascular EBA content in the heart and myocardial edema but decreased the expression of ZO-2 in the cytoskeleton. IPC maintained the structure of TJs. Cardiac EBA content and edema were reduced in IPC hearts. IPC

  4. Tight junctions in Hailey-Hailey and Darier's diseases

    PubMed Central

    Raiko, Laura; Leinonen, Pekka; Hägg, Päivi M.; Peltonen, Juha; Oikarinen, Aarne; Peltonen, Sirkku

    2009-01-01

    Hailey-Hailey disease (HHD) and Darier's disease (DD) are caused by mutations in Ca2+-ATPases with the end result of desmosomal disruption and suprabasal acantholysis. Tight junctions (TJ) are located in the granular cell layer in normal skin and contribute to the epidermal barrier. Aberrations in the epidermal differentiation, such as in psoriasis, have been shown to lead to changes in the expression of TJ components. Our aim was to elucidate the expression and dynamics of the TJ proteins during the disruption of desmosomes in HHD and DD lesions. Indirect immunofluorescence and avidin-biotin labeling for TJ, desmosomal and adherens junction proteins, and subsequent analyses with the confocal laser scanning microscope were carried out on 14 HHD and 14 DD skin samples. Transepidermal water loss (TEWL) was measured in normal and lesional epidermis of nine HHD and eight DD patients to evaluate the function of the epidermal barrier in HHD and DD skin. The localization of TJ proteins claudin-1, claudin-4, ZO-1, and occludin in perilesional HHD and DD epidermis was similar to that previously described in normal skin. In HHD lesions the tissue distribution of ZO-1 expanded to the acantholytic spinous cells. In agreement with previous findings, desmoplakin was localized intracellularly. In contrast claudin-1 and ZO-1 persisted in the cell-cell contact sites of acantholytic cells. TEWL was increased in the lesional skin. The current results suggest that TJ components follow different dynamics in acantholysis of HHD and DD compared to desmosomal and adherens junction proteins. PMID:25386233

  5. Indomethacin induces increase in gastric epithelial tight junction permeability via redistribution of occludin and activation of p38 MAPK in MKN-28 Cells.

    PubMed

    Thakre-Nighot, Meghali; Blikslager, Anthony T

    2016-01-01

    Tight Junctions (TJ) create a paracellular barrier that is compromised when nonsteriodal anti-inflammatory drugs (NSAIDs) injure the gastric epithelium, leading to increased permeability. However, the mechanism of NSAID-induced gastric injury is unclear. Here, we examined the effect of indomethacin on barrier function and TJ in gastric MKN-28 cells. In concentration response studies, 500 µm indomethacin induced a significant decrease in transepithelial resistance (TER; 380 vs. 220 Ω·cm(2) for control and indomethacin-treated cells respectively, p < 0.05), and increased dextran permeability by 0.2 vs 1.2 g/l (p < 0.05). These changes in barrier function were completely ameliorated by the p38 MAPK inhibitor (SB-203580) but not by JNK inhibitor (SP-600125) or MEK/ERK inhibitor (PD-98059). SiRNA knock down of p38 MAPK prevented the loss of barrier function caused by indomethacin in MKN-28 cells. Western analyses of TJ proteins revealed that expression of occludin was reduced by indomethacin, whereas there was no change in other TJ proteins. The loss of occludin expression induced by indomethacin was prevented by inhibition of p38 MAPK but not JNK or ERK and also by siRNA of p38 MAPK. Immunofluorescence revealed disruption of occludin localization at the site of the tight junction in indomethacin-treated cells, and this was attenuated by inhibition of p38 MAPK. NSAID injury to murine gastric mucosa on Ussing chambers revealed that indomethacin caused a significant drop in TER and increased paracellular permeability. Pretreatment with the p38 MAPK inhibitor significantly attenuated the disruption of barrier function, but JNK and MEK/ERK inhibition had no effect. Western blot analysis on gastric mucosa reveled loss of TJ protein occludin by indomethacin, which was prevented by inhibition of p38 MAPK. This data suggests that indomethacin compromises the gastric epithelial barrier via p38 MAPK inducing occludin alterations in the TJs. PMID:27583191

  6. 21-Benzylidene digoxin: a proapoptotic cardenolide of cancer cells that up-regulates Na,K-ATPase and epithelial tight junctions.

    PubMed

    Rocha, Sayonarah C; Pessoa, Marco T C; Neves, Luiza D R; Alves, Silmara L G; Silva, Luciana M; Santos, Herica L; Oliveira, Soraya M F; Taranto, Alex G; Comar, Moacyr; Gomes, Isabella V; Santos, Fabio V; Paixão, Natasha; Quintas, Luis E M; Noël, François; Pereira, Antonio F; Tessis, Ana C S C; Gomes, Natalia L S; Moreira, Otacilio C; Rincon-Heredia, Ruth; Varotti, Fernando P; Blanco, Gustavo; Villar, Jose A F P; Contreras, Rubén G; Barbosa, Leandro A

    2014-01-01

    Cardiotonic steroids are used to treat heart failure and arrhythmia and have promising anticancer effects. The prototypic cardiotonic steroid ouabain may also be a hormone that modulates epithelial cell adhesion. Cardiotonic steroids consist of a steroid nucleus and a lactone ring, and their biological effects depend on the binding to their receptor, Na,K-ATPase, through which, they inhibit Na+ and K+ ion transport and activate of several intracellular signaling pathways. In this study, we added a styrene group to the lactone ring of the cardiotonic steroid digoxin, to obtain 21-benzylidene digoxin (21-BD), and investigated the effects of this synthetic cardiotonic steroid in different cell models. Molecular modeling indicates that 21-BD binds to its target Na,K-ATPase with low affinity, adopting a different pharmacophoric conformation when bound to its receptor than digoxin. Accordingly, 21-DB, at relatively high µM amounts inhibits the activity of Na,K-ATPase α1, but not α2 and α3 isoforms. In addition, 21-BD targets other proteins outside the Na,K-ATPase, inhibiting the multidrug exporter Pdr5p. When used on whole cells at low µM concentrations, 21-BD produces several effects, including: 1) up-regulation of Na,K-ATPase expression and activity in HeLa and RKO cancer cells, which is not found for digoxin, 2) cell specific changes in cell viability, reducing it in HeLa and RKO cancer cells, but increasing it in normal epithelial MDCK cells, which is different from the response to digoxin, and 3) changes in cell-cell interaction, altering the molecular composition of tight junctions and elevating transepithelial electrical resistance of MDCK monolayers, an effect previously found for ouabain. These results indicate that modification of the lactone ring of digoxin provides new properties to the compound, and shows that the structural change introduced could be used for the design of cardiotonic steroid with novel functions. PMID:25290152

  7. 21-Benzylidene Digoxin: A Proapoptotic Cardenolide of Cancer Cells That Up-Regulates Na,K-ATPase and Epithelial Tight Junctions

    PubMed Central

    Rocha, Sayonarah C.; Pessoa, Marco T. C.; Neves, Luiza D. R.; Alves, Silmara L. G.; Silva, Luciana M.; Santos, Herica L.; Oliveira, Soraya M. F.; Taranto, Alex G.; Comar, Moacyr; Gomes, Isabella V.; Santos, Fabio V.; Paixão, Natasha; Quintas, Luis E. M.; Noël, François; Pereira, Antonio F.; Tessis, Ana C. S. C.; Gomes, Natalia L. S.; Moreira, Otacilio C.; Rincon-Heredia, Ruth; Varotti, Fernando P.; Blanco, Gustavo; Villar, Jose A. F. P.; Contreras, Rubén G.; Barbosa, Leandro A.

    2014-01-01

    Cardiotonic steroids are used to treat heart failure and arrhythmia and have promising anticancer effects. The prototypic cardiotonic steroid ouabain may also be a hormone that modulates epithelial cell adhesion. Cardiotonic steroids consist of a steroid nucleus and a lactone ring, and their biological effects depend on the binding to their receptor, Na,K-ATPase, through which, they inhibit Na+ and K+ ion transport and activate of several intracellular signaling pathways. In this study, we added a styrene group to the lactone ring of the cardiotonic steroid digoxin, to obtain 21-benzylidene digoxin (21-BD), and investigated the effects of this synthetic cardiotonic steroid in different cell models. Molecular modeling indicates that 21-BD binds to its target Na,K-ATPase with low affinity, adopting a different pharmacophoric conformation when bound to its receptor than digoxin. Accordingly, 21-DB, at relatively high µM amounts inhibits the activity of Na,K-ATPase α1, but not α2 and α3 isoforms. In addition, 21-BD targets other proteins outside the Na,K-ATPase, inhibiting the multidrug exporter Pdr5p. When used on whole cells at low µM concentrations, 21-BD produces several effects, including: 1) up-regulation of Na,K-ATPase expression and activity in HeLa and RKO cancer cells, which is not found for digoxin, 2) cell specific changes in cell viability, reducing it in HeLa and RKO cancer cells, but increasing it in normal epithelial MDCK cells, which is different from the response to digoxin, and 3) changes in cell-cell interaction, altering the molecular composition of tight junctions and elevating transepithelial electrical resistance of MDCK monolayers, an effect previously found for ouabain. These results indicate that modification of the lactone ring of digoxin provides new properties to the compound, and shows that the structural change introduced could be used for the design of cardiotonic steroid with novel functions. PMID:25290152

  8. Phosphatidylcholine passes through lateral tight junctions for paracellular transport to the apical side of the polarized intestinal tumor cell-line CaCo2.

    PubMed

    Stremmel, Wolfgang; Staffer, Simone; Gan-Schreier, Hongying; Wannhoff, Andreas; Bach, Margund; Gauss, Annika

    2016-09-01

    Phosphatidylcholine (PC) is the most abundant phospholipid in intestinal mucus, indicative of a specific transport system across the mucosal epithelium to the intestinal lumen. To elucidate this transport mechanism, we employed a transwell tissue culture system with polarized CaCo2 cells. It was shown that PC could not substantially be internalized by the cells. However, after basal application of increasing PC concentrations, an apical transport of 47.1±6.3nmolh(-1)mMPC(-1) was observed. Equilibrium distribution studies with PC applied in equal concentrations to the basal and apical compartments showed a 1.5-fold accumulation on the expense of basal PC. Disruption of tight junctions (TJ) by acetaldehyde or PPARγ inhibitors or by treatment with siRNA to TJ proteins suppressed paracellular transport by at least 50%. Transport was specific for the choline containing the phospholipids PC, lysoPC and sphingomyelin. We showed that translocation is driven by an electrochemical gradient generated by apical accumulation of Cl(-) and HCO3(-) through CFTR. Pretreatment with siRNA to mucin 3 which anchors in the apical plasma membrane of mucosal cells inhibited the final step of luminal PC secretion. PC accumulates in intestinal mucus using a paracellular, apically directed transport route across TJs. PMID:27365309

  9. Intestinal Cell Tight Junctions Limit Invasion of Candida albicans through Active Penetration and Endocytosis in the Early Stages of the Interaction of the Fungus with the Intestinal Barrier

    PubMed Central

    Bon, Fabienne; L’Ollivier, Coralie; Laue, Michael; Holland, Gudrun; Bonnin, Alain; Dalle, Frederic

    2016-01-01

    C. albicans is a commensal yeast of the mucous membranes in healthy humans that can also cause disseminated candidiasis, mainly originating from the digestive tract, in vulnerable patients. It is necessary to understand the cellular and molecular mechanisms of the interaction of C. albicans with enterocytes to better understand the basis of commensalism and pathogenicity of the yeast and to improve the management of disseminated candidiasis. In this study, we investigated the kinetics of tight junction (TJ) formation in parallel with the invasion of C. albicans into the Caco-2 intestinal cell line. Using invasiveness assays on Caco-2 cells displaying pharmacologically altered TJ (i.e. differentiated epithelial cells treated with EGTA or patulin), we were able to demonstrate that TJ protect enterocytes against invasion of C. albicans. Moreover, treatment with a pharmacological inhibitor of endocytosis decreased invasion of the fungus into Caco-2 cells displaying altered TJ, suggesting that facilitating access of the yeast to the basolateral side of intestinal cells promotes endocytosis of C. albicans in its hyphal form. These data were supported by SEM observations of differentiated Caco-2 cells displaying altered TJ, which highlighted membrane protrusions engulfing C. albicans hyphae. We furthermore demonstrated that Als3, a hypha-specific C. albicans invasin, facilitates internalization of the fungus by active penetration and induced endocytosis by differentiated Caco-2 cells displaying altered TJ. However, our observations failed to demonstrate binding of Als3 to E-cadherin as the trigger mechanism of endocytosis of C. albicans into differentiated Caco-2 cells displaying altered TJ. PMID:26933885

  10. Adherens and Tight Junctions: Structure, Function and Connections to the Actin Cytoskeleton

    PubMed Central

    Hartsock, Andrea; Nelson, W. James

    2009-01-01

    Summary Adherens juctions and Tight junctions comprise two modes of cell-cell adhesion that provide different functions. Both junctional complexes are proposed to associate with the actin cytoskeleton, and formation and maturation of cell-cell contacts involves reorganization of the actin cytoskeleton. Adherens junctions initiate cell-cell contacts, and mediate the maturation and maintenance of the contact. Adherens junctions consist of the transmembrane protein E-cadherin, and intracellular components, p120-catenin, β-catenin and α-catenin. Tight junctions regulate the paracellular pathway for the movement of ions and solutes in-between cells. Tight junctions consist of the transmembrane proteins occludin and claudin, and the cytoplasmic scaffolding proteins ZO-1,-2, and -3. This review discusses the binding interactions of the most studied proteins that occur within each of these two junctional complexes and possible modes of regulation of these interactions, and the different mechanisms that connect and regulate interactions with the actin cytoskeleton. PMID:17854762

  11. Estrogen Modulates Expression of Tight Junction Proteins in Rat Vagina

    PubMed Central

    Oh, Kyung-Jin; Ahn, Kyuyoun

    2016-01-01

    Background. The objectives of this study were to investigate the localization of tight junctions and the modulation of zonula occludens- (ZO-) 1, occludin and claudin-1 expression by estrogen in castrated female rat vagina. Female Sprague-Dawley rats (230–240 g, n = 45) were divided into three groups and subjected to a sham operation (control group, n = 15), bilateral ovariectomy (Ovx group, n = 15), or bilateral ovariectomy followed by daily subcutaneous injection of 17β-estradiol (50 μg/kg/day, Ovx + Est group, n = 15). The cellular localization and expression of ZO-1, occludin, and claudin-1 were determined in each group by immunohistochemistry and western blot. Results. Expression of ZO-1 was diffuse in all groups, with the highest intensity in the superficial epithelium in the control group. Occludin was localized in the intermediate and basal epithelium. Claudin-1 was most intense in the superficial layer of the vaginal epithelium in the control group. Expression of ZO-1, occludin, and claudin-1 was significantly decreased after ovariectomy and was restored to the level of the control after estrogen replacement. Conclusions. Tight junctions are distinctly localized in rat vagina, and estrogen modulates the expression of tight junctions. Further researches are needed to clarify the functional role of tight junctions in vaginal lubrication. PMID:27127786

  12. Cardiotonic steroid ouabain stimulates expression of blood-testis barrier proteins claudin-1 and -11 and formation of tight junctions in Sertoli cells.

    PubMed

    Dietze, Raimund; Shihan, Mazen; Stammler, Angelika; Konrad, Lutz; Scheiner-Bobis, Georgios

    2015-04-15

    The interaction of ouabain with the sodium pump induces signalling cascades resembling those triggered by hormone/receptor interactions. In the rat Sertoli cell line 93RS2, ouabain at low concentrations stimulates the c-Src/c-Raf/Erk1/2 signalling cascade via its interaction with the α4 isoform of the sodium pump expressed in these cells, leading to the activation of the transcription factor CREB. As a result of this signalling sequence, ouabain stimulates expression of claudin-1 and claudin-11, which are also controlled by a CRE promoter. Both of these proteins are known to be essential constituents of tight junctions (TJ) between Sertoli cells, and as a result of the ouabain-induced signalling TJ formation between neighbouring Sertoli cells is significantly enhanced by the steroid. Thus, ouabain-treated cell monolayers display higher transepithelial resistance and reduced free diffusion of FITC-coupled dextran in tracer diffusion assays. Taking into consideration that the formation of TJ is indispensable for the maintenance of the blood-testis barrier (BTB) and therefore for male fertility, the actions of ouabain described here and the fact that this and other related cardiotonic steroids (CTS) are produced endogenously suggest a direct influence of ouabain/sodium pump interactions on the maintenance of the BTB and thereby an effect on male fertility. Since claudin-1 and claudin-11 are also present in other blood-tissue barriers, one can speculate that ouabain and perhaps other CTS influence the dynamics of these barriers as well. PMID:25666991

  13. Pores in the epidermis: aquaporins and tight junctions.

    PubMed

    Brandner, J M

    2007-12-01

    Water homeostasis of the epidermis is important for the appearance and physical properties of the skin, as well as for water balance in the body. It depends on several factors, e.g. barrier quality, uptake of water into the epidermis, concentration of water-retaining humectants, and external humidity. Aquaporins (AQPs) are pores in the plasmamembranes of cells. Monomeric AQPs form barrel-like structures that are primarily water selective, some AQPs also transport glycerol and possibly other small solutes. In the epidermis, AQP3 is the predominant AQP. It is localized mainly in basal but also in suprabasal layers of the epidermis and is permeable for water as well as for glycerol, a humectant. Mice deficient in AQP3 exhibit reduced stratum corneum (SC) hydration and impaired SC barrier recovery after SC removal. In skin diseases associated with elevated transepidermal water loss (TEWL) and reduced SC hydration, altered expression of AQP3 was shown. Tight junctions (TJ) are cell-cell junctions, which play a central role in sealing the intercellular space of cell sheets and thereby establishing a paracellular barrier. Within the TJ, pores are postulated to exist, which allow the controlled diffusion of water and solutes via the paracellular pathway. In the epidermis, TJ structures were demonstrated in the stratum granulosum whereas TJ proteins were found in all viable layers. Mice which overexpress or are deficient of key-proteins of TJ die soon after birth because of a tremendous TEWL. In various skin diseases that are accompanied by elevated TEWL and reduced skin hydration, staining patterns of TJ proteins are altered. This review will summarize our current knowledge of the involvement of AQPs and TJ in the water homeostasis of the epidermis. PMID:18489380

  14. Tight junction protein claudin-6 inhibits growth and induces the apoptosis of cervical carcinoma cells in vitro and in vivo.

    PubMed

    Zhang, Xiaowei; Ruan, Yang; Li, Yanru; Lin, Dongjing; Quan, Chengshi

    2015-05-01

    Claudin-6, a member of claudin family integral membrane proteins, has recently been reported to be a tumor suppressor for breast cancer. However, whether it plays a role in other types of cancer remains unclear. In the present study, we showed that the expression of claudin-6 is down-regulated in cervical carcinoma tissues as revealed by immunohistochemistry. Through over-expressing claudin-6 in HeLa and C33A cervical carcinoma cells, we found that claudin-6 is localized at plasma membrane and it increases transepithelial electrical resistance of the cells. Gain of claudin-6 expression suppresses cell proliferation, colony formation in vitro, and tumor growth in vivo. The effects are accompanied and potentially caused by promotion of tumor cell apoptosis. Taken together, these results suggest that claudin-6 may function as a tumor suppressor and loss of claudin-6 contributes to enhanced tumorigenic properties of cervical carcinoma cells. PMID:25822939

  15. Build them up and break them down: Tight junctions of cell lines expressing typical hepatocyte polarity with a varied repertoire of claudins.

    PubMed

    Grosse, Brigitte; Degrouard, Jeril; Jaillard, Danielle; Cassio, Doris

    2013-10-01

    Tight junctions (TJs) of cells expressing simple epithelial polarity have been extensively studied, but less is known about TJs of cells expressing complex polarity. In this paper we analyzed, TJs of four different lines, that form bile canaliculi (BC) and express typical hepatocyte polarity; WIF-B9, 11-3, Can 3-1, Can 10. Striking differences were observed in claudin expression. None of the cell lines produced claudin-1. WIF-B9 and 11-3 expressed only claudin-2 while Can 3-1 and Can 10 expressed claudin-2,-3,-4,-5. TJs of these two classes of lines differed in their ultra-stucture, paracellular permeability, and robustness. Lines expressing a large claudin repertoire, especially Can 10, had complex and efficient TJs, that were maintained when cells were depleted in calcium. Inversely, TJs of WIF-B9 and 11-3 were leaky, permissive and dismantled by calcium depletion. Interestingly, we found that during the polarization process, TJ proteins expressed by all lines were sequentially settled in a specific order: first occludin, ZO-1 and cingulin, then JAM-A and ZO-2, finally claudin-2. Claudins expressed only in Can lines were also sequentially settled: claudin-3 was the first settled. Inhibition of claudin-3 expression delayed BC formation in Can10 and induced the expression of simple epithelial polarity. These results highlight the role of claudins in the settlement and the efficiency of TJs in lines expressing typical hepatocyte polarity. Can 10 seems to be the most promising of these lines because of its claudin repertoire near that of hepatocytes and its capacity to form extended tubular BC sealed by efficient TJs. PMID:24665408

  16. Emerging Multifunctional Roles of Claudin Tight Junction Proteins in Bone

    PubMed Central

    Alshbool, Fatima. Z.

    2014-01-01

    The imbalance between bone formation and resorption during bone remodeling has been documented to be a major factor in the pathogenesis of osteoporosis. Recent evidence suggests a significant role for the tight junction proteins, Claudins (Cldns), in the regulation of bone remodeling processes. In terms of function, whereas Cldns act “canonically” as key determinants of paracellular permeability, there is considerable recent evidence to suggest that Cldns also participate in cell signaling, ie, a “noncanonical function”. To this end, Cldns have been shown to regulate cell proliferation, differentiation, and gene expression in a variety of cell types. The present review will discuss Cldns' structure, their expression profile, regulation of expression, and their canonical and non- canonical functions in general with special emphasis on bone cells. In order to shed light on the noncanonical functions of Cldns in bone, we will highlight the role of Cldn-18 in regulating bone resorption and osteoclast differentiation. Collectively, we hope to provide a framework for guiding future research on understanding how Cldns modulate osteoblast and osteoclast function and overall bone homeostasis. Such studies should provide valuable insights into the pathogenesis of osteoporosis, and may highlight Cldns as novel targets for the diagnosis and therapeutic management of osteoporosis. PMID:24758302

  17. Strengthening of the intestinal epithelial tight junction by Bifidobacterium bifidum

    PubMed Central

    Hsieh, Chen-Yu; Osaka, Toshifumi; Moriyama, Eri; Date, Yasuhiro; Kikuchi, Jun; Tsuneda, Satoshi

    2015-01-01

    Epithelial barrier dysfunction has been implicated as one of the major contributors to the pathogenesis of inflammatory bowel disease. The increase in intestinal permeability allows the translocation of luminal antigens across the intestinal epithelium, leading to the exacerbation of colitis. Thus, therapies targeted at specifically restoring tight junction barrier function are thought to have great potential as an alternative or supplement to immunology-based therapies. In this study, we screened Bifidobacterium, Enterococcus, and Lactobacillus species for beneficial microbes to strengthen the intestinal epithelial barrier, using the human intestinal epithelial cell line (Caco-2) in an in vitro assay. Some Bifidobacterium and Lactobacillus species prevented epithelial barrier disruption induced by TNF-α, as assessed by measuring the transepithelial electrical resistance (TER). Furthermore, live Bifidobacterium species promoted wound repair in Caco-2 cell monolayers treated with TNF-α for 48 h. Time course 1H-NMR-based metabonomics of the culture supernatant revealed markedly enhanced production of acetate after 12 hours of coincubation of B. bifidum and Caco-2. An increase in TER was observed by the administration of acetate to TNF-α-treated Caco-2 monolayers. Interestingly, acetate-induced TER-enhancing effect in the coculture of B. bifidum and Caco-2 cells depends on the differentiation stage of the intestinal epithelial cells. These results suggest that Bifidobacterium species enhance intestinal epithelial barrier function via metabolites such as acetate. PMID:25780093

  18. RAGE mediated intracellular Aβ uptake contributes to the breakdown of tight junction in retinal pigment epithelium

    PubMed Central

    Park, Sung Wook; Kim, Jin Hyoung; Park, Sang Min; Moon, Minho; Lee, Kihwang; Park, Kyu Hyung; Park, Woo Jin; Kim, Jeong Hun

    2015-01-01

    Intracellular amyloid beta (Aβ) has been implicated in neuronal cell death in Alzheimer's disease (AD). Intracellular Aβ also contributes to tight junction breakdown of retinal pigment epithelium (RPE) in age-related macular degeneration (AMD). Although Aβ is predominantly secreted from neuronal cells, the mechanism of Aβ transport into RPE remains to be fully elucidated. In this study, we demonstrated that intracellular Aβ was found concomitantly with the breakdown of tight junction in RPE after subretinal injection of Aβ into the mouse eye. We also presented evidence that receptor for advanced glycation end products (RAGE) contributed to endocytosis of Aβ in RPE. siRNA-mediated knockdown of RAGE prevented intracellular Aβ accumulation as well as subsequent tight junction breakdown in RPE. In addition, we found that RAGE-mediated p38 MAPK signaling contributed to endocytosis of Aβ. Blockade of RAGE/p38 MAPK signaling inhibited Aβ endocytosis, thereby preventing tight junction breakdown in RPE. These results implicate that intracellular Aβ contributes to the breakdown of tight junction in RPE via the RAGE/p38 MAPK-mediated endocytosis. Thus, we suggest that RAGE could be a potential therapeutic target for intracellular Aβ induced outer BRB breakdown in AMD. PMID:26431165

  19. ILDR1 null mice, a model of human deafness DFNB42, show structural aberrations of tricellular tight junctions and degeneration of auditory hair cells.

    PubMed

    Morozko, Eva L; Nishio, Ayako; Ingham, Neil J; Chandra, Rashmi; Fitzgerald, Tracy; Martelletti, Elisa; Borck, Guntram; Wilson, Elizabeth; Riordan, Gavin P; Wangemann, Philine; Forge, Andrew; Steel, Karen P; Liddle, Rodger A; Friedman, Thomas B; Belyantseva, Inna A

    2015-02-01

    In the mammalian inner ear, bicellular and tricellular tight junctions (tTJs) seal the paracellular space between epithelial cells. Tricellulin and immunoglobulin-like (Ig-like) domain containing receptor 1 (ILDR1, also referred to as angulin-2) localize to tTJs of the sensory and non-sensory epithelia in the organ of Corti and vestibular end organs. Recessive mutations of TRIC (DFNB49) encoding tricellulin and ILDR1 (DFNB42) cause human nonsyndromic deafness. However, the pathophysiology of DFNB42 deafness remains unknown. ILDR1 was recently reported to be a lipoprotein receptor mediating the secretion of the fat-stimulated cholecystokinin (CCK) hormone in the small intestine, while ILDR1 in EpH4 mouse mammary epithelial cells in vitro was shown to recruit tricellulin to tTJs. Here we show that two different mouse Ildr1 mutant alleles have early-onset severe deafness associated with a rapid degeneration of cochlear hair cells (HCs) but have a normal endocochlear potential. ILDR1 is not required for recruitment of tricellulin to tTJs in the cochlea in vivo; however, tricellulin becomes mislocalized in the inner ear sensory epithelia of ILDR1 null mice after the first postnatal week. As revealed by freeze-fracture electron microscopy, ILDR1 contributes to the ultrastructure of inner ear tTJs. Taken together, our data provide insight into the pathophysiology of human DFNB42 deafness and demonstrate that ILDR1 is crucial for normal hearing by maintaining the structural and functional integrity of tTJs, which are critical for the survival of auditory neurosensory HCs. PMID:25217574

  20. ILDR1 null mice, a model of human deafness DFNB42, show structural aberrations of tricellular tight junctions and degeneration of auditory hair cells

    PubMed Central

    Morozko, Eva L.; Nishio, Ayako; Ingham, Neil J.; Chandra, Rashmi; Fitzgerald, Tracy; Martelletti, Elisa; Borck, Guntram; Wilson, Elizabeth; Riordan, Gavin P.; Wangemann, Philine; Forge, Andrew; Steel, Karen P.; Liddle, Rodger A.; Friedman, Thomas B.; Belyantseva, Inna A.

    2015-01-01

    In the mammalian inner ear, bicellular and tricellular tight junctions (tTJs) seal the paracellular space between epithelial cells. Tricellulin and immunoglobulin-like (Ig-like) domain containing receptor 1 (ILDR1, also referred to as angulin-2) localize to tTJs of the sensory and non-sensory epithelia in the organ of Corti and vestibular end organs. Recessive mutations of TRIC (DFNB49) encoding tricellulin and ILDR1 (DFNB42) cause human nonsyndromic deafness. However, the pathophysiology of DFNB42 deafness remains unknown. ILDR1 was recently reported to be a lipoprotein receptor mediating the secretion of the fat-stimulated cholecystokinin (CCK) hormone in the small intestine, while ILDR1 in EpH4 mouse mammary epithelial cells in vitro was shown to recruit tricellulin to tTJs. Here we show that two different mouse Ildr1 mutant alleles have early-onset severe deafness associated with a rapid degeneration of cochlear hair cells (HCs) but have a normal endocochlear potential. ILDR1 is not required for recruitment of tricellulin to tTJs in the cochlea in vivo; however, tricellulin becomes mislocalized in the inner ear sensory epithelia of ILDR1 null mice after the first postnatal week. As revealed by freeze-fracture electron microscopy, ILDR1 contributes to the ultrastructure of inner ear tTJs. Taken together, our data provide insight into the pathophysiology of human DFNB42 deafness and demonstrate that ILDR1 is crucial for normal hearing by maintaining the structural and functional integrity of tTJs, which are critical for the survival of auditory neurosensory HCs. PMID:25217574

  1. Rapid method of quantification of tight-junction organization using image analysis.

    PubMed

    Terryn, Christine; Sellami, Mehdi; Fichel, Caroline; Diebold, Marie-Danielle; Gangloff, Sophie; Le Naour, Richard; Polette, Myriam; Zahm, Jean-Marie

    2013-02-01

    The spatial organization of proteins in a cell population or in tissues is an important parameter to study the functionality of biological specimens. In this article, we have focused on tight junctions which form network-like features in immunofluorescence microscopy images. Usually, the organization or disorganization of tight junctions is noticed qualitatively. The aim of this article is to present a simple method to quantify the organization level of tight junction network using image analysis with a dedicated macro developed with Image J software. The method has been validated with simulated images displaying regular decrease of network organization. Then, the macro has been applied to immunofluorescence microscopy images of cells in culture and of tissue sections. PMID:23212973

  2. Tight-binding study of bilayer graphene Josephson junctions

    NASA Astrophysics Data System (ADS)

    Muñoz, W. A.; Covaci, L.; Peeters, F. M.

    2012-11-01

    Using highly efficient simulations of the tight-binding Bogoliubov-de-Gennes model, we solved self-consistently for the pair correlation and the Josephson current in a superconducting-bilayer graphene-superconducting Josephson junction. Different doping levels for the non-superconducting link are considered in the short- and long-junction regimes. Self-consistent results for the pair correlation and superconducting current resemble those reported previously for single-layer graphene except at the Dirac point, where remarkable differences in the proximity effect are found, as well as a suppression of the superconducting current in the long-junction regime. Inversion symmetry is broken by considering a potential difference between the layers and we found that the supercurrent can be switched if the junction length is larger than the Fermi length.

