Science.gov

Sample records for cell toll-like receptor-2

  1. Non-cell-autonomous Neurotoxicity of α-synuclein Through Microglial Toll-like Receptor 2

    PubMed Central

    Kim, Changyoun; Lee, He-Jin; Masliah, Eliezer

    2016-01-01

    Synucleinopathies are a collection of neurological diseases that are characterized by deposition of α-synuclein aggregates in neurons and glia. These diseases include Parkinson's disease (PD), dementia with Lewy bodies, and multiple system atrophy. Although it has been increasingly clear that α-synuclein is implicated in the pathogenesis of PD and other synucleinopathies, the precise mechanism underlying the disease process remains to be unraveled. The past studies on how α-synuclein exerts pathogenic actions have focused on its direct, cell-autonomous neurotoxic effects. However, recent findings suggested that there might be indirect, non-cell-autonomous pathways, perhaps through the changes in glial cells, for the pathogenic actions of this protein. Here, we present evidence that α-synuclein can cause neurodegeneration through a non-cell-autonomous manner. We show that α-synuclein can be secreted from neurons and induces inflammatory responses in microglia, which in turn secreted neurotoxic agents into the media causing neurodegeneration. The neurotoxic response of microglia was mediated by activation of toll-like receptor 2 (TLR2), a receptor for neuron-derived α-synuclein. This work suggests that TLR2 is the key molecule that mediates non-cell-autonomous neurotoxic effects of α-synuclein, hence a candidate for the therapeutic target. PMID:27358579

  2. Targeting Toll-like receptor 2 inhibits growth of head and neck squamous cell carcinoma

    PubMed Central

    Farnebo, Lovisa; Shahangian, Arash; Lee, Yunqin; Shin, June Ho; Scheeren, Ferenc A.; Sunwoo, John B.

    2015-01-01

    Infection-driven inflammation has been proposed to be involved in the tumorigenesis of head and neck squamous cell carcinoma (HNSCC). Oral HNSCC is often colonized with microbes such as gram-positive bacteria and yeast, where ligands derived from their wall components have been shown to specifically bind to Toll-like receptor 2 (TLR2). Although TLR2 has been described to be expressed in oral HNSCC, its function has not been well characterized. Here, we show the expression of TLR2 in both HNSCC cell lines and primary patient-derived HNSCC xenograft tumors. Activation of TLR2 with a yeast-derived ligand of TLR2, zymosan, promoted organoid formation in an ex vivo model of tumor growth, while blockade with anti-TLR2 antibodies inhibited organoid formation. Zymosan also induced phosphorylation of ERK and the p65 subunit of NF-κB, which was inhibited in the presence of anti-TLR2 antibodies, indicating that this receptor is functional in HNSCC and that the signaling through these pathways is intact. TLR2 blockade also inhibited growth of human xenografted tumors in immunodeficient mice. In summary, our data show that TLR2 is a functional receptor expressed in human HNSCC that plays a direct pro-tumorigenic role, and that it can be therapeutically targeted with blocking antibodies to reduce tumor growth. PMID:25846753

  3. Rice bran feruloylated oligosaccharides activate dendritic cells via Toll-like receptor 2 and 4 signaling.

    PubMed

    Lin, Chi Chen; Chen, Hua Han; Chen, Yu Kuo; Chang, Hung Chia; Lin, Ping Yi; Pan, I-Hong; Chen, Der-Yuan; Chen, Chuan Mu; Lin, Su Yi

    2014-01-01

    This work presents the effects of feruloylated oligosaccharides (FOs) of rice bran on murine bone marrow-derived dendritic cells (BMDCs) and the potential pathway through which the effects are mediated. We found that FOs induced phenotypic maturation of DCs, as shown by the increased expression of CD40, CD80/CD86 and MHC-I/II molecules. FOs efficiently induced maturation of DCs generated from C3H/HeN or C57BL/6 mice with normal toll-like receptor 4 (TLR-4) or TLR-2 but not DCs from mice with mutated TLR4 or TLR2. The mechanism of action of FOs may be mediated by increased phosphorylation of ERK, p38 and JNK mitogen-activated protein kinase (MAPKs) and increased NF-kB activity, which are important signaling molecules downstream of TLR-4 and TLR-2. These data suggest that FOs induce DCs maturation through TLR-4 and/or TLR-2 and that FOs might have potential efficacy against tumor or virus infection or represent a candidate-adjuvant approach for application in immunotherapy and vaccination. PMID:24762969

  4. Leishmania lipophosphoglycan (LPG) activates NK cells through toll-like receptor-2.

    PubMed

    Becker, Ingeborg; Salaiza, Norma; Aguirre, Magdalena; Delgado, José; Carrillo-Carrasco, Nuria; Kobeh, Laila Gutiérrez; Ruiz, Adriana; Cervantes, Rocely; Torres, Armando Pérez; Cabrera, Nallely; González, Augusto; Maldonado, Carmen; Isibasi, Armando

    2003-08-31

    Toll-like receptors (TLRs) mediate the cellular response to conserved molecular patterns shared by microorganisms. We report that TLR-2 on human NK cells is upregulated and stimulated by Leishmania major lipophosphoglycan (LPG), a phosphoglycan belonging to a family of unique Leishmania glycoconjugates. We found that purified L. major LPG upregulates both mRNA and the membrane expression of TLR-2 in NK cells. Additionally, IFN-gamma and TNF-alpha production and nuclear translocation of NF-kappaB was enhanced. The activation effect was more intense with LPG purified from infectious metacyclic parasites than from noninfectious procyclic Leishmania. Since the difference between the molecules derived from these two stages of the parasite growth cycle lies exclusively in the number of phosphosaccharide repeat domains and in the composition of glycan side chains that branch off these domains, we propose that TLR-2 possibly distinguishes between phosphorylated glycan repeats on LPG molecules. The effect of LPG on cytokine production and on membrane expression of TLR-2 could be blocked with F(ab')2 fragments of the mAb against LPG (WIC 79.3). Confocal microscopy demonstrated the co-localization of LPG and TLR-2 on the NK cell membrane. Binding of LPG to TLR-2 in NK cells was demonstrated by immunoprecipitations done with anti-TLR-2 and anti-LPG mAb followed by immunoblotting with anti-LPG and anti-TLR-2, respectively. Both antibodies recognized the immune complexes. These results suggest that NK cells are capable of recognition of, and activation by, Leishmania LPG through TLR-2, enabling them to participate autonomously in the innate immune system and thereby increasing the effective destruction of the parasite. PMID:12946842

  5. Toll like receptor-2 regulates production of glial-derived neurotrophic factors in murine intestinal smooth muscle cells.

    PubMed

    Brun, Paola; Gobbo, Serena; Caputi, Valentina; Spagnol, Lisa; Schirato, Giulia; Pasqualin, Matteo; Levorato, Elia; Palù, Giorgio; Giron, Maria Cecilia; Castagliuolo, Ignazio

    2015-09-01

    Gut microbiota-innate immunity axis is emerging as a key player to guarantee the structural and functional integrity of the enteric nervous system (ENS). Alterations in the composition of the gut microbiota, derangement in signaling of innate immune receptors such as Toll-like receptors (TLRs), and modifications in the neurochemical coding of the ENS have been associated with a variety of gastrointestinal disorders. Indeed, TLR2 activation by microbial products controls the ENS structure and regulates intestinal neuromuscular function. However, the cellular populations and the molecular mechanisms shaping the plasticity of enteric neurons in response to gut microbes are largely unexplored. In this study, smooth muscle cells (SMCs), enteric glial cells (EGCs) and macrophages/dendritic cells (MΦ/DCs) were isolated and cultured from the ileal longitudinal muscle layer of wild-type (WT) and Toll-like receptor-2 deficient (TLR2(-/-)) mice. Quantification of mRNA levels of neurotrophins at baseline and following stimulation with TLR ligands was performed by RT-PCR. To determine the role of neurotrophins in supporting the neuronal phenotype, we performed co-culture experiments of enteric neurons with the conditioned media of cells isolated from the longitudinal muscle layer of WT or TLR2(-/-) mice. The neuronal phenotype was investigated evaluating the expression of βIII-tubulin, HuC/D, and nNOS by immunocytochemistry. As detected by semi-quantitative RT-PCR, SMCs expressed mRNA coding TLR1-9. Among the tested cell populations, un-stimulated SMCs were the most prominent sources of neurotrophins. Stimulation with TLR2, TLR4, TLR5 and TLR9 ligands further increased Gdnf, Ngf, Bdnf and Lif mRNA levels in SMCs. Enteric neurons isolated from TLR2(-/-) mice exhibited smaller ganglia, fewer HuC/D(+ve) and nNOS(+ve) neurons and shorter βIII-tubulin axonal networks as compared to neurons cultured from WT mice. The co-culture with the conditioned media from WT-SMCs but not with

  6. Escherichia coli Nissle 1917 Distinctively Modulates T-Cell Cycling and Expansion via Toll-Like Receptor 2 Signaling

    PubMed Central

    Sturm, Andreas; Rilling, Klaus; Baumgart, Daniel C.; Gargas, Konstantinos; Abou-Ghazalé, Tay; Raupach, Bärbel; Eckert, Jana; Schumann, Ralf. R.; Enders, Corinne; Sonnenborn, Ulrich; Wiedenmann, Bertram; Dignass, Axel U.

    2005-01-01

    Although the probiotic Escherichia coli strain Nissle 1917 has been proven to be efficacious for the treatment of inflammatory bowel diseases, the underlying mechanisms of action still remain elusive. The aim of the present study was to analyze the effects of E. coli Nissle 1917 on cell cycling and apoptosis of peripheral blood and lamina propria T cells (PBT and LPT, respectively). Anti-CD3-stimulated PBT and LPT were treated with E. coli Nissle 1917-conditioned medium (E. coli Nissle 1917-CM) or heat-inactivated E. coli Nissle 1917. Cyclin B1, DNA content, and caspase 3 expression were measured by flow cytometry to assess cell cycle kinetics and apoptosis. Protein levels of several cell cycle and apoptosis modulators were determined by immunoblotting, and cytokine profiles were determined by cytometric bead array. E. coli Nissle 1917-CM inhibits cell cycling and expansion of peripheral blood but not mucosal T cells. Bacterial lipoproteins mimicked the effect of E. coli Nissle 1917-CM; in contrast, heat-inactivated E. coli Nissle 1917, lipopolysaccharide, or CpG DNA did not alter PBT cell cycling. E. coli Nissle 1917-CM decreased cyclin D2, B1, and retinoblastoma protein expression, contributing to the reduction of T-cell proliferation. E. coli Nissle 1917 significantly inhibited the expression of interleukin-2 (IL-2), tumor necrosis factor α, and gamma interferon but increased IL-10 production in PBT. Using Toll-like receptor 2 (TLR-2) knockout mice, we further demonstrate that the inhibition of PBT proliferation by E. coli Nissle 1917-CM is TLR-2 dependent. The differential reaction of circulating and tissue-bound T cells towards E. coli Nissle 1917 may explain the beneficial effect of E. coli Nissle 1917 in intestinal inflammation. E. coli Nissle 1917 may downregulate the expansion of newly recruited T cells into the mucosa and limit intestinal inflammation, while already activated tissue-bound T cells may eliminate deleterious antigens in order to maintain

  7. Toll-like receptor 2-mediated modulation of growth and functions of regulatory T cells by oral streptococci.

    PubMed

    Saeki, A; Segawa, T; Abe, T; Sugiyama, M; Arimoto, T; Hara, H; Hasebe, A; Ohtani, M; Tanizume, N; Ohuchi, M; Kataoka, H; Kawanami, M; Yokoyama, A; Shibata, K

    2013-08-01

    This study was designed to determine whether oral streptococci modulate the growth and functions of regulatory T cells. Heat-killed cells of wild-type strains of Streptococcus gordonii and Streptococcus mutans induced the Toll-like receptor 2 (TLR2) -mediated nuclear factor-κB (NF-κB) activation, but their lipoprotein-deficient strains did not. Stimulation with these streptococci resulted in a significant increase in the frequency of CD4(+) CD25(+) Foxp3(+) regulatory T cells in splenocytes derived from both TLR2(+/+) and TLR2(-/-) mice, but the level of increase in TLR2(+/+) splenocytes was stronger than that in TLR2(-/-) splenocytes. Both strains of S. gordonii enhanced the proliferation of CD4(+) CD25(+) Foxp3(+) regulatory T cells isolated from TLR2(+/+) mice at the same level as those from TLR2(-/-) mice in an interleukin-2-independent manner. However, wild-type and lipoprotein-deficient strains of both streptococci did not enhance the suppressive activity of the isolated regulatory T cells in vitro, but rather inhibited it. TLR ligands also inhibited the suppressive activity of the regulatory T cells. Inhibition of the suppressive activity was recovered by the addition of anti-IL-6 antibody. Pretreatment of antigen-presenting cells with the NF-κB inhibitor BAY11-7082 enhanced the suppressive activity of the regulatory T cells. These results suggested that interleukin-6 produced by antigen-presenting cells inhibits the suppressive activity of the regulatory T cells. Wild-type strain, but not lipoprotein-deficient strain, of S. gordonii reduced the frequency of CD4(+)  CD25(+)  Foxp3(+) regulatory T cells in the acute infection model, whereas both strains of S. gordonii increased it in the chronic infection model mice. Hence, this study suggests that oral streptococci are capable of modulating the growth and functions of regulatory T cells in vitro and in vivo. PMID:23413817

  8. Toll-like receptor 2 and Toll-like receptor 4-dependent activation of B cells by a polysaccharide from marine fungus Phoma herbarum YS4108.

    PubMed

    Zhang, Xian; Ding, Ran; Zhou, Yan; Zhu, Rui; Liu, Wei; Jin, Lei; Yao, Wenbing; Gao, Xiangdong

    2013-01-01

    Various natural polysaccharides are capable of activating the immune system and therefore can be employed as biological response modifiers in anti-tumor therapy. We previously found a homogenous polysaccharide from the mycelium of marine fungus Phoma herbarum YS4108, named YCP, exhibiting strong in vivo antitumor ability via enhancement of the host immune responses. To further elucidate the role of YCP as a biological response modifier, the immunomodulating activities of YCP in B cells was investigated in the current study. We demonstrated that stimulation of YCP with murine splenic B cells resulted in cell proliferation and generation of IgM antibody response. Binding of YCP to B cells was a direct, saturable and reversible event and required TLR2 and TLR4 involvement. TLR2 and TLR4 defunctionalization by either antibody blocking or allele-specific mutation significantly impaired the B-cell proliferative and IgM responses to YCP. YCP interaction with TLR2 and TLR4 led to the activation of intracellular p38, ERK and JNK, as well as the translocation of transcriptional factor NF-κB into nucleus. Furthermore, specific inhibitors of p38, ERK, JNK and NF-κB could attenuate the ability of YCP to induce B cell proliferation and IgM production. Taken together, this study has indicated for the first time the immunostimulating properties of YCP on B cells through a receptor-mediated mechanism, which involves TLR2 and TLR4 and resultant activation of MAPK and NF-κB signaling pathways, thereby highlighting the role of YCP as an efficacious biological response modifier in oncologic immunotherapy. PMID:23556003

  9. Ligand-induced differential cross-regulation of Toll-like receptors 2, 4 and 5 in intestinal epithelial cells.

    PubMed

    van Aubel, Rémon A M H; Keestra, A Marijke; Krooshoop, Daniëlle J E B; van Eden, Willem; van Putten, Jos P M

    2007-07-01

    Toll-like receptors (TLR) 2, TLR4 and TLR5 are primary mucosal sensors of microbial patterns. Dissection of the cross-talk between TLRs in intestinal cells has thus far been hampered by the lack of functional TLR2 and TLR4 in in vitro model systems. Here we report that the mouse intestinal epithelial cell line mIC(cl2) expresses these TLRs and that receptor expression and function are regulated by environmental TLR stimuli. Our results show that stimulation of TLR5 by bacterial flagellin resulted in upregulated TLR2 and TLR4 mRNA and concomitant sensitization of the cells for subsequent TLR2 (Pam(3)CSK(4)) and TLR4 (LPS) stimulation. Exposure to low amounts of either Pam(3)CSK(4) or LPS in turn downregulated TLR5 mRNA and attenuated subsequent flagellin-mediated NF-kappaB activation, pointing to a negative feedback mechanism. Pam(3)CSK(4) and LPS also downregulated TLR4 mRNA but upregulated TLR2 mRNA and sensitized cells for subsequent TLR2 stimulation. Inhibition of the phosphatidyl-inositol-3-kinase/Akt pathway only affected LPS-mediated TLR cross-talk indicating that differential TLR cross-regulation was conferred via different mechanisms. Together, our results demonstrate that the expression and function of TLR in intestinal cells are highly dynamic and tightly regulated in response to encountered bacterial stimuli. PMID:17493681

  10. Barrier protection via Toll-like receptor 2 signaling in porcine intestinal epithelial cells damaged by deoxynivalnol.

    PubMed

    Gu, Min Jeong; Song, Sun Kwang; Lee, In Kyu; Ko, Seongyeol; Han, Seung Eun; Bae, Suhan; Ji, Sang Yun; Park, Byung-Chul; Song, Ki-Duk; Lee, Hak-Kyo; Han, Seung Hyun; Yun, Cheol-Heui

    2016-01-01

    Intestinal barrier is the first line of defense inside the body and comprises intercellular tight junction (TJ) proteins that regulate paracellular permeability. Deoxynivalenol (DON), a fungal metabolite often found in the contaminated food of domestic animals, is known to impair intestinal barrier function and may be involved in intestinal inflammation. Unlike in humans and mice, the importance of Toll-like receptor (TLR) 2 expressed in porcine intestinal epithelial cells is largely unclear. Therefore, the aim of the present study was to investigate whether TLR2 stimulation enhances intestinal barrier function and protects against DON exposure. We found that the cells treated with TLR2 ligands decreased the epithelial barrier permeability and enhanced TJ protein expression in intestinal porcine epithelial cells (IPEC-J2). In addition, pretreatment with TLR2 ligand, including Pam3CSK4 (PCSK) and lipoteichoic acid from Bacillus subtilis, prevented DON-induced barrier dysfunction by increasing the expression of TJ proteins via the PI3K-Akt-dependent pathway. It is likely that the DON-disrupted intestinal barrier caused biological changes of immune cells in the lamina propria. Thus, we conducted co-culture of differentiated IPEC-J2 cells in the upper well together with peripheral blood mononuclear cells in the bottom well and found that apical TLR2 stimulation of IPEC-J2 cells could alleviate the reduction in cell survival and proliferation of immune cells. Conclusively, TLR2 signaling on intestinal epithelial cells may enhance intestinal barrier function and prevent DON-induced barrier dysfunction of epithelial cells. PMID:26857454

  11. Enhancement of Toll-like receptor 2-mediated immune responses by AIMP1, a novel cytokine, in mouse dendritic cells

    PubMed Central

    Kim, Eugene; Hong, Hye-Jin; Cho, Daeho; Han, Jung Min; Kim, Sunghoon; Kim, Tae Sung

    2011-01-01

    Aminoacyl tRNA synthetase-interacting protein 1 (AIMP1) is a novel pleiotropic cytokine that was identified initially from Meth A-induced fibrosarcoma. It is expressed in the salivary glands, small intestine and large intestine, and is associated with the innate immune system. Previously, we demonstrated that AIMP1 might function as a regulator of innate immune responses by inducing the maturation and activation of bone-marrow-derived dendritic cells (BM-DCs). Toll-like receptors (TLRs) are major pathogen-recognition receptors that are constitutively expressed on DCs. In this study, we attempted to determine whether AIMP1 is capable of regulating the expression of TLRs, and also capable of affecting the TLR-mediated activation of DCs. Expression of TLR1, -2, -3 and -7 was highly induced by AIMP1 treatment in BM-DCs, whereas the expression of other TLRs was either down-regulated or remained unchanged. In particular, the expression of the TLR2 protein was up-regulated by AIMP1 in a time-dependent and dose-dependent manner, and was suppressed upon the addition of BAY11-7082, an inhibitor of nuclear factor-κB. AIMP1 was also shown to increase nuclear factor-κB binding activity. Importantly, AIMP1 enhanced the production of interleukin-6 and interleukin-12, and the expression of co-stimulatory molecules on BM-DCs when combined with lipoteichoic acid or Pam3Cys, two well-known TLR2 agonists. Collectively, these results demonstrate that the AIMP1 protein enhances TLR2-mediated immune responses via the up-regulation of TLR2 expression. PMID:21711348

  12. Lactobacillus acidophilus induces virus immune defence genes in murine dendritic cells by a Toll-like receptor-2-dependent mechanism

    PubMed Central

    Weiss, Gudrun; Rasmussen, Simon; Zeuthen, Louise Hjerrild; Nielsen, Birgit Nøhr; Jarmer, Hanne; Jespersen, Lene; Frøkiær, Hanne

    2010-01-01

    Lactobacilli are probiotics that, among other health-promoting effects, have been ascribed immunostimulating and virus-preventive properties. Certain Lactobacillus spp. have been shown to possess strong interleukin-12 (IL-12) -inducing properties. As IL-12 production depends on the up-regulation of type I interferons (IFNs), we hypothesized that the strong IL-12-inducing capacity of Lactobacillus acidophilus NCFM in murine bone-marrow-derived dendritic cells (DCs) is caused by an up-regulation of IFN-β, which subsequently induces IL-12 and the double-stranded RNA binding Toll-like receptor-3 (TLR-3). The expression of the genes encoding IFN-β, TLR-3, IL-12 and IL-10 in DCs upon stimulation with L. acidophilus NCFM was determined. Lactobacillus acidophilus NCFM induced a much stronger expression of Ifn-β, Il-12 and Il-10 compared with the synthetic double-stranded RNA ligand Poly I:C, whereas the levels of expressed Tlr-3 were similar. Whole genome microarray gene expression analysis revealed that other genes related to viral defence were significantly up-regulated and among the strongest induced genes in DCs stimulated with L. acidophilus NCFM. The ability to induce IFN-β was also detected in another L. acidophilus strain (X37), but was not a property of other probiotic strains tested, i.e. Bifidobacterium bifidum Z9 and Escherichia coli Nissle 1917. The IFN-β expression was markedly reduced in TLR-2−/− DCs, dependent on endocytosis, and the major cause of the induction of Il-12 and Tlr-3 in DCs stimulated with L. acidophilus NCFM. Collectively, our results reveal that certain lactobacilli trigger the expression of viral defence genes in DCs in a TLR-2 manner dependent on IFN-β. PMID:20545783

  13. Lactobacillus acidophilus induces virus immune defence genes in murine dendritic cells by a Toll-like receptor-2-dependent mechanism.

    PubMed

    Weiss, Gudrun; Rasmussen, Simon; Zeuthen, Louise Hjerrild; Nielsen, Birgit Nøhr; Jarmer, Hanne; Jespersen, Lene; Frøkiaer, Hanne

    2010-10-01

    Lactobacilli are probiotics that, among other health-promoting effects, have been ascribed immunostimulating and virus-preventive properties. Certain Lactobacillus spp. have been shown to possess strong interleukin-12 (IL-12) -inducing properties. As IL-12 production depends on the up-regulation of type I interferons (IFNs), we hypothesized that the strong IL-12-inducing capacity of Lactobacillus acidophilus NCFM in murine bone-marrow-derived dendritic cells (DCs) is caused by an up-regulation of IFN-β, which subsequently induces IL-12 and the double-stranded RNA binding Toll-like receptor-3 (TLR-3). The expression of the genes encoding IFN-β, TLR-3, IL-12 and IL-10 in DCs upon stimulation with L. acidophilus NCFM was determined. Lactobacillus acidophilus NCFM induced a much stronger expression of Ifn-β, Il-12 and Il-10 compared with the synthetic double-stranded RNA ligand Poly I:C, whereas the levels of expressed Tlr-3 were similar. Whole genome microarray gene expression analysis revealed that other genes related to viral defence were significantly up-regulated and among the strongest induced genes in DCs stimulated with L. acidophilus NCFM. The ability to induce IFN-β was also detected in another L. acidophilus strain (X37), but was not a property of other probiotic strains tested, i.e. Bifidobacterium bifidum Z9 and Escherichia coli Nissle 1917. The IFN-β expression was markedly reduced in TLR-2(-/-) DCs, dependent on endocytosis, and the major cause of the induction of Il-12 and Tlr-3 in DCs stimulated with L. acidophilus NCFM. Collectively, our results reveal that certain lactobacilli trigger the expression of viral defence genes in DCs in a TLR-2 manner dependent on IFN-β. PMID:20545783

  14. Interaction between Leptospiral Lipopolysaccharide and Toll-like Receptor 2 in Pig Fibroblast Cell Line, and Inhibitory Effect of Antibody against Leptospiral Lipopolysaccharide on Interaction

    PubMed Central

    Guo, Yijie; Fukuda, Tomokazu; Nakamura, Shuichi; Bai, Lanlan; Xu, Jun; Kuroda, Kengo; Tomioka, Rintaro; Yoneyama, Hiroshi; Isogai, Emiko

    2015-01-01

    Leptospiral lipopolysaccharide (L-LPS) has shown potency in activating toll-like receptor 2 (TLR2) in pig fibroblasts (PEFs_NCC1), and causes the expression of proinflammatory cytokines. However, the stimulation by L-LPS was weak eliciting the function of TLR2 sufficiently in pig innate immunity responses during Leptospira infection. In this study, the immune response of pig embryonic fibroblast cell line (PEFs_SV40) was investigated and was found to be the high immune response, thus TLR2 is the predominate receptor of L-LPS in pig cells. Further, we found a strategy using the antibody against L-LPS, to prevent L-LPS interaction with TLR2 in pig cells which could impact on immune activation. PMID:25557825

  15. Patency of Litomosoides sigmodontis infection depends on Toll-like receptor 4 whereas Toll-like receptor 2 signalling influences filarial-specific CD4(+) T-cell responses.

    PubMed

    Rodrigo, Maria B; Schulz, Sandy; Krupp, Vanessa; Ritter, Manuel; Wiszniewsky, Katharina; Arndts, Kathrin; Tamadaho, Ruth S E; Endl, Elmar; Hoerauf, Achim; Layland, Laura E

    2016-04-01

    BALB/c mice develop a patent state [release of microfilariae (Mf), the transmission life-stage, into the periphery] when exposed to the rodent filariae Litomosoides sigmodontis. Interestingly, only a portion of the infected mice become patent, which reflects the situation in human individuals infected with Wuchereria bancrofti. Since those individuals had differing filarial-specific profiles, this study compared differences in immune responses between Mf(+) and Mf(-) infected BALB/c mice. We demonstrate that cultures of total spleen or mediastinal lymph node cells from Mf(+) mice produce significantly more interleukin-5 (IL-5) to filarial antigens but equal levels of IL-10 when compared with Mf(-) mice. However, isolated CD4(+) T cells from Mf(+) mice produced significantly higher amounts of all measured cytokines, including IL-10, when compared with CD4(+) T-cell responses from Mf(-) mice. Since adaptive immune responses are influenced by triggering the innate immune system we further studied the immune profiles and parasitology in infected Toll-like receptor-2-deficient (TLR2(-/-)) and TLR4(-/-) BALB/c mice. Ninety-three per cent of L. sigmodontis-exposed TLR4(-/-) BALB/c mice became patent (Mf(+)) although worm numbers remained comparable to those in Mf(+) wild-type controls. Lack of TLR2 had no influence on patency outcome or worm burden but infected Mf(+) mice had significantly lower numbers of Foxp3(+) regulatory T cells and dampened peripheral immune responses. Interestingly, in vitro culturing of CD4(+) T cells from infected wild-type mice with granulocyte-macrophage colony-stimulating factor-derived TLR2(-/-) dendritic cells resulted in an overall diminished cytokine profile to filarial antigens. Hence, triggering TLR4 or TLR2 during chronic filarial infection has a significant impact on patency and efficient CD4(+) T-cell responses, respectively. PMID:26714796

  16. Toll-Like Receptor 2 Targeted Rectification of Impaired CD8+ T Cell Functions in Experimental Leishmania donovani Infection Reinstates Host Protection

    PubMed Central

    Bandyopadhyay, Syamdas; Kar Mahapatra, Santanu; Paul Chowdhury, Bidisha; Kumar Jha, Mukesh; Das, Shibali; Halder, Kuntal; Bhattacharyya Majumdar, Suchandra; Saha, Bhaskar; Majumdar, Subrata

    2015-01-01

    Leishmania donovani, a protozoan parasite, causes the disease visceral leishmanisis (VL), characterized by inappropriate CD8+ T-cell activation. Therefore, we examined whether the Toll-like Receptor 2 (TLR2) ligand Ara-LAM, a cell wall glycolipid from non-pathogenic Mycobacterium smegmatis, would restore CD8+ T-cell function during VL. We observed that by efficient upregulation of TLR2 signaling-mediated NF-κB translocation and MAPK signaling in CD8+ T-cells (CD25+CD28+IL-12R+IFN-γR+), Ara-LAM triggered signaling resulted in the activation of T-bet, which in turn, induced transcription favourable histone modification at the IFN-γ, perforin, granzyme-B promoter regions in CD8+ T-cells. Thus, we conclude that Ara-LAM induced efficient activation of effector CD8+ T-cells by upregulating the expression of IFN-γ, perforin and granzyme-B in an NF-κB and MAPK induced T-bet dependent manner in VL. PMID:26559815

  17. Toll-like receptor 2-dependent induction of vitamin A-metabolizing enzymes in dendritic cells promotes T regulatory responses and inhibits autoimmunity.

    PubMed

    Manicassamy, Santhakumar; Ravindran, Rajesh; Deng, Jiusheng; Oluoch, Herold; Denning, Timothy L; Kasturi, Sudhir Pai; Rosenthal, Kristen M; Evavold, Brian D; Pulendran, Bali

    2009-04-01

    Immune sensing of a microbe occurs via multiple receptors. How signals from different receptors are coordinated to yield a specific immune response is poorly understood. We show that two pathogen recognition receptors, Toll-like receptor 2 (TLR2) and dectin-1, recognizing the same microbial stimulus, stimulate distinct innate and adaptive responses. TLR2 signaling induced splenic dendritic cells (DCs) to express the retinoic acid metabolizing enzyme retinaldehyde dehydrogenase type 2 and interleukin-10 (IL-10) and to metabolize vitamin A and stimulate Foxp3(+) T regulatory cells (T(reg) cells). Retinoic acid acted on DCs to induce suppressor of cytokine signaling-3 expression, which suppressed activation of p38 mitogen-activated protein kinase and proinflammatory cytokines. Consistent with this finding, TLR2 signaling induced T(reg) cells and suppressed IL-23 and T helper type 17 (T(H)17) and T(H)1-mediated autoimmune responses in vivo. In contrast, dectin-1 signaling mostly induced IL-23 and proinflammatory cytokines and augmented T(H)17 and T(H)1-mediated autoimmune responses in vivo. These data define a new mechanism for the systemic induction of retinoic acid and immune suppression against autoimmunity. PMID:19252500

  18. NOD2 Stimulation by Staphylococcus aureus-Derived Peptidoglycan Is Boosted by Toll-Like Receptor 2 Costimulation with Lipoproteins in Dendritic Cells

    PubMed Central

    Demircioglu, Dogan Doruk; Kühner, Daniel; Menz, Sarah; Bender, Annika; Autenrieth, Ingo B.; Bodammer, Peggy; Lamprecht, Georg; Götz, Friedrich; Frick, Julia-Stefanie

    2014-01-01

    Mutations in the nucleotide-binding oligomerization domain-containing protein 2 (NOD2) play an important role in the pathogenesis of Crohn's disease. NOD2 is an intracellular pattern recognition receptor (PRR) that senses bacterial peptidoglycan (PGN) structures, e.g., muramyl dipeptide (MDP). Here we focused on the effect of more-cross-linked, polymeric PGN fragments (PGNpol) in the activation of the innate immune system. In this study, the effect of combined NOD2 and Toll-like receptor 2 (TLR2) stimulation was examined compared to single stimulation of the NOD2 receptor alone. PGNpol species derived from a lipoprotein-containing Staphylococcus aureus strain (SA113) and a lipoprotein-deficient strain (SA113 Δlgt) were isolated. While PGNpol constitutes a combined NOD2 and TLR2 ligand, lipoprotein-deficient PGNpolΔlgt leads to activation of the immune system only via the NOD2 receptor. Murine bone marrow-derived dendritic cells (BMDCs), J774 cells, and Mono Mac 6 (MM6) cells were stimulated with these ligands. Cytokines (interleukin-6 [IL-6], IL-12p40, and tumor necrosis factor alpha [TNF-α]) as well as DC activation and maturation parameters were measured. Stimulation with PGNpolΔlgt did not lead to enhanced cytokine secretion or DC activation and maturation. However, stimulation with PGNpol led to strong cytokine secretion and subsequent DC maturation. These results were confirmed in MM6 and J774 cells. We showed that the NOD2-mediated activation of DCs with PGNpol was dependent on TLR2 costimulation. Therefore, signaling via both receptors leads to a more potent activation of the immune system than that with stimulation via each receptor alone. PMID:25156723

  19. Roles of Toll-like receptors 2 and 6 in the inflammatory response to Mycoplasma gallisepticum infection in DF-1 cells and in chicken embryos.

    PubMed

    Tian, Wei; Zhao, Chengcheng; Hu, Qingchuang; Sun, Jianjun; Peng, Xiuli

    2016-06-01

    While Mycoplasma gallisepticum (MG) is a major pathogen that causes chronic respiratory diseases in chicken, the molecular mechanism of MG infection is not clear. In this study, we investigated the roles of Toll-like receptor 2 (TLR2) and 6 (TLR6) in MG infection. We found that TLR2 type 2 (TLR2-2) and TLR6 had differential expressions in chicken embryo fibroblasts (DF-1 cells), where TLR6 was highly expressed, but TLR2-2 was barely expressed. Upon MG infection, TLR6 expression was upregulated, followed by upregulation of downstream factors, MyD88, NF-κB, IL2, IL6, and TNF-α. Knockdown of TLR6 expression by shRNA abolished the MG-induced inflammatory responses. More interestingly, in the presence of TLR6, TLR2-2 didn't respond to MG infection in DF-1 cells. When TLR6 was knocked down by shRNA, however, TLR2 was upregulated upon MG infection, which was followed by upregulation of proinflammatory genes. Finally, we tested effects of the MG infection on expression of TLR2-2 and TLR6 in the lungs and trachea tissues of chicken embryos. We found both TLR2-2 and TLR6 were upregulated upon MG infection, followed by upregulation of the downstream NF-κB-mediated inflammatory responses. This study was the first to report the differential roles of TLR2-2 and TLR6 in MG-infected DF-1 cells and chicken embryos. PMID:26797426

  20. Characterization, expression analysis and localization pattern of toll-like receptor 1 (tlr1) and toll-like receptor 2 (tlr2) genes in grass carp Ctenopharyngodon idella.

    PubMed

    He, L B; Wang, H; Luo, L F; Jiang, S H; Liu, L Y; Li, Y M; Huang, R; Liao, L J; Zhu, Z Y; Wang, Y P

    2016-08-01

    In this study, the toll-like receptor 1 (tlr1) and toll-like receptor 2 (tlr2) genes of grass carp Ctenopharyngodon idella were cloned and characterized. tlr1 and tlr2 were found to be highly expressed in immune system organs such as spleen, middle kidney and heart kidney. The expression level of tlr1 and tlr2 was found to be up-regulated at the later stage of viral challenge process. Moreover, subcellular localization indicated that Tlr1 and Tlr2 shared similar localization pattern and both of them may locate in the plasma membrane of transfected cells. PMID:27221024

  1. Pneumococal Surface Protein A (PspA) Regulates Programmed Death Ligand 1 Expression on Dendritic Cells in a Toll-Like Receptor 2 and Calcium Dependent Manner

    PubMed Central

    Vashishta, Mohit; Khan, Naeem; Mehto, Subhash; Sehgal, Devinder; Natarajan, Krishnamurthy

    2015-01-01

    Pneumonia leads to high mortality in children under the age of five years worldwide, resulting in close to 20 percent of all deaths in this age group. Therefore, investigations into host-pathogen interactions during Streptococcus pneumoniae infection are key in devising strategies towards the development of better vaccines and drugs. To that end, in this study we investigated the role of S. pneumoniae and its surface antigen Pneumococcal surface protein A (PspA) in modulating the expression of co-stimulatory molecule Programmed Death Ligand 1 (PD-L1) expression on dendritic cells (DCs) and the subsequent effects of increased PD-L1 on key defence responses. Our data indicate that stimulation of DCs with PspA increases the surface expression of PD-L1 in a time and dose dependent manner. Characterization of mechanisms involved in PspA induced expression of PD-L1 indicate the involvement of Toll-Like Receptor 2 (TLR2) and calcium homeostasis. While calcium release from intracellular stores positively regulated PD-L1 expression, calcium influx from external milieu negatively regulated PD-L1 expression. Increase in PD-L1 expression, when costimulated with PspA and through TLR2 was higher than when stimulated with PspA or through TLR2. Further, knockdown of TLR2 and the intermediates in the TLR signaling machinery pointed towards the involvement of a MyD88 dependent pathway in PspA induced PD-L1 expression. Incubation of DCs with S. pneumoniae resulted in the up-regulation of PD-L1 expression, while infection with a strain lacking surface PspA failed to do so. Our data also suggests the role of PspA in ROS generation. These results suggest a novel and specific role for PspA in modulating immune responses against S. pneumoniae by regulating PD-L1 expression. PMID:26214513

  2. Toll-like receptor 2 mediates mesenchymal stem cell-associated myocardial recovery and VEGF production following acute ischemia-reperfusion injury

    PubMed Central

    Abarbanell, Aaron M.; Wang, Yue; Herrmann, Jeremy L.; Weil, Brent R.; Poynter, Jeffrey A.; Manukyan, Mariuxi C.

    2010-01-01

    Toll-like receptor 2 (TLR2), a key component of the innate immune system, is linked to inflammation and myocardial dysfunction after ischemia-reperfusion injury (I/R). Treatment of the heart with mesenchymal stem cells (MSCs) is known to improve myocardial recovery after I/R in part by paracrine factors such as VEGF. However, it is unknown whether TLR2 activation on the MSCs affects MSC-mediated myocardial recovery and VEGF production. We hypothesized that the knockout of TLR2 on the MSCs (TLR2KO MSCs) would 1) improve MSC-mediated myocardial recovery and 2) increase myocardial and MSC VEGF release. With the isolated heart perfusion system, Sprague-Dawley rat hearts were subjected to I/R and received one of three intracoronary treatments: vehicle, male wild-type MSCs (MWT MSCs), or TL2KO MSCs. All treatments were performed immediately before ischemia, and heart function was measured continuously. Postreperfusion, heart homogenates were analyzed for myocardial VEGF production. Contrary to our hypothesis, only MWT MSC treatment significantly improved the recovery of left ventricular developed pressure and the maximal positive and negative values of the first derivative of pressure. In addition, VEGF production was greatest in hearts treated with MWT MSCs. To investigate MSC production of VEGF, MSCs were activated with TNF in vitro and the supernatants collected for ELISA. In vitro basal levels of MSC VEGF production were similar. However, with TNF activation, MWT MSCs produced significantly more VEGF, whereas activated TLR2KO MSC production of VEGF was unchanged. Finally, we observed that MWT MSCs proliferated more rapidly than TLR2KO MSCs. These data indicate that TLR2 may be essential to MSC-mediated myocardial recovery and VEGF production. PMID:20173040

  3. Histamine induces Toll-like receptor 2 and 4 expression in endothelial cells and enhances sensitivity to Gram-positive and Gram-negative bacterial cell wall components

    PubMed Central

    Talreja, Jaya; Kabir, Mohammad H; Filla, Michael B; Stechschulte, Daniel J; Dileepan, Kottarappat N

    2004-01-01

    Histamine is a major inflammatory molecule released from the mast cell, and is known to activate endothelial cells. However, its ability to modulate endothelial responses to bacterial products has not been evaluated. In this study we determined the ability of histamine to modulate inflammatory responses of endothelial cells to Gram-negative and Gram-positive bacterial cell wall components and assessed the role of Toll-like receptors (TLR) 2 and 4 in the co-operation between histamine and bacterial pathogens. Human umbilical vein endothelial cells (HUVEC) were incubated with lipopolysaccharide (LPS), lipoteichoic acid (LTA), or peptidoglycan (PGN) in the presence or absence of histamine, and the expression and release of interleukin-6 (IL-6), and NF-κB translocation were determined. The effect of histamine on the expression of mRNA and proteins for TLR2 and TLR4 was also evaluated. Incubation of HUVEC with LPS, LTA and PGN resulted in marked enhancement of IL-6 mRNA expression and IL-6 secretion. Histamine alone markedly enhanced IL-6 mRNA expression in HUVEC, but it did not stimulate proportional IL-6 release. When HUVEC were incubated with LPS, LTA, or PGN in the presence of histamine marked amplification of both IL-6 production and mRNA expression was noted. HUVEC constitutively expressed TLR2 and TLR4 mRNA and proteins, and these were further enhanced by histamine. The expression of mRNAs encoding MD-2 and MyD88, the accessory molecules associated with TLR signalling, were unchanged by histamine treatment. These results demonstrate that histamine up-regulates the expression of TLR2 and TLR4 and amplifies endothelial cell inflammatory responses to Gram-negative and Gram-positive bacterial components. PMID:15379983

  4. Toll-like receptors 2 and 4 mediate the capacity of mesenchymal stromal cells to support the proliferation and differentiation of CD34{sup +} cells

    SciTech Connect

    Wang, Xingbing; Cheng, Qiansong; Li, Lailing; Wang, Jian; Xia, Liang; Xu, Xiucai; Sun, Zimin

    2012-02-01

    Bone marrow derived-mesenchymal stromal cells (BM-MSCs) are multipotent, nonhematopoietic progenitors in a hematopoietic microenvironment and indispensable for regulating hematopoiesis. Several studies have reported that toll-like receptors (TLRs) are expressed in mesenchymal stromal cells (MSCs) to modulate their biological functions. In this study, we investigated the possible role(s) of TLRs in mediating the hematopoiesis-supporting role of human BM-MSCs. Human BM-MSCs were analyzed for mRNA expression of TLR1-10 by reverse transcription-polymerase chain reaction. TLR1-6, but not TLR7-10 were expressed by BM-MSCs. The protein expression of TLR2 and TLR4 was also confirmed by flow cytometry. We further explored the role of TLR2 and TLR4 in mediating the capacity of BM-MSCs to support the proliferation and differentiation of CD34{sup +} hematopoietic stem/progenitor cells obtained from cord blood. BM-MSCs increased proliferation of CD34{sup +} cells and promoted the differentiation towards the myeloid lineage 7 or 14 days after co-culture, as well as colony formation by those cells and the production of interleukin 1 (IL-1), IL-8, IL-11, stem cell factor (SCF), granulocyte colony-stimulating factor (CSF), macrophage CSF and granulocyte-macrophage CSF, if MSCs had been stimulated with TLR2 agonist (PAM{sub 3}CSK{sub 4}) or TLR4 agonist (LPS). Interestingly, although these effects were elevated in a different degree, a synergistic effect was not observed in BM-MSCs co-stimulated with PAM{sub 3}CSK{sub 4} and LPS. Together, our findings suggest that TLR2 and TLR4 signaling may indirectly regulate hematopoiesis by modulating BM-MSCs' functions. The increased hematopoietic proliferation and differentiation could be mediated, at least in part, by augmented hematopoiesis-related cytokine production of BM-MSCs.

  5. Production of autoantibodies by murine B-1a cells stimulated with Helicobacter pylori urease through toll-like receptor 2 signaling.

    PubMed

    Kobayashi, Fumiko; Watanabe, Eri; Nakagawa, Yohko; Yamanishi, Shingo; Norose, Yoshihiko; Fukunaga, Yoshitaka; Takahashi, Hidemi

    2011-12-01

    Helicobacter pylori infection is associated with several autoimmune diseases, in which autoantibody-producing B cells must be activated. Among these B cells, CD5-positive B-1a cells from BALB/c mice were confirmed to secrete autoantibodies when cocultured with purified H. pylori urease in the absence of T cells. To determine the mechanisms for autoantibody production, CD5-positive B-1a cells were sorted from murine spleen cells and stimulated with either purified H. pylori urease or H. pylori coated onto plates (referred to hereafter as plate-coated H. pylori), and autoantibody production was measured by enzyme-linked immunosorbent assay (ELISA). Complete urease was not secreted from H. pylori but was visually expressed over the bacterium-like endotoxin. Urease-positive plated-coated H. pylori stimulated B-1a cells to produce autoantibodies, although urease-deficient isotype-matched H. pylori did not. Autoantibody secretion by B-1a cells was inhibited when bacteria were pretreated with anti-H. pylori urease-specific antibody having neutralizing ability against urease enzymatic activity but not with anti-H. pylori urease-specific antibody without neutralizing capacity. The B-1a cells externally express various Toll-like receptors (TLRs): TLR1, TLR2, TLR4, and TLR6. Among the TLRs, blocking of TLR2 on B-1a cells with a specific monoclonal antibody (MAb), T2.5, inhibited autoantibody secretion when B-1a cells were stimulated with plate-coated H. pylori or H. pylori urease. Moreover, B-1a cells from TLR2-knockout mice did not produce those autoantibodies. The present study provides evidence that functional urease expressed on the surface of H. pylori will directly stimulate B-1a cells via innate TLR2 to produce various autoantibodies and may induce autoimmune disorders. PMID:21947775

  6. A study of the expression and localization of toll-like receptors 2 and 9 in different grades of cervical intraepithelial neoplasia and squamous cell carcinoma.

    PubMed

    Ghosh, Arnab; Dasgupta, Anindya; Bandyopadhyay, Arghya; Ghosh, TapanKumar; Dalui, Rabindranath; Biswas, Subhas; Banerjee, Uma; Basu, Anupam

    2015-12-01

    TLRs are important molecules of innate immune response, those play central role in host pathogen interaction and recognition through pathogen associated molecular patterns (PAMPs). Previous studies have indicated the role of TLRs in many human malignancy and cervical cancer in terms of viral recognition and inflammatory changes in-vivo. The objective of this study was to evaluate the expression and localization of toll-like receptor (TLR) 2 and TLR9 in preinvasive and invasive cervical cancer patients and to investigate its use as a probable diagnostic tool for better management cervical cancer. This single institution study includes individuals with normal, precancerous lesions, cervical intraepithelial neoplastic (CIN) and invasive squamous cell carcinoma (SCC) of the cervix. Upon confirmation by histopathology, fluorescence based immunohistochemistry was performed in all patients for TLR2 and TLR9, followed by semi-quantitative estimation of the staining intensity and grade of expression. The expression pattern of TLR2 and TLR9 does not vary greatly from normal to precancerous lesions, but a significant variation was observed in advance stages, i.e. squamous cell carcinoma of the uterine cervix. Additionally the expression increased marginally in higher grades. In spite of their low difference in expression along different stages of cervical cancer, both TLR2 and TLR9 could detect the disease at an advance stages as depicted by the receiver operator characteristics curve analysis. PMID:26569074

  7. Hyaluronic acid fragments enhance the inflammatory and catabolic response in human intervertebral disc cells through modulation of toll-like receptor 2 signalling pathways

    PubMed Central

    2013-01-01

    Introduction Intervertebral disc (IVD) degeneration is characterized by extracellular matrix breakdown and is considered to be a primary cause of discogenic back pain. Although increases in pro-inflammatory cytokine levels within degenerating discs are associated with discogenic back pain, the mechanisms leading to their overproduction have not yet been elucidated. As fragmentation of matrix components occurs during IVD degeneration, we assessed the potential involvement of hyaluronic acid fragments (fHAs) in the induction of inflammatory and catabolic mediators. Methods Human IVD cells isolated from patient biopsies were stimulated with fHAs (6 to 12 disaccharides) and their effect on cytokine and matrix degrading enzyme production was assessed using quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). The involvement of specific cell surface receptors and signal transduction pathways in mediating the effects of fHAs was tested using small interfering RNA (siRNA) approaches and kinase inhibition assays. Results Treatment of IVD cells with fHAs significantly increased mRNA expression levels of interleukin (IL)-1β, IL-6, IL-8, cyclooxygenase (COX)-2, matrix metalloproteinase (MMP)-1 and -13. The stimulatory effects of fHAs on IL-6 protein production were significantly impaired when added to IVD cells in combination with either Toll-like receptor (TLR)-2 siRNA or a TLR2 neutralizing antibody. Furthermore, the ability of fHAs to enhance IL-6 and MMP-3 protein production was found to be dependent on the mitogen-activated protein (MAP) kinase signaling pathway. Conclusions These findings suggest that fHAs may have the potential to mediate IVD degeneration and discogenic back pain through activation of the TLR2 signaling pathway in resident IVD cells. PMID:23968377

  8. Toll-Like Receptor 2 Mediates Proliferation, Survival, NF-κB Translocation, and Cytokine mRNA Expression in LIF-Maintained Mouse Embryonic Stem Cells

    PubMed Central

    Taylor, Tammi; Kim, Young-June; Ou, Xuan; Derbigny, Wilbert

    2010-01-01

    Toll-like receptor (TLR) activation is important in immune responses and in differentiation of hematopoietic stem cells. We detected mRNA expression of TLRs 1, 2, 3, 5, and 6, but not TLRs 4, 7, 8, and 9 in murine (m)ESC line E14, and noted high cell surface protein expression of TLR2, but not TLR4, for mESC lines R1, CGR8, and E14. ESC lines were cultured in the presence of leukemia inhibitory factor (LIF). Pam3Cys enhanced proliferation and survival of the 3 ESC lines. In contrast, lipopolysaccharide (LPS) decreased proliferation and survival. Pam3Cys and LPS effects on proliferation and survival were blocked by antibody to TLR2, suggesting that effects of both Pam3Cys and LPS on these mESC lines were likely mediated through TLR2. E14 ESC line expressed MyD88. Pam3Cys stimulation of E14 ESCs was associated with induced NF-κB translocation, enhanced phosphorylation of IKK-α/β, and enhanced mRNA, but not protein, expression of tumor necrosis factor-α, interferon-γ, and IL-6. TLR2 activation by Pam3Cys or inhibition by LPS was not associated with changes in morphology or expression of alkaline phosphatase, Oct4, SSEA1, KLF4, or Sox2, markers of undifferentiated mESCs. Our studies identify TLR2 as present and functional in E14, R1, and CGR8 mESC lines. PMID:20132051

  9. TLR4 Deters Perfusion Recovery and Upregulates Toll-like Receptor 2 (TLR2) in Ischemic Skeletal Muscle and Endothelial Cells

    PubMed Central

    Xu, Jia; Benabou, Kelly; Cui, Xiangdong; Madia, Marissa; Tzeng, Edith; Billiar, Timothy; Watkins, Simon; Sachdev, Ulka

    2015-01-01

    Toll-like receptors (TLRs) play an important role in regulating muscle regeneration and angiogenesis in response to ischemia. TLR2 knockout mice exhibit pronounced skeletal muscle necrosis and abnormal vessel architecture after femoral artery ligation, suggesting that TLR2 signaling is protective during ischemia. TLR4, an important receptor in inflammatory signaling, has been shown to regulate TLR2 expression in other systems. We hypothesize that a similar relationship between TLR4 and TLR2 may exist in hindlimb ischemia in which TLR4 upregulates TLR2, a mediator of angiogenesis and perfusion recovery. We examined the expression of TLR2 in unstimulated and in TLR-agonist treated endothelial cells (ECs). TLR2 expression (low in control ECs) was upregulated by lipopolysaccharide, the danger signal high mobility group box-1, and hypoxia in a TLR4-dependent manner. Endothelial tube formation on Matrigel as well as EC permeability was assessed as in vitro measures of angiogenesis. Time-lapse imaging demonstrated that ECs lacking TLR4 formed more tubes, whereas TLR2 knockdown ECs exhibited attenuated tube formation. TLR2 also mediated EC permeability, an initial step during angiogenesis, in response to high-mobility group box-1 (HMGB1) that is released by cells during hypoxic injury. In vivo, ischemia-induced upregulation of TLR2 required intact TLR4 signaling that mediated systemic inflammation, as measured by local and systemic IL-6 levels. Similar to our in vitro findings, vascular density and limb perfusion were both enhanced in the absence of TLR4 signaling, but not if TLR2 was deleted. These findings indicate that TLR2, in the absence of TLR4, improves angiogenesis and perfusion recovery in response to ischemia. PMID:26181630

  10. Oxidized low density lipoprotein induces bone morphogenetic protein-2 in coronary artery endothelial cells via Toll-like receptors 2 and 4.

    PubMed

    Su, Xin; Ao, Lihua; Shi, Yi; Johnson, Thomas R; Fullerton, David A; Meng, Xianzhong

    2011-04-01

    Vascular calcification is a common complication in atherosclerosis. Bone morphogenetic protein-2 (BMP-2) plays an important role in atherosclerotic vascular calcification. The aim of this study was to determine the effect of oxidized low density lipoprotein (oxLDL) on BMP-2 protein expression in human coronary artery endothelial cells (CAECs), the roles of Toll-like receptor (TLR) 2 and TLR4 in oxLDL-induced BMP-2 expression, and the signaling pathways involved. Human CAECs were stimulated with oxLDL. The roles of TLR2 and TLR4 in oxLDL-induced BMP-2 expression were determined by pretreatment with neutralizing antibody, siRNA, and overexpression. Stimulation with oxLDL increased cellular BMP-2 protein levels in a dose-dependent manner (40-160 μg/ml). Pretreatment with neutralizing antibodies against TLR2 and TLR4 or silencing of these two receptors reduced oxLDL-induced BMP-2 expression. Overexpression of TLR2 and TLR4 enhanced the cellular BMP-2 response to oxLDL. Furthermore, oxLDL was co-localized with TLR2 and TLR4. BMP-2 expression was associated with activation of nuclear factor-κB (NF-κB), p38 mitogen-activated protein kinase (MAPK), and extracellular signal-regulated kinase (ERK)1/2. Inhibition of NF-κB and ERK1/2 reduced BMP-2 expression whereas inhibition of p38 MAPK had no effect. In conclusion, oxLDL induces BMP-2 expression through TLR2 and TLR4 in human CAECs. The NF-κB and ERK1/2 pathways are involved in the signaling mechanism. These findings underscore an important role for TLR2 and TLR4 in mediating the BMP-2 response to oxLDL in human CAECs and indicate that these two immunoreceptors contribute to the mechanisms underlying atherosclerotic vascular calcification. PMID:21325271

  11. Substance P primes lipoteichoic acid- and Pam3CysSerLys4-mediated activation of human mast cells by up-regulating Toll-like receptor 2.

    PubMed

    Tancowny, Brian P; Karpov, Victor; Schleimer, Robert P; Kulka, Marianna

    2010-10-01

    Substance P (SP) is a neuropeptide with neuroimmunoregulatory activity that may play a role in susceptibility to infection. Human mast cells, which are important in innate immune responses, were analysed for their responses to pathogen-associated molecules via Toll-like receptors (TLRs) in the presence of SP. Human cultured mast cells (LAD2) were activated by SP and TLR ligands including lipopolysaccharide (LPS), Pam3CysSerLys4 (Pam3CSK4) and lipoteichoic acid (LTA), and mast cell leukotriene and chemokine production was assessed by enzyme-linked immunosorbent assay (ELISA) and gene expression by quantitative PCR (qPCR). Mast cell degranulation was determined using a β-hexosaminidase (β-hex) assay. SP treatment of LAD2 up-regulated mRNA for TLR2, TLR4, TLR8 and TLR9 while anti-immunoglobulin E (IgE) stimulation up-regulated expression of TLR4 only. Flow cytometry and western blot confirmed up-regulation of TLR2 and TLR8. Pretreatment of LAD2 with SP followed by stimulation with Pam3CSK4 or LTA increased production of leukotriene C4 (LTC(4) ) and interleukin (IL)-8 compared with treatment with Pam3CSK4 or LTA alone (>2-fold; P<0·01). SP alone activated 5-lipoxygenase (5-LO) nuclear translocation but also augmented Pam3CSK4 and LTA-mediated 5-LO translocation. Pam3CSK4, LPS and LTA did not induce LAD2 degranulation. SP primed LTA and Pam3CSK4-mediated activation of JNK, p38 and extracellular-signal-regulated kinase (ERK) and activated the nuclear translocation of c-Jun, nuclear factor (NF)-κB, activating transcription factor 2 (ATF-2) and cyclic-AMP-responsive element binding protein (CREB) transcription factors. Pretreatment with SP followed by LTA stimulation synergistically induced production of chemokine (C-X-C motif) ligand 8 (CXCL8)/IL-8, chemokine (C-C motif) ligand 2 (CCL2)/monocyte chemotactic protein 1 (MCP-1), tumour necrosis factor (TNF) and IL-6 protein. SP primes TLR2-mediated activation of human mast cells by up-regulating TLR expression and

  12. Structure-Activity Relationships in Toll-like Receptor-2 agonistic Diacylthioglycerol Lipopeptides

    PubMed Central

    Wu, Wenyan; Li, Rongti; Malladi, Subbalakshmi S.; Warshakoon, Hemamali J.; Kimbrell, Matthew R.; Amolins, Michael W.; Ukani, Rehman; Datta, Apurba; David, Sunil A.

    2010-01-01

    The N-termini of bacterial lipoproteins are acylated with a (S)-(2,3-bisacyloxypropyl)cysteinyl residue. Lipopeptides derived from lipoproteins activate innate immune responses by engaging Toll-like receptor 2 (TLR2), and are highly immunostimulatory and yet without apparent toxicity in animal models. The lipopeptides may therefore be useful as potential immunotherapeutic agents. Previous structure-activity relationships in such lipopeptides have largely been obtained using murine cells and it is now clear that significant species-specific differences exist between human and murine TLR responses. We have examined in detail the role of the highly conserved Cys residue as well as the geometry and stereochemistry of the Cys-Ser dipeptide unit. (R)-diacylthioglycerol analogues are maximally active in reporter gene assays using human TLR2. The Cys-Ser dipeptide unit represents the minimal part-structure, but its stereochemistry was found not to be a critical determinant of activity. The thioether bridge between the diacyl and dipeptide units is crucial, and replacement by an oxoether bridge results in a dramatic decrease in activity. PMID:20302301

  13. Toll-Like Receptor 2 and NLRP3 Cooperate To Recognize a Functional Bacterial Amyloid, Curli

    PubMed Central

    Rapsinski, Glenn J.; Wynosky-Dolfi, Meghan A.; Oppong, Gertrude O.; Tursi, Sarah A.; Wilson, R. Paul; Brodsky, Igor E.

    2014-01-01

    Amyloids are proteins with cross-β-sheet structure that contribute to pathology and inflammation in complex human diseases, including Alzheimer's disease, Parkinson's disease, type II diabetes, and secondary amyloidosis. Bacteria also produce amyloids as a component of their extracellular matrix during biofilm formation. Recently, several human amyloids were shown to activate the NLRP3 inflammasome, leading to the activation of caspase 1 and production of interleukin 1β (IL-1β). In this study, we investigated the activation of the NLRP3 inflammasome by bacterial amyloids using curli fibers, produced by Salmonella enterica serovar Typhimurium and Escherichia coli. Here, we show that curli fibers activate the NLRP3 inflammasome, leading to the production of IL-1β via caspase 1 activation. Investigation of the underlying mechanism revealed that activation of Toll-like receptor 2 (TLR2) by curli fibers is critical in the generation of IL-1β. Interestingly, activation of the NLRP3 inflammasome by curli fibers or by amyloid β of Alzheimer's disease does not cause cell death in macrophages. Overall, these data identify a cross talk between TLR2 and NLRP3 in response to the bacterial amyloid curli and generation of IL-1β as a product of this interaction. PMID:25422268

  14. Release of Toll-Like Receptor-2-Activating Bacterial Lipoproteins in Shigella flexneri Culture Supernatants

    PubMed Central

    Aliprantis, Antonios O.; Weiss, David S.; Radolf, Justin D.; Zychlinsky, Arturo

    2001-01-01

    Shigella spp. cause dysentery, a severe form of bloody diarrhea. Apoptosis, or programmed cell death, is induced during Shigella infections and has been proposed to be a key event in the pathogenesis of dysentery. Here, we describe a novel cytotoxic activity in the sterile-culture supernatants of Shigella flexneri. An identical activity was identified in purified S. flexneri endotoxin, defined here as a mixture of lipopolysaccharide (LPS) and endotoxin-associated proteins (EP). Separation of endotoxin into EP and LPS revealed the activity to partition exclusively to the EP fraction. Biochemical characterization of S. flexneri EP and culture supernatants, including enzymatic deactivation, reverse-phase high-pressure liquid chromatography analysis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and a Toll-like receptor-2 (TLR2) activation assay, indicates that the cytotoxic component is a mixture of bacterial lipoproteins (BLP). We show that biologically active BLP are liberated into culture supernatants of actively growing S. flexneri. In addition, our data indicate that BLP, and not LPS, are the component of endotoxin of gram-negative organisms responsible for activating TLR2. The activation of apoptosis by BLP shed from S. flexneri is discussed as a novel aspect of the interaction of bacteria with the host. PMID:11553567

  15. Effect of Chlamydia pneumoniae on Cellular ATP Content in Mouse Macrophages: Role of Toll-Like Receptor 2

    PubMed Central

    Yaraei, Kambiz; Campbell, Lee Ann; Zhu, Xiaodong; Liles, W. Conrad; Kuo, Cho-chou; Rosenfeld, Michael E.

    2005-01-01

    Chlamydiae are obligate intracellular gram-negative bacteria and are dependent on the host cell for ATP. Thus, chlamydial infection may alter the intracellular levels of ATP and affect all energy-dependent processes within the cell. We have shown that both live C. pneumoniae and inactivated C. pneumoniae induce markers of cell death prior to completion of the bacterial growth cycle. As depletion of ATP could account for the observed increase in cell death, the effects of C. pneumoniae on ATP concentrations within mouse macrophages were investigated. Live, heat-killed, and UV-inactivated C. pneumoniae cultures (at multiplicities of infection [MOIs] of 0.01, 0.1, and 1.0) were incubated with mouse bone marrow macrophages isolated from C57BL/6J mice and mice deficient in Toll-like receptors. Treatment of the macrophages with both live and inactivated C. pneumoniae increased the ATP content of the cells. In cells infected with live C. pneumoniae, the increase was inversely proportional to the MOI. In cells treated with inactivated C. pneumoniae, the increase in ATP content was smaller than that induced by infection with live organisms and was proportional to the MOI. The increase in ATP content early in the developmental cycle was independent of the growth of C. pneumoniae, while sustained induction required live organisms. The capacity of C. pneumoniae to increase the ATP content was ablated in macrophages deficient in expression of either Toll-like receptor 2 or the Toll-like receptor accessory protein MyD88. In contrast, no effect was observed in macrophages lacking expression of Toll-like receptor 4. PMID:15972526

  16. Toll-like receptor 2 activation by β2→1-fructans protects barrier function of T84 human intestinal epithelial cells in a chain length-dependent manner.

    PubMed

    Vogt, Leonie M; Meyer, Diederick; Pullens, Gerdie; Faas, Marijke M; Venema, Koen; Ramasamy, Uttara; Schols, Henk A; de Vos, Paul

    2014-07-01

    Dietary fiber intake is associated with lower incidence and mortality from disease, but the underlying mechanisms of these protective effects are unclear. We hypothesized that β2→1-fructan dietary fibers confer protection on intestinal epithelial cell barrier function via Toll-like receptor 2 (TLR2), and we studied whether β2→1-fructan chain-length differences affect this process. T84 human intestinal epithelial cell monolayers were incubated with 4 β2→1-fructan formulations of different chain-length compositions and were stimulated with the proinflammatory phorbol 12-myristate 13-acetate (PMA). Transepithelial electrical resistance (TEER) was analyzed by electric cell substrate impedance sensing (ECIS) as a measure for tight junction-mediated barrier function. To confirm TLR2 involvement in barrier modulation by β2→1-fructans, ECIS experiments were repeated using TLR2 blocking antibody. After preincubation of T84 cells with short-chain β2→1-fructans, the decrease in TEER as induced by PMA (62.3 ± 5.2%, P < 0.001) was strongly attenuated (15.2 ± 8.8%, P < 0.01). However, when PMA was applied first, no effect on recovery was observed during addition of the fructans. By blocking TLR2 on the T84 cells, the protective effect of short-chain β2→1-fructans was substantially inhibited. Stimulation of human embryonic kidney human TLR2 reporter cells with β2→1-fructans induced activation of nuclear factor kappa-light-chain-enhancer of activated B cells, confirming that β2→1-fructans are specific ligands for TLR2. To conclude, β2→1-fructans exert time-dependent and chain length-dependent protective effects on the T84 intestinal epithelial cell barrier mediated via TLR2. These results suggest that TLR2 located on intestinal epithelial cells could be a target of β2→1-fructan-mediated health effects. PMID:24790027

  17. Stearidonic and eicosapentaenoic acids inhibit interleukin-6 expression in ob/ob mouse adipose stem cells via toll-like receptor-2-mediated pathways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increases in adipose tissue weight positively correlates with increased circulating inflammatory cytokines such as interleukin-6 (IL-6). We previously have shown that adipose stem cell produce significantly higher levels of IL-6 when compared to other cell types in the adipose tissue in genetically ...

  18. Polysaccharide Agaricus blazei Murill stimulates myeloid derived suppressor cell differentiation from M2 to M1 type, which mediates inhibition of tumour immune-evasion via the Toll-like receptor 2 pathway.

    PubMed

    Liu, Yi; Zhang, Lingyun; Zhu, Xiangxiang; Wang, Yuehua; Liu, WenWei; Gong, Wei

    2015-11-01

    Gr-1(+) CD11b(+) myeloid-derived suppressor cells (MDSCs) accumulate in tumor-bearing animals and play a critical negative role during tumor immunotherapy. Strategies for inhibition of MDSCs are expected to improve cancer immunotherapy. Polysaccharide Agaricus blazei Murill (pAbM) has been found to have anti-cancer activity, but the underlying mechanism of this is poorly understood. Here, pAbM directly activated the purified MDSCs through inducing the expression of interleukin-6 (IL-6), IL-12, tumour necrosis factor and inducible nitric oxide synthase (iNOS), CD86, MHC II, and pSTAT1 of it, and only affected natural killer and T cells in the presence of Gr-1(+) CD11b(+) monocytic MDSCs. On further analysis, we demonstrated that pAbM could selectively block the Toll-like receptor 2 (TLR2) signal of Gr-1(+) CD11b(+) MDSCs and increased their M1-type macrophage characteristics, such as producing IL-12, lowering expression of Arginase 1 and increasing expression of iNOS. Extensive study showed that Gr-1(+) CD11b(+) MDSCs by pAbM treatment had less ability to convert the CD4(+) CD25(-) cells into CD4(+) CD25(+) phenotype. Moreover, result from selective depletion of specific cell populations in xenograft mice model suggested that the anti-tumour effect of pAbM was dependent on Gr-1(+ ) CD11b(+) monocytes, nether CD8(+) T cells nor CD4(+) T cells. In addition to, pAbM did not inhibit tumour growth in TLR2(-/-) mice. All together, these results suggested that pAbM, a natural product commonly used for cancer treatment, was a specific TLR2 agonist and had potent anti-tumour effects through the opposite of the suppressive function of Gr-1(+) CD11b(+) MDSCs. PMID:26194418

  19. Early secreted antigen ESAT-6 of Mycobacterium tuberculosis promotes protective T helper 17 cell responses in a toll-like receptor-2-dependent manner.

    PubMed

    Chatterjee, Samit; Dwivedi, Ved Prakash; Singh, Yogesh; Siddiqui, Imran; Sharma, Pawan; Van Kaer, Luc; Chattopadhyay, Debprasad; Das, Gobardhan

    2011-11-01

    Despite its relatively poor efficacy, Bacillus Calmette-Guérin (BCG) has been used as a tuberculosis (TB) vaccine since its development in 1921. BCG induces robust T helper 1 (Th1) immune responses but, for many individuals, this is not sufficient for host resistance against Mycobacterium tuberculosis (M. tb) infection. Here we provide evidence that early secreted antigenic target protein 6 (ESAT-6), expressed by the virulent M. tb strain H37Rv but not by BCG, promotes vaccine-enhancing Th17 cell responses. These activities of ESAT-6 were dependent on TLR-2/MyD88 signalling and involved IL-6 and TGF-β production by dendritic cells. Thus, animals that were previously infected with H37Rv or recombinant BCG containing the RD1 region (BCG::RD1) exhibited improved protection upon re-challenge with virulent H37Rv compared with mice previously infected with BCG or RD1-deficient H37Rv (H37RvΔRD1). However, TLR-2 knockout (TLR-2⁻/⁻) animals neither showed Th17 responses nor exhibited improved protection in response to immunization with H37Rv. Furthermore, H37Rv and BCG::RD1 infection had little effect on the expression of the anti-inflammatory microRNA-146a (miR146a) in dendritic cells (DCs), whereas BCG and H37RvΔRD1 profoundly induced its expression in DCs. Consistent with these findings, ESAT-6 had no effect on miR146a expression in uninfected DCs, but dramatically inhibited its upregulation in BCG-infected or LPS-treated DCs. Collectively, our findings indicate that, in addition to Th1 immunity induced by BCG, RD1/ESAT-6-induced Th17 immune responses are essential for optimal vaccine efficacy. PMID:22102818

  20. Borrelia garinii Induces CXCL13 Production in Human Monocytes through Toll-Like Receptor 2

    PubMed Central

    Rupprecht, Tobias A.; Kirschning, Carsten J.; Popp, Bernadette; Kastenbauer, Stefan; Fingerle, Volker; Pfister, Hans-Walter; Koedel, Uwe

    2007-01-01

    Recent studies have suggested an important role for the B-cell-attracting chemokine CXCL13 in the B-cell-dominated cerebrospinal fluid (CSF) infiltrate in patients with neuroborreliosis (NB). High levels of CXCL13 were present in the CSF of NB patients. It has not been clear, however, whether high CSF CXCL13 titers are specific for NB or are a characteristic of other spirochetal diseases as well. Furthermore, the mechanisms leading to the observed CXCL13 expression have not been identified yet. Here we describe similarly elevated CSF CXCL13 levels in patients with neurosyphilis, while pneumococcal meningitis patient CSF do not have high CXCL13 levels. In parallel, challenge of human monocytes in vitro with two of the spirochetal causative organisms, Borrelia garinii (the Borrelia species most frequently found in NB patients) and Treponema pallidum, but not challenge with pneumococci, induced CXCL13 release. This finding implies that a common spirochetal motif is a CXCL13 inducer. Accordingly, we found that the lipid moiety N-palmitoyl-S-(bis[palmitoyloxy]propyl)cystein (Pam3C) (three palmitoyl residues bound to N-terminal cysteine) of the spirochetal lipoproteins is critical for the CXCL13 induction in monocytes. As the Pam3C motif is known to signal via Toll-like receptor 2 (TLR2) and an anti-TLR2 monoclonal antibody blocked CXCL13 production of human monocytes incubated with B. garinii, this suggests that TLR2 is a major mediator of Borrelia-induced secretion of CXCL13 from human monocytes. PMID:17562761

  1. Toll-like receptor 2 ligands regulate monocyte Fcγ receptor expression and function.

    PubMed

    Shah, Prexy; Fatehchand, Kavin; Patel, Hemal; Fang, Huiqing; Justiniano, Steven E; Mo, Xiaokui; Jarjoura, David; Tridandapani, Susheela; Butchar, Jonathan P

    2013-04-26

    Fcγ receptor (FcγR) clustering on monocytes/macrophages results in phagocytosis and inflammatory cytokine production, which serve to eliminate antibody-opsonized targets and activate neighboring immune cells. Toll-like receptor 2 (TLR2), which recognizes a range of both bacterial and fungal components, elicits strong proinflammatory responses in these cells when stimulated by ligands, either natural or synthetic. Thus, we explored the possibility that TLR2 agonists could strengthen FcγR activity within the context of antibody therapy. Human peripheral blood monocytes treated with the TLR2 agonist Pam2CSK4 showed significantly enhanced FcγR-mediated cytokine production as well as phagocytic ability. An examination of the molecular mechanism behind this enhancement revealed increased expression of both FcγRIIa and the common γ subunit following Pam2CSK4 treatment. Interestingly however, expression of the inhibitory receptor FcγRIIb was also modestly increased. Further investigation revealed that Pam2CSK4 also dramatically decreased the expression of SHIP, the major mediator of FcγRIIb inhibitory activity. Using a murine Her2/neu solid tumor model of antibody therapy, we found that Pam2CSK4 significantly enhanced the ability of anti-Her2 antibody to reduce the rate of tumor growth. To verify that the FcγR enhancement was not unique to the diacylated Pam2CSK4, we also tested Pam3CSK4, a related triacylated TLR2 agonist. Results showed significant enhancement in FcγR function and expression. Taken together, these findings indicate that TLR2 activation can positively modulate FcγR and suggest that TLR2 agonists should be considered for testing as adjuvants for antitumor antibody therapy. PMID:23504312

  2. Toll-Like Receptor 2-Dependent Extracellular Signal-Regulated Kinase Signaling in Mycobacterium tuberculosis-Infected Macrophages Drives Anti-Inflammatory Responses and Inhibits Th1 Polarization of Responding T Cells

    PubMed Central

    Richardson, Edward T.; Shukla, Supriya; Sweet, David R.; Wearsch, Pamela A.; Tsichlis, Philip N.; Boom, W. Henry

    2015-01-01

    Mycobacterium tuberculosis survives within macrophages and employs immune evasion mechanisms to persist in the host. Protective T helper type 1 (Th1) responses are induced, and the immune response in most individuals is sufficient to restrict M. tuberculosis to latent infection, but most infections are not completely resolved. As T cells and macrophages respond, a balance is established between protective Th1-associated and other proinflammatory cytokines, such as interleukin-12 (IL-12), interferon gamma (IFN-γ), and tumor necrosis factor alpha, and anti-inflammatory cytokines, such as IL-10. The mechanisms by which M. tuberculosis modulates host responses to promote its survival remain unclear. In these studies, we demonstrate that M. tuberculosis induction of IL-10, suppression of IL-12, and inhibition of class II major histocompatibility complex (MHC-II) molecules in infected macrophages are all driven by Toll-like receptor 2 (TLR2)-dependent activation of the extracellular signal-regulated kinases (ERK). Elimination of ERK signaling downstream of TLR2 by pharmacologic inhibition with U0126 or genetic deletion of Tpl2 blocks IL-10 secretion and enhances IL-12 p70 secretion. We demonstrate that M. tuberculosis regulation of these pathways in macrophages affects T cell responses to infected macrophages. Thus, genetic blockade of the ERK pathway in Tpl2−/− macrophages enhances Th1 polarization and IFN-γ production by antigen-specific CD4+ T cells responding to M. tuberculosis infection. These data indicate that M. tuberculosis and its potent TLR2 ligands activate ERK signaling in macrophages to promote anti-inflammatory macrophage responses and blunt Th1 responses against the pathogen. PMID:25776754

  3. Serine dipeptide lipids of Porphyromonas gingivalis inhibit osteoblast differentiation: Relationship to Toll-like receptor 2.

    PubMed

    Wang, Yu-Hsiung; Nemati, Reza; Anstadt, Emily; Liu, Yaling; Son, Young; Zhu, Qiang; Yao, Xudong; Clark, Robert B; Rowe, David W; Nichols, Frank C

    2015-12-01

    Porphyromonas gingivalis is a periodontal pathogen strongly associated with loss of attachment and supporting bone for teeth. We have previously shown that the total lipid extract of P. gingivalis inhibits osteoblast differentiation through engagement of Toll-like receptor 2 (TLR2) and that serine dipeptide lipids of P. gingivalis engage both mouse and human TLR2. The purpose of the present investigation was to determine whether these serine lipids inhibit osteoblast differentiation in vitro and in vivo and whether TLR2 engagement is involved. Osteoblasts were obtained from calvaria of wild type or TLR2 knockout mouse pups that also express the Col2.3GFP transgene. Two classes of serine dipeptide lipids, termed Lipid 654 and Lipid 430, were tested. Osteoblast differentiation was monitored by cell GFP fluorescence and osteoblast gene expression and osteoblast function was monitored as von Kossa stained mineral deposits. Osteoblast differentiation and function were evaluated in calvarial cell cultures maintained for 21 days. Lipid 654 significantly inhibited GFP expression, osteoblast gene expression and mineral nodule formation and this inhibition was dependent on TLR2 engagement. Lipid 430 also significantly inhibited GFP expression, osteoblast gene expression and mineral nodule formation but these effects were only partially attributed to engagement of TLR2. More importantly, Lipid 430 stimulated TNF-α and RANKL gene expression in wild type cells but not in TLR2 knockout cells. Finally, osteoblast cultures were observed to hydrolyze Lipid 654 to Lipid 430 and this likely occurs through elevated PLA2 activity in the cultured cells. In conclusion, our results show that serine dipeptide lipids of P. gingivalis inhibit osteoblast differentiation and function at least in part through engagement of TLR2. The Lipid 430 serine class also increased the expression of genes that could increase osteoclast activity. We conclude that Lipid 654 and Lipid 430 have the potential

  4. GENES, IN ADDITION TO TOLL-LIKE RECEPTOR 2, PLAY A ROLE IN ANTIBACTERIAL DEFENSE TO STREPTOCOCCAL PNEUMONIA

    EPA Science Inventory

    Streptococcus infection in human populations continues to be a major cause of morbidity and mortality. To evaluate the effect of genetic background and toll-like receptor 2 (TLR2) on antibacterial defense to streptococcal infection, eight genetically diverse strains of mic...

  5. Colonic mucosal DNA methylation, immune response, and microbiome patterns in Toll-like receptor 2-knockout mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stunning complexity of the resident microbiota and the intricate pathways of microbial and host interactions provide a massive adaptive capacity for mammals. In this addendum we reflect on our recent publication on Toll-like receptor 2 deficiency related colonic mucosal epigenetic, immunologic a...

  6. A critical role of toll-like receptor 2 (TLR2) and its’ in vivo ligands in radio-resistance

    PubMed Central

    Gao, Fu; Zhang, Chaoxiong; Zhou, Chuanfeng; Sun, Weimin; Liu, Xin; Zhang, Pei; Han, Jiaqi; Xian, Linfeng; Bai, Dongchen; Liu, Hu; Cheng, Ying; Li, Bailong; Cui, Jianguo; Cai, Jianming; Liu, Cong

    2015-01-01

    The role of Toll-like receptor-2 (TLR2) in radio-resistance remained largely unknown. TLR2 knockout (TLR2−/−) mice received radiation of 6.5 Gy, and then were studied. We found that radiation resulted in more severe mortality and morbidity rates in TLR2−/− mice. The cause of death in TLR2−/− mice may be severe and persistent bone marrow cell loss. Injection of the TLR2 agonist Pam3CSK4 into wild type (WT) mice induced radio-resistance. Myd88−/− mice were more susceptible to radiation. In conclusion, our data indicate that, similar to TLR4, TLR2 plays a critical role in radio-resistance. PMID:26268450

  7. A critical role of toll-like receptor 2 (TLR2) and its' in vivo ligands in radio-resistance.

    PubMed

    Gao, Fu; Zhang, Chaoxiong; Zhou, Chuanfeng; Sun, Weimin; Liu, Xin; Zhang, Pei; Han, Jiaqi; Xian, Linfeng; Bai, Dongchen; Liu, Hu; Cheng, Ying; Li, Bailong; Cui, Jianguo; Cai, Jianming; Liu, Cong

    2015-01-01

    The role of Toll-like receptor-2 (TLR2) in radio-resistance remained largely unknown. TLR2 knockout (TLR2(-/-)) mice received radiation of 6.5 Gy, and then were studied. We found that radiation resulted in more severe mortality and morbidity rates in TLR2(-/-) mice. The cause of death in TLR2(-/-) mice may be severe and persistent bone marrow cell loss. Injection of the TLR2 agonist Pam3CSK4 into wild type (WT) mice induced radio-resistance. Myd88(-/-) mice were more susceptible to radiation. In conclusion, our data indicate that, similar to TLR4, TLR2 plays a critical role in radio-resistance. PMID:26268450

  8. Toll-like receptor-2 agonist functionalized biopolymer for mucosal vaccination.

    PubMed

    Heuking, S; Iannitelli, A; Di Stefano, A; Borchard, G

    2009-11-01

    The objective of this study was to provide a new water-soluble chitosan derivative being functionalized with a Toll-like receptor-2 (TLR-2) agonist. At first, we synthesized the water-soluble TLR-2 agonist omega-amido-[N(alpha)-palmitoyl-oxy-S-[2,3-bis(palmitoyl-oxy)-(2R)-propyl]-[R]-cysteinyl]-alpha-amino poly(ethylene glycol) (Pam(3)Cys-PEG-NH(2)), which was characterized by (1)H and (13)C NMR as well as mass spectroscopy. Secondly, Pam(3)Cys-PEG-NH(2) was then successfully grafted to 6-O-carboxymethyl-N,N,N-trimethyl chitosan polymers (CM-TMC) using EDC/NHS as condensing agents. The copolymer was analysed by means of (1)H and (13)C NMR and FTIR spectroscopy. (13)C NMR spectroscopy did not deliver evidence that an amide bond was formed between CM-TMC and Pam(3)Cys-PEG-NH(2). However, (1)H NMR and FTIR spectroscopy demonstrated clearly that successful grafting took place. Based upon these results, this new TLR-2 functionalized biopolymer merits further investigations as material for vaccine delivery systems. PMID:19782879

  9. Structure-Activity Relationships in Toll-like Receptor 2-Agonists Leading to Simplified Monoacyl Lipopeptides

    PubMed Central

    Agnihotri, Geetanjali; Crall, Breanna M.; Lewis, Tyler C.; Day, Timothy P.; Balakrishna, Rajalakshmi; Warshakoon, Hemamali J.; Malladi, Subbalakshmi S.; David, Sunil A.

    2011-01-01

    Toll-like receptor 2-agonistic lipopeptides typified by S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-R-cysteinyl-S-serine (PAM2CS) compounds are potential vaccine adjuvants. In continuation of previously reported structure-activity relationships on this chemotype, we have determined that at least one acyl group of optimal length (C16) and an appropriately orientated ester carbonyl group is essential for TLR2-agonistic activity. The spacing between one of the palmitoyl ester carbonyl and the thioether is crucial to allow for an important H-bond, which observed in the crystal structure of the lipopeptide:TLR2 complex; consequently, activity is lost in homologated compounds. Penicillamine-derived analogues are also inactive, likely due to unfavorable steric interactions with the carbonyl of Ser 12 in TLR2. The thioether in this chemotype can be replaced with a selenoether. Importantly, the thioglycerol motif can be dispensed with altogether, and can be replaced with a thioethanol bridge. These results have led to a structurally simpler, synthetically more accessible, and water-soluble analogue possessing strong TLR2-agonistic activities in human blood. PMID:22007676

  10. Evolution of an intronic microsatellite polymorphism in Toll-like receptor 2 among primates.

    PubMed

    Yim, Jae-Joon; Adams, Amelia A; Kim, Ju Han; Holland, Steven M

    2006-09-01

    Nonhuman primates express varying responses to Mycobacterium tuberculosis: New World monkeys appear to be resistant to tuberculosis (TB) while Old World monkeys seem to be particularly susceptible. The aim of this study was to elucidate the presence of the regulatory guanine-thymine (GT) repeat polymorphisms in intron 2 of Toll-like receptor 2 (TLR2) associated with the development of TB in humans and to determine any variations in these microsatellite polymorphisms in primates. We sequenced the region encompassing the regulatory GT repeat microsatellites in intron 2 of TLR2 in 12 different nonhuman primates using polymerase chain reaction amplification, TA cloning, and automatic sequencing. The nonhuman primates included for this study were as follows: chimpanzee (Pan troglodytes), bonobo (Pan paniscus), gorilla (Gorilla gorilla), orangutan (Pongo pygmaeus), Celebes ape (Macaca nigra), rhesus monkey (Macaca mulatta), pigtail macaque (Macaca nemestrina), patas monkey (Erythrocebus patas), spider monkey (Ateles geoffroyi), Woolly monkey (Lagothrix lagotricha), tamarin (Saguinus labiatus), and ring-tailed lemur (Lemur catta). Nucleotide sequences encompassing the regulatory GT repeat region are similar across species and are completely conserved in great apes. However, Old World monkeys lack GT repeats altogether, while New World monkeys and ring-tailed lemurs have much more complex structures around the position of the repeats. In conclusion, the genetic structures encompassing the regulatory GT repeats in intron 2 of human TLR2 are similar among nonhuman primates. The sequence is most conserved in New World monkeys and less in Old World monkeys. PMID:16912902

  11. Toll-like receptor 2 activation depends on lipopeptide shedding by bacterial surfactants

    PubMed Central

    Hanzelmann, Dennis; Joo, Hwang-Soo; Franz-Wachtel, Mirita; Hertlein, Tobias; Stevanovic, Stefan; Macek, Boris; Wolz, Christiane; Götz, Friedrich; Otto, Michael; Kretschmer, Dorothee; Peschel, Andreas

    2016-01-01

    Sepsis caused by Gram-positive bacterial pathogens is a major fatal disease but its molecular basis remains elusive. Toll-like receptor 2 (TLR2) has been implicated in the orchestration of inflammation and sepsis but its role appears to vary for different pathogen species and clones. Accordingly, Staphylococcus aureus clinical isolates differ substantially in their capacity to activate TLR2. Here we show that strong TLR2 stimulation depends on high-level production of phenol-soluble modulin (PSM) peptides in response to the global virulence activator Agr. PSMs are required for mobilizing lipoproteins, the TLR2 agonists, from the staphylococcal cytoplasmic membrane. Notably, the course of sepsis caused by PSM-deficient S. aureus is similar in wild-type and TLR2-deficient mice, but TLR2 is required for protection of mice against PSM-producing S. aureus. Thus, a crucial role of TLR2 depends on agonist release by bacterial surfactants. Modulation of this process may lead to new therapeutic strategies against Gram-positive infections. PMID:27470911

  12. Toll-like receptor 2 activation depends on lipopeptide shedding by bacterial surfactants.

    PubMed

    Hanzelmann, Dennis; Joo, Hwang-Soo; Franz-Wachtel, Mirita; Hertlein, Tobias; Stevanovic, Stefan; Macek, Boris; Wolz, Christiane; Götz, Friedrich; Otto, Michael; Kretschmer, Dorothee; Peschel, Andreas

    2016-01-01

    Sepsis caused by Gram-positive bacterial pathogens is a major fatal disease but its molecular basis remains elusive. Toll-like receptor 2 (TLR2) has been implicated in the orchestration of inflammation and sepsis but its role appears to vary for different pathogen species and clones. Accordingly, Staphylococcus aureus clinical isolates differ substantially in their capacity to activate TLR2. Here we show that strong TLR2 stimulation depends on high-level production of phenol-soluble modulin (PSM) peptides in response to the global virulence activator Agr. PSMs are required for mobilizing lipoproteins, the TLR2 agonists, from the staphylococcal cytoplasmic membrane. Notably, the course of sepsis caused by PSM-deficient S. aureus is similar in wild-type and TLR2-deficient mice, but TLR2 is required for protection of mice against PSM-producing S. aureus. Thus, a crucial role of TLR2 depends on agonist release by bacterial surfactants. Modulation of this process may lead to new therapeutic strategies against Gram-positive infections. PMID:27470911

  13. Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products.

