Science.gov

Sample records for cell-independent antiviral antibody

  1. Humanized Antibodies for Antiviral Therapy

    NASA Astrophysics Data System (ADS)

    Co, Man Sung; Deschamps, Marguerite; Whitley, Richard J.; Queen, Cary

    1991-04-01

    Antibody therapy holds great promise for the treatment of cancer, autoimmune disorders, and viral infections. Murine monoclonal antibodies are relatively easy to produce but are severely restricted for therapeutic use by their immunogenicity in humans. Production of human monoclonal antibodies has been problematic. Humanized antibodies can be generated by introducing the six hypervariable regions from the heavy and light chains of a murine antibody into a human framework sequence and combining it with human constant regions. We humanized, with the aid of computer modeling, two murine monoclonal antibodies against herpes simplex virus gB and gD glycoproteins. The binding, virus neutralization, and cell protection results all indicate that both humanized antibodies have retained the binding activities and the biological properties of the murine monoclonal antibodies.

  2. Anti-Viral Antibody Profiling by High Density Protein Arrays

    PubMed Central

    Bian, Xiaofang; Wiktor, Peter; Kahn, Peter; Brunner, Al; Khela, Amritpal; Karthikeyan, Kailash; Barker, Kristi; Yu, Xiaobo; Magee, Mitch; Wasserfall, Clive H.; Gibson, David; Rooney, Madeleine E; Qiu, Ji; LaBaer, Joshua

    2015-01-01

    Viral infections elicit anti-viral antibodies and have been associated with various chronic diseases. Detection of these antibodies can facilitate diagnosis, treatment of infection and understanding of the mechanisms of virus associated diseases. In this work, we assayed anti-viral antibodies using a novel high density-nucleic acid programmable protein array (HD-NAPPA) platform. Individual viral proteins were expressed in situ directly from plasmids encoding proteins in an array of microscopic reaction chambers. Quality of protein display and serum response was assured by comparing intra- and inter- array correlation within or between printing batches with average correlation coefficients of 0.91 and 0.96, respectively. HD-NAPPA showed higher signal to background (S/B) ratio compared with standard NAPPA on planar glass slides and ELISA. Antibody responses to 761 antigens from 25 different viruses were profiled among patients with juvenile idiopathic arthritis (JIA) and type 1 diabetes (T1D). Common as well as unique antibody reactivity patterns were detected between patients and healthy controls. We believe HD-viral-NAPPA will enable the study of host-pathogen interactions at unprecedented dimensions and elucidate the role of pathogen infections in disease development. PMID:25758251

  3. Substrate stiffness regulates B-cell activation, proliferation, class switch, and T-cell-independent antibody responses in vivo.

    PubMed

    Zeng, Yingyue; Yi, Junyang; Wan, Zhengpeng; Liu, Kai; Song, Ping; Chau, Alicia; Wang, Fei; Chang, Zai; Han, Weidong; Zheng, Wenjie; Chen, Ying-Hua; Xiong, Chunyang; Liu, Wanli

    2015-06-01

    B cells use B-cell receptors (BCRs) to sense antigens that are usually presented on substrates with different stiffness. However, it is not known how substrate stiffness affects B-cell proliferation, class switch, and in vivo antibody responses. We addressed these questions using polydimethylsiloxane (PDMS) substrates with different stiffness (20 or 1100 kPa). Live cell imaging experiments suggested that antigens on stiffer substrates more efficiently trigger the synaptic accumulation of BCR and phospho-Syk molecules compared with antigens on softer substrates. In vitro expansion of mouse primary B cells shows different preferences for substrate stiffness when stimulated by different expansion stimuli. LPS equally drives B-cell proliferation on stiffer or softer substrates. Anti-CD40 antibodies enhance B-cell proliferation on stiffer substrates, while antigens enhance B-cell proliferation on softer substrates through a mechanism involving the enhanced phosphorylation of PI3K, Akt, and FoxO1. In vitro class switch differentiation of B cells prefers softer substrates. Lastly, NP67-Ficoll on softer substrates accounted for an enhanced antibody response in vivo. Thus, substrate stiffness regulates B-cell activation, proliferation, class switch, and T cell independent antibody responses in vivo, suggesting its broad application in manipulating the fate of B cells in vitro and in vivo. PMID:25756957

  4. Natural variation in Fc glycosylation of HIV-specific antibodies impacts antiviral activity

    PubMed Central

    Ackerman, Margaret E.; Crispin, Max; Yu, Xiaojie; Baruah, Kavitha; Boesch, Austin W.; Harvey, David J.; Dugast, Anne-Sophie; Heizen, Erin L.; Ercan, Altan; Choi, Ickwon; Streeck, Hendrik; Nigrovic, Peter A.; Bailey-Kellogg, Chris; Scanlan, Chris; Alter, Galit

    2013-01-01

    While the induction of a neutralizing antibody response against HIV remains a daunting goal, data from both natural infection and vaccine-induced immune responses suggest that it may be possible to induce antibodies with enhanced Fc effector activity and improved antiviral control via vaccination. However, the specific features of naturally induced HIV-specific antibodies that allow for the potent recruitment of antiviral activity and the means by which these functions are regulated are poorly defined. Because antibody effector functions are critically dependent on antibody Fc domain glycosylation, we aimed to define the natural glycoforms associated with robust Fc-mediated antiviral activity. We demonstrate that spontaneous control of HIV and improved antiviral activity are associated with a dramatic shift in the global antibody-glycosylation profile toward agalactosylated glycoforms. HIV-specific antibodies exhibited an even greater frequency of agalactosylated, afucosylated, and asialylated glycans. These glycoforms were associated with enhanced Fc-mediated reduction of viral replication and enhanced Fc receptor binding and were consistent with transcriptional profiling of glycosyltransferases in peripheral B cells. These data suggest that B cell programs tune antibody glycosylation actively in an antigen-specific manner, potentially contributing to antiviral control during HIV infection. PMID:23563315

  5. Control of Toll-like Receptor-mediated T Cell-independent Type 1 Antibody Responses by the Inducible Nuclear Protein IκB-ζ*

    PubMed Central

    Hanihara-Tatsuzawa, Fumito; Miura, Hanae; Kobayashi, Shuhei; Isagawa, Takayuki; Okuma, Atsushi; Manabe, Ichiro; MaruYama, Takashi

    2014-01-01

    Antibody responses have been classified as being either T cell-dependent or T cell-independent (TI). TI antibody responses are further classified as being either type 1 (TI-1) or type 2 (TI-2), depending on their requirement for B cell-mediated antigen receptor signaling. Although the mechanistic basis of antibody responses has been studied extensively, it remains unclear whether different antibody responses share similarities in their transcriptional regulation. Here, we show that mice deficient in IκB-ζ, specifically in their B cells, have impaired TI-1 antibody responses but normal T cell-dependent and TI-2 antibody responses. The absence of IκB-ζ in B cells also impaired proliferation triggered by Toll-like receptor (TLR) activation, plasma cell differentiation, and class switch recombination (CSR). Mechanistically, IκB-ζ-deficient B cells could not induce TLR-mediated induction of activation-induced cytidine deaminase (AID), a class-switch DNA recombinase. Retroviral transduction of AID in IκB-ζ-deficient B cells restored CSR activity. Furthermore, acetylation of histone H3 in the vicinity of the transcription start site of the gene that encodes AID was reduced in IκB-ζ-deficient B cells relative to IκB-ζ-expressing B cells. These results indicate that IκB-ζ regulates TLR-mediated CSR by inducing AID. Moreover, IκB-ζ defines differences in the transcriptional regulation of different antibody responses. PMID:25124037

  6. Control of Toll-like receptor-mediated T cell-independent type 1 antibody responses by the inducible nuclear protein IκB-ζ.

    PubMed

    Hanihara-Tatsuzawa, Fumito; Miura, Hanae; Kobayashi, Shuhei; Isagawa, Takayuki; Okuma, Atsushi; Manabe, Ichiro; MaruYama, Takashi

    2014-11-01

    Antibody responses have been classified as being either T cell-dependent or T cell-independent (TI). TI antibody responses are further classified as being either type 1 (TI-1) or type 2 (TI-2), depending on their requirement for B cell-mediated antigen receptor signaling. Although the mechanistic basis of antibody responses has been studied extensively, it remains unclear whether different antibody responses share similarities in their transcriptional regulation. Here, we show that mice deficient in IκB-ζ, specifically in their B cells, have impaired TI-1 antibody responses but normal T cell-dependent and TI-2 antibody responses. The absence of IκB-ζ in B cells also impaired proliferation triggered by Toll-like receptor (TLR) activation, plasma cell differentiation, and class switch recombination (CSR). Mechanistically, IκB-ζ-deficient B cells could not induce TLR-mediated induction of activation-induced cytidine deaminase (AID), a class-switch DNA recombinase. Retroviral transduction of AID in IκB-ζ-deficient B cells restored CSR activity. Furthermore, acetylation of histone H3 in the vicinity of the transcription start site of the gene that encodes AID was reduced in IκB-ζ-deficient B cells relative to IκB-ζ-expressing B cells. These results indicate that IκB-ζ regulates TLR-mediated CSR by inducing AID. Moreover, IκB-ζ defines differences in the transcriptional regulation of different antibody responses. PMID:25124037

  7. CEACAM1 induces B-cell survival and is essential for protective antiviral antibody production

    PubMed Central

    Khairnar, Vishal; Duhan, Vikas; Maney, Sathish Kumar; Honke, Nadine; Shaabani, Namir; Pandyra, Aleksandra A.; Seifert, Marc; Pozdeev, Vitaly; Xu, Haifeng C.; Sharma, Piyush; Baldin, Fabian; Marquardsen, Florian; Merches, Katja; Lang, Elisabeth; Kirschning, Carsten; Westendorf, Astrid M.; Häussinger, Dieter; Lang, Florian; Dittmer, Ulf; Küppers, Ralf; Recher, Mike; Hardt, Cornelia; Scheffrahn, Inka; Beauchemin, Nicole; Göthert, Joachim R.; Singer, Bernhard B.; Lang, Philipp A.; Lang, Karl S.

    2015-01-01

    B cells are essential for antiviral immune defence because they produce neutralizing antibodies, present antigen and maintain the lymphoid architecture. Here we show that intrinsic signalling of CEACAM1 is essential for generating efficient B-cell responses. Although CEACAM1 exerts limited influence on the proliferation of B cells, expression of CEACAM1 induces survival of proliferating B cells via the BTK/Syk/NF-κB-axis. The absence of this signalling cascade in naive Ceacam1−/− mice limits the survival of B cells. During systemic infection with cytopathic vesicular stomatitis virus, Ceacam1−/− mice can barely induce neutralizing antibody responses and die early after infection. We find, therefore, that CEACAM1 is a crucial regulator of B-cell survival, influencing B-cell numbers and protective antiviral antibody responses. PMID:25692415

  8. CEACAM1 induces B-cell survival and is essential for protective antiviral antibody production.

    PubMed

    Khairnar, Vishal; Duhan, Vikas; Maney, Sathish Kumar; Honke, Nadine; Shaabani, Namir; Pandyra, Aleksandra A; Seifert, Marc; Pozdeev, Vitaly; Xu, Haifeng C; Sharma, Piyush; Baldin, Fabian; Marquardsen, Florian; Merches, Katja; Lang, Elisabeth; Kirschning, Carsten; Westendorf, Astrid M; Häussinger, Dieter; Lang, Florian; Dittmer, Ulf; Küppers, Ralf; Recher, Mike; Hardt, Cornelia; Scheffrahn, Inka; Beauchemin, Nicole; Göthert, Joachim R; Singer, Bernhard B; Lang, Philipp A; Lang, Karl S

    2015-01-01

    B cells are essential for antiviral immune defence because they produce neutralizing antibodies, present antigen and maintain the lymphoid architecture. Here we show that intrinsic signalling of CEACAM1 is essential for generating efficient B-cell responses. Although CEACAM1 exerts limited influence on the proliferation of B cells, expression of CEACAM1 induces survival of proliferating B cells via the BTK/Syk/NF-κB-axis. The absence of this signalling cascade in naive Ceacam1(-/-) mice limits the survival of B cells. During systemic infection with cytopathic vesicular stomatitis virus, Ceacam1(-/-) mice can barely induce neutralizing antibody responses and die early after infection. We find, therefore, that CEACAM1 is a crucial regulator of B-cell survival, influencing B-cell numbers and protective antiviral antibody responses. PMID:25692415

  9. Characterization of immobilization methods of antiviral antibodies in serum for electrochemical biosensors

    NASA Astrophysics Data System (ADS)

    Huy, Tran Quang; Hanh, Nguyen Thi Hong; Van Chung, Pham; Anh, Dang Duc; Nga, Phan Thi; Tuan, Mai Anh

    2011-06-01

    In this paper, we describes different methods to immobilize Japanese encephalitis virus (JEV) antibodies in human serum onto the interdigitated surface of a microelectrode sensor for optimizing electrochemical detection: (1) direct covalent binding to the silanized surface, (2) binding to the silanized surface via a cross-linker of glutaraldehyde (GA), (3) binding to glutaraldehyde/silanized surface via goat anti-human IgG polyclonal antibody and (4) binding to glutaraldehyde/silanized surface via protein A (PrA). Field emission scanning electron microscopy, Fourier transform infrared spectrometry, and fluorescence microscopy are used to verify the characteristics of antibodies on the interdigitated surface after the serum antibodies immobilization. The analyzed results indicate that the use of protein A is an effective choice for immobilization and orientation of antibodies in serum for electrochemical biosensors. This study provides an advantageous immobilization method of serum containing antiviral antibodies to develop electrochemical biosensors for preliminary screening of viruses in clinical samples from outbreaks.

  10. Function and glycosylation of plant-derived antiviral monoclonal antibody

    PubMed Central

    Ko, Kisung; Tekoah, Yoram; Rudd, Pauline M.; Harvey, David J.; Dwek, Raymond A.; Spitsin, Sergei; Hanlon, Cathleen A.; Rupprecht, Charles; Dietzschold, Bernhard; Golovkin, Maxim; Koprowski, Hilary

    2003-01-01

    Plant genetic engineering led to the production of plant-derived mAb (mAbP), which provides a safe and economically feasible alternative to the current methods of antibody production in animal systems. In this study, the heavy and light chains of human anti-rabies mAb were expressed and assembled in planta under the control of two strong constitutive promoters. An alfalfa mosaic virus untranslated leader sequence and Lys-Asp-Glu-Leu (KDEL) endoplasmic reticulum retention signal were linked at the N and C terminus of the heavy chain, respectively. mAbP was as effective at neutralizing the activity of the rabies virus as the mammalian-derived antibody (mAbM) or human rabies Ig (HRIG). The mAbP contained mainly oligomannose type N-glycans (90%) and had no potentially antigenic α(1,3)-linked fucose residues. mAbP had a shorter half-life than mAbM. The mAbP was as efficient as HRIG for post-exposure prophylaxis against rabies virus in hamsters, indicating that differences in N-glycosylation do not affect the efficacy of the antibody in this model. PMID:12799460

  11. Function and glycosylation of plant-derived antiviral monoclonal antibody.

    PubMed

    Ko, Kisung; Tekoah, Yoram; Rudd, Pauline M; Harvey, David J; Dwek, Raymond A; Spitsin, Sergei; Hanlon, Cathleen A; Rupprecht, Charles; Dietzschold, Bernhard; Golovkin, Maxim; Koprowski, Hilary

    2003-06-24

    Plant genetic engineering led to the production of plant-derived mAb (mAbP), which provides a safe and economically feasible alternative to the current methods of antibody production in animal systems. In this study, the heavy and light chains of human anti-rabies mAb were expressed and assembled in planta under the control of two strong constitutive promoters. An alfalfa mosaic virus untranslated leader sequence and Lys-Asp-Glu-Leu (KDEL) endoplasmic reticulum retention signal were linked at the N and C terminus of the heavy chain, respectively. mAbP was as effective at neutralizing the activity of the rabies virus as the mammalian-derived antibody (mAbM) or human rabies Ig (HRIG). The mAbP contained mainly oligomannose type N-glycans (90%) and had no potentially antigenic alpha(1,3)-linked fucose residues. mAbP had a shorter half-life than mAbM. The mAbP was as efficient as HRIG for post-exposure prophylaxis against rabies virus in hamsters, indicating that differences in N-glycosylation do not affect the efficacy of the antibody in this model. PMID:12799460

  12. Inhibition of HIV replication by pokeweed antiviral protein targeted to CD4+ cells by monoclonal antibodies

    NASA Astrophysics Data System (ADS)

    Zarling, Joyce M.; Moran, Patricia A.; Haffar, Omar; Sias, Joan; Richman, Douglas D.; Spina, Celsa A.; Myers, Dorothea E.; Kuebelbeck, Virginia; Ledbetter, Jeffrey A.; Uckun, Fatih M.

    1990-09-01

    FUNCTIONAL impairment and selective depletion of CD4+ T cells, the hallmark of AIDS, are at least partly caused by human immunodeficiency virus (HIV-1) type 1 binding to the CD4 molecule and infecting CD4+ cells1,2. It may, therefore, be of therapeutic value to target an antiviral agent to CD4+ cells to prevent infection and to inhibit HIV-1 production in patients' CD4+ cells which contain proviral DNA3,4. We report here that HIV-1 replication in normal primary CD4+ T cells can be inhibited by pokeweed antiviral protein, a plant protein of relative molecular mass 30,000 (ref. 5), which inhibits replication of certain plant RNA viruses6-8, and of herpes simplex virus, poliovirus and influenza virus9-11. Targeting pokeweed antiviral protein to CD4+ T cells by conjugating it to monoclonal antibodies reactive with CDS, CD7 or CD4 expressed on CD4+ cells, increased its anti-HIV potency up to 1,000-fold. HIV-1 replication is inhibited at picomolar concentrations of conjugates of pokeweed antiviral protein and monoclonal antibodies, which do not inhibit proliferation of normal CD4+ T cells or CD4-dependent responses. These conjugates inhibit HIV-1 protein synthesis and also strongly inhibit HIV-1 production in activated CD4+ T cells from infected patients.

  13. Replication-Competent Influenza B Reporter Viruses as Tools for Screening Antivirals and Antibodies

    PubMed Central

    Fulton, Benjamin O.; Palese, Peter

    2015-01-01

    Influenza B virus is a human pathogen responsible for significant health and economic burden. Research into this pathogen has been limited by the lack of reporter viruses. Here we describe the development of both a replication-competent fluorescent influenza B reporter virus and bioluminescent influenza B reporter virus. Furthermore, we demonstrate these reporter viruses can be used to quickly monitor viral growth and permit the rapid screening of antiviral compounds and neutralizing antibodies. PMID:26401044

  14. Impact of thiamine deficiency on T-cell dependent and T-cell independent antibody production in lake trout

    USGS Publications Warehouse

    Ottinger, Christopher A.; Honeyfield, Dale C.; Densmore, Christine L.; Iwanowicz, Luke R.

    2012-01-01

    Lake trout Salvelinus namaycush on thiamine-replete and thiamine-depleted diets were evaluated for the effects of thiamine status on in vivo responses to the T-dependent antigen trinitophenol (TNP)-keyhole limpet hemocyanin (TNP-KLH), the T-independent antigen trinitrophenol-lipolysaccaharide (TNP-LPS), or Dulbecco's phosphate-buffered saline (DPBS; negative control fish). Plasma antibody concentrations were evaluated for possible differences in total anti-TNP activity as well as differences in response kinetics. Associations between anti-TNP activity and muscle and liver thiamine concentrations as well as ratios of muscle-to-liver thiamine to anti-TNP activity were also examined. Thiamine-depleted lake trout that were injected with TNP-LPS exhibited significantly more anti-TNP activity than thiamine-replete fish. The depleted fish injected with TNP-LPS also exhibited significantly different response kinetics relative to thiamine-replete lake trout. No differences in activity or kinetics were observed between the thiamine-replete and -depleted fish injected with TNP-KLH or in the DPBS negative controls. Anti-TNP activity in thiamine-depleted lake trout injected with TNP-KLH was positively associated with muscle thiamine pyrophosphate (thiamine diphosphate; TPP) concentration. A negative association was observed between the ratio of muscle-to-liver TPP and T-independent responses. No significant associations between anti-TNP activity and tissue thiamine concentration were observed in the thiamine-replete fish. We demonstrated that thiamine deficiency leads to alterations in both T-dependent and T-independent immune responses in lake trout.