  3. PLEKHA7 modulates epithelial tight junction barrier function

    PubMed Central

    Paschoud, Serge; Jond, Lionel; Guerrera, Diego; Citi, Sandra

    2014-01-01

    PLEKHA7 is a recently identified protein of the epithelial zonula adhaerens (ZA), and is part of a protein complex that stabilizes the ZA, by linking it to microtubules. Since the ZA is important in the assembly and disassembly of tight junctions (TJ), we asked whether PLEKHA7 is involved in modulating epithelial TJ barrier function. We generated clonal MDCK cell lines in which one of four different constructs of PLEKHA7 was inducibly expressed. All constructs were localized at junctions, but constructs lacking the C-terminal region were also distributed diffusely in the cytoplasm. Inducible expression of PLEKHA7 constructs did not affect the expression and localization of TJ proteins, the steady-state value of transepithelial resistance (TER), the development of TER during the calcium switch, and the flux of large molecules across confluent monolayers. In contrast, expression of three out of four constructs resulted both in enhanced recruitment of E-cadherin and associated proteins at the apical ZA and at lateral puncta adherentia (PA), a decreased TER at 18 h after assembly at normal calcium, and an attenuation in the fall in TER after extracellular calcium removal. This latter effect was inhibited when cells were treated with nocodazole. Immunoprecipitation analysis showed that PLEKHA7 forms a complex with the cytoplasmic TJ proteins ZO-1 and cingulin, and this association does not depend on the integrity of microtubules. These results suggest that PLEKHA7 modulates the dynamics of assembly and disassembly of the TJ barrier, through E-cadherin protein complex- and microtubule-dependent mechanisms. PMID:24843844

  4. Tight junction regulates epidermal calcium ion gradient and differentiation

    SciTech Connect

    Kurasawa, Masumi; Maeda, Tetsuo; Oba, Ai; Yamamoto, Takuya; Sasaki, Hiroyuki

    2011-03-25

    Research highlights: {yields} We disrupted epidermal tight junction barrier in reconstructed epidermis. {yields} It altered Ca{sup 2+} distribution and consequentially differentiation state as well. {yields} Tight junction should affect epidermal homeostasis by maintaining Ca{sup 2+} gradient. -- Abstract: It is well known that calcium ions (Ca{sup 2+}) induce keratinocyte differentiation. Ca{sup 2+} distributes to form a vertical gradient that peaks at the stratum granulosum. It is thought that the stratum corneum (SC) forms the Ca{sup 2+} gradient since it is considered the only permeability barrier in the skin. However, the epidermal tight junction (TJ) in the granulosum has recently been suggested to restrict molecular movement to assist the SC as a secondary barrier. The objective of this study was to clarify the contribution of the TJ to Ca{sup 2+} gradient and epidermal differentiation in reconstructed human epidermis. When the epidermal TJ barrier was disrupted by sodium caprate treatment, Ca{sup 2+} flux increased and the gradient changed in ion-capture cytochemistry images. Alterations of ultrastructures and proliferation/differentiation markers revealed that both hyperproliferation and precocious differentiation occurred regionally in the epidermis. These results suggest that the TJ plays a crucial role in maintaining epidermal homeostasis by controlling the Ca{sup 2+} gradient.

  5. Brain Invasion by Mouse Hepatitis Virus Depends on Impairment of Tight Junctions and Beta Interferon Production in Brain Microvascular Endothelial Cells

    PubMed Central

    Bleau, Christian; Filliol, Aveline; Samson, Michel

    2015-01-01

    CoVs may gain access to the CNS at the BBB level. Herein we report for the first time that CoVs exhibit the ability to cross the BBB according to strain virulence. BBB invasion by CoVs correlates with virus-induced disruption of tight junctions on BMECs, leading to BBB dysfunction and enhanced permeability. We provide evidence that production of IFN-β by BMECs during CoV infection may prevent BBB breakdown and brain viral invasion. PMID:26202229

  6. NF-κB inhibitors impair lung epithelial tight junctions in the absence of inflammation.

    PubMed

    Ward, Christina; Schlingmann, Barbara L; Stecenko, Arlene A; Guidot, David M; Koval, Michael

    2015-01-01

    NF-κB (p50/p65) is the best characterized transcription factor known to regulate cell responses to inflammation. However, NF-κB is also constitutively expressed. We used inhibitors of the classical NF-κB signaling pathway to determine whether this transcription factor has a role in regulating alveolar epithelial tight junctions. Primary rat type II alveolar epithelial cells were isolated and cultured on Transwell permeable supports coated with collagen for 5 d to generate a model type I cell monolayer. Treatment of alveolar epithelial monolayers overnight with one of 2 different IκB kinase inhibitors (BAY 11-7082 or BMS-345541) resulted in a dose-dependent decrease in TER at concentrations that did not affect cell viability. In response to BMS-345541 treatment there was an increase in total claudin-4 and claudin-5 along with a decrease in claudin-18, as determined by immunoblot. However, there was little effect on the total amount of cell-associated claudin-7, occludin, junctional adhesion molecule A (JAM-A), zonula occludens (ZO)-1 or ZO-2. Moreover, treatment with BMS-345541 resulted in altered tight junction morphology as assessed by immunofluorescence microscopy. Cells treated with BMS-345541 had an increase in claudin-18 containing projections emanating from tight junctions ("spikes") that were less prominent in control cells. There also were several areas of cell-cell contact which lacked ZO-1 and ZO-2 localization as well as rearrangements to the actin cytoskeleton in response to BMS-345541. Consistent with an anti-inflammatory effect, BMS-345541 antagonized the deleterious effects of lipopolysaccharide (LPS) on alveolar epithelial barrier function. However, BMS-345541 also inhibited the ability of GM-CSF to increase alveolar epithelial TER. These data suggest a dual role for NF-κB in regulating alveolar barrier function and that constitutive NF-κB function is required for the integrity of alveolar epithelial tight junctions. PMID:25838984

  7. Rapid remodeling of tight junctions during paracellular diapedesis in a human model of the blood-brain barrier.

    PubMed

    Winger, Ryan C; Koblinski, Jennifer E; Kanda, Takashi; Ransohoff, Richard M; Muller, William A

    2014-09-01

    Leukocyte transendothelial migration (TEM; diapedesis) is a critical event in immune surveillance and inflammation. Most TEM occurs at endothelial cell borders (paracellular). However, there is indirect evidence to suggest that, at the tight junctions of the blood-brain barrier (BBB), leukocytes migrate directly through the endothelial cell body (transcellular). Why leukocytes migrate through the endothelial cell body rather than the cell borders is unknown. To test the hypothesis that the tightness of endothelial cell junctions influences the pathway of diapedesis, we developed an in vitro model of the BBB that possessed 10-fold higher electrical resistance than standard culture conditions and strongly expressed the BBB tight junction proteins claudin-5 and claudin-3. We found that paracellular TEM was still the predominant pathway (≥98%) and TEM was dependent on PECAM-1 and CD99. We show that endothelial tight junctions expressing claudin-5 are dynamic and undergo rapid remodeling during TEM. Membrane from the endothelial lateral border recycling compartment is mobilized to the exact site of tight junction remodeling. This preserves the endothelial barrier by sealing the intercellular gaps with membrane and engaging the migrating leukocyte with unligated adhesion molecules (PECAM-1 and CD99) as it crosses the cell border. These findings provide new insights into leukocyte-endothelial interactions at the BBB and suggest that tight junctions are more dynamic than previously appreciated. PMID:25063869

  8. The Chlamydia trachomatis Protease CPAF Contains a Cryptic PDZ-Like Domain with Similarity to Human Cell Polarity and Tight Junction PDZ-Containing Proteins

    PubMed Central

    Mou, Rui; Valdivia, Raphael H.; McCafferty, Dewey G.

    2016-01-01

    The need for more effective anti-chlamydial therapeutics has sparked research efforts geared toward further understanding chlamydial pathogenesis mechanisms. Recent studies have implicated the secreted chlamydial serine protease, chlamydial protease-like activity factor (CPAF) as potentially important for chlamydial pathogenesis. By mechanisms that remain to be elucidated, CPAF is directed to a discrete group of substrates, which are subsequently cleaved or degraded. While inspecting the previously solved CPAF crystal structure, we discovered that CPAF contains a cryptic N-terminal PSD95 Dlg ZO-1 (PDZ) domain spanning residues 106–212 (CPAF106-212). This PDZ domain is unique in that it bears minimal sequence similarity to canonical PDZ-forming sequences and displays little sequence and structural similarity to known chlamydial PDZ domains. We show that the CPAF106-212 sequence is homologous to PDZ domains of human tight junction proteins. PMID:26829550

  9. Loss of PALS1 Expression Leads to Tight Junction and Polarity Defects

    PubMed Central

    Straight, Samuel W.; Shin, Kunyoo; Fogg, Vanessa C.; Fan, Shuling; Liu, Chia-Jen; Roh, Michael; Margolis, Ben

    2004-01-01

    Prior work in our laboratory established a connection between the PALS1/PATJ/CRB3 and Par6/Par3/aPKC protein complexes at the tight junction of mammalian epithelial cells. Utilizing a stable small interfering RNA expression system, we have markedly reduced expression of the tight junction-associated protein PALS1 in MDCKII cells. The loss of PALS1 resulted in a corresponding loss of expression of PATJ, a known binding partner of PALS1, but had no effect on the expression of CRB3. However, the absence of PALS1 and PATJ expression did result in the decreased association of CRB3 with members of the Par6/Par3/aPKC protein complex. The consequences of the loss of PALS1 and PATJ were exhibited by a delay in the polarization of MDCKII monolayers after calcium switch, a decrease in the transepithelial electrical resistance, and by the inability of these cells to form lumenal cysts when grown in a collagen gel matrix. These defects in polarity determination may be the result of the lack of recruitment of aPKC to the tight junction in PALS1-deficient cells, as observed by confocal microscopy, and subsequent alterations in downstream signaling events. PMID:14718565

  10. Group A Streptococcus exploits human plasminogen for bacterial translocation across epithelial barrier via tricellular tight junctions

    PubMed Central

    Sumitomo, Tomoko; Nakata, Masanobu; Higashino, Miharu; Yamaguchi, Masaya; Kawabata, Shigetada

    2016-01-01

    Group A Streptococcus (GAS) is a human-specific pathogen responsible for local suppurative and life-threatening invasive systemic diseases. Interaction of GAS with human plasminogen (PLG) is a salient characteristic for promoting their systemic dissemination. In the present study, a serotype M28 strain was found predominantly localized in tricellular tight junctions of epithelial cells cultured in the presence of PLG. Several lines of evidence indicated that interaction of PLG with tricellulin, a major component of tricellular tight junctions, is crucial for bacterial localization. A site-directed mutagenesis approach revealed that lysine residues at positions 217 and 252 within the extracellular loop of tricellulin play important roles in PLG-binding activity. Additionally, we demonstrated that PLG functions as a molecular bridge between tricellulin and streptococcal surface enolase (SEN). The wild type strain efficiently translocated across the epithelial monolayer, accompanied by cleavage of transmembrane junctional proteins. In contrast, amino acid substitutions in the PLG-binding motif of SEN markedly compromised those activities. Notably, the interaction of PLG with SEN was dependent on PLG species specificity, which influenced the efficiency of bacterial penetration. Our findings provide insight into the mechanism by which GAS exploits host PLG for acceleration of bacterial invasion into deeper tissues via tricellular tight junctions. PMID:26822058

  11. Secretion of Alpha-Hemolysin by Escherichia coli Disrupts Tight Junctions in Ulcerative Colitis Patients

    PubMed Central

    Mirsepasi-Lauridsen, Hengameh Chloé; Du, Zhengyu; Struve, Carsten; Charbon, Godefroid; Karczewski, Jurgen; Krogfelt, Karen Angeliki; Petersen, Andreas Munk; Wells, Jerry M

    2016-01-01

    Objectives: The potential of Escherichia coli (E. coli) isolated from inflammatory bowel disease (IBD) patients to damage the integrity of the intestinal epithelium was investigated. Methods: E. coli strains isolated from patients with ulcerative colitis (UC) and healthy controls were tested for virulence capacity by molecular techniques and cytotoxic assays and transepithelial electric resistance (TER). E. coli isolate p19A was selected, and deletion mutants were created for alpha-hemolysin (α-hemolysin) (hly) clusters and cytotoxic necrotizing factor type 1 (cnf1). Probiotic E. coli Nissle and pathogenic E. coli LF82 were used as controls. Results: E. coli strains from patients with active UC completely disrupted epithelial cell tight junctions shortly after inoculation. These strains belong to phylogenetic group B2 and are all α-hemolysin positive. In contrast, probiotic E. coli Nissle, pathogenic E. coli LF82, four E. coli from patients with inactive UC and three E. coli strains from healthy controls did not disrupt tight junctions. E. coli p19A WT as well as cnf1, and single loci of hly mutants from cluster I and II were all able to damage Caco-2 (Heterogeneous human epithelial colorectal adenocarcinoma) cell tight junctions. However, this phenotype was lost in a mutant with knockout (Δ) of both hly loci (P<0.001). Conclusions: UC-associated E. coli producing α-hemolysin can cause rapid loss of tight junction integrity in differentiated Caco-2 cell monolayers. This effect was abolished in a mutant unable to express α-hemolysin. These results suggest that high Hly expression may be a mechanism by which specific strains of E. coli pathobionts can contribute to epithelial barrier dysfunction and pathophysiology of disease in IBD. PMID:26938480

  12. Calcium-Ask1-MKK7-JNK2-c-Src Signaling Cascade Mediates Disruption of Intestinal Epithelial Tight Junctions by Dextran Sulfate Sodium

    PubMed Central

    Samak, Geetha; Chaudhry, Kamaljit K.; Gangwar, Ruchika; Narayanan, Damodaran; Jaggar, Jonathan H.; Rao, RadhaKrishna

    2015-01-01

    Disruption of intestinal epithelial tight junctions is an important event in the pathogenesis of ulcerative colitis. Dextran sodium sulfate (DSS) induces colitis in mice with the symptoms similar to ulcerative colitis. However, the mechanism of DSS-induced colitis is unknown. We investigated the mechanism of DSS-induced disruption of intestinal epithelial tight junctions and barrier dysfunction in Caco-2 cell monolayers in vitro and mouse colon in vivo. DSS treatment resulted in disruption of tight junctions, adherens junctions and actin cytoskeleton leading to barrier dysfunction in Caco-2 cell monolayers. DSS induced a rapid activation of c-jun N-terminal kinase (JNK), and the inhibition or knockdown of JNK2 attenuated DSS-induced tight junction disruption and barrier dysfunction. In mice, DSS administration for 4 days caused redistribution of tight junction and adherens junction proteins from the epithelial junctions, which was blocked by JNK inhibitor. In Caco-2 cell monolayers, DSS increased intracellular Ca2+ concentration, and depletion of intracellular Ca2+ by BAPTA or thapsigargin attenuated DSS-induced JNK activation, tight junction disruption and barrier dysfunction. Knockdown of Ask1 or MKK7 blocked DSS-induced tight junction disruption and barrier dysfunction. DSS activated c-Src by a Ca2+ and JNK-dependent mechanism. Inhibition of Src kinase activity or knockdown of c-Src blocked DSS-induced tight junction disruption and barrier dysfunction. DSS increased Tyr-phosphorylation of occludin, ZO-1, E-cadherin and β-catenin. SP600125 abrogated DSS-induced Tyr-phosphorylation of junctional proteins. Recombinant JNK2 induced threonine phosphorylation and auto phosphorylation of c-Src. This study demonstrates that Ca2+-Ask1-MKK7-JNK2-cSrc signaling cascade mediates DSS-induced tight junction disruption and barrier dysfunction. PMID:25377781

  13. Mode of action of claudin peptidomimetics in the transient opening of cellular tight junction barriers.

    PubMed

    Staat, Christian; Coisne, Caroline; Dabrowski, Sebastian; Stamatovic, Svetlana M; Andjelkovic, Anuska V; Wolburg, Hartwig; Engelhardt, Britta; Blasig, Ingolf E

    2015-06-01

    In epithelial/endothelial barriers, claudins form tight junctions, seal the paracellular cleft, and limit the uptake of solutes and drugs. The peptidomimetic C1C2 from the C-terminal half of claudin-1's first extracellular loop increases drug delivery through epithelial claudin-1 barriers. However, its molecular and structural mode of action remains unknown. In the present study, >100 μM C1C2 caused paracellular opening of various barriers with different claudin compositions, ranging from epithelial to endothelial cells, preferentially modulating claudin-1 and claudin-5. After 6 h incubation, C1C2 reversibly increased the permeability to molecules of different sizes; this was accompanied by redistribution of claudins and occludin from junctions to cytosol. Internalization of C1C2 in epithelial cells depended on claudin-1 expression and clathrin pathway, whereby most C1C2 was retained in recyclosomes >2 h. In freeze-fracture electron microscopy, C1C2 changed claudin-1 tight junction strands to a more parallel arrangement and claudin-5 strands from E-face to P-face association - drastic and novel effects. In conclusion, C1C2 is largely recycled in the presence of a claudin, which explains the delayed onset of barrier and junction loss, the high peptide concentration required and the long-lasting effect. Epithelial/endothelial barriers are specifically modulated via claudin-1/claudin-5, which can be targeted to improve drug delivery. PMID:25907035

  14. Biochemical and biophysical analyses of tight junction permeability made of claudin-16 and claudin-19 dimerization

    PubMed Central

    Gong, Yongfeng; Renigunta, Vijayaram; Zhou, Yi; Sunq, Abby; Wang, Jinzhi; Yang, Jing; Renigunta, Aparna; Baker, Lane A.; Hou, Jianghui

    2015-01-01

    The molecular nature of tight junction architecture and permeability is a long-standing mystery. Here, by comprehensive biochemical, biophysical, genetic, and electron microscopic analyses of claudin-16 and -19 interactions—two claudins that play key polygenic roles in fatal human renal disease, FHHNC—we found that 1) claudin-16 and -19 form a stable dimer through cis association of transmembrane domains 3 and 4; 2) mutations disrupting the claudin-16 and -19 cis interaction increase tight junction ultrastructural complexity but reduce tight junction permeability; and 3) no claudin hemichannel or heterotypic channel made of claudin-16 and -19 trans interaction can exist. These principles can be used to artificially alter tight junction permeabilities in various epithelia by manipulating selective claudin interactions. Our study also emphasizes the use of a novel recording approach based on scanning ion conductance microscopy to resolve tight junction permeabilities with submicrometer precision. PMID:26446843

  15. Expression of occludin, tight-junction-associated protein, in human digestive tract.

    PubMed Central

    Kimura, Y.; Shiozaki, H.; Hirao, M.; Maeno, Y.; Doki, Y.; Inoue, M.; Monden, T.; Ando-Akatsuka, Y.; Furuse, M.; Tsukita, S.; Monden, M.

    1997-01-01

    The tight junction seals cells together at a subapical location and functionally separates the plasma membrane into an apical and a basolateral domain. This junction is one of the most characteristic structural markers of the polarized epithelial cell. Recently, occludin has been identified as an integral transmembrane protein localizing at the tight junction and directly associated with ZO-1, an undercoat-constitutive cytoplasmic protein. We have investigated occludin expression in conjunction with ZO-1 in normal epithelia and cancers of human digestive tract by immunostaining with a new antibody raised against human occludin. In the normal simple columnar epithelium, occludin was expressed together with ZO-1 as a single line at the apical cell border. However, in the esophagus, which has a stratified squamous epithelium, no occludin expression could be detected, but ZO-1 was expressed in the spinous layer. As for cancers, both occludin and ZO-1 showed the same expression in differentiated adenocarcinoma cells as in normal epithelium, but in poorly differentiated adenocarcinomas, the expression of these two proteins was reduced. There was significant correlation between tumor differentiation and expression of these proteins. These results suggest that occludin, together with ZO-1, is involved in the formation of gland-like structures. In addition, occludin expression can serve as a histopathological indicator for differentiation in gastrointestinal adenocarcinomas. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:9212730

  16. Characterization of the interaction between protein 4.1R and ZO-2. A possible link between the tight junction and the actin cytoskeleton.

    PubMed

    Mattagajasingh, S N; Huang, S C; Hartenstein, J S; Benz, E J

    2000-09-29

    Multiple isoforms of the red cell protein 4.1R are expressed in nonerythroid cells, including novel 135-kDa isoforms. Using a yeast two-hybrid system, immunocolocalization, immunoprecipitation, and in vitro binding studies, we found that two 4.1R isoforms of 135 and 150 kDa specifically interact with the protein ZO-2 (zonula occludens-2). 4.1R is colocalized with ZO-2 and occludin at Madin-Darby canine kidney (MDCK) cell tight junctions. Both isoforms of 4.1R coprecipitated with proteins that organize tight junctions such as ZO-2, ZO-1, and occludin. Western blot analysis also revealed the presence of actin and alpha-spectrin in these immunoprecipitates. Association of 4.1R isoforms with these tight junction and cytoskeletal proteins was found to be specific for the tight junction and was not seen in nonconfluent MDCK cells. The amino acid residues that sustain the interaction between 4.1R and ZO-2 reside within the amino acids encoded by exons 19-21 of 4.1R and residues 1054-1118 of ZO-2. Exogenously expressed 4.1R containing the spectrin/actin- and ZO-2-binding domains was recruited to tight junctions in confluent MDCK cells. Taken together, our results suggest that 4.1R might play an important role in organization and function of the tight junction by establishing a link between the tight junction and the actin cytoskeleton. PMID:10874042

  17. Isoflurane ameliorates acute lung injury by preserving epithelial tight junction integrity

    PubMed Central

    Englert, Joshua A.; Macias, Alvaro A.; Amador-Munoz, Diana; Vera, Miguel Pinilla; Isabelle, Colleen; Guan, Jiazhen; Magaoay, Brady; Velandia, Margarita Suarez; Coronata, Anna; Lee, Awapuhi; Fredenburgh, Laura E.; Culley, Deborah J.; Crosby, Gregory; Baron, Rebecca M.

    2015-01-01

    Background Isoflurane may be protective in pre-clinical models of lung injury but its use in patients with lung injury remains controversial and the mechanism of its protective effects remains unclear. We hypothesized that this protection is mediated at the level of alveolar tight junctions and investigated the possibility in a two-hit model of lung injury that mirrors human acute respiratory distress syndrome. Methods Wild-type mice were treated with isoflurane one hour after exposure to nebulized endotoxin (n=8) or saline control (n=9) then allowed to recover for 24 hrs prior to mechanical ventilation (MV, tidal volume 15 mL/kg, 2 hrs) producing ventilator-induced lung injury. Mouse lung epithelial cells were similarly treated with isoflurane one hour after exposure to lipopolysaccharide. Cells were cyclically stretched the following day to mirror the MV protocol used in vivo. Results Mice treated with isoflurane following exposure to inhaled endotoxin and prior to MV exhibited significantly less physiologic lung dysfunction. These effects appeared to be mediated by decreased vascular leak, but not altered inflammatory indices. Mouse lung epithelial cells treated with lipopolysaccharide and cyclic stretch and lungs harvested from mice following treatment with lipopolysaccharide and MV had decreased levels of a key tight junction protein (i.e. zona occludens 1) that was rescued by isoflurane treatment. Conclusions Isoflurane rescued lung injury induced by a two-hit model of endotoxin exposure followed by MV by maintaining the integrity of the alveolar-capillary barrier possibly by modulating the expression of a key tight junction protein. PMID:26068207

  18. A complex of ZO-1 and the BAR-domain protein TOCA-1 regulates actin assembly at the tight junction

    PubMed Central

    Van Itallie, Christina M.; Tietgens, Amber Jean; Krystofiak, Evan; Kachar, Bechara; Anderson, James M.

    2015-01-01

    Assembly and sealing of the tight junction barrier are critically dependent on the perijunctional actin cytoskeleton, yet little is known about physical and functional links between barrier-forming proteins and actin. Here we identify a novel functional complex of the junction scaffolding protein ZO-1 and the F-BAR–domain protein TOCA-1. Using MDCK epithelial cells, we show that an alternative splice of TOCA-1 adds a PDZ-binding motif, which binds ZO-1, targeting TOCA-1 to barrier contacts. This isoform of TOCA-1 recruits the actin nucleation–promoting factor N-WASP to tight junctions. CRISPR-Cas9–mediated knockout of TOCA-1 results in increased paracellular flux and delayed recovery in a calcium switch assay. Knockout of TOCA-1 does not alter FRAP kinetics of GFP ZO-1 or occludin, but longer term (12 h) time-lapse microscopy reveals strikingly decreased tight junction membrane contact dynamics in knockout cells compared with controls. Reexpression of TOCA-1 with, but not without, the PDZ-binding motif rescues both altered flux and membrane contact dynamics. Ultrastructural analysis shows actin accumulation at the adherens junction in TOCA-1–knockout cells but unaltered freeze-fracture fibril morphology. Identification of the ZO-1/TOCA-1 complex provides novel insights into the underappreciated dependence of the barrier on the dynamic nature of cell-to-cell contacts and perijunctional actin. PMID:26063734

  19. Lactational exposure of phthalate causes long-term disruption in testicular architecture by altering tight junctional and apoptotic protein expression in Sertoli cells of first filial generation pubertal Wistar rats.

    PubMed

    Sekaran, S; Balaganapathy, P; Parsanathan, R; Elangovan, S; Gunashekar, J; Bhat, F A; Jagadeesan, A

    2015-06-01

    Di(2-ethylhexyl) phthalate (DEHP) is a ubiquitous environmental contaminant and a well-known endocrine disruptor (ED) that interferes with the reproductive function in both humans and animals. This study aimed to find out the impact of lactational exposure of DEHP in testes of first filial generation (F1) progeny male rat postnatal day (PND)-60. Lactating dams were orally treated with DEHP (0, 1, 10 and 100 mg/kg body weight/day, respectively) from the PND-1 to PND-21. Rats were killed at PND 60. Testes were removed and used for histological analysis and for isolation of Sertoli cells (SCs). The histoarchitecture of DEHP-treated rats showed disturbed testicular structure. DEHP-treated rats also showed increased oxidative stress by decreasing antioxidant levels in the SCs; it disrupted SC tight junctional proteins occludin, claudin, junctional adhesion molecule, zona occludens protein-1 (ZO-1), zona occludens protein-2 (ZO-2), and afadin-6 (AF-6), increased apoptosis by altering the apoptotic genes Bax, cytochrome c, caspase-8, -9, -3 and antiapoptotic gene Bcl-2. It is concluded that early postnatal exposure to DEHP disturbs histoarchitecture of testis and SC function in pubertal Wistar rats. PMID:25352649

  20. CFTR interacts with ZO-1 to regulate tight junction assembly and epithelial differentiation through the ZONAB pathway

    PubMed Central

    Ruan, Ye Chun; Wang, Yan; Da Silva, Nicolas; Kim, Bongki; Diao, Rui Ying; Hill, Eric; Brown, Dennis; Chan, Hsiao Chang; Breton, Sylvie

    2014-01-01

    ABSTRACT Mutations in CFTR lead to dysfunction of tubular organs, which is currently attributed to impairment of its conductive properties. We now show that CFTR regulates tight junction assembly and epithelial cell differentiation through modulation of the ZO-1–ZONAB pathway. CFTR colocalizes with ZO-1 at the tight junctions of trachea and epididymis, and is expressed before ZO-1 in Wolffian ducts. CFTR interacts with ZO-1 through the CTFR PDZ-binding domain. In a three-dimensional (3D) epithelial cell culture model, CFTR regulates tight junction assembly and is required for tubulogenesis. CFTR inhibition or knockdown reduces ZO-1 expression and induces the translocation of the transcription factor ZONAB (also known as YBX3) from tight junctions to the nucleus, followed by upregulation of the transcription of CCND1 and downregulation of ErbB2 transcription. The epididymal tubules of cftr−/− and cftrΔF508 mice have reduced ZO-1 levels, increased ZONAB nuclear expression, and decreased epithelial cell differentiation, illustrated by the reduced expression of apical AQP9 and V-ATPase. This study provides a new paradigm for the etiology of diseases associated with CFTR mutations, including cystic fibrosis. PMID:25107366

  1. CFTR interacts with ZO-1 to regulate tight junction assembly and epithelial differentiation through the ZONAB pathway.

    PubMed

    Ruan, Ye Chun; Wang, Yan; Da Silva, Nicolas; Kim, Bongki; Diao, Rui Ying; Hill, Eric; Brown, Dennis; Chan, Hsiao Chang; Breton, Sylvie

    2014-10-15

    Mutations in CFTR lead to dysfunction of tubular organs, which is currently attributed to impairment of its conductive properties. We now show that CFTR regulates tight junction assembly and epithelial cell differentiation through modulation of the ZO-1-ZONAB pathway. CFTR colocalizes with ZO-1 at the tight junctions of trachea and epididymis, and is expressed before ZO-1 in Wolffian ducts. CFTR interacts with ZO-1 through the CTFR PDZ-binding domain. In a three-dimensional (3D) epithelial cell culture model, CFTR regulates tight junction assembly and is required for tubulogenesis. CFTR inhibition or knockdown reduces ZO-1 expression and induces the translocation of the transcription factor ZONAB (also known as YBX3) from tight junctions to the nucleus, followed by upregulation of the transcription of CCND1 and downregulation of ErbB2 transcription. The epididymal tubules of cftr(-/-) and cftr(ΔF508) mice have reduced ZO-1 levels, increased ZONAB nuclear expression, and decreased epithelial cell differentiation, illustrated by the reduced expression of apical AQP9 and V-ATPase. This study provides a new paradigm for the etiology of diseases associated with CFTR mutations, including cystic fibrosis. PMID:25107366

  2. HIF-dependent regulation of claudin-1 is central to intestinal epithelial tight junction integrity

    PubMed Central

    Saeedi, Bejan J.; Kao, Daniel J.; Kitzenberg, David A.; Dobrinskikh, Evgenia; Schwisow, Kayla D.; Masterson, Joanne C.; Kendrick, Agnieszka A.; Kelly, Caleb J.; Bayless, Amanda J.; Kominsky, Douglas J.; Campbell, Eric L.; Kuhn, Kristine A.; Furuta, Glenn T.; Colgan, Sean P.; Glover, Louise E.

    2015-01-01

    Intestinal epithelial cells (IECs) are exposed to profound fluctuations in oxygen tension and have evolved adaptive transcriptional responses to a low-oxygen environment. These adaptations are mediated primarily through the hypoxia-inducible factor (HIF) complex. Given the central role of the IEC in barrier function, we sought to determine whether HIF influenced epithelial tight junction (TJ) structure and function. Initial studies revealed that short hairpin RNA–mediated depletion of the HIF1β in T84 cells resulted in profound defects in barrier and nonuniform, undulating TJ morphology. Global HIF1α chromatin immunoprecipitation (ChIP) analysis identified claudin-1 (CLDN1) as a prominent HIF target gene. Analysis of HIF1β-deficient IEC revealed significantly reduced levels of CLDN1. Overexpression of CLDN1 in HIF1β-deficient cells resulted in resolution of morphological abnormalities and restoration of barrier function. ChIP and site-directed mutagenesis revealed prominent hypoxia response elements in the CLDN1 promoter region. Subsequent in vivo analysis revealed the importance of HIF-mediated CLDN1 expression during experimental colitis. These results identify a critical link between HIF and specific tight junction function, providing important insight into mechanisms of HIF-regulated epithelial homeostasis. PMID:25904334

  3. HIF-dependent regulation of claudin-1 is central to intestinal epithelial tight junction integrity.

    PubMed

    Saeedi, Bejan J; Kao, Daniel J; Kitzenberg, David A; Dobrinskikh, Evgenia; Schwisow, Kayla D; Masterson, Joanne C; Kendrick, Agnieszka A; Kelly, Caleb J; Bayless, Amanda J; Kominsky, Douglas J; Campbell, Eric L; Kuhn, Kristine A; Furuta, Glenn T; Colgan, Sean P; Glover, Louise E

    2015-06-15

    Intestinal epithelial cells (IECs) are exposed to profound fluctuations in oxygen tension and have evolved adaptive transcriptional responses to a low-oxygen environment. These adaptations are mediated primarily through the hypoxia-inducible factor (HIF) complex. Given the central role of the IEC in barrier function, we sought to determine whether HIF influenced epithelial tight junction (TJ) structure and function. Initial studies revealed that short hairpin RNA-mediated depletion of the HIF1β in T84 cells resulted in profound defects in barrier and nonuniform, undulating TJ morphology. Global HIF1α chromatin immunoprecipitation (ChIP) analysis identified claudin-1 (CLDN1) as a prominent HIF target gene. Analysis of HIF1β-deficient IEC revealed significantly reduced levels of CLDN1. Overexpression of CLDN1 in HIF1β-deficient cells resulted in resolution of morphological abnormalities and restoration of barrier function. ChIP and site-directed mutagenesis revealed prominent hypoxia response elements in the CLDN1 promoter region. Subsequent in vivo analysis revealed the importance of HIF-mediated CLDN1 expression during experimental colitis. These results identify a critical link between HIF and specific tight junction function, providing important insight into mechanisms of HIF-regulated epithelial homeostasis. PMID:25904334

  4. The epithelial barrier is maintained by in vivo tight junction expansion during pathologic intestinal epithelial shedding

    PubMed Central

    Marchiando, Amanda M.; Shen, Le; Graham, W. Vallen; Edelblum, Karen L.; Duckworth, Carrie A.; Guan, Yanfang; Montrose, Marshall H.; Turner, Jerrold R.; Watson, Alastair J.M.