    PubMed

    Lien, E; Sellati, T J; Yoshimura, A; Flo, T H; Rawadi, G; Finberg, R W; Carroll, J D; Espevik, T; Ingalls, R R; Radolf, J D; Golenbock, D T

    1999-11-19

    Toll-like receptors (TLRs) 2 and 4 are signal transducers for lipopolysaccharide, the major proinflammatory constituent in the outer membrane of Gram-negative bacteria. We observed that membrane lipoproteins/lipopeptides from Borrelia burgdorferi, Treponema pallidum, and Mycoplasma fermentans activated cells heterologously expressing TLR2 but not those expressing TLR1 or TLR4. These TLR2-expressing cells were also stimulated by living motile B. burgdorferi, suggesting that TLR2 recognition of lipoproteins is relevant to natural Borrelia infection. Importantly, a TLR2 antibody inhibited bacterial lipoprotein/lipopeptide-induced tumor necrosis factor release from human peripheral blood mononuclear cells, and TLR2-null Chinese hamster macrophages were insensitive to lipoprotein/lipopeptide challenge. The data suggest a role for the native protein in cellular activation by these ligands. In addition, TLR2-dependent responses were seen using whole Mycobacterium avium and Staphylococcus aureus, demonstrating that this receptor can function as a signal transducer for a wide spectrum of bacterial products. We conclude that diverse pathogens activate cells through TLR2 and propose that this molecule is a central pattern recognition receptor in host immune responses to microbial invasion. PMID:10559223

  14. A Role for the Adaptor Proteins TRAM and TRIF in Toll-like Receptor 2 Signaling*

    PubMed Central

    Nilsen, Nadra J.; Vladimer, Gregory I.; Stenvik, Jørgen; Orning, M. Pontus A.; Zeid-Kilani, Maria V.; Bugge, Marit; Bergstroem, Bjarte; Conlon, Joseph; Husebye, Harald; Hise, Amy G.; Fitzgerald, Katherine A.; Espevik, Terje; Lien, Egil

    2015-01-01

    Toll-like receptors (TLRs) are involved in sensing invading microbes by host innate immunity. TLR2 recognizes bacterial lipoproteins/lipopeptides, and lipopolysaccharide activates TLR4. TLR2 and TLR4 signal via the Toll/interleukin-1 receptor adaptors MyD88 and MAL, leading to NF-κB activation. TLR4 also utilizes the adaptors TRAM and TRIF, resulting in activation of interferon regulatory factor (IRF) 3. Here, we report a new role for TRAM and TRIF in TLR2 regulation and signaling. Interestingly, we observed that TLR2-mediated induction of the chemokine Ccl5 was impaired in TRAM or TRIF deficient macrophages. Inhibition of endocytosis reduced Ccl5 release, and the data also suggested that TRAM and TLR2 co-localize in early endosomes, supporting the hypothesis that signaling may occur from an intracellular compartment. Ccl5 release following lipoprotein challenge additionally involved the kinase Tbk-1 and Irf3, as well as MyD88 and Irf1. Induction of Interferon-β and Ccl4 by lipoproteins was also partially impaired in cells lacking TRIF cells. Our results show a novel function of TRAM and TRIF in TLR2-mediated signal transduction, and the findings broaden our understanding of how Toll/interleukin-1 receptor adaptor proteins may participate in signaling downstream from TLR2. PMID:25505250

  15. Leptospiral lipopolysaccharide stimulates the expression of toll-like receptor 2 and cytokines in pig fibroblasts.

    PubMed

    Guo, Yijie; Fukuda, Tomokazu; Donai, Kenichiro; Kuroda, Kengo; Masuda, Mizuki; Nakamura, Shuichi; Yoneyama, Hiroshi; Isogai, Emiko

    2015-02-01

    Pigs throughout the world are afflicted with leptospirosis, causing serious economic losses and potential hazards to human health. Although it has been known that leptospiral lipopolysaccharide (L-LPS) is involved in an immunological reaction between an antigen and a host cell, little is known about how the immune system of pigs can respond to L-LPS. Here, we stimulated pig fibroblasts by L-LPS and then quantitatively measured gene and protein expression levels of two toll-like receptors (TLRs), TLR2 and TLR4, by real-time PCR and Western blotting. As a result, expression of TLR2 was found to be significantly up-regulated within 24 h after L-LPS stimulation whereas induction of TLR4 expression was relatively weak. We also revealed that of myeloid differentiation primary response gene 88 (MyD88), interleukin 6 (IL-6) and IL-8 gene expressions were markedly up-regulated by L-LPS stimulation. These results may suggest that the pig cell can activate TLR2 rather than TLR4 by L-LPS stimulation, thereby inducing expression of cytokines. PMID:25039909

  16. Antagonistic antibody prevents toll-like receptor 2–driven lethal shock-like syndromes

    PubMed Central

    Meng, Guangxun; Rutz, Mark; Schiemann, Matthias; Metzger, Jochen; Grabiec, Alina; Schwandner, Ralf; Luppa, Peter B.; Ebel, Frank; Busch, Dirk H.; Bauer, Stefan; Wagner, Hermann; Kirschning, Carsten J.

    2004-01-01

    Hyperactivation of immune cells by bacterial products through toll-like receptors (TLRs) is thought of as a causative mechanism of septic shock pathology. Infections with Gram-negative or Gram-positive bacteria provide TLR2-specific agonists and are the major cause of severe sepsis. In order to intervene in TLR2-driven toxemia, we raised mAb’s against the extracellular domain of TLR2. Surface plasmon resonance analysis showed direct and specific interaction of TLR2 and immunostimulatory lipopeptide, which was blocked by T2.5 in a dose-dependent manner. Application of mAb T2.5 inhibited cell activation in experimental murine models of infection. T2.5 also antagonized TLR2-specific activation of primary human macrophages. TLR2 surface expression by murine macrophages was surprisingly weak, while both intra- and extracellular expression increased upon systemic microbial challenge. Systemic application of T2.5 upon lipopeptide challenge inhibited release of inflammatory mediators such as TNF-α and prevented lethal shock-like syndrome in mice. Twenty milligrams per kilogram of T2.5 was sufficient to protect mice, and administration of 40 mg/kg of T2.5 was protective even 3 hours after the start of otherwise lethal challenge with Bacillus subtilis. These results indicate that epitope-specific binding of exogenous ligands precedes specific TLR signaling and suggest therapeutic application of a neutralizing anti-TLR2 antibody in acute infection. PMID:15146245

  17. Upregulation of Toll-like receptor 2 and nuclear factor-kappa B expression in experimental colonic schistosomiasis.

    PubMed

    Ashour, Dalia S; Shohieb, Zeinab S; Sarhan, Naglaa I

    2015-11-01

    Role of different mediators was described in the development of the granulomatous response and fibrosis observed in intestinal schistosomiasis. However, both Toll-like receptor 2 (TLR2) and nuclear factor kappa B (NF-κB) have not yet been investigated in intestinal schistosomiasis. This study aimed to characterize the role of TLR2 and NF-κB in the pathogenesis of intestinal schistosomiasis. Experimental animals were divided into two groups; group I: non-infected control group and group II: mice infected subcutaneously with S. mansoni cercariae. Colon samples were taken from infected mice, every two weeks, starting from the 6th week postinfection (PI) till 18th week PI. Samples were subjected to histopathological and immunohistochemical studies. Colon of S. mansoni infected mice showed histopathological changes in the form of mucosal degeneration, transmural mononuclear cellular infiltration and granulomas formation. Immunostained sections revealed significant increase in TLR2 and NF-κB positive cells in all layers of the colon, cells of the granuloma and those of the lymphoid follicles 10 weeks PI. All these changes decreased gradually starting from 12 weeks PI onward to be localized focally at 18 weeks PI. In conclusion, recruitment and activation of inflammatory cells to the colonic mucosa in intestinal schistosomiasis are multifactorial events involving TLR2 that can trigger the NF-κB pathways. Hence, down-regulation of both TLR2 and NF-κB could be exploited in the treatment of colonic schistosomiasis. PMID:26644925

  18. Nerve Growth Factor Is Regulated by Toll-Like Receptor 2 in Human Intervertebral Discs.

    PubMed

    Krock, Emerson; Currie, J Brooke; Weber, Michael H; Ouellet, Jean A; Stone, Laura S; Rosenzweig, Derek H; Haglund, Lisbet

    2016-02-12

    Nerve growth factor (NGF) contributes to the development of chronic pain associated with degenerative connective tissue pathologies, such as intervertebral disc degeneration and osteoarthritis. However, surprisingly little is known about the regulation of NGF in these conditions. Toll-like receptors (TLR) are pattern recognition receptors classically associated with innate immunity but more recently were found to be activated by endogenous alarmins such as fragmented extracellular matrix proteins found in degenerating discs or cartilage. In this study we investigated if TLR activation regulates NGF and which signaling mechanisms control this response in intervertebral discs. TLR2 agonists, TLR4 agonists, or IL-1β (control) treatment increased NGF, brain-derived neurotrophic factor (BDNF), and IL-1β gene expression in human disc cells isolated from healthy, pain-free organ donors. However, only TLR2 activation or IL-1β treatment increased NGF protein secretion. TLR2 activation increased p38, ERK1/2, and p65 activity and increased p65 translocation to the cell nucleus. JNK activity was not affected by TLR2 activation. Inhibition of NF-κB, and to a lesser extent p38, but not ERK1/2 activity, blocked TLR2-driven NGF up-regulation at both the transcript and protein levels. These results provide a novel mechanism of NGF regulation in the intervertebral disc and potentially other pathogenic connective tissues. TLR2 and NF-κB signaling are known to increase cytokines and proteases, which accelerate matrix degradation. Therefore, TLR2 or NF-κB inhibition may both attenuate chronic pain and slow the degenerative progress in vivo. PMID:26668319

  19. Insights into Soluble Toll-Like Receptor 2 as a Downregulator of Virally Induced Inflammation

    PubMed Central

    Henrick, Bethany M.; Yao, Xiao-Dan; Taha, Ameer Y.; German, J. Bruce; Rosenthal, Kenneth Lee

    2016-01-01

    The ability to distinguish pathogens from self-antigens is one of the most important functions of the immune system. However, this simple self versus non-self assignment belies the complexity of the immune response to threats. Immune responses vary widely and appropriately according to a spectrum of threats and only recently have the mechanisms for controlling this highly textured process emerged. A primary mechanism by which this controlled decision-making process is achieved is via Toll-like receptor (TLR) signaling and the subsequent activation of the immune response coincident with the presence of pathogenic organisms or antigens, including lipid mediators. While immune activation is important, the appropriate regulation of such responses is also critical. Recent findings indicate a parallel pathway by which responses to both viral and bacterial infections is controlled via the secretion of soluble TLR2 (sTLR2). sTLR2 is able to bind a wide range of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs). sTLR2 has been detected in many bodily fluids and is thus ubiquitous in sites of pathogen appearance. Interestingly, growing evidence suggests that sTLR2 functions to sequester PAMPs and DAMPs to avoid immune activation via detection of cellular-expressed TLRs. This immune regulatory function would serve to reduce the expression of the molecules required for cellular entry, and the recruitment of target cells following infection with bacteria and viruses. This review provides an overview of sTLR2 and the research regarding the mechanisms of its immune regulatory properties. Furthermore, the role of this molecule in regulating immune activation in the context of HIV infection via sTLR2 in breast milk provides actionable insights into therapeutic targets across a variety of infectious and inflammatory states. PMID:27531999

  20. Treponema denticola Activates Mitogen-Activated Protein Kinase Signal Pathways through Toll-Like Receptor 2

    PubMed Central

    Ruby, John; Rehani, Kunal; Martin, Michael

    2007-01-01

    Treponema denticola, a spirochete indigenous to the oral cavity, is associated with host inflammatory responses to anaerobic polymicrobial infections of the root canal, periodontium, and alveolar bone. However, the cellular mechanisms responsible for the recognition of T. denticola by the innate immune system and the underlying cell signaling pathways that regulate the inflammatory response to T. denticola are currently unresolved. In this study, we demonstrate that T. denticola induces innate immune responses via the utilization of Toll-like receptor 2 (TLR2) but not TLR4. Assessment of TLR2/1 and TLR2/6 heterodimers revealed that T. denticola predominantly utilizes TLR2/6 for the induction of cellular responses. Analysis of the mitogen-activated protein kinase (MAPK) signaling pathway in T. denticola-stimulated monocytes identified a prolonged up-regulation of the MAPK extracellular signal-related kinase 1/2 (ERK1/2) and p38, while no discernible increase in phospho-c-Jun N-terminal kinase 1/2 (JNK1/2) levels was observed. With the aid of pharmacological inhibitors selectively targeting ERK1/2 via the mitogen-activated protein kinase/extracellular signal-related kinase 1/2 kinase and p38, we further demonstrate that ERK1/2 and p38 play a major role in T. denticola-mediated pro- and anti-inflammatory cytokine production. PMID:17923521

  1. Degranulation of Paneth Cells via Toll-Like Receptor 9

    PubMed Central

    Rumio, Cristiano; Besusso, Dario; Palazzo, Marco; Selleri, Silvia; Sfondrini, Lucia; Dubini, Francesco; Ménard, Sylvie; Balsari, Andrea

    2004-01-01

    The release of antimicrobial peptides and growth factors by Paneth cells is thought to play an important role in protecting the small intestine, but the mechanisms involved have remained obscure. Immunohistochemistry and immunofluorescence showed that Paneth cells express Toll-like receptor 9 (TLR9) in the granules. Injection of mice with oligonucleotides containing CpG sequence (CpG-ODNs) led to a down-modulation of TLR9 and a striking decrease in the number of large secretory granules, consistent with degranulation. Moreover CpG-ODN treatment increased resistance to oral challenge with virulent Salmonella typhimurium. Moreover, our findings demonstrate a sentinel role for Paneth cells through TLR9. PMID:15277213

  2. Association of Toll-like receptors 2, 3, and 4 genes polymorphisms with periapical pathosis risk

    PubMed Central

    Özan, Ülkü; Ocak, Zeynep; Özan, Fatih; Oktay, Elif-Aybala; Şahman, Halil; Yikilgan, İhsan; Oruçoğlu, Hasan; Er, Kürşat

    2016-01-01

    Background The aim of this study was to investigate the role of gene variations of Toll-like receptors (TLR) 2, 3, and 4 on genetic susceptibility to periapical pathosis. Material and Methods One hundred patients were included in the study and divided into two groups as follows; Control Group (n=50) that have root canal treatment and no periapical lesion, Patient Group (n=50) that have root canal treatment and periapical lesion. TLR2 Arg753Gln, TLR3 (c.1377C/T) and TLR4 Asp299Gly and Thr399Ile polymorphisms were genotyped by using PCR-RFLP. Genotypical analysis of control and patient groups were investigated to disclose whether there is any association between periapical lesions and gene variations. Results There are no significant statistical differences between control and patient groups according to TLR 2 and 4 gene sequence. On the contrary, CC allele detected 74% for TLR 3 in patient group, and this difference was found to be statistically significant (p < 0.005). Conclusions According to these results, it can be suggested that patients with Toll-like receptor 3 gene polymorphisms could be susceptible to periapical pathosis. Key words:Toll-like receptors, periapical pathosis, endodontics. PMID:27031066

  3. Involvement of Toll-like receptor 2 and epidermal growth factor receptor signaling in epithelial expression of airway remodeling factors.

    PubMed

    Homma, Tetsuya; Kato, Atsushi; Sakashita, Masafumi; Norton, James E; Suh, Lydia A; Carter, Roderick G; Schleimer, Robert P

    2015-04-01

    Staphylococcus aureus (SA) colonization and infection is common, and may promote allergic or inflammatory airway diseases, such as asthma, cystic fibrosis, and chronic rhinosinusitis by interacting with airway epithelial cells. Airway epithelial cells not only comprise a physical barrier, but also play key roles in immune, inflammatory, repair, and remodeling responses upon encounters with pathogens. To elucidate the impact of SA on epithelial-mediated remodeling of allergic airways, we tested the hypothesis that SA can enhance the remodeling process. Normal human bronchial epithelial (NHBE) cells were stimulated with heat-killed SA (HKSA) or transforming growth factor (TGF) α. Cell extracts were collected to measure mRNA (real-time RT-PCR) and signaling molecules (Western blot); supernatants were collected to measure protein (ELISA) after 24 hours of stimulation. Epidermal growth factor receptor (EGFR) signaling inhibition experiments were performed using a specific EGFR kinase inhibitor (AG1478) and TGF-α was blocked with an anti-TGF-α antibody. HKSA induced both mRNA and protein for TGF-α and matrix metalloproteinase (MMP) 1 from NHBE cells by a Toll-like receptor 2-dependent mechanism. Recombinant human TGF-α also induced mRNA and protein for MMP-1 from NHBE cells; anti-TGF-α antibody inhibited HKSA-induced MMP-1, suggesting that endogenous TGF-α mediates the MMP-1 induction by HKSA. HKSA-induced MMP-1 expression was suppressed when a specific EGFR kinase inhibitor was added, suggesting that EGFR signaling was mediating the HKSA-induced MMP-1 release. Exposure or colonization by SA in the airway may enhance the remodeling of tissue through a TGF-α-dependent induction of MMP-1 expression, and may thereby promote remodeling in airway diseases in which SA is implicated, such as asthma and chronic rhinosinusitis. PMID:25180535

  4. Involvement of Toll-Like Receptor 2 and Epidermal Growth Factor Receptor Signaling in Epithelial Expression of Airway Remodeling Factors

    PubMed Central

    Kato, Atsushi; Sakashita, Masafumi; Norton, James E.; Suh, Lydia A.; Carter, Roderick G.; Schleimer, Robert P.

    2015-01-01

    Staphylococcus aureus (SA) colonization and infection is common, and may promote allergic or inflammatory airway diseases, such as asthma, cystic fibrosis, and chronic rhinosinusitis by interacting with airway epithelial cells. Airway epithelial cells not only comprise a physical barrier, but also play key roles in immune, inflammatory, repair, and remodeling responses upon encounters with pathogens. To elucidate the impact of SA on epithelial-mediated remodeling of allergic airways, we tested the hypothesis that SA can enhance the remodeling process. Normal human bronchial epithelial (NHBE) cells were stimulated with heat-killed SA (HKSA) or transforming growth factor (TGF) α. Cell extracts were collected to measure mRNA (real-time RT-PCR) and signaling molecules (Western blot); supernatants were collected to measure protein (ELISA) after 24 hours of stimulation. Epidermal growth factor receptor (EGFR) signaling inhibition experiments were performed using a specific EGFR kinase inhibitor (AG1478) and TGF-α was blocked with an anti–TGF-α antibody. HKSA induced both mRNA and protein for TGF-α and matrix metalloproteinase (MMP) 1 from NHBE cells by a Toll-like receptor 2–dependent mechanism. Recombinant human TGF-α also induced mRNA and protein for MMP-1 from NHBE cells; anti–TGF-α antibody inhibited HKSA-induced MMP-1, suggesting that endogenous TGF-α mediates the MMP-1 induction by HKSA. HKSA-induced MMP-1 expression was suppressed when a specific EGFR kinase inhibitor was added, suggesting that EGFR signaling was mediating the HKSA-induced MMP-1 release. Exposure or colonization by SA in the airway may enhance the remodeling of tissue through a TGF-α–dependent induction of MMP-1 expression, and may thereby promote remodeling in airway diseases in which SA is implicated, such as asthma and chronic rhinosinusitis. PMID:25180535

  5. Escherichia coli Strain Nissle 1917 Ameliorates Experimental Colitis via Toll-Like Receptor 2- and Toll-Like Receptor 4-Dependent Pathways

    PubMed Central

    Grabig, A.; Paclik, D.; Guzy, C.; Dankof, A.; Baumgart, D. C.; Erckenbrecht, J.; Raupach, B.; Sonnenborn, U.; Eckert, J.; Schumann, R. R.; Wiedenmann, B.; Dignass, A. U.; Sturm, A.

    2006-01-01

    Toll-like receptors (TLRs) are key components of the innate immune system that trigger antimicrobial host defense responses. The aim of the present study was to analyze the effects of probiotic Escherichia coli Nissle strain 1917 in experimental colitis induced in TLR-2 and TLR-4 knockout mice. Colitis was induced in wild-type (wt), TLR-2 knockout, and TLR-4 knockout mice via administration of 5% dextran sodium sulfate (DSS). Mice were treated with either 0.9% NaCl or 107 E. coli Nissle 1917 twice daily, followed by the determination of disease activity, mucosal damage, and cytokine secretion. wt and TLR-2 knockout mice exposed to DSS developed acute colitis, whereas TLR-4 knockout mice developed significantly less inflammation. In wt mice, but not TLR-2 or TLR-4 knockout mice, E. coli Nissle 1917 ameliorated colitis and decreased proinflammatory cytokine secretion. In TLR-2 knockout mice a selective reduction of gamma interferon secretion was observed after E. coli Nissle 1917 treatment. In TLR-4 knockout mice, cytokine secretion was almost undetectable and not modulated by E. coli Nissle 1917, indicating that TLR-4 knockout mice do not develop colitis similar to the wt mice. Coculture of E. coli Nissle 1917 and human T cells increased TLR-2 and TLR-4 protein expression in T cells and increased NF-κB activity via TLR-2 and TLR-4. In conclusion, our data provide evidence that E. coli Nissle 1917 ameliorates experimental induced colitis in mice via TLR-2- and TLR-4-dependent pathways. PMID:16790781

  6. The acylation state of mycobacterial lipomannans modulates innate immunity response through toll-like receptor 2.

    PubMed

    Gilleron, Martine; Nigou, Jérôme; Nicolle, Delphine; Quesniaux, Valérie; Puzo, Germain

    2006-01-01

    Detection of Mycobacterium tuberculosis antigens by professional phagocytes via toll-like receptors (TLR) contributes to controlling chronic M. tuberculosis infection. Lipomannans (LM), which are major lipoglycans of the mycobacterial envelope, were recently described as agonists of TLR2 with potent activity on proinflammatory cytokine regulation. LM correspond to a heterogeneous population of acyl- and glyco-forms. We report here the purification and the complete structural characterization of four LM acyl-forms from Mycobacterium bovis BCG using MALDI MS and 2D (1)H-(31)P NMR analyses. All this biochemical work provided the tools to investigate the implication of LM acylation degree on its proinflammatory activity. The latter was ascribed to the triacylated LM form, essentially an agonist of TLR2, using TLR2/TLR1 heterodimers for signaling. Altogether, these findings shed more light on the molecular basis of LM recognition by TLR. PMID:16426970

  7. Heat shock up-regulates expression of Toll-like receptor-2 and Toll-like receptor-4 in human monocytes via p38 kinase signal pathway

    PubMed Central

    Zhou, Jun; An, Huazhang; Xu, Hongmei; Liu, Shuxun; Cao, Xuetao

    2005-01-01

    Heat stress can alert innate immunity by inducing stress proteins such as heat-shock proteins (HSPs). However, it remains unclear whether heat stress affects the activation of antigen-presenting cell (APC) in response to pathogen-associated molecule patterns (PAMPs) by directly regulating pathogen recognition receptors (PRRs). As an important kind of PRRs, Toll-like receptors (TLRs) play critical roles in the activation of immune system. In this study, we demonstrated that heat shock up-regulated the expression of HSP70 as well as TLR2 and TLR4 in monocytes. The induction of TLRs was prior to that of HSP70, which suggesting the up-regulation of TLR2 and TLR4 might be independent of the induction of HSP70. Heat shock activated p38 kinase, extracellular signal-related kinase (ERK) and nuclear factor-kappa B (NF-κB) signal pathways in monocytes. Pretreatment with specific inhibitor of p38 kinase, but not those of ERK and NF-κB, inhibited heat shock-induced up-regulation of TLR2 and TLR4. This indicates that p38 pathway takes part in heat shock-induced up-regulation of TLR2 and TLR4. Heat shock also increased lipoteichoic acid- or lipopolysaccharide-induced interleukin-6 production by monocytes. These results suggest that the p38 kinase-mediated up-regulation of TLR2 and TLR4 might be involved in the enhanced response to PAMP in human monocytes induced by heat shock. PMID:15804289

  8. Toll-like receptor-2 deficiency induces schizophrenia-like behaviors in mice

    PubMed Central

    Park, Se Jin; Lee, Jee Youn; Kim, Sang Jeong; Choi, Se-Young; Yune, Tae Young; Ryu, Jong Hoon

    2015-01-01

    Dysregulation of the immune system contributes to the pathogenesis of neuropsychiatric disorders including schizophrenia. Here, we demonstrated that toll-like receptor (TLR)-2, a family of pattern-recognition receptors, is involved in the pathogenesis of schizophrenia-like symptoms. Psychotic symptoms such as hyperlocomotion, anxiolytic-like behaviors, prepulse inhibition deficits, social withdrawal, and cognitive impairments were observed in TLR-2 knock-out (KO) mice. Ventricle enlargement, a hallmark of schizophrenia, was also observed in TLR-2 KO mouse brains. Levels of p-Akt and p-GSK-3α/β were markedly higher in the brain of TLR-2 KO than wild-type (WT) mice. Antipsychotic drugs such as haloperidol or clozapine reversed behavioral and biochemical alterations in TLR-2 KO mice. Furthermore, p-Akt and p-GSK-3α/β were decreased by treatment with a TLR-2 ligand, lipoteichoic acid, in WT mice. Thus, our data suggest that the dysregulation of the innate immune system by a TLR-2 deficiency may contribute to the development and/or pathophysiology of schizophrenia-like behaviors via Akt-GSK-3α/β signaling. PMID:25687169

  9. Association of Toll-like receptor 2 Arg753Gln and Toll-like receptor 1 Ile602Ser single-nucleotide polymorphisms with leptospirosis in an Argentine population.

    PubMed

    Cédola, Maia; Chiani, Yosena; Pretre, Gabriela; Alberdi, Lucrecia; Vanasco, Bibiana; Gómez, Ricardo M

    2015-06-01

    Toll-like receptor 2 (TLR2), a member of the Toll-like receptor family, plays an important role in the recognition of and subsequent immune response activation against leptospirosis in humans. The genetic polymorphism in TLR2 of an arginine to glutamine substitution at residue 753 (Arg753Gln) has been associated with a negative influence on TLR2 function, which may, in turn, determine the innate host response to Leptospira spp. This bacterium signals through TLR2/TLR1 heterodimers in human cells. The aim of the present study was to investigate the Arg753Gln single-nucleotide polymorphism (SNP) of the TLR2 gene, and the isoleucine to serine transversion at position 602 (Ile602Ser) of the TLR1 gene (previously associated with Lyme disease), in leptospirosis patients compared to healthy controls, carrying out a retrospective case/control study. The TLR2 polymorphism adenine (A) allele was observed in 7.3% of leptospirosis patients but was not found in the control group, whereas the guanine (G) allele of the TLR1 polymorphism was found in 63.6% of patients and 41.6% of controls. Susceptibility to leptospirosis disease was increased 10.57-fold for carriers of the TLR2 G/A genotype (P=0.0493) and 3.85-fold for carriers of the TLR1 G/G genotype (P=0.0428). Furthermore, the risk of developing hepatic insufficiency and jaundice was increased 18.86- and 27.60-fold for TLR2 G/A carriers, respectively. Similarly, the risk of developing jaundice was increased 12.67-fold for TLR1 G allele carriers (G/G and T/G genotypes). In conclusion, the present data suggest that the TLR2 Arg753Gln and TLR1 Ile602Ser SNPs influence the risk of developing leptospirosis and its severity. PMID:25784560

  10. Toll like receptor polymorphisms in allogeneic hematopoietic cell transplantation

    PubMed Central

    Kornblit, Brian; Enevold, Christian; Wang, Tao; Spellman, Stephen; Haagenson, Mike; Lee, Stephanie J; Müller, Klaus

    2014-01-01

    To assess the impact of the genetic variation in toll-like receptors (TLR) on outcome after allogeneic myeloablative conditioning hematopoietic cell transplantation (HCT) we have investigated 29 single nucleotide polymorphisms (SNP) across 10 TLRs in 816 patients and donors. Only donor genotype of TLR8 rs3764879, which is located on the X chromosome, was significantly associated with outcome at the Bonferroni corrected level P≤0.001. Male hemizygosity and female homozygosity for the minor allele were significantly associated with disease free survival (DFS) (hazard ratio (HR) 1.47 (95% confidence interval (CI) 1.16–1.85); P=0.001). Further analysis stratified by donor sex due to confounding by sex, was suggestive for associations with overall survival (male donor: HR 1.41 (95% CI 1.09–1.83), P=0.010); female donor: (HR 2.78 (95% CI 1.43–5.41), P=0.003), DFS (male donor: HR 1.45 (95% CI 1.12–1.87), P=0.005; female donor: HR 2.34 (95% CI 1.18–4.65), P=0.015) and treatment related mortality (male donor: HR 1.49 (95% CI 1.09–2.04), P=0.012; female donor: HR 3.12 (95% CI 1.44–6.74), P=0.004). In conclusion our findings suggest that the minor allele of TLR8 rs3764879 of the donor is associated with outcome after myeloablative conditioned allogeneic HCT. PMID:25464115

  11. Molecular evolution of bovine Toll-like receptor 2 suggests substitutions of functional relevance

    PubMed Central

    2008-01-01

    Background There is accumulating evidence that polymorphism in Toll-like receptor (TLR) genes might be associated with disease resistance or susceptibility traits in livestock. Polymorphic sites affecting TLR function should exhibit signatures of positive selection, identified as a high ratio of non-synonymous to synonymous nucleotide substitutions (ω). Phylogeny based models of codon substitution based on estimates of ω for each amino acid position can therefore offer a valuable tool to predict sites of functional relevance. We have used this approach to identify such polymorphic sites within the bovine TLR2 genes from ten Bos indicus and Bos taurus cattle breeds. By analysing TLR2 gene phylogeny in a set of mammalian species and a subset of ruminant species we have estimated the selective pressure on individual sites and domains and identified polymorphisms at sites of putative functional importance. Results The ω were highest in the mammalian TLR2 domains thought to be responsible for ligand binding and lowest in regions responsible for heterodimerisation with other TLR-related molecules. Several positively-selected sites were detected in or around ligand-binding domains. However a comparison of the ruminant subset of TLR2 sequences with the whole mammalian set of sequences revealed that there has been less selective pressure among ruminants than in mammals as a whole. This suggests that there have been functional changes during ruminant evolution. Twenty newly-discovered non-synonymous polymorphic sites were identified in cattle. Three of them were localised at positions shaped by positive selection in the ruminant dataset (Leu227Phe, His305Pro, His326Gln) and in domains involved in the recognition of ligands. His326Gln is of particular interest as it consists of an exchange of differentially-charged amino acids at a position which has previously been shown to be crucial for ligand binding in human TLR2. Conclusion Within bovine TLR2, polymorphisms at amino

  12. The role of toll-like receptors 2 and 4 in the pathogenesis of feline pyometra.

    PubMed

    Jursza, E; Kowalewski, M P; Boos, A; Skarzynski, D J; Socha, P; Siemieniuch, M J

    2015-03-01

    Pyometra is the most common uterine disease in queens. To protect itself from infection, the female reproductive tract possesses several immune mechanisms that are based on germline-encoded pattern recognition receptors (toll-like receptors [TLRs]). The aim of our study was to examine endometrial immunolocalization of TLR2/4, study the influence of lipopolysaccharide (LPS) and tumor necrosis factor (TNF) α on messenger RNA expression of both receptors in pyometric queens, and compare these patterns between estrous cycling queens and those hormonally treated with medroxyprogesterone acetate (MPA). Thirty-six queens, ranging in age from 7 months to 11 years, were allocated into seven groups (anestrus, estrus, mid-diestrus and late diestrus, short-term and long-term hormonally treated queens, and pyometric queens). At the messenger RNA level, the real-time polymerase chain reaction was applied, whereas at the TLR2/4 protein level, the expression was tested by immunohistochemistry. In queens at estrus, gene expression of TLR2 was upregulated after stimulation of endometrial explants by TNF (P < 0.001) and by TNF together with the LPS (P < 0.01). Moreover, gene expression of TLR2 was significantly upregulated after stimulation by TNF (P < 0.001) and LPS (P < 0.01) explants derived from queens that had been long-term hormonally treated with MPA. Endometrial gene expression of TLR4 was significantly upregulated after incubation of explants with TNF (P < 0.001) in queens at estrus and with LPS (P < 0.05) in queens short-term hormonally treated with MPA. Immunolocalization reported that TLR2/4 receptors are mainly localized in the surface and glandular epithelia. These data show that short-term and especially long-term administration of progesterone derivatives impairs TLRs in the endometrial epithelium, presumably enabling pathogens to break through this first natural barrier and thereby increase the risk of pyometra development. PMID:25481489

  13. Live and heat-killed probiotic Lactobacillus casei Lbs2 protects from experimental colitis through Toll-like receptor 2-dependent induction of T-regulatory response.

    PubMed

    Thakur, Bhupesh Kumar; Saha, Piu; Banik, George; Saha, Dhira Rani; Grover, Sunita; Batish, Virender Kumar; Das, Santasabuj

    2016-07-01

    Inflammatory bowel disease (IBD) is a group of inflammatory disorders of the intestine caused by dysregulated T-cell mediated immune response against commensal microflora. Probiotics are reported as therapeutically effective against IBD. However, variable efficacy of the live probiotic strains, difference in survival and persistence in the gut between the strains and the lack of insight into the mechanisms of probiotic action limit optimal therapeutic efficacy. Our aims were to evaluate the lactobacillus strains isolated from the North Indian population for the generation of regulatory cells and cytokines in the intestine, to study their effects on pro-inflammatory mediators in the mouse model of inflammatory bowel disease and to explore the underlying mechanisms of their actions. Among the selected lactobacillus strains, Lactobacillus casei Lbs2 (MTCC5953) significantly suppressed lipopolysaccharide-induced pro-inflammatory cytokine (TNF-alpha, IL-6) secretion. Both live and heat-killed Lbs2 polarized Th0 cells to T-regulatory (Treg) cells in vitro, increased the frequency of FoxP3(+) Treg cells in the mesenteric lymph nodes (MLNs) and alleviated macroscopic and histopathological features of colitis in probiotic-fed mice. Moreover, the levels of IL-12, TNF-alpha and IL-17A were suppressed, while IL-10 and TGF-beta levels were augmented in the colonic tissues of Lbs2-treated mice. The induced Treg (iTreg) cells secreted IL-10 and TGF-beta and exerted suppressive effects on the proliferation of effector T-cells. Adoptive transfer of iTreg cells ameliorated the disease manifestations of murine colitis and suppressed the levels of TNF-alpha and IL-17A. Finally, Lbs2 effects were mediated by Toll-like receptor 2 (TLR2) activation on the dendritic cells. This study identified live and heat-killed Lbs2 as putative therapeutic candidates against IBD and highlighted their Toll-like receptor 2-dependent immunomodulatory and regulatory function. PMID:27107798

  14. Lack of Association between Toll Like Receptor-2 and Toll Like Receptor-4 Gene Polymorphisms and Other Feature in Iranian Asthmatics Patients.

    PubMed

    Bahrami, Hamid; Daneshmandi, Saeed; Heidarnazhad, Hasan; Pourfathollah, Ali Akbar

    2015-02-01

    Asthma as a chronic inflammatory airway disease is considered to be the most common chronic disease that is involving genetic and environmental factors. Toll like receptors (TLRs) and other inflammatory mediators are important in modulation of inflammation. In this study, we evaluated the role of TLR2 Arg753Gln and TLR4 Asp299Gly polymorphisms in the asthma susceptibility, progress, control levels and lung functions in Iranian patients. On 99 asthmatic patients and 120 normal subjects, TLR2 Arg753Gln and TLR4 Asp299Gly polymorphisms were evaluated by PCR-RFLP method recruiting Msp1 and Nco1 restriction enzymes, respectively. IgE serum levels by ELISA technique were determined and asthma diagnosis, treatment and control levels were considered using standard schemes and criteria. Our results indicated that the genotype and allele frequencies of the TLR2 Arg753Gln and TLR4 Asp299Gly polymorphisms were not significantly different between control subjects and asthmatics and were not related to in asthma features such as IgE levels, asthma history and pulmonary factors. Wherease some previous studies indicated TLRs and their polymorphisms might have some role in asthma incidence and features, our data demonstrated that TLR2 Arg753Gln and TLR4 Asp299Gly gene variants were not risk factors for asthma or its features in Iranian patients. Genetic complexity, ethnicity, influence of other genes or polymorphisms may overcome these polymorphisms in our asthmatics. PMID:25530138

  15. Regulation of chemokine receptor by Toll-like receptor 2 is critical to neutrophil migration and resistance to polymicrobial sepsis

    PubMed Central

    Alves-Filho, Jose C.; Freitas, Andressa; Souto, Fabricio O.; Spiller, Fernando; Paula-Neto, Heitor; Silva, Joao S.; Gazzinelli, Ricardo T.; Teixeira, Mauro M.; Ferreira, Sergio H.; Cunha, Fernando Q.

    2009-01-01

    Patients with sepsis have a marked defect in neutrophil migration. Here we identify a key role of Toll-like receptor 2 (TLR2) in the regulation of neutrophil migration and resistance during polymicrobial sepsis. We found that the expression of the chemokine receptor CXCR2 was dramatically down-regulated in circulating neutrophils from WT mice with severe sepsis, which correlates with reduced chemotaxis to CXCL2 in vitro and impaired migration into an infectious focus in vivo. TLR2 deficiency prevented the down-regulation of CXCR2 and failure of neutrophil migration. Moreover, TLR2−/− mice exhibited higher bacterial clearance, lower serum inflammatory cytokines, and improved survival rate during severe sepsis compared with WT mice. In vitro, the TLR2 agonist lipoteichoic acid (LTA) down-regulated CXCR2 expression and markedly inhibited the neutrophil chemotaxis and actin polymerization induced by CXCL2. Moreover, neutrophils activated ex vivo by LTA and adoptively transferred into naïve WT recipient mice displayed a significantly reduced competence to migrate toward thioglycolate-induced peritonitis. Finally, LTA enhanced the expression of G protein–coupled receptor kinases 2 (GRK2) in neutrophils; increased expression of GRK2 was seen in blood neutrophils from WT mice, but not TLR2−/− mice, with severe sepsis. Our findings identify an unexpected detrimental role of TLR2 in polymicrobial sepsis and suggest that inhibition of TLR2 signaling may improve survival from sepsis. PMID:19234125

  16. Activation of epidermal toll-like receptor 2 enhances tight junction function: implications for atopic dermatitis and skin barrier repair.

    PubMed

    Kuo, I-Hsin; Carpenter-Mendini, Amanda; Yoshida, Takeshi; McGirt, Laura Y; Ivanov, Andrei I; Barnes, Kathleen C; Gallo, Richard L; Borkowski, Andrew W; Yamasaki, Kenshi; Leung, Donald Y; Georas, Steve N; De Benedetto, Anna; Beck, Lisa A

    2013-04-01

    Atopic dermatitis (AD) is characterized by epidermal tight junction (TJ) defects and a propensity for Staphylococcus aureus skin infections. S. aureus is sensed by many pattern recognition receptors, including Toll-like receptor 2 (TLR2). We hypothesized that an effective innate immune response will include skin barrier repair, and that this response is impaired in AD subjects. S. aureus-derived peptidoglycan (PGN) and synthetic TLR2 agonists enhanced TJ barrier and increased expression of TJ proteins, claudin-1 (CLDN1), claudin-23 (CLDN23), occludin, and Zonulae occludens 1 (ZO-1) in primary human keratinocytes. A TLR2 agonist enhanced skin barrier recovery in human epidermis wounded by tape stripping. Tlr2(-/-) mice had a delayed and incomplete barrier recovery following tape stripping. AD subjects had reduced epidermal TLR2 expression as compared with nonatopic subjects, which inversely correlated (r=-0.654, P=0.0004) with transepidermal water loss (TEWL). These observations indicate that TLR2 activation enhances skin barrier in murine and human skin and is an important part of a wound repair response. Reduced epidermal TLR2 expression observed in AD patients may have a role in their incompetent skin barrier. PMID:23223142

  17. Influence of Intron II microsatellite polymorphism in human toll-like receptor 2 gene in leprosy.

    PubMed

    Suryadevara, Naveen Chandra; Neela, Venkata Sanjeev Kumar; Devalraju, Kamakshi Prudhula; Jain, Suman; SivaSai, Krovvidi S R; Valluri, Vijaya Lakshmi; Jonnalagada, Subbanna; Anandaraj, M P J S

    2013-08-01

    Leprosy is a chronic granulomatous infection caused by the obligate intracellular organism Mycobacterium leprae. TLR2 plays a key role when activated by M. leprae lipoproteins initiating protective responses which induce bacterial killing and therefore control of disease spread. Microsatellite polymorphisms in intron2 of TLR2 gene have been reported to be associated with development of clinical features of several infectious diseases. The study aims to evaluate the influence of GT microsatellite on the expression of TLR2 which could make humans prone to M. leprae infections. A total of 279 individuals were enrolled in the study, 88 were leprosy patients, 95 were house hold contacts (HHC) and 96 were healthy controls (HC). Genotyping was done using PCR-Sequencing method. TLR2 mRNA expression was analyzed by RT-PCR. IL-10 and IFN-γ levels were measured using ELISA in MLSA stimulated cell culture supernatants. Statistical analysis was performed using Chi-Square (χ(2)) test and t-tests. Allele/genotype of TLR2 microsatellite which includes longer GT repeats was associated with low TLR2 mRNA expression and high IL-10 production while that including shorter GT repeats was associated with high TLR2 mRNA expression and low IL-10 production. High IL10 producing allele of TLR2 microsatellite might predispose house hold contacts to leprosy. PMID:23619473

  18. Role for Toll-like receptor 2 in the immune response to Streptococcus pneumoniae infection in mouse otitis media.

    PubMed

    Han, Fengchan; Yu, Heping; Tian, Cong; Li, Shengli; Jacobs, Michael R; Benedict-Alderfer, Cindy; Zheng, Qing Y

    2009-07-01

    Streptococcus pneumoniae is the most common pathogen associated with otitis media. To examine the role of Toll-like receptor 2 (TLR2) in host defense against Streptococcus pneumoniae infection in the middle ear, wild-type (WT; C57BL/6) and TLR2-deficient (TLR2(-/-)) mice were inoculated with Streptococcus pneumoniae (1 x 10(6) CFU) through the tympanic membrane. Nineteen of 37 TLR2(-/-) mice showed bacteremia and died within 3 days after the challenge, compared to only 4 of 32 WT mice that died. Of those that survived, more severe hearing loss in the TLR2(-/-) mice than in the WT mice was indicated by an elevation in auditory-evoked brain stem response thresholds at 3 or 7 days postinoculation. The histological pathology was characterized by effusion and tissue damage in the middle ear, and in the TLR2(-/-) mice, the outcome of infection became more severe at 7 days. At both 3 and 7 days postchallenge, the TLR2(-/-) mice had higher blood bacterial titers than the WT mice (P < 0.05), and typical bacteria were identified in the effusion from both ears of both mouse groups by acridine orange staining. Moreover, by 3 days postchallenge, the mRNA accumulation levels of NF-kappaB, tumor necrosis factor alpha, interleukin 1beta, MIP1alpha, Muc5ac, and Muc5b were significantly lower in the ears of TLR2(-/-) mice than in WT mice. In summary, TLR2(-/-) mice may produce relatively low levels of proinflammatory cytokines following pneumococcal challenge, thus hindering the clearance of bacteria from the middle ear and leading to sepsis and a high mortality rate. This study provides evidence that TLR2 is important in the molecular pathogenesis and host response to otitis media. PMID:19414550

  19. Concomitant inhibition of renin angiotensin system and Toll-like receptor 2 attenuates renal injury in unilateral ureteral obstructed mice

    PubMed Central

    Chung, Sarah; Jeong, Jin Young; Chang, Yoon Kyung; Choi, Dae Eun; Na, Ki Ryang; Lim, Beom Jin; Lee, Kang Wook

    2016-01-01

    Background/Aims: There has been controversy about the role of Toll-like receptor 2 (TLR2) in renal injury following ureteric obstruction. Although inhibition of the renin angiotensin system (RAS) reduces TLR2 expression in mice, the exact relationship between TLR2 and RAS is not known. The aim of this study was to determine whether the RAS modulates TLR2. Methods: We used 8-week-old male wild type (WT) and TLR2-knockout (KO) mice on a C57Bl/6 background. Unilateral ureteral obstruction (UUO) was induced by complete ligation of the left ureter. Angiotensin (Ang) II (1,000 ng/kg/min) and the direct renin inhibitor aliskiren (25 mg/kg/day) were administrated to mice using an osmotic minipump. Molecular and histologic evaluations were performed. Results: Ang II infusion increased mRNA expression of TLR2 in WT mouse kidneys (p < 0.05). The expression of renin mRNA in TLR2-KO UUO kidneys was significantly higher than that in WT UUO kidneys (p < 0.05). There were no differences in tissue injury score or mRNA expression of monocyte chemotactic protein 1 (MCP-1), osteopontin (OPN), or transforming growth factor β (TGF-β) between TLR2-KO UUO and WT UUO kidneys. However, aliskiren decreased the tissue injury score and mRNA expression of TLR2, MCP-1, OPN, and TGF-β in WT UUO kidneys (p < 0.05). Aliskiren-treated TLR2-KO UUO kidneys showed less kidney injury than aliskiren-treated WT UUO kidneys. Conclusions: TLR2 deletion induced activation of the RAS in UUO kidneys. Moreover, inhibition of both RAS and TLR2 had an additive ameliorative effect on UUO injury of the kidney. PMID:26932402

  20. Attenuation of Myocardial Injury by HMGB1 Blockade during Ischemia/Reperfusion Is Toll-Like Receptor 2-Dependent

    PubMed Central

    Iskandar, Franziska; Habeck, Katharina; Zimmermann, René; Schumann, Ralf R.; Koch, Alexander

    2013-01-01

    Genetic or pharmacological ablation of toll-like receptor 2 (TLR2) protects against myocardial ischemia/reperfusion injury (MI/R). However, the endogenous ligand responsible for TLR2 activation has not yet been detected. The objective of this study was to identify HMGB1 as an activator of TLR2 signalling during MI/R. C57BL/6 wild-type (WT) or TLR2−/−-mice were injected with vehicle, HMGB1, or HMGB1 BoxA one hour before myocardial ischemia (30 min) and reperfusion (24 hrs). Infarct size, cardiac troponin T, leukocyte infiltration, HMGB1 release, TLR4-, TLR9-, and RAGE-expression were quantified. HMGB1 plasma levels were measured in patients undergoing coronary artery bypass graft (CABG) surgery. HMGB1 antagonist BoxA reduced cardiomyocyte necrosis during MI/R in WT mice, accompanied by reduced leukocyte infiltration. Injection of HMGB1 did, however, not increase infarct size in WT animals. In TLR2−/−-hearts, neither BoxA nor HMGB1 affected infarct size. No differences in RAGE and TLR9 expression could be detected, while TLR2−/−-mice display increased TLR4 and HMGB1 expression. Plasma levels of HMGB1 were increased MI/R in TLR2−/−-mice after CABG surgery in patients carrying a TLR2 polymorphism (Arg753Gln). We here provide evidence that absence of TLR2 signalling abrogates infarct-sparing effects of HMGB1 blockade. PMID:24371373

  1. Divergent impact of Toll-like receptor 2 deficiency on repair mechanisms in healthy muscle versus Duchenne muscular dystrophy.

    PubMed

    Mojumdar, Kamalika; Giordano, Christian; Lemaire, Christian; Liang, Feng; Divangahi, Maziar; Qureshi, Salman T; Petrof, Basil J

    2016-05-01

    Injury to skeletal muscle, whether acute or chronic, triggers macrophage-mediated innate immunity in a manner which can be either beneficial or harmful for subsequent repair. Endogenous ligands for Toll-like receptor 2 (TLR2) are released by damaged tissues and might play an important role in activating the innate immune system following muscle injury. To test this hypothesis, we compared macrophage behaviour and muscle repair mechanisms in mice lacking TLR2 under conditions of either acute (cardiotoxin-induced) or chronic (mdx mouse genetic model of Duchenne muscular dystrophy; DMD) muscle damage. In previously healthy muscle subjected to acute damage, TLR2 deficiency reduced macrophage numbers in the muscle post-injury but did not alter the expression pattern of the prototypical macrophage polarization markers iNOS and CD206. In addition, there was abnormal persistence of necrotic fibres and impaired regeneration in TLR2-/- muscles after acute injury. In contrast, TLR2 ablation in chronically diseased muscles of mdx mice not only resulted in significantly reduced macrophage numbers but additionally modified their phenotype by shifting from inflammatory (iNOS(pos) CD206(neg) ) to more anti-inflammatory (iNOS(neg) CD206(pos) ) characteristics. This decrease in macrophage-mediated inflammation was associated with ameliorated muscle histopathology and improved force-generating capacity of the dystrophic muscle. Our results suggest that the role of TLR2 in macrophage function and skeletal muscle repair depends greatly upon the muscle injury context, and raise the possibility that inhibition of TLR2 could serve as a useful therapeutic measure in DMD. PMID:26800321

  2. Toll-like receptor 2 mediates high-fat diet-induced impairment of vasodilator actions of insulin

    PubMed Central

    Jang, Hyun-Ju; Kim, Hae-Suk; Hwang, Daniel H.; Quon, Michael J.

    2013-01-01

    Obesity is characterized by a chronic proinflammatory state that leads to endothelial dysfunction. Saturated fatty acids (SFA) stimulate Toll-like receptors (TLR) that promote metabolic insulin resistance. However, it is not known whether TLR2 mediates impairment of vascular actions of insulin in response to high-fat diet (HFD) to cause endothelial dysfunction. siRNA knockdown of TLR2 in primary endothelial cells opposed palmitate-stimulated expression of proinflammatory cytokines and splicing of X box protein 1 (XBP-1). Inhibition of unfolding protein response (UPR) reduced SFA-stimulated expression of TNFα. Thus, SFA stimulates UPR and proinflammatory response through activation of TLR2 in endothelial cells. Knockdown of TLR2 also opposed impairment of insulin-stimulated phosphorylation of eNOS and subsequent production of NO. Importantly, insulin-stimulated vasorelaxation of mesenteric arteries from TLR2 knockout mice was preserved even on HFD (in contrast with results from arteries examined in wild-type mice on HFD). We conclude that TLR2 in vascular endothelium mediates HFD-stimulated proinflammatory responses and UPR that accompany impairment of vasodilator actions of insulin, leading to endothelial dysfunction. These results are relevant to understanding the pathophysiology of the cardiovascular complications of diabetes and obesity. PMID:23531618

  3. Toll-like receptor 2 signalling: Significance in megakaryocyte development through wnt signalling cross-talk and cytokine induction.

    PubMed

    Undi, Ram Babu; Sarvothaman, Shilpa; Narasaiah, Kovuru; Gutti, Usha; Gutti, Ravi Kumar

    2016-07-01

    TLR2 is a toll-like receptor protein which is involved in innate immune responses. TLR2 recognize several virus, fungal and bacterial pathogens, upon their uptake cause internalization and cellular activation. During this process several cytokines participate including interleukins, IL6 and IL12. Interestingly, TLR2 is expressed on megakaryocytes (MKs) and platelets, which is crucial for immune mediated platelet activation. The role of TLR2 on MKs is not completely understood. We observed TLR2 induction leads to MK maturation and is involved in production of ROS which is essential for MK development. In Dami cells, TLR2 up-regulation causes increase in the cytokine production, particularly IL-6, which has been shown to stimulate CFU formation and CD41 expression. Additionally, TLR2 ligand induces wnt β-catenin signalling pathway components suggesting a cross talk between wnt and TLR pathway leading to maturation of MKs. This study shows TLR2 signalling induce cytokine production and regulate wnt signalling thereby cause maturation of MKs. PMID:27179140

  4. Toll-like receptor 2 (TLR2) mediates intracellular signalling in human keratinocytes in response to Malassezia furfur.

    PubMed

    Baroni, Adone; Orlando, Manuela; Donnarumma, Giovanna; Farro, Pietro; Iovene, Maria Rosaria; Tufano, Maria Antonietta; Buommino, Elisabetta

    2006-01-01

    Toll-like receptors (TLRs) are crucial players in the innate immune response to microbial invaders. The lipophilic yeast Malassezia furfur has been implicated in the triggering of scalp lesions in psoriasis. The aim of the present study was to assess the role of TLRs in the defence against M. furfur infection. The expression of the myeloid differentiation factor 88 (MyD88) gene, which is involved in the signalling pathway of many TLRs, was also analysed. In addition, a possible correlation of antimicrobial peptides of the beta-defensin family to TLRs was tested. Human keratinocytes infected with M. furfur and a variety of M. furfur-positive psoriatic skin biopsies were analysed by RT-PCR, for TLRs, MyD88, human beta-defensin 2 (HBD-2), HBD-3 and interleukin-8 (IL-8) mRNA expression. When keratinocytes were infected with M. furfur, an up-regulation for TLR2, MyD88, HBD-2, HBD-3 and IL-8 mRNA was demonstrated, compared to the untreated cells. The same results were obtained when psoriatic skin biopsies were analysed. The M. furfur-induced increase in HBD-2 and IL-8 gene expression is inhibited by anti-TLR2 neutralising antibodies, suggesting that TLR2 is involved in the M. furfur-induced expression of these molecules. These findings suggest the importance of TLRs in skin protection against fungi and the importance of keratinocytes as a component of innate immunity. PMID:16283346

  5. Induction of Innate Immune Response through Toll-like Receptor 2 and Dectin 1 prevents type 1 diabetes1

    PubMed Central

    Karumuthil-Melethil, Subha; Perez, Nicolas; Li, Ruobing; Vasu, Chenthamarakshan

    2008-01-01

    Studies have suggested a correlation between the decline in infectious diseases and increase in the incidence of T1D in developed countries. Pathogens influence the disease outcome through innate immune receptors such as toll-like receptors (TLRs). Here, we report the effect of ligation of TLR2 and dectin 1 on APCs, and the influence of innate immune response induced through these receptors on T1D. Exposure of APCs of non-obese diabetic (NOD) mice to zymosan, a fungal cell-wall component that is known to interact with TLR2 and dectin 1, resulted in the release of significant amounts of IL-10, TGF-β1, IL-2, and TNF-α. Treatment of pre- and early-hyperglycemic mice with zymosan resulted in suppression of insulitis leading to a significant delay in hyperglycemia. Importantly, T cells from zymosan treated mice showed reduced ability to induce diabetes in NOD-Scid mice compared to control T cells. Zymosan treatment induced suppression of T1D was associated with an increase in the CD62Lhigh T cell frequencies and enhanced suppressor function of CD4+CD25+ Tregs. Further, activation by anti-CD3-Ab induced larger amounts of TGF-β1 and/or IL-10 production by CD4+CD25+ and CD4+CD25- T cells from zymosan treated mice. These results show that innate immune response through TLR2 and dectin 1 results in suppressor cytokine production by APCs, and promotes regulatory function of T cells. Our study demonstrates the possible involvement of signaling through innate immune receptors such as TLR2 and dectin 1 in reduced T1D incidence under the conditions of low hygiene, and the potential of targeting them for treating T1D. PMID:19050249

  6. Knockout of Toll-Like Receptors 2 and 4 Prevents Renal Ischemia-Reperfusion-Induced Cardiac Hypertrophy in Mice

    PubMed Central

    Trentin-Sonoda, Mayra; da Silva, Rogério Cirino; Kmit, Fernanda Vieira; Abrahão, Mariana Vieira; Monnerat Cahli, Gustavo; Brasil, Guilherme Visconde; Muzi-Filho, Humberto; Silva, Paulo André; Tovar-Moll, Fernanda Freire; Vieyra, Adalberto; Medei, Emiliano; Carneiro-Ramos, Marcela Sorelli

    2015-01-01

    We investigated whether the pathways linked to Toll-like receptors 2 and 4 (TLRs) are involved in renal ischemia-reperfusion (I/R)-induced cardiac hypertrophy. Wild type (WT) C57BL/6J, TLR2-/- and TLR4-/- mice were subjected to left kidney ischemia for 60 min followed by reperfusion for 5, 8, 12 and 15 days. Proton density magnetic resonance showed alterations in the injured kidney from WT mice, together with signs of parenchymal edema and higher levels of vimentin mRNA, accompanied by: (i) small, but significant, increase in serum urea after 24 h, (ii) 100% increase in serum creatinine at 24 h. A serum peak of inflammatory cytokines occurred after 5 days of reperfusion. Heart weight/body weight and heart weight/tibia length ratios increased after 12 and 15 days of reperfusion, respectively. Cardiac hypertrophy markers, B-type natriuretic peptide (BNP) and α-actin, left ventricle mass, cardiac wall thickness and myocyte width increased after 15 days of reperfusion, together with longer QTc and action potential duration. Cardiac TLRs, MyD88, HSP60 and HSP70 mRNA levels also increased. After 15 days of reperfusion, absence of TLRs prevented cardiac hypertrophy, as reflected by similar values of left ventricular cardiac mass and heart weight/body weight ratio compared to the transgenic Sham. Renal tissular injury also ameliorated in both knockout mice, as revealed by the comparison of their vimentin mRNA levels with those found in the WT on the same day after I/R. The I/R TLR2-/- group had TNF-α, IFN-γ and IL-1β levels similar to the non-I/R group, whereas the TLR4-/- group conserved the p-NF-κB/NF- κB ratio contrasting with that found in TLR2-/-. We conclude: (i) TLRs are involved in renal I/R-induced cardiac hypertrophy; (ii) absence of TLRs prevents I/R-induced cardiac hypertrophy, despite renal lesions seeming to evolve towards those of chronic disease; (iii) TLR2 and TLR4 selectively regulate the systemic inflammatory profile and NF- κB activation. PMID

  7. Essential Engagement of Toll-Like Receptor 2 in Initiation of Early Protective Th1 Response against Rough Variants of Mycobacterium abscessus

    PubMed Central

    Kim, Jong-Seok; Kang, Min-Jung; Kim, Woo Sik; Han, Seung Jung; Kim, Hong Min; Kim, Ho Won; Kwon, Kee Woong; Kim, So Jeong; Cha, Seung Bin; Eum, Seok-Yong; Koh, Won-Jung; Cho, Sang-Nae

    2015-01-01

    Although Mycobacterium abscessus (M. abscessus) is becoming more prevalent in patients without overt immunodeficiency, little is known about the factors that contribute to disease susceptibility. This study was undertaken to investigate how Toll-like receptor 2 (TLR2) functionally contributes to the generation of protective immunity against M. abscessus in a morphotype-specific manner. We found that Tlr2−/− mice were extremely susceptible to an intravenous (i.v.) model of infection by M. abscessus rough variants, displaying uncontrolled infection in the lungs and a significantly lower survival rate than with wild-type (WT) mice. This uncontrolled infection resulted from failures in the following processes: (i) production of the crucial cytokines gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), and interleukin 12p70 (IL-12p70); (ii) early infiltration of neutrophils, monocytes, and dendritic cells (DCs) in the lungs of Tlr2−/− mice; (iii) rapid influx of CD4+ and CD8+ T cells; and (iv) the expansion of memory/effector T cells. Notably, systemic administration of M. abscessus culture filtrate-treated syngeneic DCs from WT mice greatly strengthened immune priming in vivo, resulting in a dramatic reduction in bacterial growth and improved long-term survival in Tlr2−/− mice, with a recovery of protective immunity. Our findings demonstrate that TLR2 is an essential contributor to instructive and effector immunity during M. abscessus infection in a morphotype-specific manner. PMID:25644006

  8. Chloral hydrate-dependent reduction in the peptidoglycan-induced inflammatory macrophage response is associated with lower expression levels of toll-like receptor 2

    PubMed Central

    PAN, QINGJUN; LIU, YUAN; ZHU, XUEZHI; LIU, HUAFENG

    2014-01-01

    The aim of this study was to investigate the effect and mechanism of action of chloral hydrate on the peptidoglycan (PGN)-induced inflammatory macrophage response. The effect of chloral hydrate on the production of tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) by murine peritoneal macrophages with PGN-stimulation was investigated. In addition, RAW264.7 cells transfected with a nuclear factor-κB (NF-κB) luciferase reporter plasmid stimulated by PGN were used to study the effect of chloral hydrate on the levels NF-κB activity. Flow cytometry and western blotting were performed to investigate the expression levels of toll-like receptor 2 (TLR2) in the treated RAW264.7 cells. It was identified that chloral hydrate reduced the levels of IL-6 and TNF-α produced by the peritoneal macrophages stimulated with PGN. The levels of NF-κB activity of the RAW264.7 cells stimulated by PGN decreased following treatment with chloral hydrate, which was associated with a reduction in the expression levels of TLR2 and reduced levels of TLR2 signal transduction. These data demonstrate that chloral hydrate reduced the magnitude of the PGN-induced inflammatory macrophage response associated with lower expression levels of TLR2. PMID:24940429

  9. Macrophage immunomodulation by breast cancer-derived exosomes requires Toll-like receptor 2-mediated activation of NF-κB

    PubMed Central

    Chow, Amy; Zhou, Weiying; Liu, Liang; Fong, Miranda Y.; Champer, Jackson; Van Haute, Desiree; Chin, Andrew R.; Ren, Xiubao; Gugiu, Bogdan Gabriel; Meng, Zhipeng; Huang, Wendong; Ngo, Vu; Kortylewski, Marcin; Wang, Shizhen Emily

    2014-01-01

    Growing evidence links tumor progression with chronic inflammatory processes and dysregulated activity of various immune cells. In this study, we demonstrate that various types of macrophages internalize microvesicles, called exosomes, secreted by breast cancer and non-cancerous cell lines. Although both types of exosomes targeted macrophages, only cancer-derived exosomes stimulated NF-κB activation in macrophages resulting in secretion of pro-inflammatory cytokines such as IL-6, TNFα, GCSF, and CCL2. In vivo mouse experiments confirmed that intravenously injected exosomes are efficiently internalized by macrophages in the lung and brain, which correlated with upregulation of inflammatory cytokines. In mice bearing xenografted human breast cancers, tumor-derived exosomes were internalized by macrophages in axillary lymph nodes thereby triggering expression of IL-6. Genetic ablation of Toll-like receptor 2 (TLR2) or MyD88, a critical signaling adaptor in the NF-κB pathway, completely abolished the effect of tumor-derived exosomes. In contrast, inhibition of TLR4 or endosomal TLRs (TLR3/7/8/9) failed to abrogate NF-κB activation by exosomes. We further found that palmitoylated proteins present on the surface of tumor-secreted exosomes contributed to NF-κB activation. Thus, our results highlight a novel mechanism used by breast cancer cells to induce pro-inflammatory activity of distant macrophages through circulating exosomal vesicles secreted during cancer progression. PMID:25034888

  10. Lipoteichoic acid modulates inflammatory response in macrophages after phagocytosis of titanium particles through Toll-like receptor 2 cascade and inflammasomes.

    PubMed

    Naganuma, Yasushi; Takakubo, Yuya; Hirayama, Tomoyuki; Tamaki, Yasunobu; Pajarinen, Jukka; Sasaki, Kan; Goodman, Stuart B; Takagi, Michiaki

    2016-02-01

    Toll-like receptor 2 (TLR2) and nucleotide-binding and oligomerization domain-like receptors with a pyrin domain 3 (NLRP3) inflammasomes have been presumed to participate in the pathogenesis of aseptic implant loosening. The aim of this study is to analyze the cellular localization of TLR2 and NLRP3 inflammasomes in the periprosthetic tissue from aseptically loose hip implants as well as the expression of these molecules in macrophages stimulated in vitro with titanium particles (Ti) coated with lipoteichoic acid (LTA). Using immunohistochemistry, immunoreactivity of TLR2 and NLRP3 inflammasomes was found in macrophages within the foreign body granulomatosis. Using RAW264.7 cells, stimulation with Ti increased the messenger RNA (mRNA) levels of TLR2 and TNF-α. Stimulation with LTA-coated Ti enhanced mRNA levels of NLRP3 and IL-1β, whereas reinforced secretion of IL-1β was not detected in spite of marked release of TNF-α. Finally, the same cells with silenced Irak2, an adaptor protein in the TLR2 cascade, suppressed this NLRP3 upregulation. This study suggests that TLR2 and NLRP3 inflammasomes are factors involved in cross-talk mediating the foreign body type response to wear particles. In addition, discrepant behavior in the release between TNF-α and IL-1β release may explain the variable pathomechanisms of aseptic implant loosening without acute inflammatory reactions. PMID:26440284

  11. Toll-Like Receptor 2 Stimulation of Osteoblasts Mediates Staphylococcus Aureus Induced Bone Resorption and Osteoclastogenesis through Enhanced RANKL

    PubMed Central

    Kassem, Ali; Lindholm, Catharina; Lerner, Ulf H

    2016-01-01

    Severe Staphylococcus aureus (S. aureus) infections pose an immense threat to population health and constitute a great burden for the health care worldwide. Inter alia, S. aureus septic arthritis is a disease with high mortality and morbidity caused by destruction of the infected joints and systemic bone loss, osteoporosis. Toll-Like receptors (TLRs) are innate immune cell receptors recognizing a variety of microbial molecules and structures. S. aureus recognition via TLR2 initiates a signaling cascade resulting in production of various cytokines, but the mechanisms by which S. aureus causes rapid and excessive bone loss are still unclear. We, therefore, investigated how S. aureus regulates periosteal/endosteal osteoclast formation and bone resorption. S. aureus stimulation of neonatal mouse parietal bone induced ex vivo bone resorption and osteoclastic gene expression. This effect was associated with increased mRNA and protein expression of receptor activator of NF-kB ligand (RANKL) without significant change in osteoprotegerin (OPG) expression. Bone resorption induced by S. aureus was abolished by OPG. S. aureus increased the expression of osteoclastogenic cytokines and prostaglandins in the parietal bones but the stimulatory effect of S. aureus on bone resorption and Tnfsf11 mRNA expression was independent of these cytokines and prostaglandins. Stimulation of isolated periosteal osteoblasts with S. aureus also resulted in increased expression of Tnfsf11 mRNA, an effect lost in osteoblasts from Tlr2 knockout mice. S. aureus stimulated osteoclastogenesis in isolated periosteal cells without affecting RANKL-stimulated resorption. In contrast, S. aureus inhibited RANKL-induced osteoclast formation in bone marrow macrophages. These data show that S. aureus enhances bone resorption and periosteal osteoclast formation by increasing osteoblast RANKL production through TLR2. Our study indicates the importance of using different in vitro approaches for studies of how S

  12. DIESEL EXHAUST ENHANCES TOLL-LIKE RECEPTOR 3 EXPRESSION AND SIGNALING IN RESPIRATORY EPITHELIAL CELLS

    EPA Science Inventory

    Our previous studies have shown that prior exposure of respiratory epithelial cells to an aqueous-trapped solution of DE (DEas) enhances the susceptibility to Influenza infections. Here we examined the effect of DEas on the toll-like receptor 3 (TLR3) pathway, which is responsib...

  13. Toll-Like Receptor-1 and Receptor-2 and Beta-Defensin in Postcholecystectomy Bile Duct Injury

    PubMed Central

    Miranda-Díaz, Alejandra Guillermina; Hermosillo-Sandoval, José Manuel; Villanueva-Pérez, Martha Arisbeth; Román-Pintos, Luis Miguel; García-Iglesias, Trinidad; Rodríguez-Carrizalez, Adolfo Daniel; Cardona-Muñoz, Ernesto Germán

    2015-01-01

    Postcholecystectomy bile duct injuries (BDI) produce hepatic cholestasis and cause infection of the biliary tract. The biliary cells participate in secreting cytokines and in expression of immune response receptors. Toll-like receptors (TLRs) conduct signalling and activate the innate and adaptive inflammatory response. The objective was to determine the serum levels of TLR-2 and the expression of TLR-1 and TLR-2 and β-defensin in liver biopsies of postcholecystectomy BDI patients. A transverse, analytical study with 2 groups was done. One group included healthy volunteers (control group) and other included 25 postcholecystectomy BDI patients with complete biliary obstruction. Using the Enzyme-linked Immunosorbent Assay (ELISA) technique, serum levels of TLR-2 were determined, and with immunofluorescence the morphologic analysis of TLR-1 and TLR-2 and β-defensin in liver biopsies of postcholecystectomy BDI patients was performed. The average TLR-2 serum level in the control group was 0.0 pg/mL and in the BDI group, 0.023 ± 0.0045 pg/mL (P < 0.0001, bilateral Mann Whitney U). Immunofluorescence was used to determine the expression in liver biopsies, blood vessels, bile ducts, and hepatic parenchyma where 12 hepatic biopsies were positive for TLR-1 with average of 3213057.74 ± 1071019.25 μm2; and 7 biopsies were positive for β-defensin with an average of 730364.33 ± 210838.02 μm2; and 6 biopsies positive for TLR-2, obtaining an average of 3354364.24 ± 838591.06 μm2. In conclusion, TLR-1 and TLR-2 and β-defensin play an important role in the innate antimicrobial defense of the hepatobiliary system. PMID:25755667

  14. Argon Mediates Anti-Apoptotic Signaling and Neuroprotection via Inhibition of Toll-Like Receptor 2 and 4

    PubMed Central

    Ulbrich, Felix; Kaufmann, Kai; Roesslein, Martin; Wellner, Franziska; Auwärter, Volker; Kempf, Jürgen; Loop, Torsten; Buerkle, Hartmut; Goebel, Ulrich

    2015-01-01

    Purpose Recently, the noble gas argon attracted significant attention due to its neuroprotective properties. However, the underlying molecular mechanism is still poorly understood. There is growing evidence that the extracellular regulated kinase 1/2 (ERK1/2) is involved in Argon´s protective effect. We hypothesized that argon mediates its protective effects via the upstream located toll-like receptors (TLRs) 2 and 4. Methods Apoptosis in a human neuroblastoma cell line (SH-SY5Y) was induced using rotenone. Argon treatment was performed after induction of apoptosis with different concentrations (25, 50 and 75 Vol% in oxygen 21 Vol%, carbon dioxide and nitrogen) for 2 or 4 hours respectively. Apoptosis was analyzed using flow cytometry (annexin-V (AV)/propidiumiodide (PI)) staining, caspase-3 activity and caspase cleavage. TLR density on the cells’ surface was analyzed using FACS and immunohistochemistry. Inhibition of TLR signaling and extracellular regulated kinase 1/2 (ERK1/2) were assessed by western blot, activity assays and FACS analysis. Results Argon 75 Vol% treatment abolished rotenone-induced apoptosis. This effect was attenuated dose- and time-dependently. Argon treatment was accompanied with a significant reduction of TLR2 and TLR4 receptor density and protein expression. Moreover, argon mediated increase in ERK1/2 phosphorylation was attenuated after inhibition of TLR signaling. ERK1/2 and TLR signaling inhibitors abolished the anti-apoptotic and cytoprotective effects of argon. Immunohistochemistry results strengthened these findings. Conclusion These findings suggest that argon-mediated anti-apoptotic and neuroprotective effects are mediated via inhibition of TLR2 and TLR4. PMID:26624894

  15. Chronic obstructive pulmonary disease and asthma-associated Proteobacteria, but not commensal Prevotella spp., promote Toll-like receptor 2-independent lung inflammation and pathology

    PubMed Central

    Larsen, Jeppe M; Musavian, Hanieh S; Butt, Tariq M; Ingvorsen, Camilla; Thysen, Anna H; Brix, Susanne

    2015-01-01

    Recent studies of healthy human airways have revealed colonization by a distinct commensal bacterial microbiota containing Gram-negative Prevotella spp. However, the immunological properties of these bacteria in the respiratory system remain unknown. Here we compare the innate respiratory immune response to three Gram-negative commensal Prevotella strains (Prevotella melaninogenica, Prevotella nanceiensis and Prevotella salivae) and three Gram-negative pathogenic Proteobacteria known to colonize lungs of patients with chronic obstructive pulmonary disease (COPD) and asthma (Haemophilus influenzae B, non-typeable Haemophilus influenzae and Moraxella catarrhalis). The commensal Prevotella spp. and pathogenic Proteobacteria were found to exhibit intrinsic differences in innate inflammatory capacities on murine lung cells in vitro. In vivo in mice, non-typeable H. influenzae induced severe Toll-like receptor 2 (TLR2)-independent COPD-like inflammation characterized by predominant airway neutrophilia, expression of a neutrophilic cytokine/chemokine profile in lung tissue, and lung immunopathology. In comparison, P. nanceiensis induced a diminished neutrophilic airway inflammation and no detectable lung pathology. Interestingly, the inflammatory airway response to the Gram-negative bacteria P. nanceiensis was completely TLR2-dependent. These findings demonstrate weak inflammatory properties of Gram-negative airway commensal Prevotella spp. that may make colonization by these bacteria tolerable by the respiratory immune system. PMID:25179236

  16. Interleukin-1 receptor but not Toll-like receptor 2 is essential for MyD88-dependent Th17 immunity to Coccidioides infection.

    PubMed

    Hung, Chiung-Yu; Jiménez-Alzate, María del Pilar; Gonzalez, Angel; Wüthrich, Marcel; Klein, Bruce S; Cole, Garry T

    2014-05-01

    Interleukin-17A (IL-17A)-producing CD4(+) T helper (Th17) cells have been shown to be essential for defense against pulmonary infection with Coccidioides species. However, we have just begun to identify the required pattern recognition receptors and understand the signal pathways that lead to Th17 cell activation after fungal infection. We previously reported that Card9(-/-) mice vaccinated with formalin-killed spherules failed to acquire resistance to Coccidioides infection. Here, we report that both MyD88(-/-) and Card9(-/-) mice immunized with a live, attenuated vaccine also fail to acquire protective immunity to this respiratory disease. Like Card9(-/-) mice, vaccinated MyD88(-/-) mice revealed a significant reduction in numbers of both Th17 and Th1 cells in their lungs after Coccidioides infection. Both Toll-like receptor 2 (TLR2) and IL-1 receptor type 1 (IL-1r1) upstream of MyD88 have been implicated in Th17 cell differentiation. Surprisingly, vaccinated TLR2(-/-) and wild-type (WT) mice showed similar outcomes after pulmonary infection with Coccidioides, while vaccinated IL-1r1(-/-) mice revealed a significant reduction in the number of Th17 cells in their infected lungs compared to WT mice. Thus, activation of both IL-1r1/MyD88- and Card9-mediated Th17 immunity is essential for protection against Coccidioides infection. Our data also reveal that the numbers of Th17 cells were reduced in IL-1r1(-/-) mice to a lesser extent than in MyD88(-/-) mice, raising the possibility that other TLRs are involved in MyD88-dependent Th17 immunity to coccidioidomycosis. An antimicrobial action of Th17 cells is to promote early recruitment of neutrophils to infection sites. Our data revealed that neutrophils are required for vaccine immunity to this respiratory disease. PMID:24614655

  17. A minocycline derivative reduces nerve injury-induced allodynia, LPS-induced prostaglandin E2 microglial production and signaling via toll-like receptors 2 and 4

    PubMed Central

    Bastos, Leandro F. S.; Godin, Adriana M.; Zhang, Yingning; Jarussophon, Suwatchai; Ferreira, Bruno C. S.; Machado, Renes R.; Maier, Steven F.; Konishi, Yasuo; de Freitas, Rossimiriam P.; Fiebich, Bernd L.; Watkins, Linda R.; Coelho, Márcio M.; Moraes, Márcio F. D.

    2013-01-01

    Many studies have shown that minocycline, an antibacterial tetracycline, suppresses experimental pain. While minocycline’s positive effects on pain resolution suggest that clinical use of such drugs may prove beneficial, minocycline’s antibiotic actions and divalent cation (Ca2+; Mg2+) chelating effects detract from its potential utility. Thus, we tested the antiallodynic effect induced by a non-antibacterial, non-chelating minocycline derivative in a model of neuropathic pain and performed an initial investigation of its anti-inflammatory effects in vitro. Intraperitoneal minocycline (100 mg/kg) and 12S-hydroxy-1,12-pyrazolinominocycline (PMIN; 23.75, 47.50 or 95.00 mg/kg) reduce the mechanical allodynia induced by chronic constriction injury of mouse sciatic nerve. PMIN reduces the LPS-induced production of PGE2 by primary microglial cell cultures. Human embryonic kidney cells were transfected to express human toll-like receptors 2 and 4, and the signaling via both receptors stimulated with PAM3CSK4 or LPS (respectively) was affected either by minocycline or PMIN. Importantly, these treatments did not affect the cell viability, as assessed by MTT test. Altogether, these results reinforce the evidence that the anti-inflammatory and experimental pain suppressive effects induced by tetracyclines are neither necessarily linked to antibacterial nor to Ca2+ chelating activities. This study supports the evaluation of the potential usefulness of PMIN in the management of neuropathic pain, as its lack of antibacterial and Ca2+ chelating activities might confer greater safety over conventional tetracyclines. PMID:23523650

  18. A minocycline derivative reduces nerve injury-induced allodynia, LPS-induced prostaglandin E2 microglial production and signaling via toll-like receptors 2 and 4.

    PubMed

    Bastos, Leandro F S; Godin, Adriana M; Zhang, Yingning; Jarussophon, Suwatchai; Ferreira, Bruno C S; Machado, Renes R; Maier, Steven F; Konishi, Yasuo; de Freitas, Rossimiriam P; Fiebich, Bernd L; Watkins, Linda R; Coelho, Márcio M; Moraes, Márcio F D

    2013-05-24

    Many studies have shown that minocycline, an antibacterial tetracycline, suppresses experimental pain. While minocycline's positive effects on pain resolution suggest that clinical use of such drugs may prove beneficial, minocycline's antibiotic actions and divalent cation (Ca(2+); Mg(2+)) chelating effects detract from its potential utility. Thus, we tested the antiallodynic effect induced by a non-antibacterial, non-chelating minocycline derivative in a model of neuropathic pain and performed an initial investigation of its anti-inflammatory effects in vitro. Intraperitoneal minocycline (100mg/kg) and 12S-hydroxy-1,12-pyrazolinominocycline (PMIN; 23.75 mg/kg, 47.50mg/kg or 95.00 mg/kg) reduce the mechanical allodynia induced by chronic constriction injury of mouse sciatic nerve. PMIN reduces the LPS-induced production of PGE2 by primary microglial cell cultures. Human embryonic kidney cells were transfected to express human toll-like receptors 2 and 4, and the signaling via both receptors stimulated with PAM3CSK4 or LPS (respectively) was affected either by minocycline or PMIN. Importantly, these treatments did not affect the cell viability, as assessed by MTT test. Altogether, these results reinforce the evidence that the anti-inflammatory and experimental pain suppressive effects induced by tetracyclines are neither necessarily linked to antibacterial nor to Ca(2+) chelating activities. This study supports the evaluation of the potential usefulness of PMIN in the management of neuropathic pain, as its lack of antibacterial and Ca(2+) chelating activities might confer greater safety over conventional tetracyclines. PMID:23523650

  19. Expression of Toll-Like Receptors 2 and 4 and Related Cytokines in Patients with Hepatic Cystic and Alveolar Echinococcosis

    PubMed Central

    Tuxun, Tuerhongjiang; Ma, Hai-Zhang; Apaer, Shadike; Zhang, Heng; Aierken, Amina; Li, Yu-Peng; Lin, Ren-Yong; Zhao, Jin-Ming; Zhang, Jin-Hui; Wen, Hao

    2015-01-01

    Several studies have demonstrated the important role of Toll-like receptors in various parasitic infections. This study aims to explore expression of Toll-like receptors (TLRs) and related cytokines in patients with human cystic echinococcosis (CE) and alveolar echinococcosis (AE). 78 subjects including AE group (N = 28), CE group (N = 22), and healthy controls (HC, N = 28) were enrolled in this study. The mRNA expression levels of TLR2 and TLR4 in blood and hepatic tissue and plasma levels related cytokines were detected by using ELISA. Median levels of TLR2 mRNA in AE and CE groups were significantly elevated as compared with that in healthy control group. Median levels of TLR4 expression were increased in AE and CE. Plasma concentration levels of IL-5, IL-6, and IL-10 were slightly increased in AE and CE groups compared with those in HC group with no statistical differences (p > 0.05). The IL-23 concentration levels were significantly higher in AE and CE groups than that in HC subjects with statistical significance. The increased expression of TLR2 and IL-23 might play a potential role in modulating tissue infiltrative growth of the parasite and its persistence in the human host. PMID:26635448

  20. Monocytes from tuberculosis patients that exhibit cleaved caspase 9 and denaturalized cytochrome c are more susceptible to death mediated by Toll-like receptor 2

    PubMed Central

    Chávez-Galán, Leslie; Sada-Ovalle, Isabel; Baez-Saldaña, Renata; Chávez, Raúl; Lascurain, Ricardo

    2012-01-01

    Experimental models have shown that lipoproteins from Mycobacterium tuberculosis induce apoptosis via Toll-like receptor 2 (TLR2) in the THP-1 cell line and in monocyte-derived macrophages from healthy volunteers. We found an increased percentage of circulating monocytes in patients with tuberculosis (TB) in comparison to healthy controls. Patients with TB showed a higher TLR2 and TLR4 expression density on monocytes, and a higher proportion of TLR2+ monocytes, as well as increased serum tumour necrosis factor-α level. In culture, monocytes from TB patients were more susceptible to death than monocytes from healthy controls. Moreover, death-susceptible monocytes were positive to both TLR2 and TLR4 at the start of culture. Freshly obtained monocytes from TB patients exhibited cleaved caspase 9 and denaturalized cytochrome c. For levels of caspase 8, apoptosis-regulating signal kinase 1, and phospho-p38 mitogen-activated protein kinase there was no difference between samples from TB patients and from healthy controls. The culture filtrate antigen extract from M. tuberculosis H37Rv strain induced the death of monocytes from patient with TB after a 4-hr incubation, which was abrogated by neutralizing antibodies for TLR2 but not TLR4. Similarly, Pam3CSK4, a synthetic agonist triacylated ligand to TLR2, also induced the death of monocytes, although it did not increase levels of cleaved caspase 9. Our findings suggest that monocytes from TB patients are more susceptible to death, probably through mitochondrial damage, and that cell death increases in the presence of mycobacterial antigen by a TLR2-dependent pathway. PMID:22133266

  1. Local activation of uterine Toll-like receptor 2 and 2/6 decreases embryo implantation and affects uterine receptivity in mice.

    PubMed

    Sanchez-Lopez, Javier Arturo; Caballero, Ignacio; Montazeri, Mehrnaz; Maslehat, Nasim; Elliott, Sarah; Fernandez-Gonzalez, Raul; Calle, Alexandra; Gutierrez-Adan, Alfonso; Fazeli, Alireza

    2014-04-01

    Embryo implantation is a complex interaction between maternal endometrium and embryonic structures. Failure to implant is highly recurrent and impossible to diagnose. Inflammation and infections in the female reproductive tract are common causes of infertility, embryo loss, and preterm labor. The current work describes how the activation of endometrial Toll-like receptor (TLR) 2 and 2/6 reduces embryo implantation chances. We developed a morphometric index to evaluate the effects of the TLR 2/6 activation along the uterine horn (UH). TLR 2/6 ligation reduced the endometrial myometrial and glandular indexes and increased the luminal index. Furthermore, TLR 2/6 activation increased the proinflammatory cytokines such as interleukin (IL)-1beta and monocyte chemotactic protein (MCP)-1 in UH lavages in the preimplantation day and IL-1 receptor antagonist in the implantation day. The engagement of TLR 2/6 with its ligand in the UH during embryo transfer severely affected the rate of embryonic implantation (45.00% ± 6.49% vs. 16.69% ± 5.01%, P < 0.05, control vs. test, respectively). Furthermore, this interference with the embryo implantation process was verified using an in vitro model of human embryo implantation where trophoblast spheroids failed to adhere to a monolayer of TLR 2- and TLR 2/6-activated endometrial cells. The inhibition of TLR receptors 2 and 6 in the presence of their specific ligands restored the ability of the spheroids to bind to the endometrial cells. In conclusion, the activation of the innate immune system in the uterus at the time of implantation interfered with the endometrial receptivity and reduced the chances of implantation success. PMID:24621922

  2. Developmental onset of bilirubin-induced neurotoxicity involves Toll-like receptor 2-dependent signaling in humanized UDP-glucuronosyltransferase1 mice.

    PubMed

    Yueh, Mei-Fei; Chen, Shujuan; Nguyen, Nghia; Tukey, Robert H

    2014-02-21

    Biological and signaling events that connect developmentally induced hyperbilirubinemia to bilirubin-induced neurological dysfunction (BIND) and CNS toxicity in humans are poorly understood. In mammals, UDP-glucuronosyltransferase 1A1 (UGT1A1) is the sole enzyme responsible for bilirubin glucuronidation, a rate-limiting step necessary for bilirubin metabolism and clearance. Humanized mice that express the entire UGT1 locus (hUGT1) and the UGT1A1 gene, develop neonatal hyperbilirubinemia, with 8-10% of hUGT1 mice succumbing to CNS damage, a phenotype that is presented by uncontrollable seizures. We demonstrate that neuroinflammation and reactive gliosis are prominent features of bilirubin brain toxicity, and a disturbed redox status resulting from activation of NADPH oxidase is an important contributing mechanism found in BIND. Using knock-out mice and primary brain cells, we connect a key pattern recognition receptor, Toll-like receptor 2 (TLR2), to hyperbilirubinemia-induced signaling. We illustrate a requirement for TLR2 signaling in regulating gliosis, proinflammatory mediators, and oxidative stress when neonatal mice encounter severe hyperbilirubinemia. TLR2-mediated gliosis strongly correlates with pronounced neuroinflammation in the CNS with up-regulation of TNFα, IL-1β, and IL-6, creating a pro-inflammatory CNS environment. Gene expression and immunohistochemistry staining show that hUGT1/Tlr2(-/-) mice fail to activate glial cells, proinflammatory cytokines, and stress response genes. In addition, bilirubin-induced apoptosis was significantly enhanced by blocking TLR2 signaling indicating its anti-apoptotic property. Consequently, a higher neonatal death rate (57.1%) in hUGT1/Tlr2(-/-) mice was observed when compared with hUGT1 mice (8.7%). These results suggest that TLR2 signaling and microglia neuroinflammation are linked to a repair and/or protection mode against BIND. PMID:24403077

  3. Prevention and Mitigation of Acute Radiation Syndrome in Mice by Synthetic Lipopeptide Agonists of Toll-Like Receptor 2 (TLR2)

    PubMed Central

    Shakhov, Alexander N.; Singh, Vijay K.; Bone, Frederick; Cheney, Alec; Kononov, Yevgeniy; Krasnov, Peter; Bratanova-Toshkova, Troitza K.; Shakhova, Vera V.; Young, Jason; Weil, Michael M.; Panoskaltsis-Mortari, Angela; Orschell, Christie M.; Baker, Patricia S.; Gudkov, Andrei; Feinstein, Elena

    2012-01-01

    Bacterial lipoproteins (BLP) induce innate immune responses in mammals by activating heterodimeric receptor complexes containing Toll-like receptor 2 (TLR2). TLR2 signaling results in nuclear factor-kappaB (NF-κB)-dependent upregulation of anti-apoptotic factors, anti-oxidants and cytokines, all of which have been implicated in radiation protection. Here we demonstrate that synthetic lipopeptides (sLP) that mimic the structure of naturally occurring mycoplasmal BLP significantly increase mouse survival following lethal total body irradiation (TBI) when administered between 48 hours before and 24 hours after irradiation. The TBI dose ranges against which sLP are effective indicate that sLP primarily impact the hematopoietic (HP) component of acute radiation syndrome. Indeed, sLP treatment accelerated recovery of bone marrow (BM) and spleen cellularity and ameliorated thrombocytopenia of irradiated mice. sLP did not improve survival of irradiated TLR2-knockout mice, confirming that sLP-mediated radioprotection requires TLR2. However, sLP was radioprotective in chimeric mice containing TLR2-null BM on a wild type background, indicating that radioprotection of the HP system by sLP is, at least in part, indirect and initiated in non-BM cells. sLP injection resulted in strong transient induction of multiple cytokines with known roles in hematopoiesis, including granulocyte colony-stimulating factor (G-CSF), keratinocyte chemoattractant (KC) and interleukin-6 (IL-6). sLP-induced cytokines, particularly G-CSF, are likely mediators of the radioprotective/mitigative activity of sLP. This study illustrates the strong potential of LP-based TLR2 agonists for anti-radiation prophylaxis and therapy in defense and medical scenarios. PMID:22479357

  4. Toll-Like Receptor 2 Mediates Fatal Immunopathology in Mice During Treatment of Secondary Pneumococcal Pneumonia Following Influenza

    PubMed Central

    Karlström, Åsa; Heston, Sarah M.; Boyd, Kelli L.; Tuomanen, Elaine I.

    2011-01-01

    Host inflammatory responses contribute to the significant immunopathology that occurs during treatment of secondary bacterial pneumonia following influenza. We undertook the present study to determine the mechanisms underlying disparate outcomes in a mouse model with β-lactam and macrolide antibiotics. Lysis of superinfecting bacteria by ampicillin caused an extensive influx of neutrophils into the lungs resulting in a consolidative pneumonia, necrotic lung damage, and significant mortality. This was mediated through Toll-like receptor (TLR) 2 and was independent of TLR4 and the Streptococcus pneumoniae cytotoxin pneumolysin. Treatment with azithromycin prevented neutrophil accumulation and rescued mice from subsequent mortality. This effect was independent of the antibacterial activity of this macrolide since dual therapy with ampicillin and azithromycin against an azithromycin-resistant strain also was able to cure secondary pneumonia. These data suggest that strategies for eliminating bacteria without lysis coupled with immunomodulation of inflammation should be pursued clinically. PMID:21900488

  5. In Silico Approach to Inhibition of Signaling Pathways of Toll-Like Receptors 2 and 4 by ST2L

    PubMed Central

    Basith, Shaherin; Manavalan, Balachandran; Govindaraj, Rajiv Gandhi; Choi, Sangdun

    2011-01-01

    Toll-like receptors (TLRs) activate a potent immunostimulatory response. There is clear evidence that overactivation of TLRs leads to infectious and inflammatory diseases. Recent biochemical studies have shown that the membrane-bound form of ST2 (ST2L), a member of the Toll-like/IL-1 receptor superfamily, negatively regulates MyD88-dependent TLR signaling pathways by sequestrating the adapters MyD88 and Mal (TIRAP). Specifically, ST2L attenuates the recruitment of Mal and MyD88 adapters to their receptors through its intracellular TIR domain. Thus, ST2L is a potent molecule that acts as a key regulator of endotoxin tolerance and modulates innate immunity. So far, the inhibitory mechanism of ST2L at the molecular level remains elusive. To develop a working hypothesis for the interactions between ST2L, TLRs (TLR1, 2, 4, and 6), and adapter molecules (MyD88 and Mal), we constructed three-dimensional models of the TIR domains of TLR4, 6, Mal, and ST2L based on homology modeling. Since the crystal structures of the TIR domains of TLR1, 2 as well as the NMR solution structure of MyD88 are known, we utilized these structures in our analysis. The TIR domains of TLR1, 2, 4, 6, MyD88, Mal and ST2L were subjected to molecular dynamics (MD) simulations in an explicit solvent environment. The refined structures obtained from the MD simulations were subsequently used in molecular docking studies to probe for potential sites of interactions. Through protein-protein docking analysis, models of the essential complexes involved in TLR2 and 4 signaling and ST2L inhibiting processes were developed. Our results suggest that ST2L may exert its inhibitory effect by blocking the molecular interface of Mal and MyD88 adapters mainly through its BB-loop region. Our predicted oligomeric signaling models may provide a basis for the understanding of the assembly process of TIR domain interactions, which has thus far proven to be difficult via in vivo studies. PMID:21897866

  6. Toll-like receptor 2 ligand, lipoteichoic acid is inhibitory against infectious laryngotracheitis virus infection in vitro and in vivo.