  15. Novel Microarrays for Simultaneous Serodiagnosis of Multiple Antiviral Antibodies

    PubMed Central

    Sivakumar, Ponnurengam Malliappan; Moritsugu, Nozomi; Obuse, Sei; Isoshima, Takashi; Tashiro, Hideo; Ito, Yoshihiro

    2013-01-01

    We developed an automated diagnostic system for the detection of virus-specific immunoglobulin Gs (IgGs) that was based on a microarray platform. We compared efficacies of our automated system with conventional enzyme immunoassays (EIAs). Viruses were immobilized to microarrays using a radical cross-linking reaction that was induced by photo-irradiation. A new photoreactive polymer containing perfluorophenyl azide (PFPA) and poly(ethylene glycol) methacrylate was prepared and coated on plates. Inactivated measles, rubella, mumps, Varicella-Zoster and recombinant Epstein-Barr viruse antigen were added to coated plates, and irradiated with ultraviolet light to facilitate immobilization. Virus-specific IgGs in healthy human sera were assayed using these prepared microarrays and the results obtained compared with those from conventional EIAs. We observed high correlation (0.79–0.96) in the results between the automated microarray technique and EIAs. The microarray-based assay was more rapid, involved less reagents and sample, and was easier to conduct compared with conventional EIA techniques. The automated microarray system was further improved by introducing reagent storage reservoirs inside the chamber, thereby conserving the use of expensive reagents and antibodies. We considered the microarray format to be suitable for rapid and multiple serological diagnoses of viral diseases that could be developed further for clinical applications. PMID:24367491

  16. Novel microarrays for simultaneous serodiagnosis of multiple antiviral antibodies.

    PubMed

    Sivakumar, Ponnurengam Malliappan; Moritsugu, Nozomi; Obuse, Sei; Isoshima, Takashi; Tashiro, Hideo; Ito, Yoshihiro

    2013-01-01

    We developed an automated diagnostic system for the detection of virus-specific immunoglobulin Gs (IgGs) that was based on a microarray platform. We compared efficacies of our automated system with conventional enzyme immunoassays (EIAs). Viruses were immobilized to microarrays using a radical cross-linking reaction that was induced by photo-irradiation. A new photoreactive polymer containing perfluorophenyl azide (PFPA) and poly(ethylene glycol) methacrylate was prepared and coated on plates. Inactivated measles, rubella, mumps, Varicella-Zoster and recombinant Epstein-Barr viruse antigen were added to coated plates, and irradiated with ultraviolet light to facilitate immobilization. Virus-specific IgGs in healthy human sera were assayed using these prepared microarrays and the results obtained compared with those from conventional EIAs. We observed high correlation (0.79-0.96) in the results between the automated microarray technique and EIAs. The microarray-based assay was more rapid, involved less reagents and sample, and was easier to conduct compared with conventional EIA techniques. The automated microarray system was further improved by introducing reagent storage reservoirs inside the chamber, thereby conserving the use of expensive reagents and antibodies. We considered the microarray format to be suitable for rapid and multiple serological diagnoses of viral diseases that could be developed further for clinical applications. PMID:24367491

  17. Immunoproteomic Profiling of Antiviral Antibodies in New-Onset Type 1 Diabetes Using Protein Arrays.

    PubMed

    Bian, Xiaofang; Wallstrom, Garrick; Davis, Amy; Wang, Jie; Park, Jin; Throop, Andrea; Steel, Jason; Yu, Xiaobo; Wasserfall, Clive; Schatz, Desmond; Atkinson, Mark; Qiu, Ji; LaBaer, Joshua

    2016-01-01

    The rapid rise in the incidence of type 1 diabetes (T1D) suggests the involvement of environmental factors including viral infections. We evaluated the association between viral infections and T1D by profiling antiviral antibodies using a high-throughput immunoproteomics approach in patients with new-onset T1D. We constructed a viral protein array comprising the complete proteomes of seven viruses associated with T1D and open reading frames from other common viruses. Antibody responses to 646 viral antigens were assessed in 42 patients with T1D and 42 age- and sex-matched healthy control subjects (mean age 12.7 years, 50% males). Prevalence of antiviral antibodies agreed with known infection rates for the corresponding virus based on epidemiological studies. Antibody responses to Epstein-Barr virus (EBV) were significantly higher in case than control subjects (odds ratio 6.6; 95% CI 2.0-25.7), whereas the other viruses showed no differences. The EBV and T1D association was significant in both sex and age subgroups (≤12 and >12 years), and there was a trend toward early EBV infections among the case subjects. These results suggest a potential role for EBV in T1D development. We believe our innovative immunoproteomics platform is useful for understanding the role of viral infections in T1D and other disorders where associations between viral infection and disease are unclear. PMID:26450993

  18. Protective antiviral antibodies that lack neutralizing activity: precedents and evolution of concepts.

    PubMed

    Schmaljohn, Alan L

    2013-07-01

    Antibody-mediated resistance to viral disease is often attributed solely to neutralizing antibodies (NAbs) despite a body of evidence -- more than 30 years in the making -- to show that other populations of antibodies (protective non-neutralizing antibodies, PnNAbs) can also contribute and are sometimes pivotal in host resistance to viruses. Recently, interest in varieties of PnNAbs has been restored and elevated by an HIV vaccine trial in which virus-specific nNAbs have been highlighted as a positive correlate of immunity. Here, I briefly review some of the historical precedents with many viruses other than HIV, along with the emergence of data over the course of some four decades, pointing emphatically to the importance of subsets of antiviral antibodies that operate by mechanisms other than classical virus neutralization. Foremost among suspected mechanisms of protection by PnNAbs is antibody-dependent cellular cytotoxicty (ADCC), but additional mechanisms have sometimes been incriminated or not experimentally excluded. Examples are given for the diversity of proteins and cognate epitopes bound by PnNAbs. Some such epitopes are restricted to virus-infected cell surfaces or found on secreted proteins; others may be associated with virions but unavailable to antibodies during much of the viral cycle; these are epitopes variously described as cryptic, transitional, dynamic, or reversibly masked. PMID:24191933

  19. Crystal Structure of HIV-1 Primary Receptor CD4 i Complex with a Potent Antiviral Antibody

    SciTech Connect

    Freeman, M.M.; Hong, X.; Seaman, M.S.; Rits-Vollock, S.p Kao, C.Y.; Ho, D.D.; Chen, B.

    2010-06-18

    Ibalizumab is a humanized, anti-CD4 monoclonal antibody. It potently blocks HIV-1 infection and targets an epitope in the second domain of CD4 without interfering with immune functions mediated by interaction of CD4 with major histocompatibility complex (MHC) class II molecules. We report here the crystal structure of ibalizumab Fab fragment in complex with the first two domains (D1-D2) of CD4 at 2.2 {angstrom} resolution. Ibalizumab grips CD4 primarily by the BC-loop (residues 121125) of D2, sitting on the opposite side of gp120 and MHC-II binding sites. No major conformational change in CD4 accompanies binding to ibalizumab. Both monovalent and bivalent forms of ibalizumab effectively block viral infection, suggesting that it does not need to crosslink CD4 to exert antiviral activity. While gp120-induced structural rearrangements in CD4 are probably minimal, CD4 structural rigidity is dispensable for ibalizumab inhibition. These results could guide CD4-based immunogen design and lead to a better understanding of HIV-1 entry.

  20. Antibody-mediated pure red cell aplasia due to epoetin alfa during antiviral therapy of chronic hepatitis C.

    PubMed

    Stravitz, R Todd; Chung, Harold; Sterling, Richard K; Luketic, Velimir A; Sanyal, Arun J; Price, Angie S; Purrington, Amy; Shiffman, Mitchell L

    2005-06-01

    Anemia frequently complicates the treatment of chronic hepatitis C with interferon and ribavirin (RVN), requiring dose reduction and jeopardizing sustained virologic response. Increasingly, epoetin alfa is used to prevent anemia in this setting. Below, we report the first case of pure red cell aplasia (PRCA) in a patient with chronic hepatitis C who received epoetin alfa (Procrit) to manage anti-viral treatment-induced anemia. Red blood cell transfusion-dependence developed 16 wk after the patient was started on peginterferon alfa-2b and RVN for chronic hepatitis C despite the simultaneous administration of epoetin alfa and subsequent discontinuation of the antiviral medications. Bone marrow biopsy was consistent with PRCA. High-titer erythropoietin antibodies, assayed by two methods, appeared shortly after epoetin alfa was administered, and were associated with a decline in serum erythropoietin to undetectable levels. Erythropoietin antibodies directed toward epoetin alfa were shown to cross react with darbepoetin alfa (Aranesp), and a neutralization assay confirmed that they inhibited cell growth in the presence of erythropoietin. Transfusion-dependence resolved approximately 16 wk after discontinuing epoetin alfa, and 6 wk after starting danazol. PRCA caused by the development of erythropoietin antibodies is a potentially life-threatening complication of administering epoetin alfa to prevent the anemia associated with antiviral therapy in patients with chronic hepatitis C. PMID:15929778

  1. Antibody-Dependent Enhancement of Dengue Virus Infection in Primary Human Macrophages; Balancing Higher Fusion against Antiviral Responses

    PubMed Central

    Flipse, Jacky; Diosa-Toro, Mayra A.; Hoornweg, Tabitha E.; van de Pol, Denise P. I.; Urcuqui-Inchima, Silvio; Smit, Jolanda M.

    2016-01-01

    The dogma is that the human immune system protects us against pathogens. Yet, several viruses, like dengue virus, antagonize the hosts’ antibodies to enhance their viral load and disease severity; a phenomenon called antibody-dependent enhancement of infection. This study offers novel insights in the molecular mechanism of antibody-mediated enhancement (ADE) of dengue virus infection in primary human macrophages. No differences were observed in the number of bound and internalized DENV particles following infection in the absence and presence of enhancing concentrations of antibodies. Yet, we did find an increase in membrane fusion activity during ADE of DENV infection. The higher fusion activity is coupled to a low antiviral response early in infection and subsequently a higher infection efficiency. Apparently, subtle enhancements early in the viral life cycle cascades into strong effects on infection, virus production and immune response. Importantly, and in contrast to other studies, the antibody-opsonized virus particles do not trigger immune suppression and remain sensitive to interferon. Additionally, this study gives insight in how human macrophages interact and respond to viral infections and the tight regulation thereof under various conditions of infection. PMID:27380892

  2. Antibody-Dependent Enhancement of Dengue Virus Infection in Primary Human Macrophages; Balancing Higher Fusion against Antiviral Responses.

    PubMed

    Flipse, Jacky; Diosa-Toro, Mayra A; Hoornweg, Tabitha E; van de Pol, Denise P I; Urcuqui-Inchima, Silvio; Smit, Jolanda M

    2016-01-01

    The dogma is that the human immune system protects us against pathogens. Yet, several viruses, like dengue virus, antagonize the hosts' antibodies to enhance their viral load and disease severity; a phenomenon called antibody-dependent enhancement of infection. This study offers novel insights in the molecular mechanism of antibody-mediated enhancement (ADE) of dengue virus infection in primary human macrophages. No differences were observed in the number of bound and internalized DENV particles following infection in the absence and presence of enhancing concentrations of antibodies. Yet, we did find an increase in membrane fusion activity during ADE of DENV infection. The higher fusion activity is coupled to a low antiviral response early in infection and subsequently a higher infection efficiency. Apparently, subtle enhancements early in the viral life cycle cascades into strong effects on infection, virus production and immune response. Importantly, and in contrast to other studies, the antibody-opsonized virus particles do not trigger immune suppression and remain sensitive to interferon. Additionally, this study gives insight in how human macrophages interact and respond to viral infections and the tight regulation thereof under various conditions of infection. PMID:27380892

  3. Cellular impedance measurement as a new tool for poxvirus titration, antibody neutralization testing and evaluation of antiviral substances

    SciTech Connect

    Witkowski, Peter T.; Schuenadel, Livia; Wiethaus, Julia; Bourquain, Daniel R.; Kurth, Andreas; Nitsche, Andreas

    2010-10-08

    Research highlights: {yields} Real-time data acquisition by RT-CES requires low operative effort. {yields} Time to result is reduced by using RT-CES instead of conventional methods. {yields} RT-CES enables quantification of virus titers in unknown samples. {yields} RT-CES is a useful tool for high-throughput characterization of antiviral agents. {yields} An RT-CES-based virus neutralization test was established. -- Abstract: Impedance-based biosensing known as real-time cell electronic sensing (RT-CES) belongs to an emerging technology for analyzing the status of cells in vitro. In the present study protocols were developed for an RT-CES-based system (xCELLigence{sup TM}, Roche Applied Science, ACEA Biosciences Inc.) to supplement conventional techniques in pox virology. First, proliferation of cells susceptible to orthopoxviruses was monitored. For virus titration cells were infected with vaccinia virus and cell status, represented by the dimensionless impedance-based cell index (CI), was monitored. A virus-dose dependent decrease in electrical impedance could be shown. Calculation of calibration curves at a suitable CI covering a dynamic range of 4 log enabled the quantification of virus titers in unknown samples. Similarly, antiviral effects could be determined as shown for anti-poxviral agents ST-246 and Cidofovir. Published values for the in vitro concentration that inhibited virus replication by 50% (IC{sub 50}) could be confirmed while cytotoxicity in effective concentrations was excluded in long-term incubation experiments. Finally, an RT-CES-based virus neutralization test was established. Various poxvirus-specific antibodies were examined for their neutralizing activity and a calculation mode for the neutralizing antibody titer was introduced. In summary, the presented RT-CES-based methods outmatch end-point assays by observing the cell population throughout the entire experiment while workload and time to result are reduced.

  4. Access of protective antiviral antibody to neuronal tissues requires CD4 T-cell help.

    PubMed

    Iijima, Norifumi; Iwasaki, Akiko

    2016-05-26

    Circulating antibodies can access most tissues to mediate surveillance and elimination of invading pathogens. Immunoprivileged tissues such as the brain and the peripheral nervous system are shielded from plasma proteins by the blood-brain barrier and blood-nerve barrier, respectively. Yet, circulating antibodies must somehow gain access to these tissues to mediate their antimicrobial functions. Here we examine the mechanism by which antibodies gain access to neuronal tissues to control infection. Using a mouse model of genital herpes infection, we demonstrate that both antibodies and CD4 T cells are required to protect the host after immunization at a distal site. We show that memory CD4 T cells migrate to the dorsal root ganglia and spinal cord in response to infection with herpes simplex virus type 2. Once inside these neuronal tissues, CD4 T cells secrete interferon-γ and mediate local increase in vascular permeability, enabling antibody access for viral control. A similar requirement for CD4 T cells for antibody access to the brain is observed after intranasal challenge with vesicular stomatitis virus. Our results reveal a previously unappreciated role of CD4 T cells in mobilizing antibodies to the peripheral sites of infection where they help to limit viral spread. PMID:27225131

  5. Preserved antiviral adaptive immunity following polyclonal antibody immunotherapy for severe murine influenza infection

    PubMed Central

    Stevens, Natalie E.; Hatjopolous, Antoinette; Fraser, Cara K.; Alsharifi, Mohammed; Diener, Kerrilyn R.; Hayball, John D.

    2016-01-01

    Passive immunotherapy may have particular benefits for the treatment of severe influenza infection in at-risk populations, however little is known of the impact of passive immunotherapy on the formation of memory responses to the virus. Ideally, passive immunotherapy should attenuate the severity of infection while still allowing the formation of adaptive responses to confer protection from future exposure. In this study, we sought to determine if administration of influenza-specific ovine polyclonal antibodies could inhibit adaptive immune responses in a murine model of lethal influenza infection. Ovine polyclonal antibodies generated against recombinant PR8 (H1N1) hemagglutinin exhibited potent prophylactic capacity and reduced lethality in an established influenza infection, particularly when administered intranasally. Surviving mice were also protected against reinfection and generated normal antibody and cytotoxic T lymphocyte responses to the virus. The longevity of ovine polyclonal antibodies was explored with a half-life of over two weeks following a single antibody administration. These findings support the development of an ovine passive polyclonal antibody therapy for treatment of severe influenza infection which does not affect the formation of subsequent acquired immunity to the virus. PMID:27380890

  6. Preserved antiviral adaptive immunity following polyclonal antibody immunotherapy for severe murine influenza infection.

    PubMed

    Stevens, Natalie E; Hatjopolous, Antoinette; Fraser, Cara K; Alsharifi, Mohammed; Diener, Kerrilyn R; Hayball, John D

    2016-01-01

    Passive immunotherapy may have particular benefits for the treatment of severe influenza infection in at-risk populations, however little is known of the impact of passive immunotherapy on the formation of memory responses to the virus. Ideally, passive immunotherapy should attenuate the severity of infection while still allowing the formation of adaptive responses to confer protection from future exposure. In this study, we sought to determine if administration of influenza-specific ovine polyclonal antibodies could inhibit adaptive immune responses in a murine model of lethal influenza infection. Ovine polyclonal antibodies generated against recombinant PR8 (H1N1) hemagglutinin exhibited potent prophylactic capacity and reduced lethality in an established influenza infection, particularly when administered intranasally. Surviving mice were also protected against reinfection and generated normal antibody and cytotoxic T lymphocyte responses to the virus. The longevity of ovine polyclonal antibodies was explored with a half-life of over two weeks following a single antibody administration. These findings support the development of an ovine passive polyclonal antibody therapy for treatment of severe influenza infection which does not affect the formation of subsequent acquired immunity to the virus. PMID:27380890

  7. Antiviral antibodies stimulate production of reactive oxygen species in cultured canine brain cells infected with canine distemper virus.

    PubMed Central

    Bürge, T; Griot, C; Vandevelde, M; Peterhans, E

    1989-01-01

    Canine distemper is characterized mainly by respiratory, enteric, and nervous symptoms. Infection of the central nervous system results in demyelination, to which inflammation has been shown to contribute significantly. It has been proposed that macrophages play a major role as effector cells in this process. We report that cultured dog brain cells contain a population of macrophages capable of producing reactive oxygen species as measured by luminol-dependent chemiluminescence. In cultures infected with canine distemper virus, a burst of reactive oxygen is triggered by antiviral antibody. This response depends on the presence of viral antigens on the surfaces of infected cells and is mediated by the interaction of antigen-bound antibody with Fc receptors on the macrophages. Since there is no evidence in vitro or in vivo that oligodendrocytes, the cells forming myelin, are infected, our observation supports the hypothesis that "innocent bystander killing" is important in demyelination caused by canine distemper virus. Reactive oxygen species released from macrophages may contribute to destruction of myelin. Images PMID:2724413

  8. Lack of antiviral antibody response in koalas infected with koala retroviruses (KoRV).

    PubMed

    Fiebig, Uwe; Keller, Martina; Möller, Annekatrin; Timms, Peter; Denner, Joachim

    2015-02-16

    Many wild koalas are infected with the koala retrovirus, KoRV, some of which suffer from lymphoma and chlamydial disease. Three subgroups, KoRV-A, KoRV-B and KoRV-J, have so far been described. It is well known that other closely related gammaretroviruses can induce tumours and severe immunodeficiencies in their respective hosts and a possible role for KoRV infection in lymphoma and chlamydial disease in koalas has been suggested. In many wild koalas, KoRV-A has become endogenised, i.e., it is integrated in the germ-line and is passed on with normal cellular genes. In this study, sera from koalas in European zoos and from wild animals in Australia were screened for antibodies against KoRV-A. These naturally infected animals all carry endogenous KoRV-A and two zoo animals are also infected with KoRV-B. The antibody response is generally an important diagnostic tool for detecting retrovirus infections. However, when Western blot analyses were performed using purified virus or recombinant proteins corresponding to KoRV-A, none of the koalas tested positive for specific antibodies, suggesting a state of tolerance. These results have implications for koala vaccination, as they suggest that therapeutic immunisation of animals carrying and expressing endogenous KoRV-A will not be successful. However, it remains unclear whether these animals can be immunised against KoRV-B and immunisation of uninfected koalas could still be worthwhile. PMID:25596496

  9. Intracellular reprogramming of expression, glycosylation, and function of a plant-derived antiviral therapeutic monoclonal antibody.

    PubMed

    Lee, Jeong-Hwan; Park, Da-Young; Lee, Kyung-Jin; Kim, Young-Kwan; So, Yang-Kang; Ryu, Jae-Sung; Oh, Seung-Han; Han, Yeon-Soo; Ko, Kinarm; Choo, Young-Kug; Park, Sung-Joo; Brodzik, Robert; Lee, Kyoung-Ki; Oh, Doo-Byoung; Hwang, Kyung-A; Koprowski, Hilary; Lee, Yong Seong; Ko, Kisung

    2013-01-01

    Plant genetic engineering, which has led to the production of plant-derived monoclonal antibodies (mAb(P)s), provides a safe and economically effective alternative to conventional antibody expression methods. In this study, the expression levels and biological properties of the anti-rabies virus mAb(P) SO57 with or without an endoplasmic reticulum (ER)-retention peptide signal (Lys-Asp-Glu-Leu; KDEL) in transgenic tobacco plants (Nicotiana tabacum) were analyzed. The expression levels of mAb(P) SO57 with KDEL (mAb(P)K) were significantly higher than those of mAb(P) SO57 without KDEL (mAb(P)) regardless of the transcription level. The Fc domains of both purified mAb(P) and mAb(P)K and hybridoma-derived mAb (mAb(H)) had similar levels of binding activity to the FcγRI receptor (CD64). The mAb(P)K had glycan profiles of both oligomannose (OM) type (91.7%) and Golgi type (8.3%), whereas the mAb(P) had mainly Golgi type glycans (96.8%) similar to those seen with mAb(H). Confocal analysis showed that the mAb(P)K was co-localized to ER-tracker signal and cellular areas surrounding the nucleus indicating accumulation of the mAb(P) with KDEL in the ER. Both mAb(P) and mAb(P)K disappeared with similar trends to mAb(H) in BALB/c mice. In addition, mAb(P)K was as effective as mAb(H) at neutralizing the activity of the rabies virus CVS-11. These results suggest that the ER localization of the recombinant mAb(P) by KDEL reprograms OM glycosylation and enhances the production of the functional antivirus therapeutic antibody in the plant. PMID:23967055

  10. Immobilization of Antiviral Antibody at the Cell Surface: a Novel Means for Preventing Virus Infection

    PubMed Central

    Magee, Wayne E.

