Science.gov

Sample records for cell transformation neoplastic

  1. Neoplastic transformation of human cells

    NASA Technical Reports Server (NTRS)

    Goth-Goldstein, Regine

    1995-01-01

    The goal of this project was to gain a better understanding of the cellular mechanisms of cancer induction by ionizing radiation as a risk assessment for workers subjected to high LET irradiation such as that found in space. The following ions were used for irradiation: Iron, Argon, Neon, and Lanthanum. Two tests were performed: growth in low serum and growth in agar were used as indicators of cell transformation. The specific aims of this project were to: (1) compare the effectiveness of various ions on degree of transformation of a single dose of the same RBE; (2) determine if successive irradiations with the same ion (Ge 600 MeV/u) increases the degree of transformation; (3) test if clones with the greatest degree of transformation produce tumors in nude mice; and (4) construct a cell hybrid of a transformed and control (non-transformed) clone. The cells used for this work are human mammary epithelial cells with an extended lifespan and selected for growth in MEM + 10% serum.

  2. Neoplastic cell transformation by heavy ions.

    PubMed

    Suzuki, M; Watanabe, M; Suzuki, K; Nakano, K; Kaneko, I

    1989-12-01

    We have studied the induction of morphological transformation by heavy ions. Golden hamster embryo cells were irradiated with 95 MeV 14N ions (530 keV/microns), 22 MeV 4He ions (36 keV/microns), and 22 MeV 4He ions with a 100-microns Al absorber (77 keV/microns) which were generated by a cyclotron at the Institute of Physical and Chemical Research in Japan. Colonies were considered to contain neoplastically transformed cells when the cells were densely stacked and made a crisscross pattern. It was shown that the induction of transformation was much more effective with 14N and 4He ions than with gamma or X rays. The relative biological effectiveness (RBE) relative to 60Co gamma rays was 3.3 for 14N ions, 2.4 for 4He ions, and 3.3 for 4He ions with a 100-microns Al absorber. The relationship between RBE and linear energy transfer was qualitatively similar for both cell death and transformation. PMID:2594968

  3. Neoplastic transformation of human diploid fibroblast cells by chemical carcinogens

    PubMed Central

    Kakunaga, Takeo

    1978-01-01

    Cultured fibroblast cells derived from a skin biopsy sample taken from normal human adult were exposed to a potent carcinogen, 4-nitroquinoline 1-oxide. Alterations of cell growth pattern such as higher density and piling up of cells were noticed in some fractions of cultures that were successively subcultured after nitroquinoline oxide treatment. Morphologically altered cells retained this growth pattern and became established lines of transformed cells without showing the limited life-span characteristic of normal cells in culture. The transformed cells showed a higher saturation density and the ability to grow in soft agar, properties that are usually correlated with neoplastic transformation of cells in culture. Selection of preexisting transformed human cells as a mechanism of this observed transformation seemed unlikely because clones of these normal cells could also be used to assess the transforming effect of nitroquinoline oxide. Preliminary results suggest that numerous cell divisions were required for the development of the transformation after nitroquinoline oxide treatment of these human cells. When the transformed cell lines were injected subcutaneously into nude (athymic) mice, solid tumors were produced at the site of inoculation. Treatment with N-methyl-N′-nitro-N-nitrosoguanidine also induced cell transformation, in a manner similar to treatment with nitroquinoline oxide. However, transformation was not induced with (i) 4-aminoquinoline 1-oxide (a noncarcinogenic derivative of 4-nitroquinoline 1-oxide), (ii) 3-methylcholanthrene (a carcinogen that cannot be metabolically activated by the target cells employed), or (iii) the solvent dimethyl sulfoxide. Images PMID:418410

  4. Mechanisms of radiation-induced neoplastic cell transformation

    SciTech Connect

    Yang, T.C.H.; Tobias, C.A.

    1984-04-01

    Studies with cultured mammalian cells demonstrated clearly that radiation can transform cells directly and can enhance the cell transformation by oncogenic DNA viruses. In general, high-LET heavy-ion radiation can be more effective than X and gamma rays in inducing neoplastic cell transformation. Various experimental results indicate that radiation-induced DNA damage, most likely double-strand breaks, is important for both the initiation of cell transformation and for the enhancement of viral transformation. Some of the transformation and enhancement lesions can be repaired properly in the cell, and the amount of irrepairable lesions produced by a given dose depends on the quality of radiation. An inhibition of repair processes with chemical agents can increase the transformation frequency of cells exposed to radiation and/or oncogenic viruses, suggesting that repair mechanisms may play an important role in the radiation transformation. The progression of radiation-transformed cells appears to be a long and complicated process that can be modulated by some nonmutagenic chemical agents, e.g., DMSO. Normal cells can inhibit the expression of transforming properties of tumorigenic cells through an as yet unknown mechanism. The progression and expression of transformation may involve some epigenetic changes in the irradiated cells. 38 references, 15 figures, 1 table.

  5. Neoplastic cell transformation by high-LET radiation: Molecular mechanisms

    NASA Astrophysics Data System (ADS)

    Chui-Hsu Yang, Tracy; Craise, Laurie M.; Mei, Man-Tong; Tobias, Cornelius A.

    Experimental data on molecular mechanisms are essential for understanding the bioeffects of radiation and for developing biophysical models, which can help in determining the shape of dose-response curves at very low doses, e.g., doses less than 1 cGy. Although it has been shown that ionizing radiation can cause neoplastic cell transformation directly, that high-LET heavy ions in general can be more effective than photons in transforming cells, and that the radiogenic cell transformation is a multi-step processes, we know very little about the molecular nature of lesions important for cell transformation, the relationship between lethal and transformational damages, and the evolution of initial damages into final chromosomal aberrations which alter the growth control of cells. Using cultured mouse embryo cells (C3H10T1/2) as a model system, we have collected quantitative data on dose-response curves for heavy ions with various charges and energies. An analysis of these quantitative data suggested that two DNA breaks formed within 80 Å may cause cell transformation and that two DNA breaks formed within 20 Å may be lethal. Through studies with restriction enzymes which produce DNA damages at specific sites, we have found that DNA double strand breaks, including both blunt- and cohesive-ended breaks, can cause cell transformation in vitro. These results indicate that DNA double strand breaks can be important primary lesions for radiogenic cell transformation and that blunt-ended double strand breaks can form lethal as well as transformational damages due to misrepair or incomplete repair in the cell. The RBE-LET relationship is similar for HGPRT gene mutation, chromosomal deletion, and cell transformation, suggesting common lesions may be involved in these radiation effects. The high RBE of high-LET radiation for cell killing and neoplastic cell transformation is most likely related to its effectiveness in producing DNA double strand breaks in mammalian cells. At

  6. Relationship of Chromosome Changes to Neoplastic Cell Transformation

    PubMed Central

    DiPaolo, Joseph A.; Popescu, Nicolae C.

    1976-01-01

    Chromosomal abnormalities are a frequent concomitant of neoplasia, and although it is tempting to relate these mutations and alterations in chromatin (DNA) function to cancer, their relationship to the initiation or progression of carcinogenesis is unknown. Mammalian cells in culture, after interacting with chemical carcinogens, often exhibit chromosome damage consisting of breaks and exchanges of chromatid material. The pattern of damage of banded metaphases indicates that negative bands are especially vulnerable to the action of chemical carcinogens, probably because of differential chromatin condensation. Damage to individual chromosomes may be random or nonrandom, depending on the species. Cell death can be correlated with chromatid alterations that occur shortly after treatment with chemical carcinogens. There is also a correlation between mutagenic and carcinogenic activity of some chemical carcinogens and the frequency of sister chromatid exchanges. The question of whether specific chromosome changes are absolutely required for neoplastic transformation cannot be answered because of conflicting data and diverse results from studies even with known carcinogens. Cell transformation may occur without any visible chromosome changes. A universal specific numerical or visible structural chromosomal alteration is not necessarily associated with chemical or viral transformation. Chromosome changes are independent of the etiologic agents: different carcinogens may produce transformation associated with the same abnormal chromosomes, but not all transformed lines invariably exhibit the same abnormality, even with the same chemical. In some species, chromosome having nucleolar organizer regions may be more frequently involved in numerical or structural deviations. Progressively growing tumors also may occur as a result of the proliferation of transformed cells without detectable chromosome changes, indicating that tumorigenicity need not be related to an imbalance of

  7. Neoplastic cell transformation by high-LET radiation - Molecular mechanisms

    NASA Technical Reports Server (NTRS)

    Yang, Tracy Chui-Hsu; Craise, Laurie M.; Tobias, Cornelius A.; Mei, Man-Tong

    1989-01-01

    Quantitative data were collected on dose-response curves of cultured mouse-embryo cells (C3H10T1/2) irradiated with heavy ions of various charges and energies. Results suggests that two breaks formed on DNA within 80 A may cause cell transformation and that two DNA breaks formed within 20 A may be lethal. From results of experiments with restriction enzymes which produce DNA damages at specific sites, it was found that DNA double strand breaks are important primary lesions for radiogenic cell transformation and that blunt-ended double-strand breaks can form lethal as well as transformational damages due to misrepair or incomplete repair in the cell. The RBE-LET relationship for high-LET radiation is similar to that for HGPRT locus mutation, chromosomal deletion, and cell transformation, indicating that common lesions may be involved in these radiation effects.

  8. Neoplastic transformation of hamster embyro cells by heavy ions.

    PubMed

    Han, Z; Suzuki, H; Suzuki, F; Suzuki, M; Furusawa, Y; Kato, T; Ikenaga, M

    1998-01-01

    We have studied the induction of morphological transformation of Syrian hamster embryo cells by low doses of heavy ions with different linear energy transfer (LET), ranging from 13 to 400 keV/micrometer. Exponentially growing cells were irradiated with 12C or 28Si ion beams generated by the Heavy Ion Medical Accelerator in Chiba (HIMAC), inoculated to culture dishes, and transformed colonies were identified when the cells were densely stacked and showed a crisscross pattern. Over the LET range examined, the frequency of transformation induced by the heavy ions increased sharply at very low doses no greater than 5 cGy. The relative biological effectiveness (RBE) of the heavy ions relative to 250 kVp X-rays showed an initial increase with LET, reaching a maximum value of about 7 at 100 keV/micrometer, and then decreased with the further increase in LET. Thus, we confirmed that high LET heavy ions are significantly more effective than X-rays for the induction of in vitro cell transformation. PMID:11542417

  9. Neoplastic cell transformation by energetic heavy ions and its modification with chemical agents

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Tobias, C. A.

    1984-01-01

    One of the major deleterious late effects of ionizing radiation is related to the induction of neoplasms. In the present report recent experimental results on neoplastic cell transformation by heavy ions are presented, and possible means to circumvent the carcinogenic effect of space radiation are discussed. Biological effects observed in experiments involving the use of energetic heavy ions accelerated at the Bevalac suggest that many of the biological effects observed in earlier space flight experiments may be due to space radiation, particularly cosmic rays. It is found that the effect of radiation on cell transformation is dose-rate dependent. The frequency of neoplastic transformation for a given dose decreases with a decrease of dose rate of Co-60 gamma rays. It is found that various chemical agents give radiation protection, including DMSO.

  10. Somatic mutation and cell differentiation in neoplastic transformation

    SciTech Connect

    Huberman, E.; Collart, F.R.

    1987-01-01

    In brief, the authors suggest that tumor formation may result from continuous expression of growth facilitating genes that, as a result of irreversible changes during the initiation step, are placed under the control of genes expressed during normal differentiation. Thus, to understand carcinogenesis, we must decipher the processes that lead to the acquisition of a mature phenotype in both normal and tumor cells and characterize the growth dependency of tumor cells to inducers of cell differentiation. Furthermore, the growth of a variety of tumors may be controlled through the use of inducers of maturation that activate genes located beyond the gene that is altered during tumor initiation. 22 refs., 3 figs.

  11. Neoplastic cell transformation by energetic heavy ions and its modification with chemical agents.

    PubMed

    Yang, T C; Tobias, C A

    1984-01-01

    For many years we have been interested in understanding the potential carcinogenic effects of cosmic rays. We have studied the oncogenic effects of cosmic rays with accelerator-produced heavy particle radiation and with a cultured mammalian cell system--C3H10T1/2 cells. Our quantitative data obtained with carbon, neon, silicon, and iron particles showed that RBE is both dose and LET dependent for neoplastic cell transformation. RBE is higher at lower dose, and RBE increases with LET up to about 200 keV/micrometer. In nonproliferation confluent cells, heavy-ion induced transformation damage may not be repairable, although a dose modifying factor of about 1.7 was observed for X-ray radiation. Our recent studies with super-heavy high-energy particles, e.g., 960 MeV/U U235 ions (LET = 1900 keV/micrometer), indicate that these ions with a high inactivation cross-section can cause neoplastic cell transformation. The induction of cell transformation by radiation can be modified with various chemicals. We have found that the presence of DMSO (either during or many days after irradiation) decreased the transformation frequency significantly. It is, therefore, potentially possible to reduce the oncogenic effect of cosmic rays in space through some chemical protection. PMID:11539629

  12. Neoplastic cell transformation by energetic heavy ions and its modification with chemical agents

    NASA Astrophysics Data System (ADS)

    Yang, T. C.; Tobias, C. A.

    For many years we have been interested in understanding the potential carcinogenic effects of cosmic rays. We have studied the oncogenic effects of cosmic rays with accelerator-produced heavy particle radiation and with a cultured mammalian cell system--C3H10T1/2 cells. Our quantitative data obtained with carbon, neon, silicon, and iron particles showed that RBE is both dose and LET dependent for neoplastic cell transformation. RBE is higher at lower dose, and RBE increases with LET up to about 200 keV/μm. In nonproliferation confluent cells, heavy-ion induced transformation damage may not be repairable, although a dose modifying factor of about 1.7 was observed for X-ray radiation. Our recent studies with super-heavy high-energy particles, e.g., 960 MeV/u U235 ions (LET = 1900 keV/μm), indicate that these ions with a high inactivation cross-section can cause neoplastic cell transformation. The induction of cell transformation by radiation can be modified with various chemicals. We have found that the presence of DMSO (either during or many days after irradiation) decreased the transformation frequency significantly. It is, therefore, potentially possible to reduce the oncogenic effect of cosmic rays in space through some chemical protection.

  13. Neoplastic transformation of cultured mammalian cells by estrogens and estrogenlike chemicals.

    PubMed Central

    Tsutsui, T; Barrett, J C

    1997-01-01

    Estrogens are clearly carcinogenic in humans and rodents but the mechanisms by which these hormones induce cancer are only partially understood. Stimulation of cell proliferation and gene expression by binding to the estrogen receptor is one important mechanism in hormonal carcinogenesis; however, estrogenicity is not sufficient to explain the carcinogenic activity of all estrogens because some estrogens are not carcinogenic. Estrogens are nonmutagenic in many assays but exhibit specific types of genotoxic activity under certain conditions. We have studied extensively the mechanisms by which estrogens induce neoplastic transformation in a model in vitro system and our findings are summarized in this review. 17beta-Estradiol (E2) and diethylstilbestrol (DES) and their metabolites induce morphological and neoplastic transformation of Syrian hamster embryo (SHE) cells that express no measurable levels of estrogen receptor. Treatment of the cells with E2 or DES fails to induce DNA damage, chromosome aberrations and gene mutations in SHE cells but results in numerical chromosome aberrations (aneuploidy) that could arise from microtubule disruption or disfunction of mitotic apparatus. Estrogen-induced genotoxicity is detected in cells following treatment with estrogen metabolites or following exogenous metabolic activation of estrogens. The estrogens induce DNA adduct formation that is detected by 32P-postlabeling. Both aneuploidy induction and DNA damage caused by DNA adduct formation correlate with the estrogen-induced cell transformation and may be important in hormonal carcinogenesis. We propose that multiple effects of estrogens acting together cause genetic alterations leading to cell transformation. PMID:9168005

  14. Probiotics against neoplastic transformation of gastric mucosa: effects on cell proliferation and polyamine metabolism.

    PubMed

    Russo, Francesco; Linsalata, Michele; Orlando, Antonella

    2014-10-01

    Gastric cancer is still the second leading cause of cancer death worldwide, accounting for about 10% of newly diagnosed neoplasms. In the last decades, an emerging role has been attributed to the relations between the intestinal microbiota and the onset of both gastrointestinal and non-gastrointestinal neoplasms. Thus, exogenous microbial administration of peculiar bacterial strains (probiotics) has been suggested as having a profound influence on multiple processes associated with a change in cancer risk. The internationally accepted definition of probiotics is live microorganisms that, when administered in adequate amounts, confer a health benefit on the host. The possible effects on the gastrointestinal tract following probiotic administration have been investigated in vitro and in animal models, as well as in healthy volunteers and in patients suffering from different human gastrointestinal diseases. Although several evidences are available on the use of probiotics against the carcinogen Helicobacter pylori, little is still known about the potential cross-interactions among probiotics, the composition and quality of intestinal flora and the neoplastic transformation of gastric mucosa. In this connection, a significant role in cell proliferation is played by polyamines (putrescine, spermidine, and spermine). These small amines are required in both pre-neoplastic and neoplastic tissue to sustain the cell growth and the evidences here provided suggest that probiotics may act as antineoplastic agents in the stomach by affecting also the polyamine content and functions. This review will summarize data on the most widely recognized effects of probiotics against neoplastic transformation of gastric mucosa and in particular on their ability in modulating cell proliferation, paying attention to the polyamine metabolism. PMID:25309063

  15. Radiation-resistant B-1 cells: A possible initiating cells of neoplastic transformation.

    PubMed

    Guimarães-Cunha, Caroline Ferreira; Alvares-Saraiva, Anuska Marcelino; de Souza Apostolico, Juliana; Popi, Ana Flavia

    2016-07-01

    The role of B-1 cells in the hyperproliferative hematologic disease has been described. Several reports bring evidences that B-1 cells are the main cell population in the chronic lymphatic leukemia. It is also described that these cells have an important involvement in the lupus erythematous systemic. The murine model used to investigate both disease models is NZB/NZW. Data from literature point that mutation in micro-RNA 15a and 16 are the responsible for the B-1 hyperplasia in these mice. Interestingly, it was demonstrated that NZB/NZW B-1 cells are radioresistant, contrariwise to observe in other mouse lineage derived B-1 cells and B-2 cells. However, some reports bring evidences that a small percentage of B-1 cells in healthy mice are also able to survive to irradiation. Herein, we aim to investigate the malignant potential of ionizing-radiation resistant B-1 cells in vitro. Our main goal is to establish a model that mimics the neoplastic transformation originate to a damage exposure of DNA, and not only related to intrinsic mutations. Data shown here demonstrated that radiation-resistant B-1 cells were able to survive long periods in culture. Further, these cells show proliferation index increase in relation to non-irradiated B-1 cells. In addition, radiation resistant B-1 cells showed hyperploid, morphologic alterations, increased induction of apoptosis after anti-IgM stimulation. Based on these results, we could suggest that radiation resistant B-1 cells showed some modifications in that could be related to induction of malignant potential. PMID:26898918

  16. Coevolution of neoplastic epithelial cells and multilineage stroma via polyploid giant cells during immortalization and transformation of mullerian epithelial cells

    PubMed Central

    Zhang, Shiwu; Mercado-Uribe, Imelda; Sood, Anil; Bast, Robert C.; Liu, Jinsong

    2016-01-01

    Stromal cells are generally considered to be derived primarily from the host's normal mesenchymal stromal cells or bone marrow. However, the origins of stromal cells have been quite controversial. To determine the role of polyploidy in tumor development, we examined the fate of normal mullerian epithelial cells during the immortalization and transformation process by tracing the expression of SV40 large T antigen. Here we show that immortalized or HRAS-transformed mullerian epithelial cells contain a subpopulation of polyploid giant cells that grow as multicellular spheroids expressing hematopoietic markers in response to treatment with CoCl2. The immortalized or transformed epithelial cells can transdifferentiate into stromal cells when transplanted into nude mice. Immunofluorescent staining revealed expression of stem cell factors OCT4, Nanog, and SOX-2 in spheroid, whereas expression of embryonic stem cell marker SSEA1 was increased in HRAS-transformed cells compared with their immortalized isogenic counterparts. These results suggest that normal mullerian epithelial cells are intrinsically highly plastic, via the formation of polyploid giant cells and activation of embryonic stem-like program, which work together to promote the coevolution of neoplastic epithelial cells and multiple lineage stromal cells. PMID:27382431

  17. DUAL ION EXPOSURE VS. SPLIT-DOSE EXPOSURES IN HUMAN CELL NEOPLASTIC TRANSFORMATION.

    SciTech Connect

    BENNETT, P.V.; CUTTER, N.C.; SUTHERLAND, B.M.

    2006-06-05

    Since radiation fields of space contain many-fold more protons than high atomic number, high energy (HZE) particles, cells in astronaut crews will experience on average several proton hits before an HZE hit. Thus radiation regimes of proton exposure before HZE particle exposure simulate space radiation exposure, and measurement of the frequency of neoplastic transformation of human primary cells to anchorage-independent growth simulates in initial step in cancer induction. Previously our group found that exposure to 20 cGy 1 GeV/n protons followed within about 1 hr by a HZE ion (20 cGy 1 GeV/n Fe or Ti ions) hit gave about a 3-fold increase in transformation frequency ([1]). To provide insight into the H-HZE induced increased transformation frequencies, we asked if split doses of the same ion gave similar increased transformation frequencies. However, the data show that the split dose of 20 cGy plus 20 cGy of either H or HZE ions gave about the same effect as the 40 cGy uninterrupted dose, quite different from the effect of the mixed ion H + HZE irradiation. We also asked if lower proton doses than 20 cGy followed 15 minutes later by 20 cGy of HZE ions gave greater than additive transformation frequencies. Substantial increases in transformation levels were observed for all proton doses tested, including 1 cGy. These results point to the signal importance of protons in affecting the effect of space radiation on human cells.

  18. Neoplastic transformation of rat liver epithelial cells is enhanced by non-transferrin-bound iron

    PubMed Central

    Messner, Donald J; Kowdley, Kris V

    2008-01-01

    Background Iron overload is associated with liver toxicity, cirrhosis, and hepatocellular carcinoma in humans. While most iron circulates in blood as transferrin-bound iron, non-transferrin-bound iron (NTBI) also becomes elevated and contributes to toxicity in the setting of iron overload. The mechanism for iron-related carcinogenesis is not well understood, in part due to a shortage of suitable experimental models. The primary aim of this study was to investigate NTBI-related hepatic carcinogenesis using T51B rat liver epithelial cells, a non-neoplastic cell line previously developed for carcinogenicity and tumor promotion studies. Methods T51B cells were loaded with iron by repeated addition of ferric ammonium citrate (FAC) to the culture medium. Iron internalization was documented by chemical assay, ferritin induction, and loss of calcein fluorescence. Proliferative effects were determined by cell count, toxicity was determined by MTT assay, and neoplastic transformation was assessed by measuring colony formation in soft agar. Cyclin levels were measured by western blot. Results T51B cells readily internalized NTBI given as FAC. Within 1 week of treatment at 200 μM, there were significant but well-tolerated toxic effects including a decrease in cell proliferation (30% decrease, p < 0.01). FAC alone induced little or no colony formation in soft agar. In contrast, FAC addition to cells previously initiated with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) resulted in a concentration dependent increase in colony formation. This was first detected at 12 weeks of FAC treatment and increased at longer times. At 16 weeks, colony formation increased more than 10 fold in cells treated with 200 μM FAC (p < 0.001). The iron chelator desferoxamine reduced both iron uptake and colony formation. Cells cultured with 200 μM FAC showed decreased cyclin D1, decreased cyclin A, and increased cyclin B1. Conclusion These results establish NTBI as a tumor promoter in T51B rat liver

  19. Neoplastic transformation of human breast epithelial cells by estrogens and chemical carcinogens.

    PubMed

    Russo, Jose; Tahin, Quivo; Lareef, M Hasan; Hu, Yun-Fu; Russo, Irma H

    2002-01-01

    Sporadic breast cancer, the most common cancer diagnosed in American and Northern European women, is gradually increasing in incidence in most Western countries. Prevention would be the most efficient way of eradicating this disease. This goal, however, cannot be accomplished until the specific agent(s) or mechanisms that initiate the neoplastic process are identified. Experimental studies have demonstrated that mammary cancer is a hormone-dependent multistep process that can be induced by a variety of compounds and mechanisms, that is, hormones, chemicals, radiation, and viruses, in addition to or in combination with genetic factors. Although estrogens have been shown to play a central role in breast cancer development, their carcinogenicity on human breast epithelial cells (HBECs) has not yet been clearly demonstrated. Breast cancer initiates in the undifferentiated lobules type 1, which are composed of three cell types: highly proliferating cells that are estrogen-receptor negative (ER-), nonproliferating cells that are ER positive (ER+), and very few (<1%) ER+ cells that proliferate. Interestingly, endogenous 17beta-estradiol (E(2)) is metabolized by the cytochrome P450 enzyme isoforms CYP1A1 and CYP1B1, which also activate benzo[a]pyrene (B[a]P), a carcinogen contained in cigarette smoke. We postulate that if estrogens are carcinogenic in HBECs, they should induce the same transformation phenotypes induced by chemical carcinogens and ultimately genomic changes observed in spontaneously developing primary breast cancers. To test this hypothesis we compared the transforming potential of E(2) on the HBEC MCF-10F with that of B[a]P. Both E(2) and B[a]P induced anchorage-independent growth, colony formation in agar methocel, and loss of ductulogenic capacity in collagen gel, all parameters indicative of cell transformation. In addition, the DNA of E(2)-transformed cells expressed LOH in chromosome 11 at 11q23.3, 11q24.2-q25, and LOH at 13q12-q13. B[a]P-induced cell

  20. Althaea rosea Cavanil and Plantago major L. suppress neoplastic cell transformation through the inhibition of epidermal growth factor receptor kinase.

    PubMed

    Choi, Eun-Sun; Cho, Sung-Dae; Shin, Ji-Ae; Kwon, Ki Han; Cho, Nam-Pyo; Shim, Jung-Hyun

    2012-10-01

    For thousands of years in Asia, Althaea rosea Cavanil (ARC) and Plantago major L. (PML) have been used as powerful non-toxic therapeutic agents that inhibit inflammation. However, the anticancer mechanisms and molecular targets of ARC and PML are poorly understood, particularly in epidermal growth factor (EGF)-induced neoplastic cell transformation. The aim of this study was to evaluate the chemopreventive effects and mechanisms of the methanol extracts from ARC (MARC) and PML (MPML) in EGF-induced neoplastic cell transformation of JB6 P+ mouse epidermal cells using an MTS assay, anchorage-independent cell transformation assay and western blotting. Our results showed that MARC and MPML significantly suppressed neoplastic cell transformation by inhibiting the kinase activity of the EGF receptor (EGFR). The activation of EGFR by EGF was suppressed by MARC and MPML treatment in EGFR(+/+) cells, but not in EGFR(-/-) cells. In addition, MARC and MPML inhibited EGF-induced cell proliferation in EGFR-expressing murine embryonic fibroblasts (EGFR(+/+)). These results strongly indicate that EGFR targeting by MARC and MPML may be a good strategy for chemopreventive or chemotherapeutic applications. PMID:22767187

  1. Neoplastic transformation of mouse mammary epithelial cells by in vitro exposure to N-methyl-N-nitrosourea

    SciTech Connect

    Miyamoto, S.; Guzman, R.C.; Osborn, R.C.; Nandi, S.

    1988-01-01

    High-efficiency neoplastic transformation of mouse mammary epithelial cells in primary collagen gel culture was induced by N-methyl-N-nitrosoureau (MNU). Mammary epithelial cells, isolated from virgin BALB/c mice, were embedded within collagen gels and grown in a serum-free medium containing prolactin, progesterone, and linoleic acid. The cells were then treated with MNU on day 3 of culture and subsequently at weekly intervals for up to 4 weeks. Eleven to 14 days after the final carcinogen treatment, the cells were removed from the collagen gels and injected into the cleared mammary fat pads of syngeneic hosts to assay for transformed cell populations. A single exposure or multiple exposures of these cells to MNU was effective in inducing tumorigenic cells that produced palpable tumors as early as 6 weeks after transplantation. Two treatments with MNU were optimal for neoplastic transformation and produced tumors in 79% of the injected fat pads. All the tumors originated at the examination at the site of injection and had extensive central necroses. Histological examination indicated that the tumors were mammary carcinomas. Secondary transplantation of tumor pieces into intact mammary glands produced palpable carcinomas of the same histology within 1-8 weeks. This system provides a distinct means to study the mechanism of mammary neoplastic transformation at cellular and molecular levels.

  2. Autophagy-deficiency in hepatic progenitor cells leads to the defects of stemness and enhances susceptibility to neoplastic transformation.

    PubMed

    Xue, Feng; Hu, Lei; Ge, Ruiliang; Yang, Lixue; Liu, Kai; Li, Yunyun; Sun, Yanfu; Wang, Kui

    2016-02-01

    Autophagy is a highly conserved and lysosome-dependent degradation process which assists in cell survival and tissue homeostasis. Although previous reports have shown that deletion of the essential autophagy gene disturbs stem cell maintenance in some cell types such as hematopoietic and neural cells, it remains unclear how autophagy-deficiency influences hepatic progenitor cells (HPCs). Here we report that Atg5-deficiency in HPCs delays HPC-mediated rat liver regeneration in vivo. In vitro researches further demonstrate that loss of autophagy decreases the abilities of colony and spheroid formations, and disrupts the induction of hepatic differentiation in HPCs. Meanwhile, autophagy-deficiency increases the accumulations of damaged mitochondria and mitochondrial reactive oxygen species (mtROS) and suppresses homologous recombination (HR) pathway of DNA damage repair in HPCs. Moreover, in both diethylnitrosamine (DEN) and CCl4 models, autophagy-deficiency accelerates neoplastic transformation of HPCs. In conclusion, these findings demonstrate that autophagy contributes to stemness maintenance and reduces susceptibility to neoplastic transformation in HPCs. PMID:26607902

  3. Increased Frequency of Spontaneous Neoplastic Transformation in Progeny of Bystander Cells from Cultures Exposed to Densely Ionizing Radiation

    PubMed Central

    Buonanno, Manuela; de Toledo, Sonia M.; Azzam, Edouard I.

    2011-01-01

    An increased risk of carcinogenesis caused by exposure to space radiation during prolonged space travel is a limiting factor for human space exploration. Typically, astronauts are exposed to low fluences of ionizing particles that target only a few cells in a tissue at any one time. The propagation of stressful effects from irradiated to neighboring bystander cells and their transmission to progeny cells would be of importance in estimates of the health risks of exposure to space radiation. With relevance to the risk of carcinogenesis, we investigated, in model C3H 10T½ mouse embryo fibroblasts (MEFs), modulation of the spontaneous frequency of neoplastic transformation in the progeny of bystander MEFs that had been in co-culture 10 population doublings earlier with MEFs exposed to moderate doses of densely ionizing iron ions (1 GeV/nucleon) or sparsely ionizing protons (1 GeV). An increase (P<0.05) in neoplastic transformation frequency, likely mediated by intercellular communication through gap junctions, was observed in the progeny of bystander cells that had been in co-culture with cells irradiated with iron ions, but not with protons. PMID:21738697

  4. Increased frequency of spontaneous neoplastic transformation in progeny of bystander cells from cultures exposed to densely ionizing radiation.

    PubMed

    Buonanno, Manuela; de Toledo, Sonia M; Azzam, Edouard I

    2011-01-01

    An increased risk of carcinogenesis caused by exposure to space radiation during prolonged space travel is a limiting factor for human space exploration. Typically, astronauts are exposed to low fluences of ionizing particles that target only a few cells in a tissue at any one time. The propagation of stressful effects from irradiated to neighboring bystander cells and their transmission to progeny cells would be of importance in estimates of the health risks of exposure to space radiation. With relevance to the risk of carcinogenesis, we investigated, in model C3H 10T½ mouse embryo fibroblasts (MEFs), modulation of the spontaneous frequency of neoplastic transformation in the progeny of bystander MEFs that had been in co-culture 10 population doublings earlier with MEFs exposed to moderate doses of densely ionizing iron ions (1 GeV/nucleon) or sparsely ionizing protons (1 GeV). An increase (P<0.05) in neoplastic transformation frequency, likely mediated by intercellular communication through gap junctions, was observed in the progeny of bystander cells that had been in co-culture with cells irradiated with iron ions, but not with protons. PMID:21738697

  5. Inhibition of HMGI-C protein synthesis suppresses retrovirally induced neoplastic transformation of rat thyroid cells.

    PubMed Central

    Berlingieri, M T; Manfioletti, G; Santoro, M; Bandiera, A; Visconti, R; Giancotti, V; Fusco, A

    1995-01-01

    Elevated expression of the three high-mobility group I (HMGI) proteins (HMGI, HMGY, and HMGI-C) has previously been correlated with the presence of a highly malignant phenotype in epithelial and fibroblastic rat thyroid cells and in experimental thyroid, lung, mammary, and skin carcinomas. Northern (RNA) blot and run-on analyses demonstrated that the induction of HMGI genes in transformed thyroid cells occurs at the transcriptional level. An antisense methodology to block HMGI-C protein synthesis was then used to analyze the role of this protein in the process of thyroid cell transformation. Transfection of an antisense construct for the HMGI-C cDNA into normal thyroid cells, followed by infection with transforming myeloproliferative sarcoma virus or Kirsten murine sarcoma virus, generated cell lines that expressed significant levels of the retroviral transforming oncogenes v-mos or v-ras-Ki and removed the dependency on thyroid-stimulating hormones. However, in contrast with untransfected cells or cells transfected with the sense construct, those containing the antisense construct did not demonstrate the appearance of any malignant phenotypic markers (growth in soft agar and tumorigenicity in athymic mice). A great reduction of the HMGI-C protein levels and the absence of the HMGI(Y) proteins was observed in the HMGI-C antisense-transfected, virally infected cells. Therefore, the HMGI-C protein seems to play a key role in the transformation of these thyroid cells. PMID:7862147

  6. The Syrian hamster embryo (SHE) cell transformation system: a biologically relevant in vitro model--with carcinogen predicting capabilities--of in vivo multistage neoplastic transformation.

    PubMed

    Isfort, R J; LeBoeuf, R A

    1995-01-01

    Neoplastic transformation is a multistep process that can be modeled in vitro using Syrian hamster embryo (SHE) cells. SHE cells multistage transformation involves several intermediate stages, including morphological transformation, immortality, acquisition of tumorigenicity, and malignant progression. Analysis of the molecular alterations that occur at each stage indicated that morphological transformation results from both carcinogen-induced irreversible chromosomal/genetic mutations and reversible genetic events, including altered DNA methylation. Morphological transformation results from a block in the cellular differentiation of progenitor and determined stem-like cells in the SHE cell population via alternation in the expression of the H19 tumor suppressor gene and other genes. Immortality results from genetic mutations in growth factor responsiveness, including loss of growth suppression by TGF beta and autocrine growth factor production, and genomic stability, resulting in genomic instability and an increased mutation rate. Acquisition of tumorigenicity involves loss of tumor suppressor gene function, altered mitogenic signal transduction, mutation of oncogenes, acquisition of anchorage independent growth, and chromosomal aberrations. Malignant progression is associated with alterations in extracellular matrix growth characteristics, alterations in cytoskeleton structure, elevated fibrinolytic activity, secretion of proteases, and changes in extracellular matrix protein secretion. Together, these changes model the alterations observed during in vivo neoplastic transformation and possibly explain why the SHE assay, as a carcinogen screening tool, is able to identify carcinogens with a 80 to 85% accuracy. PMID:9012585

  7. Mobile phone base station radiation does not affect neoplastic transformation in BALB/3T3 cells.

    PubMed

    Hirose, H; Suhara, T; Kaji, N; Sakuma, N; Sekijima, M; Nojima, T; Miyakoshi, J

    2008-01-01

    A large-scale in vitro study focusing on low-level radiofrequency (RF) fields from mobile radio base stations employing the International Mobile Telecommunication 2000 (IMT-2000) cellular system was conducted to test the hypothesis that modulated RF fields affect malignant transformation or other cellular stress responses. Our group previously reported that DNA strand breaks were not induced in human cells exposed to 2.1425 GHz Wideband Code Division Multiple Access (W-CDMA) radiation up to 800 mW/kg from mobile radio base stations employing the IMT-2000 cellular system. In the current study, BALB/3T3 cells were continuously exposed to 2.1425 GHz W-CDMA RF fields at specific absorption rates (SARs) of 80 and 800 mW/kg for 6 weeks and malignant cell transformation was assessed. In addition, 3-methylcholanthrene (MCA)-treated cells were exposed to RF fields in a similar fashion, to assess for effects on tumor promotion. Finally, the effect of RF fields on tumor co-promotion was assessed in BALB/3T3 cells initiated with MCA and co-exposed to 12-O-tetradecanoylphorbol-13-acetate (TPA). At the end of the incubation period, transformation dishes were fixed, stained with Giemsa, and scored for morphologically transformed foci. No significant differences in transformation frequency were observed between the test groups exposed to RF signals and the sham-exposed negative controls in the non-, MCA-, or MCA plus TPA-treated cells. Our studies found no evidence to support the hypothesis that RF fields may affect malignant transformation. Our results suggest that exposure to low-level RF radiation of up to 800 mW/kg does not induce cell transformation, which causes tumor formation. PMID:17694516

  8. A conundrum in molecular toxicology: molecular and biological changes during neoplastic transformation of human cells.

    PubMed

    Milo, G E; Shuler, C F; Lee, H; Casto, B C

    1995-12-01

    The process of multistage carcinogenesis lends itself to the concept that the effects of carcinogens are mediated through dose-related, multi-hit, linear changes. Multiple in vitro model systems have been developed that are designed to examine the cellular changes associated with the progression of cells through the different stages in the process; however, these systems may have inherent limitations due to the cell lines used for these studies, the manner of assessing the effects of the carcinogens, and the subsequent growth and differentiation of the exposed cells. Each of these variables results in increasing levels of uncertainty relative to the correlation of the events with the actual process of human tumor development. Therefore, the prediction of the ultimate effect of any carcinogen is difficult. Moreover, relationships between individual biological endpoints resulting from carcinogen treatment appear at best to be approximations. The presence of an activated carcinogen inside the cell can give rise to multiple outcomes, only some of which may be critical events. For example, site-specific modification of the 12th and 13th codons of H-ras is different than that in the adjacent 14th and 15th codons. It is interesting to speculate what effect these differences might have on a biological outcome, e.g., transformation to anchorage-independent growth. The use of different model systems to examine the effects of activated carcinogens also creates additional problems. Comparisons of in vitro transformed cells with similar cells isolated from human tumors indicate that the culture environment appears to influence the expression of a particular phenotype, in that human tumor cells in culture express many of the same parameters as those found in cells transformed with carcinogens in vitro. If the process of transformation is linear, then less aggressive phenotypes should progress to a more aggressive transformed stage. However, in carcinogen-transformed human cells

  9. GLI1 is regulated through Smoothened-independent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation

    PubMed Central

    Nolan-Stevaux, Olivier; Lau, Janet; Truitt, Morgan L.; Chu, Gerald C.; Hebrok, Matthias; Fernández-Zapico, Martin E.; Hanahan, Douglas

    2009-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by the deregulation of the hedgehog signaling pathway. The Sonic Hedgehog ligand (Shh), absent in the normal pancreas, is highly expressed in pancreatic tumors and is sufficient to induce neoplastic precursor lesions in mouse models. We investigated the mechanism of Shh signaling in PDAC carcinogenesis by genetically ablating the canonical bottleneck of hedgehog signaling, the transmembrane protein Smoothened (Smo), in the pancreatic epithelium of PDAC-susceptible mice. We report that multistage development of PDAC tumors is not affected by the deletion of Smo in the pancreas, demonstrating that autocrine Shh–Ptch–Smo signaling is not required in pancreatic ductal cells for PDAC progression. However, the expression of Gli target genes is maintained in Smo-negative ducts, implicating alternative means of regulating Gli transcription in the neoplastic ductal epithelium. In PDAC tumor cells, we find that Gli transcription is decoupled from upstream Shh–Ptch–Smo signaling and is regulated by TGF-β and KRAS, and we show that Gli1 is required both for survival and for the KRAS-mediated transformed phenotype of cultured PDAC cancer cells. PMID:19136624

  10. Neoplastic transformation of immortalized human epidermal keratinocytes by ionizing radiation

    SciTech Connect

    Thraves, P.; Salehi, Z.; Dritschilo, A.; Rhim, J.S. )

    1990-02-01

    Efforts to investigate the progression of events that cause human cells to become neoplastic in response to ionizing radiation have been aided by the development of tissue culture systems of epithelial cells. In the present study, nontumorigenic human epidermal keratinocytes immortalized by adenovirus type 12 and simian virus 40 have been transformed by exposure to x-ray irradiation. Such transformants showed morphological alterations, formed colonies in soft agar, and induced carcinomas when transplanted into nude mice, whereas primary human epidermal keratinocytes exposed to radiation in this manner failed to show any evidence of transformation. These findings demonstrate the malignant transformation of human primary epithelial cells in culture by the combined action of a DNA tumor virus and radiation, indicating a multistep process for radiation-induced neoplastic conversion. This in vitro system may be useful as a tool for dissecting the process of radiation-induced neoplastic transformation of human epithelial cells and for detecting previously unreported human oncogenes.

  11. Role of H-Ras/ERK signaling in carbon nanotube-induced neoplastic-like transformation of human mesothelial cells

    PubMed Central

    Lohcharoenkal, Warangkana; Wang, Liying; Stueckle, Todd A.; Park, Jino; Tse, William; Dinu, Cerasela-Zoica; Rojanasakul, Yon

    2014-01-01

    Rapid development and deployment of engineered nanomaterials such as carbon nanotubes (CNTs) in various commercial and biomedical applications have raised concerns about their potential adverse health effects, especially their long-term effects which have not been well addressed. We demonstrated here that prolonged exposure of human mesothelial cells to single-walled CNT (SWCNT) induced neoplastic-like transformation as indicated by anchorage-independent cell growth and increased cell invasiveness. Such transformation was associated with an up-regulation of H-Ras and activation of ERK1/2. Downregulation of H-Ras by siRNA or inactivation of ERK by chemical inhibitor effectively inhibited the aggressive phenotype of SWCNT-exposed cells. Integrin alpha V and cortactin, but not epithelial-mesenchymal transition (EMT) transcriptional regulators, were up-regulated in the SWCNT-exposed cells, suggesting their role in the aggressive phenotype. Cortactin expression was shown to be controlled by the H-Ras/ERK signaling. Thus, our results indicate a novel role of H-Ras/ERK signaling and cortactin in the aggressive transformation of human mesothelial cells by SWCNT. PMID:24971065

  12. Multistep nature of X-ray-induced neoplastic transformation in golden hamster embryo cells: expression of transformed phenotypes and stepwise changes in karyotypes

    SciTech Connect

    Suzuki, K.; Suzuki, F.; Watanabe, M.; Nikaido, O.

    1989-04-15

    We have examined the expression of transformed phenotypes and genetic changes associated with the expression of each transformed phenotype after X-ray irradiation. Unirradiated cells grown at a constant growth rate until 8 passages (population doubling number, 15) exhibited little morphological change and ceased to divide thereafter. X-irradiated cells escaped from senescence and showed morphological alteration and anchorage independence after a population doubling number of 20. The acquisition of tumorigenicity in nude mice was observed much later (35 population doublings after irradiation). From cytogenetic analysis, all anchorage-independent clones were consistently found to have trisomy of chromosome 7. Furthermore, cells derived from tumors contained three copies of chromosome 9q in addition to the trisomy of chromosome 7. We have not detected any augmented expression of v-Ha-ras- and v-myc-related oncogenes with RNA dot-blot analysis and could not find activation of any type of oncogenes by NIH3T3 transfection experiments. Our studies demonstrated that X-ray-induced neoplastic transformation is a multistep phenomenon and that the numerical change of specific chromosomes may play an important role in the expression of each transformed phenotype. The results suggest that different endogenous oncogenes, other than the ras gene family and myc oncogene, could be responsible for the progressive nature of neoplastic transformation.

  13. [Radiation-induced, irreparable, hereditary changes in cells promoting their neoplastic transformation].

    PubMed

    Kuzin, A M; Vagabova, M E; Iurov, S S

    1988-01-01

    In experiments with model plant tumors (Kalanchoe-ti plasmid Agrobact. tumefaciens C-58D) it was shown that exposure of the recipient plant to low-level gamma-radiation of 2 Gy induced changes in cells that were not repaired over two months promoting tumoral transformations in them. Those changes were shown to persist in the offspring of the exposed somatic cells. PMID:3363091

  14. Karyotypic changes with neoplastic conversion in morphologically transformed golden hamster embryo cells induced by X-rays

    SciTech Connect

    Watanabe, M.; Suzuki, K.; Kodama, S. )

    1990-02-01

    Chromosomes from nine morphologically transformed (MT) cell lines (designated MT14 to MT22) of Golden hamster embryo cells induced by X-rays and from tumor-derived cell lines (MT14T to MT22T), obtained after injection of MT cells, were analyzed by the Giemsa banding method. MT cell lines showed a variety of numerical abnormalities. All of the MT cell lines involved trisomy of chromosomes 11 (80 to 100% of cells in each cell line) and 3 (8% of MT22 cells and 100% in other cell lines). Although the latent period for tumor growth differed greatly, eight of nine MT cell lines (MT14 to MT21) produced tumors at the site of injection. All tumor-derived cell lines involved trisomy of chromosome 3 at a 100% rate of incidence. Seven of nine tumor-derived cell lines (MT15T to MT18T, MT20T to MT22T) lost one chromosome 11 from the trisomic condition, resulting in disomy of chromosome 11. These results suggest that trisomies of chromosomes 11 and 3 may play a role in X-ray-induced neoplastic progression.

  15. CDK1 Phosphorylation of YAP Promotes Mitotic Defects and Cell Motility and Is Essential for Neoplastic Transformation

    PubMed Central

    Yang, Shuping; Zhang, Lin; Liu, Miao; Chong, Rong; Ding, Shi-Jian; Chen, Yuanhong; Dong, Jixin

    2013-01-01

    The Yes-associated protein YAP is a downstream effector of the Hippo pathway of cell cycle control which plays important roles in tumorigenesis. Hippo-mediated phosphorylation YAP, mainly at S127, inactivates YAP function. In this study, we define a mechanism for positive regulation of YAP activity that is critical for its oncogenic function. Specifically, we found that YAP is phosphorylated in vitro and in vivo by the cell cycle kinase CDK1 at T119, S289, and S367 during G2/M phase of the cell cycle. We also found that ectopic expression of a phosphomimetic YAP mutant (YAP3D, harboring T119D/S289D/S367D) was sufficient to induce mitotic defects in immortalized epithelial cells, including centrosome amplification, multipolar spindles and chromosome missegregation. Finally, we documented that mitotic phosphorylation of YAP was sufficient to promote cell migration and invasion in a manner essential for neoplastic cell transformation. In support of our findings, CDK1 inhibitors largely suppressed cell motility mediated by activated YAP-S127A but not the phosphomimetic mutant YAP3D. Collectively, our results reveal a previously unrecognized mechanism for controlling the activity of YAP that is crucial for its oncogenic function mediated by mitotic dysregulation. PMID:24101154

  16. Neoplastic transformation of rat thyroid cells requires the junB and fra-1 gene induction which is dependent on the HMGI-C gene product.

    PubMed Central

    Vallone, D; Battista, S; Pierantoni, G M; Fedele, M; Casalino, L; Santoro, M; Viglietto, G; Fusco, A; Verde, P

    1997-01-01

    The expression of the high mobility group I (HMGI)-C chromatin component was shown previously to be essential for the establishment of the neoplastic phenotype in retrovirally transformed thyroid cell lines. To identify possible targets of the HMGI-C gene product, we have analyzed the AP-1 complex in normal, fully transformed and antisense HMGI-C-expressing rat thyroid cells. We show that neoplastic transformation is associated with a drastic increase in AP-1 activity, which reflects multiple compositional changes. The strongest effect is represented by the dramatic junB and fra-1 gene induction, which is prevented in cell lines expressing the antisense HMGI-C. These results indicate that the HMGI-C gene product is essential for the junB and fra-1 transcriptional induction associated with neoplastic transformation. The inhibition of Fra-1 protein synthesis by stable transfection with a fra-1 antisense RNA vector significantly reduces the malignant phenotype of the transformed thyroid cells, indicating a pivotal role for the fra-1 gene product in the process of cellular transformation. PMID:9311991

  17. ULTRAVIOLET RADIATION-INDUCED NEOPLASTIC TRANSFORMATION OF NORMAL HUMAN CELLS, IN VITRO

    EPA Science Inventory

    Human foreskin cell cultures in schedules DNA synthesis (S phase) of the cell cycle were exposed to UV irradiation at a dose of 10 J.sq. m. in the presence of insulin. These treated cell populations, when selectively passaged in a high amino acid supplemented complete growth medi...

  18. Neoplastic transformation and tumorigenesis by the human protooncogene MYC.

    PubMed Central

    Ramsay, G M; Moscovici, G; Moscovici, C; Bishop, J M

    1990-01-01

    Damage to the protooncogene MYC has been implicated in the genesis of diverse human tumors, but the tumorigenic potential of the isolated gene has been disputed. Here we report the use of a retroviral vector to test the potency of human MYC for neoplastic transformation in avian cells. We found that sustained and abundant expression of MYC can transform both embryonic fibroblasts and hematopoietic cells and elicit granulocytic leukemias in chickens. Transformation by MYC is accompanied by changes in diverse aspects of cellular phenotype, including morphology, ability to grow in suspension, rate of proliferation, the structure of the cytoskeleton, and the composition of the extracellular matrix. Nevertheless, the biological potency of MYC is inherently constrained when compared to that of the retroviral oncogene v-myc. Our findings enlarge on previous descriptions of neoplastic transformation by MYC and sustain the view that ungoverned expression of the gene can contribute to the genesis of human tumors. Images PMID:2156260

  19. Neoplastic-like transformation effect of single-walled and multi-walled carbon nanotubes compared to asbestos on human lung small airway epithelial cells

    PubMed Central

    Wang, Liying; Stueckle, Todd A.; Mishra, Anurag; Derk, Raymond; Meighan, Terence; Castranova, Vincent; Rojanasakul, Yon

    2015-01-01

    Accumulating evidence indicates that carbon nanotubes (CNTs) are biopersistent and can cause lung damage. With similar fibrous morphology and mode of exposure to asbestos, a known human carcinogen, growing concern has arisen for elevated risk of CNT-induced lung carcinogenesis; however, relatively little is known about the long-term carcinogenic effect of CNT. Neoplastic transformation is a key early event leading to carcinogenesis. We studied the ability of single- and multi-walled CNTs to induce neoplastic transformation of human lung epithelial cells compared to asbestos. Long-term (6-month) exposure of the cells to occupationally relevant concentrations of CNT in culture caused a neoplastic-like transformation phenotype as demonstrated by increased cell proliferation, anchorage-independent growth, invasion and angiogenesis. Whole-genome expression signature and protein expression analyses showed that single- and multi-walled CNTs shared similar signaling signatures which were distinct from asbestos. These results provide novel toxicogenomic information and suggest distinct particle-associated mechanisms of neoplasia promotion induced by CNTs and asbestos. PMID:23634900

  20. Cellular neoplastic transformation induced by 916 MHz microwave radiation.

    PubMed

    Yang, Lei; Hao, Dongmei; Wang, Minglian; Zeng, Yi; Wu, Shuicai; Zeng, Yanjun

    2012-08-01

    There has been growing concern about the possibility of adverse health effects resulting from exposure to microwave radiations, such as those emitted by mobile phones. The purpose of this study was to investigate the cellular neoplastic transformation effects of electromagnetic fields. 916 MHz continuous microwave was employed in our study to simulate the electromagnetic radiation of mobile phone. NIH/3T3 cells were adopted in our experiment due to their sensitivity to carcinogen or cancer promoter in environment. They were divided randomly into one control group and three microwave groups. The three microwave groups were exposed to 916 MHz EMF for 2 h per day with power density of 10, 50, and 90 w/m(2), respectively, in which 10 w/m(2) was close to intensity near the antenna of mobile phone. The morphology and proliferation of NIH/3T3 cells were examined and furthermore soft agar culture and animal carcinogenesis assay were carried out to determine the neoplastic promotion. Our experiments showed NIH/3T3 cells changed in morphology and proliferation after 5-8 weeks exposure and formed clone in soft agar culture after another 3-4 weeks depending on the exposure intensity. In the animal carcinogenesis study, lumps developed on the back of SCID mice after being inoculated into exposed NIH/3T3 cells for more than 4 weeks. The results indicate that microwave radiation can promote neoplastic transformation of NIH/3T3cells. PMID:22395787

  1. Dr. Josef Steiner Cancer Research Prize Lecture: the role of physiological cell death in neoplastic transformation and in anti-cancer therapy.

    PubMed

    Strasser, A

    1999-05-17

    Cell death is a physiological process which is required for normal development and existence of multi-cellular organisms. Physiological cell death, or apoptosis, is controlled by an evolutionarily conserved mechanism. Abnormalities in this process are implicated as a cause or contributing factor in a variety of diseases. Inhibition of apoptosis can promote neoplastic transformation, particularly in combination with dysregulated cell-cycle control, and can influence the response of tumour cells to anti-cancer therapy. Molecular biological and biochemical approaches are used to find missing cell-death regulators and to define signalling cascades, while experiments in genetically modified mice will identify the essential function of these molecules. Discoveries from cell death research should provide clues for designing therapies for a variety of diseases, including degenerative disorders, auto-immunity and cancer. PMID:10225436

  2. A panel of in vitro tests to evaluate genotoxic and morphological neoplastic transformation potential on Balb/3T3 cells by pristine and remediated titania and zirconia nanoparticles.

    PubMed

    Stoccoro, Andrea; Di Bucchianico, Sebastiano; Uboldi, Chiara; Coppedè, Fabio; Ponti, Jessica; Placidi, Claudia; Blosi, Magda; Ortelli, Simona; Costa, Anna Luisa; Migliore, Lucia

    2016-09-01

    The FP7 Sanowork project was aimed to minimise occupational hazard and exposure to engineered nanomaterials (ENM) through the surface modification in order to prevent possible health effects. In this frame, a number of nanoparticles (NP) have been selected, among which zirconium (ZrO2) and titanium (TiO2) dioxide. In this study, we tested ZrO2 NP and TiO2 NP either in their pristine (uncoated) form, or modified with citrate and/or silica on their surface. As benchmark material, Aeroxide® P25 was used. We assessed cytotoxicity, genotoxicity and induction of morphological neoplastic transformation of NP by using a panel of in vitro assays in an established mammalian cell line of murine origin (Balb/3T3). Cell viability was evaluated by means of colony-forming efficiency assay (CFE). Genotoxicity was investigated by cytokinesis-block micronucleus cytome assay (CBMN cyt) and comet assay, and by the use of the restriction enzymes EndoIII and Fpg, oxidatively damaged DNA was detected; finally, the morphological neoplastic transformation of NP was assayed in vitro by cell transformation assay (CTA). Our results show that the surface remediation has not been effective in modifying cyto- and genotoxic properties of the nanomaterials tested; indeed, in the case of remediation of zirconia and titania with citrate, there is a tendency to emphasise the toxic effects. The use of a panel of assays, such as those we have employed, allowing the evaluation of multiple endpoints, including cell transformation, seems particularly advisable especially in the case of long-term exposure effects in the same cell type. PMID:27056944

  3. Neoplastic Transformation Induced by Carbon Ions

    SciTech Connect

    Bettega, Daniela Calzolari, Paola; Hessel, Petra; Stucchi, Claudio G.; Weyrather, Wilma K.

    2009-03-01

    Purpose: The objective of this experiment was to compare the oncogenic potential of carbon ion beams and conventional photon beams for use in radiotherapy. Methods and Materials: The HeLa X human skin fibroblast cell line CGL1 was irradiated with carbon ions of three different energies (270, 100, and 11.4 MeV/u). Inactivation and transformation data were compared with those for 15 MeV photons. Results: Inactivation and transformation frequencies for the 270 MeV/u carbon ions were similar to those for 15-MeV photons. The maximal relative biologic effectiveness (RBE{sub {alpha}}) values for 100MeV/u and 11.4 MeV/u carbon ions, respectively, were as follows: inactivation, 1.6 {+-} 0.2 and 6.7 {+-} 0.7; and transformation per surviving cell, 2.5 {+-} 0.6 and 12 {+-} 3. The curve for dose-transformation per cell at risk exhibited a maximum that was shifted toward lower doses at lower energies. Conclusions: Transformation induction per cell at risk for carbon ions in the entrance channel was comparable to that for photons, whereas for the lower energies, 100 MeV/u and 11 MeV/u, which are representative of the energies delivered to the tumor margins and volume, respectively, the probability of transformation in a single cell was greater than it was for photons. In addition, at isoeffective doses with respect to cell killing, the 11.4-MeV/u beam was more oncogenic than were photons.

  4. Rat Protein Tyrosine Phosphatase η Suppresses the Neoplastic Phenotype of Retrovirally Transformed Thyroid Cells through the Stabilization of p27Kip1

    PubMed Central

    Trapasso, Francesco; Iuliano, Rodolfo; Boccia, Angelo; Stella, Antonella; Visconti, Roberta; Bruni, Paola; Baldassarre, Gustavo; Santoro, Massimo; Viglietto, Giuseppe; Fusco, Alfredo

    2000-01-01

    The r-PTPη gene encodes a rat receptor-type protein tyrosine phosphatase whose expression is negatively regulated by neoplastic cell transformation. Here we first demonstrate a dramatic reduction in DEP-1/HPTPη (the human homolog of r-PTPη) expression in a panel of human thyroid carcinomas. Subsequently, we show that the reexpression of the r-PTPη gene in highly malignant rat thyroid cells transformed by retroviruses carrying the v-mos and v-ras-Ki oncogenes suppresses their malignant phenotype. Cell cycle analysis demonstrated that r-PTPη caused G1 growth arrest and increased the cyclin-dependent kinase inhibitor p27Kip1 protein level by reducing the proteasome-dependent degradation rate. We propose that the r-PTPη tumor suppressor activity is mediated by p27Kip1 protein stabilization, because suppression of p27Kip1 protein synthesis using p27-specific antisense oligonucleotides blocked the growth-inhibitory effect induced by r-PTPη. Furthermore, we provide evidence that in v-mos- or v-ras-Ki-transformed thyroid cells, the p27Kip1 protein level was regulated by the mitogen-activated protein (MAP) kinase pathway and that r-PTPη regulated p27Kip1 stability by preventing v-mos- or v-ras-Ki-induced MAP kinase activation. PMID:11094075

  5. Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells

    SciTech Connect

    Stueckle, Todd A.; Lu, Yongju; Davis, Mary E.; Wang, Liying; Jiang, Bing-Hua; Holaskova, Ida; Schafer, Rosana; Barnett, John B.; Rojanasakul, Yon

    2012-06-01

    Chronic arsenic exposure remains a human health risk; however a clear mode of action to understand gene signaling-driven arsenic carcinogenesis is currently lacking. This study chronically exposed human lung epithelial BEAS-2B cells to low-dose arsenic trioxide to elucidate cancer promoting gene signaling networks associated with arsenic-transformed (B-As) cells. Following a 6 month exposure, exposed cells were assessed for enhanced cell proliferation, colony formation, invasion ability and in vivo tumor formation compared to control cell lines. Collected mRNA was subjected to whole genome expression microarray profiling followed by in silico Ingenuity Pathway Analysis (IPA) to identify lung carcinogenesis modes of action. B-As cells displayed significant increases in proliferation, colony formation and invasion ability compared to BEAS-2B cells. B-As injections into nude mice resulted in development of primary and secondary metastatic tumors. Arsenic exposure resulted in widespread up-regulation of genes associated with mitochondrial metabolism and increased reactive oxygen species protection suggesting mitochondrial dysfunction. Carcinogenic initiation via reactive oxygen species and epigenetic mechanisms was further supported by altered DNA repair, histone, and ROS-sensitive signaling. NF-κB, MAPK and NCOR1 signaling disrupted PPARα/δ-mediated lipid homeostasis. A ‘pro-cancer’ gene signaling network identified increased survival, proliferation, inflammation, metabolism, anti-apoptosis and mobility signaling. IPA-ranked signaling networks identified altered p21, EF1α, Akt, MAPK, and NF-κB signaling networks promoting genetic disorder, altered cell cycle, cancer and changes in nucleic acid and energy metabolism. In conclusion, transformed B-As cells with their whole genome expression profile provide an in vitro arsenic model for future lung cancer signaling research and data for chronic arsenic exposure risk assessment. Highlights: ► Chronic As{sub 2}O

  6. Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells

    PubMed Central

    Stueckle, Todd A.; Lu, Yongju; Davis, Mary E.; Wang, Liying; Jiang, Bing-Hua; Holaskova, Ida; Schafer, Rosana; Barnett, John B.; Rojanasakul, Yon

    2012-01-01

    Chronic arsenic exposure remains a human health risk; however a clear mode of action to understand gene signaling-driven arsenic carcinogenesis is currently lacking. This study chronically exposed human lung epithelial BEAS-2B cells to low-dose arsenic trioxide to elucidate cancer promoting gene signaling networks associated with arsenic-transformed (B-As) cells. Following a six month exposure, exposed cells were assessed for enhanced cell proliferation, colony formation, invasion ability and in vivo tumor formation compared to control cell lines. Collected mRNA was subjected to whole genome expression microarray profiling followed by in silico Ingenuity Pathway Analysis (IPA) to identify lung carcinogenesis modes of action. B-As cells displayed significant increases in proliferation, colony formation and invasion ability compared to BEAS-2B cells. B-As injections into nude mice resulted in development of primary and secondary metastatic tumors. Arsenic exposure resulted in widespread up-regulation of genes associated with mitochondrial metabolism and increased reactive oxygen species protection suggesting mitochondrial dysfunction. Carcinogenic initiation via reactive oxygen species and epigenetic mechanisms was further supported by altered DNA repair, histone, and ROS-sensitive signaling. NF-κB, MAPK and NCOR1 signaling disrupted PPARα/δ-mediated lipid homeostasis. A ‘pro-cancer’ gene signaling network identified increased survival, proliferation, inflammation, metabolism, anti-apoptosis and mobility signaling. IPA-ranked signaling networks identified altered p21, EF1α, Akt, MAPK, and NF-κB signaling networks promoting genetic disorder, altered cell cycle, cancer and changes in nucleic acid and energy metabolism. In conclusion, transformed B-As cells with their whole genome expression profile provide an in vitro arsenic model for future lung cancer signaling research and data for chronic arsenic exposure risk assessment. PMID:22521957

  7. The melanocyte differentiation program predisposes to metastasis following neoplastic transformation.

    PubMed Central

    Gupta, Piyush B.; Kuperwasser, Charlotte; Brunet, Jean-Philippe; Ramaswamy, Sridhar; Kuo, Wen-Lin; Gray, Joe W.; Naber, Stephen P.; Weinberg, Robert A.

    2006-01-01

    The aggressive clinical behavior of melanoma has led to the hypothesis that the developmental origins of melanocytes in the neural crest might be relevant for their metastatic propensity. We demonstrate that primary human melanocytes, transformed using a specific set of introduced genes, form melanomas that frequently metastasize to multiple secondary sites, while human fibroblasts and epithelial cells transformed using an identical set of genes generate primary tumors that rarely do so. Importantly, these melanomas exhibit a metastasis spectrum similar to that observed in human patients. These observations indicate that part of the metastatic proclivity of melanoma is attributable to lineage-specific factors expressed in melanocytes and not in other cell types analyzed. Analysis of microarray data from human nevi reveals that Slug, a master regulator of neural crest cell specification and migration, correlates in its expression pattern with other genes that are important for neural crest cell migrations during development. Moreover, Slug is required for the metastasis of the transformed melanoma cells. These findings indicate that melanocyte-specific factors present prior to neoplastic transformation can play a pivotal role in governing melanoma's progression. PMID:16142232

  8. PDZ-binding kinase/T-LAK cell-originated protein kinase is a target of the fucoidan from brown alga Fucus evanescens in the prevention of EGF-induced neoplastic cell transformation and colon cancer growth

    PubMed Central

    Wang, Zhe; Ermakova, Svetlana P.; Xiao, JuanJuan; Lu, Tao; Xue, PeiPei; Zvyagintseva, Tatyana N.; Xiong, Hua; Shao, Chen; Yan, Wei; Duan, Qiuhong; Zhu, Feng

    2016-01-01

    The fucoidan with high anticancer activity was isolated from brown alga Fucus evanescens. The compound effectively prevented EGF-induced neoplastic cell transformation through inhibition of TOPK/ERK1/2/MSK 1 signaling axis. In vitro studies showed that the fucoidan attenuated mitogen-activated protein kinases downstream signaling in a colon cancer cells with different expression level of TOPK, resulting in growth inhibition. The fucoidan exerts its effects by directly interacting with TOPK kinase in vitro and ex vivo and inhibits its kinase activity. In xenograft animal model, oral administration of the fucoidan suppressed HCT 116 colon tumor growth. The phosphorylation of TOPK downstream signaling molecules in tumor tissues was also inhibited by the fucoidan. Taken together, our findings support the cancer preventive efficacy of the fucoidan through its targeting of TOPK for the prevention of neoplastic cell transformation and progression of colon carcinomas in vitro and ex vivo. PMID:26936995

  9. Role of Vitamin D receptor gene in radiation-induced neoplastic transformation of human breast epithelial cell.

    PubMed

    Roy, Debasish; Calaf, Gloria; Hei, Tom K

    2003-09-01

    1 Alpha,25-(OH)(2)-Vitamin D(3), the physiologically active metabolite of Vitamin D is known for its pro-differentiating and antiproliferative activity on various cancer cell lines. It exerts its growth-regulatory effects through binding to the Vitamin D recepter (VDR), a member of the steroid/thyroid/retinoic acid receptor family, which functions as a ligand-dependent transcription factor. There is accumulating evidence that Vitamin D may be an important determinant of both the occurrence and progression of breast cancer. Since radiation is an important etiological factor for breast cancer progression, it is important to study the role of VDR gene in radiation-induced breast carcinogenesis. This study is focused on a human breast tumor model developed by irradiating the spontaneously immortalized MCF-10F cell line with graded doses of high-linear energy transfer (LET) radiation followed by treatment with estrogen. Study of VDR gene by restriction digestion with ApaI, BsmI and TaqI detected no polymorphism but direct sequencing analyses identified few single-base mutations within intron 8 and exon 9 of the gene. Over-expression of the VDR gene was noticed in irradiated and tumorigenic cell lines compared with control. Likewise, immunohistochemical data indicated a significant increase in VDR intensity in irradiated and tumorigenic cell lines. Considering all these evidence, it is likely that VDR can be used as a prognostic marker of tumor progression in radiation- and estrogen-induced breast carcinogenesis. PMID:12957667

  10. Low Dose Suppression of Neoplastic Transformation in Vitro

    SciTech Connect

    John Leslie Redpath

    2012-05-01

    This grant was to study the low dose suppression of neoplastic transformation in vitro and the shape of the dose-response curve at low doses and dose-rates of ionizing radiation. Previous findings had indicated a suppression of transformation at dose <10cGy of low-LET radiation when delivered at high dose-rate. The present study indicates that such suppression extends out to doses in excess of 100cGy when the dose (from I-125 photons) is delivered at dose-rates as low as 0.2 mGy/min and out to in excess of {approx}25cGy the highest dose studied at the very low dose-rate of 0.5 mGy/day. We also examined dose-rate effects for high energy protons (which are a low-LET radiation) and suppression was evident below {approx}10cGy for high dose-rate delivery and at least out to 50cGy for low dose-rate (20cGy/h) delivery. Finally, we also examined the effect of low doses of 1 GeV/n iron ions (a high-LET radiation) delivered at high dose-rate on transformation at low doses and found a suppression below {approx}10cGy that could be attributable to an adaptive response in bystander cells induced by the associated low-LET delta rays. These results have implications for cancer risk assessment at low doses.

  11. Neoplastic development in plasma cells.

    PubMed

    Potter, Michael

    2003-08-01

    An increasing number of model systems of plasma cell tumor (PCT) formation have been and are being developed. Discussed here are six models in mice and multiple myeloma (MM) in humans. Each model illustrates a unique set of biological factors. There are two general types of model systems: those that depend upon naturally arising mutagenic changes (pristane-induced PCTs, 5TMM, and MM) and those that are associated with oncogenes (Emu-v-abl), growth factors [interleukin-6 (IL-6)], and anti-apoptotic factors (Bcl-xL/Bcl-2). PCTs develop in several special tissue microenvironments that provide essential cytokines (IL-6) and cell-cell interactions. In mice, the activation and deregulation of c-myc by chromosomal translocations is a major feature in many of the models. This mechanism is much less a factor in MM and the 5T model in mice. Genetically determined susceptibility is involved in many of the mouse models, but only a few genes have been implicated thus far. PMID:12846815

  12. Kinetic Modeling of Damage Repair, Genome Instability, and Neoplastic Transformation

    SciTech Connect

    Stewart, Robert D

    2007-03-17

    Inducible repair and pathway interactions may fundamentally alter the shape of dose-response curves because different mechanisms may be important under low- and high-dose exposure conditions. However, the significance of these phenomena for risk assessment purposes is an open question. This project developed new modeling tools to study the putative effects of DNA damage induction and repair on higher-level biological endpoints, including cell killing, neoplastic transformation and cancer. The project scope included (1) the development of new approaches to simulate the induction and base excision repair (BER) of DNA damage using Monte Carlo methods and (2) the integration of data from the Monte Carlo simulations with kinetic models for higher-level biological endpoints. Methods of calibrating and testing such multiscale biological simulations were developed. We also developed models to aid in the analysis and interpretation of data from experimental assays, such as the pulsed-field gel electrophoresis (PFGE) assay used to quantity the amount of DNA damage caused by ionizing radiation.

  13. The Route to HPV-Associated Neoplastic Transformation: A Review of the Literature.

    PubMed

    Tulay, Pinar; Serakinci, Nedime

    2016-01-01

    Human papillomaviruses (HPVs)-small, nonenveloped viruses with double-stranded circular DNA-are believed to have a role in the progression of cancer. However, the exact mechanisms are not well established. The interference of HPV proteins, especially E6 and E7, in the cell cycle is considered to be the main pathway. It is still questioned whether the expression of these proteins or the viral load is more important in neoplastic transformation. Furthermore, HPV is believed to adapt mechanisms to evade the host cell immune system; persistent HPV infection may also play a role in oncogenic transformation by causing genomic instability and local immune suppression. These factors may cause accumulation of genomic alterations within the host cell and integration of the viral genome into the host genome. In recent years, epigenetic modifications, such as methylation, have also been considered to take part in neoplastic transformation. All of these alterations to the genome may be favorable to the development of cancer. This article highlights the association of HPV in neoplastic transformation and cancer progression. PMID:27278883

  14. Inhibition of neoplastic transformation and bioavailability of dietary flavonoid agents.

    PubMed

    Franke, A A; Cooney, R V; Custer, L J; Mordan, L J; Tanaka, Y

    1998-01-01

    Evaluation of unknown biological effects of chemicals including food plant products requires the assessment of bioactivity and bioavailability. Epidemiologic studies show consistently a cancer protective effect of fruit and vegetable consumption, but there is little understanding of which phytochemicals account for this observation. Commonly studied antioxidant micronutrients are less consistently correlated with cancer protection relative to the food groups themselves, suggesting that other phytochemicals or a combination of food products play key roles in preventing cancer. We investigated the effects of the predominant dietary flavonoids and isoflavonoids at inhibiting neoplastic transformation induced by 3-methylcholanthrene in C3H 10T1/2 murine fibroblasts. We found that most phenolic agents tested were equal to or superior to known chemopreventive agents such as carotenoids or vitamins in effectiveness. Hesperetin, hesperidin and catechin were the most potent agents among the flavonoids tested, inhibiting transformation completely when applied at 1.0 microM after exposure to the carcinogen. Structure-activity comparison revealed that among the compounds tested, flavonoids with a vicinal diphenol structure in ring 'B' and a saturated 'C' ring exhibited the strongest effects. Most agents tested showed dose-dependent patterns. Interestingly, the soy isoflavonoids were weakly active except when applied in combination, suggesting a synergistic effect. In addition, HPLC techniques were developed for determining the bioavailability of isoflavonoids in human biological fluids including urine, plasma and breast milk. We observed a relatively fast absorption, distribution and elimination of isoflavonoids including a biphasic pattern probably due to enterohepatic circulation. Total peak isoflavone levels in urine, plasma and in breast milk were found to be 60 microM, 2 microM and 0.2 microM, respectively and were reached 8-12 hours after consumption of soy foods. Levels

  15. MOLECULAR MECHANISM OF SUPPRESSION OF NEOPLASTIC TRANSFORMATION BY LOW DOSES OF LOW LET RADIATION

    SciTech Connect

    J.LESIE REDPATH, PH.D.

    2011-03-29

    We are currently funded (9/01-8/04) by the DOE Low Dose Radiation Research Program to examine mechanisms underlying the suppression of neoplastic transformation in vitro by low doses of low LET radiation. For the new studies proposed under Notice 04-21, we intend to follow up on our observation that upregulation of DNA repair may be an important factor and that its importance is dose-dependent. The experimental system will be the human hybrid cell neoplastic transformation assay that we are currently using. We propose to test the following hypothesis: Down-regulation of DNA dsb repair will abrogate the low dose suppression of neoplastic transformation. Using the technique of RNA silencing, it is proposed to test the effect of down-regulation of the two major DNA dsb repair pathways, homologous recombination (HR) and non-homologous end-joining (NHEJ), on the dose response relationship for neoplastic transformation. Based on prior studies, we predict that this will result in abrogation of the suppressive effect at doses in the range 1 to 10 cGy, but not at lower doses. The proposed experiments will also help address the question as to which of the two DNA repair pathways may be the most important in causing suppression of transformation. HR is a pathway that is predominant in S and G2 phase cells and is known to be less error-prone than the NHEJ pathway that is predominant in G1 phase. We hypothesize that down-regulation of HR will result in the most effective abrogation of suppression. An important component of this study will be the determination of the how abrogation of DNA dsb repair impacts the spontaneous transformation frequency, presumably a consequence of endogeneous DNA damage. Experiments will be carried out using partially synchronized populations of cells enriched for G1 and S/G2 respectively. In addition to the endpoint of neoplastic transformation the impact of down-regulation of HR and NHEJ on the formation and disappearance of the DNA dsb marker

  16. The neoplastic transformation potential of mammography X rays and atomic bomb spectrum radiation.

    PubMed

    Heyes, G J; Mill, A J

    2004-08-01

    Considerable controversy currently exists regarding the biological effectiveness of 29 kVp X rays which are used for mammography screening. This issue must be resolved to enable proper evaluation of radiation risks from breast screening. Here a definitive assessment of the biological effectiveness of 29 kVp X rays compared to the quality of radiation to which the atomic bomb survivors were exposed is presented for the first time. The standard radiation sources used were (a) an atomic bomb simulation spectrum and (b) 2.2 MeV electrons from a strontium-90/yttrium-90 (90Sr/90Y) radioactive source. The biological end point used was neoplastic transformation in vitro in CGL1 (HeLa x human fibroblast hybrid) cells. No significant difference was observed for the biological effectiveness of the two high-energy sources for neoplastic transformation. A limiting relative biological effectiveness (RBE(M)) of 4.42 +/- 2.02 was observed for neoplastic transformation by 29 kVp X rays compared to these two sources. This compares with values of 4.67 +/- 3.93 calculated from previously published data and 3.58 +/- 1.77 when the reference radiation was 200 and 220 kVp X rays. This suggests that the risks associated with mammography screening may be approximately five times higher than previously assumed and that the risk-benefit relationship of mammography exposures may need to be re-examined. PMID:15387138

  17. Snail Family Members Unequally Trigger EMT and Thereby Differ in Their Ability to Promote the Neoplastic Transformation of Mammary Epithelial Cells

    PubMed Central

    Wierinckx, Anne; Lamblot, Christelle; Fauvet, Frédérique; Lachuer, Joël; Puisieux, Alain; Ansieau, Stéphane

    2014-01-01

    By fostering cell commitment to the epithelial-to-mesenchymal transition (EMT), SNAIL proteins endow cells with motility, thereby favoring the metastatic spread of tumor cells. Whether the phenotypic change additionally facilitates tumor initiation has never been addressed. Here we demonstrate that when a SNAIL protein is ectopically produced in non-transformed mammary epithelial cells, the cells are protected from anoikis and proliferate under low-adherence conditions: a hallmark of cancer cells. The three SNAIL proteins show unequal oncogenic potential, strictly correlating with their ability to promote EMT. SNAIL3 especially behaves as a poor EMT-inducer comforting the concept that the transcription factor functionally diverges from its two related proteins. PMID:24638100

  18. Generation of tumor-specific transplantation antigens by UV radiation can occur independently of neoplastic transformation.