    2011-01-01

    BACKGROUND & AIMS Tumor necrosis factor (TNF) increases intestinal epithelial cell shedding and apoptosis, potentially challenging the barrier between the gastrointestinal lumen and internal tissues. We investigated the mechanism of tight junction remodeling and barrier maintenance, as well as the roles of cytoskeletal regulatory molecules during TNF-induced shedding. METHODS We studied wild-type and transgenic mice that express the fluorescent-tagged proteins enhanced green fluorescent protein–occludin or monomeric red fluorescent protein1–ZO-1. After injection of high doses of TNF (7.5µg, i.p.), laparotomies were performed and segments of small intestine were opened to visualize the mucosa by video confocal microscopy. Pharmacologic inhibitors and knockout mice were used to determine the roles of caspase activation, actomyosin, and microtubule remodeling and membrane trafficking in epithelial shedding. RESULTS Changes detected included redistribution of the tight junction proteins ZO-1 and occluding to lateral membranes of shedding cells. These proteins ultimately formed a funnel around the shedding cell that defined the site of barrier preservation. Claudins, E-cadherin, F-actin, myosin II, Rho-associated kinase (ROCK), and myosin light chain kinase (MLCK) were also recruited to lateral membranes. Caspase activity, myosin motor activity, and microtubules were required to initiate shedding, whereas completion of the process required microfilament remodeling and ROCK, MLCK, and dynamin II activities. CONCLUSIONS Maintenance of the epithelial barrier during TNF-induced cell shedding is a complex process that involves integration of microtubules, microfilaments, and membrane traffic to remove apoptotic cells. This process is accompanied by redistribution of apical junctional complex proteins to form intercellular barriers between lateral membranes and maintain mucosal function. PMID:21237166

  5. Lymphocytes accelerate epithelial tight junction assembly: role of AMP-activated protein kinase (AMPK).

    PubMed

    Tang, Xiao Xiao; Chen, Hao; Yu, Sidney; Zhang, Li; Caplan, Michael J; Chan, Hsiao Chang

    2010-01-01

    The tight junctions (TJs), characteristically located at the apicolateral borders of adjacent epithelial cells, are required for the proper formation of epithelial cell polarity as well as for sustaining the mucosal barrier to the external environment. The observation that lymphocytes are recruited by epithelial cells to the sites of infection [1] suggests that they may play a role in the modulation of epithelial barrier function and thus contribute to host defense. To test the ability of lymphocytes to modulate tight junction assembly in epithelial cells, we set up a lymphocyte-epithelial cell co-culture system, in which Madin-Darby canine kidney (MDCK) cells, a well-established model cell line for studying epithelial TJ assembly [2], were co-cultured with mouse lymphocytes to mimic an infection state. In a typical calcium switch experiment, the TJ assembly in co-culture was found to be accelerated compared to that in MDCK cells alone. This accelaration was found to be mediated by AMP-activated protein kinase (AMPK). AMPK activation was independent of changes in cellular ATP levels but it was found to be activated by the pro-inflammatory cytokine TNF-alpha. Forced suppression of AMPK, either with a chemical inhibitor or by knockdown, abrogated the accelerating effect of lymphocytes on TJ formation. Similar results were also observed in a co-culture with lymphocytes and Calu-3 human airway epithelial cells, suggesting that the activation of AMPK may be a general mechanism underlying lymphocyte-accelerated TJ assembly in different epithelia. These results suggest that signals from lymphocytes, such as cytokines, facilitate TJ assembly in epithelial cells via the activation of AMPK. PMID:20808811

  6. Exploring tight junction alteration using double fluorescent probe combination of lanthanide complex with gold nanoclusters.

    PubMed

    Wang, Xinyi; Wang, Na; Yuan, Lan; Li, Na; Wang, Junxia; Yang, Xiaoda

    2016-01-01

    Tight junctions play a key role in restricting or regulating passage of liquids, ions and large solutes through various biological barriers by the paracellular route. Changes in paracellular permeation indicate alteration of the tight junction. However, it is very difficult to obtain the structural change information by measuring paracellular flux based on transepithelial electrical resistance or using fluorescein-labeled dextrans. Here we show that the BSA and GSH stabilized gold nanoclusters exhibit marginal cytotoxicity and pass through the MDCK monolayer exclusively through the paracellular pathway. We propose a double fluorescence probe strategy, the combination of a proven paracellular indicator (europium complex) with fluorescent gold nanoclusters. We calculate changes of structural parameters in tight junctions based on determination of the diffusion coefficients of the probes. Two different types of tight junction openers are used to validate our strategy. Results show that EDTA disrupts tight junction structures and induces large and smooth paracellular pore paths with an average radius of 17 nm, but vanadyl complexes induce paths with the radius of 6 nm. The work suggests that the double fluorescence probe strategy is a useful and convenient approach for in vitro investigation of tight junction structural alternations caused by pharmacological or pathological events. PMID:27574102

  7. Exploring tight junction alteration using double fluorescent probe combination of lanthanide complex with gold nanoclusters

    PubMed Central

    Wang, Xinyi; Wang, Na; Yuan, Lan; Li, Na; Wang, Junxia; Yang, Xiaoda

    2016-01-01

    Tight junctions play a key role in restricting or regulating passage of liquids, ions and large solutes through various biological barriers by the paracellular route. Changes in paracellular permeation indicate alteration of the tight junction. However, it is very difficult to obtain the structural change information by measuring paracellular flux based on transepithelial electrical resistance or using fluorescein-labeled dextrans. Here we show that the BSA and GSH stabilized gold nanoclusters exhibit marginal cytotoxicity and pass through the MDCK monolayer exclusively through the paracellular pathway. We propose a double fluorescence probe strategy, the combination of a proven paracellular indicator (europium complex) with fluorescent gold nanoclusters. We calculate changes of structural parameters in tight junctions based on determination of the diffusion coefficients of the probes. Two different types of tight junction openers are used to validate our strategy. Results show that EDTA disrupts tight junction structures and induces large and smooth paracellular pore paths with an average radius of 17 nm, but vanadyl complexes induce paths with the radius of 6 nm. The work suggests that the double fluorescence probe strategy is a useful and convenient approach for in vitro investigation of tight junction structural alternations caused by pharmacological or pathological events. PMID:27574102

  8. Immunohistological study of tight junction protein expression in mal de Meleda.

    PubMed

    Kacem, Monia; Agili, Faouzia; Tounsi, Haifa; Zribi, Hela; Zaraa, Ines; Mokni, Mourad; Boubaker, Samir

    2016-01-01

    Mal de Meleda (MdM, MIM: 248300) is a rare autosomal recessive skin disorder characterized by diffuse palmoplantar keratoderma and transgressive keratosis with onset in early infancy. The gene responsible for MdM, ARS, encodes for Secreted Lys6/Plaur domain-containing protein 1 which is essential for epidermal homeostasis. Tight junctions have been proposed to have two mutually exclusive functions: a fence function which prevents the mixing of membrane proteins between the apical and basolateral membranes; and a gate function which controls the paracellular passage of ions and solutes between cells. In this study we report immunohistochemical investigations of tight junction proteins claudin-1 and occludin in MdM Tunisian families. Nine skin biopsies from patients with MdM were analyzed. The control group was formed by skin biopsies belonging to healthy individuals. Immunohistochemical study was performed on fixed sections from biopsies of four microns with the following polyclonal antibodies: anti-claudin-1 and anti-occludin. In control skin, claudin-1 exhibited membrane expression throughout the epidermis with increasing and upward intensity, whereas occludin was detected in the cell membrane of keratinocytes of the stratum granulosum. In MdM skin, claudin-1 was expressed throughout the thickness of the spinous layers with membrane staining, and occludin had cytoplasmic staining in the granular layer. The immunohistochemical expression of TJ proteins in MdM patients harbors premature expression of occludin and decreased expression of claudin-1, highlighting further evidence for disorders in epidermal homeostasis. PMID:26986447

  9. Acute regulation of tight junction ion selectivity in human airway epithelia

    PubMed Central

    Flynn, Andrea N.; Itani, Omar A.; Moninger, Thomas O.; Welsh, Michael J.

    2009-01-01

    Electrolyte transport through and between airway epithelial cells controls the quantity and composition of the overlying liquid. Many studies have shown acute regulation of transcellular ion transport in airway epithelia. However, whether ion transport through tight junctions can also be acutely regulated is poorly understood both in airway and other epithelia. To investigate the paracellular pathway, we used primary cultures of differentiated human airway epithelia and assessed expression of claudins, the primary determinants of paracellular permeability, and measured transepithelial electrical properties, ion fluxes, and La3+ movement. Like many other tissues, airway epithelia expressed multiple claudins. Moreover, different cell types in the epithelium expressed the same pattern of claudins. To evaluate tight junction regulation, we examined the response to histamine, an acute regulator of airway function. Histamine stimulated a rapid and transient increase in the paracellular Na+ conductance, with a smaller increase in Cl− conductance. The increase was mediated by histamine H1 receptors and depended on an increase in intracellular Ca2+ concentration. These results suggest that ion flow through the paracellular pathway can be acutely regulated. Such regulation could facilitate coupling of the passive flow of counter ions to active transcellular transport, thereby controlling net transepithelial salt and water transport. PMID:19208806

  10. Dehydroepiandrosterone Sulfate Stimulates Expression of Blood-Testis-Barrier Proteins Claudin-3 and -5 and Tight Junction Formation via a Gnα11-Coupled Receptor in Sertoli Cells.

    PubMed

    Papadopoulos, Dimitrios; Dietze, Raimund; Shihan, Mazen; Kirch, Ulrike; Scheiner-Bobis, Georgios

    2016-01-01

    Dehydroepiandrosterone sulfate (DHEAS) is a circulating sulfated steroid considered to be a pro-androgen in mammalian physiology. Here we show that at a physiological concentration (1 μM), DHEAS induces the phosphorylation of the kinase Erk1/2 and of the transcription factors CREB and ATF-1 in the murine Sertoli cell line TM4. This signaling cascade stimulates the expression of the tight junction (TJ) proteins claudin-3 and claudin-5. As a consequence of the increased expression, tight junction connections between neighboring Sertoli cells are augmented, as demonstrated by measurements of transepithelial resistance. Phosphorylation of Erk1/2, CREB, or ATF-1 is not affected by the presence of the steroid sulfatase inhibitor STX64. Erk1/2 phosphorylation was not observed when dehydroepiandrosterone (DHEA) was used instead of DHEAS. Abrogation of androgen receptor (AR) expression by siRNA did not affect DHEAS-stimulated Erk1/2 phosphorylation, nor did it change DHEAS-induced stimulation of claudin-3 and claudin-5 expression. All of the above indicate that desulfation and conversion of DHEAS into a different steroid hormone is not required to trigger the DHEAS-induced signaling cascade. All activating effects of DHEAS, however, are abolished when the expression of the G-protein Gnα11 is suppressed by siRNA, including claudin-3 and -5 expression and TJ formation between neighboring Sertoli cells as indicated by reduced transepithelial resistance. Taken together, these results are consistent with the effects of DHEAS being mediated through a membrane-bound G-protein-coupled receptor interacting with Gnα11 in a signaling pathway that resembles the non-classical signaling pathways of steroid hormones. Considering the fact that DHEAS is produced in reproductive organs, these findings also suggest that DHEAS, by acting as an autonomous steroid hormone and influencing the formation and dynamics of the TJ at the blood-testis barrier, might play a crucial role for the

  11. Dehydroepiandrosterone Sulfate Stimulates Expression of Blood-Testis-Barrier Proteins Claudin-3 and -5 and Tight Junction Formation via a Gnα11-Coupled Receptor in Sertoli Cells

    PubMed Central

    Papadopoulos, Dimitrios; Dietze, Raimund; Shihan, Mazen; Kirch, Ulrike; Scheiner-Bobis, Georgios

    2016-01-01

    Dehydroepiandrosterone sulfate (DHEAS) is a circulating sulfated steroid considered to be a pro-androgen in mammalian physiology. Here we show that at a physiological concentration (1 μM), DHEAS induces the phosphorylation of the kinase Erk1/2 and of the transcription factors CREB and ATF-1 in the murine Sertoli cell line TM4. This signaling cascade stimulates the expression of the tight junction (TJ) proteins claudin-3 and claudin-5. As a consequence of the increased expression, tight junction connections between neighboring Sertoli cells are augmented, as demonstrated by measurements of transepithelial resistance. Phosphorylation of Erk1/2, CREB, or ATF-1 is not affected by the presence of the steroid sulfatase inhibitor STX64. Erk1/2 phosphorylation was not observed when dehydroepiandrosterone (DHEA) was used instead of DHEAS. Abrogation of androgen receptor (AR) expression by siRNA did not affect DHEAS-stimulated Erk1/2 phosphorylation, nor did it change DHEAS-induced stimulation of claudin-3 and claudin-5 expression. All of the above indicate that desulfation and conversion of DHEAS into a different steroid hormone is not required to trigger the DHEAS-induced signaling cascade. All activating effects of DHEAS, however, are abolished when the expression of the G-protein Gnα11 is suppressed by siRNA, including claudin-3 and -5 expression and TJ formation between neighboring Sertoli cells as indicated by reduced transepithelial resistance. Taken together, these results are consistent with the effects of DHEAS being mediated through a membrane-bound G-protein-coupled receptor interacting with Gnα11 in a signaling pathway that resembles the non-classical signaling pathways of steroid hormones. Considering the fact that DHEAS is produced in reproductive organs, these findings also suggest that DHEAS, by acting as an autonomous steroid hormone and influencing the formation and dynamics of the TJ at the blood-testis barrier, might play a crucial role for the

  12. Fluid transport across leaky epithelia: central role of the tight junction and supporting role of aquaporins.

    PubMed

    Fischbarg, Jorge

    2010-10-01

    The mechanism of epithelial fluid transport remains unsolved, which is partly due to inherent experimental difficulties. However, a preparation with which our laboratory works, the corneal endothelium, is a simple leaky secretory epithelium in which we have made some experimental and theoretical headway. As we have reported, transendothelial fluid movements can be generated by electrical currents as long as there is tight junction integrity. The direction of the fluid movement can be reversed by current reversal or by changing junctional electrical charges by polylysine. Residual endothelial fluid transport persists even when no anions (hence no salt) are being transported by the tissue and is only eliminated when all local recirculating electrical currents are. Aquaporin (AQP) 1 is the only AQP present in these cells, and its deletion in AQP1 null mice significantly affects cell osmotic permeability (by ∼40%) but fluid transport much less (∼20%), which militates against the presence of sizable water movements across the cell. In contrast, AQP1 null mice cells have reduced regulatory volume decrease (only 60% of control), which suggests a possible involvement of AQP1 in either the function or the expression of volume-sensitive membrane channels/transporters. A mathematical model of corneal endothelium we have developed correctly predicts experimental results only when paracellular electro-osmosis is assumed rather than transcellular local osmosis. Our evidence therefore suggests that the fluid is transported across this layer via the paracellular route by a mechanism that we attribute to electro-osmotic coupling at the junctions. From our findings we have developed a novel paradigm for this preparation that includes 1) paracellular fluid flow; 2) a crucial role for the junctions; 3) hypotonicity of the primary secretion; and 4) an AQP role in regulation rather than as a significant water pathway. These elements are remarkably similar to those proposed by the

  13. Effect of High Dietary Tryptophan on Intestinal Morphology and Tight Junction Protein of Weaned Pig

    PubMed Central

    Tossou, Myrlene Carine B.; Bai, Miaomiao; Chen, Shuai; Cai, Yinghua; Duraipandiyan, Veeramuthu; Liu, Hongbin; Adebowale, Tolulope O.; Al-Dhabi, Naif Abdullah; Long, Lina; Tarique, Hussain; Oso, Abimbola O.; Liu, Gang; Yin, Yulong

    2016-01-01

    Tryptophan (Trp) plays an essential role in pig behavior and growth performances. However, little is known about Trp's effects on tight junction barrier and intestinal health in weaned pigs. In the present study, twenty-four (24) weaned pigs were randomly assigned to one of the three treatments with 8 piglets/treatments. The piglets were fed different amounts of L-tryptophan (L-Trp) as follows: 0.0%, 0.15, and 0.75%, respectively, named zero Trp (ZTS), low Trp (LTS), and high Trp (HTS), respectively. No significant differences were observed in average daily gain (ADG), average daily feed intake (ADFI), and gain: feed (G/F) ratio between the groups. After 21 days of the feeding trial, results showed that dietary Trp significantly increased (P < 0.05) crypt depth and significantly decreased (P < 0.05) villus height to crypt depth ratio (VH/CD) in the jejunum of pig fed HTS. In addition, pig fed HTS had higher (P < 0.05) serum diamine oxidase (DAO) and D-lactate. Furthermore, pig fed HTS significantly decreased mRNA expression of tight junction proteins occludin and ZO-1 but not claudin-1 in the jejunum. The number of intraepithelial lymphocytes and goblet cells were not significantly different (P > 0.05) between the groups. Collectively, these data suggest that dietary Trp supplementation at a certain level (0.75%) may negatively affect the small intestinal structure in weaned pig. PMID:27366740

  14. Effect of four probiotic strains and Escherichia coli O157:H7 on tight junction integrity and cyclo-oxygenase expression.

    PubMed

    Putaala, Heli; Salusjärvi, Tuomas; Nordström, Malin; Saarinen, Markku; Ouwehand, Arthur C; Bech Hansen, Egon; Rautonen, Nina

    2008-01-01

    Controversy exists as to whether contact between a probiotic bacterial cell and an epithelial cell in the gut is needed to confer beneficial effects of probiotics, or whether metabolites from probiotics are sufficient to cause this effect. To address this question, Caco-2 cells were treated with cell-free supernatants of four probiotics, Bifidobacterium lactis 420, Bifidobacterium lactis HN019, Lactobacillus acidophilus NCFM, Lactobacillus salivarius Ls-33, and by a cell-free supernatant of a pathogenic bacteria, Escherichia coli O157:H7 (EHEC). Tight junction integrity as well as expression of cyclo-oxygenases, which are prostaglandin-producing enzymes, were measured. Probiotic-specific as well as EHEC-specific effects on tight junction integrity and cyclo-oxygenase expression were evident, indicating that live bacterial cells were not necessary for the manifestation of the effects. B. lactis 420 cell-free supernatant increased tight junction integrity, while EHEC cell-free supernatant induced damage on tight junctions. In general, EHEC and probiotics had opposite effects upon cyclo-oxygenase expression. Furthermore, B. lactis 420 cell-free supernatant protected the tight junctions from EHEC-induced damage when administered prior to the cell-free supernatant of EHEC. These results indicate that probiotics produce bioactive metabolites, suggesting that consumption of specific probiotic bacteria might be beneficial in protecting intestinal epithelial cells from the deleterious effects of pathogenic bacteria. PMID:18783733

  15. Three-junction solar cell

    DOEpatents

    Ludowise, Michael J.

    1986-01-01

    A photovoltaic solar cell is formed in a monolithic semiconductor. The cell contains three junctions. In sequence from the light-entering face, the junctions have a high, a medium, and a low energy gap. The lower junctions are connected in series by one or more metallic members connecting the top of the lower junction through apertures to the bottom of the middle junction. The upper junction is connected in voltage opposition to the lower and middle junctions by second metallic electrodes deposited in holes 60 through the upper junction. The second electrodes are connected to an external terminal.

  16. Quantum junction solar cells.

    PubMed

    Tang, Jiang; Liu, Huan; Zhitomirsky, David; Hoogland, Sjoerd; Wang, Xihua; Furukawa, Melissa; Levina, Larissa; Sargent, Edward H

    2012-09-12

    Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO(2)); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics. PMID:22881834

  17. IQGAP1 controls tight junction formation through differential regulation of claudin recruitment

    PubMed Central

    Tanos, Barbara E.; Perez Bay, Andres E.; Salvarezza, Susana; Vivanco, Igor; Mellinghoff, Ingo; Osman, Mahasin; Sacks, David B.; Rodriguez-Boulan, Enrique

    2015-01-01

    ABSTRACT IQGAP1 is a scaffolding protein previously implicated in adherens junction formation. However, its role in the establishment or maintenance of tight junctions (TJs) has not been explored. We hypothesized that IQGAP1 could regulate TJ formation by modulating the expression and/or localization of junctional proteins, and we systematically tested this hypothesis in the model Madin-Darby canine kidney (MDCK) cell line. We find that IQGAP1 silencing enhances a transient increase in transepithelial electrical resistance (TER) observed during the early stages of TJ formation (Cereijido et al., 1978). Quantitative microscopy and biochemical experiments suggest that this effect of IQGAP1 on TJ assembly is accounted for by reduced expression and TJ recruitment of claudin 2, and increased TJ recruitment of claudin 4. Furthermore, we show that IQGAP1 also regulates TJ formation through its interactor CDC42, because IQGAP1 knockdown increases the activity of the CDC42 effector JNK and dominant-negative CDC42 prevents the increase in TER caused by IQGAP1 silencing. Hence, we provide evidence that IQGAP1 modulates TJ formation by a twofold mechanism: (1) controlling the expression and recruitment of claudin 2 and recruitment of claudin 4 to the TJ, and (2) transient inhibition of the CDC42–JNK pathway. PMID:25588839

  18. The Effects of Glucagon-like Peptide-2 on the Tight Junction and Barrier Function in IPEC-J2 Cells through Phosphatidylinositol 3-kinase–Protein Kinase B–Mammalian Target of Rapamycin Signaling Pathway

    PubMed Central

    Yu, Changsong; Jia, Gang; Deng, Qiuhong; Zhao, Hua; Chen, Xiaoling; Liu, Guangmang; Wang, Kangning

    2016-01-01

    Glucagon-like peptide-2 (GLP-2) is important for intestinal barrier function and regulation of tight junction (TJ) proteins, but the intracellular mechanisms of action remain undefined. The purpose of this research was to determine the protective effect of GLP-2 mediated TJ and transepithelial electrical resistance (TER) in lipopolysaccharide (LPS) stressed IPEC-J2 cells and to test the hypothesis that GLP-2 regulate TJ and TER through the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt)-mammalian target of rapamycin (mTOR) signaling pathway in IPEC-J2 cells. Wortmannin and LY294002 are specific inhibitors of PI3K. The results showed that 100 μg/mL LPS stress decreased TER and TJ proteins occludin, claudin-1 and zonula occludens protein 1 (ZO-1) mRNA, proteins expressions (p<0.01) respectively. GLP-2 (100 nmol/L) promote TER and TJ proteins occludin, claudin-1, and zo-1 mRNA, proteins expressions in LPS stressed and normal IPEC-J2 cells (p<0.01) respectively. In normal cells, both wortmannin and LY294002, PI3K inhibitors, prevented the mRNA and protein expressions of Akt and mTOR increase induced by GLP-2 (p<0.01) following with the significant decreasing of occludin, claudin-1, ZO-1 mRNA and proteins expressions and TER (p<0.01). In conclusion, these results indicated that GLP-2 can promote TJ’s expression and TER in LPS stressed and normal IPEC-J2 cells and GLP-2 could regulate TJ and TER through the PI3K/Akt/mTOR pathway. PMID:26954146

  19. Kidney versus Liver Specification of SLC and ABC Drug Transporters, Tight Junction Molecules, and Biomarkers.

    PubMed

    Martovetsky, Gleb; Bush, Kevin T; Nigam, Sanjay K

    2016-07-01

    The hepatocyte nuclear factors, Hnf1a and Hnf4a, in addition to playing key roles in determining hepatocyte fate, have been implicated as candidate lineage-determining transcription factors in the kidney proximal tubule (PT) [Martovetsky et. al., (2012) Mol Pharmacol 84:808], implying an additional level of regulation that is potentially important in developmental and/or tissue-engineering contexts. Mouse embryonic fibroblasts (MEFs) transduced with Hnf1a and Hnf4a form tight junctions and express multiple PT drug transporters (e.g., Slc22a6/Oat1, Slc47a1/Mate1, Slc22a12/Urat1, Abcg2/Bcrp, Abcc2/Mrp2, Abcc4/Mrp4), nutrient transporters (e.g., Slc34a1/NaPi-2, Slco1a6), and tight junction proteins (occludin, claudin 6, ZO-1/Tjp1, ZO-2/Tjp2). In contrast, the coexpression (with Hnf1a and Hnf4a) of GATA binding protein 4 (Gata4), as well as the forkhead box transcription factors, Foxa2 and Foxa3, in MEFs not only downregulates PT markers but also leads to upregulation of several hepatocyte markers, including albumin, apolipoprotein, and transferrin. A similar result was obtained with primary mouse PT cells. Thus, the presence of Gata4 and Foxa2/Foxa3 appears to alter the effect of Hnf1a and Hnf4a by an as-yet unidentified mechanism, leading toward the generation of more hepatocyte-like cells as opposed to cells exhibiting PT characteristics. The different roles of Hnf4a in the kidney and liver was further supported by reanalysis of ChIP-seq data, which revealed Hnf4a colocalization in the kidney near PT-enriched genes compared with those genes enriched in the liver. These findings provide valuable insight, not only into the developmental, and perhaps organotypic, regulation of drug transporters, drug-metabolizing enzymes, and tight junctions, but also for regenerative medicine strategies aimed at restoring the function of the liver and/or kidney (acute kidney injury, AKI; chronic kidney disease, CKD). PMID:27044799

  20. Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation

    PubMed Central

    2010-01-01

    Background Intestinal barrier function is important for preserving health, as a compromised barrier allows antigen entry and can induce inflammatory diseases. Probiotic bacteria can play a role in enhancing intestinal barrier function; however, the mechanisms are not fully understood. Existing studies have focused on the ability of probiotics to prevent alterations to tight junctions in disease models, and have been restricted to a few tight junction bridging proteins. No studies have previously investigated the effect of probiotic bacteria on healthy intestinal epithelial cell genes involved in the whole tight junction signalling pathway, including those encoding for bridging, plaque and dual location tight junction proteins. Alteration of tight junction signalling in healthy humans is a potential mechanism that could lead to the strengthening of the intestinal barrier, resulting in limiting the ability of antigens to enter the body and potentially triggering undesirable immune responses. Results The effect of Lactobacillus plantarum MB452 on tight junction integrity was determined by measuring trans-epithelial electrical resistance (TEER) across Caco-2 cell layers. L. plantarum MB452 caused a dose-dependent TEER increase across Caco-2 cell monolayers compared to control medium. Gene expression was compared in Caco-2 cells untreated or treated with L. plantarum MB452 for 10 hours. Caco-2 cell RNA was hybridised to human oligonucleotide arrays. Data was analysed using linear models and differently expressed genes were examined using pathway analysis tools. Nineteen tight junction-related genes had altered expression levels in response to L. plantarum MB452 (modified-P < 0.05, fold-change > 1.2), including those encoding occludin and its associated plaque proteins that anchor it to the cytoskeleton. L. plantarum MB452 also caused changes in tubulin and proteasome gene expression levels which may be linked to intestinal barrier function. Caco-2 tight junctions were

  1. The serine protease-mediated increase in intestinal epithelial barrier function is dependent on occludin and requires an intact tight junction.

    PubMed

    Ronaghan, Natalie J; Shang, Judie; Iablokov, Vadim; Zaheer, Raza; Colarusso, Pina; Turner, Jerrold R; MacNaughton, Wallace K

    2016-09-01

    Barrier dysfunction is a characteristic of the inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis. Understanding how the tight junction is modified to maintain barrier function may provide avenues for treatment of IBD. We have previously shown that the apical addition of serine proteases to intestinal epithelial cell lines causes a rapid and sustained increase in transepithelial electrical resistance (TER), but the mechanisms are unknown. We hypothesized that serine proteases increase barrier function through trafficking and insertion of tight junction proteins into the membrane, and this could enhance recovery of a disrupted monolayer after calcium switch or cytokine treatment. In the canine epithelial cell line, SCBN, we showed that matriptase, an endogenous serine protease, could potently increase TER. Using detergent solubility-based cell fractionation, we found that neither trypsin nor matriptase treatment changed levels of tight junction proteins at the membrane. In a fast calcium switch assay, serine proteases did not enhance the rate of recovery of the junction. In addition, serine proteases could not reverse barrier disruption induced by IFNγ and TNFα. We knocked down occludin in our cells using siRNA and found this prevented the serine protease-induced increase in TER. Using fluorescence recovery after photobleaching (FRAP), we found serine proteases induce a greater mobile fraction of occludin in the membrane. These data suggest that a functional tight junction is needed for serine proteases to have an effect on TER, and that occludin is a crucial tight junction protein in this mechanism. PMID:27492333

  2. 17β-Estradiol Ameliorates Tight Junction Disruption via Repression of MMP Transcription.

    PubMed

    Na, Wonho; Lee, Jee Youn; Kim, Won-Sun; Yune, Tae Young; Ju, Bong-Gun

    2015-09-01

    The blood-brain barrier (BBB) or blood-spinal cord barrier (BSCB) formed by capillary endothelial cells provides a physical wall between the central nervous system (CNS) and circulating blood with highly selective permeability. BBB/BSCB disruption by activation of matrix metalloproteinases (MMPs) has been shown to result in further neurological damage after CNS injury. Recently it has been discovered that estrogen attenuates BBB/BSCB disruption in in vitro and in vivo models. However, the molecular mechanism underlying the estrogen-mediated attenuation of BBB/BSCB disruption has not been elucidated fully. In the present study, we found that 17β-estradiol (E2) suppresses nuclear factor-κB-dependent MMP-1b, MMP-2, MMP-3, MMP-9, MMP-10, and MMP-13 gene activation in microvessel endothelial bEnd.3 cells subjected to oxygen and glucose deprivation/reperfusion injury. E2 induced the recruitment of ERα and nuclear receptor corepressor to the nuclear factor-κB binding site on the MMPs' gene promoters. Consistently, ER antagonist ICI 182.780 showed opposite effects of E2. We further found that E2 attenuates tight junction disruption through the decreased degradation of tight junction proteins in bEnd.3 cells subjected to oxygen and glucose deprivation-reperfusion injury. In addition, E2 suppressed the up-regulation of MMP expression, leading to a decreased BSCB disruption in the injured spinal cord. In conclusion, we discovered the molecular mechanism underlying the protective role of estrogenin BBB/BSCB disruption using an in vitro and in vivo model. Our study suggests that estrogens may provide a potential therapeutic intervention for preserving BBB/BSCB integrity after CNS injury. PMID:26168035

  3. Tight junctions in inflammatory bowel diseases and inflammatory bowel disease associated colorectal cancer

    PubMed Central

    Landy, Jonathan; Ronde, Emma; English, Nick; Clark, Sue K; Hart, Ailsa L; Knight, Stella C; Ciclitira, Paul J; Al-Hassi, Hafid Omar

    2016-01-01

    Inflammatory bowel diseases are characterised by inflammation that compromises the integrity of the epithelial barrier. The intestinal epithelium is not only a static barrier but has evolved complex mechanisms to control and regulate bacterial interactions with the mucosal surface. Apical tight junction proteins are critical in the maintenance of epithelial barrier function and control of paracellular permeability. The characterisation of alterations in tight junction proteins as key players in epithelial barrier function in inflammatory bowel diseases is rapidly enhancing our understanding of critical mechanisms in disease pathogenesis as well as novel therapeutic opportunities. Here we give an overview of recent literature focusing on the role of tight junction proteins, in particular claudins, in inflammatory bowel diseases and inflammatory bowel disease associated colorectal cancer. PMID:27003989

  4. Estrogen Decrease in Tight Junctional Resistance Involves Matrix-Metalloproteinase-7-Mediated Remodeling of Occludin

    PubMed Central

    Gorodeski, George I.

    2008-01-01

    Estrogen modulates tight junctional resistance through estrogen receptor-α-mediated remodeling of occludin. The objective of the study was to understand the mechanisms involved. Experiments using human normal vaginal-cervical epithelial cells showed that human normal vaginal-cervical epithelial cells secrete constitutively matrix-metalloproteinase-7 (MMP-7) into the luminal solution and that MMP-7 is necessary and sufficient to produce estrogen decrease of tight junctional resistance and remodeling of occludin. Treatment with estrogen stimulated activation of the pro-MMP-7 intracellularly and augmented secretion of the activated MMP-7 form. Steady-state levels of MMP-7 mRNA and protein were not affected by estrogen. Estrogen modulated phosphorylation of the MMP-7, but the changes were most likely secondary to changes in cellular MMP-7 mass. Estrogen increased coimmunoreactivity of MMP-7 with the Golgi protein GPP130. Tunicamycin and brefeldin-A had no effect on cellular MMP-7 but monensin (inhibitor of Golgi traffic) blocked estrogen effects, suggesting estrogen site of action is at the Golgi system. Estrogen increased generalized secretory activity, including of luminal exocytosis of polycarbohydrates. However, estrogen increased coimmunoreactivity of MMP-7 with synaptosomal-associated protein of 25 kDa in apical membranes, suggesting soluble N-ethylmaleimide sensitive fusion factor attachment protein receptor-facilitated exocytosis of MMP-7. Treatment with the vesicular-ATPase inhibitor bafilomycin A1 inhibited activation of MMP-7. These data suggest that estrogen up-regulates activation of the MMP-7 intracellularly, at the level of Golgi, and augments secretion of activated MMP-7 through soluble N-ethylmaleimide sensitive fusion factor attachment protein receptor-dependent exocytosis. On the other hand, estrogen acidification of the luminal solution would tend to alkalinize exocytotic vesicles and may lead to decreased activation of the MMP-7. These mechanisms

  5. Hold on tightly, let go lightly: myosin functions at adherens junctions

    PubMed Central

    Sandquist, Joshua C.; Bement, William M.