    1970-01-01

    Methods for preparing bentonite-gamma globulin complexes and for determining their attachment to cells in tissue culture were investigated by use of human immunoglobulin G (IgG) labeled with 125I. For virus-inhibition studies, bentonite-IgG complexes were prepared by use of human IgG with high specific neutralizing activity against coxsackievirus A21. Much of the antibody in the complex remained available for virus neutralization, and the bentonite-IgG was at least 500 to 1,000 times as active as IgG alone in a plaque-reduction test. The complex appeared to function as a “shield” held at the surface of the cell, preventing initiation of infection. Images PMID:16557918

  11. The Combination of Valacyclovir with an Anti-TNF Alpha Antibody Increases Survival Rate Compared to Antiviral Therapy Alone in a Murine Model of Herpes Simplex Virus Encephalitis.

    PubMed

    Boivin, Nicolas; Menasria, Rafik; Piret, Jocelyne; Rivest, Serge; Boivin, Guy

    2013-10-24

    The added benefit of combining valacyclovir (VACV), an antiviral agent, with etanercept (ETA), an anti-tumor necrosis factor alpha (TNF-α) antibody, for the treatment of herpes simplex virus type 1 (HSV-1) encephalitis (HSE) was evaluated in a mouse model. BALB/c mice were infected intranasally with 1.85x10(4) plaque forming units of HSV-1. Groups of mice received a single intraperitoneal injection of vehicle or ETA (400 μg/mouse) on day 3 post-infection combined or not with VACV (1 mg/ml of drinking water) from days 3 to 21 post-infection. On day 5 post-infection, groups of mice were sacrificed for determination of viral DNA load, detection of ETA in brain homogenates and for in situ hybridization. The survival rate of mice was significantly increased when VACV was administered in combination with ETA (38.5% for VACV vs 78.6% for combined treatment; P=0.04) although VACV or ETA alone had no significant effect compared to the vehicle. The benefit of combined therapy was still present when treatment was delayed until day 4 post-infection. The viral DNA load was significantly reduced in mice treated with VACV alone (P<0.01) or combined with ETA (P<0.05) compared to the uninfected group whereas ETA alone had no effect. These results reinforce the notion that both virus-induced and immune-related mechanisms participate in the pathogenesis of HSE and suggest that potent antiviral agent could be combined with immune-based therapy, such as a TNF-α inhibitor, to improve prognosis of HSE. PMID:24513309

  12. The combination of valacyclovir with an anti-TNF alpha antibody increases survival rate compared to antiviral therapy alone in a murine model of herpes simplex virus encephalitis.

    PubMed

    Boivin, Nicolas; Menasria, Rafik; Piret, Jocelyne; Rivest, Serge; Boivin, Guy

    2013-12-01

    The added benefit of combining valacyclovir (VACV), an antiviral agent, with etanercept (ETA), an anti-tumor necrosis factor alpha (TNF-α) antibody, for the treatment of herpes simplex virus type 1 (HSV-1) encephalitis (HSE) was evaluated in a mouse model. BALB/c mice were infected intranasally with 1.85 × 104 plaque forming units of HSV-1. Groups of mice received a single intraperitoneal injection of vehicle or ETA (400 μg/mouse) on day 3 post-infection combined or not with VACV (1 mg/ml of drinking water) from days 3 to 21 post-infection. On day 5 post-infection, groups of mice were sacrificed for determination of viral DNA load, detection of ETA in brain homogenates and for in situ hybridization. The survival rate of mice was significantly increased when VACV was administered in combination with ETA (38.5% for VACV vs 78.6% for combined treatment; P = 0.04) although VACV or ETA alone had no significant effect compared to the vehicle. The benefit of combined therapy was still present when treatment was delayed until day 4 post-infection. The viral DNA load was significantly reduced in mice treated with VACV alone (P < 0.01) or combined with ETA (P < 0.05) compared to the uninfected group whereas ETA alone had no effect. These results reinforce the notion that both virus-induced and immune-related mechanisms participate in the pathogenesis of HSE and suggest that potent antiviral agent could be combined with immune-based therapy, such as a TNF-α inhibitor, to improve prognosis of HSE. PMID:24416771

  13. Biochemical features and antiviral activity of a monomeric catalytic antibody light-chain 23D4 against influenza A virus.

    PubMed

    Hifumi, Emi; Arakawa, Mitsue; Matsumoto, Shingo; Yamamoto, Tatsuhiro; Katayama, Yoshiki; Uda, Taizo

    2015-06-01

    Catalytic antibodies have exhibited interesting functions against some infectious viruses such as HIV, rabies virus, and influenza virus in vitro as well as in vivo. In some cases, a catalytic antibody light chain takes on several structures from the standpoint of molecular size (monomer, dimer, etc.) and/or isoelectronic point. In this study, we prepared a monomeric 23D4 light chain by mutating the C-terminal Cys to Ala of the wild-type. The mutated 23D4 molecule took a simple monomeric form, which could hydrolyze synthetic 4-methyl-coumaryl-7-amide substrates and a plasmid DNA. Because the monomeric 23D4 light chain suppressed the infection of influenza virus A/Hiroshima/37/2001 in an in vitro assay, the corresponding experiments were conducted in vivo, after the virus strain (which was taken from a human patient) was successfully adapted into BALB/cN Sea mice. In the experiments, a mixture of the monomeric 23D4 and the virus was nasally administered 1) with preincubation and 2) without preincubation. As a result, the monomeric 23D4 clearly exhibited the ability to suppress the influenza virus infection in both cases, indicating a potential drug for preventing infection of the influenza A virus. PMID:25713031

  14. Antiviral activity of a single-domain antibody immunotoxin binding to glycoprotein D of herpes simplex virus 2.

    PubMed

    Geoghegan, Eileen M; Zhang, Hong; Desai, Prashant J; Biragyn, Arya; Markham, Richard B

    2015-01-01

    Despite years of research dedicated to preventing the sexual transmission of herpes simplex virus 2 (HSV-2), there is still no protective vaccine or microbicide against one of the most common sexually transmitted infections in the world. Using a phage display library constructed from a llama immunized with recombinant HSV-2 glycoprotein D, we identified a single-domain antibody VHH, R33, which binds to the viral surface glycoprotein D. Although R33 does not demonstrate any HSV-2 neutralization activity in vitro, when expressed with the cytotoxic domain of exotoxin A, the resulting immunotoxin (R33ExoA) specifically and potently kills HSV-2-infected cells, with a 50% neutralizing dilution (IC50) of 6.7 nM. We propose that R33ExoA could be used clinically to prevent transmission of HSV-2 through killing of virus-producing epithelial cells during virus reactivation. R33 could also potentially be used to deliver other cytotoxic effectors to HSV-2-infected cells. PMID:25385102

  15. Antiviral Activity of a Single-Domain Antibody Immunotoxin Binding to Glycoprotein D of Herpes Simplex Virus 2

    PubMed Central

    Geoghegan, Eileen M.; Zhang, Hong; Desai, Prashant J.; Biragyn, Arya

    2014-01-01

    Despite years of research dedicated to preventing the sexual transmission of herpes simplex virus 2 (HSV-2), there is still no protective vaccine or microbicide against one of the most common sexually transmitted infections in the world. Using a phage display library constructed from a llama immunized with recombinant HSV-2 glycoprotein D, we identified a single-domain antibody VHH, R33, which binds to the viral surface glycoprotein D. Although R33 does not demonstrate any HSV-2 neutralization activity in vitro, when expressed with the cytotoxic domain of exotoxin A, the resulting immunotoxin (R33ExoA) specifically and potently kills HSV-2-infected cells, with a 50% neutralizing dilution (IC50) of 6.7 nM. We propose that R33ExoA could be used clinically to prevent transmission of HSV-2 through killing of virus-producing epithelial cells during virus reactivation. R33 could also potentially be used to deliver other cytotoxic effectors to HSV-2-infected cells. PMID:25385102

  16. Amino acid interaction networks provide a new lens for therapeutic antibody discovery and anti-viral drug optimization.

    PubMed

    Viswanathan, Karthik; Shriver, Zachary; Babcock, Gregory J

    2015-04-01

    Identification of epitopes on viral proteins for the design/identification of broadly-neutralizing monoclonal antibodies (bnAbs) or specific immunogens for vaccine development is hampered by target amino acid diversity. Recently, bnAbs have been isolated for variable viruses by screening B cells from infected individuals for neutralization breadth. Epitope mapping and structural analysis of bnAbs revealed, while some of these bnAbs target glycan moieties, most target protein regions that are conserved in sequence and/or structure. However, almost universally viruses develop mutations that allow escape from neutralization suggesting protein function may not be dependent on the observed conservation. An alternative method for identification of conserved amino acid sequences utilizes an amino acid network-based approach. Calculation of a significant interaction network (SIN) score allows for selection of amino acids that are conserved and constrained within the protein system. Amino acids with high SIN scores are predicted to mutate at lower frequency due to the impact mutation has on the structure/function of a protein. By ascertaining regions of high SIN score, therapeutics can be appropriately designed to target these regions of low mutability. Further, the use of atomic interaction networks to examine protein structure and protein-protein interfaces can complement existing structure-based computational approaches for therapeutic engineering. PMID:25913816

  17. Accelerating Influenza Research: Vaccines, Antivirals, Immunomodulators and Monoclonal Antibodies. The Manufacture of a New Wild-Type H3N2 Virus for the Human Viral Challenge Model

    PubMed Central

    Fullen, Daniel J.; Noulin, Nicolas; Catchpole, Andrew; Fathi, Hosnieh; Murray, Edward J.; Mann, Alex; Eze, Kingsley; Balaratnam, Ganesh; Borley, Daryl W.; Gilbert, Anthony; Lambkin-Williams, Rob

    2016-01-01

    Background Influenza and its associated diseases are a major cause of morbidity and mortality. The United States Advisory Committee on Immunization Practices recommends influenza vaccination for everyone over 6 months of age. The failure of the flu vaccine in 2014–2015 demonstrates the need for a model that allows the rapid development of novel antivirals, universal/intra-seasonal vaccines, immunomodulators, monoclonal antibodies and other novel treatments. To this end we manufactured a new H3N2 influenza virus in compliance with Good Manufacturing Practice for use in the Human Viral Challenge Model. Methods and Strain Selection We chose an H3N2 influenza subtype, rather than H1N1, given that this strain has the most substantial impact in terms of morbidity or mortality annually as described by the Centre for Disease Control. We first subjected the virus batch to rigorous adventitious agent testing, confirmed the virus to be wild-type by Sanger sequencing and determined the virus titres appropriate for human use via the established ferret model. We built on our previous experience with other H3N2 and H1N1 viruses to develop this unique model. Human Challenge and Conclusions We conducted an initial safety and characterisation study in healthy adult volunteers, utilising our unique clinical quarantine facility in London, UK. In this study we demonstrated this new influenza (H3N2) challenge virus to be both safe and pathogenic with an appropriate level of disease in volunteers. Furthermore, by inoculating volunteers with a range of different inoculum titres, we established the minimum infectious titre required to achieve reproducible disease whilst ensuring a sensitive model that can be translated to design of subsequent field based studies. Trial Registration ClinicalTrials.gov NCT02525055 PMID:26761707

  18. Antibody

    MedlinePlus

    An antibody is a protein produced by the body's immune system when it detects harmful substances, called antigens. Examples ... microorganisms (bacteria, fungi, parasites, and viruses) and chemicals. Antibodies may be produced when the immune system mistakenly ...

  19. Risk of hepatitis B virus (HBV) reactivation in hepatitis B surface antigen negative/hepatitis B core antibody positive patients receiving rituximab-containing combination chemotherapy without routine antiviral prophylaxis.

    PubMed

    Koo, Yu Xuan; Tay, Matthew; Teh, Yii Ean; Teng, David; Tan, Daniel S W; Tan, Iain B H; Tai, David W M; Quek, Richard; Tao, Miriam; Lim, Soon Thye

    2011-10-01

    The use of rituximab has been associated with increased risk of hepatitis B virus (HBV) reactivation in patients who are hepatitis B surface antigen (HBsAg) negative and antihepatitis B core antibody (anti-HBc) positive. We aim to determine the rate of HBV reactivation in this group of patients who received rituximab-containing combination chemotherapy without concomitant antiviral prophylaxis and to identify potential risk factors for reactivation. Sixty-two HBsAg negative/anti-HBc positive patients with B-cell lymphoma treated with rituximab-based immunochemotherapy from 2006 to 2009 were included. None of the patients received concomitant antiviral prophylaxis. In this cohort, 48 (77%) patients received rituximab with cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP), eight (13%) received rituximab with cyclophosphamide, vincristine and prednisolone, and six (10%) received other chemotherapy regimens. Two patients suffered HBV reactivation; both were above 70 years of age, received R-CHOP chemotherapy and were negative for antihepatitis B surface antibody (anti-HBs) at baseline. One of the two patients reactivated shortly after completion of R-CHOP chemotherapy while the other reactivated during rituximab maintenance treatment. Thus, the overall reactivation rate in this cohort of patients is 3% (2/62), 4% (2/48), and 25% (1/4) in patients who received R-CHOP chemotherapy and who received rituximab maintenance, respectively. The rate of HBV reactivation is low in patients who are HBsAg negative/anti-HBc positive receiving rituximab-based combination chemotherapy without concomitant antiviral prophylaxis. However, elderly patients, particularly those without anti-HBs, seemed particularly at risk. PMID:21520001

  20. Inhibitory Effect of Individual or Combinations of Broadly Neutralizing Antibodies and Antiviral Reagents against Cell-Free and Cell-to-Cell HIV-1 Transmission

    PubMed Central

    Kolodkin-Gal, Dror; Eslamizar, Leila; Owuor, Joshua O.; Mazzola, Emanuele; Gonzalez, Ana M.; Korioth-Schmitz, Birgit; Gelman, Rebecca S.; Montefiori, David C.; Haynes, Barton F.; Schmitz, Joern E.

    2015-01-01

    ABSTRACT To date, most therapeutic and vaccine candidates for human immunodeficiency virus type 1 (HIV-1) are evaluated preclinically for efficacy against cell-free viral challenges. However, cell-associated HIV-1 is suggested to be a major contributor to sexual transmission by mucosal routes. To determine if neutralizing antibodies or inhibitors block cell-free and cell-associated virus transmission of diverse HIV-1 strains with different efficiencies, we tested 12 different antibodies and five inhibitors against four green fluorescent protein (GFP)-labeled HIV-1 envelope (Env) variants from transmitted/founder (T/F) or chronic infection isolates. We evaluated antibody/inhibitor-mediated virus neutralization using either TZM-bl target cells, in which infectivity was determined by virus-driven luciferase expression, or A3R5 lymphoblastoid target cells, in which infectivity was evaluated by GFP expression. In both the TZM-bl and A3R5 assays, cell-free virus or infected CD4+ lymphocytes were used as targets for neutralization. We further hypothesized that the combined use of specific neutralizing antibodies targeting HIV-1 Env would more effectively prevent cell-associated virus transmission than the use of individual antibodies. The tested antibody combinations included two gp120-directed antibodies, VRC01 and PG9, or VRC01 with the gp41-directed antibody 10E8. Our results demonstrated that cell-associated virus was less sensitive to neutralizing antibodies and inhibitors, particularly using the A3R5 neutralization assay, and the potencies of these neutralizing agents differed among Env variants. A combination of different neutralizing antibodies that target specific sites on gp120 led to a significant reduction in cell-associated virus transmission. These assays will help identify ideal combinations of broadly neutralizing antibodies to use for passive preventive antibody administration and further characterize targets for the most effective neutralizing antibodies

  1. West Nile virus-specific CD4 T cells exhibit direct anti-viral cytokine secretion and cytotoxicity and are sufficient for antiviral protection

    PubMed Central

    Brien, James D.; Uhrlaub, Jennifer L.; Nikolich-Zugich, Janko

    2012-01-01

    CD4 T cells have been shown to be necessary for the prevention of encephalitis during West Nile virus infection. However, the mechanisms used by antigen-specific CD4 T cells to protect mice from West Nile virus encephalitis remain incompletely understood. Contrary to the belief that CD4 T cells are protective because they merely maintain the CD8 T cell response and improve antibody production, we here provide evidence for the direct anti-viral activity of CD4 T cells which functions to protect the host from WNV encephalitis. In adoptive transfers, naïve CD4 T cells protected a significant number of lethally infected RAG−/− mice, demonstrating the protective effect of CD4 T cells independent of B cells and CD8 T cells. To shed light on the mechanism of this protection, we defined the peptide specificities of the CD4 T cells responding to West Nile virus infection in C57BL/6 (H-2b) mice, and used these peptides to characterize the in vivo function of antiviral CD4 T cells. WNV-specific CD4 T cells produced IFN-γ and IL-2, but also showed potential for in vivo and ex vivo cytotoxicity. Furthermore, peptide vaccination using CD4 epitopes conferred protection against lethal West Nile virus infection in immunocompetent mice. These results demonstrate the role of direct effector function of antigen-specific CD4 T cell in preventing severe West Nile virus disease. PMID:19050276

  2. A Nonfucosylated Variant of the anti-HIV-1 Monoclonal Antibody b12 Has Enhanced FcγRIIIa-Mediated Antiviral Activity In Vitro but Does Not Improve Protection against Mucosal SHIV Challenge in Macaques

    PubMed Central

    Moldt, Brian; Shibata-Koyama, Mami; Rakasz, Eva G.; Schultz, Niccole; Kanda, Yutaka; Dunlop, D. Cameron; Finstad, Samantha L.; Jin, Chenggang; Landucci, Gary; Alpert, Michael D.; Dugast, Anne-Sophie; Parren, Paul W. H. I.; Nimmerjahn, Falk; Evans, David T.; Alter, Galit; Forthal, Donald N.; Schmitz, Jörn E.; Iida, Shigeru; Poignard, Pascal; Watkins, David I.

    2012-01-01

    Eliciting neutralizing antibodies is thought to be a key activity of a vaccine against human immunodeficiency virus (HIV). However, a number of studies have suggested that in addition to neutralization, interaction of IgG with Fc gamma receptors (FcγR) may play an important role in antibody-mediated protection. We have previously obtained evidence that the protective activity of the broadly neutralizing human IgG1 anti-HIV monoclonal antibody (MAb) b12 in macaques is diminished in the absence of FcγR binding capacity. To investigate antibody-dependent cellular cytotoxicity (ADCC) as a contributor to FcγR-associated protection, we developed a nonfucosylated variant of b12 (NFb12). We showed that, compared to fully fucosylated (referred to as wild-type in the text) b12, NFb12 had higher affinity for human and rhesus macaque FcγRIIIa and was more efficient in inhibiting viral replication and more effective in killing HIV-infected cells in an ADCC assay. Despite these more potent in vitro antiviral activities, NFb12 did not enhance protection in vivo against repeated low-dose vaginal challenge in the simian-human immunodeficiency virus (SHIV)/macaque model compared to wild-type b12. No difference in protection, viral load, or infection susceptibility was observed between animals given NFb12 and those given fully fucosylated b12, indicating that FcγR-mediated activities distinct from FcγRIIIa-mediated ADCC may be important in the observed protection against SHIV challenge. PMID:22457527

  3. Henipavirus pathogenesis and antiviral approaches.

    PubMed

    Mathieu, Cyrille; Horvat, Branka

    2015-03-01

    Hendra virus and Nipah virus are closely related, recently emerged zoonotic paramyxoviruses, belonging to the Henipavirus genus. Both viruses induce generalized vasculitis affecting particularly the respiratory tract and CNS. The exceptionally broad species tropism of Henipavirus, the high case fatality rate and person-to-person transmission associated with Nipah virus outbreaks emphasize the necessity of effective antiviral strategies for these intriguing threatening pathogens. Current therapeutic approaches, validated in animal models, target early steps in viral infection; they include the use of neutralizing virus-specific antibodies and blocking membrane fusion with peptides that bind the viral fusion protein. A better understanding of Henipavirus pathogenesis is critical for the further advancement of antiviral treatment, and we summarize here the recent progress in the field. PMID:25634624

  4. Safety and antiviral activity of motavizumab, a respiratory syncytial virus (RSV)-specific humanized monoclonal antibody, when administered to RSV-infected children.