    PubMed

    Hostetler, L W; Ananthaswamy, H N; Kripke, M L

    1986-10-15

    The purpose of this study was to determine whether the UV-associated antigens present on tumors induced in mice by chronic UV irradiation could be induced by in vitro irradiation of cells that were already tumorigenic, or whether their occurrence was associated with the primary neoplastic transformation event. Cells of a nonantigenic, spontaneous fibrosarcoma cell line were exposed to UV radiation in vitro, were cloned, and were tested for antigenic properties. A large number of the clones obtained after UV irradiation of the fibrosarcoma cells were highly antigenic (20 of 39), whereas clones derived from unirradiated cultures were not (0 of 10). The antigenic variants did not induce cross-protection among themselves, but induced only variant-specific immunity in vivo. Several antigenic variants were tested for susceptibility to the action of UV-induced suppressor cells, which seem to recognize a common determinant shared among UV-induced tumors. The variants tested were indeed subject to the activity of the UV-induced suppressor lymphocytes. These results demonstrate that the unique antigenic properties exhibited by UV-induced murine skin cancers are also exhibited by cells exposed to UV radiation in vitro. In addition, they imply that the UV-associated antigens arise as a consequence of exposing cells to UV radiation and that they can occur independently of an initial neoplastic transformation event. PMID:3760572

  19. Prox1-Heterozygosis Sensitizes the Pancreas to Oncogenic Kras-Induced Neoplastic Transformation12

    PubMed Central

    Drosos, Yiannis; Neale, Geoffrey; Ye, Jianming; Paul, Leena; Kuliyev, Emin; Maitra, Anirban; Means, Anna L; Washington, M Kay; Rehg, Jerold; Finkelstein, David B; Sosa-Pineda, Beatriz

    2016-01-01

    The current paradigm of pancreatic neoplastic transformation proposes an initial step whereby acinar cells convert into acinar-to-ductal metaplasias, followed by progression of these lesions into neoplasias under sustained oncogenic activity and inflammation. Understanding the molecular mechanisms driving these processes is crucial to the early diagnostic and prevention of pancreatic cancer. Emerging evidence indicates that transcription factors that control exocrine pancreatic development could have either, protective or facilitating roles in the formation of preneoplasias and neoplasias in the pancreas. We previously identified that the homeodomain transcription factor Prox1 is a novel regulator of mouse exocrine pancreas development. Here we investigated whether Prox1 function participates in early neoplastic transformation using in vivo, in vitro and in silico approaches. We found that Prox1 expression is transiently re-activated in acinar cells undergoing dedifferentiation and acinar-to-ductal metaplastic conversion. In contrast, Prox1 expression is largely absent in neoplasias and tumors in the pancreas of mice and humans. We also uncovered that Prox1-heterozygosis markedly increases the formation of acinar-to-ductal-metaplasias and early neoplasias, and enhances features associated with inflammation, in mouse pancreatic tissues expressing oncogenic Kras. Furthermore, we discovered that Prox1-heterozygosis increases tissue damage and delays recovery from inflammation in pancreata of mice injected with caerulein. These results are the first demonstration that Prox1 activity protects pancreatic cells from acute tissue damage and early neoplastic transformation. Additional data in our study indicate that this novel role of Prox1 involves suppression of pathways associated with inflammatory responses and cell invasiveness. PMID:26992918

  20. Neoplastic Reprogramming of Patient-Derived Adipose Stem Cells by Prostate Cancer Cell-Associated Exosomes

    PubMed Central

    Abd Elmageed, Zakaria Y.; Yang, Yijun; Thomas, Raju; Ranjan, Manish; Mondal, Debasis; Moroz, Krzysztof; Fang, Zhide; Rezk, Bashir M.; Moparty, Krishnarao; Sikka, Suresh C.; Sartor, Oliver; Abdel-Mageed, Asim B.

    2014-01-01

    Emerging evidence suggests that mesenchymal stem cells (MSCs) are often recruited to tumor sites but their functional significance in tumor growth and disease progression remains elusive. Herein we report that prostate cancer (PC) cell microenvironment subverts PC patient adipose-derived stem cells (pASCs) to undergo neoplastic transformation. Unlike normal ASCs, the pASCs primed with PC cell conditioned media (CM) formed prostate-like neoplastic lesions in vivo and reproduced aggressive tumors in secondary recipients. The pASC tumors acquired cytogenetic aberrations and mesenchymal-to-epithelial transition (MET) and expressed epithelial, neoplastic, and vasculogenic markers reminiscent of molecular features of PC tumor xenografts. Our mechanistic studies revealed that PC cell-derived exosomes are sufficient to recapitulate formation of prostate tumorigenic mimicry generated by CM-primed pASCs in vivo. In addition to down-regulation of the large tumor suppressor homolog2 (Lats2) and the programmed cell death protein 4 (PDCD4), a neoplastic transformation inhibitor, the tumorigenic reprogramming of pASCs was associated with trafficking by PC cell-derived exosomes of oncogenic factors, including H-ras and K-ras transcripts, oncomiRNAs miR-125b, miR-130b, and miR-155 as well as the Ras superfamily of GTPases Rab1a, Rab1b, and Rab11a. Our findings implicate a new role for PC cell-derived exosomes in clonal expansion of tumors through neoplastic reprogramming of tumor tropic ASCs in cancer patients. PMID:24715691

  1. CD44 and the adhesion of neoplastic cells.

    PubMed Central

    Rudzki, Z; Jothy, S

    1997-01-01

    CD44 is a family of transmembrane glycoproteins that act mainly as a receptor for hyaluronan. It can also bind some other extracellular matrix ligands (chondroitin sulphate, heparan sulphate, fibronectin, serglycin, osteopontin) with lower affinity. CD44 is encoded by a single gene containing 20 exons, 10 of which (v1-v10) are variant exons inserted by alternative splicing. The standard, ubiquitously expressed isoform of CD44, does not contain sequences encoded by these variant exons. Numerous variant isoforms of CD44 containing different combinations of exons v1-v10 inserted into the extracellular domain can be expressed in proliferating epithelial cells and activated lymphocytes. CD44 plays a significant role in lymphocyte homing. Both alternative splicing and glycosylation influence receptor function of the molecule, usually reducing its affinity to hyaluronan. The cytoplasmic domain of CD44 communicates with the cytoskeleton via ankyrin and proteins belonging to the ezrin-moesin-radixin family. Relatively little is known about the intracellular events following interactions of CD44 with its ligands. Some variant isoforms, especially those containing sequences encoded by v6-v10, are overexpressed in both human and animal neoplasms. In a rat pancreatic adenocarcinoma model one of the variant CD44 isoforms was proved to be determinant in the metastatic process. For some human neoplasms (carcinomas of the digestive tract, non-Hodgkin's lymphomas, thyroid carcinomas, and others) correlations have been made between the particular pattern of CD44 variants produced by neoplastic cells and clinicopathological parameters of tumours, such as grade, stage, presence of metastases, and survival. In vitro studies indicate that modifications of CD44 expression result in different ligand recognition and influence cell motility, invasive properties, and metastatic potential of experimental tumours. Investigation of CD44 neoexpression can be useful both in early cancer diagnosis

  2. Nuclear Factor kappa B is central to Marek’s Disease herpesvirus induced neoplastic transformation of CD30 expressing lymphocytes in-vivo

    PubMed Central

    2012-01-01

    Background Marek’s Disease (MD) is a hyperproliferative, lymphomatous, neoplastic disease of chickens caused by the oncogenic Gallid herpesvirus type 2 (GaHV-2; MDV). Like several human lymphomas the neoplastic MD lymphoma cells overexpress the CD30 antigen (CD30hi) and are in minority, while the non-neoplastic cells (CD30lo) form the majority of population. MD is a unique natural in-vivo model of human CD30hi lymphomas with both natural CD30hi lymphomagenesis and spontaneous regression. The exact mechanism of neoplastic transformation from CD30lo expressing phenotype to CD30hi expressing neoplastic phenotype is unknown. Here, using microarray, proteomics and Systems Biology modeling; we compare the global gene expression of CD30lo and CD30hi cells to identify key pathways of neoplastic transformation. We propose and test a specific mechanism of neoplastic transformation, and genetic resistance, involving the MDV oncogene Meq, host gene products of the Nuclear Factor Kappa B (NF-κB) family and CD30; we also identify a novel Meq protein interactome. Results Our results show that a) CD30lo lymphocytes are pre-neoplastic precursors and not merely reactive lymphocytes; b) multiple transformation mechanisms exist and are potentially controlled by Meq; c) Meq can drive a feed-forward cycle that induces CD30 transcription, increases CD30 signaling which activates NF-κB, and, in turn, increases Meq transcription; d) Meq transcriptional repression or activation of the CD30 promoter generally correlates with polymorphisms in the CD30 promoter distinguishing MD-lymphoma resistant and susceptible chicken genotypes e) MDV oncoprotein Meq interacts with proteins involved in physiological processes central to lymphomagenesis. Conclusions In the context of the MD lymphoma microenvironment (and potentially in other CD30hi lymphomas as well), our results show that the neoplastic transformation is a continuum and the non-neoplastic cells are actually pre-neoplastic precursor

  3. The G protein-coupled estrogen receptor as a modulator of neoplastic transformation.

    PubMed

    Jacenik, Damian; Cygankiewicz, Adam I; Krajewska, Wanda M

    2016-07-01

    Estrogens play a crucial role in the regulation of physiological and pathophysiological processes. These hormones act through specific receptors, most notably the canonical estrogen receptors α and β (ERα and ERβ) and their truncated forms as well as the G protein-coupled estrogen receptor (GPER). Several studies have shown that GPER is expressed in many normal and cancer cells, including those of the breast, endometrium, ovary, testis and lung. Hormonal imbalance is one possible cause of cancer development. An accumulating body of evidence indicates that GPER is involved in the regulation of cancer cell proliferation, migration and invasion, it may act as a mediator of microRNA, and is believed to modulate the inflammation associated with neoplastic transformation. Furthermore, used in various treatment regimens anti-estrogens such as tamoxifen, raloxifen and fulvestrant (ICI 182.780), antagonists/modulators of canonical estrogen receptors, were found to be GPER agonists. This review presents the current knowledge about the potential role of GPER in neoplastic transformation. PMID:27107933

  4. Measuring neoplastic transformation in the hamster cheek pouch using Fourier domain low-coherence interferometry

    NASA Astrophysics Data System (ADS)

    Graf, Robert N.; Chen, Xiaoxin; Brown, William; Wax, Adam

    2008-02-01

    Fourier Domain Low Coherence Interferometry (fLCI) is a promising technique which combines the depth resolution of low coherence interferometry with the sensitivity of light scattering spectroscopy for probing the health of epithelial tissue layers. Our new fLCI system configuration utilizes a white light Xe arc lamp source and a 4-f interferometer which re-images light scattered from the sample onto the detection plane. The system employs an imaging spectrometer at the detection plane to acquire depth resolved profiles from 252 adjacent spatial points without the need for any scanning. The limited spatial coherence of the light source requires the resolution of adjacent spatial points for the generation of depth information. Depth-resolved spectral information is recovered by performing a short-time Fourier transform on the detected spectra, similar to spectroscopic optical coherence tomography. Wavelength dependent variations in scattering intensity are analyzed as a function of depth to obtain information about the neoplastic transformation of the probed cells. Previous studies have demonstrated fLCI as an excellent technique for probing the scatterer morphology of simple phantoms and of in vitro cancer cell monolayers. We now seek to assess the ability of the new fLCI system to measure the health of subsurface tissue layers using the hamster cheek pouch model. Seven hamsters will have one cheek pouch treated with the known carcinogen DMBA. At the conclusion of the 24 week treatment period the animals will be anesthetized and the cheek pouches will be extracted. We will use the fLCI optical system to measure the neoplastic transformation of the in situ subsurface tissue layers in both the normal and DMBA-treated cheek pouches. Traditional histological analysis will be used to verify the fLCI measurements. We expect our results to establish the feasibility of fLCI to distinguish between healthy and dysplastic epithelial tissues in the hamster cheek pouch.

  5. Role of pHi, and proton transporters in oncogene-driven neoplastic transformation

    PubMed Central

    Reshkin, Stephan Joel; Greco, Maria Raffaella; Cardone, Rosa Angela

    2014-01-01

    The change of a normal, healthy cell to a transformed cell is the first step in the evolutionary arc of a cancer. While the role of oncogenes in this ‘passage’ is well known, the role of ion transporters in this critical step is less known and is fundamental to our understanding the early physiological processes of carcinogenesis. Cancer cells and tissues have an aberrant regulation of hydrogen ion dynamics leading to a reversal of the normal tissue intracellular to extracellular pH gradient (ΔpHi to ΔpHe). When this perturbation in pH dynamics occurs during carcinogenesis is less clear. Very early studies using the introduction of different oncogene proteins into cells observed a concordance between neoplastic transformation and a cytoplasmic alkalinization occurring concomitantly with a shift towards glycolysis in the presence of oxygen, i.e. ‘Warburg metabolism’. These processes may instigate a vicious cycle that drives later progression towards fully developed cancer where the reversed pH gradient becomes ever more pronounced. This review presents our understanding of the role of pH and the NHE1 in driving transformation, in determining the first appearance of the cancer ‘hallmark’ characteristics and how the use of pharmacological approaches targeting pH/NHE1 may open up new avenues for efficient treatments even during the first steps of cancer development. PMID:24493748

  6. A HUMAN BRONCHIAL EPITHELIAL CELL STRAIN WITH UNUSUAL IN VITRO GROWTH POTENTIAL WHICH UNDERGOES NEOPLASTIC TRANSFORMATION AFTER SV40 T ANTIGEN GENE TRANSFECTION

    EPA Science Inventory

    Bronchial epithelial cells were cultured from an individual with no evidence of malignant disease. hese cells, designated HB56B, had greatly extended in vitro life-span, being able to undergo 50 passages and 200 population doubling in contrast to the usual 3 to 4 passages and 20 ...

  7. c-Myc dependent initiation of genomic instability during neoplastic transformation.

    PubMed

    Taylor, C; Jalava, A; Mai, S

    1997-01-01

    The dihydrofolate reductase (DHFR) gene is a target of c-Myc in genomic instability. The induced overexpression of c-Myc in cell lines is followed by the amplification and rearrangement of the DHFR gene. Furthermore, the constitutive upregulation of c-Myc protein coincides with genomic instability of the DHFR gene in lymphoid, non-lymphoid and in tumor lines. The amplification of the DHFR gene is locus-specific and independent of species origins. We have now addressed the question whether inducible deregulation of c-Myc is followed by DHFR gene amplification in vivo. We show that the DHFR gene is a target of c-Myc-dependent neoplasia in vivo and propose a role for genomic instability during the initiation of neoplastic transformation. PMID:9308243

  8. Exposure to airborne PM2.5 suppresses microRNA expression and deregulates target oncogenes that cause neoplastic transformation in NIH3T3 cells

    PubMed Central

    Cheng, Xinxin; Shao, Mingming; Wu, Chen; Wang, Suhan; Li, Hongmin; Wei, Lixuan; Gao, Yanning; Tan, Wen; Cheng, Shujun; Wu, Tangchun; Yu, Dianke; Lin, Dongxin

    2015-01-01

    Long-term exposure to airborne PM2.5 is associated with increased lung cancer risk but the underlying mechanism remains unclear. We characterized global microRNA and mRNA expression in human bronchial epithelial cells exposed to PM2.5 organic extract and integrally analyzed microRNA-mRNA interactions. Foci formation and xenograft tumorigenesis in mice with NIH3T3 cells expressing genes targeted by microRNAs were performed to explore the oncogenic potential of these genes. We also detected plasma levels of candidate microRNAs in subjects exposed to different levels of air PM2.5 and examined the aberrant expression of genes targeted by these microRNAs in human lung cancer. Under our experimental conditions, treatment of cells with PM2.5 extract resulted in downregulation of 138 microRNAs and aberrant expression of 13 mRNAs (11 upregulation and 2 downregulation). In silico and biochemical analyses suggested SLC30A1, SERPINB2 and AKR1C1, among the upregulated genes, as target for miR-182 and miR-185, respectively. Ectopic expression of each of these genes significantly enhanced foci formation in NIH3T3 cells. Following subcutaneous injection of these cells into nude mice, fibrosarcoma were formed from SLC30A1- or SERPINB2-expressing cells. Reduced plasma levels of miR-182 were detected in subjects exposed to high level of PM2.5 than in those exposed to low level of PM2.5 (P = 0.043). Similar results were seen for miR-185 although the difference was not statistically significant (P = 0.328). Increased expressions of SLC30A1, SERPINB2 and AKR1C1 were detected in human lung cancer. These results suggest that modulation of miR-182 and miR-185 and their target genes may contribute to lung carcinogenesis attributable to PM2.5 exposure. PMID:26338969

  9. Raman imaging of neoplastic cells in suspension

    NASA Astrophysics Data System (ADS)

    Creely, C. M.; Mercadal, S.; Volpe, G.; Soler, M.; Petrov, D. V.

    2006-08-01

    The combination of Raman spectroscopy and Optical Tweezers has been used to trap living cells and collect information about their biochemical state. Cells can continue living in such traps for periods of hours, allowing acquisition of time resolved Raman spectra. However no spatial information can be acquired as the cells continue to rotate and move in the single beam trap. Here we describe the development of Holographic Optical Tweezers (HOT) for the controlled movement of floating cells in order to construct their Raman images. Instead of a single trap, rapidly programmable multiple trapping points can be produced around the periphery of the cells to impede the rotational motion of the cell. By trapping and scanning the cell using HOT relative to a fixed Raman exciting laser, a point by point image of the cell can be constructed. We use an interactive program that permits us to position the trapping points relative to the live image feed we see from the microscope, using point and click. To demonstrate the possibilities of this technique images are shown of floating Jurkat cells.

  10. Analysis of the multistage process of neoplastic transformation of human fibroblasts

    SciTech Connect

    McCormick, J.J.

    1994-12-31

    Normal human cells in culture have never been neoplastically transformed by carcinogens. One explanation is that the life span of the cells is too short for them to acquire the necessary changes. To test this, we transfected diploid fibroblasts with a plasmid carrying v-myc gene and a selectable marker. A drug resistant clone expressing v-myc was passaged to the end of its life span. A few cells continued to proliferate and gave rise to a diploid, infinite life span that has normal growth control and in nontumorigenic. Analysis indicated that one more change, in addition to unregulated expression of v-myc, was involved in generating these cells. They spontaneously gave rise to a near-diploid strain with a stable karyotype of 34 chromosomes, including 2 markers. This strain, MSU-1.1, grows more rapidly, is less dependent on growth factors, but does not form large colonies in agar and is not tumorigenic. At least two additional changes were involved in generating this strain. To determine the number and kinds of additional changes required to transform MSU-1.1 cells to oncogenes in vectors engineering for overexpression, and selected for focus-formation. The focus-derived cells were growth factor independent, formed large colonies in agar, and produced sarcomas with a short latency. These malignant cells had acquired two additional changes, but no change in karyotype. Exposure of MSU-1.1 cells to carcinogens and selection for foci also yielded malignant cells. Those analyzed to date show loss of 1 or 2 more chromosomes and of p53 function.

  11. A Novel Role of E-Cadherin-Based Adherens Junctions in Neoplastic Cell Dissemination

    PubMed Central

    Gloushankova, Natalya A.

    2015-01-01

    Using confocal microscopy, we analyzed the behavior of IAR-6-1, IAR1170, and IAR1162 transformed epithelial cells seeded onto the confluent monolayer of normal IAR-2 epithelial cells. Live-cell imaging of neoplastic cells stably expressing EGFP and of normal epithelial cells stably expressing mKate2 showed that transformed cells retaining expression of E-cadherin were able to migrate over the IAR-2 epithelial monolayer and invade the monolayer. Transformed IAR cells invaded the IAR-2 monolayer at the boundaries between normal cells. Studying interactions of IAR-6-1 transformed cells stably expressing GFP-E-cadherin with the IAR-2 epithelial monolayer, we found that IAR-6-1 cells established E-cadherin-based adhesions with normal epithelial cells: dot-like dynamic E-cadherin-based adhesions in protrusions and large adherens junctions at the cell sides and rear. A comparative study of a panel of transformed IAR cells that differ by their ability to form E-cadherin-based AJs, either through loss of E-cadherin expression or through expression of a dominant negative E-cadherin mutant, demonstrated that E-cadherin-based AJs are key mediators of the interactions between neoplastic and normal epithelial cells. IAR-6-1DNE cells expressing a dominant-negative mutant form of E-cadherin with the mutation in the first extracellular domain practically lost the ability to adhere to IAR-2 cells and invade the IAR-2 epithelial monolayer. The ability of cancer cells to form E-cadherin-based AJs with the surrounding normal epithelial cells may play an important role in driving cancer cell dissemination in the body. PMID:26207916

  12. Guanidine Alkaloids from the Marine Sponge Monanchora pulchra Show Cytotoxic Properties and Prevent EGF-Induced Neoplastic Transformation in Vitro.

    PubMed

    Dyshlovoy, Sergey A; Tabakmakher, Kseniya M; Hauschild, Jessica; Shchekaleva, Regina K; Otte, Katharina; Guzii, Alla G; Makarieva, Tatyana N; Kudryashova, Ekaterina K; Fedorov, Sergey N; Shubina, Larisa K; Bokemeyer, Carsten; Honecker, Friedemann; Stonik, Valentin A; von Amsberg, Gunhild

    2016-01-01

    Guanidine alkaloids from sponges Monanchora spp. represent diverse bioactive compounds, however, the mechanisms underlying bioactivity are very poorly understood. Here, we report results of studies on cytotoxic action, the ability to inhibit EGF-induced neoplastic transformation, and the effects on MAPK/AP-1 signaling of eight rare guanidine alkaloids, recently isolated from the marine sponge Monanchora pulchra, namely: monanchocidin A (1), monanchocidin B (2), monanchomycalin C (3), ptilomycalin A (4), monanchomycalin B (5), normonanchocidin D (6), urupocidin A (7), and pulchranin A (8). All of the compounds induced cell cycle arrest (apart from 8) and programmed death of cancer cells. Ptilomycalin A-like compounds 1-6 activated JNK1/2 and ERK1/2, following AP-1 activation and caused p53-independent programmed cell death. Compound 7 induced p53-independent cell death without activation of AP-1 or caspase-3/7, and the observed JNK1/2 activation did not contribute to the cytotoxic effect of the compound. Alkaloid 8 induced JNK1/2 (but not ERK1/2) activation leading to p53-independent cell death and strong suppression of AP-1 activity. Alkaloids 1-4, 7, and 8 were able to inhibit the EGF-induced neoplastic transformation of JB6 P⁺ Cl41 cells. Our results suggest that investigated guanidine marine alkaloids hold potential to eliminate human cancer cells and prevent cancer cell formation and spreading. PMID:27428983

  13. Guanidine Alkaloids from the Marine Sponge Monanchora pulchra Show Cytotoxic Properties and Prevent EGF-Induced Neoplastic Transformation in Vitro

    PubMed Central

    Dyshlovoy, Sergey A.; Tabakmakher, Kseniya M.; Hauschild, Jessica; Shchekaleva, Regina K.; Otte, Katharina; Guzii, Alla G.; Makarieva, Tatyana N.; Kudryashova, Ekaterina K.; Fedorov, Sergey N.; Shubina, Larisa K.; Bokemeyer, Carsten; Honecker, Friedemann; Stonik, Valentin A.; von Amsberg, Gunhild

    2016-01-01

    Guanidine alkaloids from sponges Monanchora spp. represent diverse bioactive compounds, however, the mechanisms underlying bioactivity are very poorly understood. Here, we report results of studies on cytotoxic action, the ability to inhibit EGF-induced neoplastic transformation, and the effects on MAPK/AP-1 signaling of eight rare guanidine alkaloids, recently isolated from the marine sponge Monanchora pulchra, namely: monanchocidin A (1), monanchocidin B (2), monanchomycalin C (3), ptilomycalin A (4), monanchomycalin B (5), normonanchocidin D (6), urupocidin A (7), and pulchranin A (8). All of the compounds induced cell cycle arrest (apart from 8) and programmed death of cancer cells. Ptilomycalin A-like compounds 1–6 activated JNK1/2 and ERK1/2, following AP-1 activation and caused p53-independent programmed cell death. Compound 7 induced p53-independent cell death without activation of AP-1 or caspase-3/7, and the observed JNK1/2 activation did not contribute to the cytotoxic effect of the compound. Alkaloid 8 induced JNK1/2 (but not ERK1/2) activation leading to p53-independent cell death and strong suppression of AP-1 activity. Alkaloids 1–4, 7, and 8 were able to inhibit the EGF-induced neoplastic transformation of JB6 P+ Cl41 cells. Our results suggest that investigated guanidine marine alkaloids hold potential to eliminate human cancer cells and prevent cancer cell formation and spreading. PMID:27428983

  14. Organoids as Models for Neoplastic Transformation | Office of Cancer Genomics

    Cancer.gov

    Cancer models strive to recapitulate the incredible diversity inherent in human tumors. A key challenge in accurate tumor modeling lies in capturing the panoply of homo- and heterotypic cellular interactions within the context of a three-dimensional tissue microenvironment. To address this challenge, researchers have developed organotypic cancer models (organoids) that combine the 3D architecture of in vivo tissues with the experimental facility of 2D cell lines.

  15. Glyoxalase I drives epithelial-to-mesenchymal transition via argpyrimidine-modified Hsp70, miR-21 and SMAD signalling in human bronchial cells BEAS-2B chronically exposed to crystalline silica Min-U-Sil 5: Transformation into a neoplastic-like phenotype.

    PubMed

    Antognelli, Cinzia; Gambelunghe, Angela; Muzi, Giacomo; Talesa, Vincenzo Nicola

    2016-03-01

    Glyoxalase I (Glo1) is the main scavenging enzyme of methylglyoxal (MG), a potent precursor of advanced glycation end products (AGEs). AGEs are known to control multiple biological processes, including epithelial to mesenchymal transition (EMT), a multistep phenomenon associated with cell transformation, playing a major role in a variety of diseases, including cancer. Crystalline silica is a well-known occupational health hazard, responsible for a great number of human pulmonary diseases, such as silicosis. There is still much debate concerning the carcinogenic role of crystalline silica, mainly due to the lack of a causal demonstration between silica exposure and carcinogenesis. It has been suggested that EMT might play a role in crystalline silica-induced lung neoplastic transformation. The aim of this study was to investigate whether, and by means of which mechanism, the antiglycation defence Glo1 is involved in Min-U-Sil 5 (MS5) crystalline silica-induced EMT in BEAS-2B human bronchial epithelial cells chronically exposed, and whether this is associated with the beginning of a neoplastic-like transformation process. By using gene silencing/overexpression and scavenging/inhibitory agents, we demonstrated that MS5 induced hydrogen peroxide-mediated c-Jun-dependent Glo1 up-regulation which resulted in a decrease in the Argpyrimidine-modified Hsp70 protein level which triggered EMT in a novel mechanism involving miR-21 and SMAD signalling. The observed EMT was associated with a neoplastic-like phenotype. The results obtained provide a causal in vitro demonstration of the MS5 pro-carcinogenic transforming role and more importantly they provide new insights into the mechanisms involved in this process, thus opening new paths in research concerning the in vivo study of the carcinogenic potential of crystalline silica. PMID:26784015

  16. Inhibition of chemically-induced neoplastic transformation by a novel tetrasodium diphosphate astaxanthin derivative.

    PubMed

    Hix, Laura M; Frey, Dean A; McLaws, Mark D; Østerlie, Marianne; Lockwood, Samuel F; Bertram, John S

    2005-09-01

    Carotenoids have been implicated in numerous epidemiological studies as being protective against cancer at many sites, and their chemopreventive properties have been confirmed in laboratory studies. Astaxanthin (AST), primarily a carotenoid of marine origin, responsible for the pink coloration of salmon, shrimp and lobster, has received relatively little attention. As with other carotenoids, its highly lipophilic properties complicate delivery to model systems. To overcome this issue we have synthesized a novel tetrasodium diphosphate astaxanthin (pAST) derivative with aqueous dispersibility of 25.21 mg/ml. pAST was delivered to C3H/10T1/2 cells in an aqueous/ethanol solution and compared with non-esterified AST dissolved in tetrahydrofuran. We show pAST to (i) upregulate connexin 43 (Cx43) protein expression; (ii) increase the formation of Cx43 immunoreactive plaques; (iii) upregulate gap junctional intercellular communication (GJIC); and (iv) cause 100% inhibition of methylcholanthrene-induced neoplastic transformation at 10(-6) M. In all these assays, pAST was superior to non-esterified AST itself; in fact, pAST exceeded the potency of all other previously tested carotenoids in this model system. Cleavage of pAST to non-esterified (free) AST and uptake into cells was also verified by HPLC; however, levels of free AST were approximately 100-fold lower than in cells treated with AST itself, suggesting that pAST possesses intrinsic activity. The dual properties of water dispersibility (enabling parenteral administration in vivo) and increased potency should prove extremely useful in the future development of cancer chemopreventive agents. PMID:15888493

  17. The neoplastic potential of rat tracheal epithelial cell lines induced by dibenzo(a, i)pyrene and 1-nitropyrene

    SciTech Connect

    Xiang, M.; Ong, T. |; Nath, J.

    1997-10-01

    The rat tracheal epithelial (RTE) cell transformation system is an important short-term assay for respiratory carcinogenesis. In our laboratories, studies have been performed using this assay system to determine the carcinogenic potential of dibenzo(a,i)pyrene (DBP) and 1-nitropyrene (1-NP), two compounds commonly contaminating occupational and environmental settings. RTE cells were exposed in vivo to DBP or 1-NP by intertracheal instillation. RTE cells were then isolated and plated on a medium for determination of cloning and transformation frequencies. Cell lines established from transformed cells induced by DBP and 1-NP were analyzed for their neoplastic potential with the soft agar cloning and the athymic nude mouse tumorigenicity assays. Results showed that: (1) incidence of transformed foci in cultures treated with DBP or 1-NP in vivo was significantly higher than that in the control cultures; (2) 8 and 25 cell lines were established from 28 and 48 transformed foci induced by DBP and 1-NP, respectively; (3) 3 of 5 cell lines from DBP and 5 anchorage independent growth in soft agar; (4) some of the cell lines from DBP and 1-NP induced transformed foci formed tumors after cells were injected in athymic nude mice. These results indicate that in vivo exposure to DBP and 1-NP can induce RTE cell transformation and that transformed cells induced by DBP and 1-NP may have neoplastic potential.

  18. Different Roles of Negative and Positive Components of the Circadian Clock in Oncogene-induced Neoplastic Transformation.

    PubMed

    Katamune, Chiharu; Koyanagi, Satoru; Shiromizu, Shoya; Matsunaga, Naoya; Shimba, Shigeki; Shibata, Shigenobu; Ohdo, Shigehiro

    2016-05-13

    In mammals, circadian rhythms in physiological function are generated by a molecular oscillator driven by transcriptional-translational feedback loop consisting of negative and positive regulators. Disruption of this circadian clock machinery is thought to increase the risk of cancer development, but the potential contributions of each component of circadian clock to oncogenesis have been little explored. Here we reported that negative and positive transcriptional regulators of circadian feedback loop had different roles in oncogene-induced neoplastic transformation. Mouse embryonic fibroblasts prepared from animals deficient in negative circadian clock regulators, Period2 (Per2) or Cryptochrome1/2 (Cry1/2), were prone to transformation induced by co-expression of H-ras(V12) and SV40 large T antigen (SV40LT). In contrast, mouse embryonic fibroblasts prepared from mice deficient in positive circadian clock regulators, Bmal1 or Clock, showed resistance to oncogene-induced transformation. In Per2 mutant and Cry1/2-null cells, the introduction of oncogenes induced expression of ATF4, a potent repressor of cell senescence-associated proteins p16INK4a and p19ARF. Elevated levels of ATF4 were sufficient to suppress expression of these proteins and drive oncogenic transformation. Conversely, in Bmal1-null and Clock mutant cells, the expression of ATF4 was not induced by oncogene introduction, which allowed constitutive expression of p16INK4a and p19ARF triggering cellular senescence. Although genetic ablation of either negative or positive transcriptional regulators of the circadian clock leads to disrupted rhythms in physiological functions, our findings define their different contributions to neoplastic cellular transformation. PMID:26961881

  19. Micro-Raman spectroscopy Detects Individual Neoplastic and Normal Hematopoietic Cells

    SciTech Connect

    Chan, J W; Taylor, D; Zwerdling, T; Lane, S M; Ihara, K; Huser, T

    2005-01-18

    Current methods for identifying neoplastic cells and discerning them from their normal counterparts are often non-specific, slow, biologically perturbing, or a combination, thereof. Here, we show that single-cell micro-Raman spectroscopy averts these shortcomings and can be used to discriminate between unfixed normal human lymphocytes and transformed Jurkat and Raji lymphocyte cell lines based on their biomolecular Raman signatures. We demonstrate that single-cell Raman spectra provide a highly reproducible biomolecular fingerprint of each cell type. Characteristic peaks, mostly due to different DNA and protein concentrations, allow for discerning normal lymphocytes from transformed lymphocytes with high confidence (p << 0.05). Spectra are also compared and analyzed by principal component analysis (PCA) to demonstrate that normal and transformed cells form distinct clusters that can be defined using just two principal components. The method is shown to have a sensitivity of 98.3% for cancer detection, with 97.2% of the cells being correctly classified as belonging to the normal or transformed type. These results demonstrate the potential application of confocal micro-Raman spectroscopy as a clinical tool for single cell cancer detection based on intrinsic biomolecular signatures, therefore eliminating the need for exogenous fluorescent labeling.

  20. Cell culture systems to study glial transformation

    SciTech Connect

    Bressler, J.P.; Cole, R.; de Vellis, J.

    1980-01-01

    The transformation of two different types of glial cells has been studied using an in vivo-/in vitro model and a complete in vitro model. The purpose of the study and to define in vitro model systems is to study the the neoplastic transformation of pure populations of glial cells. Data are presented to demonstrate that the transformed cells are glial and tumorigenic. (ACR)

  1. Cell cannibalism by malignant neoplastic cells: three cases in dogs and a literature review.

    PubMed

    Meléndez-Lazo, Antonio; Cazzini, Paola; Camus, Melinda; Doria-Torra, Georgina; Marco Valle, Alberto Jesús; Solano-Gallego, Laia; Pastor, Josep

    2015-06-01

    Cell cannibalism refers to the engulfment of cells by nonprofessional phagocytic cells. Studies in human medicine have demonstrated a relationship between the presence of cell cannibalism by neoplastic cells and a poor outcome, and have shown a positive correlation with the presence of metastasis at the time of diagnosis. The biologic significance of cell cannibalism is unknown, but it is proposed that it may represent a novel mechanism of tumor immune evasion as a survival strategy in cases of unfavorable microenvironmental conditions. This report describes clinical and morphologic features of 3 cases of dogs with malignant neoplasia in which the presence of cellular cannibalism was observed in cytologic and histologic specimens. In the 1(st) case, a dog with a primary tonsillar squamous cell carcinoma with metastasis to retropharyngeal lymph nodes had neoplastic epithelial cells engulfing neutrophils noted in cytologic examination of the lymph nodes. In the 2(nd) case, neoplastic epithelial cells were seen engulfing each other in fine-needle aspirates from a primary mammary carcinoma with lung metastasis. In the 3(rd) case, poorly differentiated neoplastic mast cells from a recurrent, metastatic grade III mast cell tumor were observed cannibalizing eosinophils. A brief review of the literature describing known cell-into-cell relationships and the possible biologic significance and mechanisms involved in this phenomenon is provided. The relationship between cell cannibalism and distant metastasis should be explored in further studies, as it may prove to be a criterion of malignancy, as it is proposed in human medicine. PMID:25688652

  2. Role of Peroxisome Proliferator-Activated Receptor γ and Its Ligands in Non-Neoplastic and Neoplastic Human Urothelial Cells

    PubMed Central

    Nakashiro, Koh-ichi; Hayashi, Yoshiki; Kita, Akiyo; Tamatani, Tetsuya; Chlenski, Alexandre; Usuda, Nobuteru; Hattori, Kazunori; Reddy, Janardan K.; Oyasu, Ryoichi

    2001-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the nuclear receptor superfamily of ligand-activated transcription factors and is expressed in several types of tissue. Although PPARγ reportedly is expressed in normal urothelium, its function is unknown. We examined the expression of PPARγ in normal urothelium and bladder cancer in an attempt to assess its functional role. Immunohistochemical staining revealed normal urothelium to express PPARγ uniformly. All low-grade carcinomas were positive either diffusely or focally, whereas staining was primarily focal or absent in high-grade carcinomas. A nonneoplastic urothelial cell line (1T-1), a low-grade (RT4) carcinoma cell line, and two high-grade (T24 and 253J) carcinoma cell lines in culture expressed PPARγ mRNA and protein. Luciferase assay indicated that PPARγ was functional. PPARγ ligands (15-deoxy-Δ12,14-prostaglandin J2, troglitazone and pioglitazone) suppressed the growth of nonneoplastic and neoplastic urothelial cells in a dose-dependent manner. However, neoplastic cells were more resistant than were nonneoplastic cells. Failure to express PPARγ or ineffective transcriptional activity may be some of the mechanisms responsible for resistance to the inhibitory action of PPARγ ligands. PMID:11485917

  3. Terminal deoxynucleotidyltransferase distribution in neoplastic and hematopoietic cells.

    PubMed

    Greenwood, M F; Coleman, M S; Hutton, J J; Lampkin, B; Krill, C; Bolium, F J; Holland, P

    1977-05-01

    In the present study, terminal deoxynucleotidyltransferase was examined in the peripheral blood and (or) bone marrow of 115 children with a variety of neoplastic, hematologic, and other unrelated disorders. Terminal deoxynucleotidyltransferase activity was present at 4.08+/-0.74 U/108 cells in 23 morphologicall normal bone marrow samples from childhood controls. Terminal transferase was present at greater than 23 U/108 nucleated cells and at greater than31 U/108 blasts in the bone marrow of all children with acute lymphoblastic leukemia studied at initial diagnosis and at disease relapse. Terminal deoxynucleotidyltransferase was detectable at low levels, less than 7.5 U/108 cells, in all remission marrow smaples. Bone marrow terminal transferase activity was markedly elevated in all untreated acute lymphoblastic leukemia patients, whereas low levels which were difficult to interpret were present in the peripheral blood samples of two patients at diagnosis and six patients at relapse who had low absolute lymphoblast counts. Because of greater variation in the lymphoblast content of peripheral blood, bone marrow assays are more reliable in detecting disease activity. Marrow terminal deoxynucleotidyltransferase values obtained during the active phase of acute lymphoblastic leukemia were significantly greater than those found in other types of leukemia, bone marrow malignancies, and hematologic disorders. Terminal transferase determinations in blast cells of two patients with leukemic conversion of non-Hodgkin's lymphoma and in tumor cells from one patient with Burkitt's lymphoma were within the control range. These dat further define the usefulness of terminal deoxynucleotidyltrnasferase assay in the differentiation and classication of hematologic malignancies. PMID:265945

  4. Cancer: The Transforming Power of Cell Competition.

    PubMed

    Gil, Jesus; Rodriguez, Tristan

    2016-02-22

    The tumour-host microenvironment plays key roles in cancer, but the mechanisms involved are not fully understood. Two new studies provide insight into this problem by showing that through cell competition, a fitness-sensing process that usually eliminates defective cells, pre-cancerous lesions signal the death of surrounding tissue that in turn promotes their neoplastic transformation. PMID:26906487

  5. Immunohistological recognition of cyclin D1 expression by non-lymphoid cells among lymphoid neoplastic cells.

    PubMed

    Abdulla, Zainalabideen; Turley, Helen; Gatter, Kevin; Pezzella, Francesco

    2014-03-01

    Cyclin D1 immunostaining of non-neoplastic cells has been a source of diagnostic confusion especially in lymphoproliferative lesions. This study has reviewed these in two hundred and thirty-one haematopathological samples stained for cyclin D1. Most cases were formalin-fixed except for a few bone marrow trephines, which were B-5 fixed, and EDTA decalcified. Overall, 94% (216/231) of cases showed one or more types of non-neoplastic cells expressing Cyclin D1 of variable intensity. Endothelial cells and histiocytes were the most commonly identified Cyclin D1 positive cells being positive in 92% (214/231) of cases. Other normal cell types identified included fat cells, stromal fibroblasts, glial cells, spermatocytes, smooth muscle cells, osteoblasts and where present epithelial cells. Many normal cell types can express cyclinD1. Knowledge of these is useful to prevent misinterpretation of cyclin D1 positive tumours. PMID:23758159

  6. Immunohistochemical characterization of neoplastic cells of breast origin

    PubMed Central

    2012-01-01

    Background After skin cancer, breast cancer is the most common malignancy in women. Tumors of unknown origin account for 5-15% of malignant neoplasms, with 1.5% being breast cancer. An immunohistochemical panel with conventional and newer markers, such as mammaglobin, was selected for the detection of neoplastic cells of breast origin. The specific objectives are: 1) to determine the sensitivity and specificity of the panel, with a special emphasis on the inclusion of the mammaglobin marker, and 2) to compare immunohistochemistry performed on whole tissue sections and on Tissue Micro-Array. Methods Twenty-nine metastatic breast tumors were included and assumed as tumors of unknown origin. Other 48 biopsies of diverse tissues were selected and assumed as negative controls. Tissue Micro-Array was performed. Immunohistochemistry for mammaglobin, gross cystic disease fluid protein-15, estrogen receptor, progesterone receptor and cytokeratin 7 was done. Results Mammaglobin positive staining was observed in 10/29 cases, in 13/29 cases for gross cystic disease fluid protein-15, in 20/29 cases for estrogen receptor, in 9/29 cases for progesterone receptor, and in 25/29 cases for cytokeratin 7. Among the negative controls, mammaglobin was positive in 2/48, and gross cystic disease fluid protein-15 in 4/48. Conclusions The inclusion of MAG antibody in the immunohistochemical panel for the detection of tumors of unknown origin contributed to the detection of metastasis of breast cancer. The diagnostic strategy with the highest positive predictive value (88%) included hormone receptors and mammaglobin in serial manner. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1366310812718988 PMID:22726568

  7. Neoplastic human embryonic stem cells as a model of radiation resistance of human cancer stem cells

    PubMed Central

    Dingwall, Steve; Lee, Jung Bok; Guezguez, Borhane; Fiebig, Aline; McNicol, Jamie; Boreham, Douglas; Collins, Tony J.; Bhatia, Mick

    2015-01-01

    Studies have implicated that a small sub-population of cells within a tumour, termed cancer stem cells (CSCs), have an enhanced capacity for tumour formation in multiple cancers and may be responsible for recurrence of the disease after treatment, including radiation. Although comparisons have been made between CSCs and bulk-tumour, the more important comparison with respect to therapy is between tumour-sustaining CSC versus normal stem cells that maintain the healthy tissue. However, the absence of normal known counterparts for many CSCs has made it difficult to compare the radiation responses of CSCs with the normal stem cells required for post-radiotherapy tissue regeneration and the maintenance of tissue homeostasis. Here we demonstrate that transformed human embryonic stem cells (t-hESCs), showing features of neoplastic progression produce tumours resistant to radiation relative to their normal counterpart upon injection into immune compromised mice. We reveal that t-hESCs have a reduced capacity for radiation induced cell death via apoptosis and exhibit altered cell cycle arrest relative to hESCs in vitro. t-hESCs have an increased expression of BclXL in comparison to their normal counterparts and re-sensitization of t-hESCs to radiation upon addition of BH3-only mimetic ABT737, suggesting that overexpression of BclXL underpins t-hESC radiation insensitivity. Using this novel discovery platform to investigate radiation resistance in human CSCs, our study indicates that chemotherapy targeting Bcl2-family members may prove to be an adjuvant to radiotherapy capable of targeting CSCs. PMID:26082437

  8. Neoplastic transformation and tumorigenesis associated with overexpression of imup-1 and imup-2 genes in cultured NIH/3T3 mouse fibroblasts

    SciTech Connect

    Ryoo, Zae Young . E-mail: jaewoong64@hanmail.net; Jung, Boo Kyoung; Lee, Sang Ryeul; Kim, Myoung Ok; Kim, Sung Hyun; Kim, Hyo Jin; Ahn, Jung Yong; Lee, Tae-Hoon; Cho, Youl Hee; Park, Jae Hak; Kim, Jin Kyeoung

    2006-10-27

    Immortalization-upregulated protein 1 (IMUP-1) and immortalization-upregulated protein 2 (IMUP-2) genes have been recently cloned and are known to be involved in SV40-mediated immortalization. IMUP-1 and IMUP-2 genes were strongly expressed in various cancer cell lines and tumors, suggesting the possibility that they might be involved in tumorigenicity. To directly elucidate the functional role of IMUP-1 and IMUP-2 on neoplastic transformation and tumorigenicity, we stably transfected IMUP-1 and IMUP-2 into NIH/3T3 mouse fibroblast cells. Cellular characteristics of the neoplastic transformation were assessed by transformation foci, growth in soft agar, and tumor development in nude mice. We found that IMUP-1 and IMUP-2 overexpressing cells showed altered growth properties, anchorage-independent growth in soft agar and inducing tumor in nude mice. Furthermore, IMUP-1 and IMUP-2 transformants proliferated in reduced serum and shortened cell cycle. These results suggest that ectopic overexpression of IMUP-1 and IMUP-2 may play an important role in acquiring a transformed phenotype, tumorigenicity in vivo, and be related to cellular proliferation.

  9. Mechanisms underlying the adaptive response against spontaneous neoplastic transformation induced by low doses of low LET radiation - Final Technical Report

    SciTech Connect

    John Leslie Redpath

    2007-01-17

    The objective of the research was to examine mechanisms underlying the suppressive effects of low doses (<10 cGy) of low-LET radiation on the endpoint of neoplastic transformation in vitro. The findings indicated a role for upregulation of DNA repair but not of antioxidants.

  10. Metastasis suppressors Nm23H1 and Nm23H2 differentially regulate neoplastic transformation and tumorigenesis.

    PubMed

    Tong, Yao; Yung, Lisa Y; Wong, Yung H

    2015-06-01

    Nm23H1 and H2 are prototypical metastasis suppressors with diverse functions, but recent studies suggest that they may also regulate tumorigenesis. Here, we employed both cellular and in vivo assays to examine the effect of Nm23H1 and H2 on tumorigenesis induced by oncogenic Ras and/or p53 deficiency. Co-expression of Nm23H1 but not H2 in NIH3T3 cells effectively suppressed neoplastic transformation and tumorigenesis induced by the oncogenic H-Ras G12V mutant. Overexpression of Nm23H1 but not H2 also inhibited tumorigenesis by human cervical cancer HeLa cells with p53 deficiency. However, in human non-small-cell lung carcinoma H1299 cells harboring N-Ras Q61K oncogenic mutation and p53 deletion, overexpression of Nm23H1 did not affect tumorigenesis in nude mice assays, while overexpression of Nm23H2 enhanced tumor growth with elevated expression of the c-Myc proto-oncogene. Collectively, these results suggest that Nm23H1 and H2 have differential abilities to modulate tumorigenesis. PMID:25748386

  11. Immunohistochemical expression of SOX9 protein in immature, mature, and neoplastic canine Sertoli cells.

    PubMed

    Banco, Barbara; Palmieri, Chiara; Sironi, Giuseppe; Fantinato, Eleonora; Veronesi, Maria C; Groppetti, Debora; Giudice, Chiara; Martignoni, Benedetta; Grieco, Valeria

    2016-05-01

    Sex-determining region Y box9 gene (SOX9) protein plays a pivotal role in male sexual development. It regulates the transcription of the anti-Müllerian hormone gene promoting development of testis cords, multiplication, and maturation of Sertoli cells (SCs) and maintenance of spermatogenesis in adult testis. The immunohistochemical expression of SOX9 in normal testes has been reported in humans, mice, and rats. The present study aimed to investigate the expression of SOX9 in canine SCs during testicular maturation and neoplastic transformation. Canine testicular samples derived from three fetuses, four newborns, four prepubertal puppies, five adult dogs, 31 Sertoli cell tumors (SCTs) (one metastasizing), and five Leydig cell tumors (LCTs) were selected from departmental archive and tested immunohistochemically with a polyclonal antibody against SOX9 (1:150). All SCs from fetal, neonatal, and adult testes had a strong and exclusively nuclear labeling for SOX9. In SCs from prepubertal testes, SOX9 staining was highly variable with one negative sample (one of four), two samples with exclusively nuclear staining (two of four), and one with both nuclear and cytoplasmic labeling (one of four). Leydig cells (LCs) and LCTs were always negative. All 31 SCTs were positive for SOX9. The expression of SOX9 was nuclear, nuclear and cytoplasmic, and exclusively cytoplasmic in 18 of 31, 11 of 31, and two of 31 SCTs, respectively. This first report on the immunohistochemical expression of SOX9 in canine testes reports that in normal SCs from fetal, neonatal, and adult testes SOX9 labeled the nucleus, as in humans and laboratory animals. The cytoplasmic labeling observed in one prepubertal pairs of testes and in 11 SCTs could reflect SC immaturity or dedifferentiation, paralleling results observed in rat testes. The expression of SOX9 in SCs and SCTs and its absence in LCs and LCTs suggests that SOX9 is a reliable diagnostic marker for both normal and neoplastic SCs. PMID:26777558

  12. Focus formation and neoplastic transformation by herpes simplex virus type 2 inactivated intracellularly by 5-bromo-2'-deoxyuridine and near UV light

    SciTech Connect

    Manak, M.M.; Aurelian, L.; Ts'o, P.O.

    1981-01-01

    The induction of focus formation in low serum and of neoplastic transformation of Syrian hamster embryo cells was examined after the expression of herpes simplex virus type 2 functions. Syrian hamster embryo cells infected at a high multiplicity (5 PFU/cell) with 5-bromo-2'-deoxyuridine-labeled herpes simplex virus type 2 (11% substitution of thymidine residues) were exposed to near UV light irradiation at various times postinfection. This procedure specifically inactivated the viral genome, while having little, if any, effect on the unlabeled cellular DNA. Focus formation in 1% serum and neoplastic transformation were observed in cells exposed to virus inactivated before infection, but the frequency was enhanced (15- to 27-fold) in cells in which the virus was inactivated at 4 to 8 h postinfection. Only 2 to 45 independently isolated foci were capable of establishing tumorigenic lines. The established lines exhibited phenotypic alterations characteristic of a transformed state, including reduced serum requirement, anchorage-independent growth, and tumorigenicity. They retained viral DNA sequences and, even at relatively late passage, expressed viral antigens, including ICP 10.

  13. Radiogenic cell transformation and carcinogenesis

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Mei, M.; Durante, M.; Craise, L. M.

    1995-01-01

    Radiation carcinogenesis is one of the major biological effects considered important in the risk assessment for space travel. Various biological model systems, including both cultured cells and animals, have been found useful for studying the carcinogenic effects of space radiations, which consist of energetic electrons, protons and heavy ions. The development of techniques for studying neoplastic cell transformation in culture has made it possible to examine the cellular and molecular mechanisms of radiation carcinogenesis. Cultured cell systems are thus complementary to animal models. Many investigators have determined the oncogenic effects of ionizing and nonionizing radiation in cultured mammalian cells. One of the cell systems used most often for radiation transformation studies is mouse embryonic cells (C3H10T1/2), which are easy to culture and give good quantitative dose-response curves. Relative biological effectiveness (RBE) for heavy ions with various energies and linear energy transfer (LET) have been obtained with this cell system. Similar RBE and LET relationship was observed by investigators for other cell systems. In addition to RBE measurements, fundamental questions on repair of sub- and potential oncogenic lesions, direct and indirect effect, primary target and lesion, the importance of cell-cell interaction and the role of oncogenes and tumor suppressor genes in radiogenic carcinogenesis have been studied, and interesting results have been found. Recently several human epithelial cell systems have been developed, and ionizing radiation have been shown to transform these cells. Oncogenic transformation of these cells, however, requires a long expression time and/or multiple radiation exposures. Limited experimental data indicate high-LET heavy ions can be more effective than low-LET radiation in inducing cell transformation. Cytogenetic and molecular analyses can be performed with cloned transformants to provide insights into basic genetic

  14. Mechanisms underlying the adaptive response against spontaneous neoplastic transformation induced by low doses of low LET radiation, Final Technical Report

    SciTech Connect

    J. Leslie Redpath, Ph.D.

    2006-01-23

    The goal of this project was to investigate mechanisms underlying the adaptive response seen following exposure of HeLa x skin fibroblast human hybrid cells to low doses of low LET radiation. It was proposed to investigate the contributions of three possible mechanisms. These were: 1. Upregulation of cellular antioxidant status. 2. Upregulation of DNA repair. 3. Upregulation of gap junction intracellular communication. We have completed the study of the role of upregulation of reduced glutathione (GSH) as a possible mechanism underlying our observed suppression of transformation frequency at low radiation doses. We have also completed our study of the possible role of upregulation of DNA repair in the observed adaptive response against neoplastic transformation. We concluded that upregulation of DNA repair may be more important in modulating transformation at the higher dose. A manuscript describing the above studies has been submitted published in Carcinogenesis 24:1961-1965, 2003. Finally, we have completed two studies of the possible role of upregulation of gap junction intercellular communication (GJIC) in modulating transformation frequency at low doses of low LET radiation. This research was published in Radiation Research 162:646-654, 2004. In order to optimize the opportunity for GJIC, we then carried out a study where confluent cultures were irradiated. The results indicated, that while the degree of low dose suppression was somewhat reduced compared to that seen for subconfluent cultures, it was not completely absent. This research has been submitted for publication. Our research program was of sufficient interest to generate two invited reviews, and five invited presentations.

  15. The absorption of ultraviolet light by cell nuclei. A technique for identifying neoplastic change

    SciTech Connect

    Baisden, C.R.; Booker, D.; Wright, R.D. )

    1989-11-01

    A technique for measuring the absorption of 260-nm ultraviolet light by cell nuclei is described. The results of such measurements of normal thyroid epithelial cells and benign and malignant thyroid neoplastic cells demonstrate a progressive increase in absorbance that correlates with the histologic appearance of neoplasia. The possible theoretic basis for this phenomenon is explored. The increased nuclear absorbance observed in neoplastic cells is hypothesized to result from the disruption of hydrogen bonds between the DNA base pairs, which allows unwinding of the double helix and loss of the normal control of mitosis.

  16. Human bladder carcinoma cell lines as indicators of oncogenic change relevant to urothelial neoplastic progression.

    PubMed Central

    Rieger, K. M.; Little, A. F.; Swart, J. M.; Kastrinakis, W. V.; Fitzgerald, J. M.; Hess, D. T.; Libertino, J. A.; Summerhayes, I. C.

    1995-01-01

    Analysis of human tumour-derived cell lines has previously resulted in the identification of novel transformation-related elements and provided a useful tool for functional studies of different genes. To establish the utility of such cell lines as indicators of change relevant to urothelial cancer, we have characterised the expression of five genes (p53, MDM2, Rb, E-cadherin, APC) within a panel of human bladder carcinoma cell lines. Using single-strand conformation polymorphism (SSCP) and direct sequencing, p53 mutations were identified in 7/15 (47%) cell lines reflecting events reported in bladder tumours. Immunohistochemical analysis of p53 in cultured cells and in paraffin-embedded sections of xenografts from the cell line panel revealed discordant results. An absence of p53 nuclear staining was associated with an exon 5 mutation in EJ and with multiple p53 mutations found in J82. Two cell lines positive for p53 staining in the absence of detectable mutation displayed overexpression of MDM2 (PSI, HT1197) in Western blot analysis. Loss or aberrant Rb expression was recorded in 5/15 (TCCSUP, SCaBER, 5637, HT1376, J82) cell lines. Absence of E-cadherin was recorded in 5/15 cell lines (TCCSUP, EJ, KK47, UM-UC-3, J82) with loss of alpha-catenin in immunoprecipitated E-cadherin complexes of CUBIII. Western blot analysis of APC revealed a truncated protein in 1/15 (CUBIII) cell lines. The characterisation of oncogenic events within this panel of human bladder carcinoma cell lines establishes a representation of change observed in bladder tumours and better defines the genotypic background in these experimental human cell models of neoplastic progression. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7669581

  17. Cell surface oligosaccharide modulation during differentiation: VI. The effect of biomodulation on the senescent and neoplastic cell phenotype.

    PubMed

    Mann, P L; Busse, S C; Griffey, R H; Laubscher, K

    1992-01-01

    These investigations test the hypothesis developed previously, that there are biomolecules which control and integrate cellular differentiation. Our specific interest in cellular differentiation lies in the area of what we refer to as basal or primitive cellular differentiation mechanisms. These mechanisms are common to all cells, and are required for simple recognition and growth regulation. We have investigated two models, the IMR-90 human fetal lung fibroblast model as a representative of normal growth control, and the CG model, canine glioma cells, a transplantable growth transformed cell line. These two models represent normal, and aberrant cellular differentiation control. In previous studies we have shown that the arrangement of the cell surface oligosaccharide structure on these cell types are predictive of phenotypic transition. We have developed, and partially characterized a series of BIOMODULATORS (BM) which delay the onset of display of neoplastic cells. Three classes of BIOMODULATOR have been explored; (1) a large molecular weight natural product (25-35 kDa), PokeWeed Mitogen (PWM); (2) a small molecular weight natural product (500 Da) Cellular Activator and Differentiator (CAD) and a number of natural and synthetic analogs; and (3) an indolizidine alkaloid natural product, Swainsonine (Sw) which has a known cellular target (oligosaccharide biosynthesis). Preliminary data is presented which structurally links some of these BIOMODULATORS in terms of their effective stereochemistry. These BIOMODULATORS, when used before PDL 38, prevent the cell surface oligosaccharide display changes typical of morphological senescence and delay their onset to PDL 100 or more. These BIOMODULATORS also appear to have regulatory effects on the neoplastic cell models. This re-regulation results in increases in generation time and an increase in the ability of these cells to be recognized by cytotoxic lymphocytes. Proton NMR linewidth measurements of the fraction of 'bound

  18. Evaluation of NK and LAK cell activities in neoplastic patients during treatment with morphine.

    PubMed

    Provinciali, M; Di Stefano, G; Raffaeli, W; Pari, G; Desiderio, F; Fabris, N

    1991-07-01

    The cytotoxic activity of Natural Killer (NK) and Lymphokine Activated Killer (LAK) cells in neoplastic patients with or without antalgic treatment was studied. NK cell activity was found reduced in untreated neoplastic patients when compared to healthy subjects. The atalgic treatment with morphine (orally or intrathecally administered) was able to significantly reduce the mean values of NK cell activity found in cancer patients. In three patients the cytotoxicity of NK cells significantly decreased during transfer from oral to intrathecal administration of morphine. In contrast to the NK cell function, the development of LAK cell activity significantly increased in neoplastic patients when compared to healthy controls. Further increments were obtained during treatment with morphine. The oral treatment with morphine was able to determine a higher induction of LAK cells than the intrathecal administration of the drug. Besides providing new knowledge on the effect of morphine on immune system our findings suggest that, in order to include neoplastic patients in clinical trials of adoptive immunotherapy with LAK cells and interleukin-2 (IL-2), the antalgic therapy with oral administration of morphine may represent a better solution than the intrathecal administration of the drug. PMID:1774133

  19. Point Mutations in c-Myc Uncouple Neoplastic Transformation from Multiple Other Phenotypes in Rat Fibroblasts

    PubMed Central

    Graves, J. Anthony; Rothermund, Kristi; Wang, Tao; Qian, Wei; Van Houten, Bennett; Prochownik, Edward V.

    2010-01-01

    Deregulation of c-Myc (Myc) occurs in many cancers. In addition to transforming various cell types, Myc also influences additional transformation-associated cellular phenotypes including proliferation, survival, genomic instability, reactive oxygen species production, and metabolism. Although Myc is wild type in most cancers (wtMyc), it occasionally acquires point mutations in certain lymphomas. Some of these mutations confer a survival advantage despite partially attenuating proliferation and transformation. Here, we have evaluated four naturally-occurring or synthetic point mutations of Myc for their ability to affect these phenotypes, as well as to promote genomic instability, to generate reactive oxygen species and to up-regulate aerobic glycolysis and oxidative phosphorylation. Our findings indicate that many of these phenotypes are genetically and functionally independent of one another and are not necessary for transformation. Specifically, the higher rate of glucose metabolism known to be associated with wtMyc deregulation was found to be independent of transformation. One mutation (Q131R) was greatly impaired for nearly all of the studied Myc phenotypes, yet was able to retain some ability to transform. These findings indicate that, while the Myc phenotypes examined here make additive contributions to transformation, none, with the possible exception of increased reliance on extracellular glutamine for survival, are necessary for achieving this state. PMID:21060841

  20. Generation and Quantitative Analysis of Pulsed Low Frequency Ultrasound to Determine the Sonic Sensitivity of Untreated and Treated Neoplastic Cells

    PubMed Central

    Trendowski, Matthew; Christen, Timothy D.; Zoino, Joseph N.; Acquafondata, Christopher; Fondy, Thomas P.

    2015-01-01

    Low frequency ultrasound in the 20 to 60 kHz range is a novel physical modality by which to induce selective cell lysis and death in neoplastic cells. In addition, this method can be used in combination with specialized agents known as sonosensitizers to increase the extent of preferential damage exerted by ultrasound against neoplastic cells, an approach referred to as sonodynamic therapy (SDT). The methodology for generating and applying low frequency ultrasound in a preclinical in vitro setting is presented to demonstrate that reproducible cell destruction can be attained in order to examine and compare the effects of sonication on neoplastic and normal cells. This offers a means by which to reliably sonicate neoplastic cells at a level of consistency required for preclinical therapeutic assessment. In addition, the effects of cholesterol-depleting and cytoskeletal-directed agents on potentiating ultrasonic sensitivity in neoplastic cells are discussed in order to elaborate on mechanisms of action conducive to sonochemotherapeutic approaches. PMID:26274053

  1. Seminal plasma induces the expression of IL-1α in normal and neoplastic cervical cells via EP2/EGFR/PI3K/AKT pathway

    PubMed Central

    2014-01-01

    Background Cervical cancer is a chronic inflammatory disease of multifactorial etiology usually presenting in sexually active women. Exposure of neoplastic cervical epithelial cells to seminal plasma (SP) has been shown to promote the growth of cancer cells in vitro and tumors in vivo by inducing the expression of inflammatory mediators including pro-inflammatory cytokines. IL-1α is a pleotropic pro-inflammatory cytokine induced in several human cancers and has been associated with virulent tumor phenotype and poorer prognosis. Here we investigated the expression of IL-1α in cervical cancer, the role of SP in the regulation of IL-1α in neoplastic cervical epithelial cells and the molecular mechanism underlying this regulation. Methods and results Real-time quantitative RT-PCR confirmed the elevated expression of IL-1α mRNA in cervical squamous cell carcinoma and adenocarcinoma tissue explants, compared with normal cervix. Using immunohistochemistry, IL-1α was localized to the neoplastically transformed squamous, columnar and glandular epithelium in all cases of squamous cell carcinoma and adenocarcinomas explants studied. We found that SP induced the expression of IL-α in both normal and neoplastic cervical tissue explants. Employing HeLa (adenocarcinoma) cell line as a model system we identified PGE2 and EGF as possible ligands responsible for SP-mediated induction of IL-1α in these neoplastic cells. In addition, we showed that SP activates EP2/EGFR/PI3kinase-Akt signaling to induce IL-1α mRNA and protein expression. Furthermore, we demonstrate that in normal cervical tissue explants the induction of IL-1α by SP is via the activation of EP2/EGFR/PI3 kinase-Akt signaling. Conclusion SP-mediated induction of IL-1α in normal and neoplastic cervical epithelial cells suggests that SP may promote cervical inflammation as well as progression of cervical cancer in sexually active women. PMID:25237386

  2. Prognostic significance of neoplastic cell proliferation parameters in human haematological malignancies.

    PubMed

    Kotelnikov, V M

    1990-01-01

    High percentage of neoplastic cells in S, G2 and M phases of cell cycle is unfavourable prognostic sign in human haematological malignancies. In chronic leukaemias (CML and CLL) it is true for peripheral blood leukaemic cells, in non-Hodgkin lymphomas--for lymph node cells, in multiple myeloma--for bone marrow plasma cells. In acute leukaemia results are controversial: some authors found a correlation between proliferation parameters of bone marrow blast cells while others did not. These parameters correlate positively with the rate of complete remission and negatively with its duration. It is concluded that proliferation parameters of neoplastic cells may be used for individual prognosis in patients with haematological tumours especially in combination with other biological and clinical prognostic markers. PMID:1703108

  3. Pivotal role of pervasive neoplastic and stromal cells reprogramming in circulating tumor cells dissemination and metastatic colonization.

    PubMed

    Meseure, Didier; Drak Alsibai, Kinan; Nicolas, Andre

    2014-12-01

    Reciprocal interactions between neoplastic cells and their microenvironment are crucial events in carcinogenesis and tumor progression. Pervasive stromal reprogramming and remodeling that transform a normal to a tumorigenic microenvironment modify numerous stromal cells functions, status redox, oxidative stress, pH, ECM stiffness and energy metabolism. These environmental factors allow selection of more aggressive cancer cells that develop important adaptive strategies. Subpopulations of cancer cells acquire new properties associating plasticity, stem-like phenotype, unfolded protein response, metabolic reprogramming and autophagy, production of exosomes, survival to anoikis, invasion, immunosuppression and therapeutic resistance. Moreover, by inducing vascular transdifferentiation of cancer cells and recruiting endothelial cells and pericytes, the tumorigenic microenvironment induces development of tumor-associated vessels that allow invasive cells to gain access to the tumor vessels and to intravasate. Circulating cancer cells can survive in the blood stream by interacting with the intravascular microenvironment, extravasate through the microvasculature and interact with the metastatic microenvironment of target organs. In this review, we will focus on many recent paradigms involved in the field of tumor progression. PMID:25523234

  4. Nuclear Factor kappa B is central to Marek’s Disease herpesvirus induced neoplastic transformation of CD30 expressing lymphocytes in-vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Marek’s Disease (MD) is a hyperproliferative, lymphomatous, neoplastic disease of chickens caused by the oncogenic Gallid herpesvirus type 2 (GaHV-2; MDV). Like several human lymphomas the neoplastic MD lymphoma cells overexpress the CD30 antigen (CD30hi) and are in minority, while the n...

  5. Galectin-1 is a useful marker for detecting neoplastic squamous cells in oral cytology smears.

    PubMed

    Noda, Yuri; Kondo, Yuko; Sakai, Manabu; Sato, Sunao; Kishino, Mitsunobu

    2016-06-01

    Cytologic diagnoses in the oral region are very difficult due to the small amount of cells in smears, which are also exposed to many stimulating factors and often show atypical changes. Galectin-1 (Gal1) is a β-galactoside binding protein that modulates tumor progression. Gal1 is very weakly expressed in normal cells, but is often overexpressed in neoplastic lesions. The aim of the present study was to determine whether it is possible to differentiate reactive changes from neoplastic changes in oral cytology smears based on the expression of Gal1. A total of 155 tissue biopsy specimens and 61 liquid-based cytology specimens were immunostained by an anti-Gal1 antibody, and Gal1 expression levels were subsequently evaluated. These samples consisted of oral squamous cell carcinomas, epithelial dysplasia, and oral mucosal diseases. The positive and negative expressions of Gal1 were examined in 37 specimens collected by scalpel and cytobrush biopsy. The sensitivity, specificity, and positive predictive value of Gal1 were also evaluated in smears. In tissue sections, the positive ratio of Gal1 in neoplastic lesions was high (72.3%). In cytology specimens, the positive ratio of Gal1 was higher in neoplastic lesions (79.0%) than in those negative for intraepithelial lesion or malignancy (22.2%). A correlation was found between immunocytochemical Gal1 expression and immunohistochemical Gal1 expression (P < .001). The sensitivity (75.0%), specificity (75.0%), and positive predictive value (91.3%) of Gal1 were also high in smears. In conclusion, Gal1 may be a useful marker for determining whether morphologic changes in cells are reactive or neoplastic. PMID:26980012

  6. Argyrophil cells in normal, hyperplastic, and neoplastic endometrium.

    PubMed Central

    Sivridis, E; Buckley, C H; Fox, H

    1984-01-01

    Scanty argyrophil cells are present in a substantial proportion of normal endometria, particularly during the secretory stage of the cycle. Argyrophil cells are also present in the various types of hyperplastic endometria and are found in more than half of endometrial adenocarcinomas. In some endometrial neoplasms they are present in abundance, but tumours rich in such cells do not have any features suggestive of a carcinoid tumour and are morphologically identical to adenocarcinomas of similar grade which are devoid of argyrophil cells. Endometrial adenocarcinomas containing argyrophil cells tend to be well differentiated and tend not to invade deeply into the myometrium. It is suggested that Müllerian epithelial stem cells possess a potentiality for differentiation into APUD cells. Images PMID:6200507

  7. Potentiation of Anticancer Drugs: Effects of Pentoxifylline on Neoplastic Cells

    PubMed Central

    Barancik, Miroslav; Bohacova, Viera; Gibalova, Lenka; Sedlak, Jan; Sulova, Zdena; Breier, Albert

    2012-01-01

    The drug efflux activity of P-glycoprotein (P-gp, a product of the mdr1 gene, ABCB1 member of ABC transporter family) represents a mechanism by which tumor cells escape death induced by chemotherapeutics. In this study, we investigated the mechanisms involved in the effects of pentoxifylline (PTX) on P-gp-mediated multidrug resistance (MDR) in mouse leukemia L1210/VCR cells. Parental sensitive mouse leukemia cells L1210, and multidrug-resistant cells, L1210/VCR, which are characterized by the overexpression of P-gp, were used as experimental models. The cells were exposed to 100 μmol/L PTX in the presence or absence of 1.2 μmol/L vincristine (VCR). Western blot analysis indicated a downregulation of P-gp protein expression when multidrug-resistant L1210/VCR cells were exposed to PTX. The effects of PTX on the sensitization of L1210/VCR cells to VCR correlate with the stimulation of apoptosis detected by Annexin V/propidium iodide apoptosis necrosis kit and proteolytic activation of both caspase-3 and caspase-9 monitored by Western blot analysis. Higher release of matrix metalloproteinases (MMPs), especially MMP-2, which could be attenuated by PTX, was found in L1210/VCR than in L1210 cells by gelatin zymography in electrophoretic gel. Exposure of resistant cells to PTX increased the content of phosphorylated Akt kinase. In contrast, the presence of VCR eliminated the effects of PTX on Akt kinase phosphorylation. Taken together, we conclude that PTX induces the sensitization of multidrug-resistant cells to VCR via downregulation of P-gp, stimulation of apoptosis and reduction of MMPs released from drug-resistant L1210/VCR cells. These facts bring new insights into the mechanisms of PTX action on cancer cells. PMID:22312258

  8. Immunoglobulin Expression in Non-Lymphoid Lineage and Neoplastic Cells

    PubMed Central

    Chen, Zhengshan; Qiu, Xiaoyan; Gu, Jiang

    2009-01-01

    It has traditionally been believed that the production of immunoglobulin (Ig) molecules is restricted to B lineage cells. However, immunoglobulin genes and proteins have been recently found in a variety of types of cancer cells, as well as some proliferating epithelial cells and neurons. The immunoglobulin molecules expressed by these cells consist predominantly of IgG, IgM, and IgA, and the light chains expressed are mainly kappa chains. Recombination activating genes 1 and 2, which are required for V(D)J recombination, are also expressed in these cells. Knowledge about the function of these non-lymphoid cell-derived immunoglobulins is limited. Preliminary data suggests that Ig secreted by epithelial cancer cells has some unidentified capacity to promote the growth and survival of tumor cells. As immunoglobulins are known to have a wide spectrum of important functions, the discovery of non-lymphoid cells and cancers that produce immunoglobulin calls for in-depth investigation of the functional and pathological significance of this previously unrecognized phenomenon. PMID:19246641

  9. Resistance to lipid peroxidation by cultured neoplastic cells

    SciTech Connect

    Arneson, R.M.; Wander, J.D.; Cabot, M.C.; Tan, E.L.; Schenley, R.L.; Hsie, A.W.

    1982-01-01

    The membranes of murine neuroblastoma cells (C1300) and human leukemia cells (HL-60) exhibit markedly increased resistance to peroxidation and undifferentiated Friend erythroleukemia cells were highly resistant to peroxidation. These findings suggest that high resistance to peroxidation and changes in the level of resistance occur commonly in cultured cells. Both cytosolic and membrane-associated factors that can prevent the onset of lipid peroxidation are present in differentiating neuroblastoma cells. A highly sensitive, single-phase assay for antioxidant activity failed to detect the presence of an antioxidant that could be associated with increased resistance to peroxidation in neuroblastoma cells. Likewise, lipid analyses of neuroblastoma cells revealed no parameter that could be related to this increase; however, this resistance phenomenon is abolished by adding arachidonic acid to the culture medium at levels that do not affect cell growth or viability. Protective factors exist in the cytosolic fraction of rat liver homogenate, which are able to neutralize the toxic products of lipid peroxidation rather than prevent the initiation of peroxidation. These protective factors were detected, and could possibly be isolated, by a cytotoxicity assay employing Chinese hamster ovary cells. In the course of this work, we discovered an antioxidant artifact that is widely distributed in commercial tissue culture media. A simple procedure has been developed to detect this antioxidant in lots of culture media.

  10. Targeting neoplastic B cells and harnessing microenvironment: the "double face" of ibrutinib and idelalisib.

    PubMed

    Maffei, Rossana; Fiorcari, Stefania; Martinelli, Silvia; Potenza, Leonardo; Luppi, Mario; Marasca, Roberto

    2015-01-01

    Tyrosine kinase inhibitors (TKIs) targeting signaling molecules downstream B cell receptor (BCR) are powerfully spreading in the therapeutic landscape of B cell lymphoproliferative disease, due to a manageable toxicity profile and encouraging clinical effectiveness. In particular, ibrutinib, previously called PCI-32765, is a potent inhibitor of Bruton tyrosine kinase (Btk), recently approved for the treatment of relapsed mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL). Moreover, idelalisib (formerly GS-1101 and CAL-101) is a selective reversible inhibitor of the p110δ isoform of phosphoinositol 3 kinase (PI3K) approved for the treatment of patients with relapsed follicular lymphoma (FL) and CLL. These agents directly affect the neoplastic clone, disrupting the supportive platform provided by BCR signaling cascade and by other microenvironmental mutualistic interactions, and also interfering with chemokine gradients and adhesive properties of neoplastic B cells. In the present review, we describe the clinical efficacy of ibrutinib and idelalisib in CLL and B cell non-Hodgkin lymphoma (B-NHL), then focusing on the mode of action (MOA) of these TKIs towards the neoplastic B cell compartment. At last, the review would further expand the view on potential additional targets of ibrutinib and idelalisib belonging to other microenvironmental cellular elements. PMID:26022368

  11. Growth factors, their receptor expression and markers for proliferation of endothelial and neoplastic cells in human osteosarcoma.

    PubMed

    Bianchi, E; Artico, M; Di Cristofano, C; Leopizzi, M; Taurone, S; Pucci, M; Gobbi, P; Mignini, F; Petrozza, V; Pindinello, I; Conconi, M T; Della Rocca, C

    2013-01-01

    Osteosarcoma is the most common primary malignant tumour of the bone. Although new therapies continue to be reported, osteosarcoma-related morbidity and mortality remain high. Modern medicine has greatly increased knowledge of the physiopathology of this neoplasm. Novel targets for drug development may be identified through an understanding of the normal molecular processes that are deeply modified in pathological conditions. The aim of the present study is to investigate, by immunohistochemistry, the localisation of different growth factors and of the proliferative marker Ki-67 in order to determine whether these factors are involved in the transformation of osteogenic cells and in the development of human osteosarcoma. We observed a general positivity for NGF - TrKA - NT3 - TrKC - VEGF in the cytoplasm of neoplastic cells and a strong expression for NT4 in the nuclear compartment. TGF-beta was strongly expressed in the extracellular matrix and vascular endothelium. BDNF and TrKB showed a strong immunolabeling in the extracellular matrix. Ki-67/MIB-1 was moderately expressed in the nucleus of neoplastic cells. We believe that these growth factors may be considered potential therapeutic targets in the treatment of osteosarcoma, although proof of this hypothesis requires further investigation. PMID:24067459

  12. Microfluorometric comparisons of heat-induced nuclear acridine orange metachromasia between normal cells and neoplastic cells from primary tumors of diverse origin.