    2016-01-01

    Adherens junctions, the sites of cadherin-dependent cell–cell adhesion, are also important for dynamic tension sensing, force transduction and signalling. Different myosin motors contribute to adherens junction assembly and versatility in distinct ways. PMID:20596044

  6. ROCK activity regulates functional tight junction assembly during blastocyst formation in porcine parthenogenetic embryos

    PubMed Central

    Kwon, Jeongwoo

    2016-01-01

    The Rho-associated coiled-coil-containing protein serine/threonine kinases 1 and 2 (ROCK1 and ROCK2) are Rho subfamily GTPase downstream effectors that regulate cell migration, intercellular adhesion, cell polarity, and cell proliferation by stimulating actin cytoskeleton reorganization. Inhibition of ROCK proteins affects specification of the trophectoderm (TE) and inner cell mass (ICM) lineages, compaction, and blastocyst cavitation. However, the molecules involved in blastocyst formation are not known. Here, we examined developmental competence and levels of adherens/tight junction (AJ/TJ) constituent proteins, such as CXADR, OCLN, TJP1, and CDH1, as well as expression of their respective mRNAs, after treating porcine parthenogenetic four-cell embryos with Y-27632, a specific inhibitor of ROCK, at concentrations of 0, 10, 20, 100 µM for 24 h. Following this treatment, the blastocyst development rates were 39.1, 20.7, 10.0, and 0% respectively. In embryos treated with 20 µM treatment, expression levels of CXADR, OCLN, TJP1, and CDH1 mRNA and protein molecules were significantly reduced (P < 0.05). FITC-dextran uptake assay revealed that the treatment caused an increase in TE TJ permeability. Interestingly, the majority of the four-cell and morula embryos treated with 20 µM Y-27643 for 24 h showed defective compaction and cavitation. Taken together, our results indicate that ROCK activity may differentially affect assembly of AJ/TJs as well as regulate expression of genes encoding junctional proteins. PMID:27077008

  7. Meprin A impairs epithelial barrier function, enhances monocyte migration, and cleaves the tight junction protein occludin

    PubMed Central

    Bao, Jialing; Yura, Renee E.; Matters, Gail L.; Bradley, S. Gaylen; Shi, Pan; Tian, Fang

    2013-01-01

    Meprin metalloproteases are highly expressed at the luminal interface of the intestine and kidney and in certain leukocytes. Meprins cleave a variety of substrates in vitro, including extracellular matrix proteins, adherens junction proteins, and cytokines, and have been implicated in a number of inflammatory diseases. The linkage between results in vitro and pathogenesis, however, has not been elucidated. The present study aimed to determine whether meprins are determinative factors in disrupting the barrier function of the epithelium. Active meprin A or meprin B applied to Madin-Darby canine kidney (MDCK) cell monolayers increased permeability to fluorescein isothiocyanate-dextran and disrupted immunostaining of the tight junction protein occludin but not claudin-4. Meprin A, but not meprin B, cleaved occludin in MDCK monolayers. Experiments with recombinant occludin demonstrated that meprin A cleaves the protein between Gly100 and Ser101 on the first extracellular loop. In vivo experiments demonstrated that meprin A infused into the mouse bladder increased the epithelium permeability to sodium fluorescein. Furthermore, monocytes from meprin knockout mice on a C57BL/6 background were less able to migrate through an MDCK monolayer than monocytes from their wild-type counterparts. These results demonstrate the capability of meprin A to disrupt epithelial barriers and implicate occludin as one of the important targets of meprin A that may modulate inflammation. PMID:23804454

  8. Multiple Protein Interactions Involving Proposed Extracellular Loop Domains of the Tight Junction Protein Occludin

    PubMed Central

    Nusrat, Asma; Brown, G. Thomas; Tom, Jeffrey; Drake, Alex; Bui, Tam T.T.; Quan, Cliff; Mrsny, Randall J.

    2005-01-01

    Occludin is a tetraspan integral membrane protein in epithelial and endothelial tight junction (TJ) structures that is projected to have two extracellular loops. We have used peptides emulating central regions of human occludin's first and second loops, termed O-A:101–121 and O-B:210–228, respectively, to examine potential molecular interactions between these two regions of occludin and other TJ proteins. A superficial biophysical assessment of A:101–121 and O-B:210–228 showed them to have dissimilar solution conformation characteristics. Although O-A:101–121 failed to strongly interact with protein components of the human epithelial intestinal cell line T84, O-B:210–228 selectively associated with occludin, claudin-one and the junctional adhesion molecule (JAM)-A. Further, the presence of O-B:210–228, but not O-A:101–121, impeded the recovery of functional TJ structures. A scrambled peptide sequences of O-B:210–228 failed to influence TJ assembly. These studies demonstrate distinct properties for these two extracellular segments of the occludin protein and provide an improved understanding of how specific domains of occludin may interact with proteins present at TJ structures. PMID:15659655

  9. Zonula occludens toxin modulates tight junctions through protein kinase C-dependent actin reorganization, in vitro.

    PubMed Central

    Fasano, A; Fiorentini, C; Donelli, G; Uzzau, S; Kaper, J B; Margaretten, K; Ding, X; Guandalini, S; Comstock, L; Goldblum, S E

    1995-01-01

    The intracellular signaling involved in the mechanism of action of zonula occludens toxin (ZOT) was studied using several in vitro and ex vivo models. ZOT showed a selective effect among various cell lines tested, suggesting that it may interact with a specific receptor, whose surface expression on various cells differs. When tested in IEC6 cell monolayers, ZOT-containing supernatants induced a redistribution of the F-actin cytoskeleton. Similar results were obtained with rabbit ileal mucosa, where the reorganization of F-actin paralleled the increase in tissue permeability. In endothelial cells, the cytoskeletal rearrangement involved a decrease of the soluble G-actin pool (-27%) and a reciprocal increase in the filamentous F-actin pool (+22%). This actin polymerization was time- and dose-dependent, and was reversible. Pretreatment with a specific protein kinase C inhibitor, CGP41251, completely abolished the ZOT effects on both tissue permeability and actin polymerization. In IEC6 cells ZOT induced a peak increment of the PKC-alpha isoform after 3 min incubation. Taken together, these results suggest that ZOT activates a complex intracellular cascade of events that regulate tight junction permeability, probably mimicking the effect of physiologic modulator(s) of epithelial barrier function. Images PMID:7635964

  10. Caveolin-1–dependent occludin endocytosis is required for TNF-induced tight junction regulation in vivo

    PubMed Central

    Marchiando, Amanda M.; Shen, Le; Graham, W. Vallen; Weber, Christopher R.; Schwarz, Brad T.; Austin, Jotham R.; Raleigh, David R.; Guan, Yanfang; Watson, Alastair J.M.; Montrose, Marshall H.

    2010-01-01

    Epithelial paracellular barrier function, determined primarily by tight junction permeability, is frequently disrupted in disease. In the intestine, barrier loss can be mediated by tumor necrosis factor (α) (TNF) signaling and epithelial myosin light chain kinase (MLCK) activation. However, TNF induces only limited alteration of tight junction morphology, and the events that couple structural reorganization to barrier regulation have not been defined. We have used in vivo imaging and transgenic mice expressing fluorescent-tagged occludin and ZO-1 fusion proteins to link occludin endocytosis to TNF-induced tight junction regulation. This endocytosis requires caveolin-1 and is essential for structural and functional tight junction regulation. These data demonstrate that MLCK activation triggers caveolin-1–dependent endocytosis of occludin to effect structural and functional tight junction regulation. PMID:20351069

  11. Molecular and cellular mechanisms of tight junction dysfunction in the irritable bowel syndrome

    PubMed Central

    CHENG, PENG; YAO, JIANNING; WANG, CHUNFENG; ZHANG, LIANFENG; KONG, WUMING

    2015-01-01

    The pathophysiological mechanisms of the irritable bowel syndrome (IBS), one of the most prevalent gastrointestinal disorders, are complex and have not been fully elucidated. The present study aimed to investigate the molecular and cellular mechanisms of tight junction (TJ) dysfunction in IBS. Intestinal tissues of IBS and non-IBS patients were examined to observe cellular changes by cell chemical tracer electron microscopy and transmission electron microscopy, and intestinal claudin-1 protein was detected by immunohistochemistry, western blot analysis and fluorescence quantitative polymerase chain reaction. Compared with the control group, TJ broadening and the tracer extravasation phenomenon were observed in the diarrhea-predominant IBS group, and a greater number of neuroendocrine cells and mast cells filled with high-density particles in the endocrine package pulp as well as a certain extent of vacuolization were present. The expression of claudin-1 in diarrhea-predominant IBS patients was decreased, while it was increased in constipation-predominant IBS patients. In conclusion, the results of the present study indicated that changes in cellular structure and claudin-1 levels were associated with Tjs in IBS. PMID:25998845

  12. Glucocorticoids Regulate Tight Junction Permeability of Lung Epithelia by Modulating Claudin 8.

    PubMed

    Kielgast, Felix; Schmidt, Hanna; Braubach, Peter; Winkelmann, Veronika E; Thompson, Kristin E; Frick, Manfred; Dietl, Paul; Wittekindt, Oliver H

    2016-05-01

    The lung epithelium constitutes a selective barrier that separates the airways from the aqueous interstitial compartment. Regulated barrier function controls water and ion transport across the epithelium and is essential for maintaining lung function. Tight junctions (TJs) seal the epithelial barrier and determine the paracellular transport. The properties of TJs depend especially on their claudin composition. Steroids are potent drugs used to treat a variety of airway diseases. Therefore, we addressed whether steroid hormones directly act on TJ properties in lung epithelia. Primary human tracheal epithelial cells and NCI-H441 cells, both cultivated under air-liquid interface conditions, were used as epithelial cell models. Our results demonstrate that glucocorticoids, but not mineralocorticoids, decreased paracellular permeability and shifted the ion permselectivity of TJs toward Cl(-). Glucocorticoids up-regulated claudin 8 (cldn8) expression via glucocorticoid receptors. Silencing experiments revealed that cldn8 is necessary to recruit occludin at the TJs. Immunohistochemistry on human lung tissue showed that cldn8 is specifically expressed in resorptive epithelia of the conducting and respiratory airways but not in the alveolar epithelium. We conclude that glucocorticoids enhance lung epithelia barrier function and increase paracellular Cl(-) selectivity via modulation of cldn8-dependent recruitment of occludin at the TJs. This mode of glucocorticoid action on lung epithelia might be beneficial to patients who suffer from impaired lung barrier function in various diseased conditions. PMID:26473470

  13. Alix-mediated assembly of the actomyosin–tight junction polarity complex preserves epithelial polarity and epithelial barrier

    PubMed Central

    Campos, Yvan; Qiu, Xiaohui; Gomero, Elida; Wakefield, Randall; Horner, Linda; Brutkowski, Wojciech; Han, Young-Goo; Solecki, David; Frase, Sharon; Bongiovanni, Antonella; d'Azzo, Alessandra

    2016-01-01

    Maintenance of epithelial cell polarity and epithelial barrier relies on the spatial organization of the actin cytoskeleton and proper positioning/assembly of intercellular junctions. However, how these processes are regulated is poorly understood. Here we reveal a key role for the multifunctional protein Alix in both processes. In a knockout mouse model of Alix, we identified overt structural changes in the epithelium of the choroid plexus and in the ependyma, such as asymmetrical cell shape and size, misplacement and abnormal beating of cilia, blebbing of the microvilli. These defects culminate in excessive cell extrusion, enlargement of the lateral ventricles and hydrocephalus. Mechanistically, we find that by interacting with F-actin, the Par complex and ZO-1, Alix ensures the formation and maintenance of the apically restricted actomyosin–tight junction complex. We propose that in this capacity Alix plays a role in the establishment of apical–basal polarity and in the maintenance of the epithelial barrier. PMID:27336173

  14. Alix-mediated assembly of the actomyosin-tight junction polarity complex preserves epithelial polarity and epithelial barrier.

    PubMed

    Campos, Yvan; Qiu, Xiaohui; Gomero, Elida; Wakefield, Randall; Horner, Linda; Brutkowski, Wojciech; Han, Young-Goo; Solecki, David; Frase, Sharon; Bongiovanni, Antonella; d'Azzo, Alessandra

    2016-01-01

    Maintenance of epithelial cell polarity and epithelial barrier relies on the spatial organization of the actin cytoskeleton and proper positioning/assembly of intercellular junctions. However, how these processes are regulated is poorly understood. Here we reveal a key role for the multifunctional protein Alix in both processes. In a knockout mouse model of Alix, we identified overt structural changes in the epithelium of the choroid plexus and in the ependyma, such as asymmetrical cell shape and size, misplacement and abnormal beating of cilia, blebbing of the microvilli. These defects culminate in excessive cell extrusion, enlargement of the lateral ventricles and hydrocephalus. Mechanistically, we find that by interacting with F-actin, the Par complex and ZO-1, Alix ensures the formation and maintenance of the apically restricted actomyosin-tight junction complex. We propose that in this capacity Alix plays a role in the establishment of apical-basal polarity and in the maintenance of the epithelial barrier. PMID:27336173

  15. Coxsackievirus and Adenovirus Receptor, a Tight Junction Protein, in Peri-Implantation Mouse Embryos.

    PubMed

    Oh, Yeong Seok; Nah, Won Heum; Choi, Bomi; Kim, Seok Hyun; Gye, Myung Chan

    2016-07-01

    To understand the role of Coxsackievirus and adenovirus receptor (CAR), a tight junction (TJ) protein, in peri-implantation embryos, developmental expression of CAR and its role in paracellular permeability were examined in mouse embryos. Splice variants for transmembrane CAR, Car1, Car2, and Car3 mRNA, were expressed from 2-cell, morula, and blastocyst stages onward, respectively, whereas mRNA for soluble CAR was expressed in MII oocytes and 4-cell stage onward. On Western blot, ∼46 kDa CAR proteins were detected in blastocysts. During the 4-cell embryos to morula stage, CAR was gradually concentrated at the contacts between blastomeres. In blastocysts, CAR was expressed at the cell contacts within the inner cell mass as well as in the trophectoderm (TE) where CAR was found together with ZO1 at the apical contacts, suggesting that CAR builds up apical TJs in TE and mediates cell adhesion in TE and inner cell mass. In blastocysts, CAR-blocking antibodies under Ca(2+) switching increased the dextran permeability and decreased the volume of blastocoel and H19 and Cdx2 mRNA, suggesting the pivotal role of CAR in the blastocyst development and paracellular permeability barrier in TE. CAR was expressed in TE of implanting embryos as well as endometrial epithelium, suggesting the involvement of CAR in the interaction between implanting embryos and endometrium. At 5-6 days postcoitum, CAR was expressed together with ZO1 in the primitive endoderm, visceral endoderm, and epiblasts facing the pro-amniotic cavity, suggesting that CAR TJs contribute to the separation of epiblast from the blastocoel and development of the pro-amniotic cavity within epiblasts. PMID:27226313

  16. Tight junction proteins in gallbladder epithelium: different expression in acute acalculous and calculous cholecystitis.

    PubMed

    Laurila, Jouko J; Karttunen, Tuomo; Koivukangas, Vesa; Laurila, Päivi A; Syrjälä, Hannu; Saarnio, Juha; Soini, Ylermi; Ala-Kokko, Tero I

    2007-06-01

    There is a paucity of information of tight junction (TJ) proteins in gallbladder epithelium, and disturbances in the structure of these proteins may play a role in the pathogenesis of acute acalculous cholecystitis (AAC) and acute calculous cholecystitis (ACC). Using immunohistochemistry, we investigated the expression of TJ proteins claudin-1, -2, -3, and -4, occludin, zonula occludens (ZO-1), and E-cadherin in 9 normal gallbladders, 30 gallbladders with AAC, and 21 gallbladders with ACC. The number of positive epithelial and endothelial cells and the intensity of the immunoreaction were determined. Membrane-bound and cytoplasmic immunoreactivities were separately assessed. We found that TJ proteins were uniformly expressed in normal gallbladder epithelium, with the exception of claudin-2, which was present in less than half of the cells. In AAC, expression of cytoplasmic occludin and claudin-1 were decreased, as compared with normal gallbladder. In ACC, expression of claudin-2 was increased, and expression of claudin-1, -3, and -4, occludin, and ZO-1 were decreased, as compared with normal gallbladder or AAC. We conclude that there are significant differences in expression of TJ proteins in AAC and ACC, supporting the idea that AAC represents a manifestation of systemic inflammatory disease, whereas ACC is a local inflammatory and often infectious disease. PMID:17283368

  17. Tight junction CLDN2 gene is a direct target of the vitamin D receptor

    PubMed Central

    Zhang, Yong-guo; Wu, Shaoping; Lu, Rong; Zhou, David; Zhou, Jingsong; Carmeliet, Geert; Petrof, Elaine; Claud, Erika C.; Sun, Jun

    2015-01-01

    The breakdown of the intestinal barrier is a common manifestation of many diseases. Recent evidence suggests that vitamin D and its receptor VDR may regulate intestinal barrier function. Claudin-2 is a tight junction protein that mediates paracellular water transport in intestinal epithelia, rendering them “leaky”. Using whole body VDR-/- mice, intestinal epithelial VDR conditional knockout (VDRΔIEC) mice, and cultured human intestinal epithelial cells, we demonstrate here that the CLDN2 gene is a direct target of the transcription factor VDR. The Caudal-Related Homeobox (Cdx) protein family is a group of the transcription factor proteins which bind to DNA to regulate the expression of genes. Our data showed that VDR-enhances Claudin-2 promoter activity in a Cdx1 binding site-dependent manner. We further identify a functional vitamin D response element (VDRE) 5΄-AGATAACAAAGGTCA-3΄ in the Cdx1 site of the Claudin-2 promoter. It is a VDRE required for the regulation of Claudin-2 by vitamin D. Absence of VDR decreased Claudin-2 expression by abolishing VDR/promoter binding. In vivo, VDR deletion in intestinal epithelial cells led to significant decreased Claudin-2 in VDR-/- and VDRΔIEC mice. The current study reveals an important and novel mechanism for VDR by regulation of epithelial barriers. PMID:26212084

  18. Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions

    PubMed Central

    Wan, Hong; Winton, Helen L.; Soeller, Christian; Tovey, Euan R.; Gruenert, Dieter C.; Thompson, Philip J.; Stewart, Geoffrey A.; Taylor, Graham W.; Garrod, David R.; Cannell, Mark B.; Robinson, Clive

    1999-01-01

    House dust mite (HDM) allergens are important factors in the increasing prevalence of asthma. The lung epithelium forms a barrier that allergens must cross before they can cause sensitization. However, the mechanisms involved are unknown. Here we show that the cysteine proteinase allergen Der p 1 from fecal pellets of the HDM Dermatophagoides pteronyssinus causes disruption of intercellular tight junctions (TJs), which are the principal components of the epithelial paracellular permeability barrier. In confluent airway epithelial cells, Der p 1 led to cleavage of the TJ adhesion protein occludin. Cleavage was attenuated by antipain, but not by inhibitors of serine, aspartic, or matrix metalloproteinases. Putative Der p 1 cleavage sites were found in peptides from an extracellular domain of occludin and in the TJ adhesion protein claudin-1. TJ breakdown nonspecifically increased epithelial permeability, allowing Der p 1 to cross the epithelial barrier. Thus, transepithelial movement of Der p 1 to dendritic antigen-presenting cells via the paracellular pathway may be promoted by the allergen’s own proteolytic activity. These results suggest that opening of TJs by environmental proteinases may be the initial step in the development of asthma to a variety of allergens. PMID:10393706

  19. Structural and functional regulation of tight junctions by RhoA and Rac1 small GTPases.

    PubMed

    Jou, T S; Schneeberger, E E; Nelson, W J

    1998-07-13

    Tight junctions (TJ) govern ion and solute diffusion through the paracellular space (gate function), and restrict mixing of membrane proteins and lipids between membrane domains (fence function) of polarized epithelial cells. We examined roles of the RhoA and Rac1 GTPases in regulating TJ structure and function in MDCK cells using the tetracycline repressible transactivator to regulate RhoAV14, RhoAN19, Rac1V12, and Rac1N17 expression. Both constitutively active and dominant negative RhoA or Rac1 perturbed TJ gate function (transepithelial electrical resistance, tracer diffusion) in a dose-dependent and reversible manner. Freeze-fracture EM and immunofluoresence microscopy revealed abnormal TJ strand morphology and protein (occludin, ZO-1) localization in RhoAV14 and Rac1V12 cells. However, TJ strand morphology and protein localization appeared normal in RhoAN19 and Rac1N17 cells. All mutant GTPases disrupted the fence function of the TJ (interdomain diffusion of a fluorescent lipid), but targeting and organization of a membrane protein in the apical membrane were unaffected. Expression levels and protein complexes of occludin and ZO-1 appeared normal in all mutant cells, although ZO-1 was more readily solubilized from RhoAV14-expressing cells with Triton X-100. These results show that RhoA and Rac1 regulate gate and fence functions of the TJ, and play a role in the spatial organization of TJ proteins at the apex of the lateral membrane. PMID:9660866

  20. Tight-binding model for amine-terminated oligophenyl molecular junctions formed with carbon electrodes

    NASA Astrophysics Data System (ADS)

    Kim, Deok Hyeon; Kim, Taekyeong

    2015-05-01

    We measured the conductance of a series of amine-terminated oligophenyl molecular junction formed with carbon electrodes by using a scanning tunneling microscope based break-junction technique. The tight-binding model that includes the molecular backbone states accurately captured the experimentally measured the molecular conductance and the exponential decay trend of the conductance with the molecular backbone length. Furthermore, we found that this model tracked successfully the shift of the highest occupied molecular orbital toward the Fermi energy as increasing the molecular length. Finally, we found that the tight-binding model explaining more week coupling strength with the graphite electrode than that with the Au electrode is in quantitative agreement with the density functional theory calculations.

  1. Effects of Soybean Agglutinin on Intestinal Barrier Permeability and Tight Junction Protein Expression in Weaned Piglets

    PubMed Central

    Zhao, Yuan; Qin, Guixin; Sun, Zewei; Che, Dongsheng; Bao, Nan; Zhang, Xiaodong

    2011-01-01

    This study was developed to provide further information on the intestinal barrier permeability and the tight junction protein expression in weaned piglets fed with different levels of soybean agglutinin (SBA). Twenty-five weaned crossbred barrows (Duroc × Landrace × Yorkshire) were selected and randomly allotted to five groups, each group with five replicates. The piglets in the control group were not fed with leguminous products. 0.05, 0.1, 0.15 and 0.2% SBA was added to the control diet to form four experimental diets, respectively. After the experimental period of 7 days (for each group), all the piglets were anesthetized with excess procaine and slaughtered. The d-lactic acid in plasma and the Ileal mucosa diamine oxidase (DAO) was analyzed to observe the change in the intestinal permeability. The tight junction proteins occludin and ZO-1 in the jejunum tissue distribution and relative expression were detected by immunohistochemistry and Western Blot. The results illustrated that a high dose of SBA (0.1–0.2%) could increase the intestinal permeability and reduce piglet intestinal epithelial tight junction protein occludin or ZO-1 expression, while low dose of SBA (0.05% of total diet) had no significant affects. The contents of DAO, d-lactic acid, occludin or ZO-1, had a linear relationship with the SBA levels (0–0.2%) in diets. The high dose SBA (0.1–0.2%) could increase the intestinal permeability and reduce piglet intestinal epithelial tight junction protein occludin or ZO-1 expression, while low dose of SBA (0.05% of total diet) had no affects. PMID:22272087

  2. An induced junction photovoltaic cell

    NASA Technical Reports Server (NTRS)

    Call, R. L.

    1974-01-01

    Silicon solar cells operating with induced junctions rather than diffused junctions have been fabricated and tested. Induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. Measurements of the response of the inversion layer cell to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. The greater sensitivity occurs because of the shallow junction and the strong electric field at the surface.

  3. Headache under simulated microgravity is related to endocrine, fluid distribution, and tight junction changes.

    PubMed

    Feuerecker, Matthias; van Oosterhout, Willebrordus P J; Feuerecker, Benedikt; Matzel, Sandra; Schelling, Gustav; Rehm, Markus; Vein, Alla A; Choukèr, Alexander

    2016-05-01

    Head-down-tilted bed rest (HDTBR) induces headaches similar to headaches during space flights. The objective of this investigation was to study hematological, endocrinological, fluid changes and tight junctions in HDTBR-induced headaches as a proxy for space headache. The randomized crossover HDTBR design by the European Space Agency included 12 healthy, nonheadache male subjects. Before, during, and after confined HDTBR periods, epinephrine (urine), cortisol (saliva), hematological, endothelium markers, and fluid distribution parameters were measured. Headaches were assessed with a validated headache questionnaire. Compared with baseline, HDTBR in all subjects was associated with higher hematocrit, hemoglobin, and epinephrine levels, higher erythrocyte counts, and lower relative plasma volumes (all P < 0.05). In total, 26 headache episodes occurred. In subjects with headaches during HDTBR, epinephrine levels were exaggerated (vs headache-free subjects; HDTBR day 3; 5.1 ± 1.7 vs 3.4 ± 2.4; P = 0.023), cortisol levels were decreased (vs headache-free subjects; HDTBR day 1; 0.37 ± 0.16 vs 0.50 ± 0.20; P < 0.001) and the tight junction marker zonulin was elevated (vs headache-free subjects in HDTBR days 1, 3, 5; P < 0.05). HDTBR induces hemoconcentration and fluid redistribution in all subjects. During headache episodes, endocrinological changes, fluid distribution, and tight junctions were more pronounced, suggesting an additional role in headache pathophysiology. PMID:26761382

  4. Abnormal endothelial tight junctions in active lesions and normal-appearing white matter in multiple sclerosis.

    PubMed

    Plumb, Jonnie; McQuaid, Stephen; Mirakhur, Meenakshi; Kirk, John

    2002-04-01

    Blood-brain barrier (BBB) breakdown, demonstrable in vivo by enhanced MRI is characteristic of new and expanding inflammatory lesions in relapsing-remitting and chronic progressive multiple sclerosis (MS). Subtle leakage may also occur in primary progressive MS. However, the anatomical route(s) of BBB leakage have not been demonstrated. We investigated the possible involvement of interendothelial tight junctions (TJ) by examining the expression of TJ proteins (occludin and ZO-1 ) in blood vessels in active MS lesions from 8 cases of MS and in normal-appearing white (NAWM) matter from 6 cases. Blood vessels (10-50 per frozen section) were scanned using confocal laser scanning microscopy to acquire datasets for analysis. TJ abnormalities manifested as beading, interruption, absence or diffuse cytoplasmic localization of fluorescence, or separation of junctions (putative opening) were frequent (affecting 40% of vessels) in oil-red-O-positive active plaques but less frequent in NAWM (15%), and in normal (< 2%) and neurological controls (6%). Putatively "open" junctions were seen in vessels in active lesions and in microscopically inflamed vessels in NAWM. Dual fluorescence revealed abnormal TJs in vessels with pre-mortem serum protein leakage. Abnormal or open TJs, associated with inflammation may contribute to BBB leakage in enhancing MRI lesions and may also be involved in subtle leakage in non-enhancing focal and diffuse lesions in NAWM. BBB disruption due to tight junctional pathology should be regarded as a significant form of tissue injury in MS, alongside demyelination and axonopathy. PMID:11958369

  5. Oncostatin M induces upregulation of claudin-2 in rodent hepatocytes coinciding with changes in morphology and function of tight junctions

    SciTech Connect

    Imamura, Masafumi; Kojima, Takashi . E-mail: ktakashi@sapmed.ac.jp; Lan, Mengdong; Son, Seiichi; Murata, Masaki; Osanai, Makoto; Chiba, Hideki; Hirata, Koichi; Sawada, Norimasa

    2007-05-15

    In rodent livers, integral tight junction (TJ) proteins claudin-1, -2, -3, -5 and -14 are detected and play crucial roles in the barrier to keep bile in bile canaculi away from the blood circulation. Claudin-2 shows a lobular gradient increasing from periportal to pericentral hepatocytes, whereas claudin-1 and -3 are expressed in the whole liver lobule. Although claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells, the physiological functions and regulation of claudin-2 in hepatocytes remain unclear. Oncostatin M (OSM) is a multifunctional cytokine implicated in the differentiation of hepatocytes that induces formation of E-cadherin-based adherens junctions in fetal hepatocytes. In this study, we examined whether OSM could induce expression and function of claudin-2 in rodent hepatocytes, immortalized mouse and primary cultured proliferative rat hepatocytes. In the immortalized mouse and primary cultured proliferative rat hepatocytes, treatment with OSM markedly increased mRNA and protein of claudin-2 together with formation of developed networks of TJ strands. The increase of claudin-2 enhanced the paracellular barrier function which depended on molecular size. The increase of claudin-2 expression induced by OSM in rodent hepatocytes was regulated through distinct signaling pathways including PKC. These results suggest that expression of claudin-2 in rodent hepatocytes may play a specific role as controlling the size of paracellular permeability in the barrier to keep bile in bile canaculi.

  6. β1-Na(+),K(+)-ATPase gene therapy upregulates tight junctions to rescue lipopolysaccharide-induced acute lung injury.