    PubMed

    Lagos, Rosanna; DeVincenzo, John P; Muñoz, Alma; Hultquist, Micki; Suzich, Joann; Connor, Edward M; Losonsky, Genevieve A

    2009-09-01

    Previously healthy children hospitalized with respiratory syncytial virus (RSV) received motavizumab (3, 15, or 30 mg/kg intravenously), an RSV-specific monoclonal antibody, or placebo. Safety, tolerability, motavizumab concentrations, and immunogenicity were assessed. Cultivatable RSV in the upper respiratory tract was significantly reduced with motavizumab compared with placebo day 1 post-treatment. No adverse events were considered motavizumab-related by site investigators. PMID:19636278

  5. Development of a stringent ELISA protocol to evaluate anti-viral hemorrhagic septicemia virus-specific antibodies in olive flounder Paralichthys olivaceus with improved specificity.

    PubMed

    Kim, Hyoung Jun; Park, Jeong Su; Kwon, Se Ryun

    2015-07-01

    Olive flounder were vaccinated with polyinosinic:polycytidylic acid [Poly (I:C)] to prevent viral hemorrhagic septicemia (VHS). Vaccine efficacy was verified by detection of anti- VHS virus (VHSV) antibodies using enzyme-linked immunosorbent assay (ELISA). In the study, ELISA absorbance values of the negative control group [Poly (I:C)-MEM10] were saturated when an ELISA protocol, that includes pretreatment of the fish sera with 5% skim milk, was used. However, the saturated OD values in the negative control did not correlate with a specific immune response against VHSV, because the group showed low survival rate (only 10%) following the VHSV challenge. Also, OD values of Poly (I:C)- VHSV group were high, and the group showed high survival rate (97.5%) against VHSV challenge test. It was suggested that the high OD values were possibly due to the presence of anti-fetal bovine serum (FBS) cross-reactivity. To compensate this, we subtracted the absorbance of infectious hematopoietic necrosis (IHNV)-Ag plates from those of the VHSV-Ag plates. However, the average value for the Poly (I:C)-VHSV group (0.167) was lower than expected even though high survival rate. We used an advanced ELISA system to pre-treat fish sera with 5% skim milk and two novirhabdoviruses as capture antigens as well as 50% FBS. The corrected absorbance values for pre-treated fish sera from the negative control Poly (I:C)-MEM10 and experimental Poly (I:C)-VHSV groups averaged 0.033 and 0.579, respectively. The specific VHSV antibody response of the vaccinated group was assessed using fish sera pretreated with skim milk and FBS and by calculating the corrected absorbance values from ELISA with two novirhabdovirus capture antigens. PMID:26115998

  6. Protective Vaccine-Induced CD4+ T Cell-Independent B Cell Responses against Rabies Infection

    PubMed Central

    Dorfmeier, Corin L.; Lytle, Andrew G.; Dunkel, Amber L.; Gatt, Anthony

    2012-01-01

    A major goal in rabies virus (RV) research is to develop a single-dose postexposure prophylaxis (PEP) that would simplify vaccination protocols, reduce costs associated with rabies prevention in humans, and save lives. Live replication-deficient RV-based vaccines are emerging as promising single-dose vaccines to replace currently licensed inactivated RV-based vaccines. Nonetheless, little is known about how effective B cells develop in response to live RV-based vaccination. Understanding this fundamental property of rabies immunology may help in developing a single-dose RV vaccine. Typically, vaccines induce B cells secreting high-affinity, class-switched antibodies during germinal center (GC) reactions; however, there is a lag time between vaccination and the generation of GC B cells. In this report, we show that RV-specific antibodies are detected in mice immunized with live but not inactivated RV-based vaccines before B cells displaying a GC B cell phenotype (B220+GL7hiCD95hi) are formed, indicating a potential role for T cell-independent and early extrafollicular T cell-dependent antibody responses in the protection against RV infection. Using two mouse models of CD4+ T cell deficiency, we show that B cells secreting virus-neutralizing antibodies (VNAs) are induced via T cell-independent mechanisms within 4 days postimmunization with a replication-deficient RV-based vaccine. Importantly, mice that are completely devoid of T cells (B6.129P2-Tcrβtm1Mom Tcrδtm1Mom/J) show protection against pathogenic challenge shortly after immunization with a live replication-deficient RV-based vaccine. We show that vaccines that can exploit early pathways of B cell activation and development may hold the key for the development of a single-dose RV vaccine wherein the rapid induction of VNA is critical. PMID:22896601

  7. Anti-influenza M2e antibody

    DOEpatents

    Bradbury, Andrew M.

    2013-04-16

    Humanized recombinant and monoclonal antibodies specific for the ectodomain of the influenza virus M2 ion channel protein are disclosed. The antibodies of the invention have anti-viral activity and may be useful as anti-viral therapeutics and/or prophylactic/vaccine agents for inhibiting influenza virus replication and for treating individuals infected with influenza.

  8. Anti-influenza M2e antibody

    DOEpatents

    Bradbury, Andrew M.

    2011-12-20

    Humanized recombinant and monoclonal antibodies specific for the ectodomain of the influenza virus M2 ion channel protein are disclosed. The antibodies of the invention have anti-viral activity and may be useful as anti-viral therapeutics and/or prophylactic/vaccine agents for inhibiting influenza virus replication and for treating individuals infected with influenza.

  9. Antiviral targets of human noroviruses.

    PubMed

    Prasad, Bv Venkataram; Shanker, Sreejesh; Muhaxhiri, Zana; Deng, Lisheng; Choi, Jae-Mun; Estes, Mary K; Song, Yongcheng; Palzkill, Timothy; Atmar, Robert L

    2016-06-01

    Human noroviruses are major causative agents of sporadic and epidemic gastroenteritis both in children and adults. Currently there are no licensed therapeutic intervention measures either in terms of vaccines or drugs available for these highly contagious human pathogens. Genetic and antigenic diversity of these viruses, rapid emergence of new strains, and their ability to infect a broad population by using polymorphic histo-blood group antigens for cell attachment, pose significant challenges for the development of effective antiviral agents. Despite these impediments, there is progress in the design and development of therapeutic agents. These include capsid-based candidate vaccines, and potential antivirals either in the form of glycomimetics or designer antibodies that block HBGA binding, as well as those that target essential non-structural proteins such as the viral protease and RNA-dependent RNA polymerase. In addition to these classical approaches, recent studies suggest the possibility of interferons and targeting host cell factors as viable approaches to counter norovirus infection. This review provides a brief overview of this progress. PMID:27318434

  10. Advances in Antiviral vaccine development

    PubMed Central

    Graham, Barney S.

    2013-01-01

    Summary Antiviral vaccines have been the most successful biomedical intervention for preventing epidemic viral disease. Vaccination for smallpox in humans and rinderpest in cattle was the basis for disease eradication, and recent progress in polio eradication is promising. While early vaccines were developed empirically by passage in live animals or eggs, more recent vaccines have been developed because of the advent of new technologies, particularly cell culture and molecular biology. Recent technological advances in gene delivery and expression, nanoparticles, protein manufacturing, and adjuvants have created the potential for new vaccine platforms that may provide solutions for vaccines against viral pathogens for which no interventions currently exist. In addition, the technological convergence of human monoclonal antibody isolation, structural biology, and high throughput sequencing is providing new opportunities for atomic-level immunogen design. Selection of human monoclonal antibodies can identify immunodominant antigenic sites associated with neutralization and provide reagents for stabilizing and solving the structure of viral surface proteins. Understanding the structural basis for neutralization can guide selection of vaccine targets. Deep sequencing of the antibody repertoire and defining the ontogeny of the desired antibody responses can reveal the junctional recombination and somatic mutation requirements for B-cell recognition and affinity maturation. Collectively, this information will provide new strategic approaches for selecting vaccine antigens, formulations, and regimens. Moreover, it creates the potential for rational vaccine design and establishing a catalogue of vaccine technology platforms that would be effective against any given family or class of viral pathogens and improve our readiness to address new emerging viral threats. PMID:23947359

  11. Advances in antiviral vaccine development.

    PubMed

    Graham, Barney S

    2013-09-01

    Antiviral vaccines have been the most successful biomedical intervention for preventing epidemic viral disease. Vaccination for smallpox in humans and rinderpest in cattle was the basis for disease eradication, and recent progress in polio eradication is promising. Although early vaccines were developed empirically by passage in live animals or eggs, more recent vaccines have been developed because of the advent of new technologies, particularly cell culture and molecular biology. Recent technological advances in gene delivery and expression, nanoparticles, protein manufacturing, and adjuvants have created the potential for new vaccine platforms that may provide solutions for vaccines against viral pathogens for which no interventions currently exist. In addition, the technological convergence of human monoclonal antibody isolation, structural biology, and high-throughput sequencing is providing new opportunities for atomic-level immunogen design. Selection of human monoclonal antibodies can identify immunodominant antigenic sites associated with neutralization and provide reagents for stabilizing and solving the structure of viral surface proteins. Understanding the structural basis for neutralization can guide selection of vaccine targets. Deep sequencing of the antibody repertoire and defining the ontogeny of the desired antibody responses can reveal the junctional recombination and somatic mutation requirements for B-cell recognition and affinity maturation. Collectively, this information will provide new strategic approaches for selecting vaccine antigens, formulations, and regimens. Moreover, it creates the potential for rational vaccine design and establishing a catalogue of vaccine technology platforms that would be effective against any given family or class of viral pathogens and improve our readiness to address new emerging viral threats. PMID:23947359

  12. Hemolysin-producing Listeria monocytogenes affects the immune response to T-cell-dependent and T-cell-independent antigens.

    PubMed Central

    Hage-Chahine, C M; Del Giudice, G; Lambert, P H; Pechere, J C

    1992-01-01

    A murine experimental infection with a hemolysin-producing (Hly+) strain of Listeria monocytogenes and a non-hemolysin-producing (Hly-) mutant was used as an in vivo model to evaluate the role of hemolysin production in the immune response. No antilisterial antibodies were detectable following sublethal infection with Hly+ bacteria, but consistent antilisterial immunoglobulin G (IgG) and IgM antibody production was observed following sublethal infection with the Hly- mutant. Hly+ but not Hly- L. monocytogenes induced transient inhibition of antibody response to Hly- bacteria and to unrelated T-cell-dependent (tetanus toxoid) and T-cell-independent (pneumococcal polysaccharide 3) antigens. Transient inhibition of the activation of an antigen-specific T-cell clone was also observed following Hly+ infection of antigen-presenting cells but not following Hly- infection. These results suggest that hemolysin production by L. monocytogenes is an important factor in modulating the immune response to T-cell-dependent and T-cell-independent antigens in infected individuals. Images PMID:1548067

  13. Antiviral Drug Allergy

    PubMed Central

    Milpied-Homsi, Brigitte; Moran, Ellen M.; Phillips, Elizabeth J.

    2014-01-01

    Antiviral drugs used to treat HIV and hepatitis C are common causes of delayed drug hypersensitivities for which many of the more severe reactions have been recently shown to be immunogenetically mediated such as abacavir hypersensitivity where HLA-B*57:01 is now used routinely as a screening test to exclude patients carrying this allele from abacavir prescription. Most antiviral drug allergies consist of mild to moderate delayed rash without other serious features (e.g. fever, mucosal involvement, blistering rash, organ impairment. In these cases treatment can be continued with careful observation and symptomatic management and the discontinuation rate is low. PMID:25017682

  14. Antiviral immunity in marine molluscs.

    PubMed

    Green, Timothy J; Raftos, David; Speck, Peter; Montagnani, Caroline

    2015-09-01

    Marine molluscs, like all living organisms, are constantly exposed to viruses and have evolved efficient antiviral defences. We review here recent developments in molluscan antiviral immunity against viruses belonging to the order Herpesvirales. Emerging results suggest an interferon-like response and autophagy are involved in the antiviral defence of bivalves to viral infection. Multi-functional plasma proteins from gastropods and bivalves have been identified to have broad-spectrum antiviral activity against mammalian viruses. The antiviral defences present in molluscs can be enhanced by genetic selection, as shown by the presence of oyster strains specifically resistant to ostreid herpesvirus type 1. Whether varying amounts or different isoforms of these antiviral plasma proteins contributes to genetic resistance is worthy of further research. Other evolutionarily conserved antiviral mechanisms, such as RNA interference and apoptosis, still need further characterization. PMID:26297577

  15. Existing antiviral vaccines.

    PubMed

    Ravanfar, Parisa; Satyaprakash, Anita; Creed, Rosella; Mendoza, Natalia

    2009-01-01

    The innovation of vaccines has allowed for one of the greatest advancements in the history of public health. The first of the vaccines have been the antiviral vaccines, in particular the smallpox vaccine that was first developed by Edward Jenner in 1796. This article will review vaccination for the following viral diseases: measles, mumps, rubella, polio, hepatitis A, hepatitis B, influenza, rotavirus, rabies, monkeypox, smallpox, Japanese encephalitis, and yellow fever. PMID:19335723

  16. BEI Resources: Supporting antiviral research

    PubMed Central

    Baker, Robert; Peacock, Susan

    2008-01-01

    The Biodefense and Emerging Infections Research Resources Repository (BEI Resources) provides unique, quality-assured reagents to the scientific community for use in basic research and product development involving biodefense and emerging infectious diseases. These include microorganisms (up to Biosafety Level-3) on the National Institute of Allergy and Infectious Diseases (NIAID) and Centers for Disease Control and Prevention (CDC) lists of Category A, B and C priority pathogens. In addition to live microorganisms, related products such as polyclonal antisera, monoclonal antibodies, isolated nucleic acid preparations, overlapping peptide arrays, purified proteins, and assay kits are also available. Many of these materials have direct or indirect applications in antiviral research. These reagents are available free of charge to all registered investigators, regardless of funding source or affiliation. Acquisition of new reagents for the repository is one of the critically necessary and challenging tasks for BEI Resources. Therefore, investigators are encouraged to deposit relevant items, so as to provide access to materials, relief from the burden of distribution, protection of intellectual property rights, and secure storage. In addition, BEI Resources has the capability of contracting for the preparation of specific reagents. If there is a resource needed to advance a specific research area, contact an NIAID program officer or use the “suggest a reagent” option on the BEI Resources homepage, www.beiresources.org. PMID:18675849

  17. Release of nitric oxide during the T cell-independent pathway of macrophage activation

    SciTech Connect

    Beckerman, K.P.; Rogers, H.W.; Corbett, J.A.; Schreiber, R.D.; McDaniel, M.L.; Unanue, E.R. )

    1993-02-01

    Immunodeficient mice are remarkably resistant to Listeria monocytogenes (LM) infection. The authors examined the role that nitric oxide (NO) plays in the CB-17/lcr SCID (SCID) response to LM. SCID spleen cells produced large quantities of NO (as measured by nitrite formation) when incubated in the presence of heat-killed LM. NO produced large quantities of nitrite in response to LM, but only in the presence of IFN-[gamma]. The production of NO induced by LM was not affected by neutralizing antibodies to TNF or IL-1. The production of NO was inhibited by addition of either of two inhibitors of NO synthase, N[sup G]-monomethyl arginine, or aminoguanidine. In a different situation, NK cells that were stimulated by TNF and Listeria products to release IFN-[gamma] did not produce NO. Macrophages cultured with IFN-[gamma] killed live LM. This increased killing of LM was significantly inhibited by amino-guanidine. In vivo, administration of aminoguanidine resulted in a marked increase in the mortality and spleen bacterial loads of LM-infected SCID or immunocompetent control mice. It is concluded that NO is a critical effector molecule of T cell-independent natural resistence of LM as studied in the SCID mouse, and that the NO-mediated response is essential for both SCID and immunocompetent host to survive after LM infection. 37 refs., 7 figs.

  18. [Antiviral properties of basidiomycetes metabolites].

    PubMed

    Avtonomova, A V; Krasnopolskaya, L M

    2014-01-01

    The data on the antiviral action of the Ganoderma lucidum, Lentinus edodes, Grifola frondosa, Agaricus brasiliensis and other basidiomycetes metabolites are summurized. The metabolites of these species of basidiomycetes exhibit a direct antiviral effect on herpes simplex virus types I and II, human immunodeficiency virus (HIV), hepatitis B virus, vesicular stomatitis virus, influenza virus, Epstein-Barr virus, and others. Moreover, metabolites of basidiomycetes increased antiviral immunity. PMID:25975107

  19. Broad-spectrum antiviral agents

    PubMed Central

    Zhu, Jun-Da; Meng, Wen; Wang, Xiao-Jia; Wang, Hwa-Chain R.

    2015-01-01

    Development of highly effective, broad-spectrum antiviral agents is the major objective shared by the fields of virology and pharmaceutics. Antiviral drug development has focused on targeting viral entry and replication, as well as modulating cellular defense system. High throughput screening of molecules, genetic engineering of peptides, and functional screening of agents have identified promising candidates for development of optimal broad-spectrum antiviral agents to intervene in viral infection and control viral epidemics. This review discusses current knowledge, prospective applications, opportunities, and challenges in the development of broad-spectrum antiviral agents. PMID:26052325

  20. B-cell-independent sialylation of IgG.

    PubMed

    Jones, Mark B; Oswald, Douglas M; Joshi, Smita; Whiteheart, Sidney W; Orlando, Ron; Cobb, Brian A

    2016-06-28

    IgG carrying terminal α2,6-linked sialic acids added to conserved N-glycans within the Fc domain by the sialyltransferase ST6Gal1 accounts for the anti-inflammatory effects of large-dose i.v. Ig (IVIg) in autoimmunity. Here, B-cell-specific ablation of ST6Gal1 in mice revealed that IgG sialylation can occur in the extracellular environment of the bloodstream independently of the B-cell secretory pathway. We also discovered that secreted ST6Gal1 is produced by cells lining central veins in the liver and that IgG sialylation is powered by serum-localized nucleotide sugar donor CMP-sialic acid that is at least partially derived from degranulating platelets. Thus, antibody-secreting cells do not exclusively control the sialylation-dependent anti-inflammatory function of IgG. Rather, IgG sialylation can be regulated by the liver and platelets through the corresponding release of enzyme and sugar donor into the cardiovascular circulation. PMID:27303031

  1. Approved Antiviral Drugs over the Past 50 Years.

    PubMed

    De Clercq, Erik; Li, Guangdi

    2016-07-01

    Since the first antiviral drug, idoxuridine, was approved in 1963, 90 antiviral drugs categorized into 13 functional groups have been formally approved for the treatment of the following 9 human infectious diseases: (i) HIV infections (protease inhibitors, integrase inhibitors, entry inhibitors, nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and acyclic nucleoside phosphonate analogues), (ii) hepatitis B virus (HBV) infections (lamivudine, interferons, nucleoside analogues, and acyclic nucleoside phosphonate analogues), (iii) hepatitis C virus (HCV) infections (ribavirin, interferons, NS3/4A protease inhibitors, NS5A inhibitors, and NS5B polymerase inhibitors), (iv) herpesvirus infections (5-substituted 2'-deoxyuridine analogues, entry inhibitors, nucleoside analogues, pyrophosphate analogues, and acyclic guanosine analogues), (v) influenza virus infections (ribavirin, matrix 2 protein inhibitors, RNA polymerase inhibitors, and neuraminidase inhibitors), (vi) human cytomegalovirus infections (acyclic guanosine analogues, acyclic nucleoside phosphonate analogues, pyrophosphate analogues, and oligonucleotides), (vii) varicella-zoster virus infections (acyclic guanosine analogues, nucleoside analogues, 5-substituted 2'-deoxyuridine analogues, and antibodies), (viii) respiratory syncytial virus infections (ribavirin and antibodies), and (ix) external anogenital warts caused by human papillomavirus infections (imiquimod, sinecatechins, and podofilox). Here, we present for the first time a comprehensive overview of antiviral drugs approved over the past 50 years, shedding light on the development of effective antiviral treatments against current and emerging infectious diseases worldwide. PMID:27281742

  2. Autoimmune disease: A role for new anti-viral therapies?

    PubMed

    Dreyfus, David H

    2011-12-01

    Many chronic human diseases may have an underlying autoimmune mechanism. In this review, the author presents a case of autoimmune CIU (chronic idiopathic urticaria) in stable remission after therapy with a retroviral integrase inhibitor, raltegravir (Isentress). Previous reports located using the search terms "autoimmunity" and "anti-viral" and related topics in the pubmed data-base are reviewed suggesting that novel anti-viral agents such as retroviral integrase inhibitors, gene silencing therapies and eventually vaccines may provide new options for anti-viral therapy of autoimmune diseases. Cited epidemiologic and experimental evidence suggests that increased replication of epigenomic viral pathogens such as Epstein-Barr Virus (EBV) in chronic human autoimmune diseases such as rheumatoid arthritis (RA), systemic lupus Erythematosus (SLE), and multiple sclerosis (MS) may activate endogenous human retroviruses (HERV) as a pathologic mechanism. Memory B cells are the reservoir of infection of EBV and also express endogenous retroviruses, thus depletion of memory b-lymphocytes by monoclonal antibodies (Rituximab) may have therapeutic anti-viral effects in addition to effects on B-lymphocyte presentation of both EBV and HERV superantigens. Other novel anti-viral therapies of chronic autoimmune diseases, such as retroviral integrase inhibitors, could be effective, although not without risk. PMID:21871974

  3. RNA silencing: an antiviral mechanism.

    PubMed

    Csorba, T; Pantaleo, V; Burgyán, J

    2009-01-01

    RNA silencing is an evolutionarily conserved sequence-specific gene-inactivation system that also functions as an antiviral mechanism in higher plants and insects. To overcome antiviral RNA silencing, viruses express silencing-suppressor proteins which can counteract the host silencing-based antiviral process. After the discovery of virus-encoded silencing suppressors, it was shown that these viral proteins can target one or more key points in the silencing machinery. Here we review recent progress in our understanding of the mechanism and function of antiviral RNA silencing in plants, and on the virus's counterattack by expression of silencing-suppressor proteins. We also discuss emerging evidence that RNA silencing and expression of viral silencing-suppressor proteins are tools forged as a consequence of virus-host coevolution for fine-tuning host-pathogen coexistence. PMID:20109663

  4. Emerging antiviral drugs.

    PubMed

    De Clercq, Erik

    2008-09-01

    Foremost among the newly described antiviral agents that may be developed into drugs are, for the treatment of human papilloma virus (HPV) infections, cPrPMEDAP; for the treatment of herpes simplex virus (HSV) infections, BAY 57-1293; for the treatment of varicella-zoster virus (VZV) infections, FV-100 (prodrug of Cf 1743); for the treatment of cytomegalovirus (CMV) infections, maribavir; for the treatment of poxvirus infections, ST-246; for the treatment of hepatitis B virus (HBV) infections, tenofovir disoproxil fumarate (TDF) (which in the meantime has already been approved in the EU); for the treatment of various DNA virus infections, the hexadecyloxypropyl (HDP) and octadecyloxyethyl (ODE) prodrugs of cidofovir; for the treatment of orthomyxovirus infections (i.e., influenza), peramivir; for the treatment of hepacivirus infections (i.e., hepatitis C), the protease inhibitors telaprevir and boceprevir, the nucleoside RNA replicase inhibitors (NRRIs) PSI-6130 and R1479, and various non-nucleoside RNA replicase inhibitors (NNRRIs); for the treatment of human immunodeficiency virus (HIV) infections, integrase inhibitors (INIs) such as elvitegravir, nucleoside reverse transcriptase inhibitors (NRTIs) such as apricitabine, non-nucleoside reverse transcriptase inhibitors (NNRTIs) such as rilpivirine and dapivirine; and for the treatment of both HCV and HIV infections, cyclosporin A derivatives such as the non-immunosuppressive Debio-025. PMID:18764719

  5. Viral ancestors of antiviral systems.

    PubMed

    Villarreal, Luis P

    2011-10-01

    All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the 'Big Bang' theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features. PMID:22069523

  6. Viral Ancestors of Antiviral Systems

    PubMed Central

    Villarreal, Luis P.