    PubMed

    Haddadi, S; Thapa, S; Kameka, A M; Hui, J; Czub, M; Nagy, E; Muench, G; Abdul-Careem, M F

    2015-01-01

    Lipoteichoic acid (LTA) is one of the pathogen associated molecular patterns (PAMPs) that activates toll-like receptor (TLR)2-cluster of differentiation (CD)14 signalling pathway. This recognition elicits antiviral responses that have been recorded against viruses of mammals although such responses have not been characterized adequately against avian viruses. In this investigation, we characterized the LTA induced antiviral responses against infectious laryntotracheitis virus (ILTV) infection in vitro and in vivo. We found that LTA is capable of up regulating mRNA expression of innate proteins in macrophages such as MyD88, iNOS and IL-1β and reduces the ILTV plaques in vitro. Similarly, we found that LTA treatment of embryonic day 18 (ED18) eggs can lead to the antiviral response against pre-hatch ILTV infection in vivo and is associated with expansion of macrophage populations and expression of IL-1β and MyD88 in the lung. The data highlight that LTA can be a potential innate immune stimulant that can be used against ILTV infection in chickens. PMID:25195716

  7. Toll-like Receptors-2 and 4 are overexpressed in an experimental model of particle-induced osteolysis

    PubMed Central

    Valladares, Roberto D.; Nich, Christophe; Zwingenberger, Stefan; Li, Chenguang; Swank, Katherine R.; Gibon, Emmanuel; Rao, Allison J.; Yao, Zhenyu; Goodman, Stuart B.

    2014-01-01

    Aseptic loosening secondary to particle-associated periprosthetic osteolysis remains a major cause of failure of total joint replacements (TJR) in the mid- and long-term. As sentinels of the innate immune system, macrophages are central to the recognition and initiation of the inflammatory cascade which results in the activation of bone resorbing osteoclasts. Toll-like receptors (TLRs) are involved in the recognition of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPS). Experimentally, polymethylmethacrylate (PMMA) and polyethylene (PE) particles have been shown to activate macrophages via the TLR pathway. The specific TLRs involved in PE particle-induced osteolysis remain largely unknown. We hypothesized that TLR-2, -4 and -9 mediated responses play a critical role in the development of PE wear particle-induced osteolysis in the murine calvarium model. To test this hypothesis, we first demonstrated that PE particles caused observable osteolysis, visible by microCT and bone histomorphometry when the particles were applied to the calvarium of C57BL/6 mice. The number of TRAP positive osteoclasts was significantly greater in the PE-treated group when compared to the control group without particles. Finally, using immunohistochemistry, TLR-2 and TLR-4 were highly expressed in PE particle-induced osteolytic lesions, whereas TLR-9 was downregulated. TLR-2 and -4 may represent novel therapeutic targets for prevention of wear particle-induced osteolysis and accompanying TJR failure. PMID:24115330

  8. Toll-like receptor 2 of tongue sole Cynoglossus semilaevis: Signaling pathway and involvement in bacterial infection.

    PubMed

    Li, Xue-peng; Sun, Li

    2016-04-01

    Toll-like receptor (TLR) 2 is a member of the TLR family that plays a pivotal role in innate immunity. In mammals, TLR2 is known to recognize specific microbial structures and trigger MyD88-dependent signaling to induce various cytokine responses. In this study, we examined the expression and function of the tongue sole Cynoglossus semilaevis TLR2, CsTLR2. CsTLR2 is composed of 898 amino acid residues and shares 25.6%-27.3% overall sequence identities with known teleost TLR2. CsTLR2 is a transmembrane protein with a toll/interleukin-1 receptor domain and eight leucine-rich repeats. Expression of CsTLR2 occurred in multiple tissues and was upregulated during bacterial infection. Stimulation of the CsTLR2 pathway led to enhanced expression of MyD88-dependent signaling molecules. Recombinant CsTLR2 (rCsTLR2) corresponding to the extracellular region was able to bind to a wide range of bacteria. Under both in vitro and in vivo conditions, rCsTLR2 significantly reduced bacterial infection. These observations add new insights into the signaling and function of teleost TLR2. PMID:26947353

  9. Toll-like receptor 2 participates in the response to lung injury in a murine model of pulmonary contusion.

    PubMed

    Hoth, J Jason; Hudson, William P; Brownlee, Noel A; Yoza, Barbara K; Hiltbold, Elizabeth M; Meredith, J Wayne; McCall, Charles E

    2007-10-01

    Blunt chest trauma resulting in pulmonary contusion with an accompanying acute inflammatory response is a common but poorly understood injury. We report that Toll-like receptor (TLR) 2 participates in the inflammatory response to lung injury. To show this, we use a model of pulmonary contusion in the mouse that is similar to that observed clinically in humans based on histologic, morphologic, and biochemical criteria of acute lung injury. The inflammatory response to pulmonary contusion in our mouse model is characterized by pulmonary edema, neutrophil transepithelial migration, and increased expression of the innate immunity proinflammatory cytokines IL 1beta and IL 6, the adhesion intracellular adhesion molecule 1, and chemokine (CXC motif) ligand 1. Compared with wild-type animals, contused Tlr2(-/-) mice have significantly reduced pulmonary edema and neutrophilia. These findings are associated with decreased levels of circulating chemokine (CXC motif) ligand 1. In contrast, systemic IL 6 levels remain elevated in the TLR2-deficient phenotype. These results show that TLR2 has a primary role in the neutrophil response to acute lung injury. We suggest that an unidentified noninfectious ligand generated by pulmonary contusion acts via TLR2 to generate inflammatory responses. PMID:17558351

  10. The Poly-γ-d-Glutamic Acid Capsule Surrogate of the Bacillus anthracis Capsule Is a Novel Toll-Like Receptor 2 Agonist.

    PubMed

    Jeon, Jun Ho; Lee, Hae-Ri; Cho, Min-Hee; Park, Ok-Kyu; Park, Jungchan; Rhie, Gi-eun

    2015-10-01

    Bacillus anthracis is a pathogenic Gram-positive bacterium that causes a highly lethal infectious disease, anthrax. The poly-γ-d-glutamic acid (PGA) capsule is one of the major virulence factors of B. anthracis, along with exotoxins. PGA enables B. anthracis to escape phagocytosis and immune surveillance. Our previous study showed that PGA activates the human macrophage cell line THP-1 and human dendritic cells, resulting in the production of the proinflammatory cytokine interleukin-1β (IL-1β) (M. H. Cho et al., Infect Immun 78:387-392, 2010, http://dx.doi.org/10.1128/IAI.00956-09). Here, we investigated PGA-induced cytokine responses and related signaling pathways in mouse bone marrow-derived macrophages (BMDMs) using Bacillus licheniformis PGA as a surrogate for B. anthracis PGA. Upon exposure to PGA, BMDMs produced proinflammatory mediators, including tumor necrosis factor alpha (TNF-α), IL-6, IL-12p40, and monocyte chemoattractant protein 1 (MCP-1), in a concentration-dependent manner. PGA stimulated Toll-like receptor 2 (TLR2) but not TLR4 in Chinese hamster ovary cells expressing either TLR2 or TLR4. The ability of PGA to induce TNF-α and IL-6 was retained in TLR4(-/-) but not TLR2(-/-) BMDMs. Blocking experiments with specific neutralizing antibodies for TLR1, TLR6, and CD14 showed that TLR6 and CD14 also were necessary for PGA-induced inflammatory responses. Furthermore, PGA enhanced activation of mitogen-activated protein (MAP) kinases and nuclear factor-kappa B (NF-κB), which are responsible for expression of proinflammatory cytokines. Additionally, PGA-induced TNF-α production was abrogated not only in MyD88(-/-) BMDMs but also in BMDMs pretreated with inhibitors of MAP kinases and NF-κB. These results suggest that immune responses induced by PGA occur via TLR2, TLR6, CD14, and MyD88 through activation of MAP kinase and NF-κB pathways. PMID:26195551

  11. Susceptibility to paratuberculosis infection in cattle is associated with single nucleotide polymorphisms in Toll-like receptor 2 which modulate immune responses against Mycobacterium avium subspecies paratuberculosis.

    PubMed

    Koets, A; Santema, W; Mertens, H; Oostenrijk, D; Keestra, M; Overdijk, M; Labouriau, R; Franken, P; Frijters, A; Nielen, M; Rutten, V

    2010-03-01

    Paratuberculosis is a chronic intestinal infection in ruminants, caused by Mycobacterium avium subspecies paratuberculosis (Map). To study the role of host genetics in disease susceptibility, the Toll-like receptor 2 (TLR2) gene, selected based on its potential role in immunity to mycobacterial infections, was analyzed for single nucleotide polymorphisms (SNP) and their potential association with disease. For SNP discovery and to study SNP association with disease, a case-control study including 24 cows from farms with paratuberculosis was conducted. Sequence analysis of the TLR2 genes from 12 paratuberculosis-infected animals and 12 age-matched healthy herd mates revealed 21 different SNP. The TLR2-1903 T/C SNP was significantly associated with resistance to Map. This and four additional TLR2 SNP were studied in a subsequent observational field study with 553 cows from farms with paratuberculosis. The allelic distribution of the TLR2-1903 T/C SNP was confirmed to be significantly different between the infected and non-infected animals. For the TLR2-1903 T/C SNP the odds ratio was calculated, and similar to the dominance model in the association study, the CT and CC genotypes were compared to the TT genotype. Cows with the TLR2-1903 T/C mutation (i.e., the CT and CC genotypes) were at 1.7 (95% CI: 1.2, 2.8) times the odds of being Map-infected compared to cows with the TT genotype. In in vitro functional assays, monocyte-derived macrophages from animals with a TLR2-1903 TT genotype produced more IL12p40 and IL1beta when stimulated with Map compared to cells derived from TLR2-1903 CT and CC genotypes. Also, T cell proliferative responses to mycobacterial antigens were higher in animals with a TLR2-1903 TT genotype. In conclusion, we have found a significant association between SNP TLR2-1903 T/C in the bovine TLR2 gene and bovine paratuberculosis infection. This SNP and other genetic markers could be useful in marker-assisted breeding strategies as an additional tool

  12. The Poly-γ-d-Glutamic Acid Capsule Surrogate of the Bacillus anthracis Capsule Is a Novel Toll-Like Receptor 2 Agonist

    PubMed Central

    Jeon, Jun Ho; Lee, Hae-Ri; Cho, Min-Hee; Park, Ok-Kyu; Park, Jungchan

    2015-01-01

    Bacillus anthracis is a pathogenic Gram-positive bacterium that causes a highly lethal infectious disease, anthrax. The poly-γ-d-glutamic acid (PGA) capsule is one of the major virulence factors of B. anthracis, along with exotoxins. PGA enables B. anthracis to escape phagocytosis and immune surveillance. Our previous study showed that PGA activates the human macrophage cell line THP-1 and human dendritic cells, resulting in the production of the proinflammatory cytokine interleukin-1β (IL-1β) (M. H. Cho et al., Infect Immun 78:387–392, 2010, http://dx.doi.org/10.1128/IAI.00956-09). Here, we investigated PGA-induced cytokine responses and related signaling pathways in mouse bone marrow-derived macrophages (BMDMs) using Bacillus licheniformis PGA as a surrogate for B. anthracis PGA. Upon exposure to PGA, BMDMs produced proinflammatory mediators, including tumor necrosis factor alpha (TNF-α), IL-6, IL-12p40, and monocyte chemoattractant protein 1 (MCP-1), in a concentration-dependent manner. PGA stimulated Toll-like receptor 2 (TLR2) but not TLR4 in Chinese hamster ovary cells expressing either TLR2 or TLR4. The ability of PGA to induce TNF-α and IL-6 was retained in TLR4−/− but not TLR2−/− BMDMs. Blocking experiments with specific neutralizing antibodies for TLR1, TLR6, and CD14 showed that TLR6 and CD14 also were necessary for PGA-induced inflammatory responses. Furthermore, PGA enhanced activation of mitogen-activated protein (MAP) kinases and nuclear factor-kappa B (NF-κB), which are responsible for expression of proinflammatory cytokines. Additionally, PGA-induced TNF-α production was abrogated not only in MyD88−/− BMDMs but also in BMDMs pretreated with inhibitors of MAP kinases and NF-κB. These results suggest that immune responses induced by PGA occur via TLR2, TLR6, CD14, and MyD88 through activation of MAP kinase and NF-κB pathways. PMID:26195551

  13. 25-Hydroxy Vitamin D, Vitamin D Receptor and Toll-like Receptor 2 Polymorphisms in Spinal Tuberculosis

    PubMed Central

    Panwar, Ajay; Garg, Ravindra Kumar; Malhotra, Hardeep Singh; Jain, Amita; Singh, Arvind Kumar; Prakash, Shantanu; Kumar, Neeraj; Garg, Rajiv; Mahdi, Abbas Ali; Verma, Rajesh; Sharma, Praveen Kumar

    2016-01-01

    Abstract Vitamin D deficiency and vitamin D receptor (VDR) gene abnormalities confer susceptibility to tuberculosis. Toll-like receptors (TLRs), such asTLR-2, are also important mediators of inflammatory response against Mycobacterium tuberculosis. We evaluated serum vitamin D, and VDR and TLR-2 gene polymorphisms in patients with spinal tuberculosis. This study comprised of 3 groups: spinal tuberculosis, pulmonary tuberculosis, and controls (each with 106 subjects). Enzyme-linked immunosorbent assay was used to measure vitamin D levels, and polymerase chain reaction-sequencing method was used to analyze VDR and TLR-2 gene polymorphisms. Patients were followed up for 6 months. Vitamin D deficiency was significantly more prevalent in patients with spinal tuberculosis (P < 0.001) and pulmonary tuberculosis (P = 0.011), versus controls. The heterozygous and mutant genotypes of VDR TaqI gene were significantly associated with spinal tuberculosis (P < 0.001; odds ratio [OR] 4.74 [2.45–9.18]) and pulmonary tuberculosis (P < 0.001; OR 3.52 [1.80–6.88]) when compared with controls. The heterozygous and mutant variants of VDR ApaI gene were significantly more common in patients with spinal tuberculosis in comparison with patients with pulmonary tuberculosis (P < 0.001; OR 2.90 [1.65–5.10]) and controls (P < 0.001; OR 6.56 [3.41–12.61]). We did not observe any significantly different results for TLR-2 gene polymorphisms. Vitamin D deficiency, VDR, and TLR-2 polymorphisms did not affect the 6-month disability. Vitamin D deficiency and VDR gene polymorphisms are significantly more prevalent in people with pulmonary and spinal tuberculosis. They may, in isolation or collectively, confer susceptibility to pulmonary and spinal tuberculosis. PMID:27124026

  14. Immunohistochemical study of toll-like receptors 2, 4, and 9 expressions in pemphigus and bullous pemphigoid lesions.

    PubMed

    Sun, Xiu-Kun; Chen, Jun-Fan; Shen, Hong

    2016-08-01

    Pemphigus and bullous pemphigoid (BP) are severe autoimmune skin diseases. Whether innate immunity could be a trigger or a part of the pathogeneses is unknown. Toll-like receptors (TLRs) are important components of the innate immune system, with no previous evaluation of TLRs in autoimmune bullous diseases. This work aims to investigate TLRs 2, 4, and 9 expressions in pemphigus and bullous pemphigoid. Thirty-six patients with pemphigus vulgaris (PV), pemphigus foliaceus (PF), bullous pemphigoid (BP), and six healthy controls were studied. Skin biopsies from the patients and the controls were examined immunohistochemically for TLR2, 4, and 9 expressions. The TLR4 expressed mainly at the basal layer of epidermis in controls, but in the cases with autoimmune bullous diseases, TLR4 staining located at basal layer and suprabasal layer, even superficial layer of epidermis. The immunostaining-intensity-distribution (IID) index of TLR4 in patients with PF (13.83, P = 0.001), PV (13.08, P = 0.003), and BP (11.42, P = 0.042) were significantly higher than that of the controls (6.17). TLR2 and TLR9 showed no significantly changes at epidermal expression (P > 0.05) compared with controls. There was no correlation found between the expressions of these TLRs. This work, thus, shows a re-localization of TLR4 expression sites with increased expression in pemphigus and bullous pemphigoid lesions. Targeting TLR4 signaling is expected to be a novel treatment strategy for autoimmune bullous diseases. PMID:27221282

  15. Identification and characterization of a novel Toll-like receptor 2 homologue in the large yellow croaker Larimichthys crocea.

    PubMed

    Ao, Jingqun; Mu, Yinnan; Wang, Kunru; Sun, Min; Wang, Xianhui; Chen, Xinhua

    2016-01-01

    Toll-like receptors (TLRs) are key components of innate immunity that play significant roles in immune defence against pathogen invasion. In the present study, we identified a novel TLR2 homologue (LycTLR2b) in large yellow croaker (Larimichthys crocea) that shared low sequence identity with the previously reported large yellow croaker TLR2 (tentatively named LycTLR2a). The full-length cDNA of LycTLR2b was 2926 nucleotides (nt) long and encoded a protein consisting of 797 amino acids (aa). The deduced LycTLR2b protein exhibited a typical TLR domain architecture including a signal peptide, seven leucine-rich repeats (LRRs) in the extracellular region, a transmembrane domain, and a Toll-Interleukin 1 receptor (TIR) domain in the cytoplasmic region. Phylogenetic analysis showed that both LycTLR2a and LycTLR2b fall into a major clade formed by all TLR2 sequences, and are divided into two distinct branches. Genomic organization revealed that the LycTLR2b gene lacks intron, which is similar to zebrafish and human TLR2 genes, whereas the LycTLR2a gene contains multiple introns, as found in damselfish TLR2a and Fugu TLR2 genes. Syntenic analysis suggested that the occurrence of LycTLR2a and LycTLR2b may result from a relatively recent genome duplication event. LycTLR2b mRNA was constitutively expressed in all tissues examined although at different levels. Following bacterial vaccine challenge, LycTLR2b expression levels were significantly up-regulated in both spleen and head kidney tissues. Taken together, these results indicated that two different TLR2 homologues, which may play roles in antibacterial immunity, exist in large yellow croaker. PMID:26551050

  16. Baicalin inhibits toll-like receptor 2/4 expression and downstream signaling in rat experimental periodontitis.

    PubMed

    Sun, Jun-Yi; Li, Dong-Ling; Dong, Yan; Zhu, Chun-Hui; Liu, Jin; Li, Jue-Dan; Zhou, Tao; Gou, Jian-Zhong; Li, Ang; Zang, Wei-Jin

    2016-07-01

    Periodontitis is a severe inflammatory response, leading to characteristic periodontal soft tissue destruction and alveolar bone resorption. Baicalin possesses potent anti-inflammatory activity; however, it is still unclear whether baicalin regulates toll-like receptor (TLR) 2/4 expression and downstream signaling during the process of periodontitis. In this study, the cervical area of the maxillary second molars of rats was ligated and inoculated with Porphyromonas gingivalis (P. gingivalis) for 4weeks to induce periodontitis. Some rats with periodontitis were treated intragastrically with baicalin (50, 100 or 200mg/kg/day) or vehicle for 4weeks. Compared with the sham group, the levels of TLR2, TLR4 and MyD88 expression and the p38 MAPK and NF-κB activation were up-regulated in the experimental periodontitis group (EPG), accompanied by marked alveolar bone loss and severe inflammation. Treatment with 100 or 200mg/kg/day baicalin dramatically reduced the alveolar bone loss, the levels of HMGB1, TNF-α, IL-1β, and MPO expression, and the numbers of inflammatory infiltrates in the gingival tissues. Importantly, treatment with 100 or 200mg/kg/day baicalin mitigated the periodontitis-up-regulated TLR2, TLR4 and MyD88 expression, and the p38 MAPK and NF-κB activation. Hence, the blockage of the TLR2 and TLR4/MyD88/p38 MAPK/NF-κB signaling by baicalin may contribute to its anti-inflammatory effects in rat model of periodontitis. In conclusion, these novel findings indicate that baicalin inhibits the TLR2 and TLR4 expression and the downstream signaling and mitigates inflammatory responses and the alveolar bone loss in rat experimental periodontitis. Therefore, baicalin may be a potential therapeutic agent for treatment of periodontitis. PMID:27107801

  17. High glucose induces inflammatory cytokine through protein kinase C-induced toll-like receptor 2 pathway in gingival fibroblasts

    SciTech Connect

    Jiang, Shao-Yun; Wei, Cong-Cong; Shang, Ting-Ting; Lian, Qi; Wu, Chen-Xuan; Deng, Jia-Yin

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer High glucose significantly induced TLR2 expression in gingival fibroblasts. Black-Right-Pointing-Pointer High glucose increased NF-{kappa}B p65 nuclear activity, IL-1{beta} and TNF-{alpha} levels. Black-Right-Pointing-Pointer PKC-{alpha}/{delta}-TLR2 pathway is involved in periodontal inflammation under high glucose. -- Abstract: Toll-like receptors (TLRs) play a key role in innate immune response and inflammation, especially in periodontitis. Meanwhile, hyperglycemia can induce inflammation in diabetes complications. However, the activity of TLRs in periodontitis complicated with hyperglycemia is still unclear. In the present study, high glucose (25 mmol/l) significantly induced TLR2 expression in gingival fibroblasts (p < 0.05). Also, high glucose increased nuclear factor kappa B (NF-{kappa}B) p65 nuclear activity, tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-l{beta} (IL-1{beta}) levels. Protein kinase C (PKC)-{alpha} and {delta} knockdown with siRNA significantly decreased TLR2 and NF-{kappa}B p65 expression (p < 0.05), whereas inhibition of PKC-{beta} had no effect on TLR2 and NF-{kappa}B p65 under high glucose (p < 0.05). Additional studies revealed that TLR2 knockdown significantly abrogated high-glucose-induced NF-{kappa}B expression and inflammatory cytokine secretion. Collectively, these data suggest that high glucose stimulates TNF-{alpha} and IL-1{beta} secretion via inducing TLR2 through PKC-{alpha} and PKC-{delta} in human gingival fibroblasts.

  18. Different patterns of Toll-like receptor 2 polymorphisms in populations of various ethnic and geographic origins.

    PubMed

    Ioana, M; Ferwerda, B; Plantinga, T S; Stappers, M; Oosting, M; McCall, M; Cimpoeru, A; Burada, F; Panduru, N; Sauerwein, R; Doumbo, O; van der Meer, J W M; van Crevel, R; Joosten, L A B; Netea, M G

    2012-05-01

    Upon the invasion of the host by microorganisms, innate immunity is triggered through pathogen recognition by pattern recognition receptors (PRRs). Toll-like receptors (TLRs) are the best-studied class of PRRs, and they recognize specific pathogen-associated molecular patterns (PAMPs) from various microorganisms. A large number of studies have shown that genetic variation in TLRs may influence susceptibility to infections. We assessed the genetic variation of TLR2, which encodes one of the most important TLRs, in various populations around the globe and correlated it with changes in the function of the molecule. The three best-known nonsynonymous TLR2 polymorphisms (1892C>A, 2029C>T, and 2258G>A) were assessed in different populations from the main continental masses: Romanians, Vlax-Roma, Dutch (European populations), Han Chinese (East Asia), Dogon, Fulani (Africa), and Trio Indians (America). The 2029C>T polymorphism was absent in both European and non-European populations, with the exception of the Vlax-Roma, suggesting that this polymorphism most likely arose in Indo-Aryan people after migration into South Asia. The 1892C>A polymorphism that was found exclusively in European populations, but not in Asian, African, or American volunteers, probably occurred in proto-Indo-Europeans. Interestingly, 2258G>A was present only in Europeans, including Vlax-Roma, but at a very low frequency. The differential pattern of the TLR2 polymorphisms in various populations may explain some of the differences in susceptibility to infections between these populations. PMID:22354034

  19. Soluble Toll-Like Receptors 2 and 4 in Cerebrospinal Fluid of Patients with Acute Hydrocephalus following Aneurysmal Subarachnoid Haemorrhage

    PubMed Central

    Sokół, Bartosz; Jankowski, Roman; Hołysz, Marcin; Więckowska, Barbara; Jagodziński, Paweł

    2016-01-01

    Background Toll-like receptor (TLR) signalling begins early in subarachnoid haemorrhage (SAH), and plays a key role in inflammation following cerebral aneurysm rupture. Available studies suggest significance of endogenous first-line blockers of a TLR pathway—soluble TLR2 and 4. Methods Eighteen patients with SAH and acute hydrocephalus underwent endovascular coiling and ventriculostomy; sTLR2 and 4 levels were assayed in cerebrospinal fluid (CSF) collected on post-SAH days 0–3, 5, and 10–12. Release kinetics were defined. CSF levels of sTLR2 and 4 were compared with a control group and correlated with the clinical status on admission, the findings on imaging, the degree of systemic inflammation and the outcome following treatment. Results None of study group showed detectable levels of sTLR2 and 4 on post-SAH day 0–3. 13 patients showed increased levels in subsequent samples. In five SAH patients sTLR2 and 4 levels remained undetectable; no distinctive features of this group were found. On post-SAH day 5 the strongest correlation was found between sTLR2 level and haemoglobin level on admission (cc = -0.498, P = 0.037). On post-SAH day 10–12 the strongest correlation was revealed between sTLR2 and treatment outcome (cc = -0.501, P = 0.076). Remaining correlations with treatment outcome, status at admission, imaging findings and inflammatory markers on post-SAH day 5 and 10–12 were negligible or low (-0.5 ≤ cc ≤ 0.5). Conclusions In the majority of cases, rupture of a cerebral aneurysm leads to delayed release of soluble TLR forms into CSF. sTLR2 and 4 seem to have minor role in human post-SAH inflammation due to delayed release kinetics and low levels of these protein. PMID:27223696

  20. Interplay between HIV-1 and Toll-like receptors in human myeloid cells: friend or foe in HIV-1 pathogenesis?

    PubMed

    Donninelli, Gloria; Gessani, Sandra; Del Cornò, Manuela

    2016-01-01

    The Toll-like receptors are the first line of the host response to pathogens, representing an essential component of the innate and adaptive immune response. They recognize different pathogens and trigger responses directed at eliminating the invader and at developing immunologic long-term memory, ultimately affecting viral pathogenesis. In viral infections, sensing of nucleic acids and/or viral structural proteins generally induces a protective immune response. Thus, it is not surprising that many viruses have developed strategies to evade or counteract signaling through the Toll-like receptor pathways, to survive the host defense machinery and ensure propagation. Thus, Toll-like receptor engagement can also be part of viral pathogenic mechanisms. Evidence for a direct interaction of Toll-like receptors with human immunodeficiency virus type 1 (HIV-1) structures has started to be achieved, and alterations of their expression and function have been described in HIV-1-positive subjects. Furthermore, Toll-like receptor triggering by bacterial and viral ligands have been described to modulate HIV-1 replication and host response, leading to protective or detrimental effects. This review covers major advances in the field of HIV-1 interplay with Toll-like receptors, focusing on human myeloid cells (e.g., monocytes/macrophages and dendritic cells). The role of this interaction in the dysregulation of myeloid cell function and in dictating aspects of the multifaceted pathogenesis of acquired immunodeficiency syndrome will be discussed. PMID:26307548

  1. Control of B-cell responses by Toll-like receptors

    NASA Astrophysics Data System (ADS)

    Pasare, Chandrashekhar; Medzhitov, Ruslan

    2005-11-01

    Toll-like receptors (TLRs) detect microbial infection and have an essential role in the induction of immune responses. TLRs can directly induce innate host defence responses, but the mechanisms of TLR-mediated control of adaptive immunity are not fully understood. Although TLR-induced dendritic cell maturation is required for activation of T-helper (TH) cells, the role of TLRs in B-cell activation and antibody production in vivo is not yet known. Here we show that activation and differentiation of TH cells is not sufficient for the induction of T-dependent B-cell responses. We find that, in addition to CD4+ T-cell help, generation of T-dependent antigen-specific antibody responses requires activation of TLRs in B cells.

  2. Evaluation of Toll-Like Receptors 2/3/4/9 Gene Polymorphisms in Cervical Cancer Evolution.

    PubMed

    Zidi, Sabrina; Sghaier, Ikram; Gazouani, Ezzedine; Mezlini, Amel; Yacoubi-Loueslati, Besma

    2016-04-01

    Accumulative epidemiological evidence suggests that polymorphisms of Toll-like receptors signaling pathway elucidated the cellular and molecular mechanisms of human diseases whose gaining a primordial importance. The aim of our study is to identify the role of TLR 2 (-196 to -174 del), TLR 3 (1377 C>T), TLR 4 (Asp299Gly) and TLR 9 (G2848A) gene polymorphisms with the evolution of cervical cancer in Tunisian women. Blood samples were collected from histopathologically confirmed patients with cervical cancer and unrelated healthy female controls of similar ethnicity. Genotyping of the analyzed polymorphisms were done using Polymerase Chain Reaction and Restriction Fragment Length Polymorphism. For the TLR 2, Ins/Ins genotype is a protector factor [p = 0.006; OR: 0.35(0.16-0.73)] and the dominant genotype of TLR 3 increased the risk of CC in stage (III+IV); C/C versuss C/T [p = 0.033; OR: 2.03(1.00-4.13)] and C/C versus C/T+T/T [p = 0.036; OR: 1.93(1.00-3.74)]. For TLR 4, the dominant genotype Asp/Asp is implicated in the occurrence of CC in stage (I+II) [p = 0.000; OR: 4.55(1.58-13.06)], [p = 0.001; OR: 3.49(1.44-8.45)] and in stage (III+IV) [p = 0.038; OR: 3.77(0.87-16.29)], [p = 0.007; OR: 5.21(1.65-16.46)] and the major allele Asp is a risk factor for the development of tumor in stage (I+II). The TLR2 Ins/Del genotype is associated with tumor evolution to stage (III+IV) [p = 0.003; OR: 3.00 (1.22-7.35)] and the genotypes Gly/Gly and Asp/Gly+Gly/Gly and Gly allele of TLR 4 are implicated in tumor evolution to the advanced stages. Further, TLR 2, TLR 3, TLR 4 and TLR 9 gene polymorphisms are implicated in the modulation of CC risk due to tobacco usage and statue of menopause among cases. Our study suggests a relationship between the incidence of the TLR2, TLR 3, TLR 4 and TLR9 mutations and the clinical progression of CC according to the FIGO classification. However, future studies with different demographic and clinical characteristics in ethnically

  3. Differential regulation of toll-like receptor-2, toll-like receptor-4, CD16 and human leucocyte antigen-DR on peripheral blood monocytes during mild and severe dengue fever

    PubMed Central

    Azeredo, Elzinandes L; Neves-Souza, Patrícia C; Alvarenga, Allan R; Reis, Sônia R N I; Torrentes-Carvalho, Amanda; Zagne, Sonia-Maris O; Nogueira, Rita M R; Oliveira-Pinto, Luzia M; Kubelka, Claire F

    2010-01-01

    Dengue fever (DF), a public health problem in tropical countries, may present severe clinical manifestations as result of increased vascular permeability and coagulation disorders. Dengue virus (DENV), detected in peripheral monocytes during acute disease and in in vitro infection, leads to cytokine production, indicating that virus–target cell interactions are relevant to pathogenesis. Here we investigated the in vitro and in vivo activation of human peripheral monocytes after DENV infection. The numbers of CD14+ monocytes expressing the adhesion molecule intercellular adhesion molecule 1 (ICAM-1) were significantly increased during acute DF. A reduced number of CD14+ human leucocyte antigen (HLA)-DR+ monocytes was observed in patients with severe dengue when compared to those with mild dengue and controls; CD14+ monocytes expressing toll-like receptor (TLR)2 and TLR4 were increased in peripheral blood from dengue patients with mild disease, but in vitro DENV-2 infection up-regulated only TLR2. Increased numbers of CD14+ CD16+ activated monocytes were found after in vitro and in vivo DENV-2 infection. The CD14high CD16+ monocyte subset was significantly expanded in mild dengue, but not in severe dengue. Increased plasma levels of tumour necrosis factor-α (TNF-α), interferon-γ (IFN-γ) and interleukin (IL)-18 in dengue patients were inversely associated with CD14high CD16+, indicating that these cells might be involved in controlling exacerbated inflammatory responses, probably by IL-10 production. We showed here, for the first time, phenotypic changes on peripheral monocytes that were characteristic of cell activation. A sequential monocyte-activation model is proposed in which DENV infection triggers TLR2/4 expression and inflammatory cytokine production, leading eventually to haemorrhagic manifestations, thrombocytopenia, coagulation disorders, plasmatic leakage and shock development, but may also produce factors that act in order to control both intense

  4. Toll-like receptor signaling is functional in immune cells of the endangered Tasmanian devil.

    PubMed

    Patchett, Amanda L; Latham, Roger; Brettingham-Moore, Kate H; Tovar, Cesar; Lyons, A Bruce; Woods, Gregory M

    2015-11-01

    Devil facial tumour disease (DFTD) is a fatally transmissible cancer that threatens the Tasmanian devil population. As Tasmanian devils do not produce an immune response against DFTD cells, an effective vaccine will require a strong adjuvant. Activation of innate immune system cells through toll-like receptors (TLRs) could provide this stimulation. It is unknown whether marsupials, including Tasmanian devils, express functional TLRs. We isolated RNA from peripheral blood mononuclear cells and, with PCR, detected transcripts for TLRs 2, 3, 4, 5, 6, 7, 8, 9, 10 and 13. Stimulation of the mononuclear cells with agonists to these TLRs increased the expression of downstream TLR signaling products (IL1α, IL6, IL12A and IFNβ). Our data provide the first evidence that TLR signaling is functional in the mononuclear cells of the Tasmanian devil. Future DFTD vaccination trials will incorporate TLR agonists to enhance the immune response against DFTD. PMID:26182986

  5. A new Vitreoscilla filiformis extract grown on spa water-enriched medium activates endogenous cutaneous antioxidant and antimicrobial defenses through a potential Toll-like receptor 2/protein kinase C, zeta transduction pathway.

    PubMed

    Mahe, Yann F; Perez, Marie-Jesus; Tacheau, Charlotte; Fanchon, Chantal; Martin, Richard; Rousset, Françoise; Seite, Sophie

    2013-01-01

    Vitreoscilla filiformis (VF) biomass (VFB) has been widely used in cosmetic preparations and shown to modulate the major inducible free-radical scavenger mitochondrial superoxide dismutase in skin cells. By adding La Roche-Posay (LRP) thermal spring water to the VF culture medium, we obtained a biomass (LRP-VFB) with a similar mitochondrial superoxide dismutase activation capacity to VF. Also, the new biomass more powerfully stimulated mRNA expression and antimicrobial peptides in reconstructed epidermis. Interestingly, a predictive computer model that analyzed transducing events within skin epidermal cells suggested that this protective activity may involve the Toll-like receptor 2/protein kinase C, zeta transduction pathway. Protein kinase C, zeta inhibition was effectively shown to abolish VFB-induced gene stimulation and confirmed this hypothesis. This thus opens new avenues for investigation into the improvement of skin homeostatic defense in relation to the control of its physiological microbiota and innate immunity. PMID:24039440

  6. Immunomodulation by Gut Microbiota: Role of Toll-Like Receptor Expressed by T Cells

    PubMed Central

    Valentini, Mariagrazia; Piermattei, Alessia; Di Sante, Gabriele; Delogu, Giovanni; Ria, Francesco

    2014-01-01

    A close relationship exists between gut microbiota and immune responses. An imbalance of this relationship can determine local and systemic immune diseases. In fact the immune system plays an essential role in maintaining the homeostasis with the microbiota that normally resides in the gut, while, at the same time, the gut microbiota influences the immune system, modulating number and function of effector and regulatory T cells. To achieve this aim, mutual regulation between immune system and microbiota is achieved through several mechanisms, including the engagement of toll-like receptors (TLRs), pathogen-specific receptors expressed on numerous cell types. TLRs are able to recognize ligands from commensal or pathogen microbiota to maintain the tolerance or trigger the immune response. In this review, we summarize the latest evidences about the role of TLRs expressed in adaptive T cells, to understand how the immune system promotes intestinal homeostasis, fights invasion by pathogens, and is modulated by the intestinal microbiota. PMID:25147831

  7. DIFFERENTIAL TOLL-LIKE RECEPTOR ACTIVATION IN LUNG ISCHEMIA REPERFUSION INJURY

    PubMed Central

    Phelan, Patrick; Merry, Heather E.; Hwang, Billanna; Mulligan, Michael S.

    2015-01-01

    Objective The requirement for toll-like receptors in lung ischemia reperfusion injury (LIRI) has been demonstrated but not fully characterized. We have previously reported that toll-like receptor-4 is required by alveolar macrophages but not pulmonary endothelial or epithelial cells for the development of LIRI. Additionally, we have demonstrated differential patterns of mitogen-activated protein kinase activation and cytokine release in these cell types during LIRI. We sought to determine whether the differences in their activation responses related to cell specific toll-like receptor activation requirements. Methods Primary cultures of alveolar macrophages, pulmonary endothelial, and immortalized epithelial cells were pretreated with toll-like receptor-2 or -4 short interference (si)RNA prior to hypoxia and reoxygenation. Cell lysates and media were analyzed for receptor knockdown, mitogen-activated protein kinase activation, and cytokine production. Rats were pretreated with toll-like receptor-2 or -4 siRNA prior to lung ischemia reperfusion and changes in lung vascular permeability were assessed. Results Toll-like receptor-2 knockdown in alveolar macrophages did not affect mitogen-activated protein kinase phosphorylation or cytokine secretion. Conversely, toll-like receptor-2 knockdown in pulmonary endothelial and epithelial cells demonstrated significant reductions in ERK 1/2 activation and cytokine secretion. Toll-like receptor-4, but not toll-like receptor-2, decreased lung permeability index in LIRI. Conclusions Differential toll-like receptor signaling and mitogen-activated protein kinase activation in response to LIRI appear to be cell specific. siRNA provides an outstanding tool for examination of the underlying mechanism. PMID:25911179

  8. Mechanisms for the activation of Toll-like receptor 2/4 by saturated fatty acids and inhibition by docosahexaenoic acid.

    PubMed

    Hwang, Daniel H; Kim, Jeong-A; Lee, Joo Young

    2016-08-15

    Saturated fatty acids can activate Toll-like receptor 2 (TLR2) and TLR4 but polyunsaturated fatty acids, particularly docosahexaenoic acid (DHA) inhibit the activation. Lipopolysaccharides (LPS) and lipopetides, ligands for TLR4 and TLR2, respectively, are acylated by saturated fatty acids. Removal of these fatty acids results in loss of their ligand activity suggesting that the saturated fatty acyl moieties are required for the receptor activation. X-ray crystallographic studies revealed that these saturated fatty acyl groups of the ligands directly occupy hydrophobic lipid binding domains of the receptors (or co-receptor) and induce the dimerization which is prerequisite for the receptor activation. Saturated fatty acids also induce the dimerization and translocation of TLR4 and TLR2 into lipid rafts in plasma membrane and this process is inhibited by DHA. Whether saturated fatty acids induce the dimerization of the receptors by interacting with these lipid binding domains is not known. Many experimental results suggest that saturated fatty acids promote the formation of lipid rafts and recruitment of TLRs into lipid rafts leading to ligand independent dimerization of the receptors. Such a mode of ligand independent receptor activation defies the conventional concept of ligand induced receptor activation; however, this may enable diverse non-microbial molecules with endogenous and dietary origins to modulate TLR-mediated immune responses. Emerging experimental evidence reveals that TLRs play a key role in bridging diet-induced endocrine and metabolic changes to immune responses. PMID:27085899

  9. Regiospecific Methylation of a Dietary Flavonoid Scaffold Selectively Enhances IL-1β Production following Toll-like Receptor 2 Stimulation in THP-1 Monocytes*

    PubMed Central

    Lim, Eng-Kiat; Mitchell, Paul J.; Brown, Najmeeyah; Drummond, Rebecca A.; Brown, Gordon D.; Kaye, Paul M.; Bowles, Dianna J.

    2013-01-01

    It is now recognized that innate immunity to intestinal microflora plays a significant role in mediating immune health, and modulation of microbial sensing may underpin the impact of plant natural products in the diet or when used as nutraceuticals. In this context, we have examined five classes of plant-derived flavonoids (flavonols, flavones, flavanones, catechins, and cyanidin) for their ability to regulate cytokine release induced by the Toll-like receptor 2 (TLR2) agonist Pam3CSK4. We found that the flavonols selectively co-stimulated IL-1β secretion but had no impact on the secretion of IL-6. Importantly, this costimulation of TLR2-induced cytokine secretion was dependent on regiospecific methylation of the flavonol scaffold with a rank order of quercetin-3,4′-dimethylether > quercetin-3-methylether > casticin. The mechanism underpinning this costimulation did not involve enhanced inflammasome activation. In contrast, the methylated flavonols enhanced IL-1β gene expression through transcriptional regulation, involving mechanisms that operate downstream of the initial NF-κB and STAT1 activation events. These studies demonstrate an exquisite level of control of scaffold bioactivity by regiospecific methylation, with important implications for understanding how natural products affect innate immunity and for their development as novel immunomodulators for clinical use. PMID:23760261

  10. Toll-Like Receptor 2 Mediates In Vivo Pro- and Anti-inflammatory Effects of Mycobacterium Tuberculosis and Modulates Autoimmune Encephalomyelitis.

    PubMed

    Piermattei, Alessia; Migliara, Giuseppe; Di Sante, Gabriele; Foti, Maria; Hayrabedyan, Soren Bohos; Papagna, Angela; Geloso, Maria Concetta; Corbi, Maddalena; Valentini, Mariagrazia; Sgambato, Alessandro; Delogu, Giovanni; Constantin, Gabriela; Ria, Francesco

    2016-01-01

    Mycobacteria display pro- and anti-inflammatory effects in human and experimental pathology. We show here that both effects are mediated by Toll-like receptor 2 (Tlr2), by exploiting a previously characterized Tlr2 variant (Met82Ile). Tlr2 82ile promoted self-specific proinflammatory polarization as well as expansion of ag-specific FoxP3(+) Tregs, while Tlr2 82met impairs the expansion of Tregs and reduces the production of IFN-γ and IL-17 proinflammatory cytokines. Preferential dimerization with Tlr1 or Tlr6 could not explain these differences. In silico, we showed that Tlr2 variant Met82Ile modified the binding pocket for peptidoglycans and participated directly to a putative binding pocket for sugars and cadherins. The distinct pro- and anti-inflammatory actions impacted severity, extent of remission, and distribution of the lesions within the central nervous system of experimental autoimmune encephalomyelitis. Thus, Tlr2 has a janus function in vivo as mediator of the role of bacterial products in balancing pro- and anti-inflammatory immune responses. PMID:27252700

  11. Toll-Like Receptor 2 Mediates In Vivo Pro- and Anti-inflammatory Effects of Mycobacterium Tuberculosis and Modulates Autoimmune Encephalomyelitis

    PubMed Central

    Piermattei, Alessia; Migliara, Giuseppe; Di Sante, Gabriele; Foti, Maria; Hayrabedyan, Soren Bohos; Papagna, Angela; Geloso, Maria Concetta; Corbi, Maddalena; Valentini, Mariagrazia; Sgambato, Alessandro; Delogu, Giovanni; Constantin, Gabriela; Ria, Francesco

    2016-01-01

    Mycobacteria display pro- and anti-inflammatory effects in human and experimental pathology. We show here that both effects are mediated by Toll-like receptor 2 (Tlr2), by exploiting a previously characterized Tlr2 variant (Met82Ile). Tlr2 82ile promoted self-specific proinflammatory polarization as well as expansion of ag-specific FoxP3+ Tregs, while Tlr2 82met impairs the expansion of Tregs and reduces the production of IFN-γ and IL-17 proinflammatory cytokines. Preferential dimerization with Tlr1 or Tlr6 could not explain these differences. In silico, we showed that Tlr2 variant Met82Ile modified the binding pocket for peptidoglycans and participated directly to a putative binding pocket for sugars and cadherins. The distinct pro- and anti-inflammatory actions impacted severity, extent of remission, and distribution of the lesions within the central nervous system of experimental autoimmune encephalomyelitis. Thus, Tlr2 has a janus function in vivo as mediator of the role of bacterial products in balancing pro- and anti-inflammatory immune responses. PMID:27252700

  12. Structural Determination and Toll-like Receptor 2-dependent Proinflammatory Activity of Dimycolyl-diarabino-glycerol from Mycobacterium marinum*

    PubMed Central

    Elass-Rochard, Elisabeth; Rombouts, Yoann; Coddeville, Bernadette; Maes, Emmanuel; Blervaque, Renaud; Hot, David; Kremer, Laurent; Guérardel, Yann

    2012-01-01

    Although it was identified in the cell wall of several pathogenic mycobacteria, the biological properties of dimycolyl-diarabino-glycerol have not been documented yet. In this study an apolar glycolipid, presumably corresponding to dimycolyl-diarabino-glycerol, was purified from Mycobacterium marinum and subsequently identified as a 5-O-mycolyl-β-Araf-(1→2)-5-O-mycolyl-α-Araf-(1→1′)-glycerol (designated Mma_DMAG) using a combination of nuclear magnetic resonance spectroscopy and mass spectrometry analyses. Lipid composition analysis revealed that mycolic acids were dominated by oxygenated mycolates over α-mycolates and devoid of trans-cyclopropane functions. Highly purified Mma_DMAG was used to demonstrate its immunomodulatory activity. Mma_DMAG was found to induce the secretion of proinflammatory cytokines (TNF-α, IL-8, IL-1β) in human macrophage THP-1 cells and to trigger the expression of ICAM-1 and CD40 cell surface antigens. This activation mechanism was dependent on TLR2, but not on TLR4, as demonstrated by (i) the use of neutralizing anti-TLR2 and -TLR4 antibodies and by (ii) the detection of secreted alkaline phosphatase in HEK293 cells co-transfected with the human TLR2 and secreted embryonic alkaline phosphatase reporter genes. In addition, transcriptomic analyses indicated that various genes encoding proinflammatory factors were up-regulated after exposure of THP-1 cells to Mma_DMAG. Importantly, a wealth of other regulated genes related to immune and inflammatory responses, including chemokines/cytokines and their respective receptors, adhesion molecules, and metalloproteinases, were found to be modulated by Mma_DMAG. Overall, this study suggests that DMAG may be an active cell wall glycoconjugate driving host-pathogen interactions and participating in the immunopathogenesis of mycobacterial infections. PMID:22798072

  13. Contribution of Toll-Like Receptor 2 to the Innate Response against Staphylococcus aureus Infection in Mice

    PubMed Central

    Kohanawa, Masashi; Zhao, Songji; Ozaki, Michitaka; Haga, Sanae; Kuge, Yuji; Tamaki, Nagara

    2013-01-01

    Staphylococcus aureus is a common pathogen that causes a wide range of infectious diseases. The function of TLRs, specifically TLR2, during S. aureus infection is still debated. In this study, we investigated the extent to which TLR2 contributes to the host innate response against the bacterial infection using TLR2-deficient mice. Intravenous inoculation with S. aureus resulted in all TLR2-deficient mice dying within 4 d, along with a high bacterial burden in the livers. However, histological examination showed the same degree of macrophage and neutrophil accumulation in the livers of infected TLR2-deficient mice as that in infected wild-type (WT) mice. TLR2-deficient mouse macrophages also showed normal phagocytic activity, although they failed to express CD36 that appeared on the surface of WT mouse cells upon challenge with heat-killed S. aureus. These data indicate that TLR2, as well as CD36, does not directly affect S. aureus clearance and that CD36 expression on macrophages depends on the presence of TLR2. In vivo infection with S. aureus caused significantly elevated production of TNF-α and IL-6 in the livers and blood of TLR2-deficient mice compared with those in WT mice, while the hepatic and serum levels of IL-10 decreased in these mice. In contrast, lower expression of IL-6 and IL-10, but not of TNF-α, at both the gene and protein levels was found in TLR2-deficient mouse macrophages compared to that in WT mouse cells, in response to challenge with heat-killed S. aureus. These findings suggest that the S. aureus-induced pro-inflammatory cytokine response is not dependent on macrophages and that TLR2 deficiency results in decreased IL-10 release by macrophages, which contributes to dysregulated cytokine balance, impaired bacterial clearance, and mouse death. Therefore, TLR2 possesses a protective function during S. aureus infection by regulating pro- and anti-inflammatory cytokine responses. PMID:24058538

  14. Toll-like receptors 2 and 4 exert opposite effects on the contractile response induced by serotonin in mouse colon: role of serotonin receptors.

    PubMed

    Forcén, R; Latorre, E; Pardo, J; Alcalde, A I; Murillo, M D; Grasa, L

    2016-08-01

    What is the central question of this study? The action of Toll-like receptors (TLRs) 2 and 4 on the motor response to serotonin in mouse colon has not previously been reported. What is the main finding and its importance? Toll-like receptors 2 and 4 modulate the serotonin-induced contractile response in mouse colon by modifying the expression of serotonin (5-HT) receptors. Alterations in 5-HT2A and 5-HT2C receptors explain the increase of the response to serotonin in TLR2(-/-) mice. Alterations in 5-HT2C and 5-HT4 receptors explain the suppression of the response to serotonin in TLR4(-/-) mice. The microbiota, through Toll-like receptors (TLRs), may regulate gastrointestinal motility by activating neuroendocrine mechanisms. We evaluated the influence of TLR2 and TLR4 in spontaneous contractions and in the serotonin (5-HT)-induced motor response in mouse colon, and assessed the 5-HT receptors involved. Muscle contractility studies to evaluate the intestinal spontaneous motility and the response to 5-HT were performed in the colon from wild-type (WT), TLR2(-/-) , TLR4(-/-) and TLR2/4 double knockout (DKO) mice. The 5-HT receptor mRNA expression was determined by real-time PCR. The amplitude and frequency of the spontaneous contractions of the colon were smaller in TLR4(-/-) and TLR2/4 DKO mice with respect to WT mice. In WT, TLR2(-/-) and TLR2/4 DKO mice, 100 μm 5-HT evoked a contractile response. The contractile response induced by 5-HT was significantly higher in TLR2(-/-) than in WT mice. In TLR4(-/-) mice, 5-HT did not evoke any contractile response. The mRNA expression of 5-HT2A was increased in TLR2(-/-) and TLR2/4 DKO mice. The 5-HT2C and 5-HT4 mRNA expressions were increased in TLR4(-/-) and TLR2/4 DKO mice. The 5-HT2C mRNA expression was diminished in TLR2(-/-) mice. The 5-HT3 mRNA expression was increased in TLR2(-/-) , TLR4(-/-) and TLR2/4 DKO mice. The 5-HT7 mRNA expression was diminished in TLR2/4 DKO mice. In WT, TLR2(-/-) and TLR2/4 DKO mice, 5-HT2

  15. Mycobacterium tuberculosis lipoprotein LprG (Rv1411c) binds triacylated glycolipid agonists of Toll-like receptor 2

    SciTech Connect

    Drage, Michael G.; Tsai, Han-Chun; Pecora, Nicole D.; Cheng, Tan-Yun; Arida, Ahmad R.; Shukla, Supriya; Rojas, Roxana E.; Seshadri, Chetan; Moody, D. Branch; Boom, W. Henry; Sacchettini, James C.; Harding, Clifford V.

    2010-09-27

    Knockout of lprG results in decreased virulence of Mycobacterium tuberculosis (MTB) in mice. MTB lipoprotein LprG has TLR2 agonist activity, which is thought to be dependent on its N-terminal triacylation. Unexpectedly, here we find that nonacylated LprG retains TLR2 activity. Moreover, we show LprG association with triacylated glycolipid TLR2 agonists lipoarabinomannan, lipomannan and phosphatidylinositol mannosides (which share core structures). Binding of triacylated species was specific to LprG (not LprA) and increased LprG TLR2 agonist activity; conversely, association of glycolipids with LprG enhanced their recognition by TLR2. The crystal structure of LprG in complex with phosphatidylinositol mannoside revealed a hydrophobic pocket that accommodates the three alkyl chains of the ligand. In conclusion, we demonstrate a glycolipid binding function of LprG that enhances recognition of triacylated MTB glycolipids by TLR2 and may affect glycolipid assembly or transport for bacterial cell wall biogenesis.

  16. [The correlation study between the changes of intestinal mucosa predominant bacteria and Toll-like receptor 2, Toll-like receptor 4 gene expressions in diarrhea-predominant irritable bowel syndrome patients].

    PubMed

    Guo, W T; Liu, P; Dong, L N; Wang, J P

    2016-07-01

    Based on high throughput sequencing and PCR detection technology, this study has found out that intestinal microbial diversity was impaired and the quantities of two main bacteria flora (Bacteroidetes and Clostridium) were significantly reduced in patients with diarrhea-predominant irritable bowel syndrome (D-IBS). Meanwhile mucosal expression of toll-like receptor (TLR) 2 and TLR4 were significantly enhanced, which was inversely correlated with the reduction of Bacteroidetes and Clostridium. Thus, it suggests that D-IBS may be associated with TLR signal transduction triggered by the intestinal dysbacteriosis. PMID:27373290

  17. Red blood cell alloimmunization is influenced by the delay between Toll-like receptor agonist injection and transfusion

    PubMed Central

    Elayeb, Rahma; Tamagne, Marie; Bierling, Philippe; Noizat-Pirenne, France; Vingert, Benoît

    2016-01-01

    Murine models of red blood cell transfusion show that inflammation associated with viruses or methylated DNA promotes red blood cell alloimmunization. In vaccination studies, the intensity of antigen-specific responses depends on the delay between antigen and adjuvant administration, with a short delay limiting immune responses. In mouse models of alloimmunization, the delay between the injection of Toll-like receptor agonists and transfusion is usually short. In this study, we hypothesized that the timing of Toll-like receptor 3 agonist administration affects red blood cell alloimmunization. Poly(I:C), a Toll-like receptor 3 agonist, was administered to B10BR mice at various time points before the transfusion of HEL-expressing red blood cells. For each time point, we measured the activation of splenic HEL-presenting dendritic cells, HEL-specific CD4+ T cells and anti-HEL antibodies in serum. The phenotype of activated immune cells depended on the delay between transfusion and Toll-like receptor-dependent inflammation. The production of anti-HEL antibodies was highest when transfusion occurred 7 days after agonist injection. The proportion of HEL-presenting CD8α+ dendritic cells producing interleukin-12 was highest in mice injected with poly(I:C) 3 days before transfusion. Although the number of early-induced HEL-specific CD4+ T cells was similar between groups, a high proportion of these cells expressed CD134, CD40 and CD44 in mice injected with poly(I:C) 7 days before transfusion. This study clearly shows that the delay between transfusion and Toll-like receptor-induced inflammation influences the immune response to transfused red blood cells. PMID:26430173

  18. Trichomonas vaginalis infection activates cells through toll-like receptor 4.

    PubMed

    Zariffard, M Reza; Harwani, Sailesh; Novak, Richard M; Graham, Parrie J; Ji, Xin; Spear, Gregory T

    2004-04-01

    While Trichomonas vaginalis infection can cause inflammation and influx of leukocytes into the female genital tract, the molecular pathways important in inducing these effects are not known. This study determined if infection with T. vaginalis activates cells through toll-like receptor 4 (TLR4). Genital tract secretions from infected women stimulated TNF-alpha production by cells with functional TLR4 (350 pg/ml) but significantly less by cells that are unresponsive to TLR4 ligands (44 pg/ml, P = 0.001). Secretions collected after clearance of infection also induced significantly lower responses by cells with functional TLR4 (136 pg/ml, P = 0.008). TNF-alpha responses were not reduced by Polymyxin B and did not correlate with beta(2)-defensin levels, indicating that stimulation of cells was not through lipopolysaccharide or beta(2)-defensin. These studies show that T. vaginalis infection results in the appearance in the genital tract of substance(s) that stimulate cells through TLR4, suggesting a mechanism for the inflammation caused by this infection. PMID:15093558

  19. Differential immunomodulatory activity of tumor cell death induced by cancer therapeutic toll-like receptor ligands.

    PubMed

    Klein, Johanna C; Wild, Clarissa A; Lang, Stephan; Brandau, Sven

    2016-06-01

    Synthetic toll-like receptor (TLR) ligands stimulate defined immune cell subsets and are currently tested as novel immunotherapeutic agents against cancer with, however, varying clinical efficacy. Recent data showed the expression of TLR receptors also on tumor cells. In this study we investigated immunological events associated with the induction of tumor cell death by poly(I:C) and imiquimod. A human head and neck squamous cell carcinoma (HNSCC) cell line was exposed to poly(I:C) and imiquimod, which were delivered exogenously via culture medium or via electroporation. Cell death and cell biological consequences thereof were analyzed. For in vivo analyses, a human xenograft and a syngeneic immunocompetent mouse model were used. Poly(I:C) induced cell death only if delivered by electroporation into the cytosol. Cell death induced by poly(I:C) resulted in cytokine release and activation of monocytes in vitro. Monocytes activated by the supernatant of cancer cells previously exposed to poly(I:C) recruited significantly more Th1 cells than monocytes exposed to control supernatants. If delivered exogenously, imiquimod also induced tumor cell death and some release of interleukin-6, but cell death was not associated with release of Th1 cytokines, interferons, monocyte activation and Th1 recruitment. Interestingly, intratumoral injection of poly(I:C) triggered tumor cell death in tumor-bearing mice and reduced tumor growth independent of TLR signaling on host cells. Imiquimod did not affect tumor size. Our data suggest that common cancer therapeutic RNA compounds can induce functionally diverse types of cell death in tumor cells with implications for the use of TLR ligands in cancer immunotherapy. PMID:27034235

  20. Regulation of toll like receptors in intestinal epithelial cells by stress and Toxoplasma gondii infection

    PubMed Central

    Gopal, R.; Birdsell, D.; Monroy, F. P.

    2008-01-01

    SUMMARY Intestinal epithelial cells (IECs) form a barrier between invading microorganisms and the underlying host tissues. IECs express Toll-like receptors (TLRs) that recognize specific molecular signatures on microbes which activate intracellular signaling pathways leading to production of proinflammatory cytokines and chemokines. Stress hormones play an important role in modulation of proinflammatory cytokines and downregulation of immune responses. Here we demonstrated that expression levels of TLR-2, TLR-4, TLR-9 and TLR-11 were significantly increased in mouse IECs following infection with Toxoplasma gondii on day 8 post infection. In contrast, expression of TLRs was significantly decreased in infected mice subjected to cold water stress (CWS+INF). Expression of TLR-9 and TLR-11 in the mouse MODE-K cell line was significantly increased after infection. Expression of TLR-9 and TLR-11 in cells exposed to norepinephrine (NE) and parasites was significantly decreased when compared to cells exposed to parasites only. A significant increase was observed in SIGIRR, a negative regulator of TLRs in the CWS+INF group when compared to the INF group. Stress components were able to decrease expression levels of TLRs in IECs, decrease parasite load, and increase expression of a negative regulator thereby ameliorating intestinal inflammatory responses commonly observed during per oral T. gondii infection in C57BL/6 mice. PMID:19067837

  1. Murine retroviruses activate B cells via interaction with toll-like receptor 4

    PubMed Central

    Rassa, John C.; Meyers, Jennifer L.; Zhang, Yuanming; Kudaravalli, Rama; Ross, Susan R.

    2002-01-01

    Although most retroviruses require activated cells as their targets for infection, it is not known how this is achieved in vivo. A candidate protein for the activation of B cells by either mouse mammary tumor virus (MMTV) or murine leukemia virus is the toll-like receptor 4 (TLR4), a component of the innate immune system. MMTV caused B cell activation in C3H/HeN mice but not in C3H/HeJ or BALB/c (C.C3H Tlr4lps-d) congenic mice, both of which have a mutant TLR4 gene. This activation was independent of viral gene expression, because it occurred after treatment of MMTV with ultraviolet light or 2,2′-dithiodipyridine and in azidothymidine-treated mice. Nuclear extracts prepared from the lymphocytes of MMTV-injected C3H/HeN but not C3H/HeJ mice showed increased nuclear factor κB activity. Additionally, the MMTV- and Moloney murine leukemia virus envelope proteins coimmunoprecipitated with TLR4 when expressed in 293T cells. The MMTV receptor failed to coimmunoprecipitate with TLR4, suggesting that MMTV/TLR4 interaction is independent of virus attachment and fusion. These results identify retroviral proteins that interact with a mammalian toll receptor and show that direct activation by such viruses may initiate in vivo infection pathways. PMID:11854525

  2. Characterization of host responses induced by Toll-like receptor ligands in chicken cecal tonsil cells.

    PubMed

    Taha-Abdelaziz, Khaled; Alkie, Tamiru Negash; Hodgins, Douglas C; Shojadoost, Bahram; Sharif, Shayan

    2016-06-01

    The innate responses of cecal tonsils against invading microorganisms are mediated by conserved pattern recognition receptors (PRRs) such as the Toll-like receptors (TLRs). TLRs expressed by mammalian and avian immune system cells have the capability to recognize pathogen-associated molecular patterns (PAMPs). Although, the role of TLR ligands in innate and adaptive responses in chickens has been characterized in spleen and bursa of Fabricius, considerably less is known about responses in cecal tonsils. The aim of the current study was to assess responses of mononuclear cells from cecal tonsils to treatment with the TLR2, TLR4 and TLR21 ligands, Pam3CSK4, lipopolysaccharide (LPS), and CpG oligodeoxynucleotide (ODN), respectively. All three ligands induced significant up-regulation of interferon (IFN)-γ, interleukin (IL)-1β, IL-6 and CxCLi2/IL-8, whereas no significant changes were observed in expression of IL-13 or the antimicrobial peptides, avian β-defensin (AvBD) 1, AvBD2 and cathelicidin 3 (CATHL-3). In general, CpG ODN elicited the highest cytokine responses by cecal tonsil mononuclear cells, inducing significantly higher expression compared to LPS and Pam3CSK4, for IFNγ, IL-1β, IL-6 and CxCLi2 at various time points. These findings suggest the potential use of TLR21 ligands as mucosal vaccine adjuvants, especially in the context of pathogens of the intestinal tract. PMID:27185259

  3. C5a and toll-like receptor 4 crosstalk in retinal pigment epithelial cells

    PubMed Central

    Zhu, Yi; Dai, Bingling; Li, Yongguo

    2015-01-01

    Purpose To investigate the effect of the complement activation product C5a on toll-like receptor (TLR) 4-induced responses in RPE cells. Methods Confluent cultures of human RPE cells (ARPE-19) were stimulated with C5a, lipopolysaccharide (LPS), or a combination of the two. The expression of TLR4 was determined by real-time PCR and flow cytometry. Cytokine profiles were determined by real-time PCR and enzyme-linked immunosorbent assay (ELISA). The phosphorylation of p38, ERK 1/2, and JNK was measured by flow cytometry. Results C5a stimulation enhanced the expression of TLR4 in a dose- and time-dependent manner. C5a was able to stimulate the production of TLR4-induced IL-6 and IL-8 by ARPE-19 cells. Blocking experiments showed that the effect of C5a on cytokine production was mediated via C5aR. ERK1/2, but not JNK or p38, were involved in the production of IL-6 and IL-8. Conclusions The results indicate that C5a can induce the TLR4 expression and enhance the production of TLR4-induced IL-6 and IL-8 by ARPE-19. The effect of C5a on cytokine production was mediated by C5aR and the phosphorylation of ERK1/2. PMID:26487798

  4. Central role of endogenous Toll-like receptor-2 activation in regulating inflammation, reactive oxygen species production, and subsequent neointimal formation after vascular injury

    SciTech Connect

    Shishido, Tetsuro . E-mail: Tetsuro_Shishido@URMC.Rochester.edu; Nozaki, Naoki; Takahashi, Hiroki; Arimoto, Takanori; Niizeki, Takeshi; Koyama, Yo; Abe, Jun-ichi; Takeishi, Yasuchika; Kubota, Isao

    2006-07-14

    Background: It is now evident that inflammation after vascular injury has significant impact on the restenosis after revascularization procedures such as angioplasty, stenting, and bypass grafting. However, the mechanisms that regulate inflammation and repair after vascular injury are incompletely understood. Here, we report that vascular injury-mediated cytokine expression, reactive oxygen species (ROS) production, as well as subsequent neointimal formation requires Toll-like receptor-2 (TLR-2) mediated signaling pathway in vivo. Methods and results: Vascular injury was induced by cuff-placement around the femoral artery in non-transgenic littermates (NLC) and TLR-2 knockout (TLR-2KO) mice. After cuff-placement in NLC mice, expression of TLR-2 was significantly increased in both smooth muscle medial layer and adventitia. Interestingly, we found that inflammatory genes expression such as tumor necrosis factor-{alpha}, interleukin-1{beta} (IL-1{beta}), IL-6, and monocyte chemoattractant protein-1 were markedly decreased in TLR-2KO mice compared with NLC mice. In addition, ROS production after vascular injury was attenuated in TLR-2KO mice compared with NLC mice. Since we observed the significant role of endogenous TLR-2 activation in regulating inflammatory responses and ROS production after vascular injury, we determined whether inhibition of endogenous TLR-2 activation can inhibit neointimal proliferation after vascular injury. Neointimal hyperplasia was markedly suppressed in TLR-2KO mice compared with WT mice at both 2 and 4 weeks after vascular injury. Conclusions: These findings suggested that endogenous TLR-2 activation might play a central role in the regulation of vascular inflammation as well as subsequent neointimal formation in injured vessels.

  5. Signaling through Toll-like receptors triggers HIV-1 replication in latently infected mast cells.

    PubMed

    Sundstrom, J Bruce; Little, Dawn M; Villinger, Francois; Ellis, Jane E; Ansari, Aftab A

    2004-04-01

    Evidence that human progenitor mast cells are susceptible to infection with CCR5-tropic strains of HIV-1 and that circulating HIV-1-infected FcepsilonRIalpha(+) cells with a similar progenitor phenotype have been isolated from AIDS patients has led to speculation that mast cells may serve as a potential reservoir for infectious HIV-1. In this study, progenitor mast cells, developed in vitro from CD34(+) cord blood stem cells, were experimentally infected with the CCR5-tropic strain HIV-1Bal after 28 days in culture as they reached their HIV-1-susceptible progenitor stage. HIV-1 p24 Ag levels were readily detectable by day 7 postinfection (PI), peaked at 2-3 wk PI as mature (tryptase/chymase-positive) HIV-1 infection-resistant mast cells emerged, and then steadily declined to below detectable limits by 10 wk PI, at which point integrated HIV-1 proviral DNA was confirmed by PCR quantitation in ( approximately 34% of) latently infected mast cells. Stimulation by ligands for Toll-like receptor (TLR) 2, TLR4, or TLR9 significantly enhanced viral replication in a dose- and time-dependent manner in both HIV-1-infected progenitor and latently infected mature mast cells, without promoting degranulation, apoptosis, cellular proliferation, or dysregulation of TLR agonist-induced cytokine production in infected mast cells. Limiting dilution analysis of TLR activated, latently infected mature mast cells indicated that one in four was capable of establishing productive infections in A301 sentinel cells. Taken together, these results indicate that mast cells may serve both as a viral reservoir and as a model for studying mechanisms of postintegration latency in HIV infection. PMID:15034054

  6. Toll-like receptor 3 regulates NK cell responses to cytokines and controls experimental metastasis

    PubMed Central

    Guillerey, Camille; Chow, Melvyn T; Miles, Kim; Olver, Stuart; Sceneay, Jaclyn; Takeda, Kazuyoshi; Möller, Andreas; Smyth, Mark J

    2015-01-01

    The Toll-like receptor 3 (TLR3) agonist poly(I:C) is a promising adjuvant for cancer vaccines due to its induction of potent antitumor responses occurring primarily through the activation of dendritic cells (DCs) and natural killer (NK) cells. However, little is known about the role of TLR3 sensing of endogenous ligands in innate tumor immunosurveillance. Here, we investigated whether TLR3 could modulate immune responses and facilitate tumor control without administration of an agonist. We observed only limited impact of TLR3 deficiency on spontaneous carcinogenesis and primary growth of B16F10, E0771 or MC38 tumors when injected subcutaneously to mice. Nevertheless, TLR3 was observed to limit experimental B16F10 lung metastasis, an immunologic constraint dependent on both IFNγ secretion and NK cells. Interestingly, we observed that NK cells derived from Tlr3 null (Tlr3−/−) mice were hyporesponsive to cytokine stimulation. Indeed, compared with NK cells with intact TLR3, Tlr3−/− NK cells produced significantly reduced pro-inflammatory cytokines, including IFNγ, when incubated in the presence of different combinations of IL-12, IL-18 and IL-15. Bone-marrow chimera experiments established that competent NK cell responses required TLR3 sensing on radio-sensitive immune cells. Intriguingly, although CD8α DCs robustly express high levels of TLR3, we found that those cells were not necessary for efficient IFNγ production by NK cells. Moreover, the defective NK cell phenotype of Tlr3−/− mice appeared to be independent of the gut microbiota. Altogether, our data demonstrate a pivotal role of endogenous TLR3 stimulation for the acquisition of full NK cell functions and immune protection against experimental metastasis. PMID:26405596

  7. FSL-1, a Toll-like Receptor 2/6 Agonist, Induces Expression of Interleukin-1α in the Presence of 27-hydroxycholesterol

    PubMed Central

    Heo, Weon; Kim, Sun-Mi; Eo, Seong-Kug; Rhim, Byung-Yong

    2014-01-01

    We investigated the question of whether cholesterol catabolite can influence expression of inflammatory cytokines via Toll-like receptors (TLR) in monocytic cells. Treatment of THP-1 monocytic cells with 27-hydroxycholesterol (27OHChol) resulted in induction of gene transcription of TLR6 and elevated level of cell surface TLR6. Addition of FSL-1, a TLR6 agonist, to 27OHChol-treated cells resulted in transcription of the IL-1α gene and enhanced secretion of the corresponding gene product. However, cholesterol did not affect TLR6 expression, and addition of FSL-1 to cholesterol-treated cells did not induce expression of IL-1α. Using pharmacological inhibitors, we investigated molecular mechanisms underlying the expression of TLR6 and IL-1α. Treatment with Akt inhibitor IV or U0126 resulted in significantly attenuated expression of TLR6 and IL-1α induced by 27OHChol and 27OHChol plus FSL-1, respectively. In addition, treatment with LY294002, SB202190, or SP600125 resulted in significantly attenuated secretion of IL-1α. These results indicate that 27OHChol can induce inflammation by augmentation of TLR6-mediated production of IL-1α in monocytic cells via multiple signaling pathways. PMID:25598661

  8. Insights into the Relationship between Toll Like Receptors and Gamma Delta T Cell Responses

    PubMed Central

    Dar, Asif Amin; Patil, Rushikesh Sudam; Chiplunkar, Shubhada Vivek

    2014-01-01

    The tumor microenvironment is an important aspect of cancer biology that contributes to tumor initiation, tumor progression and responses to therapy. The composition and characteristics of the tumor microenvironment vary widely and are important in determining the anti-tumor immune response. Successful immunization requires activation of both innate and adaptive immunity. Generally, immune system is compromised in patients with cancer due to immune suppression, loss of tumor antigen expression and dysfunction of antigen presenting cells (APC). Thus, therapeutic immunization leading to cancer regression remains a significant challenge. Certain cells of the immune system, including dendritic cells (DCs) and gamma delta (γδ) T cells are capable of driving potent anti-tumor responses. The property of MHC-unrestricted cytotoxicity, high potential of cytokine release, tissue tropism and early activation in infections and malignant disease makes γδ T cells as an emerging candidate for immunotherapy. Various strategies are being developed to enhance anti-tumor immune responses of γδ T cells and DCs one of them is the use of novel adjuvants like toll like receptors (TLR) agonists, which enhance γδ T cell function directly or through DC activation, which has ability to prime γδ T cells. TLR agonists are being used clinically either alone or in combination with tumor antigens and has shown initial success in both enhancing immune responses and eliciting anti-tumor activity. TLR activated γδ T cells and DCs nurture each other’s activation. This provides a potent base for first line of defense and manipulation of the adaptive response against pathogens and cancer. The available data provides a strong rationale for initiating combinatorial therapy for the treatment of diseases and this review will summarize the application of adjuvants (TLRs) for boosting immune response of γδ T cells to treat cancer and infectious diseases and their use in combinatorial therapy

  9. Nonbilayer Phospholipid Arrangements Are Toll-Like Receptor-2/6 and TLR-4 Agonists and Trigger Inflammation in a Mouse Model Resembling Human Lupus

    PubMed Central

    Wong-Baeza, Carlos; Tescucano, Alonso; Astudillo, Horacio; Reséndiz, Albany; Landa, Carla; España, Luis; Serafín-López, Jeanet; Estrada-García, Iris; Estrada-Parra, Sergio; Flores-Romo, Leopoldo; Wong, Carlos; Baeza, Isabel

    2015-01-01

    Systemic lupus erythematosus is characterized by dysregulated activation of T and B cells and autoantibodies to nuclear antigens and, in some cases, lipid antigens. Liposomes with nonbilayer phospholipid arrangements induce a disease resembling human lupus in mice, including IgM and IgG antibodies against nonbilayer phospholipid arrangements. As the effect of these liposomes on the innate immune response is unknown and innate immune system activation is necessary for efficient antibody formation, we evaluated the effect of these liposomes on Toll-like receptor (TLR) signaling, cytokine production, proinflammatory gene expression, and T, NKT, dendritic, and B cells. Liposomes induce TLR-4- and, to a lesser extent, TLR-2/TLR-6-dependent signaling in TLR-expressing human embryonic kidney (HEK) cells and bone marrow-derived macrophages. Mice with the lupus-like disease had increased serum concentrations of proinflammatory cytokines, C3a and C5a; they also had more TLR-4-expressing splenocytes, a higher expression of genes associated with TRIF-dependent TLR-4-signaling and complement activation, and a lower expression of apoptosis-related genes, compared to healthy mice. The percentage of NKT and the percentage and activation of dendritic and B2 cells were also increased. Thus, TLR-4 and TLR-2/TLR-6 activation by nonbilayer phospholipid arrangements triggers an inflammatory response that could contribute to autoantibody production and the generation of a lupus-like disease in mice. PMID:26568960

  10. [Expression of Toll-like receptors in human bone marrow mesenchymal stem cells].

    PubMed

    He, Xiao-Xia; Bai, Hai; Yang, Guo-Rong; Xue, Yong-Jie; Su, Ya-Nan

    2009-06-01

    The aim of this study was to explore the characteristics of Toll-like receptor expression in mesenchymal stem cells derived from bone marrow of healthy donor (BM-MSCs). BM-MSCs were isolated from bone marrow of healthy donor by Ficoll method. Expressions of CD34, CD45, HLA-DR, CD44 and CD71 in BM-MSCs were detected by flow cytometry. CD71 in BM-MSCs was assayed by immunocytochemistry. The adipocyte and osteoblast induction of BM-MSCs were detected by alizarin red stain and oil red stain respectively. TLR 1 - 10 mRNA levels in BM-MSCs were evaluated by semiquantitative RT-PCR. The results showed that expressions of CD34, CD45 and HLA-DR in BM-MSC were negative while the expressions of CD44 and CD71 were positive. CD71 in BM-MSCs was positive. After induced by osteoblast and adipocyte inductor, BM-MSCs were positive for alizarin red staining and oil red staining respectively. All of TLR 1 - 10 mRNA were found in BM-MSCs with high expression levels of TLR2, TLR3, TLR4, TLR7, TLR8, TLR9 and low expression levels of TLR1, TLR5, TLR6, TLR10. In conclusion, different levels of TLR 1 - 10 mRNA were expressed in BM-MSCs of healthy donor. PMID:19549390

  11. Modulation of Adult Mesenchymal Stem Cells Activity by Toll-Like Receptors: Implications on Therapeutic Potential

    PubMed Central

    DelaRosa, Olga; Lombardo, Eleuterio

    2010-01-01

    Mesenchymal stem cells (MSCs) are of special interest as therapeutic agents in the settings of both chronic inflammatory and autoimmune diseases. Toll-like receptors (TLR) ligands have been linked with the perpetuation of inflammation in a number of chronic inflammatory diseases due to the permanent exposure of the immune system to TLR-specific stimuli. Therefore, MSCs employed in therapy can be potentially exposed to TLR ligands, which may modulate MSC therapeutic potential in vivo. Recent results demonstrate that MSCs are activated by TLR ligands leading to modulation of the differentiation, migration, proliferation, survival, and immunosuppression capacities. However inconsistent results among authors have been reported suggesting that the source of MSCs, TLR stimuli employed or culture conditions play a role. Notably, activation by TLR ligands has not been reported to modulate the “immunoprivileged” phenotype of MSCs which is of special relevance regarding the use of allogeneic MSC-based therapies. In this review, we discuss the available data on the modulation of MSCs activity through TLR signalling. PMID:20628526

  12. Differential activation of the Toll-like receptor 2/6 complex by lipoproteins of Streptococcus suis serotypes 2 and 9.

    PubMed

    Wichgers Schreur, Paul J; Rebel, Johanna M J; Smits, Mari A; van Putten, Jos P M; Smith, Hilde E

    2010-07-14

    Streptococcus suis causes invasive infections in pigs and occasionally in humans. Worldwide, S. suis serotype 2 is most frequently isolated from diseased piglets, but the less virulent serotype 9 is emerging, at least in Europe. We compared the activation of human Toll-like receptors (hTLRs) by S. suis serotype 2 and 9 strains to better understand the role of the innate immune response in fighting S. suis infections. Neither live nor heat-killed log phase grown S. suis activated the hTLR1/2, hTLR2/6 and hTLR4/MD-2 complexes. However, the hTLR2/6 complex was specifically activated by both serotypes after disruption of the cell wall synthesis using penicillin. Activation levels of the hTLR2/6 complex were higher for serotype 9 strains compared to serotype 2 strains suggesting intrinsic differences in cell wall composition between both serotypes. The hTLR2/6 activating fractions decreased in molecular size after digestion with proteinase K and were sensitive for lipoprotein lipase digestion and NaOH hydrolysis, indicating lipoprotein(s) as active component(s). Overall, our results indicate that S. suis lipoproteins activate TLR2/6 but not TLR1/2 and that the clinically different serotypes 2 and 9 display differential release of TLR ligand when cell wall integrity is compromised. PMID:20044219

  13. Review of the innate immune response in acne vulgaris: activation of Toll-like receptor 2 in acne triggers inflammatory cytokine responses.

    PubMed

    Kim, Jenny

    2005-01-01

    Acne vulgaris is a common disorder that affects 40-50 million people in the USA alone. The pathogenesis of acne is multifactorial, including hormonal, microbiological and immunological mechanisms. One of the factors that contributes to the pathogenesis of acne is Propionibacterium acnes; yet, the molecular mechanism by which P. acnes induces inflammation is not known. Recent studies have demonstrated that microbial agents trigger cytokine responses via Toll-like receptors (TLRs). TLRs are pattern recognition receptors that recognize pathogen-associated molecular patterns conserved among microorganisms and elicit immune responses. We investigated whether TLR2 mediates P. acnes-induced cytokine production in acne. Using transfectant cells we found that TLR2 was sufficient for NF-kappaB activation in response to P. acnes. In addition, peritoneal macrophages from wild-type, TLR6 knockout and TLR1 knockout mice, but not TLR2 knockout mice, produced IL-6 in response to P. acnes.P. acnes induced activation of IL-12 and IL-8 production by primary human monocytes, and this cytokine production was inhibited by anti-TLR2-blocking antibody. Finally, in acne lesions, TLR2 was expressed on the cell surface of macrophages surrounding pilosebaceous follicles. These data suggest that P. acnes triggers inflammatory cytokine responses in acne by activation of TLR2. As such, TLR2 may provide a novel target for the treatment of this common skin disease. PMID:16205063

  14. Propolis immunomodulatory action in vivo on Toll-like receptors 2 and 4 expression and on pro-inflammatory cytokines production in mice.

    PubMed

    Orsatti, C L; Missima, F; Pagliarone, A C; Bachiega, T F; Búfalo, M C; Araújo, J P; Sforcin, J M

    2010-08-01

    Propolis is a bee product and its immunomodulatory action has been the subject of intense investigation lately. The recent discovery and characterization of the family of Toll-like receptors (TLR) have triggered a great deal of interest in the field of innate immunity due to their crucial role in microbial recognition and development of the adaptive immune response. This work aimed to evaluate propolis's effect on TLR-2 and TLR-4 expression and on the production of pro-inflammatory cytokines (IL-1beta and IL-6). Male BALB/c mice were treated with propolis (200 mg/kg) for three consecutive days, and TLR-2 and TLR-4 expression as well as IL-1beta and IL-6 production were assessed in peritoneal macrophages and spleen cells. Basal IL-1beta production and TLR-2 and TLR-4 expression were increased in peritoneal macrophages of propolis-treated mice. TLR-2 and TLR-4 expression and IL-1beta and IL-6 production were also upregulated in the spleen cells of propolis-treated mice. One may conclude that propolis activated the initial steps of the immune response by upregulating TLRs expression and the production of pro-inflammatory cytokines in mice, modulating the mechanisms of the innate immunity. PMID:20041423

  15. Epigenetic Regulation of Tolerance to Toll-Like Receptor Ligands in Alveolar Epithelial Cells.

    PubMed

    Neagos, Jacqueline; Standiford, Theodore J; Newstead, Michael W; Zeng, Xianying; Huang, Steven K; Ballinger, Megan N

    2015-12-01

    To protect the host against exuberant inflammation and injury responses, cells have the ability to become hyporesponsive or "tolerized" to repeated stimulation by microbial and nonmicrobial insults. The lung airspace is constantly exposed to a variety of exogenous and endogenous Toll-like receptor (TLR) ligands, yet the ability of alveolar epithelial cells (AECs) to be tolerized has yet to be examined. We hypothesize that type II AECs will develop a tolerance phenotype upon repeated TLR agonist exposure. To test this hypothesis, primary AECs isolated from the lungs of mice and a murine AEC cell line (MLE-12) were stimulated with either a vehicle control or a TLR ligand for 18 hours, washed, then restimulated with either vehicle or TLR ligand for an additional 6 hours. Tolerance was assessed by measurement of TLR ligand-stimulated chemokine production (monocyte chemoattractant protein [MCP]-1/CCL2, keratinocyte chemoattractant [KC]/CXCL1, and macrophage inflammatory protein [MIP]-2/CXCL2). Sequential treatment of primary AECs or MLE-12 cells with TLR agonists resulted in induction of either tolerance or cross-tolerance. The induction of tolerance was not due to expression of specific negative regulators of TLR signaling (interleukin-1 receptor associated kinase [IRAK]-M, Toll-interacting protein [Tollip], single Ig IL-1-related receptor [SIGIRR], or suppressor of cytokine signaling [SOCS]), inhibitory microRNAs (miRs; specifically, miR-155 and miR146a), or secretion of inhibitory or regulatory soluble mediators (prostaglandin E2, IL-10, transforming growth factor-β, or IFN-α/β). Moreover, inhibition of histone demethylation or DNA methylation did not prevent the development of tolerance. However, treatment of AECs with the histone deacetylase inhibitors trichostatin A or suberoylanilide hyrozamine resulted in reversal of the tolerance phenotype. These findings indicate a novel mechanism by which epigenetic modification regulates the induction of tolerance in AECs

  16. In ovo delivery of Toll-like receptor 2 ligand, lipoteichoic acid induces pro-inflammatory mediators reducing post-hatch infectious laryngotracheitis virus infection.

    PubMed

    Thapa, S; Nagy, E; Abdul-Careem, M F

    2015-04-15

    Toll-like receptor (TLR) ligands are pathogen associated molecular patterns (PAMPs) recognized by the TLRs resulting in induction of host innate immune responses. One of the PAMPs that binds to TLR2 and cluster of differentiation (CD) 14 is lipotechoic acid (LTA), which activates downstream signals culminating in the release of pro-inflammatory cytokines. In this study, we investigated whether in ovo LTA delivery leads to the induction of antiviral responses against post-hatch infectious laryngotracheitis virus (ILTV) infection. We first delivered the LTA into embryo day (ED)18 eggs via in ovo route so that the compound is available at the respiratory mucosa. Then the LTA treated and control ED18 eggs were allowed to hatch and the hatched chicken was infected with ILTV intratracheally on the day of hatch. We found that in ovo delivered LTA reduces ILTV infection post-hatch. We also found that in ovo delivery of LTA significantly increases mRNA expression of pro-inflammatory mediators in pre-hatch embryo lungs as well as mononuclear cell infiltration, predominantly macrophages, in lung of post-hatch chickens. Altogether, the data suggest that in ovo delivered LTA could be used to reduce ILTV infection in newly hatched chickens. PMID:25764942

  17. Suppression of Ischemia-Induced Hippocampal Pyramidal Neuron Death by Hyaluronan Tetrasaccharide through Inhibition of Toll-Like Receptor 2 Signaling Pathway.

    PubMed

    Sunabori, Takehiko; Koike, Masato; Asari, Akira; Oonuki, Yoji; Uchiyama, Yasuo

    2016-08-01

    Toll-like receptors (TLRs) are one of the main contributors that induce inflammation under tissue injury and infection. Because excessive inflammation can aggravate disease states, it is important to control inflammation at a moderate level. Herein, we show that hyaluronan (HA) oligomer, HA tetrasaccharide (HA4), could suppress the expression of proinflammatory cytokine IL-1β when stimulated with both TLR2- and TLR4-specific agonists in primary hippocampal neurons. To understand the effect of HA4 against ischemic insult, we performed hypoxic-ischemic (H/I) brain injury against neonatal mice. HA4 treatment significantly prevented hippocampal pyramidal cell death even 7 days after H/I injury, compared with the control mice. Although TLR2 and TLR4 are known as receptors for HA and also act as a receptor for inducing inflammation, only TLR2-deficient mice showed tolerance against H/I injury. Moreover, HA4 administration suppressed gliosis by inhibiting the activation of NF-κB, the downstream target of TLR2, which led to the suppression of IL-1β expression. Taken together, our data suggest that the neuroprotective effect of HA4 relies on antagonizing the TLR2/NF-κB pathway to reduce inflammation through suppressing the expression of proinflammatory cytokines after neonatal H/I brain injury. PMID:27301359

  18. Toll-Like Receptors on Human Mesenchymal Stem Cells Drive their Migration and Immunomodulating Responses

    PubMed Central

    Tomchuck, Suzanne L.; Zwezdaryk, Kevin J.; Coffelt, Seth B.; Waterman, Ruth S.; Danka, Elizabeth S.; Scandurro, Aline B.

    2009-01-01

    Adult human bone marrow-derived mesenchymal stem cells (hMSCs) are under study as therapeutic delivery agents that assist in the repair of damaged tissues. To achieve the desired clinical outcomes for this strategy requires a better understanding of the mechanisms that drive the recruitment, migration and engraftment of hMSCs to the targeted tissues. It is known that hMSCs are recruited to sites of stress or inflammation to fulfill their repair function. It is recognized that toll-like receptors (TLRs) mediate stress responses of other bone marrow-derived cells. This study explored the role of TLRs in mediating stress responses of hMSCs. Accordingly, the presence of TLRs in hMSCs was established initially by RT-PCR assays. Flow cytometry and fluorescence immunocytochemical analyses confirmed these findings. The stimulation of hMSCs with TLR agonists led to the activation of downstream signaling pathways, including NF-κB, AKT and MAPK. Consequently, activation of these pathways triggered the induction and secretion of cytokines, chemokines and related TLR gene products as established from cDNA array, immunoassay and cytokine antibody array analyses. Interestingly, the unique patterns of affected genes, cytokines and chemokines measured, identify these receptors as critical players in the clinically established immunomodulation, observed for hMSCs. Lastly, hMSCs migration was promoted by TLR ligand exposure as demonstrated by transwell migration assays. Conversely, disruption of TLRs by neutralizing TLR antibodies compromised hMSCs migration. This study defines a novel TLR-driven stress and immune modulating response for hMSCs that is critical to consider in the design of stem cell-based therapies. PMID:17916800

  19. Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses.