    PubMed

    Lin, X; Barravecchia, M; Kothari, P; Young, J L; Dean, D A

    2016-06-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with diverse disorders and characterized by disruption of the alveolar-capillary barrier, leakage of edema fluid into the lung, and substantial inflammation leading to acute respiratory failure. Gene therapy is a potentially powerful approach to treat ALI/ARDS through repair of alveolar epithelial function. Herein, we show that delivery of a plasmid expressing β1-subunit of the Na(+),K(+)-ATPase (β1-Na(+),K(+)-ATPase) alone or in combination with epithelial sodium channel (ENaC) α1-subunit using electroporation not only protected from subsequent lipopolysaccharide (LPS)-mediated lung injury, but also treated injured lungs. However, transfer of α1-subunit of ENaC (α1-ENaC) alone only provided protection benefit rather than treatment benefit although alveolar fluid clearance had been remarkably enhanced. Gene transfer of β1-Na(+),K(+)-ATPase, but not α1-ENaC, not only enhanced expression of tight junction protein zona occludins-1 (ZO-1) and occludin both in cultured cells and in mouse lungs, but also reduced pre-existing increase of lung permeability in vivo. These results demonstrate that gene transfer of β1-Na(+),K(+)-ATPase upregulates tight junction formation and therefore treats lungs with existing injury, whereas delivery of α1-ENaC only maintains pre-existing tight junction but not for generation. This indicates that the restoration of epithelial/endothelial barrier function may provide better treatment of ALI/ARDS. PMID:26910760

  7. Superoxide mediates tight junction complex dissociation in cyclically stretched lung slices.

    PubMed

    Song, Min Jae; Davidovich, Nurit; Lawrence, Gladys G; Margulies, Susan S

    2016-05-24

    We found that stretching Type I rat alveolar epithelial cell (RAEC) monolayers at magnitudes that correspond to high tidal-volume mechanical ventilation results in the production of reactive oxygen species, including nitric oxide and superoxide. Scavenging superoxide with Tiron eliminated the stretch-induced increase in cell monolayer permeability, and similar results were reported for rats ventilated at large tidal volumes, suggesting that oxidative stress plays an important role in barrier impairment in ventilator-induced lung injury associated with large stretch and tidal volumes. In this communication we show that mechanisms that involve oxidative injury are also present in a novel precision cut lung slices (PCLS) model under identical mechanical loads. PCLSs from healthy rats were stretched cyclically to 37% change in surface area for 1 hour. Superoxide was visualized using MitoSOX. To evaluate functional relationships, in separate stretch studies superoxide was scavenged using Tiron or mito-Tempo. PCLS and RAEC permeability was assessed as tight junction (TJ) protein (occludin, claudin-4 and claudin-7) dissociation from zona occludins-1 (ZO-1) via co-immunoprecipitation and Western blot, after 1h (PCLS) or 10min (RAEC) of stretch. Superoxide was increased significantly in PCLS, and Tiron and mito-Tempo dramatically attenuated the response, preventing claudin-4 and claudin-7 dissociation from ZO-1. Using a novel PCLS model for ventilator-induced lung injury studies, we have shown that uniform, biaxial, cyclic stretch generates ROS in the slices, and that superoxide scavenging that can protect the lung tissue under stretch conditions. We conclude that PCLS offer a valuable platform for investigating antioxidant treatments to prevent ventilation-induced lung injury. PMID:26592435

  8. “You Shall Not Pass”—tight junctions of the blood brain barrier

    PubMed Central

    Bauer, Hans-Christian; Krizbai, István A.; Bauer, Hannelore; Traweger, Andreas

    2014-01-01

    The structure and function of the barrier layers restricting the free diffusion of substances between the central nervous system (brain and spinal cord) and the systemic circulation is of great medical interest as various pathological conditions often lead to their impairment. Excessive leakage of blood-borne molecules into the parenchyma and the concomitant fluctuations in the microenvironment following a transient breakdown of the blood-brain barrier (BBB) during ischemic/hypoxic conditions or because of an autoimmune disease are detrimental to the physiological functioning of nervous tissue. On the other hand, the treatment of neurological disorders is often hampered as only minimal amounts of therapeutic agents are able to penetrate a fully functional BBB or blood cerebrospinal fluid barrier. An in-depth understanding of the molecular machinery governing the establishment and maintenance of these barriers is necessary to develop rational strategies allowing a controlled delivery of appropriate drugs to the CNS. At the basis of such tissue barriers are intimate cell-cell contacts (zonulae occludentes, tight junctions) which are present in all polarized epithelia and endothelia. By creating a paracellular diffusion constraint TJs enable the vectorial transport across cell monolayers. More recent findings indicate that functional barriers are already established during development, protecting the fetal brain. As an understanding of the biogenesis of TJs might reveal the underlying mechanisms of barrier formation during ontogenic development numerous in vitro systems have been developed to study the assembly and disassembly of TJs. In addition, monitoring the stage-specific expression of TJ-associated proteins during development has brought much insight into the “developmental tightening” of tissue barriers. Over the last two decades a detailed molecular map of transmembrane and cytoplasmic TJ-proteins has been identified. These proteins not only form a cell-cell

  9. Poly(I:C) Induces Human Lung Endothelial Barrier Dysfunction by Disrupting Tight Junction Expression of Claudin-5

    PubMed Central

    Huang, Li-Yun; Stuart, Christine; Takeda, Kazuyo; D’Agnillo, Felice; Golding, Basil

    2016-01-01

    Viral infections are often accompanied by pulmonary microvascular leakage and vascular endothelial dysfunction via mechanisms that are not completely defined. Here, we investigated the effect of the Toll-like receptor 3 (TLR3) ligand polyinosinic-polycytidylic acid [Poly(I:C)], a synthetic analog of viral double-stranded RNA (dsRNA) commonly used to simulate viral infections, on the barrier function and tight junction integrity of primary human lung microvascular endothelial cells. Poly(I:C) stimulated IL-6, IL-8, TNFα, and IFNβ production in conjunction with the activation of NF-κB and IRF3 confirming the Poly(I:C)-responsiveness of these cells. Poly(I:C) increased endothelial monolayer permeability with a corresponding dose- and time-dependent decrease in the expression of claudin-5, a transmembrane tight junction protein and reduction of CLDN5 mRNA levels. Immunofluorescence experiments revealed disappearance of membrane-associated claudin-5 and co-localization of cytoplasmic claudin-5 with lysosomal-associated membrane protein 1. Chloroquine and Bay11-7082, inhibitors of TLR3 and NF-κB signaling, respectively, protected against the loss of claudin-5. Together, these findings provide new insight on how dsRNA-activated signaling pathways may disrupt vascular endothelial function and contribute to vascular leakage pathologies. PMID:27504984

  10. A role for myosin IXb, a motor-RhoGAP chimera, in epithelial wound healing and tight junction regulation.

    PubMed

    Chandhoke, Surjit K; Mooseker, Mark S

    2012-07-01

    Polymorphisms in the gene encoding the heavy chain of myosin IXb (Myo9b) have been linked to several forms of inflammatory bowel disease (IBD). Given that Myo9b contains a RhoGTPase-activating protein domain within its tail, it may play key roles in Rho-mediated actin cytoskeletal modifications critical to intestinal barrier function. In wounded monolayers of the intestinal epithelial cell line Caco2(BBe) (BBe), Myo9b localizes to the extreme leading edge of lamellipodia of migrating cells. BBe cells exhibiting loss of Myo9b expression with RNA interference or Myo9b C-terminal dominant-negative (DN) tail-tip expression lack lamellipodia, fail to migrate into the wound, and form stress fiber-like arrays of actin at the free edges of cells facing the wound. These cells also exhibit disruption of tight junction (TJ) protein localization, including ZO-1, occludin, and claudin-1. Torsional motility and junctional permeability to dextran are greatly increased in cells expressing DN-tail-tip. Of interest, this effect is propagated to neighboring cells. Consistent with a role for Myo9b in regulating levels of active Rho, localization of both RhoGTP and myosin light chain phosphorylation corresponds to Myo9b-knockdown regions of BBe monolayers. These data reveal critical roles for Myo9b during epithelial wound healing and maintenance of TJ integrity-key functions that may be altered in patients with Myo9b-linked IBD. PMID:22573889

  11. Behavior of tricellulin during destruction and formation of tight junctions under various extracellular calcium conditions.

    PubMed

    Takasawa, Akira; Kojima, Takashi; Ninomiya, Takafumi; Tsujiwaki, Mitsuhiro; Murata, Masaki; Tanaka, Satoshi; Sawada, Norimasa

    2013-01-01

    Tricellulin is an important component of tricellular tight junctions (TJs) and is involved in the formation of tricellular contacts. However, little is known about its regulation during the assembly and disassembly of tricellular TJs. By using the well-differentiated pancreatic cancer cell line HPAC, which highly expresses tricellulin at tricellular contacts, we have investigated changes in the localization, expression and phosphorylation of tricellulin and in its TJ functions as a barrier and fence during the destruction and formation of TJs induced by changes in the extracellular calcium concentration. During both extracellular Ca(2+) depletion caused by EGTA treatment and Ca(2+) repletion after Ca(2+) starvation, the expression of tricellulin increased in whole lysates and in Triton-X-100-insoluble fractions without any change in its mRNA. The increases in immunoreactivity revealed by Western blotting were prevented by alkaline phosphatase treatment. Immunoprecipitation assays showed that tricellulin was phosphorylated on threonine residues when it increased after Ca(2+) depletion and repletion. In the early stage after Ca(2+) repletion, tricellulin was expressed not only at tricellular contacts but also in the cytoplasm and at bicellular borders. In confocal laser microscopy, tricellulin was observed at the apical-most regions and basolateral membranes of tricellular contacts after Ca(2+) repletion. Knockdown of tricellulin delayed the recovery of the barrier and fence functions after Ca(2+) repletion. Thus, the dynamic behavior of tricellulin during the destruction and formation of TJs under various extracellular calcium conditions seems to be closely associated with the barrier and fence functions of TJs. PMID:23073616

  12. Interleukin-17 Impairs Salivary Tight Junction Integrity in Sjögren's Syndrome.

    PubMed

    Zhang, L W; Cong, X; Zhang, Y; Wei, T; Su, Y C; Serrão, A C A; Brito, A R T; Yu, G Y; Hua, H; Wu, L L

    2016-07-01

    Sjögren's syndrome (SS) is an inflammatory autoimmune disease that causes secretory dysfunction of the salivary glands. It has been reported that proinflammatory cytokine interleukin-17 (IL-17) was elevated and tight junction (TJ) integrity disrupted in minor salivary glands from SS patients. However, whether the elevated IL-17 in SS affects TJ integrity and thereby alters the function of salivary gland is unknown. Here, by using nonobese diabetic (NOD) mice as SS model, we found that the stimulated salivary flow rate was significantly decreased in NOD mice. Lymphocyte infiltration was mainly observed in submandibular glands (SMGs), but not parotid glands (PGs), of NOD mice. IL-17 was significantly increased and mainly located in lymphocytic-infiltrating regions in SMGs but not detectable in PGs of NOD mice. Meanwhile, the epithelial barrier function was disrupted, as evidenced by an increased paracellular tracer clearance and an enlarged acinar TJ width in SMGs of NOD mice. Furthermore, claudin-1 and -3 were elevated especially at the basolateral membranes, whereas claudin-4, occludin, and zonula occludens-1 (ZO-1) were reduced in SMGs of NOD mice. Moreover, occludin and ZO-1 were dispersed into cytoplasm in SMGs of NOD mice. However, no change in the expression and distribution of TJ proteins was found in PGs. In vitro, IL-17 significantly decreased the levels and apical staining of claudin-4 and ZO-1 proteins in the cultured SMG tissues, as well as claudin-1, occludin, and ZO-1 in PG tissues. Moreover, IL-17 activated the phosphorylation of IκBα and p65 in SMG cells, whereas pretreatment with NF-κB inhibitor pyrrolidine dithiocarbamate suppressed the IL-17-induced downregulation of claudin-4 and ZO-1 in SMG tissues. Taken together, these findings indicate that IL-17 derived from infiltrating lymphocyte impairs the integrity of TJ barrier through NF-κB signaling pathway, and thus might contribute to salivary gland dysfunction in SS. PMID:26933138

  13. IL-1β Causes an Increase in Intestinal Epithelial Tight Junction Permeability1

    PubMed Central

    Al-Sadi, Rana M.; Ma, Thomas Y.

    2011-01-01

    IL-1β is a prototypical proinflammatory cytokine that plays a central role in the intestinal inflammation amplification cascade. Recent studies have indicated that a TNF-α- and IFN-γ-induced increase in intestinal epithelial paracellular permeability may be an important mechanism contributing to intestinal inflammation. Despite its central role in promoting intestinal inflammation, the role of IL-1β on intestinal epithelial tight junction (TJ) barrier function remains unclear. The major aims of this study were to determine the effect of IL-1β on intestinal epithelial TJ permeability and to elucidate the mechanisms involved in this process, using a well-established in vitro intestinal epithelial model system consisting of filter-grown Caco-2 intestinal epithelial monolayers. IL-1β (0–100 ng/ml) produced a concentration- and time-dependent decrease in Caco-2 transepithelial resistance. Conversely, IL-1β caused a progressive time-dependent increase in transepithelial permeability to paracellular marker inulin. IL-1β-induced increase in Caco-2 TJ permeability was accompanied by a rapid activation of NF-κB. NF-κB inhibitors, pyrrolidine dithiocarbamate and curcumin, prevented the IL-1β-induced increase in Caco-2 TJ permeability. To further confirm the role of NF-κB in the IL-1β-induced increase in Caco-2 TJ permeability, NF-κB p65 expression was silenced by small interfering RNA transfection. NF-κB p65 depletion completely inhibited the IL-1β-induced increase in Caco-2 TJ permeability. IL-1β did not induce apoptosis in the Caco-2 cell. In conclusion, our findings show for the first time that IL-1β at physiologically relevant concentrations causes an increase in intestinal epithelial TJ permeability. The IL-1β-induced increase in Caco-2 TJ permeability was mediated in part by the activation of NF-κB pathways but not apoptosis. PMID:17372023

  14. Mechanism of Interferon-γ–Induced Increase in T84 Intestinal Epithelial Tight Junction

    PubMed Central

    Boivin, Michel A.; Roy, Praveen K.; Bradley, Angela; Kennedy, John C.; Rihani, Tuhama

    2009-01-01

    Interferon-γ (IFN-γ) is an important proinflammatory cytokine that plays a central role in the intestinal inflammatory process of inflammatory bowel disease. IFN-γ induced disturbance of the intestinal epithelial tight junction (TJ) barrier has been postulated to be an important mechanism contributing to intestinal inflammation. The intracellular mechanisms that mediate the IFN-γ induced increase in intestinal TJ permeability remain unclear. The aim of this study was to examine the role of the phosphatidylinositol 3-kinase (PI3-K) pathway in the regulation of the IFN-γ induced increase in intestinal TJ permeability using the T84 intestinal epithelial cell line. IFN-γ caused an increase in T84 intestinal epithelial TJ permeability and depletion of TJ protein, occludin. The IFN-γ induced increase in TJ permeability and alteration in occludin protein was associated with rapid activation of PI3-K; and inhibition of PI3-K activation prevented the IFN-γ induced effects. IFN-γ also caused a delayed but more prolonged activation of nuclear factor-κB (NF-κB); inhibition of NF-κB also prevented the increase in T84 TJ permeability and alteration in occludin expression. The IFN-γ induced activation of NF-κB was mediated by a cross-talk with PI3-K pathway. In conclusion, the IFN-γ induced increase in T84 TJ permeability and alteration in occludin protein expression were mediated by the PI3-K pathway. These results show for the first time that the IFN-γ modulation of TJ protein and TJ barrier function is regulated by a cross-talk between PI3-K and NF-κB pathways. PMID:19128033

  15. Mechanism of interferon-gamma-induced increase in T84 intestinal epithelial tight junction.

    PubMed

    Boivin, Michel A; Roy, Praveen K; Bradley, Angela; Kennedy, John C; Rihani, Tuhama; Ma, Thomas Y

    2009-01-01

    Interferon-gamma (IFN-gamma) is an important proinflammatory cytokine that plays a central role in the intestinal inflammatory process of inflammatory bowel disease. IFN-gamma induced disturbance of the intestinal epithelial tight junction (TJ) barrier has been postulated to be an important mechanism contributing to intestinal inflammation. The intracellular mechanisms that mediate the IFN-gamma induced increase in intestinal TJ permeability remain unclear. The aim of this study was to examine the role of the phosphatidylinositol 3-kinase (PI3-K) pathway in the regulation of the IFN-gamma induced increase in intestinal TJ permeability using the T84 intestinal epithelial cell line. IFN-gamma caused an increase in T84 intestinal epithelial TJ permeability and depletion of TJ protein, occludin. The IFN-gamma induced increase in TJ permeability and alteration in occludin protein was associated with rapid activation of PI3-K; and inhibition of PI3-K activation prevented the IFN-gamma induced effects. IFN-gamma also caused a delayed but more prolonged activation of nuclear factor-kappaB (NF-kappaB); inhibition of NF-kappaB also prevented the increase in T84 TJ permeability and alteration in occludin expression. The IFN-gamma induced activation of NF-kappaB was mediated by a cross-talk with PI3-K pathway. In conclusion, the IFN-gamma induced increase in T84 TJ permeability and alteration in occludin protein expression were mediated by the PI3-K pathway. These results show for the first time that the IFN-gamma modulation of TJ protein and TJ barrier function is regulated by a cross-talk between PI3-K and NF-kappaB pathways. PMID:19128033

  16. Tight Junction Disruption Induced by Type 3 Secretion System Effectors Injected by Enteropathogenic and Enterohemorrhagic Escherichia coli

    PubMed Central

    Ugalde-Silva, Paul; Gonzalez-Lugo, Octavio; Navarro-Garcia, Fernando

    2016-01-01

    The intestinal epithelium consists of a single cell layer, which is a critical selectively permeable barrier to both absorb nutrients and avoid the entry of potentially harmful entities, including microorganisms. Epithelial cells are held together by the apical junctional complexes, consisting of adherens junctions, and tight junctions (TJs), and by underlying desmosomes. TJs lay in the apical domain of epithelial cells and are mainly composed by transmembrane proteins such as occludin, claudins, JAMs, and tricellulin, that are associated with the cytoplasmic plaque formed by proteins from the MAGUK family, such as ZO-1/2/3, connecting TJ to the actin cytoskeleton, and cingulin and paracingulin connecting TJ to the microtubule network. Extracellular bacteria such as EPEC and EHEC living in the intestinal lumen inject effectors proteins directly from the bacterial cytoplasm to the host cell cytoplasm, where they play a relevant role in the manipulation of the eukaryotic cell functions by modifying or blocking cell signaling pathways. TJ integrity depends on various cell functions such as actin cytoskeleton, microtubule network for vesicular trafficking, membrane integrity, inflammation, and cell survival. EPEC and EHEC effectors target most of these functions. Effectors encoded inside or outside of locus of enterocyte effacement (LEE) disrupt the TJ strands. EPEC and EHEC exploit the TJ dynamics to open this structure, for causing diarrhea. EPEC and EHEC secrete effectors that mimic host proteins to manipulate the signaling pathways, including those related to TJ dynamics. In this review, we focus on the known mechanisms exploited by EPEC and EHEC effectors for causing TJ disruption. PMID:27606286

  17. Tight Junction Disruption Induced by Type 3 Secretion System Effectors Injected by Enteropathogenic and Enterohemorrhagic Escherichia coli.

    PubMed

    Ugalde-Silva, Paul; Gonzalez-Lugo, Octavio; Navarro-Garcia, Fernando

    2016-01-01

    The intestinal epithelium consists of a single cell layer, which is a critical selectively permeable barrier to both absorb nutrients and avoid the entry of potentially harmful entities, including microorganisms. Epithelial cells are held together by the apical junctional complexes, consisting of adherens junctions, and tight junctions (TJs), and by underlying desmosomes. TJs lay in the apical domain of epithelial cells and are mainly composed by transmembrane proteins such as occludin, claudins, JAMs, and tricellulin, that are associated with the cytoplasmic plaque formed by proteins from the MAGUK family, such as ZO-1/2/3, connecting TJ to the actin cytoskeleton, and cingulin and paracingulin connecting TJ to the microtubule network. Extracellular bacteria such as EPEC and EHEC living in the intestinal lumen inject effectors proteins directly from the bacterial cytoplasm to the host cell cytoplasm, where they play a relevant role in the manipulation of the eukaryotic cell functions by modifying or blocking cell signaling pathways. TJ integrity depends on various cell functions such as actin cytoskeleton, microtubule network for vesicular trafficking, membrane integrity, inflammation, and cell survival. EPEC and EHEC effectors target most of these functions. Effectors encoded inside or outside of locus of enterocyte effacement (LEE) disrupt the TJ strands. EPEC and EHEC exploit the TJ dynamics to open this structure, for causing diarrhea. EPEC and EHEC secrete effectors that mimic host proteins to manipulate the signaling pathways, including those related to TJ dynamics. In this review, we focus on the known mechanisms exploited by EPEC and EHEC effectors for causing TJ disruption. PMID:27606286

  18. Tumor Necrosis Factor Disrupts Claudin-5 Endothelial Tight Junction Barriers in Two Distinct NF-κB-Dependent Phases

    PubMed Central

    Clark, Paul R.; Kim, Richard K.; Pober, Jordan S.; Kluger, Martin S.

    2015-01-01

    Capillary leak in severe sepsis involves disruption of endothelial cell tight junctions. We modeled this process by TNF treatment of cultured human dermal microvascular endothelial cell (HDMEC) monolayers, which unlike human umbilical vein endothelial cells form claudin-5-dependent tight junctions and a high-resistance permeability barrier. Continuous monitoring with electrical cell-substrate impedance sensing revealed that TNF disrupts tight junction-dependent HDMEC barriers in discrete steps: an ~5% increase in transendothelial electrical resistance over 40 minutes; a decrease to ~10% below basal levels over 2 hours (phase 1 leak); an interphase plateau of 1 hour; and a major fall in transendothelial electrical resistance to < 70% of basal levels by 8–10 hours (phase 2 leak), with EC50 values of TNF for phase 1 and 2 leak of ~30 and ~150 pg/ml, respectively. TNF leak is reversible and independent of cell death. Leak correlates with disruption of continuous claudin-5 immunofluorescence staining, myosin light chain phosphorylation and loss of claudin-5 co-localization with cortical actin. All these responses require NF-κB signaling, shown by inhibition with Bay 11 or overexpression of IκB super-repressor, and are blocked by H-1152 or Y-27632, selective inhibitors of Rho-associated kinase that do not block other NF-κB-dependent responses. siRNA combined knockdown of Rho-associated kinase-1 and -2 also prevents myosin light chain phosphorylation, loss of claudin-5/actin co-localization, claudin-5 reorganization and reduces phase 1 leak. However, unlike H-1152 and Y-27632, combined Rho-associated kinase-1/2 siRNA knockdown does not reduce the magnitude of phase 2 leak, suggesting that H-1152 and Y-27632 have targets beyond Rho-associated kinases that regulate endothelial barrier function. We conclude that TNF disrupts TJs in HDMECs in two distinct NF-κB-dependent steps, the first involving Rho-associated kinase and the second likely to involve an as yet

  19. Dendrobium chrysotoxum Lindl. Alleviates Diabetic Retinopathy by Preventing Retinal Inflammation and Tight Junction Protein Decrease

    PubMed Central

    Yu, Zengyang; Gong, Chenyuan; Lu, Bin; Yang, Li; Sheng, Yuchen; Ji, Lili; Wang, Zhengtao

    2015-01-01

    Diabetic retinopathy (DR) is a serious complication of diabetes mellitus. This study aimed to observe the alleviation of the ethanol extract of Dendrobium chrysotoxum Lindl. (DC), a traditional Chinese herbal medicine, on DR and its engaged mechanism. After DC (30 or 300 mg/kg) was orally administrated, the breakdown of blood retinal barrier (BRB) in streptozotocin- (STZ-) induced diabetic rats was attenuated by DC. Decreased retinal mRNA expression of tight junction proteins (including occludin and claudin-1) in diabetic rats was also reversed by DC. Western blot analysis and retinal immunofluorescence staining results further confirmed that DC reversed the decreased expression of occludin and claudin-1 proteins in diabetic rats. DC reduced the increased retinal mRNA expressions of intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor α (TNFα), interleukin- (IL-) 6, and IL-1β in diabetic rats. In addition, DC alleviated the increased 1 and phosphorylated p65, IκB, and IκB kinase (IKK) in diabetic rats. DC also reduced the increased serum levels of TNFα, interferon-γ (IFN-γ), IL-6, IL-1β, IL-8, IL-12, IL-2, IL-3, and IL-10 in diabetic rats. Therefore, DC can alleviate DR by inhibiting retinal inflammation and preventing the decrease of tight junction proteins, such as occludin and claudin-1. PMID:25685822

  20. Chronic hypoxia down‐regulates tight junction protein ZO‐2 expression in children with cyanotic congenital heart defect

    PubMed Central

    Jenkins, Emma L.; Caputo, Massimo; Angelini, Gianni D.

    2015-01-01

    Abstract Aims Tight junction protein zonula occludens protein 2 (ZO‐2) is a member of the membrane‐associated guanylate kinases protein family known to be expressed at tight junctions of epithelial and endothelial cells and at adherens junctions (AJs) in cardiomyocytes. Little is known about ZO‐2 expression and function in the human heart. Here, we examined the hypothesis that chronic hypoxia down‐regulates ZO‐2 expression in human myocardium and cultured rat cardiomyocytes. Methods and results Patients with a diagnosis of cyanotic (n = 10) or acyanotic (n = 10) Tetralogy of Fallot undergoing surgical repair were used to examine ZO‐2 messenger RNA and protein expression by real time‐PCR, immunohistochemistry, and western blotting. A model of cultured rat cardiomyocytes was used to measure ZO‐2 and AJ proteins levels in response to hypoxia and to investigate ZO‐2 cellular localization. We showed that ZO‐2 is expressed in myocardial tissue in acyanotic and cyanotic children with congenital heart defects. ZO‐2 was specifically down‐regulated in cyanotic myocardium at both the messenger RNA and protein levels when compared with acyanotic patients. This specific down‐regulation can be mimicked in cultured rat cardiomyocytes by treating them with hypoxic conditions confirming that ZO‐2 gene down‐regulation is specifically due to cyanosis. Furthermore, in addition to its cytoplasmic expression, ZO‐2 showed nuclear expression in cultured rat cardiomyocytes suggesting potential role in transcription regulation. Conclusions Hypoxia down‐regulates ZO‐2 expression in both cyanotic patient's myocardium and cultured rat cardiomyocytes. This down‐regulation suggest an involvement of ZO‐2 in cardiac remodelling of AJs in cyanotic children and may explain the greater susceptibility of cyanotic patients to corrective heart surgery.

  1. Probiotics modify tight-junction proteins in an animal model of nonalcoholic fatty liver disease

    PubMed Central

    Briskey, David; Heritage, Mandy; Jaskowski, Lesley-Anne; Peake, Jonathan; Gobe, Glenda; Subramaniam, V. Nathan; Crawford, Darrell; Campbell, Catherine; Vitetta, Luis

    2016-01-01

    Background: We have investigated the effects of a multispecies probiotic preparation containing a combination of probiotic bacterial genera that included Bifidobacteria, Lactobacilli and a Streptococcus in a mouse model of high-fat diet or obesity-induced liver steatosis. Methods: Three groups of C57B1/6J mice were fed either a standard chow or a high-fat diet for 20 weeks, while a third group was fed a high-fat diet for 10 weeks and then concomitantly administered probiotics for a further 10 weeks. Serum, liver and large bowel samples were collected for analysis. Results: The expression of the tight-junction proteins ZO-1 and ZO-2 was reduced (p < 0.05) in high-fat diet-fed mice compared to chow-fed mice. Probiotic supplementation helped to maintain tight ZO-1 and ZO-2 expression compared with the high-fat diet group (p < 0.05), but did not restore ZO-1 or ZO-2 expression compared with chow-fed mice. Mice fed a high-fat diet ± probiotics had significant steatosis development compared with chow-fed mice (p < 0.05); steatosis was less severe in the probiotics group compared with the high-fat diet group. Hepatic triglyceride concentration was higher in mice fed a high-fat diet ± probiotics compared with the chow group (p < 0.05), and was lower in the probiotics group compared with the high-fat diet group (p < 0.05). Compared with chow-fed mice, serum glucose, cholesterol concentration and the activity of alanine transaminase were higher (p < 0.05), whereas serum triglyceride concentration was lower (p < 0.05) in mice fed a high-fat diet ± probiotics. Conclusions: Supplementation with a multispecies probiotic formulation helped to maintain tight-junction proteins ZO-1 and ZO-2, and reduced hepatic triglyceride concentration compared with a high-fat diet alone. PMID:27366215

  2. Effect of milking interval on milk secretion and mammary tight junction permeability in dairy ewes.

    PubMed

    Castillo, V; Such, X; Caja, G; Casals, R; Albanell, E; Salama, A A K

    2008-07-01

    Twenty-four lactating ewes (Manchega, n = 12; Lacaune, n = 12) in mid lactation were used to assess the short-term effects of different machine milking intervals (4, 8, 12, 16, 20, and 24 h) on milk yield, milk composition, and tight junction (TJ) permeability of mammary epithelia. Milk samples were analyzed for chemical composition, somatic cell count (SCC), and plasmin activity. Plasma lactose, and milk Na and K concentrations were used as indicators of TJ permeability. Milk accumulated linearly for up to 24 h, showing a different rate according to the milk yield of the breed (Manchega, 38 mL/h; Lacaune, 87 mL/h). Milking interval affected milk fat content, which decreased markedly from 4 to 24 h in both breeds, but no differences were observed in milk protein content. The milk contents of casein, true protein, lactose, and total solids also varied according to milking interval. Values of SCC did not vary by breed (175 x 10(3) cells/mL, on average), showing the lowest log(10) values for the 4-and 24-h milking intervals in both breeds. Plasmin activity in milk increased with milking interval until 20 h of udder filling in both breeds, and was poorly but positively correlated with SCC content (r = 0.39). Plasma lactose increased dramatically after 20 h of milk accumulation, indicating enhanced permeability of mammary TJ. As a result, an increase in Na concentration and in the Na:K ratio, and a decrease in K concentration, were observed in the milk of Manchega ewes. On the contrary, no differences in Na and K concentrations in milk were detected in Lacaune ewes. In conclusion, our results proved that Manchega and Lacaune dairy sheep could maintain high rates of milk secretion during extended milking intervals in the short term, with no effects on udder health and few negative effects on milk yield. Increased TJ permeability, caused by the effect of udder filling, induced changes in milk composition that were more marked in Manchega than in Lacaune ewes. PMID

  3. Cingulin, a specific protein component of tight junctions, is expressed in normal and neoplastic human epithelial tissues.

    PubMed Central

    Citi, S.; Amorosi, A.; Franconi, F.; Giotti, A.; Zampi, G.

    1991-01-01

    Cingulin is a 140-kd protein localized on the cytoplasmic face of avian tight junctions. The expression of cingulin in human normal and neoplastic colonic tissue has been investigated with an antiserum against chicken cingulin. Human cingulin shares its apparent molecular mass and localization with avian cingulin. In normal colonic epithelium, villous adenomas, and differentiated adenocarcinomas, cingulin staining is observed in the junctional region of the polarized cells lining the surface, the crypts, and the glandular lumina. In poorly differentiated adenocarcinomas, labeling also is observed at the interface between cancer tissue and stroma, or in clumps of malignant cells, forming a pattern that highlights the presence of small, compressed lumina. The cingulin content of four adenocarcinomas, estimated by immunoblotting and densitometry, was higher than that of the normal tissue (150% to 230%). Cingulin was detected in a metastasis from a colon adenocarcinoma but not in nonepithelial tissues and neoplasias, suggesting that cingulin may be a useful marker in the characterization of colonic and probably other epithelial neoplasias. Images Figure 1 Figure 2 Figure 3 PMID:2012170

  4. ClC-2 is required for rapid restoration of epithelial tight junctions in ischemic-injured murine jejunum

    SciTech Connect

    Nighot, Prashant K.; Moeser, Adam J.; Ryan, Kathleen A.; Ghashghaei, Troy; Blikslager, Anthony T.

    2009-01-01

    Background and aims: Involvement of the epithelial chloride channel ClC-2 has been implicated in barrier recovery following ischemic injury, possibly via a mechanism involving ClC-2 localization to the tight junction. The present study investigated mechanisms of intestinal barrier repair following ischemic injury in ClC-2{sup -/-} mice. Methods: Wild type, ClC-2 heterozygous and ClC-2{sup -/-} murine jejunal mucosa was subjected to complete ischemia, after which recovery of barrier function was monitored by measuring in vivo blood-to-lumen clearance of {sup 3}H-mannitol. Tissues were examined by light and electron microscopy. The role of ClC-2 in re-assembly of the tight junction during barrier recovery was studied by immunoblotting, immunolocalization and immunoprecipitation. Results: Following ischemic injury, ClC-2{sup -/-} mice had impaired barrier recovery compared to wild type mice, defined by increases in epithelial paracellular permeability independent of epithelial restitution. The recovering ClC-2{sup -/-} mucosa also had evidence of ultrastructural paracellular defects. The tight junction proteins occludin and claudin-1 shifted significantly to the detergent soluble membrane fraction during post-ischemic recovery in ClC-2{sup -/-} mice whereas wild type mice had a greater proportion of junctional proteins in the detergent insoluble fraction. Occludin was co-immunoprecipitated with ClC-2 in uninjured wild type mucosa, and the association between occludin and ClC-2 was re-established during ischemic recovery. Based on immunofluorescence studies, re-localization of occludin from diffuse sub-apical areas to apical tight junctions was impaired in ClC-2{sup -/-} mice. Conclusions: These data demonstrate a pivotal role of ClC-2 in recovery of the intestinal epithelium barrier by anchoring assembly of tight junctions following ischemic injury.

  5. Mutations in the Tight-Junction Gene Claudin 19 (CLDN19) Are Associated with Renal Magnesium Wasting, Renal Failure, and Severe Ocular Involvement

    PubMed Central

    Konrad, Martin; Schaller, André; Seelow, Dominik; Pandey, Amit V.; Waldegger, Siegfried; Lesslauer, Annegret; Vitzthum, Helga; Suzuki, Yoshiro; Luk, John M.; Becker, Christian; Schlingmann, Karl P.; Schmid, Marcel; Rodriguez-Soriano, Juan; Ariceta, Gema; Cano, Francisco; Enriquez, Ricardo; Jüppner, Harald; Bakkaloglu, Sevcan A.; Hediger, Matthias A.; Gallati, Sabina; Neuhauss, Stephan C. F.; Nürnberg, Peter; Weber, Stefanie

    2006-01-01

    Claudins are major components of tight junctions and contribute to the epithelial-barrier function by restricting free diffusion of solutes through the paracellular pathway. We have mapped a new locus for recessive renal magnesium loss on chromosome 1p34.2 and have identified mutations in CLDN19, a member of the claudin multigene family, in patients affected by hypomagnesemia, renal failure, and severe ocular abnormalities. CLDN19 encodes the tight-junction protein claudin-19, and we demonstrate high expression of CLDN19 in renal tubules and the retina. The identified mutations interfere severely with either cell-membrane trafficking or the assembly of the claudin-19 protein. The identification of CLDN19 mutations in patients with chronic renal failure and severe visual impairment supports the fundamental role of claudin-19 for normal renal tubular function and undisturbed organization and development of the retina. PMID:17033971

  6. Tight junction gene expression in gastrointestinal tract of dairy calves with coccidiosis and treated with glucagon-like peptide-2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selective permeability of the intestinal epithelium and efficient nutrient absorption are important functions for proper growth and development of calves. Damage to the intestinal mucosa can give rise to harmful long-term health effects and reduce productivity of the mature animal. Tight junction pr...