    PubMed

    Alvarez, M R

    1975-01-01

    Nuclear fluorescence metachromasia of heated fixed cells subsequently stained with acridine orange was compared in smears and isolated nuclei of various types of primary tumors and normal cells from the tissues that gave rise to the tumors. The ratios of fluorescence emission at 590 and 530 nm reflect the thermal stability of chromatin in situ. The results show that the mean thermal stability of the chromatin in neoplastic cells was lower than the stability of their normal counterparts in all cases. This was found in both spontaneous and chemically induced tumors as divergent in type as a dog vaginal tumor and murine lymphocytic leukemia. These data, together with our previous observations in other neoplastic systems, indicate that reduced chromatin thermal stability may be a general characteristic of cells that have undergone neoplastic transformation and is not confined to rapidly growing tumors. The present investigation identifies the sources of variability encountered in measuring fluorescence metachromasia in slide preparations, and methods of minimizing this variability for potential cytodiagnostic application are discussed. PMID:45893

  13. Localization of collagen modifying enzymes on fibroblastic reticular cells and follicular dendritic cells in non-neoplastic and neoplastic lymphoid tissues.

    PubMed

    Ohe, Rintaro; Aung, Naing Ye; Meng, Hongxue; Kabasawa, Takanobu; Suto, Aya; Tamazawa, Nobuyuki; Yang, Suran; Kato, Tomoya; Yamakawa, Mitsunori

    2016-07-01

    The aim of this study was to evaluate the localization of collagen modifying enzymes (CMEs) on fibroblastic reticular cells (FRCs) and follicular dendritic cells (FDCs) in non-neoplastic lymphoid tissues and various malignant lymphomas. The expression of prolyl 4-hydroxylase 1 (P4H1), lysyl hydroxylase 3 (LH3), and protein disulfide isomerase (PDI) was frequently observed on FRCs and FDCs in the germinal center (GC), except for the mantle zone. The expression of CMEs was lower in most lymphomas than in their respective postulated normal counterparts. The ratio of transglutaminase II(+) FRCs/CD35(+) FDCs was also lower in follicular lymphomas (FL) than in other lymphomas. The mRNAs of some CMEs (P4H1, prolyl 4-hydroxylase 3, LH3, and heat shock protein 47) were confirmed in almost all lymphomas. These results indicate that lymphoma cell proliferation suppresses/decreases the number of CMEs expressing FRCs and FDCs in most lymphomas. PMID:26700650

  14. Localization of collagen modifying enzymes on fibroblastic reticular cells and follicular dendritic cells in non-neoplastic and neoplastic lymphoid tissues

    PubMed Central

    Ohe, Rintaro; Aung, Naing Ye; Meng, Hongxue; Kabasawa, Takanobu; Suto, Aya; Tamazawa, Nobuyuki; Yang, Suran; Kato, Tomoya; Yamakawa, Mitsunori

    2016-01-01

    Abstract The aim of this study was to evaluate the localization of collagen modifying enzymes (CMEs) on fibroblastic reticular cells (FRCs) and follicular dendritic cells (FDCs) in non-neoplastic lymphoid tissues and various malignant lymphomas. The expression of prolyl 4-hydroxylase 1 (P4H1), lysyl hydroxylase 3 (LH3), and protein disulfide isomerase (PDI) was frequently observed on FRCs and FDCs in the germinal center (GC), except for the mantle zone. The expression of CMEs was lower in most lymphomas than in their respective postulated normal counterparts. The ratio of transglutaminase II+ FRCs/CD35+ FDCs was also lower in follicular lymphomas (FL) than in other lymphomas. The mRNAs of some CMEs (P4H1, prolyl 4-hydroxylase 3, LH3, and heat shock protein 47) were confirmed in almost all lymphomas. These results indicate that lymphoma cell proliferation suppresses/decreases the number of CMEs expressing FRCs and FDCs in most lymphomas. PMID:26700650

  15. Proliferating cell nuclear antigen (PCNA) activity in hepatocellular carcinoma, benign peri-neoplastic and normal liver.

    PubMed

    Mun, Kein-Seong; Cheah, Phaik-Leng; Baharudin, Nurul Bahiyah; Looi, Lai-Meng

    2006-12-01

    Hepatocellular carcinoma (HCC) is among the ten most common cancers in Malaysian males. As cellular proliferation is an important feature of malignant transformation, we studied the proliferation pattern of normal and benign perineoplastic liver versus hepatocellular carcinoma in an attempt to further understand the tumour transformation process. 39 HCC (21 with accompanying and 18 without cirrhosis) histologically diagnosed at the Department of Pathology, University of Malaya Medical Centre between January 1992 and December 2003 were immunohistochemically studied using a monoclonal antibody to PCNA (Clone PC10: Dako). 20 livers from cases who had succumbed to traumatic injuries served as normal liver controls (NL). PCNA labeling index (PCNA-LI) was determined by counting the number of immunopositive cells in 1000 contiguous HCC, benign cirrhotic perineoplastic liver (BLC), benign perineoplastic non-cirrhotic (BLNC) and NL cells and conversion to a percentage. The PCNA-LI was also expressed as Ojanguren et al's grades. PCNA was expressed in 10% NL, 38.9% BLNC, 76.2% BLC and 71.8% HCC with BLNC, BLC and HCC showing significantly increased (p < 0.05) number of cases which expressed PCNA compared with NL. The number of BLC which expressed PCNA was also significantly increased compared with BLNC. PCNA-LI ranged from 0-2.0% (mean = 0.2%) in NL, 0-2.0% (mean = 0.3%) in BLNC, 0-3.6% (mean = 0.7%) in BLC and 0-53.8% (mean = 7.6%) in HCC with PCNA-LI significantly increased (p < 0.05) only in HCC compared with BLC, BLNC and NL. Accordingly, all NL, BLC and BLNC showed minimal (<5% cells being immunopositive) immunoreactivity on Ojanguren et al's grading system and only HCC demonstrated immunoreactivity which ranged up to grade 3 (75% of cells). From this study, there appears to be a generally increasing trend of proliferative activity from NL to BLNC to BLC and HCC. Nonetheless, BLNC and BLC, like NL, retained low PCNA-LI and only HCC had a significantly increased PCNA

  16. Enhanced neoplastic transformation by mammography X rays relative to 200 kVp X rays: indication for a strong dependence on photon energy of the RBE(M) for various end points.

    PubMed

    Frankenberg, D; Kelnhofer, K; Bär, K; Frankenberg-Schwager, M

    2002-01-01

    The fundamental assumption implicit in the use of the atomic bomb survivor data to derive risk estimates is that the gamma rays of Hiroshima and Nagasaki are considered to have biological efficiencies equal to those of other low-LET radiations up to 10 keV/microm, including mammography X rays. Microdosimetric and radiobiological data contradict this assumption. It is therefore of scientific and public interest to evaluate the efficiency of mammography X rays (25-30 kVp) to induce cancer. In this study, the efficiency of mammography X rays relative to 200 kVp X rays to induce neoplastic cell transformation was evaluated using cells of a human hybrid cell line (CGL1). For both radiations, a linear-quadratic dose-effect relationship was observed for neoplastic transformation of CGL1 cells; there was a strong linear component for the 29 kVp X rays. The RBE(M) of mammography X rays relative to 200 kVp X rays was determined to be about 4 for doses < or = 0.5 Gy. A comparison of the electron fluences for both X rays provides strong evidence that electrons with energies of < or = 15 keV can induce neoplastic transformation of CGL1 cells. Both the data available in the literature and the results of the present study strongly suggest an increase of RBE(M) for carcinogenesis in animals, neoplastic cell transformation, and clastogenic effects with decreasing photon energy or increasing LET to an RBE(M) approximately 8 for mammography X rays relative to 60Co gamma rays. PMID:11754647

  17. The origin of pre-neoplastic metaplasia in the stomach: Chief cells emerge from the Mist

    SciTech Connect

    Goldenring, James R.; Nam, Ki Taek; Mills, Jason C.

    2011-11-15

    The digestive-enzyme secreting, gastric epithelial chief (zymogenic) cell is remarkable and underappreciated. Here, we discuss how all available evidence suggests that mature chief cells in the adult, mammalian stomach are postmitotic, slowly turning over cells that arise via a relatively long-lived progenitor, the mucous neck cell, The differentiation of chief cells from neck cells does not involve cell division, and the neck cell has its own distinct pattern of gene expression and putative physiological function. Thus, the ontogeny of the normal chief cell lineage exemplifies transdifferentiation. Furthermore, under pathophysiogical loss of acid-secreting parietal cell, the chief cell lineage can itself trasndifferentiate into a mucous cell metaplasia designated Spasmolytic Polypeptide Expressing Metaplasia (SPEM). Especially in the presence of inflammation, this metaplastic lineage can regain proliferative capacity and, in humans may also further differentiate into intestinal metaplasia. The results indicate that gastric fundic lineages display remarkable plasticity in both physiological ontogeny and pathophysiological pre-neoplastic metaplasia.

  18. Synergistic growth-inhibitory effects of ponatinib and midostaurin (PKC412) on neoplastic mast cells carrying KIT D816V.

    PubMed

    Gleixner, Karoline V; Peter, Barbara; Blatt, Katharina; Suppan, Verena; Reiter, Andreas; Radia, Deepti; Hadzijusufovic, Emir; Valent, Peter

    2013-09-01

    Patients with advanced systemic mastocytosis, including mast cell leukemia, have a poor prognosis. In these patients, neoplastic mast cells usually harbor the KIT mutant D816V that confers resistance against tyrosine kinase inhibitors. We examined the effects of the multi-kinase blocker ponatinib on neoplastic mast cells and investigated whether ponatinib acts synergistically with other antineoplastic drugs. Ponatinib was found to inhibit the kinase activity of KIT G560V and KIT D816V in the human mast cell leukemia cell line HMC-1. In addition, ponatinib was found to block Lyn- and STAT5 activity in neoplastic mast cells. Ponatinib induced growth inhibition and apoptosis in HMC-1.1 cells (KIT G560V(+)) and HMC-1.2 cells (KIT G560V(+)/KIT D816V(+)) as well as in primary neoplastic mast cells. The effects of ponatinib were dose-dependent, but higher IC50-values were obtained in HMC-1 cells harboring KIT D816V than in those lacking KIT D816V. In drug combination experiments, ponatinib was found to synergize with midostaurin in producing growth inhibition and apoptosis in HMC-1 cells and primary neoplastic mast cells. The ponatinib+midostaurin combination induced substantial inhibition of KIT-, Lyn-, and STAT5 activity, but did not suppress Btk. We then applied a Btk short interfering RNA and found that Btk knockdown sensitizes HMC-1 cells against ponatinib. Finally, we were able to show that ponatinib synergizes with the Btk-targeting drug dasatinib to produce growth inhibition in HMC-1 cells. In conclusion, ponatinib exerts major growth-inhibitory effects on neoplastic mast cells in advanced systemic mastocytosis and synergizes with midostaurin and dasatinib in inducing growth arrest in neoplastic mast cells. PMID:23539538

  19. Synergistic growth-inhibitory effects of ponatinib and midostaurin (PKC412) on neoplastic mast cells carrying KIT D816V

    PubMed Central

    Gleixner, Karoline V.; Peter, Barbara; Blatt, Katharina; Suppan, Verena; Reiter, Andreas; Radia, Deepti; Hadzijusufovic, Emir; Valent, Peter

    2013-01-01

    Patients with advanced systemic mastocytosis, including mast cell leukemia, have a poor prognosis. In these patients, neoplastic mast cells usually harbor the KIT mutant D816V that confers resistance against tyrosine kinase inhibitors. We examined the effects of the multi-kinase blocker ponatinib on neoplastic mast cells and investigated whether ponatinib acts synergistically with other antineoplastic drugs. Ponatinib was found to inhibit the kinase activity of KIT G560V and KIT D816V in the human mast cell leukemia cell line HMC-1. In addition, ponatinib was found to block Lyn- and STAT5 activity in neoplastic mast cells. Ponatinib induced growth inhibition and apoptosis in HMC-1.1 cells (KIT G560V+) and HMC-1.2 cells (KIT G560V+/KIT D816V+) as well as in primary neoplastic mast cells. The effects of ponatinib were dose-dependent, but higher IC50-values were obtained in HMC-1 cells harboring KIT D816V than in those lacking KIT D816V. In drug combination experiments, ponatinib was found to synergize with midostaurin in producing growth inhibition and apoptosis in HMC-1 cells and primary neoplastic mast cells. The ponatinib+midostaurin combination induced substantial inhibition of KIT-, Lyn-, and STAT5 activity, but did not suppress Btk. We then applied a Btk short interfering RNA and found that Btk knockdown sensitizes HMC-1 cells against ponatinib. Finally, we were able to show that ponatinib synergizes with the Btk-targeting drug dasatinib to produce growth inhibition in HMC-1 cells. In conclusion, ponatinib exerts major growth-inhibitory effects on neoplastic mast cells in advanced systemic mastocytosis and synergizes with midostaurin and dasatinib in inducing growth arrest in neoplastic mast cells. PMID:23539538

  20. Taurolidine: a novel anti-neoplastic agent induces apoptosis of osteosarcoma cell lines.

    PubMed

    Walters, Denise K; Muff, Roman; Langsam, Bettina; Gruber, Philipp; Born, Walter; Fuchs, Bruno

    2007-08-01

    Taurolidine, the active agent of Taurolin, is a broad spectrum anti-biotic that has been used for over 15 years for the treatment of severe surgical infections. Recently, taurolidine has been shown to possess anti-neoplastic properties in vitro and in vivo against a variety of cancers including ovarian, colon and prostate. In this study we assessed the cytotoxic activity of taurolidine against human osteosarcoma (OS) cell lines and normal human bone cells. Treatment with taurolidine inhibited the growth of all ten osteosarcoma cell lines tested and taurolidine was equally potent against cell lines with and without distinct genetic defects (i.e. p53, Rb). Moreover, taurolidine-induced growth inhibition was found to be associated with a dose dependent increase in the number of apoptotic cells and apoptosis was shown to be caspase-dependent. Taurolidine treatment was also found to inhibit adhesion of OS cell lines. Compared to OS cell lines, normal bone cells in primary culture were found to be less sensitive to the cytotoxic and anti-adhesive effects of taurolidine. These data indicate that taurolidine possesses potent anti-neoplastic activity against osteosarcoma cell lines and may have potential as a novel OS chemotherapeutic agent. PMID:17458504

  1. Sites of inhibition of mitochondrial electron transport in macrophage-injured neoplastic cells.

    PubMed

    Granger, D L; Lehninger, A L

    1982-11-01

    Previous work has shown that injury of neoplastic cells by cytotoxic macrophages (CM) in cell culture is accompanied by inhibition of mitochondrial respiration. We have investigated the nature of this inhibition by studying mitochondrial respiration in CM-injured leukemia L1210 cells permeabilized with digitonin. CM-induced injury affects the mitochondrial respiratory chain proper. Complex I (NADH-coenzyme Q reductase) and complex II (succinate-coenzyme Q reductase) are markedly inhibited. In addition a minor inhibition of cytochrome oxidase was found. Electron transport from alpha-glycerophosphate through the respiratory chain to oxygen is unaffected and permeabilized CM-injured L1210 cells oxidizing this substrate exhibit acceptor control. However, glycerophosphate shuttle activity was found not to occur within CM-injured or uninjured L1210 cells in culture hence, alpha-glycerophosphate is apparently unavailable for mitochondrial oxidation in the intact cell. It is concluded that the failure of respiration of intact neoplastic cells injured by CM is caused by the nearly complete inhibition of complexes I and II of the mitochondrial electron transport chain. The time courses of CM-induced electron transport inhibition and arrest of L1210 cell division are examined and the possible relationship between these phenomena is discussed. PMID:6292238

  2. Therapeutic and toxicologic evaluation of anti-lipogenic agents in cancer cells compared with non-neoplastic cells.

    PubMed

    Deepa, Perinkulam Ravi; Vandhana, Suryanarayanan; Jayanthi, Udayakumar; Krishnakumar, Subramanian

    2012-06-01

    Fatty acid synthase (FASN), a multi-enzyme complex, is involved in lipid biosynthesis. FASN is over-expressed in different types of cancers and is being widely investigated for its role in cancer progression, diagnosis and therapy. Here, three inhibitors targeting different domains of FASN--cerulenin, triclosan and orlistat--were evaluated for their anti-proliferative efficacy in ocular cancer, retinoblastoma (RB) cells and their toxicity (if any) in normal cells. FASN inhibitors were tested in cultured retinoblastoma Y79 cells, normal fibroblast (3T3) and Müller glial (MIOM1) cells. Cell viability was determined by MTT-based assay, and IC(50) (50% inhibitory concentration) of the FASN inhibitors was calculated in neoplastic and non-neoplastic cells. The IC(50) after 48 and 96 hr of incubation with the three anti-FASN agents showed that cerulenin, triclosan and orlistat inhibited retinoblastoma cell proliferation in a dose- and time-dependent manner. The cancer cells exhibited differential dose- and time-dependent response/sensitivities to cerulenin, triclosan and orlistat. The 48-hr neoplastic IC(50) dosages were, however, not toxic to the normal cells. These findings were confirmed by phase-contrast microscopic assessment of cell morphology. Therapeutic index (TI) was calculated as a ratio of the IC(50) normal cells, to the IC(50) neoplastic cells. Relative to normal MIOM1 cells, TI was 9.18 for cerulenin, while 5.32 for triclosan and 1.72 for orlistat. The TI computed relative to 3T3 cells was 28.64, 7.10 and 2.58 for cerulenin, triclosan and orlistat, respectively. DNA fragmentation analysis suggests that FASN inhibitors induced apoptotic DNA damage in retinoblastoma cells. Thus, FASN inhibition can be an effective strategy in retinoblastoma therapy. PMID:22151915

  3. Neoplastic transformation of oral lichen: case report and review of the literature

    PubMed Central

    Abbate, G; Foscolo, AM; Gallotti, M; Lancella, A; Mingo, F

    2006-01-01

    Summary Aim of the present investigation was to analyse the possible malignant transformation of oral lichen planus to carcinoma, especially in the atrophic erosive forms and those displaying plaques involving the top of the tongue. A review has been made of the literature, from 1986 to the present day. This search outlines the relationship between oral lichen planus, hepatitis C virus infection, Epstein-Barr virus infection and the importance of periodic follow-up in all patients with oral lichen planus. The case is described of malignant transformation of oral lichen planus to oral cancer in a female presenting asymptomatic hepatitis C virus infection. The clinical history confirms the most important aspects of the relationship between oral lichen planus and oral cancer. Oral lichen planus should be considered as a precancerous lesion, particularly in patients presenting hepatitis C virus infection, requiring follow-up, at close intervals, starting from 3 months after diagnosis. PMID:18383758

  4. Expression pattern of FCRL (FREB, FcRX) in normal and neoplastic human B cells.

    PubMed

    Masir, Noraidah; Jones, Margaret; Pozzobon, Michela; Marafioti, Teresa; Volkova, Olga Y; Mechetina, Ludmila V; Hansmann, Martin-Leo; Natkunam, Yasodha; Taranin, Alexander V; Mason, David Y

    2004-11-01

    FCRL (also known as FREB and FcRX) is a recently described member of the family of Fc receptors for immunoglobulin G (IgG). In the present study we analysed its expression in normal and neoplastic lymphoid tissue using immunohistochemical techniques. FCRL was preferentially expressed in a proportion of germinal centre cells and, more weakly, in mantle zone B cells. In addition, strong labelling was observed in marginal zone B cells in the spleen, representing one of the few markers for this cell type. The majority of cases of small B-cell lymphoma, diffuse large B-cell lymphoma and lymphocyte predominance Hodgkin's disease were positive for FCRL. However, the number of positive cells varied widely, and in consequence we could not define a cut-off that distinguished subsets of diffuse large B-cell lymphoma. Our results also showed that FCRL tended to be negative in T-cell-rich B-cell lymphoma and in classical Hodgkin's disease. FCRL may therefore represent a novel marker for normal B cells (e.g. splenic marginal zone cells) and may also be useful as a potential marker of B-cell neoplasms. PMID:15491296

  5. Regulation of the pituitary tumor transforming gene by insulin-like-growth factor-I and insulin differs between malignant and non-neoplastic astrocytes

    SciTech Connect

    Chamaon, Kathrin; Kirches, Elmar; Kanakis, Dimitrios; Braeuninger, Stefan; Dietzmann, Knut; Mawrin, Christian . E-mail: christian.mawrin@medizin.uni-magdeburg.de

    2005-05-27

    The reasons for overexpression of the oncogene pituitary tumor transforming gene (PTTG) in tumors are still not fully understood. A possible influence of the insulin-like growth factor I (Igf-I) may be of interest, since enhanced Igf-I signalling was reported in various human tumors. We examined the influence of Igf-I and insulin on PTTG expression in human astrocytoma cells in comparison to proliferating non-neoplastic rat embryonal astrocytes. PTTG mRNA expression and protein levels were increased in malignant astrocytes treated with Igf-I or insulin, whereas in rat embryonic astrocytes PTTG expression and protein levels increased only when cells were exposed to Igf-I. Enhanced transcription did not occur after treatment with inhibitors of phosphoinositol-3-kinase (PI3K) and mitogen-activated protein kinase (MAPK), blocking the two basic signalling pathways of Igf-I and insulin. In addition to this transcriptional regulation, both kinases directly bind to PTTG, suggesting a second regulatory route by phosphorylation. However, the interaction of endogenous PTTG with MAPK and PI3K, as well as PTTG phosphorylation were independent from Igf-I or insulin. The latter results were also found in human testis, which contains high PTTG levels as well as in nonneoplastic astrocytes. This suggest, that PI3K and MAPK signalling is involved in PTTG regulation not only in malignant astrocytomas but also in non-tumorous cells.

  6. LDOC1 silenced by cigarette exposure and involved in oral neoplastic transformation

    PubMed Central

    Lee, Chia-Huei; Pan, Kao-Lu; Tang, Ya-Chu; Tsai, Ming-Hsien; Cheng, Ann-Joy; Shen, Mei-Ya; Cheng, Ying-Min; Huang, Tze-Ta; Lin, Pinpin

    2015-01-01

    Previously, we identified global epigenetic aberrations in smoking-associated oral squamous cell carcinoma (OSCC). We hypothesized that cigarette exposure triggers OSCC through alteration of the methylome of oral cells. Here we report that cigarette smoke condensate (CSC) significantly changes the genomic 5-methyldeoxycytidine content and nuclear accumulation of DNA methyltransferase 1 (DNMT1) and DNMT3A in human untransformed oral cells. By using integrated analysis of cDNA and methylation arrays of the smoking-associated dysplastic oral cell line and OSCC tumors, respectively, we identified four epigenetic targets—UCHL1, GPX3, LXN, and LDOC1—which may be silenced by cigarette. Results of quantitative methylation-specific PCR showed that among these four genes, LDOC1 promoter was the most sensitive to CSC. LDOC1 promoter hypermethylation and gene silencing followed 3 weeks of CSC treatment. LDOC1 knockdown led to a proliferative response and acquired clonogenicity of untransformed oral cells. Immunohistochemistry showed that LDOC1 was downregulated in 53.3% (8/15) and 57.1% (20/35) of premalignant oral tissues and early stage OSCCs, respectively, whereas 76.5% (13/17) of normal oral tissues showed high LDOC1 expression. Furthermore, the microarray data showed that LDOC1 expression had decreased in the lung tissues of current smokers compared with that in those of never smokers and had significantly decreased in the lung tumors of smokers compared with that in normal lung tissues. Our data suggest that CSC-induced promoter methylation may contribute to LDOC1 downregulation, thereby conferring oncogenic features to oral cells. These findings also imply a tumor suppressor role of LDOC1 in smoking-related malignancies such as OSCC and lung cancer. PMID:26317789

  7. Evolution of neoplastic development in the liver of transgenic mice co-expressing c-myc and transforming growth factor-alpha.

    PubMed Central

    Santoni-Rugiu, E.; Nagy, P.; Jensen, M. R.; Factor, V. M.; Thorgeirsson, S. S.

    1996-01-01

    We have previously shown that co-expression of c-myc and transforming growth factor (TGF)-alpha as transgenes in mouse liver results in major enhancement of neoplastic development in this organ as compared with expression of either of these transgenes alone. In this report we describe in detail the progression from liver cell dysplasia to hepatocellular carcinomas (HCCs) occurring in the liver of c-myc/TGF-alpha and c-myc transgenic mice. Despite morphological similarities in the sequence of events between the two transgenic lines, the dramatic acceleration, extent, and severity of hepatic lesions in c-myc/TGF-alpha mice clearly demonstrated the synergistic effects of this transgenic combination. Although c-myc/TGF-alpha and c-myc females displayed longer latency and lower tumor incidence, the pathological changes were the same as those seen in the male mice, including the formation of HCCs, which are absent in TGF-alpha single-transgenic females. Tumors in single- and double-transgenic mice showed induction of the endogenous c-myc and TGF-alpha and, most frequently, unchanged or decreased epidermal growth factor receptor, further indicating the collaborative role of c-myc and TGF-alpha in providing a selective growth advantage to tumor cells independently of the epidermal growth factor receptor levels. To identify possible tumor precursors, we focused particularly on the dysplastic changes preceding and accompanying the appearance of preneoplastic and neoplastic lesions in the double-transgenic mice. Early on, these changes were characterized by the appearance of large dysplastic hepatocytes, mostly pericentrally, expressing high levels of TGF-alpha and uPA, as well as TGF-beta 1, particularly in apoptotic cells. After a short period of replication and expansion into the liver parenchyma, as well as penetration into the central veins, these cells underwent apoptotic cell death while preneoplastic and neoplastic lesions were forming. The peritumorous tissues also

  8. Neoplastic diseases of marine bivalves.

    PubMed

    Carballal, María J; Barber, Bruce J; Iglesias, David; Villalba, Antonio

    2015-10-01

    Two types of prevalent neoplastic diseases have been described in marine bivalves of commercial interest: disseminated neoplasia (DN) and gonadal neoplasia. The first involves the excessive proliferation of abnormal cells with unknown origin (probably of hemic source in some cases/species), disseminating through the circulatory system and infiltrating the connective tissue of various organs; the second consists of an abnormal proliferation of undifferentiated germinal cells of the gonad. These two types of bivalve neoplasia fit the criteria of malignant tumors: pleomorphic and undifferentiated cells, rapid and invasive growth, abundance of mitotic figures, metastasis and progressive development often resulting in the death of the affected individual. Different causes have been suggested regarding etiology: genetic alterations, virus, retrotranspons, and contaminants, although it could depend on the mollusk species; evidence of horizontal transmission of clonal cancer cells as the cause of DN spreading in clam Mya arenaria populations has been recently reported. In some species and populations, the neoplastic disorders affect only a few individuals, but in others reach high prevalence. Among the diagnostic methods, DN has been detected by histology and cytologic examination of hemolymph, and with developed specific antibodies. Recently, flow cytometry has also been applied, allowing detecting DNA quantity alteration. Several studies reported many genes and pathways critically involved in neoplastic transformation in Mya arenaria, Mytilus spp. and Ostrea edulis. These genetic studies will allow the development of diagnosis by PCR which can be used in biomonitoring studies. PMID:26146225

  9. Lactoperoxidase-catalyzed iodination of membrane proteins in normal and neoplastic epidermal cells

    SciTech Connect

    Brysk, M.M.; Snider, J.M.

    1982-01-01

    Cell surface proteins of normal human, mouse, and rat cells in primary culture, of human basal cell carcinoma, and of carcinogen-transformed cell lines were examined by lactoperoxidase-catalyzed iodination. Autoradiography was used to record the distribution of label in the polypeptide subunits separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. There was no significant difference in the results for normal cells of human, mouse, and rat. On the other hand, carcinogen-transformed mouse cells had many more labeled polypeptide bands of widely distributed molecular weights. The iodination profiles from human basal cell carcinoma cells were much more akin to those from normal cells than to those from carcinogen-transformed cells. Treatment of iodinated cells with proteolytic enzymes visibly altered the polypeptide bands.

  10. Expression of neural cell adhesion molecule in normal and neoplastic human neuroendocrine tissues.

    PubMed Central

    Jin, L.; Hemperly, J. J.; Lloyd, R. V.

    1991-01-01

    The neural cell adhesion molecule (N-CAM) is a group of cell surface glycoproteins involved in direct cell--cell adhesion. N-CAM expression in normal and neoplastic tissues was examined with specific antibodies and oligonucleotide probes by immunohistochemistry and in situ hybridization. Most neuroendocrine cells and tumors with secretory granules expressed N-CAM protein and mRNA. Parathyroid adenomas (4) were somewhat unusual, because N-CAM mRNA, but not protein, was detected in some of these benign neoplasms. Most non-neuroendocrine cells and tumors did not express N-CAM, although uterine smooth muscle and an adrenal cortical carcinoma were both positive. Western blots disclosed proteins of 180, 140, and 120 kd in normal adult brain, whereas two pheochromocytomas, a null cell adenoma, and a gastrinoma had proteins of approximately 180 and 140 kd. These results indicate that N-CAM protein and mRNA are widely expressed in neuroendocrine cells and neoplasms. N-CAM oligonucleotide probes as well as antibodies against N-CAM can be used as broad-spectrum neuroendocrine markers. In addition, these molecular probes can be used to examine the role of N-CAM in the development and regulation of neuroendocrine tissues. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:2012179

  11. Expression of keratin and vimentin intermediate filaments in rabbit bladder epithelial cells at different stages of benzo(a)pyrene-induced neoplastic progression

    SciTech Connect

    Summerhayes, I.C.; Cheng, Y.S.E.; Sun, T.T.; Chen, L.B.

    1981-07-01

    Rabbit bladder epithelium, grown on collagen gels and exposed to the chemical carcinogen benzo(a)pyrene, produced nontumorigenic altered foci as well as tumorigenic epithelial cell lines during 120 to 180 d in culture. Immunofluorescence studies revealed extensive keratin filaments in both primary epithelial cells and benzo(a)pyrene-induced altered epithelial foci but showed no detectable vimentin filaments. The absence of vimentin expression in these cells was confirmed by two-dimensional gel electrophoresis. In contrast, immunofluorescence staining of the cloned benzo(a)pyrene-transformed rabbit bladder epithelial cell line, RBC-1, revealed a reduction in filamentous keratin concomitant with the expression of vimentin filaments. The epithelial nature of this cell line was established by the observation that cells injected into nude mice formed well-differentiated adenocarcinomas. Frozen sections of such tumors showed strong staining with antikeratins antibodies, but no detectable staining with antivimentin antibodies. These results demonstrated a differential expression of intermediate filament type in cells at different stages of neoplastic progression and in cells maintained in different growth environments. It is apparent that the expression of intermediate filaments throughout neoplastic progression is best studied by use of an in vivo model system in parallel with culture studies.

  12. Hexon Modification to Improve the Activity of Oncolytic Adenovirus Vectors against Neoplastic and Stromal Cells in Pancreatic Cancer

    PubMed Central

    Lucas, Tanja; Benihoud, Karim; Vigant, Frédéric; Schmidt, Christoph Q. Andreas; Simmet, Thomas; Kochanek, Stefan

    2015-01-01

    Primary pancreatic carcinoma has an unfavourable prognosis and standard treatment strategies mostly fail in advanced cases. Virotherapy might overcome this resistance to current treatment modalities. However, data from clinical studies with oncolytic viruses, including replicating adenoviral (Ad) vectors, have shown only limited activity against pancreatic cancer and other carcinomas. Since pancreatic carcinomas have a complex tumor architecture and frequently a strong stromal compartment consisting of non-neoplastic cell types (mainly pancreatic stellate cells = hPSCs) and extracellular matrix, it is not surprising that Ad vectors replicating in neoplastic cells will likely fail to eradicate this aggressive tumor type. Because the TGFβ receptor (TGFBR) is expressed on both neoplastic cells and hPSCs we inserted the TGFBR targeting peptide CKS17 into the hypervariable region 5 (HVR5) of the capsid protein hexon with the aim to generate a replicating Ad vector with improved activity in complex tumors. We demonstrated increased transduction of both pancreatic cancer cell lines and of hPSCs and enhanced cytotoxicity in co-cultures of both cell types. Surface plasmon resonance analysis demonstrated decreased binding of coagulation factor X to CKS17-modified Ad particles and in vivo biodistribution studies performed in mice indicated decreased transduction of hepatocytes. Thus, to increase activity of replicating Ad vectors we propose to relax tumor cell selectivity by genetic hexon-mediated targeting to the TGFBR (or other receptors present on both neoplastic and non-neoplastic cells within the tumor) to enable replication also in the stromal cell compartment of tumors, while abolishing hepatocyte transduction, and thereby increasing safety. PMID:25692292

  13. Adenocarcinoma of the rete testis with prominent papillary structure and clear neoplastic cells: morphologic and immunohistochemical findings and differential diagnosis.

    PubMed

    Huang, Pei-Wen; Chang, Kuo-Ming

    2015-01-01

    Adenocarcinoma of the rete testis is rare, and its etiology is unknown. The definite diagnosis merely depends on the exclusion of other tumors and histological features. We first describe a 38-year-old man with a carcinoma arising in the rete testis. The tumor was characterized by clear neoplastic cells and branching papillary growth. Focal stromal invasion and transition of normal rete epithelium to neoplastic cells were seen. The neoplastic cells were positive for epithelial membrane antigen, Ber-Ep4, vimentin, renal cell carcinoma marker, and CD10, while negative for Wilms' tumor 1, thyroid transcription factor-1, estrogen receptor, prostate specific antigen, placental alkaline phosphate, CD117, and alpha-1-fetoprotein. According to the above features, we diagnosed this tumor as adenocarcinoma of the rete testis. To our best knowledge, this is the first reported case of adenocarcinoma of the rete testis with prominently papillary structure and clear neoplastic cells. The rarity of adenocarcinoma of the rete testis and the unique features in our case cause diagnostic pitfalls. A complete clinicopathological study and thorough differential diagnosis are crucial for the correct result. PMID:25885143

  14. In vitro and in vivo studies on potentiation of cytotoxic effects of anticancer drugs or cobalt 60 gamma ray by interferon on human neoplastic cells

    SciTech Connect

    Namba, M.; Yamamoto, S.; Tanaka, H.; Kanamori, T.; Nobuhara, M.; Kimoto, T.

    1984-11-15

    A possibility that interferon may potentiate the cytotoxic effects of anticancer drugs or /sup 60/Co gamma ray on human neoplastic cells was studied by in vitro and in vivo experimental procedures. The human neoplastic cells used were HeLa (uterine cervical cancer) and WI-38 CT-1 (embryonic lung fibroblasts transformed in culture by /sup 60/Co gamma ray) cells. As normal human cells, WI-38 cells were used. Interferon was a preparation of beta-type produced by human fibroblasts. The cytotoxicity was determined by colony formation for in vitro experiments and by tumor growth for animal experiments. Of 17 anticancer drugs, the cytotoxic effects of six drugs, namely, peplomycin, bleomycin, aclacinomycin, cisplatin, 5-fluorouracil (5-FU), and Adriamycin (doxorubicin) were potentiated by concomitant application of interferon. The cytolethal effects of /sup 60/Co gamma ray were also enhanced by interferon. The growth of tumor induced by transplantation of HeLa cells into a nude mouse was remarkably reduced by combination therapy of interferon and 5-FU. The current results indicate a possibility that combined therapy of certain types of anticancer drugs or /sup 60/Co gamma ray with interferon may be effective in treatment of cancer patients.

  15. Evidence for clonal origin of neoplastic neuronal and glial cells in gangliogliomas.

    PubMed Central

    Zhu, J. J.; Leon, S. P.; Folkerth, R. D.; Guo, S. Z.; Wu, J. K.; Black, P. M.

    1997-01-01

    Gangliogliomas are rare tumors of the central nervous system that account for approximately 1% of all brain tumors. Histologically, gangliogliomas are composed of intimately admixed glial and neuronal components, the pathological origins of which remain to be characterized. Clonal analysis through examination of the pattern of the X chromosome inactivation allows one to distinguish monoclonal differentiation of a genetically abnormal progenitor cell from parallel, but independent, clonal expansion of two different cell types during tumorigenesis in biphasic neoplasms, such as gangliogliomas. In the present study, we investigated the clonality of eight gangliogliomas from female patients using both methylation- and transcription-based clonality assays at the androgen receptor locus (HUMARA) on the X chromosome. Among tumors from seven patients who were heterozygous at the HUMARA locus, five were identified as monoclonal with the methylation-based clonality assay, and the results were confirmed by the transcription-based method, whereas two were shown to be polyclonal by the methylation-based clonality assay but monoclonal by transcription-based clonality analysis. We conclude that the predominant cell types in most gangliogliomas are monoclonal in origin and derive from a common precursor cell that subsequently differentiates to form neoplastic glial and neuronal elements. Images Figure 2 Figure 3 PMID:9250169

  16. Fluorescence Spectroscopy of Neoplastic and Non-Neoplastic Tissues

    PubMed Central

    Ramanujam, Nirmala

    2000-01-01

    Abstract Fast and non-invasive, diagnostic techniques based on fluorescence spectroscopy have the potential to link the biochemical and morphologic properties of tissues to individual patient care. One of the most widely explored applications of fluorescence spectroscopy is the detection of endoscopically invisible, early neoplastic growth in epithelial tissue sites. Currently, there are no effective diagnostic techniques for these early tissue transformations. If fluorescence spectroscopy can be applied successfully as a diagnostic technique in this clinical context, it may increase the potential for curative treatment, and thus, reduce complications and health care costs. Steady-state, fluorescence measurements from small tissue regions as well as relatively large tissue fields have been performed. To a much lesser extent, time-resolved, fluorescence measurements have also been explored for tissue characterization. Furthermore, sources of both intrinsic (endogenous fluorophores) and extrinsic fluorescence (exogenous fluorophores) have been considered. The goal of the current report is to provide a comprehensive review on steady-state and time-resolved, fluorescence measurements of neoplastic and non-neoplastic, biologic systems of varying degrees of complexity. First, the principles and methodology of fluorescence spectroscopy are discussed. Next, the endogenous fluorescence properties of cells, frozen tissue sections and excised and intact bulk tissues are presented; fluorescence measurements from both animal and human tissue models are discussed. This is concluded with future perspectives. PMID:10933071

  17. Critical role of CCDC6 in the neoplastic growth of testicular germ cell tumors

    PubMed Central

    2013-01-01

    could aid the spermatogonial cells to be part of a pro-survival pathway that helps to evade the toxic effects of endogenous oxidants and contributes to testicular neoplastic growth. PMID:24059746

  18. Antigen expression in normal and neoplastic canine tissues defined by a monoclonal antibody generated against canine mesothelioma cells.

    PubMed

    Liu, K X; Bird, A E; Lenz, S D; McDonough, S P; Wolfe, L G

    1994-11-01

    Monoclonal antibody (MAb) 3B5 generated against canine mesothelioma cells was applied to canine tumors and normal tissues via immunohistochemical and immunoblotting techniques to evaluate antigen binding. By use of an avidin-biotin immunoperoxidase complex (ABC) method, immunoreactivity was noted in reactive mesothelial cells and in normal tissues was observed primarily in mesothelial cell linings, endothelial cells, and smooth muscle of blood vessels and soft tissues; the reactivity was nearly equivalent in frozen or formalin-fixed, paraffin-embedded tissue sections. Use of the ABC method on formalin-fixed, paraffin-embedded tumors yielded moderate to strong cytoplasmic immunostaining of neoplastic cells in 10/11 (91%) mesotheliomas, 18/23 (78%) hemangiosarcomas, 4/10 (40%) intestinal and lung carcinomas, and < or = 20% of hemangiomas, leiomyosarcomas, leiomyomas, mammary carcinomas, and squamous cell carcinomas. No immunostaining of tumor cells was observed in fibrosarcomas, hemangiopericytomas, perianal gland carcinomas, and melanomas. Immunoblotting was performed on samples that demonstrated strong immunoreactivity with MAb 3B5 by the ABC method: mesothelioma, hemangiosarcoma, urinary bladder (smooth muscle), and lung (alveolar capillaries). These analyses showed that MAb 3B5 bound a major antigen of 78 kilodaltons (kd) and minor antigens at 56 and 54 kd in normal and neoplastic tissues. The preliminary immunohistochemical results suggest that MAb 3B5 may possess utility in diagnosis of mesotheliomas and hemangiosarcomas, discrimination of cell types in proliferative serosal lesions, and demonstration of vascularity or angiogenesis in neoplastic and inflammatory lesions. PMID:7863582

  19. The wound inflammatory response exacerbates growth of pre-neoplastic cells and progression to cancer

    PubMed Central

    Antonio, Nicole; Bønnelykke-Behrndtz, Marie Louise; Ward, Laura Chloe; Collin, John; Christensen, Ib Jarle; Steiniche, Torben; Schmidt, Henrik; Feng, Yi; Martin, Paul

    2015-01-01

    There is a long-standing association between wound healing and cancer, with cancer often described as a “wound that does not heal”. However, little is known about how wounding, such as following surgery, biopsy collection or ulceration, might impact on cancer progression. Here, we use a translucent zebrafish larval model of RasG12V-driven neoplasia to image the interactions between inflammatory cells drawn to a wound, and to adjacent pre-neoplastic cells. We show that neutrophils are rapidly diverted from a wound to pre-neoplastic cells and these interactions lead to increased proliferation of the pre-neoplastic cells. One of the wound-inflammation-induced trophic signals is prostaglandin E2 (PGE2). In an adult model of chronic wounding in zebrafish, we show that repeated wounding with subsequent inflammation leads to a greater incidence of local melanoma formation. Our zebrafish studies led us to investigate the innate immune cell associations in ulcerated melanomas in human patients. We find a strong correlation between neutrophil presence at sites of melanoma ulceration and cell proliferation at these sites, which is associated with poor prognostic outcome. PMID:26136213

  20. The wound inflammatory response exacerbates growth of pre-neoplastic cells and progression to cancer.

    PubMed

    Antonio, Nicole; Bønnelykke-Behrndtz, Marie Louise; Ward, Laura Chloe; Collin, John; Christensen, Ib Jarle; Steiniche, Torben; Schmidt, Henrik; Feng, Yi; Martin, Paul

    2015-09-01

    There is a long-standing association between wound healing and cancer, with cancer often described as a "wound that does not heal". However, little is known about how wounding, such as following surgery, biopsy collection or ulceration, might impact on cancer progression. Here, we use a translucent zebrafish larval model of Ras(G12V)-driven neoplasia to image the interactions between inflammatory cells drawn to a wound, and to adjacent pre-neoplastic cells. We show that neutrophils are rapidly diverted from a wound to pre-neoplastic cells and these interactions lead to increased proliferation of the pre-neoplastic cells. One of the wound-inflammation-induced trophic signals is prostaglandin E2 (PGE2). In an adult model of chronic wounding in zebrafish, we show that repeated wounding with subsequent inflammation leads to a greater incidence of local melanoma formation. Our zebrafish studies led us to investigate the innate immune cell associations in ulcerated melanomas in human patients. We find a strong correlation between neutrophil presence at sites of melanoma ulceration and cell proliferation at these sites, which is associated with poor prognostic outcome. PMID:26136213

  1. A Fuzzy-C-Means-Clustering Approach: Quantifying Chromatin Pattern of Non-Neoplastic Cervical Squamous Cells

    PubMed Central

    Tang, Jing Rui; Mat Isa, Nor Ashidi; Ch’ng, Ewe Seng

    2015-01-01

    Despite the effectiveness of Pap-smear test in reducing the mortality rate due to cervical cancer, the criteria of the reporting standard of the Pap-smear test are mostly qualitative in nature. This study addresses the issue on how to define the criteria in a more quantitative and definite term. A negative Pap-smear test result, i.e. negative for intraepithelial lesion or malignancy (NILM), is qualitatively defined to have evenly distributed, finely granular chromatin in the nuclei of cervical squamous cells. To quantify this chromatin pattern, this study employed Fuzzy C-Means clustering as the segmentation technique, enabling different degrees of chromatin segmentation to be performed on sample images of non-neoplastic squamous cells. From the simulation results, a model representing the chromatin distribution of non-neoplastic cervical squamous cell is constructed with the following quantitative characteristics: at the best representative sensitivity level 4 based on statistical analysis and human experts’ feedbacks, a nucleus of non-neoplastic squamous cell has an average of 67 chromatins with a total area of 10.827μm2; the average distance between the nearest chromatin pair is 0.508μm and the average eccentricity of the chromatin is 0.47. PMID:26560331

  2. Cell-block procedure in endoscopic ultrasound-guided-fine-needle-aspiration of gastrointestinal solid neoplastic lesions

    PubMed Central

    Ieni, Antonio; Barresi, Valeria; Todaro, Paolo; Caruso, Rosario Alberto; Tuccari, Giovanni

    2015-01-01

    In the present review we have analyzed the clinical applications of endoscopic ultrasound-guided-fine-needle-aspiration (EUS-FNA) and the methodological aspects obtained by cell-block procedure (CBP) in the diagnostic approach to the gastrointestinal neoplastic pathology. CBP showed numerous advantages in comparison to the cytologic routine smears; in particular, better preservation of cell architecture, achievement of routine haematoxylin-eosin staining equivalent to histological slides and possibility to perform immunohistochemistry or molecular analyses represented the most evident reasons to choose this method. Moreover, by this approach, the differential diagnosis of solid gastrointestinal neoplasias may be more easily achieved and the background of contaminant non-neoplastic gastrointestinal avoided. Finally, biological samples collected by EUS-FNA CBP-assisted should be investigated in order to identify and quantify further potential molecular markers. PMID:26322154

  3. In vitro and in vivo correlates of physiological and neoplastic human Fallopian tube stem cells.

    PubMed

    Yamamoto, Yusuke; Ning, Gang; Howitt, Brooke E; Mehra, Karishma; Wu, Lingyan; Wang, Xia; Hong, Yue; Kern, Florian; Wei, Tay Seok; Zhang, Ting; Nagarajan, Niranjan; Basuli, Debargha; Torti, Suzy; Brewer, Molly; Choolani, Mahesh; McKeon, Frank; Crum, Christopher P; Xian, Wa

    2016-03-01

    High-grade serous cancer (HGSC) progresses to advanced stages without symptoms and the 5-year survival rate is a dismal 30%. Recent studies of ovaries and Fallopian tubes in patients with BRCA1 or BRCA2 mutations have documented a pre-metastatic intramucosal neoplasm that is found almost exclusively in the Fallopian tube, termed 'serous tubal intraepithelial carcinoma' or STIC. Moreover, other proliferations, termed p53 signatures, secretory cell outgrowths (SCOUTs), and lower-grade serous tubal intraepithelial neoplasms (STINs) fall short of STIC but share similar alterations in expression, in keeping with an underpinning of genomic disturbances involved in, or occurring in parallel with, serous carcinogenesis. To gain insight into the cellular origins of this unique tubal pathway to high-grade serous cancer, we cloned and both immortalized and transformed Fallopian tube stem cells (FTSCs). We demonstrated that pedigrees of FTSCs were capable of multipotent differentiation and that the tumours derived from transformed FTSCs shared the histological and molecular features of HGSC. We also demonstrated that altered expression of some biomarkers seen in transformed FTSCs and HGSCs (stathmin, EZH2, CXCR4, CXCL12, and FOXM1) could be seen as well in immortalized cells and their in vivo counterparts SCOUTs and STINs. Thus, a whole-genome transcriptome analysis comparing FTSCs, immortalized FTSCs, and transformed FTSCs showed a clear molecular progression sequence that is recapitulated by the spectrum of accumulated perturbations characterizing the range of proliferations seen in vivo. Biomarkers unique to STIC relative to normal tubal epithelium provide a basis for novel detection approaches to early HGSC, but must be viewed critically given their potential expression in lesser proliferations. Perturbations shared by both immortalized and transformed FTSCs may provide unique early targets for prevention strategies. Central to these efforts has been the ability to clone

  4. In vitro and in vivo correlates of physiological and neoplastic human Fallopian tube stem cells

    PubMed Central

    Howitt, Brooke E; Mehra, Karishma; Wu, Lingyan; Wang, Xia; Hong, Yue; Kern, Florian; Wei, Tay Seok; Zhang, Ting; Nagarajan, Niranjan; Basuli, Debargha; Torti, Suzy; Brewer, Molly; Choolani, Mahesh; McKeon, Frank; Crum, Christopher P; Xian, Wa

    2016-01-01

    High-grade serous cancer (HGSC) progresses to advanced stages without symptoms and the 5-year survival rate is a dismal 30%. Recent studies of ovaries and Fallopian tubes in patients with BRCA1 or BRCA2 mutations have documented a pre-metastatic intramucosal neoplasm that is found almost exclusively in the Fallopian tube, termed ‘serous tubal intraepithelial carcinoma’ or STIC. Moreover, other proliferations, termed p53 signatures, secretory cell outgrowths (SCOUTs), and lower-grade serous tubal intraepithelial neoplasms (STINs) fall short of STIC but share similar alterations in expression, in keeping with an underpinning of genomic disturbances involved in, or occurring in parallel with, serous carcinogenesis. To gain insight into the cellular origins of this unique tubal pathway to high-grade serous cancer, we cloned and both immortalized and transformed Fallopian tube stem cells (FTSCs). We demonstrated that pedigrees of FTSCs were capable of multipotent differentiation and that the tumours derived from transformed FTSCs shared the histological and molecular features of HGSC. We also demonstrated that altered expression of some biomarkers seen in transformed FTSCs and HGSCs (stathmin, EZH2, CXCR4, CXCL12, and FOXM1) could be seen as well in immortalized cells and their in vivo counterparts SCOUTs and STINs. Thus, a whole-genome transcriptome analysis comparing FTSCs, immortalized FTSCs, and transformed FTSCs showed a clear molecular progression sequence that is recapitulated by the spectrum of accumulated perturbations characterizing the range of proliferations seen in vivo. Biomarkers unique to STIC relative to normal tubal epithelium provide a basis for novel detection approaches to early HGSC, but must be viewed critically given their potential expression in lesser proliferations. Perturbations shared by both immortalized and transformed FTSCs may provide unique early targets for prevention strategies. Central to these efforts has been the ability to

  5. Prognostic Impact of Reduced Connexin43 Expression and Gap Junction Coupling of Neoplastic Stromal Cells in Giant Cell Tumor of Bone

    PubMed Central

    Balla, Peter; Maros, Mate Elod; Barna, Gabor; Antal, Imre; Papp, Gergo; Sapi, Zoltan; Athanasou, Nicholas Anthony; Benassi, Maria Serena; Picci, Pierro; Krenacs, Tibor

    2015-01-01

    Missense mutations of the GJA1 gene encoding the gap junction channel protein connexin43 (Cx43) cause bone malformations resulting in oculodentodigital dysplasia (ODDD), while GJA1 null and ODDD mutant mice develop osteopenia. In this study we investigated Cx43 expression and channel functions in giant cell tumor of bone (GCTB), a locally aggressive osteolytic lesion with uncertain progression. Cx43 protein levels assessed by immunohistochemistry were correlated with GCTB cell types, clinico-radiological stages and progression free survival in tissue microarrays of 89 primary and 34 recurrent GCTB cases. Cx43 expression, phosphorylation, subcellular distribution and gap junction coupling was also investigated and compared between cultured neoplastic GCTB stromal cells and bone marow stromal cells or HDFa fibroblasts as a control. In GCTB tissues, most Cx43 was produced by CD163 negative neoplastic stromal cells and less by CD163 positive reactive monocytes/macrophages or by giant cells. Significantly less Cx43 was detected in α-smooth muscle actin positive than α-smooth muscle actin negative stromal cells and in osteoclast-rich tumor nests than in the adjacent reactive stroma. Progressively reduced Cx43 production in GCTB was significantly linked to advanced clinico-radiological stages and worse progression free survival. In neoplastic GCTB stromal cell cultures most Cx43 protein was localized in the paranuclear-Golgi region, while it was concentrated in the cell membranes both in bone marrow stromal cells and HDFa fibroblasts. In Western blots, alkaline phosphatase sensitive bands, linked to serine residues (Ser369, Ser372 or Ser373) detected in control cells, were missing in GCTB stromal cells. Defective cell membrane localization of Cx43 channels was in line with the significantly reduced transfer of the 622 Da fluorescing calcein dye between GCTB stromal cells. Our results show that significant downregulation of Cx43 expression and gap junction coupling in

  6. Chromosomal changes in cultured human epithelial cells transformed by low- and high-let radiation

    NASA Astrophysics Data System (ADS)

    Chui-Hsu Yang, Tracy; Craise, Laurie M.; Prioleau, John C.; Stampfer, Martha R.; Rhim, Johng S.

    1992-07-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude mice. Neoplastic transformation was achieved by irradiating cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level.

  7. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    NASA Technical Reports Server (NTRS)

    Craise, L. M.; Prioleau, J. C.; Stampfer, M. R.; Rhim, J. S.; Yang, TC-H (Principal Investigator)

    1992-01-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude mice. Neoplastic transformation was achieved by irradiating cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level.

  8. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    SciTech Connect

    Yang, Tracy Chui-hsu; Craise, L.M; Prioleau, J.C.; Stampfer, M.R.; Rhim, J.S.

    1990-11-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude nice. Neoplastic transformation was achieved by irradiation cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level. 15 refs., 9 figs., 2 tabs.

  9. Rodent cell transformation assays-a brief historical perspective.

    PubMed

    Schechtman, Leonard M

    2012-04-11

    In vitro cell transformation is a process characterized by a series of progressive distinctive events that often emulate manifestations occurring in vivo and which are associated with neoplasia. Attendant cellular and sub-cellular alterations include, among others: cellular immortality, phenotypic changes, aneuploidy, genetic variability, cellular disarray, anchorage-independent growth, and tumorigenicity in vivo. Early chemically induced neoplastic transformation studies involved the use of normal diploid (Syrian) hamster embryo (SHE) cells and monitored the formation of morphologically altered colonies. Later investigations employed primarily two established mouse cell lines, i.e. the BALB/c 3T3 A31 cell line and the C3H 10T 1/2 cell line, and monitored the induction of morphologically aberrant foci. In either case, such transformed cellular clusters (colonies and foci) could induce tumors upon inoculation in vivo. Some subsequent noteworthy advancements using these systems included pH adjustments, metabolic supplementation, amplification of expression of formerly latent transformed foci, concurrent detection of mutagenesis and transformation, and use of a Bhas 42 cell line (v-Ha-ras transfected BALB/c 3T3 cells) to detect both tumor initiators and promoters. Over time, such transformation assay systems have been found useful in academic, industry and regulatory laboratories, generally for research purposes, but also occasionally as screening tools for potential chemical carcinogens. Nevertheless, to date, use of these assays for decision-making purposes in the regulatory arena remains elusive and will require comprehensive validation to gain universal acceptance. PMID:22230428

  10. A novel stem cell associated marker identified by monoclonal antibody HESC5:3 differentiates between neoplastic lesions in follicular thyroid neoplasms.

    PubMed

    Heikkilä, Annukka; Fermér, Christian; Hagström, Jaana; Louhimo, Johanna; Mäenpää, Hanna; Siironen, Päivi; Heiskanen, Ilkka; Nilsson, Olle; Arola, Johanna; Haglund, Caj

    2015-07-01

    Follicular thyroid lesions are the bane of cytopathology. Differentiation between adenoma and carcinoma is impossible, and often these neoplasms are indistinguishable even from uninodular goitre. In other cancers as well, a theory of stem cells as the origin of cancer has been discussed in thyroid carcinogenesis. We aimed to examine a novel stem cell associated marker identified by monoclonal antibody HESC5:3 in follicular lesions in an attempt to find a marker for differential diagnosis in thyroid cytopathology. HESC5:3 was raised against and is specific for undifferentiated human embryonic stem cells. The epitope of this novel antibody is to be defined. Immunohistochemical expression of HESC5:3 was examined in clinical material comprised of follicular neoplasms (83 adenomas, 43 carcinomas) and non-neoplastic lesions (41 goitrous, 22 hyperplastic, 23 normal tissue specimens). Staining differed significantly between neoplastic and non-neoplastic lesions. Nuclear staining was increased in non-neoplastic cells, whereas in neoplastic cells expression was mainly cytoplasmic. There was no difference between benign and malignant lesions, suggesting a role in early tumourigenesis. In conclusion, the HESC5:3 epitope may be of benefit as a neoplasia marker in distinguishing between uninodular goitre and neoplasia. Characterization of the epitope would increase the interest in this promising new stem cell associated marker. PMID:25960045

  11. Transcriptional Dynamics of Immortalized Human Mesenchymal Stem Cells during Transformation.

    PubMed

    Takeuchi, Masao; Higashino, Atsunori; Takeuchi, Kikuko; Hori, Yutaro; Koshiba-Takeuchi, Kazuko; Makino, Hatsune; Monobe, Yoko; Kishida, Marina; Adachi, Jun; Takeuchi, Jun; Tomonaga, Takeshi; Umezawa, Akihiro; Kameoka, Yosuke; Akagi, Ken-Ichi

    2015-01-01

    Comprehensive analysis of alterations in gene expression along with neoplastic transformation in human cells provides valuable information about the molecular mechanisms underlying transformation. To further address these questions, we performed whole transcriptome analysis to the human mesenchymal stem cell line, UE6E7T-3, which was immortalized with hTERT and human papillomavirus type 16 E6/E7 genes, in association with progress of transformation in these cells. At early stages of culture, UE6E7T-3 cells preferentially lost one copy of chromosome 13, as previously described; in addition, tumor suppressor genes, DNA repair genes, and apoptosis-activating genes were overexpressed. After the loss of chromosome 13, additional aneuploidy and genetic alterations that drove progressive transformation, were observed. At this stage, the cell line expressed oncogenes as well as genes related to anti-apoptotic functions, cell-cycle progression, and chromosome instability (CIN); these pro-tumorigenic changes were concomitant with a decrease in tumor suppressor gene expression. At later stages after prolong culture, the cells exhibited chromosome translocations, acquired anchorage-independent growth and tumorigenicity in nude mice, (sarcoma) and exhibited increased expression of genes encoding growth factor and DNA repair genes, and decreased expression of adhesion genes. In particular, glypican-5 (GPC5), which encodes a cell-surface proteoglycan that might be a biomarker for sarcoma, was expressed at high levels in association with transformation. Patched (Ptc1), the cell surface receptor for hedgehog (Hh) signaling, was also significantly overexpressed and co-localized with GPC5. Knockdown of GPC5 expression decreased cell proliferation, suggesting that it plays a key role in growth in U3-DT cells (transformants derived from UE6E7T-3 cells) through the Hh signaling pathway. Thus, the UE6E7T-3 cell culture model is a useful tool for assessing the functional contribution of

  12. Transcriptional Dynamics of Immortalized Human Mesenchymal Stem Cells during Transformation

    PubMed Central

    Hori, Yutaro; Koshiba-Takeuchi, Kazuko; Makino, Hatsune; Monobe, Yoko; Kishida, Marina; Adachi, Jun; Takeuchi, Jun; Tomonaga, Takeshi; Umezawa, Akihiro; Kameoka, Yosuke; Akagi, Ken-ichi

    2015-01-01

    Comprehensive analysis of alterations in gene expression along with neoplastic transformation in human cells provides valuable information about the molecular mechanisms underlying transformation. To further address these questions, we performed whole transcriptome analysis to the human mesenchymal stem cell line, UE6E7T-3, which was immortalized with hTERT and human papillomavirus type 16 E6/E7 genes, in association with progress of transformation in these cells. At early stages of culture, UE6E7T-3 cells preferentially lost one copy of chromosome 13, as previously described; in addition, tumor suppressor genes, DNA repair genes, and apoptosis-activating genes were overexpressed. After the loss of chromosome 13, additional aneuploidy and genetic alterations that drove progressive transformation, were observed. At this stage, the cell line expressed oncogenes as well as genes related to anti-apoptotic functions, cell-cycle progression, and chromosome instability (CIN); these pro-tumorigenic changes were concomitant with a decrease in tumor suppressor gene expression. At later stages after prolong culture, the cells exhibited chromosome translocations, acquired anchorage-independent growth and tumorigenicity in nude mice, (sarcoma) and exhibited increased expression of genes encoding growth factor and DNA repair genes, and decreased expression of adhesion genes. In particular, glypican-5 (GPC5), which encodes a cell-surface proteoglycan that might be a biomarker for sarcoma, was expressed at high levels in association with transformation. Patched (Ptc1), the cell surface receptor for hedgehog (Hh) signaling, was also significantly overexpressed and co-localized with GPC5. Knockdown of GPC5 expression decreased cell proliferation, suggesting that it plays a key role in growth in U3-DT cells (transformants derived from UE6E7T-3 cells) through the Hh signaling pathway. Thus, the UE6E7T-3 cell culture model is a useful tool for assessing the functional contribution of

  13. N- and C-terminal isoforms of Arg quantified by real-time PCR are specifically expressed in human normal and neoplastic cells, in neoplastic cell lines, and in HL-60 cell differentiation.

    PubMed

    Perego, Roberto A; Corizzato, Matteo; Bianchi, Cristina; Eroini, Barbara; Bosari, Silvano

    2005-04-01

    The human ABL2 (or ARG) gene codes for a nonreceptor tyrosine kinase is involved in translocation with the ETV6 gene in human leukemia and has an altered expression in several human carcinomas. Two isoforms of Arg with different N-termini (1A and 1B) have been described. The C-terminal domain of Arg contains two F-actin-binding sequences that perform a number of actions related to cell morphology and motility by interacting with actin filaments. We have identified different-sized specific cDNAs in hematopoietic, epithelial, nervous, and fibroblastic cells by means of the reverse transcription (RT)-polymerase chain reaction (PCR) analysis of human Arg mRNA. Some of these cDNAs showed an adjunctive alternative splice event involving the 63 bp sequence of exon II, thus leading to four cDNA types with different N-termini: 1A long and short, and 1B long and short. Other cDNAs lacked a 309 bp sequence in the last exon involving one of the C-terminal F-actin binding domains, thus giving rise to two cDNA types: C-termini long and short. Quantified by real-time PCR-quantitative RT-PCR-these Arg transcript isoforms have specific expression patterns not only in different normal and tumor cell types, but also during cell differentiation and growth arrest. These isoforms maintained the open reading frames, and eight putative proteins were predicted. The different C-termini isoforms seem to retain the same quantitative reciprocal ratio of their respective transcripts. The Arg protein isoforms with different C-terminal actin-binding domains and different N-termini might have specific cellular localizations/concentrations, and differently regulated catalytic activity with different implications in normal and neoplastic cells. PMID:15765532

  14. Involvement of epigenetics and EMT related miRNA in arsenic induced neoplastic transformation and their potential clinical use

    PubMed Central

    Michailidi, Christina; Hayashi, Masamichi; Datta, Sayantan; Sen, Tanusree; Zenner, Kaitlyn; Oladeru, Oluwadamilola; Brait, Mariana; Izumchenko, Evgeny; Baras, Alexander; VandenBussche, Christopher; Argos, Maria; Bivalacqua, Trinity J; Ahsan, Habibul; Hahn, Noah M.; Netto, George J.; Sidransky, David; Hoque, Mohammad O.

    2015-01-01

    Exposure to toxicants leads to cumulative molecular changes that overtime increase a subject’s risk of developing urothelial carcinoma (UC). To assess the impact of arsenic exposure at a time progressive manner, we developed and characterized a cell culture model and tested a panel of miRNAs in urine samples from arsenic exposed subjects, UC patients and controls. To prepare an in vitro model, we chronically exposed an immortalized normal human bladder cell line (HUC1) to arsenic. Growth of the HUC1 cells was increased in a time dependent manner after arsenic treatment and cellular morphology was changed. In soft agar assay, colonies were observed only in arsenic treated cells and the number of colonies gradually increased with longer periods of treatment. Similarly, invaded cells in invasion assay were observed only in arsenic treated cells. Withdrawal of arsenic treatment for 2.5 months did not reverse the tumorigenic properties of arsenic treated cells. Western blot analysis demonstrated decreased PTEN and increased AKT and mTOR in arsenic treated HUC1 cells. Levels of miR-200a, miR-200b, and miR-200c were down-regulated in arsenic exposed HUC1 cells by quantitative RT-PCR. Furthermore, in human urine, miR-200c and miR-205 were inversely associated with arsenic exposure (P=0.005 and 0.009, respectively). Expression of miR-205 discriminated cancer cases from controls with high sensitivity and specificity (AUC=0.845). Our study suggests that exposure to arsenic rapidly induces a multifaceted dedifferentiation program and miR-205 has potential to be used as a marker of arsenic exposure as well as a maker of early UC detection. PMID:25586904

  15. eIF4E Threshold Levels Differ in Governing Normal and Neoplastic Expansion of Mammary Stem and Luminal Progenitor cells

    PubMed Central

    Avdulov, Svetlana; Herrera, Jeremy; Smith, Karen; Peterson, Mark; Gomez-Garcia, Jose R.; Beadnell, Thomas C.; Schwertfeger, Kathryn L.; Benyumov, Alexey O.; Manivel, J. Carlos; Li, Shunan; Bielinsky, Anja-Katrin; Yee, Douglas; Bitterman, Peter B.; Polunovsky, Vitaly A.

    2015-01-01

    Translation initiation factor eIF4E mediates normal cell proliferation, yet induces tumorigenesis when overexpressed. The mechanisms by which eIF4E directs such distinct biological outputs remains unknown. We found that mouse mammary morphogenesis during pregnancy and lactation is accompanied by increased cap-binding capability of eIF4E and activation of the eIF4E-dependent translational apparatus, but only subtle oscillations in eIF4E abundance. Using a transgenic mouse model engineered so that lactogenic hormones stimulate a sustained increase in eIF4E abundance in stem/progenitor cells of lactogenic mammary epithelium during successive pregnancy/lactation cycles, eIF4E overexpression increased cell self-renewal, triggered DNA replication stress, and induced formation of pre-malignant and malignant lesions. Using complementary in vivo and ex vivo approaches, we found that increasing eIF4E levels rescued cells harboring oncogenic c-Myc or H-RasV12 from DNA replication stress and oncogene-induced replication catastrophe. Our findings indicate that distinct threshold levels of eIF4E govern its biological output in lactating mammary glands, and that eIF4E overexpression in the context of stem/progenitor cell population expansion can initiate malignant transformation by enabling cells to evade DNA damage checkpoints activated by oncogenic stimuli. Maintaining eIF4E levels below its pro-neoplastic threshold is an important anticancer defense in normal cells, with important implications for understanding pregnancy-associated breast cancer. PMID:25524901

  16. Histopathological and Immunohistochemical Characterization of Methyl Eugenol-induced Nonneoplastic and Neoplastic Neuroendocrine Cell Lesions in Glandular Stomach of Rats.

    PubMed

    Janardhan, Kyathanahalli S; Rebolloso, Yvette; Hurlburt, Geoffrey; Olson, David; Lyght, Otis; Clayton, Natasha P; Gruebbel, Margarita; Picut, Catherine; Shackelford, Cynthia; Herbert, Ronald A

    2015-07-01

    Methyl eugenol induces neuroendocrine (NE) cell hyperplasia and tumors in F344/N rat stomach. Detailed histopathological and immunohistochemical (IHC) characterization of these tumors has not been previously reported. The objective of this study was to fill that data gap. Archived slides and paraffin blocks were retrieved from the National Toxicology Program Archives. NE hyperplasias and tumors were stained with chromogranin A, synaptophysin, amylase, gastrin, H(+)/K(+) adenosine triphosphatase (ATPase), pepsinogen, somatostatin, and cytokeratin 18 (CK18) antibodies. Many of the rats had gastric mucosal atrophy, due to loss of chief and parietal cells. The hyperplasias and tumors were confined to fundic stomach, and females were more affected than the males. Hyperplasia of NE cells was not observed in the pyloric region. Approximately one-third of the females with malignant NE tumors had areas of pancreatic acinar differentiation. The rate of metastasis was 21%, with liver being the most common site of metastasis. Immunohistochemically, the hyperplasias and tumors stained consistently with chromogranin A and synaptophysin. Neoplastic cells were also positive for amylase and CK18 and negative for gastrin, somatostatin, H(+)/K(+) ATPase, and pepsinogen. Metastatic neoplasms histologically similar to the primary neoplasm stained positively for chromogranin A and synaptophysin. Based on the histopathological and IHC features, the neoplasms appear to arise from enterochromaffin-like cells. PMID:25452433

  17. The pan-Bcl-2 blocker obatoclax promotes the expression of Puma, Noxa, and Bim mRNA and induces apoptosis in neoplastic mast cells.

    PubMed

    Peter, Barbara; Cerny-Reiterer, Sabine; Hadzijusufovic, Emir; Schuch, Karina; Stefanzl, Gabriele; Eisenwort, Gregor; Gleixner, Karoline V; Hoermann, Gregor; Mayerhofer, Matthias; Kundi, Michael; Baumgartner, Sigrid; Sperr, Wolfgang R; Pickl, Winfried F; Willmann, Michael; Valent, Peter

    2014-01-01

    Advanced SM is an incurable neoplasm with short survival time. So far, no effective therapy is available for these patients. We and others have shown recently that neoplastic MC in ASM and MCL express antiapoptotic Mcl-1, Bcl-2, and Bcl-xL. In this study, we examined the effects of the pan-Bcl-2 family blocker obatoclax (GX015-070) on primary neoplastic MC, the human MC leukemia cell line HMC-1, and the canine mastocytoma cell line C2. Obatoclax was found to inhibit proliferation in primary human neoplastic MC (IC₅₀: 0.057 μM), in HMC-1.2 cells expressing KIT D816V (IC₅₀: 0.72 μM), and in HMC-1.1 cells lacking KIT D816V (IC₅₀: 0.09 μM), as well as in C2 cells (IC₅₀: 0.74 μM). The growth-inhibitory effects of obatoclax in HMC-1 cells were accompanied by an increase in expression of Puma, Noxa, and Bim mRNA, as well as by apoptosis, as evidenced by microscopy, TUNEL assay, and caspase cleavage. Viral-mediated overexpression of Mcl-1, Bcl-xL, or Bcl-2 in HMC-1 cells was found to introduce partial resistance against apoptosis-inducing effects of obatoclax. We were also able to show that obatoclax synergizes with several other antineoplastic drugs, including dasatinib, midostaurin, and bortezomib, in producing apoptosis and/or growth arrest in neoplastic MC. Together, obatoclax exerts major growth-inhibitory effects on neoplastic MC and potentiates the antineoplastic activity of other targeted drugs. Whether these drug effects can be translated to application in patients with advanced SM remains to be determined. PMID:24052572

  18. In vitro cytotoxicity of Selol-loaded magnetic nanocapsules against neoplastic cell lines under AC magnetic field activation

    NASA Astrophysics Data System (ADS)

    Falqueiro, A. M.; Siqueira-Moura, M. P.; Jardim, D. R.; Primo, F. L.; Morais, P. C.; Mosiniewicz-Szablewska, E.; Suchocki, P.; Tedesco, A. C.

    2012-04-01

    The goals of this study are to evaluate invitro compatibility of magnetic nanomaterials and their therapeutic potential against cancer cells. Highly stable ionic magnetic fluid sample (maghemite, γ-Fe2O3) and Selol were incorporated into polymeric nanocapsules by nanoprecipitation method. The cytotoxic effect of Selol-loaded magnetic nanocapsules was assessed on murine melanoma (B16-F10) and oral squamous cell carcinoma (OSCC) cell lines following AC magnetic field application. The influence of different nanocapsules on cell viability was investigated by colorimetric MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. In the absence of AC magnetic field Selol-loaded magnetic nanocapsules, containing 100 µg/mL Selol plus 5 × 1012 particle/mL, showed antitumoral activity of about 50% on B16-F10 melanoma cells while OSCC carcinoma cells demonstrated drug resistance at all concentrations of Selol and magnetic fluid (range of 100-500 µg/mL Selol and 5 × 1012-2.5 × 1013 particle/mL). On the other hand, under AC applied fields (1 MHz and 40 Oe amplitude) B16-F10 cell viability was reduced down to 40.5% (±3.33) at the highest concentration of nanoencapsulated Selol. The major effect, however, was observed on OSCC cells since the cell viability drops down to about 33.3% (±0.38) under application of AC magnetic field. These findings clearly indicate that the Selol-loaded magnetic nanocapsules present different toxic effects on neoplastic cell lines. Further, the cytotoxic effect was maximized under AC magnetic field application on OSCC, which emphasizes the effectiveness of the magnetohyperthermia approach.

  19. Potentiation of cytotoxicity by 3-aminobenzamide in DNA repair-deficient human tumor cell lines following exposure to methylating agents or anti-neoplastic drugs.

    PubMed

    Babich, M A; Day, R S

    1988-04-01

    We studied the potentiation by 3-aminobenzamide (3AB) of killing of nine human cell lines exposed to alkylating agents. Cell lines included normal, transformed and DNA repair-proficient and -deficient phenotypes. 3AB potentiated cell killing by the methylating agents methylmethanesulfonate (MMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in all lines tested. The degree of potentiation ranged from 1.7- to 3.8-fold, based on the LD99. The average potentiation observed with MMS (2.7-fold) was greater than with MNNG (2.2-fold). On average the potentiation of MMS and MNNG killing of repair-deficient Mer- lines (2.4-fold) was similar to that of repair-proficient Mer+ lines. The degree of 3AB potentiation of MNNG killing (2.0-fold) was similar in Mer+ Rem- lines and in Mer+ Rem+ lines. Mer+ Rem+, Mer+ Rem-, Mer- Rem+, and Mer- Rem- strains all appeared proficient in a 3AB-sensitive DNA repair pathway. Within experimental error, 20 mM 3AB did not inhibit the removal of the MNNG-induced methylpurines 7-methylguanine, O6-methylguanine and 3-methyladenine from the DNA of repair-proficient Mer+ Rem+ HT29 cells, consistent with evidence that 3AB inhibits the ligation step of excision repair. 3AB potentiated cell killing by the bifunctional alkylating agents 1-(2-chlorethyl)-1-nitrosourea or busulfan, two anti-neoplastic drugs, by only 0.9- to 1.5-fold. These drugs therefore produce DNA damage which is not efficiently repaired by the pathways that repair methylated bases. PMID:3356063

  20. Analysis of differential protein expression in normal and neoplastic human breast epithelial cell lines

    SciTech Connect

    Williams, K.; Chubb, C.; Huberman, E.; Giometti, C.S.

    1997-07-01

    High resolution two dimensional get electrophoresis (2DE) and database analysis was used to establish protein expression patterns for cultured normal human mammary epithelial cells and thirteen breast cancer cell lines. The Human Breast Epithelial Cell database contains the 2DE protein patterns, including relative protein abundances, for each cell line, plus a composite pattern that contains all the common and specifically expressed proteins from all the cell lines. Significant differences in protein expression, both qualitative and quantitative, were observed not only between normal cells and tumor cells, but also among the tumor cell lines. Eight percent of the consistently detected proteins were found in significantly (P < 0.001) variable levels among the cell lines. Using a combination of immunostaining, comigration with purified protein, subcellular fractionation, and amino-terminal protein sequencing, we identified a subset of the differentially expressed proteins. These identified proteins include the cytoskeletal proteins actin, tubulin, vimentin, and cytokeratins. The cell lines can be classified into four distinct groups based on their intermediate filament protein profile. We also identified heat shock proteins; hsp27, hsp60, and hsp70 varied in abundance and in some cases in the relative phosphorylation levels among the cell lines. Finally, we identified IMP dehydrogenase in each of the cell lines, and found the levels of this enzyme in the tumor cell lines elevated 2- to 20-fold relative to the levels in normal cells.

  1. Normal and neoplastic plasma cell membrane phenotype: studies with new monoclonal antibodies.

    PubMed Central

    Tazzari, P L; Gobbi, M; Dinota, A; Bontadini, A; Grassi, G; Cerato, C; Cavo, M; Pileri, S; Caligaris-Cappio, F; Tura, S

    1987-01-01

    Three monoclonal antibodies (MoAb), named 8A, 8F6 and 62B1, reacting with plasma cell-associated antigens, were characterized. 8A was found to be positive throughout the B cell lineage maturation steps from the immature B-committed CD10+ cell to the plasma cells. 8F6 and 62B1 reactivity is restricted to more mature cells and related lymphoid malignancies. In particular 62B1 appears to be limited to hairy cells and plasma cells. The results show that it is possible to obtain reagents reacting with plasma cells by immunizing mice with cells derived from human multiple myelomas. Furthermore, the obtained results suggest that it is possible to elicit antibodies against antigens which are present throughout all the differentiation steps of the B cell lineage. These new MoAb could help in elucidating the phenotype of the plasma cells and the relationships of multiple myelomas with other B cell proliferative disorders. Images Fig. 1 PMID:3319299

  2. Evolution of normal and neoplastic tissue stem cells: progress after Robert Hooke.

    PubMed

    Weissman, Irving

    2015-10-19

    The appearance of stem cells coincides with the transition from single-celled organisms to metazoans. Stem cells are capable of self-renewal as well as differentiation. Each tissue is maintained by self-renewing tissue-specific stem cells. The accumulation of mutations that lead to preleukaemia are in the blood-forming stem cell, while the transition to leukaemia stem cells occurs in the clone at a progenitor stage. All leukaemia and cancer cells escape being removed by scavenger macrophages by expressing the 'don't eat me' signal CD47. Blocking antibodies to CD47 are therapeutics for all cancers, and are currently being tested in clinical trials in the US and UK. PMID:26416675

  3. Evolutionary malignant resistance of cells to damaging factors as common biological defence mechanism in neoplastic development. Review of conception.