    PubMed

    Tomchuck, Suzanne L; Zwezdaryk, Kevin J; Coffelt, Seth B; Waterman, Ruth S; Danka, Elizabeth S; Scandurro, Aline B

    2008-01-01

    Adult human bone marrow-derived mesenchymal stem cells (hMSCs) are under study as therapeutic delivery agents that assist in the repair of damaged tissues. To achieve the desired clinical outcomes for this strategy requires a better understanding of the mechanisms that drive the recruitment, migration, and engraftment of hMSCs to the targeted tissues. It is known that hMSCs are recruited to sites of stress or inflammation to fulfill their repair function. It is recognized that toll-like receptors (TLRs) mediate stress responses of other bone marrow-derived cells. This study explored the role of TLRs in mediating stress responses of hMSCs. Accordingly, the presence of TLRs in hMSCs was initially established by reverse transcription-polymerase chain reaction assays. Flow cytometry and fluorescence immunocytochemical analyses confirmed these findings. The stimulation of hMSCs with TLR agonists led to the activation of downstream signaling pathways, including nuclear factor kappaB, AKT, and MAPK. Consequently, activation of these pathways triggered the induction and secretion of cytokines, chemokines, and related TLR gene products as established from cDNA array, immunoassay, and cytokine antibody array analyses. Interestingly, the unique patterns of affected genes, cytokines, and chemokines measured identify these receptors as critical players in the clinically established immunomodulation observed for hMSCs. Lastly, hMSC migration was promoted by TLR ligand exposure as demonstrated by transwell migration assays. Conversely, disruption of TLRs by neutralizing TLR antibodies compromised hMSC migration. This study defines a novel TLR-driven stress and immune modulating response for hMSCs that is critical to consider in the design of stem cell-based therapies. PMID:17916800

  20. Human lung cancer cells express functionally active Toll-like receptor 9

    PubMed Central

    Droemann, Daniel; Albrecht, Dirk; Gerdes, Johannes; Ulmer, Artur J; Branscheid, Detlev; Vollmer, Ekkehard; Dalhoff, Klaus; Zabel, Peter; Goldmann, Torsten

    2005-01-01

    Background CpG-oligonucleotides (CpG-ODN), which induce signaling through Toll-like receptor 9 (TLR9), are currently under investigation as adjuvants in therapy against infections and cancer. CpG-ODN function as Th-1 adjuvants and are able to activate dendritic cells. In humans TLR9 has been described to be strongly expressed in B-lymphocytes, monocytes, plasmacytoid dendritic cells and at low levels in human respiratory cells. We determined whether a direct interaction of bacterial DNA with the tumor cells themselves is possible and investigated the expression and function of TLR9 in human malignant solid tumors and cell lines. TLR9 expression by malignant tumor cells, would affect treatment approaches using CpG-ODN on the one hand, and, on the other hand, provide additional novel information about the role of tumor cells in tumor-immunology. Methods The expression of TLR9 in HOPE-fixed non-small lung cancer, non-malignant tissue and tumor cell lines was assessed using immunohistochemistry, confocal microscopy, in situ hybridization, RT-PCR and DNA-sequencing. Apoptosis and chemokine expression was detected by FACS analysis and the Bio-Plex system. Results We found high TLR9 signal intensities in the cytoplasm of tumor cells in the majority of lung cancer specimens as well as in all tested tumor cell lines. In contrast to this non-malignant lung tissues showed only sporadically weak expression. Stimulation of HeLa and A549 cells with CpG-ODN induced secretion of monocyte chemoattractant protein-1 and reduction of spontaneous and tumor necrosis factor-alpha induced apoptosis. Conclusions Here we show that TLR9 is expressed in a selection of human lung cancer tissues and various tumor cell lines. The expression of functionally active TLR9 in human malignant tumors might affect treatment approaches using CpG-ODN and shows that malignant cells can be regarded as active players in tumor-immunology. PMID:15631627

  1. Adjuvant for vaccine immunotherapy of cancer--focusing on Toll-like receptor 2 and 3 agonists for safely enhancing antitumor immunity.

    PubMed

    Seya, Tsukasa; Shime, Hiroaki; Takeda, Yohei; Tatematsu, Megumi; Takashima, Ken; Matsumoto, Misako

    2015-12-01

    Immune-enhancing adjuvants usually targets antigen (Ag)-presenting cells to tune up cellular and humoral immunity. CD141(+) dendritic cells (DC) represent the professional Ag-presenting cells in humans. In response to microbial pattern molecules, these DCs upgrade the maturation stage sufficient to improve cross-presentation of exogenous Ag, and upregulation of MHC and costimulators, allowing CD4/CD8 T cells to proliferate and liberating cytokines/chemokines that support lymphocyte attraction and survival. These DCs also facilitate natural killer-mediated cell damage. Toll-like receptors (TLRs) and their signaling pathways in DCs play a pivotal role in DC maturation. Therefore, providing adjuvants in addition to Ag is indispensable for successful vaccine immunotherapy for cancer, which has been approved in comparison with antimicrobial vaccines. Mouse CD8α(+) DCs express TLR7 and TLR9 in addition to the TLR2 family (TLR1, 2, and 6) and TLR3, whereas human CD141(+) DCs exclusively express the TLR2 family and TLR3. Although human and mouse plasmacytoid DCs commonly express TLR7/9 to respond to their agonists, the results on mouse adjuvant studies using TLR7/9 agonists cannot be simply extrapolated to human adjuvant immunotherapy. In contrast, TLR2 and TLR3 are similarly expressed in both human and mouse Ag-presenting DCs. Bacillus Calmette-Guerin peptidoglycan and polyinosinic-polycytidylic acid are representative agonists for TLR2 and TLR3, respectively, although they additionally stimulate cytoplasmic sensors: their functional specificities may not be limited to the relevant TLRs. These adjuvants have been posted up to a certain achievement in immunotherapy in some cancers. We herein summarize the history and perspectives of TLR2 and TLR3 agonists in vaccine-adjuvant immunotherapy for cancer. PMID:26395101

  2. Toll-like receptors 2, 3 and 4 (TLR-2, TLR-3 and TLR-4) are expressed in the microenvironment of human acquired cholesteatoma.

    PubMed

    Szczepański, Mirosław; Szyfter, Witold; Jenek, Renata; Wróbel, Maciej; Lisewska, Iwona Mozer; Zeromski, Jan

    2006-07-01

    Human toll-like receptors (TLR 1-10) are crucial in the induction and activation of innate immunity in the course of an infection. They are expressed mainly on the cells of the immune system, and also on some epithelia and endothelia. Their ligands so called pathogen associated molecular patterns are abundant on invading microbes. TLR-ligand binding results in cell signal transduction and subsequent production of various proinflammatory cytokines such as IL-1 and TNF-alpha. Acquired cholesteatoma is formed during chronic otitis media in the proportion of cases. It has adverse effects on ear structures, resulting in osteolysis and bone resorption. Its formation and pathogenesis are not fully understood. The current study attempted to search the possible role of TLRs in this somewhat awkward pathological condition. Surgical specimens of human acquired cholesteatoma (n=15) and normal external auditory canal skin (n=5, control tissues) were tested by immunohistochemistry for the presence of TLRs. Three TLRs were examined: TLR-2, TLR-3 and TLR-4. All TLRs tested were demonstrated in matrix (layer of keratinizing epithelium) and perimatrix (granulation tissue) of this inflammatory tumour. Expression of particular TLRs within the keratinizing epithelium was distinct and uneven. In the perimatrix, numerous T (CD3+) cells were seen and relatively few macrophages (CD11c+, HLA-DR+). There was a weak expression of all TLRs on normal (non-inflammatory) skin. Expression of TLR-3 both on the epithelium and some cells within the perimatrix and the presence of T cells may suggest that apart from innate immune responses, mechanisms of adaptive immunity also operate in cholesteatoma. Weak expression of these receptors on normal skin may also suggest the important role of TLRs in the etiopathogenesis of cholesteatoma. PMID:16538507

  3. Investigation of Toll-Like Receptor-2 (2258G/A) and Interferon Gamma (+874T/A) Gene Polymorphisms among Infertile Women with Female Genital Tuberculosis

    PubMed Central

    Bhanothu, Venkanna; Lakshmi, Vemu; Theophilus, Jane P.; Rozati, Roya; Badhini, Prabhakar; Vijayalaxmi, Boda

    2015-01-01

    Background Toll-like receptor 2 (TLR2) and interferon-gamma (IFN-γ) coordinate with a diverse array of cellular programs through the transcriptional regulation of immunologically relevant genes and play an important role in immune system, reproductive physiology and basic pathology. Alterations in the functions of TLR2 2258G (guanine)/ A, IFN-γ (+874T/A) and signalling molecules that result from polymorphisms are often associated with susceptibility or resistance, which may, in turn, establish the innate host response to various infectious diseases. Presently, we proposed to investigate the risk of common single nucleotide polymorphism (SNP) of TLR2 and IFN-γ genes, for their effect on infertility in women with female genital tuberculosis (FGTB) and healthy women as controls. Methodology/Principal Findings Genotyping of TLR2 and IFN-γ gene polymorphisms was performed by amplification refractory mutation system multi-gene/multi-primer polymerase chain reaction followed by restriction fragment length polymorphism in 175 FGTB patients and 100 healthy control women (HCW). The TLR2 polymorphism [adenine (A) allele] was observed in 57.7 and 58.0% of FGTB patients and HCW, respectively. The IFN-γ (+874T/A) polymorphism (A allele) was significant in 74.3 and 71.0% of FGTB patients and HCW, respectively, while the odds ratios for the AA and TA genotypes for predisposition of FGTB were found to be 0.304 and 1.650 in HCW, respectively. The SNP of TLR2 was not associated with FGTB but the SNP of IFN-γ was found to be associated with mycobacteria infections and to induce infertility. Conclusions/Significance At present, we hypothesize that infertile women with FGTB and HCW without tuberculosis (TB) have identical frequency of TLR variants, which may be adequate in the production of IFN-γ in response to Mycobacterium tuberculosis infections. Thus, the study appears to be the first of its kind reporting a mutation in the IFN-γ gene [+874 T (thymine) to A] responsible for

  4. Toll-Like Receptors Expression in Follicular Cells of Patients with Poor Ovarian Response

    PubMed Central

    Taghavi, Seyed Abdolvahab; Ashrafi, Mahnaz; Mehdizadeh, Mehdi; Karimian, Leili; Joghataie, Mohammad Taghi; Aflatoonian, Reza

    2014-01-01

    Background Poor ovarian response (POR) to gonadotropin stimulation has led to a significant decline in success rate of fertility treatment. The immune system may play an important role in pathophysiology of POR by dysfunctions of cytokines and the growth factor network, and the presence of ovarian auto-antibodies. The aim of this study is to investigate the expression of toll-like receptors (TLR) 1, 2, 4, 5, 6 and cyclooxygenase (COX) 2 genes in follicular cells and concentration of interleukin (IL)-6, IL-8 and macrophage migration inhibitory factor (MIF), as major parts of innate immunity, in follicular fluid (FF) obtained from POR women in comparison with normal women. Materials and Methods In this case-control study, 20 infertile POR patients and 20 normal women took part in this study and underwent controlled ovarian stimulation. The FF was obtained from the largest follicle (>18 mm). The FF was centrifuged and cellular pellet was then used for evaluation of expression of TLRs and COX2 genes by real-time PCR. FF was used for quantitative analysis for IL-6, IL-8 and MIF by enzyme-linked immunosorbent assay (ELISA). Results TLR1, 2, 4, 5, 6 and COX2 gene expression were significantly higher in POR (p<0.05). Concentration of IL-6, IL-8 and MIF proteins was significantly increased in POR compared with normal women (p<0.05). Conclusion These findings support the hypothesis that the immune system may be involved in pathophysiology of POR through TLRs. PMID:25083184

  5. Metalloproteinase-dependent TLR2 ectodomain shedding is involved in soluble toll-like receptor 2 (sTLR2) production.

    PubMed

    Langjahr, Patricia; Díaz-Jiménez, David; De la Fuente, Marjorie; Rubio, Estefhany; Golenbock, Douglas; Bronfman, Francisca C; Quera, Rodrigo; González, María-Julieta; Hermoso, Marcela A

    2014-01-01

    Toll-like receptor (TLR) 2, a type I membrane receptor that plays a key role in innate immunity, recognizes conserved molecules in pathogens, and triggering an inflammatory response. It has been associated with inflammatory and autoimmune diseases. Soluble TLR2 (sTLR2) variants have been identified in human body fluids, and the TLR2 ectodomain can negatively regulate TLR2 activation by behaving as a decoy receptor. sTLR2 generation does not involve alternative splicing mechanisms, indicating that this process might involve a post-translational modification of the full-length receptor; however, the specific mechanism has not been studied. Using CD14+ peripheral human monocytes and the THP-1 monocytic leukemia-derived cell line, we confirm that sTLR2 generation increases upon treatment with pro-inflammatory agents and requires a post-translational mechanism. We also find that the constitutive and ligand-induced release of sTLR2 is sensitive to pharmacological metalloproteinase activator and inhibitors leading us to conclude that metalloproteinase TLR2 shedding contributes to soluble receptor production. By expressing human TLR2 in ADAM10- or ADAM17-deficient MEF cells, we find both enzymes to be implicated in TLR2 ectodomain shedding. Moreover, using a deletion mutant of the TLR2 juxtamembrane region, we demonstrate that this domain is required for sTLR2 generation. Functional analysis suggests that sTLR2 generated by metalloproteinase activation inhibitsTLR2-induced cytokine production by this monocytic leukemia-derived cell line. The identification of the mechanisms involved in regulating the availability of soluble TLR2 ectodomain and cell surface receptors may contribute further research on TLR2-mediated processes in innate immunity and inflammatory disorders. PMID:25531754

  6. Metalloproteinase-Dependent TLR2 Ectodomain Shedding is Involved in Soluble Toll-Like Receptor 2 (sTLR2) Production

    PubMed Central

    Langjahr, Patricia; Díaz-Jiménez, David; De la Fuente, Marjorie; Rubio, Estefhany; Golenbock, Douglas; Bronfman, Francisca C.; Quera, Rodrigo; González, María-Julieta; Hermoso, Marcela A.

    2014-01-01

    Toll-like receptor (TLR) 2, a type I membrane receptor that plays a key role in innate immunity, recognizes conserved molecules in pathogens, and triggering an inflammatory response. It has been associated with inflammatory and autoimmune diseases. Soluble TLR2 (sTLR2) variants have been identified in human body fluids, and the TLR2 ectodomain can negatively regulate TLR2 activation by behaving as a decoy receptor. sTLR2 generation does not involve alternative splicing mechanisms, indicating that this process might involve a post-translational modification of the full-length receptor; however, the specific mechanism has not been studied. Using CD14+ peripheral human monocytes and the THP-1 monocytic leukemia-derived cell line, we confirm that sTLR2 generation increases upon treatment with pro-inflammatory agents and requires a post-translational mechanism. We also find that the constitutive and ligand-induced release of sTLR2 is sensitive to pharmacological metalloproteinase activator and inhibitors leading us to conclude that metalloproteinase TLR2 shedding contributes to soluble receptor production. By expressing human TLR2 in ADAM10- or ADAM17-deficient MEF cells, we find both enzymes to be implicated in TLR2 ectodomain shedding. Moreover, using a deletion mutant of the TLR2 juxtamembrane region, we demonstrate that this domain is required for sTLR2 generation. Functional analysis suggests that sTLR2 generated by metalloproteinase activation inhibitsTLR2-induced cytokine production by this monocytic leukemia-derived cell line. The identification of the mechanisms involved in regulating the availability of soluble TLR2 ectodomain and cell surface receptors may contribute further research on TLR2-mediated processes in innate immunity and inflammatory disorders. PMID:25531754

  7. N-terminal fusion of a toll-like receptor 2-ligand to a Neospora caninum chimeric antigen efficiently modifies the properties of the specific immune response.

    PubMed

    Aguado-Martínez, Adriana; Basto, Afonso P; Müller, Joachim; Balmer, Vreni; Manser, Vera; Leitão, Alexandre; Hemphill, Andrew

    2016-04-01

    Immunoprophylactic products against neosporosis during pregnancy should induce an appropriately balanced immune response. In this respect, OprI, a bacterial lipoprotein targeting toll like receptor (TLR)2, provides promising adjuvant properties. We report on the manipulation of the innate and the T-cell immune response through the fusion of OprI with the Neospora caninum chimeric protein Mic3-1-R. In contrast to Mic3-1-R, OprI-MIC3-1-R significantly activated bone-marrow dendritic cells from naïve mice. Mice immunized with OprI-Mic3-1-R induced an immune response with mixed T helper (Th)1 and Th2 properties (high levels of both immunoglobulin (Ig)G1 and IgG2a and of interleukin (IL)-10, IL-12(p70) and interferon-γ responses) whereas Mic3-1-R+saponin induced a clear Th2-biased response (low IgG2a and high IL-4 and IL-10). After mating and challenge with N. caninum, increased expression of interferon-γ was only found in placentas from OprI-Mic3-1-R immunized dams. However, no protection against vertical transmission and neonatal mortality was observed in either of the two groups. These results indicated that more exhaustive studies must be done to elucidate the immune mechanisms associated with transplacental transmission. Antigen linkage to TLR2-ligands, such as OprI, is a useful tool to investigate this enigma by reorienting the innate and adaptive immune responses against other candidate antigens in future studies. PMID:26932317

  8. Effects of P-MAPA immunomodulator on Toll-like receptor 2, ROS, nitric oxide, MAPKp38 and IKK in PBMC and macrophages from dogs with visceral leishmaniasis.

    PubMed

    Melo, L M; Perosso, J; Almeida, B F M; Silva, K L O; Somenzari, M A; de Lima, V M F

    2014-02-01

    Leishmania (L.) chagasi is the etiologic agent of visceral leishmaniasis (VL) that can be transmitted to humans and dogs. VL in Brazil represents a serious public health problem; therefore, it is important to study new alternatives to treat infected dogs. In dogs, the therapeutic arsenal against canine VL is limited. The immunomodulator protein aggregate magnesium-ammonium phospholinoleate-palmitoleate anhydride (P-MAPA) improves immunocompetence when the immune system is impaired, but its dependence on Toll-like receptors (TLRs) and the mechanisms involved in immune response remain unclear. The in vitro action of P-MAPA on the expression of TLR2 and TLR4, reactive oxygen species (ROS), nitric oxide (NO) and p38 mitogen-activated protein kinase (p38 MAPK) and IKK phosphorylation was studied in mononuclear cells from peripheral blood and macrophages from healthy and Leishmania-infected dogs. The PBMC or macrophages were isolated and cultured with different concentrations of P-MAPA (20,100 and 200 μg/ml) in a humid environment at 37°C with 5% CO(2). Observation revealed that Leishmania-infected dogs showed a decrease in TLR2 in macrophages compared with healthy dogs and in induction with P-MAPA. ROS were increased in PBMCs from Leishmania spp.-infected dogs compared with healthy dogs and P-MAPA improved ROS production. NO production was increased in culture supernatant from macrophages stimulated by P-MAPA in both healthy and Leishmania spp. infected dogs. Treatment of macrophages from healthy dogs with immunomodulatory P-MAPA induced p38 MAPK and IKK phosphorylation, suggesting signal transduction by this pathway. These findings suggest that P-MAPA has potential as a therapeutic drug in the treatment of canine visceral leishmaniasis. PMID:24374021

  9. Participation of Mammalian Target of Rapamycin Complex 1 in Toll-Like Receptor 2– and 4–Induced Neutrophil Activation and Acute Lung Injury

    PubMed Central

    Lorne, Emmanuel; Zhao, Xia; Zmijewski, Jaroslaw W.; Liu, Gang; Park, Young-Jun; Tsuruta, Yuko; Abraham, Edward

    2009-01-01

    mTOR complex 1 (mTORC1) plays a central role in cell growth and cellular responses to metabolic stress. Although mTORC1 has been shown to be activated after Toll-like receptor (TLR)-4 engagement, there is little information concerning the role that mTORC1 may play in modulating neutrophil function and neutrophil-dependent inflammatory events, such as acute lung injury. To examine these issues, we determined the effects of rapamycin-induced inhibition of mTORC1 on TLR2- and TLR4-induced neutrophil activation. mTORC1 was dose- and time-dependently activated in murine bone marrow neutrophils cultured with the TLR4 ligand, LPS, or the TLR2 ligand, Pam3 Cys-Ser-(Lys)4 (PAM). Incubation of PAM- or LPS-stimulated neutrophils with rapamycin inhibited expression of TNF-α and IL-6, but not IκB-α degradation or nuclear translocation of NF-κB. Exposure of PAM or LPS-stimulated neutrophils to rapamycin inhibited phosphorylation of serine 276 in the NF-κB p65 subunit, a phosphorylation event required for optimal transcriptional activity of NF-κB. Rapamycin pretreatment inhibited PAM- or LPS-induced mTORC1 activation in the lungs. Administration of rapamycin also decreased the severity of lung injury after intratracheal LPS or PAM administration, as determined by diminished neutrophil accumulation in the lungs, reduced interstitial pulmonary edema, and diminished levels of TNF-α and IL-6 in bronchoalveolar lavage fluid. These results indicate that mTORC1 activation is essential in TLR2- and TLR4-induced neutrophil activation, as well as in the development and severity of acute lung injury. PMID:19131641

  10. Involvement of toll-like receptor 2 and 4 in association between dyslipidemia and osteoclast differentiation in apolipoprotein E deficient rat periodontium

    PubMed Central

    2013-01-01

    Background Dyslipidemia increases circulating levels of oxidized low-density lipoprotein (OxLDL) and this may induce alveolar bone loss through toll-like receptor (TLR) 2 and 4. The purpose of this study was to investigate the effects of dyslipidemia on osteoclast differentiation associated with TLR2 and TLR4 in periodontal tissues using a rat dyslipidemia (apolipoprotein E deficient) model. Methods Levels of plasma OxLDL, and the cholesterol and phospholipid profiles in plasma lipoproteins were compared between apolipoprotein E-deficient rats (16-week-old males) and wild-type (control) rats. In the periodontal tissue, we evaluated the changes in TLR2, TLR4, receptor activator of nuclear factor kappa B ligand (RANKL) and tartrate resistant acid phosphatase (TRAP) expression. Results Apolipoprotein E-deficient rats showed higher plasma levels of OxLDL than control rats (p<0.05), with higher plasma levels of total cholesterol (p<0.05) and LDL-cholesterol (p<0.05) and lower plasma levels of high-density lipoprotein cholesterol (p<0.05). Their periodontal tissue also exhibited a higher ratio of RANKL-positive cells and a higher number of TRAP-positive osteoclasts than control rats (p<0.05). Furthermore, periodontal gene expression of TLR2, TLR4 and RANKL was higher in apolipoprotein E-deficient rats than in control rats (p<0.05). Conclusion These findings underscore the important role for TLR2 and TLR4 in mediating the osteoclast differentiation on alveolar bone response to dyslipidemia. PMID:23295061

  11. Visualizing Toll-like Receptor-dependent Phagosomal Dynamics in Murine Dendritic Cells Using Live Cell Microscopy

    PubMed Central

    Mantegazza, Adriana R.; Marks, Michael S.

    2015-01-01

    Dendritic cells are professional phagocytes that are highly specialized to process and present antigens from internalized particles to prime naïve T cells. To achieve their functions, the phagocytic machinery and membrane dynamics of these cells have been adapted to optimize presentation of antigens from phagocytosed particles that bear ligands of pattern recognition receptors, such as toll-like receptors (TLRs), and that are thus perceived of as “dangerous”. We have recently shown that phagosomes that are engaged in TLR signaling in dendritic cells emit numerous long tubules that facilitate content exchange with other signaling phagosomes and favor presentation of particle-derived antigens. This chapter describes the methods used to study the formation of these tubules, which we refer to as “phagotubules”, by live cell imaging of mouse dendritic cells after the phagocytosis of fluorescent latex beads. We also describe methods to assess the effect of TLR signaling on this process. PMID:25702119

  12. FSL-1, a bacterial-derived toll-like receptor 2/6 agonist, enhances resistance to experimental HSV-2 infection

    PubMed Central

    2009-01-01

    Background Herpes simplex virus type 2 (HSV-2) is a leading cause of genital ulceration that can predispose individuals to an increased risk of acquiring other sexually transmitted infections. There are no approved HSV-2 vaccines and current suppressive therapies require daily compound administration that does not prevent all recurrences. A promising experimental strategy is the use of toll-like receptor (TLR) agonists to induce an innate immune response that provides resistance to HSV-2 infection. Previous studies showed that anti-herpetic activity varied based on origin of the agonists and activation of different TLR indicating that activity likely occurs through elaboration of a specific innate immune response. To test the hypothesis, we evaluated the ability of a bacterial-derived TLR2/6 agonist (FSL-1) to increase resistance to experimental genital HSV-2 infection. Methods Vaginal application of FSL-1 at selected doses and times was evaluated to identify potential increased resistance to genital HSV-2 infection in the mouse model. The FSL-1 induced cytokine profile was quantified using kinetically collected vaginal lavages. Additionally, cytokine elaboration and organ weights were evaluated after single or multiple FSL-1 doses to establish a preliminary safety profile. Human vaginal EC cultures were used to confirm the mouse model outcomes. Results The results showed that vaginally-applied FSL-1 created an environment resistant to a 25-fold higher HSV-2 challenge dose. Mechanistically, vaginal FSL-1 application led to transient elaboration of cytokines linked to anti-herpetic innate immune responses. No gross local or peripheral immunotoxicity was observed even after multiple dosing. FSL-1 also created an anti-herpetic environment in cultures of human vaginal epithelial cells (EC). Conclusion The results showed, for the first time, that the bacterial-derived TLR2/6 agonist FSL-1 induced significant resistance to HSV-2 infection when applied in mice or human

  13. Analysis by Flow Cytometry of B-Cell Activation and Antibody Responses Induced by Toll-Like Receptors.

    PubMed

    Pone, Egest J

    2016-01-01

    Toll-like receptors (TLRs) are expressed in B lymphocytes and contribute to B-cell activation, antibody responses, and their maturation. TLR stimulation of mouse B cells induces class switch DNA recombination (CSR) to isotypes specified by cytokines, and also induces formation of IgM(+) as well as class-switched plasma cells. B-cell receptor (BCR) signaling, while on its own inducing limited B-cell proliferation and no CSR, can enhance CSR driven by TLRs. Particular synergistic or antagonistic interactions among TLR pathways, BCR, and cytokine signaling can have important consequences for B-cell activation, CSR, and plasma cell formation. This chapter outlines protocols for the induction and analysis of B-cell activation and antibody production by TLRs with or without other stimuli. PMID:26803633

  14. Toll-like receptors 3 and 7 agonists enhance tumor cell lysis by human gammadelta T cells.

    PubMed

    Shojaei, Hamed; Oberg, Hans-Heinrich; Juricke, Matthias; Marischen, Lothar; Kunz, Monika; Mundhenke, Christoph; Gieseler, Frank; Kabelitz, Dieter; Wesch, Daniela

    2009-11-15

    Toll-like receptor (TLR) agonists are considered adjuvants in clinical trials of cancer immunotherapy. Here, we investigated the modulation of gammadelta T cell-mediated tumor cell lysis by TLR ligands. gammadelta T-cell cytotoxicity and granzyme A/B production were enhanced after pretreatment of tumor cells with TLR3 [poly(I:C)] or TLR7 ligand (imiquimod). We examined TLR3- and TLR7-expressing pancreatic adenocarcinomas, squamous cell carcinomas of head and neck and lung carcinomas. Poly(I:C) treatment of pancreatic adenocarcinomas followed by coculture with gammadelta T cells resulted in an upregulation of CD54 on the tumor cells. The interaction of CD54 and the corresponding ligand CD11a/CD18 expressed on gammadelta T cells is responsible for triggering effector function in gammadelta T cells. Moreover, treatment with imiquimod downregulated MHC class I molecules on tumor cells possibly resulting in a reduced binding affinity for inhibitory receptor NKG2A expressed on gammadelta T cells. These results indicate that TLR3 or TLR7 ligand stimulation of tumor cells enhances the cytotoxic activity of expanded gammadelta T cells of cancer patients in vitro. PMID:19887600

  15. Type III secretion needle proteins induce cell signaling and cytokine secretion via Toll-like receptors.

    PubMed

    Jessen, Danielle L; Osei-Owusu, Patrick; Toosky, Melody; Roughead, William; Bradley, David S; Nilles, Matthew L

    2014-06-01

    Pathogens are recognized by hosts by use of various receptors, including the Toll-like receptor (TLR) and Nod-like receptor (NLR) families. Ligands for these varied receptors, including bacterial products, are identified by the immune system, resulting in development of innate immune responses. Only a couple of components from type III secretion (T3S) systems are known to be recognized by TLR or NLR family members. Known T3S components that are detected by pattern recognition receptors (PRRs) are (i) flagellin, detected by TLR5 and NLRC4 (Ipaf); and (ii) T3S rod proteins (PrgJ and homologs) and needle proteins (PrgI and homologs), detected by NAIP and the NLRC4 inflammasome. In this report, we characterize the induction of proinflammatory responses through TLRs by the Yersinia pestis T3S needle protein, YscF, the Salmonella enterica needle proteins PrgI and SsaG, and the Shigella needle protein, MxiH. More specifically, we determine that the proinflammatory responses occur through TLR2 and -4. These data support the hypothesis that T3S needles have an unrecognized role in bacterial pathogenesis by modulating immune responses. PMID:24643544

  16. Toll-Like Receptor 3 Influences Glucose Homeostasis and β-Cell Insulin Secretion.

    PubMed

    Strodthoff, Daniela; Ma, Zuheng; Wirström, Tina; Strawbridge, Rona J; Ketelhuth, Daniel F J; Engel, David; Clarke, Robert; Falkmer, Sture; Hamsten, Anders; Hansson, Göran K; Björklund, Anneli; Lundberg, Anna M

    2015-10-01

    Toll-like receptors (TLRs) have been implicated in the pathogenesis of type 2 diabetes. We examined the function of TLR3 in glucose metabolism and type 2 diabetes-related phenotypes in animals and humans. TLR3 is highly expressed in the pancreas, suggesting that it can influence metabolism. Using a diet-induced obesity model, we show that TLR3-deficient mice had enhanced glycemic control, facilitated by elevated insulin secretion. Despite having high insulin levels, Tlr3(-/-) mice did not experience disturbances in whole-body insulin sensitivity, suggesting that they have a robust metabolic system that manages increased insulin secretion. Increase in insulin secretion was associated with upregulation of islet glucose phosphorylation as well as exocytotic protein VAMP-2 in Tlr3(-/-) islets. TLR3 deficiency also modified the plasma lipid profile, decreasing VLDL levels due to decreased triglyceride biosynthesis. Moreover, a meta-analysis of two healthy human populations showed that a missense single nucleotide polymorphism in TLR3 (encoding L412F) was linked to elevated insulin levels, consistent with our experimental findings. In conclusion, our results increase the understanding of the function of innate receptors in metabolic disorders and implicate TLR3 as a key control system in metabolic regulation. PMID:25918231

  17. CD4+ T Cells and Toll-Like Receptors Recognize Salmonella Antigens Expressed in Bacterial Surface Organelles

    PubMed Central

    Bergman, Molly A.; Cummings, Lisa A.; Barrett, Sara L. Rassoulian; Smith, Kelly D.; Lara, J. Cano; Aderem, Alan; Cookson, Brad T.

    2005-01-01

    A better understanding of immunity to infection is revealed from the characteristics of microbial ligands recognized by host immune responses. Murine infection with the intracellular bacterium Salmonella generates CD4+ T cells that specifically recognize Salmonella proteins expressed in bacterial surface organelles such as flagella and membrane vesicles. These natural Salmonella antigens are also ligands for Toll-like receptors (TLRs) or avidly associated with TLR ligands such as lipopolysaccharide (LPS). PhoP/PhoQ, a regulon controlling Salmonella virulence and remodeling of LPS to resist innate immunity, coordinately represses production of surface-exposed antigens recognized by CD4+ T cells and TLRs. These data suggest that genetically coordinated surface modifications may provide a growth advantage for Salmonella in host tissues by limiting both innate and adaptive immune recognition. PMID:15731032

  18. Toll-like receptors 2 and 4 impair insulin-mediated brain activity by interleukin-6 and osteopontin and alter sleep architecture.

    PubMed

    Sartorius, Tina; Lutz, Stefan Z; Hoene, Miriam; Waak, Jens; Peter, Andreas; Weigert, Cora; Rammensee, Hans-Georg; Kahle, Philipp J; Häring, Hans-Ulrich; Hennige, Anita M

    2012-05-01

    Impaired insulin action in the brain represents an early step in the progression toward type 2 diabetes, and elevated levels of saturated free fatty acids are known to impair insulin action in prediabetic subjects. One potential mediator that links fatty acids to inflammation and insulin resistance is the Toll-like receptor (TLR) family. Therefore, C3H/HeJ/TLR2-KO (TLR2/4-deficient) mice were fed a high-fat diet (HFD), and insulin action in the brain as well as cortical and locomotor activity was analyzed by using telemetric implants. TLR2/4-deficient mice were protected from HFD-induced glucose intolerance and insulin resistance in the brain and displayed an improvement in cortical and locomotor activity that was not observed in C3H/HeJ mice. Sleep recordings revealed a 42% increase in rapid eye movement sleep in the deficient mice during daytime, and these mice spent 41% more time awake during the night period. Treatment of control mice with a neutralizing IL-6 antibody improved insulin action in the brain as well as cortical activity and diminished osteopontin protein to levels of the TLR2/4-deficient mice. Together, our data suggest that the lack of functional TLR2/4 protects mice from a fat-mediated impairment in insulin action, brain activity, locomotion, and sleep architecture by an IL-6/osteopontin-dependent mechanism. PMID:22278939

  19. Pivotal Role of Toll-Like Receptors 2 and 4, Its Adaptor Molecule MyD88, and Inflammasome Complex in Experimental Tubule-Interstitial Nephritis

    PubMed Central

    Correa-Costa, Matheus; Braga, Tarcio Teodoro; Semedo, Patricia; Hayashida, Caroline Yuri; Bechara, Luiz Roberto Grassmann; Elias, Rosa Maria; Barreto, Claudiene Rodrigues; Silva-Cunha, Claudia; Hyane, Meire Ioshie; Gonçalves, Giselle Martins; Brum, Patricia Chakur; Fujihara, Clarice; Zatz, Roberto; Pacheco-Silva, Alvaro; Zamboni, Dario S.; Camara, Niels Olsen Saraiva

    2011-01-01

    Tubule-interstitial nephritis (TIN) results in decreased renal function and interstitial inflammation, which ultimately leads to fibrosis. Excessive adenine intake can cause TIN because xanthine dehydrogenase (XDH) can convert this purine into an insoluble compound, which precipitates in the tubuli. Innate immune sensors, such as Toll-like receptors (TLR) and inflammasome complex, play a crucial role in the initiation of inflammation. The aim of this study was to evaluate the roles of TLR-2 and -4, Myd88 and inflammasome complex in an experimental model of TIN. Here, we show that wild-type (WT) mice fed adenine-enriched food exhibited significant renal dysfunction and enhanced cellular infiltration accompanied by collagen deposition. They also presented higher gene and protein expression of pro-inflammatory cytokines. In contrast, TLR-2, -4, MyD88, ASC and Caspase-1 KO mice showed renoprotection associated with expression of inflammatory molecules at levels comparable to controls. Furthermore, treatment of WT animals with allopurinol, an XDH inhibitor, led to reduced levels of uric acid, oxidative stress, collagen deposition and a downregulation of the NF-kB signaling pathway. We concluded that MyD88 signaling and inflammasome participate in the development of TIN. Furthermore, inhibition of XDH seems to be a promising way to therapeutically target the developing inflammatory process. PMID:22194975

  20. Therapeutic Administration of KM+ Lectin Protects Mice Against Paracoccidioides brasiliensis Infection via Interleukin-12 Production in a Toll-Like Receptor 2-Dependent Mechanism

    PubMed Central

    Coltri, Kely C.; Oliveira, Leandro L.; Pinzan, Camila F.; Vendruscolo, Patrícia E.; Martinez, Roberto; Goldman, Maria Helena; Panunto-Castelo, Ademilson; Roque-Barreira, Maria-Cristina

    2008-01-01

    KM+ is a mannose-binding lectin from Artocarpus integrifolia that induces interleukin (IL)-12 production by macrophages and protective T helper 1 immune response against Leishmania major infection. In this study, we performed experiments to evaluate the therapeutic activity of jackfruit KM+ (jfKM+) and its recombinant counterpart (rKM+) in experimental paracoccidioidomycosis. To this end, jfKM+ or rKM+ was administered to BALB/c mice 10 days after infection with Paracoccidiodes brasiliensis. Thirty days postinfection, lungs from the KM+-treated mice contained significantly fewer colony-forming units and little to no organized granulomas compared to the controls. In addition, lung homogenates from the KM+-treated mice presented higher levels of nitric oxide, IL-12, interferon-γ, and tumor necrosis factor-α, whereas higher levels of IL-4 and IL-10 were detected in the control group. With mice deficient in IL-12, Toll-like receptor (TLR) 2, TLR4, or TLR adaptor molecule MyD88, we demonstrated that KM+ led to protection against P. brasiliensis infection through IL-12 production, which was dependent on TLR2. These results demonstrated a beneficial effect of KM+ on the severity of P. brasiliensis infection and may expand its potential use as a novel immunotherapeutic molecule. PMID:18599609

  1. Cross-talk between toll-like receptor 4 (TLR4) and proteinase-activated receptor 2 (PAR2) is involved in vascular function

    PubMed Central

    Bucci, M; Vellecco, V; Harrington, L; Brancaleone, V; Roviezzo, F; Mattace Raso, G; Ianaro, A; Lungarella, G; De Palma, R; Meli, R; Cirino, G

    2013-01-01

    Background and Purpose Proteinase-activated receptors (PARs) and toll-like receptors (TLRs) are involved in innate immune responses. The aim of this study was to evaluate the possible cross-talk between PAR2 and TLR4 in vessels in physiological condition and how it varies following stimulation of TLR4 by using in vivo and ex vivo models. Experimental Approach Thoracic aortas were harvested from both naïve and endotoxaemic rats for in vitro studies. Arterial blood pressure was monitored in anaesthetized rats in vivo. LPS was used as a TLR4 agonist while PAR2 activating peptide (AP) was used as a PAR2 agonist. Aortas harvested from TLR4–/– mice were also used to characterize the PAR2 response. Key Results PAR2, but not TLR4, expression was enhanced in aortas of endotoxaemic rats. PAR2AP-induced vasorelaxation was increased in aortic rings of LPS-treated rats. TLR4 inhibitors, curcumine and resveratrol, reduced PAR2AP-induced vasorelaxation and PAR2AP-induced hypotension in both naïve and endotoxaemic rats. Finally, in aortic rings from TLR4–/– mice, the expression of PAR2 was reduced and the PAR2AP-induced vasodilatation impaired compared with those from wild-type mice and both resveratrol and curcumine were ineffective. Conclusions and Implications Cross-talk between PAR2 and TLR4 contributes to vascular homeostasis. PMID:22957757

  2. Interleukin-7 and Toll-Like Receptor 7 Induce Synergistic B Cell and T Cell Activation

    PubMed Central

    Bikker, Angela; Kruize, Aike A.; van der Wurff-Jacobs, Kim M. G.; Peters, Rogier P.; Kleinjan, Marije; Redegeld, Frank; de Jager, Wilco; Lafeber, Floris P. J. G.; van Roon, Joël A. G.

    2014-01-01

    Objectives To investigate the potential synergy of IL-7-driven T cell-dependent and TLR7-mediated B cell activation and to assess the additive effects of monocyte/macrophages in this respect. Methods Isolated CD19 B cells and CD4 T cells from healthy donors were co-cultured with TLR7 agonist (TLR7A, Gardiquimod), IL-7, or their combination with or without CD14 monocytes/macrophages (T/B/mono; 1 : 1 : 0,1). Proliferation was measured using 3H-thymidine incorporation and Ki67 expression. Activation marker (CD19, HLA-DR, CD25) expression was measured by FACS analysis. Immunoglobulins were measured by ELISA and release of cytokines was measured by Luminex assay. Results TLR7-induced B cell activation was not associated with T cell activation. IL-7-induced T cell activation alone and together with TLR7A synergistically increased numbers of both proliferating (Ki67+) B cells and T cells, which was further increased in the presence of monocytes/macrophages. This was associated by up regulation of activation markers on B cells and T cells. Additive or synergistic induction of production of immunoglobulins by TLR7 and IL-7 was associated by synergistic induction of T cell cytokines (IFNγ, IL-17A, IL-22), which was only evident in the presence of monocytes/macrophages. Conclusions IL-7-induced CD4 T cell activation and TLR7-induced B cell activation synergistically induce T helper cell cytokine and B cell immunoglobulin production, which is critically dependent on monocytes/macrophages. Our results indicate that previously described increased expression of IL-7 and TLR7 together with increased numbers of macrophages at sites of inflammation in autoimmune diseases like RA and pSS significantly contributes to enhanced lymphocyte activation. PMID:24740301

  3. Toll-like receptor activation enhances cell-mediated immunity induced by an antibody vaccine targeting human dendritic cells

    PubMed Central

    Ramakrishna, Venky; Vasilakos, John P; Tario, Joseph D; Berger, Marc A; Wallace, Paul K; Keler, Tibor

    2007-01-01

    Previously, we have successfully targeted the mannose receptor (MR) expressed on monocyte-derived dendritic cells (DCs) using a fully human MR-specific antibody, B11, as a vehicle to deliver whole protein tumor antigens such as the human chorionic gonadotropin hormone (hCGβ). Since MRs play a role in bridging innate immunity with adaptive immunity we have explored several toll-like receptor (TLR)-specific ligands that may synergize with MR targeting and be applicable as adjuvants in the clinic. We demonstrate that antigen-specific helper and cytolytic T cells from both healthy donors and cancer patients were effectively primed with B11-hCGβ-treated autologous DCs when a combination of one or several TLR ligands is used. Specifically, concomitant signaling of DCs via TLR3 with dsRNA (poly I:C) and DC TLR 7/8 with Resiquimod (R-848), respectively, elicited efficient antigen presentation-mediated by MR-targeting. We demonstrate that MR and TLRs contribute towards maturation and activation of DCs by a mechanism that may be driven by a combination of adjuvant and antibody vaccines that specifically deliver antigenic targets to DCs. PMID:17254349

  4. 25-Hydroxy Vitamin D, Vitamin D Receptor and Toll-like Receptor 2 Polymorphisms in Spinal Tuberculosis: A Case-Control Study.

    PubMed

    Panwar, Ajay; Garg, Ravindra Kumar; Malhotra, Hardeep Singh; Jain, Amita; Singh, Arvind Kumar; Prakash, Shantanu; Kumar, Neeraj; Garg, Rajiv; Mahdi, Abbas Ali; Verma, Rajesh; Sharma, Praveen Kumar

    2016-04-01

    Vitamin D deficiency and vitamin D receptor (VDR) gene abnormalities confer susceptibility to tuberculosis. Toll-like receptors (TLRs), such asTLR-2, are also important mediators of inflammatory response against Mycobacterium tuberculosis. We evaluated serum vitamin D, and VDR and TLR-2 gene polymorphisms in patients with spinal tuberculosis.This study comprised of 3 groups: spinal tuberculosis, pulmonary tuberculosis, and controls (each with 106 subjects). Enzyme-linked immunosorbent assay was used to measure vitamin D levels, and polymerase chain reaction-sequencing method was used to analyze VDR and TLR-2 gene polymorphisms. Patients were followed up for 6 months.Vitamin D deficiency was significantly more prevalent in patients with spinal tuberculosis (P < 0.001) and pulmonary tuberculosis (P = 0.011), versus controls. The heterozygous and mutant genotypes of VDR TaqI gene were significantly associated with spinal tuberculosis (P < 0.001; odds ratio [OR] 4.74 [2.45-9.18]) and pulmonary tuberculosis (P < 0.001; OR 3.52 [1.80-6.88]) when compared with controls. The heterozygous and mutant variants of VDR ApaI gene were significantly more common in patients with spinal tuberculosis in comparison with patients with pulmonary tuberculosis (P < 0.001; OR 2.90 [1.65-5.10]) and controls (P < 0.001; OR 6.56 [3.41-12.61]). We did not observe any significantly different results for TLR-2 gene polymorphisms. Vitamin D deficiency, VDR, and TLR-2 polymorphisms did not affect the 6-month disability.Vitamin D deficiency and VDR gene polymorphisms are significantly more prevalent in people with pulmonary and spinal tuberculosis. They may, in isolation or collectively, confer susceptibility to pulmonary and spinal tuberculosis. PMID:27124026

  5. Evaluation of Toll-Like Receptor 2 and 4 RNA Expression and the Cytokine Profile in Postmenopausal Women with Metabolic Syndrome

    PubMed Central

    Orsatti, Claudio Lera; Nahas, Eliana Aguiar Petri; Nahas-Neto, Jorge; Orsatti, Fabio Lera; Giorgi, Vanessa Innocenti; Witkin, Steven S.

    2014-01-01

    Objective To evaluate the gene expression of Toll-Like (TLR-2 and TLR-4) receptors and cytokine profile in postmenopausal women with or without metabolic syndrome (MetS). Methods In this cross-sectional study, 311 Brazilian women (age≥45 years and amenorrhea≥12 months) were included. Women showing three or more of the following diagnostic criteria were diagnosed as positive for MetS: waist circumference>88 cm, triglycerides≥150 mg/dL, HDL cholesterol<50 mg/dL, blood pressure≥130/85 mmHg, and fasting glucose≥100 mg/dL. The expression of TLR-2 and TLR-4 in peripheral blood was evaluated by RNA extraction and subsequent real time PCR analysis. The cytokine profile, tumor necrosis factor alpha (TNF-α) and interleukins 1β, 6, and 10, were measured by ELISA. Results The expression of TLR-2 RNA was demonstrated in 32.5% and TLR-4 in 20.6% of the subjects. There was no association between the expression of TLR-2 and TLR-4 and the presence or absence of MetS (P>0.05). A greater production of IL-6 was associated with TLR-2 and TLR-4 expressions and greater production of TNF-α was associated only with TLR-2 expression (P>0.05). Only the lower quartile of IL-10 was associated with the presence of the MetS (P>0.05). Conclusions TLR-2 and TLR-4 expressions were associated with increased pro-inflammatory cytokines, IL-6 and TNF-α, with no association with biomarkers of MetS. The low concentrations of IL-10 may suggest an anti-inflammatory modulation in postmenopausal women with MetS. PMID:25329057

  6. Induction of Experimental Arthritis by Borrelial Lipoprotein and CpG Motifs: Are Toll-Like Receptors 2, 4, 9 or CD-14 Involved?

    SciTech Connect

    Batsford, S.; Dunn, J.; Mihatsch, M.

    2011-06-01

    Bacterial lipoproteins and CpG-DNA are ligands for Toll-Like-Receptors (TLR) 2 and 9 respectively. Both classes of molecules were reported to induce experimental arthritis in rodents following direct intra-articular injection. Here we studied: (1) whether arthritis induction by Outer surface (Lipo)protein A (OspA) (B.burgdorferi) involved the TLR-2 as well as the TLR-4 or the CD-14 receptors in addition, and (2) re-examined the arthritogenic potential of CpG-DNA motifs in mice. Following intra-articular injection of the test substances [20 {micro}g recombinant, lipidated OspA; 1nM(6 {micro}g) to 10nM(60 {micro}g) synthetic CpG-DNA], inflammation was monitored by {sup 99}Tc scintigraphy (ratio left/right knee joint uptake > 1.1 indicates inflammation) and by histology. Lipoprotein OspA induced severe, acute arthritis in TLR-2{sup +/+} w.t. but not in TLR-2{sup -/-} mice (p<0.01). There were no significant differences in the severity of arthritis induced in TLR-4{sup +/+} w.t. and TLR-4{sup -/-} mutant mice, or between CD14{sup +/+} w.t. and CD14{sup -/-} mice. CpG-DNA (1or 10 nM) did not cause notable inflammation in C57BL/6 mice; {sup 99}Tc ratios were < 1.0 and histology showed only minimal changes. Induction of arthritis by the OspA lipoprotein of B.burgdorferi involves the TLR-2 receptor, no evidence for additional participation of TLR-4 or CD14 receptors was found. Intra-articular injection of CpG-DNA did not produce manifest joint injury in mice, at variance with previous reports.

  7. Toll-like receptor-induced innate immune responses in non-parenchymal liver cells are cell type-specific

    PubMed Central

    Wu, Jun; Meng, Zhongji; Jiang, Min; Zhang, Ejuan; Trippler, Martin; Broering, Ruth; Bucchi, Agnes; Krux, Frank; Dittmer, Ulf; Yang, Dongliang; Roggendorf, Michael; Gerken, Guido; Lu, Mengji; Schlaak, Joerg F

    2010-01-01

    Little is known of how the Toll-like receptor (TLR) system can modulate the function of non-parenchymal liver cells (NPC) as a major component of the innate and adaptive immune system of the liver. To investigate the diversification of TLR signalling pathways in NPC, we isolated Kupffer cells (KC) and liver sinusoidal endothelial cells (LSEC) from wild-type C57BL/6 mice and examined their responses to TLR1 to TLR9 agonists. The data show that KC respond to all TLR ligands by producing tumour necrosis factor-α (TNF-α) or interleukin-6 (IL-6), to TLR3 and TLR4 ligands only by producing interferon-β (IFN-β), to TLR1 and TLR8 ligands by significantly up-regulating major histocompatibility complex (MHC) class II and costimulatory molecules, and to TLR1, -2, -4 and -6 ligands by inducing high levels of T-cell proliferation and IFN-γ production in the mixed lymphocyte reaction (MLR). Similarly, LSEC respond to TLR1 to -4, -6, -8 and -9 ligands by producing TNF-α, to TLR3 and -4 ligands by producing IL-6, and to TLR3 ligands by producing IFN-β. Interestingly, despite significant up-regulation of MHC class II and co-stimulatory molecules in response to TLR8 ligands, LSEC stimulated by TLR1, -2 or -6 could stimulate allogeneic T cells as assessed by MLR. By contrast, myeloid dendritic cells, used as positive control for classical antigen-presenting cells, respond to TLR1, -2, -4 and -9 ligands by both up-regulation of CD40 and activation of allogeneic T cells. In conclusion, NPC display a restricted TLR-mediated activation profile when compared with ‘classical’ antigen-presenting cells which may, at least in part, explain their tolerogenic function in the liver. PMID:19922426

  8. Toll-Like Receptor 2-Mediated Innate Immune Responses against Junín Virus in Mice Lead to Antiviral Adaptive Immune Responses during Systemic Infection and Do Not Affect Viral Replication in the Brain

    PubMed Central

    Cuevas, Christian D.

    2014-01-01

    ABSTRACT Successful adaptive immunity to virus infection often depends on the initial innate response. Previously, we demonstrated that Junín virus, the etiological agent responsible for Argentine hemorrhagic fever (AHF), activates an early innate immune response via an interaction between the viral glycoprotein and Toll-like receptor 2 (TLR2). Here we show that TLR2/6 but not TLR1/2 heterodimers sense Junín virus glycoprotein and induce a cytokine response, which in turn upregulates the expression of the RNA helicases RIG-I and MDA5. NF-κB and Erk1/2 were important in the cytokine response, since both proteins were phosphorylated as a result of the interaction of virus with TLR2, and treatment with an Erk1/2-specific inhibitor blocked cytokine production. We show that the Junín virus glycoprotein activates cytokine production in a human macrophage cell line as well. Moreover, we show that TLR2-mediated immune response plays a role in viral clearance because wild-type mice cleared Candid 1 (JUNV C1), the vaccine strain of Junín virus, more rapidly than did TLR2 knockout mice. This clearance correlated with the generation of Junín virus-specific CD8+ T cells. However, infected wild-type and TLR2 knockout mice developed TLR2-independent blocking antibody responses with similar kinetics. We also show that microglia and astrocytes but not neurons are susceptible to infection with JUNV C1. Although JUNV C1 infection of the brain also triggered a TLR2-dependent cytokine response, virus levels were equivalent in wild-type and TLR2 knockout mice. IMPORTANCE Junín virus is transmitted by rodents native to Argentina and is associated with both systemic disease and, in some patients, neurological symptoms. Humans become infected when they inhale aerosolized Junín virus. AHF has a 15 to 30% mortality rate, and patients who clear the infection develop a strong antibody response to Junín virus. Here we investigated what factors determine the immune response to Jun

  9. Time-Series Expression of Toll-Like Receptor 4 Signaling in Septic Mice Treated with Mesenchymal Stem Cells.

    PubMed

    Wu, Kang-Hsi; Wu, Han-Ping; Chao, Wan-Ru; Lo, Wei-Yu; Tseng, Pei-Chi; Lee, Chih-Jui; Peng, Ching-Tien; Lee, Maw-Sheng; Chao, Yu-Hua

    2016-06-01

    Sepsis remains an important cause of mortality worldwide, and early deaths resulting from overwhelming inflammation in septic patients have been reported. Vigorous immune reactions are beneficial for bacterial clearance in this circumstance but at the price of self-tissue damage. Mesenchymal stem cells (MSCs) have been found to modulate immune function and attenuate sepsis. As the Toll-like receptor 4 pathway plays an important role in response to infections, here we investigated the mechanisms of MSC-mediated immunomodulation by determining the expression of Toll-like receptor 4 signaling in the liver and by circulating cytokines at 0, 1, 2, 3, and 6 h after cecal ligation and puncture (CLP)-induced sepsis in mice. We found that administration of umbilical cord-derived MSCs (UCMSCs) was beneficial for survival. Six hours after CLP, UCMSC administration decreased the expression of MyD88 mRNA and protein in the liver tissues of the mice, and also the ratio of NFκB phosphorylation (P = 0.041 and 0.005, respectively). Serum levels of TNF-α, MCP-1, IFN-γ, and IL-6 were significantly lower and IL-10 significantly higher 6 h after CLP in the mice receiving UCMSCs compared with those receiving PBS only. Our study provides the first in vivo evidence for the association of the MyD88-NFκB pathway and MSC-mediated immunomodulation during sepsis. The immunomodulatory effect of UCMSCs was noted from 3 to 6 h after injection, and the MyD88-NFκB pathway played an important role in response to the immunomodulatory signals from UCMSCs. PMID:26682950

  10. Penehyclidine ameliorates acute lung injury by inhibiting Toll-like receptor 2/4 expression and nuclear factor-κB activation

    PubMed Central

    WANG, NA; SU, YUE; CHE, XIANG-MING; ZHENG, HUI; SHI, ZHI-GUO

    2016-01-01

    The aim of the present study was to investigate the effect of penehyclidine (PHC) on endotoxin-induced acute lung injury (ALI), as well as to examine the mechanism underlying this effect. A total of 60 rats were randomly divided into five groups, including the control (saline), LPS and three LPS + PHC groups. ALI was induced in the rats by injection of 8 mg lipopolysaccharide (LPS)/kg body weight. The rats were then treated with or without PHC at 0.3, 1 or 3 mg/kg body weight 1 min following LPS injection. After 6 h, serum levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 were determined by ELISA. In addition, the mRNA expression levels of toll-like receptor (TLR)2 and TLR4 were examined by reverse transcription-quantitative polymerase chain reaction in the lung tissue samples, and nuclear factor (NF)-κB p65 protein expression levels were examined by western blot analysis. The results demonstrated that lung injury was ameliorated by treatment with PHC (1 and 3 mg/kg body weight) as compared with treatment with LPS alone. Injection of LPS significantly increased the mRNA expression levels of TLR2 and TLR4, as well as the protein expression levels of NF-κB p65 in the lung tissue samples. Serum levels of TNF-α and IL-6 were also upregulated by LPS injection. Treatment of the rats with PHC following LPS injection suppressed the LPS-induced increase in TLR2/4 mRNA and NF-κB p65 protein expression levels. PHC also inhibited the increase in TNF-α and IL-6 serum levels. In addition, PHC reduced LPS-induced ALI and decreased the serum levels of TNF-α and IL-6, possibly by downregulating TLR2/4 mRNA expression and inhibiting NF-κB activity, and consequently alleviating the inflammatory response. PMID:27168812

  11. Subgingival Plaque in Periodontal Health Antagonizes at Toll-Like Receptor 4 and Inhibits E-Selectin Expression on Endothelial Cells

    PubMed Central

    Gümüş, Pinar; Nizam, Nejat; Buduneli, Nurcan

    2015-01-01

    The ability of the subgingival microbial community to induce an inappropriate inflammatory response ultimately results in the destruction of bone and gingival tissue. In this study, subgingival plaque samples from both healthy and diseased sites in the same individual were obtained from adults with chronic periodontitis and screened for their ability to either activate Toll-like receptor 2 (TLR2) or TLR4 and to antagonize TLR4-specific activation by agonist, Fusobacterium nucleatum LPS. Subgingival plaque from diseased sites strongly activated TLR4, whereas matched plaque samples obtained from healthy sites were significantly more variable, with some samples displaying strong TLR4 antagonism, while others were strong TLR4 agonists when combined with F. nucleatum LPS. Similar results were observed when TLR4 dependent E-selectin expression by endothelial cells was determined. These results are the first to demonstrate TLR4 antagonism from human plaque samples and demonstrate that healthy but not diseased sites display a wide variation in TLR4 agonist and antagonist behavior. The results have identified a novel characteristic of clinically healthy sites and warrant further study on the contribution of TLR4 antagonism in the progression of a healthy periodontal site to a diseased one. PMID:26483407

  12. Toll-like receptor and inflammasome signals converge to amplify the innate bactericidal capacity of T helper-1 cells

    PubMed Central

    O’Donnell, Hope; Pham, Oanh H.; Li, Lin-xi; Atif, Shaikh M.; Lee, Seung-Joo; Ravesloot, Marietta M.; Stolfi, Jessica L.; Nuccio, Sean-Paul; Broz, Petr; Monack, Denise M.; Baumler, Andreas J.; McSorley, Stephen J.

    2014-01-01

    Summary T cell effector functions can be elicited by non-cognate stimuli, but the mechanism and contribution of this pathway to the resolution of intracellular-macrophage infections has not been defined. Here we have shown that CD4+ T helper-1 (Th1) cells can be rapidly stimulated by microbe-associated molecular patterns (MAMPs) during active infection with Salmonella or Chlamydia. Further, maximal stimulation of Th1 cells by lipopolysaccharide (LPS) did not require T cell-intrinsic expression of toll-like receptor-4 (TLR4), interleukin-1 receptor (IL-1R), or interferon-γ receptor (IFN–γR), but instead required the adaptor protein Myd88, IL-18R, and IL-33R. Innate stimulation of Th1 cells also required host expression of TLR4 and inflammasome components that together increased serum concentrations of IL-18. Finally, the elimination of non-cognate Th1 cell stimulation hindered the resolution of primary Salmonella infection. Thus, the in vivo bactericidal capacity of Th1 cells is regulated by the response to non-cognate stimuli elicited by multiple innate immune receptors. PMID:24508233

  13. From The Cover: Induction of antiviral immunity requires Toll-like receptor signaling in both stromal and dendritic cell compartments

    NASA Astrophysics Data System (ADS)

    Sato, Ayuko; Iwasaki, Akiko

    2004-11-01

    Pattern recognition by Toll-like receptors (TLRs) is known to be important for the induction of dendritic cell (DC) maturation. DCs, in turn, are critically important in the initiation of T cell responses. However, most viruses do not infect DCs. This recognition system poses a biological problem in ensuring that most viral infections be detected by pattern recognition receptors. Furthermore, it is unknown what, if any, is the contribution of TLRs expressed by cells that are infected by a virus, versus TLRs expressed by DCs, in the initiation of antiviral adaptive immunity. Here we address these issues using a physiologically relevant model of mucosal infection with herpes simplex virus type 2. We demonstrate that innate immune recognition of viral infection occurs in two distinct stages, one at the level of the infected epithelial cells and the other at the level of the noninfected DCs. Importantly, both TLR-mediated recognition events are required for the induction of effector T cells. Our results demonstrate that virally infected tissues instruct DCs to initiate the appropriate class of effector T cell responses and reveal the critical importance of the stromal cells in detecting infectious agents through their own pattern recognition receptors. mucosal immunity | pattern recognition | viral infection

  14. Hypoxia regulates Toll-like receptor-9 expression and invasive function in human brain cancer cells in vitro

    PubMed Central

    SANDHOLM, JOUKO; TUOMELA, JOHANNA; KAUPPILA, JOONAS H.; HARRIS, KEVIN W.; GRAVES, DAVID; SELANDER, KATRI S.

    2014-01-01

    Toll-like receptor-9 (TLR9) is a cellular DNA sensor of the innate immune system. TLR9 is widely expressed in a number of tumors, including brain cancer; however, little is known regarding its regulation and involvement in cancer pathophysiology. The present study demonstrated that hypoxia upregulates and downregulates TLR9 expression in human brain cancer cells in vitro, in a cell-specific manner. In addition, hypoxia-induced TLR9 upregulation was associated with hypoxia-induced invasion; however, such invasion was not detected in cells where hypoxia had suppressed TLR9 expression. Furthermore, suppression of TLR9 expression through TLR9 siRNA resulted in an upregulation of matrix metalloproteinase (MMP)-2, -9 and -13 and tissue inhibitor of matrix metalloproteinases-3 (TIMP-3) mRNA, and a decreased invasion of cells in normoxia, in a cell-specific manner. In cells where hypoxia induced TLR9 expression, TLR9 expression and invasion were reduced by TLR9 siRNA. The decreased invasion observed in hypoxia was associated with the decreased expression of the MMPs and a concomitant increase in TIMP-3 expression. In conclusion, hypoxia regulates the invasion of brain cancer cells in vitro in a TLR9-dependent manner, which is considered to be associated with a complex expression pattern of TLR9-regulated mediators and inhibitors of invasion. PMID:24959259

  15. Bacterial lipopolysaccharide induces increased expression of toll-like receptor (TLR) 4 and downstream TLR signaling molecules in bovine mammary epithelial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine mammary epithelial cells contribute to the innate immune response to intramammary infections by recognizing pathogens through specialized pattern recognition receptors. Toll-like receptor 4 (TLR4) is one such receptor that binds and is activated by lipopolysaccharide (LPS), a component of the...

  16. Escherichia coli lipopolysaccharide upregulates the expression of both toll like receptor 4 and 2 (TLR4 and TLR2) in cultured bovine mammary epithelial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine mammary epithelial cells contribute to the innate immune response to intramammary infection. Their ability to mount such a response is dependent upon mammary epithelial recognition of the invading pathogen by specialized receptors. Toll-like receptor 4 (TLR4) is one such receptor that recog...

  17. Toll-Like Receptors Expressed by Synovial Fibroblasts Perpetuate Th1 and Th17 Cell Responses in Rheumatoid Arthritis

    PubMed Central

    Zheng, Li; Shi, Lianjie; Liu, Hongjiang; Zhang, Xuewu; Zhu, Huaqun; Tang, Sumei; Zhu, Lei; Xu, Liling; Yang, Yuqin; Li, Zhanguo

    2014-01-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by synovial fibroblast hyperplasia and bone and cartilage erosion. Synovial fibroblast- and T cell-mediated inflammation plays crucial roles in the pathogenesis of RA. However how this inflammation is initiated, propagated, and maintained remains controversial. Here, we systemically examined the contribution of toll-like receptors (TLRs) to the inflammatory mediator production as well as Th1 and Th17 cell hyperactivity in RA. Our results show that rheumatoid arthritis synovial fibroblasts (RASF) express a series of TLRs, including TLR2, TLR3, TLR4, and TLR9, with the predominant expression of TLR3. Moreover, the expression levels of these TLRs were higher than those in osteoarthritis synovial fibroblasts (OASF). Ligation of TLR3, as well as TLR2 and TLR4, resulted in vigorous production of inflammatory cytokines, matrix metalloproteinases (MMPs), and vascular endothelial growth factor (VEGF) in RASF, with activation of the NF-κB, MAPK, and IRF3 pathways. More important, activation of these TLRs expressed by RASF exacerbated inflammatory Th1 and Th17 cell expansion both in cell-cell contact-dependent and inflammatory cytokine-dependent manners, which induced more IFN-γ and IL-17 accumulation. Targeting TLRs may modulate the inflammation in RA and provide new therapeutic strategies for overcoming this persistent disease. PMID:24936783

  18. M-cell targeted polymeric lipid nanoparticles containing a Toll-like receptor agonist to boost oral immunity.

    PubMed

    Ma, Tongtong; Wang, Lianyan; Yang, Tingyuan; Ma, Guanghui; Wang, Siling

    2014-10-01

    Oral delivery of antigens is patient-friendly and efficient way of treating intestinal infections. However, the efficacy of oral vaccines is limited by degradation in the gastrointestinal (GI) tract and poor absorption by enterocytes and antigen-presenting cells (APC). Here we report ulex europaeus agglutinin-1 (UEA-1) conjugated poly (D,L-lactide-co-glycolide) (PLGA)-lipid nanoparticles (NP) containing a Toll-like receptor (TLR)-agonist monophosphoryl lipid A (MPL) as an oral vaccine delivery system. The uniform-sized PLGA-lipid NPs (simplified as lipid NPs) were produced by the premix membrane emulsification method. They can protect the entrapped model antigen ovalbumin (OVA) from exposure to the GI tract and release the OVA in a controlled manner. With UEA-1 and MPL modification, the UEA-MPL/lipid NPs can be effectively transported by M-cells and captured by mucosal dendritic cells (DCs). After in vivo vaccination, the OVA-UEA-MPL/lipid NPs stimulated the most effective mucosal IgA and serum IgG antibodies during the oral formulations. These results suggest that this MPL containing M-cell targeted lipid NP can potentially be used as a universally robust oral vaccine delivery system. PMID:24984067

  19. Toll-Like Receptor-4 Signaling in Mantle Cell Lymphoma: Effects on Tumor Growth and Immune Evasion

    PubMed Central

    Wang, Lijuan; Zhao, Yi; Qian, Jianfei; Sun, Luhong; Lu, Yong; Li, Haiyan; Li, Yi; Yang, Jing; Cai, Zhen; Yi, Qing

    2012-01-01

    BACKGROUND Mantle cell lymphoma (MCL) is an incurable B-cell malignancy with the poorest prognosis among B-cell lymphoma patients. The signal pathways that trigger MCL escape from immune surveillance are unclear. As Toll-like receptors (TLRs) initiate innate and adaptive immune responses against invading pathogens, we investigated the impact of TLR signaling in MCL cells. METHODS We examined TLR expression on MCL cell lines and primary tumor cells from patients. We focused on TLR4 and its ligand lipopolysacharide (LPS) on MCL cells and their function on MCL proliferation and immune evasion. RESULTS MCL cells expressed multiple TLRs and TLR4 was among the highest-expressed molecules. Activation of TLR4 signaling in MCL cells by LPS induced MCL proliferation, and upregulated the secretion of cytokines such as interleukin (IL)-6 and IL-10, and vascular endothelial growth factor (VEGF). LPS-pretreated MCL cells inhibited the proliferation and cytolytic activity of T cells by secreted IL-10 and VEGF, and neutralizing antibodies against these cytokines restored their functions. Similar results were also observed in TLR4+MyD88+ but not in TLR4+MyD88− primary lymphoma cells from MCL patients. Knockdown of TLR4 on MCL cells abrogated the effect of LPS on MCLs in term of cell growth or secretion of the cytokines, and evasion of the immune system. CONCLUSION Our study indicates that TLR4 signaling triggers a cascade leading to MCL growth and evasion from the immune surveillance. Thus, TLR4 signaling molecules could be novel therapeutic targets for cancer therapy in MCL. PMID:22915070

  20. T-cell activation is enhanced by targeting IL-10 cytokine production in toll-like receptor-stimulated macrophages

    PubMed Central

    Walk, Ryan M; Elliott, Steven T; Blanco, Felix C; Snyder, Jason A; Jacobi, Ashley M; Rose, Scott D; Behlke, Mark A; Salem, Aliasger K; Vukmanovic, Stanislav; Sandler, Anthony D

    2012-01-01

    Toll-like receptor (TLR) agonists represent potentially useful cancer vaccine adjuvants in their ability to stimulate antigen-presenting cells (APCs) and subsequently amplify the cytotoxic T-cell response. The purpose of this study was to characterize APC responses to TLR activation and to determine the subsequent effect on lymphocyte activation. We exposed murine primary bone marrow-derived macrophages to increasing concentrations of agonists to TLRs 2, 3, 4, and 9. This resulted in a dose-dependent increase in production of not only tumor necrosis factor–alpha (TNF-α), a surrogate marker of the proinflammatory response, but also interleukin 10 (IL-10), a well-described inhibitory cytokine. Importantly, IL-10 secretion was not induced by low concentrations of TLR agonists that readily produced TNF-α. We subsequently stimulated lymphocytes with anti-CD3 antibody in the presence of media from macrophages activated with higher doses of TLR agonists and observed suppression of interferon gamma release. Use of both IL-10 knockout macrophages and IL-10 small-interfering RNA (siRNA) ablated this suppressive effect. Finally, IL-10 siRNA was successfully used to suppress CpG-induced IL-10 production in vivo. We conclude that TLR-mediated APC stimulation can induce a paradoxical inhibitory effect on T-cell activation mediated by IL-10.

  1. Toll-like receptor 4 in bone marrow-derived cells contributes to the progression of diabetic retinopathy.

    PubMed

    Wang, Hui; Shi, Haojun; Zhang, Jing; Wang, Guoliang; Zhang, Jinxiang; Jiang, Fagang; Xiao, Qing

    2014-01-01

    Diabetic retinopathy (DR) is a major microvascular complication in diabetics, and its mechanism is not fully understood. Toll-like receptor 4 (TLR4) plays a pivotal role in the maintenance of the inflammatory state during DR, and the deletion of TLR4 eventually alleviates the diabetic inflammatory state. To further elucidate the mechanism of DR, we used bone marrow transplantation to establish reciprocal chimeric animals of TLR4 mutant mice and TLR4 WT mice combined with diabetes mellitus (DM) induction by streptozotocin (STZ) treatment to identify the role of TLR4 in different cell types in the development of the proinflammatory state during DR. TLR4 mutation did not block the occurrence of high blood glucose after STZ injection compared with WT mice but did alleviate the progression of DR and alter the expression of the small vessel proliferation-related genes, vascular endothelial growth factor (VEGF), and hypoxia inducible factor-1α (HIF-1α). Grafting bone marrow-derived cells from TLR4 WT mice into TLR4 mutant mice increased the levels of TNF-α, IL-1β, and MIP-2 and increased the damage to the retina. Similarly, VEGF and HIF-1α expression were restored by the bone marrow transplantation. These findings identify an essential role for TLR4 in bone marrow-derived cells contributing to the progression of DR. PMID:25214718

  2. Toll-like receptor 9 ligands enhance mesenchymal stem cell invasion and expression of matrix metalloprotease-13.

    PubMed

    Nurmenniemi, S; Kuvaja, P; Lehtonen, S; Tiuraniemi, S; Alahuhta, I; Mattila, R K; Risteli, J; Salo, T; Selander, K S; Nyberg, P; Lehenkari, P

    2010-10-01

    Human mesenchymal stem cells (hMSCs) are multipotent cells that are found in the bone marrow. Inflammation and tissue damage mobilize MSCs and induce their migration towards the damaged site through mechanisms that are not well defined. Toll-like receptor-9 (TLR9) is a cellular receptor for microbial and vertebrate DNA. Stimulation of TLR9 induces inflammatory and invasive responses in TLR9-expressing cells. We studied here the expression of TLR9 in human MSCs and the effects of synthetic TLR9-agonists on their invasion. Constitutive expression of TLR9 was detected in human MSCs but the expression was suppressed when MSCs were induced to differentiate into osteoblasts. Using standard invasion assays and a novel organotypic culture model based on human myoma tissue, we discovered that stimulation with the TLR9 agonistic, CpG oligonucleotides increased the invasion capacity of undifferentiated MSCs. Simultaneously, an increase in MMP-13 synthesis and activity was detected in the CpG-activated MSCs. Addition of anti-MMP-13 antibody significantly diminished the CpG-induced hMSC invasion. We conclude that treatment with TLR9-ligands increases MSC invasiveness, and this process is at least partially MMP-13-mediated. PMID:20553713

  3. Messenger RNA encoding constitutively active Toll-like receptor 4 enhances effector functions of human T cells.

    PubMed

    Pato, A; Eisenberg, G; Machlenkin, A; Margalit, A; Cafri, G; Frankenburg, S; Merims, S; Peretz, T; Lotem, M; Gross, G

    2015-11-01

    Adoptive T cell therapy of cancer employs a large number of ex-vivo-propagated T cells which recognize their targets either by virtue of their endogenous T cell receptor (TCR) or via genetic reprogramming. However, both cell-extrinsic and intrinsic mechanisms often diminish the in-vivo potency of these therapeutic T cells, limiting their clinical efficacy and broader use. Direct activation of human T cells by Toll-like receptor (TLR) ligands induces T cell survival and proliferation, boosts the production of proinflammatory cytokines and augments resistance to regulatory T cell (Treg) suppression. Removal of the TLR ligand-binding region results in constitutive signalling triggered by the remaining cytosolic Toll/interleukin-1 receptor (TIR) domain. The use of such TIR domains therefore offers an ideal means for equipping anti-tumour T cells with the arsenal of functional attributes required for improving current clinical protocols. Here we show that constitutively active (ca)TLR-4 can be expressed efficiently in human T cells using mRNA electroporation. The mere expression of caTLR-4 mRNA in polyclonal CD8 and CD4 T cells induced the production of interferon (IFN)-γ, triggered the surface expression of CD25, CD69 and 4-1BB and up-regulated a panel of cytokines and chemokines. In tumour-infiltrating lymphocytes prepared from melanoma patients, caTLR-4 induced robust IFN-γ secretion in all samples tested. Furthermore, caTLR-4 enhanced the anti-melanoma cytolytic activity of tumour-infiltrating lymphocytes and augmented the secretion of IFN-γ, tumour necrosis factor (TNF)-α and granulocyte-macrophage colony-stimulating factor (GM-CSF) for at least 4 days post-transfection. Our results demonstrate that caTLR-4 is capable of exerting multiple T cell-enhancing effects and can potentially be used as a genetic adjuvant in adoptive cell therapy. PMID:26212048

  4. Toll-like receptor 4 is not targeted to the lysosome in cystic fibrosis airway epithelial cells

    PubMed Central

    Kelly, Catriona; Canning, Paul; Buchanan, Paul J.; Williams, Mark T.; Brown, Vanessa; Gruenert, Dieter C.; Elborn, J. Stuart; Ennis, Madeleine

    2013-01-01

    The innate immune response to bacterial infection is mediated through Toll-like receptors (TLRs), which trigger tightly regulated signaling cascades through transcription factors including NF-κB. LPS activation of TLR4 triggers internalization of the receptor-ligand complex which is directed toward lysosomal degradation or endocytic recycling. Cystic fibrosis (CF) patients display a robust and uncontrolled inflammatory response to bacterial infection, suggesting a defect in regulation. This study examined the intracellular trafficking of TLR4 in CF and non-CF airway epithelial cells following stimulation with LPS. We employed cells lines [16hBE14o-, CFBE41o- (CF), and CFTR-complemented CFBE41o-] and confirmed selected experiments in primary nasal epithelial cells from non-CF controls and CF patients (F508del homozygous). In control cells, TLR4 expression (surface and cytoplasmic) was reduced after LPS stimulation but remained unchanged in CF cells and was accompanied by a heightened inflammatory response 24 h after stimulation. All cells expressed markers of the early (EEA1) and late (Rab7b) endosomes at basal levels. However, only CF cells displayed persistent expression of Rab7b following LPS stimulation. Rab7 variants may directly internalize bacteria to the Golgi for recycling or to the lysosome for degradation. TLR4 colocalized with the lysosomal marker LAMP1 in 16 hBE14o- cells, suggesting that TLR4 is targeted for lysosomal degradation in these cells. However, this colocalization was not observed in CFBE41o- cells, where persistent expression of Rab7 and release of proinflammatory cytokines was detected. Consistent with the apparent inability of CF cells to target TLR4 toward the lysosome for degradation, we observed persistent surface and cytoplasmic expression of this pathogen recognition receptor. This defect may account for the prolonged cycle of chronic inflammation associated with CF. PMID:23316065

  5. Interactions between sulfated polysaccharides from sea brown algae and Toll-like receptors on HEK293 eukaryotic cells in vitro.

    PubMed

    Makarenkova, I D; Logunov, D Yu; Tukhvatulin, A I; Semenova, I B; Besednova, N N; Zvyagintseva, T N

    2012-12-01

    We studied the interactions between sulfated polysaccharides, fucoidans from sea brown algae Laminaria japonica, Laminaria cichorioides, and Fucus evanescens, with human Toll-like receptors (TLR) expressed on membranes of cultured human embryonic kidney cells (HEK293-null, HEK293-TLR2/CD14, HEK293-hTLR4/CD14-MD2, and HEK293-hTLR5). Fucoidans interacted with TLR-2 and TLR-4, but not with TLR-5, and were nontoxic for the cell cultures. L. japonica fucoidan (1 mg/ml), L. cichorioides fucoidan (100 μg/ml and 1 mg/ml), and F. evanescens fucoidan (10 μg/ml-1 mg/ml) activated transcription nuclear factor NF-ϰB by binding specifically to TLR-2. L. japonica fucoidan (100 μg/ml and 1 mg/ml), L. cichorioides fucoidan (10 μg/ml-1 mg/ml), and F. evanescens fucoidan (1 μg/ml-1 mg/ml) activated NF-ϰB via binding to TLR-4. These results indicated that fucoidans could induce in vivo defense from pathogenic microorganisms of various classes. PMID:23330135

  6. Toll-Like Receptor 9 Signaling in Dendritic Cells Regulates Neutrophil Recruitment to Inflammatory Foci following Leishmania infantum Infection

    PubMed Central

    Sacramento, Laís; Trevelin, Silvia C.; Nascimento, Manuela S.; Lima-Jùnior, Djalma S.; Costa, Diego L.; Almeida, Roque P.; Cunha, Fernando Q.

    2015-01-01

    Leishmania infantum is a protozoan parasite that causes visceral leishmaniasis (VL). This infection triggers dendritic cell (DC) activation through the recognition of microbial products by Toll-like receptors (TLRs). Among the TLRs, TLR9 is required for DC activation by different Leishmania species. We demonstrated that TLR9 is upregulated in vitro and in vivo during infection. We show that C57BL/6 mice deficient in TLR9 expression (TLR9−/− mice) are more susceptible to infection and display higher parasite numbers in the spleen and liver. The increased susceptibility of TLR9−/− mice was due to the impaired recruitment of neutrophils to the infection foci associated with reduced levels of neutrophil chemoattractants released by DCs in the target organs. Moreover, both Th1 and Th17 cells were also committed in TLR9−/− mice. TLR9-dependent neutrophil recruitment is mediated via the MyD88 signaling pathway but is TIR domain-containing adapter-inducing interferon beta (TRIF) independent. Furthermore, L. infantum failed to activate both plasmacytoid and myeloid DCs from TLR9−/− mice, which presented reduced surface costimulatory molecule expression and chemokine release. Interestingly, neutrophil chemotaxis was affected both in vitro and in vivo when DCs were derived from TLR9−/− mice. Our results suggest that TLR9 plays a critical role in neutrophil recruitment during the protective response against L. infantum infection that could be associated with DC activation. PMID:26371124

  7. Bone marrow dendritic cell progenitors sense pathogens via Toll-like receptors and subsequently migrate to inflamed lymph nodes.

    PubMed

    Schmid, Michael A; Takizawa, Hitoshi; Baumjohann, Dior R; Saito, Yasuyuki; Manz, Markus G

    2011-11-01

    Common dendritic cell progenitors (CDPs) in the bone marrow (BM) regenerate dendritic cells (DCs) in lymphoid and nonlymphoid tissues. How the dissemination of progenitor-derived DCs to peripheral tissues is regulated on need remains elusive. Microbes are sensed by pathogen recognition receptors such as Toll-like receptors (TLRs). We found that CDPs in the BM express TLR2, TLR4, and TLR9. On TLR stimulation, CDPs down-regulated CXCR4, the nonredundant chemokine receptor for their BM retention, up-regulated CCR7, and migrated to lymph nodes (LNs). When TLR agonists were injected locally, CDPs preferentially gave rise to DCs in inflamed LNs in expense of noninflamed LNs and the BM, but they did not alter their lineage differentiation and proliferative activity. Consequently, BM DC progenitors can sense TLR agonists and, via regulation of CXCR4 and CCR7, support the replenishment of DCs in reactive LNs. This mechanism likely developed to support DC homeostasis on specific need at sites of inflammation. PMID:21908421

  8. Matrix metalloproteinase-13 is regulated by toll-like receptor-9 in colorectal cancer cells and mediates cellular migration.

    PubMed

    Rath, Timo; Stöckle, Julia; Roderfeld, Martin; Tschuschner, Annette; Graf, Jürgen; Roeb, Elke

    2011-05-01

    Matrix metalloproteinases (MMPs) are associated with cancer cell invasion and metastasis, and are currently the most prominent proteases associated with tumorigenesis. In particular, abundant expression of MMP-13 in colorectal cancer (CRC) is correlated with poor survival and the existence of distant metastasis. As suggested by recent in vitro studies, MMP-13 expression is regulated in a toll-like receptor (TLR)-9-dependent manner. In this study, we quantified the expression of MMP-13, TLR-9 and second messengers of the TLR signal transduction in CRC cells compared to colonic fibroblasts by RT-PCR. Furthermore, the effects of a selective TLR-9 stimulation on the expression of MMP-13 in CRC cells and colonic fibroblasts were analyzed. MMP-13 and TLR-9 as well as associated second messengers were simultaneously up-regulated in LS174 and SW620 cells compared to fibroblasts. Selective TLR-9 agonism with CpG oligonucleotides led to a significant increase in MMP-13 gene expression after 12 h of incubation in LS174 cells and after 12 and 24 h in SW620 cells, but not when using GpC oligonucleotides as a control substance. By contrast, MMP-13 gene expression remained unchanged in colonic fibroblasts following treatment with CpG or GpC oligonucleotides. The effects of selective MMP-13 inhibition on cellular migration were analyzed in Boyden chamber experiments. In the presence of 10 and 20 μM of the specific MMP-13 inhibitor, CL-82198, migration of the LS174 cells was significantly reduced by 55 and 52%, respectively, compared to untreated cells. In conclusion, the results of this study provide evidence of the TLR-9-dependent regulation of MMP-13 in CRC cells, but not in colonic fibroblasts. Since the specific inhibition of MMP-13 significantly reduces the migration of LS174 cells, selective MMP-13 inhibition may be a promising therapeutic strategy in CRC. PMID:22866107

  9. Matrix metalloproteinase-13 is regulated by toll-like receptor-9 in colorectal cancer cells and mediates cellular migration

    PubMed Central

    RATH, TIMO; STÖCKLE, JULIA; RODERFELD, MARTIN; TSCHUSCHNER, ANNETTE; GRAF, JÜRGEN; ROEB, ELKE

    2011-01-01

    Matrix metalloproteinases (MMPs) are associated with cancer cell invasion and metastasis, and are currently the most prominent proteases associated with tumorigenesis. In particular, abundant expression of MMP-13 in colorectal cancer (CRC) is correlated with poor survival and the existence of distant metastasis. As suggested by recent in vitro studies, MMP-13 expression is regulated in a toll-like receptor (TLR)-9-dependent manner. In this study, we quantified the expression of MMP-13, TLR-9 and second messengers of the TLR signal transduction in CRC cells compared to colonic fibroblasts by RT-PCR. Furthermore, the effects of a selective TLR-9 stimulation on the expression of MMP-13 in CRC cells and colonic fibroblasts were analyzed. MMP-13 and TLR-9 as well as associated second messengers were simultaneously up-regulated in LS174 and SW620 cells compared to fibroblasts. Selective TLR-9 agonism with CpG oligonucleotides led to a significant increase in MMP-13 gene expression after 12 h of incubation in LS174 cells and after 12 and 24 h in SW620 cells, but not when using GpC oligonucleotides as a control substance. By contrast, MMP-13 gene expression remained unchanged in colonic fibroblasts following treatment with CpG or GpC oligonucleotides. The effects of selective MMP-13 inhibition on cellular migration were analyzed in Boyden chamber experiments. In the presence of 10 and 20 μM of the specific MMP-13 inhibitor, CL-82198, migration of the LS174 cells was significantly reduced by 55 and 52%, respectively, compared to untreated cells. In conclusion, the results of this study provide evidence of the TLR-9-dependent regulation of MMP-13 in CRC cells, but not in colonic fibroblasts. Since the specific inhibition of MMP-13 significantly reduces the migration of LS174 cells, selective MMP-13 inhibition may be a promising therapeutic strategy in CRC. PMID:22866107

  10. Human decidual macrophages and NK cells differentially express Toll-like receptors and display distinct cytokine profiles upon TLR stimulation.

    PubMed

    Duriez, Marion; Quillay, Héloïse; Madec, Yoann; El Costa, Hicham; Cannou, Claude; Marlin, Romain; de Truchis, Claire; Rahmati, Mona; Barré-Sinoussi, Françoise; Nugeyre, Marie-Thérèse; Menu, Elisabeth

    2014-01-01

    Maternofetal pathogen transmission is partially controlled at the level of the maternal uterine mucosa at the fetal implantation site (the decidua basalis), where maternal and fetal cells are in close contact. Toll-like receptors (TLRs) may play an important role in initiating rapid immune responses against pathogens in the decidua basalis, however the tolerant microenvironment should be preserved in order to allow fetal development. Here we investigated the expression and functionality of TLRs expressed by decidual macrophages (dMs) and NK cells (dNKs), the major decidual immune cell populations. We report for the first time that both human dMs and dNK cells express mRNAs encoding TLRs 1-9, albeit with a higher expression level in dMs. TLR2, TLR3, and TLR4 protein expression checked by flow cytometry was positive for both dMs and dNK cells. In vitro treatment of primary dMs and dNK cells with specific TLR2, TLR3, TLR4, TLR7/8, and TLR9 agonists enhanced their secretion of pro- and anti-inflammatory cytokines, as well as cytokines and chemokines involved in immune cell crosstalk. Only dNK cells released IFN-γ, whereas only dMs released IL-1β, IL-10, and IL-12. TLR9 activation of dMs resulted in a distinct pattern of cytokine expression compared to the other TLRs. The cytokine profiles expressed by dMs and dNK cells upon TLR activation are compatible with maintenance of the fetotolerant immune environment during initiation of immune responses to pathogens at the maternofetal interface. PMID:25071732

  11. Activation of Toll-like receptor 3 amplifies mesenchymal stem cell trophic factors and enhances therapeutic potency.

    PubMed

    Mastri, Michalis; Shah, Zaeem; McLaughlin, Terence; Greene, Christopher J; Baum, Leah; Suzuki, Gen; Lee, Techung

    2012-11-15

    Clinical trials of bone marrow mesenchymal stem cell (MSC) therapy have thus far demonstrated moderate and inconsistent benefits, indicating an urgent need to improve therapeutic efficacy. Although administration of sufficient cells is necessary to achieve maximal therapeutic benefits, documented MSC clinical trials have largely relied on injections of ∼1 × 10(6) cells/kg, which appears too low to elicit a robust therapeutic response according to published preclinical studies. However, repeated cell passaging necessary for large-scale expansion of MSC causes cellular senescence and reduces stem cell potency. Using the RNA mimetic polyinosinic-polycytidylic acid [poly(I:C)] to engage MSC Toll-like receptor 3 (TLR3), we found that poly(I:C), signaling through multiple mitogen-activated protein kinase pathways, induced therapeutically relevant trophic factors such as interleukin-6-type cytokines, stromal-derived factor 1, hepatocyte growth factor, and vascular endothelial growth factor while slightly inhibiting the proliferation and migration potentials of MSC. At the suboptimal injection dose of 1 × 10(6) cells/kg, poly(I:C)-treated MSC, but not untreated MSC, effectively stimulated regeneration of the failing hamster heart 1 mo after cell administration. The regenerating heart exhibited increased CD34(+)/Ki67(+) and CD34(+)/GATA4(+) progenitor cells in the presence of decreased inflammatory cells and cytokines. Cardiac functional improvement was associated with a ∼50% reduction in fibrosis, a ∼40% reduction in apoptosis, and a ∼55% increase in angiogenesis, culminating in prominent cardiomyogenesis evidenced by abundant distribution of small myocytes and a ∼90% increase in wall thickening. These functional, histological, and molecular characterizations thus establish the utility of TLR3 engagement for enabling the low-dose MSC therapy that may be translated to more efficacious clinical applications. PMID:22843797

  12. Subsets of Human Dendritic Cell Precursors Express Different Toll-like Receptors and Respond to Different Microbial Antigens

    PubMed Central

    Kadowaki, Norimitsu; Ho, Stephen; Antonenko, Svetlana; de Waal Malefyt, Rene; Kastelein, Robert A.; Bazan, Fernando; Liu, Yong-Jun

    2001-01-01

    Toll-like receptors (TLRs) are ancient microbial pattern recognition receptors highly conserved from Drosophila to humans. To investigate if subsets of human dendritic cell precursors (pre-DC), including monocytes (pre-DC1), plasmacytoid DC precursors (pre-DC2), and CD11c+ immature DCs (imDCs) are developed to recognize different microbes or microbial antigens, we studied their TLR expression and responses to microbial antigens. We demonstrate that whereas monocytes preferentially express TLR 1, 2, 4, 5, and 8, plasmacytoid pre-DC strongly express TLR 7 and 9. In accordance with these TLR expression profiles, monocytes respond to the known microbial ligands for TLR2 (peptidoglycan [PGN], lipoteichoic acid) and TLR4 (lipopolysaccharide), by producing tumor necrosis factor (TNF)-α and interleukin (IL)-6. In contrast, plasmacytoid pre-DCs only respond to the microbial TLR9-ligand, CpG-ODNs (oligodeoxynucleotides [ODNs] containing unmethylated CpG motifs), by producing IFN-α. CD11c+ imDCs preferentially express TLR 1, 2, and 3 and respond to TLR 2-ligand PGN by producing large amounts of TNF-α, and to viral double-stranded RNA-like molecule poly I:C, by producing IFN-α and IL-12. The expression of distinct sets of TLRs and the corresponding difference in reactivity to microbial molecules among subsets of pre-DCs and imDCs support the concept that they have developed through distinct evolutionary pathways to recognize different microbial antigens. PMID:11561001

  13. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens.