  7. Silver nanoparticles induce tight junction disruption and astrocyte neurotoxicity in a rat blood–brain barrier primary triple coculture model

    PubMed Central

    Xu, Liming; Dan, Mo; Shao, Anliang; Cheng, Xiang; Zhang, Cuiping; Yokel, Robert A; Takemura, Taro; Hanagata, Nobutaka; Niwa, Masami; Watanabe, Daisuke

    2015-01-01

    Background Silver nanoparticles (Ag-NPs) can enter the brain and induce neurotoxicity. However, the toxicity of Ag-NPs on the blood–brain barrier (BBB) and the underlying mechanism(s) of action on the BBB and the brain are not well understood. Method To investigate Ag-NP suspension (Ag-NPS)-induced toxicity, a triple coculture BBB model of rat brain microvascular endothelial cells, pericytes, and astrocytes was established. The BBB permeability and tight junction protein expression in response to Ag-NPS, NP-released Ag ions, and polystyrene-NP exposure were investigated. Ultrastructural changes of the microvascular endothelial cells, pericytes, and astrocytes were observed using transmission electron microscopy (TEM). Global gene expression of astrocytes was measured using a DNA microarray. Results A triple coculture BBB model of primary rat brain microvascular endothelial cells, pericytes, and astrocytes was established, with the transendothelial electrical resistance values >200 Ω·cm2. After Ag-NPS exposure for 24 hours, the BBB permeability was significantly increased and expression of the tight junction (TJ) protein ZO-1 was decreased. Discontinuous TJs were also observed between microvascular endothelial cells. After Ag-NPS exposure, severe mitochondrial shrinkage, vacuolations, endoplasmic reticulum expansion, and Ag-NPs were observed in astrocytes by TEM. Global gene expression analysis showed that three genes were upregulated and 20 genes were downregulated in astrocytes treated with Ag-NPS. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the 23 genes were associated with metabolic processes, biosynthetic processes, response to stimuli, cell death, the MAPK pathway, and so on. No GO term and KEGG pathways were changed in the released-ion or polystyrene-NP groups. Ag-NPS inhibited the antioxidant defense of the astrocytes by increasing thioredoxin interacting protein, which inhibits the Trx system, and

  8. Differences in expression of junctional adhesion molecule-A and beta-catenin in multiple sclerosis brain tissue: increasing evidence for the role of tight junction pathology.

    PubMed

    Padden, Maureen; Leech, Susie; Craig, Beverly; Kirk, John; Brankin, Brenda; McQuaid, Stephen

    2007-02-01

    Previously we have employed antibodies to the tight junction (TJ)-associated proteins ZO-1 and occludin to describe endothelial tight junction abnormalities, in lesional and normal appearing white matter, in primary and secondary progressive multiple sclerosis (MS). This work is extended here by use of antibodies to the independent TJ-specific proteins and junctional adhesion molecule A & B (JAM-A, JAM-B). We have also assessed the expression in MS of beta-catenin, a protein specific to the TJ-associated adherens junction. Immunocytochemistry and semiquantitative confocal microscopy for JAM-A and beta-catenin was performed on snap-frozen sections from MS cases (n=11) and controls (n=6). Data on 1,443 blood vessels was acquired from active lesions (n=13), inactive lesions (n=13), NAWM (n=20) and control white matter (n=13). In MS abnormal JAM-A expression was found in active (46%) and inactive lesions (21%), comparable to previous data using ZO-1. However, a lower level of TJ abnormality was found in MS NAWM using JAM-A (3%) compared to ZO-1 (13%). JAM-B was strongly expressed on a small number of large blood vessels in control and MS tissues but at too low a level for quantitative analysis. By comparison with the high levels of abnormality observed with the TJ proteins, the adherens junction protein beta-catenin was normally expressed in all MS and control tissue categories. These results confirm, by use of the independent marker JAM-A, that TJ abnormalities are most frequent in active white matter lesions. Altered expression of JAM-A, in addition to affecting junctional tightness may also both reflect and affect leukocyte trafficking, with implications for immune status within the diseased CNS. Conversely, the adherens junction component of the TJ, as indicated by beta-catenin expression is normally expressed in all MS and control tissue categories. PMID:17024496

  9. Paradigms lost-an emerging role for over-expression of tight junction adhesion proteins in cancer pathogenesis.

    PubMed

    Leech, Astrid O; Cruz, Rodrigo G B; Hill, Arnold D K; Hopkins, Ann M

    2015-08-01

    Tight junctions (TJ) are multi-protein complexes located at the apicalmost tip of the lateral membrane in polarised epithelial and endothelial cells. Their principal function is in mediating intercellular adhesion and polarity. Accordingly, it has long been a paradigm that loss of TJ proteins and consequent deficits in cell-cell adhesion are required for tumour cell dissemination in the early stages of the invasive/metastatic cascade. However it is becoming increasingly apparent that TJ proteins play important roles in not just adhesion but also intracellular signalling events, activation of which can contribute to, or even drive, tumour progression and metastasis. In this review, we shall therefore highlight cases wherein the gain of TJ proteins has been associated with signals promoting tumour progression. We will also discuss the potential of overexpressed TJ proteins to act as therapeutic targets in cancer treatment. The overall purpose of this review is not to disprove the fact that loss of TJ-based adhesion contributes to the progression of several cancers, but rather to introduce the growing body of evidence that gain of TJ proteins may have adhesion-independent consequences for promoting progression in other cancers. PMID:26366401

  10. Atelectrauma disrupts pulmonary epithelial barrier integrity and alters the distribution of tight junction proteins ZO-1 and claudin 4.

    PubMed

    Jacob, Anne-Marie; Gaver, Donald P

    2012-11-01

    Mechanical ventilation inevitably exposes the delicate tissues of the airways and alveoli to abnormal mechanical stresses that can induce pulmonary edema and exacerbate conditions such as acute respiratory distress syndrome. The goal of our research is to characterize the cellular trauma caused by the transient abnormal fluid mechanical stresses that arise when air is forced into a liquid-occluded airway (i.e., atelectrauma). Using a fluid-filled, parallel-plate flow chamber to model the "airway reopening" process, our in vitro study examined consequent increases in pulmonary epithelial plasma membrane rupture, paracellular permeability, and disruption of the tight junction (TJ) proteins zonula occludens-1 and claudin-4. Computational analysis predicts the normal and tangential surface stresses that develop between the basolateral epithelial membrane and underlying substrate due to the interfacial stresses acting on the apical cell membrane. These simulations demonstrate that decreasing the velocity of reopening causes a significant increase in basolateral surface stresses, particularly in the region between neighboring cells where TJs concentrate. Likewise, pulmonary epithelial wounding, paracellular permeability, and TJ protein disruption were significantly greater following slower reopening. This study thus demonstrates that maintaining a higher velocity of reopening, which reduces the damaging fluid stresses acting on the airway wall, decreases the mechanical stresses on the basolateral cell surface while protecting cells from plasma membrane rupture and promoting barrier integrity. PMID:22898551

  11. Atelectrauma disrupts pulmonary epithelial barrier integrity and alters the distribution of tight junction proteins ZO-1 and claudin 4

    PubMed Central

    Jacob, Anne-Marie

    2012-01-01

    Mechanical ventilation inevitably exposes the delicate tissues of the airways and alveoli to abnormal mechanical stresses that can induce pulmonary edema and exacerbate conditions such as acute respiratory distress syndrome. The goal of our research is to characterize the cellular trauma caused by the transient abnormal fluid mechanical stresses that arise when air is forced into a liquid-occluded airway (i.e., atelectrauma). Using a fluid-filled, parallel-plate flow chamber to model the “airway reopening” process, our in vitro study examined consequent increases in pulmonary epithelial plasma membrane rupture, paracellular permeability, and disruption of the tight junction (TJ) proteins zonula occludens-1 and claudin-4. Computational analysis predicts the normal and tangential surface stresses that develop between the basolateral epithelial membrane and underlying substrate due to the interfacial stresses acting on the apical cell membrane. These simulations demonstrate that decreasing the velocity of reopening causes a significant increase in basolateral surface stresses, particularly in the region between neighboring cells where TJs concentrate. Likewise, pulmonary epithelial wounding, paracellular permeability, and TJ protein disruption were significantly greater following slower reopening. This study thus demonstrates that maintaining a higher velocity of reopening, which reduces the damaging fluid stresses acting on the airway wall, decreases the mechanical stresses on the basolateral cell surface while protecting cells from plasma membrane rupture and promoting barrier integrity. PMID:22898551

  12. Curcumin prevents cisplatin-induced decrease in the tight and adherens junctions: relation to oxidative stress.

    PubMed

    Trujillo, Joyce; Molina-Jijón, Eduardo; Medina-Campos, Omar Noel; Rodríguez-Muñoz, Rafael; Reyes, José Luis; Loredo, María L; Barrera-Oviedo, Diana; Pinzón, Enrique; Rodríguez-Rangel, Daniela Saraí; Pedraza-Chaverri, José

    2016-01-01

    Curcumin is a polyphenol and cisplatin is an antineoplastic agent that induces nephrotoxicity associated with oxidative stress, apoptosis, fibrosis and decrease in renal tight junction (TJ) proteins. The potential effect of curcumin against alterations in TJ structure and function has not been evaluated in cisplatin-induced nephrotoxicity. The present study explored whether curcumin is able to prevent the cisplatin-induced fibrosis and decreased expression of the TJ and adherens junction (AJ) proteins occludin, claudin-2 and E-cadherin in cisplatin-induced nephrotoxicity. Curcumin (200 mg kg(-1)) was administered in three doses, and rats were sacrificed 72 h after cisplatin administration. Curcumin was able to scavenge, in a concentration-dependent way, superoxide anion, hydroxyl radical, peroxyl radical, singlet oxygen, peroxynitrite anion, hypochlorous acid and hydrogen peroxide. Cisplatin-induced renal damage was associated with alterations in plasma creatinine, expression of neutrophil gelatinase-associated lipocalin and of kidney injury molecule-1, histological damage, increase in apoptosis, fibrosis (evaluated by transforming growth factor β1, collagen I and IV and α-smooth muscle actin expressions), increase in oxidative/nitrosative stress (evaluated by Hsp70/72 expression, protein tyrosine nitration, superoxide anion production in isolated glomeruli and proximal tubules, and protein levels of NADPH oxidase subunits p47(phox) and gp91(phox), protein kinase C β2, and Nrf2) as well as by decreased expression of occludin, claudin-2, β-catenin and E-cadherin. Curcumin treatment prevented all the above-described alterations. The protective effect of curcumin against cisplatin-induced fibrosis and decreased proteins of the TJ and AJ was associated with the prevention of glomerular and proximal tubular superoxide anion production induced by NADPH oxidase activity. PMID:26467482

  13. Treponema pallidum Invades Intercellular Junctions of Endothelial Cell Monolayers

    NASA Astrophysics Data System (ADS)

    Thomas, D. Denee; Navab, Mahamad; Haake, David A.; Fogelman, Alan M.; Miller, James N.; Lovett, Michael A.

    1988-05-01

    The pathogenesis of syphilis reflects invasive properties of Treponema pallidum, but the actual mode of tissue invasion is unknown. We have found two in vitro parallels of treponemal invasiveness. We tested whether motile T. pallidum could invade host cells by determining the fate of radiolabeled motile organisms added to a HeLa cell monolayer; 26% of treponemes associated with the monolayer in a trypsin-resistant niche, presumably between the monolayer and the surface to which it adhered, but did not attain intracellularity. Attachment of T. pallidum to cultured human and rabbit aortic and human umbilical vein endothelial cells was 2-fold greater than to HeLa cells. We added T. pallidum to aortic endothelial cells grown on membrane filters under conditions in which tight intercellular junctions had formed. T. pallidum was able to pass through the endothelial cell monolayers without altering tight junctions, as measured by electrical resistance. In contrast, heat-killed T. pallidum and the nonpathogen Treponema phagedenis biotype Reiter failed to penetrate the monolayer. Transmission electron micrographs of sections of the monolayer showed T. pallidum in intercellular junctions. Our in vitro observations suggest that these highly motile spirochetes may leave the circulation by invading the junctions between endothelial cells.

  14. Improved Solar-Cell Tunnel Junction

    NASA Technical Reports Server (NTRS)

    Daud, T.; Kachare, A.

    1986-01-01

    Efficiency of multiple-junction silicon solar cells increased by inclusion of p+/n+ tunnel junctions of highly doped GaP between component cells. Relatively low recombination velocity at GaP junction principal reason for recommending this material. Relatively wide band gap also helps increase efficiency by reducing optical losses.

  15. Adaptive evolution of tight junction protein claudin-14 in echolocating whales.

    PubMed

    Xu, Huihui; Liu, Yang; He, Guimei; Rossiter, Stephen J; Zhang, Shuyi

    2013-11-10

    Toothed whales and bats have independently evolved specialized ultrasonic hearing for echolocation. Recent findings have suggested that several genes including Prestin, Tmc1, Pjvk and KCNQ4 appear to have undergone molecular adaptations associated with the evolution of this ultrasonic hearing in mammals. Here we studied the hearing gene Cldn14, which encodes the claudin-14 protein and is a member of tight junction proteins that functions in the organ of Corti in the inner ear to maintain a cationic gradient between endolymph and perilymph. Particular mutations in human claudin-14 give rise to non-syndromic deafness, suggesting an essential role in hearing. Our results uncovered two bursts of positive selection, one in the ancestral branch of all toothed whales and a second in the branch leading to the delphinid, phocoenid and ziphiid whales. These two branches are the same as those previously reported to show positive selection in the Prestin gene. Furthermore, as with Prestin, the estimated hearing frequencies of whales significantly correlate with numbers of branch-wise non-synonymous substitutions in Cldn14, but not with synonymous changes. However, in contrast to Prestin, we found no evidence of positive selection in bats. Our findings from Cldn14, and comparisons with Prestin, strongly implicate multiple loci in the acquisition of echolocation in cetaceans, but also highlight possible differences in the evolutionary route to echolocation taken by whales and bats. PMID:23965379

  16. Characterization of tight junctions and their disruption by UVB in human epidermis and cultured keratinocytes.

    PubMed

    Yuki, Takuo; Hachiya, Akira; Kusaka, Ayumi; Sriwiriyanont, Penkanok; Visscher, Marty O; Morita, Kazumasa; Muto, Masahiko; Miyachi, Yoshiki; Sugiyama, Yoshinori; Inoue, Shintaro

    2011-03-01

    It has not been confirmed whether tight junctions (TJs) function as a paracellular permeability barrier in adult human skin. To clarify this issue, we performed a TJ permeability assay using human skin obtained from abdominal plastic surgery. Occludin, a marker protein of TJs, was expressed in the granular layer, in which a subcutaneously injected paracellular tracer, Sulfo-NHS-LC-Biotin (556.59 Da), was halted. Incubation with ochratoxin A decreased the expression of claudin-4, an integral membrane protein of TJs, and the diffusion of paracellular tracer was no longer prevented at the TJs. These results demonstrate that human epidermis possesses TJs that function as an intercellular permeability barrier at least against small molecules (∼550 Da). UVB irradiation of human skin xenografts and human skin equivalents (HSEs) resulted in functional deterioration of TJs. Immunocytochemical staining of cultured keratinocytes showed that occludin was localized into dot-like shapes and formed a discontinuous network when exposed to UVB irradiation. Furthermore, UVB irradiation downregulated the active forms of Rac1 and atypical protein kinase C, suggesting that their inactivation caused functional deterioration of TJs. In conclusion, TJs function as a paracellular barrier against small molecules (∼550 Da) in human epidermis and are functionally deteriorated by UVB irradiation. PMID:21160495

  17. Claudin-16 Deficiency Impairs Tight Junction Function in Ameloblasts, Leading to Abnormal Enamel Formation.

    PubMed

    Bardet, Claire; Courson, Frédéric; Wu, Yong; Khaddam, Mayssam; Salmon, Benjamin; Ribes, Sandy; Thumfart, Julia; Yamaguti, Paulo M; Rochefort, Gael Y; Figueres, Marie-Lucile; Breiderhoff, Tilman; Garcia-Castaño, Alejandro; Vallée, Benoit; Le Denmat, Dominique; Baroukh, Brigitte; Guilbert, Thomas; Schmitt, Alain; Massé, Jean-Marc; Bazin, Dominique; Lorenz, Georg; Morawietz, Maria; Hou, Jianghui; Carvalho-Lobato, Patricia; Manzanares, Maria Cristina; Fricain, Jean-Christophe; Talmud, Deborah; Demontis, Renato; Neves, Francisco; Zenaty, Delphine; Berdal, Ariane; Kiesow, Andreas; Petzold, Matthias; Menashi, Suzanne; Linglart, Agnes; Acevedo, Ana Carolina; Vargas-Poussou, Rosa; Müller, Dominik; Houillier, Pascal; Chaussain, Catherine

    2016-03-01

    Claudin-16 protein (CLDN16) is a component of tight junctions (TJ) with a restrictive distribution so far demonstrated mainly in the kidney. Here, we demonstrate the expression of CLDN16 also in the tooth germ and show that claudin-16 gene (CLDN16) mutations result in amelogenesis imperfecta (AI) in the 5 studied patients with familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC). To investigate the role of CLDN16 in tooth formation, we studied a murine model of FHHNC and showed that CLDN16 deficiency led to altered secretory ameloblast TJ structure, lowering of extracellular pH in the forming enamel matrix, and abnormal enamel matrix protein processing, resulting in an enamel phenotype closely resembling human AI. This study unravels an association of FHHNC owing to CLDN16 mutations with AI, which is directly related to the loss of function of CLDN16 during amelogenesis. Overall, this study indicates for the first time the importance of a TJ protein in tooth formation and underlines the need to establish a specific dental follow-up for these patients. PMID:26426912

  18. Increased oxidative stress and disrupted small intestinal tight junctions in cigarette smoke-exposed rats.

    PubMed

    Li, Hongwei; Wu, Qi; Xu, Long; Li, Xue; Duan, Jianmin; Zhan, Jingyan; Feng, Jing; Sun, Xin; Chen, Huaiyong

    2015-06-01

    Chronic obstructive pulmonary disease (COPD) is a major public health problem, and cigarette smoke (CS) is the primary risk factor. The pathology is often observed in the lung, but COPD is also associated with intestinal barrier disruption, although the underlying mechanisms are poorly understood. To address this, a CS‑exposed rat model was evaluated in the present study by analyzing small intestinal gene expression using reverse transcription‑quantitative polymerase chain reaction. CS exposure caused upregulation of the nicotinamide adenine dinucleotide phosphate‑oxidase subunits nox2 and p22phox in the small intestine, while the antioxidative enzyme superoxide dismutase was downregulated. CS exposure also increased bax expression and decreased bcl‑2 expression. This was associated with an elevation of hypoxia‑inducible factor (HIF)‑1α. Claudin‑1 was decreased and claudin‑2 increased, indicating a loosening of small intestinal tight junctions (TJs). These data suggest that during the development of COPD, HIF‑1α expression is altered in the small intestine, which may be associated with the increased oxidative stress and apoptosis, eventually resulting in disruption of the intestinal TJs. PMID:25606848

  19. A model of tight junction function in central nervous system myelinated axons.

    PubMed

    Gow, Alexander; Devaux, Jerome

    2008-11-01

    The insulative properties of myelin sheaths in the central and peripheral nervous systems (CNS and PNS) are widely thought to derive from the high resistance and low capacitance of the constituent membranes. Although this view adequately accounts for myelin function in large diameter fibers, it poorly reflects the behavior of small fibers that are prominent in many regions of the CNS. Herein, we develop a computational model to more accurately represent conduction in small fibers. By incorporating structural features that, hitherto, have not been simulated, we demonstrate that myelin tight junctions (TJs) improve saltatory conduction by reducing current flow through the myelin, limiting axonal membrane depolarization and restraining the activation of ion channels beneath the myelin sheath. Accordingly, our simulations provide a novel view of myelin by which TJs minimize charging of the membrane capacitance and lower the membrane time constant to improve the speed and accuracy of transmission in small diameter fibers. This study establishes possible mechanisms whereby TJs affect conduction in the absence of overt perturbations to myelin architecture and may in part explain the tremor and gait abnormalities observed in Claudin 11-null mice. PMID:20102674

  20. A Novel Perspective and Approach to Intestinal Octreotide Absorption: Sinomenine-Mediated Reversible Tight Junction Opening and Its Molecular Mechanism

    PubMed Central

    Li, Yuling; Duan, Zhijun; Tian, Yan; Liu, Zhen; Wang, Qiuming

    2013-01-01

    In this work, we assessed the effects of sinomenine (SN) on intestinal octreotide (OCT) absorption both in Caco-2 cell monolayers and in rats. We also investigated the molecular mechanisms of tight junction (TJ) disruption and recovery by SN-mediated changes in the claudin-1 and protein kinase C (PKC) signaling pathway. The data showed that exposure to SN resulted in a significant decrease in the expression of claudin-1, which represented TJ weakening and paracellular permeability enhancement. Then, the recovery of TJ after SN removal required an increase in claudin-1, which demonstrated the transient and reversible opening for TJ. Meanwhile, the SN-mediated translocation of PKC-α from the cytosol to the membrane was found to prove PKC activation. Finally, SN significantly improved the absolute OCT bioavailability in rats and the transport rate in Caco-2 cell monolayers. We conclude that SN has the ability to enhance intestinal OCT absorption and that these mechanisms are related at least in part to the important role of claudin-1 in SN-mediated, reversible TJ opening via PKC activation. PMID:23787475

  1. Protein Kinase Cβ Phosphorylates Occludin Regulating Tight Junction Trafficking in Vascular Endothelial Growth Factor–Induced Permeability In Vivo

    PubMed Central

    Murakami, Tomoaki; Frey, Tiffany; Lin, Chengmao; Antonetti, David A.

    2012-01-01

    Vascular endothelial growth factor (VEGF)–induced breakdown of the blood-retinal barrier requires protein kinase C (PKC)β activation. However, the molecular mechanisms related to this process remain poorly understood. In this study, the role of occludin phosphorylation and ubiquitination downstream of PKCβ activation in tight junction (TJ) trafficking and endothelial permeability was investigated. Treatment of bovine retinal endothelial cells and intravitreal injection of PKCβ inhibitors as well as expression of dominant-negative kinase was used to determine the contribution of PKCβ to endothelial permeability and occludin phosphorylation at Ser490 detected with a site-specific antibody. In vitro kinase assay was used to demonstrate direct occludin phosphorylation by PKCβ. Ubiquitination was measured by immunoblotting after occludin immunoprecipitation. Confocal microscopy revealed organization of TJ proteins. The results reveal that inhibition of VEGF-induced PKCβ activation blocks occludin Ser490 phosphorylation, ubiquitination, and TJ trafficking in retinal vascular endothelial cells both in vitro and in vivo and prevents VEGF-stimulated vascular permeability. Occludin Ser490 is a direct target of PKCβ, and mutating Ser490 to Ala (S490A) blocks permeability downstream of PKCβ. Therefore, PKCβ activation phosphorylates occludin on Ser490, leading to ubiquitination required for VEGF-induced permeability. These data demonstrate a novel mechanism for PKCβ targeted inhibitors in regulating vascular permeability. PMID:22438576

  2. Rab3Gap1 mediates exocytosis of Claudin-1 and tight junction formation during epidermal barrier acquisition

    PubMed Central

    Youssef, G.; Gerner, L.; Naeem, A.S.; Ralph, O.; Ono, M.; O’Neill, C.A.; O’Shaughnessy, R.F.L.

    2013-01-01

    Epidermal barrier acquisition during late murine gestation is accompanied by an increase in Akt kinase activity and cJun dephosphorlyation. The latter is directed by the Ppp2r2a regulatory subunit of the Pp2a phosphatase. This was accompanied by a change of Claudin-1 localisation to the cell surface and interaction between Occludin and Claudin-1 which are thought to be required for tight junction formation. The aim of this study was to determine the nature of the barrier defect caused by the loss of AKT/Ppp2r2a function. There was a paracellular barrier defect in rat epidermal keratinocytes expressing a Ppp2r2a siRNA. In Ppp2r2a knockdown cells, Claudin-1 was located to the cytoplasm and its expression was increased. Inhibiting cJun phosphorylation restored barrier function and plasma membrane localisation of Claudin-1. Expression of the Rab3 GTPase activating protein, Rab3Gap1, was restored in Ppp2r2a siRNA cells when cJun phosphorylation was inhibited. During normal mouse epidermal development, Claudin-1 plasma membrane localisation and Rab3Gap1 cell surface expression were co-incident with Akt activation in mouse epidermis, strongly suggesting a role of Rab3Gap1 in epidermal barrier acquisition. Supporting this hypothesis, siRNA knockdown of Rab3Gap1 prevented plasma membrane Claudin-1 expression and the formation of a barrier competent epithelium. Replacing Rab3Gap1 in Ppp2r2a knockdown cells was sufficient to rescue Claudin-1 transport to the cell surface. Therefore these data suggest Rab3Gap1 mediated exocytosis of Claudin-1 is an important component of epidermal barrier acquisition during epidermal development. PMID:23685254

  3. Endotoxemia alters tight junction gene and protein expression in the kidney.

    PubMed

    Eadon, Michael T; Hack, Bradley K; Xu, Chang; Ko, Benjamin; Toback, F Gary; Cunningham, Patrick N

    2012-09-15

    Intact tight junctional (TJ) proteins are required for tubular ion transport and waste excretion. Disruption of TJs may contribute to a decreased glomerular filtration rate in acute kidney injury (AKI) via tubular backleak. The effect of LPS-mediated AKI on murine TJs has not been studied extensively. We hypothesized LPS endotoxin administration to mice would disrupt tubular TJ proteins including zonula occludens-1 (ZO-1), occludin, and claudins. ZO-1 and occludin immunofluorescence 24 h post-LPS revealed a marked change in localization from the usual circumferential fencework pattern to one with substantial fragmentation. Renal ZO-1 expression was significantly reduced 24 h after LPS (decrease of 56.1 ± 7.4%, P < 0.001), with subsequent recovery. ZO-1 mRNA expression was increased 24 h post-LPS (4.34 ± 0.87-fold, P = 0.0019), suggesting disruption of ZO-1 protein is not mediated by transcriptional regulation, but rather by degradation or changes in translation. Similarly, claudin-4 protein expression was decreased despite elevated mRNA. LPS administration resulted in dephosphorylation of occludin and fragmented tubular redistribution. Protein expression of claudin-1, and -3 was increased after LPS. ZO-1, occludin, and claudin-1, -3, and -4 gene expression were increased 48 h after LPS, suggesting a renal response to strengthen TJs following injury. Interestingly, reduced mRNA expression was found only for claudin-8. This study provides further support that LPS-induced AKI is associated with structural injury and is not merely due to hemodynamic changes. PMID:22791339

  4. Mechanism of IL-1β-Induced Increase in Intestinal Epithelial Tight Junction Permeability

    PubMed Central

    Al-Sadi, Rana; Ye, Dongmei; Dokladny, Karol; Ma, Thomas Y.

    2011-01-01

    The IL-1β-induced increase in intestinal epithelial tight junction (TJ) permeability has been postulated to be an important mechanism contributing to intestinal inflammation of Crohn's disease and other inflammatory conditions of the gut. The intra-cellular and molecular mechanisms that mediate the IL-1β-induced increase in intestinal TJ permeability remain unclear. The purpose of this study was to elucidate the mechanisms that mediate the IL-1β-induced increase in intestinal TJ permeability. Specifically, the role of myosin L chain kinase (MLCK) was investigated. IL-1β caused a progressive increase in MLCK protein expression. The time course of IL-1β-induced increase in MLCK level correlated linearly with increase in Caco-2 TJ permeability. Inhibition of the IL-1β-induced increase in MLCK protein expression prevented the increase in Caco-2 TJ permeability. Inhibition of the IL-1β-induced increase in MLCK activity also prevented the increase in Caco-2 TJ permeability. Additionally, knock-down of MLCK protein expression by small interference RNA prevented the IL-1β-induced increase in Caco-2 TJ permeability. The IL-1β-induced increase in MLCK protein expression was preceded by an increase in MLCK mRNA expression. The IL-1β-induced increase in MLCK mRNA transcription and subsequent increase in MLCK protein expression and Caco-2 TJ permeability was mediated by activation of NF-κB. In conclusion, our data indicate that the IL-1β increase in Caco-2 TJ permeability was mediated by an increase in MLCK expression and activity. Our findings also indicate that the IL-1β-induced increase in MLCK protein expression and Caco-2 TJ permeability was mediated by an NF-κB-dependent increase in MLCK gene transcription. PMID:18390750

  5. The degradation of airway tight junction protein under acidic conditions is probably mediated by transient receptor potential vanilloid 1 receptor

    PubMed Central

    Xu, Rui; Li, Qi; Zhou, Jia; Zhou, Xiang-dong; Perelman, Juliy M.; Kolosov, Victor P.

    2013-01-01

    Acidic airway microenvironment is one of the representative pathophysiological features of chronic inflammatory respiratory diseases. Epithelial barrier function is maintained by TJs (tight junctions), which act as the first physical barrier against the inhaled substances and pathogens of airway. As previous studies described, acid stress caused impaired epithelial barriers and led the hyperpermeability of epithelium. However, the specific mechanism is still unclear. We have showed previously the existence of TRPV (transient receptor potential vanilloid) 1 channel in airway epithelium, as well as its activation by acidic stress in 16HBE cells. In this study, we explored the acidic stress on airway barrier function and TJ proteins in vitro with 16HBE cell lines. Airway epithelial barrier function was determined by measuring by TER (trans-epithelial electrical resistance). TJ-related protein [claudin-1, claudin-3, claudin-4, claudin-5, claudin-7 and ZO-1 (zonula occluden 1)] expression was examined by western blotting of insoluble fractions of cell extraction. The localization of TJ proteins were visualized by immunofluorescent staining. Interestingly, stimulation by pH 6.0 for 8 h slightly increased the epithelial resistance in 16HBE cells insignificantly. However, higher concentration of hydrochloric acid (lower than pH 5.0) did reduce the airway epithelial TER of 16HBE cells. The decline of epithelial barrier function induced by acidic stress exhibited a TRPV1-[Ca2+]i-dependent pathway. Of the TJ proteins, claudin-3 and claudin-4 seemed to be sensitive to acidic stress. The degradation of claudin-3 and claudin-4 induced by acidic stress could be attenuated by the specific TRPV1 blocker or intracellular Ca2+ chelator BAPTA/AM [1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester)]. PMID:24073800

  6. Caspase-3 Contributes to ZO-1 and Cl-5 Tight-Junction Disruption in Rapid Anoxic Neurovascular Unit Damage

    PubMed Central

    de Curtis, Marco; Kuhlmann, Christoph R. W.; Luhmann, Heiko J.

    2011-01-01

    Background Tight-junction (TJ) protein degradation is a decisive step in hypoxic blood-brain barrier (BBB) breakdown in stroke. In this study we elucidated the impact of acute cerebral ischemia on TJ protein arrangement and the role of the apoptotic effector protease caspase-3 in this context. Methodology/Principal Findings We used an in vitro model of the neurovascular unit and the guinea pig whole brain preparation to analyze with immunohistochemical methods the BBB properties and neurovascular integrity. In both methodological approaches we observed rapid TJ protein disruptions after 30 min of oxygen and glucose deprivation or middle cerebral artery occlusion, which were accompanied by strong caspase-3 activation in brain endothelial cells (BEC). Surprisingly only few DNA-fragmentations were detected with TUNEL stainings in BEC. Z-DEVD-fmk, an irreversible caspase-3 inhibitor, partly blocked TJ disruptions and was protective on trans-endothelial electrical resistance. Conclusions/Significance Our data provide evidence that caspase-3 is rapidly activated during acute cerebral ischemia predominantly without triggering DNA-fragmentation in BEC. Further we detected fast TJ protein disruptions which could be partly blocked by caspase-3 inhibition with Z-DEVD-fmk. We suggest that the basis for clinically relevant BBB breakdown in form of TJ disruptions is initiated within minutes during ischemia and that caspase-3 contributes to this process. PMID:21364989

  7. Solar Cells With Multiple Small Junctions

    NASA Technical Reports Server (NTRS)

    Daud, T.; Koliwad, K. M.

    1985-01-01

    Concept for improving efficiency of photovoltaic solar cells based on decreasing p/n junction area in relation to total surface area of cell. Because of reduced junction area, surface leakage drops and saturation current density decreases. Surface passivation helps to ensure short-circuit current remains at high value and response of cells to blue light increases.

  8. Claudin 11 inter-sertoli tight junctions in the testis of the korean soft-shelled turtle (Pelodiscus maackii).

    PubMed

    Park, Chan Jin; Ha, Cheol Min; Lee, Jae Eun; Gye, Myung Chan

    2015-04-01

    Expression of claudin 11 (CLDN11), a tight junction (TJ) protein, was examined in the Korean soft-shelled turtle (Pelodiscus maackii) testis. Spermatogenesis began during the breeding season and peaked at the end of the breeding season. Spermiation started in summer and peaked in autumn. The deduced amino acid sequence of P. maackii CLDN11 was similar to those of avian and mammalian species. During the nonbreeding season when spermatogenesis and testosterone production were active, testicular Cldn11 levels were high. In the seminiferous epithelium, strong, wavy CLDN11 strands parallel to the basement membrane delaminate the spermatogonia, and early spermatocytes are in the open compartment. Otherwise, CLDN11 was found beneath the early spermatocytes and in the Sertoli cell cytoplasm. Punctate zonula occludens 1 (ZO-1) immunoreactivity was found within the CLDN11 strands parallel to the basement membrane or at the outermost periphery of the seminiferous epithelium close to the basal lamina. During the breeding season, when circulating testosterone levels and spermatogenic activity was low, testicular CLDN11 level was lower than those during the nonbreeding season. CLDN11 was found at apicolateral contact sites between adjacent Sertoli cells devoid of the postmeiotic germ cells. At this time, lanthanum tracer diffused to the adluminal compartment of seminiferous epithelium. In cultured testis tissues, testosterone propionate significantly increased the level of Cldn11 mRNA. In P. maackii testis, CLDN11 participates in the development of the blood-testis barrier (BTB), where the CLDN11 expression was coupled with spermatogenic activity and circulating androgen levels, indicating the conserved nature of TJs expressing CLDN11 at the BTB in amniotes. PMID:25761591

  9. Opening of the blood-brain barrier tight junction due to shock wave induced bubble collapse: a molecular dynamics simulation study.