    PubMed

    Monceviciute-Eringiene, E

    2000-09-01

    Cells have some inborn resistance to harmful factors, which could be called physiological or natural resistance. The mechanisms of multixenobiotic resistance (MXR) and multidrug resistance (MDR) have common features in the formation of acquired resistance in microorganisms, carcinogenesis, tumour metastases and chemotherapy or irradiation. ATP-dependent membrane P-glycoprotein, as an MDR efflux pump, glutathione S-transferases and other products of evolutionary resistance-related genes arised for exportation and detoxification of cytotoxic xenobiotics and drugs are transmitted from bacteria to man. On the one hand, this evolutionary MXR as a common biological defence mechanism is a "driving" power to conserve homeostasis of cells, tissues and organs. On the other hand, mutation, selection and simplification of properties are the causes of functional and morphological changes in tumour cells which regress to a more primitive mode of existence (atavism) for adaptation to survival. In the present work are presented data on the forms of E. coli resistant to antibiotics and of sarcoma 45 resistant to alkylic preparations. They may be helpful in revealing the causes of resistance and acquired accelerated growth of cells. The development of tumours as fibromas 14-15 years following injection of a vital dye trypan blue into human skin supports our conception that neoplastic growth is a particular case of the evolutionary resistance of cells adapted to the damaging factors. So, tumour cells adopting the enhancement mechanisms of general biological persistent resistance, i. e. undergoing repeated cycles of malignancy enhancement, adapt themselves to survive under the changed unfavourable conditions. PMID:11144527

  4. FOXP1 Expression in Normal and Neoplastic Erythroid and Myeloid Cells.

    PubMed

    Lovrić, Eva; Pavlov, Katarina Horvat; Korać, Petra; Dominis, Mara

    2015-09-01

    FOXP1 protein was firstly analyzed in normal tissues, and afterwards in different tumor tissues, mainly carcinoma and lymphoma. In B-cell malignancies, its role was well explored; its expression was shown to be connected with disease prognosis in certain B-non Hodgkin lymphomas. In this study, 16 bone marrow trephine samples from patients with no hematopoietic malignancies and 10 samples from peripheral blood of healthy individuals were immunostained with anti-FOXP1 antibody. Positive cells in bone marrows were not only lymphocytes, but also cells that are immunohistochemically positive for glycophorin C or myeloperoxidase. Peripheral blood samples showed no other positive cells, but small round lymphocytes. Additionally 60 samples from patients with myeloid lineage neoplasms were analyzed. 25 samples from patients with myelodysplastic syndrome (MDS) and 35 patients with myeloproliferative disease (MPD) were double immunostained with anti-FOXP1/anti-glycophorin C and anti-FOXP1/anti-myeloperoxidase antibodies. FOXP1 was found to be expressed in 22 cases of MDS and in none of MPD cases. Its expression in MDS was observed mostly in myeloperoxidase positive cells in contrast to gylcophorin C positive cells. Only two cases revealed both myeloperoxidase positive cells and gylcophorin C positive cells expressing FOXP1 transcription factor. Our results show that FOXP1 is present in normal cells of erythroid and myeloid linages and thus suggest its possible role in development of all hematopoetic cells as well as possible involvement in neoplasm development of myeloid disorders. PMID:26898077

  5. Target interaction profiling of midostaurin and its metabolites in neoplastic mast cells predicts distinct effects on activation and growth

    PubMed Central

    Peter, Barbara; Winter, Georg E.; Blatt, Katharina; Bennett, Keiryn L.; Stefanzl, Gabriele; Rix, Uwe; Eisenwort, Gregor; Hadzijusufovic, Emir; Gridling, Manuela; Dutreix, Catherine; Hoermann, Gregor; Schwaab, Juliana; Radia, Deepti; Roesel, Johannes; Manley, Paul W.; Reiter, Andreas; Superti-Furga, Giulio; Valent, Peter

    2016-01-01

    Proteomic-based drug testing is an emerging approach to establish the clinical value and anti-neoplastic potential of multi-kinase inhibitors. The multikinase inhibitor midostaurin (PKC412) is a promising new agent used to treat patients with advanced systemic mastocytosis (SM). We examined the target interaction-profiles and the mast cell (MC)-targeting effects of two pharmacologically relevant midostaurin metabolites, CGP52421 and CGP62221. All three compounds, midostaurin and the two metabolites, suppressed IgE-dependent histamine secretion in basophils and MC with reasonable IC50 values. Midostaurin and CGP62221 also produced growth-inhibition and dephosphorylation of KIT in the MC leukemia cell line HMC-1.2, whereas the second metabolite, CGP52421, that accumulates in vivo, showed no substantial effects. Chemical proteomic profiling and drug-competition experiments revealed that midostaurin interacts with KIT and several additional kinase-targets. The key downstream-regulator FES was recognized by midostaurin and CGP62221, but not by CGP52421 in MC lysates, whereas the IgE-receptor-downstream target SYK was recognized by both metabolites. Together, our data show that the clinically relevant midostaurin metabolite CGP52421 inhibits IgE-dependent histamine release, but is a weak inhibitor of MC proliferation which may have clinical implications and may explain why mediator-related symptoms improve in SM patients even when disease progression occurs. PMID:26349526

  6. Target interaction profiling of midostaurin and its metabolites in neoplastic mast cells predicts distinct effects on activation and growth.

    PubMed

    Peter, B; Winter, G E; Blatt, K; Bennett, K L; Stefanzl, G; Rix, U; Eisenwort, G; Hadzijusufovic, E; Gridling, M; Dutreix, C; Hoermann, G; Schwaab, J; Radia, D; Roesel, J; Manley, P W; Reiter, A; Superti-Furga, G; Valent, P

    2016-02-01

    Proteomic-based drug testing is an emerging approach to establish the clinical value and anti-neoplastic potential of multikinase inhibitors. The multikinase inhibitor midostaurin (PKC412) is a promising new agent used to treat patients with advanced systemic mastocytosis (SM). We examined the target interaction profiles and the mast cell (MC)-targeting effects of two pharmacologically relevant midostaurin metabolites, CGP52421 and CGP62221. All three compounds, midostaurin and the two metabolites, suppressed IgE-dependent histamine secretion in basophils and MC with reasonable IC(50) values. Midostaurin and CGP62221 also produced growth inhibition and dephosphorylation of KIT in the MC leukemia cell line HMC-1.2, whereas the second metabolite, CGP52421, which accumulates in vivo, showed no substantial effects. Chemical proteomic profiling and drug competition experiments revealed that midostaurin interacts with KIT and several additional kinase targets. The key downstream regulator FES was recognized by midostaurin and CGP62221, but not by CGP52421 in MC lysates, whereas the IgE receptor downstream target SYK was recognized by both metabolites. Together, our data show that the clinically relevant midostaurin metabolite CGP52421 inhibits IgE-dependent histamine release, but is a weak inhibitor of MC proliferation, which may have clinical implications and may explain why mediator-related symptoms improve in SM patients even when disease progression occurs. PMID:26349526

  7. STAT3/5-Dependent IL9 Overexpression Contributes to Neoplastic Cell Survival in Mycosis Fungoides

    PubMed Central

    Vieyra-Garcia, Pablo A.; Wei, Tianling; Naym, David Gram; Fredholm, Simon; Fink-Puches, Regina; Cerroni, Lorenzo; Odum, Niels; O'Malley, John T.; Gniadecki, Robert; Wolf, Peter

    2016-01-01

    Purpose Sustained inflammation is a key feature of mycosis fungoides (MF), the most common form of cutaneous T-cell lymphoma (CTCL). Resident IL9–producing T cells have been found in skin infections and certain inflammatory skin diseases, but their role in MF is currently unknown. Experimental Design We analyzed lesional skin from patients with MF for the expression of IL9 and its regulators. To determine which cells were producing IL9, high-throughput sequencing was used to identify malignant clones and Vb-specific antibodies were employed to visualize malignant cells in histologic preparations. To explore the mechanism of IL9 secretion, we knocked down STAT3/5 and IRF4 by siRNA transfection in CTCL cell lines receiving psoralen+UVA (PUVA) ± anti-IL9 antibody. To further examine the role of IL9 in tumor development, the EL-4 T-cell lymphoma model was used in C57BL/6 mice. Results Malignant and reactive T cells produce IL9 in lesional skin. Expression of the Th9 transcription factor IRF4 in malignant cells was heterogeneous, whereas reactive T cells expressed it uniformly. PUVA or UVB phototherapy diminished the frequencies of IL9- and IL9r-positive cells, as well as STAT3/5a and IRF4 expression in lesional skin. IL9 production was regulated by STAT3/5 and silencing of STAT5 or blockade of IL9 with neutralizing antibodies potentiated cell death after PUVA treatment in vitro. IL9-depleted mice exhibited a reduction of tumor growth, higher frequencies of regulatory T cells, and activated CD4 and CD8 T lymphocytes. Conclusion Our results suggest that IL9 and its regulators are promising new targets for therapy development in mycosis fungoides. PMID:26851186

  8. Achaete scute-like 2 suppresses CDX2 expression and inhibits intestinal neoplastic epithelial cell differentiation

    PubMed Central

    Ye, Jun; Zhong, Xiaoli; Li, Xiaohuan; Meng, Linkuan; Guo, Jin; Tian, Yin; He, Yonghong; Chen, Wensheng; Peng, Zhihong; Wang, Rongquan

    2015-01-01

    The role of Achaete scute-like 2 (Ascl2) in colorectal cancer (CRC) cell differentiation is unknown. LS174T, HT-29 and Caco-2 cells have high Ascl2 expression, while Lovo and SW480 cells have low Ascl2 expression. LS174T and HT-29 cells with Ascl2 knockdown were transfected with caudal type homeobox 2 (CDX2) promoter constructs and used for luciferase assays and chromatin immunoprecipitation (ChIP) assays. Ascl2 knockdown promoted differentiation of CRC cells into a goblet cell phenotype, as determined by increased expression of MUC2, TFF3, and CDX2. Ascl2 knockdown activated CDX2 expression through a transcriptional mechanism via direct binding of Ascl2 to the proximal E-box of the CDX2 promoter. Ascl2 over-expression in Lovo and SW480 cells inhibited a goblet cell phenotype, as determined by reduced CDX2 and MUC2 expression. Inverse correlations between Ascl2 and CDX2, and Ascl2 and MUC2 mRNA levels, as well as Ascl2 and CDX2 protein levels were observed in CRC cancerous samples. This study demonstrates CDX2 repression by Ascl2 and highlights a role for Ascl2 in CRC cell differentiation. These findings suggest that the Ascl2/CDX2 axis may serve as a potential therapeutic target in colorectal cancer. PMID:26307678

  9. Mitochondrial alteration in malignantly transformed human small airway epithelial cells induced by alpha particles

    PubMed Central

    Zhang, Suping; Wen, Gengyun; Huang, Sarah XL; Wang, Jianrong; Tong, Jian; Hei, Tom K.

    2012-01-01

    Human small airway epithelial cells (SAECs) immortalized with human telomerase reverse transcriptase (h-TERT) were exposed to either a single or multiple doses of α particles. Irradiated cells showed a dose-dependent cytotoxicity and progressive neoplastic transformation phenotype. These included an increase in saturation density of growth, a greater resistance to PALA, faster anchorage-independent growth, reinforced cell invasion and c-Myc expression. In addition, the transformed cells formed progressively growing tumors upon inoculation into athymic nude mice. Specifically, α-irradiation induced damage to both mitochondrial DNA (mtDNA) and mitochondrial functions in transformed cells as evidenced by increased mtDNA copy number and common deletion, decreased oxidative phosphorylation (OXPHOS) activity as measured by cytochrome C oxidase (COX) activity and oxygen consumption. There was a linear correlation between mtDNA copy number, common deletion, COX activity and cellular transformation represented by soft agar colony formation and c-Myc expression. These results suggest that mitochondria are associated with neoplastic transformation of SAEC cells induced by α particles, and that the oncogenesis process may depend not only on the genomes inside the nucleus, but also on the mitochondrial DNA outside the nucleus. PMID:22644783

  10. Characterization of an in vitro cell culture bioreactor system to evaluate anti-neoplastic drug regimens.

    PubMed

    Kirstein, Mark N; Brundage, Richard C; Elmquist, William F; Remmel, Rory P; Marker, Paul H; Guire, Dan E; Yee, Douglas

    2006-04-01

    A dynamic 3-dimensional tissue culture system has been developed that will allow for control of gemcitabine exposure to mimic concentration-time profiles measured from biologic samples. Gemcitabine was infused into a central reservoir. Media is mixed and delivered through hollow fiber capillaries, where it diffuses into the extracapillary space containing anchorage-dependent MDA-231 cells. To test for control of gemcitabine concentration-time profiles, drug was first infused through bioreactors without cells, and gemcitabine concentrations were measured with HPLC. Concentrations could be controlled to simulate 30-min and 2.5 h infusions, and were similar in both the lumen and extracapillary space. MDA-231 cells were then seeded into control (n = 4) and gemcitabine treatment (n = 4) groups, and maintained in culture for 2 weeks. Gemcitabine (5.3 mg) was infused over 30 min to the treatment group, and blank media to the control group. Accuracy of measured gemcitabine maximum concentration (Cmax) was 83.4%, and area under the curve (AUC), 106.2%, relative to pre-experimental theoretical values. With cells present, gemcitabine AUC in the extracapillary space was 32% of the value in the lumen. For the control group, 21.2 million cells (94.3% viable) were recovered, and for the gemcitabine-treated group, 16.8 million cells (87.1 % viable). Flow cytometry showed that 13.3 % of cells in the control group were in S-phase and 34.3 % in the gemcitabine-treated group were in S-phase (p = 0.003). In conclusion, gemcitabine concentration-time profiles could be accurately controlled through dosage, infusion rate, and pump flow rate, and cells could be recovered afterward to evaluate drug treatment. PMID:16502018

  11. Berberis libanotica Ehrenb extract shows anti-neoplastic effects on prostate cancer stem/progenitor cells.

    PubMed

    El-Merahbi, Rabih; Liu, Yen-Nien; Eid, Assaad; Daoud, Georges; Hosry, Leina; Monzer, Alissar; Mouhieddine, Tarek H; Hamade, Aline; Najjar, Fadia; Abou-Kheir, Wassim

    2014-01-01

    Cancer stem cells (CSCs), including those of advanced prostate cancer, are a suggested reason for tumor resistance toward conventional tumor therapy. Therefore, new therapeutic agents are urgently needed for targeting CSCs. Despite the minimal understanding of their modes of action, natural products and herbal therapies have been commonly used in the prevention and treatment of many cancers. Berberis libanotica Ehrenb (BLE) is a plant rich in alkaloids which may possess anti-cancer activity and a high potential for eliminating CSCs. We tested the effect of BLE on prostate cancer cells and our data indicated that this extract induced significant reduction in cell viability and inhibited the proliferation of human prostate cancer cell lines (DU145, PC3 and 22Rv1) in a dose- and time-dependent manner. BLE extract induced a perturbation of the cell cycle, leading to a G0-G1 arrest. Furthermore, we noted 50% cell death, characterized by the production of high levels of reactive oxidative species (ROS). Inhibition of cellular migration and invasion was also achieved upon treatment with BLE extract, suggesting a role in inhibiting metastasis. Interestingly, BLE extract had a major effect on CSCs. Cells were grown in a 3D sphere-formation assay to enrich for a population of cancer stem/progenitor cells. Our results showed a significant reduction in sphere formation ability. Three rounds of treatment with BLE extract were sufficient to eradicate the self-renewal ability of highly resistant CSCs. In conclusion, our results suggest a high therapeutic potential of BLE extract in targeting prostate cancer and its CSCs. PMID:25380390

  12. Identification of a non-specific inhibitor of (methyl/sup 3/H)thymidine incorporation into DNA of normal and pre-neoplastic cells

    SciTech Connect

    Overbye, L.J.

    1989-01-01

    Growth in mammalian cells is controlled by a variety of factors, both stimulatory and inhibitory. Bullough et al. (2) first proposed the idea that endogenous mitotic inhibitors may play a role in controlling cellular proliferation. Inhibitors may be tissue-specific (9) or non-specific (for review see Lozzio et al. (5)). Although many inhibitors are proteins of high molecular weights, several low molecular weight inhibitors of (/sup 3/H) thymidine incorporation (and therefore DNA synthesis) have been identified (1,3,6). Unlabelled thymidine has also been noted to be inhibitory (4). This paper describes a non-specific, unstable inhibitor that is found in media conditioned by neoplastic epithelial cells and some normal fibroblasts and inhibits (/sup 3/H) thymidine incorporation into normal and pre-neoplastic cells. The inhibitory activity has not been isolated and could consists of more than one compound. 9 refs., 1 tab.

  13. Interleukin-4 Expressed By Neoplastic Cells Provokes an Anti-Metastatic Myeloid Immune Response

    PubMed Central

    Zhang, Connie S.; Kim, Hyeyeon; Mullins, Graeme; Tyryshkin, Kathrin; LeBrun, David P.; Elliott, Bruce E.; Greer, Peter A.

    2016-01-01

    Objective Interleukin-4 (IL-4) can induce macrophages to undergo alternative activation and polarize toward an M2-like or wound healing phenotype. Tumor associated macrophages (TAMs) are thought to assume M2-like properties, and it has been suggested they promote tumor growth and metastasis through effects on the tumor stroma, including extracelluar matrix remodeling and angiogenesis. IL-4 also promotes macrophage survival and formation of multinucleated giant cells, which have enhanced phagocytic behavior. This study was designed to explore the effect of cancer cell derived IL-4 on the tumor immune stroma and metastasis. Methods The metastatic mouse mammary carcinoma cell line AC2M2 was transduced with control or IL-4 encoding retroviruses and employed in orthotopic engraftment models. Tumor growth and metastasis were assessed. The cellular composition and biomarker expression of tumors were examined by immunohistochemical staining and flow cytometry; the transcriptome of the immune stroma was analyzed by nanoString based transcript quantitation; and in vivo and in vitro interactions between cancer cells and macrophages were assessed by flow cytometry and co-culture with video-time lapse microscopy, respectively. Results Unexpectedly, tumors from IL-4 expressing AC2M2 engrafted cells grew at reduced rates, and most surprising, they lost all metastatic potential relative to tumors from control AC2M2 cells. Myeloid cell numbers were not increased in IL-4 expressing tumors, but their expression of the M2 marker arginase I was elevated. Transcriptome analysis revealed an immune signature consistent with IL-4 induced M2 polarization of the tumor microenvironment and a generalized increase in myeloid involvement in the tumor stroma. Flow cytometry analysis indicated enhanced cancer cell phagocytosis by TAMs from IL-4 expressing tumors, and co-culture studies showed that IL-4 expressing cancer cells supported the survival and promoted the in vitro phagocytic behavior of

  14. Oncocytic change in pleomorphic adenoma: molecular evidence in support of an origin in neoplastic cells

    PubMed Central

    Palma, Silvana Di; Lambros, Maryou B K; Savage, Kay; Jones, Chris; Mackay, Alan; Dexter, Tim; Iravani, Marjan; Fenwick, Kerry; Ashworth, Alan; Reis‐Filho, Jorge S

    2007-01-01

    Background Cells with oncocytic change (OC) are a common finding in salivary glands (SGs) and in SG tumours. When found within pleomorphic adenomas (PAs), cells with OC may be perceived as evidence of malignancy, and lead to a misdiagnosis of carcinoma ex pleomorphic adenoma (CaExPa). Aim To describe a case of PA with atypical OC, resembling a CaExPa. A genomewide molecular analysis was carried out to compare the molecular genetic features of the two components and to determine whether the oncocytic cells originated from PA cells, entrapped normal cells, or whether these cells constitute an independent tumour. Materials and methods Representative blocks were immunohistochemically analysed with antibodies raised against cytokeratin (Ck) 5/6, Ck8/18, Ck14, vimentin, p63, α‐smooth muscle actin (ASMA), S100 protein, anti‐mitochondria antibody, β‐catenin, HER2, Ki67, p53 and epidermal growth factor receptor. Typical areas of PA and OC were microdissected and subjected to microarray‐based comparative genomic hybridisation (aCGH). Chromogenic in situ hybridisation (CISH) was performed with in‐house generated probes to validate the aCGH findings. Results PA cells showed the typical immunohistochemical profile, including positivity for Ck5/6, Ck8/18, Ck14, vimentin, ASMA, S100 protein, p63, epidermal growth factor receptor and β‐catenin, whereas oncocytic cells showed a luminal phenotype, expression of anti‐mitochondria antibody and reduced β‐catenin staining. Both components showed low proliferation rates and lacked p53 reactivity. aCGH revealed a similar amplification in both components, mapping to 12q13.3–q21.1, which was further validated by CISH. No HER2 gene amplification or overexpression was observed. The foci of oncocytic metaplasia showed an additional low‐level gain of 6p25.2–p21.31. Conclusion The present data demonstrate that the bizarre atypical cells of the present case show evidence of clonality but no features of malignancy. In

  15. Aspirin and atenolol enhance metformin activity against breast cancer by targeting both neoplastic and microenvironment cells.

    PubMed

    Talarico, Giovanna; Orecchioni, Stefania; Dallaglio, Katiuscia; Reggiani, Francesca; Mancuso, Patrizia; Calleri, Angelica; Gregato, Giuliana; Labanca, Valentina; Rossi, Teresa; Noonan, Douglas M; Albini, Adriana; Bertolini, Francesco

    2016-01-01

    Metformin can induce breast cancer (BC) cell apoptosis and reduce BC local and metastatic growth in preclinical models. Since Metformin is frequently used along with Aspirin or beta-blockers, we investigated the effect of Metformin, Aspirin and the beta-blocker Atenolol in several BC models. In vitro, Aspirin synergized with Metformin in inducing apoptosis of triple negative and endocrine-sensitive BC cells, and in activating AMPK in BC and in white adipose tissue (WAT) progenitors known to cooperate to BC progression. Both Aspirin and Atenolol added to the inhibitory effect of Metformin against complex I of the respiratory chain. In both immune-deficient and immune-competent preclinical models, Atenolol increased Metformin activity against angiogenesis, local and metastatic growth of HER2+ and triple negative BC. Aspirin increased the activity of Metformin only in immune-competent HER2+ BC models. Both Aspirin and Atenolol, when added to Metformin, significantly reduced the endothelial cell component of tumor vessels, whereas pericytes were reduced by the addition of Atenolol but not by the addition of Aspirin. Our data indicate that the addition of Aspirin or of Atenolol to Metformin might be beneficial for BC control, and that this activity is likely due to effects on both BC and microenvironment cells. PMID:26728433

  16. Aspirin and atenolol enhance metformin activity against breast cancer by targeting both neoplastic and microenvironment cells

    PubMed Central

    Talarico, Giovanna; Orecchioni, Stefania; Dallaglio, Katiuscia; Reggiani, Francesca; Mancuso, Patrizia; Calleri, Angelica; Gregato, Giuliana; Labanca, Valentina; Rossi, Teresa; Noonan, Douglas M.; Albini, Adriana; Bertolini, Francesco

    2016-01-01

    Metformin can induce breast cancer (BC) cell apoptosis and reduce BC local and metastatic growth in preclinical models. Since Metformin is frequently used along with Aspirin or beta-blockers, we investigated the effect of Metformin, Aspirin and the beta-blocker Atenolol in several BC models. In vitro, Aspirin synergized with Metformin in inducing apoptosis of triple negative and endocrine-sensitive BC cells, and in activating AMPK in BC and in white adipose tissue (WAT) progenitors known to cooperate to BC progression. Both Aspirin and Atenolol added to the inhibitory effect of Metformin against complex I of the respiratory chain. In both immune-deficient and immune-competent preclinical models, Atenolol increased Metformin activity against angiogenesis, local and metastatic growth of HER2+ and triple negative BC. Aspirin increased the activity of Metformin only in immune-competent HER2+ BC models. Both Aspirin and Atenolol, when added to Metformin, significantly reduced the endothelial cell component of tumor vessels, whereas pericytes were reduced by the addition of Atenolol but not by the addition of Aspirin. Our data indicate that the addition of Aspirin or of Atenolol to Metformin might be beneficial for BC control, and that this activity is likely due to effects on both BC and microenvironment cells. PMID:26728433

  17. Immunogenicity of guinea pig cells transformed in culture by chemical carcinogens

    SciTech Connect

    Ohanian, S.H.; McCabe, R.P.; Evans, C.H.

    1981-12-01

    The immunogenicity of inbred strain 2/N guinea pig fibroblasts transformed to the malignant state in vitro by chemical carcinogens was evaluated with the use of a variety of in vivo and in vitro methods including delayed-type hypersensitivity skin and tumor transplantation tests and analysis of antibody production by immunofluorescence, complement fixation, and staphylococcal protein A binding tests. Neoplastic transformation was induced by direct treatment of cells in culture with benzo(a)pyrene, 3-methylcholanthrene, or N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) or by the host-mediated method by which fetuses were exposed to diethylnitrosamine or MNNG in vivo prior to cell culture. Rabbits and syngeneic guinea pigs were inoculated with unirradiated and X-irradiated clonally derived cells. Delayed hypersensitivity skin reactions to immunizing or other cells were equivalent in immunized or control guinea pigs, and no protection to tumor outgrowth from a challenge inoculum of immunizing cells was observed. Antibody activity induced in the sera of immunized guinea pigs was cross-reactive and removed by absorption with nontumorigenic cells. Rabbit antisera after absorption with fetal guinea pig cells were nonreactive with the specific immunizing or other culture cells. Chemical carcinogen-induced neoplastic transformation of guinea pig cells can, therefore, occur without formation of detectable, individually distinct cell surface tumor-specific neoantigens.

  18. Immunogenicity of guinea pig cells transformed in culture by chemical carcinogens

    SciTech Connect

    Ohanian, S.H.; McCabe, R.P.; Evans, C.H.

    1981-12-01

    The immunogenicity of inbred strain 2/N guinea pig fibroblasts transformed to the malignant state in vitro by chemical carcinogens was evaluated with the use of a variety of in vivo and in vitro methods including delayed-type hypersensitivity skin and tumor transplantation tests and analysis of antibody production by immunofluorescence, complement fixation, and staphylococcal protein A binding tests. Neoplastic transformation was induced by direct treatment of cells in culture with benzo(a)pyrene, 3-methylcholanthrene, or N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) or by the host-mediated method by which fetuses were exposed to diethylnitrosamine or MNNG in vivo prior to cell culture. Rabbits and syngeneic guinea pigs were inoculated with unirradiated and X-irradiated clonally derived cells. Delayed hypersensitivity skin reactions to immunizing or other cells were equivalent in immunized or control guinea pigs, and no protection to tumor outgrowth from a challenge inoculum of immunizing cells was observed. Antibody activity induced in the sera of immunized guinea pigs was cross-reactive and removed by absorption with nontumorigenic cells. Rabbit anitsera after absorption with fetal guinea pig cells were nonreactive with the specific immunizing or other cultured cells. Chemical carcinogen-induced neoplastic transformation of guinea pig cells can, therefore, occur without formation of detectable, individually distinct cell surface tumor-specific neoantigens.

  19. PML is required for telomere stability in non-neoplastic human cells.

    PubMed

    Marchesini, M; Matocci, R; Tasselli, L; Cambiaghi, V; Orleth, A; Furia, L; Marinelli, C; Lombardi, S; Sammarelli, G; Aversa, F; Minucci, S; Faretta, M; Pelicci, P G; Grignani, F

    2016-04-01

    Telomeres interact with numerous proteins, including components of the shelterin complex, whose alteration, similarly to proliferation-induced telomere shortening, initiates cellular senescence. In tumors, telomere length is maintained by Telomerase activity or by the Alternative Lengthening of Telomeres mechanism, whose hallmark is the telomeric localization of the promyelocytic leukemia (PML) protein. Whether PML contributes to telomeres maintenance in normal cells is unknown. We show that in normal human fibroblasts the PML protein associates with few telomeres, preferentially when they are damaged. Proliferation-induced telomere attrition or their damage due to alteration of the shelterin complex enhances the telomeric localization of PML, which is increased in human T-lymphocytes derived from patients genetically deficient in telomerase. In normal fibroblasts, PML depletion induces telomere damage, nuclear and chromosomal abnormalities, and senescence. Expression of the leukemia protein PML/RARα in hematopoietic progenitors displaces PML from telomeres and induces telomere shortening in the bone marrow of pre-leukemic mice. Our work provides a novel view of the physiologic function of PML, which participates in telomeres surveillance in normal cells. Our data further imply that a diminished PML function may contribute to cell senescence, genomic instability, and tumorigenesis. PMID:26119943

  20. Dentinogenic Ghost Cell Tumor — A Neoplastic Variety of Calcifying Odontogenic Cyst: Case Presentation and Review

    PubMed Central

    Rai, Shalu; Prabhat, Mukul; Goel, Sumit; Bhalla, Kanika; Panjwani, Sapna; Misra, Deepankar; Agarwal, Ankur; Bhatnagar, Gunjan

    2015-01-01

    Context: The calcifying odontogenic cyst (COC), also referred to as calcifying ghost cell odontogenic cyst (CGCOC) is a heterogeneous lesion existing either as cystic or solid variant. Due to the fact that all CGCOC lesions are not cystic, and the biological behavior is often not consistent with a cyst, there has always been a controversy as to whether COC is a cyst or a tumor. The dentinogenic ghost-cell tumor (DGCT), a solid variant of the COC, is an uncommon odontogenic neoplasm occurring predominantly in later life. Case report is followed by a concise review and disambiguation of controversial terminologies regarding nomenclature of COC. Case Report: We report a case of 33-year-old female patient who presented with an insidious, steadily increasing swelling on the left side of her face since 8 months. Patient reported slight difficulty in eating because of reduced intraoral space and an obvious concern with facial disfigurement. There was no contributory dental or medical history. Intraorally, a hard, well defined, bicortical swelling was noted in left maxillary region with slight mobility of the associated teeth and normal appearing overlying mucosa. A provisional diagnosis of adenomatoid odontogenic tumor was made, and orthopantomogram, paranasal sinus radiograph and computed tomograpy scan of the face were acquired. A radiographic diagnosis of COC was made, which was subsequently confirmed on histopathology postenucleation of the tumor mass. COC has been seen to be of extensive diversity in its clinical and histopathological features as well as in its biological behavior. Conclusion: The present case of 33-year-old female was diagnosed as DGCT, a tumorous form of COC, due to its characteristic histological features; numerous ghost cells and dentinoid material. PMID:25709974

  1. Understanding the Role of Keratins 8 and 18 in Neoplastic Potential of Breast Cancer Derived Cell Lines

    PubMed Central

    Iyer, Sapna V.; Dange, Prerana P.; Alam, Hunain; Sawant, Sharada S.; Ingle, Arvind D.; Borges, Anita M.; Shirsat, Neelam V.; Dalal, Sorab N.; Vaidya, Milind M.

    2013-01-01

    Background Breast cancer is a complex disease which cannot be defined merely by clinical parameters like lymph node involvement and histological grade, or by routinely used biomarkers like estrogen receptor (ER), progesterone receptor (PGR) and epidermal growth factor receptor 2 (HER2) in diagnosis and prognosis. Breast cancer originates from the epithelial cells. Keratins (K) are cytoplasmic intermediate filament proteins of epithelial cells and changes in the expression pattern of keratins have been seen during malignant transformation in the breast. Expression of the K8/18 pair is seen in the luminal cells of the breast epithelium, and its role in prognostication of breast cancer is not well understood. Methodology/Principal Findings In this study, we have modulated K8 expression to understand the role of the K8/18 pair in three different breast epithelium derived cell lines: non-transformed MCF10A, transformed but poorly invasive MDA MB 468 and highly invasive MDA MB 435. The up-regulation of K8 in the invasive MDA MB 435 cell line resulted in a significant decrease in proliferation, motility, in-vitro invasion, tumor volume and lung metastasis. The down-regulation of K8 in MDA MB 468 resulted in a significant increase in transformation potential, motility and invasion in-vitro, while MCF10A did not show any changes in cell transformation assays. Conclusions/Significance These results indicate the role of K8/18 in modulating invasion in breast cancer -its presence correlating with less invasive phenotype and absence correlating with highly invasive, dedifferentiated phenotype. These data may have important implications for prognostication of breast cancer. PMID:23341946

  2. Isolation, purification, culture and characterisation of myoepithelial cells from normal and neoplastic canine mammary glands using a magnetic-activated cell sorting separation system.

    PubMed

    Sánchez-Céspedes, R; Maniscalco, L; Iussich, S; Martignani, E; Guil-Luna, S; De Maria, R; Martín de Las Mulas, J; Millán, Y

    2013-08-01

    Mammary gland tumours, the most common malignant neoplasm in bitches, often display myoepithelial (ME) cell proliferation. The aim of this study was to isolate, purify, culture and characterise ME cells from normal and neoplastic canine mammary glands. Monodispersed cells from three normal canine mammary glands and five canine mammary tumours were incubated with an anti-Thy1 antibody and isolated by magnetic-activated cell sorting (MACS). Cells isolated from two normal glands (cell lines CmME-N1 and CmME-N2) and four tumours (cell lines CmME-K1 from a complex carcinoma, CmME-K2 from a simple tubulopapillary carcinoma, and CmME-K3 and CmME-K4 from two carcinomas within benign tumours) were cultured in supplemented DMEM/F12 media for 40days. Cell purity was >90%. Tumour-derived ME cell lines exhibited heterogeneous morphology, growth patterns and immunocytochemical expression of cytokeratins, whereas cell lines from normal glands retained their morphology and levels of cytokeratin expression during culture. Cell lines from normal glands and carcinomas within benign tumours grew more slowly than those from simple and complex carcinomas. This methodology has the potential to be used for in vitro analysis of the role of ME cells in the growth and progression of canine mammary tumours. PMID:23583698

  3. Loss of p53 protein during radiation transformation of primary human mammary epithelial cells

    SciTech Connect

    Wazer, D.E.; Chu, Qiuming; Liu, Xiao Long; Gao, Qingshen; Safaii, H.; Band, V. )

    1994-04-01

    The causative factors leading to breast cancer are largely unknown. Increased incidence of breast cancer following diagnostic or therapeutic radiation suggests that radiation may contribute to mammary oncogenesis. This report describes the in vitro neoplastic transformation of a normal human mammary epithelial cell strain, 76N, by fractionated [gamma]-irradiation at a clinically used dose (30 Gy). The transformed cells (76R-30) were immortal, had reduced growth factor requirements, and produced tumors in nude mice. Remarkably, the 76R-30 cells completely lacked the p53 tumor suppressor protein. Loss of p53 was due to deletion of the gene on one allele and a 26-bp deletion within the third intron on the second allele which resulted in abnormal splicing out of either the third or fourth exon from the mRNA. PCR with a mutation-specific primer showed that intron 3 mutation was present in irradiated cells before selection for immortal phenotype. 76R-30 cells did not exhibit G[sub 1] arrest in response to radiation, indicating a loss of p53-mediated function. Expression of the wild-type p53 gene in 76R-30 cells led to their growth inhibition. Thus, loss of p53 protein appears to have contributed to neoplastic transformation of these cells. This unique model should facilitate analyses of molecular mechanisms of radiation-induced breast cancer and allow identification of p53-regulated cellular genes in breast cells. 44 refs., 8 figs., 1 tab.

  4. Impact of tissue type and content of neoplastic cells of samples on the quality of epidermal growth factor receptor mutation analysis among patients with lung adenocarcinoma

    PubMed Central

    PALIOGIANNIS, PANAGIOTIS; ATTENE, FEDERICO; COSSU, ANTONIO; DEFRAIA, EFISIO; PORCU, GIUSEPPE; CARTA, ANNAMARIA; SOTGIU, MARIA IGNAZIA; PAZZOLA, ANTONIO; CORDERO, LORENZO; CAPELLI, FRANCESCA; FADDA, GIOVANNI MARIA; ORTU, SALVATORE; SOTGIU, GIOVANNI; PALOMBA, GRAZIA; SINI, MARIA CRISTINA; PALMIERI, GIUSEPPE; COLOMBINO, MARIA

    2015-01-01

    Assessment of the epidermal growth factor receptor (EGFR) mutational status has become crucial in recent years in the molecular classification of patients with lung cancer. The impact of the type and quantity of malignant cells of the neoplastic specimen on the quality of mutation analysis remains to be elucidated, and only empirical and sporadic data are available. The aim of the present study was to investigate the impact of tissue type and content of neoplastic cells in the specimen on the quality of EGFR mutation analysis among patients with lung adenocarcinoma. A total of 515 patients with histologically-confirmed disease were included in the present study. Formalin-fixed paraffin embedded tissue samples were used for the mutation analysis and the content of the neoplastic cells was evaluated using light microscopy. Genomic DNA was isolated using a standard protocol. The coding sequences and splice junctions of exons 18, 19 and 21 in the EGFR gene were then screened for mutations by direct automated sequencing. The mean age of the patients examined was 64.9 years and 357 (69.3%) were male. A total of 429 tissue samples (83.3%) were obtained by biopsy and the remaining samples were obtained by surgery. A total of 456 samples (88.5%) were observed from primary lung adenocarcinomas, while 59 (11.5%) were from metastatic lesions. EGFR mutations occurred in 59 cases (11.5%); exon 18 mutations were detected in one case (1.7%), whereas exon 19 and 21 mutations were detected in 30 (51%) and 28 (47.3%) cases, respectively. EGFR mutations were more frequent in females and patients that had never smoked. The distribution of the mutations among primary and metastatic tissues exhibited no significant differences in the proportions of EGFR mutations detected. However, a statistically significant difference in the number of mutations detected was found between samples with at least 50% of neoplastic cells (450 cases-57 mutations; 12.7%) and those with <50% of neoplastic

  5. Distinct protease pathways control cell shape and apoptosis in v-src-transformed quail neuroretina cells

    SciTech Connect

    Neel, Benjamin D.; Gillet, Germain . E-mail: g.gillet@ibcp.fr

    2005-11-15

    Intracellular proteases play key roles in cell differentiation, proliferation and apoptosis. In nerve cells, little is known about their relative contribution to the pathways which control cell physiology, including cell death. Neoplastic transformation of avian neuroretina cells by p60 {sup v-src} tyrosine kinase results in dramatic morphological changes and deregulation of apoptosis. To identify the proteases involved in the cellular response to p60 {sup v-src}, we evaluated the effect of specific inhibitors of caspases, calpains and the proteasome on cell shape changes and apoptosis induced by p60 {sup v-src} inactivation in quail neuroretina cells transformed by tsNY68, a thermosensitive strain of Rous sarcoma virus. We found that the ubiquitin-proteasome pathway is recruited early after p60 {sup v-src} inactivation and is critical for morphological changes, whereas caspases are essential for cell death. This study provides evidence that distinct intracellular proteases are involved in the control of the morphology and fate of v-src-transformed cells.

  6. The Quest for Targets Executing MYC-Dependent Cell Transformation.

    PubMed

    Hartl, Markus

    2016-01-01

    MYC represents a transcription factor with oncogenic potential converting multiple cellular signals into a broad transcriptional response, thereby controlling the expression of numerous protein-coding and non-coding RNAs important for cell proliferation, metabolism, differentiation, and apoptosis. Constitutive activation of MYC leads to neoplastic cell transformation, and deregulated MYC alleles are frequently observed in many human cancer cell types. Multiple approaches have been performed to isolate genes differentially expressed in cells containing aberrantly activated MYC proteins leading to the identification of thousands of putative targets. Functional analyses of genes differentially expressed in MYC-transformed cells had revealed that so far more than 40 upregulated or downregulated MYC targets are actively involved in cell transformation or tumorigenesis. However, further systematic and selective approaches are required for determination of the known or yet unidentified targets responsible for processing the oncogenic MYC program. The search for critical targets in MYC-dependent tumor cells is exacerbated by the fact that during tumor development, cancer cells progressively evolve in a multistep process, thereby acquiring their characteristic features in an additive manner. Functional expression cloning, combinatorial gene expression, and appropriate in vivo tests could represent adequate tools for dissecting the complex scenario of MYC-specified cell transformation. In this context, the central goal is to identify a minimal set of targets that suffices to phenocopy oncogenic MYC. Recently developed genomic editing tools could be employed to confirm the requirement of crucial transformation-associated targets. Knowledge about essential MYC-regulated genes is beneficial to expedite the development of specific inhibitors to interfere with growth and viability of human tumor cells in which MYC is aberrantly activated. Approaches based on the principle of

  7. The Quest for Targets Executing MYC-Dependent Cell Transformation

    PubMed Central

    Hartl, Markus

    2016-01-01

    MYC represents a transcription factor with oncogenic potential converting multiple cellular signals into a broad transcriptional response, thereby controlling the expression of numerous protein-coding and non-coding RNAs important for cell proliferation, metabolism, differentiation, and apoptosis. Constitutive activation of MYC leads to neoplastic cell transformation, and deregulated MYC alleles are frequently observed in many human cancer cell types. Multiple approaches have been performed to isolate genes differentially expressed in cells containing aberrantly activated MYC proteins leading to the identification of thousands of putative targets. Functional analyses of genes differentially expressed in MYC-transformed cells had revealed that so far more than 40 upregulated or downregulated MYC targets are actively involved in cell transformation or tumorigenesis. However, further systematic and selective approaches are required for determination of the known or yet unidentified targets responsible for processing the oncogenic MYC program. The search for critical targets in MYC-dependent tumor cells is exacerbated by the fact that during tumor development, cancer cells progressively evolve in a multistep process, thereby acquiring their characteristic features in an additive manner. Functional expression cloning, combinatorial gene expression, and appropriate in vivo tests could represent adequate tools for dissecting the complex scenario of MYC-specified cell transformation. In this context, the central goal is to identify a minimal set of targets that suffices to phenocopy oncogenic MYC. Recently developed genomic editing tools could be employed to confirm the requirement of crucial transformation-associated targets. Knowledge about essential MYC-regulated genes is beneficial to expedite the development of specific inhibitors to interfere with growth and viability of human tumor cells in which MYC is aberrantly activated. Approaches based on the principle of

  8. The potential influence of radiation-induced microenvironments in neoplastic progression

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Ionizing radiation is a complete carcinogen, able both to initiate and promote neoplastic progression and is a known carcinogen of human and murine mammary gland. Tissue response to radiation is a composite of genetic damage, cell death and induction of new gene expression patterns. Although DNA damage is believed to initiate carcinogenesis, the contribution of these other aspects of radiation response are beginning to be explored. Our studies demonstrate that radiation elicits rapid and persistent global alterations in the mammary gland microenvironment. We postulate that radiation-induced microenvironments may affect epithelial cells neoplastic transformation by altering their number or susceptibility. Alternatively, radiation induced microenvironments may exert a selective force on initiated cells and/or be conducive to progression. A key impetus for these studies is the possibility that blocking these events could be a strategy to interrupt neoplastic progression.

  9. Differences in kinase-mediated regulation of cell cycle progression in normal and transformed cells

    SciTech Connect

    Crissman, H.A.; Gadbois, D.M.; Tobey, R.A.; Stevenson, A.P.; Kraemer, P.M.; Bustos, L.D.; Dickson, J.A.; Bradbury, E.M. )

    1993-01-01

    Staurosporine (Stsp), a general protein kinase inhibitor, was used to investigate the role of kinase-mediated mechanisms in regulating mammalian cell proliferation. Low levels of Stsp (1-2nM) prevented nontransformed cells from entering S phase, indicating that protein phosphorylation processes are essential for commitment of DNA replication in normal cells. Cells resumed cycling when Stsp was removed. The period of sensitivity of nontransformed human diploid fibroblasts to low levels of the drug commenced 3 h later than the G0/G1 boundary and extended through the G1/S boundary. The initial block point at 3 h corresponds neither to the serum nor the amino acid restriction point. In contrast, neither low nor high concentrations (100nm) of Stsp affected G1 progression of transformed cells. High drug concentrations blocked normal cells in G1 and G2 but affected only G2-progression in transformed cells. These results indicate that kinase-mediated regulation of DNA replication is lost as a result of neoplastic transformation, but the G2-arrest mechanism remains intact.

  10. The use of transformed IMR90 cell model to identify the potential extra-telomeric effects of hTERT in cell migration and DNA damage response

    PubMed Central

    2014-01-01

    Background Human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomesase, is responsible for telomere maintenance and its reactivation is implicated in almost 90% human cancers. Recent evidences show that hTERT is essential for neoplastic transformation independent of its canonical function. However, the roles of hTERT in the process remain elusive. In the current work, we explore the extra-telomeric role of hTERT in the neoplastic transformation of fibroblast IMR90. Results Here we established transformed IMR90 cells by co-expression of three oncogenic factors, namely, H-Ras, SV40 Large-T antigen and hTERT (RSH). The RSH-transformed cells acquired hallmarks of cancer, such as they can grow under anchorage independent conditions; self-sufficient in growth signals; attenuated response to apoptosis; and possessed recurrent chromosomal abnormalities. Furthermore, the RSH-transformed cells showed enhanced migration capability which was also observed in IMR90 cells expressing hTERT alone, indicating that hTERT plays a role in cell migration, and thus possibly contribute to their metastatic potential during tumor transformation. This notion was further supported by our microarray analysis. In addition, we found that Ku70 were exclusively upregulated in both RSH-transformed IMR90 cells and hTERT-overexpressing IMR90 cells, suggesting the potential role of hTERT in DNA damage response (DDR). Conclusions Collectively, our study revealed the extra-telomeric effects of hTERT in cell migration and DDR during neoplastic transformation. PMID:25098897

  11. High Expression of the DNA Methyltransferase Gene Characterizes Human Neoplastic Cells and Progression Stages of Colon Cancer

    NASA Astrophysics Data System (ADS)

    El-Deiry, Wafik S.; Nelkin, Barry D.; Celano, Paul; Chiu Yen, Ray-Whay; Falco, Joseph P.; Hamilton, Stanley R.; Baylin, Stephen B.

    1991-04-01

    DNA methylation abnormalities occur consistently in human neoplasia including widespread hypomethylation and more recently recognized local increases in DNA methylation that hold potential for gene inactivation events. To study this imbalance further, we have cloned and localized to chromosome 19 a portion of the human DNA methyltransferase gene that codes for the enzyme catalyzing DNA methylation. Expression of this gene is low in normal human cells, significantly increased (30- to 50-fold by PCR analysis) in virally transformed cells, and strikingly elevated in human cancer cells (several hundredfold). In comparison to colon mucosa from patients without neoplasia, median levels of DNA methyltransferase transcripts are 15-fold increased in histologically normal mucosa from patients with cancers or the benign polyps that can precede cancers, 60-fold increased in the premalignant polyps, and >200-fold increased in the cancers. Thus, increases in DNA methyltransferase gene expression precede development of colonic neoplasia and continue during progression of colonic neoplasms. These increases may play a role in the genetic instability of cancer and mark early events in cell transformation.

  12. The eukaryotic translation elongation factor eEF1A2 induces neoplastic properties and mediates tumorigenic effects of ZNF217 in precursor cells of human ovarian carcinomas

    SciTech Connect

    Sun, Yu; Wong, Nicholas; Guan, Yinghui; Salamanca, Clara M.; Cheng, Jung Chien; Lee, Jonathan M.; Gray, Joe W.; Auersperg, Nelly

    2008-04-25

    Ovarian epithelial carcinomas (OEC) frequently exhibit amplifications at the 20q13 locus which is the site of several oncogenes, including the eukaryotic elongation factor EEF1A2 and the transcription factor ZNF217. We reported previously that overexpressed ZNF217 induces neoplastic characteristics in precursor cells of OEC. Unexpectedly, ZNF217, which is a transcriptional repressor, enhanced expression of eEF1A2. In this study, array comparative genomic hybridization, single nucleotide polymorphism and Affymetrix analysis of ZNF217-overexpressing cell lines confirmed consistently increased expression of eEF1A2 but not of other oncogenes, and revealed early changes in EEF1A2 gene copy numbers and increased expression at crisis during immortalization. We defined the influence of eEF1A2 overexpression on immortalized ovarian surface epithelial cells, and investigated interrelationships between effects of ZNF217 and eEF1A2 on cellular phenotypes. Lentivirally induced eEF1A2 overexpression caused delayed crisis, apoptosis resistance and increases in serum-independence, saturation densities, and anchorage independence. siRNA to eEF1A2 reversed apoptosis resistance and reduced anchorage independence in eEF1A2-overexpressing lines. Remarkably, siRNA to eEF1A2 was equally efficient in inhibiting both anchorage independence and resistance to apoptosis conferred by ZNF217 overexpression. Our data define neoplastic properties that are caused by eEF1A2 in nontumorigenic ovarian cancer precursor cells, and suggest that eEF1A2 plays a role in mediating ZNF217-induced neoplastic progression.

  13. Transformation of human cells by DNAs ineffective in transformation of NIH 3T3 cells

    SciTech Connect

    Sutherland, B.M.; Bennett, P.B.; Freeman, A.G.; Moore, S.P.; Strickland, P.T.

    1985-04-01

    Neonatal human foreskin fibroblasts can be transformed to anchorage-independent growth by transfection with DNAs inefficient in transforming NIH 3T3 cells. Human cells transfected with DNA from GM 1312, a multiple myeloma cell line, or MOLT-4, a permanent lymphoblast line, grow without anchorage at a much higher frequency than do the parental cells and their DNAs can transform human cell recipients to anchorage-independent growth; they have extended but not indefinite life spans and are nontumorigenic. Human fibroblasts are also transformed by DNAs from two multiple myeloma lines that also transform 3T3 cells; however, restriction analysis suggests that different transforming genes in this DNA are acting in the human and murine systems. These results indicate that the human cell transfection system allows detection of transforming genes not effective in the 3T3 system and points out the possibility of detection of additional transforming sequences even in DNAs that do transform murine cells.

  14. Role of prolactin in the modulation of NK and LAK cell activity after short- or long-term morphine administration in neoplastic patients.

    PubMed

    Provinciali, M; Di Stefano, G; Stronati, S; Raffaeli, W; Pari, G; Fabris, N

    1996-10-01

    In a previous work we demonstrated that chronic in vivo antalgic therapy of cancer patients with morphine reduced the endogenous cytotoxic activity of natural killer (NK) cells, while increasing the development of lymphokine activated killer (LAK) cell cytotoxicity. In order to investigate the mechanisms by which morphine affects NK and LAK cell function further, we evaluated the modulation exerted by short- or long-term morphine administration on either NK/LAK cell cytotoxicities or plasma levels of prolactin (PRL) and other immunomodulating neurohormones. An intravenous morphine injection (10 mg) significantly increased the plasma levels of PRL, reduced the cytotoxic activity of NK cells, and increased the development of LAK cell activity 30 min after drug injection in neoplastic patients. The administration of bromocriptine before the injection of morphine prevented both PRL augmentation and the increase in LAK cell activation, although it did not prevent the inhibition of NK cytotoxicity. The chronic oral administration of morphine (90 +/- 30 mg/day for 1 month) also resulted in higher PRL levels; the NK and LAK cell activities were, respectively, lower than or higher than those found in neoplastic patients untreated with morphine. The plasma levels of thyrotropin (TSH), adrenocorticotropic hormone (ACTH) and cortisol were not significantly modified in either short- or long-term experiments. The absolute number and the percentages of lymphocyte populations, as well as the percentage of IL-2 receptors, were not modified after short-term morphine administration whereas little changes of T lymphocyte populations and NK cell number were observed after oral treatment with morphine. In vitro morphine did not affect the development of LAK cell activity. In conclusion, our findings indicate that morphine reduces NK cytotoxicity and increases the development of LAK cell cytotoxicity after short- and long-term administration. The effect of morphine on LAK cell activation

  15. Increased cycling cell numbers and stem cell associated proteins as potential biomarkers for high grade human papillomavirus+ve pre-neoplastic cervical disease.

    PubMed

    Canham, Maurice; Charsou, Chara; Stewart, June; Moncur, Sharon; Hoodless, Laura; Bhatia, Ramya; Cong, Duanduan; Cubie, Heather; Busby-Earle, Camille; Williams, Alistair; McLoughlin, Victoria; Campbell, John D M; Cuschieri, Kate; Howie, Sarah

    2014-01-01

    High risk (oncogenic) human papillomavirus (HPV) infection causes cervical cancer. Infections are common but most clear naturally. Persistent infection can progress to cancer. Pre-neoplastic disease (cervical intraepithelial neoplasia/CIN) is classified by histology (CIN1-3) according to severity. Cervical abnormalities are screened for by cytology and/or detection of high risk HPV but both methods are imperfect for prediction of which women need treatment. There is a need to understand the host virus interactions that lead to different disease outcomes and to develop biomarker tests for accurate triage of infected women. As cancer is increasingly presumed to develop from proliferative, tumour initiating, cancer stem cells (CSCs), and as other oncogenic viruses induce stem cell associated gene expression, we evaluated whether presence of mRNA (detected by qRT-PCR) or proteins (detected by flow cytometry and antibody based proteomic microarray) from stem cell associated genes and/or increased cell proliferation (detected by flow cytometry) could be detected in well-characterised, routinely collected cervical samples from high risk HPV+ve women. Both cytology and histology results were available for most samples with moderate to high grade abnormality. We found that stem cell associated proteins including human chorionic gonadotropin, the oncogene TP63 and the transcription factor SOX2 were upregulated in samples from women with CIN3 and that the stem cell related, cell surface, protein podocalyxin was detectable on cells in samples from a subset of women with CIN3. SOX2, TP63 and human gonadotrophin mRNAs were upregulated in high grade disease. Immunohistochemistry showed that SOX2 and TP63 proteins clearly delineated tumour cells in invasive squamous cervical cancer. Samples from women with CIN3 showed increased proliferating cells. We believe that these markers may be of use to develop triage tests for women with high grade cervical abnormality to distinguish

  16. Defective DNA single-strand break repair is responsible for senescence and neoplastic escape of epithelial cells.

    PubMed

    Nassour, Joe; Martien, Sébastien; Martin, Nathalie; Deruy, Emeric; Tomellini, Elisa; Malaquin, Nicolas; Bouali, Fatima; Sabatier, Laure; Wernert, Nicolas; Pinte, Sébastien; Gilson, Eric; Pourtier, Albin; Pluquet, Olivier; Abbadie, Corinne

    2016-01-01

    The main characteristic of senescence is its stability which relies on the persistence of DNA damage. We show that unlike fibroblasts, senescent epithelial cells do not activate an ATM-or ATR-dependent DNA damage response (DDR), but accumulate oxidative-stress-induced DNA single-strand breaks (SSBs). These breaks remain unrepaired because of a decrease in PARP1 expression and activity. This leads to the formation of abnormally large and persistent XRCC1 foci that engage a signalling cascade involving the p38MAPK and leading to p16 upregulation and cell cycle arrest. Importantly, the default in SSB repair also leads to the emergence of post-senescent transformed and mutated precancerous cells. In human-aged skin, XRCC1 foci accumulate in the epidermal cells in correlation with a decline of PARP1, whereas DDR foci accumulate mainly in dermal fibroblasts. These findings point SSBs as a DNA damage encountered by epithelial cells with aging which could fuel the very first steps of carcinogenesis. PMID:26822533

  17. Defective DNA single-strand break repair is responsible for senescence and neoplastic escape of epithelial cells

    PubMed Central

    Nassour, Joe; Martien, Sébastien; Martin, Nathalie; Deruy, Emeric; Tomellini, Elisa; Malaquin, Nicolas; Bouali, Fatima; Sabatier, Laure; Wernert, Nicolas; Pinte, Sébastien; Gilson, Eric; Pourtier, Albin; Pluquet, Olivier; Abbadie, Corinne

    2016-01-01

    The main characteristic of senescence is its stability which relies on the persistence of DNA damage. We show that unlike fibroblasts, senescent epithelial cells do not activate an ATM-or ATR-dependent DNA damage response (DDR), but accumulate oxidative-stress-induced DNA single-strand breaks (SSBs). These breaks remain unrepaired because of a decrease in PARP1 expression and activity. This leads to the formation of abnormally large and persistent XRCC1 foci that engage a signalling cascade involving the p38MAPK and leading to p16 upregulation and cell cycle arrest. Importantly, the default in SSB repair also leads to the emergence of post-senescent transformed and mutated precancerous cells. In human-aged skin, XRCC1 foci accumulate in the epidermal cells in correlation with a decline of PARP1, whereas DDR foci accumulate mainly in dermal fibroblasts. These findings point SSBs as a DNA damage encountered by epithelial cells with aging which could fuel the very first steps of carcinogenesis. PMID:26822533

  18. Clonal evolution of B cells in transformation from low- to high-grade lymphoma

    PubMed Central

    Matolcsy, András; Schattner, Elaine J.; Knowles, Daniel M.; Casali, Paolo

    2015-01-01

    An outcome of low-grade B cell non-Hodgkins's lymphomas is the transformation to high-grade diffuse large B cell lymphomas (DLBL). To investigate the mechanisms of clonal evolution in the transformation to DLBL, we performed longitudinal molecular analyses of immunoglobulin (Ig), VHDJH gene sequences expressed in cases of chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), and follicular lymphoma (FL) that transformed to DLBL. Among the neoplastic CLL and SLL cells and their respective high-grade transformants, there was no evidence for a clonotypic shift or acquired mutations in the expressed Ig VHDJH gene segments, as further confirmed by a specific and sensitive PCR-single strand polymorphism analysis. In contrast, among the FL cells there was a high degree of intraclonal diversification with highly divergent VHDJH gene sequences. Despite this intraclonal heterogeneity, the related DLBL expressed a collinear but unique VHDJH gene sequence. The intraclonal genealogical tree for the FL case demonstrated that the DLBL emerged in association with unique VHDJH gene mutational events. Among the intraclonal FL and related DLBL transformants, the nature and distribution of the Ig VHDJH gene mutations were consistent with antigenic selection. Thus, clonal evolution in the transformation from low- to high-grade B cell lymphoma may involve distinct pathways which vary according to the cellular origin and the type of the progenitor B cell tumor. PMID:10229093

  19. Oncogenic Transformation of Dendritic Cells and Their Precursors Leads to Rapid Cancer Development in Mice

    PubMed Central

    Böttcher, Jan P.; Zelenay, Santiago; Rogers, Neil C.; Helft, Julie; Schraml, Barbara U.

    2015-01-01

    Dendritic cells (DCs) are powerful APCs that can induce Ag-specific adaptive immune responses and are increasingly recognized as important players in innate immunity to both infection and malignancy. Interestingly, although there are multiple described hematological malignancies, DC cancers are rarely observed in humans. Whether this is linked to the immunogenic potential of DCs, which might render them uniquely susceptible to immune control upon neoplastic transformation, has not been fully investigated. To address the issue, we generated a genetically engineered mouse model in which expression of Cre recombinase driven by the C-type lectin domain family 9, member a (Clec9a) locus causes expression of the Kirsten rat sarcoma viral oncogene homolog (Kras)G12D oncogenic driver and deletion of the tumor suppressor p53 within developing and differentiated DCs. We show that these Clec9aKras-G12D mice rapidly succumb from disease and display massive accumulation of transformed DCs in multiple organs. In bone marrow chimeras, the development of DC cancer could be induced by a small number of transformed cells and was not prevented by the presence of untransformed DCs. Notably, activation of transformed DCs did not happen spontaneously but could be induced upon stimulation. Although Clec9aKras-G12D mice showed altered thymic T cell development, peripheral T cells were largely unaffected during DC cancer development. Interestingly, transformed DCs were rejected upon adoptive transfer into wild-type but not lymphocyte-deficient mice, indicating that immunological control of DC cancer is in principle possible but does not occur during spontaneous generation in Clec9aKras-G12D mice. Our findings suggest that neoplastic transformation of DCs does not by default induce anti-cancer immunity and can develop unhindered by immunological barriers. PMID:26459350

  20. Oncogenic Transformation of Dendritic Cells and Their Precursors Leads to Rapid Cancer Development in Mice.

    PubMed

    Böttcher, Jan P; Zelenay, Santiago; Rogers, Neil C; Helft, Julie; Schraml, Barbara U; Reis e Sousa, Caetano

    2015-11-15

    Dendritic cells (DCs) are powerful APCs that can induce Ag-specific adaptive immune responses and are increasingly recognized as important players in innate immunity to both infection and malignancy. Interestingly, although there are multiple described hematological malignancies, DC cancers are rarely observed in humans. Whether this is linked to the immunogenic potential of DCs, which might render them uniquely susceptible to immune control upon neoplastic transformation, has not been fully investigated. To address the issue, we generated a genetically engineered mouse model in which expression of Cre recombinase driven by the C-type lectin domain family 9, member a (Clec9a) locus causes expression of the Kirsten rat sarcoma viral oncogene homolog (Kras)(G12D) oncogenic driver and deletion of the tumor suppressor p53 within developing and differentiated DCs. We show that these Clec9a(Kras-G12D) mice rapidly succumb from disease and display massive accumulation of transformed DCs in multiple organs. In bone marrow chimeras, the development of DC cancer could be induced by a small number of transformed cells and was not prevented by the presence of untransformed DCs. Notably, activation of transformed DCs did not happen spontaneously but could be induced upon stimulation. Although Clec9a(Kras-G12D) mice showed altered thymic T cell development, peripheral T cells were largely unaffected during DC cancer development. Interestingly, transformed DCs were rejected upon adoptive transfer into wild-type but not lymphocyte-deficient mice, indicating that immunological control of DC cancer is in principle possible but does not occur during spontaneous generation in Clec9a(Kras-G12D) mice. Our findings suggest that neoplastic transformation of DCs does not by default induce anti-cancer immunity and can develop unhindered by immunological barriers. PMID:26459350

  1. Characteristics of Mitochondrial Transformation into Human Cells

    PubMed Central

    Kesner, E. E.; Saada-Reich, A.; Lorberboum-Galski, H.

    2016-01-01

    Mitochondria can be incorporated into mammalian cells by simple co-incubation of isolated mitochondria with cells, without the need of transfection reagents or any other type of intervention. This phenomenon was termed mitochondrial transformation, and although it was discovered in 1982, currently little is known regarding its mechanism(s). Here we demonstrate that mitochondria can be transformed into recipient cells very quickly, and co-localize with endogenous mitochondria. The isolated mitochondria interact directly with cells, which engulf the mitochondria with cellular extensions in a way, which may suggest the involvement of macropinocytosis or macropinocytosis-like mechanisms in mitochondrial transformation. Indeed, macropinocytosis inhibitors but not clathrin-mediated endocytosis inhibition-treatments, blocks mitochondria transformation. The integrity of the mitochondrial outer membrane and its proteins is essential for the transformation of the mitochondria into cells; cells can distinguish mitochondria from similar particles and transform only intact mitochondria. Mitochondrial transformation is blocked in the presence of the heparan sulfate molecules pentosan polysulfate and heparin, which indicate crucial involvement of cellular heparan sulfate proteoglycans in the mitochondrial transformation process. PMID:27184109

  2. Effects of mTOR inhibitors and cytoskeletal-directed agents alone and in combination against normal and neoplastic hematopoietic cells in vitro.

    PubMed

    Trendowski, Matthew; Christen, Timothy D; Andonova, Antoaneta A; Narampanawe, Berlini; Thibaud, Ashlee; Kusang, Tenzin; Fondy, Thomas P

    2015-12-01

    The mechanistic target of rapamycin (mTOR) controls cell growth and enlargement and has been found to be aberrant in a wide variety of malignancies. Although mTOR is already an attractive antineoplastic target, overexpression or aberrant expression of mTOR may also provide an opportunity to further increase the size differential between malignant and normal cells, providing an opportunity to amplify and exploit cell size differences between neoplastic cells and their normal counterparts using physiochemical treatment modalities. Therefore, this study sought to quantify the concentration response and time course effects of rapamycin on cell cycle entry, cell enlargement, and cell proliferation in U937 human monocytic leukemia and human hematopoietic stem cells (hHSCs). In addition, the effects of combination treatment with mTOR inhibitors (rapamycin, everolimus, and temsirolimus) and cytoskeletal-directed agents (cytochalasin B and vincristine) in leukemic cells (U937, THP1, K562, Molt-4, and L1210) were assessed for potential drug synergy. While both U937 cells and hHSCs exhibited a marked reduction in cell volume, U937 cells were able to proliferate in the presence of rapamycin ranging from 0.5 nM to 10 μM (10,000 nM), whereas hHSCs were able to proliferate only at lower concentrations, and were completely inhibited from proliferation by 8 nM rapamycin. These effects were observed with as little as 0.5 nM rapamycin, demonstrating the profound affinity the compound has for FK-binding protein 12 (FKBP12), which subsequently forms the FKBP12/rapamycin complex to inhibit mTOR. Rapamycin continued to exert effects on cell size and proliferation even at 10 μM, without producing marked cytotoxicity. Although cytochalasin B and vincristine were unable to substantially enlarge rapamycin-treated leukemia cells, it appears that rapamycin and its associated analogs everolimus and temsirolimus have notable synergistic potential with microfilament-disrupting cytochalasin B

  3. Transcriptome analysis of neoplastic hemocytes in soft-shell clams Mya arenaria: Focus on cell cycle molecular mechanism☆

    PubMed Central

    Siah, Ahmed; McKenna, Patty; Berthe, Franck C.J.; Afonso, Luis O.B.; Danger, Jean-Michel

    2013-01-01

    In North America, a high mortality of soft-shell clams Mya arenaria was found to be related to the disease known as disseminated neoplasia (DN). Disseminated neoplasia is commonly recognized as a tetraploid disorder related to a disruption of the cell cycle. However, the molecular mechanisms by which hemocytes of clams are transformed in the course of DN remain by far unknown. This study aims at identifying the transcripts related to DN in soft shell clams’ hemocytes using next generation of sequencing (Illumina HiSeq2000). This study mainly focuses on transcripts and molecular mechanisms involved in cell cycle. Using Illumina next generation of sequencing, more than 95,399,159 reads count with an average length of 45  bp was generated from three groups of hemocytes: (1) a healthy group with less than 10% of tetraploid cells; (2) an intermediate group with tetraploid hemocytes ranging between 10% and 50% and (3) a diseased group with more than 50% of tetraploid cells. After the reads were cleaned by removing the adapters, de novo assembly was performed on the sequences and more than 73,696 contigs were generated with a mean contig length estimated at 585 bp ranging from 189 bp to 14,773 bp. Once a Blastx search against NCBI Non Redundant database was performed and the duplicates removed, 18,378 annotated sequences matched known sequences, 3078 were hypothetical and 9002 were uncharacterized sequences. Fifty percent and 41% of known sequences match sequences from Mollusca and Gastropoda respectively. Among the bivalvia, 33%, 17%, 17% and 15% of the contigs match sequences from Ostreoida, Veneroida, Pectinoida and Mytiloida respectively. Gene ontology analysis showed that metabolic, cellular, transport, cell communication and cell cycle represent 33%, 15%, 9%, 8.5% and 7% respectively of the total biological process. Approximately 70% of the component process is related to intracellular process and 15% is linked to protein and ribonucleoprotein complex

  4. Role of growth factors in the growth of normal and transformed cells

    SciTech Connect

    Lokeshwar, V.B.

    1989-01-01

    Growth factors play an important role in the growth of normal cells. However, their untimely and/or excess production leads to neoplastic transformation. The role of growth factors in the growth of normal cells was studied by investigating the mechanism of transmodulation of the cell surface EGF receptor number by protamine. Protamine increased the EGF stimulated mitogenic response in Swiss mouse 3T3 cells and A431 cells by increasing the number of functionally active EGF receptors. Protamine also increased EGF receptor number in plasma membranes and solubilized membranes. This was evidenced by an increase in both {sup 125}I-EGF-EGF-receptor complex and EGF stimulated phosphorylation of the EGF receptor. The solubilized EGF receptor was retained on a protamine-agarose gel indicating that protamine might increase EGF receptor number by directly activating cryptic EGF receptors in the plasma membranes. The role of growth factors in neoplastic transformation was studied by investigating the role of the oncogene v-sis in the growth of Simian sarcoma virus (SSV) transformed cells. The product of the oncogene v-sis is 94% homologous to the B chain of PDGF. This study found that (i) v-sis gene product is synthesized as a 32 kDa unglycosylated monomer which is glycosylated, dimerized and proteolytically processed into p36, p72, p68, p58, p44 and p27 mol. wt. species respectively. (ii) p36, p72, p68 and p58 are very likely formed in the endoplasmic reticulum and/or Golgi complex. A fraction of newly synthesized p72, p68 and p58 is degraded intracellularly at a fast rate. (iii) p44 is a secretory product which remains tightly associated with the cell surface. p44 is recaptured by the cells through interaction with cell surface PDGF receptors and degraded into p27. (iv) During long term cultures p44 is extracellularly cleaved into a 27 kDa product.

  5. Identification of non-neoplastic and neoplastic gastric polyps using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Shanghai; Kang, Deyong; Xu, Meifang; Zhu, Xiaoqin; Zhuo, Shuangmu; Chen, Jianxin

    2012-12-01

    Gastric polyps can be broadly defined as luminal lesions projecting above the plane of the mucosal surface. They are generally divided into non-neoplastic and neoplastic polyps. Accurate diagnosis of neoplastic polyps is important because of their well-known relationship with gastric cancer. Multiphoton microscopy (MPM) based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) is one of the most important recent inventions in biological imaging. In this study, we used MPM to image the microstructure of gastric polyps, including fundic gland polyps, hyperplastic polyps, inflammatory fibroid polyps and adenomas, then compared with gold-standard hematoxylin- eosin(H-E)-stained histopathology. MPM images showed that different gastric polyps have different gland architecture and cell morphology. Dilated, elongated or branch-like hyperplastic polyps are arranged by columnar epithelial cells. Inflammatory fibroid polyps are composed of small, thin-walled blood vessels surrounded by short spindle cells. Fundic glands polyps are lined by parietal cells and chief cells, admixed with normal glands. Gastric adenomas are generally composed of tubules or villi of dysplastic epithelium, which usually show some degree of intestinal-type differentiation toward absorptive cells, goblet cells, endocrine cells. Our results demonstrated that MPM can be used to identify non- neoplastic and neoplastic gastric polyps without the need of any staining procedure.

  6. Myeloid cell leukemia-1 is a molecular indicator for malignant transformation of oral lichen planus

    PubMed Central

    SHIN, JI-AE; SEO, JAE-MIN; OH, SEJUN; CHO, SUNG-DAE; LEE, KYUNG-EUN

    2016-01-01

    Oral lichen planus (OLP), characterized by a chronic mucocutaneous inflammatory condition, is a common disease of the oral cavity. Retrospective and prospective epidemiological data suggest that OLP is considered to have malignant potential. However, it is unclear as to which types of molecules may cause malignant transformation of OLP. In the present study, the presence of myeloid cell leukemia-1 (Mcl-1) and B-cell lymphoma-2 (Bcl-2) was studied by western blot analysis in 11 OLP and three normal oral mucosa (NOM) samples and in two human oral cancer cell lines. The functional role of Mcl-1 in oral cancer cells was analyzed using a trypan blue exclusion assay and soft agar assay. Mcl-1 was strongly expressed in the OLP and the two oral cancer cell lines compared with NOM, whereas Bcl-2 was not. Sorafenib and mithramycin A decreased cell viability in MC-3 and HSC-3 oral cancer cells and at same concentration they reduced the expression level of Mcl-1 in the two cell lines. The two chemicals affected Mcl-1 protein and significantly inhibited neoplastic cell transformation in the two cell lines. We suggest that the malignant potential of OLP may be associated with the expression of Mcl-1, and that downregulation of Mcl-1 may prevent malignant transformation of OLP to oral cancer. PMID:26893789

  7. Malignant transformation of bone marrow stromal cells induced by the brain glioma niche in rats.

    PubMed

    He, Qiuping; Zou, Xifeng; Duan, Deyi; Liu, Yujun; Xu, Qunyuan

    2016-01-01

    Normal human embryonic stem cells (hESCs) can develop neoplastic cancer stem cell (CSC) properties after coculture with transformed hESCs in vitro. In the present study, the influence of the tumor microenvironment on malignant transformation of bone marrow stromal cells (BMSCs) was studied after allografting a mixture of enhanced green fluorescent protein (EGFP)-labeled BMSCs and C6 glioma cells into the rat brain to understand the influence of the cellular environment, especially the tumor environment, on the transformation of grafted BMSCs in the rat brain. We performed intracerebral transplantation in the rat brain using EGFP-labeled BMSCs coinjected with C6 tumor cells. After transplantation, the EGFP-labeled cells were isolated from the tumor using fluorescence-activated cell sorting, and the characteristics of the recovered cells were investigated. Glioma-specific biomarkers of the sorted cells and the biological characteristics of the tumors were analyzed. The BMSCs isolated from the cografts were transformed into glioma CSCs, as indicated by the marked expression of the glioma marker GFAP in glioma cells, and of Nestin and CD133 in neural stem cells and CSCs, as well as rapid cell growth, decreased level of the tumor suppressor gene p53, increased level of the oncogene murine double minute gene 2 (MDM2), and recapitulation of glioma tissues in the brain. These data suggest that BMSCs can be transformed into CSCs, which can be further directed toward glioma formation under certain conditions, supporting the notion that the tumor microenvironment is involved in transforming normal BMSCs into glial CSCs. PMID:26590986

  8. Cell of origin of transformed follicular lymphoma.

    PubMed

    Kridel, Robert; Mottok, Anja; Farinha, Pedro; Ben-Neriah, Susana; Ennishi, Daisuke; Zheng, Yvonne; Chavez, Elizabeth A; Shulha, Hennady P; Tan, King; Chan, Fong Chun; Boyle, Merrill; Meissner, Barbara; Telenius, Adele; Sehn, Laurie H; Marra, Marco A; Shah, Sohrab P; Steidl, Christian; Connors, Joseph M; Scott, David W; Gascoyne, Randy D

    2015-10-29

    Follicular lymphoma (FL) is an indolent disease but transforms in 2% to 3% of patients per year into aggressive, large cell lymphoma, a critical event in the course of the disease associated with increased lymphoma-related mortality. Early transformation cannot be accurately predicted at the time of FL diagnosis and the biology of transformed FL (TFL) is poorly understood. Here, we assembled a cohort of 126 diagnostic FL specimens including 40 patients experiencing transformation (<5 years) and 86 patients not experiencing transformation for at least 5 years. In addition, we assembled an overlapping cohort of 155 TFL patients, including 114 cases for which paired samples were available, and assessed temporal changes of routinely available biomarkers, outcome after transformation, as well as molecular subtypes of TFL. We report that the expression of IRF4 is an independent predictor of early transformation (Hazard ratio, 13.3; P < .001). We also show that composite histology at the time of transformation predicts favorable prognosis. Moreover, applying the Lymph2Cx digital gene expression assay for diffuse large B-cell lymphoma (DLBCL) cell-of-origin determination to 110 patients with DLBCL-like TFL, we demonstrate that TFL is of the germinal-center B-cell-like subtype in the majority of cases (80%) but that a significant proportion of cases is of the activated B-cell-like (ABC) subtype (16%). These latter cases are commonly negative for BCL2 translocation and arise preferentially from BCL2 translocation-negative and/or IRF4-expressing FLs. Our study demonstrates the existence of molecular heterogeneity in TFL as well as its relationship to the antecedent FL. PMID:26307535

  9. Persistent non-neoplastic γδ-T cells in cerebrospinal fluid of a patient with hepatosplenic (γδ) T cell lymphoma: a case report with 6 years of flow cytometry follow-up

    PubMed Central

    Jiang, Liuyan; Abati, Andrea D.; Wilson, Wyndham; Stetler-Stevenson, Maryalice; Yuan, Constance

    2010-01-01

    Hepatosplenic (γδ) T-cell lymphoma (HSTCL) is an uncommon T-cell lymphoma with an aggressive clinical course and poor prognosis. Bone marrow and peripheral blood are frequently involved, with central nervous system involvement less common. We describe a case of a 31-year old man diagnosed with a γδ HSTCL in 2003, successfully treated with chemotherapy and allogeneic stem cell transplantation, and followed from 2003 to present. Four-color flow cytometry (FC) was performed on a BD FACSCalibur and data analyzed with CellQuest Pro and FCS Express software. For cerebrospinal fluid (CSF), all cells were acquired due to limited material. Cytological correlation was available on all specimens. Molecular studies for T-cell gene rearrangement were non-contributory. By FC, the diagnostic HSTCL immunophenotype was CD3 (+), CD7 (+), CD2 (+), CD5 (-), CD4 (-), CD8 (-), TCR γδ (+). Subsequent CSF FC analysis revealed a distinct population of γδ T-cells in all specimens, ranging from <1% to 13% of lymphocytes. Consistently, the γδ T-cells exhibited a different immunophenotypic profile from the reported diagnostic immunophenotype; they expressed CD5, and exhibited a heterogeneous pattern of CD8 expression. Comparison to in-house cases from patients with hairy cell leukemia and concomitant increases in non-neoplastic γδ T-cells was performed. The persistent γδ T-cells from the CSF of the patient with HSTCL were immunophenotypically consistent with non-neoplastic γδ T-cells. We describe an unusual case of persistent γδ T-cells in the CSF of a patient during 6 years of flow cytometric follow-up after treatment for γδ HSTCL. By cytology, non-neoplastic and malignant γδ T-cells are often difficult to distinguish. FC analysis helps to make this distinction, even with a limited panel. By FC, the γδ-T cells in the CSF of this patient are immunophenotypically consistent with non-neoplastic γδ T-cells. Remarkably, this finding is underscored by the patient's unusual

  10. Genetic changes in Mammalian cells transformed by helium cells

    SciTech Connect

    Durante, M.; Grossi, G. . Dipt. di Scienze Fisiche); Yang, T.C.; Roots, R. )

    1990-11-01

    Midterm Syrian Hamster embryo (SHE) cells were employed to study high LET-radiation induced tumorigenesis. Normal SHE cells (secondary passage) were irradiated with accelerated helium ions at an incident energy of 22 MeV/u (9--10 keV/{mu}m). Transformed clones were isolated after growth in soft agar of cells obtained from the foci of the initial monolayer plated postirradiation. To study the progression process of malignant transformation, the transformed clones were followed by monolayer subculturing for prolonged periods of time. Subsequently, neoplasia tests in nude mice were done. In this work, however, we have focused on karyotypic changes in the banding patterns of the chromosomes during the early part of the progressive process of cell transformation for helium ion-induced transformed cells. 26 refs., 5 figs., 2 tabs.