    PubMed

    Kadowaki, N; Ho, S; Antonenko, S; Malefyt, R W; Kastelein, R A; Bazan, F; Liu, Y J

    2001-09-17

    Toll-like receptors (TLRs) are ancient microbial pattern recognition receptors highly conserved from Drosophila to humans. To investigate if subsets of human dendritic cell precursors (pre-DC), including monocytes (pre-DC1), plasmacytoid DC precursors (pre-DC2), and CD11c(+) immature DCs (imDCs) are developed to recognize different microbes or microbial antigens, we studied their TLR expression and responses to microbial antigens. We demonstrate that whereas monocytes preferentially express TLR 1, 2, 4, 5, and 8, plasmacytoid pre-DC strongly express TLR 7 and 9. In accordance with these TLR expression profiles, monocytes respond to the known microbial ligands for TLR2 (peptidoglycan [PGN], lipoteichoic acid) and TLR4 (lipopolysaccharide), by producing tumor necrosis factor (TNF)-alpha and interleukin (IL)-6. In contrast, plasmacytoid pre-DCs only respond to the microbial TLR9-ligand, CpG-ODNs (oligodeoxynucleotides [ODNs] containing unmethylated CpG motifs), by producing IFN-alpha. CD11c(+) imDCs preferentially express TLR 1, 2, and 3 and respond to TLR 2-ligand PGN by producing large amounts of TNF-alpha, and to viral double-stranded RNA-like molecule poly I:C, by producing IFN-alpha and IL-12. The expression of distinct sets of TLRs and the corresponding difference in reactivity to microbial molecules among subsets of pre-DCs and imDCs support the concept that they have developed through distinct evolutionary pathways to recognize different microbial antigens. PMID:11561001

  14. Toll-like receptor 4 mediates inflammatory cytokine secretion in smooth muscle cells induced by oxidized low-density lipoprotein.

    PubMed

    Yang, Ke; Zhang, Xiao Jie; Cao, Li Juan; Liu, Xin He; Liu, Zhu Hui; Wang, Xiao Qun; Chen, Qiu Jin; Lu, Lin; Shen, Wei Feng; Liu, Yan

    2014-01-01

    Oxidized low-density lipoprotein (oxLDL)-regulated secretion of inflammatory cytokines in smooth muscle cells (SMCs) is regarded as an important step in the progression of atherosclerosis; however, its underlying mechanism remains unclear. This study investigated the role of toll-like receptor 4 (TLR4) in oxLDL-induced expression of inflammatory cytokines in SMCs both in vivo and in vitro. We found that the levels of TLR4, interleukin 1-β (IL1-β), tumor necrosis factor-α (TNFα), monocyte chemoattractant protein 1 (MCP-1) and matrix metalloproteinase-2 (MMP-2) expression were increased in the SMCs of atherosclerotic plaques in patients with femoral artery stenosis. In cultured primary arterial SMCs from wild type mice, oxLDL caused dose- and time-dependent increase in the expression levels of TLR4 and cytokines. These effects were significantly weakened in arterial SMCs derived from TLR4 knockout mice (TLR4-/-). Moreover, the secretion of inflammatory cytokines was blocked by TLR4-specific antibodies in primary SMCs. Ox-LDL induced activation of p38 and NFκB was also inhibited in TLR4-/- primary SMCs or when treated with TLR4-specific antibodies. These results demonstrated that TLR4 is a crucial mediator in oxLDL-induced inflammatory cytokine expression and secretion, and p38 and NFκB activation. PMID:24755612

  15. Toll-like receptor stimulation in splenic marginal zone lymphoma can modulate cell signaling, activation and proliferation

    PubMed Central

    Fonte, Eleonora; Agathangelidis, Andreas; Reverberi, Daniele; Ntoufa, Stavroula; Scarfò, Lydia; Ranghetti, Pamela; Cutrona, Giovanna; Tedeschi, Alessandra; Xochelli, Aliki; Caligaris-Cappio, Federico; Ponzoni, Maurilio; Belessi, Chrysoula; Davis, Zadie; Piris, Miguel A.; Oscier, David; Ghia, Paolo; Stamatopoulos, Kostas; Muzio, Marta

    2015-01-01

    Recent studies on splenic marginal zone lymphoma identified distinct mutations in genes belonging to the B-cell receptor and Toll-like receptor signaling pathways, thus pointing to their potential implication in the biology of the disease. However, limited data is available regarding the exact role of TLRs. We aimed at characterizing the expression pattern of TLRs in splenic marginal zone lymphoma cells and their functional impact on the activation, proliferation and viability of malignant cells in vitro. Cells expressed significant levels of TLR1, TLR6, TLR7, TLR8, TLR9 and TLR10 mRNA; TLR2 and TLR4 showed a low, variable pattern of expression among patients whereas TLR3 and TLR5 mRNAs were undetectable; mRNA specific for TLR signaling molecules and adapters was also expressed. At the protein level, TLR1, TLR6, TLR7, TLR9 and TLR10 were detected. Stimulation of TLR1/2, TLR2/6 and TLR9 with their respective ligands triggered the activation of IRAK kinases, MAPK and NF-κB signaling pathways, and the induction of CD86 and CD25 activation molecules, although in a heterogeneous manner among different patient samples. TLR-induced activation and cell viability were also inhibited by a specific IRAK1/4 inhibitor, thus strongly supporting the specific role of TLR signaling in these processes. Furthermore, TLR2/6 and TLR9 stimulation also significantly increased cell proliferation. In conclusion, we demonstrate that splenic marginal zone lymphoma cells are equipped with functional TLR and signaling molecules and that the stimulation of TLR1/2, TLR2/6 and TLR9 may play a role in regulating disease pathobiology, likely promoting the expansion of the neoplastic clone. PMID:26294727

  16. Toll-like receptor stimulation in splenic marginal zone lymphoma can modulate cell signaling, activation and proliferation.

    PubMed

    Fonte, Eleonora; Agathangelidis, Andreas; Reverberi, Daniele; Ntoufa, Stavroula; Scarfò, Lydia; Ranghetti, Pamela; Cutrona, Giovanna; Tedeschi, Alessandra; Xochelli, Aliki; Caligaris-Cappio, Federico; Ponzoni, Maurilio; Belessi, Chrysoula; Davis, Zadie; Piris, Miguel A; Oscier, David; Ghia, Paolo; Stamatopoulos, Kostas; Muzio, Marta

    2015-11-01

    Recent studies on splenic marginal zone lymphoma identified distinct mutations in genes belonging to the B-cell receptor and Toll-like receptor signaling pathways, thus pointing to their potential implication in the biology of the disease. However, limited data is available regarding the exact role of TLRs. We aimed at characterizing the expression pattern of TLRs in splenic marginal zone lymphoma cells and their functional impact on the activation, proliferation and viability of malignant cells in vitro. Cells expressed significant levels of TLR1, TLR6, TLR7, TLR8, TLR9 and TLR10 mRNA; TLR2 and TLR4 showed a low, variable pattern of expression among patients whereas TLR3 and TLR5 mRNAs were undetectable; mRNA specific for TLR signaling molecules and adapters was also expressed. At the protein level, TLR1, TLR6, TLR7, TLR9 and TLR10 were detected. Stimulation of TLR1/2, TLR2/6 and TLR9 with their respective ligands triggered the activation of IRAK kinases, MAPK and NF-κB signaling pathways, and the induction of CD86 and CD25 activation molecules, although in a heterogeneous manner among different patient samples. TLR-induced activation and cell viability were also inhibited by a specific IRAK1/4 inhibitor, thus strongly supporting the specific role of TLR signaling in these processes. Furthermore, TLR2/6 and TLR9 stimulation also significantly increased cell proliferation. In conclusion, we demonstrate that splenic marginal zone lymphoma cells are equipped with functional TLR and signaling molecules and that the stimulation of TLR1/2, TLR2/6 and TLR9 may play a role in regulating disease pathobiology, likely promoting the expansion of the neoplastic clone. PMID:26294727

  17. The Effect of Estradiol and Progesterone on Toll Like Receptor Gene Expression in A Human Fallopian Tube Epithelial Cell Line

    PubMed Central

    Zandieh, Zahra; Amjadi, Fatemehsadat; Ashrafi, Mahnaz; Aflatoonian, Abbas; Fazeli, Alireza; Aflatoonian, Reza

    2016-01-01

    Objective Toll like receptors (TLRs) are one of the main components of the innate im- mune system. It has been reported that expression of these receptors are altered in the female reproductive tract (FRT) during menstrual cycle. Here we used a fallopian tube epithelial cell line (OE-E6/E7) to evaluate the effect of two sex hormones in modulating TLR expression. Materials and Methods In this experimental study, initially TLR gene expression in OE- E6/E7 cells was evaluated and compared with that of fallopian tube tissue using quanti- tative real time-polymerase chain reaction (qRT-PCR) and immunostaining. Thereafter, OE-E6/E7 cells were cultured with different concentrations of estradiol and progesterone, and combination of both. qRT-PCR was performed to reveal any changes in expression of TLR genes as a result of hormonal treatment. Results TLR1-10 genes were expressed in human fallopian tube tissue. TLR1-6 genes and their respective proteins were expressed in the OE-E6/E7 cell line. Although estradiol and progesterone separately had no significant effect on TLR expression, their combined treatment altered the expression of TLRs in this cell line. Also, the pattern of TLR expres- sion in preovulation (P), mensturation (M) and window of implantation (W) were the same for all TLRs with no significant differences between P, M and W groups. Conclusion These data show the significant involvement of the combination of es- tradiol and progesterone in modulation of TLR gene expression in this human fal- lopian tube cell line. Further experiments may reveal the regulatory mechanism and signalling pathway behind the effect of sex hormones in modulating TLRs in the hu- man FRT. PMID:26862527

  18. Low expression of Toll-like receptors in peripheral blood mononuclear cells of pediatric patients with acute lymphoblastic leukemia.

    PubMed

    Sánchez-Cuaxospa, María; Contreras-Ramos, Alejandra; Pérez-Figueroa, Erandi; Medina-Sansón, Aurora; Jiménez-Hernández, Elva; Torres-Nava, José R; Rojas-Castillo, Emilio; Maldonado-Bernal, Carmen

    2016-08-01

    Cancer is the second most common cause of death among children aged 1-14 years. Leukemia accounts for one-third of all childhood cancers, 78% of which is acute lymphoblastic leukemia (ALL). The development of cancer has been associated with malignant cells that express low levels of immunogenic molecules, which facilitates their escape from the antineoplastic immune response. It is thought that it may be possible to rescue the antineoplastic immune response through the activation of recognition receptors, such as Toll-like receptors (TLRs), which activate the innate immune system. TLRs are type I membrane glycoproteins expressed mainly in immune system cells such as monocytes, neutrophils, macrophages, dendritic cells, T, B and natural killer cells. The aim of the present study was to evaluate the expression of TLR1, TLR3, TLR4, TLR7 and TLR9 in peripheral blood mononuclear cells (PBMCs) in patients with ALL and prior to any treatment. PBMCs were obtained from 50 pediatric patients diagnosed with ALL and from 20 children attending the ophthalmology and orthopedics services. The mean fluorescence intensity was obtained by analysis of immunofluorescence. We found lower expression levels of TLR1, TLR3, TLR4, TLR7 and TLR9 in PBMCs from patients with ALL compared with those from control patients. We also observed that the PBMCs from patients with Pre-B and B ALL had lower TLR4 expression than controls and patients with Pro-B, Pre-B, B and T ALL had lower TLR7 expression than controls. The present study is the first to demonstrate reduced expression of TLRs in PBMCs from pediatric patients with ALL. This finding is of great relevance and may partly explain the reduction in the antineoplastic immune response in patients with ALL. PMID:27277333

  19. The role of MAPK in CD4{sup +} T cells toll-like receptor 9-mediated signaling following HHV-6 infection

    SciTech Connect

    Chi, Jing; Wang, Fang; Li, Lingyun; Feng, Dongju; Qin, Jian; Xie, Fangyi; Zhou, Feng; Chen, Yun; Wang, Jinfeng; Yao, Kun

    2012-01-05

    Human herpesvirus-6 (HHV-6) is an important immunosuppressive and immunomodulatory virus that primarily infects immune cells (mainly CD4{sup +} T cells) and strongly suppresses the proliferation of infected cells. Toll-like receptors are pattern-recognition receptors essential for the development of an appropriate innate immune defense against infection. To understand the role of CD4{sup +} T cells in the innate response to HHV-6 infection and the involvement of TLRs, we used an in vitro infection model and observed that the infection of CD4{sup +} T cells resulted in the activation of JNK/SAPK via up-regulation of toll-like receptor 9 (TLR9). Associated with JNK activation, annexin V-PI staining indicated that HHV-6A was a strong inducer of apoptosis. Apoptotic response associated cytokines, IL-6 and TNF-{alpha} also induced by HHV-6A infection.

  20. Flagellin-induced tolerance of the Toll-like receptor 5 signaling pathway in polarized intestinal epithelial cells.

    PubMed

    Sun, Jun; Fegan, Pamela E; Desai, Anjali S; Madara, James L; Hobert, Michael E

    2007-03-01

    Salmonella typhimurium is a gram-negative enteric pathogen that invades the mucosal epithelium and is associated with diarrheal illness in humans. Flagellin from S. typhimurium and other gram-negative bacteria has been shown to be the predominant proinflammatory mediator through activation of the basolateral Toll-like receptor 5 (TLR5). Recent evidence has shown that prior exposure can render immune cells tolerant to subsequent challenges by TLR ligands. Accordingly, we examined whether prior exposure to purified flagellin would render human intestinal epithelial cells insensitive to future contact. We found that flagellin-induced tolerance is common to polarized epithelial cells and prevents further activation of proinflammatory signaling cascades by both purified flagellin and Salmonella bacteria but does not affect TNF-alpha stimulation of the same pathways. Flagellin tolerance is a rapid process that does not require protein synthesis, and that occurs within 1 to 2 h of flagellin exposure. Prolonged flagellin exposure blocks activation of the NF-kappaB, MAPK, and phosphoinositol 3-kinase signaling pathways and results in the internalization of a fraction of the basolateral TLR5 without affecting the polarity or total expression of TLR5. After removal of flagellin, cells require more than 24 h to fully recover their ability to mount a normal proinflammatory response. We have found that activation of phosphoinositol 3-kinase and Akt by flagellin has a small damping effect in the early stages of flagellin signaling but is not responsible for tolerance. Our study indicates that inhibition of TLR5-associated IL-1 receptor-associated kinase-4 activity occurs during the development of flagellin tolerance and is likely to be the cause of tolerance. PMID:17138965

  1. Natural Killer Cell-Dependent Anti-Fibrotic Pathway in Liver Injury via Toll-Like Receptor-9

    PubMed Central

    Abu-Tair, Lina; Axelrod, Jonathan H.; Doron, Sarit; Ovadya, Yossi; Krizhanovsky, Valery; Galun, Eithan

    2013-01-01

    The toll-like receptor-9 (TLR9) agonist cytosine phosphate guanine (CpG), activates hepatic stellate cells (HSCs) and mediates fibrosis. We investigated the TLR9 effects on lymphocyte/HSCs interactions. Liver fibrosis was induced in wild-type (WT) mice by intra-peritoneal carbon-tetrachloride (CCl4) induction for 6 weeks. Fibrotic groups were intravenously treated by a vehicle versus CpG along last 2 weeks. Compared to vehicle-treated fibrotic WT, the in-vivo CpG-treatment significantly attenuated hepatic fibrosis and inflammation, associated with decreased CD8 and increased NK liver cells. In-vitro, co-cultures with vehicle-treated fibrotic NK cells increased HSCs proliferation (P<0.001) while their CpG-treated counterparts achieved a significant decrease. To investigate the role of lymphocytes, TLR9-/- mice induced-hepatic fibrosis were used. Although TLR9-/- mice manifested lower fibrotic profile as compared to their wild-type (WT) counterparts, senescence (SA-β-Gal activity) in the liver and ALT serum levels were significantly greater. In an adoptive transfer model; irradiated WT and TLR9-/- recipients were reconstituted with naïve WT or TLR9-/- lymphocytes. The adoptive transfer of TLR9-/- versus WT lymphocytes led to increased fibrosis of WT recipients. TLR9-/- fibrotic recipients reconstituted with TLR9-/- or WT lymphocytes showed no changes in hepatic fibrosis severity or ALT serum levels. TLR9 activation had inconsistent effects on lymphocytes and HSCs. The net balance of TLR9 activation in WT, displayed significant anti-fibrotic activity, accompanied by CD8 suppression and increased NK-cells, activity and adherence to HSCs. The pro-fibrotic and pro-inflammatory properties of TLR9-/- lymphocytes fail to activate HSCs with an early senescence in TLR9-/- mice.  PMID:24340043

  2. Autophagy is required for toll-like receptor-mediated interleukin-8 production in intestinal epithelial cells.

    PubMed

    Li, Yong-Yu; Ishihara, Shunji; Aziz, M Monowar; Oka, Akihiko; Kusunoki, Ryusaku; Tada, Yasumasa; Yuki, Takafumi; Amano, Yuji; Ansary, Mesbah Uddin; Kinoshita, Yoshikazu

    2011-03-01

    Autophagy is an evolutionarily conserved process that maintains cellular homeostasis via synthesis, degradation, and subsequent recycling of cellular products under various physiological conditions. However, the link between autophagy and the innate immune system remains unknown. In the present study, we evaluated Toll-like receptor (TLR)-mediated autophagy induction in intestinal epithelial cells (IECs) and its relationship to interleukin (IL)-8 production. IEC-6, HCT-15, RAW264.7, and THP-1 cells were cultured with or without various TLR ligands, followed by evaluation of the expressions of pro-inflammatory cytokines [IL-8, cytokine-induced neutrophil chemoattractants (CINC)-2β, macrophage inflammatory protein (MIP)-2] by real-time PCR and ELISA. To reveal the status of autophagy in IECs and macrophages, light chain 3 (LC3)-II expression was examined using Western blotting and immunofluorescence with confocal microscopy. Also, to evaluate the influence of TLR ligands on autophagy-mediated innate-immune responses, autophagy-related gene (Atg)7 specific siRNA was transfected into intestinal epithelial cells and IL-8 expression was determined following exposure to various TLR ligands. Cells treated with the TLR ligands produced considerable amounts of pro-inflammatory cytokines (IL-8, CINC-2β, MIP-2). Furthermore, the basal levels of LC3-II were markedly higher in IECs as compared to those in macrophages. Our findings indicated that autophagy induction following TLR ligand stimulation was not significantly evident in IECs as compared to macrophages. In addition, Atg7 gene expression silencingled to down-regulation of TLR-mediated IL-8 expression in IECs, which indicates a potential role of autophagy in generating innate-immune responses. In conclusion, autophagy may be an important intracellular machinery for inducing the innate immune system in IECs. PMID:21225224

  3. Extracts of Feijoa Inhibit Toll-Like Receptor 2 Signaling and Activate Autophagy Implicating a Role in Dietary Control of IBD

    PubMed Central

    Nasef, Noha Ahmed; Mehta, Sunali; Powell, Penny; Marlow, Gareth; Wileman, Tom; Ferguson, Lynnette R

    2015-01-01

    Background Inflammatory bowel disease (IBD) is a heterogeneous chronic inflammatory disease affecting the gut with limited treatment success for its sufferers. This suggests the need for better understanding of the different subtypes of the disease as well as nutritional interventions to compliment current treatments. In this study we assess the ability of a hydrophilic feijoa fraction (F3) to modulate autophagy a process known to regulate inflammation, via TLR2 using IBD cell lines. Method Mouse embryonic fibroblasts (MEF) deleted for ATG5, and two intestinal epithelial cells HCT15 and HCT116, were used to test the anti-inflammatory effect of F3 after stimulating the cells with a TLR2 specific ligand PAM3CSK4. Results F3 was able to reduce TLR2 specific inflammation and stimulate autophagy in MEFs and HCT15 cells but not in HCT116 cells. The anti-inflammatory effect was reduced in the MEF cells deleted for ATG5. In addition, the activation of autophagy by F3 was enhanced by PAM3CSK4. Conclusion F3 of feijoa can interact with cells via a TLR2 specific mechanism and reduce Nuclear factor kappa B (NF-κB) activation in part due to stimulation of autophagy. These results suggest that there is potential benefit in using feijoa extracts as part of dietary interventions to manage IBD in patients. PMID:26110654

  4. CCL-34, a synthetic toll-like receptor 4 activator, modulates differentiation and maturation of myeloid dendritic cells.

    PubMed

    Fu, Shu-Ling; Lin, Chun-Cheng; Hsu, Ming-Ling; Liu, Sheng-Hung; Huang, Yu-Chuen; Chen, Yu-Jen

    2016-03-01

    CCL-34, a synthetic α-galactosylceramide analog, has been reported as an activator of toll-like receptor 4 (TLR4) in macrophages. TLR4 is highly expressed in dendritic cell (DC) and several TLR4 agonists are known to trigger DC maturation. We herein evaluated the effect of CCL-34 on DC maturation. Human CD14+ monocyte-derived immature DC were treated with CCL-34, its inactive structural analog CCL-44, or LPS to assess the DC maturation. CCL-34 induced DC maturation according to their characteristically dendrite-forming morphology, CD83 expression and IL-12p70 production. The allostimulatory activity of DC on proliferation of naive CD4+CD45+RA+ T cells and their secretion of interferon-γ was increased by CCL-34. Phagocytosis, an important function of immature DC, was reduced after CCL-34 treatment. All these effects related to DC maturation were evidently induced by positive control LPS but not by CCL-44 treatment. TLR4 neutralization impaired human DC maturation triggered by CCL-34. The induction of IL-12, a hallmark of DC maturation, by CCL-34 and LPS was only evident in TLR4-competent C3H/HeN, but not in TLR4-defective C3H/HeJ mice. CCL-34 could further elicit the antigen presentation capability in mice inoculated with doxorubicin-treated colorectal cancer cells. In summary, CCL-34 triggers DC maturation via a TLR4-dependent manner, which supports its potential application as an immunostimulator. PMID:26883191

  5. Cardiac RNA induces inflammatory responses in cardiomyocytes and immune cells via Toll-like receptor 7 signaling.

    PubMed

    Feng, Yan; Chen, Hongliang; Cai, Jiayan; Zou, Lin; Yan, Dan; Xu, Ganqiong; Li, Dan; Chao, Wei

    2015-10-30

    We have recently reported that extracellular RNA (exRNA) released from necrotic cells induces cytokine production in cardiomyocytes and immune cells and contributes to myocardial ischemia/reperfusion injury. However, the signaling mechanism by which exRNA exhibits its pro-inflammatory effect is unknown. Here we hypothesize that exRNA directly induces inflammation through specific Toll-like receptors (TLRs). To test the hypothesis, we treated rat neonatal cardiomyocytes, mouse bone marrow-derived macrophages (BMDM), or mouse neutrophils with RNA (2.5-10 μg/ml) isolated from rat cardiomyocytes or the hearts from mouse, rat, and human. We found that cellular RNA induced production of several cytokines such as macrophage inflammatory protein-2 (MIP-2), ILs, TNFα, and the effect was completely diminished by RNase, but not DNase. The RNA-induced cytokine production was partially inhibited in cells treated with TLR7 antagonist or genetically deficient in TLR7. Deletion of myeloid differentiation primary response protein 88 (MyD88), a downstream adapter of TLRs including TLR7, abolished the RNA-induced MIP-2 production. Surprisingly, genetic deletion of TLR3 had no impact on the RNA-induced MIP-2 response. Importantly, extracellular RNA released from damaged cardiomyocytes also induced cytokine production. Finally, mice treated with 50 μg of RNA intraperitoneal injection exhibited acute peritonitis as evidenced by marked neutrophil and monocyte migration into the peritoneal space. Together, these data demonstrate that exRNA of cardiac origin exhibits a potent pro-inflammatory property in vitro and in vivo and that exRNA induces cytokine production through TLR7-MyD88 signaling. PMID:26363072

  6. CCL-34, a synthetic toll-like receptor 4 activator, modulates differentiation and maturation of myeloid dendritic cells

    PubMed Central

    Fu, Shu-Ling; Lin, Chun-Cheng; Hsu, Ming-Ling; Liu, Sheng-Hung; Huang, Yu-Chuen; Chen, Yu-Jen

    2016-01-01

    CCL-34, a synthetic α-galactosylceramide analog, has been reported as an activator of toll-like receptor 4 (TLR4) in macrophages. TLR4 is highly expressed in dendritic cell (DC) and several TLR4 agonists are known to trigger DC maturation. We herein evaluated the effect of CCL-34 on DC maturation. Human CD14+ monocyte-derived immature DC were treated with CCL-34, its inactive structural analog CCL-44, or LPS to assess the DC maturation. CCL-34 induced DC maturation according to their characteristically dendrite-forming morphology, CD83 expression and IL-12p70 production. The allostimulatory activity of DC on proliferation of naive CD4+CD45+RA+ T cells and their secretion of interferon-γ was increased by CCL-34. Phagocytosis, an important function of immature DC, was reduced after CCL-34 treatment. All these effects related to DC maturation were evidently induced by positive control LPS but not by CCL-44 treatment. TLR4 neutralization impaired human DC maturation triggered by CCL-34. The induction of IL-12, a hallmark of DC maturation, by CCL-34 and LPS was only evident in TLR4-competent C3H/HeN, but not in TLR4-defective C3H/HeJ mice. CCL-34 could further elicit the antigen presentation capability in mice inoculated with doxorubicin-treated colorectal cancer cells. In summary, CCL-34 triggers DC maturation via a TLR4-dependent manner, which supports its potential application as an immunostimulator. PMID:26883191

  7. Altered expression of intracellular Toll-like receptors in peripheral blood mononuclear cells from patients with alopecia areata

    PubMed Central

    Alzolibani, Abdullateef A.; Rasheed, Zafar; Saif, Ghada Bin; Al-Dhubaibi, Mohammed S.; Al Robaee, Ahmad A.

    2016-01-01

    Background Toll-like receptors (TLRs) are pattern-recognition-receptors that sense a variety of pathogens and initiation of innate and adaptive immune responses. This study was undertaken to investigate the expression of TLRs in peripheral blood-mononuclear cells (PBMCs) of AA patients and to determine whether TLR-mediated inflammatory signals are important for the perspective of AA management. Methods Gene expression of TLRs and T-helper (Th) type-1, Th-2, Th-17 and regulatory T-cell cytokines in PBMCs was quantified by TaqMan Assays. Production of these cytokines in serum samples was determined by sandwich ELISAs. Results All TLRs (TLRs 1–10) were expressed in PBMCs of AA patients. Importantly intracellular TLRs (TLRs 3, 7, 8 and 9) were significantly up-regulated in AA patients as compared with controls (p < 0.05). Interleukin (IL)-2, TNF-α, and IL-17A gene expression in patients' PBMCs and their secretion in patients' sera were significantly higher as compared with their respective controls (p < 0.05). Whereas, TGF-β gene expression in patients' PBMCs and TGF-β protein level in patients' sera were significantly lower as compared with their controls (p < 0.05). Conclusion This is the first report that shows the comprehensive expression profile of TLRs in AA patients. We conclude that up-regulated expression of intracellular TLRs in PBMCs of AA patients may play an active role in abnormal regulation of Th-1, Th-17 and regulatory T-cell cytokines in alopecia areata. General significance Targeting of TLRs and their associated inflammatory signaling will open new areas of research; this may lead to the development of novel therapeutic targets for the treatment of AA or other skin disorders. PMID:27114923

  8. Type I Helicobacter pylori Lipopolysaccharide Stimulates Toll-Like Receptor 4 and Activates Mitogen Oxidase 1 in Gastric Pit Cells

    PubMed Central

    Kawahara, Tsukasa; Teshima, Shigetada; Oka, Ayuko; Sugiyama, Toshiro; Kishi, Kyoichi; Rokutan, Kazuhito

    2001-01-01

    Guinea pig gastric pit cells express an isozyme of gp91-phox, mitogen oxidase 1 (Mox1), and essential components for the phagocyte NADPH oxidase (p67-, p47-, p40-, and p22-phox). Helicobacter pylori lipopolysaccharide (LPS) and Escherichia coli LPS have been shown to function as potent activators for the Mox1 oxidase. These cells spontaneously secreted about 10 nmol of superoxide anion (O2−)/mg of protein/h under LPS-free conditions. They expressed the mRNA and protein of Toll-like receptor 4 (TLR4) but not those of TLR2. LPS from type I H. pylori at 2.1 endotoxin units/ml or higher stimulated TLR4-mediated phosphorylations of transforming growth factor β-activated kinase 1 and its binding protein 1 induced TLR4 and p67-phox and up-regulated O2− production 10-fold. In contrast, none of these events occurred with H. pylori LPS from complete or partial deletion mutants of the cag pathogenicity island. Lipid A was confirmed to be a bioactive component for the priming effects, while removal of bisphosphates from lipid A completely eliminated the effects, suggesting the importance of the phosphorylation pattern besides the acylation pattern for the bioactivity. H. pylori LPS is generally accepted as having low toxicity; however, our results suggest that type I H. pylori lipid A may be a potent stimulator for innate immune responses of gastric mucosa by stimulating the TLR4 cascade and Mox1 oxidase in pit cells. PMID:11401977

  9. Diet-induced obesity mediates a proinflammatory response in pancreatic β cell via toll-like receptor 4

    PubMed Central

    Li, Juan; Chen, Shufen; Qiang, Juan; Wang, Xin; Chen, Lei

    2014-01-01

    Toll-like receptor 4 has an important role in inflammation and immunity. Whether TLR4 signaling contributes to the link between insulin resistance and islet β cell dysfunction is an unanswered question. Here, we show that in the face of the same high-fat continuous stimulation for 24 weeks, in TLR4–/– HF mice, the weight, fraction of the liver, epididymal fat pad fraction, as well as blood glucose and insulin levels were lower than in the WT HF group. In TLR4–/– HF mice, the O2 consumption, CO2 production and activities were higher than in the WT HF group. Glucose tolerance test, insulin tolerance test and insulin release test suggest that the impaired insulin secretion was significantly improved in TLR4–/– HF mice, compared with the WT HF group. In TLR4–/– HF mice, islet β cell ultrastructure was not damaged in the face of the same high-fat continuous stimulation, compared to that in the WT HF group. By detecting glucose-stimulated insulin secretion in the primary islet, insulin secretion of TLR4–/– HF mice was better than that of the WT HF group, and in the TLR4–/– HF group, at the mRNA level, islet interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), and monocyte chemotactic protein 1 (MCP-1) were significantly lower than in the WT HF group. There was the islet macrophage infiltration in the WT HF group, but no significant macrophage infiltration in the TLR4–/– HF group. These data suggest that the damaged islet functions of the high fat diet-induced obesity mice may be linked to the TLR4 expression level, and the recruitment of macrophages into the islets. PMID:26155140

  10. Dual Role of the Tyrosine Kinase Syk in Regulation of Toll-Like Receptor Signaling in Plasmacytoid Dendritic Cells

    PubMed Central

    Aouar, Besma; Kovarova, Denisa; Letard, Sebastien; Font-Haro, Albert; Florentin, Jonathan; Weber, Jan; Durantel, David; Chaperot, Laurence; Plumas, Joel; Trejbalova, Katerina; Hejnar, Jiri; Nunès, Jacques A.; Olive, Daniel; Dubreuil, Patrice

    2016-01-01

    Crosslinking of regulatory immunoreceptors (RR), such as BDCA-2 (CD303) or ILT7 (CD85g), of plasmacytoid dendritic cells (pDCs) efficiently suppresses production of type-I interferon (IFN)-α/β and other cytokines in response to Toll-like receptor (TLR) 7/9 ligands. This cytokine-inhibitory pathway is mediated by spleen tyrosine kinase (Syk) associated with the ITAM-containing adapter of RR. Here we demonstrate by pharmacological targeting of Syk that in addition to the negative regulation of TLR7/9 signaling via RR, Syk also positively regulates the TLR7/9 pathway in human pDCs. Novel highly specific Syk inhibitor AB8779 suppressed IFN-α, TNF-α and IL-6 production induced by TLR7/9 agonists in primary pDCs and in the pDC cell line GEN2.2. Triggering of TLR9 or RR signaling induced a differential kinetics of phosphorylation at Y352 and Y525/526 of Syk and a differential sensitivity to AB8779. Consistent with the different roles of Syk in TLR7/9 and RR signaling, a concentration of AB8779 insufficient to block TLR7/9 signaling still released the block of IFN-α production triggered via the RR pathway, including that induced by hepatitis B and C viruses. Thus, pharmacological targeting of Syk partially restored the main pDC function—IFN-α production. Opposing roles of Syk in TLR7/9 and RR pathways may regulate the innate immune response to weaken inflammation reaction. PMID:27258042

  11. Association between Toll-like receptor 7 Gln11Leu single-nucleotide polymorphism and basal cell carcinoma

    PubMed Central

    RUSSO, IRENE; CONA, CAMILLA; SAPONERI, ANDREA; BASSETTO, FRANCO; BALDO, VINCENZO; ALAIBAC, MAURO

    2016-01-01

    Non-melanoma skin cancers (NMSC) are the most common form of human skin cancer. The majority of NMSC are basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) with a BCC:SCC incidence ratio of 4:1 in immunocompetent patients. Toll-like receptors (TLRs) are transmembrane glycoproteins that recognize pathogen-associated molecular patterns and damage-associated molecular patterns, against which they activate the innate immune response and initiate the adaptive immune response. Genetic variations of these receptors can alter the immune system and are involved in evolution and susceptibility of various diseases, including cancer. Imiquimod, an agonist of TLR7, is applied topically in the treatment of premalignant and malignant skin disorders, in particular BCC. The high efficacy of this TLR7 agonist toward BCC supports a possible role of this receptor in the induction of BCC and, consequently, polymorphisms of this receptor could be responsible for a greater or lesser susceptibility to BCC. The aim of the present study was to evaluate whether the presence of the functional TLR7 rs179008/Gln11Leu promoter polymorphism conferred an increased susceptibility to BCC. A case-control study with 177 BCC cases and 158 controls was performed to highlight the possible association between this polymorphism and the susceptibility to BCC. As the TLR7 gene is localized on chromosome X, the allelic frequency of this polymorphism was analyzed separately in males and females. The analysis of the distribution of frequencies of wild-type TLR7 and variant TLR7 carrying the single-nucleotide polymorphism (SNP) rs179008 in patients with BCC and healthy subjects did not reveal any statistically significant difference between cases and controls. This study does not suggest the involvement of the SNP rs179008 of TLR7 in the susceptibility to BCC, but cannot exclude a role for TLR7 in BCC carcinogenesis considering the high efficacy of the TLR7 agonist, imiquimod, in the treatment of this

  12. Antitumor NK activation induced by the Toll-like receptor 3-TICAM-1 (TRIF) pathway in myeloid dendritic cells

    PubMed Central

    Akazawa, Takashi; Ebihara, Takashi; Okuno, Manabu; Okuda, Yu; Shingai, Masashi; Tsujimura, Kunio; Takahashi, Toshitada; Ikawa, Masahito; Okabe, Masaru; Inoue, Norimitsu; Okamoto-Tanaka, Miki; Ishizaki, Hiroyoshi; Miyoshi, Jun; Matsumoto, Misako; Seya, Tsukasa

    2007-01-01

    Myeloid dendritic cells (mDCs) recognize and respond to polyI:C, an analog of dsRNA, by endosomal Toll-like receptor (TLR) 3 and cytoplasmic receptors. Natural killer (NK) cells are activated in vivo by the administration of polyI:C to mice and in vivo are reciprocally activated by mDCs, although the molecular mechanisms are as yet undetermined. Here, we show that the TLR adaptor TICAM-1 (TRIF) participates in mDC-derived antitumor NK activation. In a syngeneic mouse tumor implant model (C57BL/6 vs. B16 melanoma with low H-2 expresser), i.p. administration of polyI:C led to the retardation of tumor growth, an effect relied on by NK activation. This NK-dependent tumor regression did not occur in TICAM-1−/− or IFNAR−/− mice, whereas a normal NK antitumor response was induced in PKR−/−, MyD88−/−, IFN-β−/−, and wild-type mice. IFNAR was a prerequisite for the induction of IFN-α/β and TLR3. The lack of TICAM-1 did not affect IFN production but resulted in unresponsiveness to IL-12 production, mDC maturation, and polyI:C-mediated NK-antitumor activity. This NK activation required NK-mDC contact but not IL-12 function in in vivo transwell analysis. Implanted tumor growth in IFNAR−/− mice was retarded by adoptively transferring polyI:C-treated TICACM-1-positive mDCs but not TICAM-1−/− mDCs. Thus, TICAM-1 in mDCs critically facilitated mDC-NK contact and activation of antitumor NK, resulting in the regression of low MHC-expressing tumors. PMID:17190817

  13. Toll-like receptors.

    PubMed

    Lien, Egil; Ingalls, Robin R

    2002-01-01

    The ability of a host to sense invasion by pathogenic organisms and to respond appropriately to control infection is paramount to survival. In the case of sepsis and septic shock, however, an exaggerated systemic response may, in fact, contribute to the morbidity and mortality associated with overwhelming infections. The innate immune system has evolved as the first line of defense against invading microorganisms. The Toll-like receptors (TLRs) are a part of this innate immune defense, recognizing conserved patterns on microorganisms. These TLRs and their signaling pathways are represented in such diverse creatures as mammals, fruit flies, and plants. Ten members of the TLR family have been identified in humans, and several of them appear to recognize specific microbial products, including lipopolysaccharide, bacterial lipoproteins, peptidoglycan, and bacterial DNA. Signals initiated by the interaction of TLRs with specific microbial patterns direct the subsequent inflammatory response. Thus, TLR signaling represents a key component of the innate immune response to microbial infection. PMID:11782555

  14. Plasma cell toll-like receptor (TLR) expression differs from that of B cells, and plasma cell TLR triggering enhances immunoglobulin production.

    PubMed

    Dorner, Marcus; Brandt, Simone; Tinguely, Marianne; Zucol, Franziska; Bourquin, Jean-Pierre; Zauner, Ludwig; Berger, Christoph; Bernasconi, Michele; Speck, Roberto F; Nadal, David

    2009-12-01

    Toll-like receptors (TLRs) are key receptors of the innate immune system and show cell subset-specific expression. We investigated the messenger RNA (mRNA) expression of TLR genes in human haematopoietic stem cells (HSC), in naïve B cells, in memory B cells, in plasma cells from palatine tonsils and in plasma cells from peripheral blood. HSC and plasma cells showed unrestricted expression of TLR1-TLR9, in contrast to B cells which lacked TLR3, TLR4 and TLR8 but expressed mRNA of all other TLRs. We demonstrated, for the first time, that TLR triggering of terminally differentiated plasma cells augments immunoglobulin production. Thus, boosting the immediate antibody response by plasma cells upon pathogen recognition may point to a novel role of TLRs. PMID:19950420

  15. Stable Toll-Like Receptor 10 Knockdown in THP-1 Cells Reduces TLR-Ligand-Induced Proinflammatory Cytokine Expression.

    PubMed

    Le, Hai Van; Kim, Jae Young

    2016-01-01

    Toll-like receptor 10 (TLR10) is the only orphan receptor whose natural ligand and function are unknown among the 10 human TLRs. In this study, to test whether TLR10 recognizes some known TLR ligands, we established a stable TLR10 knockdown human monocytic cell line THP-1 using TLR10 short hairpin RNA lentiviral particle and puromycin selection. Among 60 TLR10 knockdown clones that were derived from each single transduced cell, six clones were randomly selected, and then one of those clones, named E7, was chosen for the functional study. E7 exhibited approximately 50% inhibition of TLR10 mRNA and protein expression. Of all the TLRs, only the expression of TLR10 changed significantly in this cell line. Additionally, phorbol 12-myristate 13-acetate-induced macrophage differentiation of TLR10 knockdown cells was not affected in the knockdown cells. When exposed to TLR ligands, such as synthetic diacylated lipoprotein (FSL-1), lipopolysaccharide (LPS), and flagellin, significant induction of proinflammatory cytokine gene expression including Interleukin-8 (IL-8), Interleukin-1 beta (IL-1β), Tumor necrosis factor-alpha (TNF-α) and Chemokine (C-C Motif) Ligand 20 (CCL20) expression, was found in the control THP-1 cells, whereas the TLR10 knockdown cells exhibited a significant reduction in the expression of IL-8, IL-1β, and CCL20. TNF-α was the only cytokine for which the expression did not decrease in the TLR10 knockdown cells from that measured in the control cells. Analysis of putative binding sites for transcription factors using a binding-site-prediction program revealed that the TNF-α promoter does not have putative binding sites for AP-1 or c-Jun, comprising a major transcription factor along with NF-κB for TLR signaling. Our results suggest that TLR10 is involved in the recognition of FSL-1, LPS, and flagellin and TLR-ligand-induced expression of TNF-α does not depend on TLR10. PMID:27258267

  16. Stable Toll-Like Receptor 10 Knockdown in THP-1 Cells Reduces TLR-Ligand-Induced Proinflammatory Cytokine Expression

    PubMed Central

    Le, Hai Van; Kim, Jae Young

    2016-01-01

    Toll-like receptor 10 (TLR10) is the only orphan receptor whose natural ligand and function are unknown among the 10 human TLRs. In this study, to test whether TLR10 recognizes some known TLR ligands, we established a stable TLR10 knockdown human monocytic cell line THP-1 using TLR10 short hairpin RNA lentiviral particle and puromycin selection. Among 60 TLR10 knockdown clones that were derived from each single transduced cell, six clones were randomly selected, and then one of those clones, named E7, was chosen for the functional study. E7 exhibited approximately 50% inhibition of TLR10 mRNA and protein expression. Of all the TLRs, only the expression of TLR10 changed significantly in this cell line. Additionally, phorbol 12-myristate 13-acetate-induced macrophage differentiation of TLR10 knockdown cells was not affected in the knockdown cells. When exposed to TLR ligands, such as synthetic diacylated lipoprotein (FSL-1), lipopolysaccharide (LPS), and flagellin, significant induction of proinflammatory cytokine gene expression including Interleukin-8 (IL-8), Interleukin-1 beta (IL-1β), Tumor necrosis factor-alpha (TNF-α) and Chemokine (C–C Motif) Ligand 20 (CCL20) expression, was found in the control THP-1 cells, whereas the TLR10 knockdown cells exhibited a significant reduction in the expression of IL-8, IL-1β, and CCL20. TNF-α was the only cytokine for which the expression did not decrease in the TLR10 knockdown cells from that measured in the control cells. Analysis of putative binding sites for transcription factors using a binding-site-prediction program revealed that the TNF-α promoter does not have putative binding sites for AP-1 or c-Jun, comprising a major transcription factor along with NF-κB for TLR signaling. Our results suggest that TLR10 is involved in the recognition of FSL-1, LPS, and flagellin and TLR-ligand-induced expression of TNF-α does not depend on TLR10. PMID:27258267

  17. Key Role of Toll-Like Receptor 2 in the Inflammatory Response and Major Histocompatibility Complex Class II Downregulation in Brucella abortus-Infected Alveolar Macrophages

    PubMed Central

    Ferrero, Mariana C.; Hielpos, M. Soledad; Carvalho, Natalia B.; Barrionuevo, Paula; Corsetti, Patricia P.; Giambartolomei, Guillermo H.; Oliveira, Sergio C.

    2014-01-01

    Alveolar macrophages (AM) seem to constitute the main cellular target of inhaled brucellae. Here, we show that Brucella abortus invades and replicates in murine AM without inducing cytotoxicity. B. abortus infection induced a statistically significant increase of tumor necrosis factor alpha (TNF-α), CXCL1 or keratinocyte chemoattractant (KC), interleukin-1β (IL-1β), IL-6, and IL-12 in AM from C57BL/6 mice and BALB/c mice, but these responses were generally weaker and/or delayed compared to those elicited in peritoneal macrophages. Studies using knockout mice for TLR2, TLR4, and TLR9 revealed that TNF-α and KC responses were mediated by TLR2 recognition. Brucella infection reduced in a multiplicity of infection-dependent manner the expression of major histocompatibility complex class II (MHC-II) molecules induced by gamma interferon (IFN-γ) in AM. The same phenomenon was induced by incubation with heat-killed B. abortus (HKBA) or the lipidated form of the 19-kDa outer membrane protein of Brucella (L-Omp19), and it was shown to be mediated by TLR2 recognition. In contrast, no significant downregulation of MHC-II was induced by either unlipidated Omp19 or Brucella LPS. In a functional assay, treatment of AM with either L-Omp19 or HKBA reduced the MHC-II-restricted presentation of OVA peptides to specific T cells. One week after intratracheal infection, viable B. abortus was detected in AM from both wild-type and TLR2 KO mice, but CFU counts were higher in the latter. These results suggest that B. abortus survives in AM after inhalatory infection in spite of a certain degree of immune control exerted by the TLR2-mediated inflammatory response. Both the modest nature of the latter and the modulation of MHC-II expression by the bacterium may contribute to such survival. PMID:24478078

  18. Serum Amyloid A Induces Toll-Like Receptor 2-Dependent Inflammatory Cytokine Expression and Atrophy in C2C12 Skeletal Muscle Myotubes

    PubMed Central

    Passey, Samantha L.; Bozinovski, Steven; Vlahos, Ross; Anderson, Gary P.; Hansen, Michelle J.

    2016-01-01

    Background Skeletal muscle wasting is an important comorbidity of Chronic Obstructive Pulmonary Disease (COPD) and is strongly correlated with morbidity and mortality. Patients who experience frequent acute exacerbations of COPD (AECOPD) have more severe muscle wasting and reduced recovery of muscle mass and function after each exacerbation. Serum levels of the pro-inflammatory acute phase protein Serum Amyloid A (SAA) can rise more than 1000-fold in AECOPD and are predictively correlated with exacerbation severity. The direct effects of SAA on skeletal muscle are poorly understood. Here we have examined SAA effects on pro-inflammatory cachectic cytokine expression (IL-6 and TNFα) and atrophy in C2C12 myotubes. Results SAA increased IL-6 (31-fold) and TNFα (6.5-fold) mRNA levels compared to control untreated cells after 3h of SAA treatment, and increased secreted IL-6 protein at 24h. OxPAPC, a dual TLR2 and TLR4 inhibitor, reduced the response to SAA by approximately 84% compared to SAA alone, and the TLR2 neutralising antibody T2.5 abolished SAA-induced expression of IL-6, indicating that SAA signalling in C2C12 myotubes is primarily via TLR2. SAA also reduced myotube width by 10–13% and induced a 2.5-fold increase in the expression of the muscle atrophy gene Atrogin-1, suggesting direct effects of SAA on muscle wasting. Blocking of TLR2 inhibited the SAA-induced decrease in myotube width and Atrogin-1 gene expression, indicating that SAA induces atrophy through TLR2. Conclusions These data demonstrate that SAA stimulates a robust pro-inflammatory response in skeletal muscle myotubes via the TLR2-dependent release of IL-6 and TNFα. Furthermore, the observed atrophy effects indicate that SAA could also be directly contributing to the wasting and poor recovery of muscle mass. Therapeutic strategies targeting this SAA-TLR2 axis may therefore ameliorate muscle wasting in AECOPD and a range of other inflammatory conditions associated with loss of muscle mass. PMID

  19. Crucial role of Toll-like receptors in the zinc/nickel-induced inflammatory response in vascular endothelial cells

    SciTech Connect

    Tsou, Tsui-Chun; Liou, Saou-Hsing; Yeh, Szu-Ching; Tsai, Feng-Yuan; Chao, How-Ran

    2013-12-15

    Our previous studies indicated that zinc induced inflammatory response in both vascular endothelial cells and promonocytes. Here, we asked if other metals could cause the similar effect on vascular endothelial cells and tried to determine its underlying mechanism. Following screening of fifteen metals, zinc and nickel were identified with a marked proinflammatory effect, as determined by ICAM-1 and IL-8 induction, on human umbilical vein endothelial cells (HUVECs). Inhibiting protein expression of myeloid differentiation primary response protein-88 (MyD88), a Toll-like receptor (TLR) adaptor acting as a TLR-signaling transducer, significantly attenuated the zinc/nickel-induced inflammatory response, suggesting the critical roles of TLRs in the inflammatory response. Blockage of TLR-4 signaling by CLI-095, a TLR-4 inhibitor, completely inhibited the nickel-induced ICAM-1 and IL-8 expression and NFκB activation. The same CLI-095 treatment significantly blocked the zinc-induced IL-8 expression, however with no significant effect on the ICAM-1 expression and a minor inhibitory effect on the NFκB activation. The finding demonstrated the differential role of TLR-4 in regulation of the zinc/nickel-induced inflammatory response, where TLR-4 played a dominant role in NFκB activation by nickel, but not by zinc. Moreover, inhibition of NFκB by adenovirus-mediated IκBα expression and Bay 11-7025, an inhibitor of cytokine-induced IκB-α phosphorylation, significantly attenuated the zinc/nickel-induced inflammatory responses, indicating the critical of NFκB in the process. The study demonstrates the crucial role of TLRs in the zinc/nickel-induced inflammatory response in vascular endothelial cells and herein deciphers a potential important difference in NFκB activation via TLRs. The study provides a molecular basis for linkage between zinc/nickel exposure and pathogenesis of the metal-related inflammatory vascular disease. - Highlights: • Both zinc and nickel cause

  20. Hypoxia attenuates inflammatory mediators production induced by Acanthamoeba via Toll-like receptor 4 signaling in human corneal epithelial cells

    SciTech Connect

    Pan, Hong; Wu, Xinyi

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Hypoxia attenuates Acanthamoeba-induced the production of IL-8 and IFN-{beta}. Black-Right-Pointing-Pointer Hypoxia inhibits TLR4 expression in a time-dependent manner in HCECs. Black-Right-Pointing-Pointer Hypoxia inhibits Acanthamoeba-induced the activation of NF-{kappa}B and ERK1/2 in HCECs. Black-Right-Pointing-Pointer Hypoxia decreases Acanthamoeba-induced inflammatory response via TLR4 signaling. Black-Right-Pointing-Pointer LPS-induced the secretion of IL-6 and IL-8 is abated by hypoxia via TLR4 signaling. -- Abstract: Acanthamoeba keratitis (AK) is a vision-threatening corneal infection that is intimately associated with contact lens use which leads to hypoxic conditions on the corneal surface. However, the effect of hypoxia on the Acanthamoeba-induced host inflammatory response of corneal epithelial cells has not been studied. In the present study, we investigated the effect of hypoxia on the Acanthamoeba-induced production of inflammatory mediators interleukin-8 (IL-8) and interferon-{beta} (IFN-{beta}) in human corneal epithelial cells and then evaluated its effects on the Toll-like receptor 4 (TLR4) signaling, including TLR4 and myeloid differentiation primary response gene (88) (MyD88) expression as well as the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-{kappa}B) and extracellular signal-regulated kinases 1/2 (ERK1/2). We then studied the effect of hypoxia on a TLR4-specific inflammatory response triggered by the TLR4 ligand lipopolysaccharide (LPS). Our data showed that hypoxia significantly decreased the production of IL-8 and IFN-{beta}. Furthermore, hypoxia attenuated Acanthamoeba-triggered TLR4 expression as well as the activation of NF-{kappa}B and ERK1/2, indicating that hypoxia abated Acanthamoeba-induced inflammatory responses by affecting TLR4 signaling. Hypoxia also inhibited LPS-induced IL-6 and IL-8 secretion, myeloid differentiation primary response gene (88

  1. A novel pro-inflammatory protein of Streptococcus suis 2 induces the Toll-like receptor 2-dependent expression of pro-inflammatory cytokines in RAW 264.7 macrophages via activation of ERK1/2 pathway

    PubMed Central

    Zhang, Qiang; Yang, Yujie; Yan, Shuxian; Liu, Jiantao; Xu, Zhongmin; Yu, Junping; Song, Yajing; Zhang, Anding; Jin, Meilin

    2015-01-01

    Streptococcus suis 2 is an important swine pathogen and an emergent zoonotic pathogen. Excessive inflammation caused by S. suis is responsible for the high levels of early mortality observed in septic shock-like syndrome cases. However, the mechanisms through which S. suis 2 (SS2) causes excessive inflammation remain unclear. Thus, this study aimed to identify novel pro-inflammatory mediators that play important roles in the development of therapies against SS2 infection. In this study, the novel pro-inflammatory protein HP0459, which was encoded by the SSUSC84_0459 gene, was discovered. The stimulation of RAW 264.7 macrophages with recombinant HP0459 protein induced the expression of pro-inflammatory cytokines (IL-1β, MCP-1 and TNF-α). Compared with the wild-type (WT) strain, the isogenic knockout of HP0459 in SS2 led to reduced production of pro-inflammatory cytokines in RAW264.7 macrophages and in vivo. The pro-inflammatory activity of HP0459 was significantly reduced by an antibody against Toll-like receptor 2 (TLR2) in RAW264.7 macrophages and was lower in TLR2-deficient (TLR2-/-) macrophages than in WT macrophages. Furthermore, specific inhibitors of the extracellular signal-regulated kinase 1/2 (ERK1/2) pathways significantly decreased the HP0459-induced pro-inflammatory cytokine production, and a western blot assay showed that HP0459 stimulation induced the activation of the ERK1/2 pathway. Taken together, our data indicate that HP0459 is a novel pro-inflammatory mediator of SS2 and induces TLR2-dependent pro-inflammatory activity in RAW264.7 macrophages through the ERK1/2 pathway. PMID:25806027

  2. Toll-Like Receptor 2 Activation by Chlamydia trachomatis Is Plasmid Dependent, and Plasmid-Responsive Chromosomal Loci Are Coordinately Regulated in Response to Glucose Limitation by C. trachomatis but Not by C. muridarum▿

    PubMed Central

    O'Connell, Catherine M.; AbdelRahman, Yasser M.; Green, Erin; Darville, Hillary K.; Saira, Kazima; Smith, Bennett; Darville, Toni; Scurlock, Amy M.; Meyer, Christopher R.; Belland, Robert J.

    2011-01-01

    We previously demonstrated that plasmid-deficient Chlamydia muridarum retains the ability to infect the murine genital tract but does not elicit oviduct pathology because it fails to activate Toll-like receptor 2 (TLR2). We derived a plasmid-cured derivative of the human genital isolate Chlamydia trachomatis D/UW-3/Cx, strain CTD153, which also fails to activate TLR2, indicating this virulence phenotype is associated with plasmid loss in both C. trachomatis and C. muridarum. As observed with plasmid-deficient C. muridarum, CTD153 displayed impaired accumulation of glycogen within inclusions. Transcriptional profiling of the plasmid-deficient strains by using custom microarrays identified a conserved group of chromosomal loci, the expression of which was similarly controlled in plasmid-deficient C. muridarum strains CM972 and CM3.1 and plasmid-deficient C. trachomatis CTD153. However, although expression of glycogen synthase, encoded by glgA, was greatly reduced in CTD153, it was unaltered in plasmid-deficient C. muridarum strains. Thus, additional plasmid-associated factors are required for glycogen accumulation by this chlamydial species. Furthermore, in C. trachomatis, glgA and other plasmid-responsive chromosomal loci (PRCLs) were transcriptionally responsive to glucose limitation, indicating that additional regulatory elements may be involved in the coordinated expression of these candidate virulence effectors. Glucose-limited C. trachomatis displayed reduced TLR2 stimulation in an in vitro assay. During human chlamydial infection, glucose limitation may decrease chlamydial virulence through its effects on plasmid-responsive chromosomal genes. PMID:21199910

  3. Toll-like receptor 2 activation by Chlamydia trachomatis is plasmid dependent, and plasmid-responsive chromosomal loci are coordinately regulated in response to glucose limitation by C. trachomatis but not by C. muridarum.

    PubMed

    O'Connell, Catherine M; AbdelRahman, Yasser M; Green, Erin; Darville, Hillary K; Saira, Kazima; Smith, Bennett; Darville, Toni; Scurlock, Amy M; Meyer, Christopher R; Belland, Robert J

    2011-03-01

    We previously demonstrated that plasmid-deficient Chlamydia muridarum retains the ability to infect the murine genital tract but does not elicit oviduct pathology because it fails to activate Toll-like receptor 2 (TLR2). We derived a plasmid-cured derivative of the human genital isolate Chlamydia trachomatis D/UW-3/Cx, strain CTD153, which also fails to activate TLR2, indicating this virulence phenotype is associated with plasmid loss in both C. trachomatis and C. muridarum. As observed with plasmid-deficient C. muridarum, CTD153 displayed impaired accumulation of glycogen within inclusions. Transcriptional profiling of the plasmid-deficient strains by using custom microarrays identified a conserved group of chromosomal loci, the expression of which was similarly controlled in plasmid-deficient C. muridarum strains CM972 and CM3.1 and plasmid-deficient C. trachomatis CTD153. However, although expression of glycogen synthase, encoded by glgA, was greatly reduced in CTD153, it was unaltered in plasmid-deficient C. muridarum strains. Thus, additional plasmid-associated factors are required for glycogen accumulation by this chlamydial species. Furthermore, in C. trachomatis, glgA and other plasmid-responsive chromosomal loci (PRCLs) were transcriptionally responsive to glucose limitation, indicating that additional regulatory elements may be involved in the coordinated expression of these candidate virulence effectors. Glucose-limited C. trachomatis displayed reduced TLR2 stimulation in an in vitro assay. During human chlamydial infection, glucose limitation may decrease chlamydial virulence through its effects on plasmid-responsive chromosomal genes. PMID:21199910

  4. The Toll-like receptor 2 (TLR2) ligand FSL-1 is internalized via the clathrin-dependent endocytic pathway triggered by CD14 and CD36 but not by TLR2

    PubMed Central

    Shamsul, Haque M; Hasebe, Akira; Iyori, Mitsuhiro; Ohtani, Makoto; Kiura, Kazuto; Zhang, Diya; Totsuka, Yasunori; Shibata, Ken- ichiro

    2010-01-01

    Little is known of how Toll-like receptor (TLR) ligands are processed after recognition by TLRs. This study was therefore designed to investigate how the TLR2 ligand FSL-1 is processed in macrophages after recognition by TLR2. FSL-1 was internalized into the murine macrophage cell line, RAW264.7. Both chlorpromazine and methyl-β-cyclodextrin, which inhibit clathrin-dependent endocytosis, reduced FSL-1 uptake by RAW264.7 cells in a dose-dependent manner but nystatin, which inhibits caveolae- and lipid raft-dependent endocytosis, did not. FSL-1 was co-localized with clathrin but not with TLR2 in the cytosol of RAW264.7 cells. These results suggest that internalization of FSL-1 is clathrin dependent. In addition, FSL-1 was internalized by peritoneal macrophages from TLR2-deficient mice. FSL-1 was internalized by human embryonic kidney 293 cells transfected with CD14 or CD36 but not by the non-transfected cells. Also, knockdown of CD14 or CD36 in the transfectants reduced FSL-1 uptake. In this study, we suggest that (i) FSL-1 is internalized into macrophages via a clathrin-dependent endocytic pathway, (ii) the FSL-1 uptake by macrophages occurs irrespective of the presence of TLR2, and (iii) CD14 and CD36 are responsible for the internalization of FSL-1. PMID:20113368

  5. [TOLL-LIKE RECEPTORS IN COSMONAUT'S PERIPHERAL BLOOD CELLS AFTER LONG-DURATION MISSIONS TO THE INTERNATIONAL SPACE STATION].

    PubMed

    Berendeeva, T A; Ponomarev, S A; Antropova, E N; Rykova, M P

    2015-01-01

    Studies of Toll-like receptors (TLR) in 20 cosmonauts-members of long-duration (124-199-day) missions to the International space station evidenced changes in relative and absolute counts of peripheral blood monocytes with TLR2, TLR4 and TLR6 on the surface, expression of TLR2 and TLR6 genes, and genes of molecules involved in the TLR signaling pathway and TLR-related NF-KB-, JNK/p38- and IRF pathways on the day of return to Earth. The observed changes displayed individual variability. PMID:26934790

  6. Toll-like receptor 4 is involved in the cell cycle modulation and required for effective human cytomegalovirus infection in THP-1 macrophages

    SciTech Connect

    Arcangeletti, Maria-Cristina; Germini, Diego; Rodighiero, Isabella; Mirandola, Prisco; De Conto, Flora; Medici, Maria-Cristina; Gatti, Rita; Chezzi, Carlo; Calderaro, Adriana

    2013-05-25

    Suitable host cell metabolic conditions are fundamental for the effective development of the human cytomegalovirus (HCMV) lytic cycle. Indeed, several studies have demonstrated the ability of this virus to interfere with cell cycle regulation, mainly by blocking proliferating cells in G1 or G1/S. In the present study, we demonstrate that HCMV deregulates the cell cycle of THP-1 macrophages (a cell line irreversibly arrested in G0) by pushing them into S and G2 phases. Moreover, we show that HCMV infection of THP-1 macrophages leads to Toll-like receptor 4 (TLR4) activation. Since various studies have indicated TLR4 to be involved in promoting cell proliferation, here we investigate the possible role of TLR4 in the observed HCMV-induced cell cycle perturbation. Our data strongly support TLR4 as a mediator of HCMV-triggered cell cycle activation in THP-1 macrophages favouring, in turn, the development of an efficient viral lytic cycle. - Highlights: ► We studied HCMV infection impact on THP-1 macrophage cell cycle. ► We analysed the role played by Toll-like receptor (TLR) 4 upon HCMV infection. ► HCMV pushes THP-1 macrophages (i.e. resting cells) to re-enter the cell cycle. ► TLR4 pathway inhibition strongly affects the effectiveness of HCMV replication. ► TLR4 pathway inhibition significantly decreases HCMV-induced cell cycle re-entry.

  7. Mycoplasma bovis-derived lipid-associated membrane proteins activate IL-1β production through the NF-κB pathway via toll-like receptor 2 and MyD88.

    PubMed

    Wang, Yang; Liu, Suli; Li, Yuan; Wang, Qi; Shao, Jiari; Chen, Ying; Xin, Jiuqing

    2016-02-01

    Mycoplasma bovis causes pneumonia, otitis media, and arthritis in young calves, resulting in economic losses to the cattle industry worldwide. M. bovis pathogenesis results in part from excessive immune responses. Lipid-associated membrane proteins (LAMPs) can potently induce host innate immunity. However, interactions between M. bovis-derived LAMPs and Toll-like receptors (TLRs), or signaling pathways eliciting active inflammation and NF-κB activation, are incompletely understood. Here, we found that IL-1β expression was induced in embryonic bovine lung (EBL) cells stimulated with M. bovis-derived LAMPs. Subcellular-localization analysis revealed nuclear p65 translocation following EBL cell stimulation with M. bovis-derived LAMPs. An NF-κB inhibitor reversed M. bovis-derived LAMP-induced IL-1β expression. TLR2 and myeloid differentiation primary response gene 88 (MyD88) overexpression increased LAMP-dependent IL-1β induction. TLR2-neutralizing antibodies reduced IL-1β expression during LAMP stimulation. LAMPs also inhibited IL-1β expression following overexpression of a dominant-negative MyD88 protein. These results suggested that M. bovis-derived LAMPs activate IL-1β production through the NF-κB pathway via TLR2 and MyD88. PMID:26499291

  8. Plasmacytoid dendritic cell precursors/type I interferon-producing cells sense viral infection by Toll-like receptor (TLR) 7 and TLR9.

    PubMed

    Ito, Tomoki; Wang, Yui-Hsi; Liu, Yong-Jun

    2005-01-01

    Plasmacytoid dendritic cell (pDC) precursors, also called type I IFN (alpha/beta/omega)-producing cells (IPCs), are the key effectors in the innate immune system because of their extraordinary capacity to produce type I IFNs against microbial infection, particularly viral infection. In contrast to myeloid DCs, human pDC/IPCs selectively express Toll-like receptor (TLR) 7 and TLR9 within the endosomal compartment. These receptors are specifically designed to recognize the nucleoside-based products derived from RNA viruses and DNA viruses. Therefore, this expression profile potentially enables pDC/IPCs to sense a variety of viruses. Stimulation of TLR7 or TLR9 leads to type I IFN responses through the MyD88 pathway. Thus, pDC/IPCs may play a central role in host defense against viral infection through the TLR7 and TLR9 system. PMID:15592841

  9. Heme-Mediated Induction of CXCL10 and Depletion of CD34+ Progenitor Cells Is Toll-Like Receptor 4 Dependent

    PubMed Central

    Dickinson-Copeland, Carmen M.; Wilson, Nana O.; Liu, Mingli; Driss, Adel; Salifu, Hassana; Adjei, Andrew A.; Wilson, Michael; Gyan, Ben; Oduro, Daniel; Badu, Kingsley; Botchway, Felix; Anderson, Winston; Bond, Vincent; Bacanamwo, Methode; Singh, Shailesh; Stiles, Jonathan K.

    2015-01-01

    Plasmodium falciparum infection can cause microvascular dysfunction, cerebral encephalopathy and death if untreated. We have previously shown that high concentrations of free heme, and C-X-C motif chemokine 10 (CXCL10) in sera of malaria patients induce apoptosis in microvascular endothelial and neuronal cells contributing to vascular dysfunction, blood-brain barrier (BBB) damage and mortality. Endothelial progenitor cells (EPC) are microvascular endothelial cell precursors partly responsible for repair and regeneration of damaged BBB endothelium. Studies have shown that EPC’s are depleted in severe malaria patients, but the mechanisms mediating this phenomenon are unknown. Toll-like receptors recognize a wide variety of pathogen-associated molecular patterns generated by pathogens such as bacteria and parasites. We tested the hypothesis that EPC depletion during malaria pathogenesis is a function of heme-induced apoptosis mediated by CXCL10 induction and toll-like receptor (TLR) activation. Heme and CXCL10 concentrations in plasma obtained from malaria patients were elevated compared with non-malaria subjects. EPC numbers were significantly decreased in malaria patients (P < 0.02) and TLR4 expression was significantly elevated in vivo. These findings were confirmed in EPC precursors in vitro; where it was determined that heme-induced apoptosis and CXCL10 expression was TLR4-mediated. We conclude that increased serum heme mediates depletion of EPC during malaria pathogenesis. PMID:26555697

  10. Selective utilization of Toll-like receptor and MyD88 signaling in B cells for enhancement of the anti-viral germinal center response

    PubMed Central

    Hou, Baidong; Saudan, Philippe; Ott, Gary; Wheeler, Matthew L.; Ji, Ming; Kuzmich, Lili; Lee, Linda M.; Coffman, Robert L.; Bachmann, Martin F.; DeFranco, Anthony L.

    2011-01-01

    Summary The contribution of Toll-like receptor (TLR) signaling to T cell-dependent (TD) antibody responses was assessed by using mice lacking the TLR signaling adaptor MyD88 in individual cell types. When a soluble TLR9 ligand was used as adjuvant for a protein antigen, MyD88 was required in dendritic cells but not in B cells to enhance the TD antibody response, regardless of the inherent immunogenicity of the antigen. In contrast, a TLR9 ligand contained within a virus-like particle substantially augmented the TD germinal center IgG antibody response, and this augmentation required B cell MyD88. The ability of B cells to discriminate between antigens based the physical form of a TLR ligand likely reflects an adaptation to facilitate strong anti-viral antibody responses. PMID:21353603

  11. Cell line donor genotype and its influence on experimental phenotype: Toll-like receptor SNPs and potential variability in innate immunity.

    PubMed

    Tokarz, Sara A; DeValk, Jessica; Luo, Wenxiang; Pattnaik, Bikash R; Schrodi, Steven J; Pillers, De-Ann M

    2016-07-01

    Cell lines are used to model a disease and provide valuable information regarding phenotype, mechanism, and response to novel therapies. Derived from individuals of diverse genetic backgrounds, the cell's genetic complement predicts the phenotype, and although some lines have been sequenced, little emphasis has been placed on genotyping. Toll-like receptors (TLRs) are essential in initiating the inflammatory cascade in response to infection. TLR single nucleotide polymorphism (SNP) alleles may predict an altered innate immune response: a SNP can affect TLR-dependent pathways and may alter experimental results. Thus, genotype variation may have far-reaching implications when using cell lines to model phenotypes. We recommend that cell lines be genotyped and cataloged in a fashion similar to that used for bacteria, with cumulative information being archived in an accessible central database to facilitate the understanding of SNP cell phenotypes reported in the literature. PMID:27324283

  12. Glioma Stem Cells but Not Bulk Glioma Cells Upregulate IL-6 Secretion in Microglia/Brain Macrophages via Toll-like Receptor 4 Signaling.

    PubMed

    a Dzaye, Omar Dildar; Hu, Feng; Derkow, Katja; Haage, Verena; Euskirchen, Philipp; Harms, Christoph; Lehnardt, Seija; Synowitz, Michael; Wolf, Susanne A; Kettenmann, Helmut

    2016-05-01

    Peripheral macrophages and resident microglia constitute the dominant glioma-infiltrating cells. The tumor induces an immunosuppressive and tumor-supportive phenotype in these glioma-associated microglia/brain macrophages (GAMs). A subpopulation of glioma cells acts as glioma stem cells (GSCs). We explored the interaction between GSCs and GAMs. Using CD133 as a marker of stemness, we enriched for or deprived the mouse glioma cell line GL261 of GSCs by fluorescence-activated cell sorting (FACS). Over the same period of time, 100 CD133(+ )GSCs had the capacity to form a tumor of comparable size to the ones formed by 10,000 CD133(-) GL261 cells. In IL-6(-/-) mice, only tumors formed by CD133(+ )cells were smaller compared with wild type. After stimulation of primary cultured microglia with medium from CD133-enriched GL261 glioma cells, we observed an selective upregulation in microglial IL-6 secretion dependent on Toll-like receptor (TLR) 4. Our results show that GSCs, but not the bulk glioma cells, initiate microglial IL-6 secretion via TLR4 signaling and that IL-6 regulates glioma growth by supporting GSCs. Using human glioma tissue, we could confirm the finding that GAMs are the major source of IL-6 in the tumor context. PMID:27030742

  13. A peptide tetramer Tk-tPN induces tolerance of cardiac allografting by conversion of type 1 to type 2 immune responses via the Toll-like receptor 2 signal-promoted activation of the MCP1 gene.

    PubMed

    Li, Zuoqing; Yang, Neng; Zhou, Ling; Gu, Peng; Wang, Hui; Zhou, Yun; Zhou, Peijun; Lu, Liming; Chou, Kuang-Yen

    2016-03-01

    The plant protein trichosanthin (Tk) and its derived peptide tetramer Tk-tPN have been shown to stimulate the type 2 immune responses for treating autoimmune disease. This work explores the possibility of using Tk-tPN as a non-toxic immunosuppressant to induce transplantation tolerance using the mechanisms by which T-cell-mediated immune responses are transferred from type 1 to type 2 through innate immunity-related pathways. Immunocytes and cytokine secretions involved in the mouse cardiac allografting model with Tk-tPN treatment were characterized. Identification of critical genes and analysis of their functions through Toll-like receptor (TLR) -initiated signalling and the possible epigenetic changes were performed. Mean survival times of the cardiac allografts were delayed from 7.7 ± 0.3 days (control) to 22.7 ± 3.9 days (P < 0.01) or 79.1 ± 19.2 days (P < 0.0001) when Tk-tPN was introduced into the recipients alone or together with rapamycin, respectively. The grafting tolerance was donor-specific. The secretion pattern of the type 1 cytokine/transcription factor (IL-2(+) IFN-γ(+) T-bet(+)), which is responsible for the acute graft rejection, was shifted to the type 2 factor (IL-4(+) IL-10(+) Gata3+), together with a selective expansion of the IL-4/IL-10-producing CD8+ CD28- regulatory T-cell subset. A TLR2-initiated high expression of chemokine gene MCP1 was detectable simultaneously. Epigenetically Tk/Tk-tPN could also acetylate the histone H3K9 of MCP1 promoter to skew the immunity towards T helper type 2 responses. Tk/Tk-tPN is therefore capable of down-regulating the type 1 response-dominant rejection of cardiac allografts by evoking type 2 immunity through the activation of a TLR2-initiated signalling pathway and MCP1 gene to expand the IL-4/IL-10-secreting CD8+ CD28- regulatory T cells. Tk-tPN could be a promising novel immunosuppressant to induce tolerance in allotransplantation. PMID:26694804

  14. Recognition of Corynebacterium pseudodiphtheriticum by Toll-like receptors and up-regulation of antimicrobial peptides in human corneal epithelial cells

    PubMed Central

    Roy, Sanhita; Marla, Sushma; Praneetha, DC

    2015-01-01

    Bacterial keratitis is a major cause of corneal ulcers in developing and industrialized nations. In this study, we examined the host innate immune responses to Corynebacterium pseudodiphtheriticum, often overlooked as commensal, in human corneal epithelial cells. The expressions of innate immune mediators were determined by quantitative PCR from corneal ulcers of patients and immortalized human corneal epithelial cells (HCEC). We have found an elevated expression of Toll like receptors (TLRs) along with IL-6 and IL-1β from both ulcers and epithelial cells infected with C. pseudodiphtheriticum. Activation of NF-κB and MAPK signaling pathways were also observed in HCEC in response to C. pseudodiphtheriticum. In addition, we found a significant increase in the expression of antimicrobial peptides S100A8, S100A9 and human β-defensin 1 from both corneal ulcers and HCEC. PMID:26125127

  15. Toll-like receptor ligands sensitize B-cell receptor signalling by reducing actin-dependent spatial confinement of the receptor

    PubMed Central

    Freeman, Spencer A.; Jaumouillé, Valentin; Choi, Kate; Hsu, Brian E.; Wong, Harikesh S.; Abraham, Libin; Graves, Marcia L.; Coombs, Daniel; Roskelley, Calvin D.; Das, Raibatak; Grinstein, Sergio; Gold, Michael R.

    2015-01-01

    Integrating signals from multiple receptors allows cells to interpret the physiological context in which a signal is received. Here we describe a mechanism for receptor crosstalk in which receptor-induced increases in actin dynamics lower the threshold for signalling by another receptor. We show that the Toll-like receptor ligands lipopolysaccharide and CpG DNA, which are conserved microbial molecules, enhance signalling by the B-cell antigen receptor (BCR) by activating the actin-severing protein cofilin. Single-particle tracking reveals that increased severing of actin filaments reduces the spatial confinement of the BCR within the plasma membrane and increases BCR mobility. This allows more frequent collisions between BCRs and greater signalling in response to low densities of membrane-bound antigen. These findings implicate actin dynamics as a means of tuning receptor signalling and as a mechanism by which B cells distinguish inert antigens from those that are accompanied by indicators of microbial infection. PMID:25644899

  16. Aspergillus fumigatus-induced Interleukin-8 Synthesis by Respiratory Epithelial Cells Is Controlled by the Phosphatidylinositol 3-Kinase, p38 MAPK, and ERK1/2 Pathways and Not by the Toll-like Receptor-MyD88 Pathway*

    PubMed Central

    Balloy, Viviane; Sallenave, Jean-Michel; Wu, Yongzheng; Touqui, Lhousseine; Latgé, Jean-Paul; Si-Tahar, Mustapha; Chignard, Michel

    2008-01-01

    Previous studies have established that phagocytes are key cells of the pulmonary innate immune defense against A. fumigatus, an opportunistic fungus responsible of invasive pulmonary aspergillosis. Macrophages detect A. fumigatus via Toll-like receptors 2 and 4 (TLR2 and -4) and respond by the MyD88-NF-κB-dependent synthesis of inflammatory mediators. In the present study, we demonstrate that respiratory epithelial cells also sense A. fumigatus and participate in the host defense. Thus, the interaction of respiratory epithelial cells with germinating but not resting conidia of A. fumigatus results in interleukin (IL)-8 synthesis that is controlled by phosphatidylinositol 3-kinase, p38 MAPK, and ERK1/2. Using MyD88-dominant negative transfected cells, we also show that IL-8 production is not dependent on the TLR-MyD88 pathway, although the MyD88 pathway is activated by A. fumigatus and leads to NF-κB activation. Thus, our results provide evidence for the existence of two independent signaling pathways activated in respiratory epithelial cells by A. fumigatus, one that is MyD88-dependent and another that is My88-independent and involved in IL-8 synthesis. PMID:18703508

  17. Aspergillus fumigatus-induced interleukin-8 synthesis by respiratory epithelial cells is controlled by the phosphatidylinositol 3-kinase, p38 MAPK, and ERK1/2 pathways and not by the toll-like receptor-MyD88 pathway.

    PubMed

    Balloy, Viviane; Sallenave, Jean-Michel; Wu, Yongzheng; Touqui, Lhousseine; Latgé, Jean-Paul; Si-Tahar, Mustapha; Chignard, Michel

    2008-11-01

    Previous studies have established that phagocytes are key cells of the pulmonary innate immune defense against A. fumigatus, an opportunistic fungus responsible of invasive pulmonary aspergillosis. Macrophages detect A. fumigatus via Toll-like receptors 2 and 4 (TLR2 and -4) and respond by the MyD88-NF-kappaB-dependent synthesis of inflammatory mediators. In the present study, we demonstrate that respiratory epithelial cells also sense A. fumigatus and participate in the host defense. Thus, the interaction of respiratory epithelial cells with germinating but not resting conidia of A. fumigatus results in interleukin (IL)-8 synthesis that is controlled by phosphatidylinositol 3-kinase, p38 MAPK, and ERK1/2. Using MyD88-dominant negative transfected cells, we also show that IL-8 production is not dependent on the TLR-MyD88 pathway, although the MyD88 pathway is activated by A. fumigatus and leads to NF-kappaB activation. Thus, our results provide evidence for the existence of two independent signaling pathways activated in respiratory epithelial cells by A. fumigatus, one that is MyD88-dependent and another that is My88-independent and involved in IL-8 synthesis. PMID:18703508

  18. Pseudomonas aeruginosa mannose-sensitive hemagglutinin promotes T-cell response via toll-like receptor 4-mediated dendritic cells to slow tumor progression in mice.

    PubMed

    Zhang, Min; Luo, Feifei; Zhang, Yufei; Wang, Luman; Lin, Wei; Yang, Mengxuan; Hu, Dali; Wu, Xiaofeng; Chu, Yiwei

    2014-05-01

    Pseudomonas aeruginosa-mannose-sensitive hemagglutinin (PA-MSHA) as a drug may kill tumor cells and has been used clinically. However, the antitumor immune response of PA-MSHA is not completely understood. In this study, we found that treating Lewis lung carcinoma (3LL)-bearing mice with PA-MSHA plus 3LL antigen led to slower tumor progression and longer survival. After PA-MSHA treatment, T-cell number and dendritic cell maturation were both increased significantly at the tumor site. In addition, PA-MSHA in vitro stimulation resulted in the maturation of bone marrow-derived dendritic cells (BMDCs) from naive mice, showing higher costimulatory molecule expression, more cytokine secretion, lower endocytic activity, and stronger capacity to enhance T-cell activation. Toll-like receptor (TLR)4 but not TLR2 was required in the maturation process. More importantly, PA-MSHA-induced DCs were essential for PA-MSHA to enhance activation, expansion, and interferon (IFN)-γ secretion of TLR4-mediated T cells, which play a role in the antitumor effect of PA-MSHA. Thus, this study reveals PA-MSHA as a novel TLR4 agonist that elicits antitumor immune response to slow tumor progression. PMID:24623801

  19. Quercetin Suppresses the Migration and Invasion in Human Colon Cancer Caco-2 Cells Through Regulating Toll-like Receptor 4/Nuclear Factor-kappa B Pathway

    PubMed Central

    Han, Mingyang; Song, Yucheng; Zhang, Xuedong

    2016-01-01

    Objective: The migration and invasion features, which were associated with inflammatory response, acted as vital roles in the development of colon cancer. Quercetin, a bioflavonoid compound, was widely spread in vegetables and fruits. Although quercetin exerts antioxidant and anticancer activities, the molecular signaling pathways in human colon cancer cells remain unclear. Hence, the present study was conducted to investigate the suppression of quercetin on migratory and invasive activity of colon cancer and the underlying mechanism. Materials and Methods: The effect of quercetin on cell viability, migration, and invasion of Caco-2 cells was analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, wound-healing assay, and transwell chambers assay, respectively. The protein expressions of toll-like receptor 4 (TLR4), nuclear factor-kappa B (NF-κB) p65, mitochondrial membrane potential-2 (MMP-2), and MMP-9 were detected by Western blot assay. The inflammatory factors, such as tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (Cox-2), and interleukin-6 (IL-6), in cell supernatant were detected by enzyme-linked immunosorbent assay. Results: The concentration of quercetin <20 μM was chosen for further experiments. Quercetin (5 μM) could remarkably suppress the migratory and invasive capacity of Caco-2 cells. The expressions of metastasis-related proteins of MMP-2, MMP-9 were decreased, whereas the expression of E-cadherin protein was increased by quercetin in a dose-dependent manner. Interestingly, the anti-TLR4 (2 μg) antibody or pyrrolidine dithiocarbamate (PDTC; 1 μM) could affect the inhibition of quercetin on cell migration and invasion, as well as the protein expressions of MMP-2, MMP-9, E-cadherin, TLR4, and NF-κB p65. In addition, quercetin could reduce the inflammation factors production of TNF-α, Cox-2, and IL-6. Conclusion: The findings suggested for the 1st time that quercetin might exert its anticolon cancer activity via

  20. Bone Components Downregulate Expression of Toll-Like Receptor 4 on the Surface of Human Monocytic U937 Cells: A Cell Model for Postfracture Immune Dysfunction

    PubMed Central

    Lin, Jui-An; Lin, Feng-Yen; Chen, Ta-Liang

    2015-01-01

    To mimic the immune status of monocyte in the localized fracture region, toll-like receptor 4 (TLR4) surface expression in human monocytic U937 cells was used as the main target to assess immune dysfunction following bone component exposure. We first identified the effects of bone components (including the marrow content) on TLR4 surface expression and then examined the mechanisms underlying the changes. The level of microRNA-146a expression, an indicator of endotoxin tolerance, was also assayed. Bone component exposure downregulated TLR4 surface expression at 24 h by flow cytometry analysis, compatible with the result obtained from the membranous portion of TLR4 by western blot analysis. The cytoplasmic portion of TLR4 paradoxically increased after bone component exposure. Impaired TLR4 trafficking from the cytoplasm to the membrane was related to gp96 downregulation, as observed by western blot analysis, and this was further evidenced by gp96-TLR4 colocalization under confocal microscopy. TaqMan analysis revealed that the expression of microRNA-146a was also upregulated. This cell model demonstrated that bone component exposure downregulated TLR4 surface expression in a gp96-related manner in human monocytic U937 cells, an indicator of immunosuppression at 24 h. Immune dysfunction was further evidenced by upregulation of microRNA-146a expression at the same time point. PMID:26273144

  1. Toll-Like Receptor (TLR)-1/2 Triggering of Multiple Myeloma Cells Modulates Their Adhesion to Bone Marrow Stromal Cells and Enhances Bortezomib-Induced Apoptosis

    PubMed Central

    Abdi, Jahangir; Mutis, Tuna; Garssen, Johan; Redegeld, Frank A.

    2014-01-01

    In multiple myeloma (MM), the malignant plasma cells usually localize to the bone marrow where they develop drug resistance due to adhesion to stromal cells and various environmental signals. Hence, modulation of this interaction is expected to influence drug sensitivity of MM cells. Toll-like receptor (TLR) ligands have displayed heterogeneous effects on B-cell malignancies and also on MM cells in a few recent studies, but effects on adhesion and drug sensitivity of myeloma cells in the context of bone marrow stromal cells (BMSCs) have never been investigated. In the present study, we explored the modulatory effects of TLR1/2 ligand (Pam3CSK4) on adhesion of human myeloma cells to BMSCs. It is shown that TLR1/2 triggering has opposite effects in different HMCLs on their adhesion to BMSCs. Fravel, L363, UM-6, UM-9 and U266 showed increased adhesion to BMSC in parallel with an increased surface expression of integrin molecules α4 and αVβ3. OPM-1, OPM-2 and NCI-H929 showed a dose-dependent decrease in adhesion upon TLR activation following a downregulation of β7 integrin expression. Importantly, TLR1/2 triggering increased cytotoxic and apoptotic effects of bortezomib in myeloma cells independent of the effect on stromal cell adhesion. Moreover, the apoptosis-enhancing effect of Pam3CSK4 paralleled induction of cleaved caspase-3 protein in FACS analysis suggesting a caspase-dependent mechanism. Our findings uncover a novel role of TLR activation in MM cells in the context of bone marrow microenvironment. Stimulation of TLR1/2 bypasses the protective shield of BMSCs and may be an interesting strategy to enhance drug sensitivity of multiple myeloma cells. PMID:24794258

  2. Toll-like Receptors and B-cell Receptors Synergize to Induce Immunoglobulin Class Switch DNA Recombination: Relevance to Microbial Antibody Responses

    PubMed Central

    Pone, Egest J.; Zan, Hong; Zhang, Jinsong; Al-Qahtani, Ahmed; Xu, Zhenming; Casali, Paolo

    2011-01-01

    Differentiation of naïve B cells, including immunoglobulin (Ig) class switch DNA recombination (CSR), is critical for the immune response and depends on the extensive integration of signals from the B cell receptor (BCR), tumor necrosis factor (TNF) receptor family members, Toll-like receptors (TLRs) and cytokine receptors. TLRs and BCR synergize to induce CSR in T cell-dependent and T cell-independent antibody responses to microbial pathogens. BCR triggering together with simultaneous endosomal TLR engagement leads to enhanced B cell differentiation and antibody responses. The requirement of both BCR and TLR engagement would ensure appropriate antigen-specific activation in an infection. Co-stimulation of TLRs and BCR likely plays a significant role in anti-microbial antibody responses to contain pathogen loads until the T cell-dependent antibody responses peak. Furthermore, the temporal sequence of different signals is also critical for optimal B cell responses, as exemplified by the activation of B cells by initial TLR engagement, leading to the upregulation of co-stimulatory CD80 and MHC-II receptors, which, in turn, result in more efficient interactions with T cells, thereby enhancing the germinal center (GC) reaction and antibody affinity maturation. Overall, BCR and TLR stimulation and the integration with signals from the pathogen or immune cells and their products, determine the ensuing B cell antibody response. PMID:20370617

  3. Control of Toll-like Receptor-mediated T Cell-independent Type 1 Antibody Responses by the Inducible Nuclear Protein IκB-ζ*

    PubMed Central

    Hanihara-Tatsuzawa, Fumito; Miura, Hanae; Kobayashi, Shuhei; Isagawa, Takayuki; Okuma, Atsushi; Manabe, Ichiro; MaruYama, Takashi

    2014-01-01

    Antibody responses have been classified as being either T cell-dependent or T cell-independent (TI). TI antibody responses are further classified as being either type 1 (TI-1) or type 2 (TI-2), depending on their requirement for B cell-mediated antigen receptor signaling. Although the mechanistic basis of antibody responses has been studied extensively, it remains unclear whether different antibody responses share similarities in their transcriptional regulation. Here, we show that mice deficient in IκB-ζ, specifically in their B cells, have impaired TI-1 antibody responses but normal T cell-dependent and TI-2 antibody responses. The absence of IκB-ζ in B cells also impaired proliferation triggered by Toll-like receptor (TLR) activation, plasma cell differentiation, and class switch recombination (CSR). Mechanistically, IκB-ζ-deficient B cells could not induce TLR-mediated induction of activation-induced cytidine deaminase (AID), a class-switch DNA recombinase. Retroviral transduction of AID in IκB-ζ-deficient B cells restored CSR activity. Furthermore, acetylation of histone H3 in the vicinity of the transcription start site of the gene that encodes AID was reduced in IκB-ζ-deficient B cells relative to IκB-ζ-expressing B cells. These results indicate that IκB-ζ regulates TLR-mediated CSR by inducing AID. Moreover, IκB-ζ defines differences in the transcriptional regulation of different antibody responses. PMID:25124037

  4. Control of Toll-like receptor-mediated T cell-independent type 1 antibody responses by the inducible nuclear protein IκB-ζ.

    PubMed

    Hanihara-Tatsuzawa, Fumito; Miura, Hanae; Kobayashi, Shuhei; Isagawa, Takayuki; Okuma, Atsushi; Manabe, Ichiro; MaruYama, Takashi

    2014-11-01

    Antibody responses have been classified as being either T cell-dependent or T cell-independent (TI). TI antibody responses are further classified as being either type 1 (TI-1) or type 2 (TI-2), depending on their requirement for B cell-mediated antigen receptor signaling. Although the mechanistic basis of antibody responses has been studied extensively, it remains unclear whether different antibody responses share similarities in their transcriptional regulation. Here, we show that mice deficient in IκB-ζ, specifically in their B cells, have impaired TI-1 antibody responses but normal T cell-dependent and TI-2 antibody responses. The absence of IκB-ζ in B cells also impaired proliferation triggered by Toll-like receptor (TLR) activation, plasma cell differentiation, and class switch recombination (CSR). Mechanistically, IκB-ζ-deficient B cells could not induce TLR-mediated induction of activation-induced cytidine deaminase (AID), a class-switch DNA recombinase. Retroviral transduction of AID in IκB-ζ-deficient B cells restored CSR activity. Furthermore, acetylation of histone H3 in the vicinity of the transcription start site of the gene that encodes AID was reduced in IκB-ζ-deficient B cells relative to IκB-ζ-expressing B cells. These results indicate that IκB-ζ regulates TLR-mediated CSR by inducing AID. Moreover, IκB-ζ defines differences in the transcriptional regulation of different antibody responses. PMID:25124037

  5. Differential chemokine and cytokine production by neonatal bovine gamma delta T-cell subsets in response to viral toll-like receptor agonists and in vivo respiratory syncytial virus infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gamma delta T cells have recently been shown to respond to stimulation via toll like receptors (TLR). Bovine gamma delta T cells express TLR3 and TLR7, endosomal receptors that are key for the recognition of viruses such as bovine respiratory syncytial virus (BRSV); however, responses of gamma delta...