    PubMed

    Goliaei, Ardeshir; Adhikari, Upendra; Berkowitz, Max L

    2015-08-19

    Passage of a shock wave across living organisms may produce bubbles in the blood vessels and capillaries. It was suggested that collapse of these bubbles imposed by an impinging shock wave can be responsible for the damage or even destruction of the blood-brain barrier. To check this possibility, we performed molecular dynamics computer simulations on systems that contained a model of tight junction from the blood-brain barrier. In our model, we represent the tight junction by two pairs of interacting proteins, claudin-15. Some of the simulations were done in the absence of a nanobubble, some in its presence. Our simulations show that when no bubble is present in the system, no damage to tight junction is observed when the shock wave propagates across it. In the presence of a nanobubble, even when the impulse of the shock wave is relatively low, the implosion of the bubble causes serious damage to our model tight junction. PMID:26075566

  10. Apical electrolyte concentration modulates barrier function and tight junction protein localization in bovine mammary epithelium.

    PubMed

    Quesnell, Rebecca R; Erickson, Jamie; Schultz, Bruce D

    2007-01-01

    In vitro mammary epithelial cell models typically fail to form a consistently tight barrier that can effectively separate blood from milk. Our hypothesis was that mammary epithelial barrier function would be affected by changes in luminal ion concentration and inflammatory cytokines. Bovine mammary epithelial (BME-UV cell line) cells were grown to confluence on permeable supports with a standard basolateral medium and either high-electrolyte (H-elec) or low-electrolyte (L-elec) apical medium for 14 days. Apical media were changed to/from H-elec medium at predetermined times prior to assay. Transepithelial electrical resistance (R(te)) was highest in monolayers continuously exposed to apical L-elec. A time-dependent decline in R(te) began within 24 h of H-elec medium exposure. Change from H-elec medium to L-elec medium time-dependently increased R(te). Permeation by FITC-conjugated dextran was elevated across monolayers exposed to H-elec, suggesting compromise of a paracellular pathway. Significant alteration in occludin distribution was evident, concomitant with the changes in R(te), although total occludin was unchanged. Neither substitution of Na(+) with N-methyl-d-glucosamine (NMDG(+)) nor pharmacological inhibition of transcellular Na(+) transport pathways abrogated the effects of apical H-elec medium on R(te). Tumor necrosis factor alpha, but not interleukin-1beta nor interleukin-6, in the apical compartment caused a significant decrease in R(te) within 8 h. These results indicate that mammary epithelium is a dynamic barrier whose cell-cell contacts are acutely modulated by cytokines and luminal electrolyte environment. Results not only demonstrate that BME-UV cells are a model system representative of mammary epithelium but also provide critical information that can be applied to other mammary model systems to improve their physiological relevance. PMID:16885391

  11. Immunosuppressant MPA Modulates Tight Junction through Epigenetic Activation of MLCK/MLC-2 Pathway via p38MAPK

    PubMed Central

    Khan, Niamat; Pantakani, D. V. Krishna; Binder, Lutz; Qasim, Muhammad; Asif, Abdul R.

    2015-01-01

    Background: Mycophenolic acid (MPA) is an important immunosuppressive drug (ISD) prescribed to prevent graft rejection in the organ transplanted patients, however, its use is also associated with adverse side effects like sporadic gastrointestinal (GI) disturbances. Recently, we reported the MPA induced tight junctions (TJs) deregulation which involves MLCK/MLC-2 pathway. Here, we investigated the global histone acetylation as well as gene-specific chromatin signature of several genes associated with TJs regulation in Caco-2 cells after MPA treatment. Results: The epigenetic analysis shows that MPA treatment increases the global histone acetylation levels as well as the enrichment for transcriptional active histone modification mark (H3K4me3) at promoter regions of p38MAPK, ATF-2, MLCK, and MLC-2. In contrast, the promoter region of occludin was enriched for transcriptional repressive histone modification mark (H3K27me3) after MPA treatment. In line with the chromatin status, MPA treatment increased the expression of p38MAPK, ATF-2, MLCK, and MLC-2 both at transcriptional and translational level, while occludin expression was negatively influenced. Interestingly, the MPA induced gene expression changes and functional properties of Caco-2 cells could be blocked by the inhibition of p38MAPK using a chemical inhibitor (SB203580). Conclusions: Collectively, our results highlight that MPA disrupts the structure of TJs via p38MAPK-dependent activation of MLCK/MLC-2 pathway that results in decreased integrity of Caco-2 monolayer. These results led us to suggest that p38MAPK-mediated lose integrity of epithelial monolayer could be the possible cause of GI disturbance (barrier dysfunction) in the intestine, leading to leaky style diarrhea observed in the organ-transplanted patients treated with MPA. PMID:26733876

  12. Carbon Monoxide-Releasing Molecule-2 Reduces Intestinal Epithelial Tight-Junction Damage and Mortality in Septic Rats

    PubMed Central

    Wang, Xin; Shi, Qiankun; Wang, Xiang; Yuan, Shoutao; Wang, Guozheng; Ji, Zhenling

    2015-01-01

    Objective Damage to intestinal epithelial tight junctions plays an important role in sepsis. Recently we found that Carbon Monoxide-Releasing Molecule-2 (CORM-2) is able to protect LPS-induced intestinal epithelial tight junction damage and in this study we will investigate if CORM-2 could protect intestinal epithelial tight junctions in the rat cecal ligation and puncture (CLP) model. Materials and Methods The CLP model was generated using male Sprague-Dawley (SD) rats according to standard procedure and treated with CORM-2 or inactive CORM-2 (iCORM-2), 8 mg/kg, i.v. immediately after CLP induction and euthanized after 24h or 72h (for mortality rate only). Morphological changes were investigated using both transmission electron and confocal microscopy. The levels of important TJ proteins and phosphorylation of myosin light chain (MLC) were examined using Western blotting. Cytokines, IL-1β and TNF-α were measured using ELISA kits. The overall intestinal epithelial permeability was evaluated using FD-4 as a marker. Results CORM-2, but not iCORM-2, significantly reduced sepsis-induced damage of intestinal mucosa (including TJ disruption), TJ protein reduction (including zonula occludens-l (ZO-1), claudin-1 and occludin), MLC phosphorylation and proinflammatory cytokine release. The overall outcomes showed that CORM-2 suppressed sepsis-induced intestinal epithelial permeability changes and reduced mortality rate of those septic rats. Conclusions Our data strongly suggest that CORM-2 could be a potential therapeutic reagent for sepsis by suppressing inflammation, restoring intestinal epithelial barrier and reducing mortality. PMID:26720630

  13. Burn-induced gut barrier injury is attenuated by phosphodiesterase inhibition: effects on tight junction structural proteins.

    PubMed

    Costantini, Todd W; Loomis, William H; Putnam, James G; Drusinsky, Dana; Deree, Jessica; Choi, Sunghyuk; Wolf, Paul; Baird, Andrew; Eliceiri, Brian; Bansal, Vishal; Coimbra, Raul

    2009-04-01

    Loss of intestinal barrier function after burn injury allows movement of intraluminal contents across the mucosa, which can lead to the development of distant organ injury and multiple organ failure. Tight junction function is highly regulated by membrane-associated proteins including occludin and zonula occludens protein 1 (ZO-1), which can be modulated by systemic inflammation. We hypothesized that (1) burn injury leads to gut barrier injury, and (2) phosphodiesterase inhibition will attenuate these burn-induced changes. Male balb/c mice undergoing a 30% steam burn were randomized to resuscitation with normal saline or normal saline + pentoxifylline (PTX; 12.5 mg/kg). Intestinal injury was assessed by histological diagnosis and TNF-alpha levels using enzyme-linked immunosorbent assay. Intestinal permeability was assessed by measuring the plasma concentration of fluorescein isothiocyanate-dextran after intraluminal injection in the distal ileum. Occludin and ZO-1 levels were analyzed by immunoblotting and immunohistochemistry. Thirty percent total body surface area (TBSA) burn results in a significant increase in intestinal permeability. Treatment with PTX after burn attenuates intestinal permeability to sham levels. Burn injury resulted in a marked decrease in the levels of tight junction proteins occludin and ZO-1 at 6 and 24 h. The use of PTX after burn significantly decreases the breakdown of occludin and ZO-1. Pentoxifylline also attenuates the burn-induced increase in plasma and intestinal TNF-alpha. Confocal microscopy demonstrates that PTX attenuates the burn-induced reorganization of occludin and ZO-1 away from the tight junction. Pentoxifylline attenuates burn-induced intestinal permeability and decreases the breakdown and reorganization of intestinal occludin and ZO-1. Therefore, phosphodiesterase inhibition may be a useful adjunct strategy in the attenuation of burn-induced gut barrier injury. PMID:18791495

  14. Effects of oral Lactobacillus plantarum on hepatocyte tight junction structure and function in rats with obstructive jaundice.

    PubMed

    Zhang, Ming; Wang, Xiao-Qiong; Zhou, Yu-Kun; Ma, Yan-Lei; Shen, Tong-Yi; Chen, Hong-Qi; Chu, Zhao-Xin; Qin, Huan-Long

    2010-07-01

    Surgery and infection are prominent risk factors for the development of obstructive cholestasis which in turn is associated with failure of the liver barrier. We studied the effects of oral Lactobacillus plantarum (LP) supplementation on endotoxemia, oxidative stress, apoptosis, and tight junctions of hepatocytes in an experimental model of obstructive jaundice. Fifty male Wistar rats were randomly divided into five groups of 10 each: group I, sham-operated; group II, ligation and division of the common bile duct (BDL); group III, BLD followed by oral LP treatment; group IV, BDL followed by internal biliary drainage (IBD); group V, BDL followed by IBD and oral LP treatment. Hepatocyte apoptosis, plasma reduced glutathione (GSH) and oxidized glutathione (GSSG) levels, and portal blood endotoxin levels were measured and changes in tight junction-associated proteins occludin, claudin-1, claudin-4, and ZO-1 were observed. Compared to the sham-operated group I, significant increases in endotoxemia, apoptosis, and GSSG were observed in group II and significant decreases were observed in group V. Tight junctions were destroyed in group II animals but were not in animals treated with oral LP (groups III and V). An increase in occludin, claudin-1, claudin-4, and ZO-1 mRNA and protein levels were detected in livers in LP-treated animals (group V) compared with group II levels. Oral LP treatment of rats with obstructive jaundice assisted in the return of active hepatic barrier function. These results may lead to treatments to prevent the deleterious effects of obstructive jaundice. PMID:19816788

  15. Genetic Analysis of Genes Related to Tight Junction Function in the Korean Population with Non-Syndromic Hearing Loss

    PubMed Central

    Sagong, Borum; Cho, Hyun-Ju; Bae, Jae Woong; Kim, Jeongho; Lee, Jinwook; Park, Hong-Joon; Choi, Jae Young; Lee, Kyu-Yup; Kim, Un-Kyung

    2014-01-01

    Tight junctions (TJs) are essential components of eukaryotic cells, and serve as paracellular barriers and zippers between adjacent tissues. TJs are critical for normal functioning of the organ of Corti, a part of the inner ear that causes loss of sensorineural hearing when damaged. To investigate the relation between genes involved in TJ function and hereditary loss of sensorineural hearing in the Korean population, we selected the TJP2 and CLDN14 genes as candidates for gene screening of 135 Korean individuals. The TJP2 gene, mutation of which causes autosomal dominant non-syndromic hearing loss (ADNSHL), lies at the DFNA51 locus on chromosome 9. The CLDN14 gene, mutation of which causes autosomal recessive non-syndromic hearing loss (ARNSHL), lies at the DFNB29 locus on chromosome 21. In the present study, we conducted genetic analyses of the TJP2 and CLDN14 genes in 87 unrelated patients with ADNSHL and 48 unrelated patients with either ARNSHL or potentially sporadic hearing loss. We identified two pathogenic variations, c.334G>A (p.A112T) and c.3562A>G (p.T1188A), and ten single nucleotide polymorphisms (SNPs) in the TJP2 gene. We found eight non-pathogenic variations in the CLDN14 gene. These findings indicate that, whereas mutation of the TJP2 gene might cause ADNSHL, CLDN14 is not a major causative gene for ARNSHL in the Korean population studied. Our findings may improve the understanding of the genetic cause of non-syndromic hearing loss in the Korean population. PMID:24752540

  16. Lipopolysaccharide-Induced Middle Ear Inflammation Disrupts the cochlear Intra-Strial Fluid–Blood Barrier through Down-Regulation of Tight Junction Proteins

    PubMed Central

    Zhang, Jinhui; Chen, Songlin; Hou, Zhiqiang; Cai, Jing; Dong, Mingmin; Shi, Xiaorui

    2015-01-01

    Middle ear infection (or inflammation) is the most common pathological condition that causes fluid to accumulate in the middle ear, disrupting cochlear homeostasis. Lipopolysaccharide, a product of bacteriolysis, activates macrophages and causes release of inflammatory cytokines. Many studies have shown that lipopolysaccharides cause functional and structural changes in the inner ear similar to that of inflammation. However, it is specifically not known how lipopolysaccharides affect the blood-labyrinth barrier in the stria vascularis (intra-strial fluid–blood barrier), nor what the underlying mechanisms are. In this study, we used a cell culture-based in vitro model and animal-based in vivo model, combined with immunohistochemistry and a vascular leakage assay, to investigate lipopolysaccharide effects on the integrity of the mouse intra-strial fluid–blood barrier. Our results show lipopolysaccharide-induced local infection significantly affects intra-strial fluid–blood barrier component cells. Pericytes and perivascular-resident macrophage-like melanocytes are particularly affected, and the morphological and functional changes in these cells are accompanied by substantial changes in barrier integrity. Significant vascular leakage is found in the lipopolysaccharide treated-animals. Consistent with the findings from the in vivo animal model, the permeability of the endothelial cell monolayer to FITC-albumin was significantly higher in the lipopolysaccharide-treated monolayer than in an untreated endothelial cell monolayer. Further study has shown the lipopolysaccharide-induced inflammation to have a major effect on the expression of tight junctions in the blood barrier. Lipopolysaccharide was also shown to cause high frequency hearing loss, corroborated by previous reports from other laboratories. Our findings show lipopolysaccharide-evoked middle ear infection disrupts inner ear fluid balance, and its particular effects on the intra-strial fluid

  17. Multi-junction solar cell device

    DOEpatents

    Friedman, Daniel J.; Geisz, John F.

    2007-12-18

    A multi-junction solar cell device (10) is provided. The multi-junction solar cell device (10) comprises either two or three active solar cells connected in series in a monolithic structure. The multi-junction device (10) comprises a bottom active cell (20) having a single-crystal silicon substrate base and an emitter layer (23). The multi-junction device (10) further comprises one or two subsequent active cells each having a base layer (32) and an emitter layer (23) with interconnecting tunnel junctions between each active cell. At least one layer that forms each of the top and middle active cells is composed of a single-crystal III-V semiconductor alloy that is substantially lattice-matched to the silicon substrate (22). The polarity of the active p-n junction cells is either p-on-n or n-on-p. The present invention further includes a method for substantially lattice matching single-crystal III-V semiconductor layers with the silicon substrate (22) by including boron and/or nitrogen in the chemical structure of these layers.

  18. ZO-3, a Novel Member of the MAGUK Protein Family Found at the Tight Junction, Interacts with ZO-1 and Occludin

    PubMed Central

    Haskins, Julie; Gu, Lijie; Wittchen, Erika S.; Hibbard, Jennifer; Stevenson, Bruce R.

    1998-01-01

    A 130-kD protein that coimmunoprecipitates with the tight junction protein ZO-1 was bulk purified from Madin-Darby canine kidney (MDCK) cells and subjected to partial endopeptidase digestion and amino acid sequencing. A resulting 19–amino acid sequence provided the basis for screening canine cDNA libraries. Five overlapping clones contained a single open reading frame of 2,694 bp coding for a protein of 898 amino acids with a predicted molecular mass of 98,414 daltons. Sequence analysis showed that this protein contains three PSD-95/SAP90, discs-large, ZO-1 (PDZ) domains, a src homology (SH3) domain, and a region similar to guanylate kinase, making it homologous to ZO-1, ZO-2, the discs large tumor suppressor gene product of Drosophila, and other members of the MAGUK family of proteins. Like ZO-1 and ZO-2, the novel protein contains a COOH-terminal acidic domain and a basic region between the first and second PDZ domains. Unlike ZO-1 and ZO-2, this protein displays a proline-rich region between PDZ2 and PDZ3 and apparently contains no alternatively spliced domain. MDCK cells stably transfected with an epitope-tagged construct expressed the exogenous polypeptide at an apparent molecular mass of ∼130 kD. Moreover, this protein colocalized with ZO-1 at tight junctions by immunofluorescence and immunoelectron microscopy. In vitro affinity analyses demonstrated that recombinant 130-kD protein directly interacts with ZO-1 and the cytoplasmic domain of occludin, but not with ZO-2. We propose that this protein be named ZO-3. PMID:9531559

  19. Efficient mucus permeation and tight junction opening by dissociable "mucus-inert" agent coated trimethyl chitosan nanoparticles for oral insulin delivery.

    PubMed

    Liu, Min; Zhang, Jian; Zhu, Xi; Shan, Wei; Li, Lian; Zhong, Jiaju; Zhang, Zhirong; Huang, Yuan

    2016-01-28

    Oral administration of protein drugs is greatly impeded by the lack of drug carriers that can efficiently overcome the absorption barriers of mucosa tissue, which consists of not only epithelium but also a blanket of mucus gel. We herein report a novel self-assembled nanoparticle (NP) platform for oral delivery of insulin by facilitating the efficient permeation through both of these two barriers. The NP possesses a core composed of insulin and trimethyl chitosan (TMC), and a dissociable "mucus-inert" hydrophilic coating of N-(2-hydroxypropyl) methacrylamide copolymer (pHPMA) derivative. The NPs exhibited free Brownian motion and excellent permeability in mucus, which enabled the access of the NP core to the epithelial cell surface underneath the mucus. Moreover, investigation of NP behavior showed that the pHPMA molecules started to dissociate as the NP permeates through mucus, and the TMC NP core was then exposed to facilitate transepithelial transport via paracellular pathway. The pHPMA coating significantly improved transepithelial transport of TMC-based NP and their ability to open tight junctions between the mucus-secreting epithelial cells. Moreover, in diabetic rats, pHPMA coated NPs generated a prominent hypoglycemic response following oral administration, and exhibited a relative bioavailability 2.8-fold higher than that of uncoated TMC-based NPs. Our study provided the evidence of using pHPMA as "mucus-inert" agent to enhance mucus permeation of TMC-based NPs, and validated a novel strategy to overcome the multiple absorption barriers using NP platform with dissociable hydrophilic coating and TMC-based core possessing tight junction-opening ability. PMID:26686663

  20. Chlorogenic Acid Decreases Intestinal Permeability and Increases Expression of Intestinal Tight Junction Proteins in Weaned Rats Challenged with LPS

    PubMed Central

    Ruan, Zheng; Liu, Shiqiang; Zhou, Yan; Mi, Shumei; Liu, Gang; Wu, Xin; Yao, Kang; Assaad, Houssein; Deng, Zeyuan; Hou, Yongqing; Wu, Guoyao; Yin, Yulong

    2014-01-01

    Chlorogenic acid, a natural phenolic acid present in fruits and plants, provides beneficial effects for human health. The objectives of this study were to investigate whether chlorogenic acid (CHA) could improve the intestinal barrier integrity for weaned rats with lipopolysaccharide (LPS) challenge. Thirty-two weaned male Sprague Dawley rats (21±1 d of age; 62.26±2.73 g) were selected and randomly allotted to four treatments, including weaned rat control, LPS-challenged and chlorogenic acid (CHA) supplemented group (orally 20 mg/kg and 50 mg/kg body). Dietary supplementation with CHA decreased (P<0.05) the concentrations of urea and albumin in the serum, compared to the LPS-challenged group. The levels of IFN-γ and TNF-α were lower (P<0.05) in the jejunal and colon of weaned rats receiving CHA supplementation, in comparison with the control group. CHA supplementation increased (P<0.05) villus height and the ratio of villus height to crypt depth in the jejunal and ileal mucosae under condictions of LPS challenge. CHA supplementation decreased (P<0.05) intestinal permeability, which was indicated by the ratio of lactulose to mannitol and serum DAO activity, when compared to weaned rats with LPS challenge. Immunohistochemical analysis of tight junction proteins revealed that ZO-1 and occludin protein abundances in the jejunum and colon were increased (P<0.05) by CHA supplementation. Additionally, results of immunoblot analysis revealed that the amount of occludin in the colon was also increased (P<0.05) in CHA-supplemented rats. In conclusion, CHA decreases intestinal permeability and increases intestinal expression of tight junction proteins in weaned rats challenged with LPS. PMID:24887396

  1. Polarity Proteins as Regulators of Cell Junction Complexes: Implications for Breast Cancer

    PubMed Central

    Bazzoun, Dana; Lelièvre, Sophie; Talhouk, Rabih

    2013-01-01

    The epithelium of multicellular organisms possesses a well-defined architecture, referred to as polarity that coordinates the regulation of essential cell features. Polarity proteins are intimately linked to the protein complexes that make the tight, adherens and gap junctions; they contribute to the proper localization and assembly of these cell-cell junctions within cells and consequently to functional tissue organization. The establishment of cell-cell junctions and polarity are both implicated in the regulation of epithelial modifications in normal and cancer situations. Uncovering the mechanisms through which cell-cell junctions and epithelial polarization are established and how their interaction with the microenvironment direct cell and tissue organization has opened new venues for the development of cancer therapies. In this review, we focus on the breast epithelium to highlight how polarity and cell-cell junction proteins interact together in normal and cancerous contexts to regulate major cellular mechanisms such as migration. The impact of these proteins on epigenetic mechanisms responsible for resetting cells towards oncogenesis is discussed in light of increasing evidence that tissue polarity modulates chromatin function. Finally, we give an overview of recent breast cancer therapies that target proteins involved in cell-cell junctions. PMID:23458609

  2. Downsloping High-Frequency Hearing Loss Due to Inner Ear Tricellular Tight Junction Disruption by a Novel ILDR1 Mutation in the Ig-Like Domain

    PubMed Central

    Kim, Nayoung K. D.; Higashi, Tomohito; Lee, Kyoung Yeul; Kim, Ah Reum; Kitajiri, Shin-ichiro; Kim, Min Young; Chang, Mun Young; Kim, Veronica; Oh, Seung-Ha; Kim, Dongsup; Furuse, Mikio; Park, Woong-Yang; Choi, Byung Yoon

    2015-01-01

    The immunoglobulin (Ig)-like domain containing receptor 1 (ILDR1) gene encodes angulin-2/ILDR1, a recently discovered tight junction protein, which forms tricellular tight junction (tTJ) structures with tricellulin and lipolysis-stimulated lipoprotein receptor (LSR) at tricellular contacts (TCs) in the inner ear. Previously reported recessive mutations within ILDR1 have been shown to cause severe to profound nonsyndromic sensorineural hearing loss (SNHL), DFNB42. Whole-exome sequencing of a Korean multiplex family segregating partial deafness identified a novel homozygous ILDR1 variant (p.P69H) within the Ig-like domain. To address the pathogenicity of p.P69H, the angulin-2/ILDR1 p.P69H variant protein, along with the previously reported pathogenic ILDR1 mutations, was expressed in angulin-1/LSR knockdown epithelial cells. Interestingly, partial mislocalization of the p.P69H variant protein and tricellulin at TCs was observed, in contrast to a severe mislocalization and complete failure of tricellulin recruitment of the other reported ILDR1 mutations. Additionally, three-dimensional protein modeling revealed that angulin-2/ILDR1 contributed to tTJ by forming a homo-trimer structure through its Ig-like domain, and the p.P69H variant was predicted to disturb homo-trimer formation. In this study, we propose a possible role of angulin-2/ILDR1 in tTJ formation in the inner ear and a wider audiologic phenotypic spectrum of DFNB42 caused by mutations within ILDR1. PMID:25668204

  3. S0 Tight Loop Studies on ICHIRO 9-Cell Cavities

    SciTech Connect

    Furuta, Fumio; Konomi, T.; Saito, Kenji; Bice, Damon; Crawford, Anthony C.; Geng, Rongli

    2009-11-01

    We have continued high gradient R&D of ICHIRO 9-cell cavities at KEK. ICHIRO 9-cell cavity #5 (I9#5) that has no end groups on beam tube to focus on high gradient sent to Jlab as S0 tight loop study. Surface treatments and vertical test were repeated 3 times at Jlab, and then I9#5 sent back to KEK. We also repeated surface treatments and test at KEK. Maximum gradients were 36.5MV/m at Jlab, and 33.7MV/m at KEK so far. Now we are struggling with the puzzle why the results of singles do not work well on 9-cell cavities.

  4. Studies of silicon PN junction solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1975-01-01

    Silicon pn junction solar cells made with low-resistivity substrates show poorer performance than traditional theory predicts. The purpose of this research was to identify and characterize the physical mechanisms responsible for the discrepancy. Attention was concentrated on the open circuit voltage in shallow junction cells of 0.1 ohm-cm substrate resistivity. A number of possible mechanisms that can occur in silicon devices were considered. Two mechanisms which are likely to be of main importance in explaining the observed low values of open-circuit voltage were found: (1) recombination losses associated with defects introduced during junction formation, and (2) inhomogeneity of defects and impurities across the area of the cell. To explore these theoretical anticipations, various diode test structures were designed and fabricated and measurement configurations for characterizing the defect properties and the areal inhomogeneity were constructed.

  5. Electron irradiation of tandem junction solar cells

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Miyahira, T. F.; Scott-Monck, J. A.

    1979-01-01

    The electrical behavior of 100 micron thick tandem junction solar cells manufactured by Texas Instruments was studied as a function of 1 MeV electron fluence, photon irradiation, and 60 C annealing. These cells are found to degrade rapidly with radiation, the most serious loss occurring in the blue end of the cell's spectral response. No photon degradation was found to occur, but the cells did anneal a small amount at 60 C.

  6. Toxicants target cell junctions in the testis: Insights from the indazole-carboxylic acid model

    PubMed Central

    Cheng, C Yan

    2014-01-01

    There are numerous types of junctions in the seminiferous epithelium which are integrated with, and critically dependent on the Sertoli cell cytoskeleton. These include the basal tight junctions between Sertoli cells that form the main component of the blood–testis barrier, the basal ectoplasmic specializations (basal ES) and basal tubulobulbar complexes (basal TBC) between Sertoli cells; as well as apical ES and apical TBC between Sertoli cells and the developing spermatids that orchestrate spermiogenesis and spermiation. These junctions, namely TJ, ES, and TBC interact with actin microfilament-based cytoskeleton, which together with the desmosomal junctions that interact with the intermediate filament-based cytoskeleton plus the highly polarized microtubule-based cytoskeleton are working in concert to move spermatocytes and spermatids between the basal and luminal aspect of the seminiferous epithelium. In short, these various junctions are structurally complexed with the actin- and microtubule-based cytoskeleton or intermediate filaments of the Sertoli cell. Studies have shown toxicants (e.g., cadmium, bisphenol A (BPA), perfluorooctanesulfonate (PFOS), phthalates, and glycerol), and some male contraceptives under development (e.g., adjudin, gamendazole), exert their effects, at least in part, by targeting cell junctions in the testis. The disruption of Sertoli–Sertoli cell and Sertoli–germ cell junctions, results in the loss of germ cells from the seminiferous epithelium. Adjudin, a potential male contraceptive under investigation in our laboratory, produces loss of spermatids from the seminiferous tubules through disruption of the Sertoli cell spermatid junctions and disruption of the Sertoli cell cytoskeleton. The molecular and structural changes associated with adjudin administration are described, to provide an example of the profile of changes caused by disturbance of Sertoli-germ cell and also Sertoli cell-cell junctions. PMID:26413399

  7. Tight junction proteins and oxidative stress in heavy metals-induced nephrotoxicity.

    PubMed

    Reyes, José L; Molina-Jijón, Eduardo; Rodríguez-Muñoz, Rafael; Bautista-García, Pablo; Debray-García, Yazmin; Namorado, María Del Carmen

    2013-01-01

    Kidney is a target organ for heavy metals. They accumulate in several segments of the nephron and cause profound alterations in morphology and function. Acute intoxication frequently causes acute renal failure. The effects of chronic exposure have not been fully disclosed. In recent years increasing awareness of the consequences of their presence in the kidney has evolved. In this review we focus on the alterations induced by heavy metals on the intercellular junctions of the kidney. We describe that in addition to the proximal tubule, which has been recognized as the main site of accumulation and injury, other segments of the nephron, such as glomeruli, vessels, and distal nephron, show also deleterious effects. We also emphasize the participation of oxidative stress as a relevant component of the renal damage induced by heavy metals and the beneficial effect that some antioxidant drugs, such as vitamin A (all-trans-retinoic acid) and vitamin E ( α -tocopherol), depict on the morphological and functional alterations induced by heavy metals. PMID:23710457

  8. Tight Junction Proteins and Oxidative Stress in Heavy Metals-Induced Nephrotoxicity

    PubMed Central

    Reyes, José L.; Molina-Jijón, Eduardo; Rodríguez-Muñoz, Rafael; Bautista-García, Pablo; Debray-García, Yazmin; Namorado, María del Carmen

    2013-01-01

    Kidney is a target organ for heavy metals. They accumulate in several segments of the nephron and cause profound alterations in morphology and function. Acute intoxication frequently causes acute renal failure. The effects of chronic exposure have not been fully disclosed. In recent years increasing awareness of the consequences of their presence in the kidney has evolved. In this review we focus on the alterations induced by heavy metals on the intercellular junctions of the kidney. We describe that in addition to the proximal tubule, which has been recognized as the main site of accumulation and injury, other segments of the nephron, such as glomeruli, vessels, and distal nephron, show also deleterious effects. We also emphasize the participation of oxidative stress as a relevant component of the renal damage induced by heavy metals and the beneficial effect that some antioxidant drugs, such as vitamin A (all-trans-retinoic acid) and vitamin E (α-tocopherol), depict on the morphological and functional alterations induced by heavy metals. PMID:23710457

  9. The Role of the Tight Junction in Paracellular Fluid Transport across Corneal Endothelium. Electro-osmosis as a Driving Force.

    PubMed

    Fischbarg, J; Diecke, F P J; Iserovich, P; Rubashkin, A

    2006-03-01

    The mechanism of epithelial fluid transport is controversial and remains unsolved. Experimental difficulties pose obstacles for work on a complex phenomenon in delicate tissues. However, the corneal endothelium is a relatively simple system to which powerful experimental tools can be applied. In recent years our laboratory has developed experimental evidence and theoretical insights that illuminate the mechanism of fluid transport across this leaky epithelium. Our evidence points to fluid being transported via the paracellular route by a mechanism requiring junctional integrity, which we attribute to electro-osmotic coupling at the junctions. Fluid movements can be produced by electrical currents. The direction of the movement can be reversed by current reversal or by changing junctional electrical charges by polylysine. Aquaporin 1 (AQP1) is the only AQP present in these cells, and its deletion in AQP1 null mice significantly affects cell osmotic permeability but not fluid transport, which militates against the presence of sizable water movements across the cell. By contrast, AQP1 null mice cells have reduced regulatory volume decrease (only 60% of control), which suggests a possible involvement of AQP1 in either the function or the expression of volume-sensitive membrane channels/transporters. A mathematical model of corneal endothelium predicts experimental results only when based on paracellular electro-osmosis, and not when transcellular local osmosis is assumed instead. Our experimental findings in corneal endothelium have allowed us to develop a novel paradigm for this preparation that includes: (1) paracellular fluid flow; (2) a crucial role for the junctions; (3) hypotonicity of the primary secretion; (4) an AQP role in regulation and not as a significant water pathway. These elements are remarkably similar to those proposed by the Hill laboratory for leaky epithelia. PMID:16868674

  10. Effect of dexmedetomidine on rats with renal ischemia-reperfusion injury and the expression of tight junction protein in kidney.