  11. The Bone Marrow-Mediated Protection of Myeloproliferative Neoplastic Cells to Vorinostat and Ruxolitinib Relies on the Activation of JNK and PI3K Signalling Pathways

    PubMed Central

    Cardoso, Bruno A.; Belo, Hélio; Barata, João T.; Almeida, António M.

    2015-01-01

    The classical BCR-ABL-negative Myeloproliferative Neoplasms (MPN) are a group of heterogeneous haematological diseases characterized by constitutive JAK-STAT pathway activation. Targeted therapy with Ruxolitinib, a JAK1/2-specific inhibitor, achieves symptomatic improvement but does not eliminate the neoplastic clone. Similar effects are seen with histone deacetylase inhibitors (HDACi), albeit with poorer tolerance. Here, we show that bone marrow (BM) stromal cells (HS-5) protected MPN-derived cell lines (SET-2; HEL and UKE-1) and MPN patient-derived BM cells from the cytotoxic effects of Ruxolitinib and the HDACi Vorinostat. This protective effect was mediated, at least in part, by the secretion of soluble factors from the BM stroma. In addition, it correlated with the activation of signalling pathways important for cellular homeostasis, such as JAK-STAT, PI3K, JNK, MEK-ERK and NF-κB. Importantly, the pharmacological inhibition of JNK and PI3K pathways completely abrogated the BM protective effect on MPN cell lines and MPN patient samples. Our findings shed light on mechanisms of tumour survival and may indicate novel therapeutic approaches for the treatment of MPN. PMID:26623653

  12. Cell of origin of transformed follicular lymphoma

    PubMed Central

    Kridel, Robert; Mottok, Anja; Farinha, Pedro; Ben-Neriah, Susana; Ennishi, Daisuke; Zheng, Yvonne; Chavez, Elizabeth A.; Shulha, Hennady P.; Tan, King; Chan, Fong Chun; Boyle, Merrill; Meissner, Barbara; Telenius, Adele; Sehn, Laurie H.; Marra, Marco A.; Shah, Sohrab P.; Steidl, Christian; Connors, Joseph M.; Scott, David W.

    2015-01-01

    Follicular lymphoma (FL) is an indolent disease but transforms in 2% to 3% of patients per year into aggressive, large cell lymphoma, a critical event in the course of the disease associated with increased lymphoma-related mortality. Early transformation cannot be accurately predicted at the time of FL diagnosis and the biology of transformed FL (TFL) is poorly understood. Here, we assembled a cohort of 126 diagnostic FL specimens including 40 patients experiencing transformation (<5 years) and 86 patients not experiencing transformation for at least 5 years. In addition, we assembled an overlapping cohort of 155 TFL patients, including 114 cases for which paired samples were available, and assessed temporal changes of routinely available biomarkers, outcome after transformation, as well as molecular subtypes of TFL. We report that the expression of IRF4 is an independent predictor of early transformation (Hazard ratio, 13.3; P < .001). We also show that composite histology at the time of transformation predicts favorable prognosis. Moreover, applying the Lymph2Cx digital gene expression assay for diffuse large B-cell lymphoma (DLBCL) cell-of-origin determination to 110 patients with DLBCL-like TFL, we demonstrate that TFL is of the germinal-center B-cell–like subtype in the majority of cases (80%) but that a significant proportion of cases is of the activated B-cell–like (ABC) subtype (16%). These latter cases are commonly negative for BCL2 translocation and arise preferentially from BCL2 translocation-negative and/or IRF4-expressing FLs. Our study demonstrates the existence of molecular heterogeneity in TFL as well as its relationship to the antecedent FL. PMID:26307535

  13. Apparatus and method for transforming living cells

    DOEpatents

    Okandan, Murat; Galambos, Paul C.

    2003-11-11

    An apparatus and method are disclosed for in vitro transformation of living cells. The apparatus, which is formed as a microelectromechanical device by surface micromachining, can be used to temporarily disrupt the cell walls or membrane of host cells one at a time so that a particular substance (e.g. a molecular tag, nucleic acid, bacteria, virus etc.) can be introduced into the cell. Disruption of the integrity of the host cells (i.e. poration) can be performed mechanically or electrically, or by both while the host cells are contained within a flow channel. Mechanical poration is possible using a moveable member which has a pointed or serrated edge and which is driven by an electrostatic actuator to abrade, impact or penetrate the host cell. Electroporation is produced by generating a relatively high electric field across the host cell when the host cell is located in the flow channel between a pair of electrodes having a voltage applied therebetween.

  14. Multimodal tissue imaging: using coregistered optical tomography data to estimate tissue autofluorescence intensity change due to scattering and absorption by neoplastic epithelial cells.

    PubMed

    Pahlevaninezhad, Hamid; Cecic, Ivana; Lee, Anthony M D; Kyle, Alastair H; Lam, Stephen; MacAulay, Calum; Lane, Pierre M

    2013-10-01

    Autofluorescence (AF) imaging provides valuable information about the structural and chemical states of tissue that can be used for early cancer detection. Optical scattering and absorption of excitation and emission light by the epithelium can significantly affect observed tissue AF intensity. Determining the effect of epithelial attenuation on the AF intensity could lead to a more accurate interpretation of AF intensity. We propose to use optical coherence tomography coregistered with AF imaging to characterize the AF attenuation due to the epithelium. We present imaging results from three vital tissue models, each consisting of a three-dimensional tissue culture grown from one of three epithelial cell lines (HCT116, OVCAR8, and MCF7) and immobilized on a fluorescence substrate. The AF loss profiles in the tissue layer show two different regimes, each approximately linearly decreasing with thickness. For thin cell cultures (<300 μm), the AF signal changes as AF(t)/AF(0)=1-1.3t (t is the thickness in millimeter). For thick cell cultures (>400 μm), the AF loss profiles have different intercepts but similar slopes. The data presented here can be used to estimate AF loss due to a change in the epithelial layer thickness and potentially to reduce AF bronchoscopy false positives due to inflammation and non-neoplastic epithelial thickening. PMID:24108573

  15. Involvement of epigenetics and EMT-related miRNA in arsenic-induced neoplastic transformation and their potential clinical use.

    PubMed

    Michailidi, Christina; Hayashi, Masamichi; Datta, Sayantan; Sen, Tanusree; Zenner, Kaitlyn; Oladeru, Oluwadamilola; Brait, Mariana; Izumchenko, Evgeny; Baras, Alexander; VandenBussche, Christopher; Argos, Maria; Bivalacqua, Trinity J; Ahsan, Habibul; Hahn, Noah M; Netto, George J; Sidransky, David; Hoque, Mohammad Obaidul

    2015-03-01

    Exposure to toxicants leads to cumulative molecular changes that overtime increase a subject's risk of developing urothelial carcinoma. To assess the impact of arsenic exposure at a time progressive manner, we developed and characterized a cell culture model and tested a panel of miRNAs in urine samples from arsenic-exposed subjects, urothelial carcinoma patients, and controls. To prepare an in vitro model, we chronically exposed an immortalized normal human bladder cell line (HUC1) to arsenic. Growth of the HUC1 cells was increased in a time-dependent manner after arsenic treatment and cellular morphology was changed. In a soft agar assay, colonies were observed only in arsenic-treated cells, and the number of colonies gradually increased with longer periods of treatment. Similarly, invaded cells in an invasion assay were observed only in arsenic-treated cells. Withdrawal of arsenic treatment for 2.5 months did not reverse the tumorigenic properties of arsenic-treated cells. Western blot analysis demonstrated decreased PTEN and increased AKT and mTOR in arsenic-treated HUC1 cells. Levels of miR-200a, miR-200b, and miR-200c were downregulated in arsenic-exposed HUC1 cells by quantitative RT-PCR. Furthermore, in human urine, miR-200c and miR-205 were inversely associated with arsenic exposure (P = 0.005 and 0.009, respectively). Expression of miR-205 discriminated cancer cases from controls with high sensitivity and specificity (AUC = 0.845). Our study suggests that exposure to arsenic rapidly induces a multifaceted dedifferentiation program and miR-205 has potential to be used as a marker of arsenic exposure as well as a maker of early urothelial carcinoma detection. PMID:25586904

  16. Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells

    PubMed Central

    Janzer, Andreas; German, Natalie J.; Gonzalez-Herrera, Karina N.; Asara, John M.; Haigis, Marcia C.; Struhl, Kevin

    2014-01-01

    Metformin, a first-line diabetes drug linked to cancer prevention in retrospective clinical analyses, inhibits cellular transformation and selectively kills breast cancer stem cells (CSCs). Although a few metabolic effects of metformin and the related biguanide phenformin have been investigated in established cancer cell lines, the global metabolic impact of biguanides during the process of neoplastic transformation and in CSCs is unknown. Here, we use LC/MS/MS metabolomics (>200 metabolites) to assess metabolic changes induced by metformin and phenformin in an Src-inducible model of cellular transformation and in mammosphere-derived breast CSCs. Although phenformin is the more potent biguanide in both systems, the metabolic profiles of these drugs are remarkably similar, although not identical. During the process of cellular transformation, biguanide treatment prevents the boost in glycolytic intermediates at a specific stage of the pathway and coordinately decreases tricarboxylic acid (TCA) cycle intermediates. In contrast, in breast CSCs, biguanides have a modest effect on glycolytic and TCA cycle intermediates, but they strongly deplete nucleotide triphosphates and may impede nucleotide synthesis. These metabolic profiles are consistent with the idea that biguanides inhibit mitochondrial complex 1, but they indicate that their metabolic effects differ depending on the stage of cellular transformation. PMID:25002509

  17. Human papilloma virus in neoplastic and non-neoplastic conditions of the external eye

    PubMed Central

    Karcioglu, Z.; Issa, T.

    1997-01-01

    AIM—Human papilloma virus (HPV) types 16 and 18 have been associated with neoplastic conditions of the conjunctiva. However, the presence of this virus has not been reported in non-neoplastic disorders of the external eye nor has it been studied in normal conjunctival tissues.
METHODS—Ninety six paraffin embedded tissue specimens with neoplastic and non-neoplastic lesions and 19 conjunctiva samples free from overt disease were studied for HPV types 16 and 18 positivity with the polymerase chain reaction.
RESULTS—HPV types 16 and 18 DNA were identified in 57% of in situ squamous cell carcinoma, in 55% of invasive squamous cell carcinoma, in 20% of climatic droplet keratopathy, in 35% of scarred corneas, and in 32% of normal conjunctival tissue obtained during routine cataract extractions.
CONCLUSION—These findings indicate that HPV types 16 and 18 are detectable with the polymerase chain reaction not only in epithelial neoplasms of the ocular mucous membrane but also in non-neoplastic lesions as well as in apparently healthy conjunctiva.

 PMID:9290377

  18. Alterations in cellular differentiation, mitogenesis, cytoskeleton and growth characteristics during Syrian hamster embryo cell multistep in vitro transformation.

    PubMed

    Isfort, R J; Cody, D B; Doersen, C J; Kerckaert, G A; Leboeuf, R A

    1994-10-01

    In vitro Syrian hamster embryo (SHE) cell transformation is a neoplastic process that proceeds through several identifiable consecutive stages including in vitro morphological transformation (mt), acquisition of immortality (I+), acquisition of tumorigenicity (T+) and tumor-derived cells (I'TD). Eight transformed lineages consisting of cells at the mt, I+, T+ and I'TD stages were assayed for alterations in general markers of cell differentiation, mitogenic signaling pathways, cytoskeleton and cellular growth in 3D matrix. Alterations in cellular differentiation markers included a decrease in H19 gene expression and placental alkaline phosphatase enzymatic activity at the mt stage in all lineages examined with a complete absence of H19 gene expression and placental alkaline phosphatase enzymatic activity by the I'TD stage in a majority of transformed lineages. Changes in mitogenic signaling pathways included the production of autocrine growth factors and alterations in growth factor-induced immediate early gene expression by the I'TD stage of transformation in the majority of transformed lineages investigated. By the I'TD stage of transformation in most lineages, changes in both the cytoskeleton (including a decrease in tropomyosin-I gene expression) and the Matrigel growth characteristics of SHE cells were observed. PMID:7927892

  19. Exosomal miR-21 derived from arsenite-transformed human bronchial epithelial cells promotes cell proliferation associated with arsenite carcinogenesis.

    PubMed

    Xu, Yuan; Luo, Fei; Liu, Yi; Shi, Le; Lu, Xiaolin; Xu, Wenchao; Liu, Qizhan

    2015-07-01

    Intercellular communications within the cancer microenvironment coordinate the assembly of various cell types. Exosomes are mediators of intercellular communication in immune signaling, tumor promotion, stress responses, and angiogenesis. The present research aimed to determine whether miRNAs secreted from human bronchial epithelial (HBE) cells transformed by 1.0 μM arsenite are transferred into normal HBE cells and are functionally active in the recipient cells. The results show that miR-21 is involved in exosome-mediated intercellular communication between neoplastic and normal HBE cells. Exosomes derived from transformed HBE cells stimulated proliferation of normal HBE cells, whereas exosomes from miR-21 depleted cells failed to stimulate proliferation. In normal HBE cells, the expression of phosphatase and tensin homolog, a target gene for miR-21, was increased by exosomal miR-21, indicating that exogenous miRNAs, via exosomal transport, function-like endogenous miRNAs. Concordantly, specific reduction of miR-21 content in exosome-producing transformed cells abolished the stimulation of proliferation by exosomes. Collectively, the data indicate that transformed HBE cells release exosomes containing miR-21, stimulating proliferation in neighboring normal HBE cells and supporting the concept that exosomal miRNAs are involved in cell-cell communication during carcinogenesis induced by environmental chemicals. PMID:24912785

  20. Bioprocessing development: Immune/cellular applications: Anti-Ig autoantibody and complement-mediated destruction of neoplastic cells

    NASA Technical Reports Server (NTRS)

    Twomey, J. J.

    1976-01-01

    This space bioprocessing contract effort was comprised of four general objectives. These were: (1) the evaluation of current separation processes, (2) the identification of problems relevant to the separation of important biologicals, (3) the identification of ground-based assay methods needed for pre- and postflight analysis of space bioprocessing separation technology; and (4) the establishment of methods to determine the efficiency of space bioprocessing separation procedures. Immunology was deemed advantageous to study the diversity of cells and cell products involved and the extensive interest being given to their separation. Upon recognition of a cellular or molecular agent as foreign to the body, the immune system becomes activated to produce cells whose function is to destroy that agent and cell products whose function is to inactivate the agent and assist in its destruction. Long after the agent is removed from the body, some cells remain in a state of readiness to continue these destructive actions specifically against that agent should further exposure to it occur. This is the basis of acquired immunity to disease.

  1. Expression of Cytokeratin-19 and Thyroperoxidase in Relation to Morphological Features in Non-Neoplastic and Neoplastic Lesions of Thyroid

    PubMed Central

    Rajamani, Revathishree; Noorunnisa, Naseen; Durairaj, Manimaran

    2016-01-01

    Introduction Thyroperoxidase (TPO) is a protein involved in thyroid hormone synthesis. TPO gene suppression and mutation were involved in thyroid tumours. CK-19 plays important role in the structural integrity of epithelial cells. Reduced TPO expression with increased CK-19 immunoreactivity has been implicated as a marker for differentiating non neoplastic and neoplastic thyroid lesions. Aim To study the histopathological features of thyroid lesions and to evaluate the diagnostic role of thyroperoxidase and CK-19 in non-neoplastic and neoplastic thyroid lesions. Materials and Methods Prospective observational study of 65 thyroid specimens was studied for detailed histopathological examination and Expression of Immunohistochemical Markers Cytokeratin-19 (CK-19) and Thyroperoxidase. Results TPO IHC marker was expressed by non-neoplastic and benign lesions of thyroid but not in malignancy. CK-19 was expressed 100% in papillary carcinoma of thyroid and its variants, focal and weak staining noted in goitre and hyperplastic areas. Conclusion Most of the non-neoplastic and neoplastic lesions were diagnosed based on histopathological features. When the histopathological diagnosis are equivocal, immunohistochemical markers aids in diagnosing malignancy. Diffuse and strong TPO expression indicates non-neoplastic thyroid lesions whereas diffused and strong CK-19 expression indicates thyroid malignancy. PMID:27504290

  2. Impaired telomerase activity hinders proliferation and in vitro transformation of Penaeus monodon lymphoid cells.

    PubMed

    Jayesh, P; Vrinda, S; Priyaja, P; Philip, Rosamma; Singh, I S Bright

    2016-08-01

    Retaining terminal transferase activity of telomerase, the ribonucleoprotein enzyme which add telomeric repeats on chromosome end is thought to be required to prevent cellular ageing. Additionally, telomerase considered as a marker for cell proliferation and immortalization in eukaryotes. We examined telomerase activity in tissues and lymphoid cell culture of Penaeus monodon. Along with telomerase activity, telomere repeats and an attempt on identification of telomerase reverse transcriptase (PmTERT) were made. Telomeric repeat amplification protocol revealed that telomerase-dependent telomeric lengthening has been taking place in P. monodon and the adult tissues were retaining this capacity throughout their lifespan with the highest activity in ovary, testis and lymphoid organ. However, telomerase activity could not be detected in lymphoid cells in culture. The canonical telomeric repeats added by telomerase of lymphoid tissue extract were identified as TTAGG, but pentameric repeats GGTTA and AGGTT were also added by the telomerase. PmTERT protein sequence (partial) shared 100 % identity with the TERT sequence of Daphnia pulex, 27 % sequence identity with Purple sea urchin and 24-25 % with Zebra fish. Undetectable telomerase activity in lymphoid cell culture supports the hypothesis that the inadequate telomerase activity or gene expression may be a reason that prevents neoplastic transformation and spontaneous immortalization of the cells in vitro. Thus, it is envisaged that telomerase activation in lymphoid cells may surmount cellular ageing for in vitro transformation and cell line establishment. PMID:26084784

  3. Rodent cell transformation and immediate early gene expression following 60-Hz magnetic field exposure.

    PubMed Central

    Balcer-Kubiczek, E K; Zhang, X F; Harrison, G H; McCready, W A; Shi, Z M; Han, L H; Abraham, J M; Ampey, L L; Meltzer, S J; Jacobs, M C; Davis, C C

    1996-01-01

    Some epidemiological studies suggest that exposure to power frequency magnetic fields (MFs) may be associated with an elevated risk of human cancer, but the experimental database remains limited and controversial. We investigated the hypothesis that 60-Hz MF action at the cellular level produces changes in gene expression that can result in neoplastic transformation. Twenty-four hour 200 microT continuous MF exposure produced negative results in two standard transformation systems (Syrian hamster embryo cells and C3H/10T1/2 murine fibroblasts) with or without postexposure to a chemical promoter. This prompted a reexamination of previously reported MF-induced changes in gene expression in human HL60 cells. Extensive testing using both coded and uncoded analyses was negative for an MF effect. Using the same exposure conditions as in the transformation studies, no MF-induced changes in ornithine decarboxylase expression were observed in C3H/10T1/2 cells, casting doubt on a promotional role of MF for the tested cells and experimental conditions. Images Figure 1. Figure 2. A Figure 2. B Figure 2. C Figure 2. D Figure 3. A Figure 3. B Figure 4. Figure 5. A Figure 5. B Figure 5. C Figure 5. D Figure 5. E Figure 6. A Figure 6. B Figure 6. C Figure 6. D Figure 6. E Figure 7. Figure 8. A Figure 8. B Figure 8. C Figure 9. Figure 10. A Figure 10. B PMID:8959408

  4. IL-2, IL-4, IFN-γ or TNF-α enhances BAFF-stimulated cell viability and survival by activating Erk1/2 and S6K1 pathways in neoplastic B-lymphoid cells.

    PubMed

    Gui, Lin; Zeng, Qingyu; Xu, Zhigang; Zhang, Hai; Qin, Shanshan; Liu, Chunxiao; Xu, Chong; Qian, Zhou; Zhang, Shuangquan; Huang, Shile; Chen, Long

    2016-08-01

    B-cell activating factor of the TNF family (BAFF) has been documented to act as a critical factor in the development of aggressive B lymphocytes and autoimmune diseases. However, the effect of various cytokines on BAFF-elicited neoplastic B-lymphoid cells is not known. In this study, we exhibited that administration of human soluble BAFF (hsBAFF), IL-2, IL-4, IFN-γ, or TNF-α alone increased cell viability and survival in Raji cells concentration-dependently, yet a more robust viability/survival was seen in the cells co-treatment of IL-2, IL-4, IFN-γ, or TNF-α with hsBAFF, respectively. Further research revealed that both Erk1/2 and S6K1 signaling pathways were essential for IL-2, IL-4, IFN-γ, or TNF-α enhancement of the viability/survival in the hsBAFF-stimulated cells, as inhibition of Erk1/2 with U0126 or down-regulation of Erk1/2, or blockage of S6K1 with rapamycin or silencing S6K1, or silencing S6K1/Erk1/2, respectively, reduced the cell viability/survival in the cells treated with/without hsBAFF±IL-2, IL-4, IFN-γ, or TNF-α. These findings indicate that IL-2, IL-4, IFN-γ or TNF-α enhances BAFF-stimulated cell viability/survival by activating Erk1/2 and S6K1 signaling in neoplastic B-lymphoid cells. Our data suggest that modulation of IL-2, IL-4, IFN-γ and/or TNF-α levels, or inhibitors of Erk1/2 or S6K1 may be a new approach to prevent BAFF-induced aggressive B-cell malignancies. PMID:27235588

  5. Improvement of the BALB/c-3T3 cell transformation assay: a tool for investigating cancer mechanisms and therapies.

    PubMed

    Poburski, Doerte; Thierbach, René

    2016-01-01

    The identification of cancer preventive or therapeutic substances as well as carcinogenic risk assessment of chemicals is nowadays mostly dependent on animal studies. In vitro cell transformation assays mimic different stages of the in vivo neoplastic process and represent an excellent alternative to study carcinogenesis and therapeutic options. In the BALB/c-3T3 two-stage transformation assay cells are chemically transformed by treatment with MCA and TPA, along with the final Giemsa staining of morphological aberrant foci. In addition to the standard method we can show, that it is possible to apply other chemicals in parallel to identify potential preventive or therapeutic substances during the transformation process. Furthermore, we successfully combined the BALB/c cell transformation assay with several endpoint applications for protein analysis (immunoblot, subcellular fractionation and immunofluorescence) or energy parameter measurements (glucose and oxygen consumption) to elucidate cancer mechanisms in more detail. In our opinion the BALB/c cell transformation assay proves to be an excellent model to investigate alterations in key proteins or energy parameters during the different stages of transformation as well as therapeutic substances and their mode of action. PMID:27611302

  6. Improvement of the BALB/c-3T3 cell transformation assay: a tool for investigating cancer mechanisms and therapies

    PubMed Central

    Poburski, Doerte; Thierbach, René

    2016-01-01

    The identification of cancer preventive or therapeutic substances as well as carcinogenic risk assessment of chemicals is nowadays mostly dependent on animal studies. In vitro cell transformation assays mimic different stages of the in vivo neoplastic process and represent an excellent alternative to study carcinogenesis and therapeutic options. In the BALB/c-3T3 two-stage transformation assay cells are chemically transformed by treatment with MCA and TPA, along with the final Giemsa staining of morphological aberrant foci. In addition to the standard method we can show, that it is possible to apply other chemicals in parallel to identify potential preventive or therapeutic substances during the transformation process. Furthermore, we successfully combined the BALB/c cell transformation assay with several endpoint applications for protein analysis (immunoblot, subcellular fractionation and immunofluorescence) or energy parameter measurements (glucose and oxygen consumption) to elucidate cancer mechanisms in more detail. In our opinion the BALB/c cell transformation assay proves to be an excellent model to investigate alterations in key proteins or energy parameters during the different stages of transformation as well as therapeutic substances and their mode of action. PMID:27611302

  7. Src plays a key role in ADAM28 expression in v-src-transformed epithelial cells and human carcinoma cells.

    PubMed

    Abe, Hitoshi; Mochizuki, Satsuki; Ohara, Kentaro; Ueno, Mari; Ochiai, Hiroki; Kitagawa, Yuko; Hino, Okio; Sato, Hiroshi; Okada, Yasunori

    2013-11-01

    ADAM28, a disintegrin and metalloproteinase 28, is overexpressed by carcinoma cells with direct correlations with carcinoma cell proliferation and progression in human lung and breast carcinomas. However, the molecular mechanisms of ADAM28 gene expression in carcinoma cells remain elusive. Herein, we investigated the expression of ADAM28 in Madin-Darby canine kidney epithelial cells transformed by oncogenes, including v-src, LMP1, ErbB2, Ha-Ras, and c-Fos, and found that v-src transformants selectively induce ADAM28. Implantation of the v-src transformants showed a progressively growing tumor, which was significantly suppressed by local injections of anti-ADAM28 antibody. ADAM28 expression in v-src transformants was partially inhibited by treatment with inhibitors to Src kinase, mitogen-activated protein kinase kinase (MEK), phosphatidylinositol 3-kinase (PI3K), or mammalian target of rapamycin, and abrogated by v-Src kinase inhibitor, radicicol, or a mixture of MEK and PI3K inhibitors. Human carcinoma cell lines of the lung, breast, ovary, kidney, and colon showed ADAM28 expression, which was correlated with phosphorylation of c-Src and suppressed by the inhibitors in a similar way to v-src transformants. IHC of the human tumor tissues demonstrated co-expression of ADAM28 and phosphorylated Src in neoplastic cells of the breast, lung, and colon carcinomas and some adenomas of the colon, but not in nonneoplastic colon mucosa. Our data provide, to the best of our knowledge, the first evidence that Src is an inducer of ADAM28 gene expression through the MEK/extracellular signal-regulated kinase and PI3K/mammalian target of rapamycin pathways. PMID:24007880

  8. Microsatellite instability in human mammary epithelial cells transformed by heavy ions

    NASA Astrophysics Data System (ADS)

    Yanada, S.; Yang, T. C.; George, K.; Okayasu, R.; Ando, K.; Tsujii, H.

    1998-11-01

    We analyzed DNA and proteins obtained from normal and transformed human mammary epithelial cells for studying the neoplastic transformation by high-LET irradiation in vitro. We also examined microsatellite instability in human mammary cells transformed to various stages of carcinogenesis, such as normal, growth variant and tumorigenic, using microsatellite marker D5S177 on the chromosome 5 and CY17 on the Chromosome 10. Microsatellite instabilities were detected in the tumorigenic stage. These results suggest that microsatellite instability may play a role in the progression of tumorigenecity. The cause of the genomic instability has been suggested as abnormalities of DNA-repair systems which may be due to one of the three reasons: 1) alterations of cell cycle regulating genes. 2) mutations in any of the DNA mismatch repair genes, 3) mutation in any of the DNA strand breaks repair genes. No abnormality of these genes and encoded proteins, however was found in the present studies. These studies thus suggest that the microsatellite instability is induced by an alternative mechanism.

  9. Transformation of human osteoblast cells to the tumorigenic phenotype by depleted uranium-uranyl chloride.

    PubMed Central

    Miller, A C; Blakely, W F; Livengood, D; Whittaker, T; Xu, J; Ejnik, J W; Hamilton, M M; Parlette, E; John, T S; Gerstenberg, H M; Hsu, H

    1998-01-01

    Depleted uranium (DU) is a dense heavy metal used primarily in military applications. Although the health effects of occupational uranium exposure are well known, limited data exist regarding the long-term health effects of internalized DU in humans. We established an in vitro cellular model to study DU exposure. Microdosimetric assessment, determined using a Monte Carlo computer simulation based on measured intracellular and extracellular uranium levels, showed that few (0.0014%) cell nuclei were hit by alpha particles. We report the ability of DU-uranyl chloride to transform immortalized human osteoblastic cells (HOS) to the tumorigenic phenotype. DU-uranyl chloride-transformants are characterized by anchorage-independent growth, tumor formation in nude mice, expression of high levels of the k-ras oncogene, reduced production of the Rb tumor-suppressor protein, and elevated levels of sister chromatid exchanges per cell. DU-uranyl chloride treatment resulted in a 9.6 (+/- 2.8)-fold increase in transformation frequency compared to untreated cells. In comparison, nickel sulfate resulted in a 7.1 (+/- 2.1)-fold increase in transformation frequency. This is the first report showing that a DU compound caused human cell transformation to the neoplastic phenotype. Although additional studies are needed to determine if protracted DU exposure produces tumors in vivo, the implication from these in vitro results is that the risk of cancer induction from internalized DU exposure may be comparable to other biologically reactive and carcinogenic heavy-metal compounds (e.g., nickel). Images Figure 1 Figure 2 Figure 3 PMID:9681973

  10. Involvement of HIF-2α-mediated inflammation in arsenite-induced transformation of human bronchial epithelial cells

    SciTech Connect

    Xu, Yuan; Zhao, Yue; Xu, Wenchao; Luo, Fei; Wang, Bairu; Li, Yuan; Pang, Ying; Liu, Qizhan

    2013-10-15

    Arsenic is a well established human carcinogen that causes diseases of the lung. Some studies have suggested a link between inflammation and lung cancer; however, it is unknown if arsenite-induced inflammation causally contributes to arsenite-caused malignant transformation of cells. In this study, we investigated the molecular mechanisms underlying inflammation during neoplastic transformation induced in human bronchial epithelial (HBE) cells by chronic exposure to arsenite. The results showed that, on acute or chronic exposure to arsenite, HBE cells over-expressed the pro-inflammatory cytokines, interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1β (IL-1β). The data also indicated that HIF-2α was involved in arsenite-induced inflammation. Moreover, IL-6 and IL-8 were essential for the malignant progression of arsenite-transformed HBE cells. Thus, these experiments show that HIF-2α mediates arsenite-induced inflammation and that such inflammation is involved in arsenite-induced malignant transformation of HBE cells. The results provide a link between the inflammatory response and the acquisition of a malignant transformed phenotype by cells chronically exposed to arsenite and thus establish a previously unknown mechanism for arsenite-induced carcinogenesis. - Highlights: • Arsenite induces inflammation. • Arsenite-induced the increases of IL-6 and IL-8 via HIF-2α. • Inflammation is involved in arsenite-induced carcinogenesis.

  11. Optimizing detection of RET and PPARg rearrangements in thyroid neoplastic cells using a home-brew tetracolor probe

    PubMed Central

    Caria, Paola; Frau, Daniela V; Dettori, Tinuccia; Boi, Francesco; Lai, Maria L; Mariotti, Stefano; Vanni, Roberta

    2014-01-01

    BACKGROUND Fluorescence in situ hybridization (FISH) to identify specific DNA target sequences in the nuclei of nondividing cells of numerous solid neoplasms has contributed to the introduction of molecular cytogenetics as a useful adjunct to cytology, leading recently to the “marriage” of the 2 disciplines. Numerous cancer molecular markers can now be investigated using different technical approaches, at both the gene and expression levels, in biopsies of various suspected cancers, including differentiated thyroid carcinoma. The limited amount of bioptic material is often insufficient to carry out multiple tests, and optimizing handling of the biopsy is desirable. METHODS We have developed a home-brew tetracolor break-apart probe able to simultaneously identify the 2 most common genetic alterations in differentiated thyroid carcinoma: RET/PTC variants in papillary thyroid carcinoma and PAX8/PPARg fusion and variants in follicular thyroid carcinoma. RESULTS The probe had 100% specificity, 99.5% sensitivity, and ≥3% cutoff. The probe was tested on RET/PTC and PAX8/PPARg RT-PCR positive controls, and feasibility was assessed in 368 thyroid nodule fine-needle aspirations (FNA). In the latter analysis, 24 FNAs had split RET signal, and 9 had split PPARg signal. FISH analysis of available surgically removed nodules confirmed the sensitivity of FISH in detecting abnormal clones and oligoclones. CONCLUSIONS The home-brew tetracolor probe showed high feasibility, optimizing the use of the biological material in relation to the available molecular tests and maximizing the FISH experimental and slide-scoring times. This probe may be considered an alternative to RT-PCR when recovery and quality of RNA amplification from FNA are insufficient. Cancer (Cancer Cytopathol) 2014;122:377–385. © 2014 The Authors. Cancer Cytopathology published by Wiley Periodicals, Inc. on behalf of American Cancer Society. This is an open access article under the terms of the Creative

  12. A mosaic genetic screen for Drosophila neoplastic tumor suppressor genes based on defective pupation.

    PubMed

    Menut, Laurent; Vaccari, Thomas; Dionne, Heather; Hill, Joseph; Wu, Geena; Bilder, David

    2007-11-01

    The Drosophila neoplastic tumor suppressor genes (TSGs) coordinately control cell polarity and proliferation in epithelial and neuronal tissues. While a small group of neoplastic TSG mutations have been isolated and their corresponding genes cloned, the regulatory pathways that normally prevent inappropriate growth remain unclear. Identification of additional neoplastic TSGs may provide insight into this question. We report here the design of an efficient screen for isolating neoplastic TSG mutations utilizing genetically mosaic larvae. This screen is based on a defective pupation phenotype seen when a single pair of imaginal discs is homozygous for a neoplastic TSG mutation, which suggests that continuously proliferating cells can interfere with metamorphosis. Execution of this screen on two chromosome arms led to the identification of mutations in at least seven new neoplastic TSGs. The isolation of additional loci that affect hyperplastic as well as neoplastic growth indicates the utility of this screening strategy for studying epithelial growth control. PMID:17947427

  13. Malignant transformation of colonic epithelial cells by a colon-derived long noncoding RNA

    SciTech Connect

    Franklin, Jeffrey L.; Rankin, Carl R.; Levy, Shawn; Snoddy, Jay R.; Zhang, Bing; Washington, Mary Kay; Thomson, J. Michael; Whitehead, Robert H.; Coffey, Robert J.

    2013-10-11

    Highlights: •Non-coding RNAs are found in the colonic crypt progenitor compartment. •Colonocytes transformed by ncNRFR are highly invasive and metastatic. •ncNRFR has a region similar to the miRNA, let-7 family. •ncNRFR expression alters let-7 activity as measured by reporter construct. •ncNRFR expression upregulates let-7b targets. -- Abstract: Recent progress has been made in the identification of protein-coding genes and miRNAs that are expressed in and alter the behavior of colonic epithelia. However, the role of long non-coding RNAs (lncRNAs) in colonic homeostasis is just beginning to be explored. By gene expression profiling of post-mitotic, differentiated tops and proliferative, progenitor-compartment bottoms of microdissected adult mouse colonic crypts, we identified several lncRNAs more highly expressed in crypt bottoms. One identified lncRNA, designated non-coding Nras functional RNA (ncNRFR), resides within the Nras locus but appears to be independent of the Nras coding transcript. Stable overexpression of ncNRFR in non-transformed, conditionally immortalized mouse colonocytes results in malignant transformation, as determined by growth in soft agar and formation of highly invasive tumors in nude mice. Moreover, ncNRFR appears to inhibit the function of the tumor suppressor let-7. These results suggest precise regulation of ncNRFR is necessary for proper cell growth in the colonic crypt, and its misregulation results in neoplastic transformation.

  14. Cross-talk between chronic lymphocytic leukemia (CLL) tumor B cells and mesenchymal stromal cells (MSCs): implications for neoplastic cell survival

    PubMed Central

    Facco, Monica; Chiodin, Giorgia; Frezzato, Federica; Martini, Veronica; Gattazzo, Cristina; Lessi, Federica; Giorgi, Carlo Alberto; Visentin, Andrea; Castelli, Monica; Severin, Filippo; Zambello, Renato; Piazza, Francesco; Semenzato, Gianpietro; Trentin, Livio

    2015-01-01

    Leukemic cells from Chronic Lymphocytic Leukemia (CLL) patients interact with stromal cells of the surrounding microenvironment. Mesenchymal Stromal Cells (MSCs) represent the main population in CLL marrow stroma, which may play a key role for disease support and progression. In this study we evaluated whether MSCs influence in vitro CLL cell survival. MSCs were isolated from the bone marrow of 46 CLL patients and were characterized by flow cytometry analysis. Following co-culture of MSCs and leukemic B cells, we demonstrated that MSCs were able to improve leukemic B cell viability, this latter being differently dependent from the signals coming from MSCs. In addition, we found that the co-culture of MSCs with leukemic B cells induced an increased production of IL-8, CCL4, CCL11, and CXCL10 chemokines. As far as drug resistance is concerned, MSCs counteract the cytotoxic effect of Fludarabine/Cyclophosphamide administration in vivo, whereas they do not protect CLL cells from the apoptosis induced by the kinase inhibitors Bafetinib and Ibrutinib. The evidence that leukemic clones are conditioned by environmental stimuli suggest new putative targets for therapy in CLL patients. PMID:26517523

  15. Cross-talk between chronic lymphocytic leukemia (CLL) tumor B cells and mesenchymal stromal cells (MSCs): implications for neoplastic cell survival.

    PubMed

    Trimarco, Valentina; Ave, Elisa; Facco, Monica; Chiodin, Giorgia; Frezzato, Federica; Martini, Veronica; Gattazzo, Cristina; Lessi, Federica; Giorgi, Carlo Alberto; Visentin, Andrea; Castelli, Monica; Severin, Filippo; Zambello, Renato; Piazza, Francesco; Semenzato, Gianpietro; Trentin, Livio

    2015-12-01

    Leukemic cells from Chronic Lymphocytic Leukemia (CLL) patients interact with stromal cells of the surrounding microenvironment. Mesenchymal Stromal Cells (MSCs) represent the main population in CLL marrow stroma, which may play a key role for disease support and progression. In this study we evaluated whether MSCs influence in vitro CLL cell survival. MSCs were isolated from the bone marrow of 46 CLL patients and were characterized by flow cytometry analysis. Following co-culture of MSCs and leukemic B cells, we demonstrated that MSCs were able to improve leukemic B cell viability, this latter being differently dependent from the signals coming from MSCs. In addition, we found that the co-culture of MSCs with leukemic B cells induced an increased production of IL-8, CCL4, CCL11, and CXCL10 chemokines.As far as drug resistance is concerned, MSCs counteract the cytotoxic effect of Fludarabine/Cyclophosphamide administration in vivo, whereas they do not protect CLL cells from the apoptosis induced by the kinase inhibitors Bafetinib and Ibrutinib. The evidence that leukemic clones are conditioned by environmental stimuli suggest new putative targets for therapy in CLL patients. PMID:26517523

  16. Cells transformed by murine herpesvirus 68 (MHV-68) release compounds with transforming and transformed phenotype suppressing activity resembling growth factors.

    PubMed

    Šupolíková, M; Staňová, A Vojs; Kúdelová, M; Marák, J; Zelník, V; Golais, F

    2015-12-01

    In this study, we investigated the medium of three cell lines transformed with murine herpesvirus 68 (MHV-68) in vitro and in vivo, 68/HDF, 68/NIH3T3, and S11E, for the presence of compounds resembling growth factors of some herpesviruses which have displayed transforming and transformed phenotype suppressing activity in normal and tumor cells. When any of spent medium was added to cell culture we observed the onset of transformed phenotype in baby hamster kidney cells (BHK-21) cells and transformed phenotype suppressing activity in tumor human epithelial cells (HeLa). In media tested, we have identified the presence of putative growth factor related to MHV-68 (MHGF-68). Its bivalent properties have been blocked entirely by antisera against MHV-68 and two monoclonal antibodies against glycoprotein B (gB) of MHV-68 suggesting viral origin of MHGF-68. The results of initial efforts to separate MHGF-68 on FPLC Sephadex G15 column in the absence of salts revealed the loss of its transforming activity but transformed phenotype suppressing activity retained. On the other hand, the use of methanol-water mobile phase on RP-HPLC C18 column allowed separation of MHGF-68 to two compounds. Both separated fractions, had only the transforming activity to normal cells. Further experiments exploring the nature and the structure of hitherto unknown MHGF-68 are now in the progress to characterize its molecular and biological properties. PMID:26666191

  17. Pharmacological reactivity of neoplastic and non-neoplastic associated neovasculature to vasoconstrictors.

    PubMed

    Andrade, S P; Beraldo, W T

    1998-12-01

    Angiogenesis and the pharmacological responses of the tumour and non-tumour associated neovasculature have been investigated. Cannulated sponge discs in mice were used to host the angiogenic stimulators, while 133Xe washout was employed to assess local blood flow. Enhancement of blood flow was detected in implants bearing B16 cells, 3T3 cells and angiotensin II (AII)-treated at day 7. The responses of non-neoplastic associated neovasculature at day 14 post sponge implantation to the vasoconstrictors used endothelin-1 (Et-1), AII, platelet activating factor (PAF) and 5-hydroxytryptamine (5-HT) were dose-dependent. By contrast, the newly formed blood vessels induced by tumour cells were markedly insensitive to the vasoconstrictors agonists Et-1 and AII, while fully responsive to PAF and 5-HT. The vessels resulting from neoplastic stimulus exhibited altered pharmacological reactivity, suggesting that the characteristics of the neovasculature are dependent on the nature of the angiogenic stimuli. PMID:10319023

  18. Recommended protocol for the Syrian hamster embryo (SHE) cell transformation assay.

    PubMed

    Maire, Marie-Aline; Pant, Kamala; Phrakonkham, Pascal; Poth, Albrecht; Schwind, Karl-Rainer; Rast, Claudine; Bruce, Shannon Wilson; Sly, Jamie E; Bohnenberger, Susanne; Kunkelmann, Thorsten; Schulz, Markus; Vasseur, Paule

    2012-04-11

    The Syrian hamster embryo (SHE) cell transformation assay (CTA) is a short-term in vitro assay recommended as an alternative method for testing the carcinogenic potential of chemicals. SHE cells are "normal" cells since they are diploid, genetically stable, non-tumourigenic, and have metabolic capabilities for the activation of some classes of carcinogens. The CTA, first developed in the 1960s by Berwald and Sachs (1963,1964) [3,4], is based on the change of the phenotypic feature of cell colonies expressing the first steps of the conversion of normal to neoplastic-like cells with oncogenic properties. Pienta et al. (1977) [22] developed a protocol using cryopreserved cells to enhance practicality of the assay and limit sources of variability. Several variants of the assay are currently in use, which mainly differ by the pH at which the assay is performed. We present here the common version of the SHE pH 6.7 CTA and SHE pH 7.0 CTA protocols used in the ECVAM (European Centre for the Validation of Alternative Methods) prevalidation study on CTA reported in this issue. It is recommended that this protocol, in combination with the photo catalogues presented in this issue, should be used in the future and serve as a basis for the development of the OECD test guideline. PMID:22198328

  19. TRANSFORMATION

    SciTech Connect

    LACKS,S.A.

    2003-10-09

    Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).

  20. Epidermal growth factor signaling in transformed cells

    PubMed Central

    Lindsey, Stephan; Langhans, Sigrid A.

    2016-01-01

    Members of the epidermal growth factor receptor (EGFR/ErbB) family play a critical role in normal cell growth and development. However, many ErbB family members, especially EGFR, are aberrantly expressed or deregulated in tumors and are thought to play crucial roles in cancer development and metastatic progression. In this chapter, we provide an overview of key mechanisms contributing to aberrant EGFR/ErbB signaling in transformed cells which results in many phenotypic changes associated with the earliest stages of tumor formation, including several hallmarks of epithelial-to-mesenchymal transition (EMT). These changes often occur through interaction with other major signaling pathways important to tumor progression resulting in a multitude of transcriptional changes that ultimately impact cell morphology, proliferation and adhesion, all of which are crucial for tumor progression. The resulting mesh of signaling networks will need to be taken into account as new regimens are designed for targeting EGFR for therapeutic intervention. As new insights into the molecular mechanisms of the cross-talk of EGFR signaling with other signaling pathways and their role in therapeutic resistance to anti-EGFR therapies are gained a continual reassessment of clinical therapeutic regimes and strategies will be required. Understanding the consequences and complexity of EGF signaling and how it relates to tumor progression is critical for the development of clinical compounds and establishing clinical protocols for the treatment of cancer. PMID:25619714

  1. Radiogenic transformation of human mammary epithelial cells in vitro

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Tavakoli, A.; Craise, L. M.; Durante, M.

    1996-01-01

    Cancer induction by space radiations is a major concern for manned space exploration. Accurate assessment of radiation risk at low doses requires basic understanding of mechanism(s) of radiation carcinogenesis. For determining the oncogenic effects of ionizing radiation in human epithelial cells, we transformed a mammary epithelial cell line (185B5), which was immortalized by benzo(a)pyrene, with energetic heavy ions and obtained several transformed clones. These transformed cells showed growth properties on Matrigel similar to human mammary tumor cells. To better understand the mechanisms of radiogenic transformation of human cells, we systematically examined the alterations in chromosomes and cancer genes. Among 16 autosomes examined for translocations, by using fluorescence in situ hybridization (FISH) technique, chromosomes 3, 12, 13, 15, 16, and 18 appeared to be normal in transformed cells. Chromosomes 1, 4, 6, 8, and 17 in transformed cells, however, showed patterns different from those in nontransformed cells. Southern blot analyses indicated no detectable alterations in myc, ras, Rb, or p53 genes. Further studies of chromosome 17 by using in situ hybridization with unique sequence p53 gene probe and a centromere probe showed no loss of p53 gene in transformed cells. Experimental results from cell fusion studies indicated that the transforming gene(s) is recessive. The role of genomic instability and tumor suppressor gene(s) in radiogenic transformation of human breast cells remains to be identified.

  2. The Mitochondrial Chaperone TRAP1 Promotes Neoplastic Growth by Inhibiting Succinate Dehydrogenase

    PubMed Central

    Sciacovelli, Marco; Guzzo, Giulia; Morello, Virginia; Frezza, Christian; Zheng, Liang; Nannini, Nazarena; Calabrese, Fiorella; Laudiero, Gabriella; Esposito, Franca; Landriscina, Matteo; Defilippi, Paola; Bernardi, Paolo; Rasola, Andrea

    2013-01-01

    Summary We report that the mitochondrial chaperone TRAP1, which is induced in most tumor types, is required for neoplastic growth and confers transforming potential to noncancerous cells. TRAP1 binds to and inhibits succinate dehydrogenase (SDH), the complex II of the respiratory chain. The respiratory downregulation elicited by TRAP1 interaction with SDH promotes tumorigenesis by priming the succinate-dependent stabilization of the proneoplastic transcription factor HIF1α independently of hypoxic conditions. These findings provide a mechanistic clue to explain the switch to aerobic glycolysis of tumors and identify TRAP1 as a promising antineoplastic target. PMID:23747254

  3. axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase

    SciTech Connect

    O'Bryan, J.P.; Frye, R.A.; Cogswell, P.C.; Neubauer, A.; Kitch, B.; Prokop, C.; Earp, H.S.; Liu, E.T. ); Espinosa, R. III; Le Beau, M.M. )

    1991-10-01

    Using a sensitive transfection-tumorigenicity assay, the authors have isolated a novel transforming gene from the DNA of two patients with chronic myelogenous leukemia. Sequence analysis indicates that the product of this gene, axl, is a receptor tyrosine kinase. Overexpression of axl cDNA in NIH 3T3 cells induces neoplastic transformation with the concomitant appearance of a 140-kDa axl tyrosine-phosphorylated protein. Expression of axl cDNA in the baculovirus system results in the expression of the appropriate recombinant protein that is recognized by antophosphotyrosine antibodies, confirming that the axl protein is a tyrosine kinase. The juxtaposition of fibronectin type II and immunoglobulinlike repeats in the extracellular domain, as well as distinct amino acid sequences in the kinase domain, indicate that the axl protein represents a novel subclass of receptor tyrosine kinases.

  4. Dehydroglyasperin C suppresses TPA-induced cell transformation through direct inhibition of MKK4 and PI3K.

    PubMed

    Lee, Ji Hoon; Kim, Jong-Eun; Jang, Young Jin; Lee, Charles C; Lim, Tae-Gyu; Jung, Sung Keun; Lee, Eunjung; Lim, Soon Sung; Heo, Yong Seok; Seo, Sang Gwon; Son, Joe Eun; Kim, Jong Rhan; Lee, Chang Yong; Lee, Hyong Joo; Lee, Ki Won

    2016-05-01

    Bioactive natural compounds from plant-derived sources have received substantial interest due to their potential therapeutic and preventive effects toward various human diseases. Licorice (Glycyrrhiza), a frequently-used component in traditional oriental medicines, has been incorporated into recipes not only to enhance taste, but also to treat various conditions including inflammation, chronic fatigue syndrome, and even cancer. Dehydroglyasperin C (DGC) is a major isoflavone found in the root of licorice. In the present study, we investigated the cancer chemopreventive effect of DGC and the underlying molecular mechanisms involved, by analyzing its effects on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced neoplastic cell transformation and cyclooxygenase (COX)-2 expression in JB6 P+ mouse epidermal cells. DGC treatment attenuated TPA-induced activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) transcriptional activation, two major regulators of TPA-induced cell transformation, and COX-2 expression. TPA-induced phosphorylation of p38, JNK1/2 and Akt was also suppressed by DGC. Kinase assay data revealed that DGC inhibited the kinase activity of MKK4 and PI3K and this outcome was due to direct physical binding with DGC. Notably, DGC bound directly to MKK4 and PI3K in an ATP-competitive manner. Taken together, these results suggest that DGC exhibits cancer chemopreventive potential via its inhibitory effect on TPA-induced neoplastic cell transformation and COX-2 modulation through regulation of the MKK4 and PI3K pathways. © 2015 Wiley Periodicals, Inc. PMID:25787879

  5. Plastic bronchitis caused by neoplastic infiltrates in a child.

    PubMed

    Kuperman, Tamar; Wexler, Isaiah D; Shoseyov, David; Weintraub, Michael; Revel-Vilk, Shoshana; Kerem, Eitan

    2006-09-01

    We report on a case of a 7-year-old girl admitted for pneumonia not responding to oral antibiotics. During hospitalization, her pulmonary status deteriorated as a result of significant atelectasis. An extensive workup revealed an anaplastic large-cell lymphoma with neoplastic cells, found in both a biopsied lymph node and pleural fluid aspirate. Bronchoscopic examination showed nearly complete obstruction of the left side by bronchial casts composed of tumor cells, fibrin, and necrotic material, consistent with plastic bronchitis. Neoplastic infiltration of the bronchi should be considered in the differential diagnosis of disease entities causing plastic bronchitis in children. PMID:16779857

  6. Analysis of the coding sequence and expression of the coiled-coil α-helical rod protein 1 gene in normal and neoplastic epithelial cervical cells

    PubMed Central

    PACHOLSKA-BOGALSKA, JOANNA; MYGA-NOWAK, MAGDALENA; CIEPŁUCH, KATARZYNA; JÓZEFIAK, AGATA; KWAŒNIEWSKA, ANNA; GOźDZICKA-JÓZEFIAK, ANNA

    2012-01-01

    The role of the CCHCR1 (coiled-coil α-helical rod protein 1) protein in the cell is poorly understood. It is thought to be engaged in processes such as proliferation and differentiation of epithelial cells, tissue-specific gene transcription and steroidogenesis. It is supposed to participate in keratinocyte transformation. It has also been found that this protein interacts with the E2 protein of human papilloma virus type 16 (HPV16). The oncogenic HPV forms, such as HPV16, are known to be necessary but not sufficient agents in the development of cervical carcinoma. In the present study, the CCHCR1 gene coding sequence and its expression was analyzed in normal, precancerous and cervical cancer cells. Changes in the non-coding region were found in 20.3% of the examined probes from women with cervical cancer or precancerous lesions and in 16.67% of the control probes. Most of the detected changes were single nucleotide polymorphisms (SNPs). Changes in the coding region were found in 22.8% of the probes with cervical cancer and in 16.67% of the control probes and all of them were SNPs. The level of CCHCR1 transcripts was determined using the real-time PCR method and the highest gene expression was detected in the H-SIL group and slightly decreased in the cervical carcinoma cells, compared with the control probes. It suggests that CCHCR1 could have a role in the process of cervical epithelial cell transformation, but this suggestion must be confirmed experimentally. PMID:22218424

  7. Argyrophilic nucleolar organizer regions (AgNORs) in interphases and metaphases of normal and neoplastic gill cells of Macoma balthica (Bivalvia: Tellinidae) from the Gulf of Gdansk, Baltic Sea.

    PubMed

    Smolarz, K; Wolowicz, M; Thiriot-Quiévreux, C

    2003-10-24

    Chromosome analysis of gill cells of different populations of Macoma balthica (L.) from the Bay of Gdansk (Baltic Sea) revealed 2 clam categories, 1 with neoplastic features and 1 without. Silver-staining was performed on interphase and metaphase cells of both categories. The mean argyrophilic nucleolar organizer region (AgNOR) count per abnormal interphase cell was significantly higher than in normal interphase cells. Normal silver-stained metaphases had 3 nucleolar organizer region (NOR) chromosome phenotypes. The location of the NORs in the most frequent phenotype (55.6% in 54 metaphases scored) was interstitial on the largest metacentric chromosome pair, Pair No. 1. Abnormal silver-stained metaphases had a higher number of active NOR sites. Different phenotypes were observed (frequency greater than 10% for 67 metaphases scored); 2 were similar to those in normal metaphases and 5 were ectopic. The higher activity of AgNORs observed in abnormal cells confirmed the diagnosis of malignant neoplasia. PMID:14667039

  8. Quercetin induces structural chromosomal aberrations and uncommon rearrangements in bovine cells transformed by the E7 protein of bovine papillomavirus type 4.

    PubMed

    Leal, A M; Ferraz, O P; Carvalho, C; Freitas, A C; Beniston, R G; Beçak, W; Campo, M S; Stocco dos Santos, R C

    2003-03-01

    Bovine papillomavirus type 4 (BPV-4) and bracken fern are cofactors in the carcinogenesis of the upper gastrointestinal (GI) tract of cattle. An experimental in vitro model system has been developed to analyse the co-operation between the viral transforming protein E7, the cellular ras oncogene and quercetin, one of the mutagens of bracken fern, during neoplastic progression of primary bovine cells. We now report cytogenetic studies of these cells at different stages of malignant transformation: parental primary non-transformed PalF cells; E7R cells transformed by BPV-4 E7 and activated ras but not tumorigenic, and tumorigenic E7Q cells derived from E7R cells after treatment with quercetin. All cell lines presented increased numbers of aneuploid cells. The rate of structural chromosomal aberrations observed was increased in transformed cells. In addition, E7Q cells showed chromosomes with peculiar rearrangements, which resulted in metacentric and submetacentric marker chromosomes, with an increase in the mean chromosome arm number. These markers were the products of possible centric fusions. These aberrations and rearrangements were distributed throughout the karyotype, no specific chromosome was involved and the heterochromatic centromeric regions appeared to be preserved. PMID:19379326

  9. Src and FAK mediate cell-matrix adhesion-dependent activation of Met during transformation of breast epithelial cells.

    PubMed

    Hui, Angela Y; Meens, Jalna A; Schick, Colleen; Organ, Shawna L; Qiao, Hui; Tremblay, Eric A; Schaeffer, Erik; Uniyal, Shashi; Chan, Bosco M C; Elliott, Bruce E

    2009-08-15

    Cell-matrix adhesion has been shown to promote activation of the hepatocyte growth factor receptor, Met, in a ligand-independent manner. This process has been linked to transformation and tumorigenesis in a variety of cancer types. In the present report, we describe a key role of integrin signaling via the Src/FAK axis in the activation of Met in breast epithelial and carcinoma cells. Expression of an activated Src mutant in non-neoplastic breast epithelial cells or in carcinoma cells was found to increase phosphorylation of Met at regulatory tyrosines in the auto-activation loop domain, correlating with increased cell spreading and filopodia extensions. Furthermore, phosphorylated Met is complexed with beta1 integrins and is co-localized with vinculin and FAK at focal adhesions in epithelial cells expressing activated Src. Conversely, genetic or pharmacological inhibition of Src abrogates constitutive Met phosphorylation in carcinoma cells or epithelial cells expressing activated Src, and inhibits filopodia formation. Interestingly, Src-dependent phosphorylation of Met requires cell-matrix adhesion, as well as actin stress fiber assembly. Phosphorylation of FAK by Src is also required for Src-induced Met phosphorylation, emphasizing the importance of the Src/FAK signaling pathway. However, stimulation of Met phosphorylation by addition of exogenous HGF in epithelial cells is refractory to inhibition of Src family kinases, indicating that HGF-dependent and Src/integrin-dependent Met activation occur via distinct mechanisms. Together these findings demonstrate a novel mechanism by which the Src/FAK axis links signals from the integrin adhesion complex to promote Met activation in breast epithelial cells. PMID:19533669

  10. [Tongue paralysis of neoplastic origin].

    PubMed

    Marco, M; Dalmau, J; Aguilar, M

    1989-10-01

    Tongue paralysis are often underestimated, particularly when isolated or having a chronic course. Sometimes, its early recognition may lead to the diagnosis of a tumor process, favorably modifying its course. We have retrospectively analyzed 13 cases of tongue paralysis of neoplastic etiology. In a woman, the paralysis was due to a lesion of the corticobulbar pathway whereas in the remaining 12, the alteration occurred in the hypoglossal nerve, particularly at extrabulbar intracranial and cranial base tract (10 cases). The clinical picture was due to the primary tumor in 9 patients, and due to bone or leptomeningeal metastases in the remaining four cases. In five cases, the lesion of the XII cranial nerve was essential for the diagnosis of the neoplasm or the neoplastic recurrence and in four cases, it was the only affected cranial nerve. PMID:2637769

  11. Genetic changes in mammalian cells transformed by helium ions

    NASA Astrophysics Data System (ADS)

    Durante, M.; Grossi, G.; Yang, T. C.; Roots, R.

    Midterm Syrian Hamster embryo (SHE) cells were employed to study high LET-radiation induced tumorigenesis. Normal SHE cells (secondary passage) were irradiated with accelerated helium ions at an incident energy of 22 MeV/u (9-10 keV/μm). Transformed clones were isolated after growth in soft agar of cells obtained from the foci of the initial monolayer plated postirradiation. To study the progression process of malignant transformation, the transformed clones were followed by monolayer subculturing for prolonged periods of time. Subsequently, neoplasia tests in nude mice were done. In this work, however, we have focused on karyotypic changes in the banding patterns of the chromosomes during the early part of the progressive process of cell transformation for helium ion-induced transformed cells.

  12. Role of neoplastic monocyte-derived fibrocytes in primary myelofibrosis.

    PubMed

    Verstovsek, Srdan; Manshouri, Taghi; Pilling, Darrell; Bueso-Ramos, Carlos E; Newberry, Kate J; Prijic, Sanja; Knez, Liza; Bozinovic, Ksenija; Harris, David M; Spaeth, Erika L; Post, Sean M; Multani, Asha S; Rampal, Raajit K; Ahn, Jihae; Levine, Ross L; Creighton, Chad J; Kantarjian, Hagop M; Estrov, Zeev

    2016-08-22

    Primary myelofibrosis (PMF) is a fatal neoplastic disease characterized by clonal myeloproliferation and progressive bone marrow (BM) fibrosis thought to be induced by mesenchymal stromal cells stimulated by overproduced growth factors. However, tissue fibrosis in other diseases is associated with monocyte-derived fibrocytes. Therefore, we sought to determine whether fibrocytes play a role in the induction of BM fibrosis in PMF. In this study, we show that BM from patients with PMF harbors an abundance of clonal, neoplastic collagen- and fibronectin-producing fibrocytes. Immunodeficient mice transplanted with myelofibrosis patients' BM cells developed a lethal myelofibrosis-like phenotype. Treatment of the xenograft mice with the fibrocyte inhibitor serum amyloid P (SAP; pentraxin-2) significantly prolonged survival and slowed the development of BM fibrosis. Collectively, our data suggest that neoplastic fibrocytes contribute to the induction of BM fibrosis in PMF, and inhibiting fibrocyte differentiation with SAP may interfere with this process. PMID:27481130

  13. Collagen formation by transformed smooth muscle cells after arterial injury.

    PubMed

    Chidi, C C; DePalma, R G

    1981-01-01

    Twenty-five normocholesterolemic rabbits were sacrificed at intervals up to 60 days after the thoracic aortas were de-endothelialized. Ultrastructural studies of both the re-endothelialized and nonendothelialized intima were done. The smooth muscle cells in the re-endothelialized intima showed segmental structural changes typically associated with transformation to a secretory cell type; abundant accumulations of collagen were in juxtaposition with these cells. The nonendothelialized intima did not demonstrate similar smooth muscle cell changes and collagen accumulation. These observations suggest that regenerating endothelial cells and intimal smooth muscle cells interact to cause smooth muscle cell transformation and collagen accumulation during arterial repair. PMID:7455897

  14. ONCOGENE ALTERNATIONS IN IN VITRO TRANSFORMED RAT TRACHEAL EPITHELIAL CELLS

    EPA Science Inventory

    Ten derivations of rat tracheal epithelial (RTE) cells, including normal cells, normal primary cultures, 7 tumorigenic cell lines and 1 non-tumorigenic cell line transformed by treatment with 7,12-dimethylbenz(a)anthracene (DMBA), benzo(a)pyrene (BP) and/or 12-0-tetradecanoylphor...

  15. Cell cycle control of polyomavirus-induced transformation.

    PubMed Central

    Chen, H H; Fluck, M M

    1993-01-01

    The cell cycle dependence of polyomavirus transformation was analyzed in infections of nonpermissive Fischer rat (FR3T3) cells released from G0. A 5- to 100-fold (average, ca. 20-fold) difference in relative frequency of transformation was found for cells infected in the early G1 phase of the cell cycle compared with cells infected in G2. Differences in the relative level of early viral gene expression in those two cell populations were equivalent to those obtained for transformation frequencies. The difference in transformation potential was accounted for only in part by a cell cycle control of viral adsorption (2- to 15-fold effect). Furthermore, in cells infected in the early G1 phase, viral gene expression was induced as a big synchronous burst of large transcripts of variable sizes, delayed till the G1 phase of the cell cycle after that in which infection took place. Thus, the results demonstrate that the abortive infection cycle of G0-released FR3T3 cells is cell cycle regulated at least at two steps: adsorption and another early step, nuclear transport, decapsidation, up to or including the transcription of the viral early genes. The cell cycle regulation of these steps results in a similar regulation of the abortive and stable transformation processes, although it is more pronounced for the latter. A model implicating c-fos and c-jun is proposed. Images PMID:8383223

  16. The latex sap of the 'Old World Plant' Lagenaria siceraria with potent lectin activity mitigates neoplastic malignancy targeting neovasculature and cell death.

    PubMed

    Vigneshwaran, V; Thirusangu, Prabhu; Madhusudana, S; Krishna, V; Pramod, Siddanakoppalu N; Prabhakar, B T

    2016-10-01

    Lifestyle and dietary modifications have contributed much to somatic genetic alteration which has concomitantly led to increase in malignant diseases. Henceforth, plant based and dietary interventions to mitigate and impede oncogenic transformation are in great demand. We investigated the latex sap (LSL) of the dietary Lagenaria siceraria vegetable, the first domesticated plant species with the potent lectin activity for its functional role against the tumor progression and its mechanism. LSL has markedly stimulated proliferation of lymphocytes and displayed strong cytotoxic activity against cancer both in-vitro and in-vivo. The tumor regression was paralleled with drastic reduction in tumoral neovasculature as evidenced from angiogenic parameters and abrogated related gene expressions. LSL has also triggered apoptotic signaling cascade in cancer cells through activation of caspase-3 mediated activation of endonuclease and inducing apoptotic cellular events. Collectively our study provides tangible evidences that latex sap from L. siceraria with immunopotentiating ability significantly regresses the tumor progression by targeting angiogenesis and inducing cell death. PMID:27475665

  17. Lectin histochemistry of normal and neoplastic peripheral nerve sheath. 2. Lectin binding patterns of schwannoma and neurofibroma.

    PubMed

    Matsumura, K; Nakasu, S; Nioka, H; Handa, J

    1993-01-01

    Lectin binding patterns of 31 schwannomas and 6 neurofibromas were examined using 12 lectins, and the results were compared with those of normal peripheral nerves. Tumors obtained from 10 cases of neurofibromatosis and 4 recurrent schwannomas were included. Changes of glycoconjugates were observed in association with a neoplastic transformation of Schwann cells; Arachis hypogaea (PNA) staining after neuraminidase treatment seen in normal Schwann cells was reduced in schwannoma of Antoni type A, and bindings with Glycine max (SBA) and Helix pomatia (HPA) after sialic acid removal, which were not seen in normal Schwann cells, appeared in schwannoma cells. Intensities of staining of tumor cells with each lectin were higher in Antoni type B than those in Antoni type A. No differences in lectin binding patterns were observed between schwannomas in patients with neurofibromatosis or recurrent schwannomas and ordinary, primary schwannomas in patients without stigmata of neurofibromatosis. Lectin binding patterns of Schwann cells and perineurial cells in neurofibroma were almost similar to those in normal peripheral nerves with an exception of faint stain of Schwann cells with HPA after neuraminidase pretreatment. This result suggests differences in extent of differentiation between schwannoma cells and neoplastic Schwann cells in neurofibroma. Specific PNA binding to perineurial cells in neurofibroma indicates the significance of this lectin as a marker of these cells. PMID:8310811

  18. Concurrent Presentation of Erythrodermic Lichen Planus and Squamous Cell Carcinoma: Coincidence or Malignant Transformation?

    PubMed Central

    Ali, Neema M; Bhat, Ramesh; Rao, Shwetha B

    2015-01-01

    Lichen planus is a common papulosquamous disorder affecting about 1-2% of the population, neoplastic transformation of cutaneous lichen planus lesions occurs very rarely. A 40 year old female patient presented with a 1 year history of developing multiple, itchy, pigmented lesions over both lower legs which gradually spread to involve the whole body. A few tense bullae were seen on the extremities. An erythematous fleshy lesion was seen on the upper aspect of the left buttock. Skin biopsy from a plaque on the right forearm showed features suggestive of lichen planus. Skin biopsy of a bullae showed a sub epidermal bulla filled with a mixed inflammatory infiltrate. Direct immunofluorescence revealed no immunoreactants along the basement membrane zone. A diagnosis of erythrodermic lichen planus with bullous lichen planus was made. Biopsy of fleshy lesion of left buttock revealed a moderately differentiated squamous cell carcinoma. Erythrodermic lichen planus with bullous lesions and secondary squamous cell carcinoma; these occurences in a single patient is extremely rare and has not been previously reported to the best of our knowledge. PMID:26538691

  19. PD-L1 expression on neoplastic or stromal cells is respectively a poor or good prognostic factor for adult T-cell leukemia/lymphoma.

    PubMed

    Miyoshi, Hiroaki; Kiyasu, Junichi; Kato, Takeharu; Yoshida, Noriaki; Shimono, Joji; Yokoyama, Shintaro; Taniguchi, Hiroaki; Sasaki, Yuya; Kurita, Daisuke; Kawamoto, Keisuke; Kato, Koji; Imaizumi, Yoshitaka; Seto, Masao; Ohshima, Koichi

    2016-09-01

    Programmed cell death ligand 1 (PD-L1) is expressed on both tumor and tumor-infiltrating nonmalignant cells in lymphoid malignancies. The programmed cell death 1 (PD-1)/PD-L1 pathway suppresses host antitumor responses, although little is known about the significance of PD-1/PD-L1 expression in the tumor microenvironment. To investigate the clinicopathological impact of PD-L1 expression in adult T-cell leukemia/lymphoma (ATLL), we performed PD-L1 immunostaining in 135 ATLL biopsy samples. We observed 2 main groups: 1 had clear PD-L1 expression in lymphoma cells (nPD-L1(+), 7.4% of patients), and the other showed minimal expression in lymphoma cells (nPD-L1(-), 92.6%). Within the nPD-L1(-) group, 2 subsets emerged: the first displayed abundant PD-L1 expression in nonmalignant stromal cells of the tumor microenvironment (miPD-L1(+), 58.5%) and the second group did not express PD-L1 in any cell (PD-L1(-), 34.1%). nPD-L1(+) ATLL (median survival time [MST] 7.5 months, 95% CI [0.4-22.3]) had inferior overall survival (OS) compared with nPD-L1(-) ATLL (MST 14.5 months, 95% CI [10.1-20.0]) (P = .0085). Among nPD-L1(-) ATLL, miPD-L1(+) ATLL (MST 18.6 months, 95% CI [11.0-38.5]) showed superior OS compared with PD-L1(-) ATLL (MST 10.2 months, 95% CI [8.0-14.7]) (P = .0029). The expression of nPD-L1 and miPD-L1 maintained prognostic value for OS in multivariate analysis (P = .0322 and P = .0014, respectively). This is the first report describing the clinicopathological features and outcomes of PD-L1 expression in ATLL. More detailed studies will disclose clinical and biological significance of PD-L1 expression in ATLL. PMID:27418641

  20. Inhibition of oxidative metabolism leads to p53 genetic inactivation and transformation in neural stem cells

    PubMed Central

    Bartesaghi, Stefano; Graziano, Vincenzo; Galavotti, Sara; Henriquez, Nick V.; Betts, Joanne; Saxena, Jayeta; Minieri, Valentina; A, Deli; Karlsson, Anna; Martins, L. Miguel; Capasso, Melania; Nicotera, Pierluigi; Brandner, Sebastian; De Laurenzi, Vincenzo; Salomoni, Paolo

    2015-01-01

    Alterations of mitochondrial metabolism and genomic instability have been implicated in tumorigenesis in multiple tissues. High-grade glioma (HGG), one of the most lethal human neoplasms, displays genetic modifications of Krebs cycle components as well as electron transport chain (ETC) alterations. Furthermore, the p53 tumor suppressor, which has emerged as a key regulator of mitochondrial respiration at the expense of glycolysis, is genetically inactivated in a large proportion of HGG cases. Therefore, it is becoming evident that genetic modifications can affect cell metabolism in HGG; however, it is currently unclear whether mitochondrial metabolism alterations could vice versa promote genomic instability as a mechanism for neoplastic transformation. Here, we show that, in neural progenitor/stem cells (NPCs), which can act as HGG cell of origin, inhibition of mitochondrial metabolism leads to p53 genetic inactivation. Impairment of respiration via inhibition of complex I or decreased mitochondrial DNA copy number leads to p53 genetic loss and a glycolytic switch. p53 genetic inactivation in ETC-impaired neural stem cells is caused by increased reactive oxygen species and associated oxidative DNA damage. ETC-impaired cells display a marked growth advantage in the presence or absence of oncogenic RAS, and form undifferentiated tumors when transplanted into the mouse brain. Finally, p53 mutations correlated with alterations in ETC subunit composition and activity in primary glioma-initiating neural stem cells. Together, these findings provide previously unidentified insights into the relationship between mitochondria, genomic stability, and tumor suppressive control, with implications for our understanding of brain cancer pathogenesis. PMID:25583481

  1. CHARACTERIZATION OF A SPONTANEOUSLY TRANSFORMED CHICKEN MONONUCLEAR CELL LINE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We describe the characterization of a spontaneously transformed chicken monocytic cell line that developed as a single colony of cells in a heterophil culture that was inadvertently left in the incubator over a period of 25 days. These cells, hitherto named HTC, grow efficiently at both 37 C or 41 C...

  2. Biolistic transformation of cotton embryogenic cell suspension cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic transformation of cotton is highly dependent on the ability to regenerate fertile plants from transgenic cells through somatic embryogenesis. Induction of embryogenic cell cultures is genotype-dependant. However, once embryogenic cell cultures are available, they can be effectively used fo...

  3. Battery Cell Voltage Sensing and Balancing Using Addressable Transformers

    NASA Technical Reports Server (NTRS)

    Davies, Francis

    2009-01-01

    A document discusses the use of saturating transformers in a matrix arrangement to address individual cells in a high voltage battery. This arrangement is able to monitor and charge individual cells while limiting the complexity of circuitry in the battery. The arrangement has inherent galvanic isolation, low cell leakage currents, and allows a single bad cell in a battery of several hundred cells to be easily spotted.

  4. Vulvovaginal reconstruction for neoplastic disease.

    PubMed

    Höckel, Michael; Dornhöfer, Nadja

    2008-06-01

    Current treatment of neoplastic disease that involves the external female genitalia aims to achieve local disease control, but not to restore form and function of these organs. Despite a growing trend to reduce the extent of surgical resection, impaired quality of life after surgery due to severe sexual dysfunction and disturbed body image is common. We postulate that the integration of surgical techniques for vulvar and vaginal reconstruction into primary treatment would improve aesthetic and functional results and therefore quality of life. We systematically searched the literature for surgical procedures designed and validated for vulvovaginal reconstruction. Various skin flaps, both with random vascularisation and those based on vascular territories (ie, axial pattern, fasciocutaneous, musculocutaneous, and bowel flaps), can restore important parts of vulvovaginal form and function with acceptable morbidity at the donor and recipient sites. Appropriate vulvovaginal reconstruction cannot be achieved by doing a few standardised procedures; rather, it necessitates specialists who are familiar with general principles of reconstructive surgery to master many techniques to select the optimum procedure for the individual patient. Vulvovaginal reconstructive surgery has limitations, particularly achievement of functional restoration in irradiated tissue. Physicians who treat women with neoplastic disease of the external genitalia should be aware of the current state of vulvovaginal reconstructive surgery. Prospective controlled clinical trials are warranted to assess the effect of vulvovaginal reconstruction on morbidity and quality of life after treatment. PMID:18510987

  5. Mechanisms of Radiation Toxicity in Transformed and Non-Transformed Cells

    PubMed Central

    Panganiban, Ronald-Allan M.; Snow, Andrew L.; Day, Regina M.

    2013-01-01

    Radiation damage to biological systems is determined by the type of radiation, the total dosage of exposure, the dose rate, and the region of the body exposed. Three modes of cell death—necrosis, apoptosis, and autophagy—as well as accelerated senescence have been demonstrated to occur in vitro and in vivo in response to radiation in cancer cells as well as in normal cells. The basis for cellular selection for each mode depends on various factors including the specific cell type involved, the dose of radiation absorbed by the cell, and whether it is proliferating and/or transformed. Here we review the signaling mechanisms activated by radiation for the induction of toxicity in transformed and normal cells. Understanding the molecular mechanisms of radiation toxicity is critical for the development of radiation countermeasures as well as for the improvement of clinical radiation in cancer treatment. PMID:23912235

  6. In vitro transformation of mouse testis cells by oncogene transfection.

    PubMed

    Morimoto, Hiroko; Lee, Jiyoung; Tanaka, Takashi; Ishii, Kei; Toyokuni, Shinya; Kanatsu-Shinohara, Mito; Shinohara, Takashi

    2012-05-01

    Germ cell tumors (GCTs) are unique in that they exhibit diverse biological characteristics and pathological features. Although several in vivo GCT models are available, studies on GCTs are hampered because in vivo development of GCTs is time consuming and prevents a detailed molecular analysis of the transformation process. Here we developed a novel strategy to transform mouse testis cells in vitro. Lentivirus-mediated transfection of dominant negative Trp53, Myc, and activated Hras1 into a CD9-expressing testis cells caused tumorigenic conversion in vitro. Although these cells resembled embryonic stem (ES) cells, they were aneuploid and lacked Nanog expression, which is involved in the maintenance of the undifferentiated state in ES cells. Euploid ES-like cells were produced by transfecting the Yamanaka factors (Pou5f1, Myc, Klf4, and Sox2) into the same cell population. Although these cells expressed Nanog, they were distinct from ES cells in that they expressed CD44, a cancer stem cell antigen. Both treatments induced similar changes in the DNA methylation patterns in differentially methylated regions of imprinted genes. Moreover, despite the differences in their phenotype and karyotype, both cell types similarly produced mixed GCTs on transplantation, which were composed of teratomas, seminomas, and embryonal carcinomas. Thus, in vitro testis cell transformation facilitates an analysis of the GCT formation process, and our results also suggest the close similarity between GCT formation and reprogramming. PMID:22357549

  7. Radiation injury of the normal and neoplastic prostate

    SciTech Connect

    Bostwick, D.G.; Egbert, B.M.; Fajardo, L.F.