  6. Mycobacterium paratuberculosis CobT activates dendritic cells via engagement of Toll-like receptor 4 resulting in Th1 cell expansion.

    PubMed

    Byun, Eui-Hong; Kim, Woo Sik; Kim, Jong-Seok; Won, Choul-Jae; Choi, Han-Gyu; Kim, Hwa-Jung; Cho, Sang-Nae; Lee, Keehoon; Zhang, Tiejun; Hur, Gang Min; Shin, Sung Jae

    2012-11-01

    Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne disease in animals and MAP involvement in human Crohn disease has been recently emphasized. Evidence from M. tuberculosis studies suggests mycobacterial proteins activate dendritic cells (DCs) via Toll-like receptor (TLR) 4, eventually determining the fate of immune responses. Here, we investigated whether MAP CobT contributes to the development of T cell immunity through the activation of DCs. MAP CobT recognizes TLR4, and induces DC maturation and activation via the MyD88 and TRIF signaling cascades, which are followed by MAP kinases and NF-κB. We further found that MAP CobT-treated DCs activated naive T cells, effectively polarized CD4(+) and CD8(+) T cells to secrete IFN-γ and IL-2, but not IL-4 and IL-10, and induced T cell proliferation. These data indicate that MAP CobT contributes to T helper (Th) 1 polarization of the immune response. MAP CobT-treated DCs specifically induced the expansion of CD4(+)/CD8(+)CD44(high)CD62L(low) memory T cells in the mesenteric lymph node of MAP-infected mice in a TLR4-dependent manner. Our results indicate that MAP CobT is a novel DC maturation-inducing antigen that drives Th1 polarized-naive/memory T cell expansion in a TLR4-dependent cascade, suggesting that MAP CobT potentially links innate and adaptive immunity against MAP. PMID:23019321

  7. Toll-like receptor-5 agonist, entolimod, suppresses metastasis and induces immunity by stimulating an NK-dendritic-CD8+ T-cell axis.

    PubMed

    Brackett, Craig M; Kojouharov, Bojidar; Veith, Jean; Greene, Kellee F; Burdelya, Lyudmila G; Gollnick, Sandra O; Abrams, Scott I; Gudkov, Andrei V

    2016-02-16

    Activation of an anticancer innate immune response is highly desirable because of its inherent ability to generate an adaptive antitumor T-cell response. However, insufficient safety of innate immune modulators limits clinical use to topical applications. Toll-like receptor 5 (TLR5) agonists are favorably positioned as potential systemic immunotherapeutic agents because of unusual tissue specificity of expression, uniquely safe profile of induced cytokines, and antitumor efficacy demonstrated in a number of animal models. Here, we decipher the molecular and cellular events underlying the metastasis suppressive activity of entolimod, a clinical stage TLR5 agonist that activates NF-κB-, AP-1-, and STAT3-driven immunomodulatory signaling pathways specifically within the liver. Used as a single agent in murine colon and mammary metastatic cancer models, entolimod rapidly induces CXCL9 and -10 that support homing of blood-borne CXCR3-expressing NK cells to the liver predominantly through an IFN-γ signaling independent mechanism. NK cell-dependent activation of dendritic cells is followed by stimulation of a CD8(+) T-cell response, which exert both antimetastatic effect of entolimod and establishment of tumor-specific and durable immune memory. These results define systemically administered TLR5 agonists as organ-specific immunoadjuvants, enabling efficient antitumor vaccination that does not depend on identification of tumor-specific antigens. PMID:26831100

  8. Direct Toll-Like Receptor 8 signaling increases the functional avidity of human CD8+ T lymphocytes generated for adoptive T cell therapy strategies

    PubMed Central

    Chatillon, Jean-François; Hamieh, Mohamad; Bayeux, Florence; Abasq, Claire; Fauquembergue, Emilie; Drouet, Aurélie; Guisier, Florian; Latouche, Jean-Baptiste; Musette, Philippe

    2015-01-01

    Adoptive transfer of in vitro activated and expanded antigen-specific cytotoxic T lymphocytes (CTLs) is a promising therapeutic strategy for infectious diseases and cancers. Obtaining in vitro a sufficient amount of highly specific cytotoxic cells and capable of retaining cytotoxic activity in vivo remains problematic. We studied the role of Toll-Like Receptor-8 (TLR8) engagement on peripheral CTLs activated with melanoma antigen MART-1-expressing artificial antigen-presenting cells (AAPCs). After a 3-week co-culture, 3–27% of specific CTLs were consistently obtained. CTLs expressed TLR8 in the intracellular compartment and at the cell surface. Specific CTLs activated with a TLR8 agonist (CL075) 24 h before the end of the culture displayed neither any change in their production levels of molecules involved in cytotoxicity (IFN-γ, Granzyme B, and TNF-α) nor major significant change in their cell surface phenotype. However, these TLR8-stimulated lymphocytes displayed increased cytotoxic activity against specific peptide-pulsed target cells related to an increase in specific anti-melanoma CTL functional avidity. TLR8 engagement on CTLs could, therefore, be useful in different immunotherapy strategies. PMID:25866635

  9. Toll-like receptor-5 agonist, entolimod, suppresses metastasis and induces immunity by stimulating an NK-dendritic-CD8+ T-cell axis

    PubMed Central

    Brackett, Craig M.; Kojouharov, Bojidar; Veith, Jean; Greene, Kellee F.; Burdelya, Lyudmila G.; Gollnick, Sandra O.; Abrams, Scott I.; Gudkov, Andrei V.

    2016-01-01

    Activation of an anticancer innate immune response is highly desirable because of its inherent ability to generate an adaptive antitumor T-cell response. However, insufficient safety of innate immune modulators limits clinical use to topical applications. Toll-like receptor 5 (TLR5) agonists are favorably positioned as potential systemic immunotherapeutic agents because of unusual tissue specificity of expression, uniquely safe profile of induced cytokines, and antitumor efficacy demonstrated in a number of animal models. Here, we decipher the molecular and cellular events underlying the metastasis suppressive activity of entolimod, a clinical stage TLR5 agonist that activates NF-κB–, AP-1–, and STAT3–driven immunomodulatory signaling pathways specifically within the liver. Used as a single agent in murine colon and mammary metastatic cancer models, entolimod rapidly induces CXCL9 and -10 that support homing of blood-borne CXCR3-expressing NK cells to the liver predominantly through an IFN-γ signaling independent mechanism. NK cell-dependent activation of dendritic cells is followed by stimulation of a CD8+ T-cell response, which exert both antimetastatic effect of entolimod and establishment of tumor-specific and durable immune memory. These results define systemically administered TLR5 agonists as organ-specific immunoadjuvants, enabling efficient antitumor vaccination that does not depend on identification of tumor-specific antigens. PMID:26831100

  10. Synthetic high-density lipoprotein-like nanoparticles potently inhibit cell signaling and production of inflammatory mediators induced by lipopolysaccharide binding Toll-like receptor 4.

    PubMed

    Foit, Linda; Thaxton, C Shad

    2016-09-01

    Toll-like receptor 4 (TLR4) plays a critical role in the innate immune system. Stimulation of TLR4 occurs upon binding lipopolysaccharide (LPS), a component of Gram-negative bacterial cell walls. Due to the potency of the induced inflammatory response, there is a growing interest in agents that can most proximally modulate this LPS/TLR4 interaction to prevent downstream cell signaling events and the production of inflammatory mediators. Building on the natural ability of human high-density lipoprotein (HDL) to bind LPS, we synthesized a suite of HDL-like nanoparticles (HDL-like NP). We identified one HDL-like NP that was particularly effective at decreasing TLR4 signaling caused by addition of purified LPS or Gram-negative bacteria to model human cell lines or primary human peripheral blood cells. The HDL-like NP functioned to inhibit TLR4-dependent inflammatory response to LPS derived from multiple bacterial species. Mechanistically, data show that the NP mainly functions by scavenging and neutralizing the LPS toxin. Taken together, HDL-like NPs constitute a powerful endotoxin scavenger with the potential to significantly reduce LPS-mediated inflammation. PMID:27244690

  11. A Role for Syntaxin 3 in the Secretion of IL-6 from Dendritic Cells Following Activation of Toll-Like Receptors

    PubMed Central

    Collins, Laura E.; DeCourcey, Joseph; Rochfort, Keith D.; Kristek, Maja; Loscher, Christine E.

    2015-01-01

    The role of dendritic cells (DCs) in directing the immune response is due in part to their capacity to produce a range of cytokines. Importantly, DCs are a source of cytokines, which can promote T cell survival and T helper cell differentiation. While it has become evident that soluble-N-ethylmaleimide-sensitive-factor accessory-protein receptors (SNAREs) are involved in membrane fusion and ultimately cytokine release, little is known about which members of this family facilitate the secretion of specific cytokines from DCs. We profiled mRNA of 18 SNARE proteins in DCs in response to activation with a panel of three Toll-like receptors (TLR) ligands and show differential expression of SNAREs in response to their stimulus and subsequent secretion patterns. Of interest, STX3 mRNA was up-regulated in response to TLR4 and TLR7 activation but not TLR2 activation. This correlated with secretion of IL-6 and MIP-1α. Abolishment of STX3 from DCs by RNAi resulted in the attenuation of IL-6 levels and to some extent MIP-1α levels. Analysis of subcellular location of STX3 by confocal microscopy showed translocation of STX3 to the cell membrane only in DCs secreting IL-6 or MIP-1α, indicating a role for STX3 in trafficking of these immune mediators. Given the role of IL-6 in Th17 differentiation, these findings suggest the potential of STX3 as therapeutic target in inflammatory disease. PMID:25674084

  12. αv Integrins combine with LC3 and atg5 to regulate Toll-like receptor signalling in B cells.

    PubMed

    Acharya, Mridu; Sokolovska, Anna; Tam, Jenny M; Conway, Kara L; Stefani, Caroline; Raso, Fiona; Mukhopadhyay, Subhankar; Feliu, Marianela; Paul, Elahna; Savill, John; Hynes, Richard O; Xavier, Ramnik J; Vyas, Jatin M; Stuart, Lynda M; Lacy-Hulbert, Adam

    2016-01-01

    Integrin signalling triggers cytoskeletal rearrangements, including endocytosis and exocytosis of integrins and other membrane proteins. In addition to recycling integrins, this trafficking can also regulate intracellular signalling pathways. Here we describe a role for αv integrins in regulating Toll-like receptor (TLR) signalling by modulating intracellular trafficking. We show that deletion of αv or β3 causes increased B-cell responses to TLR stimulation in vitro, and αv-conditional knockout mice have elevated antibody responses to TLR-ligand-associated antigens. αv regulates TLR signalling by promoting recruitment of the autophagy component LC3 (microtubule-associated proteins 1 light chain 3) to TLR-containing endosomes, which is essential for progression from NF-κB to IRF signalling, and ultimately for traffic to lysosomes where signalling is terminated. Disruption of LC3 recruitment leads to prolonged NF-κB signalling and increased B-cell proliferation and antibody production. This work identifies a previously unrecognized role for αv and the autophagy components LC3 and atg5 in regulating TLR signalling and B-cell immunity. PMID:26965188

  13. αv Integrins combine with LC3 and atg5 to regulate Toll-like receptor signalling in B cells

    PubMed Central

    Acharya, Mridu; Sokolovska, Anna; Tam, Jenny M.; Conway, Kara L.; Stefani, Caroline; Raso, Fiona; Mukhopadhyay, Subhankar; Feliu, Marianela; Paul, Elahna; Savill, John; Hynes, Richard O.; Xavier, Ramnik J.; Vyas, Jatin M.; Stuart, Lynda M.; Lacy-Hulbert, Adam

    2016-01-01

    Integrin signalling triggers cytoskeletal rearrangements, including endocytosis and exocytosis of integrins and other membrane proteins. In addition to recycling integrins, this trafficking can also regulate intracellular signalling pathways. Here we describe a role for αv integrins in regulating Toll-like receptor (TLR) signalling by modulating intracellular trafficking. We show that deletion of αv or β3 causes increased B-cell responses to TLR stimulation in vitro, and αv-conditional knockout mice have elevated antibody responses to TLR-ligand-associated antigens. αv regulates TLR signalling by promoting recruitment of the autophagy component LC3 (microtubule-associated proteins 1 light chain 3) to TLR-containing endosomes, which is essential for progression from NF-κB to IRF signalling, and ultimately for traffic to lysosomes where signalling is terminated. Disruption of LC3 recruitment leads to prolonged NF-κB signalling and increased B-cell proliferation and antibody production. This work identifies a previously unrecognized role for αv and the autophagy components LC3 and atg5 in regulating TLR signalling and B-cell immunity. PMID:26965188

  14. Comparison of TNFα responses induced by Toll-like receptor ligands and probiotic Enterococcus faecium in whole blood and peripheral blood mononuclear cells of healthy dogs.

    PubMed

    Schmitz, Silke; Henrich, Manfred; Neiger, Reto; Werling, Dirk; Allenspach, Karin

    2013-05-15

    The assessment of in vitro responses of blood-derived cells has traditionally been performed with peripheral blood mononuclear cells (PBMCs). However, stimulation of whole blood (WB) has advantages: ease of experimental setup, avoidance of blood cell manipulation and lower assay cost and time. WB stimulation is widely used in human research, but only infrequently in small animals. The aim of this study was to compare the response generated in canine WB and PBMCs with Toll-like receptor ligands and probiotic bacteria using TNFα as measured endpoint. WB and PBMCs were derived from a total of 15 healthy dogs. Stimulations were performed with LPS (1ngml(-1)), Pam3CSK4 (100ngml(-1)), flagellin (1μgml(-1)) and Enterococcus faecium (EF; 1×10(7)cfuml(-1)). In 4 of the dogs, PBMC numbers were matched to the numbers of PBMCs found in WB. TNFα was detected in supernatants via ELISA. TNFα production from WB was generally higher than from PBMCs (repeated measures ANOVA p<0.0128). PBMCs produced TNFα inconsistently for all stimulants apart from EF. There was no correlation between results of WB or PBMC stimulation, similar to studies that found that humanWB cytokine production correlates with stimulating monocytes, but not PBMCs. In conclusion, WB stimulation should be considered a valid alternative to PBMC stimulation in the canine system. PMID:23507437

  15. Triggering of Toll-like receptor 4 expressed on human head and neck squamous cell carcinoma promotes tumor development and protects the tumor from immune attack.

    PubMed

    Szczepanski, Miroslaw J; Czystowska, Malgorzata; Szajnik, Marta; Harasymczuk, Malgorzata; Boyiadzis, Michael; Kruk-Zagajewska, Aleksandra; Szyfter, Witold; Zeromski, Jan; Whiteside, Theresa L

    2009-04-01

    Toll-like receptors (TLR) expressed on inflammatory cells play a key role in host defense against pathogens, benefiting the host. TLR are also expressed on tumor cells. To evaluate the role of TLR in tumor cells, we investigated TLR4 signaling effects on human head and neck squamous cell carcinoma (HNSCC). Tumor tissues were obtained from 27 patients with laryngeal and 12 with oral cavity cancers. Normal mucosa was obtained from 10 patients with nonneoplastic disorders. Smears for bacteria were taken from all patients during surgery. TLR4 expression in tumors and HNSCC cell lines (PCI-1, PCI-13, and PCI-30) was detected by reverse transcription-PCR and immunohistochemistry. Cell growth, apoptosis, nuclear factor-kappaB (NF-kappaB) translocation, and MyD88 and IRAK-4 expression, as well as Akt phosphorylation were measured following tumor cell exposure to the TLR4 ligand lipopolysaccharide (LPS). Tumor cell sensitivity to NK-92-mediated lysis was evaluated in 4-hour (51)Cr-release assays. Cytokine levels in HNSCC supernatants were measured in Luminex-based assays. TLR4 was expressed in all tumors, HNSCC cell lines, and normal mucosa. The TLR4 expression intensity correlated with tumor grade. LPS binding to TLR4 on tumor cells enhanced proliferation, activated phosphatidylinositol 3-kinase/Akt pathway, up-regulated IRAK-4 expression, induced nuclear NF-kappaB translocation, and increased production (P<0.05) of interleukin (IL)-6, IL-8, vascular endothelial growth factor, and granulocyte macrophage colony-stimulating factor. TLR4 triggering protected tumor cells from lysis mediated by NK-92 cells. TLR4 ligation on tumor cells supports HNSCC progression. PMID:19318560

  16. Triggering of Toll-like Receptor 4 Expressed on Human Head and Neck Squamous Cell Carcinoma Promotes Tumor Development and Protects the Tumor from Immune Attack

    PubMed Central

    Szczepanski, Miroslaw J.; Czystowska, Malgorzata; Szajnik, Marta; Harasymczuk, Malgorzata; Boyiadzis, Michael; Kruk-Zagajewska, Aleksandra; Szyfter, Witold; Zeromski, Jan; Whiteside, Theresa L.

    2013-01-01

    Toll-like receptors (TLR) expressed on inflammatory cells play a key role in host defense against pathogens, benefiting the host. TLR are also expressed on tumor cells. To evaluate the role of TLR in tumor cells, we investigated TLR4 signaling effects on human head and neck squamous cell carcinoma (HNSCC). Tumor tissues were obtained from 27 patients with laryngeal and 12 with oral cavity cancers. Normal mucosa was obtained from 10 patients with nonneoplastic disorders. Smears for bacteria were taken from all patients during surgery. TLR4 expression in tumors and HNSCC cell lines (PCI-1, PCI-13, and PCI-30) was detected by reverse transcription-PCR and immunohistochemistry. Cell growth, apoptosis, nuclear factor-κB (NF-κB) translocation, and MyD88 and IRAK-4 expression, as well as Akt phosphorylation were measured following tumor cell exposure to the TLR4 ligand lipopolysaccharide (LPS). Tumor cell sensitivity to NK-92–mediated lysis was evaluated in 4-hour 51Cr-release assays. Cytokine levels in HNSCC supernatants were measured in Luminex-based assays. TLR4 was expressed in all tumors, HNSCC cell lines, and normal mucosa. The TLR4 expression intensity correlated with tumor grade. LPS binding to TLR4 on tumor cells enhanced proliferation, activated phosphatidylinositol 3-kinase/Akt pathway, up-regulated IRAK-4 expression, induced nuclear NF-κB translocation, and increased production (P < 0.05) of interleukin (IL)-6, IL-8, vascular endothelial growth factor, and granulocyte macrophage colony-stimulating factor. TLR4 triggering protected tumor cells from lysis mediated by NK-92 cells. TLR4 ligation on tumor cells supports HNSCC progression. PMID:19318560

  17. Toll-like Receptors in Tumor Immunotherapy

    PubMed Central

    Paulos, Chrystal M.; Kaiser, Andrew; Wrzesinski, Claudia; Hinrichs, Christian S.; Cassard, Lydie; Boni, Andrea; Muranski, Pawel; Sanchez-Perez, Luis; Palmer, Douglas C.; Yu, Zhiya; Antony, Paul A.; Gattinoni, Luca; Rosenberg, Steven A.; Restifo, Nicholas P.

    2007-01-01

    Lymphodepletion with chemotherapeutic agents or total body irradiation (TBI) before adoptive transfer of tumor-specific T cells is a critical advancement in the treatment of patients with melanoma. More than 50% of patients that are refractory to other treatments experience an objective or curative response with this approach. Emerging data indicate that the key mechanisms underlying how TBI augments the functions of adoptively transferred T cells include (a) the depletion of regulatory Tcells (Treg) and myeloid-derived suppressor cells that limit the function and proliferation of adoptively transferred cells; (b) the removal of immune cells that act as “sinks” for homeostatic cytokines, whose levels increase after lymphodepletion; and (c) the activation of the innate immune system via Toll-like receptor 4 signaling, which is engaged by microbial lipopolysaccharide that translocated across the radiation-injured gut. Here, we review these mechanisms and focus on the effect of Toll-like receptor agonists in adoptive immunotherapy. We also discuss alternate regimens to chemotherapy or TBI, which might be used to safely treat patients with advanced disease and promote tumor regression. PMID:17875756

  18. Structure–activity correlations of variant forms of the B pentamer of Escherichia coli type II heat-labile enterotoxin LT-IIb with Toll-like receptor 2 binding

    SciTech Connect

    Cody, Vivian; Pace, Jim; Nawar, Hesham F.; King-Lyons, Natalie; Liang, Shuang; Connell, Terry D.; Hajishengallis, George

    2012-12-01

    Structural data for the S74D variant of the pentameric B subunit of type II heat-labile enterotoxin of Escherichia coli reveal a smaller pore opening that may explain its reduced Toll-like receptor binding affinity compared to that of the wild type enterotoxin. The explanation for the enhanced Toll-like receptor binding affinity of the S74A variant is more complex than simply being attributed to the pore opening. The pentameric B subunit of the type II heat-labile enterotoxin of Escherichia coli (LT-IIb-B{sub 5}) is a potent signaling molecule capable of modulating innate immune responses. It has previously been shown that LT-IIb-B{sub 5}, but not the LT-IIb-B{sub 5} Ser74Asp variant [LT-IIb-B{sub 5}(S74D)], activates Toll-like receptor (TLR2) signaling in macrophages. Consistent with this, the LT-IIb-B{sub 5}(S74D) variant failed to bind TLR2, in contrast to LT-IIb-B{sub 5} and the LT-IIb-B{sub 5} Thr13Ile [LT-IIb-B{sub 5}(T13I)] and LT-IIb-B{sub 5} Ser74Ala [LT-IIb-B{sub 5}(S74A)] variants, which displayed the highest binding activity to TLR2. Crystal structures of the Ser74Asp, Ser74Ala and Thr13Ile variants of LT-IIb-B{sub 5} have been determined to 1.90, 1.40 and 1.90 Å resolution, respectively. The structural data for the Ser74Asp variant reveal that the carboxylate side chain points into the pore, thereby reducing the pore size compared with that of the wild-type or the Ser74Ala variant B pentamer. On the basis of these crystallographic data, the reduced TLR2-binding affinity of the LT-IIb-B{sub 5}(S74D) variant may be the result of the pore of the pentamer being closed. On the other hand, the explanation for the enhanced TLR2-binding activity of the LT-IIb-B{sub 5}(S74A) variant is more complex as its activity is greater than that of the wild-type B pentamer, which also has an open pore as the Ser74 side chain points away from the pore opening. Data for the LT-IIb-B{sub 5}(T13I) variant show that four of the five variant side chains point to the outside

  19. The common food additive carrageenan is not a ligand for Toll-Like- Receptor 4 (TLR4) in an HEK293-TLR4 reporter cell-line model.

    PubMed

    McKim, James M; Wilga, Paul C; Pregenzer, Jeffrey F; Blakemore, William R

    2015-04-01

    Carrageenan (CGN) is widely used in the food manufacturing industry as an additive that stabilizes and thickens food products. Standard animal safety studies in which CGN was administered in diet showed no adverse effects. However, several in vitro studies have reported that intestinal inflammation is caused by CGN and that this effect is mediated through Toll-Like-Receptor 4 (TLR4). The purpose of this study was to evaluate the ability of different types of CGN to bind and activate TLR4 signaling. To accomplish this a TLR4/MD-2/CD14/NFκB/SEAP reporter construct in a HEK293 cell line was used. The reporter molecule, secretable alkaline phosphatase (SEAP), was measured as an indicator of TLR4 activation. The test compounds were exposed to this system at concentrations of 0.1, 1, 10, 50, 100, 500, 1000, and 5000 ng/mL for 24 h. Cytotoxicity was evaluated following the 24 h exposure period by LDH leakage and ATP. CGN binding to serum proteins was characterized by Toluidine Blue. The results show that CGN does not bind to TLR4 and is not cytotoxic to the HEK293 cells at the concentrations and experimental conditions tested and that CGN binds tightly to serum proteins. PMID:25640528

  20. Common variable immunodeficiency revisited: normal generation of naturally occurring dendritic cells that respond to Toll-like receptors 7 and 9

    PubMed Central

    Taraldsrud, E; Fevang, B; Aukrust, P; Beiske, K H; Fløisand, Y; Frøland, S; Rollag, H; Olweus, J

    2014-01-01

    Patients with common variable immunodeficiency (CVID) have reduced numbers and frequencies of dendritic cells (DCs) in blood, and there is also evidence for defective activation through Toll-like receptors (TLRs). Collectively, these observations may point to a primary defect in the generation of functional DCs. Here, we measured frequencies of plasmacytoid DCs (pDCs) and myeloid DCs (mDCs) in peripheral blood of 26 CVID patients and 16 healthy controls. The results show that the patients have reduced absolute counts of both subsets. However, the decreased numbers in peripheral blood were not reflected in reduced frequencies of CD34+ pDC progenitors in the bone marrow. Moreover, studies at the single cell level showed that DCs from CVID patients and healthy controls produced similar amounts of interferon-α or interleukin-12 and expressed similar levels of activation markers in response to human cytomegalovirus and ligands for TLR-7 and TLR-9. The study represents the most thorough functional characterization to date, and the first to assess bone marrow progenitor output, of naturally occurring DCs in CVID. In conclusion, it seems unlikely that CVID is secondary to insufficient production of naturally occurring DCs or a defect in their signalling through TLR-7 or TLR-9. PMID:24237110

  1. Impaired interferon-alpha production by plasmacytoid dendritic cells after cord blood transplantation in children: implication for post-transplantation toll-like receptor ligand-based immunotherapy.

    PubMed

    Charrier, Emily; Cordeiro, Paulo; Brito, Rose-Marie; Harnois, Michaël; Mezziani, Samira; Herblot, Sabine; Le Deist, Françoise; Duval, Michel

    2014-10-01

    Plasmacytoid dendritic cells (pDCs) initiate both innate and adaptive immune responses, making them attractive targets for post-transplantation immunotherapy, particularly after cord blood transplantation (CBT). Toll-like receptor (TLR) agonists are currently studied for pDC stimulation in various clinical settings. Their efficacy depends on pDC number and functionality, which are unknown after CBT. We performed a longitudinal study of pDC reconstitution in children who underwent bone marrow transplantation (BMT) and single-unit CBT. Both CBT and unrelated BMT patients received antithymocyte globulin as part of their graft-versus-host disease prophylaxis regimen. pDC blood counts were higher in CBT patients than in healthy volunteers from 2 to 9 months after transplantation, whereas they remained lower in BMT patients. We showed that cord blood progenitors gave rise in vitro to a 500-fold increase in functional pDCs over bone marrow counterparts. Upon stimulation with a TLR agonist, pDCs from both CBT and BMT recipients upregulated T cell costimulatory molecules, whereas interferon-alpha (IFN-α) production was impaired for 9 months after CBT. TLR agonist treatment is thus not expected to induce IFN-α production by pDCs after CBT, limiting its immunotherapeutic potential. Fortunately, in vitro production of large amounts of functional pDCs from cord blood progenitors paves the way for the post-transplantation adoptive transfer of pDCs. PMID:25128615

  2. Dendritic cell vaccination with a toll-like receptor agonist derived from mycobacteria enhances anti-tumor immunity.

    PubMed

    Vo, Manh-Cuong; Lee, Hyun-Ju; Kim, Jong-Seok; Hoang, My-Dung; Choi, Nu-Ri; Rhee, Joon Haeng; Lakshmanan, Vinoth-Kumar; Shin, Sung-Jae; Lee, Je-Jung

    2015-10-20

    Dendritic cell (DC)-based vaccines are considered useful in cancer immunotherapy, and the interaction of DC and adjuvants is important in the design of the next generation vaccines. In this study, whether DC combined with Rv2299c derived from mycobacteria could improve anti-tumor immune responses in a colon cancer mouse model was evaluated. MC38 cell lines were injected subcutaneously to establish colon-cancer-bearing mice and the following four groups were evaluated: PBS control, tumor antigen (TA) loaded-DC, Rv2299c, and a combination of TA-loaded-DC and Rv2299c. The combination treatment with TA-loaded-DC and Rv2299c exhibited greater inhibition of tumor growth compared to other groups. These effects were associated with the reduction of suppressor cells, such as myeloid-derived suppressor cells and regulatory T cells, and the induction of effector cells, such as CD4+ T cells and CD8+ T cells, in spleen, and with the activation of cytotoxic T Lymphocytes and NK cells. These results suggest that TA-loaded-DC vaccination with Rv2299c derived from mycobacteria enhanced anti-tumor immunity in a mouse colon cancer model by inhibiting the generation of immune-suppressive cells and recovering numbers of effector cells, and demonstrated superior polarization of the Th1/Th2 balance in favor of the Th1 immune response. PMID:26418952

  3. Dendritic cell vaccination with a toll-like receptor agonist derived from mycobacteria enhances anti-tumor immunity

    PubMed Central

    Vo, Manh-Cuong; Lee, Hyun-Ju; Kim, Jong-Seok; Hoang, My-Dung; Choi, Nu-Ri; Rhee, Joon Haeng; Lakshmanan, Vinoth-Kumar; Shin, Sung-Jae; Lee, Je-Jung

    2015-01-01

    Dendritic cell (DC)-based vaccines are considered useful in cancer immunotherapy, and the interaction of DC and adjuvants is important in the design of the next generation vaccines. In this study, whether DC combined with Rv2299c derived from mycobacteria could improve anti-tumor immune responses in a colon cancer mouse model was evaluated. MC38 cell lines were injected subcutaneously to establish colon-cancer-bearing mice and the following four groups were evaluated: PBS control, tumor antigen (TA) loaded-DC, Rv2299c, and a combination of TA-loaded-DC and Rv2299c. The combination treatment with TA-loaded-DC and Rv2299c exhibited greater inhibition of tumor growth compared to other groups. These effects were associated with the reduction of suppressor cells, such as myeloid-derived suppressor cells and regulatory T cells, and the induction of effector cells, such as CD4+ T cells and CD8+ T cells, in spleen, and with the activation of cytotoxic T Lymphocytes and NK cells. These results suggest that TA-loaded-DC vaccination with Rv2299c derived from mycobacteria enhanced anti-tumor immunity in a mouse colon cancer model by inhibiting the generation of immune-suppressive cells and recovering numbers of effector cells, and demonstrated superior polarization of the Th1/Th2 balance in favor of the Th1 immune response. PMID:26418952

  4. Direct Toll-like receptor-mediated stimulation of hematopoietic stem and progenitor cells occurs in vivo and promotes differentiation toward macrophages.

    PubMed

    Megías, Javier; Yáñez, Alberto; Moriano, Silvia; O'Connor, José-Enrique; Gozalbo, Daniel; Gil, María-Luisa

    2012-07-01

    As Toll-like receptors (TLRs) are expressed by hematopoietic stem and progenitor cells (HSPCs), they may play a role in hematopoiesis in response to pathogens during infection. We show here that TLR2, TLR4, and TLR9 agonists (tripalmitoyl-S-glyceryl-L-Cys-Ser-(Lys)4 [Pam3CSK4], lipopolysaccharide [LPS], and CpG oligodeoxynucleotide [ODN]) induce the in vitro differentiation of purified murine lineage negative cells (Lin(-) ) as well as HSPCs (identified as Lin(-) c-Kit(+) Sca-1(+) IL-7Rα(-) [LKS] cells) toward macrophages (Mph), through a myeloid differentiation factor 88 (MyD88)-dependent pathway. In order to investigate the possible direct interaction of soluble microorganism-associated molecular patterns and TLRs on HSPCs in vivo, we designed a new experimental approach: purified Lin(-) and LKS cells from bone marrow of B6Ly5.1 mice (CD45.1 alloantigen) were transplanted into TLR2(-/-) , TLR4(-/-) , or MyD88(-/-) mice (CD45.2 alloantigen), which were then injected with soluble TLR ligands (Pam3CSK4, LPS, or ODN, respectively). As recipient mouse cells do not recognize the TLR ligands injected, interference by soluble mediators secreted by recipient cells is negligible. Transplanted cells were detected in the spleen and bone marrow of recipient mice, and in response to soluble TLR ligands, cells differentiated preferentially to Mph. These results show, for the first time, that HSPCs may be directly stimulated by TLR agonists in vivo, and that the engagement of these receptors induces differentiation toward Mph. Therefore, HSPCs may sense pathogen or pathogen-derived products directly during infection, inducing a rapid generation of cells of the innate immune system. PMID:22511319

  5. Toll like receptor agonist imiquimod facilitates antigen-specific CD8+ T cell accumulation in the genital tract leading to tumor control through interferon-γ

    PubMed Central

    Soong, Ruey-Shyang; Song, Liwen; Trieu, Janson; Knoff, Jayne; He, Liangmei; Tsai, Ya-Chea; Huh, Warner; Chang, Yung-Nien; Cheng, Wen-Fang; Roden, Richard B.S.; Wu, T.-C.; Hung, Chien-Fu

    2014-01-01

    Purpose Imiquimod is a toll-like receptor 7 agonist utilized topically to manage genital warts and basal cell carcinoma. We examine the combination of topical imiquimod with intramuscular administration of CRT/E7, a therapeutic HPV vaccination that comprises a naked DNA vector expressing calreticulin fused to HPV16 E7. Experimental Design Using an orthotopic HPV16 E6/E7+ syngeneic tumor, TC-1, as a model of high-grade cervical/vaginal/vulvar intraepithelial neoplasia, we show that combining CRT/E7 vaccination with cervicovaginal deposition of imiquimod results in synergistic immune-mediated tumor clearance. Results Imiquimod induces cervicovaginal accumulation of activated E7-specific CD8+ T cells elicited by CRT/E7 vaccination. Recruitment was not dependent upon the specificity of the activated CD8+ T cells, but was significantly reduced in mice lacking the IFNγ receptor. Intravaginal imiquimod deposition induced upregulation of CXCL9 and CXCL10 mRNA expression in the genital tract. These chemokines are expressed upon IFNγ receptor activation and attract cells expressing their receptor, CXCR3. In this study, T cells attracted by imiquimod to the cervicovaginal tract expressed CXCR3 as well as the tissue resident memory T cell (Trm) marker CD49a, a mucosal homing integrin. Our results indicate that intramuscular CRT/E7 vaccination in conjunction with intravaginal imiquimod deposition recruits antigen-specific CXCR3+CD8+ T cells to the genital tract. Conclusions Our study has potential clinical relevance because imiquimod is FDA approved for condyloma accuminata and basal cell carcinoma and intramuscular vaccination with pNGVL4a-CRT/E7(detox) is currently undergoing clinical testing, suggesting potential for their synergistic action to induce strong antigen-specific Trm-mediated immune responses and antitumor effects in genital mucosa. PMID:24893628

  6. Hyaluronan Is Not a Ligand but a Regulator of Toll-Like Receptor Signaling in Mesangial Cells: Role of Extracellular Matrix in Innate Immunity

    PubMed Central

    Ebid, Rainer; Anders, Hans-Joachim

    2014-01-01

    Glomerular mesangial cells (MC), like most cell types secrete hyaluronan (HA), which attached to the cell surface via CD44, is the backbone of a hydrophilic gel matrix around these cells. Reduced extracellular matrix thickness and viscosity result from HA cleavage during inflammation. HA fragments were reported to trigger innate immunity via Toll-like receptor-(TLR-) 2 and/or TLR4 in immune cells. We questioned whether HA fragments also regulate the immunostimulatory capacity of smooth muscle cell-like MC. LPS (TLR4-ligand) and PAM3CysSK4 (TLR2-ligand) induced IL-6 secretion in MC; highly purified endotoxin-free HA < 3000 Da up to 50 μg/mL did not. Bovine-testis-hyaluronidase from was used to digest MC-HA into HA fragments of different size directly in the cell culture. Resultant HA fragments did not activate TLR4-deficient MC, while TLR2-deficient MC responded to LPS-contamination of hyaluronidase, not to produced HA fragments. Hyaluronidase increased the stimulatory effect of TLR2-/-3/-5 ligands on their TLR-receptors in TLR4-deficient MC, excluding any effect by LPS-contamination. Supplemented heparin suppressed every stimulatory effect in a dose-dependent manner. We conclude that the glycosaminoglycan HA creates a pericellular jelly barrier, which covers surface receptors like the TLRs. Barrier-thickness and viscosity balanced by HA-synthesis and degradation and the amount of HA-receptors on the cell surface regulate innate immunity via the accessibility of the receptors. PMID:24967246

  7. Toll-like receptor 3 (TLR3): a new marker of canine monocytes-derived dendritic cells (cMo-DC).

    PubMed

    Bonnefont-Rebeix, Catherine; Marchal, Thierry; Bernaud, Janine; Pin, Jean-Jacques; Leroux, Caroline; Lebecque, Serge; Chabanne, Luc; Rigal, Dominique

    2007-07-15

    Toll-like receptors (TLRs) are a family of functionally important receptors for recognition of pathogen-associated molecular pattern (PAMP) since they trigger the pro-inflammatory response and upregulation of costimulatory molecules, linking the rapid innate response to adaptative immunity. In human leukocytes, TLR3 has been found to be specifically expressed in dendritic cells (DC). This study examined the expression of TLR3 in canine monocytes-derived DC (cMo-DC) and PBMC using three new anti-TLR3 mAbs (619F7, 722E2 and 713E4 clones). The non-adherent cMo-DC generated after culture in canine IL-4 plus canine GM-CSF were labelled with the three anti-TLR3 clones by flow cytometry, with a strong expression shown for 619F7 and 722E2 clones. By contrast, TLR3 expression was low to moderate in canine monocytes and lymphocytes. These results were confirmed by Western blot using 619F7 and 722E2 clones and several polypeptide bands were observed, suggesting a possible cleavage of TLR3 molecule or different glycosylation states. In addition, TLR3 was detectable in immunocytochemistry by using 722E2 clone. In conclusion, this first approach to study canine TLR3 protein expression shows that three anti-TLR3 clones detect canine TLR3 and can be used to better characterize canine DC and the immune system of dogs. PMID:17521746

  8. Astragaloside IV attenuates Toll-like receptor 4 expression via NF-κB pathway under high glucose condition in mesenchymal stem cells.

    PubMed

    Li, Mincai; Yu, Liangzu; She, Tonghui; Gan, Yapin; Liu, Fuxin; Hu, Zhengwu; Chen, Yongbin; Li, Suqin; Xia, Hongli

    2012-12-01

    Diabetic hyperglycemia causes a variety of pathological changes. Astragaloside IV (AS-IV) was widely used for the treatment of cardiovascular diseases in China. The aim of this study was to determine the effect of AS-IV on bone marrow mesenchymal stem cells (MSCs) and the underlying mechanism in diabetes. We used reverse transcription polymerase chain reaction and western blotting to determine the expression of Toll-like receptor 4 (TLR4), matrix metalloproteinase-2 (MMP-2) and NF-κB p65 in MSCs under high glucose (HG) with or without pretreatment with AS-IV. The surface expression of TLR4 was checked by flow cytometry and the expression of TNF-α and MCP-1 were detected by ELISA in diabetes patients treated with AS-IV. AS-IV promoted the proliferation of MSCs and attenuated the increased expression of TLR4 induced by HG. In addition, AS-IV decreased the HG-induced translocation of NF-κB p65 and increased the MMP-2 expression in MSCs. AS-IV decreased the TLR4, TNF-α and MCP-1 expression in patients. Collectively,our data revealed that AS-IV attenuated TLR4 expression through the NF-κB signaling pathway in MSCs. PMID:23041150

  9. Differential innate immune cell signatures and effects regulated by toll-like receptor 4 during murine lung tumor promotion.

    PubMed

    Alexander, Carla-Maria; Xiong, Ka-Na; Velmurugan, Kalpana; Xiong, Julie; Osgood, Ross S; Bauer, Alison K

    2016-04-01

    Tumor promotion is an early and critical stage during lung adenocarcinoma (ADC). We previously demonstrated that Tlr4 mutant mice were more susceptible to butylated hydroxytoluene (BHT)-induced pulmonary inflammation and tumor promotion in comparison to Tlr4-sufficient mice. Our study objective was to elucidate the underlying differences in Tlr4 mutant mice in innate immune cell populations, their functional responses, and the influence of these cellular differences on ADC progenitor (type II) cells following BHT-treatment. BALB (Tlr4-sufficient) and C.C3-Tlr4(Lps-d)/J (BALB(Lpsd); Tlr4 mutant) mice were treated with BHT (promoter) followed by bronchoalveolar lavage (BAL) and flow cytometry processing on the lungs. ELISAs, Club cell enrichment, macrophage function, and RNA isolation were also performed. Bone marrow-derived macrophages (BMDM) co-cultured with a type II cell line were used for wound healing assays. Innate immune cells significantly increased in whole lung in BHT-treated BALB(Lpsd) mice compared to BALB mice. BHT-treated BALB(Lpsd) mice demonstrated enhanced macrophage functionality, increased epithelial wound closure via BMDMs, and increased Club cell number in BALB(Lpsd) mice, all compared to BALB BHT-treated mice. Cytokine/chemokine (Kc, Mcp1) and growth factor (Igf1) levels also significantly differed among the strains and within macrophages, gene expression, and cell surface markers collectively demonstrated a more plastic phenotype in BALB(Lpsd) mice. Therefore, these correlative studies suggest that distinct innate immune cell populations are associated with the differences observed in the Tlr4-mutant model. Future studies will investigate the macrophage origins and the utility of the pathways identified herein as indicators of immune system deficiencies and lung tumorigenesis. PMID:27093379

  10. A novel polysaccharide from the seeds of Plantago asiatica L. induces dendritic cells maturation through toll-like receptor 4.

    PubMed

    Huang, Danfei; Nie, Shaoping; Jiang, Leming; Xie, Mingyong

    2014-02-01

    In this study, we investigated the effect of a polysaccharide purified from the seeds of Plantago asiatica L. (PLP-2) on the phenotypic and functional maturation of murine bone marrow-derived dendritic cells (DCs) and relevant mechanisms. The results showed that PLP-2 increased the expression of maturation markers major histocompatibility complex II, CD86, CD80, and CD40 on DCs. Consistent with the changes in the phenotypic markers, functional assay for DCs maturation showed that PLP-2 decreased DCs endocytosis and increased intracellular interleukin (IL)-12 levels and allostimulatory activity. Furthermore, using a syngeneic T cell activation model, we found that PLP-2 treated DCs presented ovalbumin antigen to T cells more efficiently as demonstrated by increased T cell proliferation. In addition, the effects of PLP-2 on DCs were significantly impaired by treating the cells with anti-TLR4 antibody prior to PLP-2 treatment, implying direct interaction between PLP-2 and TLR4 on cell surface. These results suggested that PLP-2 may induce DCs maturation through TLR4. Our results may have important implications for our understanding on the molecular mechanisms of immunopotentiating action of the polysaccharides from plants. PMID:24316254

  11. Regulatory effects of Spirulina complex polysaccharides on growth of murine RSV-M glioma cells through Toll-like receptor 4.

    PubMed

    Kawanishi, Yu; Tominaga, Akira; Okuyama, Hiromi; Fukuoka, Satoshi; Taguchi, Takahiro; Kusumoto, Yutaka; Yawata, Toshio; Fujimoto, Yasunori; Ono, Shiro; Shimizu, Keiji

    2013-01-01

    This study is the first to report that Spirulina complex polysaccharides (CPS) suppress glioma growth by down-regulating angiogenesis via a Toll-like receptor 4 signal. Murine RSV-M glioma cells were implanted s.c. into C3H/HeN mice and TLR4 mutant C3H/HeJ mice. Treatment with either Spirulina CPS or Escherichia coli (E. coli) lipopolysaccharides (LPS) strongly suppressed RSV-M glioma cell growth in C3H/HeN, but not C3H/HeJ, mice. Glioma cells stimulated production of interleukin (IL)-17 in both C3H/HeN and C3H/HeJ tumor-bearing mice. Treatment with E. coli LPS induced much greater IL-17 production in tumor-bearing C3H/HeN mice than in tumor-bearing C3H/HeJ mice. In C3H/HeN mice, treatment with Spirulina CPS suppressed growth of re-transplanted glioma; however, treatment with E. coli LPS did not, suggesting that Spirulina CPS enhance the immune response. Administration of anti-cluster of differentiation (CD)8, anti-CD4, anti-CD8 antibodies, and anti-asialo GM1 antibodies enhanced tumor growth, suggesting that T cells and natural killer cells or macrophages are involved in suppression of tumor growth by Spirulina CPS. Although anti-interferon-γ antibodies had no effect on glioma cell growth, anti-IL-17 antibodies administered four days after tumor transplantation suppressed growth similarly to treatment with Spirulina CPS. Less angiogenesis was observed in gliomas from Spirulina CPS-treated mice than in those from saline- or E. coli LPS-treated mice. These findings suggest that, in C3H/HeN mice, Spirulina CPS antagonize glioma cell growth by down-regulating angiogenesis, and that this down-regulation is mediated in part by regulating IL-17 production. PMID:23134155

  12. Toll Like Receptor 4 Dependent Kupffer Cell Activation and Liver Injury in a Novel Mouse Model of Parenteral Nutrition

    PubMed Central

    El Kasmi, Karim C.; Anderson, Aimee L.; Devereaux, Michael W.; Fillon, Sophie A.; Harris, J. Kirk; Lovell, Mark A.; Finegold, Milton J.; Sokol, Ronald J.

    2011-01-01

    Infants with intestinal failure who are parenteral nutrition (PN)-dependent may develop cholestatic liver injury and cirrhosis (PN-associated liver injury: PNALI). The pathogenesis of PNALI remains incompletely understood. We hypothesized that intestinal injury with increased intestinal permeability combined with administration of PN promotes LPS-TLR4 signaling dependent Kupffer cell activation as an early event in the pathogenesis of PNALI. We developed a mouse model in which intestinal injury and increased permeability were induced by oral treatment for 4 days with dextran sulphate sodium (DSS) followed by continuous infusion of soy lipid-based PN solution through a central venous catheter for 7 (PN/DSS7d) and 28 (PN/DSS28d) days. Liver injury and cholestasis were evaluated by serum AST, ALT, bile acids, total bilirubin, and by histology. Purified Kupffer cells were probed for transcription of pro-inflammatory cytokines. PN/DSS7d mice showed elevated portal vein LPS levels, evidence of hepatocyte injury and cholestasis, and increased Kupffer cell expression of IL6, TNFα, and TGFβ. Serological markers of liver injury remained elevated in PN/DSS28d mice associated with focal inflammation, hepatocyte apoptosis, peliosis, and Kupffer cell hypertrophy and hyperplasia. PN infusion without DSS pre-treatment or DSS pre-treatment alone did not result in liver injury or Kupffer cell activation. Suppression of the intestinal microbiota with broad spectrum antibiotics or ablation of TLR4 signaling in TLR4 mutant mice resulted in significantly reduced Kupffer cell activation and markedly attenuated liver injury in PN/DSS7d mice. Conclusion These data suggest that intestinal-derived LPS activates Kupffer cells through TLR4 signaling in early stages of PNALI. PMID:22120983

  13. Toll-Like Receptors in Chronic Pain

    PubMed Central

    Nicotra, Lauren; Loram, Lisa C; Watkins, Linda R; Hutchinson, Mark R

    2011-01-01

    Proinflammatory central immune signaling contributes significantly to the initiation and maintenance of heightened pain states. Recent discoveries have implicated the innate immune system, pattern recognition Toll-like receptors in triggering these proinflammatory central immune signaling events. These exciting developments have been complemented by the discovery of neuronal expression of Toll-like receptors, suggesting pain pathways can be activated directly by the detection of pathogen associated molecular patterns or danger associated molecular patterns. This review will examine the evidence to date implicating Toll-like receptors and their associated signaling components in heightened pain states. In addition, insights into the impact Toll-like receptors have on priming central immune signaling systems for heightened pain states will be discussed. The influence possible sex differences in Toll-like receptor signaling have for female pain and the recognition of small molecule xenobiotics by Toll-like receptors will also be reviewed. PMID:22001158

  14. BVDV infection alters toll-like and TNF-alpha receptor signalling in bovine aortic endothelial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aim. Bovine aortic endothelial cells (BAEC) are readily available commercially and are used in many labs in a variety of experiments. However, most lots of BAEC are contaminated with BVDV. It was unknown what effect BVDV had on normal function of BAEC. Here, we examined the effect of BVDV infect...

  15. INVOLVEMENT OF TOLL-LIKE RECEPTOR 4 AND MAPK PATHWAYS IN LPS-INDUCED CD40 EXPRESSION IN MONOCYTIC CELLS

    EPA Science Inventory

    CD40 is a co-stimulatory surface molecule actively expressed on mature dendritic cells (DC). Recent studies suggest that endotoxin (LPS) inhalation induces DC maturation in the airways of healthy volunteers. To characterize the effect of LPS on CD40 expression and underlying mech...

  16. Activation of myeloid dendritic cells by deoxynucleic acids from Cordyceps sinensis via a Toll-like receptor 9-dependent pathway.

    PubMed

    Xiao, Gang; Miyazato, Akiko; Abe, Yuzuru; Zhang, Tiantuo; Nakamura, Kiwamu; Inden, Ken; Tanaka, Misuzu; Tanno, Daiki; Miyasaka, Tomomitsu; Ishii, Keiko; Takeda, Kiyoshi; Akira, Shizuo; Saijo, Shinobu; Iwakura, Yoichiro; Adachi, Yoshiyuki; Ohno, Naohito; Yamamoto, Natsuo; Kunishima, Hiroyuki; Hirakata, Yoichi; Kaku, Mitsuo; Kawakami, Kazuyoshi

    2010-01-01

    The mechanism by which host cells recognize Cordyceps sinensis, a Chinese herbal medicine that is known to exhibit immunomodulating activity, remains poorly understood. In this study, we investigated whether the DNA of this fungus could activate mouse bone marrow-derived dendritic cells (BM-DCs). Upon stimulation with C. sinensis DNA, BM-DCs released IL-12p40 and TNF-alpha and expressed CD40. Cytokine production and CD40 expression were attenuated by chloroquin and bafilomycin A. Activation of BM-DCs by C. sinensis DNA was almost completely abrogated in TLR9KO mice. According to a luciferase reporter assay, C. sinensis DNA activated NF-kappaB in HEK293T cells transfected with the TLR9 gene. Finally, a confocal microscopic analysis showed that C. sinensis DNA was co-localized with CpG-ODN and partly with TLR9 and LAMP-1, a late endosomal marker, in BM-DCs. Our results demonstrated that C. sinensis DNA caused activation of BM-DCs in a TLR9-dependent manner. PMID:20451901

  17. Infection Mobilizes Hematopoietic Stem Cells through Cooperative NOD-like Receptor and Toll-like Receptor Signaling

    PubMed Central

    Burberry, Aaron; Zeng, Melody Y.; Ding, Lei; Wicks, Ian; Inohara, Naohiro; Morrison, Sean J.; Núñez, Gabriel

    2014-01-01

    Summary Adult hematopoietic stem cells (HSCs) are maintained in specialized niches within the bone marrow under steady-state conditions and mobilized for extramedullary hematopoiesis during periods of stress such as bacterial infections. However, the underlying mechanisms are unclear. We show that systemic infection of mice with Escherichia coli, commonly associated with bacteremia in humans, mobilizes functional HSCs to the spleen. Accumulation of splenic HSCs (CD150+CD48-Lin−/lowScal1+cKit+) was diminished in TLR4-deficient and RIPK2-deficient mice, implicating TLRs and cytosolic NOD1/NOD2 signaling in the process. Accordingly, dual stimulation of NOD1 and TLR4 in radio-resistant cells alone was sufficient to mobilize HSCs, while TLR4 expression on HSCs was dispensable. Mechanistically, TLR4 and NOD1 synergistically induced granulocyte-colony stimulating factor (G-CSF), which was required for extramedullary HSC accumulation. Mobilized HSCs and progenitor cells gave rise to neutrophils and monocytes and contributed to limiting secondary infection. PMID:24882704

  18. Infection mobilizes hematopoietic stem cells through cooperative NOD-like receptor and Toll-like receptor signaling.

    PubMed

    Burberry, Aaron; Zeng, Melody Y; Ding, Lei; Wicks, Ian; Inohara, Naohiro; Morrison, Sean J; Núñez, Gabriel

    2014-06-11

    Adult hematopoietic stem cells (HSCs) are maintained in specialized niches within the bone marrow under steady-state conditions and mobilize for extramedullary hematopoiesis during periods of stress such as bacterial infections. However, the underlying mechanisms are unclear. We show that systemic infection of mice with Escherichia coli, commonly associated with bacteremia in humans, mobilizes functional HSCs to the spleen. Accumulation of splenic HSCs (CD150+CD48-Lin(-/low)Sca1+cKit+) was diminished in TLR4-deficient and RIPK2-deficient mice, implicating TLRs and cytosolic NOD1/NOD2 signaling in the process. Accordingly, dual stimulation of NOD1 and TLR4 in radio-resistant cells alone was sufficient to mobilize HSCs, while TLR4 expression on HSCs was dispensable. Mechanistically, TLR4 and NOD1 synergistically induced granulocyte colony-stimulating factor (G-CSF), which was required for extramedullary HSC accumulation. Mobilized HSCs and progenitor cells gave rise to neutrophils and monocytes and contributed to limiting secondary infection. PMID:24882704

  19. Bryostatin-1, a Naturally Occurring Antineoplastic Agent, Acts as a Toll-like Receptor 4 (TLR-4) Ligand and Induces Unique Cytokines and Chemokines in Dendritic Cells*

    PubMed Central

    Ariza, Maria Eugenia; Ramakrishnan, Rupal; Singh, Narendra P.; Chauhan, Ashok; Nagarkatti, Prakash S.; Nagarkatti, Mitzi

    2011-01-01

    Bryostatin-1 (Bryo-1), a natural macrocyclic lactone, is clinically used as an anti-cancer agent. In this study, we demonstrate for the first time that Bryo-1 acts as a Toll-like receptor 4 (TLR4) ligand. Interestingly, activation of bone marrow-derived dendritic cells (in vitro with Bryo-1) led to a TLR4-dependent biphasic activation of nuclear factor-κB (NF-κB) and the unique induction of cytokines (IL-5, IL-6, and IL-10) and chemokines, including RANTES (regulated on activation normal T cell expressed and secreted) and macrophage inflammatory protein 1α (MIP1-α). In addition, EMSA demonstrated that Bryo-1-mediated induction of RANTES was regulated by NF-κB and the interferon regulatory factors (IRF)-1, IRF-3, and IRF-7 to the RANTES independently of myeloid differentiation primary response gene-88 (MyD88). Bryo-1 was able to induce the transcriptional activation of IRF-3 through the TLR4/MD2-dependent pathway. In vivo administration of Bryo-1 triggered a TLR-4-dependent T helper cell 2 (Th2) cytokine response and expanded a subset of myeloid dendritic cells that expressed a CD11chighCD8α− CD11b+CD4+ phenotype. This study demonstrates that Bryo-1 can act as a TLR4 ligand and activate innate immunity. Moreover, the ability of Bryo-1 to trigger RANTES and MIP1-α suggests that Bryo-1 could potentially be used to prevent HIV-1 infection. Finally, induction of a Th2 response by Bryo-1 may help treat inflammatory diseases mediated by Th1 cells. Together, our studies have a major impact on the clinical use of Bryo-1 as an anti-cancer and immunopotentiating agent. PMID:21036898

  20. Carbon monoxide down-modulates Toll-like receptor 4/MD2 expression on innate immune cells and reduces endotoxic shock susceptibility

    PubMed Central

    Riquelme, Sebastián A; Bueno, Susan M; Kalergis, Alexis M

    2015-01-01

    Carbon monoxide (CO) has been recently reported as the main anti-inflammatory mediator of the haem-degrading enzyme haem-oxygenase 1 (HO-1). It has been shown that either HO-1 induction or CO treatment reduces the ability of monocytes to respond to inflammatory stimuli, such as lipopolysaccharide (LPS), due to an inhibition of the signalling pathways leading to nuclear factor-κB, mitogen-activated protein kinases and interferon regulatory factor 3 activation. Hence, it has been suggested that CO impairs the stimulation of the Toll-like receptor 4 (TLR4)/myeloid differentiation factor-2 (MD2) complex located on the surface of immune cells. However, whether CO can negatively modulate the surface expression of the TLR4/MD2 complex in immune cells remains unknown. Here we report that either HO-1 induction or treatment with CO decreases the surface expression of TLR4/MD2 in dendritic cells (DC) and neutrophils. In addition, in a septic shock model of mice intraperitoneally injected with lipopolysaccharide (LPS), prophylactic treatment with CO protected animals from hypothermia, weight loss, mobility loss and death. Further, mice pre-treated with CO and challenged with LPS showed reduced recruitment of DC and neutrophils to peripheral blood, suggesting that this gas causes a systemic tolerance to endotoxin challenge. No differences in the amount of innate cells in lymphoid tissues were observed in CO-treated mice. Our results suggest that CO treatment reduces the expression of the TLR4/MD2 complex on the surface of myeloid cells, which renders them resistant to LPS priming in vitro, as well as in vivo in a model of endotoxic shock. PMID:25179131

  1. Toll-like receptor 3 regulates angiogenesis and apoptosis in prostate cancer cell lines through hypoxia-inducible factor 1 alpha.

    PubMed

    Paone, Alessio; Galli, Roberta; Gabellini, Chiara; Lukashev, Dmitriy; Starace, Donatella; Gorlach, Agnes; De Cesaris, Paola; Ziparo, Elio; Del Bufalo, Donatella; Sitkovsky, Michail V; Filippini, Antonio; Riccioli, Anna

    2010-07-01

    Toll-like receptors (TLRs) recognize microbial/viral-derived components that trigger innate immune response and conflicting data implicate TLR agonists in cancer, either as protumor or antitumor agents. We previously demonstrated that TLR3 activation mediated by its agonist poly(I:C) induces antitumor signaling, leading to apoptosis of prostate cancer cells LNCaP and PC3 with much more efficiency in the former than in the second more aggressive line. The transcription factor hypoxia-inducible factor 1 (HIF-1) regulates several cellular processes, including apoptosis, in response to hypoxia and to other stimuli also in normoxic conditions. Here we describe a novel protumor machinery triggered by TLR3 activation in PC3 cells consisting of increased expression of the specific I.3 isoform of HIF-1 alpha and nuclear accumulation of HIF-1 complex in normoxia, resulting in reduced apoptosis and in secretion of functional vascular endothelial growth factor (VEGF). Moreover, we report that, in the less aggressive LNCaP cells, TLR3 activation fails to induce nuclear accumulation of HIF-1 alpha. However, the transfection of I.3 isoform of hif-1 alpha in LNCaP cells allows poly(I:C)-induced HIF-1 activation, resulting in apoptosis protection and VEGF secretion. Altogether, our findings demonstrate that differences in the basal level of HIF-1 alpha expression in different prostate cancer cell lines underlie their differential response to TLR3 activation, suggesting a correlation between different stages of malignancy, hypoxic gene expression, and beneficial responsiveness to TLR agonists. PMID:20651983

  2. Toll-like Receptor 3 Regulates Angiogenesis and Apoptosis in Prostate Cancer Cell Lines through Hypoxia-Inducible Factor 1α1

    PubMed Central

    Paone, Alessio; Galli, Roberta; Gabellini, Chiara; Lukashev, Dmitriy; Starace, Donatella; Gorlach, Agnes; De Cesaris, Paola; Ziparo, Elio; Del Bufalo, Donatella; Sitkovsky, Michail V; Filippini, Antonio; Riccioli, Anna

    2010-01-01

    Toll-like receptors (TLRs) recognize microbial/viral-derived components that trigger innate immune response and conflicting data implicate TLR agonists in cancer, either as protumor or antitumor agents. We previously demonstrated that TLR3 activation mediated by its agonist poly(I:C) induces antitumor signaling, leading to apoptosis of prostate cancer cells LNCaP and PC3 with much more efficiency in the former than in the second more aggressive line. The transcription factor hypoxia-inducible factor 1 (HIF-1) regulates several cellular processes, including apoptosis, in response to hypoxia and to other stimuli also in normoxic conditions. Here we describe a novel protumor machinery triggered by TLR3 activation in PC3 cells consisting of increased expression of the specific I.3 isoform of HIF-1α and nuclear accumulation of HIF-1 complex in normoxia, resulting in reduced apoptosis and in secretion of functional vascular endothelial growth factor (VEGF). Moreover, we report that, in the less aggressive LNCaP cells, TLR3 activation fails to induce nuclear accumulation of HIF-1α. However, the transfection of I.3 isoform of hif-1α in LNCaP cells allows poly(I:C)-induced HIF-1 activation, resulting in apoptosis protection and VEGF secretion. Altogether, our findings demonstrate that differences in the basal level of HIF-1α expression in different prostate cancer cell lines underlie their differential response to TLR3 activation, suggesting a correlation between different stages of malignancy, hypoxic gene expression, and beneficial responsiveness to TLR agonists. PMID:20651983

  3. Expression of toll-like receptors in HPV-positive and HPV-negative oropharyngeal squamous cell carcinoma--an in vivo and in vitro study.

    PubMed

    Jouhi, Lauri; Datta, Neeta; Renkonen, Suvi; Atula, Timo; Mäkitie, Antti; Haglund, Caj; Ahmed, Abdirisak; Syrjänen, Stina; Grénman, Reidar; Auvinen, Eeva; Lehtonen, Sanna; Hagström, Jaana

    2015-09-01

    The incidence of oropharyngeal squamous cell carcinoma (OPSCC) has increased over the past decades in many western countries. This trend is mainly attributed to the human papillomavirus (HPV). Cancer-related actions of immunological defense systems are being intensively researched. Human toll-like receptors (TLRs) are a family of pattern recognition receptors that participate in the immunological defense against pathogens, but their actions are also linked to cancer. The expression of TLRs in cervical epithelium alters both during the clearance of HPV infection and the HPV-induced neoplasia, but the expression of TLRs has not been studied in OPSCC. Thirty-five paraffin-embedded, formalin-fixed, squamous cell carcinoma tissue specimens were analyzed for TLRs 2, 3, 4, 5, 7, and 9 and HPV and p16 statuses. The TLR 9 expression was lower in HPV-positive tumors compared with HPV-negative tumors. TLR 7 was expressed in all cancer specimens, but elevated expression was evident in HPV and/or p16-positive tumors. The majority of p16-positive tumors did not express TLR 5, whereas its expression was stronger in p16-negative tumors. The results of in vitro analysis of five human OPSCC cell lines and one human oral tongue squamous cell carcinoma cell line agree with the in vivo trends: low levels of TLR 5 and high levels of TLR 7 in p16-positive OPSCC. Overall, TLR 7 and 9 expression patterns are demonstrated here to relate to the HPV status in vivo and TLR 5 and 7 expression patterns to the p16 status in vivo and in vitro. PMID:25941114

  4. CpG-ODN 7909 increases radiation sensitivity of radiation-resistant human lung adenocarcinoma cell line by overexpression of Toll-like receptor 9.

    PubMed

    Yan, Li; Xu, Guoxiong; Qiao, Tiankui; Chen, Wei; Yuan, Sujuan; Li, Xuan

    2013-09-01

    Radioresistance is one of the main reasons for the failure of radiotherapy in lung cancer. The aim of this study was to establish a radiation-resistant lung cancer cell line, to evaluate whether CpG oligodeoxyribonucleotide (CpG-ODN) 7909 could increase its radiosensitivity and to explore the relevant mechanisms. The radioresistant cell line, referred to as R-A549, was generated by reduplicative fractionated irradiation from the human lung adenocarcinoma cell line A549. The radioresistance of R-A549 cells were confirmed by the Cell Counting Kit-8 (CCK-8), cell viability assay, and clonogenic assay. Cell growth kinetics, morphological feature, and radiosensitivity were compared between the original A549 cells and R-A549 cells treated with or without CpG-ODN 7909 or radiation. To further explore the potential mechanisms of radiosensitivity, the cell cycle distributions and the expression of Toll-like receptor 9 (TLR-9) were examined by Western blot and flow cytometry. The R-A549 cell line was generated and its radioresistance was further confirmed. CpG-ODN 7909 was found to increase much more radiosensitivity of R-A549 cells under combined treatments with CpG-ODN 7909 and radiation compared with its control group without any treatments. They presented their respective D0 1.33 ± 0.20 Gy versus 1.76 ± 0.25 Gy with N 3.44 ± 1.01 versus 4.96 ± 0.32. Further, there was a larger cell population of R-A549 cells under combined treatment in the G2/M phase compared with the control group after treatment with CpG-ODN7909 or radiation alone at 24 and 48 hour. The expression level of TLR-9 in R-A549 cells was found higher than in A549 cells. These results suggested that CpG-ODN 7909 increased the radiosensitivity of R-A549 cells, which might be mediated via the upregulated TLR-9 and prolonged cell cycle arrest in the G2/M phase compared with A549 cells. PMID:23705865

  5. RIPK1 and RIPK3 Kinases Promote Cell-Death-Independent Inflammation by Toll-like Receptor 4.

    PubMed

    Najjar, Malek; Saleh, Danish; Zelic, Matija; Nogusa, Shoko; Shah, Saumil; Tai, Albert; Finger, Joshua N; Polykratis, Apostolos; Gough, Peter J; Bertin, John; Whalen, Michael J; Pasparakis, Manolis; Balachandran, Siddharth; Kelliher, Michelle; Poltorak, Alexander; Degterev, Alexei

    2016-07-19

    Macrophages are a crucial component of the innate immune system in sensing pathogens and promoting local and systemic inflammation. RIPK1 and RIPK3 are homologous kinases, previously linked to activation of necroptotic death. In this study, we have described roles for these kinases as master regulators of pro-inflammatory gene expression induced by lipopolysaccharide, independent of their well-documented cell death functions. In primary macrophages, this regulation was elicited in the absence of caspase-8 activity, required the adaptor molecule TRIF, and proceeded in a cell autonomous manner. RIPK1 and RIPK3 kinases promoted sustained activation of Erk, cFos, and NF-κB, which were required for inflammatory changes. Utilizing genetic and pharmacologic tools, we showed that RIPK1 and RIPK3 account for acute inflammatory responses induced by lipopolysaccharide in vivo; notably, this regulation did not require exogenous manipulation of caspases. These findings identified a new pharmacologically accessible pathway that may be relevant to inflammatory pathologies. PMID:27396959

  6. Hypoxia preconditioning increases survival and decreases expression of Toll-like receptor 4 in pulmonary artery endothelial cells exposed to lipopolysaccharide.

    PubMed

    Ali, Irshad; Nanchal, Rahul; Husnain, Fouad; Audi, Said; Konduri, G Ganesh; Densmore, John C; Medhora, Meetha; Jacobs, Elizabeth R

    2013-09-01

    Abstract Pulmonary or systemic infections and hypoxemic respiratory failure are among the leading causes of admission to intensive care units, and these conditions frequently exist in sequence or in tandem. Inflammatory responses to infections are reproduced by lipopolysaccharide (LPS) engaging Toll-like receptor 4 (TLR4). Apoptosis is a hallmark of lung injury in sepsis. This study was conducted to determine whether preexposure to LPS or hypoxia modulated the survival of pulmonary artery endothelial cells (PAECs). We also investigated the role TLR4 receptor expression plays in apoptosis due to these conditions. Bovine PAECs were cultured in hypoxic or normoxic environments and treated with LPS. TLR4 antagonist TAK-242 was used to probe the role played by TLR4 receptors in cell survival. Cell apoptosis and survival were measured by caspase 3 activity and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) incorporation. TLR4 expression and tumor necrosis factor α (TNF-α) production were also determined. LPS increased caspase 3 activity in a TAK-242-sensitive manner and decreased MTT incorporation. Apoptosis was decreased in PAECs preconditioned with hypoxia prior to LPS exposure. LPS increased TNF-α production, and hypoxic preconditioning blunted it. Hypoxic preconditioning reduced LPS-induced TLR4 messenger RNA and TLR4 protein. TAK-242 decreased to baseline the LPS-stimulated expression of TLR4 messenger RNA regardless of environmental conditions. In contrast, LPS followed by hypoxia substantially increased apoptosis and cell death. In conclusion, protection from LPS-stimulated PAEC apoptosis by hypoxic preconditioning is attributable in part to reduction in TLR4 expression. If these signaling pathways apply to septic patients, they may account for differing sensitivities of individuals to acute lung injury depending on oxygen tensions in PAECs in vivo. PMID:24618542

  7. Hypoxia preconditioning increases survival and decreases expression of Toll-like receptor 4 in pulmonary artery endothelial cells exposed to lipopolysaccharide

    PubMed Central

    Nanchal, Rahul; Audi, Said; Konduri, G. Ganesh; Medhora, Meetha

    2013-01-01

    Abstract Pulmonary or systemic infections and hypoxemic respiratory failure are among the leading causes of admission to intensive care units, and these conditions frequently exist in sequence or in tandem. Inflammatory responses to infections are reproduced by lipopolysaccharide (LPS) engaging Toll-like receptor 4 (TLR4). Apoptosis is a hallmark of lung injury in sepsis. This study was conducted to determine whether preexposure to LPS or hypoxia modulated the survival of pulmonary artery endothelial cells (PAECs). We also investigated the role TLR4 receptor expression plays in apoptosis due to these conditions. Bovine PAECs were cultured in hypoxic or normoxic environments and treated with LPS. TLR4 antagonist TAK-242 was used to probe the role played by TLR4 receptors in cell survival. Cell apoptosis and survival were measured by caspase 3 activity and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) incorporation. TLR4 expression and tumor necrosis factor α (TNF-α) production were also determined. LPS increased caspase 3 activity in a TAK-242-sensitive manner and decreased MTT incorporation. Apoptosis was decreased in PAECs preconditioned with hypoxia prior to LPS exposure. LPS increased TNF-α production, and hypoxic preconditioning blunted it. Hypoxic preconditioning reduced LPS-induced TLR4 messenger RNA and TLR4 protein. TAK-242 decreased to baseline the LPS-stimulated expression of TLR4 messenger RNA regardless of environmental conditions. In contrast, LPS followed by hypoxia substantially increased apoptosis and cell death. In conclusion, protection from LPS-stimulated PAEC apoptosis by hypoxic preconditioning is attributable in part to reduction in TLR4 expression. If these signaling pathways apply to septic patients, they may account for differing sensitivities of individuals to acute lung injury depending on oxygen tensions in PAECs in vivo. PMID:24618542

  8. Up-regulation of human monocyte CD163 upon activation of cell-surface Toll-like receptors.

    PubMed

    Weaver, Lehn K; Pioli, Patricia A; Wardwell, Kathleen; Vogel, Stefanie N; Guyre, Paul M

    2007-03-01

    The hemoglobin (Hb) scavenger receptor, CD163, is a cell-surface glycoprotein that is expressed exclusively on monocytes and macrophages. It binds and internalizes haptoglobin-Hb complexes and has been implicated in the resolution of inflammation. Furthermore, the regulation of CD163 during an innate immune response implies an important role for this molecule in the host defense against infection. LPS, derived from the outer membrane of Gram-negative bacteria, activates TLR4 to cause acute shedding of CD163 from human monocytes, followed by recovery and induction of surface CD163 to higher levels than observed on untreated monocytes. We now report that the TLR2 and TLR5 agonists--Pam3Cys and bacterial flagellin--have similar effects on CD163 surface expression. Up-regulation of CD163 following treatment of human PBMC with TLR2, TLR4, and TLR5 agonists parallels increased production of IL-6 and IL-10, and neutralization of IL-6 and/or IL-10 blocks CD163 up-regulation. Furthermore, simultaneous stimulation of TLR2 or TLR5 in combination with TLR4 activation results in enhanced up-regulation of CD163. It is notable that exogenous recombinant IFN-gamma (rIFN-gamma) suppresses cell-surface, TLR-mediated IL-10 production as well as CD163 up-regulation. Sustained down-regulation of CD163 mediated by rIFN-gamma can be partially rescued with exogenous rIL-10 but not with exogenous rIL-6. This divergent regulation of CD163 by cytokines demonstrates that human monocytes react differently to infectious signals depending on the cytokine milieu they encounter. Thus, surface CD163 expression on mononuclear phagocytes is a carefully regulated component of the innate immune response to infection. PMID:17164428

  9. Roles of lipoxin A4 receptor activation and anti-interleukin-1β antibody on the toll-like receptor 2/mycloid differentiation factor 88/nuclear factor-κB pathway in airway inflammation induced by ovalbumin

    PubMed Central

    KONG, XIA; WU, SHENG-HUA; ZHANG, LI; CHEN, XIAO-QING

    2015-01-01

    Previous studies investigating the role of toll-like receptors (TLRs) in asthma have been inconclusive. It has remained elusive whether the toll-like receptors (TLR2)/mycloid differentiation factor 88 (MyD88)/nuclear factor (NF)-κB signaling pathway is involved in lipoxin A4 (LXA4)-induced protection against asthma. Therefore, the present study investigated whether ovalbumin (OVA)-induced airway inflammation is mediated by upregulation of the TLR2/MyD88/NF-κB signaling pathway, and whether it proceeds via the inhibition of the activation of the LXA4 receptor and anti-interleukin (IL)-1β antibodies. Mice with airway inflammation induced by OVA administration were treated with or without a LXA4 receptor agonist, BML-111 and anti-IL-1β antibody. Serum levels of IL-1β, IL-4, IL-8 and interferon-γ (IFN-γ) were assessed, and levels of IL-1β, IL-4, IL-8 and OVA-immunoglobulin (Ig)E, as well as leukocyte counts in the bronchoalveolar lavage fluid (BALF) were measured. Pathological features and expression of TLR2, MyD88 and NF-κB in the lungs were analyzed. Expression of TLR2 and MyD88, and activation of NF-κB in leukocytes as well as levels of IL-4, IL-6 and IL-8 released from leukocytes exposed to IL-1β were assessed. OVA treatment increased the levels of IL-1β, IL-4 and IL-8 in the serum and BLAF, the number of leukocytes and the levels of OVA-IgE in the BALF, the expression of TLR2 and MyD88, and the activation of NF-κB in the lung. These increments induced by OVA were inhibited by treatment with BML-111 and anti-IL-1β antibodies. Treatment of the leukocytes with BML-111 or TLR2 antibody, or MyD88 or NF-κB inhibitor, all blocked the IL-1β-triggered production of IL-4, IL-6 and IL-8 and activation of NF-κB. Treatment of the leukocytes with BML-111 or TLR2 antibody suppressed IL-1β-induced TLR2 and MyD88 expression. The present study therefore suggested that OVA-induced airway inflammation is mediated by the TLR2/MyD88/NF-κB pathway. IL-1β has a

  10. Toll-Like Receptor 2- and 6-Mediated Stimulation by Macrophage-Activating Lipopeptide 2 Induces Lipopolysaccharide (LPS) Cross Tolerance in Mice, Which Results in Protection from Tumor Necrosis Factor Alpha but in Only Partial Protection from Lethal LPS Doses

    PubMed Central

    Deiters, Ursula; Gumenscheimer, Marina; Galanos, Chris; Mühlradt, Peter F.

    2003-01-01

    Patients or experimental animals previously exposed to lipopolysaccharide (LPS) become tolerant to further LPS challenge. We investigated the potential of the macrophage-activating lipopeptide 2 (MALP-2) to induce in vivo cross tolerance to tumor necrosis factor alpha (TNF-α) and LPS. MALP-2-induced tolerance could be of practical interest, as MALP-2 proved much less pyrogenic in rabbits than LPS. Whereas LPS signals via Toll-like receptor 4 (TLR4), MALP-2 uses TLR2 and TLR6. LPS-mediated cytokine release was studied in mice pretreated with intraperitoneal injections of MALP-2. No biologically active TNF-α could be detected in the serum of MALP-2-treated animals when challenged with LPS 24 or 72 h later, whereas suppression of LPS-dependent interleukin (IL)-6 lasted for only 24 h. Protection from lethal TNF-α shock was studied in galactosamine-treated mice. Dose dependently, MALP-2 prevented death from lethal TNF-α doses in TLR4−/− but not in TLR2−/− mice, with protection lasting from 5 to 24 h. To assay protection from LPS, mice were pretreated with MALP-2 doses of up to 10 μg. Five and 24 h later, the animals were simultaneously sensitized and challenged by intravenous coinjection of galactosamine and a lethal dose of 50 ng of LPS. There was only limited protection (four of seven mice survived) when mice were challenged 5 h after MALP-2 pretreatment, and no protection when mice were challenged at later times. The high effectiveness of MALP-2 in suppressing TNF-α, the known ways of biological inactivation, and low pyrogenicity make MALP-2 a potential candidate for clinical use. PMID:12874325

  11. [Inhibitory effect of polydatin on expression of toll-like receptor 4 in ischemia-reperfusion injured NRK-52E cells].

    PubMed

    Li, Ying; Xiong, Wei-Jian; Yang, Jing; Zhong, Jin; Zheng, Jin; Zhang, Ling; Ouyang, Xiao-Qin

    2014-08-01

    Polydatin is a monocrystaline compound isolated from Polygonum cuspidatum Sieb. et Zucc. (Polygonaceae) with biological properties, such as anti-inflammation, anti-oxidative and nephroprotective effects. Increasing number of studies have demonstrated the protective effect of polydatin on renal ischemia reperfusion injury. However, the possible mechanisms of this protection are not fully elucidated. This study aimed to investigate the effect of polydatin on ischemia-reperfusion induced expression of toll-like receptor4 (TLR4) in rat renal tubular epithelia cells (NRK-52E), and analyze the mechanism of polydatin on TLR4 signal pathway. The cultured NRK-52E cells were incubated in three gas incubators for a period of 6 h at hypoxia and 24h at reoxygenation to simulate the ischemia-reperfusion injury in vitro. TLR4 mRNA level was analyzed by real-time-PCR, and the protein expression of TLR4 and NF-κB by Western blotting, while TNF-α and IL-1β proteins expressions were detected by ELISA. Polydatin downregulated I/R induced mRNA and protein expressions of TLR4, and decreased the protein expression of NF-κB, TNF-α and IL-1β. The TLR4 blocker partially antagonized the effect of I/R on NF-κB signaling, and such inhibitory effect was markedly enhanced by polydatin. In the present study, polydatin protects NRK-52E cells from I/R injury possibly by relieving the inflammatory response through regulation of TLR4/NF-κB signaling pathway. PMID:25509306

  12. Toll-Like Receptor 3 and Suppressor of Cytokine Signaling Proteins Regulate CXCR4 and CXCR7 Expression in Bone Marrow-Derived Human Multipotent Stromal Cells

    PubMed Central

    Tomchuck, Suzanne L.; Henkle, Sarah L.; Coffelt, Seth B.; Betancourt, Aline M.

    2012-01-01

    Background The use of bone marrow-derived human multipotent stromal cells (hMSC) in cell-based therapies has dramatically increased in recent years, as researchers have exploited the ability of these cells to migrate to sites of tissue injury, inflammation, and tumors. Our group established that hMSC respond to “danger” signals – by-products of damaged, infected or inflamed tissues – via activation of Toll-like receptors (TLRs). However, little is known regarding downstream signaling mediated by TLRs in hMSC. Methodology/Principal Findings We demonstrate that TLR3 stimulation activates a Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 1 pathway, and increases expression of suppressor of cytokine signaling (SOCS) 1 and SOCS3 in hMSC. Our studies suggest that each of these SOCS plays a distinct role in negatively regulating TLR3 and JAK/STAT signaling. TLR3-mediated interferon regulatory factor 1 (IRF1) expression was inhibited by SOCS3 overexpression in hMSC while SOCS1 overexpression reduced STAT1 activation. Furthermore, our study is the first to demonstrate that when TLR3 is activated in hMSC, expression of CXCR4 and CXCR7 is downregulated. SOCS3 overexpression inhibited internalization of both CXCR4 and CXCR7 following TLR3 stimulation. In contrast, SOCS1 overexpression only inhibited CXCR7 internalization. Conclusion/Significance These results demonstrate that SOCS1 and SOCS3 each play a functionally distinct role in modulating TLR3, JAK/STAT, and CXCR4/CXCR7 signaling in hMSC and shed further light on the way hMSC respond to danger signals. PMID:22745793

  13. The Co-Stimulatory Effects of MyD88-Dependent Toll-Like Receptor Signaling on Activation of Murine γδ T Cells

    PubMed Central

    Xie, Guorui; Welte, Thomas; Saxena, Vandana; Wicker, Jason; Mann, Brian; Soong, Lynn; Barrett, Alan; Born, Willi; O'Brien, Rebecca; Wang, Tian

    2014-01-01

    γδ T cells express several different toll-like receptor (TLR)s. The role of MyD88- dependent TLR signaling in TCR activation of murine γδ T cells is incompletely defined. Here, we report that Pam3CSK4 (PAM, TLR2 agonist) and CL097 (TLR7 agonist), but not lipopolysaccharide (TLR4 agonist), increased CD69 expression and Th1-type cytokine production upon anti-CD3 stimulation of γδ T cells from young adult mice (6-to 10-week-old). However, these agonists alone did not induce γδ T cell activation. Additionally, we noted that neither PAM nor CL097 synergized with anti-CD3 in inducing CD69 expression on γδ T cells of aged mice (21-to 22-month-old). Compared to young γδ T cells, PAM and CL097 increased Th-1 type cytokine production with a lower magnitude from anti-CD3- stimulated, aged γδ T cells. Vγ1+ and Vγ4+ cells are two subpopulations of splenic γδ T cells. PAM had similar effects in anti-CD3-activated control and Vγ4+ subset- depleted γδ T cells; whereas CL097 induced more IFN-γ production from Vγ4+ subset-depleted γδ T cells than from the control group. Finally, we studied the role of MyD88-dependent TLRs in γδ T cell activation during West Nile virus (WNV) infection. γδ T cell, in particular, Vγ1+ subset expansion was significantly reduced in both MyD88- and TLR7- deficient mice. Treatment with TLR7 agonist induced more Vγ1+ cell expansion in wild-type mice during WNV infection. In summary, these results suggest that MyD88-dependent TLRs provide co-stimulatory signals during TCR activation of γδ T cells and these have differential effects on distinct subsets. PMID:25232836

  14. Kinetics of the West Nile virus induced transcripts of selected cytokines and Toll-like receptors in equine peripheral blood mononuclear cells.

    PubMed

    Uddin, Muhammad Jasim; Suen, Willy W; Bosco-Lauth, Angela; Hartwig, Airn-Elizabeth; Hall, Roy A; Bowen, Richard A; Bielefeldt-Ohmann, Helle

    2016-01-01

    West Nile virus (WNV) is one of the most common causes of epidemic viral encephalitis in horses worldwide. Peripheral blood mononuclear cells (PBMCs) are amongst the first to encounter the virus following a mosquito bite. This study aimed to elucidate the transcription kinetics of cytokine, Toll-like receptor (TLRs) and TLRs-associated genes following WNV challenge of equine PBMCs. PBMCs were challenged with an Australian strain of WNV (WNVNSW2011) and transcriptomes were quantified at 2, 6, 12 and 24 h post-infection (pi) using qRT-PCR. Type I and II interferons (IFNα, β and γ) mRNA transcription increased following WNV exposure, as did the transcripts for IL1α, IL1β, IL6, IL8, and IL22, but with slightly varying kinetics. TLR1, 3, 5, 7-9 transcripts were also upregulated in equine PBMCsin response to WNV challenge, as were those for MyD88, NF-κB, TRAF3, STAT1 and 2, IRF3 and 7, ISG15, as well as SOCS1 and 3 compared to the control cells. Expression of selected genes in the draining lymph node, spleen and brain (medulla oblongata) of experimentally infected horses was also assessed and transcription of most of these genes was also upregulated here. Although qRT-PCR detected higher viral RNA at 24 h pi compared to 6 h pi, the virus did not replicate productively in equine PBMCs. The up-regulation of gene-transcription for selected cytokines, IFNs, TLRs and TLRs-associated molecules suggests their involvement in virus recognition and control of WNV infection in the horse. PMID:27267361

  15. Phase I study utilizing a novel antigen-presenting cell-targeted vaccine with Toll-like receptor stimulation to induce immunity to self antigens in cancer patients

    PubMed Central

    Morse, Michael A.; Chapman, Robert; Powderly, John; Blackwell, Kimberly; Keler, Tibor; Green, Jennifer; Riggs, Renee; He, Li-Zhen; Ramakrishna, Venky; Vitale, Laura; Zhao, Biwei; Butler, Stephen A.; Hobeika, Amy; Osada, Takuya; Davis, Thomas; Clay, Timothy; Lyerly, H. Kim

    2011-01-01

    Purpose The use of tumor-derived proteins as cancer vaccines is complicated by tolerance to these self antigens. Tolerance may be broken by immunization with activated, autologous, ex vivo generated and antigen-loaded, antigen-presenting cells (APC); however, targeting tumor antigen directly to APC in vivo would be a less complicated strategy. We wished to test whether targeted delivery of an otherwise poorly immunogenic, soluble antigen to APC through their mannose receptors (MR) would induce clinically relevant immunity. Experimental Design Two phase I studies were performed with CDX-1307, a vaccine composed of human chorionic gonadotropin beta chain (hCG-β) fused to a MR-specific monoclonal antibody, administered either locally (intradermally) or systemically (intravenously) in patients with advanced epithelial malignancies. An initial dose-escalation of single agent CDX-1307 was followed by additional cohorts of CDX-1307 combined with GM-CSF and the Toll-like receptor (TLR)-3 agonist poly-ICLC and TLR7/8 agonist resiquimod to activate the APC. Results CDX-1307 induced consistent humoral and T cell responses to hCG-β when co-administered with TLR agonists. Greater immune responses and clinical benefit, including the longest duration of stable disease, were observed with immunization combined with local TLR agonists. Immune responses were induced equally efficiently in patients with elevated and non-elevated levels of serum hCG-β. Antibodies within the serum of vaccinated participants had tumor suppressive function in vitro. Toxicity consisted chiefly of mild injection site reactions. Conclusions APC targeting and activation induce adaptive immunity against poorly immunogenic self antigens which has implications for enhancing the efficacy of cancer immunotherapy. PMID:21632857

  16. Toll-Like Receptor 1/2 and 5 Ligands Enhance the Expression of Cyclin D1 and D3 and Induce Proliferation in Mantle Cell Lymphoma

    PubMed Central

    Mastorci, Katy; Muraro, Elena; Pasini, Elisa; Furlan, Chiara; Sigalotti, Luca; Cinco, Marina; Dolcetti, Riccardo; Fratta, Elisabetta

    2016-01-01

    Mantle cell lymphoma (MCL) is an aggressive B-cell non-Hodgkin’s lymphoma with a still undefined etiology. Several lines of evidence are consistent with the possible involvement of peculiar microenvironmental stimuli sustaining tumor cell growth and survival, as the activation of Toll-like receptors (TLR) 4 and 9. However, little is known about the contribution of other TLRs of pathogenic relevance in the development of MCL. This study reports evidence that MCL cell lines and primary MCL cells express different levels of TLR2 and TLR5, and that their triggering is able to further activate the Akt, MAPK, and NF-κB signaling cascades, known to be altered in MCL cells. This leads to the enhancement of cyclin D1 and D3 over-expression, occurring at post-translational level through a mechanism that likely involves the Akt/GSK-3α/β pathway. Interestingly, in primary B cells, TLR1/2 or TLR5 ligands increase protein level of cyclin D1, which is not usually expressed in normal B cells, and cyclin D3 when associated with CD40 ligand (CD40L), IL-4, and anti-human-IgM co-stimulus. Finally, the activation of TLR1/2 and TLR5 results in an increased proliferation of MCL cell lines and, in the presence of co-stimulation with CD40L, IL-4, and anti-human-IgM also of primary MCL cells and normal B lymphocytes. These effects befall together with an enhanced IL-6 production in primary cultures. Overall, our findings suggest that ligands for TLR1/2 or TLR5 may provide critical stimuli able to sustain the growth and the malignant phenotype of MCL cells. Further studies aimed at identifying the natural source of these TLR ligands and their possible pathogenic association with MCL are warranted in order to better understand MCL development, but also to define new therapeutic targets for counteracting the tumor promoting effects of lymphoma microenvironment. PMID:27123851

  17. A systemic defect in Toll-like receptor 4 signaling increases lipopolysaccharide-induced suppression of IL-2-dependent T-cell proliferation in COPD.