    PubMed

    Liu, Yun-En; Tong, Chang-Ci; Zhang, Yu-Biao; Jin, Hong-Xu; Gao, Yan; Hou, Ming-Xiao

    2015-01-01

    To explore the protective effect of dexmedetomidine (Dex) on rats with renal ischemia-reperfusion injury and the influence of Dex on the expression of tight junction protein in kidney. Grouped 40 SPF male rats into 4 groups, sham operation group (group S), ischemia-reperfusion group (group I/R), pretreatment with Dex group (group Pre/Dex), post-treatment with Dex group (group Post/Dex), randomly, 10 rats each group. Rats in group S were anaesthetized and set up with removal of right kidney; rats in group I/R were set up with removal of right kidney and left renal artery clamping for 45 min followed by 60 min reperfusion; rats in group Pre/Dex were intravenous injected with Dex (1 μg/kg) for 30 min after indwelling catheter via femoral vein puncture; rats in group Post/Dex were intravenous injected with Dex (1 μg/kg) for 30 min after left renal reperfusion. The kidneys in each group were made out pathologic slices after 6 h I/R, stained with HE; blood samples were taken with separation plasma, creatinine (Scr) and urea nitrogen (BUN) were detected by automatic biochemical analyzer; IL-1β and TNF-α were detected by Enzyme-linked Immunosorbent Assay (ELISA); the expression level of tight junction protein ZO-1 and protein occludin in kidney were detected by Western-blot. The results of HE staining showed that, comparing to group S, the tissue of kidney in group I/R were damaged heavily with tubules dilatation and inflammation obviously, while lightened in group Pre/Dex and group Post/Dex. The results of detection of renal function and inflammatory factors showed that, comparing to group S, Scr, BUN, IL-1β and TNF-α were all enhanced in group I/R, group Pre/Dex and group Post/Dex, significantly (P < 0.05), while the inflammatory factors in group Pre/Dex and group Post/Dex were lower than in group I/R, significantly (P < 0.05). The results of Western-blot showed that the expression of protein ZO-1 and occludin in group Pre/Dex and group Post/Dex were higher than in

  11. Characterization of tight junction disruption and immune response modulation in a miniaturized Caco-2/U937 coculture-based in vitro model of the human intestinal barrier.

    PubMed

    Ramadan, Qasem; Jing, Lin

    2016-02-01

    A microfluidic-based dynamic in vitro model of the human intestinal barrier has been constructed and characterized. The intestinal epithelial monolayer was mimicked by culturing caco-2 cells on a porous membrane in a double-layered microfluidic chip and interfaced with a co-culture of U937 as a model of immune responsive cells. The physiological flow was also mimicked by a continuous perfusion of culture media from the apical and basolateral side of the porous membrane. This dynamic "in vivo-like" environment maintains a continuous supply of cell nutrient and waste removal and create mechanical shear stress within the physiological ranges which promotes uniform cell growth and tight junction formation. The monolayer permeability to soluble ion changes after treating with LPS, and TNF α as indicated by the reduction of the TEER value. In addition, the immune competent caco-2/U937-based model allowed the investigating the role of the epithelial layer as a protection barrier to biological hazards as indicated by the suppressing of the pro-inflammatory cytokine expression. PMID:26809386

  12. Tandem junction amorphous silicon solar cells

    DOEpatents

    Hanak, Joseph J.

    1981-01-01

    An amorphous silicon solar cell has an active body with two or a series of layers of hydrogenated amorphous silicon arranged in a tandem stacked configuration with one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon arranged in tandem configuration can have the same bandgap or differing bandgaps.

  13. Nitric Oxide and Airway Epithelial Barrier Function: Regulation of Tight Junction Proteins and Epithelial Permeability

    PubMed Central

    Olson, Nels; Greul, Anne-Katrin; Hristova, Milena; Bove, Peter F.; Kasahara, David I.; van der Vliet, Albert

    2008-01-01

    Acute airway inflammation is associated with enhanced production of nitric oxide (NO•) and altered airway epithelial barrier function, suggesting a role of NO• or its metabolites in epithelial permeability. While high concentrations of S-nitrosothiols disrupted transepithelial resistance (TER) and increased permeability in 16HBE14o- cells, no significant barrier disruption was observed by NONOates, in spite of altered distribution and expression of some TJ proteins. Barrier disruption of mouse tracheal epithelial (MTE) cell monolayers in response to inflammatory cytokines was independent of NOS2, based on similar effects in MTE cells from NOS2-/- mice and a lack of effect of the NOS2-inhibitor 1400W. Cell pre-incubation with LPS protected MTE cells from TER loss and increased permeability by H2O2, which was independent of NOS2. However, NOS2 was found to contribute to epithelial wound repair and TER recovery after mechanical injury. Overall, our results demonstrate that epithelial NOS2 is not responsible for epithelial barrier dysfunction during inflammation, but may contribute to restoration of epithelial integrity. PMID:19100237

  14. PATJ, a Tight Junction-Associated PDZ Protein, Is a Novel Degradation Target of High-Risk Human Papillomavirus E6 and the Alternatively Spliced Isoform 18 E6*▿

    PubMed Central

    Storrs, Carina H.; Silverstein, Saul J.

    2007-01-01

    The E6 protein from high-risk human papillomavirus types interacts with and degrades several PDZ domain-containing proteins that localize to adherens junctions or tight junctions in polarized epithelial cells. We have identified the tight junction-associated multi-PDZ protein PATJ (PALS1-associated TJ protein) as a novel binding partner and degradation target of high-risk types 16 and 18 E6. PATJ functions in the assembly of the evolutionarily conserved CRB-PALS1-PATJ and Par6-aPKC-Par3 complexes and is critical for the formation of tight junctions in polarized cells. The ability of type 18 E6 full-length to bind to, and the subsequent degradation of, PATJ is dependent on its C-terminal PDZ binding motif. We demonstrate that the spliced 18 E6* protein, which lacks a C-terminal PDZ binding motif, associates with and degrades PATJ independently of full-length 18 E6. Thus, PATJ is the first binding partner that is degraded in response to both isoforms of 18 E6. The ability of E6 to utilize a non-E6AP ubiquitin ligase for the degradation of several PDZ binding partners has been suggested. We also demonstrate that 18 E6-mediated degradation of PATJ is not inhibited in cells where E6AP is silenced by shRNA. This suggests that the E6-E6AP complex is not required for the degradation of this protein target. PMID:17287269

  15. Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium

    PubMed Central

    Sheikov, Nickolai; McDannold, Nathan; Sharma, Shipra; Hynynen, Kullervo

    2008-01-01

    Previous studies have investigated a potential method for targeted drug delivery in the central nervous system that uses focused ultrasound bursts combined with an ultrasound contrast agent to temporarily disrupt the blood-brain barrier (BBB). The purpose of this work was to investigate the integrity of the tight junctions (TJs) in rat brain microvessels after this BBB disruption. 1.5-MHz ultrasound bursts in combination with a gas contrast agent (Optison) was applied at two locations in the brain in 25 rats to induce BBB disruption. Using immunoelectron microscopy, the distributions of the TJ-specific transmembrane proteins occludin, claudin-1, claudin-5, and of submembranous ZO-1 were examined at 1, 2, 4, 6 and 24 h after sonication. A quantitative evaluation of the protein expression was made by counting the number of immunosignals per micrometer in the junctional clefts. BBB disruption at the sonicated locations was confirmed by the leakage of intravenously administered horseradish peroxidase (HRP, m.w. 40,000 Da) and lanthanum chloride (La3+, m.w. ~ 139 Da). Leakage of these agents was observed at 1 and 2 h and in a few vessels at 4 h after ultrasound application. These changes were paralleled by the apparent disintegration of the TJ complexes, as evidenced by the redistribution and loss of the immunosignals for occludin, claudin-5 and ZO-1. Claudin-1 seemed less involved. At 6 and 24 h after sonication, no HRP or lanthanum leakage was observed, and the barrier function of the TJs, as indicated by the localization and density of immunosignals, appeared to be completely restored. This study provides the first direct evidence that ultrasound bursts combined with a gas contrast agent cause disassembling of the TJ molecular structure, leading to loss of the junctional barrier functions in brain microvessels. The BBB disruption appears to last up to 4 h after sonication and permits the paracellular passage of agents with molecular weights up to at least 40 k

  16. Impaired Tight Junctions in Atopic Dermatitis Skin and in a Skin-Equivalent Model Treated with Interleukin-17.

    PubMed

    Yuki, Takuo; Tobiishi, Megumi; Kusaka-Kikushima, Ayumi; Ota, Yukiko; Tokura, Yoshiki

    2016-01-01

    Tight junction (TJ) dysfunction in the stratum granulosum leads to aberrant barrier function of the stratum corneum (SC) in the epidermis. However, it is unclear whether TJs are perturbed in atopic dermatitis (AD), a representative aberrant SC-related skin disease, and whether some factors related to AD pathogenesis induce TJ dysfunction. To address these issues, we investigated the alterations of TJs in AD skin and the effects of Th2 and Th17 cytokines on TJs in a skin-equivalent model. The levels of TJ proteins were determined in the epidermis of nonlesional and lesional skin sites of AD. Western blot and immunohistochemical analyses revealed that the levels of zonula occludens 1 were decreased in the nonlesional sites of AD, and the levels of zonula occludens 1 and claudin-1 were decreased in the lesional sites relative to the levels in skin from healthy subjects. Next, we examined the effects of interleukin (IL)-4, tumor necrosis factor-α, IL-17, and IL-22 on the TJ barrier in a skin-equivalent model. Only IL-17 impaired the TJ barrier. Furthermore, we observed a defect in filaggrin monomer degradation in the IL-17-treated skin model. Thus, TJs are dysfunctional in AD, at least partly, due to the effect of IL-17, which may result in an aberrant SC barrier. PMID:27588419

  17. Leukocyte Diapedesis In Vivo Induces Transient Loss of Tight Junction Protein at the Blood–Retina Barrier

    PubMed Central

    Xu, Heping; Dawson, Rosemary; Crane, Isabel J.; Liversidge, Janet

    2008-01-01

    Purpose Although much is now understood about the molecular structure of tight junctions (TJs), little is known about the regulation of their function during neural inflammatory disease processes in vivo. The mechanisms by which leukocytes transmigrate the blood-retina barrier (BRB) without affecting endothelial permeability are controversial. Methods Confocal immunofluorescence microscopy of ex vivo retinal wholemounts was used to study BRB integrity during leukocyte adhesion and migration during experimental autoimmune uveoretinitis (EAU). Western blot analysis was used to measure levels of TJ proteins in EAU retina and RPE and in normal retina or RPE cultured with cytokines or chemokines. Results No evidence for discontinuity or other weakness of the endothelial or epithelial barrier at tricellular corners was observed, and maximum disruption of TJ protein expression was focused in retinal venules correlating with sites of leukocyte extravasation. Areas of maximum TJ protein loss in vivo also correlated with redistribution or loss of ensheathing astrocyte processes on venules but not adjacent capillaries or arterioles. Exposure of normal choroidal and retinal explants ex vivo to cytokines and chemokines alone did not downregulate total occludin-1 or claudin-3 TJ protein expression. Conclusions The data presented herein support an active role for leukocytes in TJ disruption and blood-retina barrier (BRB) breakdown during retinal inflammation and further implicate venule microenvironment as a key factor in leukocyte recruitment to retinal tissue in vivo. PMID:15980240

  18. Activation of epidermal toll-like receptor 2 enhances tight junction function: implications for atopic dermatitis and skin barrier repair.

    PubMed

    Kuo, I-Hsin; Carpenter-Mendini, Amanda; Yoshida, Takeshi; McGirt, Laura Y; Ivanov, Andrei I; Barnes, Kathleen C; Gallo, Richard L; Borkowski, Andrew W; Yamasaki, Kenshi; Leung, Donald Y; Georas, Steve N; De Benedetto, Anna; Beck, Lisa A

    2013-04-01

    Atopic dermatitis (AD) is characterized by epidermal tight junction (TJ) defects and a propensity for Staphylococcus aureus skin infections. S. aureus is sensed by many pattern recognition receptors, including Toll-like receptor 2 (TLR2). We hypothesized that an effective innate immune response will include skin barrier repair, and that this response is impaired in AD subjects. S. aureus-derived peptidoglycan (PGN) and synthetic TLR2 agonists enhanced TJ barrier and increased expression of TJ proteins, claudin-1 (CLDN1), claudin-23 (CLDN23), occludin, and Zonulae occludens 1 (ZO-1) in primary human keratinocytes. A TLR2 agonist enhanced skin barrier recovery in human epidermis wounded by tape stripping. Tlr2(-/-) mice had a delayed and incomplete barrier recovery following tape stripping. AD subjects had reduced epidermal TLR2 expression as compared with nonatopic subjects, which inversely correlated (r=-0.654, P=0.0004) with transepidermal water loss (TEWL). These observations indicate that TLR2 activation enhances skin barrier in murine and human skin and is an important part of a wound repair response. Reduced epidermal TLR2 expression observed in AD patients may have a role in their incompetent skin barrier. PMID:23223142

  19. Hyperbaric oxygen preconditioning ameliorates blood-brain barrier damage induced by hypoxia through modulation of tight junction proteins in an in vitro model

    PubMed Central

    Hao, Lei; Guo, Xiuming; Zou, Can; Zhou, Huchuan; Tian, Hong; Zhang, Yubo; Song, Chuan; Liu, Lei

    2016-01-01

    Aim To explore the effects of hyperbaric oxygen preconditioning (HBOP) on the permeability of blood-brain barrier (BBB) and expression of tight junction proteins under hypoxic conditions in vitro. Methods A BBB in vitro model was constructed using the hCMEC/D3 cell line and used when its trans-endothelial electrical resistance (TEER) reached 80-120 Ω · cm2 (tested by Millicell-Electrical Resistance System). The cells were randomly divided into the control group cultured under normal conditions, the group cultured under hypoxic conditions (2%O2) for 24 h (hypoxia group), and the group first subjected to HBOP for 2 h and then to hypoxia (HBOP group). Occludin and ZO-1 expression were analyzed by immunofluorescence assay. Results Normal hCMEC/D3 was spindle-shaped and tightly integrated. TEER was significantly reduced in the hypoxia (P = 0.001) and HBOP group (P = 0.014) compared to control group, with a greater decrease in the hypoxia group. Occludin membranous expression was significantly decreased in the hypoxia group (P = 0.001) compared to the control group, but there was no change in the HBOP group. ZO-1 membranous expression was significantly decreased (P = 0.002) and cytoplasmic expression was significantly increased (P = 0.001) in the hypoxia group compared to the control group, although overall expression levels did not change. In the HBOP group, there was no significant change in ZO-1 expression compared to the control group. Conclusion Hyperbaric oxygen preconditioning protected the integrity of BBB in an in vitro model through modulation of occludin and ZO-1 expression under hypoxic conditions. PMID:26935614

  20. Effects of oral glutamine supplementation on exercise-induced gastrointestinal permeability and tight junction protein expression.

    PubMed

    Zuhl, Micah N; Lanphere, Kathryn R; Kravitz, Len; Mermier, Christine M; Schneider, Suzanne; Dokladny, Karol; Moseley, Pope L

    2014-01-15

    The objectives of this study are threefold: 1) to assess whether 7 days of oral glutamine (GLN) supplementation reduces exercise-induced intestinal permeability; 2) whether supplementation prevents the proinflammatory response; and 3) whether these changes are associated with upregulation of the heat shock response. On separate occasions, eight human subjects participated in baseline testing and in GLN and placebo (PLA) supplementation trials, followed by a 60-min treadmill run. Intestinal permeability was higher in the PLA trial compared with baseline and GLN trials (0.0604 ± 0.047 vs. 0.0218 ± 0.008 and 0.0272 ± 0.007, respectively; P < 0.05). IκBα expression in peripheral blood mononuclear cells was higher 240 min after exercise in the GLN trial compared with the PLA trial (1.411 ± 0.523 vs. 0.9839 ± 0.343, respectively; P < 0.05). In vitro using the intestinal epithelial cell line Caco-2, we measured effects of GLN supplementation (0, 4, and 6 mM) on heat-induced (37° or 41.8°C) heat shock protein 70 (HSP70), heat shock factor-1 (HSF-1), and occludin expression. HSF-1 and HSP70 levels increased in 6 mM supplementation at 41°C compared with 0 mM at 41°C (1.785 ± 0.495 vs. 0.6681 ± 0.290, and 1.973 ± 0.325 vs. 1.133 ± 0.129, respectively; P < 0.05). Occludin levels increased after 4 mM supplementation at 41°C and 6 mM at 41°C compared with 0 mM at 41°C (1.236 ± 0.219 and 1.849 ± 0.564 vs. 0.7434 ± 0.027, respectively; P < 0.001). GLN supplementation prevented exercise-induced permeability, possibly through HSF-1 activation. PMID:24285149

  1. Changes in integrity of the gill during histidine deficiency or excess due to depression of cellular anti-oxidative ability, induction of apoptosis, inflammation and impair of cell-cell tight junctions related to Nrf2, TOR and NF-κB signaling in fish.

    PubMed

    Jiang, Wei-Dan; Feng, Lin; Qu, Biao; Wu, Pei; Kuang, Sheng-Yao; Jiang, Jun; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu; Liu, Yang

    2016-09-01

    integrity of fish gill by disrupted fish antioxidant defenses and regulating the expression of tight junction protein, cytokines, apoptosis, antioxidant enzymes, NF-κB p65, IκBα, TOR, Nrf2, Keap1 and apoptosis-related genes in the fish gills. PMID:27394967

  2. Cyclic stretch disrupts apical junctional complexes in Caco-2 cell monolayers by a JNK-2-, c-Src-, and MLCK-dependent mechanism

    PubMed Central

    Samak, Geetha; Gangwar, Ruchika; Crosby, Lynn M.; Desai, Leena P.; Wilhelm, Kristina; Waters, Christopher M.

    2014-01-01

    The intestinal epithelium is subjected to various types of mechanical stress. In this study, we investigated the impact of cyclic stretch on tight junction and adherens junction integrity in Caco-2 cell monolayers. Stretch for 2 h resulted in a dramatic modulation of tight junction protein distribution from a linear organization into wavy structure. Continuation of cyclic stretch for 6 h led to redistribution of tight junction proteins from the intercellular junctions into the intracellular compartment. Disruption of tight junctions was associated with redistribution of adherens junction proteins, E-cadherin and β-catenin, and dissociation of the actin cytoskeleton at the actomyosin belt. Stretch activates JNK2, c-Src, and myosin light-chain kinase (MLCK). Inhibition of JNK, Src kinase or MLCK activity and knockdown of JNK2 or c-Src attenuated stretch-induced disruption of tight junctions, adherens junctions, and actin cytoskeleton. Paracellular permeability measured by a novel method demonstrated that cyclic stretch increases paracellular permeability by a JNK, Src kinase, and MLCK-dependent mechanism. Stretch increased tyrosine phosphorylation of occludin, ZO-1, E-cadherin, and β-catenin. Inhibition of JNK or Src kinase attenuated stretch-induced occludin phosphorylation. Immunofluorescence localization indicated that phospho-MLC colocalizes with the vesicle-like actin structure at the actomyosin belt in stretched cells. On the other hand, phospho-c-Src colocalizes with the actin at the apical region of cells. This study demonstrates that cyclic stretch disrupts tight junctions and adherens junctions by a JNK2, c-Src, and MLCK-dependent mechanism. PMID:24722904

  3. Long noncoding RNA SPRY4-IT1 regulates intestinal epithelial barrier function by modulating the expression levels of tight junction proteins

    PubMed Central

    Xiao, Lan; Rao, Jaladanki N.; Cao, Shan; Liu, Lan; Chung, Hee Kyoung; Zhang, Yun; Zhang, Jennifer; Liu, Yulan; Gorospe, Myriam; Wang, Jian-Ying

    2016-01-01

    Epithelial cells line the intestinal mucosa and form an important barrier to a wide array of noxious substances in the lumen. Disruption of the barrier integrity occurs commonly in various pathologies. Long noncoding RNAs (lncRNAs) control diverse biological processes, but little is known about the role of lncRNAs in regulation of the gut permeability. Here we show that the lncRNA SPRY4-IT1 regulates the intestinal epithelial barrier function by altering expression of tight junction (TJ) proteins. SPRY4-IT1 silencing led to dysfunction of the epithelial barrier in cultured cells by decreasing the stability of mRNAs encoding TJ proteins claudin-1, claudin-3, occludin, and JAM-1 and repressing their translation. In contrast, increasing the levels of SPRY4-IT1 in the intestinal mucosa protected the gut barrier in mice exposed to septic stress by increasing the abundance of TJ proteins. SPRY4-IT1 directly interacted with TJ mRNAs, and this process was enhanced through the association with the RNA-binding protein HuR. Of interest, the intestinal mucosa from patients with increased gut permeability exhibited a decrease in the levels of SPRY4-IT1. These findings highlight a novel role for SPRY4-IT1 in controlling the intestinal epithelial barrier and define a mechanism by which SPRY4-IT1 modulates TJ expression by altering the stability and translation of TJ mRNAs. PMID:26680741

  4. Plasmon Enhanced Hetero-Junction Solar Cell

    NASA Astrophysics Data System (ADS)

    Long, Gen; Ching, Levine; Sadoqi, Mostafa; Xu, Huizhong

    2015-03-01

    Here we report a systematic study of plasmon-enhanced hetero-junction solar cells made of colloidal quantum dots (PbS) and nanowires (ZnO), with/without metal nanoparticles (Au). The structure of solar cell devices was characterized by AFM, SEM and profilometer, etc. The power conversion efficiencies of solar cell devices were characterized by solar simulator (OAI TriSOL, AM1.5G Class AAA). The enhancement in the photocurrent due to introduction of metal nanoparticles was obvious. We believe this is due to the plasmonic effect from the metal nanoparticles. The correlation between surface roughness, film uniformity and device performance was also studied.

  5. Radial pn Junction, Wire Array Solar Cells

    NASA Astrophysics Data System (ADS)

    Kayes, Brendan Melville

    Radial pn junctions are potentially of interest in photovoltaics as a way to decouple light absorption from minority carrier collection. In a traditional planar design these occur in the same dimension, and this sets a lower limit on absorber material quality, as cells must both be thick enough to effectively absorb the solar spectrum while also having minority-carrier diffusion lengths long enough to allow for efficient collection of the photo-generated carriers. Therefore, highly efficient photovoltaic devices currently require highly pure materials and expensive processing techniques, while low cost devices generally operate at relatively low efficiency. The radial pn junction design sets the direction of light absorption perpendicular to the direction of minority-carrier transport, allowing the cell to be thick enough for effective light absorption, while also providing a short pathway for carrier collection. This is achieved by increasing the junction area, in order to decrease the path length any photogenerated minority carrier must travel, to be less than its minority carrier diffusion length. Realizing this geometry in an array of semiconducting wires, by for example depositing a single-crystalline inorganic semiconducting absorber layer at high deposition rates from the gas phase by the vapor-liquid-solid (VLS) mechanism, allows for a "bottom up" approach to device fabrication, which can in principle dramatically reduce the materials costs associated with a cell.

  6. Neisseria gonorrhoeae induced disruption of cell junction complexes in epithelial cells of the human genital tract.

    PubMed

    Rodríguez-Tirado, Carolina; Maisey, Kevin; Rodríguez, Felipe E; Reyes-Cerpa, Sebastián; Reyes-López, Felipe E; Imarai, Mónica

    2012-03-01

    Pathogenic microorganisms, such as Neisseria gonorrhoeae, have developed mechanisms to alter epithelial barriers in order to reach subepithelial tissues for host colonization. The aim of this study was to examine the effects of gonococci on cell junction complexes of genital epithelial cells of women. Polarized Ishikawa cells, a cell line derived from endometrial epithelium, were used for experimental infection. Infected cells displayed a spindle-like shape with an irregular distribution, indicating potential alteration of cell-cell contacts. Accordingly, analysis by confocal microscopy and cellular fractionation revealed that gonococci induced redistribution of the adherens junction proteins E-cadherin and its adapter protein β-catenin from the membrane to a cytoplasmic pool, with no significant differences in protein levels. In contrast, gonococcal infection did not induce modification of either expression or distribution of the tight junction proteins Occludin and ZO-1. Similar results were observed for Fallopian tube epithelia. Interestingly, infected Ishikawa cells also showed an altered pattern of actin cytoskeleton, observed in the form of stress fibers across the cytoplasm, which in turn matched a strong alteration on the expression of fibronectin, an adhesive glycoprotein component of extracellular matrix. Interestingly, using western blotting, activation of the ERK pathway was detected after gonococcal infection while p38 pathway was not activated. All effects were pili and Opa independent. Altogether, results indicated that gonococcus, as a mechanism of pathogenesis, induced disruption of junction complexes with early detaching of E-cadherin and β-catenin from the adherens junction complex, followed by a redistribution and reorganization of actin cytoskeleton and fibronectin within the extracellular matrix. PMID:22146107

  7. Enhancement of Blood-Brain Barrier Permeability and Reduction of Tight Junction Protein Expression Are Modulated by Chemokines/Cytokines Induced by Rabies Virus Infection

    PubMed Central

    Chai, Qingqing; He, Wen Q.; Zhou, Ming; Lu, Huijun

    2014-01-01

    ABSTRACT Infection with laboratory-attenuated rabies virus (RABV) enhances blood-brain barrier (BBB) permeability, which has been demonstrated to be an important factor for host survival, since it allows immune effectors to enter the central nervous system (CNS) and clear RABV. To probe the mechanism by which RABV infection enhances BBB permeability, the expression of tight junction (TJ) proteins in the CNS was investigated following intracranial inoculation with laboratory-attenuated or wild-type (wt) RABV. BBB permeability was significantly enhanced in mice infected with laboratory-attenuated, but not wt, RABV. The expression levels of TJ proteins (claudin-5, occludin, and zonula occludens-1) were decreased in mice infected with laboratory-attenuated, but not wt, RABV, suggesting that enhancement of BBB permeability is associated with the reduction of TJ protein expression in RABV infection. RABV neither infects the brain microvascular endothelial cells (BMECs) nor modulates the expression of TJ proteins in BMECs. However, brain extracts prepared from mice infected with laboratory-attenuated, but not wt, RABV reduced TJ protein expression in BMECs. It was found that brain extracts from mice infected with laboratory-attenuated RABV contained significantly higher levels of inflammatory chemokines/cytokines than those from mice infected with wt RABV. Pathway analysis indicates that gamma interferon (IFN-γ) is located in the center of the cytokine network in the RABV-infected mouse brain, and neutralization of IFN-γ reduced both the disruption of BBB permeability in vivo and the downregulation of TJ protein expression in vitro. These findings indicate that the enhancement of BBB permeability and the reduction of TJ protein expression are due not to RABV infection per se but to virus-induced inflammatory chemokines/cytokines. IMPORTANCE Previous studies have shown that infection with only laboratory-attenuated, not wild-type, rabies virus (RABV) enhances blood

  8. Effects of sevoflurane on tight junction protein expression and PKC-α translocation after pulmonary ischemia-reperfusion injury.

    PubMed

    Chai, Jun; Long, Bo; Liu, Xiaomei; Li, Yan; Han, Ning; Zhao, Ping; Chen, Weimin

    2015-01-01

    Pulmonary dysfunction caused by ischemia-reperfusion injury is the leading cause of mortality in lung transplantation. We aimed to investigate the effects of sevoflurane pretreatment on lung permeability, tight junction protein occludin and zona occludens 1 (ZO-1) expression, and translocation of protein kinase C (PKC)-α after ischemia-reperfusion. A lung ischemia-reperfusion injury model was established in 96 male Wistar rats following the modified Eppinger method. The rats were divided into four groups with 24 rats in each group: a control (group C), an ischemia-reperfusion group (IR group), a sevoflurane control group (sev-C group), and a sevoflurane ischemia-reperfusion group (sev-IR group). There were three time points in each group: ischemic occlusion for 45 min, reperfusion for 60 min and reperfusion for 120 min; and there were six rats per time point. For the 120-min reperfusion group, six extra rats underwent bronchoalveolar lavage. Mean arterial pressure (MAP) and pulse oxygen saturation (SpO2) were recorded at each time point. The wet/dry weight ratio and lung permeability index (LPI) were measured. Quantitative RT-PCR and Western blot were used to measure pulmonary occludin and ZO-1, and Western blot was used to measure cytosolic and membranous PKC-α in the lung. Lung permeability was significantly increased after ischemia-reperfusion. Sevoflurane pretreatment promoted pulmonary expression of occludin and ZO-1 after reperfusion and inhibited the translocation of PKC-α. In conclusion, sevoflurane pretreatment alleviated lung permeability by upregulating occludin and ZO-1 after ischemia-reperfusion. Sevoflurane pretreatment inhibited the translocation and activation of PKC-α, which also contributed to the lung-protective effect of sevoflurane. PMID:26045255

  9. Dietary calcium concentration and cereals differentially affect mineral balance and tight junction proteins expression in jejunum of weaned pigs.

    PubMed

    Metzler-Zebeli, Barbara U; Mann, Evelyne; Ertl, Reinhard; Schmitz-Esser, Stephan; Wagner, Martin; Klein, Dieter; Ritzmann, Mathias; Zebeli, Qendrim

    2015-04-14

    Ca plays an essential role in bone development; however, little is known about its effect on intestinal gene expression in juvenile animals. In the present study, thirty-two weaned pigs (9·5 (SEM 0·11) kg) were assigned to four diets that differed in Ca concentration (adequate v. high) and cereal composition (wheat-barley v. maize) to assess the jejunal and colonic gene expression of nutrient transporters, tight junction proteins, cytokines and pathogen-associated molecular patterns, nutrient digestibility, Ca balance and serum acute-phase response. To estimate the impact of mucosal bacteria on colonic gene expression, Spearman's correlations between colonic gene expression and bacterial abundance were computed. Faecal Ca excretion indicated that more Ca was available along the intestinal tract of the pigs fed high Ca diets as compared to the pigs fed adequate Ca diets (P> 0.05). High Ca diets decreased jejunal zonula occludens 1 (ZO1) and occludin (OCLN) expression, up-regulated jejunal expression of toll-like receptor 2 (TLR2) and down-regulated colonic GLUT2 expression as compared to the adequate Ca diets (P< 0.05). Dietary cereal composition up-regulated jejunal TLR2 expression and interacted (P= 0.021) with dietary Ca on colonic IL1B expression; high Ca concentration up-regulated IL1B expression with wheat-barley diets and down-regulated it with maize diets. Spearman's correlations (r> 0·35; P< 0·05) indicated an association between operational taxonomic units assigned to the phyla Bacteroidetes, Firmicutes and Proteobacteria and bacterial metabolites and mucosal gene expression in the colon. The present results indicate that high Ca diets have the potential to modify the jejunal and colonic mucosal gene expression response which, in turn, interacts with the composition of the basal diet and mucosa-associated bacteria in weaned pigs. PMID:25761471

  10. Volatile Anesthetics Influence Blood-Brain Barrier Integrity by Modulation of Tight Junction Protein Expression in Traumatic Brain Injury

    PubMed Central

    Schaible, Eva-Verena; Timaru-Kast, Ralph; Hedrich, Jana; Luhmann, Heiko J.; Engelhard, Kristin

    2012-01-01

    Disruption of the blood-brain barrier (BBB) results in cerebral edema formation, which is a major cause for high mortality after traumatic brain injury (TBI). As anesthetic care is mandatory in patients suffering from severe TBI it may be important to elucidate the effect of different anesthetics on cerebral edema formation. Tight junction proteins (TJ) such as zonula occludens-1 (ZO-1) and claudin-5 (cl5) play a central role for BBB stability. First, the influence of the volatile anesthetics sevoflurane and isoflurane on in-vitro BBB integrity was investigated by quantification of the electrical resistance (TEER) in murine brain endothelial monolayers and neurovascular co-cultures of the BBB. Secondly brain edema and TJ expression of ZO-1 and cl5 were measured in-vivo after exposure towards volatile anesthetics in native mice and after controlled cortical impact (CCI). In in-vitro endothelial monocultures, both anesthetics significantly reduced TEER within 24 hours after exposure. In BBB co-cultures mimicking the neurovascular unit (NVU) volatile anesthetics had no impact on TEER. In healthy mice, anesthesia did not influence brain water content and TJ expression, while 24 hours after CCI brain water content increased significantly stronger with isoflurane compared to sevoflurane. In line with the brain edema data, ZO-1 expression was significantly higher in sevoflurane compared to isoflurane exposed CCI animals. Immunohistochemical analyses revealed disruption of ZO-1 at the cerebrovascular level, while cl5 was less affected in the pericontusional area. The study demonstrates that anesthetics influence brain edema formation after experimental TBI. This effect may be attributed to modulation of BBB permeability by differential TJ protein expression. Therefore, selection of anesthetics may influence the barrier function and introduce a strong bias in experimental research on pathophysiology of BBB dysfunction. Future research is required to investigate adverse or