    1982-09-01

    Tissue samples from 40 patients with prostatic adenocarcinoma treated by radiation therapy were evaluated simultaneously by three observers to establish criteria for distinguishing residual tumor from radiation-induced atypia. Sections from 10 patients irradiated for nonprostatic pelvic neoplasms served as controls in addition to pretreatment biopsies from the determinate group. Patients had been treated by external x-irradiation, the majority receiving 6200-7400 rad to the prostate and pelvis over 7 to 8 weeks. Positive (tumor) biopsy incidence in the determinate group was 80% at 18 months, 40% at 36 months, and 43% in later samples. The following features were characteristic of radiation injury in the prostate: decreased ratio of the number of tumor glands to stroma, atrophy and squamous-like metaplasia of non-neoplastic glands with or without atypia, stromal fibrosis, arterial lumenal narrowing due to myointimal proliferation, foam cells within vessel walls, and fibrosis and atrophy of seminal vesicles. Criteria not useful for diagnosing radiation injury included architectural pattern or differentiation of tumor, cytologic features of tumor cells, inflammatory infiltrate, and ratio of normal glands to stroma. Ionizing radiation produced characteristic lesions in neoplastic and non-neoplastic prostatic glands, stroma, and blood vessels, and the sum of these changes was a reliable indicator of prior radiotherapy. An understanding of the morphologic effects of radiation injury of the prostate allowed distinction between residual prostatic adenocarcinoma and radiation-induced atypia of non-neoplastic glands.

  8. Cell Phones Transform a Science Methods Course

    ERIC Educational Resources Information Center

    Madden, Lauren

    2012-01-01

    A science methods instructor intentionally encouraged cell phone use for class work to discover how cell phones can be used as research tools to enhance the content and engage the students. The anecdotal evidence suggested that students who used their smartphones as research tools experienced the science content and pedagogical information…

  9. T cells induce terminal differentiation of transformed B cells to mature plasma cell tumors.

    PubMed

    Hilbert, D M; Shen, M Y; Rapp, U R; Rudikoff, S

    1995-01-31

    Major interest in the analysis of mature plasma cell neoplasias of mice and humans has focused on identification of precursor cells that give rise to mature malignant plasma cells. Although several laboratories have recently suggested that such cells are present in the granulomas of pristane-treated mice and the bone marrow of some multiple myeloma patients, the in vivo cellular interactions required for their differentiation into mature plasma cell tumors remains unclear. Given the extensive interactions of peripheral T cells and normal B cells, we assessed the potential role of T cells in plasma-cell tumor development, by using a myc, raf-containing retrovirus, J3V1, to induce plasmacytomas in normal BALB/c mice, T-cell-deficient nude mice, and T-cell-reconstituted nude mice. The B-lineage tumors arising in normal BALB/c mice were uniformly mature plasmacytomas, most of which secreted immunoglobulin. In contrast, nude mice yielded predominantly non-immunoglobulin-secreting B-cell lymphomas with a phenotype characteristic of peripheral B cells. T-cell reconstitution of nude mice prior to tumor induction resulted in a shift from B-cell lymphomas to plasmacytomas. These results imply that transformation can occur prior to terminal differentiation of B cells and that such transformed cells can be driven to terminal differentiation by peripheral T cells. These findings further suggest that, in human multiple myeloma, the ability of T cells to influence the differentiation state of transformed B cells may provide a mechanism by which malignant plasma cells found in the bone marrow could arise from clonotypically related less-mature B cells found in both the bone marrow and periphery. PMID:7846031

  10. Molecular barriers to processes of genetic reprogramming and cell transformation.

    PubMed

    Chestkov, I V; Khomyakova, E A; Vasilieva, E A; Lagarkova, M A; Kiselev, S L

    2014-12-01

    Genetic reprogramming by ectopic expression of transcription factor genes induces the pluripotent state in somatic cells. This technology provides an opportunity to establish pluripotent stem cells for each person, as well as to get better understanding of epigenetic mechanisms controlling cell state. Interestingly, some of the molecular processes that accompany somatic cell reprogramming in vitro are also characteristic for tumor manifestation. Thus, similar "molecular barriers" that control the stability of epigenetic state exist for both processes of pluripotency induction and malignant transformation. The reprogramming of tumor cells is interesting in two aspects: first, it will determine the contribution of epigenetic changes in carcinogenesis; second, it gives an approach to evaluate tumor stem cells that are supposed to form the entire cell mass of the tumor. This review discusses the key stages of genetic reprogramming, the similarity and difference between the reprogramming process and malignant transformation. PMID:25716723

  11. High-efficiency transformation of bacterial cells by electroporation.

    PubMed Central

    Calvin, N M; Hanawalt, P C

    1988-01-01

    We have developed a method for efficiently generating transient pores in the outer membranes of Escherichia coli K-12 derivatives by using a new type of electroporation apparatus. The pores are large enough and persist long enough to facilitate the equilibration of plasmid molecules between the intracellular and extracellular spaces. The method has been used to transform bacterial cells with an efficiency greater than 10(9) transformants per microgram of plasmid. It has also been used to extract intact plasmid from transformed cells with efficiencies comparable to those of the traditional alkaline lysis or CsCl equilibrium density gradient techniques. The technique is simple and rapid, allowing a transformation or the preparation of microgram quantities of plasmid to be accomplished in minutes. PMID:3286620

  12. Increment of DNA topoisomerases in chemically and virally transformed cells

    SciTech Connect

    Crespi, M.D.; Mladovan, A.G.; Baldi, A. )

    1988-03-01

    The activities of topoisomerases I and II were assayed in subcellular extracts obtained from nontumorigenic BALB/c 3T3 A31 and normal rat kidney (NRK) cell lines and from the same cells transformed by benzo(a)pyrene (BP-A31), Moloney (M-MSV-A31) and Kirsten (K-A31) sarcoma viruses, and simian virus 40 (SV-NRK). The enzymatic activity of topoisomerase I was monitored by the relaxation of negatively supercoiled pBR322 DNA and by the formation of covalent complexes between {sup 32}P-labeled DNA and topoisomerase I. Topoisomerase II activity was determined by decatenation of kinetoplast DNA (k-DNA). It was found that nuclear and cytoplasmic type I topoisomerase specific activities were higher in every transformed cell line than in the normal counterparts. These differences cannot be attributed to an inhibitory factor present in A31 cells. When chromatin was treated at increasing ionic strengths, the 0.4 M NaCl extract showed the highest topoisomerase I specific activity. Spontaneously transformed A31 cells showed topoisomerase I activity similar to that of extracts of cells transformed by benzo(a)pyrene. Topoisomerase II specific activity was also increased in SV-NRK cells, as judged by the assay for decatenation of k-DNA to yield minicircle DNA.

  13. CD1a Reactivity in Non-neoplastic Adenohypophysis.

    PubMed

    Pisapia, David J; Rosenblum, Marc K; Lavi, Ehud

    2016-06-01

    Within the differential diagnosis of patients presenting with sellar or suprasellar lesions is Langerhans cell histiocytosis (LCH). CD1a staining is frequently used to identify the presence of an abnormal proliferation of Langerhans cells on histologic sections and contributes to the diagnosis of LCH. Here, we report that the MTB-1 monoclonal antibody against the CD1a antigen reacts to native adenohypophyseal epithelial cells. We show that immunohistochemistry for CD1a exhibits strong positivity in all autopsy and surgically resected non-neoplastic adenohypophysis tested. Thus, CD1a positivity by itself should be interpreted with caution, and we recommend the routine use of a panel of stains including CD1a, Langerin, and synaptophysin in conjunction with morphologic analysis before a diagnosis of LCH is rendered. In addition, we find that pituitary adenomas fail to stain for CD1a prompting consideration of the utility of this stain as a marker for non-neoplastic gland. PMID:26999501

  14. Fuel Transformer Solid Oxide Fuel Cell

    SciTech Connect

    Norman Bessette; Douglas S. Schmidt; Jolyon Rawson; Rhys Foster; Anthony Litka

    2006-07-27

    The following report documents the technical approach and conclusions made by Acumentrics Corporation during latest budget period toward the development of a low cost 10kW tubular SOFC power system. The present program, guided under direction from the National Energy Technology Laboratory of the US DOE, is a nine-year cost shared Cooperative Agreement totaling close to $74M funded both by the US DOE as well as Acumentrics Corporation and its partners. The latest budget period ran from January of 2006 through June 2006. Work focused on cell technology enhancements as well as BOP and power electronics improvements and overall system design. Significant progress was made in increasing cell power enhancements as well as decreasing material cost in a drive to meet the SECA cost targets. The following report documents these accomplishments in detail as well as the layout plans for further progress in next budget period.

  15. Fuel Transformer Solid Oxide Fuel Cell

    SciTech Connect

    Norman Bessette; Douglas S. Schmidt; Jolyon Rawson; Lars Allfather; Anthony Litka

    2005-08-01

    The following report documents the technical approach and conclusions made by Acumentrics Corporation during latest budget period toward the development of a low cost 10kW tubular SOFC power system. The present program, guided under direction from the National Energy Technology Laboratory of the US DOE, is a nine-year cost shared Cooperative Agreement totaling close to $74M funded both by the US DOE as well as Acumentrics Corporation and its partners. The latest budget period ran from January of 2005 through June 2005. Work focused on cell technology enhancements as well as BOP and power electronics improvements and overall system design. Significant progress was made in increasing cell power enhancements as well as decreasing material cost in a drive to meet the SECA cost targets. The following report documents these accomplishments in detail as well as the layout plans for further progress in next budget period.

  16. FUEL TRANSFORMER SOLID OXIDE FUEL CELL

    SciTech Connect

    Norman Bessette; Douglas S. Schmidt; Jolyon Rawson; Lars Allfather; Anthony Litka

    2005-03-24

    The following report documents the technical approach and conclusions made by Acumentrics Corporation during latest budget period toward the development of a low cost 10kW tubular SOFC power system. The present program, guided under direction from the National Energy Technology Laboratory of the US DOE, is a nine-year cost shared Cooperative Agreement totaling close to $74M funded both by the US DOE as well as Acumentrics Corporation and its partners. The latest budget period ran from July of 2004 through January 2004. Work was focused on cell technology enhancements as well as BOP and power electronics improvements and overall system design. Significant progress was made in increasing cell power enhancements as well as decreasing material cost in a drive to meet the SECA cost targets. The following report documents these accomplishments in detail as well as the lay out plans for further progress in next budget period.

  17. Inhibition of potentially lethal radiation damage repair in normal and neoplastic human cells by 3-aminobenzamide: an inhibitor of poly(ADP-ribosylation)

    SciTech Connect

    Thraves, P.J.; Mossman, K.L.; Frazier, D.T.; Dritschilo, A.

    1986-08-01

    The effect of 3-aminobenzamide (3AB), an inhibitor of poly(ADP-ribose) synthetase, on potentially lethal damage repair (PLDR) was investigated in normal human fibroblasts and four human tumor cell lines from tumors with varying degrees of radiocurability. The tumor lines selected were: Ewing's sarcoma, a bone tumor considered radiocurable and, human lung adenocarcinoma, osteosarcoma, and melanoma, three tumors considered nonradiocurable. PLDR was measured by comparing cell survival when cells were irradiated in a density-inhibited state and replated at appropriate cell numbers at specified times following irradiation to cell survival when cells were replated immediately following irradiation. 3AB was added to cultures 2 hr prior to irradiation and removed at the time of replating. Different test radiation doses were used for the various cell lines to obtain equivalent levels of cell survival. In the absence of inhibitor, PLDR was similar in all cell lines tested. In the presence of 8 mM 3AB, differential inhibition of PLDR was observed. PLDR was almost completely inhibited in Ewing's sarcoma cells and partially inhibited in normal fibroblast cells and osteosarcoma cells. No inhibition of PLDR was observed in the lung adenocarcinoma or melanoma cells. Except for the osteosarcoma cells, inhibition of PLDR by 3AB correlated well with radiocurability.

  18. PNA: a marker of neoplastic progression and differentiation in the gastro-intestinal tract.

    PubMed

    Grigolato, P; Benetti, A; Berenzi, A; Villanacci, V; Tardanico, R

    1990-01-01

    We examined 35 cases of stomach carcinoma and 40 cases of colonic carcinoma with PNA associated with peroxidase (peanut agglutinin, lectin which binds to the terminal disaccharide galactose beta (1,3)-N-acetil-galacto-samine). In this way evaluation of the functional aspects of the normal-neoplastic sequence was undertaken. This method was carried out for histological and ultrastructural investigations. The results obtained in both cases showed a different reactivity in the evolution of neoplastic disease: in fact, positivity in dysplasia is finely granular intracytoplasmic, whereas in well-differentiated neoplastic transformation such a reactivity is preferentially localized along the cellular membranes, with restoration of gross positivity in the cytoplasm for the poorly-differentiated neoplasm. We therefore believe PNA to be a marker not only of neoplastic progression but of differentiation as well: we also hypothesize it to reveal glycoprotein groups with possible antigenic power, involved in immunologic interactions between tumor and host. PMID:2283482

  19. Immunohistochemical evaluation of hedgehog signalling in epithelial/mesenchymal interactions in squamous cell carcinoma transformation: a pilot study.

    PubMed

    Gonzalez, Ana Cristina; Ferreira, Maira; Ariel, Tamires; Reis, Sílvia Regina; Andrade, Zilton; Peixoto Medrado, Alena

    2016-03-01

    Precancerous lesions have been studied because of their carcinogenic potential and their association with squamous cell carcinoma (SCC) has been reported. In the tumour microenvironment, the processes of angiogenesis and tissue remodelling are regulated by a family of proteins (Hedgehog) described as being able to modulate epithelial/mesenchymal interactions. The objective of this study was to perform a comparative study of precancerous lesions and SCCs by immunohistochemistry for the presence of Sonic, Gli2, SMO and Patched proteins, members of the Hedgehog pathway. Sixteen cases diagnosed as actinic cheilitis associated with SCC were compared to normal oral mucosa. The sections were subjected to immunohistochemistry and the positively stained cells were counted by morphometric analysis. There was a significant progressive increase in expression of all proteins of the Hedgehog pathway, both in the epithelium and in the connective tissue, when sections of normal mucosa, dysplasia and carcinoma were compared (P < 0.05). Thus, one may suggest that the Hedgehog pathway in tumour transformation influences SCC, and more studies should be conducted to expand the understanding of the role of these proteins in neoplastic transformation. PMID:26947270

  20. Method for Producing Non-Neoplastic, Three Dimensional, Mammalian Tissue and Cell Aggregates Under Microgravity Culture Conditions and the Products Produced Therefrom

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Wolf, David A. (Inventor); Spaulding, Glenn F. (Inventor); Prewett, Tracey L. (Inventor)

    1996-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural, and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  1. Multifunctional Role of Bcl-2 in Malignant Transformation and Tumorigenesis of Cr(VI)-Transformed Lung Cells

    PubMed Central

    Azad, Neelam; Wang, Liying; Jiang, Bing-Hua; Davis, Mary E.; Barnett, John B.; Guo, Lan; Rojanasakul, Yon

    2012-01-01

    B-cell lymphoma-2 (Bcl-2) is an antiapoptotic protein known to be important in the regulation of apoptosis in various cell types. However, its role in malignant transformation and tumorigenesis of human lung cells is not well understood. We previously reported that chronic exposure of human lung epithelial cells to the carcinogenic hexavalent chromium Cr(VI) caused malignant transformation and Bcl-2 upregulation; however, the role of Bcl-2 in the transformation is unclear. Using a gene silencing approach, we showed that Bcl-2 plays an important role in the malignant properties of Cr(VI)-transformed cells. Downregulation of Bcl-2 inhibited the invasive and proliferative properties of the cells as well as their colony forming and angiogenic activities, which are upregulated in the transformed cells as compared to control cells. Furthermore, animal studies showed the inhibitory effect of Bcl-2 knockdown on the tumorigenesis of Cr(VI)-transformed cells. The role of Bcl-2 in malignant transformation and tumorigenesis was confirmed by gene silencing experiments using human lung carcinoma NCI-H460 cells. These cells exhibited aggressive malignant phenotypes similar to those of Cr(VI)-transformed cells. Knockdown of Bcl-2 in the H460 cells inhibited malignant and tumorigenic properties of the cells, indicating the general role of Bcl-2 in human lung tumorigenesis. Ingenuity Pathways Analysis (IPA) revealed potential effectors of Bcl-2 in tumorigenesis regulation. Additionally, using IPA together with ectopic expression of p53, we show p53 as an upstream regulator of Bcl-2 in Cr(VI)-transformed cells. Together, our results indicate the novel and multifunctional role of Bcl-2 in malignant transformation and tumorigenesis of human lung epithelial cells chronically exposed to Cr(VI). PMID:22666341

  2. MicroRNAs 221 and 222 target p27Kip1 in Marek's disease virus-transformed tumour cell line MSB-1.

    PubMed

    Lambeth, Luke S; Yao, Yongxiu; Smith, Lorraine P; Zhao, Yuguang; Nair, Venugopal

    2009-05-01

    MicroRNAs (miRNAs) are a class of short RNAs that function as post-transcriptional suppressors of protein expression and are involved in a variety of biological processes, including oncogenesis. Several recent studies have implicated the involvement of miR-221 and miR-222 in tumorigenesis as these miRNAs are upregulated in a number of cancers and affect the expression of cell cycle regulatory proteins such as the cyclin-dependent kinase (cdk) inhibitor p27(Kip1). Marek's disease virus (MDV) is a highly oncogenic herpesvirus that affects poultry, causing acute neoplastic disease with lymphomatous lesions in several organs. MDV-encoded oncogenes such as Meq are directly implicated in the neoplastic transformation of T cells and have been well studied. More recently, however, the involvement of both host and virus-encoded miRNAs in the induction of MD lymphomas is being increasingly recognized. We analysed the miRNA expression profiles in the MDV-transformed lymphoblastoid cell line MSB-1 and found that endogenous miRNAs miR-221 and miR-222 were significantly upregulated. Demonstration of the conserved binding sites for these miRNAs in the chicken p27(Kip1) 3'-untranslated region sequence and the repression of luciferase activity of reporter constructs indicated that miR-221 and miR-222 target p27(Kip1) in these cells. We also found that overexpression of miR-221 and miR-222 decreased p27(Kip1) levels and that treatment with retrovirally expressed antagomiRs partially alleviated this suppression. These data show that an oncogenic herpesvirus, as in the case of many cancers, can exploit the miRNA machinery for suppressing cell cycle regulatory molecules such as p27(Kip1) in the induction and progression of T-cell lymphomas. PMID:19264608

  3. Human and mouse chromosomal mapping of the myeloid cell leukemia-1 gene: MCL1 maps to human chromosome 1q21, a region that is frequently altered in preneoplastic and neoplastic disease

    SciTech Connect

    Craig, R.W.; Zhou, P.; Kozopas, K.M.

    1994-09-15

    The MCL1 gene, recently identified in a myeloid leukemia cell line, has sequence similarity to BCL2, the gene at the t(14;18) translocation in follicular lymphoma. The chromosomal location of MCL1 has now been determined. The human locus (MCL1) was mapped to the long arm of human chromosome 1q21, using the methods of in situ hybridization and somatic cell hybrid analysis. In the mouse, MCL1-related sequences were mapped to positions on two mouse chromosomes (chromosomes 3 and 5), using haplotype analysis of an interspecific cross. The location of the locus on mouse chromosome 3 (Mcl1) was homologous to that of MCL1 on human chromosome 1; the second locus (Mcl-rs on mouse chromosome 5) may represent a pseudogene. The proximal long arm of human chromosome 1, where MCL1 is located, is duplicated and/or rearranged in a variety of preneoplastic and neoplastic diseases including hematologic diseases and solid tumors. MCL1 is thus a candidate gene for involvement in cancer. 46 refs., 2 figs., 3 tabs.

  4. [Mobilization and collection of hematopoietic stem cells in children with different neoplastic diseases for autotransplantation to support high dose chemotherapy (single centre experience)].

    PubMed

    Goździk, Jolanta; Czogała, Wojciech; Skoczeń, Szymon; Krasowska-Kwiecień, Aleksandra; Wiecha, Oktawiusz; Stec, Małgorzata; Czogała, Małgorzata

    2011-01-01

    Currently, granulocyte colony stimulating factor (G-CSF) alone or in combination with myelosuppresive chemotherapy remain the standards of CD34+ cells mobilization allows the safe and successful collection of adequate peripheral blood stem cells (PBSC) for autologous transplantation. However, in up to 30% of patients mobilization of PBSC is ineffective. This report presents our experience in mobilization and collection of peripheral blood stem cells in 82 children with different proliferative disease. In mobilization G-CSF was administered alone in steady state (56 patients, pts) or in combination with myelosuppresive chemotherapy (26 pts). The CD34+ cell count at least 10 cells/ml was required to start apheresis procedure, which was repeated, if needed, during following 1-4 days until collection of at least 2 (optimally 3) x106 CD34+ cells/kg b.w. of recipient was obtained. Three pts in each group (3/ 56 and 3/26) failed the first course of mobilization. The median number of CD34+ cells mobilized was 4.8 (0.5-15) x106/kg b.w. The minimal and optimal number of CD34+ cells for transplantation was achieved in 85% and 61% of patients in the G-CSF + chemotherapy group and in 84% and 54% in the G-CSF group, respectively. The efficacy of presented mobilization arms in our group was similar. However, the incidence of infection and total hospitalization time during mobilization were higher in chemotherapy + G-CSF group. PMID:21853671

  5. Riproximin: A type II ribosome inactivating protein with anti-neoplastic potential induces IL24/MDA-7 and GADD genes in colorectal cancer cell lines.

    PubMed

    Pervaiz, Asim; Adwan, Hassan; Berger, Martin R

    2015-09-01

    Riproximin (Rpx) is a type II ribosome inactivating protein, which was extracted and purified from the seeds of Ximenia americana. Previous studies demonstrated cytotoxicity of Rpx against a variety of cell lines originating from solid and non-solid cancers. In this study, we investigated the mechanistic aspects of Rpx in selected human and rat colorectal cancer (CRC) cell lines. Cytotoxic levels of Rpx were determined by MTT assay, while cytostatic and apoptotic effects were investigated by flow cytometry and nuclear staining procedures. Effects of Rpx exposure on colony formation/migration of CRC cells and expressional modulations in anticancer/stress-related genes were also studied. Rpx showed significant and comparable levels of cytotoxicity in CRC cells as determined by inhibitory concentration (IC) values. Similar inhibitory effects were found for clonogenicity, while more pronounced inhibition of migration was observed in response to Rpx exposure. Profound arrest in S phases of the cell cycle was noted especially in primary CRC cells. Apoptotic effects were more prominent in rat CRC cells as indicated by Annexin V-FITC assay and Hoechst 33342 nuclear staining. Rpx exposure induced significantly increased levels of the IL24/MDA-7, a well characterized anticancer gene, in all CRC cells. In addition, following Rpx treatment, high expression levels of growth arrest and DNA damage (GADD family) genes were also observed. Increased expression of two additional GADD genes (34 and 153) only in rat CRC cells (CC531) conferred higher sensitivity towards Rpx and subsequent anti-proliferative/apoptotic effects as compared to human CRC cells (SW480 and SW620). The present investigation indicates the anticancer potential of Rpx in CRC and favor further evaluation of this natural compound as therapeutic agent. PMID:26151662

  6. A Role for the Cavin-3/Matrix Metalloproteinase-9 Signaling Axis in the Regulation of PMA-Activated Human HT1080 Fibrosarcoma Cell Neoplastic Phenotype

    PubMed Central

    Toufaily, Chirine; Charfi, Cyndia; Annabi, Bayader; Annabi, Borhane

    2014-01-01

    Caveolae are specialized cell membrane invaginations known to regulate several cancer cell functions and oncogenic signaling pathways. Among other caveolar proteins, they are characterized by the presence of proteins of the cavin family. In this study, we assessed the impact of cavin-1, cavin-2, and cavin-3 on cell migration in a human HT-1080 fibrosarcoma model. We found that all cavin-1, -2 and -3 transcripts were expressed and that treatment with phorbol 12-myristate 13-acetate (PMA), which is known to prime cell migration and proliferation, specifically upregulated cavin-3 gene and protein expression. PMA also triggered matrix metalloproteinase (MMP)-9 secretion, but reduced the global cell migration index. Overexpression of recombinant forms of the three cavins demonstrated that only cavin-3 was able to reduce basal cell migration, and this anti-migratory effect was potentiated by PMA. Interestingly, cavin-3 overexpression inhibited PMA-induced MMP-9, while cavin-3 gene silencing led to an increase in MMP-9 gene expression and secretion. Furthermore, recombinant cavin-3 significantly prevented PMA-mediated dephosphorylation of AKT, a crucial regulator in MMP-9 transcription. In conclusion, our results demonstrate that cellular cavin-3 expression may repress MMP-9 transcriptional regulation in part through AKT. We suggest that the balance in cavin-3-to-MMP-9 expression regulates the extent of extracellular matrix degradation, confirming the tumor-suppressive role of cavin-3 in controlling the invasive potential of human fibrosarcoma cells. PMID:25520561

  7. n-3 and n-6 fatty acid processing and growth effects in neoplastic and non-cancerous human mammary epithelial cell lines.

    PubMed Central

    Grammatikos, S. I.; Subbaiah, P. V.; Victor, T. A.; Miller, W. M.

    1994-01-01

    The type rather than the amount of dietary fat may be more important in breast carcinogenesis. While animal studies support this view, little is known about the effects of essential fatty acids (EFAs) at the cellular level. The MCF-7 breast cancer and the MCF-10A non-cancerous human mammary epithelial cell lines are compared in terms of growth response to EFAs and ability to incorporate and process the EFAs. Eicosapentaenoic (EPA, n-3) and docosahexaenoic (DHA, n-3) acids, presented bound to albumin, inhibited the growth of MCF-7 cells by as much as 50% in a dose-dependent manner (6-30 microM) in medium containing 0.5% serum. alpha-Linolenic (LNA, n-3) and arachidonic (AA, n-6) acids inhibited growth less extensively, while linoleic acid (LA, n-6) had no effect. In contrast, MCF-10A cells were not inhibited by any of the EFAs at levels below 24 microM. The differential effects of AA, EPA and DHA on MCF-7 and MCF-10A cells support a protective role of highly unsaturated essential fatty acids against breast cancer. The EFAs were primarily incorporated into phosphoglycerides. MCF-7 cells showed chain elongations and possibly delta 8 desaturation, but no AA was formed from LA, nor EPA or DHA from LNA. In contrast, MCF-10A cells desaturated and elongated the exogenous EFAs via all the known pathways. These findings suggest defects in the desaturating enzymes of MCF-7 cells. LNA, DHA and AA presented to MCF-7 cells in phospholipid liposomes inhibited growth as extensively as albumin-bound free acids, but were less extensively incorporated, suggesting different mechanisms of inhibition for the two methods. PMID:8054269

  8. Increased origin activity in transformed versus normal cells: identification of novel protein players involved in DNA replication and cellular transformation

    PubMed Central

    Di Paola, Domenic; Rampakakis, Emmanouil; Chan, Man Kid; Arvanitis, Dina N.; Zannis-Hadjopoulos, Maria

    2010-01-01

    Using libraries of replication origins generated previously, we identified three clones that supported the autonomous replication of their respective plasmids in transformed, but not in normal cells. Assessment of their in vivo replication activity by in situ chromosomal DNA replication assays revealed that the chromosomal loci corresponding to these clones coincided with chromosomal replication origins in all cell lines, which were more active by 2–3-fold in the transformed by comparison to the normal cells. Evaluation of pre-replication complex (pre-RC) protein abundance at these origins in transformed and normal cells by chromatin immunoprecipitation assays, using anti-ORC2, -cdc6 and -cdt1 antibodies, showed that they were bound by these pre-RC proteins in all cell lines, but a 2–3-fold higher abundance was observed in the transformed by comparison to the normal cells. Electrophoretic mobility shift assays (EMSAs) performed on the most efficiently replicating clone, using nuclear extracts from the transformed and normal cells, revealed the presence of a DNA replication complex in transformed cells, which was barely detectable in normal cells. Subsequent supershift EMSAs suggested the presence of transformation-specific complexes. Mass spectrometric analysis of these complexes revealed potential new protein players involved in DNA replication that appear to correlate with cellular transformation. PMID:20064876

  9. Normal vs cancer thyroid stem cells: the road to transformation.

    PubMed

    Zane, M; Scavo, E; Catalano, V; Bonanno, M; Todaro, M; De Maria, R; Stassi, G

    2016-02-18

    Recent investigations in thyroid carcinogenesis have led to the isolation and characterisation of a subpopulation of stem-like cells, responsible for tumour initiation, progression and metastasis. Nevertheless, the cellular origin of thyroid cancer stem cells (SCs) remains unknown and it is still necessary to define the process and the target population that sustain malignant transformation of tissue-resident SCs or the reprogramming of a more differentiated cell. Here, we will critically discuss new insights into thyroid SCs as a potential source of cancer formation in light of the available information on the oncogenic role of genetic modifications that occur during thyroid cancer development. Understanding the fine mechanisms that regulate tumour transformation may provide new ground for clinical intervention in terms of prevention, diagnosis and therapy. PMID:25961919

  10. A Novel Recombinant Anti-CD22 Immunokinase Delivers Proapoptotic Activity of Death-Associated Protein Kinase (DAPK) and Mediates Cytotoxicity in Neoplastic B Cells.

    PubMed

    Lilienthal, Nils; Lohmann, Gregor; Crispatzu, Giuliano; Vasyutina, Elena; Zittrich, Stefan; Mayer, Petra; Herling, Carmen Diana; Tur, Mehmet Kemal; Hallek, Michael; Pfitzer, Gabriele; Barth, Stefan; Herling, Marco

    2016-05-01

    The serine/threonine death-associated protein kinases (DAPK) provide pro-death signals in response to (oncogenic) cellular stresses. Lost DAPK expression due to (epi)genetic silencing is found in a broad spectrum of cancers. Within B-cell lymphomas, deficiency of the prototypic family member DAPK1 represents a predisposing or early tumorigenic lesion and high-frequency promoter methylation marks more aggressive diseases. On the basis of protein studies and meta-analyzed gene expression profiling data, we show here that within the low-level context of B-lymphocytic DAPK, particularly CLL cells have lost DAPK1 expression. To target this potential vulnerability, we conceptualized B-cell-specific cytotoxic reconstitution of the DAPK1 tumor suppressor in the format of an immunokinase. After rounds of selections for its most potent cytolytic moiety and optimal ligand part, a DK1KD-SGIII fusion protein containing a constitutive DAPK1 mutant, DK1KD, linked to the scFv SGIII against the B-cell-exclusive endocytic glyco-receptor CD22 was created. Its high purity and large-scale recombinant production provided a stable, selectively binding, and efficiently internalizing construct with preserved robust catalytic activity. DK1KD-SGIII specifically and efficiently killed CD22-positive cells of lymphoma lines and primary CLL samples, sparing healthy donor- or CLL patient-derived non-B cells. The mode of cell death was predominantly PARP-mediated and caspase-dependent conventional apoptosis as well as triggering of an autophagic program. The notoriously high apoptotic threshold of CLL could be overcome by DK1KD-SGIII in vitro also in cases with poor prognostic features, such as therapy resistance. The manufacturing feasibility of the novel CD22-targeting DAPK immunokinase and its selective antileukemic efficiency encourage intensified studies towards specific clinical application. Mol Cancer Ther; 15(5); 971-84. ©2016 AACR. PMID:26826117

  11. Anti-Neoplastic and Calcium Modulatory Action of Caffeic Acid Phenethyl Ester and Dasatinib in C6 Glial Cells: A Therapeutic Perspective.

    PubMed

    Balkhi, Henah M; Gul, Taseen; Haq, Ehtishamul

    2016-01-01

    Gliomas are often recognized as highly heterogeneous cancerous phenotype. They are perpetually recurrent, obstinately resistant to treatment and hence almost incurable. Drug development studies to date have revealed only modest effect in attenuating growth of these tumors. The present study was aimed at elucidating the potential of targeting glioma through a novel combination of drugs in comparison to single agent. Here, we show that the combined administration of Caffeic acid phenethyl ester [CAPE] and Dasatinib exerts a strong antitumor action on C6 glioma cells. Combinational treatment inhibits proliferation, induces apoptosis, modulates astrocytic phenotype and decreases cell density. Results suggest that combinational therapy inhibits migration and invasiveness, decreases cell survival fraction and hence clonogenic property of C6 cells. The Nitric oxide [NO] levels were significantly reduced by combination treatment at all time points and effect was persistent over the time in comparison to single drug treatment. Atomic Absorption Spectroscopy [AAS] analysis of intracellular and extracellular calcium revealed that the treatment with CAPE and Dasatinib strongly modulates the calcium [Ca(2+)] levels. Herein, we demonstrate that treatment of C6 glioma cells with CAPE and Dasatinib significantly decrease the activity of catalase [CAT]. The results in totality suggest that the combinational therapy remarkably reduces the proliferation of glioma cells possibly through different mechanisms, targeting multiple pathways involved in tumor growth, proliferation and development implicating the relevance of using these drugs in combination therapy for effective treatment of glioma. In vitro results suggest that CAPE and Dasatinib cotreatment could be therapeutically exploited for the management of gliomas. PMID:26553160

  12. Insect cell transformation vectors that support high level expression and promoter assessment in insect cell culture.

    PubMed

    Shirk, Paul D; Furlong, Richard B

    2016-01-01

    A somatic transformation vector, pDP9, was constructed that provides a simplified means of producing permanently transformed cultured insect cells that support high levels of protein expression of foreign genes. The pDP9 plasmid vector incorporates DNA sequences from the Junonia coenia densovirus that are involved in integration of the densovirus in insect cell chromosomes and a promoter/enhancer system that results in high levels of expression. The plasmid also contains two markers that permit selection of transformed insect cells by antibiotic resistance or by cell-sorting for fluorescent protein expression. Transformation of Bombyx mori Bm5 or Spodoptera frugiperda Sf9 cultured cells with the pDP9 vectors results in the integration of the pDP9 plasmid into genomic DNA of Bm5 and Sf9 cells. pDP9 contains a multiple cloning site (MCS) 3' of the densoviral P9 promoter and insertion of a protein coding sequence within the MCS results in high level expression by pDP9 transformed cells. P9 driven transcription in the pDP9 transformed Sf9 cells produced foreign gene transcript levels that were 30 fold higher than actin 3 driven transgenes and equivalent to hr5IE1 driven transgenes. The pDP9 vector transformation results in the efficient selection of clones for assessment of promoter activity. PMID:26794473

  13. Zeolite scaffolds for cultures of human breast cancer cells. Part II: Effect of pure and hybrid zeolite membranes on neoplastic and metastatic activity control.

    PubMed

    Tavolaro, Palmira; Martino, Guglielmo; Andò, Sebastiano; Tavolaro, Adalgisa

    2016-11-01

    This work is focused on the response of two invasive phenotypes of human breast cancer cells, MCF-7 and MDA-MB-231, grown on synthesized zeolite scaffolds in order to study the influence of those biomaterials in controlled conditions with and without anti-tumoral drug treatments. Our research was directed to the use of doxorubicin (DOX) and bergapten (5-MOP). The former is broadly considered the most active single agent available for the treatment of breast cancer, the second is a natural psoralen with an apoptotic effect. The results indicate that both drugs inhibit the cell viability of all cell lines grown on all zeolite scaffolds and that all Pure Zeolite Membranes are more responsive with respect to all Mixed Matrix Membranes. Moreover, the results after treatment with DOX at a concentration of 7.4μM for 24h, show that the expression of the matrix metalloproteinases (MMP-2 and MMP-9) is greatly reduced in both cell lines, especially in those adherent on Pure Zeolite Scaffolds. PMID:27524044

  14. Transforming activities of Chlamydia pneumoniae in human mesothelial cells.

    PubMed

    Rizzo, Antonietta; Carratelli, Caterina Romano; De Filippis, Anna; Bevilacqua, Nazario; Tufano, Maria Antonietta; Buommino, Elisabetta

    2014-12-01

    Knowledge in viral oncology has made considerable progress in the field of cancer fight. However, the role of bacteria as mediators of oncogenesis has not yet been elucidated. As cancer still is the leading cause of death in developed countries, understanding the long-term effects of bacteria has become of great importance as a possible means of cancer prevention. This study reports that Chlamydia pneumoniae infection induces transformation of human mesothelial cells. Mes1 cells infected with C. pneumoniae at a multiplicity of infection of 4 inclusion-forming units/cell showed many intracellular inclusion bodies. After a 7-day infection an increased proliferative activity was also observed. Real-time PCR analysis revealed a strong induction of calretinin, Wilms' tumour gene 1, osteopontin, matrix metalloproteinases-2, and membrane-type 1 metalloproteinases gene expression in Mes1 cell, infected for a longer period (14 days). The results were confirmed by western blot analysis. Zymography analysis showed that C. pneumoniae modulated the in-vitro secretion of MMP-2 in Mes1 cells both at 7 and 14 days. Cell invasion, as measured by matrigel-coated filter, increased after 7 and 14 days infection with C. pneumoniae, compared with uninfected Mes1 cells. The results of this study suggest that C. pneumoniae infection might support cellular transformation, thus increasing lung cancer risk. PMID:26421735

  15. Expression of gamma-aminobutyric acid receptors on neoplastic growth and prediction of prognosis in non-small cell lung cancer

    PubMed Central

    2013-01-01

    Background Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the adult mammalian brain, but exerts physiologic effects other than that on neurotransmitter in non-neuronal peripheral tissues and organs. GABA may affect cancer growth through activation GABA receptors. We investigated the gene expression of GABA receptors in tissue of non-small cell lung cancers (NSCLC) and non-cancerous tissues, and found that the gene expression of GABA receptor phenotypes was correlated with tumorigenesis and clinical prognosis. Methods Sixty-one snap-frozen human samples of NSCLC tissues and paired non-cancerous tissues (5cm away from tumor) were analyzed. Gene expression of GABA receptors was detected by Real-time quantitative PCR (RT-qPCR). Survival times in relation to the expression of GABA receptor phenotypes were analyzed. Human NSCLC cell lines H1299, A549, H520, H460 and human bronchial epithelial cell line BEAS-2B were used to determine the phenotypes of GABA inhibitory effects on cancer cell growth. The effects of exogenous administration of GABA on H1299 cell growth were examined. Results The gene expressions were significantly higher in NSCLC tissues than in the paired non-cancerous tissues for GABAA receptor subunit α3 (GABRA3, P = 0.030); for GABAA receptor subunit epsilon (GABRE, P = 0.036); and GABAB receptor subunit 2 (GABBR2, P = 0.005). Kaplan-Meier curves showed that patients with high expression of GABBR2 gene and low expression of GABRA3 gene had a better prognosis (P < 0.05). The administration of GABA resulted in suppressed proliferation of NSCLC cell lines in a dose- and time-dependent manner. The use of the GABA receptor antagonist CGP35348 could reverse the inhibitory effect. Conclusions The pattern of GABA receptor gene phenotype expression may be involved in the regulation of tumorigenesis. A high expression of GABBR2 with a low expression of GABRA3 may predict a better outcome. The treatment with GABA

  16. PARAMETERS DISTINGUISHING HERPES SIMPLEX VIRUS TYPE 2-TRANSFORMED TUMORIGENIC AND NONTUMORIGENIC RAT CELLS

    EPA Science Inventory

    A newly developed experimental model system was used to determine in vitro transformation-specific parameters which correlate with tumorigenicity. The data suggested that clonal herpes simplex virus type 2-transformed syngeneic rat embryo cells with intermediate, transformed rat ...

  17. Evaluation of tellurium toxicity in transformed and non-transformed human colon cells.

    PubMed

    Vij, Puneet; Hardej, Diane

    2012-11-01

    Diphenyl ditelluride (DPDT) and tellurium tetrachloride (TeCl(4)) were evaluated for toxicity in transformed (HT-29, Caco-2) and non-transformed colon cells (CCD-18Co). Significant decreases in viability were observed with DPDT exposure in HT-29 (62.5-1000 μM), Caco-2 (31.25-1000 μM) and CCD-18Co cells (500-1000 μM) and with TeCl(4) in HT-29 (31.25-1000 μM), Caco-2 (31.25-1000 μM) and CCD-18Co cells (500-1000 μM). Light microscopy confirmed viability analysis. Significant increases in caspase 3/7 and 9 activity were observed with DPDT in HT-29 (500-1000 μM) and CCD-18Co cells (1000 μM) indicating apoptosis. No significant increases in caspases were seen with TeCl(4) indicating necrosis. Apoptosis or necrosis was confirmed with fluorescent staining (FITC-Annexin, Hoechst 33342 and Ethidium Homodimer). Significant decreases in GSH/GSSG ratio were observed with DPDT in HT-29 (62.5-1000 μM), and CCD-18Co cells (1000 μM) and with TeCl(4) in HT-29 (62.5-1000 μM) and CCD-18Co cells (250-1000 μM). We concluded that cells treated with DPDT resulted in apoptosis and TeCl(4) treatment in necrosis. GSH/GSSG ratio shifts indicate oxidative mechanisms are involved. PMID:23068156

  18. Whole-cell fungal transformation of precursors into dyes

    PubMed Central

    2010-01-01

    Background Chemical methods of producing dyes involve extreme temperatures and unsafe toxic compounds. Application of oxidizing enzymes obtained from fungal species, for example laccase, is an alternative to chemical synthesis of dyes. Laccase can be replaced by fungal biomass acting as a whole-cell biocatalyst with properties comparable to the isolated form of the enzyme. The application of the whole-cell system simplifies the transformation process and reduces the time required for its completion. In the present work, four fungal strains with a well-known ability to produce laccase were tested for oxidation of 17 phenolic and non-phenolic precursors into stable and non-toxic dyes. Results An agar-plate screening test of the organic precursors was carried out using four fungal strains: Trametes versicolor, Fomes fomentarius, Abortiporus biennis, and Cerrena unicolor. Out of 17 precursors, nine were transformed into coloured substances in the presence of actively growing fungal mycelium. The immobilized fungal biomass catalyzed the transformation of 1 mM benzene and naphthalene derivatives in liquid cultures yielding stable and non-toxic products with good dyeing properties. The type of fungal strain had a large influence on the absorbance of the coloured products obtained after 48-hour transformation of the selected precursors, and the most effective was Fomes fomentarius (FF25). Whole-cell transformation of AHBS (3-amino-4-hydroxybenzenesulfonic acid) into a phenoxazinone dye was carried out in four different systems: in aqueous media comprising low amounts of carbon and nitrogen source, in buffer, and in distilled water. Conclusions This study demonstrated the ability of four fungal strains belonging to the ecological type of white rot fungi to transform precursors into dyes. This paper highlights the potential of fungal biomass for replacing isolated enzymes as a cheaper industrial-grade biocatalyst for the synthesis of dyes and other commercially important

  19. Differential expression of immune-modulatory molecule HLA-E in non-neoplastic and neoplastic lesions of the thyroid.

    PubMed

    Zanetti, B R; Carvalho-Galano, D F; Feitosa, N L F; Hassumi-Fukasawa, M K; Miranda-Camargo, F A; Maciel, L M Z; Ribeiro-Silva, A; Soares, E G

    2013-01-01

    Human leukocyte antigen (HLA)–E is a non-classical molecule of the histocompatibility complex that functions as one of the main ligands of the Natural Killer (NK) cell inhibitory receptor CD94/NKG2A and inhibits its potent cytotoxic activity. Due to the important role of NK cells in combating neoplasm, we hypothesized that the differential expression of HLA-E could favor the progression of heterogeneous thyroid tumors.Using an immunohistochemistry technique in 143 biopsies of thyroid tumors, including benign and malignant neoplasms and goiters, we evaluated the expression of HLA-E among various tumor types and its association with the clinicopathological factors of diseases. We verified high HLA-E expression in all types of neoplastic tumors, although no significant differences between the groups were found. Low expression was observed in 95 percent of the goiter samples, showing significant differences between neoplastic and non-neoplastic lesions. Furthermore, a significant result was found with regard to the tumor size, with high HLA-E expression being related to smaller tumors. Therefore, our data suggest that an increase in HLA-E may be associated with the establishment of thyroid neoplasms, with either benign or malignant features. PMID:24355224

  20. Silencing of CDC42 inhibits neuroblastoma cell proliferation and transformation

    PubMed Central

    Lee, Sora; Craig, Brian T.; Romain, Carmelle V.; Qiao, Jingbo; Chung, Dai H.

    2014-01-01

    Cell division cycle 42 (CDC42), a small GTPase of the Rho-subfamily, regulates diverse cellular functions including proliferation, cytoskeletal rearrangement and even promotes malignant transformation. Here, we found that increased expression of CDC42 correlated with undifferentiated neuroblastoma as compared to a more benign phenotype. CDC42 inhibition decreased cell growth and soft agar colony formation, and increased cell death in BE(2)-C and BE(2)-M17 cell lines, but not in SK-N-AS. In addition, silencing of CDC42 decreased expression of N-myc in BE(2)-C and BE(2)-M17 cells. Our findings suggest that CDC42 may play a role in the regulation of aggressive neuroblastoma behavior. PMID:25264923

  1. The biguanides metformin and phenformin inhibit angiogenesis, local and metastatic growth of breast cancer by targeting both neoplastic and microenvironment cells.

    PubMed

    Orecchioni, Stefania; Reggiani, Francesca; Talarico, Giovanna; Mancuso, Patrizia; Calleri, Angelica; Gregato, Giuliana; Labanca, Valentina; Noonan, Douglas M; Dallaglio, Katiuscia; Albini, Adriana; Bertolini, Francesco

    2015-03-15

    The human white adipose tissue (WAT) contains progenitors with cooperative roles in breast cancer (BC) angiogenesis, local and metastatic progression. The biguanide Metformin (Met), commonly used for Type 2 diabetes, might have activity against BC and was found to inhibit angiogenesis in vivo. We studied Met and another biguanide, phenformin (Phe), in vitro and in vivo in BC models. In vitro, biguanides activated AMPK, inhibited Complex 1 of the respiratory chain and induced apoptosis of BC and WAT endothelial cells. In coculture, biguanides inhibited the production of several angiogenic proteins. In vivo, biguanides inhibited local and metastatic growth of triple negative and HER2+ BC in immune-competent and immune-deficient mice orthotopically injected with BC. Biguanides inhibited local and metastatic BC growth in a genetically engineered murine model model of HER2+ BC. In vivo, biguanides increased pimonidazole binding (but not HIF-1 expression) of WAT progenitors, reduced tumor microvessel density and altered the vascular pericyte/endothelial cell ratio, so that cancer vessels displayed a dysplastic phenotype. Phe was significantly more active than Met both in vitro and in vivo. Considering their safety profile, biguanides deserve to be further investigated for BC prevention in high-risk subjects, in combination with chemo and/or targeted therapy and/or as post-therapy consolidation or maintenance therapy for the prevention of BC recurrence. PMID:25196138

  2. IN VIVO AND IN VITRO CHARACTERISTICS OF EARLY CARCINOGEN-INDUCED PREMALIGNANT PHENOTYPES IN CULTURED RAT TRACHEAL EPITHELIAL CELLS (JOURNAL VERSION)

    EPA Science Inventory

    The initial stages of neoplastic transformation in respiratory tract epithelial cells were defined and studied by characterizing a series of morphologically transformed cell colonies from carcinogen-exposed rat tracheal epithelial (TRE) cell cultures both in vivo and in vitro. RT...

  3. Simultaneous exposure of transformed cells to SRC family inhibitors and CHK1 inhibitors causes cell death.

    PubMed

    Mitchell, Clint; Hamed, Hossein A; Cruickshanks, Nichola; Tang, Yong; Bareford, M Danielle; Hubbard, Nissan; Tye, Gary; Yacoub, Adly; Dai, Yun; Grant, Steven; Dent, Paul

    2011-08-01

    The present studies were initiated to determine in greater molecular detail the regulation of CHK1 inhibitor lethality in transfected and infected breast cancer cells and using genetic models of transformed fibrobalsts. Multiple MEK1/2 inhibitors (PD184352, AZD6244 (ARRY-142886)) interacted with multiple CHK1 inhibitors (UCN-01 (7-hydroxystaurosporine), AZD7762) to kill mammary carcinoma cells and transformed fibroblasts. In transformed cells, CHK1 inhibitor -induced activation of ERK1/2 was dependent upon activation of SRC family non-receptor tyrosine kinases as judged by use of multiple SRC kinase inhibitors (PP2, Dasatinib; AZD0530), use of SRC/FYN/YES deleted transformed fibroblasts or by expression of dominant negative SRC. Cell killing by SRC family kinase inhibitors and CHK1 inhibitors was abolished in BAX/BAK -/- transformed fibroblasts and suppressed by over expression of BCL-XL. Treatment of cells with BCL-2/BCL-XL antagonists promoted SRC inhibitor + CHK1 inhibitor -induced lethality in a BAX/BAK-dependent fashion. Treatment of cells with [SRC + CHK1] inhibitors radio-sensitized tumor cells. These findings argue that multiple inhibitors of the SRC-RAS-MEK pathway interact with multiple CHK1 inhibitors to kill transformed cells. PMID:21642769

  4. Neoplastic Meningitis from Solid Tumors: New Diagnostic and Therapeutic Approaches

    PubMed Central

    Zustovich, Fable; Farina, Patrizia; Della Puppa, Alessandro; Manara, Renzo; Cecchin, Diego; Brunello, Antonella; Cappetta, Alessandro; Zagonel, Vittorina

    2011-01-01

    Neoplastic meningitis is a result of the spread of malignant cells to the leptomeninges and subarachnoid space and their dissemination within the cerebrospinal fluid. This event occurs in 4%–15% of all patients with solid tumors and represents an important prognostic factor for poor survival. Neoplastic meningitis should be diagnosed in the early stages of disease to prevent important neurological deficits and to provide the most appropriate treatment. Despite new diagnostic approaches developed in recent years, such as positron emission tomography–computed tomography and new biological markers, the combination of magnetic resonance imaging without and with gadolinium enhancement and cytology still has the greatest diagnostic sensitivity. Recently, no new randomized studies comparing intrathecal (i.t.) with systemic treatment have been performed, yet there have been a few small phase II studies and case reports about new molecularly targeted substances whose successful i.t. or systemic application has been reported. Trastuzumab, gefitinib, and sorafenib are examples of possible future treatments for neoplastic meningitis, in order to better individualize therapy thus allowing better outcomes. In this review, we analyze the most recent and interesting developments on diagnostic and therapeutic approaches. PMID:21795431

  5. Integrated polyoma genomes in inducible permissive transformed cells.

    PubMed Central

    Chartrand, P; Gusew-Chartrand, N; Bourgaux, P

    1981-01-01

    Using the approach described by Botchan, Topp, and Sambrook (Cell 9:269-287, 1976), we analyzed the organization of the integrated viral sequences in five clonal isolates from the same permissive, inducible cell line (Cyp line) transformed by the tsP155 mutant of polyoma virus. In all five clones, viral sequences were found that could be assigned to a common integration site, as they were joined to the cellular DNA in the same fashion in every instance. However, the sequences comprised between these points differed markedly from clone to clone, as if cell propagation had been accompanied by amplification or recombination or both within the viral insertion. When the clones were compared, no correlation could be found between the abundance, or the organization, of the integrated viral sequences and the amount, or the nature, of the free viral DNA molecules produced during induction. Altogether, our findings suggest that specific events, occurring during either the excision or the subsequent replication of the integrated viral sequences, are responsible for the predominant production of nondefective viral DNA molecules by permissive transformed cells, such as Cyp cells. Images PMID:6268808

  6. Imaging Cells in Flow Cytometer Using Spatial-Temporal Transformation.

    PubMed

    Han, Yuanyuan; Lo, Yu-Hwa

    2015-01-01

    Flow cytometers measure fluorescence and light scattering and analyze multiple physical characteristics of a large population of single cells as cells flow in a fluid stream through an excitation light beam. Although flow cytometers have massive statistical power due to their single cell resolution and high throughput, they produce no information about cell morphology or spatial resolution offered by microscopy, which is a much wanted feature missing in almost all flow cytometers. In this paper, we invent a method of spatial-temporal transformation to provide flow cytometers with cell imaging capabilities. The method uses mathematical algorithms and a spatial filter as the only hardware needed to give flow cytometers imaging capabilities. Instead of CCDs or any megapixel cameras found in any imaging systems, we obtain high quality image of fast moving cells in a flow cytometer using PMT detectors, thus obtaining high throughput in manners fully compatible with existing cytometers. To prove the concept, we demonstrate cell imaging for cells travelling at a velocity of 0.2 m/s in a microfluidic channel, corresponding to a throughput of approximately 1,000 cells per second. PMID:26281956

  7. Imaging Cells in Flow Cytometer Using Spatial-Temporal Transformation

    PubMed Central

    Han, Yuanyuan; Lo, Yu-Hwa

    2015-01-01

    Flow cytometers measure fluorescence and light scattering and analyze multiple physical characteristics of a large population of single cells as cells flow in a fluid stream through an excitation light beam. Although flow cytometers have massive statistical power due to their single cell resolution and high throughput, they produce no information about cell morphology or spatial resolution offered by microscopy, which is a much wanted feature missing in almost all flow cytometers. In this paper, we invent a method of spatial-temporal transformation to provide flow cytometers with cell imaging capabilities. The method uses mathematical algorithms and a spatial filter as the only hardware needed to give flow cytometers imaging capabilities. Instead of CCDs or any megapixel cameras found in any imaging systems, we obtain high quality image of fast moving cells in a flow cytometer using PMT detectors, thus obtaining high throughput in manners fully compatible with existing cytometers. To prove the concept, we demonstrate cell imaging for cells travelling at a velocity of 0.2 m/s in a microfluidic channel, corresponding to a throughput of approximately 1,000 cells per second. PMID:26281956

  8. Insect cell transformation vectors that support high level expression and promoter assessment in insect cell culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A somatic transformation vector, pDP9, was constructed that provides a simplified means of producing permanently transformed cultured insect cells that support high levels of protein expression of foreign genes. The pDP9 plasmid vector incorporates DNA sequences from the Junonia coenia densovirus th...

  9. Multifunctional CD40L: pro- and anti-neoplastic activity.

    PubMed

    Korniluk, Aleksandra; Kemona, Halina; Dymicka-Piekarska, Violetta

    2014-10-01

    The CD40 ligand is a type I transmembrane protein that belongs to a tumor necrosis factor (TNF) superfamily. It is present not only on the surface of activated CD4+ T cells, B cells, blood platelets, monocytes, and natural killer (NK) cells but also on cancer cells. The receptor for ligand is constitutively expressed on cells, TNF family protein: CD40. The role of the CD40/CD40L pathway in the induction of body immunity, in inflammation, or in hemostasis has been well documented, whereas its involvement in neoplastic disease is still under investigation. CD40L ligand may potentiate apoptosis of tumor cells by activation of nuclear factor-κB (NF-κB), AP-1, CD95, or caspase-depended pathways and stimulate host immunity to defend against cancer. Although CD40L has a major contribution to anti-cancer activity, many reports point at its ambivalent nature. CD40L enhance release of strongly pro-angiogenic factor, vascular endothelial growth factor (VEGF), and activator of coagulation, TF, the level of which is correlated with tumor metastasis. CD40L involvement in the inhibition of tumor progression has led to the emergence of not only therapy using recombinant forms of the ligand and vaccines in the treatment of cancer but also therapy consisting of inhibiting platelets-main source of CD40L. This article is a review of studies on the ambivalent role of CD40L in neoplastic diseases. PMID:25117071

  10. Fourier transform infrared spectroscopic analysis of cell differentiation

    NASA Astrophysics Data System (ADS)

    Ishii, Katsunori; Kimura, Akinori; Kushibiki, Toshihiro; Awazu, Kunio

    2007-02-01

    Stem cells and its differentiations have got a lot of attentions in regenerative medicine. The process of differentiations, the formation of tissues, has become better understood by the study using a lot of cell types progressively. These studies of cells and tissue dynamics at molecular levels are carried out through various approaches like histochemical methods, application of molecular biology and immunology. However, in case of using regenerative sources (cells, tissues and biomaterials etc.) clinically, they are measured and quality-controlled by non-invasive methods from the view point of safety. Recently, the use of Fourier Transform Infrared spectroscopy (FT-IR) has been used to monitor biochemical changes in cells, and has gained considerable importance. The objective of this study is to establish the infrared spectroscopy of cell differentiation as a quality control of cell sources for regenerative medicine. In the present study, as a basic study, we examined the adipose differentiation kinetics of preadipocyte (3T3-L1) and the osteoblast differentiation kinetics of bone marrow mesenchymal stem cells (Kusa-A1) to analyze the infrared absorption spectra. As a result, we achieved to analyze the adipose differentiation kinetics using the infrared absorption peak at 1739 cm-1 derived from ester bonds of triglyceride and osteoblast differentiation kinetics using the infrared absorption peak at 1030 cm-1 derived from phosphate groups of calcium phosphate.

  11. Oncogene-mediated tumor transformation sensitizes cells to autophagy induction.

    PubMed

    Gargini, Ricardo; García-Escudero, Vega; Izquierdo, Marta; Wandosell, Francisco

    2016-06-01

    The process of tumorigenesis induces alterations in numerous cellular pathways including the main eukaryotic metabolic routes. It has been recently demonstrated that autophagy is part of the oncogene-induced senescence phenotype although its role in tumor establishment has not been completely clarified. In the present study, we showed that non‑transformed cells are sensitized to mitochondrial stress and autophagy induction when they are transformed by oncogenes such as c-Myc or Ras. We observed that overexpression of c-Myc or Ras increased AMP-activated protein kinase (AMPK) phosphorylation and the expression of p62, a known partner for degradation by autophagy. The activation of AMPK was found to favor the activation of FoxO3 which was prevented by the inhibition of AMPK. The transcriptional activation mediated by FoxO3 upregulated genes such as BNIP3 and LC3. Finally, the transformation by oncogenes such as c-Myc and Ras predisposes tumor cells to autophagy induction as a consequence of mitochondrial stress and impairs tumor growth in vitro and in vivo, which may have therapeutic implications. PMID:27035659

  12. Joint action of a chemical carcinogen and a neoplastic virus to induce cancer in rabbits; results of exposing epidermal cells to a carcinogenic hydrocarbon at time of infection with the Shope papilloma virus.

    PubMed

    ROGERS, S; ROUS, P

    1951-05-01

    Areas of rabbit skin previously rendered hyperplastic with turpentine were scarified, inoculated with the Shope papilloma virus, and covered with a dressing that contained 20-methylcholanthrene (MC) or 9:10-dimethyl-1:2-benzanthracene (9:10). The dressing was left on until healing had been well completed, a matter of 5 to 7 days. The papillomas which subsequently arose often appeared later, were fewer, and remained less vigorous than those due to the action of virus alone, but throughout several months they appeared to differ from these in no other ways. Then, more or less abruptly, the large majority became carcinomatous, frequently at several situations, whereas with few exceptions the control growths underwent no such alteration. The cancers were of the sorts ordinarily deriving, by secondary change, from epidermal cells infected with the virus. Collateral data have made plain that the hydrocarbons acted in their carcinogenic capacity to bring on the cancers. Indeed in control tests 9: 10 sometimes conferred latent neoplastic potentialities on uninoculated epidermis exposed to it while healing after scarification, a fact disclosed months later by painting these expanses with chloroform until hyperplasia occurred. Under the promoting influence of this agent papillomas formed which had the distinctive morphology of those induced by the chemical carcinogens. So strong and enduring were the effects of MC and 9:10 as to cause cancers to arise from many virus papillomas which were retrogressing after months of proliferation, that is to say under circumstances ordinarily unfavorable to malignant change. The facts justify the conclusion that the virus and the hydrocarbons acted jointly and in their carcinogenic capacities. PMID:14832395

  13. Suppression of the chemically transformed phenotype of BHK cells by a human cDNA

    SciTech Connect

    Eiden, M.V.; MacArthur, L.; Okayama, Hiroto )

    1991-10-01

    Transformation of baby hamster kidney cell line BHK SN-10 by chemical carcinogens such as nitrosylmethylurea (NMU) is mediated by the loss of a gene product critical for the suppression of malignant transformation. Somatic cell hybrids between chemically transformed BHK SN-10 cells and either normal hamster kidney or human fibroblast cells are nontransformed; therefore, a recessive mechanism underlies the malignant transformation of BHK SN-10 cells after chemical carcinogenesis. A human fibroblast cDNA library was constructed and introduced into NMU-transformed BHK SN-10 cells (NMU 34m) in order to identify a human cDNA capable of suppressing cellular transformation. NMU-transformed BHK cells were analyzed for reversion to an anchorage-dependent stable reversion of NMU 34m cells encodes the intermediate filament protein vimentin, which is apparently required for maintenance of the normal phenotype in BHK SN-10 cells.

  14. Multiple host-cell recombination pathways act in Agrobacterium-mediated transformation of plant cells.

    PubMed

    Mestiri, Imen; Norre, Frédéric; Gallego, Maria E; White, Charles I

    2014-02-01

    Using floral-dip, tumorigenesis and root callus transformation assays of both germline and somatic cells, we present here results implicating the four major non-homologous and homologous recombination pathways in Agrobacterium-mediated transformation of Arabidopsis thaliana. All four single mutant lines showed similar mild reductions in transformability, but knocking out three of four pathways severely compromised Agrobacterium-mediated transformation. Although integration of T-DNA into the plant genome is severely compromised in the absence of known DNA double-strand break repair pathways, it does still occur, suggesting the existence of other pathways involved in T-DNA integration. Our results highlight the functional redundancy of the four major plant recombination pathways in transformation, and provide an explanation for the lack of strong effects observed in previous studies on the roles of plant recombination functions in transformation. PMID:24299074

  15. Complementary approaches to understanding the role of proteases and their natural inhibitors in neoplastic development: retrospect and prospect.

    PubMed

    Rubin, Harry

    2003-05-01

    A great deal of evidence has accumulated in recent years for an important but complex role for proteases in tumor development. However, attempts to treat cancer in humans with anti-proteases have been disappointing, and it has been suggested that more basic groundwork is needed before anti-proteases can be effectively applied. Considerable basic information comes from the recognition that earlier results on transformation of chicken embryo fibroblasts (CEF) by the Bryan strain of Rous sarcoma virus (B-RSV) can be explained in terms of proteases and their inhibitors. In particular, the full but reversible normalization of discrete transformed foci by appropriate concentrations of fetal bovine or of calf serum implies a causal role for multiple proteases in transformation, and the efficacy of treatment with a physiological balance of their natural inhibitors. Addition of certain proteases to contact-inhibited normal cultures was then found to stimulate their proliferation. The toxicity of medium produced by CEF heavily transformed with B-RSV suggests that cachexia and other systemic effects of human cancer may result from vascular dissemination of peptides from pericellular proteolysis within tumors. Comprehensive studies revealed significant increases of plasminogen activator and matrix metalloproteinases (MMPs) after infection of CEF with other strains of RSV, and correlation of the proteases with aspects of transformation. A similar role for proteases is indicated in the transformation of mammalian cells by chemical and physical agents. The information gained from functional experiments on cell transformation in culture is complementary to that obtained from the molecular identification of proteases and their inhibitors in all stages of tumor development. The speed, quantification and easy manipulation of the RSV-CEF transformation assay can be combined with current methods of characterizing proteases and anti-proteases to further enrich our basic knowledge of

  16. Subthreshold IKK activation modulates the effector functions of primary mast cells and allows specific targeting of transformed mast cells.

    PubMed

    Drube, Sebastian; Weber, Franziska; Loschinski, Romy; Beyer, Mandy; Rothe, Mandy; Rabenhorst, Anja; Göpfert, Christiane; Meininger, Isabel; Diamanti, Michaela A; Stegner, David; Häfner, Norman; Böttcher, Martin; Reinecke, Kirstin; Herdegen, Thomas; Greten, Florian R; Nieswandt, Bernhard; Hartmann, Karin; Krämer, Oliver H; Kamradt, Thomas

    2015-03-10

    Mast cell differentiation and proliferation depends on IL-3. IL-3 induces the activation of MAP-kinases and STATs and consequently induces proliferation and survival. Dysregulation of IL-3 signaling pathways also contribute to inflammation and tumorigenesis. We show here that IL-3 induces a SFK- and Ca²⁺-dependent activation of the inhibitor of κB kinases 2 (IKK2) which results in mast cell proliferation and survival but does not induce IκBα-degradation and NFκB activation. Therefore we propose the term "subthreshold IKK activation".This subthreshold IKK activation also primes mast cells for enhanced responsiveness to IL-33R signaling. Consequently, co-stimulation with IL-3 and IL-33 increases IKK activation and massively enhances cytokine production induced by IL-33.We further reveal that in neoplastic mast cells expressing constitutively active Ras, subthreshold IKK activation is associated with uncontrolled proliferation. Consequently, pharmacological IKK inhibition reduces tumor growth selectively by inducing apoptosis in vivo.Together, subthreshold IKK activation is crucial to mediate the full IL-33-induced effector functions in primary mast cells and to mediate uncontrolled proliferation of neoplastic mast cells. Thus, IKK2 is a new molecularly defined target structure. PMID:25749030

  17. Subthreshold IKK activation modulates the effector functions of primary mast cells and allows specific targeting of transformed mast cells

    PubMed Central

    Drube, Sebastian; Beyer, Mandy; Rothe, Mandy; Rabenhorst, Anja; Göpfert, Christiane; Meininger, Isabel; Diamanti, Michaela A.; Stegner, David; Häfner, Norman; Böttcher, Martin; Reinecke, Kirstin; Herdegen, Thomas; Greten, Florian R.; Nieswandt, Bernhard; Hartmann, Karin; Krämer, Oliver H.; Kamradt, Thomas

    2015-01-01

    Mast cell differentiation and proliferation depends on IL-3. IL-3 induces the activation of MAP-kinases and STATs and consequently induces proliferation and survival. Dysregulation of IL-3 signaling pathways also contribute to inflammation and tumorigenesis. We show here that IL-3 induces a SFK- and Ca2+-dependent activation of the inhibitor of κB kinases 2 (IKK2) which results in mast cell proliferation and survival but does not induce IκBα-degradation and NFκB activation. Therefore we propose the term “subthreshold IKK activation”. This subthreshold IKK activation also primes mast cells for enhanced responsiveness to IL-33R signaling. Consequently, co-stimulation with IL-3 and IL-33 increases IKK activation and massively enhances cytokine production induced by IL-33. We further reveal that in neoplastic mast cells expressing constitutively active Ras, subthreshold IKK activation is associated with uncontrolled proliferation. Consequently, pharmacological IKK inhibition reduces tumor growth selectively by inducing apoptosis in vivo. Together, subthreshold IKK activation is crucial to mediate the full IL-33-induced effector functions in primary mast cells and to mediate uncontrolled proliferation of neoplastic mast cells. Thus, IKK2 is a new molecularly defined target structure. PMID:25749030

  18. Plastid transformation of sporelings and suspension-cultured cells from the liverwort Marchantia polymorpha L.

    PubMed

    Chiyoda, Shota; Yamato, Katsuyuki T; Kohchi, Takayuki

    2014-01-01

    We describe simple and efficient plastid transformation methods for suspension-cultured cells and sporelings of the liverwort, Marchantia polymorpha L. Use of rapidly proliferating cells such as suspension-cultured cells and sporelings, which are immature thalli developing from spores, as targets made plastid transformation by particle bombardment efficient. Selection on a sucrose-free medium and linearization of the transformation vector significantly improved the recovery rate of plastid transformants. With the methods described here, a few plastid transformants are obtained from a single bombardment of sporelings, while more efficient plastid transformation is expected in suspension-cultured cells, ~60 transformants from a single bombardment. Homoplasmic transformants of thalli are obtained immediately after primary selection, whereas homoplasmic transformants from suspension-cultured cells are obtained after 12-16 weeks of repeated subculture. PMID:24599873

  19. TRANSFORMER

    DOEpatents

    Baker, W.R.

    1959-08-25

    Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.

  20. Relationship between exposure to TPA and appearance of transformed cells in MNNG-initiated transformation of BALB/c 3T3 cells.

    PubMed

    Tsuchiya, T; Umeda, M

    1997-10-01

    In the BALB/c-3T3-cell transformation system, the effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) exposure on the appearance of transformed cells was examined in order to investigate the mechanisms of in vitro tumor promotion. Optimal duration of TPA exposure on N-methyl-N'-nitro-N-nitrosoguanidine(MNNG)-initiated cells was at least 11 days. To investigate the effect of transformation frequencies of altering inoculating cell density at the replating of MNNG-exposed cells and of altering the time of starting TPA exposure, MNNG-exposed cells were replated at various inoculum sizes. With lower inoculum sizes (1 x 10(3) to 3 x 10(4) cells/dish), maximum TPA-induced transformation occurred for TPA commencement at confluence, while with higher inoculum size (1 x 10(5) cells/dish), maximum transformation frequency was observed when TPA exposure was started on day 7 after replating, being some 2 days after confluence. This may suggest that there are different mechanisms involved, depending on inoculum size, and that these may involve cell-cell interactions (at lower inoculum) and mutation expression periods (at higher inoculum). By means of redispersion experiments, it was demonstrated that the appearance of transformed cells begins on about day 7 after replating at a cell density of 1 x 10(4) cells/dish. These results suggest the usefulness of the replating method for optimizing transformation in the BALB/c-3T3-cell transformation assay, and provide insight into the time frame of expression of MNNG-initiated transformants and TPA-induced expansion of these transformants. PMID:9335454

  1. Morphological cell transformation of Syrian hamster embryo (SHE) cells by the cyanotoxin, cylindrospermopsin.

    PubMed

    Maire, M-A; Bazin, E; Fessard, V; Rast, C; Humpage, A R; Vasseur, P

    2010-06-15

    Cylindrospermopsin (CYN) is a cyanotoxin which has been implicated in human intoxication and animal mortality. Genotoxic activity of this hepatotoxin is known but its carcinogenic activity remains to be elucidated. In this work, CYN was assessed for its cell-transforming activity using the Syrian hamster embryo (SHE) cell transformation assay. This in vitro assay is used to evaluate the carcinogenic potential of chemical, physical and biological agents in SHE cells, which are primary, normal, diploid, genetically stable and capable of metabolic activation. We demonstrated that CYN induced a significant increase in morphological cell transformation in SHE cells following a 7-day continuous treatment in the range of non-cytotoxic concentrations 1 x 10(-7)-1 x 10(-2) ng/mL. PMID:20144639

  2. Plasmocytoma, multiple myeloma and plasma cell neoplasms in orofacial region.

    PubMed

    Zajko, J; Czako, L; Galis, B

    2016-01-01

    A neoplastic proliferation of B cell lymphocyte is called plasma cell neoplasms, results from malignant plasma cells transformation in bone marrow. The authors present a clinical study and overview of this pathology in maxillofacial region for six years (Tab. 2, Ref. 14). PMID:27546545

  3. EDAC: Epithelial defence against cancer-cell competition between normal and transformed epithelial cells in mammals.

    PubMed

    Kajita, Mihoko; Fujita, Yasuyuki

    2015-07-01

    During embryonic development or under certain pathological conditions, viable but suboptimal cells are often eliminated from the cellular society through a process termed cell competition. Cell competition was originally identified in Drosophila where cells with different properties compete for survival; 'loser' cells are eliminated from tissues and consequently 'winner' cells become dominant. Recent studies have shown that cell competition also occurs in mammals. While apoptotic cell death is the major fate for losers in Drosophila, outcompeted cells show more variable phenotypes in mammals, such as cell death-independent apical extrusion and cellular senescence. Molecular mechanisms underlying these processes have been recently revealed. Especially, in epithelial tissues, normal cells sense and actively eliminate the neighbouring transformed cells via cytoskeletal proteins by the process named epithelial defence against cancer (EDAC). Here, we introduce this newly emerging research field: cell competition in mammals. PMID:25991731

  4. Culture models of human mammary epithelial cell transformation

    SciTech Connect

    Stampfer, Martha R.; Yaswen, Paul

    2000-11-10

    Human pre-malignant breast diseases, particularly ductal carcinoma in situ (DCIS)3 already display several of the aberrant phenotypes found in primary breast cancers, including chromosomal abnormalities, telomerase activity, inactivation of the p53 gene and overexpression of some oncogenes. Efforts to model early breast carcinogenesis in human cell cultures have largely involved studies in vitro transformation of normal finite lifespan human mammary epithelial cells (HMEC) to immortality and malignancy. We present a model of HMEC immortal transformation consistent with the know in vivo data. This model includes a recently described, presumably epigenetic process, termed conversion, which occurs in cells that have overcome stringent replicative senescence and are thus able to maintain proliferation with critically short telomeres. The conversion process involves reactivation of telomerase activity, and acquisition of good uniform growth in the absence and presence of TFGB. We propose th at overcoming the proliferative constraints set by senescence, and undergoing conversion, represent key rate-limiting steps in human breast carcinogenesis, and occur during early stage breast cancer progression.

  5. Transformation of human mesenchymal cells and skin fibroblasts into hematopoietic cells.

    PubMed

    Harris, David M; Hazan-Haley, Inbal; Coombes, Kevin; Bueso-Ramos, Carlos; Liu, Jie; Liu, Zhiming; Li, Ping; Ravoori, Murali; Abruzzo, Lynne; Han, Lin; Singh, Sheela; Sun, Michael; Kundra, Vikas; Kurzrock, Razelle; Estrov, Zeev

    2011-01-01

    Patients with prolonged myelosuppression require frequent platelet and occasional granulocyte transfusions. Multi-donor transfusions induce alloimmunization, thereby increasing morbidity and mortality. Therefore, an autologous or HLA-matched allogeneic source of platelets and granulocytes is needed. To determine whether nonhematopoietic cells can be reprogrammed into hematopoietic cells, human mesenchymal stromal cells (MSCs) and skin fibroblasts were incubated with the demethylating agent 5-azacytidine (Aza) and the growth factors (GF) granulocyte-macrophage colony-stimulating factor and stem cell factor. This treatment transformed MSCs to round, non-adherent cells expressing T-, B-, myeloid-, or stem/progenitor-cell markers. The transformed cells engrafted as hematopoietic cells in bone marrow of immunodeficient mice. DNA methylation and mRNA array analysis suggested that Aza and GF treatment demethylated and activated HOXB genes. Indeed, transfection of MSCs or skin fibroblasts with HOXB4, HOXB5, and HOXB2 genes transformed them into hematopoietic cells. Further studies are needed to determine whether transformed MSCs or skin fibroblasts are suitable for therapy. PMID:21731684

  6. Malignant transformation of hamster cells following infection with bovine herpesvirus (infectious bovine rhinotracheitis virus.

    PubMed

    Michalski, F; Hsiung, G D

    1975-03-01

    Hamster embryo cells, following infection with IBR virus, showed malignant transformation. Hamsters of all ages, inbred or random bred, inoculated with two of the transformed cell lines developed solid tumors. Preliminary characterization of the tumors induced by one of the cell lines has indicated undifferentiated sarcomas. Viral specific antigen was detected in about 5% of the transformed cells and 10% of primary tumor cells in culture. Viral specific antibody was detected in the serum of tumor-bearing hamsters by the indirect immunofluorescent method, but no neutralizing antibodies were found. Infectious virus has not been recovered from either the transformed or tumor cells by cocultivation with bovine embryonic kidney cells. PMID:165538

  7. Resistance to oncogenic transformation in revertant R1 of human ras-transformed NIH 3T3 cells

    SciTech Connect

    Kuzumaki, N.; Ogiso, Y.; Oda, A.; Fujita, H.; Suzuki, H.; Sato, C.; Mullauer, L.

    1989-05-01

    A flat revertant, R1, was isolated from human activated c-Ha-ras-1 (hu-ac-Ha-ras) gene-transformed NIH 3T3 cells (EJ-NIH 3T3) treated with mutagens. R1 contained unchanged transfected hu-ac-Ha-ras DNA and expressed high levels of hu-ac-Ha-ras-specific mRNA and p21 protein. Transfection experiments revealed that NIH 3T3 cells could be transformed by DNA from R1 cells but R1 cells could not be retransformed by Kirsten sarcoma virus, DNA from EJ-NIH 3T3 cells, hu-ac-Ha-ras, v-src, v-mos, simian virus 40 large T antigen, or polyomavirus middle T antigen. Somatic cell hybridization studies showed that R1 was not retransformed by fusion with NIH 3T3 cells and suppressed anchorage independence of EJ-NIH 3T3 and hu-ac-Ha-ras gene-transformed rat W31 cells in soft agar. These results suggest that the reversion and resistance to several oncogenes in R1 is due n not to cellular defects in the production of the transformed phenotype but rather to enhancement of cellular mechanisms that suppress oncogenic transformation.