    2011-01-01

    All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the ‘Big Bang’ theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features. PMID:22069523

  7. Perfluorooctanoic Acid Exposure Suppresses T-independent Antibody Responses

    EPA Science Inventory

    Exposure to  3.75mg/kg of perfluoroocatnoic acid (PFOA) for 15d suppresses T-dependent antibody responses (TDAR), suggesting that T helper cells and/or B cells/plasma cells may be impacted. This study evaluated effects of PFOA exposure on the T cell-independent antibody response...

  8. Novel antiviral activity of chemokines

    SciTech Connect

    Nakayama, Takashi; Shirane, Jumi; Hieshima, Kunio; Shibano, Michiko; Watanabe, Masayasu; Jin, Zhe; Nagakubo, Daisuke; Saito, Takuya; Shimomura, Yoshikazu; Yoshie, Osamu . E-mail: o.yoshie@med.kindai.ac.jp

    2006-07-05

    Antimicrobial peptides are a diverse family of small, mostly cationic polypeptides that kill bacteria, fungi and even some enveloped viruses, while chemokines are a group of mostly cationic small proteins that induce directed migration of leukocytes through interactions with a group of seven transmembrane G protein-coupled receptors. Recent studies have shown that antimicrobial peptides and chemokines have substantially overlapping functions. Thus, while some antimicrobial peptides are chemotactic for leukocytes, some chemokines can kill a wide range of bacteria and fungi. Here, we examined a possible direct antiviral activity of chemokines against an enveloped virus HSV-1. Among 22 human chemokines examined, chemokines such as MIP-1{alpha}/CCL3, MIP-1{beta}/CCL4 and RANTES/CCL5 showed a significant direct antiviral activity against HSV-1. It is intriguing that these chemokines are mostly known to be highly expressed by effector CD8{sup +} T cells. The chemokines with a significant anti-HSV-1 activity commonly bound to HSV-1 virions via envelope glycoprotein gB. Electron microscopy revealed that the chemokines with a significant anti-HSV-1 activity were commonly capable of generating pores in the envelope of HSV-1. Thus, some chemokines have a significant direct antiviral activity against HSV-1 in vitro and may have a potential role in host defense against HSV-1 as a direct antiviral agent.

  9. Dioscin's antiviral effect in vitro.

    PubMed

    Liu, Chaohong; Wang, Yun; Wu, Chunchen; Pei, Rongjuan; Song, Jianhua; Chen, Shiyun; Chen, Xinwen

    2013-03-01

    Dioscin is chemical compound obtained from an extract from a medical plant, air potato that is a yam species. Its potential antiviral properties were analyzed in this study. In this study, dioscin's antiviral effects were tested against several viruses including adenovirus, vesicular stomatitis virus (VSV) and hepatitis B virus (HBV). By time-of-addition assay, dioscin not only blocked the initial stage of adenovirus infection, but also affected the host cell's response for viral infection. In addition, 293 cells treated with dioscin displayed decreased mRNA levels for adenovirus receptor (CAR). Over expression of CAR in 293 cells pretreated with dioscin restored the infectivity of adenovirus. The inhibitory effect of dioscin against VSV infection was observed only in 293 cells pretreated with dioscin prior to infection. Finally, dioscin's inhibitory effect on secretion of HBeAg and HBsAg in HBV positive cell line HepG2 2.215 was observed by ELISA assay. PMID:23238077

  10. Competitive coexistence in antiviral immunity.

    PubMed

    Arnaout, R A; Nowak, M A

    2000-06-01

    Adaptive immunity to viruses in vertebrates is mediated by two distinct but complementary branches of the immune system: the cellular response, which eliminates infected cells, and the humoral response, which eliminates infectious virus. This leads to an interesting contest, since the two responses compete, albeit indirectly, for proliferative stimuli. How can a host mount a coordinated antiviral campaign? Here we show that competition may lead to a state of "competitive coexistence" in which, counterintuitively, each branch complements the other, with clinical benefit to the host. The principle is similar to free-market economics, in which firms compete, but the consumer benefits. Experimental evidence suggests this is a useful paradigm in antiviral immunity. PMID:10816366

  11. Approaches towards rational antiviral chemotherapy.

    PubMed Central

    Oxford, J. S.

    1979-01-01

    Present epidemic influenza is uncontrolled by immuno- or chemoprophylaxis. Mutants of varying antigenic composition arise with relatively high frequency in nature and are able to circumvent herd, or induced, immunity. Also, drug-resistant viruses can be selected in vitro and this resistance can be exchanged to other viruses by gene reassortment. Combined immuno- and chemoprophylaxis may provide a more effective approach to the ultimate control of the disease. Most antiviral compounds have been selected by random screening in the laboratory. Application of more specific enzyme assays such as the virion-associated RNA transcriptase assays may produce other compounds with a defined mode of action - semi-rational chemotherapy. RNA and polypeptide sequence studies are in progress elsewhere to define transcription and translation initiation sites or virus adsorption sites. Such knowledge could lead to a new generation of antiviral compounds. Specific delivery of virus inhibitory compounds is an interesting problem. Liposomes are lipid spheres, and these have been used for the delivery of antiviral compounds. Images Fig. 3a. Fig. 3b. Fig. 4 Fig. 5 PMID:461275

  12. Broadly neutralizing antibodies against influenza viruses

    PubMed Central

    Laursen, Nick S.; Wilson, Ian A.

    2014-01-01

    Despite available antivirals and vaccines, influenza infections continue to be a major cause of mortality worldwide. Vaccination generally induces an effective, but strain-specific antibody response. As the virus continually evolves, new vaccines have to be administered almost annually when a novel strain becomes dominant. Furthermore, the sporadic emerging resistance to neuraminidase inhibitors among circulating strains suggests an urgent need for new therapeutic agents. Recently, several cross-reactive antibodies have been described, which neutralize an unprecedented spectrum of influenza viruses. These broadly neutralizing antibodies generally target conserved functional regions on the major influenza surface glycoprotein hemagglutinin (HA). The characterization of their neutralization breadth and epitopes on HA could stimulate the development of new antibody-based antivirals and broader influenza vaccines. PMID:23583287

  13. Meeting report: 4th ISIRV antiviral group conference: Novel antiviral therapies for influenza and other respiratory viruses.

    PubMed

    McKimm-Breschkin, Jennifer L; Fry, Alicia M

    2016-05-01

    The International Society for Influenza and other Respiratory Virus Diseases (isirv) held its 4th Antiviral Group Conference at the University of Texas on 2-4 June, 2015. With emerging resistance to the drugs currently licensed for treatment and prophylaxis of influenza viruses, primarily the neuraminidase inhibitor oseltamivir phosphate (Tamiflu) and the M2 inhibitors amantadine and rimantadine, and the lack of effective interventions against other respiratory viruses, the 3-day programme focused on the discovery and development of inhibitors of several virus targets and key host cell factors involved in virus replication or mediating the inflammatory response. Virus targets included the influenza haemagglutinin, neuraminidase and M2 proteins, and both the respiratory syncytial virus and influenza polymerases and nucleoproteins. Therapies for rhinoviruses and MERS and SARS coronaviruses were also discussed. With the emerging development of monoclonal antibodies as therapeutics, the potential implications of antibody-dependent enhancement of disease were also addressed. Topics covered all aspects from structural and molecular biology to preclinical and clinical studies. The importance of suitable clinical trial endpoints and regulatory issues were also discussed from the perspectives of both industry and government. This meeting summary provides an overview, not only for the conference participants, but also for those interested in the current status of antivirals for respiratory viruses. PMID:26872862

  14. What You Should Know about Flu Antiviral Drugs

    MedlinePlus

    ... to prevent seasonal influenza . Antiviral drugs are a second line of defense to treat the flu (including seasonal flu and variant flu viruses ) if you get sick. What are the benefits of antiviral drugs? When used for treatment, antiviral ...

  15. Broad-Spectrum Antiviral Therapeutics

    PubMed Central

    Rider, Todd H.; Zook, Christina E.; Boettcher, Tara L.; Wick, Scott T.; Pancoast, Jennifer S.; Zusman, Benjamin D.

    2011-01-01

    Currently there are relatively few antiviral therapeutics, and most which do exist are highly pathogen-specific or have other disadvantages. We have developed a new broad-spectrum antiviral approach, dubbed Double-stranded RNA (dsRNA) Activated Caspase Oligomerizer (DRACO) that selectively induces apoptosis in cells containing viral dsRNA, rapidly killing infected cells without harming uninfected cells. We have created DRACOs and shown that they are nontoxic in 11 mammalian cell types and effective against 15 different viruses, including dengue flavivirus, Amapari and Tacaribe arenaviruses, Guama bunyavirus, and H1N1 influenza. We have also demonstrated that DRACOs can rescue mice challenged with H1N1 influenza. DRACOs have the potential to be effective therapeutics or prophylactics for numerous clinical and priority viruses, due to the broad-spectrum sensitivity of the dsRNA detection domain, the potent activity of the apoptosis induction domain, and the novel direct linkage between the two which viruses have never encountered. PMID:21818340

  16. Antiviral effects of Glycyrrhiza species.

    PubMed

    Fiore, Cristina; Eisenhut, Michael; Krausse, Rea; Ragazzi, Eugenio; Pellati, Donatella; Armanini, Decio; Bielenberg, Jens

    2008-02-01

    Historical sources for the use of Glycyrrhiza species include ancient manuscripts from China, India and Greece. They all mention its use for symptoms of viral respiratory tract infections and hepatitis. Randomized controlled trials confirmed that the Glycyrrhiza glabra derived compound glycyrrhizin and its derivatives reduced hepatocellular damage in chronic hepatitis B and C. In hepatitis C virus-induced cirrhosis the risk of hepatocellular carcinoma was reduced. Animal studies demonstrated a reduction of mortality and viral activity in herpes simplex virus encephalitis and influenza A virus pneumonia. In vitro studies revealed antiviral activity against HIV-1, SARS related coronavirus, respiratory syncytial virus, arboviruses, vaccinia virus and vesicular stomatitis virus. Mechanisms for antiviral activity of Glycyrrhiza spp. include reduced transport to the membrane and sialylation of hepatitis B virus surface antigen, reduction of membrane fluidity leading to inhibition of fusion of the viral membrane of HIV-1 with the cell, induction of interferon gamma in T-cells, inhibition of phosphorylating enzymes in vesicular stomatitis virus infection and reduction of viral latency. Future research needs to explore the potency of compounds derived from licorice in prevention and treatment of influenza A virus pneumonia and as an adjuvant treatment in patients infected with HIV resistant to antiretroviral drugs. PMID:17886224

  17. Clinical relevance of HCV antiviral drug resistance.

    PubMed

    Welsch, C; Zeuzem, S

    2012-10-01

    The approval of direct-acting antiviral agents (DAAs) against the hepatitis C virus (HCV) NS3 protease revolutionized antiviral therapy in chronic hepatitis C. They mark the beginning of an era with drugs designed to inhibit specific viral proteins involved in the virus life cycle rather than the nonspecific antiviral activity of interferon. Upcoming generations of antivirals are expected that lead to viral eradication in most patients who undergo treatment with hope held for years that HCV can be cured without interferon. Antiviral drug resistance plays a key role in DAA-treatment failure. Knowledge on molecular escape mechanisms of resistant variants, their time to wild-type reversal and potential persistence is of upmost importance to design treatment strategies for patients with previous DAA-treatment failure. PMID:23006585

  18. Broad-spectrum antivirals against viral fusion

    PubMed Central

    Vigant, Frederic; Santos, Nuno C.; Lee, Benhur

    2015-01-01

    Effective antivirals have been developed against specific viruses, such as HIV, Hepatitis C virus and influenza virus. This ‘one bug–one drug’ approach to antiviral drug development can be successful, but it may be inadequate for responding to an increasing diversity of viruses that cause significant diseases in humans. The majority of viral pathogens that cause emerging and re-emerging infectious diseases are membrane-enveloped viruses, which require the fusion of viral and cell membranes for virus entry. Therefore, antivirals that target the membrane fusion process represent new paradigms for broad-spectrum antiviral discovery. In this Review, we discuss the mechanisms responsible for the fusion between virus and cell membranes and explore how broad-spectrum antivirals target this process to prevent virus entry. PMID:26075364

  19. Virus assembly, allostery, and antivirals

    PubMed Central

    Zlotnick, Adam; Mukhopadhyay, Suchetana

    2010-01-01

    Assembly of virus capsids and surface proteins must be regulated to ensure that the resulting complex is an infectious virion. Here we examine assembly of virus capsids, focusing on hepatitis B virus and bacteriophage MS2, and formation of glycoproteins in the alphaviruses. These systems are structurally and biochemically well-characterized and are simplest-case paradigms of self-assembly. Published data suggest that capsid and glycoprotein assembly is subject to allosteric regulation, that is, regulation at the level of conformational change. The hypothesis that allostery is a common theme in viruses suggests that deregulation of capsid and glycoprotein assembly by small molecule effectors will be an attractive antiviral strategy, as has been demonstrated with hepatitis B virus. PMID:21163649

  20. Antiviral active peptide from oyster

    NASA Astrophysics Data System (ADS)

    Zeng, Mingyong; Cui, Wenxuan; Zhao, Yuanhui; Liu, Zunying; Dong, Shiyuan; Guo, Yao

    2008-08-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster ( Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10 5 kDa, 5 1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10 5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  1. Antiviral Natural Products and Herbal Medicines

    PubMed Central

    Lin, Liang-Tzung; Hsu, Wen-Chan; Lin, Chun-Ching

    2014-01-01

    Viral infections play an important role in human diseases, and recent outbreaks in the advent of globalization and ease of travel have underscored their prevention as a critical issue in safeguarding public health. Despite the progress made in immunization and drug development, many viruses lack preventive vaccines and efficient antiviral therapies, which are often beset by the generation of viral escape mutants. Thus, identifying novel antiviral drugs is of critical importance and natural products are an excellent source for such discoveries. In this mini-review, we summarize the antiviral effects reported for several natural products and herbal medicines. PMID:24872930

  2. Cancer Exosomes Perform Cell-Independent MicroRNA Biogenesis and Promote Tumorigenesis

    PubMed Central

    Melo, Sonia A.; Sugimoto, Hikaru; O’Connell, Joyce T.; Kato, Noritoshi; Villanueva, Alberto; Vidal, August; Qiu, Le; Vitkin, Edward; Perelman, Lev T.; Melo, Carlos A.; Lucci, Anthony; Ivan, Cristina; Calin, George A.; Kalluri, Raghu

    2014-01-01

    SUMMARY Exosomes are secreted by all cell types and contain proteins and nucleic acids. Here, we report that breast cancer associated exosomes contain microRNAs (miRNAs) associated with the RISC Loading Complex (RLC) and display cell-independent capacity to process precursor microRNAs (pre-miRNAs) into mature miRNAs. Pre-miRNAs, along with Dicer, AGO2, and TRBP, are present in exosomes of cancer cells. CD43 mediates the accumulation of Dicer specifically in cancer exosomes. Cancer exosomes mediate an efficient and rapid silencing of mRNAs to reprogram the target cell transcriptome. Exosomes derived from cells and sera of patients with breast cancer instigate non-tumorigenic epithelial cells to form tumors in a Dicer-dependent manner. These findings offer opportunities for the development of exosomes based biomarkers and therapies. PMID:25446899

  3. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis.

    PubMed

    Melo, Sonia A; Sugimoto, Hikaru; O'Connell, Joyce T; Kato, Noritoshi; Villanueva, Alberto; Vidal, August; Qiu, Le; Vitkin, Edward; Perelman, Lev T; Melo, Carlos A; Lucci, Anthony; Ivan, Cristina; Calin, George A; Kalluri, Raghu

    2014-11-10

    Exosomes are secreted by all cell types and contain proteins and nucleic acids. Here, we report that breast cancer associated exosomes contain microRNAs (miRNAs) associated with the RISC-Loading Complex (RLC) and display cell-independent capacity to process precursor microRNAs (pre-miRNAs) into mature miRNAs. Pre-miRNAs, along with Dicer, AGO2, and TRBP, are present in exosomes of cancer cells. CD43 mediates the accumulation of Dicer specifically in cancer exosomes. Cancer exosomes mediate an efficient and rapid silencing of mRNAs to reprogram the target cell transcriptome. Exosomes derived from cells and sera of patients with breast cancer instigate nontumorigenic epithelial cells to form tumors in a Dicer-dependent manner. These findings offer opportunities for the development of exosomes based biomarkers and therapies. PMID:25446899

  4. Modulation by gamma interferon of antiviral cell-mediated immune responses in vivo.

    PubMed Central

    Utermöhlen, O; Dangel, A; Tárnok, A; Lehmann-Grube, F

    1996-01-01

    Mice were infected with lymphocytic choriomeningitis virus and injected once 24 h later with a monoclonal antibody directed against gamma interferon. In comparison with controls, the increase of numbers of CD8+ T cells and the generation of virus-specific cytotoxic T lymphocytes in spleens and virus clearance from organs were diminished, as was the ability of spleen cells to transmit adoptive immunity to infected recipients. The same treatment slightly but consistently lessened rather than augmented the virus titers early in infection, which was also observed in thymusless nu/nu mice. Injection into infected mice of the lymphokine itself in quantities probably higher than are produced endogenously resulted in lower virus titers in spleens but higher titers in livers. The adoptive immunity in infected mice achieved by infusion of immune spleen cells was not altered by treating the recipients with gamma interferon monoclonal antibody. Such treatment did not measurably affect the production of antiviral serum antibodies. We conclude that in lymphocytic choriomeningitis virus-infected mice, gamma interferon is needed for the generation of antivirally active CD8+ T lymphocytes, and furthermore that in this experimental model, direct antiviral effects of the lymphokine elude detection. PMID:8627670

  5. Reduced Number of Transitional and Naive B Cells in Addition to Decreased BAFF Levels in Response to the T Cell Independent Immunogen Pneumovax®23