    PubMed

    Knobloch, Jürgen; Chikosi, Sarah-Jane; Yanik, Sarah; Rupp, Jan; Jungck, David; Koch, Andrea

    2016-01-01

    The susceptibility to bacterial infections is increased in chronic obstructive pulmonary disease (COPD). This promotes exacerbations. IL-2 triggers CD4(+)/Th1-cell proliferation, which is important for infection defense. Bacterial endotoxin (LPS) activates MyD88/IRAK and TRIF/IKKε/TBK1 pathways via Toll-like receptor-4 (TLR4) in Th1 cells. Systemic defects in TLR pathways in CD4(+)/Th1 cells cause an impairment of IL-2-dependent immune responses to bacterial infections in COPD. Peripheral blood CD4(+) T cells of never smokers, smokers without COPD, and smokers with COPD (each n = 10) were ex vivo activated towards Th1 and stimulated with LPS. IL-2, MyD88, and TRIF expression, and cell proliferation was analyzed by ELISA, quantitative RT-PCR, and bromodeoxyuridine (BrdU) and trypan blue staining comparative among the cohorts. IL-2 release from activated T cells was increased in COPD vs. smokers and never smokers. LPS reduced IL-2 expression and T-cell proliferation. These effects were increased in COPD vs. never smokers and inversely correlated with FEV1 (%predicted). The MyD88/TRIF ratio was decreased in Th1 cells of COPD. The suppression of IL-2 by LPS was abolished by MyD88/IRAK blockade in never smokers but by TRIF/IKKε/TBK1 blockade in COPD. Moxifloxacin restored IL-2 expression and T-cell proliferation in the presence of LPS by blocking p38 MAPK. The increased IL-2 release from Th1 cells in COPD might contribute to airway inflammation in disease exacerbations. A switch from MyD88/IRAK to TRIF/IKKε/TBK1 signaling amplifies the suppression of IL-2-dependent proliferation of CD4(+) T cells by LPS in COPD. This molecular pathology is of systemic origin, might impair adaptive immune responses, and could explain the increased susceptibility to bacterial infections in COPD. Targeting TLR4-downstream signaling, for example, with moxifloxacin, might reduce exacerbation rates. PMID:26498252

  18. Transcription of Toll-Like Receptors 2, 3, 4 and 9, FoxP3 and Th17 Cytokines in a Susceptible Experimental Model of Canine Leishmania infantum Infection

    PubMed Central

    Hosein, Shazia; Rodríguez-Cortés, Alhelí; Blake, Damer P.; Allenspach, Karin; Alberola, Jordi; Solano-Gallego, Laia

    2015-01-01

    Canine leishmaniosis (CanL) due to Leishmania infantum is a chronic zoonotic systemic disease resulting from complex interactions between protozoa and the canine immune system. Toll-like receptors (TLRs) are essential components of the innate immune system and facilitate the early detection of many infections. However, the role of TLRs in CanL remains unknown and information describing TLR transcription during infection is extremely scarce. The aim of this research project was to investigate the impact of L. infantum infection on canine TLR transcription using a susceptible model. The objectives of this study were to evaluate transcription of TLRs 2, 3, 4 and 9 by means of quantitative reverse transcription polymerase chain reaction (qRT-PCR) in skin, spleen, lymph node and liver in the presence or absence of experimental L. infantum infection in Beagle dogs. These findings were compared with clinical and serological data, parasite densities in infected tissues and transcription of IL-17, IL-22 and FoxP3 in different tissues in non-infected dogs (n = 10), and at six months (n = 24) and 15 months (n = 7) post infection. Results revealed significant down regulation of transcription with disease progression in lymph node samples for TLR3, TLR4, TLR9, IL-17, IL-22 and FoxP3. In spleen samples, significant down regulation of transcription was seen in TLR4 and IL-22 when both infected groups were compared with controls. In liver samples, down regulation of transcription was evident with disease progression for IL-22. In the skin, upregulation was seen only for TLR9 and FoxP3 in the early stages of infection. Subtle changes or down regulation in TLR transcription, Th17 cytokines and FoxP3 are indicative of the silent establishment of infection that Leishmania is renowned for. These observations provide new insights about TLR transcription, Th17 cytokines and Foxp3 in the liver, spleen, lymph node and skin in CanL and highlight possible markers of disease susceptibility in

  19. A species-specific activation of Toll-like receptor signaling in bovine and sheep bronchial epithelial cells triggered by Mycobacterial infections.

    PubMed

    Ma, Yan; Han, Fei; Liang, Jinping; Yang, Jiali; Shi, Juan; Xue, Jing; Yang, Li; Li, Yong; Luo, Meihui; Wang, Yujiong; Wei, Jun; Liu, Xiaoming

    2016-03-01

    Pulmonary tuberculosis caused by a Mycobacterium infection remains a major public health problem in most part of the world, in part owing to the transmission of its pathogens between hosts including human, domestic and wild animals. To date, molecular mechanisms of the pathogenesis of TB are still incompletely understood. In addition to alveolar macrophages, airway epithelial cells have also been recently recognized as main targets for Mycobacteria infections. In an effort to understand the pathogen-host interaction between Mycobacteria and airway epithelial cells in domestic animals, in present study, we investigated the Toll-like receptor (TLR) signaling in bovine and sheep airway epithelial cells in response to an infection of Mycobacterium tuberculosis avirulent H37Ra stain or Mycobacterium bovis BCG vaccine strain, using primary air-liquid interface (ALI) bronchial epithelial culture models. Our results revealed a host and pathogen species-specific TLR-mediated recognition of pathogen-associated molecular patterns (PAMPs), induction and activation of TLR signaling pathways, and substantial induction of inflammatory response in bronchial epithelial cells in response to Mycobacteria infections between these two species. Interestingly, the activation TLR signaling in bovine bronchial epithelial cells induced by Mycobacteria infection was mainly through a myeloid differentiation factor 88 (MyD88)-independent TLR signaling pathway, while both MyD88-dependent and independent TLR signaling cascades could be induced in sheep epithelial cells. Equally noteworthy, a BCG infection was able to induce both MyD88-dependent and independent signaling in sheep and bovine airway epithelial cells, but more robust inflammatory responses were induced in sheep epithelial cells relative to the bovines; whereas an H37Ra infection displayed an ability to mainly trigger a MyD88-independent TLR signaling cascade in these two host species, and induce a more extent expression of

  20. Toll-like receptor (TLR)-2/4 expression in retinal ganglion cells in a high-glucose environment and its implications.

    PubMed

    Zhao, M; Li, C H; Liu, Y L

    2016-01-01

    Diabetic retinopathy (DR), a major complication of diabetes mellitus, is the leading cause of adult blindness. The Toll-like receptor (TLR) family is believed to be involved in the pathogenesis and progression of DR. Here, we investigated the expression profiles of TLR-2 and TLR-4 in retinal ganglion cells (RGCs), in an attempt to elucidate the role of these molecules in the etiology of DR. In vitro cultured RGCs were divided into control and high-glucose groups. The mRNA and protein levels of TLR-2, TLR-4, and nuclear factor (NF)-κB were detected by real-time PCR and western blotting. RGCs were further transfected with specific siRNA targeting TLR2/TLR4; the proliferation of transfected RGCs and their tumor necrosis factor (TNF)-α and interleukin (IL)-8 secretory capacity were analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and enzyme-linked immunosorbent assays (ELISA), respectively. In a high-glucose environment, TLR-2/4 expression was significantly upregulated in RGCs (while their viability decreased); additionally, NF-κB expression and secretion of TNF-α and IL-8 were significantly increased. Co-silencing of the TLR-2 and TLR-4 genes inhibited NF- κB expression and TNF-α/IL-8 secretion, while increasing the survival rate of RGCs. Therefore, a high-glucose environment can potentiate the expression of TLR-2 and TLR-4 in RGCs, activate the downstream signaling pathway, and increase the secretion of pro-inflammatory factors, thereby aggravating DR. PMID:27173229

  1. Activation of Toll-like receptor 3 increases mouse aortic vascular smooth muscle cell contractility through ERK1/2 pathway.

    PubMed

    Hardigan, Trevor; Spitler, Kathryn; Matsumoto, Takayuki; Carrillo-Sepulveda, Maria Alicia

    2015-11-01

    Activation of Toll-like receptor 3 (TLR3), a pattern recognition receptor of the innate immune system, is associated with vascular complications. However, whether activation of TLR3 alters vascular contractility is unknown. We, therefore, hypothesized that TLR3 activation augments vascular contractility and activates vascular smooth muscle cell (VSMC) contractile apparatus proteins. Male mice were treated with polyinosinic-polycytidylic acid (Poly I:C group, 14 days), a TLR3 agonist; control mice received saline (vehicle, 14 days). At the end of protocol, blood pressure was measured by tail cuff method. Aortas were isolated and assessed for contractility experiments using a wire myograph. Aortic protein content was used to determine phosphorylated/total interferon regulatory factor 3 (IRF3), a downstream target of TLR3 signaling, and ERK1/2 using Western blot. We investigated the TLR3/IRF3/ERK1/2 signaling pathway and contractile-related proteins such as phosphorylated/total myosin light chain (MLC) and caldesmon (CaD) in aortic VSMC primary cultures. Poly I:C-treated mice exhibited (vs. vehicle-treated mice) (1) elevated systolic blood pressure. Moreover, Poly I:C treatment (2) enhanced aortic phenylephrine-induced maximum contraction, which was suppressed by PD98059 (ERK1/2 inhibitor), and (3) increased aortic levels of phosphorylated IRF3 and ERK1/2. Stimulation of mouse aortic VSMCs with Poly I:C resulted in increased phosphorylation of IRF3, ERK1/2, MLC, and CaD. Inhibition of ERK1/2 abolished Poly I:C-mediated phosphorylation of MLC and CaD. Our data provide functional evidence for the role of TLR3 in vascular contractile events, suggesting TLR3 as a potential new therapeutic target in vascular dysfunction and regulation of blood pressure. PMID:25724934

  2. Coordinated Activation of Toll-Like Receptor8 (TLR8) and NLRP3 by the TLR8 Agonist, VTX-2337, Ignites Tumoricidal Natural Killer Cell Activity

    PubMed Central

    Dietsch, Gregory N.; Lu, Hailing; Yang, Yi; Morishima, Chihiro; Chow, Laura Q.; Disis, Mary L.; Hershberg, Robert M.

    2016-01-01

    VTX-2337 (USAN: motolimod) is a selective toll-like receptor 8 (TLR8) agonist, which is in clinical development as an immunotherapy for multiple oncology indications, including squamous cell carcinoma of the head and neck (SCCHN). Activation of TLR8 enhances natural killer cell activation, increases antibody-dependent cell-mediated cytotoxicity, and induces Th1 polarizing cytokines. Here, we show that VTX-2337 stimulates the release of mature IL-1β and IL-18 from monocytic cells through coordinated actions on both TLR8 and the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome complex. In vitro, VTX-2337 primed monocytic cells to produce pro-IL-1β, pro-IL-18, and caspase-1, and also activated the NLRP3 inflammasome, thereby mediating the release of mature IL-1β family cytokines. Inhibition of caspase-1 blocked VTX-2337-mediated NLRP3 inflammasome activation, but had little impact on production of other TLR8-induced mediators such as TNFα. IL-18 activated natural killer cells and complemented other stimulatory pathways, including FcγRIII and NKG2D, resulting in IFNγ production and expression of CD107a. NLRP3 activation in vivo was confirmed by a dose-related increase in plasma IL-1β and IL-18 levels in cynomolgus monkeys administered VTX-2337. These results are highly relevant to clinical studies of combination VTX-2337/cetuximab treatment. Cetuximab, a clinically approved, epidermal growth factor receptor-specific monoclonal antibody, activates NK cells through interactions with FcγRIII and facilitates ADCC of tumor cells. Our preliminary findings from a Phase I open-label, dose-escalation, trial that enrolled 13 patients with recurrent or metastatic SCCHN show that patient NK cells become more responsive to stimulation by NKG2D or FcγRIII following VTX-2337 treatment. Together, these results indicate that TLR8 stimulation and inflammasome activation by VTX-2337 can complement FcγRIII engagement and may augment clinical responses in SCCHN

  3. Interleukin-17A and Toll-Like Receptor 3 Ligand Poly(I:C) Synergistically Induced Neutrophil Chemoattractant Production by Bronchial Epithelial Cells

    PubMed Central

    Matsuzaki, Hirotaka; Mikami, Yu; Makita, Kousuke; Takeshima, Hideyuki; Horie, Masafumi; Noguchi, Satoshi; Jo, Taisuke; Narumoto, Osamu; Kohyama, Tadashi; Takizawa, Hajime; Nagase, Takahide; Yamauchi, Yasuhiro

    2015-01-01

    Chronic inflammatory airway diseases, such as bronchial asthma and chronic obstructive pulmonary disease, are common respiratory disorders worldwide. Exacerbations of these diseases are frequent and worsen patients’ respiratory condition and overall health. However, the mechanisms of exacerbation have not been fully elucidated. Recently, it was reported that interleukin (IL)-17A might play an important role in neutrophilic inflammation, which is characteristic of such exacerbations, through increased production of neutrophil chemoattractants. Therefore, we hypothesized that IL-17A was involved in the pathogenesis of acute exacerbation, due to viral infection in chronic inflammatory airway diseases. In this study, we assessed chemokine production by bronchial epithelial cells and investigated the underlying mechanisms. Comprehensive chemokine analysis showed that, compared with poly(I:C) alone, co-stimulation of BEAS-2B cells with IL-17A and poly(I:C) strongly induced production of such neutrophil chemoattractants as CXC chemokine ligand (CXCL)8, growth-related oncogene (GRO), and CXCL1. Co-stimulation synergistically induced CXCL8 and CXCL1 mRNA and protein production by BEAS-2B cells and normal human bronchial epithelial cells. Poly(I:C) induced chemokine expression by BEAS-2B cells mainly via Toll-like receptor 3/TIR-domain-containing adapter-inducing interferon-β–mediated signals. The co-stimulation with IL-17A and poly(I:C) markedly activated the p38 and extracellular-signal-regulated kinase 1/2 pathway, compared with poly(I:C), although there was little change in nuclear factor-κB translocation into the nucleus or the transcriptional activities of nuclear factor-κB and activator protein 1. IL-17A promoted stabilization of CXCL8 mRNA in BEAS-2B cells treated with poly(I:C). In conclusion, IL-17A appears to be involved in the pathogenesis of chronic inflammatory airway disease exacerbation, due to viral infection by promoting release of neutrophil

  4. Structure of toll-like receptors.

    PubMed

    Gay, Nicholas J; Gangloff, Monique

    2008-01-01

    The ten human Toll-like receptors are able to respond to an extremely diverse range of microbial products ranging from di- and tri-acylated lipids to nucleic acids. An understanding of the molecular structure adopted by the receptor extracellular, transmembrane, and cytoplasmic domains and the way in which these structures interact with ligands and downstream signaling adapters can explain how recognition and signal transduction are achieved at a molecular level. In this article we discuss how the leucine-rich repeats of the receptor ectodomain have evolved to bind a wide variety of biological molecules. We also discuss how ligand binding induces dimerization of two receptor chains and initiates a series of protein conformational changes that lead to a signaling event in the cytoplasm of the immune system cell. Thus, the signaling process of the TLRs can be viewed as a unidirectional molecular switch. PMID:18071660

  5. Toll-Like Receptor Signaling Pathways

    PubMed Central

    Kawasaki, Takumi; Kawai, Taro

    2014-01-01

    Toll-like receptors (TLRs) play crucial roles in the innate immune system by recognizing pathogen-associated molecular patterns derived from various microbes. TLRs signal through the recruitment of specific adaptor molecules, leading to activation of the transcription factors NF-κB and IRFs, which dictate the outcome of innate immune responses. During the past decade, the precise mechanisms underlying TLR signaling have been clarified by various approaches involving genetic, biochemical, structural, cell biological, and bioinformatics studies. TLR signaling appears to be divergent and to play important roles in many aspects of the innate immune responses to given pathogens. In this review, we describe recent progress in our understanding of TLR signaling regulation and its contributions to host defense. PMID:25309543

  6. The GroEL protein of Porphyromonas gingivalis regulates atherogenic phenomena in endothelial cells mediated by upregulating toll-like receptor 4 expression.

    PubMed

    Huang, Chun-Yao; Shih, Chun-Ming; Tsao, Nai-Wen; Lin, Yi-Wen; Shih, Chun-Che; Chiang, Kuang-Hsing; Shyue, Song-Kun; Chang, Yu-Jia; Hsieh, Chi-Kun; Lin, Feng-Yen

    2016-01-01

    Porphyromonas gingivalis (P. gingivalis) is a bacterial species that causes periodontitis. GroEL from P. gingivalis may possess biological activity and may be involved in the destruction of periodontal tissues. However, it is unclear whether P. gingivalis GroEL enhances the appearance of atherogenic phenomena in endothelial cells and vessels. Here, we constructed recombinant GroEL from P. gingivalis to investigate its effects in human coronary artery endothelial cells (HCAECs) in vitro and on aortas of high-cholesterol (HC)-fed B57BL/6 and B57BL/6-Tlr4(lps-del) mice in vivo. The results showed that GroEL impaired tube-formation capacity under non-cytotoxic conditions in HCAECs. GroEL increased THP-1 cell/HCAEC adhesion by increasing the expression of intracellular adhesion molecule (ICAM)-1 and vascular adhesion molecule (VCAM)-1 in endothelial cells. Additionally, GroEL increased DiI-oxidized low density lipoprotein (oxLDL) uptake, which may be mediated by elevated lectin-like oxLDL receptor (LOX)-1 but not scavenger receptor expressed by endothelial cells (SREC) and scavenger receptor class B1 (SR-B1) expression. Furthermore, GroEL interacts with toll-like receptor 4 (TLR4) and plays a causal role in atherogenesis in HCAECs. Human antigen R (HuR), an RNA-binding protein with a high affinity for the 3' untranslated region (3'UTR) of TLR4 mRNA, contributes to the up-regulation of TLR4 induced by GroEL in HCAECs. In a GroEL animal administration study, GroEL elevated ICAM-1, VCAM-1, LOX-1 and TLR4 expression in the aortas of HC diet-fed wild C57BL/6 but not C57BL/6-Tlr4(lps-del) mice. Taken together, our findings suggest that P. gingivalis GroEL may contribute to cardiovascular disorders by affecting TLR4 expression. PMID:27158334

  7. The GroEL protein of Porphyromonas gingivalis regulates atherogenic phenomena in endothelial cells mediated by upregulating toll-like receptor 4 expression

    PubMed Central

    Huang, Chun-Yao; Shih, Chun-Ming; Tsao, Nai-Wen; Lin, Yi-Wen; Shih, Chun-Che; Chiang, Kuang-Hsing; Shyue, Song-Kun; Chang, Yu-Jia; Hsieh, Chi-Kun; Lin, Feng-Yen

    2016-01-01

    Porphyromonas gingivalis (P. gingivalis) is a bacterial species that causes periodontitis. GroEL from P. gingivalis may possess biological activity and may be involved in the destruction of periodontal tissues. However, it is unclear whether P. gingivalis GroEL enhances the appearance of atherogenic phenomena in endothelial cells and vessels. Here, we constructed recombinant GroEL from P. gingivalis to investigate its effects in human coronary artery endothelial cells (HCAECs) in vitro and on aortas of high-cholesterol (HC)-fed B57BL/6 and B57BL/6-Tlr4lps-del mice in vivo. The results showed that GroEL impaired tube-formation capacity under non-cytotoxic conditions in HCAECs. GroEL increased THP-1 cell/HCAEC adhesion by increasing the expression of intracellular adhesion molecule (ICAM)-1 and vascular adhesion molecule (VCAM)-1 in endothelial cells. Additionally, GroEL increased DiI-oxidized low density lipoprotein (oxLDL) uptake, which may be mediated by elevated lectin-like oxLDL receptor (LOX)-1 but not scavenger receptor expressed by endothelial cells (SREC) and scavenger receptor class B1 (SR-B1) expression. Furthermore, GroEL interacts with toll-like receptor 4 (TLR4) and plays a causal role in atherogenesis in HCAECs. Human antigen R (HuR), an RNA-binding protein with a high affinity for the 3’ untranslated region (3’UTR) of TLR4 mRNA, contributes to the up-regulation of TLR4 induced by GroEL in HCAECs. In a GroEL animal administration study, GroEL elevated ICAM-1, VCAM-1, LOX-1 and TLR4 expression in the aortas of HC diet-fed wild C57BL/6 but not C57BL/6-Tlr4lps-del mice. Taken together, our findings suggest that P. gingivalis GroEL may contribute to cardiovascular disorders by affecting TLR4 expression. PMID:27158334

  8. Imaging the role of toll-like receptor 4 on cell proliferation and inflammation after cerebral ischemia by positron emission tomography.

    PubMed

    Moraga, Ana; Gómez-Vallejo, Vanessa; Cuartero, María Isabel; Szczupak, Boguslaw; San Sebastián, Eneko; Markuerkiaga, Irati; Pradillo, Jesús M; Higuchi, Makoto; Llop, Jordi; Moro, María Ángeles; Martín, Abraham; Lizasoain, Ignacio

    2016-04-01

    The influence of toll-like receptor 4 on neurogenesis and inflammation has been scarcely explored so far by using neuroimaging techniques. For this purpose, we performed magnetic resonance imaging and positron emission tomography with 3'-deoxy-3'-[(18)F]fluorothymidine and [(11)C]PK11195 at 2, 7, and 14 days following cerebral ischemia in TLR4(+/+)and TLR4(-/-)mice. MRI showed similar infarction volumes in both groups. Despite this, positron emission tomography with 3'-deoxy-3'-[(18)F]fluorothymidine and [(11)C]PK11195 evidenced an increase of neurogenesis and a decrease of inflammation in TLR4(-/-)mice after ischemia. These results evidence the versatility of neuroimaging techniques to monitor the role of toll-like receptor 4 after cerebral ischemia. PMID:26787106

  9. Multiple Sclerosis: Modulation of Toll-Like Receptor (TLR) Expression by Interferon-β Includes Upregulation of TLR7 in Plasmacytoid Dendritic Cells

    PubMed Central

    Hecker, Michael; Paap, Brigitte K.; Thamilarasan, Madhan; Koczan, Dirk; Schott, Eckart; Deuschle, Katrin; Bellmann-Strobl, Judith; Paul, Friedemann; Zettl, Uwe K.; Ruprecht, Klemens; Lehnardt, Seija

    2013-01-01

    Interferon-β is an established treatment for patients with multiple sclerosis (MS) but its mechanisms of action are not well understood. Viral infections are a known trigger of MS relapses. Toll-like receptors (TLRs) are key components of the innate immune system, which sense conserved structures of viruses and other pathogens. Effects of interferon-β on mRNA levels of all known human TLRs (TLR1-10) and the TLR adaptor molecule MyD88 were analyzed in peripheral blood mononuclear cells (PBMCs) of healthy donors by quantitative real-time PCR and by transcriptome analysis in PBMCs of 25 interferon-β-treated patients with relapsing-remitting MS. Regulation of TLR protein expression by interferon-β was investigated by flow cytometry of leukocyte subsets of healthy subjects and of untreated, interferon-β-, or glatiramer acetate-treated patients with MS. Interferon-β specifically upregulated mRNA expression of TLR3, TLR7, and MyD88 and downregulated TLR9 mRNA in PBMCs of healthy donors as well as in PBMCs of patients with MS. Plasmacytoid dendritic cells (pDCs) were identified as the major cell type responding to interferon-β with increased expression of TLR7 and MyD88 protein. In line with this, expression of TLR7 protein was increased in pDCs of interferon-β-treated, but not untreated or glatiramer acetate-treated patients with MS. Interferon-β-induced upregulation of TLR7 in pDCs is of functional relevance since pre-treatment of PBMCs with interferon-β resulted in a strongly increased production of interferon-α upon stimulation with the TLR7 agonist loxoribine. Flow cytometry confirmed pDCs as the cellular source of interferon-α production induced by activation of TLR7. Thus, upregulation of TLR7 in pDCs and a consequently increased activation of pDCs by TLR7 ligands represents a novel immunoregulatory mechanism of interferon-β. We hypothesize that this mechanism could contribute to a reduction of virus-triggered relapses in patients with MS. PMID:23950974

  10. Toll-like receptor 3 stimulation promotes Ro52/TRIM21 synthesis and nuclear redistribution in salivary gland epithelial cells, partially via type I interferon pathway.

    PubMed

    Kyriakidis, N C; Kapsogeorgou, E K; Gourzi, V C; Konsta, O D; Baltatzis, G E; Tzioufas, A G

    2014-12-01

    Up-regulated expression of Ro52/tripartite motif-containing protein 21 (TRIM21), Ro60/TROVE domain family, member 2 (TROVE2) and lupus LA protein/Sjögren's syndrome antigen B (La/SSB) autoantigens has been described in the salivary gland epithelial cells (SGEC) of patients with Sjögren's syndrome (SS). SGECs, the key regulators of autoimmune SS responses, express high levels of surface functional Toll-like receptor (TLR)-3, whereas Ro52/TRIM21 negatively regulates TLR-3-mediated inflammation. Herein, we investigated the effect of TLR-3-signalling on the expression of Ro52/TRIM21, as well as Ro60/TROVE2 and La/SSB autoantigens, by SGECs. The effect of TLR-3 or TLR-4 stimulation on autoantigen expression was evaluated by polyI:C or lipopolysaccharide (LPS) treatment, respectively, of SGEC lines (10 from SS patients, 12 from non-SS controls) or HeLa cells, followed by analysis of mRNA and protein expression. PolyI:C, but not LPS, resulted in a two-step induction of Ro52/TRIM21 mRNA expression by SGECs, a 12-fold increment at 6 h followed by a 2.5-fold increment at 24-48 h, whereas it induced a late two-fold up-regulation of Ro60/TROVE2 and La/SSB mRNAs at 48 h. Although protein expression levels were not affected significantly, the late up-regulation of Ro52/TRIM21 mRNA was accompanied by protein redistribution, from nucleolar-like pattern to multiple coarse dots spanning throughout the nucleus. These late phenomena were mediated significantly by interferon (IFN)-β production, as attested by cognate secretion and specific inhibition experiments and associated with IFN regulatory factor (IRF)3 degradation. TLR-3-signalling had similar effects on SGECs obtained from SS patients and controls, whereas it did not affect the expression of these autoantigens in HeLa cells. TLR-3 signalling regulates the expression of autoantigens by SGECs, implicating innate immunity pathways in their over-expression in inflamed tissues and possibly in their exposure to the immune system

  11. Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors

    PubMed Central

    Harding, Clifford V.; Boom, W. Henry

    2011-01-01

    Mycobacterium tuberculosis survives in antigen-presenting cells (APCs) such as macrophages and dendritic cells. APCs present antigens in association with major histocompatibility complex (MHC) class II molecules to stimulate CD4+ T cells, and this process is essential to contain M. tuberculosis infection. Immune evasion allows M. tuberculosis to establish persistent or latent infection in macrophages and results in Toll-like receptor 2 (TLR2)-dependent inhibition of MHC class II transactivator expression, MHC class II molecule expression and antigen presentation. This reduction of antigen presentation might reflect a general mechanism of negative-feedback regulation that prevents excessive T cell-mediated inflammation and that M. tuberculosis has subverted to create a niche for survival in infected macrophages and evasion of recognition by CD4+ T cells. PMID:20234378

  12. Toll-like Receptor 2 (TLR2), Transforming Growth Factor-β, Hyaluronan (HA), and Receptor for HA-mediated Motility (RHAMM) Are Required for Surfactant Protein A-stimulated Macrophage Chemotaxis*

    PubMed Central

    Foley, Joseph P.; Lam, David; Jiang, Hongmei; Liao, Jie; Cheong, Naeun; McDevitt, Theresa M.; Zaman, Aisha; Wright, Jo Rae; Savani, Rashmin C.

    2012-01-01

    The innate immune system protects the host from bacterial and viral invasion. Surfactant protein A (SPA), a lung-specific collectin, stimulates macrophage chemotaxis. However, the mechanisms regulating this function are unknown. Hyaluronan (HA) and its receptors RHAMM (receptor for HA- mediated motility, CD168) and CD44 also regulate cell migration and inflammation. We therefore examined the role of HA, RHAMM, and CD44 in SPA-stimulated macrophage chemotaxis. Using antibody blockade and murine macrophages, SPA-stimulated macrophage chemotaxis was dependent on TLR2 but not the other SPA receptors examined. Anti-TLR2 blocked SPA-induced production of TGFβ. In turn, TGFβ1-stimulated chemotaxis was inhibited by HA-binding peptide and anti-RHAMM antibody but not anti-TLR2 antibody. Macrophages from TLR2−/− mice failed to migrate in response to SPA but responded normally to TGFβ1 and HA, effects that were blocked by anti-RHAMM antibody. Macrophages from WT and CD44−/− mice had similar responses to SPA, whereas those from RHAMM−/− mice had decreased chemotaxis to SPA, TGFβ1, and HA. In primary macrophages, SPA-stimulated TGFβ production was dependent on TLR2, JNK, and ERK but not p38. Pam3Cys, a specific TLR2 agonist, stimulated phosphorylation of JNK, ERK, and p38, but only JNK and ERK inhibition blocked Pam3Cys-stimulated chemotaxis. We have uncovered a novel pathway for SPA-stimulated macrophage chemotaxis where SPA stimulation via TLR2 drives JNK- and ERK-dependent TGFβ production. TGFβ1, in turn, stimulates macrophage chemotaxis in a RHAMM and HA-dependent manner. These findings are highly relevant to the regulation of innate immune responses by SPA with key roles for specific components of the extracellular matrix. PMID:22948158

  13. Antigenic epitopes fused to cationic peptide bound to oligonucleotides facilitate Toll-like receptor 9-dependent, but CD4+ T cell help-independent, priming of CD8+ T cells.

    PubMed

    Schirmbeck, Reinhold; Riedl, Petra; Zurbriggen, Rinaldo; Akira, Shizuo; Reimann, Jörg

    2003-11-15

    A priority in current vaccine research is the development of adjuvants that support the efficient priming of long-lasting, CD4(+) T cell help-independent CD8(+) T cell immunity. Oligodeoxynucleotides (ODN) with immune-stimulating sequences (ISS) containing CpG motifs facilitate the priming of MHC class I-restricted CD8(+) T cell responses to proteins or peptides. We show that the adjuvant effect of ISS(+) ODN on CD8(+) T cell priming to large, recombinant Ag is enhanced by binding them to short, cationic (arginine-rich) peptides that themselves have no adjuvant activity in CD8(+) T cell priming. Fusing antigenic epitopes to cationic (8- to 10-mer) peptides bound to immune-stimulating ISS(+) ODN or nonstimulating NSS(+) ODN (without CpG-containing sequences) generated immunogens that efficiently primed long-lasting, specific CD8(+) T cell immunity of high magnitude. Different MHC class I-binding epitopes fused to short cationic peptides of different origins showed this adjuvant activity. Quantitative ODN binding to cationic peptides strikingly reduced the toxicity of the latter, suggesting that it improves the safety profile of the adjuvant. CD8(+) T cell priming supported by this adjuvant was Toll-like receptor 9 dependent, but required no CD4(+) T cell help. ODN (with or without CpG-containing sequences) are thus potent Th1-promoting adjuvants when bound to cationic peptides covalently linked to antigenic epitopes, a mode of Ag delivery prevailing in many viral nucleocapsids. PMID:14607920

  14. CD14+ cells are required for IL-12 response in bovine blood mononuclear cells activated with Toll-like receptor (TLR) 7 and TLR8 ligands.

    PubMed

    Buza, Joram; Benjamin, Ponn; Zhu, Jianzhung; Wilson, Heather L; Lipford, Grayson; Krieg, Arthur M; Babiuk, Lorne A; Mutwiri, George K

    2008-12-15

    Single-stranded viral RNA (ssRNA) was recently identified as the natural ligand for TLR7 and TLR8. ssRNA sequences from viruses, as well as their synthetic analogues stimulate innate immune responses in immune cells from humans and mice, but their immunostimulatory activity has not been investigated in ruminants. In the present investigations, we tested whether synthetic RNA oligoribonucleotides (ORN) can activate immune cells from cattle. In vitro incubation of bovine peripheral blood mononuclear cells (PBMCs) with ORN-induced production of IL-12, IFN-gamma and TNF-alpha. No significant induction of IFN-alpha was observed. Depletion of CD14+ cells from PBMC abrogated the IL-12 response and consequently the IFN-gamma response, suggesting that CD14+ cells are required for PBMC immune activation with ORN. Consistent with these findings, the putative receptors for ORN (TLR7 and TLR8) were expressed at higher levels in the CD14+ fraction than the CD14- PBMC fraction. Pre-treatment of PBMC with bafilomycin (an inhibitor of phagosomal acidification) prior to stimulation with ORN abolished the cytokine responses, confirming that the receptor(s) which mediate the ORN-induced responses are intracellular. These results demonstrate for the first time that the TLR7/8 agonist ORN's have strong immune stimulatory effects in cattle, and suggest that further investigation on the potential of TLR7/8 ligands to activate innate and adaptive immune responses in domestic animals are warranted. PMID:18789542

  15. Flexibility of mouse classical and plasmacytoid-derived dendritic cells in directing T helper type 1 and 2 cell development: dependency on antigen dose and differential toll-like receptor ligation.

    PubMed

    Boonstra, André; Asselin-Paturel, Carine; Gilliet, Michel; Crain, Chad; Trinchieri, Giorgio; Liu, Yong-Jun; O'Garra, Anne

    2003-01-01

    Distinct dendritic cell (DC) subsets have been suggested to be preprogrammed to direct either T helper cell (Th) type 1 or Th2 development, although more recently different pathogen products or stimuli have been shown to render these DCs more flexible. It is still unclear how distinct mouse DC subsets cultured from bone marrow precursors, blood, or their lymphoid tissue counterparts direct Th differentiation. We show that mouse myeloid and plasmacytoid precursor DCs (pDCs) cultured from bone marrow precursors and ex vivo splenic DC subsets can induce the development of both Th1 and Th2 effector cells depending on the dose of antigen. In general, high antigen doses induced Th1 cell development whereas low antigen doses induced Th2 cell development. Both cultured and ex vivo splenic plasmacytoid-derived DCs enhanced CD4(+) T cell proliferation and induced strong Th1 cell development when activated with the Toll-like receptor (TLR)9 ligand CpG, and not with the TLR4 ligand lipopolysaccharide (LPS). The responsiveness of plasmacytoid pDCs to CpG correlated with high TLR9 expression similarly to human plasmacytoid pDCs. Conversely, myeloid DCs generated with granulocyte/macrophage colony-stimulating factor enhanced Th1 cell development when stimulated with LPS as a result of their high level of TLR4 expression. Polarized Th1 responses resulting from high antigen dose were not additionally enhanced by stimulation of DCs by TLR ligands. Thus, the net effect of antigen dose, the state of maturation of the DCs together with the stimulation of DCs by pathogen-derived products, will determine whether a Th1 or Th2 response develops. PMID:12515817

  16. Cervical Cancer Cell Supernatants Induce a Phenotypic Switch from U937-Derived Macrophage-Activated M1 State into M2-Like Suppressor Phenotype with Change in Toll-Like Receptor Profile

    PubMed Central

    Sánchez-Reyes, Karina; Bravo-Cuellar, Alejandro; Hernández-Flores, Georgina; Lerma-Díaz, José Manuel; Jave-Suárez, Luis Felipe; Gómez-Lomelí, Paulina; de Celis, Ruth; Aguilar-Lemarroy, Adriana; Domínguez-Rodríguez, Jorge Ramiro; Ortiz-Lazareno, Pablo Cesar

    2014-01-01

    Cervical cancer (CC) is the second most common cancer among women worldwide. Infection with human papillomavirus (HPV) is the main risk factor for developing CC. Macrophages are important immune effector cells; they can be differentiated into two phenotypes, identified as M1 (classically activated) and M2 (alternatively activated). Macrophage polarization exerts profound effects on the Toll-like receptor (TLR) profile. In this study, we evaluated whether the supernatant of human CC cells HeLa, SiHa, and C-33A induces a shift of M1 macrophage toward M2 macrophage in U937-derived macrophages. Results. The results showed that soluble factors secreted by CC cells induce a change in the immunophenotype of macrophages from macrophage M1 into macrophage M2. U937-derived macrophages M1 released proinflammatory cytokines and nitric oxide; however, when these cells were treated with the supernatant of CC cell lines, we observed a turnover of M1 toward M2. These cells increased CD163 and IL-10 expression. The expression of TLR-3, -7, and -9 is increased when the macrophages were treated with the supernatant of CC cells. Conclusions. Our result strongly suggests that CC cells may, through the secretion of soluble factors, induce a change of immunophenotype M1 into M2 macrophages. PMID:25309919

  17. Toll-like Receptor 4 in CNS Pathologies

    PubMed Central

    Buchanan, Madison M.; Hutchinson, Mark; Watkins, Linda R.; Yin, Hang

    2010-01-01

    The responses of the brain to infection, ischemia and trauma share remarkable similarities. These and other conditions of the CNS coordinate an innate immune response marked by activation of microglia, the macrophage-like cells of the nervous system. An important contributor to microglial activation is toll-like receptor 4 (TLR4), a pathogen-associated molecular pattern receptor known to initiate an inflammatory cascade in response to various CNS stimuli. The present review traces new efforts to characterize and control the contribution of TLR4 to inflammatory etiologies of the nervous system. PMID:20402965

  18. Toll-like receptor sensing of human herpesvirus infection

    PubMed Central

    West, John A.; Gregory, Sean M.; Damania, Blossom

    2012-01-01

    Toll-like receptors (TLRs) are evolutionarily conserved pathogen sensors that constitute the first line of defense in the human immune system. Herpesviruses are prevalent throughout the world and cause significant disease in the human population. Sensing of herpesviruses via TLRs has only been documented in the last 10 years and our understanding of the relationship between these sentinels of the immune system and herpesvirus infection has already provided great insight into how the host cell responds to viral infection. This report will summarize the activation and modulation of TLR signaling in the context of human herpesvirus infections. PMID:23061052

  19. Therapeutic potential of Toll-like receptor 9 activation.

    PubMed

    Krieg, Arthur M

    2006-06-01

    In the decade since the discovery that mouse B cells respond to certain unmethylated CpG dinucleotides in bacterial DNA, a specific receptor for these 'CpG motifs' has been identified, Toll-like receptor 9 (TLR9), and a new approach to immunotherapy has moved into the clinic based on the use of synthetic oligodeoxynucleotides (ODN) as TLR9 agonists. This review highlights the current understanding of the mechanism of action of these CpG ODN, and provides an overview of the preclinical data and early human clinical trial results using these drugs to improve vaccines and treat cancer, infectious disease and allergy/asthma. PMID:16763660

  20. Differential expression of Toll-like receptor (TLR) and B cell receptor (BCR) signaling molecules in primary diffuse large B-cell lymphoma of the central nervous system.

    PubMed

    Akhter, Ariz; Masir, Noraidah; Elyamany, Ghaleb; Phang, Kean-Chang; Mahe, Etienne; Al-Zahrani, Ali Matar; Shabani-Rad, Meer-Taher; Stewart, Douglas Allan; Mansoor, Adnan

    2015-01-01

    Primary diffuse large B-cell lymphoma of the central nervous system (CNS DLBCL) is a distinct and aggressive lymphoma that is confined to CNS. Since, central nervous system is barrier-protected and immunologically silent; role of TLR/BCR signaling in pathogenesis and biology of CNS DLBCL is intriguing. Genomic mutations in key regulators of TLR/BCR signaling pathway (MYD88/CD79B/CARD11) have recently been reported in this disease. These observations raised possible implications in novel targeted therapies; however, expression pattern of molecules related to TLR/BCR pathways in this lymphoma remains unknown. We have analyzed the expression of 19 genes encoding TLR/BCR pathways and targets in CNS DLBCLs (n = 20) by Nanostring nCounter™ analysis and compared it with expression patterns in purified reactive B-lymphocytes and systemic diffuse large B cell lymphoma (DLBCL) (n = 20). Relative expression of TLR4, TLR5, TLR9, CD79B and BLNK was higher in CNS DLBCLs than in control B-lymphocytes; where as TLR7, MALT1, BCL10, CD79A and LYN was lower in CNS DLBCLs (P < 0.0001). When compared with systemic DLBCL samples, higher expression of TLR9, CD79B, CARD11, LYN and BLNK was noted in CNS DLBCL (>1.5 fold change; P < 0.01). The B cell receptor molecules like BLNK and CD79B were also associated with higher expression of MYD88 dependent TLRs (TLR4/5/9). In conclusion, we have shown over expression of TLR/BCR related genes or their targets, where genomic mutations have commonly been identified in CNS DLBCL. We have also demonstrated that TLR over expression closely relate with up regulation of genes associated with BCR pathway like CD79B/BLNK and CARD11, which play an important role in NF-kB pathway activation. Our results provide an important insight into the possibility of TLR and/or B-cell receptor signaling molecules as possible therapeutic targets in CNS DLBCL. PMID:25391967

  1. Resistin-induced stromal cell-derived factor-1 expression through Toll-like receptor 4 and activation of p38 MAPK/ NFκB signaling pathway in gastric cancer cells

    PubMed Central

    2014-01-01

    Background Stromal cell-derived factor-1 (SDF-1) (CXC chemokine ligand-12)/CXC chemokine receptor 4 (CXCR4) is involved in the carcinogenesis of human gastric cancer, where it stimulates angiogenesis and favors metastasis of tumor cells to distant organs. In addition, resistin is suggested to be an important link between obesity and the development of gastric cancer. Resistin has identified as an important player in inflammatory responses, and emerged as a mediator in inflammation-associated cancer. A limited number of studies have investigated the association of resistin and SDF-1 with gastric cancer. Herein, we investigated the molecular mechanisms by which resistin influences the expression of SDF-1 in gastric carcinoma cells. Results Human gastric cancer cell lines were exposed to doses of resistin; SDF-1 expression and secretion levels were then determined. Real-time polymerase chain reaction and western blotting analyses were performed to clarify molecular changes. Inhibition of Toll-like receptor 4 (TLR4) by a competitive antagonist inhibited resistin-induced SDF-1 expression. Pharmacological inhibitors and small interfering RNA (siRNA) demonstrated that activation of the p38 mitogen-activated protein kinase (MAPK) pathway is critical for resistin-induced SDF-1 expression mediated by TLR4. The promoter activity and transcription factor enzyme-linked immunosorbent assay revealed that resistin induced expression of SDF-1 mediated by NF-κB in gastric cancer cells. Inhibition of p38 MARK activation blocked the SDF-1-induced expression and the SDF-1 promoter activity in the cancer gastric cells. Chromatin immunoprecipitation assay revealed that inhibition of p38 MARK activation also blocked the resistin-increased NF-κB-DNA-binding activity. Conclusions Resistin-induced SDF-1 upregulation by activation of TLR4, p38 MARK and NF-κB may explain a new role of resistin in the link of obesity and gastric cancer. PMID:24929539

  2. Toll-Like Receptor 3/TRIF-Dependent IL-12p70 Secretion Mediated by Streptococcus pneumoniae RNA and Its Priming by Influenza A Virus Coinfection in Human Dendritic Cells

    PubMed Central

    Spelmink, Laura; Sender, Vicky; Hentrich, Karina; Kuri, Thomas; Plant, Laura

    2016-01-01

    ABSTRACT A functional immune response is crucial to prevent and limit infections with Streptococcus pneumoniae. Dendritic cells (DCs) play a central role in orchestrating the adaptive and innate immune responses by communicating with other cell types via antigen presentation and secretion of cytokines. In this study, we set out to understand how pneumococci activate human monocyte-derived DCs to produce interleukin-12 (IL-12) p70, an important cytokine during pneumococcal infections. We show that IL-12p70 production requires uptake of bacteria as well as the presence of the adaptor molecule TRIF, which is known to transfer signals of Toll-like receptor 3 (TLR3) or TLR4 from the endosome into the cell. While TLR4 is redundant for IL-12p70 production in DCs, we found that TLR3 is required to induce full IL-12p70 secretion. Influenza A virus (IAV) infection of DCs did not induce IL-12p70 but markedly upregulated TLR3 expression that during coinfection with S. pneumoniae significantly enhanced IL-12p70 secretion. Finally, we show that pneumococcal RNA can act as a bacterial stimulus for TLR3 and that it is a key signal to induce IL-12p70 production during challenge of DCs with pneumococci. PMID:26956584

  3. MicroRNA-146a-5p Negatively Regulates Pro-Inflammatory Cytokine Secretion and Cell Activation in Lipopolysaccharide Stimulated Human Hepatic Stellate Cells through Inhibition of Toll-Like Receptor 4 Signaling Pathways.

    PubMed

    Chen, Yuhan; Zeng, Zhaochong; Shen, Xiaoyun; Wu, Zhifeng; Dong, Yinying; Cheng, Jason Chia-Hsien

    2016-01-01

    Lipopolysaccharide (LPS)/toll-like receptor 4 (TLR4) signaling pathway is demonstrated to be involved in the hepatic fibrosis. MicroRNA (miR)-146a-5p is a key regulator of the innate immune response. The functional significance of miR-146a-5p during the LPS/TLR4 mediated hepatic fibrosis process remains unclear. In this study, we found that TLR4 and α-smooth muscle actin (α-SMA) were up-regulated and miR-146a-5p was down-regulated in human hepatic stellate cell (HSC) line LX2 after LPS stimulation. Overexpression of miR-146a-5p inhibited LPS induced pro-inflammatory cytokines secretion through down-regulating the expression levels of TLR-4, IL-1 receptor-associated kinase 1 (IRAK1), TNF receptor associated factor-6 (TRAF6) and phosphorylation of nuclear factor-kappa B (NF-κB). Knockdown of IRAK1 and TRAF6 also suppressed pro-inflammatory cytokine production by inhibiting NF-κB phosphorylation. In addition, miR-146a-5p mimic blocked LPS induced TRAF6 dependent c-Jun N-terminal kinase (JNK) and Smad2 activation as well as α-SMA production. Taken together, these results suggest that miR-146a-5p suppresses pro-inflammatory cytokine secretion and cell activation of HSC through inhibition of TLR4/NF-κB and TLR4/TRAF6/JNK pathway. PMID:27399683

  4. MicroRNA-146a-5p Negatively Regulates Pro-Inflammatory Cytokine Secretion and Cell Activation in Lipopolysaccharide Stimulated Human Hepatic Stellate Cells through Inhibition of Toll-Like Receptor 4 Signaling Pathways

    PubMed Central

    Chen, Yuhan; Zeng, Zhaochong; Shen, Xiaoyun; Wu, Zhifeng; Dong, Yinying; Cheng, Jason Chia-Hsien

    2016-01-01

    Lipopolysaccharide (LPS)/toll-like receptor 4 (TLR4) signaling pathway is demonstrated to be involved in the hepatic fibrosis. MicroRNA (miR)-146a-5p is a key regulator of the innate immune response. The functional significance of miR-146a-5p during the LPS/TLR4 mediated hepatic fibrosis process remains unclear. In this study, we found that TLR4 and α-smooth muscle actin (α-SMA) were up-regulated and miR-146a-5p was down-regulated in human hepatic stellate cell (HSC) line LX2 after LPS stimulation. Overexpression of miR-146a-5p inhibited LPS induced pro-inflammatory cytokines secretion through down-regulating the expression levels of TLR-4, IL-1 receptor-associated kinase 1 (IRAK1), TNF receptor associated factor-6 (TRAF6) and phosphorylation of nuclear factor-kappa B (NF-κB). Knockdown of IRAK1 and TRAF6 also suppressed pro-inflammatory cytokine production by inhibiting NF-κB phosphorylation. In addition, miR-146a-5p mimic blocked LPS induced TRAF6 dependent c-Jun N-terminal kinase (JNK) and Smad2 activation as well as α-SMA production. Taken together, these results suggest that miR-146a-5p suppresses pro-inflammatory cytokine secretion and cell activation of HSC through inhibition of TLR4/NF-κB and TLR4/TRAF6/JNK pathway. PMID:27399683

  5. The biology of Toll-like receptors.

    PubMed

    Means, T K; Golenbock, D T; Fenton, M J

    2000-09-01

    In 1997, a human homologue of the Drosophila Toll protein was described, a protein later to be designated Toll-like receptor 4 (TLR4). Since that time, additional human and murine TLR proteins have been identified. Mammalian TLR proteins appear to represent a conserved family of innate immune recognition receptors. These receptors are coupled to a signaling pathway that is conserved in mammals, insects, and plants, resulting in the activation of genes that mediate innate immune defenses. Numerous studies have now identified a wide variety of chemically-diverse bacterial products that serve as putative ligands for TLR proteins. More recent studies have identified the first endogenous protein ligands for TLR proteins. TLR signaling represents a key feature of innate immune response to pathogen invasion. PMID:10817965

  6. Mycobacterial signaling through toll-like receptors

    PubMed Central

    Basu, Joyoti; Shin, Dong-Min; Jo, Eun-Kyeong

    2012-01-01

    Studies over the past decade have helped to decipher molecular networks dependent on Toll-like receptor (TLR) signaling, in mycobacteria-infected macrophages. Stimulation of TLRs by mycobacteria and their antigenic components rapidly induces intracellular signaling cascades involved in the activation of nuclear factor-κB and mitogen-activated protein kinase pathways, which play important roles in orchestrating proinflammatory responses and innate defense through generation of a variety of antimicrobial effector molecules. Recent studies have provided evidence that mycobacterial TLR-signaling cross talks with other intracellular antimicrobial innate pathways, the autophagy process and functional vitamin D receptor (VDR) signaling. In this article we describe recent advances in the recognition, responses, and regulation of mycobacterial signaling through TLRs. PMID:23189273

  7. IL-13 REPLACES IL-4 IN DEVELOPMENT OF MONOCYTE DERIVED DENDRITIC CELLS (MODC) OF SWINE; THE INNATE IMMUNE RESPONSE OF MODC TO TOLL-LIKE RECEPTOR AGONISTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dendritic cells (DCs) are a critical aspect of innate immune responses in addition to initiating adaptive immunity. In vitro generation of monocyte derived dendritic cells (MoDC) by culturing cells in IL-4 and GM-CSF has been reported for multiple species including swine. However, IL-4 is not a prom...

  8. Molecular cloning of Salmo salar Toll-like receptors (TLR1, TLR22, TLR5M and TLR5S) and expression analysis in SHK-1 cells during Piscirickettsia salmonis infection.

    PubMed

    Salazar, C; Haussmann, D; Kausel, G; Figueroa, J

    2016-02-01

    In fish, the innate immune system is the primary response against infection. Toll-like receptors (TLRs) recognize pathogens through pathogen-associated molecular patterns (PAMPs), and some target molecules of TLRs are homologous between fish and mammals. Piscirickettsia salmonis is one of the main pathogens affecting the salmon industry in Chile. Better knowledge of mechanisms underlying its invasive capacity and recognition of target cells is crucial for vaccine development. Therefore, Salmo salar L. TLR1, TLR22, membrane TLR5M and soluble TLR5S sequences were cloned, and expression kinetics were analysed by RT-qPCR in salmon head kidney cells (SHK-1) infected with three different P. salmonis preparations: alive, formaldehyde treated, extract. Clearly, all analysed TLRs were expressed and transcription level changes were revealed at 2 hpi, 12 or 16 hpi and 24 hpi depending on P. salmonis infection scheme. Increased IL1-beta expression confirmed TLR pathway response. Furthermore, significant expression modulations of several members of the TLR pathway in this in vitro model suggest that P. salmonis extract rather than formaldehyde-inactivated bacteria might strengthen the salmon immune system. PMID:25903926

  9. Toll-like Receptor 4 and MyD88 Dependent Signaling Mechanisms of the Innate Immune System are Essential for the Response to Lipopolysaccharide by Epithelial and Stromal Cells of the Bovine Endometrium

    PubMed Central

    Cronin, James G; Turner, Matthew L; Goetze, Leopold; Bryant, Clare E; Sheldon, I Martin

    2015-01-01

    Infection of the bovine endometrium with Gram-negative bacteria commonly causes uterine disease. Toll-like receptor 4 (TLR4) on cells of the immune system bind Gram-negative bacterial lipopolysaccharide (LPS), stimulating the secretion of the pro-inflammatory cytokines interleukin (IL)-1β and IL-6, and the chemokine IL-8. As the endometrium is the first barrier to infection of the uterus, the signaling cascade triggered by LPS and the subsequent expression of inflammatory mediators was investigated in endometrial epithelial and stromal cells, and the key pathways identified using short interfering RNA (siRNA) and biochemical inhibitors. Treatment of endometrial cells with ultrapure LPS stimulated an inflammatory response characterized by increased IL1B, IL6 and IL8 mRNA expression, and IL-6 protein accumulation in epithelial cells; and increased IL1B and IL8 mRNA expression, and IL-6 and IL-8 protein accumulation in stromal cells. Treatment of endometrial cells with LPS also induced the degradation of IκB and the nuclear translocation of NF-κB, as well as rapid phosphorylation of MAPK3/1 and MAPK14. Knockdown of TLR4 or its signaling adaptor molecule, MYD88, using siRNA reduced the inflammatory response to LPS in epithelial and stromal cells. Biochemical inhibition of MAPK3/1, but not JNK, or MAPK14, reduced LPS-induced IL1B, IL6 and IL8 expression in endometrial cells. In conclusion, epithelial and stromal cells have an intrinsic role in innate immune surveillance in the endometrium, and in the case of LPS this recognition occurs via TLR4 and MyD88 dependent cell signaling pathways. PMID:22053092

  10. Toll-like receptor 9 and interferon-γ receptor signaling suppress the B-cell fate of uncommitted progenitors in mice.

    PubMed

    Baratono, Sheena R; Chu, Niansheng; Richman, Lee P; Behrens, Edward M

    2015-05-01

    Systemic inflammatory response syndrome describes a heterogeneous group of cytokine storm disorders, with different immunogens and cytokines leading to variations in organ pathology. The severe inflammation generated by the cytokine storm results in widespread organ pathology including alterations in T- and B-lymphocyte counts. This study explores the roles of TLR9 and IFN-γR stimulation in decreasing T- and B-cell lymphopoiesis in a mouse model of hyperinflammation. We demonstrate that early B-cell lymphopoiesis is severely compromised during TLR9- and IFN-γ-driven hyperinflammation from the Ly-6D(+) common lymphoid progenitor stage onwards with different effects inhibiting development at multiple stages. We show that TLR9 signaling directly decreases in vitro B-cell yields while increasing T-cell yields. IFN-γ also directly inhibits B-cell and T-cell differentiation in vitro as well as when induced by TLR9 in vivo. Microarray and RT-PCR analysis of Ly-6D(-) common lymphoid progenitors point to HOXa9 and EBF-1 as transcription factors altered by TLR9-induced inflammation. Our work demonstrates both cellular and molecular targets that lead to diminished B-cell lymphopoiesis in sustained TLR9- and IFN-γ-driven inflammation that may be relevant in a number of infectious and autoimmune/inflammatory settings. PMID:25639361

  11. Altered Toll-like receptor 9 responses in circulating B cells at the onset of extensive chronic graft-versus-host disease.

    PubMed

    She, Kevin; Gilman, Andrew L; Aslanian, Soudabeh; Shimizu, Hiromi; Krailo, Mark; Chen, Zhengjia; Reid, Gregor S; Wall, Donna; Goldman, Fred; Schultz, Kirk R

    2007-04-01

    B cells appear to play a role in chronic graft-versus-host disease (cGVHD) as shown in murine models and the success of anti-CD20 B cell antibody treatment in humans. Recent studies have shown that immunostimulatory microbial CpG-DNA splenic responses were enhanced in murine GVHD. We hypothesized that CpG-induced B cell responses are increased in human cGVHD. Newly diagnosed cGVHD patients enrolled on the COG protocol ASCT0031 were divided into early (3-8 months postblood and marrow transplant [BMT]) and late (> or =9 months post-BMT) onset groups and compared to time-matched control BMT patients. A significantly greater percentage of phosphorothioate (PS)-modified CpG stimulated B cells from cGVHD patients demonstrated an increased expression of CD86 compared to controls (P = .0004). This response had a significant correlation between B cell TLR9 expression (r(2) = 0.65; P = .002) and CD86 upregulation using the entirely TLR9-dependent native phosphodiester CpG (P = .003). The PS-modified CpG response at 2 months after initiation of cGVHD therapy demonstrated a trend toward predicting therapeutic response at 9 months post-BMT (P = .07). These findings suggest that an increased number of B cells, primed for a TLR9 response, may play a role in the pathophysiology of cGVHD. PMID:17382246

  12. Epithelial and Stromal Cells of Bovine Endometrium Have Roles in Innate Immunity and Initiate Inflammatory Responses to Bacterial Lipopeptides In Vitro via Toll-Like Receptors TLR2, TLR1, and TLR6

    PubMed Central

    Turner, Matthew L.; Cronin, James G.; Healey, Gareth D.

    2014-01-01

    Bacteria often infect the endometrium of cattle to cause endometritis, uterine disease, and infertility. Lipopeptides are commonly found among bacteria and are detected by the Toll-like receptor (TLR) cell surface receptor TLR2 on immune cells. Heterodimers of TLR2 with TLR1 or TLR6 activate MAPK and nuclear factor-κB intracellular signaling pathways to stimulate inflammatory responses. In the endometrium, epithelial and stromal cells are the first to encounter invading bacteria, so the present study explored whether endometrial cells can also mount inflammatory responses to bacterial lipopeptides via TLRs. The supernatants of pure populations of primary bovine endometrial epithelial and stromal cells accumulated the cytokine IL-6 and the chemokine IL-8 in response to triacylated or diacylated bacterial lipopeptides. The accumulation of IL-6 and IL-8 in response to triacylated lipopeptides was reduced by small interfering RNA targeting TLR2 or TLR1 but not TLR6, whereas cellular responses to diacylated lipopeptide were reduced by small interfering RNA targeting TLR2, TLR1, or TLR6. Both lipopeptides induced rapid phosphorylation of ERK1/2, p38, and nuclear factor-κB in endometrial cells, and inhibitors of ERK1/2 or p38 limited the accumulation of IL-6. The ovarian steroids estradiol and progesterone had little impact on inflammatory responses to lipopeptides. The endometrial epithelial and stromal cell responses to lipopeptides via TLR2, TLR1, and TLR6 provide a mechanism linking a wide range of bacterial infections to inflammation of the endometrium. PMID:24437488

  13. Activation of adult rat CNS endothelial cells by opioid-induced toll-like receptor 4 (TLR4) signaling induces proinflammatory, biochemical, morphological, and behavioral sequelae

    PubMed Central

    Grace, Peter M.; Ramos, Khara M.; Rodgers, Krista M.; Wang, Xiaohui; Hutchinson, Mark R.; Lewis, Makenzie T.; Morgan, Kelly N.; Kroll, Juliet L.; Taylor, Frederick R.; Strand, Keith A.; Zhang, Yingning; Berkelhammer, Debra; Huey, Madeline G.; Greene, Lisa I.; Cochran, Thomas A.; Yin, Hang; Barth, Daniel S.; Johnson, Kirk W.; Rice, Kenner; Maier, Steven F.; Watkins, Linda R.

    2014-01-01

    CNS immune signaling contributes to deleterious opioid effects including hyperalgesia, tolerance, reward, and dependence/withdrawal. Such effects are mediated by opioid signaling at TLR4, presumptively of glial origin. Whether CNS endothelial cells express TLR4 is controversial. If so, they would be well positioned for activation by blood-borne opioids, contributing to opioid-induced pro-inflammatory responses. These studies examined adult primary rat CNS endothelial cell responses to (-)-morphine or its mu-opioid receptor (MOR) inactive metabolite morphine-3-glucuronide (M3G), both known TLR4 agonists. We demonstrate that adult rat CNS endothelial cells express functional TLR4. M3G activated NFκB, increased tumor necrosis factor-α (TNFα) and cyclooxygenase-2 (COX2) mRNAs, and released prostaglandin E2 from these cells. (-)-Morphine-induced upregulation of TNFα mRNA and prostaglandin E2 release were unmasked by pre-treatment with nalmefene, a MOR antagonist without TLR4 activity (unlike CTAP, shown to have both MOR- and TLR4-activity), suggestive of an interplay between MOR and TLR4 co-activation by (-)-morphine. In support, MOR-dependent Protein Kinase A (PKA) opposed TLR4 signaling, as PKA inhibition (H-89) also unmasked (-)-morphine-induced TNFα and COX2 mRNA upregulation. Intrathecal injection of CNS endothelial cells, stimulated in vitro with M3G, produced TLR4-dependent tactile allodynia. Further, cortical suffusion with M3G in vivo induced TLR4-dependent vasodilation. Finally, endothelial cell TLR4 activation by lipopolysaccharide and/or M3G was blocked by the glial inhibitors AV1013 and propentofylline, demonstrating endothelial cells as a new target of such drugs. These data indicate that (-)-morphine and M3G can activate CNS endothelial cells via TLR4, inducing proinflammatory, biochemical, morphological, and behavioral sequalae. CNS endothelial cells may have previously unanticipated roles in opioid-induced effects, in phenomena blocked by

  14. Toll-Like Receptor 4 Engagement Drives Differentiation of Human and Murine Dendritic Cells from a Pro- into an Anti-Inflammatory Mode

    PubMed Central

    Luger, Romana; Valookaran, Sneha; Knapp, Natalie; Vizzardelli, Caterina; Dohnal, Alexander M.; Felzmann, Thomas

    2013-01-01

    The dendritic cell (DC) coordinates innate and adaptive immunity to fight infections and cancer. Our observations reveal that DCs exposed to the microbial danger signal lipopolysaccharide (LPS) in the presence of interferon-γ (IFN-γ) acquire a continuously changing activation/maturation phenotype. The DCs’ initial mode of action is pro-inflammatory via up-regulation among others of the signaling molecule interleukin (IL) 12, which polarizes IFN-γ secreting type 1 helper T-cells (Th1). Within 24 hours the same DC switches from the pro- into an anti-inflammatory phenotype. This is mediated by autocrine IL-10 release and secretion of soluble IL-2 receptor alpha (sIL-2RA) molecules. T-cells, when contacted with DCs during their anti-inflammatory phase loose their proliferative capacity and develop regulatory T-cell (Treg) -like anti-inflammatory functions indicated by IL-10 secretion and elevated FoxP3 levels. Studying the kinetics of IL-12 and IL-10 expression from LPS/IFN-γ activated myeloid DCs on a single cell level confirmed these observations. When T-cells are separated from DCs within 24 hours, they are spared from the anti-inflammatory DC activity. We conclude that, in addition to differentiation of DCs into distinct subsets, the observed sequential functional phases of DC differentiation permit the fine-tuning of an immune response. A better understanding of time-kinetic DC features is required for optimally exploiting the therapeutic capacity of DCs in cancer immune therapy. PMID:23408948

  15. HIV Gag protein conjugated to a Toll-like receptor 7/8 agonist improves the magnitude and quality of Th1 and CD8+ T cell responses in nonhuman primates

    NASA Astrophysics Data System (ADS)

    Wille-Reece, Ulrike; Flynn, Barbara J.; Loré, Karin; Koup, Richard A.; Kedl, Ross M.; Mattapallil, Joseph J.; Weiss, Walter R.; Roederer, Mario; Seder, Robert A.

    2005-10-01

    Induction and maintenance of antibody and T cell responses will be critical for developing a successful vaccine against HIV. A rational approach for generating such responses is to design vaccines or adjuvants that have the capacity to activate specific antigen-presenting cells. In this regard, dendritic cells (DCs) are the most potent antigen-presenting cells for generating primary T cell responses. Here, we report that Toll-like receptor (TLR) agonists and ligands that activate DCs in vitro influence the magnitude and quality of the cellular immune response in nonhuman primates (NHPs) when administered with HIV Gag protein. NHPs immunized with HIV Gag protein and a TLR7/8 agonist or a TLR9 ligand [CpG oligodeoxynucleotides (CpG ODN)] had significantly increased Gag-specific T helper 1 and antibody responses, compared with animals immunized with HIV Gag protein alone. Importantly, conjugating the HIV Gag protein to the TLR7/8 agonist (Gag-TLR7/8 conjugate) dramatically enhanced the magnitude and altered the quality of the T helper 1 response, compared with animals immunized with HIV Gag protein and the TLR7/8 agonist or CpG ODN. Furthermore, immunization with the Gag-TLR7/8 conjugate vaccine elicited Gag-specific CD8+ T responses. Collectively, our results show that conjugating HIV Gag protein to a TLR7/8 agonist is an effective way to elicit broad-based adaptive immunity in NHPs. This type of vaccine formulation should have utility in preventive or therapeutic vaccines in which humoral and cellular immunity is required. vaccine | dendritic cell | cross-presentation | cellular immunity

  16. Analysis of Genes Induced by Sendai Virus Infection of Mutant Cell Lines Reveals Essential Roles of Interferon Regulatory Factor 3, NF-κB, and Interferon but Not Toll-Like Receptor 3†

    PubMed Central

    Elco, Christopher P.; Guenther, Jeanna M.; Williams, Bryan R. G.; Sen, Ganes C.

    2005-01-01

    Sendai virus (SeV) infection causes the transcriptional induction of many cellular genes that are also induced by interferon (IFN) or double-stranded RNA (dsRNA). We took advantage of various mutant cell lines to investigate the putative roles of the components of the IFN and dsRNA signaling pathways in the induction of those genes by SeV. Profiling the patterns of gene expression in SeV-infected cells demonstrated that Toll-like receptor 3, although essential for gene induction by dsRNA, was dispensable for gene induction by SeV. In contrast, Jak1, which mediates IFN signaling, was required for the induction of a small subset of genes by SeV. NF-κB and interferon regulatory factor 3 (IRF-3), the two major transcription factors activated by virus infection, were essential for the induction of two sets of genes by SeV. As expected, some of the IRF-3-dependent genes, such as ISG56, were more strongly induced by SeV in IRF-3-overexpressing cells. Surprisingly, in those cells, a number of NF-κB-dependent genes, such as the A20 gene, were induced poorly. Using a series of cell lines expressing increasing levels of IRF-3, we demonstrated that the degree of induction of A20 mRNA, upon SeV infection, was inversely proportional to the cellular level of IRF-3, whereas that of ISG56 mRNA was directly proportional. Thus, IRF-3 can suppress the expression of NF-κB-dependent genes in SeV-infected cells. PMID:15767394

  17. Extracellular mtDNA activates NF-κB via toll-like receptor 9 and induces cell death in cardiomyocytes.

    PubMed

    Bliksøen, Marte; Mariero, Lars Henrik; Torp, May Kristin; Baysa, Anton; Ytrehus, Kirsti; Haugen, Fred; Seljeflot, Ingebjørg; Vaage, Jarle; Valen, Guro; Stensløkken, Kåre-Olav

    2016-07-01

    Acute myocardial infarction (AMI) causes sterile inflammation, which exacerbates tissue injury. Elevated levels of circulating mitochondrial DNA (mtDNA) have been associated with AMI. We hypothesized that mtDNA triggers an innate immune response via TLR9 and NF-κB activation, causing cardiomyocyte injury. Murine cardiomyocytes express TLR9 mRNA and protein and were able to internalize fluorescently labeled mouse mtDNA. Incubation of human embryonic kidney cells with serum from AMI patients containing naturally elevated levels of mtDNA induced TLR9-dependent NF-κB activity. This effect was mimicked by isolated mtDNA. mtDNA activated NF-κB in reporter mice both in vivo and in isolated cardiomyocytes. Moreover, incubation of isolated cardiomyocytes with mtDNA induced cell death after 4 and 24 h. Laser confocal microscopy showed that incubation of cardiomyocytes with mtDNA accelerated mitochondrial depolarization induced by reactive oxygen species. In contrast to mtDNA, isolated total DNA did not activate NF-κB nor induce cell death. In conclusion, mtDNA can induce TLR9-dependent NF-κB activation in reporter cells and activate NF-κB in cardiomyocytes. In cardiomyocytes, mtDNA causes mitochondrial dysfunction and death. Endogenous mtDNA in the extracellular space is a danger signal with direct detrimental effects on cardiomyocytes. PMID:27164906

  18. Modulation of Female Genital Tract-Derived Dendritic Cell Migration and Activation in Response to Inflammatory Cytokines and Toll-Like Receptor Agonists

    PubMed Central

    Shey, Muki S.; Maharaj, Niren; Archary, Derseree; Ngcapu, Sinaye; Garrett, Nigel; Abdool Karim, Salim; Passmore, Jo-Ann S.

    2016-01-01

    HIV transmission across the genital mucosa is a major mode of new HIV infections in women. The probability of infection may be influenced by several factors including recruitment and activation of HIV target cells, such as dendritic cells (DCs) and cytokine production, associated with genital inflammation. We evaluated the role of inflammatory cytokines and TLR signaling in migration and activation of genital tract DCs in the human cervical explant model. Hysterectomy tissues from 10 HIV-negative and 7 HIV-positive donor women were separated into ecto- and endocervical explants, and incubated with inflammatory cytokines (TNF-α, IL-1β, IL-8, MIP-1β) or agonists for TLR4 (LPS), TLR2/1 (PAM3) and TLR7/8 (R848). Migration (frequency) and activation (HLA-DR expression) of myeloid and plasmacytoid DCs and Langerhans cells were measured by flow cytometry. We observed that cytokines, LPS and PAM3 induced activation of migrating myeloid and plasmacytoid DCs. LPS induced a 3.6 fold lower levels of migration of plasmacytoid DCs from HIV-infected women compared with HIV-uninfected women (median activation indices of 2.932 vs 0.833). There was however a 4.5 fold increase in migration of Langerhans cells in HIV-infected compared with HIV-uninfected women in response to cytokines (median activation indices of 3.539 vs 0.77). Only TLR agonists induced migration and activation of DCs from endocervical explants. Hormonal contraception use was associated with an increase in activation of DC subsets in the endo and ectocervical explants. We conclude that inflammatory signals in the female genital tract induced DC migration and activation, with possible important implications for HIV susceptibility of cervical tissues. PMID:27171482

  19. Lignin-rich Enzyme Lignin (LREL), a Cellulase-treated Lignin-Carbohydrate Derived from Plants, Activates Myeloid Dendritic Cells via Toll-like Receptor 4 (TLR4)

    PubMed Central

    Tsuji, Ryohei; Koizumi, Hideki; Aoki, Dan; Watanabe, Yuta; Sugihara, Yoshihiko; Matsushita, Yasuyuki; Fukushima, Kazuhiko; Fujiwara, Daisuke

    2015-01-01

    Lignin-carbohydrates, one of the major cell wall components, are believed to be the structures that form chemical linkage between lignin and cell wall polysaccharides. Due to the molecular complexity of lignin-containing substances, their isolation and the assignment of their biological activities have so far remained a difficult task. Here, we extracted two lignin-containing carbohydrates, lignin-rich enzyme lignin (LREL) and pure enzyme lignin (PEL), from barley husk and demonstrated that they act as immune stimulators of dendritic cells (DCs), which are particularly important in linking innate and adaptive immunity. Thioacidolysis, acid hydrolysis, and mild alkali hydrolysis of both LREL and PEL revealed that their immunostimulatory activities depended on the lignin structure and/or content, neutral sugar content (especially the characteristic distribution of galactose and mannose), and presence of an ester bond. Furthermore, we showed that the immunostimulatory potency of the lignin-carbohydrate depended on its molecular weight and degree of polymerization. We also demonstrated that the LREL-induced activation of DCs was mediated via TLR4. Thus, LREL-induced increases in the expression levels of several cell surface marker proteins, production of inflammatory cytokines IL-12p40 and TNF-α, and activation and nuclear translocation of transcription factors, as was observed in the WT DCs, were completely abrogated in DCs derived from the TLR4−/− mice but not in DCs derived from the TLR2−/−, TLR7−/−, and TLR9−/− mice. We further demonstrated that LRELs isolated from other plant tissues also activated DCs. These immunostimulatory activities of lignin-carbohydrates, extracted from edible plant tissues, could have potential relevance in anti-infectious immunity and vaccine adjuvants. PMID:25548274

  20. PPARγ ameliorated LPS induced inflammation of HEK cell line expressing both human Toll-like receptor 4 (TLR4) and MD2.

    PubMed

    Darehgazani, Reyhaneh; Peymani, Maryam; Hashemi, Motahare-Sadat; Omrani, Mir Davood; Movafagh, Abolfazl; Ghaedi, Kamran; Nasr-Esfahani, Mohammad Hossein

    2016-08-01

    TLR4 is transmembrane pattern-recognition receptor that initiates signals in response to diverse pathogen-associated molecular patterns especially LPS. Recently, there have been an increasing number of studies about the role of TLRs in the pathogenesis of several disorders as well as the therapeutic potential of TLR intervention in such diseases. Peroxisome proliferator-activated receptor-gamma (PPARγ) is a ligand-activated transcription factor with numerous biological effects. PPARγ has been shown to exert a potential anti-inflammatory effect through suppression of TLR4-mediated inflammation. Therefore, PPARγ agonists may have a potential to combat inflammatory conditions in pathologic states. The current study aims to show the decrease of inflammation by overexpression of PPARγ in a cell reporter model. To reach this goal, recombinant pBudCE4.1 (+) containing encoding sequences of human TLR4 and MD2 was constructed and used to transfect HEK cells. Subsequently, inflammation was induced by LPS treatment as control group. In the treatment group, overexpression of PPARγ prior to inflammation was performed and the expression of inflammatory markers was assessed in this condition. The expression of inflammatory markers (TNFα and iNOS) was defined by quantitative real time PCR and the amount of phosphorylated NF-κB was measured by western blot. Data indicated expression of TNFα and iNOS increased in LPS induced inflammation of stably transformed HEK cells with MD2 and TLR4. In this cell reporter model overexpression of PPARγ dramatically prevented LPS-induced inflammation through the blocking of TLR4/NF-κB signaling. PPARγ was shown to negatively regulate TLR4 activity and therefore exerts its anti-inflammatory action against LPS induced inflammation. PMID:26224481

  1. HIV-1 Tat Protein Induces PD-L1 (B7-H1) Expression on Dendritic Cells through Tumor Necrosis Factor Alpha- and Toll-Like Receptor 4-Mediated Mechanisms

    PubMed Central

    Planès, Rémi; BenMohamed, Lbachir; Leghmari, Kaoutar; Delobel, Pierre; Izopet, Jacques

    2014-01-01

    ABSTRACT Chronic human immunodeficiency virus type 1 (HIV-1) infection is associated with induction of T-cell coinhibitory pathways. However, the mechanisms by which HIV-1 induces upregulation of coinhibitory molecules remain to be fully elucidated. The aim of the present study was to determine whether and how HIV-1 Tat protein, an immunosuppressive viral factor, induces the PD-1/PD-L1 coinhibitory pathway on human dendritic cells (DCs). We found that treatment of DCs with whole HIV-1 Tat protein significantly upregulated the level of expression of PD-L1. This PD-L1 upregulation was observed in monocyte-derived dendritic cells (MoDCs) obtained from either uninfected or HIV-1-infected patients as well as in primary myeloid DCs from HIV-negative donors. In contrast, no effect on the expression of PD-L2 or PD-1 molecules was detected. The induction of PD-L1 on MoDCs by HIV-1 Tat (i) occurred in dose- and time-dependent manners, (ii) was mediated by the N-terminal 1–45 fragment of Tat, (iii) did not require direct cell-cell contact but appeared rather to be mediated by soluble factor(s), (iv) was abrogated following neutralization of tumor necrosis factor alpha (TNF-α) or blocking of Toll-like receptor 4 (TLR4), (v) was absent in TLR4-knockoout (KO) mice but could be restored following incubation with Tat-conditioned medium from wild-type DCs, (vi) impaired the capacity of MoDCs to functionally stimulate T cells, and (vii) was not reversed functionally following PD-1/PD-L1 pathway blockade, suggesting the implication of other Tat-mediated coinhibitory pathways. Our results demonstrate that HIV-1 Tat protein upregulates PD-L1 expression on MoDCs through TNF-α- and TLR4-mediated mechanisms, functionally compromising the ability of DCs to stimulate T cells. The findings offer a novel potential molecular target for the development of an anti-HIV-1 treatment. IMPORTANCE The objective of this study was to investigate the effect of human immunodeficiency virus type 1 (HIV

  2. Signal transducer and activator of transcription-3 licenses Toll-like receptor 4-dependent interleukin (IL)-6 and IL-8 production via IL-6 receptor-positive feedback in endometrial cells

    PubMed Central

    Cronin, J G; Kanamarlapudi, V; Thornton, C A; Sheldon, I M

    2016-01-01

    Interleukin 6 (IL-6), acting via the IL-6 receptor (IL6R) and signal transducer and activator of transcription-3 (STAT3), limits neutrophil recruitment once bacterial infections are resolved. Bovine endometritis is an exemplar mucosal disease, characterized by sustained neutrophil infiltration and elevated IL-6 and IL-8, a neutrophil chemoattractant, following postpartum Gram-negative bacterial infection. The present study examined the impact of the IL6R/STAT3 signaling pathway on IL-8 production by primary endometrial cells in response to short- or long-term exposure to lipopolysaccharide (LPS) from Gram-negative bacteria. Tyrosine phosphorylation of STAT3 is required for DNA binding and expression of specific targets genes. Immunoblotting indicated constitutive tyrosine phosphorylation of STAT3 in endometrial cells was impeded by acute exposure to LPS. After 24 h exposure to LPS, STAT3 returned to a tyrosine phosphorylated state, indicating cross-talk between the Toll-like receptor 4 (TLR4) and the IL6R/STAT3 signaling pathways. This was confirmed by short interfering RNA targeting the IL6R, which abrogated the accumulation of IL-6 and IL-8, induced by LPS. Furthermore, there was a differential endometrial cell response, as the accumulation of IL-6 and IL-8 was dependent on STAT3, suppressor of cytokine signaling 3, and Src kinase signaling in stromal cells, but not epithelial cells. In conclusion, positive feedback through the IL6R amplifies LPS-induced IL-6 and IL-8 production in the endometrium. These findings provide a mechanistic insight into how elevated IL-6 concentrations in the postpartum endometrium during bacterial infection leads to marked and sustained neutrophil infiltration. PMID:26813342

  3. Polo-Like Kinase 1 (PLK1) Is Involved in Toll-like Receptor (TLR)-Mediated TNF-α Production in Monocytic THP-1 Cells

    PubMed Central

    Hu, Jinyue; Wang, Guihua; Liu, Xueting; Zhou, Lina; Jiang, Manli; Yang, Li

    2013-01-01

    Polo-like kinases (PLKs) have been reported to be essential components of anti-viral pathways. However, the role of PLKs in the production of pro-inflammatory cytokines induced by TLR activation is uncertain. We report here that monocytic THP-1 cells expressed PLK1, PLK2, PLK3 and PLK4. When THP-1 cells were treated with GW843682X, an inhibitor of PLK1 and PLK3, the results showed that GW843682X down-regulated Pam3CSK4- and LPS-induced TNF-α at both the gene and protein levels. GW843682X did not impact Pam3CSK4-induced IL-1β and IL-8 or LPS-induced IL-1β, but it down-regulated LPS-induced IL-8 significantly. Moreover, western blot results showed that TLRs activated PLK1, and PLK1 inhibition by RNA interference down-regulated Pam3CSK4-induced TNF-α production, suggesting the involvement of PLK1 in TNF-α up-regulation. In addition, GW843682X treatment for 12 to 24 h induced cell death and down-regulated MyD88, but neither of these roles contributed to the down-regulation of TNF-α, as TNF-α gene expression was up-regulated at 1 h. Furthermore, GW843682X inhibited Pam3CSK4-induced activation of ERK and NF-κB, which contributed to Pam3CSK4-induced up-regulation of TNF-α. GW843682X also inhibited LPS-induced activation of ERK, p38 and NF-κB, which contributed to LPS-induced up-regulation of TNF-α. Taken together, these results suggested that PLK1 is involved in TLR2- and TLR4-induced inflammation, and GW843682X may be valuable for the regulation of the inflammatory response. PMID:24205328

  4. Fructose-1,6-bisphosphate suppresses lipopolysaccharide-induced expression of ICAM-1 through modulation of toll-like receptor-4 signaling in brain endothelial cells.

    PubMed

    Seok, Sun Mi; Park, Tae Yeop; Park, Hye-Si; Baik, Eun Joo; Lee, Soo Hwan

    2015-05-01

    Fructose-1,6-bisphosphate (FBP) is a glycolytic intermediate with salutary effects in various brain injury models, but its neuroprotective mechanism is incompletely understood. In this study, we examined the effects of FBP on the expression of adhesion molecules in cerebrovascular endothelial cells and explored the possible mechanisms therein involved. FBP significantly down-regulated lipopolysaccharide (LPS)-induced expression of adhesion molecules and leukocyte adhesion to brain endothelial cells and inhibited NF-κB activity, which is implicated in the expression of adhesion molecules. FBP abrogated ICAM-1 expression and NF-κB activation induced by macrophage-activating lipopeptide 2-kDa (MALP-2) or overexpression of MyD88 or TRAF6. FBP suppressed TRAF6-induced phosphorylation of TAK1, IKKβ and IκBα, but fail to affect NF-κB activity induced by ectopic expression of IKKβ. In addition, LPS-induced IRAK-1 phosphorylation was inhibited by FBP, suggesting the presence of multiple molecular targets of FBP in MyD88-dependent signaling pathway. FBP significantly attenuated ICAM-1 expression and NF-κB activity induced by poly[I:C] or overexpression of TRIF or TBK1. FBP significantly repressed the expression of interferon-β (IFN-β) and the activation of IFN regulatory factor 3 (IRF3) induced by LPS, poly[I:C] or overexpression of TRIF or TBK1, but fail to affect IRF3 activity induced by ectopic expression of constitutively active IRF3. Overall, our results demonstrate that FBP modulates both MyD88- and TRIF-dependent signaling pathways of TLR4 and subsequent inflammatory responses in brain endothelial cells, providing insight into its neuroprotective mechanism in brain injury associated with inflammation. PMID:25843256

  5. Heat shock protein 60 stimulates the migration of vascular smooth muscle cells via Toll-like receptor 4 and ERK MAPK activation

    PubMed Central

    Zhao, Ying; Zhang, Chenxu; Wei, Xuge; Li, Pei; Cui, Ying; Qin, Yuanhua; Wei, Xiaoqing; Jin, Minli; Kohama, Kazuhiro; Gao, Ying

    2015-01-01

    Accumulating evidence indicates that heat shock protein (HSP) 60 is strongly associated with the pathology of atherosclerosis (AS). However, the precise mechanisms by which HSP60 promotes atherosclerosis remain unclear. In the present study, we found that HSP60 mRNA and protein expression levels in the thoracic aorta are enhanced not only in a mouse model of AS but also in high-fat diet (HFD) mice. HSP60 expression and secretion was activated by platelet-derived growth factor-BB (PDGF-BB) and interleukin (IL)-8 in both human umbilical vein endothelial cells (HUVECs) and vascular smooth muscle cells (VSMCs). HSP60 was found to induce VSMC migration, and exposure to HSP60 activated ERK MAPK signaling. U0126, an inhibitor of ERK, reduced VSMC migration. The HSP60-stimulated VSMCs were found to express TLR4 mRNA but not TLR2 mRNA. Knockdown of TLR4 by siRNA reduced HSP60-induced VSMC migration and HSP60-induced ERK activation. Finally, HSP60 induced IL-8 secretion in VSMCs. Together these results suggest that HSP60 is involved in the stimulation of VSMC migration, via TLR4 and ERK MAPK activation. Meanwhile, activation of HSP60 is one of the most powerful methods of sending a ‘danger signal’ to the immune system to generate IL-8, which assists in the management of an infection or disease. PMID:26477505

  6. Anti-CD40 antibody and toll-like receptor 3 ligand restore dendritic cell-mediated anti-tumor immunity suppressed by morphine

    PubMed Central

    Chang, Ming-Cheng; Chen, Yu-Li; Chiang, Ying-Cheng; Cheng, Ya-Jung; Jen, Yu-Wei; Chen, Chi-An; Cheng, Wen-Fang; Sun, Wei-Zen

    2016-01-01

    The influence of morphine on host immunity and the underlying mechanism are still unclear. In the current study, we investigated the influence of morphine on dendritic cells (DCs), its possible mechanism of action, and the molecules that could reverse these effects. Morphine suppressed DC maturation, antigen presenting abilities, and the ability to activate antigen-specific CD8+ T cells. Morphine-treated DCs also secreted higher concentrations of IL-10, but lower IL-6 and TNF-α. Morphine-treated DCs showed decreased ERK1/2 phosphorylation and reduced p38 dephosphorylation. The in vivo administration of immuno-modulators, anti-CD40 Ab and TLR3 ligand-poly(I:C), enhanced antigen-specific immunity, promoted the anti-tumor effects, and prolonged the survival of morphine-treated, tumor-bearing mice by promoting the maturation and function of BMM-derived DCs by enhancing ERK1/2 phosphorylation and p38 dephosphorylation. We concluded that morphine can inhibit DC-mediated anti-tumor immunity by suppressing DC maturation and function. Immuno-modulators, such as anti-CD40 Abs and TLR agonists, can restore the DC-mediated anti-tumor immunity. Use of immuno-modulators could serve as a useful approach to overcome the immunocompromised state generated by morphine. PMID:27186393

  7. Mincle suppresses Toll-like receptor 4 activation.

    PubMed

    Greco, Stephanie H; Mahmood, Syed Kashif; Vahle, Anne-Kristin; Ochi, Atsuo; Batel, Jennifer; Deutsch, Michael; Barilla, Rocky; Seifert, Lena; Pachter, H Leon; Daley, Donnele; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R; Miller, George

    2016-07-01

    Regulation of Toll-like receptor responses is critical for limiting tissue injury and autoimmunity in both sepsis and sterile inflammation. We found that Mincle, a C-type lectin receptor, regulates proinflammatory Toll-like receptor 4 signaling. Specifically, Mincle ligation diminishes Toll-like receptor 4-mediated inflammation, whereas Mincle deletion or knockdown results in marked hyperresponsiveness to lipopolysaccharide in vitro, as well as overwhelming lipopolysaccharide-mediated inflammation in vivo. Mechanistically, Mincle deletion does not up-regulate Toll-like receptor 4 expression or reduce interleukin 10 production after Toll-like receptor 4 ligation; however, Mincle deletion decreases production of the p38 mitogen-activated protein kinase-dependent inhibitory intermediate suppressor of cytokine signaling 1, A20, and ABIN3 and increases expression of the Toll-like receptor 4 coreceptor CD14. Blockade of CD14 mitigates the increased sensitivity of Mincle(-/-) leukocytes to Toll-like receptor 4 ligation. Collectively, we describe a major role for Mincle in suppressing Toll-like receptor 4 responses and implicate its importance in nonmycobacterial models of inflammation. PMID:26747838

  8. De Novo Transcriptome Analysis Shows That SAV-3 Infection Upregulates Pattern Recognition Receptors of the Endosomal Toll-Like and RIG-I-Like Receptor Signaling Pathways in Macrophage/Dendritic Like TO-Cells

    PubMed Central

    Xu, Cheng; Evensen, Øystein; Mweemba, Hetron Munang’andu

    2016-01-01

    A fundamental step in cellular defense mechanisms is the recognition of “danger signals” made of conserved pathogen associated molecular patterns (PAMPs) expressed by invading pathogens, by host cell germ line coded pattern recognition receptors (PRRs). In this study, we used RNA-seq and the Kyoto encyclopedia of genes and genomes (KEGG) to identify PRRs together with the network pathway of differentially expressed genes (DEGs) that recognize salmonid alphavirus subtype 3 (SAV-3) infection in macrophage/dendritic like TO-cells derived from Atlantic salmon (Salmo salar L) headkidney leukocytes. Our findings show that recognition of SAV-3 in TO-cells was restricted to endosomal Toll-like receptors (TLRs) 3 and 8 together with RIG-I-like receptors (RLRs) and not the nucleotide-binding oligomerization domain-like receptors NOD-like receptor (NLRs) genes. Among the RLRs, upregulated genes included the retinoic acid inducible gene I (RIG-I), melanoma differentiation association 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2). The study points to possible involvement of the tripartite motif containing 25 (TRIM25) and mitochondrial antiviral signaling protein (MAVS) in modulating RIG-I signaling being the first report that links these genes to the RLR pathway in SAV-3 infection in TO-cells. Downstream signaling suggests that both the TLR and RLR pathways use interferon (IFN) regulatory factors (IRFs) 3 and 7 to produce IFN-a2. The validity of RNA-seq data generated in this study was confirmed by quantitative real time qRT-PCR showing that genes up- or downregulated by RNA-seq were also up- or downregulated by RT-PCR. Overall, this study shows that de novo transcriptome assembly identify key receptors of the TLR and RLR sensors engaged in host pathogen interaction at cellular level. We envisage that data presented here can open a road map for future intervention strategies in SAV infection of salmon. PMID:27110808

  9. De Novo Transcriptome Analysis Shows That SAV-3 Infection Upregulates Pattern Recognition Receptors of the Endosomal Toll-Like and RIG-I-Like Receptor Signaling Pathways in Macrophage/Dendritic Like TO-Cells.