  8. Plant cell transformation with Agrobacterium tumefaciens under simulated microgravity

    NASA Astrophysics Data System (ADS)

    Sarnatska, Veresa; Gladun, Hanna; Padalko, Svetlana

    To investigate simulated microgravity (clinorotation) effect on plant cell transformation with Agrobacterium tumefaciens and crown gall formation, the culture of primary explants of potato and Jerusalem artichoke tubers was used. It is found that the efficiency of tumor formation and development in clinorotated explants are considerably reduced. When using the explants isolated from potato tubers clinorotated for 3, 5 and 19 days, drastic reduction of formation and development of crown gall tumors was observed. Conversely, the tumor number and their development increased when potato tubers were clinorotated for one day. As was estimated by us previously, cells of Jerusalem artichoke explants are the most sensitive to agrobacteria on 4-5 h of in vitro culturing and this time corresponds to the certain period of G1-stage of the cell cycle. We have also estimated that this period is characterized by the increase of binding of acridine orange by nuclear chromatin and increase in activity of RNA-polymerase I and II. Inoculation of explants with agrobacteria in this period was the most optimal for transformation and crown gall induction. We estimated that at four - hour clinorotation of explants the intensity of acridine orange binding to nuclei was considerably lower than on 4h in the control. At one-day clinorotation of potato tubers, a considerable increase in template accessibility of chromatin and in activity of RNA-polymerase I and II occurred. These results may serve as an evidence for the ability of plant dormant tissues to respond to microgravity. Another demonstration of dormant tissue response to changed gravity we obtained when investigating pathogenesis-related proteins (PR-proteins). PR-proteins were subjected to nondenaturing PAGE.and we have not found any effect of microgravity on PR-proteins of potato explants with normal or tumorous growth. We may suggest that such response derives from the common effects of two stress factors - wounding and changed

  9. Myb proteins: angels and demons in normal and transformed cells

    PubMed Central

    Zhou, Ye; Ness, Scott A.

    2013-01-01

    A key regulator of proliferation, differentiation and cell fate, the c-Myb transcription factor regulates the expression of hundreds of genes and is in turn regulated by numerous pathways and protein interactions. However, the most unique feature of c-Myb is that it can be converted into an oncogenic transforming protein through a few mutations that completely change its activity and specificity. The c-Myb protein is a myriad of interactions and activities rolled up in a protein that controls proliferation and differentiation in many different cell types. Here we discuss the background and recent progress that have led to a better understanding of this complex protein, and outline the questions that have yet to be answered. PMID:21196221

  10. Penis keratoacanthoma transforming into squamous cell carcinoma: a rare case

    PubMed Central

    Deng, Fei; Liu, Xuemei; Zhou, Yihong; Liu, Jianye; Tang, Yuxin; Tang, Jin; Yao, Kun; Xia, Bing; Dai, Yingbo

    2015-01-01

    Keratoacanthoma is variously regarded as a benign epithelial tumor, characterized by a rapid-growing and solitary flesh-colored nodule with a central keratin plug on the sun-exposed skin. Under certain circumstances, it can transform into squamous cell carcinoma. In this paper, we present a case of a 50-year-old man with a 2.5 × 3 × 2.2 cm mass on his penis stub-end. The patient was treat with a partial penectomy after further expert discussions and histopathology the lesion demonstrated penis keratoacanthoma. He received a partial penectomy again and the pathological result revealed squamous cell carcinoma this time. This case indicates that undergoing a partial penectomy on initial diagnosis of a penile tumor secondary to penile keratoacanthoma should be considered because of its high malignant potency. To our best knowledge, this is the first study to describe the malignant conversion of penis keratoacanthoma. PMID:26885065

  11. Effect of Docosahexaenoic Acid on Cell Cycle Pathways in Breast Cell Lines With Different Transformation Degree.

    PubMed

    Rescigno, Tania; Capasso, Anna; Tecce, Mario Felice

    2016-06-01

    n-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), abundant in fish, have been shown to affect development and progression of some types of cancer, including breast cancer. The aim of our study was to further analyze and clarify the effects of these nutrients on the molecular mechanisms underlying breast cancer. Following treatments with DHA we examined cell viability, death, cell cycle, and some molecular effects in breast cell lines with different transformation, phenotypic, and biochemical characteristics (MCF-10A, MCF-7, SK-BR-3, ZR-75-1). These investigations showed that DHA is able to affect cell viability, proliferation, and cell cycle progression in a different way in each assayed breast cell line. The activation of ERK1/2 and STAT3 pathways and the expression and/or activation of molecules involved in cell cycle regulation such as p21(Waf1/Cip1) and p53, are very differently regulated by DHA treatments in each cell model. DHA selectively: (i) arrests non tumoral MCF-10A breast cells in G0 /G1 cycle phase, activating p21(Waf1/Cip1) , and p53, (ii) induces to death highly transformed breast cells SK-BR-3, reducing ERK1/2 and STAT3 phosphorylation and (iii) only slightly affects each analyzed process in MCF-7 breast cell line with transformation degree lower than SK-BR-3 cells. These findings suggest a more relevant inhibitory role of DHA within early development and late progression of breast cancer cell transformation and a variable effect in the other phases, depending on individual molecular properties and degree of malignancy of each clinical case. J. Cell. Physiol. 231: 1226-1236, 2016. © 2015 Wiley Periodicals, Inc. PMID:26480024

  12. Spontaneous transformation of adult mesenchymal stem cells from cynomolgus macaques in vitro

    SciTech Connect

    Ren, Zhenhua; Wang, Jiayin; Zhu, Wanwan; Guan, Yunqian; Zou, Chunlin; Chen, Zhiguo; Zhang, Y. Alex

    2011-12-10

    Mesenchymal stem cells (MSCs) have shown potential clinical utility in cell therapy and tissue engineering, due to their ability to proliferate as well as to differentiate into multiple lineages, including osteogenic, adipogenic, and chondrogenic specifications. Therefore, it is crucial to assess the safety of MSCs while extensive expansion ex vivo is a prerequisite to obtain the cell numbers for cell transplantation. Here we show that MSCs derived from adult cynomolgus monkey can undergo spontaneous transformation following in vitro culture. In comparison with MSCs, the spontaneously transformed mesenchymal cells (TMCs) display significantly different growth pattern and morphology, reminiscent of the characteristics of tumor cells. Importantly, TMCs are highly tumorigenic, causing subcutaneous tumors when injected into NOD/SCID mice. Moreover, no multiple differentiation potential of TMCs is observed in vitro or in vivo, suggesting that spontaneously transformed adult stem cells may not necessarily turn into cancer stem cells. These data indicate a direct transformation of cynomolgus monkey MSCs into tumor cells following long-term expansion in vitro. The spontaneous transformation of the cultured cynomolgus monkey MSCs may have important implications for ongoing clinical trials and for models of oncogenesis, thus warranting a more strict assessment of MSCs prior to cell therapy. -- Highlights: Black-Right-Pointing-Pointer Spontaneous transformation of cynomolgus monkey MSCs in vitro. Black-Right-Pointing-Pointer Transformed mesenchymal cells lack multipotency. Black-Right-Pointing-Pointer Transformed mesenchymal cells are highly tumorigenic. Black-Right-Pointing-Pointer Transformed mesenchymal cells do not have the characteristics of cancer stem cells.

  13. Co-polymeric glycosaminoglycans in transformed cells. Transformation-dependent changes in the co-polymeric structure of heparan sulphate

    PubMed Central

    Fransson, Lars-Ȧke; Havsmark, Birgitta; Chiarugi, Vincenzo P.

    1982-01-01

    1. Heparan sulphates from normal 3T3 fibroblasts are association-prone as indicated by their affinity for agarose gels substituted with cognate heparan sulphate species. Heparan sulphates from SV40-transformed or polyoma-virus-transformed cells have no affinity for the same gels. 2. Heparan sulphates from the medium, the pericellular and intracellular pools of normal, SV40-transformed and polyoma-transformed 3T3 cells were separated into four subfractions (HS1–HS4) by ion-exchange chromatography. In general, HS1–HS3 were found in cell-derived heparan sulphates, whereas HS3–HS4 were present in the medium. The heparan sulphates from transformed cells were more heterogeneous and of lower charge density than those from the normal counterpart. 3. Degradations via periodate oxidation/alkaline elimination yielded the oligomers glucosamine-(hexuronate–glucosamine)n-R with n=1–5 and a large proportion of N-sulphate groups. There was a large contribution of fragments n=4–5 from heparan sulphates of normal cells. These fragments were less common in low-sulphated heparan sulphates of transformed cells. In the case of medium-drived heparan sulphates all species had a low content of fragments n=4–5. 4. The size distribution of (glucuronate–N-acetylglucosamine)n regions was assessed after deaminative cleavage. It was broad and ranged from n=1–10 for all heparan sulphate species. In the case of medium-derived heparan sulphates there were distinct differences between normal and transformed cells. In the latter chains the N-acetyl-rich segments were both shorter and longer than in the normal case. The shape of the disaccharide peak was consistent with a lower content of O-sulphate in the heparan sulphates from transformed cells. 5. It was concluded that heparan sulphates from medium or transformed cells exhibit the greatest structural deviation from the normal case. The finding of lower proportions of extended, iduronate/glucuronate-bearing, N

  14. CONCURRENT NEOPLASTIC AND PROTISTAN DISORDERS IN THE AMERICAN OYSTER (CRASSOSTREA VIRGINICA)

    EPA Science Inventory

    One of 373 oysters examined as part of a histological survey of oysters from Apalachicola Bay, Florida, USA, had a concurrent blood cell proliferative disorder and a protistan infection. The neoplastic blood cells (leukocytes) were found throughout the vesicular connective tissue...

  15. Decreased Mitochondrial Mutagenesis during Transformation of Human Breast Stem Cells into Tumorigenic Cells.

    PubMed

    Ahn, Eun Hyun; Lee, Seung Hyuk; Kim, Joon Yup; Chang, Chia-Cheng; Loeb, Lawrence A

    2016-08-01

    Rare stochastic mutations may accumulate during dormancy of stem-like cells, but technical limitations in DNA sequencing have limited exploring this possibility. In this study, we employed a recently established deep-sequencing method termed Duplex Sequencing to conduct a genome-wide analysis of mitochondrial (mt) DNA mutations in a human breast stem cell model that recapitulates the sequential stages of breast carcinogenesis. Using this method, we found significant differences in mtDNA among normal stem cells, immortal/preneoplastic cells, and tumorigenic cells. Putative cancer stem-like cell (CSC) populations and mtDNA copy numbers increased as normal stem cells become tumorigenic cells. Transformed cells exhibited lower rare mutation frequencies of whole mtDNA than did normal stem cells. The predicted mtDNA rare mutation pathogenicity was significantly lower in tumorigenic cells than normal stem cells. Major rare mutation types in normal stem cells are C>T/G>A and T>C/A>G transitions, while only C>T/G>A are major types in transformed cells. We detected a total of 1,220 rare point mutations, 678 of which were unreported previously. With only one possible exception (m10342T>C), we did not find specific mutations characterizing mtDNA in human breast CSCs; rather, the mitochondrial genome of CSCs displayed an overall decrease in rare mutations. On the basis of our work, we suggest that this decrease (in particular T>C/A>G transitions), rather than the presence of specific mitochondrial mutations, may constitute an early biomarker for breast cancer detection. Our findings support the hypothesis that the mitochondrial genome is altered greatly as a result of the transformation of normal stem cells to CSCs, and that mtDNA mutation signatures may aid in delineating normal stem cells from CSCs. Cancer Res; 76(15); 4569-78. ©2016 AACR. PMID:27197159

  16. Liquid chromatography/Fourier transform IR spectrometry interface flow cell

    DOEpatents

    Johnson, Charles C.; Taylor, Larry T.

    1986-01-01

    A zero dead volume (ZDV) microbore high performance liquid chromatography (.mu.HPLC)/Fourier transform infrared (FTIR) interface flow cell includes an IR transparent crystal having a small diameter bore therein through which a sample liquid is passed. The interface flow cell further includes a metal holder in combination with a pair of inner, compressible seals for directly coupling the thus configured spectrometric flow cell to the outlet of a .mu.HPLC column end fitting to minimize the transfer volume of the effluents exiting the .mu.HPLC column which exhibit excellent flow characteristics due to the essentially unencumbered, open-flow design. The IR beam passes transverse to the sample flow through the circular bore within the IR transparent crystal, which is preferably comprised of potassium bromide (KBr) or calcium fluoride (CaF.sub.2), so as to minimize interference patterns and vignetting encountered in conventional parallel-plate IR cells. The long IR beam pathlength and lensing effect of the circular cross-section of the sample volume in combination with the refractive index differences between the solvent and the transparent crystal serve to focus the IR beam in enhancing sample detection sensitivity by an order of magnitude.

  17. Liquid chromatography/Fourier transform IR spectrometry interface flow cell

    DOEpatents

    Johnson, C.C.; Taylor, L.T.

    1985-01-04

    A zero dead volume (ZDV) microbore high performance liquid chromatography (..mu.. HPLC)/Fourier transform infrared (FTIR) interface flow cell includes an IR transparent crystal having a small diameter bore therein through which a sample liquid is passed. The interface flow cell further includes a metal holder in combination with a pair of inner, compressible seals for directly coupling the thus configured spectrometric flow cell to the outlet of a ..mu.. HPLC column end fitting to minimize the transfer volume of the effluents exiting the ..mu.. HPLC column which exhibit excellent flow characteristics due to the essentially unencumbered, open-flow design. The IR beam passes transverse to the sample flow through the circular bore within the IR transparent crystal, which is preferably comprised of potassium bromide (KBr) or calcium fluoride (CaF/sub 2/), so as to minimize interference patterns and vignetting encountered in conventional parallel-plate IR cells. The long IR beam pathlength and lensing effect of the circular cross-section of the sample volume in combination with the refractive index differences between the solvent and the transparent crystal serve to focus the IR beam in enhancing sample detection sensitivity by an order of magnitude.

  18. Uroplakin Gene Expression by Normal and Neoplastic Human Urothelium

    PubMed Central

    Lobban, E. Dawn; Smith, Barbara A.; Hall, Geoffrey D.; Harnden, Patricia; Roberts, Paul; Selby, Peter J.; Trejdosiewicz, Ludwik K.; Southgate, Jennifer

    1998-01-01

    cDNA sequences for human uroplakins UPIa, UPIb, UPII, and UPIII were cloned and used to investigate uroplakin transcription by normal and neoplastic urothelial cells. Normal urothelium expressed mRNA for all four uroplakins, although UPIII could be detected only by ribonuclease protection assay. By in situ hybridization, UPIa and UPII were confined to superficial cells and UPIb was also expressed by intermediate cells. Cultured normal human urothelial cells showed a proliferative basal/intermediate cell phenotype and constitutive expression of UPIb only. Uroplakin expression by transitional cell carcinoma cell lines was related to their differentiated phenotype in vitro. RT4 cells expressed all uroplakins, VM-CUB-3 expressed three uroplakins, RT112 and HT1376 cells expressed only UPIb in high abundance, and COLO232, KK47, and EJ cells had no detectable expression. These results correlated with patterns of uroplakin expression in tumors. UPIa and UPII were detected superficially only in well differentiated transitional cell carcinoma papillae. UPIb was positive in seven of nine and overexpressed in five of nine noninvasive transitional cell carcinomas and was also present in four of eight invasive transitional cell carcinomas. Lymph node metastases retained the same pattern of UPIb expression as the primary tumor. Unlike the three differentiation-regulated uroplakins, UPIb may have an alternative role in urothelial cell/tissue processes. PMID:9846985

  19. Uroplakin gene expression by normal and neoplastic human urothelium.

    PubMed

    Lobban, E D; Smith, B A; Hall, G D; Harnden, P; Roberts, P; Selby, P J; Trejdosiewicz, L K; Southgate, J

    1998-12-01

    cDNA sequences for human uroplakins UPIa, UPIb, UPII, and UPIII were cloned and used to investigate uroplakin transcription by normal and neoplastic urothelial cells. Normal urothelium expressed mRNA for all four uroplakins, although UPIII could be detected only by ribonuclease protection assay. By in situ hybridization, UPIa and UPII were confined to superficial cells and UPIb was also expressed by intermediate cells. Cultured normal human urothelial cells showed a proliferative basal/intermediate cell phenotype and constitutive expression of UPIb only. Uroplakin expression by transitional cell carcinoma cell lines was related to their differentiated phenotype in vitro. RT4 cells expressed all uroplakins, VM-CUB-3 expressed three uroplakins, RT112 and HT1376 cells expressed only UPIb in high abundance, and COLO232, KK47, and EJ cells had no detectable expression. These results correlated with patterns of uroplakin expression in tumors. UPIa and UPII were detected superficially only in well differentiated transitional cell carcinoma papillae. UPIb was positive in seven of nine and overexpressed in five of nine noninvasive transitional cell carcinomas and was also present in four of eight invasive transitional cell carcinomas. Lymph node metastases retained the same pattern of UPIb expression as the primary tumor. Unlike the three differentiation-regulated uroplakins, UPIb may have an alternative role in urothelial cell/tissue processes. PMID:9846985

  20. High-Frequency Transformation of Undeveloped Plastids in Tobacco Suspension Cells

    PubMed Central

    Langbecker, Camri L.; Ye, Guang-Ning; Broyles, Debra L.; Duggan, Lisa L.; Xu, Charles W.; Hajdukiewicz, Peter T.J.; Armstrong, Charles L.; Staub, Jeffrey M.

    2004-01-01

    Although leaf chloroplast transformation technology was developed more than a decade ago, no reports exist of stable transformation of undeveloped plastids or other specialized plastid types, such as proplastids, etioplasts, or amyloplasts. In this work we report development of a dark-grown tobacco suspension cell model system to investigate the transformation potential of undeveloped plastids. Electron microscope analysis confirmed that the suspension cells carry plastids that are significantly smaller (approximately 50-fold less in volume) and have a very different subcellular localization and developmental state than leaf cell chloroplasts. Using antibiotic selection in the light, we demonstrated that both plastid and nuclear transformation of these cell suspensions is efficient and reproducible, with plastid transformation frequency at least equal to that of leaf chloroplast transformation. Homoplasmic plastid transformants are readily obtained in cell colonies, or in regenerated plants, providing a more consistent and versatile model than the leaf transformation system. Because of the uniformity of the cell suspension model, we could further show that growth rate, selection scheme, particle size, and DNA amount influence the frequency of transformation. Our results indicate that the rate-limiting steps for nuclear and plastid transformation are different, and each must be optimized separately. The suspension cell system will be useful as a model for understanding transformation in those plant species that utilize dark-grown embryogenic cultures and for characterizing the steps that lead to homoplasmic plastid transformation. PMID:15141065

  1. Induction of scattering and cellular invasion by trefoil peptides in src- and RhoA-transformed kidney and colonic epithelial cells.

    PubMed

    Emami, S; Le Floch, N; Bruyneel, E; Thim, L; May, F; Westley, B; Rio, M; Mareel, M; Gespach, C

    2001-02-01

    Trefoil factors (TFFs) are protease-resistant peptides that promote epithelial cell migration and mucosal restitution during inflammatory conditions and wound healing in the gastrointestinal tract. To date, the molecular mechanism of TFFs action and their possible role in tumor progression are unclear. In the present study, we observed that premalignant human colonic PC/AA/C1 and canine kidney MDCK epithelial cells are not competent to invade collagen gels in response to exogenously added TFFs (pS2, spasmolytic polypeptide, and intestinal trefoil factor). In contrast, activated src and RhoA exert permissive induction of invasion by the TFFs that produce similar parallel dose-response curves in src-transformed MDCKts.src and PCmsrc cells (EC50=20-40 nM). Cell scattering is also induced by TFFs in MDCKts.src cells. Stable expression of the pS2 cDNA promotes constitutive invasiveness in MDCKts.src-pS2 cells and human colonic HCT8/S11-pS2 cells established from a sporadic tumor. Furthermore, we found that TFF-mediated cellular invasion is dependent of several signaling pathways implicated in cell transformation and survival, including phosphoinositide PI3'-kinase, phospholipase C, protein kinase C, and the rapamycin target TOR. Constitutive and intense expression of pS2 was revealed by Western blot analyses and immunohistochemistry in human colorectal tumors and their adjacent control mucosa during the neoplastic progression, from the adenoma to the liver metastases. Our studies indicated that TFFs can be involved in cell scattering and tumor invasion via autocrine loops and may serve as potential targets in the control of colon cancer progression. PMID:11156951

  2. Hypomethylation of host cell DNA synthesized after infection or transformation of cells by herpes simplex virus

    SciTech Connect

    Macnab, J.C.M.; Adams, R.L.P.; Rinaldi, A.; Orr, A.; Clark, L.

    1988-04-01

    Infection of rat embryo cells with herpes simplex virus type 2 caused undermethylation of host cell DNA synthesized during infection. DNA made prior to infection was not demethylated, but some of its degradation products, including methyl dCMP, were incorporated into viral DNA. The use of mutant virus showed that some viral DNA synthesis appears to be required for the inhibition of methylation. Inhibition of methylation cannot be explained by an absence of DNA methyltransferase as the activity of this enzyme did not change during the early period of infection. Inhibition of host cell DNA methylation may be an important step in the transformation of cells by herpesviruses, and various transformed cell lines tested showed reduced levels of DNA methylation.

  3. Interferon-induced revertants of ras-transformed cells: resistance to transformation by specific oncogenes and retransformation by 5-azacytidine.

    PubMed Central

    Samid, D; Flessate, D M; Friedman, R M

    1987-01-01

    Prolonged alpha/beta interferon (IFN-alpha/beta) treatment of NIH 3T3 cells transformed by a long terminal repeat-activated Ha-ras proto-oncogene resulted in revertants that maintained a nontransformed phenotype long after IFN treatment had been discontinued. Cloned persistent revertants (PRs) produced large amounts of the ras-encoded p21 and were refractile to transformation by EJras DNA and by transforming retroviruses which carried the v-Ha-ras, v-Ki-ras, v-abl, or v-fes oncogene. Transient treatment either in vitro or in vivo with cytidine analogs that alter gene expression by inhibiting DNA methylation resulted in transformation of PR, but not of NIH 3T3, cells. The PR retransformants reverted again with IFN, suggesting that DNA methylation is involved in IFN-induced persistent reversion. Images PMID:2439904

  4. Elevated levels of a specific class of nuclear phosphoproteins in cells transformed with v-ras and v-mos oncogenes and by cotransfection with c-myc and polyoma middle T genes.

    PubMed Central

    Giancotti, V; Pani, B; D'Andrea, P; Berlingieri, M T; Di Fiore, P P; Fusco, A; Vecchio, G; Philp, R; Crane-Robinson, C; Nicolas, R H

    1987-01-01

    Transformation of a rat thyroid epithelial cell line (FRTL5-C12) with Kirsten and Harvey murine sarcoma viruses (carrying the ras oncogenes) results in elevated levels of three perchloric acid-soluble nuclear phosphoproteins. These three proteins are also induced to high levels in the PC-C13 thyroid epithelial cell line when transformed by the myeloproliferative sarcoma virus (carrying the v-mos oncogene) and when transformed by transfection with the c-myc proto-oncogene followed by infection with the polyoma leukaemia virus (PyMuLV) carry the polyoma middle T antigen gene. Neither c-myc or PyMuLV alone induced high levels of the three nuclear proteins. Untransformed thyroid fibroblasts have high levels of two of the three proteins and can be transformed by PyMuLV alone resulting in the appearance of the third protein. Transformation with Harvey sarcoma virus also results in the induction of the third protein. The three phosphoproteins have been purified by h.p.l.c. and shown to be related to the HeLa protein HMGI already described. The results of these studies indicate that elevated levels of these HMGI-like proteins are associated with neoplastic transformation and/or with an undifferentiated phenotype. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:2820715

  5. Cell classification by moments and continuous wavelet transform methods

    PubMed Central

    Chen, Qian; Fan, Yuan; Udpa, Lalita; Ayres, Virginia M

    2007-01-01

    Image processing techniques are bringing new insights to biomedical research. The automatic recognition and classification of biomedical objects can enhance work efficiency while identifying new inter-relationships among biological features. In this work, a simple rule-based decision tree classifier is developed to classify typical features of mixed cell types investigated by atomic force microscopy (AFM). A combination of continuous wavelet transform (CWT) and moment-based features are extracted from the AFM data to represent that shape information of different cellular objects at multiple resolution levels. The features are shown to be invariant under operations of translation, rotation, and scaling. The features are then used in a simple rule-based classifier to discriminate between anucleate versus nucleate cell types or to distinguish cells from a fibrous environment such as a tissue scaffold or stint. Since each feature has clear physical meaning, the decision rule of this tree classifier is simple, which makes it very suitable for online processing. Experimental results on AFM data confirm that the performance of this classifier is robust and reliable. PMID:17722546

  6. Modeling human endothelial cell transformation in vascular neoplasias

    PubMed Central

    Wen, Victoria W.; MacKenzie, Karen L.

    2013-01-01

    Endothelial cell (EC)-derived neoplasias range from benign hemangioma to aggressive metastatic angiosarcoma, which responds poorly to current treatments and has a very high mortality rate. The development of treatments that are more effective for these disorders will be expedited by insight into the processes that promote abnormal proliferation and malignant transformation of human ECs. The study of primary endothelial malignancy has been limited by the rarity of the disease; however, there is potential for carefully characterized EC lines and animal models to play a central role in the discovery, development and testing of molecular targeted therapies for vascular neoplasias. This review describes molecular alterations that have been identified in EC-derived neoplasias, as well as the processes that underpin the immortalization and tumorigenic conversion of ECs. Human EC lines, established through the introduction of defined genetic elements or by culture of primary tumor tissue, are catalogued and discussed in relation to their relevance as models of vascular neoplasia. PMID:24046386

  7. Follicular lymphoma transforming into anaplastic diffuse large B-cell lymphoma of oral cavity: A case report with review of literature

    PubMed Central

    Mittal, Megha; Puri, Abhiney; Nangia, Rajat; Sachdeva, Alisha

    2015-01-01

    Follicular lymphoma (FL) is a common form of non-Hodgkin's lymphoma (NHL) with the ability to transform into a more aggressive disease, frequently to B cell-lymphoblastic lymphoma. Diffuse large B-cell lymphoma (DLBCL) is a subtype of NHL, which is characterized by diffuse proliferation of large neoplastic B-lymphocytes. It accounts for 30% of all NHL and its occurrence in the mandible is very rare. It is often seen in young adults, but in the present case, a 50-year-old male patient presented with painless swelling in left lower jaw since 25 days following extraction of left lower molar teeth. There was a history of fever and submandibular lymph nodes were enlarged. On incisional biopsy, features of NHL-like lesion were observed and confirmed by immunohistochemistry using CD20, bcl-2, CD10, CD3, CD5, Ki67 markers to be FL (3A) lymphoma transforming into DLBCL. This is a very uncommon presentation. PMID:26980969

  8. Fabrication and evaluation of novel zeolite membranes to control the neoplastic activity and anti-tumoral drug treatments in human breast cancer cells. Part 1: Synthesis and characterization of Pure Zeolite Membranes and Mixed Matrix Membranes for adhesion and growth of cancer cells.

    PubMed

    Tavolaro, Palmira; Martino, Guglielmo; Andò, Sebastiano; Tavolaro, Adalgisa

    2016-12-01

    Novel pure and hybrid zeolite membranes were prepared with appropriate different physicochemical characteristics such as frameworks, hydrophilicity, crystal size, chemical composition, acid-base properties (Point of Zero Charge, PZC) and surface morphology and used in inorganic cell/scaffold constructs. Because the control of cell interactions, as the adhesion, proliferation, remodelling and mobility, is important for differentiation and progression of tumors, this work focused on response of cancer cells adhered and grown on synthesized zeolite surfaces in order to study the influence of these scaffolds in controlled conditions. We have selected the MCF-7 and MDA-MB-231 human breast cancer cell line as model tumor cell lines. This study showed that all the zeolite membranes synthesized are excellent scaffolds because they are very selective materials to support the adhesion and growth of neoplastic cells. All zeolite scaffolds were characterized by FESEM, FTIR ATR, XRD, AFM, PZC and contact angle analyses. Cell adhesion, viability and morphology were measured by count, MTT assay and FESEM microphotography analysis, at various incubation times. PMID:27612784

  9. Product toxicity and cometabolic competitive inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells.

    PubMed Central

    Alvarez-Cohen, L; McCarty, P L

    1991-01-01

    The rate and capacity for chloroform (CF) and trichloroethylene (TCE) transformation by a mixed methanotrophic culture of resting cells (no exogenous energy source) and formate-fed cells were measured. As reported previously for TCE, formate addition resulted in an increased CF transformation rate (0.35 day-1 for resting cells and 1.5 day-1 for formate-fed cells) and transformation capacity (0.0065 mg of CF per mg of cells for resting cells and 0.015 mg of CF per mg of cells for formate-fed cells), suggesting that depletion of energy stores affects transformation behavior. The observed finite transformation capacity, even with an exogenous energy source, suggests that toxicity was also a factor. CF transformation capacity was significantly lower than that for TCE, suggesting a greater toxicity from CF transformation. The toxicity of CF, TCE, and their transformation products to whole cells was evaluated by comparing the formate oxidation activity of acetylene-treated cells to that of non-acetylene-treated cells with and without prior exposure to CF or TCE. Acetylene arrests the activity of methane monooxygenase in CF and TCE oxidation without halting cell activity toward formate. Significantly diminished formate oxidation by cells exposed to either CR or TCE without acetylene compared with that with acetylene suggests that the solvents themselves were not toxic under the experimental conditions but their transformation products were. The concurrent transformation of CF and TCE by resting cells was measured, and results were compared with predictions from a competitive-inhibition cometabolic transformation model. The reasonable fit between model predictions and experimental observations was supportive of model assumptions. PMID:1905516

  10. Target cells for avian myeloblastosis virus in embryonic yolk sac and relationship of cell differentiation to cell transformation.

    PubMed Central

    Boettiger, D; Durban, E

    1984-01-01

    The yolk sac of the 12-day chicken embryo retains the blast stage progenitors to cells of the myeloid lineages with a very low level of contamination by more mature myeloid cells which have begun to express the characteristic myeloid cell markers. Both in vivo and in vitro experiments have supported the hypothesis that target cells for the BAI-A strain of avian myeloblastosis virus are contained within the myeloid lineages. An assay system for avian myeloblastosis virus was developed which utilizes this yolk sac cell system and which appears to be more sensitive than previous published assays. In addition, the kinetics of a liquid culture transformation system is presented in which at least 4% of the yolk sac cell population was transformed in a relatively synchronous fashion at 2 days after infection. The morphological transformation preceded an increased rate of cell proliferation. Cell separation procedures provided a 10- to 20-fold enrichment of target cells and demonstrated that the target cell population copurifies with macrophage colony-forming cells which are the committed progenitors to the macrophage lineage. In combination with earlier work, this work demonstrated that cells committed to the macrophage lineage at all stages of differentiation may serve as target cells for infection by avian myeloblastosis virus. PMID:6699939

  11. Greatwall promotes cell transformation by hyperactivating AKT in human malignancies

    PubMed Central

    Vera, Jorge; Lartigue, Lydia; Vigneron, Suzanne; Gadea, Gilles; Gire, Veronique; Del Rio, Maguy; Soubeyran, Isabelle; Chibon, Frederic; Lorca, Thierry; Castro, Anna

    2015-01-01

    The PP2A phosphatase is often inactivated in cancer and is considered as a tumour suppressor. A new pathway controlling PP2A activity in mitosis has been recently described. This pathway includes the Greatwall (GWL) kinase and its substrates endosulfines. At mitotic entry, GWL is activated and phosphorylates endosulfines that then bind and inhibit PP2A. We analysed whether GWL overexpression could participate in cancer development. We show that GWL overexpression promotes cell transformation and increases invasive capacities of cells through hyperphosphorylation of the oncogenic kinase AKT. Interestingly, AKT hyperphosphorylation induced by GWL is independent of endosulfines. Rather, GWL induces GSK3 kinase dephosphorylation in its inhibitory sites and subsequent SCF-dependent degradation of the PHLPP phosphatase responsible for AKT dephosphorylation. In line with its oncogenic activity, we find that GWL is often overexpressed in human colorectal tumoral tissues. Thus, GWL is a human oncoprotein that promotes the hyperactivation of AKT via the degradation of its phosphatase, PHLPP, in human malignancies. DOI: http://dx.doi.org/10.7554/eLife.10115.001 PMID:26613407

  12. Stromal cells can contribute oncogenic signals

    NASA Technical Reports Server (NTRS)

    Tlsty, T. D.

    2001-01-01

    The majority of studies of neoplastic transformation have focused attention on events that occur within transformed cells. These cell autonomous events result in the disruption of molecular pathways that regulate basic activities of the cells such as proliferation, death, movement and genomic integrity. Other studies have addressed the microenvironment of tumor cells and documented its importance in supporting tumor progression. Recent work has begun to expand on these initial studies of tumor microenvironment and now provide novel insights into the possible initiation and progression of malignant cells. This review will address the transforming effect of stromal cells on epithelial components. Copyright 2001 Academic Press.

  13. Multiple mechanisms of interference between transformation and differentiation in thyroid cells.

    PubMed

    Francis-Lang, H; Zannini, M; De Felice, M; Berlingieri, M T; Fusco, A; Di Lauro, R

    1992-12-01

    Transformation of the thyroid cell line FRTL-5 results in loss or reduction of differentiation as measured by the expression of thyroglobulin and thyroperoxidase, two proteins whose genes are exclusively expressed in thyroid follicular cells. The biochemical mechanisms leading to this phenomenon were investigated in three cell lines obtained by transformation of FRTL-5 cells with Ki-ras, Ha-ras, and polyomavirus middle-T oncogenes. With the ras oncogenes, transformation leads to undetectable expression of the thyroglobulin and thyroperoxidase genes. However, the mechanisms responsible for the extinction of the differentiated phenotype seem to be different for the two ras oncogenes. In Ki-ras-transformed cells, the mRNA encoding TTF-1, a transcription factor controlling thyroglobulin and thyroperoxidase gene expression, is severely reduced. On the contrary, nearly wild-type levels of TTF-1 mRNA are detected in Ha-ras-transformed cells. Furthermore, overexpression of TTF-1 can activate transcription of the thyroglobulin promoter in Ki-ras-transformed cells, whereas it has no effect on thyroglobulin transcription in the Ha-ras-transformed line. Expression of polyoma middle-T antigen in thyroid cells leads to only a reduction of differentiation and does not severely affect either the activity or the amount of TTF-1. Another thyroid cell-specific transcription factor, TTF-2, is more sensitive to transformation, since it disappears in all three transformed lines, and probably contributes to the reduced expression of the differentiated phenotype. PMID:1448106

  14. Evidence for the multistep nature of in vitro human epithelial cell carcinogenesis

    SciTech Connect

    Rhim, J.S.; Yoo, J.H.; Park, J.H.; Thraves, P.; Salehi, Z.; Dritschilo, A. )

    1990-09-01

    In keeping with the multistep development of human cancer in vivo, a stepwise approach to neoplastic transformation in vitro presents a reasonable strategy. We have recently developed an in vitro multistep model suitable for the study of human epithelial cell carcinogenesis. Upon infection with the adenovirus 12-simian virus 40 hybrid virus, primary human epidermal keratinocytes acquired an indefinite life span in culture but did not undergo malignant conversion. Subsequent addition of Kirsten murine sarcoma virus and human ras oncogene or chemical carcinogens (N-methyl-N{prime}-nitro-N-nitrosoguanidine or 4-nitroquinoline 1-oxide) to these cells induced morphological alterations and the acquisition of neoplastic properties. Subsequently it was found that this line could be transformed neoplastically by a variety of retrovirus-containing H-ras, bas, fes, fms, erbB, and src oncogenes. In addition, we found that the immortalized human epidermal keratinocyte (RHEK-1) line can be transformed neoplastically by exposure to ionizing radiation. Thus, this in vitro system may be useful in studying the interaction of a variety of carcinogenic agents and human epithelial cells. These findings demonstrate the malignant transformation of human primary epithelial cells in culture by the combined action of viruses, oncogenes, chemical carcinogens, or X-ray irradiation and support a multistep process for neoplastic conversion.

  15. Sulbutiamine counteracts trophic factor deprivation induced apoptotic cell death in transformed retinal ganglion cells.

    PubMed

    Kang, Kui Dong; Majid, Aman Shah Abdul; Kim, Kyung-A; Kang, Kyungsu; Ahn, Hong Ryul; Nho, Chu Won; Jung, Sang Hoon

    2010-11-01

    Sulbutiamine is a highly lipid soluble synthetic analogue of vitamin B(1) and is used clinically for the treatment of asthenia. The aim of our study was to demonstrate whether sulbutiamine is able to attenuate trophic factor deprivation induced cell death to transformed retinal ganglion cells (RGC-5). Cells were subjected to serum deprivation for defined periods and sulbutiamine at different concentrations was added to the cultures. Various procedures (e.g. cell viability assays, apoptosis assay, reactive oxygen species analysis, Western blot analysis, flow cytometric analysis, glutathione (GSH) and glutathione-S-transferase (GST) measurement) were used to demonstrate the effect of sulbutiamine. Sulbutiamine dose-dependently attenuated apoptotic cell death induced by serum deprivation and stimulated GSH and GST activity. Moreover, sulbutiamine decreased the expression of cleaved caspase-3 and AIF. This study demonstrates for the first time that sulbutiamine is able to attenuate trophic factor deprivation induced apoptotic cell death in neuronal cells in culture. PMID:20809085

  16. Mutation of mitochondria genome: trigger of somatic cell transforming to cancer cell.

    PubMed

    Jianping, Du

    2010-01-01

    Nearly 80 years ago, scientist Otto Warburg originated a hypothesis that the cause of cancer is primarily a defect in energy metabolism. Following studies showed that mitochondria impact carcinogenesis to remodel somatic cells to cancer cells through modifying the genome, through maintenance the tumorigenic phenotype, and through apoptosis. And the Endosymbiotic Theory explains the origin of mitochondria and eukaryotes, on the other hands, the mitochondria also can fall back. Compared to chromosome genomes, the mitochondria genomes were not restricted by introns so they were mutated(fall back) easy. The result is that mitochondria lose function and internal environment of somatic cell become acid and evoked chromosome genomes to mutate, in the end somatic cells become cancer cells. It is the trigger of somatic cell transforming to cancer cell that mitochondria genome happen mutation and lose function. PMID:20181100

  17. Human papillomavirus type 16 DNA-induced malignant transformation of NIH 3T3 cells

    SciTech Connect

    Yasumoto, S.; Burkhardt, A.L.; Doniger, J.; DiPaolo, J.A.

    1986-02-01

    A biological function for human papillomavirus 16 (HPV 16) DNA was demonstrated by transformation of NIH 3T3 cells. HPV 16 DNA has been found frequently in genital cancer and has been classified as a papillomavirus on the basis of DNA homology. A recombinant HPV 16 DNA (pSHPV16d), which contains a head-to-tail dimer of the full-length HPV 16 genome, induced morphologic transformation; the transformed cells were tumorigenic in nude mice. Expression of transforming activity was unique because of the long latency period (more than 4 weeks) required for induction of morphologic transformation and because the transfected DNA existed primarily in a multimeric form with some rearrangement. Furthermore, virus-specific RNAs were expressed in the transformants. The transformation of NIH 3T3 cells provides a model for analyzing the functions of HPV 16, which is associated with cervical carcinomas.

  18. Initiation of oncogenic transformation in human mammary epithelial cells by charged particles

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Craise, L. M.; Durante, M.

    1997-01-01

    Experimental studies have shown that high linear-energy transfer (LET) charged particles can be more effective than x-rays and gamma-rays in inducing oncogenic transformation in cultured cells and tumors in animals. Based on these results, experiments were designed and performed with an immortal human mammary epithelial cell line (H184B5), and several clones transformed by heavy ions were obtained. Cell fusion experiments were subsequently done, and results indicate that the transforming gene(s) is recessive. Chromosome analysis with fluorescence in situ hybridization (FISH) techniques also showed additional translocations in transformed human mammary epithelial cells. In addition, studies with these cell lines indicate that heavy ions can effectively induce deletion, break, and dicentrics. Deletion of tumor suppressor gene(s) and/or formation of translocation through DNA double strand breaks is a likely mechanism for the initiation of oncogenic transformation in human mammary epithelial cells.

  19. Epigenetic silencing of miR-218 by the lncRNA CCAT1, acting via BMI1, promotes an altered cell cycle transition in the malignant transformation of HBE cells induced by cigarette smoke extract.

    PubMed

    Lu, Lu; Xu, Hui; Luo, Fei; Liu, Xinlu; Lu, Xiaolin; Yang, Qianlei; Xue, Junchao; Chen, Chao; Shi, Le; Liu, Qizhan

    2016-08-01

    Cigarette smoking is the strongest risk factor for the development of lung cancer, the leading cause of cancer-related deaths. However, the molecular mechanisms leading to lung cancer are largely unknown. A long-noncoding RNA (lncRNA), CCAT1, regarded as cancer-associated, has been investigated extensively. Moreover, the molecular mechanisms of lncRNAs in regulation of microRNAs (miRNAs) induced by cigarette smoke remain unclear. In the present investigation, cigarette smoke extract (CSE) caused an altered cell cycle and increased CCAT1 levels and decreased miR-218 levels in human bronchial epithelial (HBE) cells. Depletion of CCAT1 attenuated the CSE-induced decreases of miR-218 levels, suggesting that miR-218 is negatively regulated by CCAT1 in HBE cells exposed to CSE. The CSE-induced increases of BMI1 levels and blocked by CCAT1 siRNA were attenuated by an miR-218 inhibitor. Moreover, in CSE-transformed HBE cells, the CSE-induced cell cycle changes and elevated neoplastic capacity were reversed by CCAT1 siRNA or BMI1 siRNA. This epigenetic silencing of miR-218 by CCAT1 induces an altered cell cycle transition through BMI1 and provides a new mechanism for CSE-induced lung carcinogenesis. PMID:27212446

  20. The genetic/metabolic transformation concept of carcinogenesis

    PubMed Central

    Franklin, Renty B.

    2014-01-01

    The carcinogenesis process is poorly understood and subject to varying concepts and views. A rejuvenated interest has arisen regarding the role of altered cellular intermediary metabolism in the development and progression of cancer. As a result, differing views of the implications of altered metabolism in the development of cancer exist. None of the concepts recognize and incorporate the principles of cell metabolism to cell activity, which are applicable to all cells including the carcinogenesis process. This presentation incorporates a novel concept of carcinogenesis that includes a “genetic/metabolic” transformation that encompasses these principles of cell metabolism to cell activity. The intermediary metabolism transformation is essential to provide the bioenergetic/ synthetic, growth/proliferation, and migration/invasive events of malignancy. The concept invokes an “oncogenetic transformation” for the development of neoplastic cells from their precursor normal cells; and a required “genetic/metabolic” transformation for facilitation of the development of the neoplastic cells to malignant cells with the manifestation of the malignant process. Such a concept reveals stages and events of carcinogenesis that provide approaches for the identification of biomarkers and for development of therapeutic agents. The presentation discusses the contemporary application of genetics and proteomics to altered cellular metabolism in cancer; and underscores the importance of proper integration of genetics and proteomics with biochemical and metabolic studies, and the consequences of inappropriate studies. PMID:22109079

  1. Decreased expression of the type I isozyme of cAMP-dependent protein kinase in tumor cell lines of lung epithelial origin.

    PubMed

    Lange-Carter, C A; Fossli, T; Jahnsen, T; Malkinson, A M

    1990-05-15

    A spontaneous transformant derived from a mouse lung epithelial cell line exhibited decreased cAMP-dependent protein kinase (PKA) activity. DEAE column chromatography demonstrated that this was caused by specific loss of the type I PKA isozyme (PKA I). Western immunoblot analysis indicated that indeed several mouse lung tumor-derived cell lines and spontaneous transformants of immortalized, nontumorigenic lung cell lines contained less PKA I regulatory subunit (RI) protein than normal cell lines. PKA II regulatory subunit protein differed only slightly among cell lines and showed no conspicuous trend between normal and neoplastic cells. The decrease in RI was apparently concomitant with decreased catalytic (C) subunit levels in neoplastic cells since no free catalytic subunit activity was detected by DEAE chromatography. Northern blot analysis using RI alpha and C alpha cDNA probes showed that the levels of RI alpha and C alpha mRNAs paralleled their intracellular protein concentrations; neoplastic cell lines contained significantly less RI alpha and C alpha mRNAs than the normal cell line. The decreased expression of both RI and C subunits therefore results in a net decrease of PKA I in neoplastic lung cells, an isozymic difference which may account for the differential effects of cAMP analogs on cell growth and differentiation in normal and neoplastic cells. PMID:2159459

  2. Method for distinguishing normal and transformed cells using G1 kinase inhibitors

    DOEpatents

    Crissman, Harry A.; Gadbois, Donna M.; Tobey, Robert A.; Bradbury, E. Morton

    1993-01-01

    A G.sub.1 phase kinase inhibitor is applied in a low concentration to a population of normal and transformed mammalian cells. The concentration of G.sub.1 phase kinase inhibitor is selected to reversibly arrest normal mammalian cells in the G.sub.1 cell cycle without arresting growth of transformed cells. The transformed cells may then be selectively identified and/or cloned for research or diagnostic purposes. The transformed cells may also be selectively killed by therapeutic agents that do not affect normal cells in the G.sub.1 phase, suggesting that such G.sub.1 phase kinase inhibitors may form an effective adjuvant for use with chemotherapeutic agents in cancer therapy for optimizing the killing dose of chemotherapeutic agents while minimizing undesirable side effects on normal cells.

  3. Method for distinguishing normal and transformed cells using G1 kinase inhibitors

    SciTech Connect

    Crissman, H.A.; Gadbois, D.M.; Tobey, R.A.; Bradbury, E.M.

    1991-12-31

    A G{sub 1} phase kinase inhibitor is applied in a low concentration to a population of normal and transformed mammalian cells. The concentration of G{sub 1} phase kinase inhibitor is selected to reversibly arrest normal mammalian cells in the G{sub 1} cell cycle without arresting growth of transformed cells. The transformed cells may then be selectively identified and/or cloned for research or diagnostic purposes. The transformed cells may also be selectively killed by therapeutic agents that do not affect normal cells in the G{sub 1} phase, suggesting that such G{sub 1} phase kinase inhibitors may form an effective adjuvant for use with chemotherapeutic agents in cancer therapy for optimizing the killing dose of chemotherapeutic agents while minimizing undesirable side effects on normal cells.

  4. Method for distinguishing normal and transformed cells using G1 kinase inhibitors

    DOEpatents

    Crissman, H.A.; Gadbois, D.M.; Tobey, R.A.; Bradbury, E.M.

    1993-02-09

    A G[sub 1] phase kinase inhibitor is applied in a low concentration to a population of normal and transformed mammalian cells. The concentration of G[sub 1] phase kinase inhibitor is selected to reversibly arrest normal mammalian cells in the G[sub 1] cell cycle without arresting growth of transformed cells. The transformed cells may then be selectively identified and/or cloned for research or diagnostic purposes. The transformed cells may also be selectively killed by therapeutic agents that do not affect normal cells in the G[sub 1] phase, suggesting that such G[sub 1] phase kinase inhibitors may form an effective adjuvant for use with chemotherapeutic agents in cancer therapy for optimizing the killing dose of chemotherapeutic agents while minimizing undesirable side effects on normal cells.

  5. [Non-neoplastic lesions of the mediastinum].

    PubMed

    Tzankov, A

    2016-09-01

    The mediastinum is a complex body region of limited space but containing numerous organs of different embryonic origins. A variety of lesions that are difficult to distinguish from each other can occur here. Non-neoplastic lesions of the mediastinum represent important differential diagnostic pitfalls to mediastinal tumors, clinically, radiologically and histopathologically. It is important to bear these lesions in mind and to adequately verify or exclude them before starting further differential diagnostic considerations on mediastinal neoplasms. The most common non-neoplastic lesions in this region include cysts and lymphadenopathies. Mediastinal cysts result from abnormal events in the branching of the tracheobronchial tree, the pharyngeal pouches, the primary intestines, the pleuropericardial membranes and the brain meninges or are complications of inflammatory and hydrostatic processes. The histogenesis of the lining epithelium and the cyst wall structure are decisive for the exact classification. The histopathologically most prevalent patterns of mediastinal lymphadenopathies are those accompanied by increased histiocytes and Castleman's disease. Sclerosis is a non-specific reaction pattern of the mediastinum and can be associated with many processes; therefore, when establishing the diagnosis of sclerosing mediastinitis, several differential diagnoses have to be excluded. Simple thymic hyperplasia can be accompanied by considerable increase in organ size with severe local symptoms, while follicular thymic hyperplasia is often associated with myasthenia gravis and represents the most common findings in non-thymoma thymectomy specimens. PMID:27465275

  6. Non-neoplastic salivary gland diseases.

    PubMed

    Arduino, P G; Carrozzo, M; Pentenero, M; Bertolusso, G; Gandolfo, S

    2006-05-01

    A wide range of non neoplastic disorders can affect the salivary glands, although the more common are: mumps, acute suppurative sialadenitis, Sjögren's syndrome and drug-induced xerostomia. Salivary dysfunction is not a normal consequence of old age, and can be due to systemic diseases, medications or head and neck radiotherapy. Diagnosis of salivary disorders begins with a careful medical history, followed by a cautious examination. While complaints of xerostomia may be indicative of a salivary gland disorder, salivary diseases can present without symptoms. Therefore, routine examination of salivary function must be part of any head, neck, and oral examination. Health-care professionals can play a vital role in identifying patients at risk for developing salivary dysfunction, and should provide appropriate preventive and interventive techniques that will help to preserving a person's health, function, and quality of life. The present work provides an overview of most of the non neoplastic disorders of the salivary glands, in which the general presentation, pathology, and treatments are discussed. PMID:16688102

  7. Transformed MDCK cells secrete elevated MMP1 that generates LAMA5 fragments promoting endothelial cell angiogenesis.

    PubMed

    Gopal, Shashi K; Greening, David W; Zhu, Hong-Jian; Simpson, Richard J; Mathias, Rommel A

    2016-01-01

    Epithelial-mesenchymal transition (EMT) enhances the migration and invasion of cancer cells, and is regulated by various molecular mechanisms including extracellular matrix metalloproteinase (MMP) activity. Previously, we reported transformation of epithelial Madin-Darby canine kidney (MDCK) cells with oncogenic H-Ras (21D1 cells) induces EMT, and significantly elevates MMP1 expression. To explore the biological significance, in this study we characterized 21D1 cells with knocked-down MMP1 expression (21D1(-MMP1)). MMP1 silencing diminished 21D1 cell migration, invasion and anchorage-independent growth in vitro. Additionally, 21D1(-MMP1) cells displayed reduced tumour volume when grown as in vivo subcutaneous xenografts in mice. Depletion of MMP1 lowered the ability of the cellular secretome (extracellular culture medium) to influence recipient cell behaviour. For example, supplementation with 21D1 secretome elevated cell migration of recipient fibroblasts, and enhanced endothelial cell angiogenesis (vessel length and branching). By contrast, 21D1(-MMP1) secretome was less potent in both functional assays. We reveal laminin subunit alpha-5 (LAMA5) as a novel biological substrate of MMP1, that generates internal and C-terminal proteolytic fragments in 21D1 secretome. Furthermore, antibody-based inhibition of integrin αvβ3 on endothelial cells nullified the angiogenic capability of 21D1 secretome. Therefore, we report this as a new VEGF-independent mechanism that oncogenic cells may employ to promote tumour angiogenesis. PMID:27324842

  8. Methionine restriction inhibits chemically-induced malignant transformation in the BALB/c 3T3 cell transformation assay.

    PubMed

    Nicken, Petra; Empl, Michael T; Gerhard, Daniel; Hausmann, Julia; Steinberg, Pablo

    2016-09-01

    High consumption of red meat entails a higher risk of developing colorectal cancer. Methionine, which is more frequently a component of animal proteins, and folic acid are members of the one carbon cycle and as such important players in DNA methylation and cancer development. Therefore, dietary modifications involving altered methionine and folic acid content might inhibit colon cancer development. In the present study, the BALB/c 3T3 cell transformation assay was used to investigate whether methionine and folic acid are able to influence the malignant transformation of mouse fibroblasts after treatment with the known tumour initiator 3-methylcholanthrene. Three different methionine concentrations (representing a -40%, a "normal" and a +40% cell culture medium concentration, respectively) and two different folic acid concentrations (6 and 20 μM) were thereby investigated. Methionine restriction led to a decrease of type III foci, while enhancement of both methionine and folic acid did not significantly increase the cell transformation rate. Interestingly, the focus-lowering effect of methionine was only significant in conjunction with an elevated folic acid concentration. In summary, we conclude that the malignant transformation of mouse fibroblasts is influenced by methionine levels and that methionine restriction could be a possible approach to reduce cancer development. PMID:27427305

  9. Nuclear Division Index may Predict Neoplastic Colorectal Lesions

    PubMed Central

    IONESCU, Mirela E.; CIOCIRLAN, Mihai; BECHEANU, Gabriel; NICOLAIE, Tudor; DITESCU, Cristina; TEIUSANU, Adriana G.; GOLOGAN, Serban I.; ARBANAS, Tudor; DICULESCU, Mircea M.

    2011-01-01

    ABSTRACT Background: Colorectal cancer (CRC) develops by accumulation of multiple genetic damages leading to genetic instability that can be evaluated by cytogenetic methods. In the current study we used Cytokinesis-Blocked Micronucleus Assay (CBMN) technique to assess the behavior of Nuclear Division Index(NDI) in peripheral lymphocytes of patients with CRC and polyps versus patients with normal colonoscopy. Methods: Blood samples were collected from patients after informed consent. By CBMN technique we assessed the proportion of mono-nucleated, bi-nucleated, tri-nucleated and tetra-nucleated cells/500 cells, to calculate NDI. Data were statistically analyzed using the SPSS 11.0 package. Results: 45 patients were available for analysis, 23 men and 22 women, with a mean age of 58.7±13.5. 17 had normal colonoscopy, 17 colonic polyps and 11 CRC. The mean NDI values were significantly smaller for patients with CRC or polyps than in patients with normal colonoscopy (1.57 vs 1.73, p=0.013). The difference persisted for patients with neoplastic lesions (adenomas and carcinomas) when compared with patients with normal colonoscopy or non neoplastic (hyperplastic) polyps (1.56 vs.1.71, p=0.018). The NDI cut-off value to predict the presence of adenomas or carcinomas was equal to 1.55 with a 54.2% sensitivity and 81% specificity of lower values (p=0.019). The NDI cut off value to predict the presence of advanced adenomas or cancer was 1.525 for a sensitivity of 56.3% and a specificity of 82.8% (p=0.048). Conclusion: NDI may be useful in screening strategies for colorectal cancer as simple, noninvasive, inexpensive cytogenetic biomarker. PMID:22368693

  10. Transformation of human cells by oncogenic viruses supports permissiveness for parvovirus H-1 propagation.

    PubMed Central

    Faisst, S; Schlehofer, J R; zur Hausen, H

    1989-01-01

    Parvovirus H-1 has been shown to suppress spontaneous and chemically or virally induced tumorigenesis in hamsters. In human cell culture systems propagation of H-1 is restricted to transformed cells, which are killed by H-1 infection, in contrast to normal diploid cells, which are nonpermissive for H-1. By analyzing the permissiveness of a variety of human cells for H-1, it was determined that the majority of tested transformed or immortalized cells which were permissive for H-1 contained the DNA of oncogenic viruses (human papillomavirus, simian virus 40, adenovirus, hepatitis B virus, Epstein-Barr virus, and human T-cell lymphotropic virus type I). Of six transformed cell lines negative for persisting tumor virus DNA, only two were permissive for H-1, while two were semipermissive and two were nonpermissive. Thus, persistence and expression of tumor virus functions appears to promote full permissiveness for H-1 in human cells. However, neither expression of genes of specific viral genomes nor the transformed state of apparently virus-free cells alone was sufficient to render human cells permissive for H-1. Therefore, the effect of tumor virus functions on H-1 in transformed cells seems to be indirect, probably mediated by cellular factors which are induced or switched off during the transformation process. It appears that similar factors are induced or switched off by 5-azacytidine or calcium phosphate, both known inducers of cellular gene expression. Images PMID:2495371

  11. Hyaluronidases and hyaluronan synthases expression is inversely correlated with malignancy in lung/bronchial pre-neoplastic and neoplastic lesions, affecting prognosis

    PubMed Central

    de Sá, V.K.; Rocha, T.P.; Moreira, AL.; Soares, F.A.; Takagaki, T.; Carvalho, L.; Nicholson, A.G.; Capelozzi, V.L.

    2015-01-01

    We collected a series of 136 lung/bronchial and 56 matched lung parenchyma tissue samples from patients who underwent lung/bronchial biopsies and presented invasive carcinoma after lung surgery. The lung/bronchial samples included basal cell hyperplasia, squamous metaplasia, moderate dysplasia, adenomatous hyperplasia, severe dysplasia, squamous cell carcinoma and adenocarcinoma. Matched lung parenchyma tissue samples included 25 squamous cell carcinomas and 31 adenocarcinomas. Immunohistochemistry was performed to analyze for the distribution of hyaluronidase (Hyal)-1 and −3, and hyaluronan synthases (HAS)-1, −2, and −3. Hyal-1 showed significantly higher expression in basal cell hyperplasia than in moderate dysplasia (P=0.01), atypical adenomatous hyperplasia (P=0.0001), or severe dysplasia (P=0.03). Lower expression of Hyal-3 was found in atypical adenomatous hyperplasia than in basal cell hyperplasia (P=0.01) or moderate dysplasia (P=0.02). HAS-2 was significantly higher in severe dysplasia (P=0.002) and in squamous metaplasia (P=0.04) compared with basal cell hyperplasia. HAS-3 was significantly expressed in basal cell hyperplasia compared with atypical adenomatous hyperplasia (P=0.05) and severe dysplasia (P=0.02). Lower expression of HAS-3 was found in severe dysplasia compared with squamous metaplasia (P=0.01) and moderate dysplasia (P=0.01). Epithelial Hyal-1 and −3 and HAS-1, −2, and −3 expressions were significantly higher in pre-neoplastic lesions than in neoplastic lesions. Comparative Cox multivariate analysis controlled by N stage and histologic tumor type showed that patients with high HAS-3 expression in pre-neoplastic cells obtained by lung/bronchial biopsy presented a significantly higher risk of death (HR=1.19; P=0.04). We concluded that localization of Hyal and HAS in lung/bronchial pre-neoplastic and neoplastic lesions was inversely related to malignancy, which implied that visualizing these factors could be a useful diagnostic

  12. Hyaluronidases and hyaluronan synthases expression is inversely correlated with malignancy in lung/bronchial pre-neoplastic and neoplastic lesions, affecting prognosis.

    PubMed

    Sá, V K de; Rocha, T P; Moreira, Al; Soares, F A; Takagaki, T; Carvalho, L; Nicholson, A G; Capelozzi, V L

    2015-11-01

    We collected a series of 136 lung/bronchial and 56 matched lung parenchyma tissue samples from patients who underwent lung/bronchial biopsies and presented invasive carcinoma after lung surgery. The lung/bronchial samples included basal cell hyperplasia, squamous metaplasia, moderate dysplasia, adenomatous hyperplasia, severe dysplasia, squamous cell carcinoma and adenocarcinoma. Matched lung parenchyma tissue samples included 25 squamous cell carcinomas and 31 adenocarcinomas. Immunohistochemistry was performed to analyze for the distribution of hyaluronidase (Hyal)-1 and -3, and hyaluronan synthases (HAS)-1, -2, and -3. Hyal-1 showed significantly higher expression in basal cell hyperplasia than in moderate dysplasia (P=0.01), atypical adenomatous hyperplasia (P=0.0001), or severe dysplasia (P=0.03). Lower expression of Hyal-3 was found in atypical adenomatous hyperplasia than in basal cell hyperplasia (P=0.01) or moderate dysplasia (P=0.02). HAS-2 was significantly higher in severe dysplasia (P=0.002) and in squamous metaplasia (P=0.04) compared with basal cell hyperplasia. HAS-3 was significantly expressed in basal cell hyperplasia compared with atypical adenomatous hyperplasia (P=0.05) and severe dysplasia (P=0.02). Lower expression of HAS-3 was found in severe dysplasia compared with squamous metaplasia (P=0.01) and moderate dysplasia (P=0.01). Epithelial Hyal-1 and -3 and HAS-1, -2, and -3 expressions were significantly higher in pre-neoplastic lesions than in neoplastic lesions. Comparative Cox multivariate analysis controlled by N stage and histologic tumor type showed that patients with high HAS-3 expression in pre-neoplastic cells obtained by lung/bronchial biopsy presented a significantly higher risk of death (HR=1.19; P=0.04). We concluded that localization of Hyal and HAS in lung/bronchial pre-neoplastic and neoplastic lesions was inversely related to malignancy, which implied that visualizing these factors could be a useful diagnostic procedure for

  13. Transformation linked decrease of pyruvate dehydrogenase complex in human epidermis.

    PubMed

    Eboli, M L; Pasquini, A

    1994-10-14

    Epidermis exhibits glycolytic features peculiar to cancer cells. The activity of pyruvate dehydrogenase complex, both active (PDHa) and total (PDHt) forms, has been investigated and compared in epidermis and epidermal carcinomas from human source. Low or undetectable PDHa is found in either normal and neoplastic tissue. PDHt is unchanged in human epidermis between the second and seventh decades of life but is dramatically decreased following neoplastic transformation (0.107 and 0.026 units/g fresh tissue for epidermis and epidermal carcinoma, respectively). As PDH plays a key role in mitochondrial carbohydrate metabolism, the decrease of total enzymic capacity found in tumors suggest that different mechanisms regulate PDH expression and, in turn, glycolytic mechanisms of epidermis and cancer cells. PMID:7954343

  14. Transformation of rat liver cells with chicken sarcoma virus B77 and murine sarcoma virus.

    PubMed

    Altaner, C; Hlavayova, E

    1973-02-01

    Rat liver cells in vitro were transformed with chicken sarcoma virus B77, giving RL(B77) cells, and with murine sarcoma virus (Harvey), giving RL(MSV) cells. Rat liver cells transformed spontaneously in vitro were designated RL cells. In addition, the RL(MSV) cell line was adapted for growth in culture fluid containing 25 mug of 5-bromodeoxyuridine per ml. All cell lines were tumorigenic in 1-wk-old rats. The number of cells needed for induction of tumor growth was 1,000-fold higher in the case of RL(B77) cells in comparison with RL(MSV) cells and RL cells. No production of viral particles from any of the cell lines investigated was detected by plating concentrated supernatant fluid of the cultures on different secondary embryo cells with and without fusion by Sendai virus, by labeling with uridine-5-(3)H, or by assay for deoxyribonucleic acid polymerase activity. The viral genome was rescued by fusion of RL(B77) cells with chicken cells. Chicken sarcoma virus rescued from (RL(B77) cells differed in plating efficiency on duck cells from B77 virus rescued from transformed rat embryo cells. No virus was rescued after fusion of RL(MSV) and RL cells with mouse, rat, or chicken embryo cells. Infectious murine sarcoma virus can be induced by 5-bromodeoxyuridine from RL(MSV) cells. PMID:4347422

  15. The structure of networks that produce the transformation from grid cells to place cells.

    PubMed

    Cheng, S; Frank, L M

    2011-12-01

    Since grid cells were discovered in the medial entorhinal cortex, several models have been proposed for the transformation from periodic grids to the punctate place fields of hippocampal place cells. These prior studies have each focused primarily on a particular model structure. By contrast, the goal of this study is to understand the general nature of the solutions that generate the grids-to-places transformation, and to exploit this insight to solve problems that were previously unsolved. First, we derive a family of feedforward networks that generate the grids-to-places transformations. These networks have in common an inverse relationship between the synaptic weights and a grid property that we call the normalized offset. Second, we analyze the solutions of prior models in terms of this novel measure and found to our surprise that almost all prior models yield solutions that can be described by this family of networks. The one exception is a model that is unrealistically sensitive to noise. Third, with this insight into the structure of the solutions, we then construct explicitly solutions for the grids-to-places transformation with multiple spatial maps, that is, with place fields in arbitrary locations either within the same (multiple place fields) or in different (global remapping) enclosures. These multiple maps are possible because the weights are learned or assigned in such a way that a group of weights contributes to spatial specificity in one context but remains spatially unstructured in another context. Fourth, we find parameters such that global remapping solutions can be found by synaptic learning in spiking neurons, despite previous suggestions that this might not be possible. In conclusion, our results demonstrate the power of understanding the structure of the solutions and suggest that we may have identified the structure that is common to all robust solutions of the grids-to-places transformation. PMID:21963867

  16. Transforming growth factor-beta and transforming growth factor beta-receptor expression in human meningioma cells.

    PubMed Central

    Johnson, M. D.; Federspiel, C. F.; Gold, L. I.; Moses, H. L.

    1992-01-01

    The transforming growth factor-beta (TGF beta) family in mammals includes three closely related peptides that influence proliferation and numerous physiologic processes in most mesenchymal cells. In this study, Northern blots, immunohistochemistry, TGF beta radioreceptor assays, TGF beta receptor affinity labeling and [3H] thymidine incorporation were used to evaluate whether primary cell cultures of human meningiomas synthesize the three TGF beta isoforms, bear TGF beta receptors, and respond to TGF beta. Transcripts for TGF beta 1 and 2 were detected in the three cases analyzed. Transforming growth factor-beta 1 immunoreactivity was detected in three of six cases, and TGF beta 2 and 3 immunoreactivity were detected in each case analyzed. Media conditioned by cells cultured from six meningiomas also contained latent TGF beta-like activity. Transforming growth factor-beta receptor cross-linking studies identified TGF beta binding sites corresponding to the type 1, type 2, and type 3 receptors on meningioma cells. Treatment with active TGF beta 1 produced a statistically significant reduction in [3H] thymidine incorporation after stimulation with 10% fetal calf serum and epidermal growth factor in all six cases studied. Images Figure 1 Figure 2 Figure 4 PMID:1325741

  17. Studies involving the induction of prostaglandin synthesis following cell transformation by herpes simplex virus type 2

    SciTech Connect

    Krebs, C.R.

    1987-01-01

    The purpose of this study was to determine the effect of HSV-2 transformation on cellular metabolic processes, specifically the metabolism of arachidonic acid (20:4) and prostaglandin (PG) synthesis. Results obtained by labeling cells with (/sup 3/H)20:4 and analyzing the release of radioactivity into overlay culture medium demonstrate that while nontransformed rat embryo fibroblasts (REF) possess phospholipase to catalyze the release of 20:4 from membrane phospholipids, transformation of REF cells by photoinactivated HSV-2 virions induces cyclooxygenase to convert 20:4 substrate primarily to PGE/sub 2/ and PGF/sub 2..cap alpha../. Induction of 20:4 deacylation in nontransformed and HSV-2 transformed cells as well as PG synthesis in transformed cells is further enhanced by the tumor promoter (12-O-tetradecanoylphorbol-13-acetate (TPA) and calcium ionophore A23187. Phospholipase and cyclooxygenase appear to be coupled in their regulation in HSV-2 transformed tumor-derived rat fibrosarcoma (RFS) cells. Three times more (/sup 3/H)20:4 is incorporated into the phosphatidylserine/phosphatidylinositol (PS/PI) fraction in HSV-2 transformed cells compared to REF cells; additionally, this fraction serves as the primary donor of (/sup 3/H)20:4 released from TPA-stimulated transformed cells.

  18. A long-awaited discovery: hypoxia prevents mouse cells from undergoing spontaneous p53-dependent transformation.

    PubMed

    Prockop, Darwin J

    2012-10-01

    A recent publication by Phinney and his associates (1) has presented a discovery for which the field of cell biology has been waiting for more than half a century: a protocol that makes it possible to expand mouse cells in culture without the cells spontaneously transforming. Amazing though it seems, the secret is simply to grow the cells under hypoxic conditions. PMID:22909278

  19. Human colon tissue in organ culture: preservation of normal and neoplastic characteristics

    PubMed Central

    Bhagavathula, Narasimharao; Mankey, Cohra; DaSilva, Marissa; Paruchuri, Tejaswi; Aslam, Muhammad Nadeem; Varani, James

    2009-01-01

    Normal and neoplastic human colon tissue obtained at surgery was used to establish conditions for organ culture. Optimal conditions included an atmosphere of 5% CO2 and 95% O2; tissue partially submerged with mucosa at the gas interface; and serum-free medium with 1.5 mM Ca2+ and a number of growth supplements. Histological, histochemical, and immunohistochemical features that distinguish normal and neoplastic tissue were preserved over a 2-d period. With normal tissue, this included the presence of elongated crypts with small, densely packed cells at the crypt base and mucin-containing goblet cells in the upper portion. Ki67 staining, for proliferating cells, was confined to the lower third of the crypt, while expression of extracellular calcium-sensing receptor was seen in the upper third and surface epithelium. E-cadherin and β-catenin were expressed throughout the epithelium and confined to the cell surface. In tumor tissue, the same disorganized, abnormal glandular structures seen at time zero were present after 2 d. The majority of cells in these structures were mucin-poor, but occasional goblet cells were seen and mucin staining was present. Ki67 staining was seen throughout the abnormal epithelium and calcium-sensing receptor expression was weak and variable. E-cadherin was seen at the cell surface (similar to normal tissue), but in some places, there was diffuse cytoplasmic staining. Finally, intense cytoplasmic and nuclear β-catenin staining was observed in cultured neoplastic tissue. PMID:19915935

  20. In vitro transformation of Syrian hamster epidermal cells by N-methyl-N'-nitro-N-nitrosoguanidine

    SciTech Connect

    Sun, N.C.; Sun, C.R.Y.; Chao, L.; Fung, W.P.; Tennant, R.W.; Hsie, A.W.

    1981-05-01

    The selection of Syrian hamster epidermal cells which do not terminally differentiate has provided a quantitative focus assay for in vitro chemical transformation. One-day-old Syrian hamster epidermal cells plated at 5 x 10/sup 6//100-mm dish were treated for 5 hr with various concentrations of N-methyl-N-nitro-N'-nitrosoguanidine. After 4 weeks, the normal epidermal cells began to terminally differentiate to keratinized squamous cells and died, but transformed epidermal colonies grew to higher cell densities and appeared as darker areas against a lightly stained normal cell background. Transformed epidermal foci were isolated and subcultured for at least 15 passages, whereas normal epidermal cells could not be subcultured under the same conditions. The transformed cells assumed the typical cobblestone-like morphology of epithelial cells, retained desmosomes and tonofilaments, and were able to use citrulline in place of arginine. Argininosuccinate synthetase (EC 6.3.4.5) activity was significantly higher in the epidermal cells than in fibroblasts. The injection of 5 x 10/sup 6/ cells of two transformed epidermal cell lines into athymic nude mice resulted in the formation of tumors which were identified as keratinizing squamous carcinomas.

  1. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells

    NASA Technical Reports Server (NTRS)

    Wang, H. B.; Dembo, M.; Wang, Y. L.

    2000-01-01

    One of the hallmarks of oncogenic transformation is anchorage-independent growth (27). Here we demonstrate that responses to substrate rigidity play a major role in distinguishing the growth behavior of normal cells from that of transformed cells. We cultured normal or H-ras-transformed NIH 3T3 cells on flexible collagen-coated polyacrylamide substrates with similar chemical properties but different rigidity. Compared with cells cultured on stiff substrates, nontransformed cells on flexible substrates showed a decrease in the rate of DNA synthesis and an increase in the rate of apoptosis. These responses on flexible substrates are coupled to decreases in cell spreading area and traction forces. In contrast, transformed cells maintained their growth and apoptotic characteristics regardless of substrate flexibility. The responses in cell spreading area and traction forces to substrate flexibility were similarly diminished. Our results suggest that normal cells are capable of probing substrate rigidity and that proper mechanical feedback is required for regulating cell shape, cell growth, and survival. The loss of this response can explain the unregulated growth of transformed cells.

  2. Non-neoplastic salivary gland lesions: a 15-year study.

    PubMed

    Mohan, Harsh; Tahlan, Anita; Mundi, Irneet; Punia, R P S; Dass, Arjun

    2011-08-01

    The spectrum of salivary gland lesions is wide and the relative incidence of neoplastic versus non-neoplastic lesions is variable in different studies. A series of non-neoplastic salivary gland lesions is reviewed to analyze their spectrum and their relative frequency. This is a retrospective study of salivary gland excisions and biopsies received in our department from January 1994 to December 2008. Routine hematoxylin and eosin-stained sections of all the salivary gland excisions and biopsies received were analyzed. Of the 393 salivary gland excisions and biopsies received, 216 cases were reported as non-neoplastic (55%) and formed our study group; 177 (45%) were neoplastic. Non-neoplastic lesions were more frequent in major salivary glands (65.7%) and submandibular gland was the most commonly involved (66.2%). Lip was the most frequent site (81.7%) for minor salivary gland lesions. Inflammation was the predominant pathological finding (49.5%), of which non-specific chronic sialadenitis constituted the majority (86.9%). Sialolithiasis was present in 22 cases (20.6%); all of these cases were of non-specific chronic sialadenitis. Cysts were second in frequency (36.6%), of which mucocele was the most common (54.5%). There were 5.6% cases of benign lympho-epithelial lesions, while normal salivary gland tissue was seen in 6.5% cases. Non-neoplastic salivary gland diseases are more common than neoplastic diseases and have a wide disease spectrum. PMID:21170719

  3. Transformed MDCK cells secrete elevated MMP1 that generates LAMA5 fragments promoting endothelial cell angiogenesis

    PubMed Central

    Gopal, Shashi K.; Greening, David W.; Zhu, Hong-Jian; Simpson, Richard J.; Mathias, Rommel A.

    2016-01-01

    Epithelial-mesenchymal transition (EMT) enhances the migration and invasion of cancer cells, and is regulated by various molecular mechanisms including extracellular matrix metalloproteinase (MMP) activity. Previously, we reported transformation of epithelial Madin-Darby canine kidney (MDCK) cells with oncogenic H-Ras (21D1 cells) induces EMT, and significantly elevates MMP1 expression. To explore the biological significance, in this study we characterized 21D1 cells with knocked-down MMP1 expression (21D1−MMP1). MMP1 silencing diminished 21D1 cell migration, invasion and anchorage-independent growth in vitro. Additionally, 21D1−MMP1 cells displayed reduced tumour volume when grown as in vivo subcutaneous xenografts in mice. Depletion of MMP1 lowered the ability of the cellular secretome (extracellular culture medium) to influence recipient cell behaviour. For example, supplementation with 21D1 secretome elevated cell migration of recipient fibroblasts, and enhanced endothelial cell angiogenesis (vessel length and branching). By contrast, 21D1−MMP1 secretome was less potent in both functional assays. We reveal laminin subunit alpha-5 (LAMA5) as a novel biological substrate of MMP1, that generates internal and C-terminal proteolytic fragments in 21D1 secretome. Furthermore, antibody-based inhibition of integrin αvβ3 on endothelial cells nullified the angiogenic capability of 21D1 secretome. Therefore, we report this as a new VEGF-independent mechanism that oncogenic cells may employ to promote tumour angiogenesis. PMID:27324842

  4. Calcium-mediated DNA adsorption to yeast cells and kinetics of cell transformation by electroporation.

    PubMed Central

    Neumann, E; Kakorin, S; Tsoneva, I; Nikolova, B; Tomov, T

    1996-01-01

    Detailed kinetic data suggest that the direct transfer of plasmid DNA (YEp 351, 5.6 kbp, supercoiled, Mr approximately 3.5 x 10(6)) by membrane electroporation of yeast cells (Saccharomyces cerevisiae, strain AH 215) is mainly due to electrodiffusive processes. The rate-limiting step for the cell transformation, however, is a bimolecular DNA-binding interaction in the cell interior. Both the adsorption of DNA, directly measured with [32P]dCTP DNA, and the number of transformants are collinearly enhanced with increasing total concentrations [Dt] and [Cat] of DNA and of calcium, respectively. At [Cat] = 1 mM, the half-saturation or equilibrium constant is KD = 15 +/- 1 nM at 293 K (20 degrees C). The optimal transformation frequency is TFopt = 4.1 +/- 0.4 X 10(-5) if a single exponential pulse of initial field strength E0 = 4 kV cm-1 and decay time constant tauE = 45 ms is applied at [Dt] = 2.7 nM and 10(8) cells in 0.1 ml. The dependence of TF on [Cat] yields the equilibrium constants KCazero = 1.8 +/- 0.2 mM (in the absence of DNA) and K'Ca (at 2.7 nM DNA), comparable with and derived from electrophoresis data. In yeast cells, too, the appearance of a DNA molecule in its whole length in the cell interior is clearly an after-field event. At Eo = 4.0 kV cm-1 and T = 293 K, the flow coefficient of DNA through the porous membrane patches is Kto = 7.0 +/- 0.7 x 10(3)S-1 and the electrodiffusion of DNA is approximately 10 times more effective than simple diffusion: D/D0 approximately 10.3. The mean radius of these pores is rp = 0.39 +/- 0.05 nm, and the mean number of pores per cell (of size ø approximately 5.5 microns) is Np = 2.2 +/- 0.2 x 10(4). The maximal membrane area that is involved in the electrodiffusive penetration of adsorbed DNA into the outer surface of the electroporated cell membrane patches is only 0.023% of the total cell surface. The surface penetration is followed either by additional electrodiffusive or by passive (after-field) diffusive

  5. Friend leukemia virus transformed cells exposed to microgravity in the presence of DMSO (7-IML-1)

    NASA Technical Reports Server (NTRS)

    Cogoli, Augusto

    1992-01-01

    The purpose of this experiment is to study the adaptation of living cells to microgravity. The in vitro transformation of Friend cells by Dimethylsufoxide (DMSO) is a good model for the study of cell differentiation and protein biosynthesis. Cultures of cells will be prepared shortly before launch. Once in space, transformation will be induced by injection of DMSO. One set of cultures will be chemically fixed with glutaraldehyde for electron microscope investigations; another set will be preserved for determining the amount of hemogloben produced and the extent of cell proliferation.