    PubMed Central

    Roth, Alena; Glaesener, Stephanie; Schütz, Katharina; Meyer-Bahlburg, Almut

    2016-01-01

    Protective immunity against T cell independent (TI) antigens such as Streptococcus pneumoniae is characterized by antibody production of B cells induced by the combined activation of T cell independent type 1 and type 2 antigens in the absence of direct T cell help. In mice, the main players in TI immune responses have been well defined as marginal zone (MZ) B cells and B-1 cells. However, the existence of human equivalents to these B cell subsets and the nature of the human B cell compartment involved in the immune reaction remain elusive. We therefore analyzed the effect of a TI antigen on the B cell compartment through immunization of healthy individuals with the pneumococcal polysaccharide (PnPS)-based vaccine Pneumovax®23, and subsequent characterization of B cell subpopulations. Our data demonstrates a transient decrease of transitional and naïve B cells, with a concomitant increase of IgA+ but not IgM+ or IgG+ memory B cells and a predominant generation of PnPS-specific IgA+ producing plasma cells. No alterations could be detected in T cells, or proposed human B-1 and MZ B cell equivalents. Consistent with the idea of a TI immune response, antigen-specific memory responses could not be observed. Finally, BAFF, which is supposed to drive class switching to IgA, was unexpectedly found to be decreased in serum in response to Pneumovax®23. Our results demonstrate that a characteristic TI response induced by Pneumovax®23 is associated with distinct phenotypical and functional changes within the B cell compartment. Those modulations occur in the absence of any modulations of T cells and without the development of a specific memory response. PMID:27031098

  6. Viruses and Antiviral Immunity in Drosophila

    PubMed Central

    Xu, Jie; Cherry, Sara

    2013-01-01

    Viral pathogens present many challenges to organisms, driving the evolution of a myriad of antiviral strategies to combat infections. A wide variety of viruses infect invertebrates, including both natural pathogens that are insect-restricted, and viruses that are transmitted to vertebrates. Studies using the powerful tools available in the model organism Drosophila have expanded our understanding of antiviral defenses against diverse viruses. In this review, we will cover three major areas. First, we will describe the tools used to study viruses in Drosophila. Second, we will survey the major viruses that have been studied in Drosophila. And lastly, we will discuss the well-characterized mechanisms that are active against these diverse pathogens, focusing on non-RNAi mediated antiviral mechanisms. Antiviral RNAi is discussed in another paper in this issue. PMID:23680639

  7. Antiviral activity of silymarin against chikungunya virus

    PubMed Central

    Lani, Rafidah; Hassandarvish, Pouya; Chiam, Chun Wei; Moghaddam, Ehsan; Chu, Justin Jang Hann; Rausalu, Kai; Merits, Andres; Higgs, Stephen; Vanlandingham, Dana; Abu Bakar, Sazaly; Zandi, Keivan

    2015-01-01

    The mosquito-borne chikungunya virus (CHIKV) causes chikungunya fever, with clinical presentations such as severe back and small joint pain, and debilitating arthritis associated with crippling pains that persist for weeks and even years. Although there are several studies to evaluate the efficacy of drugs against CHIKV, the treatment for chikungunya fever is mainly symptom-based and no effective licensed vaccine or antiviral are available. Here, we investigated the antiviral activity of three types of flavonoids against CHIKV in vitro replication. Three compounds: silymarin, quercetin and kaempferol were evaluated for their in vitro antiviral activities against CHIKV using a CHIKV replicon cell line and clinical isolate of CHIKV of Central/East African genotype. A cytopathic effect inhibition assay was used to determine their activities on CHIKV viral replication and quantitative reverse transcription PCR was used to calculate virus yield. Antiviral activity of effective compound was further investigated by evaluation of CHIKV protein expression using western blotting for CHIKV nsP1, nsP3, and E2E1 proteins. Briefly, silymarin exhibited significant antiviral activity against CHIKV, reducing both CHIKV replication efficiency and down-regulating production of viral proteins involved in replication. This study may have important consequence for broaden the chance of getting the effective antiviral for CHIKV infection. PMID:26078201

  8. Antiviral activity of silymarin against chikungunya virus.

    PubMed

    Lani, Rafidah; Hassandarvish, Pouya; Chiam, Chun Wei; Moghaddam, Ehsan; Chu, Justin Jang Hann; Rausalu, Kai; Merits, Andres; Higgs, Stephen; Vanlandingham, Dana; Abu Bakar, Sazaly; Zandi, Keivan

    2015-01-01

    The mosquito-borne chikungunya virus (CHIKV) causes chikungunya fever, with clinical presentations such as severe back and small joint pain, and debilitating arthritis associated with crippling pains that persist for weeks and even years. Although there are several studies to evaluate the efficacy of drugs against CHIKV, the treatment for chikungunya fever is mainly symptom-based and no effective licensed vaccine or antiviral are available. Here, we investigated the antiviral activity of three types of flavonoids against CHIKV in vitro replication. Three compounds: silymarin, quercetin and kaempferol were evaluated for their in vitro antiviral activities against CHIKV using a CHIKV replicon cell line and clinical isolate of CHIKV of Central/East African genotype. A cytopathic effect inhibition assay was used to determine their activities on CHIKV viral replication and quantitative reverse transcription PCR was used to calculate virus yield. Antiviral activity of effective compound was further investigated by evaluation of CHIKV protein expression using western blotting for CHIKV nsP1, nsP3, and E2E1 proteins. Briefly, silymarin exhibited significant antiviral activity against CHIKV, reducing both CHIKV replication efficiency and down-regulating production of viral proteins involved in replication. This study may have important consequence for broaden the chance of getting the effective antiviral for CHIKV infection. PMID:26078201

  9. Helicases as Antiviral Drug Targets

    PubMed Central

    Frick, David N.

    2012-01-01

    Summary Helicases catalytically unwind duplex DNA or RNA using energy derived from the hydrolysis of nucleoside triphosphates and are attractive drug targets because they are required for viral replication. This review discusses methods for helicase identification, classification and analysis, and presents an overview of helicases that are necessary for the replication of human pathogenic viruses. Newly developed methods to analyze helicases, coupled with recently determined atomic structures, have led to a better understanding of their mechanisms of action. The majority of this research has concentrated on enzymes encoded by the herpes simplex virus (HSV) and the hepatitis C virus (HCV). Helicase inhibitors that target the HSV helicase–primase complex comprised of the UL5, UL8 and UL52 proteins have recently been shown to effectively control HSV infection in animal models. In addition, several groups have reported structures of the HCV NS3 helicase at atomic resolutions, and mechanistic studies have uncovered characteristics that distinguish the HCV helicase from related cellular proteins. These new developments should eventually lead to new antiviral medications. PMID:12973446

  10. Antiviral activities of whey proteins.

    PubMed

    Ng, Tzi Bun; Cheung, Randy Chi Fai; Wong, Jack Ho; Wang, Yan; Ip, Denis Tsz Ming; Wan, David Chi Cheong; Xia, Jiang

    2015-09-01

    Milk contains an array of proteins with useful bioactivities. Many milk proteins encompassing native or chemically modified casein, lactoferrin, alpha-lactalbumin, and beta-lactoglobulin demonstrated antiviral activities. Casein and alpha-lactalbumin gained anti-HIV activity after modification with 3-hydroxyphthalic anhydride. Many milk proteins inhibited HIV reverse transcriptase. Bovine glycolactin, angiogenin-1, lactogenin, casein, alpha-lactalbumin, beta-lactoglobulin, bovine lactoferrampin, and human lactoferrampin inhibited HIV-1 protease and integrase. Several mammalian lactoferrins prevented hepatitis C infection. Lactoferrin, methylated alpha-lactalbumin and methylated beta-lactoglobulin inhibited human cytomegalovirus. Chemically modified alpha-lactalbumin, beta-lactoglobulin and lysozyme, lactoferrin and lactoferricin, methylated alpha-lactalbumin, methylated and ethylated beta-lactoglobulins inhibited HSV. Chemically modified bovine beta-lactoglobulin had antihuman papillomavirus activity. Beta-lactoglobulin, lactoferrin, esterified beta-lactoglobulin, and esterified lactoferrindisplayed anti-avian influenza A (H5N1) activity. Lactoferrin inhibited respiratory syncytial virus, hepatitis B virus, adenovirus, poliovirus, hantavirus, sindbis virus, semliki forest virus, echovirus, and enterovirus. Milk mucin, apolactoferrin, Fe(3+)-lactoferrin, beta-lactoglobulin, human lactadherin, bovine IgG, and bovine kappa-casein demonstrated antihuman rotavirus activity. PMID:26198883

  11. Intrathecal, Polyspecific Antiviral Immune Response in Oligoclonal Band Negative Multiple Sclerosis

    PubMed Central

    Brecht, Isabel; Weissbrich, Benedikt; Braun, Julia; Toyka, Klaus Viktor; Weishaupt, Andreas; Buttmann, Mathias

    2012-01-01

    Background Oligoclonal bands (OCB) are detected in the cerebrospinal fluid (CSF) in more than 95% of patients with multiple sclerosis (MS) in the Western hemisphere. Here we evaluated the intrathecal, polyspecific antiviral immune response as a potential diagnostic CSF marker for OCB-negative MS patients. Methodology/Principal Findings We tested 46 OCB-negative German patients with paraclinically well defined, definite MS. Sixteen OCB-negative patients with a clear diagnosis of other autoimmune CNS disorders and 37 neurological patients without evidence for autoimmune CNS inflammation served as control groups. Antibodies against measles, rubella, varicella zoster and herpes simplex virus in paired serum and CSF samples were determined by ELISA, and virus-specific immunoglobulin G antibody indices were calculated. An intrathecal antibody synthesis against at least one neurotropic virus was detected in 8 of 26 (31%) patients with relapsing-remitting MS, 8 of 12 (67%) with secondary progressive MS and 5 of 8 (63%) with primary progressive MS, in 3 of 16 (19%) CNS autoimmune and 3 of 37 (8%) non-autoimmune control patients. Antibody synthesis against two or more viruses was found in 11 of 46 (24%) MS patients but in neither of the two control groups. On average, MS patients with a positive antiviral immune response were older and had a longer disease duration than those without. Conclusion Determination of the intrathecal, polyspecific antiviral immune response may allow to establish a CSF-supported diagnosis of MS in OCB-negative patients when two or more of the four virus antibody indices are elevated. PMID:22792316

  12. Prominent role for plasmacytoid dendritic cells in mucosal T cell-independent IgA induction.

    PubMed

    Tezuka, Hiroyuki; Abe, Yukiko; Asano, Jumpei; Sato, Taku; Liu, Jiajia; Iwata, Makoto; Ohteki, Toshiaki

    2011-02-25

    Although both conventional dendritic cells (cDCs) and plasmacytoid dendritic cells (pDCs) are present in the gut-associated lymphoid tissues (GALT), the roles of pDCs in the gut remain largely unknown. Here we show a critical role for pDCs in T cell-independent (TI) IgA production by B cells in the GALT. When pDCs of the mesenteric lymph nodes (MLNs) and Peyer's patches (PPs) (which are representative GALT) were cultured with naive B cells to induce TI IgA class switch recombination (CSR), IgA production was substantially higher than in cocultures of these cells with cDCs. IgA production was dependent on APRIL and BAFF production by pDCs. Importantly, pDC expression of APRIL and BAFF was dependent on stromal cell-derived type I IFN signaling under steady-state conditions. Our findings provide insight into the molecular basis of pDC conditioning to induce mucosal TI IgA production, which may lead to improvements in vaccination strategies and treatment for mucosal-related disorders. PMID:21333555

  13. Cell-cycle quiescence maintains Caenorhabditis elegans germline stem cells independent of GLP-1/Notch

    PubMed Central

    Seidel, Hannah S; Kimble, Judith

    2015-01-01

    Many types of adult stem cells exist in a state of cell-cycle quiescence, yet it has remained unclear whether quiescence plays a role in maintaining the stem cell fate. Here we establish the adult germline of Caenorhabditis elegans as a model for facultative stem cell quiescence. We find that mitotically dividing germ cells—including germline stem cells—become quiescent in the absence of food. This quiescence is characterized by a slowing of S phase, a block to M-phase entry, and the ability to re-enter M phase rapidly in response to re-feeding. Further, we demonstrate that cell-cycle quiescence alters the genetic requirements for stem cell maintenance: The signaling pathway required for stem cell maintenance under fed conditions—GLP-1/Notch signaling—becomes dispensable under conditions of quiescence. Thus, cell-cycle quiescence can itself maintain stem cells, independent of the signaling pathway otherwise essential for such maintenance. DOI: http://dx.doi.org/10.7554/eLife.10832.001 PMID:26551561

  14. Monoclonal Antibodies.

    ERIC Educational Resources Information Center

    Killington, R. A.; Powell, K. L.

    1984-01-01

    Monoclonal antibodies have provided an exciting addition to the "armory" of the molecular biologist and immunologist. This article discusses briefly the concept of, techniques available for, production of, and possible uses of monoclonal antibodies. (Author)

  15. Antimitochondrial antibody

    MedlinePlus

    ... antibodies (AMA) are substances ( antibodies ) that form against mitochondria. The mitochondria are an important part of cells. They are ... often, in people with other kinds of liver disease and some autoimmune diseases. Risks Risks for having ...

  16. 18th International Conference on Antiviral Research.

    PubMed

    Mitchell, William M

    2005-08-01

    The 18th International Conference on Antiviral Research (ICAR) was held at the Princess Sofia Hotel in Barcelona, Spain, from 11th-14th April, 2005. This is a yearly international meeting sponsored by the International Society for Antiviral Research (ISAR). The current president of ISAR is John A Secrest 3rd of the Southern Research Institute. The scientific programme committee was chaired by John C Drach from the University of Michigan. ISAR was founded in 1987 to exchange prepublication basic, applied and clinical information on the development of antiviral, chemical and biological agents as well as to promote collaborative research. The ISAR has had a major role in the significant advances of the past decade in the reduction of the societal burdens of viral diseases by the focus of ICAR on the discovery and clinical application of antiviral agents. The 18th ICAR was organised as a series of focus presentations on specific viral groups consisting of oral and poster presentations of original research findings. In addition, the conference included plenary speakers, award presentations, a minisymposium on bioterrorism, and a satellite symposium on clinical antiviral drug developments. The size of the conference (> 50 oral and 250 poster presentations) necessitates limitation to the most noteworthy in the judgment of this reviewer. The current membership of the ISAR is approximately 700 with approximately 50% the membership in attendance. PMID:16086663

  17. Antiviral activities of heated dolomite powder.

    PubMed

    Motoike, Koichi; Hirano, Shozo; Yamana, Hideaki; Onda, Tetsuhiko; Maeda, Takayoshi; Ito, Toshihiro; Hayakawa, Motozo

    2008-12-01

    The effect of the heating conditions of dolomite powder on its antiviral activity was studied against the H5N3 avian influenza virus. Calcium oxide (CaO) and magnesium oxide (MgO), obtained by the thermal decomposition of dolomite above 800 degrees C, were shown to have strong antiviral activity, but the effect was lessened when the heating temperature exceeded 1400 degrees C. Simultaneous measurement of the crystallite size suggested that the weakening of the activity was due to the considerable grain growth of the oxides. It was found that the presence of Mg in dolomite contributed to the deterrence of grain growth of the oxides during the heating process. Although both CaO and MgO exhibited strong antiviral activity, CaO had the stronger activity but quickly hydrated in the presence of water. On the other hand, the hydration of MgO took place gradually under the same conditions. Separate measurements using MgO and Mg(OH)2 revealed that MgO had a higher antiviral effect than Mg(OH)2. From the overall experiments, it was suggested that the strong antiviral activity of dolomite was related to the hydration reaction of CaO. PMID:19127652

  18. Antibody-Mediated Internalization of Infectious HIV-1 Virions Differs among Antibody Isotypes and Subclasses.

    PubMed

    Tay, Matthew Zirui; Liu, Pinghuang; Williams, LaTonya D; McRaven, Michael D; Sawant, Sheetal; Gurley, Thaddeus C; Xu, Thomas T; Dennison, S Moses; Liao, Hua-Xin; Chenine, Agnès-Laurence; Alam, S Munir; Moody, M Anthony; Hope, Thomas J; Haynes, Barton F; Tomaras, Georgia D

    2016-08-01

    Emerging data support a role for antibody Fc-mediated antiviral activity in vaccine efficacy and in the control of HIV-1 replication by broadly neutralizing antibodies. Antibody-mediated virus internalization is an Fc-mediated function that may act at the portal of entry whereby effector cells may be triggered by pre-existing antibodies to prevent HIV-1 acquisition. Understanding the capacity of HIV-1 antibodies in mediating internalization of HIV-1 virions by primary monocytes is critical to understanding their full antiviral potency. Antibody isotypes/subclasses differ in functional profile, with consequences for their antiviral activity. For instance, in the RV144 vaccine trial that achieved partial efficacy, Env IgA correlated with increased risk of HIV-1 infection (i.e. decreased vaccine efficacy), whereas V1-V2 IgG3 correlated with decreased risk of HIV-1 infection (i.e. increased vaccine efficacy). Thus, understanding the different functional attributes of HIV-1 specific IgG1, IgG3 and IgA antibodies will help define the mechanisms of immune protection. Here, we utilized an in vitro flow cytometric method utilizing primary monocytes as phagocytes and infectious HIV-1 virions as targets to determine the capacity of Env IgA (IgA1, IgA2), IgG1 and IgG3 antibodies to mediate HIV-1 infectious virion internalization. Importantly, both broadly neutralizing antibodies (i.e. PG9, 2G12, CH31, VRC01 IgG) and non-broadly neutralizing antibodies (i.e. 7B2 mAb, mucosal HIV-1+ IgG) mediated internalization of HIV-1 virions. Furthermore, we found that Env IgG3 of multiple specificities (i.e. CD4bs, V1-V2 and gp41) mediated increased infectious virion internalization over Env IgG1 of the same specificity, while Env IgA mediated decreased infectious virion internalization compared to IgG1. These data demonstrate that antibody-mediated internalization of HIV-1 virions depends on antibody specificity and isotype. Evaluation of the phagocytic potency of vaccine

  19. Alpha-Particle Emitting 213Bi-Anti-EGFR Immunoconjugates Eradicate Tumor Cells Independent of Oxygenation

    PubMed Central

    Gaertner, Florian C.; Bruchertseifer, Frank; Morgenstern, Alfred; Essler, Markus; Senekowitsch-Schmidtke, Reingard

    2013-01-01

    Hypoxia is a central problem in tumor treatment because hypoxic cells are less sensitive to chemo- and radiotherapy than normoxic cells. Radioresistance of hypoxic tumor cells is due to reduced sensitivity towards low Linear Energy Transfer (LET) radiation. High LET α-emitters are thought to eradicate tumor cells independent of cellular oxygenation. Therefore, the aim of this study was to demonstrate that cell-bound α-particle emitting 213Bi immunoconjugates kill hypoxic and normoxic CAL33 tumor cells with identical efficiency. For that purpose CAL33 cells were incubated with 213Bi-anti-EGFR-MAb or irradiated with photons with a nominal energy of 6 MeV both under hypoxic and normoxic conditions. Oxygenation of cells was checked via the hypoxia-associated marker HIF-1α. Survival of cells was analysed using the clonogenic assay. Cell viability was monitored with the WST colorimetric assay. Results were evaluated statistically using a t-test and a Generalized Linear Mixed Model (GLMM). Survival and viability of CAL33 cells decreased both after incubation with increasing 213Bi-anti-EGFR-MAb activity concentrations (9.25 kBq/ml–1.48 MBq/ml) and irradiation with increasing doses of photons (0.5–12 Gy). Following photon irradiation survival and viability of normoxic cells were significantly lower than those of hypoxic cells at all doses analysed. In contrast, cell death induced by 213Bi-anti-EGFR-MAb turned out to be independent of cellular oxygenation. These results demonstrate that α-particle emitting 213Bi-immunoconjugates eradicate hypoxic tumor cells as effective as normoxic cells. Therefore, 213Bi-radioimmunotherapy seems to be an appropriate strategy for treatment of hypoxic tumors. PMID:23724085

  20. Emerging paramyxoviruses: molecular mechanisms and antiviral strategies

    PubMed Central

    Aguilar, Hector C.; Lee, Benhur

    2011-01-01

    In recent years, several paramyxoviruses have emerged to infect humans, including previously unidentified zoonoses. Hendra and Nipah virus (henipavirus (HNV)) zoonoses were first identified in 1994 or 1998, causing deaths in animals and humans in Australia or Malaysia, respectively. Other paramyxoviruses, such as menangle virus, tioman virus, human metapneumovirus, and avian paramyxovirus-1, with less morbidity in humans, have also been recently identified. Although the Paramyxoviridae family of viruses has been previously recognized as biomedically and veterinarily important, the recent emergence of these paramyxoviruses has increased our attention to this family. Antiviral drugs can be designed to target specific important determinants of the viral/cell life cycle. Therefore, identifying and understanding the mechanistic underpinnings of viral entry, replication, assembly, and budding will be critical in the development of antiviral therapeutic agents. This review focuses on the molecular mechanisms discovered and the antiviral strategies pursued in recent years for emerging paramyxoviruses, with a concentration on viral entry and exit mechanisms. PMID:21345285

  1. Antiviral Defense Mechanisms in Honey Bees

    PubMed Central

    Brutscher, Laura M.; Daughenbaugh, Katie F.; Flenniken, Michelle L.