    PubMed

    Xu, Cheng; Evensen, Øystein; Mweemba Munang'andu, Hetron

    2016-01-01

    A fundamental step in cellular defense mechanisms is the recognition of "danger signals" made of conserved pathogen associated molecular patterns (PAMPs) expressed by invading pathogens, by host cell germ line coded pattern recognition receptors (PRRs). In this study, we used RNA-seq and the Kyoto encyclopedia of genes and genomes (KEGG) to identify PRRs together with the network pathway of differentially expressed genes (DEGs) that recognize salmonid alphavirus subtype 3 (SAV-3) infection in macrophage/dendritic like TO-cells derived from Atlantic salmon (Salmo salar L) headkidney leukocytes. Our findings show that recognition of SAV-3 in TO-cells was restricted to endosomal Toll-like receptors (TLRs) 3 and 8 together with RIG-I-like receptors (RLRs) and not the nucleotide-binding oligomerization domain-like receptors NOD-like receptor (NLRs) genes. Among the RLRs, upregulated genes included the retinoic acid inducible gene I (RIG-I), melanoma differentiation association 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2). The study points to possible involvement of the tripartite motif containing 25 (TRIM25) and mitochondrial antiviral signaling protein (MAVS) in modulating RIG-I signaling being the first report that links these genes to the RLR pathway in SAV-3 infection in TO-cells. Downstream signaling suggests that both the TLR and RLR pathways use interferon (IFN) regulatory factors (IRFs) 3 and 7 to produce IFN-a2. The validity of RNA-seq data generated in this study was confirmed by quantitative real time qRT-PCR showing that genes up- or downregulated by RNA-seq were also up- or downregulated by RT-PCR. Overall, this study shows that de novo transcriptome assembly identify key receptors of the TLR and RLR sensors engaged in host pathogen interaction at cellular level. We envisage that data presented here can open a road map for future intervention strategies in SAV infection of salmon. PMID:27110808

  10. Toll-like receptor signaling and regulation of intestinal immunity.

    PubMed

    Kamdar, Karishma; Nguyen, Vivien; DePaolo, R William

    2013-04-01

    The intestine is a complex organ that must maintain tolerance to innocuous food antigens and commensal microbiota while being also able to mount inflammatory responses against invading pathogenic microorganisms. The ability to restrain tolerogenic responses while permitting inflammatory responses requires communication between commensal bacteria, intestinal epithelial cells and immune cells. Disruption or improper signaling between any of these factors may lead to uncontrolled inflammation and the development of inflammatory diseases. Toll-like receptors (TLR) recognize conserved molecular motifs of microorganisms and, not surprisingly, are important for maintaining tolerance to commensal microbiota, as well as inducing inflammation against pathogens. Perturbations in individual TLR signaling can lead to a number of different outcomes and illustrate a system of regulation within the intestine in which each TLR plays a largely non-redundant role in mucosal immunity. This review will discuss recent findings on the roles of individual TLRs and intestinal homeostasis. PMID:23334153

  11. Toll-Like Receptors of Deuterostome Invertebrates

    PubMed Central

    Satake, Honoo; Sekiguchi, Toshio

    2012-01-01

    Defensive systems against pathogens are responsible not only for survival or lifetime of an individual but also for the evolution of a species. Innate immunity is expected to be more important for invertebrates than mammals, given that adaptive immunity has not been acquired in the former. Toll-like receptors (TLRs) have been shown to play a crucial role in host defense of pathogenic microbes in innate immunity of mammals. Recent genome-wide analyses have suggested that TLR or their related genes are conserved in invertebrates. In particular, numerous TLR-related gene candidates were detected in deuterostome invertebrates, including a sea urchin (222 TLR-related gene candidates) and amphioxus (72 TLR-related gene candidates). Molecular phylogenetic analysis verified that most of sea urchin or amphioxus TLR candidates are paralogous, suggesting that these organisms expanded TLR-related genes in a species-specific manner. In contrast, another deuterostome invertebrate, the ascidian Ciona intestinalis, was found to possess only two TLR genes. Moreover, Ciona TLRs, Ci-TLR1 and Ci-TLR2, were shown to possess “hybrid” functionality of mammalian TLRs. Such functionality of Ci-TLRs could not be predicted by sequence comparison with vertebrate TLRs, indicating confounding evolutionary lineages of deuterostome invertebrate TLRs or their candidates. In this review article, we present recent advances in studies of TLRs or their candidates among deuterostome invertebrates, and provide insight into an evolutionary process of TLRs. PMID:22566918

  12. Toll-Like Receptors and Prostate Cancer

    PubMed Central

    Zhao, Shu; Zhang, Yifan; Zhang, Qingyuan; Wang, Fen; Zhang, Dekai

    2014-01-01

    Prostate cancer is the second leading cause of cancer-related death in men after lung cancer. Immune responses clearly play a critical role in the tumorigenesis and in the efficacy of radiation therapy and chemotherapy in prostate cancer; however, the underlying molecular mechanisms are still poorly understood. Toll-like receptors (TLRs) are a well-known family of pattern recognition receptors that play a key role in host immune system. Recent studies demonstrate that there are links between TLRs and cancer; however, the function and biological importance of TLRs in prostate cancer seems complex. To elucidate the role of TLRs and innate immunity in prostate cancer might provide us with a better understanding of the molecular mechanisms of this disease. Moreover, utilizing the agonists or antagonists of TLRs might represent a promising new strategy against prostate cancer. In this review, we summarize recent advances on the studies of association between TLR signaling and prostate cancer, TLR polymorphisms and prostate cancer risk, and provide some insights about TLRs as potential targets for prostate cancer immunotherapy. PMID:25101092

  13. Lectin-like ox-LDL receptor-1 (LOX-1)-Toll-like receptor 4 (TLR4) interaction and autophagy in CATH.a differentiated cells exposed to angiotensin II.

    PubMed

    Ding, Zufeng; Liu, Shijie; Wang, Xianwei; Khaidakov, Magomed; Dai, Yao; Deng, Xiaoyan; Fan, Yubo; Xiang, David; Mehta, Jawahar L

    2015-04-01

    Toll-like receptors (TLRs) play an essential role in innate immune response. Expression of TLRs has also been linked to autophagy. As the main receptor for oxidized low-density lipoprotein (ox-LDL) on the cell surface, lectin-like ox-LDL receptor-1 (LOX-1) is upregulated by proinflammatory cytokines and has been linked to the development of autophagy. However, the relationship between LOX-1, autophagy, and TLR4 in neurons has not been defined. Here, we show that Angiotensin II (Ang II) treatment of CATH.a differentiated neuronal cells resulted in the expression of TLR4 (and associated signals MyD88 and Toll/interleukin-1 receptor domain-containing adapter-inducing interferon (TRIF)), LOX-1 autophagy. LOX-1 knockdown (transfection with specific small interfering RNA (siRNA)) resulted in reduced expression of TLR4 (and associated signals MyD88 and TRIF) and P-P38 mitogen-activated protein kinase (MAPK) and autophagy. TLR4 knockdown with siRNA resulted in reduced LOX-1 expression and autophagy, indicating a positive feedback between LOX-1 and TLR4. Knockdown of TRIF as well as MyD88 or inhibition of P38 MAPK also inhibited the expression of LOX-1 and TLR4 and autophagy. Importantly, pretreatment with 3-methyladenine (autophagy inhibitor) enhanced while rapamycin (autophagy inducer) decreased the expression of LOX-1, TLR4, and P-P38 MAPK. These studies suggest the presence of a bidirectional link between LOX-1and TLR4 in cultured CATH.a differentiated cells exposed to Ang II with an important role for autophagy in this link. PMID:24902807

  14. Selected commensal-related bacteria and Toll-like receptor 3 agonist combinatorial codes synergistically induce interleukin-12 production by dendritic cells to trigger a T helper type 1 polarizing programme

    PubMed Central

    Baba, Nobuyasu; Samson, Sandrine; Bourdet-Sicard, Raphaëlle; Rubio, Manuel; Sarfati, Marika

    2009-01-01

    Enteric infections remain a major health problem causing millions of deaths in developing countries. The interplay among the host intestinal epithelium, the mucosa-associated immune system and microbiota performs an essential role in gut homeostasis and protection against infectious diseases. Dendritic cells (DCs) play a key role in orchestrating protective immunity and tolerance in the gut. The mechanisms by which DCs adapt their responses and discriminate between virulent microbes and trillions of innocuous bacteria remain ill-defined. Here we investigated the effect of cross-talk between commensal-related bacteria (CB) and Toll-like receptor (TLR) agonists on DC activation and the outcome of the in vitro T helper response. Human monocyte-derived DCs were exposed to eight different Gram-positive or Gram-negative CB strains prior to activation with five different TLR agonists. The key polarizing cytokines interleukin (IL)-12p70, IL-10, IL-1β and IL-6 were quantified and the fate of naïve T-cell differentiation was evaluated. We identified a unique combination of Lactobacillus casei and TLR3 signals that acted in synergy to selectively increase IL-12p70 secretion. Exposure to poly(I:C) converted L. casei-treated DCs into potent promoters of T helper type 1 (Th1) responses. We propose that DCs can integrate harmless and dangerous non-self signals delivered by viral products, to mount robust Th1 responses. Thus, in vivo DC targeting with selective probiotics may improve strategies for the management of enteric diseases. PMID:19740313

  15. Toll-like receptors in antiviral innate immunity

    PubMed Central

    Lester, Sandra N.; Li, Kui

    2014-01-01

    Toll-like receptors (TLRs) are fundamental sensor molecules of the host innate immune system, which detect conserved molecular signatures of a wide range of microbial pathogens and initiate innate immune responses via distinct signaling pathways. Various TLRs are implicated in the early interplay of host cells with invading viruses, which regulates viral replication and/or host responses, ultimately impacting on viral pathogenesis. To survive the host innate defense mechanisms, many viruses have developed strategies to evade or counteract signaling through the TLR pathways, creating an advantageous environment for their propagation. Here we review the current knowledge of the roles TLRs play in antiviral innate immune responses, discuss examples of TLR-mediated viral recognition, and describe strategies used by viruses to antagonize the host antiviral innate immune responses. PMID:24316048

  16. Hypoxia-inducible factor-1α mediates the toll-like receptor 4 signaling pathway leading to anti-tumor effects in human hepatocellular carcinoma cells under hypoxic conditions

    PubMed Central

    Zhang, Xiaoyu; Li, Shuchen; Li, Mingrong; Huang, Haiying; Li, Jingyuan; Zhou, Changwei

    2016-01-01

    Hypoxia-inducible factor-1α (HIF-1α) and toll-like receptor 4 (TLR4) are involved in numerous mechanisms of cancer biology, including cell proliferation and survival; however the interaction of the two factors under hypoxic conditions remains unclear. The present study investigated the in vitro mechanism that results in the suppression of tumor cell growth and cellular functions when HIF-1α is silenced. In the present study, the human hepatocellular carcinoma HepG2 cell line was transfected with short hairpin RNA (shRNA) against HIF-1α and cultured under hypoxic conditions (1% O2 for 24 h). The expression of HIF-1α and various growth factors, including epidermal growth factor (EGF), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2), were examined using quantitative polymerase chain reaction and immunoblotting. Tumor growth was measured using a Cell Counting Kit-8 assay and tumor activity was measured using tumor cell invasion and migration assays. Lipopolysaccharide and TAK-242 were used to activate and inhibit TLR4, respectively, to observe the role of TLR4 in the HIF-1α silenced tumor cells. The expression of TLR4 signaling pathway associates, including myeloid differentiation primary response gene 88 (MyD88), apoptosis signal-regulating kinase 1 (ASK1), p38 mitogen-activated protein kinases and HIF-1α, were analyzed by western blot assay. Under hypoxic conditions, silencing of HIF-1α expression suppressed tumor cell growth and regulated the expression of tumor growth-associated genes, including EGF, HGF, VEGF and FG2. Suppression of tumor cell invasion and migration was also observed in the HIF-1α silenced HepG2 cell line. In addition, TLR4 was identified to be involved in HIF-1α and MyD88 accumulation, and activation of ASK1 and p38 were demonstrated to be critical for TLR4-mediated HIF-1α pathway. In conclusion, silencing of HIF-1α expression may induce anti-tumor effects under hypoxic

  17. Berberine Prevents Intestinal Mucosal Barrier Damage During Early Phase of Sepsis in Rat through the Toll-Like Receptors Signaling Pathway

    PubMed Central

    Li, Guo-xun; Wang, Xi-mo; Jiang, Tao; Gong, Jian-feng; Niu, Ling-ying

    2015-01-01

    Our previous study has shown berberine prevents damage to the intestinal mucosal barrier during early phase of sepsis in rat through mechanisms independent of the NOD-like receptors signaling pathway. In this study, we explored the regulatory effects of berberine on Toll-like receptors during the intestinal mucosal damaging process in rats. Male Sprague-Dawlay (SD) rats were treated with berberine for 5 d before undergoing cecal ligation and puncture (CLP) to induce polymicrobial sepsis. The expression of Toll-like receptor 2 (TLR 2), TLR 4, TLR 9, the activity of nuclear factor-kappa B (NF-κB), the levels of selected cytokines and chemokines, percentage of cell death in intestinal epithelial cells, and mucosal permeability were investigated at 0, 2, 6, 12 and 24 h after CLP. Results showed that the tumor necrosis factor-α (TNF-α ) and interleukin-6 (IL-6) level were significantly lower in berberine-treated rats compared to the control animals. Conversely, the expression level of tight junction proteins, percentage of cell death in intestinal epithelial cells and the mucosal permeability were significantly higher in berberine-treated rats. The mRNA expression of TLR 2, TLR 4, and TLR 9 were significantly affected by berberine treatment. Our results indicate that pretreatment with berberine attenuates tissue injury and protects the intestinal mucosal barrier in early phase of sepsis and this may possibly have been mediated through the TLRs pathway. PMID:25605990

  18. Toll-Like Receptor 9 in Breast Cancer

    PubMed Central

    Sandholm, Jouko; Selander, Katri S.

    2014-01-01

    Toll-like receptor 9 (TLR9) is a cellular DNA receptor of the innate immune system. DNA recognition via TLR9 results in an inflammatory reaction, which eventually also activates a Th1-biased adaptive immune attack. In addition to cells of the immune system, TLR9 mRNA and protein are also widely expressed in breast cancer cell lines and in clinical breast cancer specimens. Although synthetic TLR9-ligands induce cancer cell invasion in vitro, the role of TLR9 in cancer pathophysiology has remained unclear. In the studies conducted so far, tumor TLR9 expression has been shown to have prognostic significance only in patients that have triple-negative breast cancer (TNBC). Specifically, high tumor TLR9 expression predicts good prognosis among TNBC patients. Pre-clinical studies suggest that TLR9 expression may affect tumor immunophenotype and contribute to the immunogenic benefit of chemotherapy. In this review, we discuss the possible contribution of tumor TLR9 to the pathogenesis and treatment responses in breast cancer. PMID:25101078

  19. Cathepsins are required for Toll-like receptor 9 responses

    SciTech Connect

    Matsumoto, Fumi; Saitoh, Shin-ichiroh; Fukui, Ryutaroh; Kobayashi, Toshihiko; Tanimura, Natsuko; Konno, Kazunori; Kusumoto, Yutaka; Akashi-Takamura, Sachiko; Miyake, Kensuke

    2008-03-14

    Toll-like receptors (TLR) recognize a variety of microbial products and activate defense responses. Pathogen sensing by TLR2/4 requires accessory molecules, whereas little is known about a molecule required for DNA recognition by TLR9. After endocytosis of microbes, microbial DNA is exposed and recognized by TLR9 in lysosomes. We here show that cathepsins, lysosomal cysteine proteases, are required for TLR9 responses. A cell line Ba/F3 was found to be defective in TLR9 responses despite enforced TLR9 expression. Functional cloning with Ba/F3 identified cathepsin B/L as a molecule required for TLR9 responses. The protease activity was essential for the complementing effect. TLR9 responses were also conferred by cathepsin S or F, but not by cathepsin H. TLR9-dependent B cell proliferation and CD86 upregulation were apparently downregulated by cathepsin B/L inhibitors. Cathepsin B inhibitor downregulated interaction of CpG-B with TLR9 in 293T cells. These results suggest roles for cathepsins in DNA recognition by TLR9.

  20. Effects of budesonide on toll-like receptor expression in alveolar macrophages from smokers with and without COPD

    PubMed Central

    Ji, Jie; von Schéele, Ida; Billing, Bo; Dahlén, Barbro; Lantz, Ann-Sofie; Larsson, Kjell; Palmberg, Lena

    2016-01-01

    Introduction Alveolar macrophages (AMs) are equipped with innate immune receptors such as toll-like receptor 2 (TLR2) and toll-like receptor 4 (TLR4). In primary bronchial epithelial cells, exposure of toll-like receptor (TLR) ligands or tumor necrosis factor-alpha (TNF-α) increased TLR2 mRNA expression and reduced interleukin-8 (IL-8) release when coincubated with glucocorticosteroids. The aim of this study was to compare TLR2 and TLR4 expression levels and the effect of a glucocorticosteroid after stimulation with TLR ligands on AMs from smokers with and without COPD compared with the healthy controls. Subjects and methods Bronchoalveolar lavage was performed, and AMs were isolated from smokers with (n=10) and without COPD (n=11) and healthy controls (n=10) and stimulated ex vivo with peptidoglycan (PGN), lipopolysaccharide (LPS), or TNF-α ± budesonide (Bud). Blocking antibodies to TLR2 or TLR4 were added before stimulation with LPS or PGN ± Bud, respectively. The release of proinflammatory cytokine (TNF-α), chemoattractant (CXCL8), and TLR expression was analyzed by enzyme-linked immunosorbent assay and reverse transcription polymerase chain reaction. Results LPS, PGN, and TNF-α induced an increased release of IL-8 and TNF-α in the AMs in all the groups independent of smoking or disease. These responses were inhibited by a glucocorticosteroid (Bud) in all the three groups, except PGN-induced IL-8 secretion in smokers without COPD. Bud increased TLR2 expression in the healthy controls and smokers without COPD. Costimulation of TLR ligands and Bud significantly enhanced TLR2 mRNA expression in both groups of smokers compared with TLR ligands alone. In smokers, costimulation with PGN and Bud significantly increased TLR2 expression when compared with Bud alone. On stimulation with the TLR4 agonist, LPS downregulated TLR4 mRNA expression in all the three groups. Conclusion The combination of glucocorticosteroids with TLR ligands can increase TLR2 expression

  1. Toll-Like Receptor 4 Signaling Pathway Mediates Inhalant Organic Dust-Induced Bone Loss.

    PubMed

    Staab, Elizabeth; Thiele, Geoffrey M; Clarey, Dillon; Wyatt, Todd A; Romberger, Debra J; Wells, Adam D; Dusad, Anand; Wang, Dong; Klassen, Lynell W; Mikuls, Ted R; Duryee, Michael J; Poole, Jill A

    2016-01-01

    Agriculture workers have increased rates of airway and skeletal disease. Inhalant exposure to agricultural organic dust extract (ODE) induces bone deterioration in mice; yet, mechanisms underlying lung-bone crosstalk remain unclear. Because Toll-like receptor 2 (TLR2) and TLR4 are important in mediating the airway consequences of ODE, this study investigated their role in regulating bone responses. First, swine facility ODE stimulated wild-type (WT) bone marrow macrophages to form osteoclasts, and this finding was inhibited in TLR4 knock-out (KO), but not TLR2 KO cells. Next, using an established intranasal inhalation exposure model, WT, TLR2 KO and TLR4 KO mice were treated daily with ODE or saline for 3 weeks. ODE-induced airway neutrophil influx and cytokine/chemokine release were similarly reduced in TLR2 and TLR4 KO animals as compared to WT mice. Utilizing micro-computed tomography (CT), analysis of tibia showed loss of bone mineral density, volume and deterioration of bone micro-architecture and mechanical strength induced by ODE in WT mice were significantly reduced in TLR4 but not TLR2 KO animals. Bone marrow osteoclast precursor cell populations were analyzed by flow cytometry from exposed animals. In WT animals, exposure to inhalant ODE increased osteoclast precursor cell populations as compared to saline, an effect that was reduced in TLR4 but not TLR2 KO mice. These results show that TLR2 and TLR4 pathways mediate ODE-induced airway inflammation, but bone deterioration consequences following inhalant ODE treatment is strongly dependent upon TLR4. Thus, the TLR4 signaling pathway appears critical in regulating the lung-bone inflammatory axis to microbial component-enriched organic dust exposures. PMID:27479208

  2. Toll-Like Receptor 4 Signaling Pathway Mediates Inhalant Organic Dust-Induced Bone Loss

    PubMed Central

    Staab, Elizabeth; Thiele, Geoffrey M.; Clarey, Dillon; Wyatt, Todd A.; Romberger, Debra J.; Wells, Adam D.; Dusad, Anand; Wang, Dong; Klassen, Lynell W.; Mikuls, Ted R.; Duryee, Michael J.; Poole, Jill A.

    2016-01-01

    Agriculture workers have increased rates of airway and skeletal disease. Inhalant exposure to agricultural organic dust extract (ODE) induces bone deterioration in mice; yet, mechanisms underlying lung-bone crosstalk remain unclear. Because Toll-like receptor 2 (TLR2) and TLR4 are important in mediating the airway consequences of ODE, this study investigated their role in regulating bone responses. First, swine facility ODE stimulated wild-type (WT) bone marrow macrophages to form osteoclasts, and this finding was inhibited in TLR4 knock-out (KO), but not TLR2 KO cells. Next, using an established intranasal inhalation exposure model, WT, TLR2 KO and TLR4 KO mice were treated daily with ODE or saline for 3 weeks. ODE-induced airway neutrophil influx and cytokine/chemokine release were similarly reduced in TLR2 and TLR4 KO animals as compared to WT mice. Utilizing micro-computed tomography (CT), analysis of tibia showed loss of bone mineral density, volume and deterioration of bone micro-architecture and mechanical strength induced by ODE in WT mice were significantly reduced in TLR4 but not TLR2 KO animals. Bone marrow osteoclast precursor cell populations were analyzed by flow cytometry from exposed animals. In WT animals, exposure to inhalant ODE increased osteoclast precursor cell populations as compared to saline, an effect that was reduced in TLR4 but not TLR2 KO mice. These results show that TLR2 and TLR4 pathways mediate ODE-induced airway inflammation, but bone deterioration consequences following inhalant ODE treatment is strongly dependent upon TLR4. Thus, the TLR4 signaling pathway appears critical in regulating the lung-bone inflammatory axis to microbial component-enriched organic dust exposures. PMID:27479208

  3. Toll-Like Receptor 4 Wild Type Homozygozity of Polymorphisms +896 and +1196 Is Associated with High Gastrin Serum Levels and Peptic Ulcer Risk

    PubMed Central

    Pohjanen, Vesa-Matti; Koivurova, Olli-Pekka; Huhta, Heikki; Helminen, Olli; Mäkinen, Johanna M.; Karhukorpi, Jari M.; Joensuu, Tapio; Koistinen, Pentti O.; Valtonen, Jarno M.; Niemelä, Seppo E.; Karttunen, Riitta A.; Karttunen, Tuomo J.

    2015-01-01

    Toll-like receptor 4 is a part of the innate immune system and recognizes Helicobacter pylori lipopolysaccharide. The goal of this study was to analyze the role of Toll-like receptor 4 polymorphisms +896 (rs4986790) and +1196 (rs4986791) in the pathogenesis of Helicobacter pylori related gastroduodenal diseases in relation to gastric secretion and inflammation. Toll-like receptor 4 polymorphisms, serum gastrin-17 and pepsinogen I and II concentrations were determined, and gastroscopies with histopathological analyses were performed to 216 dyspeptic patients. As genotype controls, 179 controls and 61 gastric cancer patients were studied. In our study, the Toll-like receptor 4 +896 and +1196 polymorphisms were in total linkage disequilibrium. The homozygous wild types displayed higher gastrin-17 serum concentrations than the mutants (p = 0.001) and this effect was independent of Helicobacter pylori. The homozygous wild types also displayed an increased risk for peptic ulcers (OR: 4.390). Toll-like receptor 4 genotypes did not show any association with Helicobacter pylori positivity or the features of gastric inflammation. Toll-like receptor 4 expression was seen in gastrin and somatostatin expressing cells of antral mucosa by immunohistochemistry. Our results suggest a role for Toll-like receptor 4 in gastric acid regulation and that the Toll-like receptor 4 +896 and +1196 wild type homozygozity increases peptic ulcer risk via gastrin secretion. PMID:26161647

  4. Toll-like receptor signaling in primary immune deficiencies.

    PubMed

    Maglione, Paul J; Simchoni, Noa; Cunningham-Rundles, Charlotte

    2015-11-01

    Toll-like receptors (TLRs) recognize common microbial or host-derived macromolecules and have important roles in early activation of the immune system. Patients with primary immune deficiencies (PIDs) affecting TLR signaling can elucidate the importance of these proteins to the human immune system. Defects in interleukin-1 receptor-associated kinase-4 and myeloid differentiation factor 88 (MyD88) lead to susceptibility to infections with bacteria, while mutations in nuclear factor-κB essential modulator (NEMO) and other downstream mediators generally induce broader susceptibility to bacteria, viruses, and fungi. In contrast, TLR3 signaling defects are specific for susceptibility to herpes simplex virus type 1 encephalitis. Other PIDs induce functional alterations of TLR signaling pathways, such as common variable immunodeficiency in which plasmacytoid dendritic cell defects enhance defective responses of B cells to shared TLR agonists. Dampening of TLR responses is seen for TLRs 2 and 4 in chronic granulomatous disease (CGD) and X-linked agammaglobulinemia (XLA). Enhanced TLR responses, meanwhile, are seen for TLRs 5 and 9 in CGD, TLRs 4, 7/8, and 9 in XLA, TLRs 2 and 4 in hyper IgE syndrome, and for most TLRs in adenosine deaminase deficiency. PMID:25930993

  5. Toll-Like Receptor 4 Deficiency Impairs Motor Coordination

    PubMed Central

    Zhu, Jian-Wei; Li, Yi-Fei; Wang, Zhao-Tao; Jia, Wei-Qiang; Xu, Ru-Xiang

    2016-01-01

    The cerebellum plays an essential role in balance and motor coordination. Purkinje cells (PCs) are the sole output neurons of the cerebellar cortex and are critical for the execution of its functions, including motor coordination. Toll-like receptor (TLR) 4 is involved in the innate immune response and is abundantly expressed in the central nervous system; however, little is known about its role in cerebellum-related motor functions. To address this question, we evaluated motor behavior in TLR4 deficient mice. We found that TLR4−∕− mice showed impaired motor coordination. Morphological analyses revealed that TLR4 deficiency was associated with a reduction in the thickness of the molecular layer of the cerebellum. TLR4 was highly expressed in PCs but not in Bergmann glia or cerebellar granule cells; however, loss of TLR4 decreased the number of PCs. These findings suggest a novel role for TLR4 in cerebellum-related motor coordination through maintenance of the PC population. PMID:26909014

  6. Allergens and Activation of the Toll-Like Receptor Response.

    PubMed

    Monie, Tom P; Bryant, Clare E

    2016-01-01

    Pattern recognition receptors (PRRs) provide a crucial function in the detection of exogenous and endogenous danger signals. The Toll-like receptors (TLRs) were the first family of PRRs to be discovered and have been extensively studied since. Whilst TLRs remain the best characterized family of PRRs there is still much to be learnt about their mode of activation and the mechanisms of signal transduction they employ. Much of our understanding of these processes has been gathered through the use of cell based signaling assays utilizing specific gene-reporters or cytokine secretion based readouts. More recently it has become apparent that the repertoire of ligands recognized by these receptors may be wider than originally assumed and that their activation may be sensitized, or at least modulated by the presence of common household allergens such as the cat dander protein Fel d 1, or the house dust mite allergen Der p 2. In this chapter we provide an overview of the cell culture and stimulation processes required to study TLR signaling in HEK293 based assays and in bone marrow-derived macrophages. PMID:26803639

  7. Toll-Like Receptor Gene Expression during Trichinella spiralis Infection

    PubMed Central

    Kim, Sin; Park, Mi Kyung; Yu, Hak Sun

    2015-01-01

    In Trichinella spiralis infection, type 2 helper T (Th2) cell-related and regulatory T (Treg) cell-related immune responses are the most important immune events. In order to clarify which Toll-like receptors (TLRs) are closely associated with these responses, we analyzed the expression of mouse TLR genes in the small intestine and muscle tissue during T. spiralis infection. In addition, the expression of several chemokine- and cytokine-encoding genes, which are related to Th2 and Treg cell mediated immune responses, were analyzed in mouse embryonic fibroblasts (MEFs) isolated from myeloid differentiation factor 88 (MyD88)/TIR-associated proteins (TIRAP) and Toll receptor-associated activator of interferons (TRIF) adapter protein deficient and wild type (WT) mice. The results showed significantly increased TLR4 and TLR9 gene expression in the small intestine after 2 weeks of T. spiralis infection. In the muscle, TLR1, TLR2, TLR5, and TLR9 gene expression significantly increased after 4 weeks of infection. Only the expression of the TLR4 and TLR9 genes was significantly elevated in WT MEF cells after treatment with excretory-secretory (ES) proteins. Gene expression for Th2 chemokine genes were highly enhanced by ES proteins in WT MEF cells, while this elevation was slightly reduced in MyD88/TIRAP-/- MEF cells, and quite substantially decreased in TRIF-/- MEF cells. In contrast, IL-10 and TGF-β expression levels were not elevated in MyD88/TIRAP-/- MEF cells. In conclusion, we suggest that TLR4 and TLR9 might be closely linked to Th2 cell and Treg cell mediated immune responses, although additional data are needed to convincingly prove this observation. PMID:26323841

  8. Toll-Like Receptor Gene Expression during Trichinella spiralis Infection.

    PubMed

    Kim, Sin; Park, Mi Kyung; Yu, Hak Sun

    2015-08-01

    In Trichinella spiralis infection, type 2 helper T (Th2) cell-related and regulatory T (Treg) cell-related immune responses are the most important immune events. In order to clarify which Toll-like receptors (TLRs) are closely associated with these responses, we analyzed the expression of mouse TLR genes in the small intestine and muscle tissue during T. spiralis infection. In addition, the expression of several chemokine- and cytokine-encoding genes, which are related to Th2 and Treg cell mediated immune responses, were analyzed in mouse embryonic fibroblasts (MEFs) isolated from myeloid differentiation factor 88 (MyD88)/TIR-associated proteins (TIRAP) and Toll receptor-associated activator of interferons (TRIF) adapter protein deficient and wild type (WT) mice. The results showed significantly increased TLR4 and TLR9 gene expression in the small intestine after 2 weeks of T. spiralis infection. In the muscle, TLR1, TLR2, TLR5, and TLR9 gene expression significantly increased after 4 weeks of infection. Only the expression of the TLR4 and TLR9 genes was significantly elevated in WT MEF cells after treatment with excretory-secretory (ES) proteins. Gene expression for Th2 chemokine genes were highly enhanced by ES proteins in WT MEF cells, while this elevation was slightly reduced in MyD88/TIRAP(-/-) MEF cells, and quite substantially decreased in TRIF(-/-) MEF cells. In contrast, IL-10 and TGF-β expression levels were not elevated in MyD88/TIRAP(-/-) MEF cells. In conclusion, we suggest that TLR4 and TLR9 might be closely linked to Th2 cell and Treg cell mediated immune responses, although additional data are needed to convincingly prove this observation. PMID:26323841

  9. Stimulation by toll-like receptors inhibits osteoclast differentiation.

    PubMed

    Takami, Masamichi; Kim, Nacksung; Rho, Jaerang; Choi, Yongwon

    2002-08-01

    Osteoclasts, the cells capable of resorbing bone, are derived from hemopoietic precursor cells of monocyte-macrophage lineage. The same precursor cells can also give rise to macrophages and dendritic cells, which are essential for proper immune responses to various pathogens. Immune responses to microbial pathogens are often triggered because various microbial components induce the maturation and activation of immunoregulatory cells such as macrophages or dendritic cells by stimulating Toll-like receptors (TLRs). Since osteoclasts arise from the same precursors as macrophages, we tested whether TLRs play any role during osteoclast differentiation. We showed here that osteoclast precursors prepared from mouse bone marrow cells expressed all known murine TLRs (TLR1-TLR9). Moreover, various TLR ligands (e.g., peptidoglycan, poly(I:C) dsRNA, LPS, and CpG motif of unmethylated DNA, which act as ligands for TLR2, 3, 4, and 9, respectively) induced NF-kappa B activation and up-regulated TNF-alpha production in osteoclast precursor cells. Unexpectedly, however, TLR stimulation of osteoclast precursors by these microbial products strongly inhibited their differentiation into multinucleated, mature osteoclasts induced by TNF-related activation-induced cytokine. Rather, TLR stimulation maintained the phagocytic activity of osteoclast precursors in the presence of osteoclastogenic stimuli M-CSF and TNF-related activation-induced cytokine. Taken together, these results suggest that TLR stimulation of osteoclast precursors inhibits their differentiation into noninflammatory mature osteoclasts during microbial infection. This process favors immune responses and may be critical to prevent pathogenic effects of microbial invasion on bone. PMID:12133979

  10. Subverting Toll-Like Receptor Signaling by Bacterial Pathogens

    PubMed Central

    McGuire, Victoria A.; Arthur, J. Simon C.

    2015-01-01

    Pathogenic bacteria are detected by pattern-recognition receptors (PRRs) expressed on innate immune cells, which activate intracellular signal transduction pathways to elicit an immune response. Toll-like receptors are, perhaps, the most studied of the PRRs and can activate the mitogen-activated protein kinase (MAPK) and Nuclear Factor-κB (NF-κB) pathways. These pathways are critical for mounting an effective immune response. In order to evade detection and promote virulence, many pathogens subvert the host immune response by targeting components of these signal transduction pathways. This mini-review highlights the diverse mechanisms that bacterial pathogens have evolved to manipulate the innate immune response, with a particular focus on those that target MAPK and NF-κB signaling pathways. Understanding the elaborate strategies that pathogens employ to subvert the immune response not only highlights the importance of these proteins in mounting effective immune responses, but may also identify novel approaches for treatment or prevention of infection. PMID:26648936

  11. Toll-Like Receptor Pathways in Autoimmune Diseases.

    PubMed

    Chen, Ji-Qing; Szodoray, Peter; Zeher, Margit

    2016-02-01

    Autoimmune diseases are a family of chronic systemic inflammatory disorders, characterized by the dysregulation of the immune system which finally results in the break of tolerance to self-antigen. Several studies suggest that Toll-like receptors (TLRs) play an essential role in the pathogenesis of autoimmune diseases. TLRs belong to the family of pattern recognition receptors (PRRs) that recognize a wide range of pathogen-associated molecular patterns (PAMPs). TLRs are type I transmembrane proteins and located on various cellular membranes. Two main groups have been classified based on their location; the extracelluar group referred to the ones located on the plasma membrane while the intracellular group all located in endosomal compartments responsible for the recognition of nucleic acids. They are released by the host cells and trigger various intracellular pathways which results in the production of proinflammatory cytokines, chemokines, as well as the expression of co-stimulatory molecules to protect against invading microorganisms. In particular, TLR pathway-associated proteins, such as IRAK, TRAF, and SOCS, are often dysregulated in this group of diseases. TLR-associated gene expression profile analysis together with single nucleotide polymorphism (SNP) assessment could be important to explain the pathomechanism driving autoimmune diseases. In this review, we summarize recent findings on TLR pathway regulation in various autoimmune diseases, including Sjögren's syndrome (SS), systemic lupus erythematosus (SLE), multiple sclerosis (MS), rheumatoid arthritis (RA), systemic sclerosis (SSc), and psoriasis. PMID:25687121

  12. Toll-Like Receptor 7-Targeted Therapy in Respiratory Disease

    PubMed Central

    Lebold, Katie M.; Jacoby, David B.; Drake, Matthew G.

    2016-01-01

    Summary Allergic asthma and allergic rhinitis are inflammatory diseases of the respiratory tract characterized by an excessive type-2 T helper cell (Th2) immune response. Toll-like receptor 7 (TLR7) is a single-stranded viral RNA receptor expressed in the airway that initiates a Th1 immune response and has garnered interest as a novel therapeutic target for treatment of allergic airway diseases. In animal models, synthetic TLR7 agonists reduce airway hyperreactivity, eosinophilic inflammation, and airway remodeling while decreasing Th2-associated cytokines. Furthermore, activation of TLR7 rapidly relaxes airway smooth muscle via production of nitric oxide. Thus, TLR7 has dual bronchodilator and anti-inflammatory effects. Two TLR7 ligands with promising pharmacologic profiles have entered clinical trials for the treatment of allergic rhinitis. Moreover, TLR7 agonists are potential antiviral therapies against respiratory viruses. TLR7 agonists enhance influenza vaccine efficacy and also reduce viral titers when given during an active airway infection. In this review, we examine the current data supporting TLR7 as a therapeutic target in allergic airway diseases. PMID:27226793

  13. Toll-Like Receptor 7-Targeted Therapy in Respiratory Disease.

    PubMed

    Lebold, Katie M; Jacoby, David B; Drake, Matthew G

    2016-03-01

    Allergic asthma and allergic rhinitis are inflammatory diseases of the respiratory tract characterized by an excessive type-2 T helper cell (Th2) immune response. Toll-like receptor 7 (TLR7) is a single-stranded viral RNA receptor expressed in the airway that initiates a Th1 immune response and has garnered interest as a novel therapeutic target for treatment of allergic airway diseases. In animal models, synthetic TLR7 agonists reduce airway hyperreactivity, eosinophilic inflammation, and airway remodeling while decreasing Th2-associated cytokines. Furthermore, activation of TLR7 rapidly relaxes airway smooth muscle via production of nitric oxide. Thus, TLR7 has dual bronchodilator and anti-inflammatory effects. Two TLR7 ligands with promising pharmacologic profiles have entered clinical trials for the treatment of allergic rhinitis. Moreover, TLR7 agonists are potential antiviral therapies against respiratory viruses. TLR7 agonists enhance influenza vaccine efficacy and also reduce viral titers when given during an active airway infection. In this review, we examine the current data supporting TLR7 as a therapeutic target in allergic airway diseases. PMID:27226793

  14. Deviation from major codons in the Toll-like receptor genes is associated with low Toll-like receptor expression

    PubMed Central

    Zhong, Fei; Cao, Weiping; Chan, Edmund; Tay, Puei Nam; Cahya, Florence Feby; Zhang, Haifeng; Lu, Jinhua

    2005-01-01

    Microbial structures activate Toll-like receptors (TLRs) and TLR-mediated cell signalling elicits and regulates host immunity. Most TLRs are poorly expressed but the underlying expression mechanism is not clear. Examination TLR sequences revealed that most human TLR genes deviated from using major human codons. CD14 resembles TLRs in sequence but its gene preferentially uses major codons. Indeed, CD14 expression on monocytes was higher than expression of TLR1 and TLR2. The TLR9 gene is abundant in major codons and it also showed higher expression than TLR1, TLR2 and TLR7 in transfected 293T cells. Change of the 5′-end 302 base pairs of the TLR2 sequence into major human codons markedly increased TLR2 expression, which led to increased TLR2-mediated constitutive nuclear factor-κB activation. Change of the 5′-end 381 base pairs of the CD14 sequence into prevalent TLR codons markedly reduced CD14 expression. These results collectively show that the deviation of TLR sequences from using major codons dictates the low TLR expression and this may protect the host against excessive inflammation and tissue damages. PMID:15606798

  15. Enhanced antibody responses to a detoxified lipopolysaccharide-group B meningococcal outer membrane protein vaccine are due to synergistic engagement of Toll-like receptors.

    PubMed

    Chen, Wilbur H; Basu, Subhendu; Bhattacharjee, Apurba K; Cross, Alan S

    2010-10-01

    When given passively or elicited actively, antibodies induced by a detoxified Escherichia coli Rc chemotype (J5) mutant lipopolysaccharide (J5dLPS)-group B meningococcal outer membrane protein (OMP) complex vaccine protected animals from lethal sepsis. The protection from sepsis is believed to be dependent on high levels of antibodies against the core glycolipid (CGL), a region of LPS that is rather conserved among Enterobacteriaceae. The addition of unmethylated deoxycytidyl-deoxyguanosine dinucleotide (CpG)-containing oligodeoxynucleotides (ODN) was used as an immuno-adjuvant to improve antibody responses. In preparation for a Phase I human trial, we elucidated potential contributions by which the sepsis vaccine (J5dLPS-OMP) and CpG ODN might enhance the antibody response and provide evidence that the generation of immune responses is Toll-like receptor (TLR) dependent. Toll-like receptor 2, TLR4, and TLR9 were each essential for generating robust cytokine and antibody responses. The signature cytokine of dendritic cells, interleukin-12, was one of the cytokines that demonstrated synergy with the optimal TLR ligand/ engagement combination. We conclude that the involvement of multiple TLRs upon immunization was critical for the generation of optimal antibody responses. These observations provide further evidence for the inclusion of innate immune-based adjuvants during the development of next-generation vaccines. PMID:19822632

  16. Interaction between Cannabinoid System and Toll-Like Receptors Controls Inflammation

    PubMed Central

    2016-01-01

    Since the discovery of the endocannabinoid system consisting of cannabinoid receptors, endogenous ligands, and biosynthetic and metabolizing enzymes, interest has been renewed in investigating the promise of cannabinoids as therapeutic agents. Abundant evidence indicates that cannabinoids modulate immune responses. An inflammatory response is triggered when innate immune cells receive a danger signal provided by pathogen- or damage-associated molecular patterns engaging pattern-recognition receptors. Toll-like receptor family members are prominent pattern-recognition receptors expressed on innate immune cells. Cannabinoids suppress Toll-like receptor-mediated inflammatory responses. However, the relationship between the endocannabinoid system and innate immune system may not be one-sided. Innate immune cells express cannabinoid receptors and produce endogenous cannabinoids. Hence, innate immune cells may play a role in regulating endocannabinoid homeostasis, and, in turn, the endocannabinoid system modulates local inflammatory responses. Studies designed to probe the interaction between the innate immune system and the endocannabinoid system may identify new potential molecular targets in developing therapeutic strategies for chronic inflammatory diseases. This review discusses the endocannabinoid system and Toll-like receptor family and evaluates the interaction between them. PMID:27597805

  17. Interaction between Cannabinoid System and Toll-Like Receptors Controls Inflammation.

    PubMed

    McCoy, Kathleen L

    2016-01-01

    Since the discovery of the endocannabinoid system consisting of cannabinoid receptors, endogenous ligands, and biosynthetic and metabolizing enzymes, interest has been renewed in investigating the promise of cannabinoids as therapeutic agents. Abundant evidence indicates that cannabinoids modulate immune responses. An inflammatory response is triggered when innate immune cells receive a danger signal provided by pathogen- or damage-associated molecular patterns engaging pattern-recognition receptors. Toll-like receptor family members are prominent pattern-recognition receptors expressed on innate immune cells. Cannabinoids suppress Toll-like receptor-mediated inflammatory responses. However, the relationship between the endocannabinoid system and innate immune system may not be one-sided. Innate immune cells express cannabinoid receptors and produce endogenous cannabinoids. Hence, innate immune cells may play a role in regulating endocannabinoid homeostasis, and, in turn, the endocannabinoid system modulates local inflammatory responses. Studies designed to probe the interaction between the innate immune system and the endocannabinoid system may identify new potential molecular targets in developing therapeutic strategies for chronic inflammatory diseases. This review discusses the endocannabinoid system and Toll-like receptor family and evaluates the interaction between them. PMID:27597805

  18. Toll-like receptors in the pathogenesis of inflammatory diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toll-like receptors (TLRs) are newly established immune receptors which are critical for host defense through the activation of both innate and adaptive immunity. TLRs can recognize molecules with both microbial and non-microbial origins. Emerging evidence now suggests that TLRs are implicated in th...

  19. MAPPING OF TOLL LIKE RECEPTOR (TLR) GENES IN RAINBOW TROUT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toll-like receptors (TLRs) are a family of transmembrane proteins that recognize conserved pathogen structures to induce innate immune effector molecules. In vertebrates, TLRs can distinguish among classes of pathogens and serve an important role in orchestrating the appropriate adaptive immune resp...

  20. Toll-like Receptors of the Ascidian Ciona intestinalis

    PubMed Central

    Sasaki, Naoko; Ogasawara, Michio; Sekiguchi, Toshio; Kusumoto, Shoichi; Satake, Honoo

    2009-01-01

    Key transmembrane proteins in the innate immune system, Toll-like receptors (TLRs), have been suggested to occur in the genome of non-mammalian organisms including invertebrates. However, authentic invertebrate TLRs have been neither structurally nor functionally investigated. In this paper, we originally present the structures, localization, ligand recognition, activities, and inflammatory cytokine production of all TLRs of the ascidian Ciona intestinalis, designated as Ci-TLR1 and Ci-TLR2. The amino acid sequence of Ci-TLR1 and Ci-TLR2 were found to possess unique structural organization with moderate sequence similarity to functionally characterized vertebrate TLRs. ci-tlr1 and ci-tlr2 genes were expressed predominantly in the stomach and intestine as well as in hemocytes. Ci-TLR1 and Ci-TLR2 expressed in HEK293 cells, unlike vertebrate TLRs, were localized to both the plasma membrane and endosomes. Intriguingly, both Ci-TLR1 and Ci-TLR2 stimulate NF-κB induction in response to multiple pathogenic ligands such as double-stranded RNA, and bacterial cell wall components that are differentially recognized by respective vertebrate TLRs, revealing that Ci-TLRs recognize broader pathogen-associated molecular patterns than vertebrate TLRs. The Ci-TLR-stimulating pathogenic ligands also induced the expression of Ci-TNFα in the intestine and stomach where Ci-TLRs are expressed. These results provide evidence that the TLR-triggered innate immune systems are essentially conserved in ascidians, and that Ci-TLRs possess “hybrid” biological and immunological functions, compared with vertebrate TLRs. Moreover, it is presumed that chordate TLR ancestors also acquired the Ci-TLR-like multiple cellular localization and pathogen-associated molecular pattern recognition. PMID:19651780

  1. Dynamics of the avian inflammatory response to Salmonella following administration of the toll-like receptor 5 agonist flagellin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flagellin is a highly evolutionarily conserved bacterial component that is recognized by the innate immune system through toll-like receptor (TLR) 5. Previous work has shown that flagellin is a potent stimulator in vitro of phagocytic cell functions of chickens. The purpose of the present study wa...

  2. TRADITIONAL BIOCHEMICAL ASSAYS FOR STUDYING TOLL-LIKE RECEPTOR 9

    PubMed Central

    Leifer, Cynthia A.; Rose, William A.; Botelho, Fernando

    2015-01-01

    Understanding the mechanistic basis of receptor activation and regulation can offer therapeutic targets for disease treatment. Evidence is emerging for a role of the normally foreign responsive Toll-like receptors (TLRs) in the development of autoimmunity through response to self-patterns. Regulatory mechanisms governing this class of receptors are poorly understood, and failures within this system likely contribute to development of autoimmunity. In this article, we review biochemical assays used to study one of the self-pattern responsive TLRs, TLR9, and suggest that these studies are critical for development of new targets for autoimmune therapies. PMID:23323977

  3. Elevated Toll-Like Receptor-Induced CXCL8 Secretion in Human Blood Basophils from Allergic Donors Is Independent of Toll-Like Receptor Expression Levels

    PubMed Central

    Steiner, Markus; Hawranek, Thomas; Schneider, Michael; Ferreira, Fatima; Horejs-Hoeck, Jutta; Harrer, Andrea; Himly, Martin

    2016-01-01

    Human blood basophils have recently gained interest in addition to their function as allergic effector cells. Previous work suggests the involvement of innate immune mechanisms in the development and exacerbation of allergic responses, which might be mediated by basophils. We assayed the expression levels of Toll-like receptor (TLR) 1, 2, 4 and 6 on purified basophils from birch pollen-, house dust mite-, and non-allergic individuals. Additionally, we compared cytokine and chemokine secretion upon TLR stimulation in these basophil donor groups. Expression of TLR4 on the basophils of the allergic donor groups was decreased and CXCL8 secretion was elevated upon stimulation of TLR1/2 and TLR2/6 compared to the non-allergic donors. Decreased TLR expression and elevated CXCL8 secretion may represent possible mechanisms for aggravation of allergic symptoms in case of parasitic infection. PMID:26870962

  4. Use of lipolanthionine peptide, a toll-like receptor 2 inhibitor, enhances transdermal delivery efficiency

    PubMed Central

    CHEN, BIN; LIU, DA-LIE; PAN, WEN-YAN; YANG, XIAO-HUI; SHOU, JIA-BAO; WU, JU-HUA; MAO, QING-LONG; WANG, JIA

    2014-01-01

    The transdermal delivery system (TDS) is able to obtain a systemic therapeutic effect by administration through the skin, which has low side effects and is able to maintain a sustained blood concentration. However, due to the barrier presented by the stratum corneum, numerous drugs have poor percutaneous permeability. Therefore, the improvement of skin permeability is key to TDS. The main method of promoting transdermal absorption is through the usage of penetration enhancers. Dimethyl sulfoxide (DMSO) is a commonly used penetration enhancer, which has anti-inflammatory analgesic effects and is able to penetrate the skin. Retinoic acid (RA) and lipolanthionine peptide (LP) may also benefit the permeation efficiency of TDS. Therefore, the present study examined the function of DMSO, RA and LP as penetration enhancers in TDS. Firstly, the optimum concentration of DMSO was confirmed by detecting the expression of the LacZ gene in vitro. Secondly, different combinations of LP, RA and DMSO were applied to mouse skin to analyze the penetration enhancer combination with the greatest efficacy. All the animals were divided into five groups: The RA + LP + DMSO + pORF-LacZ group, the RA + DMSO + pORF-LacZ group, the LP + DMSO + pORF-LacZ group, the DMSO + pORF-LacZ group and the control group. Skin was soaked in combinations of LP, RA and DMSO for seven days and then the pORF-LacZ plasmids were daubed onto the skin once daily three days. On the 11th day, all the animals were sacrificed by cervical dislocation and the skin and blood samples were collected. The blood samples were used to detect the expression of the LacZ gene by quantitative polymerase chain reaction and the skin samples were used to detect the expression of claudin-4 and zonula occluden-1 (ZO-1) proteins by immunohistochemistry and western blot analysis. The results demonstrated that the combination of LP, RA and DMSO exhibited the greatest transdermal delivery efficiency, which verified that RA and LP were able to increase the penetration effects. Following treatment with LP, the symptoms of dermal edema were relieved and the capillaries contracted, which suggested that LP was a safe and effective penetration enhancer able to reduce the side-effects caused by DMSO. The present study provides a guideline for the synthesis of novel penetration enhancers. PMID:24858729

  5. Application potential of toll-like receptors in cancer immunotherapy

    PubMed Central

    Shi, Ming; Chen, Xi; Ye, Kangruo; Yao, Yuanfei; Li, Yu

    2016-01-01

    Abstract Toll-like receptors (TLRs), as the most important pattern recognition receptors in innate immunity, play a pivotal role in inducing immune response through recognition of microbial invaders or specific agonists. Recent studies have suggested that TLRs could serve as important regulators in the development of a variety of cancer. However, increasing evidences have shown that TLRs may display quite opposite outcomes in cancer development. Although several potential therapeutic Toll-like receptor ligands have been found, the mechanism and therapy prospect of TLRs in cancer development has to be further elucidated to accelerate the clinical application. By performing a systematic review of the present findings on TLRs in cancer immunology, we attempted to evaluate the therapeutic potential of TLRs in cancer therapy and elucidate the potential mechanism of cancer progress regulated by TLR signaling and the reported targets on TLRs for clinical application. An electronic databases search was conducted in PubMed, Chinese Scientific Journal Database, and Chinese Biomedical Literature Database from their inception to February 1, 2016. The following keywords were used to search the databases: Toll-like receptors, cancer therapy, therapeutic target, innate immunity. Of 244 studies that were identified, 97 nonrelevant studies were excluded. In total, 147 full-text articles were assessed, and from these, 54 were excluded as they did not provide complete key information. Thus, 93 studies were considered eligible and included in the analysis. According to the data from the included trials, 14 TLR ligands (77.8%) from 82 studies have been demonstrated to display antitumor property in various cancers, whereas 4 ligands (22.2%) from 11 studies promote tumors. Among them, only 3 TLR ligands have been approved for cancer therapy, and 9 ligands were in clinical trials. In addition, the potential mechanism of recently reported targets on TLRs for clinical application was also

  6. Effect of pulse high-volume hemofiltration on Toll-like receptor in patients with severe sepsis

    PubMed Central

    Zhang, Ning; Zhang, Jian; Cao, Zhuo; Deng, Liancheng; Wu, Yifen; Liu, Hong; Qiu, Zeliang

    2016-01-01

    The expression level and prognosis of Toll-like receptor 2 (TLR2) mRNA in peripheral blood mononuclear cells of patients with severe sepsis after applying pulse high-volume hemofiltration (PHVHF) were investigated. Sustained PHVHF treatment was carried out on 40 patients on the basis of conventional treatment for up to 72 h. Acute physiology and chronic health evaluation (APACHE) II scores of patients were compared before and after the treatment. CD4+, CD8+ lymphocyte counts and ratios in the peripheral blood were detected using FASort before and 24 and 48 h of PHVHF treatment. Enzyme-linked immunosorbent assay was adopted to detect tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10) concentrations in plasma at different time points before and after 24, 48 and 72 h of treatment, while semi-quantitative reverse transcription-polymerase chain reaction technology was used to test TLR2 mRNA expression. After PHVHF treatment, APACHE II, Sequential Organ Failure Assessment scores were decreased (P<0.05). After 72 h of PHVHF treat-ment, TNF-α, IL-10, TLR2 mRNA expression levels in the plasma of patients were significantly decreased compared to before treatment (P<0.05), and the IL-10 / TNF-α ratio was much higher than before treatment (p<0.05). In conclusion, PHVHF can restore the pro-inflammatory/anti-inflammatory balance of the body, thereby improving the overall condition of the patients by removing inflammatory mediators and lowering TLR2 expression of mononuclear cell surface in peripheral blood. PMID:27588059

  7. Innate Immune Regulation by Toll-Like Receptors in the Brain

    PubMed Central

    Mallard, Carina

    2012-01-01

    The innate immune system plays an important role in cerebral health and disease. In recent years the role of innate immune regulation by toll-like receptors in the brain has been highlighted. In this paper the expression of toll-like receptors and endogenous toll-like receptor ligands in the brain and their role in cerebral ischemia will be discussed. Further, the ability of systemic toll-like receptor ligands to induce cerebral inflammation will be reviewed. Finally, the capacity of toll-like receptors to both increase (sensitization) and decrease (preconditioning/tolerance) the vulnerability of the brain to damage will be disclosed. Studies investigating the role of toll-like receptors in the developing brain will be emphasized. PMID:23097717

  8. Toll-like receptors and diabetes complications: recent advances.

    PubMed

    Rosa Ramirez, Sandra; Ravi Krishna Dasu, Mohan

    2012-11-01

    Diabetes mellitus (DM) is a disease with constellation of metabolic aberrations resulting in debilitating complications. The prevalence of DM worldwide was 2.8% (171 million people) in 2000 and estimated to be at 4.4% (366 million people) in 2030. DM is a major risk factor for heart, kidney diseases, and lower limb amputations. Emerging in vitro and in vivo data suggest that systemic inflammation plays a role in the pathogenesis of DM complications via innate immune receptors. Toll-like receptors (TLRs) are key innate immune receptors that mediate the inflammatory responses in DM. There are no reviews that collectively summarize and examine the detrimental role of TLRs in the manifestation of DM complications namely heart disease, nephropathy, neuropathy, and wound healing. Thus, in this review, we will provide summaries of the TLR expression and activation and elucidate their role in propagating inflammation seen in DM complications. PMID:22934553

  9. Nucleic acid recognizing Toll-like receptors and autoimmunity.

    PubMed

    von Landenberg, Philipp; Bauer, Stefan

    2007-12-01

    The understanding of autoimmune diseases experienced an impressive boost since the Toll-like receptors (TLRs) have been identified as possible key players in autoimmune pathophysiology. Although these receptors recognize a variety of structures derived from viruses, bacteria, and fungi leading to subsequent initiation of the relevant immune responses, recent data support the idea that TLRs are crucial in the induction and perpetuation of certain autoimmune diseases, especially the systemic lupus erythematosus (SLE). In this review, we will summarize recent data on involvement of TLRs in the development of autoimmune diseases. We will focus on TLRs 7, 8, and 9 that were originally identified as receptors specific for bacterial and viral RNA/DNA, but more recent in vitro and in vivo studies have linked these receptors to the detection of host RNA, DNA, and RNA-associated or DNA-associated proteins in the context of autoimmunity. PMID:18060756

  10. Assembly and localization of Toll-like receptor signalling complexes.

    PubMed

    Gay, Nicholas J; Symmons, Martyn F; Gangloff, Monique; Bryant, Clare E

    2014-08-01

    Signal transduction by the Toll-like receptors (TLRs) is central to host defence against many pathogenic microorganisms and also underlies a large burden of human disease. Thus, the mechanisms and regulation of signalling by TLRs are of considerable interest. In this Review, we discuss the molecular basis for the recognition of pathogen-associated molecular patterns, the nature of the protein complexes that mediate signalling, and the way in which signals are regulated and integrated at the level of allosteric assembly, post-translational modification and subcellular trafficking of the components of the signalling complexes. These fundamental molecular mechanisms determine whether the signalling output leads to a protective immune response or to serious pathologies such as sepsis. A detailed understanding of these processes at the molecular level provides a rational framework for the development of new drugs that can specifically target pathological rather than protective signalling in inflammatory and autoimmune disease. PMID:25060580

  11. Current Views of Toll-Like Receptor Signaling Pathways

    PubMed Central

    Yamamoto, Masahiro; Takeda, Kiyoshi

    2010-01-01

    On microbial invasion, the host immediately evokes innate immune responses. Recent studies have demonstrated that Toll-like receptors (TLRs) play crucial roles in innate responses that lead not only to the clearance of pathogens but also to the efficient establishment of acquired immunity by directly detecting molecules from microbes. In terms of intracellular TLR-mediated signaling pathways, cytoplasmic adaptor molecules containing Toll/IL-1R (TIR) domains play important roles in inflammatory immune responses through the production of proinflammatory cytokines, nitric oxide, and type I interferon, and upregulation of costimulatory molecules. In this paper, we will describe our current understanding of the relationship between TLRs and their ligands derived from pathogens such as viruses, bacteria, fungi, and parasites. Moreover, we will review the historical and current literature to describe the mechanisms behind TLR-mediated activation of innate immune responses. PMID:21197425

  12. Novel drugs targeting Toll-like receptors for antiviral therapy

    PubMed Central

    Patel, Mira C; Shirey, Kari Ann; Pletneva, Lioubov M; Boukhvalova, Marina S; Garzino-Demo, Alfredo; Vogel, Stefanie N; Blanco, Jorge CG

    2014-01-01

    Toll-like receptors (TLRs) are sentinel receptors of the host innate immune system that recognize conserved ‘pathogen-associated molecular patterns’ of invading microbes, including viruses. The activation of TLRs establishes antiviral innate immune responses and coordinates the development of long-lasting adaptive immunity in order to control viral pathogenesis. However, microbe-induced damage to host tissues may release ‘danger-associated molecular patterns’ that also activate TLRs, leading to an overexuberant inflammatory response and, ultimately, to tissue damage. Thus, TLRs have proven to be promising targets as therapeutics for the treatment of viral infections that result in inflammatory damage or as adjuvants in order to enhance the efficacy of vaccines. Here, we explore recent advances in TLR biology with a focus on novel drugs that target TLRs (agonists and antagonists) for antiviral therapy. PMID:25620999

  13. Dysregulation of Human Toll-like Receptor Function in Aging

    PubMed Central

    Shaw, Albert C.; Panda, Alexander; Joshi, Samit R.; Qian, Feng; Allore, Heather G.; Montgomery, Ruth R.

    2010-01-01

    Studies addressing immunosenescence in the immune system have expanded to focus on the innate as well as the adaptive responses. In particular, aging results in alterations in the function of Toll-like receptors (TLRs), the first described pattern recognition receptor family of the innate immune system. Recent studies have begun to elucidate the consequences of aging on TLR function in human cohorts and add to existing findings performed in animal models. In general, these studies show that human TLR function is impaired in the context of aging, and in addition there is evidence for inappropriate persistence of TLR activation in specific systems. These findings are consistent with an overarching theme of age-associated dysregulation of TLR signaling that likely contributes to the increased morbidity and mortality from infectious diseases found in geriatric patients. PMID:21074638

  14. Unique features of chicken Toll-like receptors.

    PubMed

    Keestra, A Marijke; de Zoete, Marcel R; Bouwman, Lieneke I; Vaezirad, Mahdi M; van Putten, Jos P M

    2013-11-01

    Toll-like receptors (TLRs) are a major class of innate immune pattern recognition receptors that have a key role in immune homeostasis and the defense against infections. The research explosion that followed the discovery of TLRs more than a decade ago has boosted fundamental knowledge on the function of the immune system and the resistance against disease, providing a rational for clinical modulation of the immune response. In addition, the conserved nature of the ancient TLR system throughout the animal kingdom has enabled a comparative biology approach to understand the evolution, structural architecture, and function of TLRs. In the present review we focus on TLR biology in the avian species, and, especially, on the unique functional properties of the chicken TLR repertoire. PMID:23628643

  15. Toll-Like Receptors and Ischemic Brain Injury

    PubMed Central

    Gesuete, Raffaella; Kohama, Steven G.; Stenzel-Poore, Mary

    2014-01-01

    Toll-like receptors (TLRs) are master regulators of innate immunity and play an integral role in the activation of the inflammatory response during infections. In addition, TLRs influence the body’s response to numerous forms of injury. Recent data have shown that TLRs play a modulating role in ischemic brain damage after stroke. Interestingly, their stimulation prior to ischemia induces a tolerant state that is neuroprotective. This phenomenon, referred to as TLR preconditioning, is the result of reprogramming of the TLR response to ischemic injury. This review addresses the role of TLRs in brain ischemia and the activation of endogenous neuroprotective pathways in the setting of preconditioning. We highlight the protective role of the interferon-related response and the potential site of action for TLR preconditioning involving the blood-brain-barrier. Pharmacological modulation of TLR activation to promote protection against stroke is a promising approach for the development of prophylactic and acute therapies targeting ischemic brain injury. PMID:24709682

  16. Toll-Like Receptors in Leishmania Infections: Guardians or Promoters?

    PubMed Central

    Faria, Marilia S.; Reis, Flavia C. G.; Lima, Ana Paula C. A.

    2012-01-01

    Protozoa of the genus Leishmania cause a wide variety of pathologies ranging from self-healing skin lesions to visceral damage, depending on the parasite species. The outcome of infection depends on the quality of the adaptive immune response, which is determined by parasite factors and the host genetic background. Innate responses, resulting in the generation of mediators with anti-leishmanial activity, contribute to parasite control and help the development of efficient adaptive responses. Among those, the potential contribution of members of the Toll-like receptors (TLRs) family in the control of Leishmania infections started to be investigated about a decade ago. Although most studies appoint a protective role for TLRs, there is growing evidence that in some cases, TLRs facilitate infection. This review highlights recent advances in TLR function during Leishmania infections and discusses their potential role in restraining parasite growth versus yielding disease. PMID:22523644

  17. Antiinfective applications of toll-like receptor 9 agonists.

    PubMed

    Krieg, Arthur M

    2007-07-01

    The innate immune system detects pathogens by the presence of highly conserved pathogen-expressed molecules, which trigger host immune defenses. Toll-like receptor (TLR) 9 detects unmethylated CpG dinucleotides in bacterial or viral DNA, and can be stimulated for therapeutic applications with synthetic oligodeoxynucleotides containing immune stimulatory "CpG motifs." TLR9 activation induces both innate and adaptive immunity. The TLR9-induced innate immune activation can be applied in the prevention or treatment of infectious diseases, and the adaptive immune-enhancing effects can be harnessed for improving vaccines. This article highlights the current understanding of the mechanism of action of CpG oligodeoxynucleotides, and provides an overview of the preclinical data and early human clinical trial results, applying these TLR9 agonists in the field of infectious diseases. PMID:17607015

  18. Reprint of: Microglial toll-like receptors and Alzheimer's disease.

    PubMed

    Su, Fan; Bai, Feng; Zhou, Hong; Zhang, Zhijun

    2016-07-01

    Microglial activation represents an important pathological hallmark of Alzheimer's disease (AD), and emerging data highlight the involvement of microglial toll-like receptors (TLRs) in the course of AD. TLRs have been observed to exert both beneficial and detrimental effects on AD-related pathologies, and transgenic animal models have provided direct and credible evidence for an association between TLRs and AD. Moreover, analyses of genetic polymorphisms have suggested interactions between genetic polymorphisms in TLRs and AD risk, further supporting the hypothesis that TLRs are involved in AD. In this review, we summarize the key evidence in this field. Future studies should focus on exploring the mechanisms underlying the potential roles of TLRs in AD. PMID:27255539

  19. Modeling the interactions of bacteria and Toll-like receptor-mediated inflammation in necrotizing enterocolitis

    PubMed Central

    Arciero, Julia; Ermentrout, G. Bard; Siggers, Richard; Afrazi, Amin; Hackam, David; Vodovotz, Yoram; Rubin, Jonathan

    2016-01-01

    Necrotizing enterocolitis (NEC) is a severe disease of the gastrointestinal tract in premature infants, characterized by a disrupted intestinal epithelium and an exaggerated pro-inflammatory response. Since the activation of Toll-like receptor-4 (TLR4) blocks cell migration and proliferation and contributes to an uncontrolled inflammatory response within the intestine, this receptor has been identified as a key contributor to the development of NEC. Toll-like receptor-9 (TLR9) has been shown to sense bacterial genome components (CpG DNA) and to play an anti-inflammatory role in NEC. We present in vitro results demonstrating direct inhibition of TLR4 activation by CpG DNA, and we develop a mathematical model of bacteria–immune interactions within the intestine to investigate how such inhibition of TLR4 signaling might alter inflammation, associated bacterial invasion of tissue, and resulting outcomes. The model predicts that TLR9 can inhibit both the beneficial and detrimental effects of TLR4, and thus a proper balance of action by these two receptors is needed to promote intestinal health. The model results are also used to explore three interventions that could potentially prevent the development of NEC: reducing bacteria in the mucus layer, administering probiotic treatment, and blocking TLR4 activation. While the model shows that these interventions would be successful in most cases, the model is also used to identify situations in which the proposed treatments might be harmful. PMID:23238281

  20. Patents for Toll-like receptor ligands as radiation countermeasures for acute radiation syndrome.

    PubMed

    Singh, Vijay K; Pollard, Harvey B

    2015-01-01

    Acute radiation exposure induces apoptosis of tissues in the hematopoietic, digestive, cutaneous, cardiovascular and nervous systems; extensive apoptosis of these tissues ultimately leads to acute radiation syndrome. A novel strategy for developing radiation countermeasures has been to imitate the genetic mechanisms acquired by radiation-resistant tumors. Two mechanisms that underlie this ability of tumor cells are the p53 and NF-κB pathways. The loss of p53 function results in the inactivation of pro-apoptotic control mechanisms, while constitutive activation of NF-κB results in the up-regulation of anti-apoptotic genes. Various Toll-like receptor ligands are capable of up regulating the NF-κB pathway, which increases radio-resistance and reduces radiation-induced apoptosis in various tissues. Several Toll-like receptor ligands have been patented and are currently under development as radiation countermeasures for acute radiation syndrome. Ongoing studies suggest that a few of these attractive agents are progressing well along the US FDA approval pathway to become radiation countermeasures. PMID:26135043

  1. Adenomatous polyposis coli genotype-dependent toll-like receptor 4 activity in colon cancer

    PubMed Central

    Wang, Wei; Li, Meng; Guo, Fuchun; Sang, Yaxiong; Qin, Qing; Wang, Yongsheng; Li, Qiu

    2016-01-01

    Toll-like receptors (TLRs)/NF-κB activation stimulated by lipopolysaccharide (LPS) was associated with diverse biological response in colon cancer, but the underlying mechanism was largely unknown. In the current study, we reported cell proliferation was elevated in adenomatous polyposis coli (APC) mutated- and APC knockdown cell lines, while the proliferation was inhibited in APC wild-type cell lines. Besides, in vivo experiments showed that LPS promoted APC knockdown tumor growth while inhibited proliferation of APC wild type. Further study confirmed that activation of TLRs/NF-κB signaling pathway by LPS cross regulated with APC/GSK-3β/β-catenin pathway, which were depend on APC status of cell lines. Taken together, APC genotypes play a key role in LPS induced different colon cancer biological response by cross-regulating β-catenin and NF-κB, which may provide a novel strategy for carcinogenesis prevention. PMID:26760960

  2. CPG-7909 (PF-3512676, ProMune): toll-like receptor-9 agonist in cancer therapy.

    PubMed

    Murad, Yanal M; Clay, Timothy M; Lyerly, H Kim; Morse, Michael A

    2007-08-01

    Stimulation of toll-like receptor (TLR)9 activates human plasmacytoid dendritic cells and B cells, and induces potent innate immune responses in preclinical tumor models and in patients. CpG oligodeoxynucleotides (ODNs) are TLR9 agonists that show promising results as vaccine adjuvants and in the treatment of cancers, infections, asthma and allergy. PF-3512676 (ProMune) was developed as a TLR9 agonist for the treatment of cancer as monotherapy and as an adjuvant in combination with chemo- and immunotherapy. Phase I and II trials have tested this drug in several hematopoietic and solid tumors. Pfizer has initiated Phase III trials to test PF-3512676 in combination with standard chemotherapy for non-small-cell lung cancer. PMID:17696823

  3. High basal levels of functional toll-like receptor 3 (TLR3) and noncanonical Wnt5a are expressed in papillary thyroid cancer and are coordinately decreased by phenylmethimazole together with cell proliferation and migration.

    PubMed

    McCall, Kelly D; Harii, Norikazu; Lewis, Christopher J; Malgor, Ramiro; Kim, Won Bae; Saji, Motoyasu; Kohn, Aimee D; Moon, Randall T; Kohn, Leonard D

    2007-09-01

    High basal levels of TLR3 and Wnt5a RNA are present in papillary thyroid carcinoma (PTC) cell lines consistent with their overexpression and colocalization in PTC cells in vivo. This is not the case in thyrocytes from normal tissue and in follicular carcinoma (FC) or anaplastic carcinoma (AC) cells or tissues. The basally expressed TLR3 are functional in PTC cells as evidenced by the ability of double-strand RNA (polyinosine-polycytidylic acid) to significantly increase the activity of transfected NF-kappaB and IFN-beta luciferase reporter genes and the levels of two end products of TLR3 signaling, IFN-beta and CXCL10. Phenylmethimazole (C10), a drug that decreases TLR3 expression and signaling in FRTL-5 thyrocytes, decreases TLR3 levels and signaling in PTC cells in a concentration-dependent manner. C10 also decreased Wnt5a RNA levels coordinate with decreases in TLR3. E-cadherin RNA levels, whose suppression may be associated with high Wnt5a, increased with C10 treatment. C10 simultaneously decreased PTC proliferation and cell migration but had no effect on the growth and migration of FC, AC, or FRTL-5 cells. C10 decreases high basal phosphorylation of Tyr705 and Ser727 on Stat3 in PTC cells and inhibits IL-6-induced Stat3 phosphorylation. IL-6-induced Stat3 phosphorylation is important both in up-regulating Wnt5a levels and in cell growth. In sum, high Wnt5a levels in PTC cells may be related to high TLR3 levels and signaling; and the ability of phenylmethimazole (C10) to decrease growth and migration of PTC cells may be related to its suppressive effect on TLR3 and Wnt5a signaling, particularly Stat3 activation. PMID:17525119

  4. Toll-like receptor signalling and their therapeutic targeting in colorectal cancer.

    PubMed

    Moossavi, Shirin; Rezaei, Nima

    2013-06-01

    Intestinal homeostasis is dependent on the proper host/microbiota interaction via pattern recognition receptors. Toll-like receptors are a specialised group of membrane receptors which detect pathogen-associated conserved structures. They are present in the intestinal tract and are required for intestinal homeostasis. Dysregulation in the Toll-like receptor signalling can conceivably result in a dysregulated immune response which could contribute to major intestinal pathologies including colorectal cancer. Evidence for the role of microbiota and toll-like receptors in colorectal cancer is emerging. In this report the evidence for the contribution of toll-like receptors to the pathogenesis of colorectal cancer; potential mechanisms affecting toll-like receptor signalling; and their therapeutic targeting in colorectal cancer are reviewed. PMID:23602501

  5. Tyrosine Phosphorylation in Toll-Like Receptor Signaling

    PubMed Central

    Chattopadhyay, Saurabh; Sen, Ganes C.

    2014-01-01

    There is a wealth of knowledge about how different Ser/Thr protein kinases participate in Toll-like receptor (TLR) signaling. In many cases, we know the identities of the Ser/Thr residues of various components of the TLR-signaling pathways that are phosphorylated, the functional consequences of the phosphorylation and the responsible protein kinases. In contrast, the analysis of Tyr-phosphorylation of TLRs and their signaling proteins is currently incomplete, because several existing analyses are not systematic or they do not rely on robust experimental data. Nevertheless, it is clear that many TLRs require, for signaling, ligand-dependent phosphorylation of specific Tyr residues in their cytoplasmic domains; the list includes TLR2, TLR3, TLR4, TLR5, TLR8 and TLR9. In this article, we discuss the current status of knowledge on the effect of Tyr-phosphorylation of TLRs and their signaling proteins on their biochemical and biological functions, the possible identities of the relevant protein tyrosine kinases (PTKs) and the nature of regulations of PTK-mediated activation of TLR signaling pathways. PMID:25022196

  6. Toll-like receptors as sensors of pathogens.

    PubMed

    Hallman, M; Rämet, M; Ezekowitz, R A

    2001-09-01

    Initial recognition of microbes, as they enter the body, is based on germ line-encoded pattern recognition receptors that selectively bind to essential components of pathogens. This allows the body to respond immediately to the microbial invasion before the development of active immunity. The signal-transducing receptors that trigger the acute inflammatory cascade have been elusive until very recently. On the basis of their genetic similarity to the Toll signaling pathway in Drosophila, mammalian Toll-like receptors (TLRs) have been identified. By now, nine transmembrane proteins in the TLR family have been described. Mammalian TLR4 is the signal-transducing receptor activated by the bacterial lipopolysaccharide. The activation of TLR4 leads to DNA binding of the transcription factor NF-kappaB, resulting in activation of the inflammatory cascade. Activation of other TLRs is likely to have similar consequences. TLR2 mediates the host response to Gram-positive bacteria and yeast. TLR1 and TLR6 may participate in the activation of macrophages by Gram-positive bacteria, whereas TLR9 appears to respond to a specific sequence of bacterial DNA. The TLRs that control the onset of an acute inflammatory response are critical antecedents for the development of adaptive acquired immunity. Genetic and developmental variation in the expression of microbial pattern recognition receptors may affect the individual's predisposition to infections in childhood and may contribute to susceptibility to severe neonatal inflammatory diseases, allergies, and autoimmune diseases. PMID:11518816

  7. Toll-like receptors: potential targets for lupus treatment

    PubMed Central

    Wu, Yan-wei; Tang, Wei; Zuo, Jian-ping

    2015-01-01

    Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by the loss of tolerance to self-nuclear antigens. Accumulating evidence shows that Toll-like receptors (TLRs), previously proven to be critical for host defense, are implicated in the pathogenesis of autoimmune diseases by recognition of self-molecules. Genome-wide association studies, experimental mouse models and clinical sample studies have provided evidence for the involvement of TLRs, including TLR2/4, TLR5, TLR3 and TLR7/8/9, in SLE pathogenesis. A number of downstream proteins in the TLR signaling cascade (such as MyD88, IRAKs and IFN-α) are identified as potential therapeutic targets for SLE treatment. Numerous antagonists targeting TLR signaling, including oligonucleotides, small molecular inhibitors and antibodies, are currently under preclinical studies or clinical trials for SLE treatment. Moreover, the emerging new manipulation of TLR signaling by microRNA (miRNA) regulation shows promise for the future treatment of SLE. PMID:26592511

  8. [Negative regulation of Toll-like receptor signalling].

    PubMed

    Antosz, Halina; Choroszyńska, Dorota

    2013-01-01

    The mechanism of innate immunity is based on the pattern recognition receptors (PRR) that recognize molecular patterns associated with pathogens (PAMPs). Among PRR receptors Toll-like receptors (TLR) are distinguished. As a result of contact with pathogens, TLRs activate specific intracellular signaling pathways. It happens through proteins such as adaptor molecules, e.g. MyD88, TIRAP, TRIF, TRAM, and IPS-1, which participate in the cascade activation of kinases (IKK, MAP, RIP-1, TBK-1) as well as transcription factors (NF-κB, AP-1) and regulatory factor (IRF3). The result of this activation is the production of active proinflammatory cytokines, chemokines, interferons and enzymes. The PRR pathways are controlled by extra- and intracellular molecules to prevent overexpression of PRR. They include soluble receptors (sTLR), transmembrane proteins (ST2, SIGIRR, RP105, TRAIL-R) and intracellular inhibitors (SOCS-1, SOCS-3, sMyD88, TOLLIP, IRAK-M, SARM, A20, β-arrestin, CYLD, SHP). These molecules maintain the balance between activation and inhibition and ensure balancing of the beneficial and adverse effects of antigen recognition. PMID:23619234

  9. Selective Toll-Like Receptor Expression in Human Fetal Lung

    PubMed Central

    Petrikin, Joshua E; Gaedigk, Roger; Leeder, J Steven; Truog, William E

    2010-01-01

    Toll-like receptors (TLRs) are critical components of the innate immune system, acting as pattern recognition molecules and triggering an inflammatory response. TLR associated gene products are of interest in modulating inflammatory related pulmonary diseases of the neonate. The ontogeny of TLR related genes in human fetal lung has not been previously described and could elucidate additional functions and identify strategies for attenuating the effects of fetal inflammation. We examined the expression of 84 TLR related genes on 23 human fetal lung samples from three groups with estimated ages of 60 (57-59d), 90 (89-91d), and 130 (117-154d) days. Using a false detection rate algorithm, we identified 32 genes displaying developmental regulation with TLR2 having the greatest up-regulation of TLR genes (9.2 fold increase) and TLR4 unchanged. We confirmed the TLR2 up-regulation by examining an additional 133 fetal lung tissue samples with a fluorogenic polymerase chain reaction assay (TaqMan®) and found an exponential best-fit curve over the time studied. The best-fit curve predicts a 6.1 fold increase from 60d to 130d. We conclude that TLR2 is developmentally expressed from the early pseudoglandular stage of lung development to the canalicular stage. PMID:20581745

  10. Trypanosoma cruzi and Its Soluble Antigens Induce NET Release by Stimulating Toll-Like Receptors

    PubMed Central

    Diniz, Larissa Figueiredo Alves; Souza, Priscila Silva Sampaio; Pinge-Filho, Phileno; Toledo, Karina Alves

    2015-01-01

    Neutrophils release fibrous traps of DNA, histones, and granule proteins known as neutrophil extracellular traps (NETs), which contribute to microbicidal killing and have been implicated in autoimmunity. The role of NET formation in the host response to nonbacterial pathogens is not well-understood. In this study, we investigated the release of NETs by human neutrophils upon their interaction with Trypanosoma cruzi (Y strain) parasites. Our results showed that human neutrophils stimulated by T. cruzi generate NETs composed of DNA, histones, and elastase. The release occurred in a dose-, time-, and reactive oxygen species-dependent manner to decrease trypomastigote and increase amastigote numbers of the parasites without affecting their viability. NET release was decreased upon blocking with antibodies against Toll-like receptors 2 and 4. In addition, living parasites were not mandatory in the release of NETs induced by T. cruzi, as the same results were obtained when molecules from its soluble extract were tested. Our results increase the understanding of the stimulation of NETs by parasites, particularly T. cruzi. We suggest that contact of T. cruzi with NETs during Chagas’s disease can limit infection by affecting the infectivity/pathogenicity of the parasite. PMID:26431537

  11. Anti-Inflammatory Activity of Fruit Fractions in Vitro, Mediated through Toll-Like Receptor 4 and 2 in the Context of Inflammatory Bowel Disease

    PubMed Central

    Nasef, Noha Ahmed; Mehta, Sunali; Murray, Pamela; Marlow, Gareth; Ferguson, Lynnette R.

    2014-01-01

    Pattern recognition receptors such as Toll-Like Receptor 2 (TLR2) and 4 (TLR4) are important in detecting and responding to stress and bacterial stimuli. Defect or damage in the TLR2 and TLR4 pathways can lead to sustained inflammation, characteristic of inflammatory bowel disease (IBD). The goal of this study was to identify fruit fractions that can be tested further to develop them as complementary therapies for IBD. In order to do this, we identified fruit fractions that mediate their anti-inflammatory response through the TLR4 and TLR2 pathway. Human Embryonic Kidney (HEK)-hTLR4 and hTLR2 cells were stimulated with their respective ligands to induce inflammation. These cells were treated with one of the 12 fractionated fruits and the inflammatory effect measured. 10 of the fruits came up as anti-inflammatory in the hTLR4 assay and nine in the hTLR2 assays. Many of the fruit fractions mediated their anti-inflammatory actions either mainly in their hydrophobic fractions (such as elderberry) or hydrophilic fractions (such as red raspberry), or both. The strongest anti-inflammatory effects were seen for feijoa and blackberry. This study shows that fruits can have multiple fractions eliciting anti-inflammatory effects in a pathway specific manner. This suggests that the compounds found in fruits can act together to produce health benefits by way of reducing inflammation. Exploiting this property of fruits can help develop complimentary therapies for inflammatory diseases. PMID:25415606

  12. Toll-like Receptor Signaling Activation by Entamoeba histolytica Induces Beta Defensin 2 in Human Colonic Epithelial Cells: Its Possible Role as an Element of the Innate Immune Response

    PubMed Central

    Ayala-Sumuano, Jorge-Tonatiuh; Téllez-López, Victor M.; Domínguez-Robles, M. del Carmen; Shibayama-Salas, Mineko; Meza, Isaura

    2013-01-01

    Background Entamoeba histolytica, a protozoan parasite of humans, produces dysenteric diarrhea, intestinal mucosa damage and extraintestinal infection. It has been proposed that the intestinal microbiota composition could be an important regulatory factor of amebic virulence and tissue invasion, particularly if pathogenic bacteria are present. Recent in vitro studies have shown that Entamoeba histolytica trophozoites induced human colonic CaCo2 cells to synthesize TLR-2 and TLR-4 and proinflammatory cytokines after binding to the amebic Gal/GalNac lectin carbohydrate recognition domain. The magnitude of the inflammatory response induced by trophozoites and the subsequent cell damage were synergized when cells had previously been exposed to pathogenic bacteria. Methodology/Principal Findings We show here that E. histolytica activation of the classic TLR pathway in CaCo2 cells is required to induce β defensin-2 (HBD2) mRNA expression and production of a 5-kDa cationic peptide with similar properties to the antimicrobial HBD2 expressed by CaCo2 cells exposed to enterotoxigenic Escherichia coli. The induced peptide showed capacity to permeabilize membranes of bacteria and live trophozoites. This activity was abrogated by inhibition of TLR2/4-NFκB pathway or by neutralization with an anti-HBD2 antibody. Conclusions/Significance Entamoeba histolytica trophozoites bind to human intestinal cells and induce expression of HBD2; an antimicrobial molecule with capacity to destroy pathogenic bacteria and trophozoites. HDB2's possible role as a modulator of the course of intestinal infections, particularly in mixed ameba/bacteria infections, is discussed. PMID:23469306

  13. Regulation of migration and invasion by Toll-like receptor-9 signaling network in prostate cancer

    PubMed Central

    Qiu, Jian-Ge; Zhang, Wen-Ji; Mei, Xiao-Long; Shi, Zhi; Di, Jin-Ming

    2015-01-01

    Toll-like receptors (TLRs) play an important role in tumorigenesis and progress of prostate cancer. However, the function and mechanism of Toll-like receptor-9 (TLR9) in prostate cancer is not totally understood. Here, we found that high expression of TLR9 was associated with a higher probability of lymph node metastasis and poor prognosis. Further in vitro functional study verified that silence of TLR9 inhibited migration and invasion of PC-3 cells, indicating expression of TLR9 involving in the migration and invasion of cancer cells. The data of microarray exhibited silence of TLR9 induced 205 genes with larger than 2-fold changes in expression levels, including 164 genes down-regulated and 41 genes up-regulated. Functional Gene Ontology (GO) processes annotation demonstrated that the top three scores of molecular and cellular functions were regulation of programmed cell death, regulation of locomotion and response to calcium ion. TLR9 signaling network analysis of the migration and invasion related genes identified several genes, like matrix metallopeptidase 2 (MMP2), matrix metallopeptidase 9 (MMP9), chemokine receptor 4 (CXCR4) and interleukin 8 (IL8), formed the core interaction network based on their known biological relationships. A few genes, such as odontogenic ameloblast-associated protein (ODAM), claudin 2 (CLDN2), gap junction protein beta 1 (GJB1) and Rho-associated coiled-coil containing protein kinase 1 pseudogene 1 (ROCK1P1), so far have not been found to interact with the other genes. This study provided the foundation to discover the new molecular mechanism in signaling networks of invasion and metastasis in prostate cancer. PMID:26087186

  14. Toll-like receptor (TLR)7 and TLR9 agonists enhance interferon (IFN) beta-1a's immunoregulatory effects on B cells in patients with relapsing-remitting multiple sclerosis (RRMS).

    PubMed

    Tao, Yazhong; Zhang, Xin; Markovic-Plese, Silva

    2016-09-15

    We report that B cells from patients with RRMS have decreased endogenous IFN-β secretion and deficient IFN receptor (IFNAR)1/2 and TLR7 gene expression in comparison to healthy controls (HCs), which may contribute to disregulation of cytokine secretion by B cells. We propose that TLR7 and TLR9 stimulation with loxorubin (LOX) and CpG, in combination with exogenous IFN-β may effectively reconstitute endogenous IFN-β production deficit and induce the secretion of immunoregulatory cytokines by B cells. Both LOX/IFN-β and CpG/IFN-β in-vitro treatments of B cells from RRMS patients induced higher endogenous IFN-β gene expression in comparison to the exogenous IFN-β alone. CpG/IFN-β combination induced higher secretion of IL-10, TGF-β, and IL-27 in comparison to stimulation with IFN-β. Our study provides a basis for future clinical studies employing IFN-β and TLR7/9 agonists, which may enhance the resolution of the inflammatory response in RRMS. PMID:27609294

  15. Toll-like receptors in autoimmunity with special reference to systemic lupus erythematosus.

    PubMed

    Pradhan, Vandana D; Das, Swaptagni; Surve, Prathamesh; Ghosh, Kanjaksha

    2012-05-01

    The Toll-like receptor (TLR) family plays a fundamental role in host innate immunity by mounting a rapid and potent inflammatory response to pathogen infection. TLRs recognize distinct microbial components and activate intracellular signaling pathways that induce expression of host inflammatory genes. Several studies have indicated that TLRs are implicated in many inflammatory and immune disorders. Extensive research in the past decade to understand TLR-mediated mechanisms of innate immunity has enabled pharmaceutical companies to begin to develop novel therapeutics for the purpose of controlling an inflammatory disease. The roles of TLRs in the development of autoimmune diseases have been studied. TLR7 and TLR9 have key roles in production of autoantibodies and/or in development of systemic autoimmune disease. It remains to be determined their role in apoptosis, in the pathogenesis of RNA containing immune complexes, differential expression of TLRs by T regulatory cells. PMID:23162288

  16. Cleavage of fibrinogen by proteinases elicits allergic responses through Toll-like receptor 4.

    PubMed

    Millien, Valentine Ongeri; Lu, Wen; Shaw, Joanne; Yuan, Xiaoyi; Mak, Garbo; Roberts, Luz; Song, Li-Zhen; Knight, J Morgan; Creighton, Chad J; Luong, Amber; Kheradmand, Farrah; Corry, David B

    2013-08-16

    Proteinases and the innate immune receptor Toll-like receptor 4 (TLR4) are essential for expression of allergic inflammation and diseases such as asthma. A mechanism that links these inflammatory mediators is essential for explaining the fundamental basis of allergic disease but has been elusive. Here, we demonstrate that TLR4 is activated by airway proteinase activity to initiate both allergic airway disease and antifungal immunity. These outcomes were induced by proteinase cleavage of the clotting protein fibrinogen, yielding fibrinogen cleavage products that acted as TLR4 ligands on airway epithelial cells and macrophages. Thus, allergic airway inflammation represents an antifungal defensive strategy that is driven by fibrinogen cleavage and TLR4 activation. These findings clarify the molecular basis of allergic disease and suggest new therapeutic strategies. PMID:23950537

  17. DAT isn’t all that: cocaine reward and reinforcement requires Toll Like Receptor 4 signaling

    PubMed Central

    Northcutt, A.L.; Hutchinson, M.R.; Wang, X.; Baratta, M.V.; Hiranita, T.; Cochran, T.A.; Pomrenze, M.B.; Galer, E.L.; Kopajtic, T.A.; Li, C.M.; Amat, J.; Larson, G.; Cooper, D.C.; Huang, Y.; O’Neill, C.E.; Yin, H.; Zahniser, N.R.; Katz, J.L.; Rice, K.C.; Maier, S.F.; Bachtell, R.K.; Watkins, L.R.

    2014-01-01

    The initial reinforcing properties of drugs of abuse, such as cocaine, are largely attributed to their ability to activate the mesolimbic dopamine system. Resulting increases in extracellular dopamine in the nucleus accumbens (NAc) are traditionally thought to result from cocaine’s ability to block dopamine transporters (DATs). Here we demonstrate that cocaine also interacts with the immunosurveillance receptor complex, Toll-Like Receptor 4 (TLR4), on microglial cells to initiate central innate immune signaling. Disruption of cocaine signaling at TLR4 suppresses cocaine-induced extracellular dopamine in the NAc, as well as cocaine conditioned place preference and cocaine self-administration. These results provide a novel understanding of the neurobiological mechanisms underlying cocaine reward/reinforcement that includes a critical role for central immune signaling, and offer a new target for medication development for cocaine abuse treatment. PMID:25644383

  18. Orphan receptor IL-17RD regulates Toll-like receptor signalling via SEFIR/TIR interactions.

    PubMed

    Mellett, Mark; Atzei, Paola; Bergin, Ronan; Horgan, Alan; Floss, Thomas; Wurst, Wolfgang; Callanan, John J; Moynagh, Paul N

    2015-