  6. IMPROVED SCORING OF CHEMICAL TRANSFORMATION OF C3H/10T1/2 CELLS

    EPA Science Inventory

    This research program was undertaken to improve the scoring of the transformation by chemical carcinogens of C3H/10T1/2 mouse embryo fibroblasts. (1) A probabilistic view of transformed focus formation in these cells induced by methylcholanthrene (MCA) treatment has been formulat...

  7. Bhas 42 cell transformation activity of cigarette smoke condensate is modulated by selenium and arsenic.

    PubMed

    Han, Sung Gu; Pant, Kamala; Bruce, Shannon W; Gairola, C Gary

    2016-04-01

    Cigarette smoking remains a major health risk worldwide. Development of newer tobacco products requires the use of quantitative toxicological assays. Recently, v-Ha-ras transfected BALB/c3T3 (Bhas 42) cell transformation assay was established that simulates the two-stage animal tumorigenesis model and measures tumor initiating and promoting activities of chemicals. The present study was performed to assess the feasibility of using this Bhas 42 cell transformation assay to determine the initiation and promotion activities of cigarette smoke condensate (CSC) and its water soluble fraction. Further, the modulating effects of selenium and arsenic on cigarette smoke-induced cell transformation were investigated. Dimethyl sulfoxide (DMSO) and water extracts of CSC (CSC-D and CSC-W, respectively) were tested at concentrations of 2.5-40 µg mL(-1) in the initiation or promotion assay formats. Initiation protocol of the Bhas 42 assay showed a 3.5-fold increase in transformed foci at 40 µg mL(-1) of CSC-D but not CSC-W. The promotion phase of the assay yielded a robust dose response with CSC-D (2.5-40 µg mL(-1)) and CSC-W (20-40 µg mL(-1)). Preincubation of cells with selenium (100 nM) significantly reduced CSC-induced increase in cell transformation in initiation assay. Co-treatment of cells with a sub-toxic dose of arsenic significantly enhanced cell transformation activity of CSC-D in promotion assay. The results suggest a presence of both water soluble and insoluble tumor promoters in CSC, a role of oxidative stress in CSC-induced cell transformation, and usefulness of Bhas 42 cell transformation assay in comparing tobacco product toxicities and in studying the mechanisms of tobacco carcinogenesis. PMID:26924598

  8. Anti-transforming nature of ascorbic acid and its derivatives examined by two-stage cell transformation using BALB/c 3T3 cells.

    PubMed

    Tsuchiya, T; Kato-Masatsuji, E; Tsuzuki, T; Umeda, M

    2000-11-10

    The anti-transforming effects of sodium ascorbate and its stable derivatives were examined in the two-stage transformation assay. When BALB/c 3T3 cells were treated with 0.2 microg/ml 20-methylcholanthrene as an initiator, and 100 ng/ml 12-O-tetradecanoylphorbol-13-acetate as a promoter, the addition at the promotion stage of L-ascorbic acid-2-phosphate ester magnesium (APM) was most marked in the inhibition of transformation. The inhibitory effects of sodium ascorbate and ascorbic acid-2-glucoside (AG) were comparable, but weaker than those of APM; L (+)-ascorbic acid-2-sulfate ester disodium 2H(2)O showed little effect. When phorbol 12, 13-didecanoate or tumor necrosis factor alpha (TNF-alpha) were used as promoters, APM also effectively suppressed transformation. PMID:11098084

  9. Cell surface properties of HLA antigens on Epstein-Barr virus-transformed cell lines.

    PubMed Central

    Smith, L M; Petty, H R; Parham, P; McConnell, H M

    1982-01-01

    A number of monoclonal antibodies have been used to investigate the distributions and rates of lateral motion of the HLA-A,B, and-DR antigens on several Epstein--Barr virus-transformed B-cell lines. The lateral diffusion coefficients (D) of fluorescein conjugates of the monoclonal antibodies bound to the cell surface were determined by fluorescence recovery after pattern photobleaching. Ds of HLA-A and-B were found to be comparable and of the order of 10(-9) to 10(-10) cm2/sec for each of the seven monoclonal antibodies and four cell lines examined. The HLA antigens appear to be monomeric on the cell surface based on experiments using mixtures of arsanilic acid-conjugated and fluorescein-conjugated antibodies. Four monoclonal antibodies against DR antigens were examined. Two of these, Genox 3.53 and L243, labeled the cell surface uniformly and gave Ds comparable to those obtained for the HLA-A and -B antigens. The other two, DA2 and 2.06, rapidly patched on the cell surface and were immobile. The DA2, L243, and Genox 3.53 antibodies bound outside of the caps formed with the arsanilic acid-conjugated 2.06 antibody and a second-step rhodamine-conjugated rabbit anti-arsanilate antibody. This is consistent with recent biochemical evidence that there are multiple distinct antigens coded for by the HLA-DR region. Images PMID:6281776

  10. Transforming growth factor beta (TGF-β) isomers influence cell detachment of MG-63 bone cells.

    PubMed

    Sefat, Farshid; Khaghani, Seyed Ali; Nejatian, Touraj; Genedy, Mohammed; Abdeldayem, Ali; Moghaddam, Zoha Salehi; Denyer, Morgan C T; Youseffi, Mansour

    2015-12-01

    Bone repair and wound healing are modulated by different stimuli. There is evidence that Transforming Growth Factor-beta (TGF-β) super-family of cytokines have significant effects on bone structure by regulating the replication and differentiation of chondrocytes, osteoblasts and osteoclasts. There is also significant evidence that interactions with extracellular matrix molecules influence cell behaviour. In this study cell surface attachment was examined via a trypsinization assay using various TGF-β isomers in which the time taken to trypsinize cells from the surface provided a means of assessing the strength of attachment. Three TGF-β isomers (TGF-β1, 2 and 3), four combined forms (TGF-β(1+2), TGF-β(1+3), TGF-β(2+3) and TGF-β(1+2+3)) along with four different controls (BSA, HCl, BSA/HCl and negative control) were investigated in this study. The results indicated that treatment with TGF-β1, 2, 3 and HCl decreased cell attachment, however, this effect was significantly greater in the case of TGF-β3 (p<0.001) indicating perhaps that TGF-β3 does not act alone in cell detachment, but instead functions synergistically with signalling pathways that are dependent on the availability of hydrogen ions. Widefield Surface Plasmon Resonance (WSPR) microscope was also used to investigate cell surface interactions. PMID:26372305

  11. Generalized cell-dual-cell transformation and exact thresholds for percolation

    NASA Astrophysics Data System (ADS)

    Ziff, Robert M.

    2006-01-01

    Suggested by Scullard’s recent star-triangle relation for correlated bond systems, we propose a general “cell-dual-cell” transformation, which allows in principle an infinite variety of lattices with exact percolation thresholds to be generated. We directly verify Scullard’s site percolation thresholds, and derive the bond thresholds for his “martini” lattice (pc=1/2) and the “A” lattice ( pc=0.625457… , solution to p5-4p4+3p3+2p2-1=0 ). We also present a precise Monte Carlo test of the site threshold for the “A” lattice.

  12. Phosphorylation of tyrosine residues of calmodulin in Rous sarcoma virus-transformed cells.

    PubMed Central

    Fukami, Y; Nakamura, T; Nakayama, A; Kanehisa, T

    1986-01-01

    Calmodulin, a wide-spread eukaryotic Ca2+-binding protein, was phosphorylated at its tyrosine residues in Rous sarcoma virus (RSV)-transformed chicken and rat cells but not in normal chicken embryo fibroblasts. In contrast, serine and threonine phosphorylation of calmodulin was found to occur in both normal and virus-transformed cells. In an in vitro system containing purified src kinase from RSV-transformed cells, tyrosine phosphorylation of calmodulin by the src kinase was inhibited by Ca2+. Furthermore, the tyrosine-phosphorylated calmodulin showed slower mobility than that of nonphosphorylated calmodulin in NaDodSO4/polyacrylamide gel electrophoresis when Ca2+ was present. These results suggest that the structure of calmodulin Ca2+ complex may be altered by tyrosine phosphorylation. It is thus inferred that Ca2+ may regulate the level of tyrosine phosphorylation of calmodulin in RSV-transformed cells, and phosphorylation in turn may attenuate the function of this protein in vivo. Images PMID:2424020

  13. Cross-Analysis of Gene and miRNA Genome-Wide Expression Profiles in Human Fibroblasts at Different Stages of Transformation

    PubMed Central

    Ostano, Paola; Bione, Silvia; Belgiovine, Cristina; Chiodi, Ilaria; Ghimenti, Chiara; Scovassi, A. Ivana; Chiorino, Giovanna

    2012-01-01

    Abstract We have developed a cellular system constituted of human telomerase immortalized fibroblasts that gradually underwent neoplastic transformation during propagation in culture. We exploited this cellular system to investigate gene and miRNA transcriptional programs in cells at different stages of propagation, representing five different phases along the road to transformation, from non-transformed cells up to tumorigenic and metastatic ones. Here we show that gene and miRNA expression profiles were both able to divide cells according to their transformation phase. We identified more than 1,700 genes whose expression was highly modulated in cells at at least one propagation stage and we found that the number of modulated genes progressively increased at successive stages of transformation. These genes identified processes significantly deregulated in tumorigenic cells, such as cell differentiation, cell movement and extracellular matrix remodeling, cell cycle and apoptosis, together with upregulation of several cancer testis antigens. Alterations in cell cycle, apoptosis, and cancer testis antigen expression were particular hallmarks of metastatic cells. A parallel deregulation of a panel of 43 miRNAs strictly connected to the p53 and c-Myc pathways and with oncogenic/oncosuppressive functions was also found. Our results indicate that cen3tel cells can be a useful model for human fibroblast neoplastic transformation, which appears characterized by complex and peculiar alterations involving both genetic and epigenetic reprogramming, whose elucidation could provide useful insights into regulatory networks underlying cancerogenesis. PMID:22321013

  14. Resveratrol mediated cell death in cigarette smoke transformed breast epithelial cells is through induction of p21Waf1/Cip1 and inhibition of long patch base excision repair pathway

    SciTech Connect

    Mohapatra, Purusottam; Satapathy, Shakti Ranjan; Das, Dipon; Siddharth, Sumit; Choudhuri, Tathagata; Kundu, Chanakya Nath

    2014-03-15

    Cigarette smoking is a key factor for the development and progression of different cancers including mammary tumor in women. Resveratrol (Res) is a promising natural chemotherapeutic agent that regulates many cellular targets including p21, a cip/kip family of cyclin kinase inhibitors involved in DNA damage-induced cell cycle arrest and blocking of DNA replication and repair. We have recently shown that cigarette smoke condensate (CSC) prepared from commercially available Indian cigarette can cause neoplastic transformation of normal breast epithelial MCF-10A cell. Here we studied the mechanism of Res mediated apoptosis in CSC transformed (MCF-10A-Tr) cells in vitro and in vivo. Res mediated apoptosis in MCF-10A-Tr cells was a p21 dependent event. It increased the p21 protein expression in MCF-10A-Tr cells and MCF-10A-Tr cells-mediated tumors in xenograft mice. Res treatment reduced the tumor size(s) and expression of anti-apoptotic proteins (e.g. PI3K, AKT, NFκB) in solid tumor. The expressions of cell cycle regulatory (Cyclins, CDC-2, CDC-6, etc.), BER associated (Pol-β, Pol-δ, Pol-ε, Pol-η, RPA, Fen-1, DNA-Ligase-I, etc.) proteins and LP-BER activity decreased in MCF-10A-Tr cells but remain significantly unaltered in isogenic p21 null MCF-10A-Tr cells after Res treatment. Interestingly, no significant changes were noted in SP-BER activity in both the cell lines after Res exposure. Finally, it was observed that increased p21 blocks the LP-BER in MCF-10A-Tr cells by increasing its interaction with PCNA via competing with Fen-1 after Res treatment. Thus, Res caused apoptosis in CSC-induced cancer cells by reduction of LP-BER activity and this phenomenon largely depends on p21. - Highlights: • Resveratrol (Res) caused reduction of MCF-10A-Tr cell growth by inducing apoptosis. • Res caused cell cycle arrest and DNA damage in p21 dependent manner. • Res mediated LP-BER reduction in MCF-10A-Tr cells was a p21 dependent phenomenon. • Res inhibits BER and PI

  15. Oncogenic transformation through the cell cycle and the LET dependent inverse dose rate effect

    NASA Technical Reports Server (NTRS)

    Geard, C. R.; Miller, R. C.; Brenner, D. J.; Hall, E. J.; Wachholz, B. W. (Principal Investigator)

    1994-01-01

    Synchronised populations of mouse C3H/10T-1/2 cells were obtained by a stringent mitotic dislodgment procedure. Mitotic cells rapidly attach and progress sequentially through the cell cycle. Irradiation (3 Gy of X rays) was carried out at intervals from 0 to 18 h after initiating cell cycle progression of the mitotic cells. Oncogenic transformation was enhanced 10-fold over cells irradiated soon after replating (G1 and S phases) for cells in a near 2 h period corresponding to cells in G2 phase but not in mitosis. The cell surviving fraction had a 2-1/2-fold variation with resistant peaks corresponding to the late G1 and late S phases. These findings provide experimental support for the hypothesis initiated by Rossi and Kellerer and developed by Brenner and Hall to explain the LET dependent inverse dose rate effect for oncogenic transformation.

  16. Cancer related fatigue syndrome in neoplastic diseases.

    PubMed

    Franc, Magdalena; Michalski, Bogdan; Kuczerawy, Ilona; Szuta, Justyna; Skrzypulec-Plinta, Violetta

    2014-12-01

    Fatigue is one of the most important factors which has a considerable influence on treatment and the life quality of oncological patients. The fatigue syndrome is often diagnosed during cancer treatment and this syndrome is not related to the physical effort. Cancer related fatigue is a patient's subjective, psychologically, physically and emotionally based feeling. It is disproportionate to patient's daily activity. The pathogenesis of this syndrome remains still unknown. However, on the basis of various questionnaires, it is possible to test the disease's complex nature. Cancer related fatigue causes deterioration of patient's life along with lower motivation to struggle with the disease. It is thought that the factor which increases the incidence of cancer related fatigue is a long-term use of drugs such as opioids, benzodiazepine, and medicines containing codeine, tranquilizers, anxiolytics and antidepressants. On the basis of the results, one can choose an appropriate treatment method for cancer related fatigue such as rehabilitation, psychotherapy or public assistance. A great number of patients consider excessive fatigue a typical concomitant symptom in neoplastic disease; therefore, they do not report it. It is of a paramount importance to make patients aware of the fact that cancer related fatigue is a serious disease which can be treated. PMID:26327879

  17. Cancer related fatigue syndrome in neoplastic diseases

    PubMed Central

    Michalski, Bogdan; Kuczerawy, Ilona; Szuta, Justyna; Skrzypulec-Plinta, Violetta

    2014-01-01

    Fatigue is one of the most important factors which has a considerable influence on treatment and the life quality of oncological patients. The fatigue syndrome is often diagnosed during cancer treatment and this syndrome is not related to the physical effort. Cancer related fatigue is a patient's subjective, psychologically, physically and emotionally based feeling. It is disproportionate to patient's daily activity. The pathogenesis of this syndrome remains still unknown. However, on the basis of various questionnaires, it is possible to test the disease's complex nature. Cancer related fatigue causes deterioration of patient's life along with lower motivation to struggle with the disease. It is thought that the factor which increases the incidence of cancer related fatigue is a long-term use of drugs such as opioids, benzodiazepine, and medicines containing codeine, tranquilizers, anxiolytics and antidepressants. On the basis of the results, one can choose an appropriate treatment method for cancer related fatigue such as rehabilitation, psychotherapy or public assistance. A great number of patients consider excessive fatigue a typical concomitant symptom in neoplastic disease; therefore, they do not report it. It is of a paramount importance to make patients aware of the fact that cancer related fatigue is a serious disease which can be treated. PMID:26327879

  18. Matrix Metalloproteinases in Non-Neoplastic Disorders

    PubMed Central

    Tokito, Akinori; Jougasaki, Michihisa

    2016-01-01

    The matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases belonging to the metzincin superfamily. There are at least 23 members of MMPs ever reported in human, and they and their substrates are widely expressed in many tissues. Recent growing evidence has established that MMP not only can degrade a variety of components of extracellular matrix, but also can cleave and activate various non-matrix proteins, including cytokines, chemokines and growth factors, contributing to both physiological and pathological processes. In normal conditions, MMP expression and activity are tightly regulated via interactions between their activators and inhibitors. Imbalance among these factors, however, results in dysregulated MMP activity, which causes tissue destruction and functional alteration or local inflammation, leading to the development of diverse diseases, such as cardiovascular disease, arthritis, neurodegenerative disease, as well as cancer. This article focuses on the accumulated evidence supporting a wide range of roles of MMPs in various non-neoplastic diseases and provides an outlook on the therapeutic potential of inhibiting MMP action. PMID:27455234

  19. Role of reactive oxygen species in arsenic-induced transformation of human lung bronchial epithelial (BEAS-2B) cells

    SciTech Connect

    Zhang, Zhuo; Pratheeshkumar, Poyil; Budhraja, Amit; Son, Young-Ok; Kim, Donghern; Shi, Xianglin

    2015-01-09

    Highlights: • Short term exposure of cells to arsenic causes ROS generation. • Chronical exposure of cells to arsenic causes malignant cell transformation. • Inhibition of ROS generation reduces cell transformation by arsenic. • Arsenic-transformed cells exhibit reduced capacity of generating ROS. • Arsenic-transformed cells exhibit increased levels of antioxidants. - Abstract: Arsenic is an environmental carcinogen, its mechanisms of carcinogenesis remain to be investigated. Reactive oxygen species (ROS) are considered to be important. A previous study (Carpenter et al., 2011) has measured ROS level in human lung bronchial epithelial (BEAS-2B) cells and arsenic-transformed BEAS-2B cells and found that ROS levels were higher in transformed cells than that in parent normal cells. Based on these observations, the authors concluded that cell transformation induced by arsenic is mediated by increased cellular levels of ROS. This conclusion is problematic because this study only measured the basal ROS levels in transformed and parent cells and did not investigate the role of ROS in the process of arsenic-induced cell transformation. The levels of ROS in arsenic-transformed cells represent the result and not the cause of cell transformation. Thus question concerning whether ROS are important in arsenic-induced cell transformation remains to be answered. In the present study, we used expressions of catalase (antioxidant against H{sub 2}O{sub 2}) and superoxide dismutase 2 (SOD2, antioxidant against O{sub 2}{sup ·−}) to decrease ROS level and investigated their role in the process of arsenic-induced cell transformation. Our results show that inhibition of ROS by antioxidant enzymes decreased arsenic-induced cell transformation, demonstrating that ROS are important in this process. We have also shown that in arsenic-transformed cells, ROS generation was lower and levels of antioxidants are higher than those in parent cells, in a disagreement with the previous

  20. Phosphorylated Ribosomal Protein S6 Is Required for Akt-Driven Hyperplasia and Malignant Transformation, but Not for Hypertrophy, Aneuploidy and Hyperfunction of Pancreatic β-Cells

    PubMed Central

    Wittenberg, Avigail Dreazen; Azar, Shahar; Klochendler, Agnes; Stolovich-Rain, Miri; Avraham, Shlomit; Birnbaum, Lea; Binder Gallimidi, Adi; Katz, Maximiliano; Dor, Yuval; Meyuhas, Oded

    2016-01-01

    Constitutive expression of active Akt (Akttg) drives hyperplasia and hypertrophy of pancreatic β-cells, concomitantly with increased insulin secretion and improved glucose tolerance, and at a later stage the development of insulinoma. To determine which functions of Akt are mediated by ribosomal protein S6 (rpS6), an Akt effector, we generated mice that express constitutive Akt in β-cells in the background of unphosphorylatable ribosomal protein S6 (rpS6P-/-). rpS6 phosphorylation deficiency failed to block Akttg-induced hypertrophy and aneuploidy in β-cells, as well as the improved glucose homeostasis, indicating that Akt carries out these functions independently of rpS6 phosphorylation. In contrast, rpS6 phosphorylation deficiency efficiently restrained the reduction in nuclear localization of the cell cycle inhibitor p27, as well as the development of Akttg-driven hyperplasia and tumor formation in β-cells. In vitro experiments with Akttg and rpS6P-/-;Akttg fibroblasts demonstrated that rpS6 phosphorylation deficiency leads to reduced translation fidelity, which might underlie its anti-tumorigenic effect in the pancreas. However, the role of translation infidelity in tumor suppression cannot simply be inferred from this heterologous experimental model, as rpS6 phosphorylation deficiency unexpectedly elevated the resistance of Akttg fibroblasts to proteotoxic, genotoxic as well as autophagic stresses. In contrast, rpS6P-/- fibroblasts exhibited a higher sensitivity to these stresses upon constitutive expression of oncogenic Kras. The latter result provides a possible mechanistic explanation for the ability of rpS6 phosphorylation deficiency to enhance DNA damage and protect mice from Kras-induced neoplastic transformation in the exocrine pancreas. We propose that Akt1 and Kras exert their oncogenic properties through distinct mechanisms, even though both show addiction to rpS6 phosphorylation. PMID:26919188

  1. Phosphorylated Ribosomal Protein S6 Is Required for Akt-Driven Hyperplasia and Malignant Transformation, but Not for Hypertrophy, Aneuploidy and Hyperfunction of Pancreatic β-Cells.

    PubMed

    Wittenberg, Avigail Dreazen; Azar, Shahar; Klochendler, Agnes; Stolovich-Rain, Miri; Avraham, Shlomit; Birnbaum, Lea; Binder Gallimidi, Adi; Katz, Maximiliano; Dor, Yuval; Meyuhas, Oded

    2016-01-01

    Constitutive expression of active Akt (Akttg) drives hyperplasia and hypertrophy of pancreatic β-cells, concomitantly with increased insulin secretion and improved glucose tolerance, and at a later stage the development of insulinoma. To determine which functions of Akt are mediated by ribosomal protein S6 (rpS6), an Akt effector, we generated mice that express constitutive Akt in β-cells in the background of unphosphorylatable ribosomal protein S6 (rpS6P-/-). rpS6 phosphorylation deficiency failed to block Akttg-induced hypertrophy and aneuploidy in β-cells, as well as the improved glucose homeostasis, indicating that Akt carries out these functions independently of rpS6 phosphorylation. In contrast, rpS6 phosphorylation deficiency efficiently restrained the reduction in nuclear localization of the cell cycle inhibitor p27, as well as the development of Akttg-driven hyperplasia and tumor formation in β-cells. In vitro experiments with Akttg and rpS6P-/-;Akttg fibroblasts demonstrated that rpS6 phosphorylation deficiency leads to reduced translation fidelity, which might underlie its anti-tumorigenic effect in the pancreas. However, the role of translation infidelity in tumor suppression cannot simply be inferred from this heterologous experimental model, as rpS6 phosphorylation deficiency unexpectedly elevated the resistance of Akttg fibroblasts to proteotoxic, genotoxic as well as autophagic stresses. In contrast, rpS6P-/- fibroblasts exhibited a higher sensitivity to these stresses upon constitutive expression of oncogenic Kras. The latter result provides a possible mechanistic explanation for the ability of rpS6 phosphorylation deficiency to enhance DNA damage and protect mice from Kras-induced neoplastic transformation in the exocrine pancreas. We propose that Akt1 and Kras exert their oncogenic properties through distinct mechanisms, even though both show addiction to rpS6 phosphorylation. PMID:26919188

  2. Direct and efficient cellular transformation of primary rat mesenchymal precursor cells by KSHV.

    PubMed

    Jones, Tiffany; Ye, Fengchun; Bedolla, Roble; Huang, Yufei; Meng, Jia; Qian, Liwu; Pan, Hongyi; Zhou, Fuchun; Moody, Rosalie; Wagner, Brent; Arar, Mazen; Gao, Shou-Jiang

    2012-03-01

    Infections by viruses are associated with approximately 12% of human cancer. Kaposi's sarcoma-associated herpesvirus (KSHV) is causally linked to several malignancies commonly found in AIDS patients. The mechanism of KSHV-induced oncogenesis remains elusive, due in part to the lack of an adequate experimental system for cellular transformation of primary cells. Here, we report efficient infection and cellular transformation of primary rat embryonic metanephric mesenchymal precursor cells (MM cells) by KSHV. Cellular transformation occurred at as early as day 4 after infection and in nearly all infected cells. Transformed cells expressed hallmark vascular endothelial, lymphatic endothelial, and mesenchymal markers and efficiently induced tumors in nude mice. KSHV established latent infection in MM cells, and lytic induction resulted in low levels of detectable infectious virions despite robust expression of lytic genes. Most KSHV-induced tumor cells were in a latent state, although a few showed heterogeneous expression of lytic genes. This efficient system for KSHV cellular transformation of primary cells might facilitate the study of growth deregulation mechanisms resulting from KSHV infections. PMID:22293176

  3. Transformation of Merkel cell carcinoma to ganglioneuroblastoma in intracranial metastasis.

    PubMed

    Lach, Boleslaw; Joshi, Sangeeta S; Murty, Naresh; Huq, Nasimul

    2014-09-01

    Merkel cell carcinoma is an aggressive neuroendocrine tumor occasionally demonstrating aberrant differentiation to other epithelial and nonepithelial cell lines. We describe a case of Merkel cell carcinoma displaying unique patterns of differentiation in the primary focus and brain metastasis. The skin primary was almost uniformly small cell carcinoma positive for epithelial and neuroendocrine markers, with a few glial fibrillary acidic protein- and cytokeratin 20-positive cells. The neoplasm contained giant cells immunoreactive for neurofilament and negative for epithelial markers. The neck lymph node metastasis was a typical neuroendocrine Merkel cell carcinoma positive for cytokeratin 20. A solitary dural intracranial metastasis displayed features of aggressive ganglioneuroblastoma, expressing many neuronal antigens with no evidence of glial or epithelial differentiation. After total gross resection, the tumor recurred within 3 months, and the patient developed skeletal metastases and died 6 months after craniotomy. PMID:24996688

  4. Contact-Inhibited Revertant Cell Lines Isolated from Simian Virus 40-Transformed Cells III. Concanavalin A-Selected Revertant Cells

    PubMed Central

    Culp, Lloyd A.; Black, Paul H.

    1972-01-01

    Contact-inhibited variants have been isolated by treatment of simian virus 40 (SV40)-transformed Balb/c 3T3 cells (SVT2) with the plant lectin concanavalin A. These con A revertant cells exhibit the following properties: (i) they resemble 3T3 cells morphologically and grow to saturation densities which are similar to that of 3T3 cells; (ii) they synthesize the SV40-specific T antigen and yield infectious virus after fusion with permissive monkey cells; (iii) they contain a high sialic acid content similar to that of 3T3 cells and not to that of SVT2 cells; sialic acid composition was found to be independent of serum concentration; (iv) they contain more chromosomes with the average number in the tetraploid range than the SVT2 cells from which they were derived; and (v) SVT2 and revertant cells, confluent or subconfluent, produce more collagen than Balb/3T3 cells. The relationship of surface membrane properties to contact inhibition of growth and the mechanisms for generating revertant cells are discussed. Images PMID:4336561

  5. Agrobacterium-mediated transformation of Vitis Cv. Monastrell suspension-cultured cells: Determination of critical parameters.

    PubMed

    Chu, Mingyu; Quiñonero, Carmen; Akdemir, Hülya; Alburquerque, Nuria; Pedreño, María Ángeles; Burgos, Lorenzo

    2016-05-01

    Although some works have explored the transformation of differentiated, embryogenic suspension-cultured cells (SCC) to produce transgenic grapevine plants, to our knowledge this is one of the first reports on the efficient transformation of dedifferentiated Vitis vinifera cv Monastrell SCC. This protocol has been developed using the sonication-assisted Agrobacterium-mediated transformation (SAAT) method. A construct harboring the selectable nptII and the eyfp/IV2 marker genes was used in the study and transformation efficiencies reached over 50 independent transformed SCC per gram of infected cells. Best results were obtained when cells were infected at the exponential phase. A high density plating (500 mg/dish) gave significantly better results. As selective agent, kanamycin was inefficient for the selection of Monastrell transformed SCC since wild type cells were almost insensitive to this antibiotic whereas application of paromomycin resulted in very effective selection. Selected eyfp-expressing microcalli were grown until enough tissue was available to scale up a new transgenic SCC. These transgenic SCC lines were evaluated molecularly and phenotypically demonstrating the presence and integration of both transgenes, the absence of Agrobacterium contamination and the ability of the transformed SCC to grow in highly selective liquid medium. The methodology described here opens the possibility of improving the production of valuable metabolites. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:725-734, 2016. PMID:26871543

  6. Role of Pin1 in UVA-induced cell proliferation and malignant transformation in epidermal cells

    SciTech Connect

    Han, Chang Yeob; Hien, Tran Thi; Lim, Sung Chul; Kang, Keon Wook

    2011-06-24

    Highlights: {yields} Pin1 expression is enhanced by low energy UVA irradiation in both skin tissues of hairless mice and JB6 C141 epidermal cells. {yields} UVA irradiation increases activator protein-1 activity and cyclin D1 in a Pin1-dependent manner. {yields} UVA potentiates EGF-inducible, anchorage-independent growth of epidermal cells, and this is suppressed by Pin1 inhibition or by anti-oxidant. -- Abstract: Ultraviolet A (UVA) radiation ({lambda} = 320-400 nm) is considered a major cause of human skin cancer. Pin1, a peptidyl prolyl isomerase, is overexpressed in most types of cancer tissues and plays an important role in cell proliferation and transformation. Here, we demonstrated that Pin1 expression was enhanced by low energy UVA (300-900 mJ/cm{sup 2}) irradiation in both skin tissues of hairless mice and JB6 C141 epidermal cells. Exposure of epidermal cells to UVA radiation increased cell proliferation and cyclin D1 expression, and these changes were blocked by Pin1 inhibition. UVA irradiation also increased activator protein-1 (AP-1) minimal reporter activity and nuclear levels of c-Jun, but not c-Fos, in a Pin1-dependent manner. The increases in Pin1 expression and in AP-1 reporter activity in response to UVA were abolished by N-acetylcysteine (NAC) treatment. Finally, we found that pre-exposure of JB6 C141 cells to UVA potentiated EGF-inducible, anchorage-independent growth, and this effect was significantly suppressed by Pin1inhibition or by NAC.

  7. Small Tumor Antigen of Polyomaviruses: Role in Viral Life Cycle and Cell Transformation

    PubMed Central

    Khalili, Kamel; Sariyer, Ilker Kudret; Safak, Mahmut

    2009-01-01

    The regulatory proteins of polyomaviruses, including small and large T antigens, play important roles, not only in the viral life cycle but also in virus-induced cell transformation. Unlike many other tumor viruses, the transforming proteins of polyomaviruses have no cellular homologs but rather exert their effects mostly by interacting with cellular proteins that control fundamental processes in the regulation of cell proliferation and the cell cycle. Thus, they have proven to be valuable tools to identify specific signaling pathways involved in tumor progression. Elucidation of these pathways using polyomavirus transforming proteins as tools is critically important in understanding fundamental regulatory mechanisms and hence to develop effective therapeutic strategies against cancer. In this short review, we will focus on the structural and functional features of one polyomavirus transforming protein, that is, the small t-antigen of the human neurotropic JC virus (JCV) and the simian virus, SV40. PMID:18022798

  8. Expression of complete transplantation antigens by mammalian cells transformed with truncated class I genes.

    PubMed

    Goodenow, R S; Stroynowski, I; McMillan, M; Nicolson, M; Eakle, K; Sher, B T; Davidson, N; Hood, L

    1983-02-01

    Mouse L cells transformed with the cloned class I genes of the major histocompatibility complex of the mouse express transplantation antigens with serological determinants of the donor haplotype. However, transformation with the truncated subclones of a BALB/c H-2Ld gene containing the exons encoding the external domains also leads to the production of cells which express complete cell-surface molecules. Moreover, full-length products of the foreign haplotype, as judged by serological and biochemical criteria, are generated independently of the use of carrier DNA in transformation. However, the frequency of productive transformation is substantially less than that obtained with a complete gene. The most plausible explanation for these phenomena involves homologous recombination between host chromosomal and donor class I sequences. PMID:6823314

  9. Chemicals as the Sole Transformers of Cell Fate.

    PubMed

    Ebrahimi, Behnam

    2016-05-30

    Forced expression of lineage-specific transcription factors in somatic cells can result in the generation of different cell types in a process named direct reprogramming, bypassing the pluripotent state. However, the introduction of transgenes limits the therapeutic applications of the produced cells. Numerous small-molecules have been introduced in the field of stem cell biology capable of governing self-renewal, reprogramming, transdifferentiation and regeneration. These chemical compounds are versatile tools for cell fate conversion toward desired outcomes. Cell fate conversion using small-molecules alone (chemical reprogramming) has superiority over arduous traditional genetic techniques in several aspects. For instance, rapid, transient, and reversible effects in activation and inhibition of functions of specific proteins are of the profits of small-molecules. They are cost-effective, have a long half-life, diversity on structure and function, and allow for temporal and flexible regulation of signaling pathways. Additionally, their effects could be adjusted by fine-tuning concentrations and combinations of different small-molecules. Therefore, chemicals are powerful tools in cell fate conversion and study of stem cell and chemical biology in vitro and in vivo. Moreover, transgene-free and chemical-only transdifferentiation approaches provide alternative strategies for the generation of various cell types, disease modeling, drug screening, and regenerative medicine. The current review gives an overview of the recent findings concerning transdifferentiation by only small-molecules without the use of transgenes. PMID:27426081

  10. Chemicals as the Sole Transformers of Cell Fate

    PubMed Central

    Ebrahimi, Behnam

    2016-01-01

    Forced expression of lineage-specific transcription factors in somatic cells can result in the generation of different cell types in a process named direct reprogramming, bypassing the pluripotent state. However, the introduction of transgenes limits the therapeutic applications of the produced cells. Numerous small-molecules have been introduced in the field of stem cell biology capable of governing self-renewal, reprogramming, transdifferentiation and regeneration. These chemical compounds are versatile tools for cell fate conversion toward desired outcomes. Cell fate conversion using small-molecules alone (chemical reprogramming) has superiority over arduous traditional genetic techniques in several aspects. For instance, rapid, transient, and reversible effects in activation and inhibition of functions of specific proteins are of the profits of small-molecules. They are cost-effective, have a long half-life, diversity on structure and function, and allow for temporal and flexible regulation of signaling pathways. Additionally, their effects could be adjusted by fine-tuning concentrations and combinations of different small-molecules. Therefore, chemicals are powerful tools in cell fate conversion and study of stem cell and chemical biology in vitro and in vivo. Moreover, transgene-free and chemical-only transdifferentiation approaches provide alternative strategies for the generation of various cell types, disease modeling, drug screening, and regenerative medicine. The current review gives an overview of the recent findings concerning transdifferentiation by only small-molecules without the use of transgenes. PMID:27426081

  11. Transformation of quiescent adult oligodendrocyte precursor cells into malignant glioma through a multistep reactivation process

    PubMed Central

    Galvao, Rui Pedro; Kasina, Anita; McNeill, Robert S.; Harbin, Jordan E.; Foreman, Oded; Verhaak, Roel G. W.; Nishiyama, Akiko; Miller, C. Ryan; Zong, Hui

    2014-01-01

    How malignant gliomas arise in a mature brain remains a mystery, hindering the development of preventive and therapeutic interventions. We previously showed that oligodendrocyte precursor cells (OPCs) can be transformed into glioma when mutations are introduced perinatally. However, adult OPCs rarely proliferate compared with their perinatal counterparts. Whether these relatively quiescent cells have the potential to transform is unknown, which is a critical question considering the late onset of human glioma. Additionally, the premalignant events taking place between initial mutation and a fully developed tumor mass are particularly poorly understood in glioma. Here we used a temporally controllable Cre transgene to delete p53 and NF1 specifically in adult OPCs and demonstrated that these cells consistently give rise to malignant gliomas. To investigate the transforming process of quiescent adult OPCs, we then tracked these cells throughout the premalignant phase, which revealed a dynamic multistep transformation, starting with rapid but transient hyperproliferative reactivation, followed by a long period of dormancy, and then final malignant transformation. Using pharmacological approaches, we discovered that mammalian target of rapamycin signaling is critical for both the initial OPC reactivation step and late-stage tumor cell proliferation and thus might be a potential target for both glioma prevention and treatment. In summary, our results firmly establish the transforming potential of adult OPCs and reveal an actionable multiphasic reactivation process that turns slowly dividing OPCs into malignant gliomas. PMID:25246577

  12. Compartmentalized Ras Proteins Transform NIH 3T3 Cells with Different Efficiencies▿ †

    PubMed Central

    Cheng, Chiang-Min; Li, Huiling; Gasman, Stéphane; Huang, Jian; Schiff, Rachel; Chang, Eric C.

    2011-01-01

    Ras GTPases were long thought to function exclusively from the plasma membrane (PM). However, a current model suggests that Ras proteins can compartmentalize to regulate different functions, and an oncogenic H-Ras mutant that is restricted to the endomembrane can still transform cells. In this study, we demonstrated that cells transformed by endomembrane-restricted oncogenic H-Ras formed tumors in nude mice. To define downstream targets of endomembrane Ras pathways, we analyzed Cdc42, which concentrates in the endomembrane and has been shown to act downstream of Ras in Schizosaccharomyces pombe. Our data show that cell transformation induced by endomembrane-restricted oncogenic H-Ras was blocked when Cdc42 activity was inhibited. Moreover, H-Ras formed a complex with Cdc42 on the endomembrane, and this interaction was enhanced when H-Ras was GTP bound or when cells were stimulated by growth factors. H-Ras binding evidently induced Cdc42 activation by recruiting and/or activating Cdc42 exchange factors. In contrast, when constitutively active H-Ras was restricted to the PM by fusing to a PM localization signal from the Rit GTPase, the resulting protein did not detectably activate Cdc42 although it activated Raf-1 and efficiently induced hallmarks of Ras-induced senescence in human BJ foreskin fibroblasts. Surprisingly, PM-restricted oncogenic Ras when expressed alone could only weakly transform NIH 3T3 cells; however, when constitutively active Cdc42 was coexpressed, together they transformed cells much more efficiently than either one alone. These data suggest that efficient cell transformation requires Ras proteins to interact with Cdc42 on the endomembrane and that in order for a given Ras protein to fully transform cells, multiple compartment-specific Ras pathways need to work cooperatively. PMID:21189290

  13. T24 human bladder carcinoma cells with activated Ha-ras protooncogene: Nontumorigenic cells susceptible to malignant transformation with carcinogen

    SciTech Connect

    Senger, D.R.; Perruzzi, C.A.; Ali, I.U. )

    1988-07-01

    A comparative analysis of T24 human bladder carcinoma cells and N-methyl-N{prime}-nitro-N-nitrosoguanidine (MeNNG)-transformed derivatives (MeNNG-T24) revealed the following: (i) The presence of an activated c-Ha-ras gene (in the absence of the normal allele) is sufficient to confer upon T24 cells a tumor-associated phenotype. (ii) MeNNG-transformed T24 cells not only acquire tumor-associated (in vitro) traits (growth in soft agar and rhodamine retention) but, are highly tumorigenic in nude mice. (iii) It is possible to render T24 cells tumorigenic by chemical transformation; therefore, the reason that T24 cells lack tumorigenicity is not because of possible incompatibilities between these cells and nude mice but, in fact, because T24 cells are not malignant. (iv) The loss of expression of a transformation-related M{sub r} 67,000 phosphoprotein by MeNNG-T24 cells after explanation of these cells from nude mouse tumors to in vitro culture indicates that culture conditions can be responsible for rapid phenotypic conversion of human tumor cell lines.

  14. Transforming ocular surface stem cell research into successful clinical practice

    PubMed Central

    Sangwan, Virender S; Jain, Rajat; Basu, Sayan; Bagadi, Anupam B; Sureka, Shraddha; Mariappan, Indumathi; MacNeil, Sheila

    2014-01-01

    It has only been a quarter of a century since the discovery of adult stem cells at the human corneo-scleral limbus. These limbal stem cells are responsible for generating a constant and unending supply of corneal epithelial cells throughout life, thus maintaining a stable and uniformly refractive corneal surface. Establishing this hitherto unknown association between ocular surface disease and limbal dysfunction helped usher in therapeutic approaches that successfully addressed blinding conditions such as ocular burns, which were previously considered incurable. Subsequent advances in ocular surface biology through basic science research have translated into innovations that have made the surgical technique of limbal stem cell transplantation simpler and more predictable. This review recapitulates the basic biology of the limbus and the rationale and principles of limbal stem cell transplantation in ocular surface disease. An evidence-based algorithm is presented, which is tailored to clinical considerations such as laterality of affliction, severity of limbal damage and concurrent need for other procedures. Additionally, novel findings in the form of factors influencing the survival and function of limbal stem cells after transplantation and the possibility of substituting limbal cells with epithelial stem cells of other lineages is also discussed. Finally this review focuses on the future directions in which both basic science and clinical research in this field is headed. PMID:24492499

  15. Indomethacin sensitizes resistant transformed cells to macrophage cytotoxicity.

    PubMed

    Totary-Jain, Hana; Sionov, Ronit Vogt; Gallily, Ruth

    2016-08-01

    Activated macrophages are well known to exhibit anti-tumor properties. However, certain cell types show intrinsic resistance. Searching for a mechanism that could explain this phenomenon, we observed that the supernatant of resistant cells could confer resistance to otherwise sensitive tumor cells, suggesting the presence of a secreted suppressor factor. The effect was abolished upon dialysis, indicating that the suppressor factor has a low molecular weight. Further studies showed that prostaglandin E2 (PGE2) is secreted by the resistant tumor cells and that inhibition of PGE2 production by indomethacin, a cyclooxygenase (COX) inhibitor, eliminated the macrophage suppression factor from the supernatant, and sensitized the resistant tumor cells to macrophage cytotoxicity. This study emphasizes the important role of tumor-secreted PGE2 in escaping macrophage surveillance and justifies the use of COX inhibitors as an adjuvant for improving tumor immunotherapy. PMID:27210423

  16. Metal mixture (As-Cd-Pb)-induced cell transformation is modulated by OLA1.

    PubMed

    Martínez-Baeza, Elia; Rojas, Emilio; Valverde, Mahara

    2016-07-01

    Environmental pollutants are complex mixtures in which metals are ubiquitous. Metal mixtures of arsenic, cadmium and lead are present in the occupational environment and generate health effects such as cardiovascular, renal and cancer diseases. Cell transformation induced by metal mixtures that depend on reactive oxygen species (ROS) generation, cell viability maintenance and avoidance of senescence was previously reported by our group. The aim of the present study was to explore the role of a Obg-like ATPase1 (OLA1) in the cell transformation of BALB/c 3T3 A31-1-1 clonal cells induced by a metal mixture (2 µM NaAsO2, 2 µM CdCl2 and 5 µM Pb(C2H3O2)2 3H2O) through ROS generation. The interest in OLA1 is justified because this protein has been proposed to be a negative regulator of the cellular antioxidant response. Small interfering RNA (siRNA) was used to knockdown OLA1 before the initiation stage of the transformation assay. We evaluated (ROS) and OLA1 protein expression throughout the initiation and promotion stages of transformation. OLA1 knockdown modulated metal mixture-induced cell transformation more strongly when the metal mixture was an initiator stimulus than when it was a promoter. The ability of the metal mixture to initiate cell transformation was diminished by OLA1 knockdown, an effect that depended on intracellular ROS levels. The effect of OLA1 was synergistic with N-Acetyl-l-cysteine (NAC) co-treatment. Oxidative stress-associated transcription factors Egr1 and Smad were also down-regulated by the OLA1 knockdown, contributing to the rescue of metal mixture cell transformation. PMID:26984302

  17. Development of human epithelial cell systems for radiation risk assessment

    NASA Technical Reports Server (NTRS)

    Yang, C. H.; Craise, L. M.

    1994-01-01

    The most important health effect of space radiation for astronauts is cancer induction. For radiation risk assessment, an understanding of carcinogenic effect of heavy ions in human cells is most essential. In our laboratory, we have successfully developed a human mammary epithelial cell system for studying the neoplastic transformation in vitro. Growth variants were obtained from heavy ion irradiated immortal mammary cell line. These cloned growth variants can grow in regular tissue culture media and maintain anchorage dependent growth and density inhibition property. Upon further irradiation with high-Linear Energy Transfer (LET) radiation, transformed foci were found. Experimental results from these studies suggest that multiexposure of radiation is required to induce neoplastic tranformation of human epithelial cells. This multihits requirement may be due to high genomic stability of human cells. These growth variants can be useful model systems for space flight experiments to determine the carcinogenic effect of space radiation in human epithelial cells.

  18. Regulation of intracellular levels of calmodulin and tubulin in normal and transformed cells.

    PubMed Central

    Chafouleas, J G; Pardue, R L; Brinkley, B R; Dedman, J R; Means, A R

    1981-01-01

    Transformation of mammalian tissue culture cells by oncogenic viruses results in a 2-fold increase in the intracellular concentration of calmodulin quantitated by radioimmunoassay. The two pairs of companion cell lines used in this study were the Swiss mouse 3T3/simian virus 40-transformed 3T3 cells and the normal rat kidney (NRK)/Rous sarcoma virus-transformed NRK cells. The increased intracellular levels of calmodulin in the transformed cells are due to a greater increase in the rate of synthesis (3-fold) relative to the change in the rate of degradation (1.4-fold). On the other hand, no increases were observed in tubulin levels as quantitated by a colchicine-binding assay. The lack of change in tubulin concentration was accounted for by a 2-fold increase in the rate of degradation that is compensated by a similar increase in the rate of synthesis. The consequence of such changes in both transformed cell types is a 2-fold increase in the calmodulin-to-tubulin protein ratio relative to that in their nontransformed counterparts. PMID:6262788

  19. Transformation-deformation bands in C60 after the treatment in a shear diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Kulnitskiy, B. A.; Blank, V. D.; Levitas, V. I.; Perezhogin, I. A.; Popov, M. Yu; Kirichenko, A. N.; Tyukalova, E. V.

    2016-04-01

    The C60 fullerene has been investigated by high-resolution transmission electron microscopy and electron energy loss spectroscopy in a shear diamond anvil cell after applying pressure and shear deformation treatment of fcc phase. Shear transformation-deformation bands are revealed consisting of shear-strain-induced nanocrystals of linearly polymerized fullerene and polytypes, the triclinic, monoclinic, and hcp C60, fragments of amorphous structures, and voids. Consequently, after pressure release, the plastic strain retains five high pressure phases, which is potentially important for their engineering applications. Localized shear deformation initially seems contradictory because high pressure phases of C60 are stronger than the initial low pressure phase. However, this was explained by transformation-induced plasticity during localized phase transformations. It occurs due to a combination of applied stresses and internal stresses from a volume reduction during phase transformations. Localized phase transformations and plastic shear deformation promote each other, which produce positive mechanochemical feedback and cascading transformation-deformation processes. Since the plastic shear in a band is much larger than is expected based on the torsion angle, five phase transformations occur in the same region with no transformation outside the band. The results demonstrate that transformation kinetics cannot be analyzed in terms of prescribed shear, and methods to measure local shear should be developed.

  20. Misoprostol-induced radioprotection of Syrian hamster embryo cells in utero from cell death and oncogenic transformation

    SciTech Connect

    Miller, R.C.; LaNasa, P.; Hanson, W.R.

    1994-07-01

    Misoprostol, a PGE analog, is an effective radioprotector of murine intestine and hematopoietic and hair cell renewal systems. The radioprotective nature of misoprostol was extended to examine its ability to influence clonogenic cell survival and induction of oncogenic transformation in Syrian hamster embryo cells exposed to X rays in utero and assayed in vitro. Hamsters in their 12th day of pregnancy were injected subcutaneously with misoprostal, and 2 h later the pregnant hamsters were exposed to graded doses of X rays. Immediately after irradiation, hamsters were euthanized and embryonic tissue was explanted into culture dishes containing complete growth medium. After a 2-week incubation period, clongenic cell survival and morphologically transformed foci were determined. Survival of misoprostol-treated SHE cells was increased and yielded a dose reduction factor of 1.5 compared to SHE cells treated with X rays alone. In contrast, radiation-induced oncogenic transformation of misoprostol-treated cells was reduced by a factor of 20 compared to cells treated with X rays alone. These studies suggest that misoprostol not only protects normal tissues in vivo from acute radiation injury, but also protects cells, to a large extent, from injury leading to transforming events. 26 refs., 6 figs., 2 tabs.

  1. Objective scoring of transformed foci in BALB/c 3T3 cell transformation assay by statistical image descriptors.

    PubMed

    Urani, C; Corvi, R; Callegaro, G; Stefanini, F M

    2013-09-01

    In vitro cell transformation assays (CTAs) have been shown to model important stages of in vivo carcinogenesis and have the potential to predict carcinogenicity in humans. Advantages of CTAs are their ability of revealing both genotoxic and non-genotoxic carcinogens while reducing both experimental costs and the number of animals used. The endpoint of the CTA is foci formation, and requires classification under light microscopy based on morphology. Thus current limitations for the wide adoption of the assay partially depend on a fair degree of subjectivity in foci scoring. An objective evaluation may be obtained after separating foci from background monolayer in the digital image, and quantifying values of statistical descriptors which are selected to capture eye-scored morphological features. The aim of this study was to develop statistical descriptors to be applied to transformed foci of BALB/c 3T3, which cover foci size, multilayering and invasive cell growth into the background monolayer. Proposed descriptors were applied to a database of 407 foci images to explore the numerical features, and to illustrate open problems and potential solutions. PMID:23820182

  2. MafA has strong cell transforming ability but is a weak transactivator.

    PubMed

    Nishizawa, Makoto; Kataoka, Kohsuke; Vogt, Peter K

    2003-09-11

    The maf oncogene of the avian oncogenic retrovirus AS42 encodes a nuclear bZip protein, v-Maf, that recognizes sequences related to the AP-1 target site. The corresponding cellular protein, c-Maf belongs to a family of related bZip proteins together with MafA and MafB. In this paper, we compare the transactivation and cell transforming abilities of MafA and MafB along with two forms of the c-Maf protein. These proteins induce cellular transformation when expressed in chicken embryo fibroblasts. In reporter assays, MafA is a much less effective transactivator than the other Maf proteins, but unexpectedly shows the strongest activity in cell transformation. Chimeras of MafA and MafB correlate the strong cell transforming ability of MafA with its DNA-binding domain. The DNA-binding domain of MafA is also correlated with weak transactivation. Additional mutagenesis experiments show that transactivation and transformation by MafA are also controlled by phosphorylation of two conserved serine residues in the transactivation domain. Finally, we constructed MafA-estrogen receptor fusion molecules that show tightly hormone-dependent cell transforming ability. These regulatable constructs permit a kinetic characterization of target gene responses and facilitate discrimination between direct and indirect targets. PMID:12970735

  3. Reduction of estrogen-induced transformation of mouse mammary epithelial cells by N-acetylcysteine

    PubMed Central

    Venugopal, Divya; Zahid, Muhammad; Mailander, Paula C; Meza, Jane L.; Rogan, Eleanor G.; Cavalieri, Ercole L.; Chakravarti, Dhrubajyoti

    2009-01-01

    A growing number of studies indicate that breast cancer initiation is related to abnormal estrogen oxidation to form an excess of estrogen-3,4-quinones, which react with DNA to form depurinating adducts and induce mutations. This mechanism is often called estrogen genotoxicity. 4-catechol estrogens, precursors of the estrogen-3,4-quinones, were previously shown to account for most of the transforming and tumorigenic activity. We examined whether estrogen-induced transformation can be reduced by inhibiting the oxidation of a 4-catechol estrogen to its quinone. We demonstrate that E6 cells (a normal mouse epithelial cell line) can be transformed by a single treatment with a catechol estrogen or its quinone. The transforming activities of 4-hydroxyestradiol and estradiol-3,4-quinone were comparable. N-acetylcysteine, a common antioxidant, inhibited the oxidation of 4-hydroxyestradiol to the quinone and consequent formation of DNA adducts. It also drastically reduced estrogen-induced transformation of E6 cells. These results strongly implicate estrogen genotoxicity in mammary cell transformation. Since N-acetylcysteine is well-tolerated in clinical studies, it may be a promising candidate for breast cancer prevention. PMID:18226522

  4. Enhanced Agrobacterium-mediated transformation efficiencies in monocot cells is associated with attenuated defense responses.

    PubMed

    Zhang, Wan-Jun; Dewey, Ralph E; Boss, Wendy; Phillippy, Brian Q; Qu, Rongda

    2013-02-01

    Plant defense responses can lead to altered metabolism and even cell death at the sites of Agrobacterium infection, and thus lower transformation frequencies. In this report, we demonstrate that the utilization of culture conditions associated with an attenuation of defense responses in monocot plant cells led to highly improved Agrobacterium-mediated transformation efficiencies in perennial ryegrass (Lolium perenne L.). The removal of myo-inositol from the callus culture media in combination with a cold shock pretreatment and the addition of L-Gln prior to and during Agrobacterium-infection resulted in about 84 % of the treated calluses being stably transformed. The omission of myo-inositol from the callus culture media was associated with the failure of certain pathogenesis related genes to be induced after Agrobacterium infection. The addition of a cold shock and supplemental Gln appeared to have synergistic effects on infection and transformation efficiencies. Nearly 60 % of the stably transformed calluses regenerated into green plantlets. Calluses cultured on media lacking myo-inositol also displayed profound physiological and biochemical changes compared to ones cultured on standard growth media, such as reduced lignin within the cell walls, increased starch and inositol hexaphosphate accumulation, enhanced Agrobacterium binding to the cell surface, and less H(2)O(2) production after Agrobacterium infection. Furthermore, the cold treatment greatly reduced callus browning after infection. The simple modifications described in this report may have broad application for improving genetic transformation of recalcitrant monocot species. PMID:23242917

  5. RETINOIDAL BENZOIC ACIDS (AROTENOIDS) AND OTHER RETINOIDS INHIBIT IN VITRO TRANSFORMATION OF EPITHELIAL CELLS

    EPA Science Inventory

    Five retinoids were calcluated for their ability to inhibit N-methyl-N'nitro-N-nitrosoguanidine (MNNG)-induccd transformation of primary rat trachcal epithelial (RTE) cells in culture at concentrations that did not affect cell survival. wo retinoidal benzoic acids (arotcnoids), R...

  6. Cholera toxin treatment stimulates tumorigenicity of Rous sarcoma virus-transformed cells.

    PubMed Central

    Gottesman, M M; Roth, C; Vlahakis, G; Pastan, I

    1984-01-01

    Chinese hamster ovary cells transformed by Rous sarcoma virus form tumors poorly in nude mice. Tumorigenicity was markedly stimulated by pretreatment of the cells with cholera toxin, which raises cyclic AMP levels and activates cyclic AMP-dependent protein kinase. Increased tumorigenicity was manifested by a severalfold increase in the rate of tumor formation, as well as earlier appearance and more rapid growth of tumors. In contrast, spontaneously transformed Chinese hamster ovary cells showed decreased tumorigenicity after cholera toxin treatment. The activation of tumorigenic potential in Rous sarcoma virus-transformed Chinese hamster ovary cells by cholera toxin correlated with increased phosphorylation of the viral oncogene product pp60src and stimulation of its tyrosine kinase activity. PMID:6098816

  7. Room temperature electrocompetent bacterial cells improve DNA transformation and recombineering efficiency

    PubMed Central

    Tu, Qiang; Yin, Jia; Fu, Jun; Herrmann, Jennifer; Li, Yuezhong; Yin, Yulong; Stewart, A. Francis; Müller, Rolf; Zhang, Youming

    2016-01-01

    Bacterial competent cells are essential for cloning, construction of DNA libraries, and mutagenesis in every molecular biology laboratory. Among various transformation methods, electroporation is found to own the best transformation efficiency. Previous electroporation methods are based on washing and electroporating the bacterial cells in ice-cold condition that make them fragile and prone to death. Here we present simple temperature shift based methods that improve DNA transformation and recombineering efficiency in E. coli and several other gram-negative bacteria thereby economizing time and cost. Increased transformation efficiency of large DNA molecules is a significant advantage that might facilitate the cloning of large fragments from genomic DNA preparations and metagenomics samples. PMID:27095488

  8. Morphological transformation of an established Syrian hamster dermal cell with the anti-tussive agent noscapine.

    PubMed

    Porter, R; Parry, E M; Parry, J M

    1992-05-01

    Following exposure to the alkaloid noscapine hydrochloride over a concentration range of 10-120 micrograms/ml immortal cultures of Syrian hamster dermal fibroblasts were shown to undergo morphological transformation. The resultant transformed foci produced cultures which were anchorage independent as confirmed by soft agar tests. Karyotype analysis of a noscapine transformed colony demonstrated an increase in chromosome number compared to the immortal culture and the non-random duplication of a translocated chromosome 9 previously identified in the immortal culture. These data indicate that noscapine, which has previously been shown to be a spindle inhibitor and inducer of polyploidy in cultured cells, is capable of inducing in vitro cell transformation. Such data indicate a carcinogenic potential for this widely used cough suppressant. PMID:1602976

  9. Room temperature electrocompetent bacterial cells improve DNA transformation and recombineering efficiency.

    PubMed

    Tu, Qiang; Yin, Jia; Fu, Jun; Herrmann, Jennifer; Li, Yuezhong; Yin, Yulong; Stewart, A Francis; Müller, Rolf; Zhang, Youming

    2016-01-01

    Bacterial competent cells are essential for cloning, construction of DNA libraries, and mutagenesis in every molecular biology laboratory. Among various transformation methods, electroporation is found to own the best transformation efficiency. Previous electroporation methods are based on washing and electroporating the bacterial cells in ice-cold condition that make them fragile and prone to death. Here we present simple temperature shift based methods that improve DNA transformation and recombineering efficiency in E. coli and several other gram-negative bacteria thereby economizing time and cost. Increased transformation efficiency of large DNA molecules is a significant advantage that might facilitate the cloning of large fragments from genomic DNA preparations and metagenomics samples. PMID:27095488

  10. Characterization and immunotherapeutic potential of a monoclonal antibody against a ras oncogene transformed cell line

    SciTech Connect

    Ames, R.S. Jr.

    1986-01-01

    Transformed cells express cell surface antigens not present, or present in diminished amounts on normal cells. Monoclonal antibodies can be used to identify and biochemically characterize tumor-associated antigens. Monoclonal antibody (MoAb) 45-2D9 was produced by immunization of BALB/c mice with a transformed cell line (45-2D9) induced by transfection of NIH 3T3 cells with a c-H-ras oncogene in DNA isolated from a human lung carcinoma. By immunoperoxidase staining, this antibody binds to the 45-342 cells as well as to the ras transformed primary and 3 secondary transfectants, including the one used to induce 45-342, but not to other ras transformed cell lines. Murine tumors as well as human fetal and most normal adult tissues are not stained. This antibody does bind to a variety of human tumors, including lung adenocarcinomas, as well as breast, colon and esophageal carcinomas. The ability of MoAb 45-2D9 to target ricin toxin A chain (RTA) and radio-isotopes to gp74 expressing cells was investigated. An immunotoxin generated by conjugating RTA to MoAb 45-2D9 inhibits protein and DNA synthesis by the 45-342 cells. Radiolabeled antibody specifically localizes to and can be used to image subcutaneous and pulmonary gp74 expressing tumors in nu/nu mice. Monoclonal antibodies against oncogene transformed cell lines may be useful for the detection and characterization of tumor-associated antigens as well as for the development of new tumor therapeutic and diagnostic reagents.

  11. Manipulating mammalian cell by phase transformed titanium surface fabricated through ultra-short pulsed laser synthesis.

    PubMed

    Chinnakkannu Vijayakumar, Sivaprasad; Venkatakrishnan, Krishnan; Tan, Bo

    2016-01-15

    Developing cell sensitive indicators on interacting substrates that allows specific cell manipulation by a combination of physical, chemical or mechanical cues is a challenge for current biomaterials. Hence, various fabrication approaches have been created on a variety of substrates to mimic or create cell specific cues. However, to achieve cell specific cues a multistep process or a post-chemical treatment is often necessitated. So, a simple approach without any chemical or biological treatment would go a long way in developing bio-functionalized substrates to effectively modulate cell adhesion and interaction. The present investigation is aimed to study the manipulative activity induced by phase transformed titanium surface. An ultra-short laser is used to fabricate the phase transformed titanium surface where a polymorphic titanium oxide phases with titanium monoxide (TiO), tri-titanium oxide (Ti3O) and titanium dioxide (TiO2) have been synthesized on commercially pure titanium. Control over oxide phase transformed area was demonstrated via a combination of laser scanning time (laser pulse interaction time) and laser pulse widths (laser pulse to pulse separation time). The interaction of phase transformed titanium surface with NIH3T3 fibroblasts and MC3T3-E1 osteoblast cells developed a new bio-functionalized platforms on titanium based biomaterials to modulate cell migration and adhesion. The synthesized phase transformed titanium surface on the whole appeared to induce directional cues for cell migration with unique preferential cell adhesion unseen by other fabrication approaches. The precise bio-functionalization controllability exhibited during fabrication offers perceptible edge for developing a variety of smart bio-medical devices, implants and cardiovascular stents where the need in supressing specific cell adhesion and proliferation is of great demand. PMID:26546983

  12. Neoplastic lesions in CADASIL syndrome: report of an autopsied Japanese case

    PubMed Central

    Hassan, Wael Abdo; Udaka, Naoka; Ueda, Akihiko; Ando, Yukio; Ito, Takaaki

    2015-01-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) is one of the most common heritable causes of stroke and dementia in adults. The gene involved in the pathogenesis of CADASIL is Notch3; in which mutations affect the number of cysteine residues in its extracellular domain, causing its accumulation in small arteries and arterioles of the affected individuals. Besides the usual neurological and vascular findings that have been well-documented in CADASIL patients, this paper additionally reports multiple neoplastic lesions that were observed in an autopsy case of CADASIL patient; that could be related to Notch3 mutation. The patient was a 62 years old male, presented with a past history of neurological manifestations, including gait disturbance and frequent convulsive attacks. He was diagnosed as CADASIL syndrome with Notch3 Arg133Cys mutation. He eventually developed hemiplegia and died of systemic convulsions. Autopsy examination revealed-besides the vascular and neurological lesions characteristic of CADASIL- multiple neoplastic lesions in the body; carcinoid tumorlet and diffuse idiopathic pulmonary neuro-endocrine cell hyperplasia (DIPNECH) in the lungs, renal cell carcinoma (RCC), prostatic adenocarcinoma (ADC) and adenomatoid tumor of the epididymis. This report describes a spectrum of neoplastic lesions that were found in a case of CADASIL patient that could be related to Notch3 gene mutations. PMID:26261665

  13. Noninvasive monitoring of photodynamic therapy on skin neoplastic lesions using the optical attenuation coefficient measured by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Goulart, Viviane P.; dos Santos, Moisés O.; Latrive, Anne; Freitas, Anderson Z.; Correa, Luciana; Zezell, Denise M.

    2015-05-01

    Photodynamic therapy (PDT) has become a promising alternative for treatment of skin lesions such as squamous cell carcinoma. We propose a method to monitor the effects of PDT in a noninvasive way by using the optical attenuation coefficient (OAC) calculated from optical coherence tomography (OCT) images. We conducted a study on mice with chemically induced neoplastic lesions and performed PDT on these lesions using homemade photosensitizers. The response of neoplastic lesions to therapy was monitored using, at the same time, macroscopic clinical visualization, histopathological analysis, OCT imaging, and OCT-based attenuation coefficient measurement. Results with all four modalities demonstrated a positive response to treatment. The attenuation coefficient was found to be 1.4 higher in skin lesions than in healthy tissue and it decreased after therapy. This study shows that the OAC is a potential tool to noninvasively assess the evolution of skin neoplastic lesions with time after treatment.

  14. Transformation of Hamster Embryo Cells and Tumor Induction in Newborn Hamsters by Simian Adenovirus SV11

    PubMed Central

    Casto, Bruce C.

    1969-01-01

    Simian adenovirus, SV11, readily transformed hamster embryo cell cultures in vitro and produced tumors in vivo when inoculated into newborn hamsters. Foci consisting of small, loosely attached, rounded cells could be seen as early as 7 days postinoculation. Many of these cells contained several nuclei or the nucleus was multilobed. The cells grew without extensive cell to cell contact or formed small chains or clusters when passaged in vitro. This pattern of cell morphology and growth has not been reported with other simian or human adenovirus-transformed cells. Linearity of foci formation with virus dilution was observed when the virus multiplicity was less than 3 plaque-forming units (PFU)/cell. The PFU to focus-forming units ratio for SV11 was found to be 2 × 104 to 4 × 104, which is approximately 5- to 10-fold and 50- to 100-fold lower than those reported for simian adenovirus, SA7, and human adenovirus type 12, respectively. Cells transformed by SV11: (i) produced tumors when inoculated into young hamsters, (ii) contained tumor antigen which reacts with serum obtained from hamsters bearing SV11 passaged tumors, and (iii) could be propagated in vitro through an indefinite number of generations. Images PMID:5786181

  15. Atypical protein kinase C induces cell transformation by disrupting Hippo/Yap signaling

    PubMed Central

    Archibald, Andrew; Al-Masri, Maia; Liew-Spilger, Alyson; McCaffrey, Luke

    2015-01-01

    Epithelial cells are major sites of malignant transformation. Atypical protein kinase C (aPKC) isoforms are overexpressed and activated in many cancer types. Using normal, highly polarized epithelial cells (MDCK and NMuMG), we report that aPKC gain of function overcomes contact inhibited growth and is sufficient for a transformed epithelial phenotype. In 2D cultures, aPKC induced cells to grow as stratified epithelia, whereas cells grew as solid spheres of nonpolarized cells in 3D culture. aPKC associated with Mst1/2, which uncoupled Mst1/2 from Lats1/2 and promoted nuclear accumulation of Yap1. Of importance, Yap1 was necessary for aPKC-mediated overgrowth but did not restore cell polarity defects, indicating that the two are separable events. In MDCK cells, Yap1 was sequestered to cell–cell junctions by Amot, and aPKC overexpression resulted in loss of Amot expression and a spindle-like cell phenotype. Reexpression of Amot was sufficient to restore an epithelial cobblestone appearance, Yap1 localization, and growth control. In contrast, the effect of aPKC on Hippo/Yap signaling and overgrowth in NMuMG cells was independent of Amot. Finally, increased expression of aPKC in human cancers strongly correlated with increased nuclear accumulation of Yap1, indicating that the effect of aPKC on transformed growth by deregulating Hippo/Yap1 signaling may be clinically relevant. PMID:26269582

  16. Extracellular localization of catalase is associated with the transformed state of malignant cells.

    PubMed

    Böhm, Britta; Heinzelmann, Sonja; Motz, Manfred; Bauer, Georg

    2015-12-01

    Oncogenic transformation is dependent on activated membrane-associated NADPH oxidase (NOX). However, the resultant extracellular superoxide anions are also driving the NO/peroxynitrite and the HOCl pathway, which eliminates NOX-expressing transformed cells through selective apoptosis induction. Tumor progression is dependent on dominant interference with intercellular apoptosis-inducing ROS signaling through membrane-associated catalase, which decomposes H2O2 and peroxynitrite and oxidizes NO. Particularly, the decomposition of extracellular peroxynitrite strictly requires membrane-associated catalase. We utilized small interfering RNA (siRNA)-mediated knockdown of catalase and neutralizing antibodies directed against the enzyme in combination with challenging H2O2 or peroxynitrite to determine activity and localization of catalase in cells from three distinct steps of multistage oncogenesis. Nontransformed cells did not generate extracellular superoxide anions and only showed intracellular catalase activity. Transformed cells showed superoxide anion-dependent intercellular apoptosis-inducing ROS signaling in the presence of suboptimal catalase activity in their membrane. Tumor cells exhibited tight control of intercellular apoptosis-inducing ROS signaling through a high local concentration of membrane-associated catalase. These data demonstrate that translocation of catalase to the outside of the cell membrane is already associated with the transformation step. A strong local increase in the concentration of membrane-associated catalase is achieved during tumor progression and is controlled by tumor cell-derived H2O2 and by transglutaminase. PMID:26140730

  17. Hertwig's epithelial root sheath cells do not transform into cementoblasts in rat molar cementogenesis.

    PubMed

    Yamamoto, Tsuneyuki; Takahashi, Shigeru

    2009-12-01

    It is generally accepted that cementoblasts originate in the process of differentiation of the mesenchymal cells of the dental follicle. Recently, a different hypothesis for the origin of cementoblasts has been proposed. Hertwig's epithelial root sheath cells undergo the epithelial-mesenchymal transformation to differentiate into cementoblasts. To elucidate whether the epithelial-mesenchymal transformation occurs in the epithelial sheath, developing rat molars were examined by keratin-vimentin and Runx2 (runt-related transcription factor 2)-keratin double immunostaining. In both acellular and cellular cementogenesis, epithelial sheath and epithelial cells derived from the epithelial sheath expressed keratin, but did not express vimentin or Runx2. Dental follicle cells and cementoblasts, however, expressed vimentin and Runx2, but did not express keratin. No cells showed coexisting keratin-vimentin or Runx2-keratin staining. These findings suggest that there is no intermediate phenotype transforming epithelial to mesenchymal cells, and that epithelial sheath cells do not generate mineralized tissue. This study concludes that the epithelial-mesenchymal transformation does not occur in Hertwig's epithelial root sheath in rat acellular or cellular cementogenesis and that the dental follicle is the origin of cementoblasts, as has been proposed in the original hypothesis. PMID:19716687

  18. Adenovirus E1A/E1B Transformed Amniotic Fluid Cells Support Human Cytomegalovirus Replication

    PubMed Central

    Krömmelbein, Natascha; Wiebusch, Lüder; Schiedner, Gudrun; Büscher, Nicole; Sauer, Caroline; Florin, Luise; Sehn, Elisabeth; Wolfrum, Uwe; Plachter, Bodo

    2016-01-01

    The human cytomegalovirus (HCMV) replicates to high titers in primary human fibroblast cell cultures. A variety of primary human cells and some tumor-derived cell lines do also support permissive HCMV replication, yet at low levels. Cell lines established by transfection of the transforming functions of adenoviruses have been notoriously resistant to HCMV replication and progeny production. Here, we provide first-time evidence that a permanent cell line immortalized by adenovirus type 5 E1A and E1B (CAP) is supporting the full HCMV replication cycle and is releasing infectious progeny. The CAP cell line had previously been established from amniotic fluid cells which were likely derived from membranes of the developing fetus. These cells can be grown under serum-free conditions. HCMV efficiently penetrated CAP cells, expressed its immediate-early proteins and dispersed restrictive PML-bodies. Viral DNA replication was initiated and viral progeny became detectable by electron microscopy in CAP cells. Furthermore, infectious virus was released from CAP cells, yet to lower levels compared to fibroblasts. Subviral dense bodies were also secreted from CAP cells. The results show that E1A/E1B expression in transformed cells is not generally repressive to HCMV replication and that CAP cells may be a good substrate for dense body based vaccine production. PMID:26848680

  19. A rapid procedure for flow cytometric DNA analysis in cultures of normal and transformed epidermal cells.

    PubMed

    Tennenbaum, T; Giloh, H; Fusenig, N E; Kapitulnik, J

    1988-06-01

    A simple, rapid, and highly reproducible procedure for flow cytometric DNA analysis has been adapted for studying cell cycle kinetics in epidermal cell cultures. The preparation of cell nuclei and their staining with the fluorescent dye propidium iodide were performed directly on the culture dish, without prior suspension and fixation of the cells. Singly dispersed nuclei were produced by mild trypsinization of cells in the presence of the nonionic detergent Nonidet P-40 and spermine. The culture dishes could be kept frozen for prolonged periods of time before trypsinization and staining, without affecting either the recovery of nuclei or the cell cycle distribution profiles. This remarkable stability of cell nuclei greatly simplified the analysis of multiple samples in cell cycle kinetic studies. This method was used to analyze the cell cycle distribution in cultures of normal and transformed mouse epidermal cells, human colon carcinoma cells, primary bovine aortic endothelial cells, and fibroblastic and myogenic cell lines. This procedure should be very useful in studying growth kinetics, differentiation, and transformation of epidermal as well as other adherent cell types. PMID:2453587

  20. Transient expression of minimum linear gene cassettes in onion epidermal cells via direct transformation.

    PubMed

    Cheng, Yun-Qing; Yang, Jun; Xu, Feng-Ping; An, Li-Jia; Liu, Jian-Feng; Chen, Zhi-Wen

    2009-12-01

    A new method without any special devices for direct transformation of linear gene cassettes was developed. Its feasibility was verified through 5'-fluorescent dye (fluorescein isothiocyanate, FITC)-labeled fluorescent tracing and transient expression of a gus reporter gene. Minimal linear gene cassettes, containing necessary regulation elements and a gus reporter gene, was prepared by polymerase chain reaction and dissolved in transformation buffer solution to 100 ng/mL. The basic transformation solution used was Murashige and Skoog basal salt mixture (MS) liquid medium. Hypertonic pretreatment of explants and transformation cofactors, including Ca(2+), surfactant assistants, Agrobacterium LBA4404 cell culture on transformation efficiency were evaluated. Prior to the incubation of the explants and target linear cassette in each designed transformation solution for 3 h, the onion low epidermal explants were pre-cultured in darkness at 27 degrees C for 48 h and then transferred to MS solid media for 72 h. FITC-labeled linear DNA was used to trace the delivery of DNA entry into the cell and the nuclei. By GUS staining and flow-cytometry-mediated fluorescent detection, a significant increase of the ratios of fluorescent nuclei as well as expression of the gus reporter gene was observed by each designed transformation solution. This potent and feasible method showed prospective applications in plant transgenic research. PMID:19255730

  1. A Small Molecule Inhibitor Selectively Induces Apoptosis in Cells Transformed by High Risk Human Papilloma Viruses.

    PubMed

    Sheaffer, Amy K; Lee, Min S; Qi, Huilin; Chaniewski, Susan; Zheng, Xiaofan; Farr, Glen A; Esposito, Kim; Harden, David; Lei, Ming; Schweizer, Liang; Friborg, Jacques; Agler, Michele; McPhee, Fiona; Gentles, Robert; Beno, Brett R; Chupak, Lou; Mason, Stephen

    2016-01-01

    A phenotypic high-throughput cell culture screen was performed to identify compounds that prevented proliferation of the human Papilloma virus type 16 (HPV-16) transformed cell line Ca Ski. A series of quinoxaline compounds exemplified by Compound 1 was identified. Testing against a panel of cell lines demonstrated that Compound 1 selectively inhibited replication of all HPV-16, HPV-18, and HPV-31 transformed cell lines tested with 50% Inhibitory Concentration (IC50) values of 2 to 8 μM relative to IC50 values of 28 to 73 μM in HPV-negative cell lines. Treatment with Compound 1 resulted in a cascade of multiple apoptotic events, including selective activation of effector caspases 3 and 7, fragmentation of cellular DNA, and PARP (poly(ADP-ribose) polymerase) cleavage in HPV-positive cells relative to HPV-negative cells. Unregulated proliferation of HPV transformed cells is dependent on the viral oncogenes, E6 and E7. Treatment with Compound 1 resulted in a decrease in HPV E7 protein in Ca Ski cells. However, the timing of this reduction relative to other effects of compound treatment suggests that this was a consequence, rather than a cause, of the apoptotic cascade. Likewise, compound treatment resulted in no obvious effects on the E6- and E7- mediated down regulation of p53 and Rb, or their downstream effectors, p21 or PCNA. Further investigation of apoptotic signals induced by Compound 1 revealed cleavage of Caspase-8 in HPV-positive cells as early as 2 hours post-treatment, suggesting the compound initiates apoptosis through the extrinsic, death receptor-mediated, pathway of cell death. These studies provide proof of concept that cells transformed by oncogenic Papillomaviruses can be selectively induced to undergo apoptosis by compound treatment. PMID:27280728

  2. Xenohybridization of Epstein-Barr virus-transformed cells for the production of human monoclonal antibodies.

    PubMed

    Tiebout, R F; Stricke