    2015-01-01

    Honey bees are significant pollinators of agricultural crops and other important plant species. High annual losses of honey bee colonies in North America and in some parts of Europe have profound ecological and economic implications. Colony losses have been attributed to multiple factors including RNA viruses, thus understanding bee antiviral defense mechanisms may result in the development of strategies that mitigate colony losses. Honey bee antiviral defense mechanisms include RNA-interference, pathogen-associated molecular pattern (PAMP) triggered signal transduction cascades, and reactive oxygen species generation. However, the relative importance of these and other pathways is largely uncharacterized. Herein we review the current understanding of honey bee antiviral defense mechanisms and suggest important avenues for future investigation. PMID:26273564

  2. Current Landscape of Antiviral Drug Discovery

    PubMed Central

    Blair, Wade; Cox, Christopher

    2016-01-01

    Continued discovery and development of new antiviral medications are paramount for global human health, particularly as new pathogens emerge and old ones evolve to evade current therapeutic agents. Great success has been achieved in developing effective therapies to suppress human immunodeficiency virus (HIV) and hepatitis B virus (HBV); however, the therapies are not curative and therefore current efforts in HIV and HBV drug discovery are directed toward longer-acting therapies and/or developing new mechanisms of action that could potentially lead to cure, or eradication, of the virus. Recently, exciting early clinical data have been reported for novel antivirals targeting respiratory syncytial virus (RSV) and influenza (flu). Preclinical data suggest that these new approaches may be effective in treating high-risk patients afflicted with serious RSV or flu infections. In this review, we highlight new directions in antiviral approaches for HIV, HBV, and acute respiratory virus infections. PMID:26962437

  3. Antiviral Drug Resistance: Mechanisms and Clinical Implications

    PubMed Central

    Chou, Sunwen

    2010-01-01

    Summary Antiviral drug resistance is an increasing concern in immunocompromised patient populations, where ongoing viral replication and prolonged drug exposure lead to the selection of resistant strains. Rapid diagnosis of resistance can be made by associating characteristic viral mutations with resistance to various drugs as determined by phenotypic assays. Management of drug resistance includes optimization of host factors and drug delivery, selection of alternative therapies based on knowledge of mechanisms of resistance, and the development of new antivirals. This article discusses drug resistance in herpesviruses and hepatitis B. PMID:20466277

  4. Antiviral activity of constituents of Tamus communis.

    PubMed

    Aquino, R; Conti, C; De Simone, F; Orsi, N; Pizza, C; Stein, M L

    1991-10-01

    The antiviral activity of the phenanthrene derivatives 1-6, of the spyrostane triglycosides dioscin (7) and gracillin (8), of the furostanol tetraglycosides methylprotodioscin (9), its (25S) epimer methylprotoneodioscin (10), and methylprotogracillin 11, have been tested towards two RNA viruses: vesicular stomatitis virus and human rhinovirus type 1B. All these products were extracted from the rizomes of Tamus communis L; compound 11 was isolated also from Asparagus cochinchinesis, together with pseudoprotodioscin (12), a 20 (22)-unsaturated furostanoside, which was also investigated for antiviral activity. The results were of some interest mainly for the phenanthrene derivatives. PMID:1667189

  5. Bell's Palsy: Treatment with Steroids and Antiviral Drugs

    MedlinePlus

    ... PATIENTS and their FAMILIES BELL’S PALSY: TREATMENT WITH STEROIDS AND ANTIVIRAL DRUGS This information sheet is provided to help you understand the role of steroids and antiviral drugs for treating Bell’s palsy. Neurologists ...

  6. Antiviral drug ganciclovir is a potent inhibitor of microglial proliferation and neuroinflammation.

    PubMed

    Ding, Zhaoqing; Mathur, Vidhu; Ho, Peggy P; James, Michelle L; Lucin, Kurt M; Hoehne, Aileen; Alabsi, Haitham; Gambhir, Sanjiv S; Steinman, Lawrence; Luo, Jian; Wyss-Coray, Tony

    2014-02-10

    Aberrant microglial responses contribute to neuroinflammation in many neurodegenerative diseases, but no current therapies target pathogenic microglia. We discovered unexpectedly that the antiviral drug ganciclovir (GCV) inhibits the proliferation of microglia in experimental autoimmune encephalomyelitis (EAE), a mouse model for multiple sclerosis (MS), as well as in kainic acid-induced excitotoxicity. In EAE, GCV largely prevented infiltration of T lymphocytes into the central nervous system (CNS) and drastically reduced disease incidence and severity when delivered before the onset of disease. In contrast, GCV treatment had minimal effects on peripheral leukocyte distribution in EAE and did not inhibit generation of antibodies after immunization with ovalbumin. Additionally, a radiolabeled analogue of penciclovir, [(18)F]FHBG, which is similar in structure to GCV, was retained in areas of CNS inflammation in EAE, but not in naive control mice, consistent with the observed therapeutic effects. Our experiments suggest GCV may have beneficial effects in the CNS beyond its antiviral properties. PMID:24493798

  7. Antibody-Based Strategies to Prevent and Treat Influenza.

    PubMed

    Shriver, Zachary; Trevejo, Jose M; Sasisekharan, Ram

    2015-01-01

    Passive immunization using antibodies is a promising alternative to other antiviral treatment options. The potential for seasonal protection arising from a single injection of antibodies is appealing and has been pursued for a number of infectious agents. However, until recently, antibody-based strategies to combat infectious agents have been hampered due to the fact that most antibodies have been found to be strain specific, with the virus evolving resistance in many cases. The discovery of broadly neutralizing antibodies (bNAbs) in influenza, dengue virus, and HIV, which bind to multiple, structurally diverse strains, has provided renewed interest in this area. This review will focus on new technologies that enable the discovery of bNAbs, the challenges and opportunities of immunotherapies as an important addition to existing antiviral therapy, and the role of antibody discovery in informing rational vaccine discovery - with agents targeting influenza specifically addressed. Multiple candidates have entered the clinic and raise the possibility that a single antibody or small combination of antibodies can effectively neutralize a wide variety of strains. However, challenges remain - including combating escape variants, pharmacodynamics of antibody distribution, and development of efficacy biomarkers beyond virologic endpoints. PMID:26217334

  8. Antibody-Based Strategies to Prevent and Treat Influenza

    PubMed Central

    Shriver, Zachary; Trevejo, Jose M.; Sasisekharan, Ram

    2015-01-01

    Passive immunization using antibodies is a promising alternative to other antiviral treatment options. The potential for seasonal protection arising from a single injection of antibodies is appealing and has been pursued for a number of infectious agents. However, until recently, antibody-based strategies to combat infectious agents have been hampered due to the fact that most antibodies have been found to be strain specific, with the virus evolving resistance in many cases. The discovery of broadly neutralizing antibodies (bNAbs) in influenza, dengue virus, and HIV, which bind to multiple, structurally diverse strains, has provided renewed interest in this area. This review will focus on new technologies that enable the discovery of bNAbs, the challenges and opportunities of immunotherapies as an important addition to existing antiviral therapy, and the role of antibody discovery in informing rational vaccine discovery – with agents targeting influenza specifically addressed. Multiple candidates have entered the clinic and raise the possibility that a single antibody or small combination of antibodies can effectively neutralize a wide variety of strains. However, challenges remain – including combating escape variants, pharmacodynamics of antibody distribution, and development of efficacy biomarkers beyond virologic endpoints. PMID:26217334

  9. Interferon induced IFIT family genes in host antiviral defense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Secretion of interferons (IFNs) from virus-infected cells is a hallmark of host antiviral immunity and in fact, IFNs exert their antiviral activities through the induction of antiviral proteins. The IFN-induced protein with tetratricopeptide repeats (IFITs) family is among hundreds of IF stimulated ...

  10. New hypoxanthine nucleosides with RNA antiviral activity.

    PubMed

    Nair, V; Ussery, M A

    1992-08-01

    A series of novel C-2 functionalized hypoxanthine and purine ribonucleosides have been synthesized and evaluated against exotic RNA viruses of the family or genus alpha, arena, flavi, and rhabdo. Both specific and broad-spectrum antiviral activities were discovered but only with hypoxanthine nucleosides. PMID:1444325

  11. Anti-viral Responses in Insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the study of anti-viral responses in insects has lagged behind studies of responses to other types of pathogens, progress has begun to rapidly accelerate over the past few years. Insects are subject to infection by many different kinds of DNA and RNA viruses. These include viruses that ar...

  12. Antiviral therapy: current concepts and practices.

    PubMed Central

    Bean, B

    1992-01-01

    Drugs capable of inhibiting viruses in vitro were described in the 1950s, but real progress was not made until the 1970s, when agents capable of inhibiting virus-specific enzymes were first identified. The last decade has seen rapid progress in both our understanding of antiviral therapy and the number of antiviral agents on the market. Amantadine and ribavirin are available for treatment of viral respiratory infections. Vidarabine, acyclovir, ganciclovir, and foscarnet are used for systemic treatment of herpesvirus infections, while ophthalmic preparations of idoxuridine, trifluorothymidine, and vidarabine are available for herpes keratitis. For treatment of human immunodeficiency virus infections, zidovudine and didanosine are used. Immunomodulators, such as interferons and colony-stimulating factors, and immunoglobulins are being used increasingly for viral illnesses. While resistance to antiviral drugs has been seen, especially among AIDS patients, it has not become widespread and is being intensely studied. Increasingly, combinations of agents are being used: to achieve synergistic inhibition of viruses, to delay or prevent resistance, and to decrease dosages of toxic drugs. New approaches, such as liposomes carrying antiviral drugs and computer-aided drug design, are exciting and promising prospects for the future. PMID:1576586

  13. Synergy of entry inhibitors with direct-acting antivirals uncovers novel combinations for prevention and treatment of hepatitis C

    PubMed Central

    Xiao, Fei; Fofana, Isabel; Thumann, Christine; Mailly, Laurent; Alles, Roxane; Robinet, Eric; Meyer, Nicolas; Schaeffer, Mickaël; Habersetzer, François; Doffoël, Michel; Leyssen, Pieter; Neyts, Johan; Zeisel, Mirjam B; Baumert, Thomas F

    2015-01-01

    Objective Although direct-acting antiviral agents (DAAs) have markedly improved the outcome of treatment in chronic HCV infection, there continues to be an unmet medical need for improved therapies in difficult-to-treat patients as well as liver graft infection. Viral entry is a promising target for antiviral therapy. Design Aiming to explore the role of entry inhibitors for future clinical development, we investigated the antiviral efficacy and toxicity of entry inhibitors in combination with DAAs or other host-targeting agents (HTAs). Screening a large series of combinations of entry inhibitors with DAAs or other HTAs, we uncovered novel combinations of antivirals for prevention and treatment of HCV infection. Results Combinations of DAAs or HTAs and entry inhibitors including CD81-, scavenger receptor class B type I (SR-BI)- or claudin-1 (CLDN1)-specific antibodies or small-molecule inhibitors erlotinib and dasatinib were characterised by a marked and synergistic inhibition of HCV infection over a broad range of concentrations with undetectable toxicity in experimental designs for prevention and treatment both in cell culture models and in human liver-chimeric uPA/SCID mice. Conclusions Our results provide a rationale for the development of antiviral strategies combining entry inhibitors with DAAs or HTAs by taking advantage of synergy. The uncovered combinations provide perspectives for efficient strategies to prevent liver graft infection and novel interferon-free regimens. PMID:24848265

  14. Antiviral effect of cationic compounds on bacteriophages

    PubMed Central

    Ly-Chatain, Mai H.; Moussaoui, Saliha; Vera, Annabelle; Rigobello, Véronique; Demarigny, Yann

    2013-01-01

    The antiviral activity of several cationic compounds – cetyltrimethylammonium bromide (CTAB), chitosan, nisin, and lysozyme – was investigated on the bacteriophage c2 (DNA head and non-contractile tail) infecting Lactococcus strains and the bacteriophage MS2 (F-specific RNA) infecting E. coli. Firstly, these activities were evaluated in a phosphate buffer pH 7 – 10 mM. The CTAB had a virucidal effect on the Lactococcus bacteriophages, but not on the MS2. After 1 min of contact with 0.125 mM CTAB, the c2 population was reduced from 6 to 1.5 log(pfu)/mL and completely deactivated at 1 mM. On the contrary, chitosan inhibited the MS2 more than it did the bacteriophages c2. No antiviral effect was observed for the nisin or the lysozyme on bacteriophages after 1 min of treatment. A 1 and 2.5 log reduction was respectively observed for nisin and lysozyme when the treatment time increased (5 or 10 min). These results showed that the antiviral effect depended both on the virus and structure of the antimicrobial compounds. The antiviral activity of these compounds was also evaluated in different physico-chemical conditions and in complex matrices. The antiviral activity of CTAB was impaired in acid pH and with an increase of the ionic strength. These results might be explained by the electrostatic interactions between cationic compounds and negatively charged particles such as bacteriophages or other compounds in a matrix. Milk proved to be protective suggesting the components of food could interfere with antimicrobial compounds. PMID:23487495

  15. Antithyroid microsomal antibody

    MedlinePlus

    Thyroid antimicrosomal antibody; Antimicrosomal antibody; Microsomal antibody; Thyroid peroxidase antibody; TPOAb ... test is done to confirm the cause of thyroid problems, including Hashimoto thyroiditis . The test is also ...

  16. Engineering broadly neutralizing antibodies for HIV prevention and therapy.

    PubMed

    Hua, Casey K; Ackerman, Margaret E

    2016-08-01

    A combination of advances spanning from isolation to delivery of potent HIV-specific antibodies has begun to revolutionize understandings of antibody-mediated antiviral activity. As a result, the set of broadly neutralizing and highly protective antibodies has grown in number, diversity, potency, and breadth of viral recognition and neutralization. These antibodies are now being further enhanced by rational engineering of their anti-HIV activities and coupled to cutting edge gene delivery and strategies to optimize their pharmacokinetics and biodistribution. As a result, the prospects for clinical use of HIV-specific antibodies to treat, clear, and prevent HIV infection are gaining momentum. Here we discuss the diverse methods whereby antibodies are being optimized for neutralization potency and breadth, biodistribution, pharmacokinetics, and effector function with the aim of revolutionizing HIV treatment and prevention options. PMID:26827912

  17. Synthesis and antiviral activity of 5'-deoxypyrazofurin.

    PubMed

    Chen, X; Schneller, S W; Ikeda, S; Snoeck, R; Andrei, G; Balzarini, J; De Clercq, E

    1993-11-12

    In searching for derivatives of pyrazofurin that could display antiviral properties by means that do not require C-5' phosphorylation, 5'-deoxypyrazofurin (3) has been synthesized in six steps from methyl5-deoxy-2,3-O-isopropylidene-beta-D-ribofuranoside (4). Compound 3 was evaluated for antiviral activity against a large number of viruses including herpes-, pox-, myxo-, toga-, arena-, rhabdo-, picorna-,reo-, and retroviruses. Compound 3 proved active against respiratory syncytial virus (in HeLa cells), vaccinia virus (in embryonic skin-muscle fibroblast cells), vesicular stomatitis virus (in HeLa cells), and influenza A virus (in Madin-Darby canine kidney cells) at concentrations (ranging from 4 to 20 micrograms/mL) that were nontoxic to the confluent host cell cultures. PMID:8246242

  18. Polyomavirus T Antigens Activate an Antiviral State

    PubMed Central

    Giacobbi, Nicholas S.; Gupta, Tushar; Coxon, Andrew; Pipas, James M.

    2014-01-01

    Ectopic expression of Simian Virus 40 (SV40) large T antigen (LT) in mouse embryonic fibroblasts (MEFs) increased levels of mRNAs encoding interferon stimulated genes (ISGs). The mechanism by which T antigen increases levels of ISGs in MEFs remains unclear. We present evidence that expression of T antigen from SV40, Human Polyomaviruses BK (BKV) or JC (JCV) upregulate production of ISGs in MEFs, and subsequently result in an antiviral state, as determined by inhibition of VSV or EMCV growth. The first 136 amino acids of LT are sufficient for these activities. Furthermore, increased ISG expression and induction of the antiviral state requires STAT1. Finally, the RB binding motif of LT is necessary for activation of STAT1. We conclude that the induction of the STAT1 mediated innate immune response in MEFs is a common feature shared by SV40, BKV and JCV. PMID:25589241

  19. An antiviral furanoquinone from Paulownia tomentosa Steud.

    PubMed

    Kang, K H; Huh, H; Kim, B K; Lee, C K

    1999-11-01

    A methanol extract of the stem bark of Paulownia tomentosa showed antiviral activity against poliovirus types 1 and 3. Sequential liquid-liquid extraction with n-hexane, chloroform and water, and a silicagel column chromatography resulted in the purification of a compound. The compound was identified as methyl-5-hydroxy-dinaphthol[1,2-2',3']furan-7,12-dione-6-carbox yla te on the basis of spectroscopic data. The component caused a significant reduction of viral cytopathic effect when it was subjected to a standard antiviral assay by using HeLa cells. The EC(50) of the compound against poliovirus type 1 strain Brunhilde, and type 3 strain Leon were 0.3 microg/mL and 0.6 microg/mL, respectively. PMID:10548761

  20. Clinical Implications of Antiviral Resistance in Influenza

    PubMed Central

    Li, Timothy C. M.; Chan, Martin C. W.; Lee, Nelson

    2015-01-01

    Influenza is a major cause of severe respiratory infections leading to excessive hospitalizations and deaths globally; annual epidemics, pandemics, and sporadic/endemic avian virus infections occur as a result of rapid, continuous evolution of influenza viruses. Emergence of antiviral resistance is of great clinical and public health concern. Currently available antiviral treatments include four neuraminidase inhibitors (oseltamivir, zanamivir, peramivir, laninamivir), M2-inibitors (amantadine, rimantadine), and a polymerase inhibitor (favipiravir). In this review, we focus on resistance issues related to the use of neuraminidase inhibitors (NAIs). Data on primary resistance, as well as secondary resistance related to NAI exposure will be presented. Their clinical implications, detection, and novel therapeutic options undergoing clinical trials are discussed. PMID:26389935

  1. Glycodendritic structures: promising new antiviral drugs.

    PubMed

    Rojo, Javier; Delgado, Rafael

    2004-09-01

    DC-SIGN, a C-type lectin expressed by dendritic cells, is able to recognize high mannosylated glycoproteins at the surface of a broad range of pathogens including viruses, bacteria, fungi and parasites. For at least some of these agents this interaction appears to be an important part of the infection process. Therefore, this lectin might be considered in the design of new antiviral drugs. In this manner, multivalent carbohydrate systems based on dendrimers and dendritic polymers are promising candidates as antiviral drugs. Boltorn hyperbranched dendritic polymers functionalized with mannose have been used to inhibit DC-SIGN-mediated infection in an Ebola-pseudotyped viral model. Their physiological solubility, lack of toxicity and especially their low price suggest the application of these glycodendritic polymers for possible formulation as microbicides. PMID:15308605

  2. Antiviral therapy: old and current issues.

    PubMed

    Antonelli, Guido; Turriziani, Ombretta

    2012-08-01

    Many antiviral drugs are currently approved and formally licensed for clinical use in the treatment of viral infections caused by human immunodeficiency virus, herpes simplex viruses, varicella-zoster virus, respiratory syncytial virus, cytomegalovirus, hepatitis B virus, hepatitis C virus or influenza virus. Recent decades have seen major advances in our knowledge of the natural history and pathogenesis of viral diseases as well as ongoing developments and improvements in antiviral therapy. However, research is far from complete and indeed previously unknown and unexpected issues are currently arising. This review aims to discuss some of these issues in the belief that they should be carefully addressed to enhance the management of patients with viral infections. PMID:22727532

  3. The development of therapeutic antibodies against dengue virus.

    PubMed

    Fibriansah, Guntur; Lok, Shee-Mei

    2016-04-01

    Dengue virus, a positive-sense RNA virus, is one of the major human pathogens transmitted by mosquitoes. However, no fully effective licensed dengue vaccines or therapeutics are currently available. Several potent neutralizing antibodies against DENV have been isolated from mice and humans, and the characterization of their properties by biochemical and biophysical methods have revealed important insights for development of therapeutic antibodies. In this review, we summarize recently reported antibody-antigen complex structures, their likely neutralization mechanisms and enhancement propensities, as well as their prophylactic and therapeutic capabilities in mouse models. This article forms part of a symposium on flavivirus drug discovery in the journal Antiviral Research. PMID:26794397

  4. Antibody-based concepts for multipurpose prevention technologies

    PubMed Central

    Whaley, Kevin J; Zeitlin, Larry

    2014-01-01

    Because of the versatility and specificity of monoclonal antibodies, they are candidates for multipurpose prevention technologies when formulated as topical (gels, films, rings) or injectable drugs and as vaccines. This review focuses on antibody-based proof of concept studies for the human immunodeficiency virus, herpes simplex virus and sperm. Opportunities and challenges in antibody evasion/resistance, manufacturing, regulatory, and pharmacoeconomics are discussed. This article is based on a presentation at the “Product Development Workshop 2013: HIV and Multipurpose Prevention Technologies,” held in Arlington, Virginia on February 21-22, 2013. It forms part of a special supplement to Antiviral Research. PMID:24188703

  5. Antiviral Lead Compounds from Marine Sponges

    PubMed Central

    Sagar, Sunil; Kaur, Mandeep; Minneman, Kenneth P.

    2010-01-01

    Marine sponges are currently one of the richest sources of pharmacologically active compounds found in the marine environment. These bioactive molecules are often secondary metabolites, whose main function is to enable and/or modulate cellular communication and defense. They are usually produced by functional enzyme clusters in sponges and/or their associated symbiotic microorganisms. Natural product lead compounds from sponges have often been found to be promising pharmaceutical agents. Several of them have successfully been approved as antiviral agents for clinical use or have been advanced to the late stages of clinical trials. Most of these drugs are used for the treatment of human immunodeficiency virus (HIV) and herpes simplex virus (HSV). The most important antiviral lead of marine origin reported thus far is nucleoside Ara-A (vidarabine) isolated from sponge Tethya crypta. It inhibits viral DNA polymerase and DNA synthesis of herpes, vaccinica and varicella zoster viruses. However due to the discovery of new types of viruses and emergence of drug resistant strains, it is necessary to develop new antiviral lead compounds continuously. Several sponge derived antiviral lead compounds which are hopedto be developed as future drugs are discussed in this review. Supply problems are usually the major bottleneck to the development of these compounds as drugs during clinical trials. However advances in the field of metagenomics and high throughput microbial cultivation has raised the possibility that these techniques could lead to the cost-effective large scale production of such compounds. Perspectives on biotechnological methods with respect to marine drug development are also discussed. PMID:21116410

  6. Inhibition of immune functions by antiviral drugs.

    PubMed Central

    Heagy, W; Crumpacker, C; Lopez, P A; Finberg, R W

    1991-01-01

    Immune functions were evaluated in vitro for PBMC isolated from healthy donors and cultured with the antiviral agents, 3'-azido-3'-deoxythymidine (AZT), ribavirin, ganciclovir, 2'3'-dideoxyinosine (ddI), or acyclovir. To identify methods for assessing the effects of antiviral drugs on immune cells, the PBMC response to mitogens, Con A, or phytohemagglutinin was evaluated from measurements of [3H]thymidine and [14C]-leucine incorporation, cell growth, cellular RNA, DNA, and protein levels, and the PBMC proliferative cycle (i.e., progression from G0----G1----S----G2 + M). At clinically relevant concentrations, AZT, ribavirin, or ganciclovir diminished PBMC responsiveness to mitogen. The numbers of proliferating cells in G1, S, and G2 + M phases of the cell cycle, DNA content, and [3H]thymidine uptake were decreased in cultures treated with AZT, ribavirin, or ganciclovir. AZT or ribavirin but not ganciclovir reduced RNA and protein in the cultures and inhibited cell growth. Whereas AZT, ribavirin, or ganciclovir were antiproliferative, ddI or acyclovir had little, if any, effect on PBMC mitogenesis. The inhibitory effects of antivirals on immune cells may contribute to the immune deterioration observed in patients following prolonged use of the drugs. PMID:1904068

  7. Hepatitis C virus cell-cell transmission and resistance to direct-acting antiviral agents.

    PubMed

    Xiao, Fei; Fofana, Isabel; Heydmann, Laura; Barth, Heidi; Soulier, Eric; Habersetzer, François; Doffoël, Michel; Bukh, Jens; Patel, Arvind H; Zeisel, Mirjam B; Baumert, Thomas F

    2014-05-01

    Hepatitis C virus (HCV) is transmitted between hepatocytes via classical cell entry but also uses direct cell-cell transfer to infect neighboring hepatocytes. Viral cell-cell transmission has been shown to play an important role in viral persistence allowing evasion from neutralizing antibodies. In contrast, the role of HCV cell-cell transmission for antiviral resistance is unknown. Aiming to address this question we investigated the phenotype of HCV strains exhibiting resistance to direct-acting antivirals (DAAs) in state-of-the-art model systems for cell-cell transmission and spread. Using HCV genotype 2 as a model virus, we show that cell-cell transmission is the main route of viral spread of DAA-resistant HCV. Cell-cell transmission of DAA-resistant viruses results in viral persistence and thus hampers viral eradication. We also show that blocking cell-cell transmission using host-targeting entry inhibitors (HTEIs) was highly effective in inhibiting viral dissemination of resistant genotype 2 viruses. Combining HTEIs with DAAs prevented antiviral resistance and led to rapid elimination of the virus in cell culture model. In conclusion, our work provides evidence that cell-cell transmission plays an important role in dissemination and maintenance of resistant variants in cell culture models. Blocking virus cell-cell transmission prevents emergence of drug resistance in persistent viral infection including resistance to HCV DAAs. PMID:24830295

  8. Hepatitis C Virus Cell-Cell Transmission and Resistance to Direct-Acting Antiviral Agents

    PubMed Central

    Heydmann, Laura; Barth, Heidi; Soulier, Eric; Habersetzer, François; Doffoël, Michel; Bukh, Jens; Patel, Arvind H.; Zeisel, Mirjam B.; Baumert, Thomas F.

    2014-01-01

    Hepatitis C virus (HCV) is transmitted between hepatocytes via classical cell entry but also uses direct cell-cell transfer to infect neighboring hepatocytes. Viral cell-cell transmission has been shown to play an important role in viral persistence allowing evasion from neutralizing antibodies. In contrast, the role of HCV cell-cell transmission for antiviral resistance is unknown. Aiming to address this question we investigated the phenotype of HCV strains exhibiting resistance to direct-acting antivirals (DAAs) in state-of-the-art model systems for cell-cell transmission and spread. Using HCV genotype 2 as a model virus, we show that cell-cell transmission is the main route of viral spread of DAA-resistant HCV. Cell-cell transmission of DAA-resistant viruses results in viral persistence and thus hampers viral eradication. We also show that blocking cell-cell transmission using host-targeting entry inhibitors (HTEIs) was highly effective in inhibiting viral dissemination of resistant genotype 2 viruses. Combining HTEIs with DAAs prevented antiviral resistance and led to rapid elimination of the virus in cell culture model. In conclusion, our work provides evidence that cell-cell transmission plays an important role in dissemination and maintenance of resistant variants in cell culture models. Blocking virus cell-cell transmission prevents emergence of drug resistance in persistent viral infection including resistance to HCV DAAs. PMID:24830295

  9. Cloning, expression and antiviral activity of IFNγ from the Australian fruit bat, Pteropus alecto.

    PubMed

    Janardhana, Vijaya; Tachedjian, Mary; Crameri, Gary; Cowled, Chris; Wang, Lin-Fa; Baker, Michelle L

    2012-03-01

    Bats are natural reservoir hosts to a variety of viruses, many of which cause morbidity and mortality in other mammals. Currently there is a paucity of information regarding the nature of the immune response to viral infections in bats, partly due to a lack of appropriate bat specific reagents. IFNγ plays a key role in controlling viral replication and coordinating a response for long term control of viral infection. Here we describe the cloning and expression of IFNγ from the Australian flying fox, Pteropus alecto and the generation of mouse monoclonal and chicken egg yolk antibodies specific to bat IFNγ. Our results demonstrate that P. alecto IFNγ is conserved with IFNγ from other species and is induced in bat splenocytes following stimulation with T cell mitogens. P. alecto IFNγ has antiviral activity on Semliki forest virus in cell lines from P. alecto and the microbat, Tadarida brasiliensis. Additionally recombinant bat IFNγ was able to mitigate Hendra virus infection in P. alecto cells. These results provide the first evidence for an antiviral role for bat IFNγin vitro in addition to the application of important immunological reagents for further studies of bat antiviral immunity. PMID:22093696

  10. Antiviral effects of liposome-encapsulated PolyICLC against Dengue virus in a mouse model.

    PubMed

    Hu, Yongxin; Hu, Yanxin; Sun, Lunquan; Wong, Jonathan; Wang, Ming

    2016-09-16

    This study presents the first investigation of the antiviral effects of the liposome-encapsulated PolyICLC (LE-PolyICLC) on Dengue virus (DENV) in a mouse model. In vivo efficacy studies showed that LE-PolyICLC acted to increase antiviral mechanisms mainly through promoting cytokine expression associated with innate immunity, such as IFN-γ. In addition, the pro-inflammatory cytokine TNF-α was also increased, while IL-6 level was decreased in serum. The titers of total antibodies against DENV2 in mice were also elevated. Administration of LE-PolyICLC not only alleviated the loss of body weight, degree of morbidity, and pathological damage in brains, but also reduced the viral titers and expression of viral E protein in the brain. Notably, the effectiveness of LE-PolyICLC was better than PolyICLC on the basis of the data presented in this study. These results, therefore, set a foundation for further development of LE-PolyICLC as an attractive candidate of antiviral agents to be used in both prophylactic and therapeutic settings in DENV diseases. PMID:27524246

  11. Antithyroglobulin antibody

    MedlinePlus

    ... may be due to: Graves disease Hashimoto thyroiditis Hypothyroidism Systemic lupus erythematosus (SLE) Thyrotoxicosis Type 1 diabetes ... Antibody Chronic thyroiditis (Hashimoto disease) Graves disease Hyperthyroidism Hypothyroidism Systemic lupus erythematosus T3 test Update Date 5/ ...

  12. CD4+ T cell-dependent and CD4+ T cell-independent cytokine-chemokine network changes in the immune responses of HIV-infected individuals.

    PubMed

    Arnold, Kelly B; Szeto, Gregory L; Alter, Galit; Irvine, Darrell J; Lauffenburger, Douglas A

    2015-10-20

    A vital defect in the immune systems of HIV-infected individuals is the loss of CD4(+) T cells, resulting in impaired immune responses. We hypothesized that there were CD4(+) T cell-dependent and CD4(+) T cell-independent alterations in the immune responses of HIV-1(+) individuals. To test this, we analyzed the secretion of cytokines and chemokines from stimulated peripheral blood mononuclear cell (PBMC) populations from HIV(+) donors, healthy donors, and healthy donors with CD4(+) T cells experimentally depleted. Multivariate analyses of 16 cytokines and chemokines at 6 and 72 hours after three stimuli (antibody-coated beads to stimulate T cells and R848 or lipopolysaccharide to stimulate innate immune cells) enabled integrative analysis of secreted profiles. Two major effects in HIV(+) PBMCs were not reproduced upon depletion of CD4(+) T cells in healthy PBMCs: (i) HIV(+) PBMCs maintained T cell-associated secreted profiles after T cell stimulation; (ii) HIV(+) PBMCs showed impaired interferon-γ (IFN-γ) secretion early after innate stimulation. These changes arose from hyperactive T cells and debilitated natural killer (NK) cell, respectively. Modeling and experiments showed that early IFN-γ secretion predicted later differences in secreted profiles in vitro. This effect was recapitulated in healthy PBMCs by blocking the IFN-γ receptor. Thus, we identified a critical deficiency in NK cell responses of HIV-infected individuals, independent of CD4(+) T cell depletion, which directs secreted profiles. Our findings illustrate a broad approach for identifying key disease-associated nodes in a multicellular, multivariate signaling network. PMID:26486173

  13. Innate immunity to dengue virus infection and subversion of antiviral responses.

    PubMed

    Green, Angela M; Beatty, P Robert; Hadjilaou, Alexandros; Harris, Eva

    2014-03-20

    Dengue is a major public health issue in tropical and subtropical regions worldwide. The four serotypes of dengue virus (DENV1-DENV4) are spread primarily by Aedes aegypti and Aedes albopictus mosquitoes, whose geographic range continues to expand. Humans are the only host for epidemic strains of DENV, and the virus has developed sophisticated mechanisms to evade human innate immune responses. The host cell's first line of defense begins with an intracellular signaling cascade resulting in production of interferon α/β (IFN-α/β), which promotes intracellular antiviral responses and helps initiates the adaptive response during the course of DENV infection. In response, DENV has developed numerous ways to subvert these intracellular antiviral responses and directly inhibit cellular signaling cascades. Specifically, DENV manipulates the unfolded protein response and autophagy to counter cellular stress and delay apoptosis. The DENV non-structural protein NS4B and subgenomic flavivirus RNA interfere with the RNA interference pathway by inhibiting the RNase Dicer. During heterotypic secondary DENV infection, subneutralizing antibodies can enable viral uptake through Fcγ receptors and down-regulate signaling cascades initiated via the pattern recognition receptors TLR-3 and MDA5/RIG-I, thus reducing the antiviral state of the cell. The DENV NS2B/3 protein cleaves human STING/MITA, interfering with induction of IFN-α/β. Finally, DENV NS2A, NS4A, and NS4B complex together to block STAT1 phosphorylation, while NS5 binds and promotes degradation of human STAT2, thus preventing formation of the STAT1/STAT2 heterodimer and its transcriptional induction of interferon stimulating genes. Here, we discuss the host innate immune response to DENV and the mechanisms of immune evasion that DENV has developed to manipulate cellular antiviral responses. PMID:24316047

  14. Determining Mechanism of Action of Antivirals for Respiratory Illness

    NASA Astrophysics Data System (ADS)

    Rodriguez, Irma; Dobrovolny, Hana

    2015-03-01

    Viral infections in the respiratory tract are common in humans and can cause serious illness and death. Drug treatment is the principal line of protection against many of these illnesses and many compounds are tested as antivirals. Often the efficacy of these antivirals are determined before a mechanism of action is understood. We use mathematical models to represent the evolution of these diseases and establish which experiments can help determine the mechanism of action of antivirals.

  15. Phenotypic lentivirus screens to identify functional single domain antibodies.

    PubMed

    Schmidt, Florian I; Hanke, Leo; Morin, Benjamin; Brewer, Rebeccah; Brusic, Vesna; Whelan, Sean P J; Ploegh, Hidde L

    2016-01-01

    Manipulation of proteins is key in assessing their in vivo function. Although genetic ablation is straightforward, reversible and specific perturbation of protein function remains a challenge. Single domain antibody fragments, such as camelid-derived VHHs, can serve as inhibitors or activators of intracellular protein function, but functional testing of identified VHHs is laborious. To address this challenge, we have developed a lentiviral screening approach to identify VHHs that elicit a phenotype when expressed intracellularly. We identified 19 antiviral VHHs that protect human A549 cells from lethal infection with influenza A virus (IAV) or vesicular stomatitis virus (VSV), respectively. Both negative-sense RNA viruses are vulnerable to VHHs uniquely specific for their respective nucleoproteins. Antiviral VHHs prevented nuclear import of viral ribonucleoproteins or mRNA transcription, respectively, and may provide clues for novel antiviral reagents. In principle, the screening approach described here should be applicable to identify inhibitors of any pathogen or biological pathway. PMID:27573105

  16. Hydrogen bonds and antiviral activity of benzaldehyde derivatives

    NASA Astrophysics Data System (ADS)

    Tolstorozhev, G. B.; Skornyakov, I. V.; Belkov, M. V.; Shadyro, O. I.; Brinkevich, S. D.; Samovich, S. N.

    2012-09-01

    We have obtained the Fourier transform IR spectra of solutions of benzaldehyde derivatives having different antiviral activities against a herpes virus. We observe a correlation between the presence of hydrogen bonds in the benzaldehyde molecules and the appearance of antiviral properties in the compounds. For compounds having antiviral activity, we have obtained spectral data suggesting the existence of hydrogen bonds of the type C=OṡṡṡH-O and O-HṡṡṡO in the molecules. When the hydrogen atom in the hydroxyl groups are replaced by a methyl group, no intramolecular hydrogen bonds are formed and the compounds lose their antiviral activity.

  17. Systems biology: A tool for charting the antiviral landscape.

    PubMed

    Bowen, James R; Ferris, Martin T; Suthar, Mehul S

    2016-06-15

    The host antiviral programs that are initiated following viral infection form a dynamic and complex web of responses that we have collectively termed as "the antiviral landscape". Conventional approaches to studying antiviral responses have primarily used reductionist systems to assess the function of a single or a limited subset of molecules. Systems biology is a holistic approach that considers the entire system as a whole, rather than individual components or molecules. Systems biology based approaches facilitate an unbiased and comprehensive analysis of the antiviral landscape, while allowing for the discovery of emergent properties that are missed by conventional approaches. The antiviral landscape can be viewed as a hierarchy of complexity, beginning at the whole organism level and progressing downward to isolated tissues, populations of cells, and single cells. In this review, we will discuss how systems biology has been applied to better understand the antiviral landscape at each of these layers. At the organismal level, the Collaborative Cross is an invaluable genetic resource for assessing how genetic diversity influences the antiviral response. Whole tissue and isolated bulk cell transcriptomics serves as a critical tool for the comprehensive analysis of antiviral responses at both the tissue and cellular levels of complexity. Finally, new techniques in single cell analysis are emerging tools that will revolutionize our understanding of how individual cells within a bulk infected cell population contribute to the overall antiviral landscape. PMID:26795869

  18. Pharmacokinetic characteristics, pharmacodynamic effect and in vivo antiviral efficacy of liver-targeted interferon alpha.

    PubMed

    Rycroft, Daniel; Sosabowski, Jane; Coulstock, Edward; Davies, Marie; Morrey, John; Friel, Sarah; Kelly, Fiona; Hamatake, Robert; Ovečka, Milan; Prince, Rob; Goodall, Laura; Sepp, Armin; Walker, Adam

    2015-01-01

    Interferon alpha (IFNα) is used for the treatment of hepatitis B virus infection, and whilst efficacious, it is associated with multiple adverse events caused by systemic exposure to interferon. We therefore hypothesise that targeting IFN directly to the intended site of action in the liver would reduce exposure in blood and peripheral tissue and hence improve the safety and tolerability of IFNα therapy. Furthermore we investigated whether directing IFN to the reservoir of infection in the liver may improve antiviral efficacy by increasing local concentration in target organs and tissues. Our previous results show that the mIFNα2 fused to an ASGPR specific liver targeting antibody, DOM26h-196-61, results in a fusion protein which retains the activity of both fusion partners when measured in vitro. In vivo targeting of the liver by mIFNα2-DOM26h-196-61, hereafter referred to as targeted mIFNα2, was observed in microSPECT imaging studies in mice. In this study we show by pharmacokinetic analysis that antibody mediated liver-targeting results in increased uptake and exposure of targeted mIFNα2 in target tissues, and correspondingly reduced uptake and exposure in systemic circulation, clearance organs and non-target tissues. We also show that cytokine activity and antiviral activity of liver-targeted IFN is observed in vivo, but that, contrary to expectations, liver-targeting of mIFNα2 using ASGPR specific dAbs actually leads to a reduced pharmacodynamic effect in target organs and lower antiviral activity in vivo when compared to non-targeted mIFNα2-dAb fusions. PMID:25689509

  19. Pharmacokinetic Characteristics, Pharmacodynamic Effect and In Vivo Antiviral Efficacy of Liver-Targeted Interferon Alpha

    PubMed Central

    Rycroft, Daniel; Sosabowski, Jane; Coulstock, Edward; Davies, Marie; Morrey, John; Friel, Sarah; Kelly, Fiona; Hamatake, Robert; Ovečka, Milan; Prince, Rob; Goodall, Laura; Sepp, Armin; Walker, Adam

    2015-01-01

    Interferon alpha (IFNα) is used for the treatment of hepatitis B virus infection, and whilst efficacious, it is associated with multiple adverse events caused by systemic exposure to interferon. We therefore hypothesise that targeting IFN directly to the intended site of action in the liver would reduce exposure in blood and peripheral tissue and hence improve the safety and tolerability of IFNα therapy. Furthermore we investigated whether directing IFN to the reservoir of infection in the liver may improve antiviral efficacy by increasing local concentration in target organs and tissues. Our previous results show that the mIFNα2 fused to an ASGPR specific liver targeting antibody, DOM26h-196-61, results in a fusion protein which retains the activity of both fusion partners when measured in vitro. In vivo targeting of the liver by mIFNα2-DOM26h-196-61, hereafter referred to as targeted mIFNα2, was observed in microSPECT imaging studies in mice. In this study we show by pharmacokinetic analysis that antibody mediated liver-targeting results in increased uptake and exposure of targeted mIFNα2 in target tissues, and correspondingly reduced uptake and exposure in systemic circulation, clearance organs and non-target tissues. We also show that cytokine activity and antiviral activity of liver-targeted IFN is observed in vivo, but that, contrary to expectations, liver-targeting of mIFNα2 using ASGPR specific dAbs actually leads to a reduced pharmacodynamic effect in target organs and lower antiviral activity in vivo when compared to non-targeted mIFNα2-dAb fusions. PMID:25689509

  20. Bone cell-independent benefits of raloxifene on the skeleton: A novel mechanism for improving bone material properties

    PubMed Central

    Gallant, Maxime A.; Brown, Drew M.; Hammond, Max; Wallace, Joseph M.; Du, Jiang; Deymier-Black, Alix C.; Almer, Jonathan D.; Stock, Stuart R.; Allen, Matthew R.; Burr, David B.

    2014-01-01

    Raloxifene is an FDA approved agent used to treat bone loss and decrease fracture risk. In clinical trials and animal studies, raloxifene reduces fracture risk and improves bone mechanical properties, but the mechanisms of action remain unclear because these benefits occur largely independent of changes to bone mass. Using a novel experimental approach, machined bone beams, both from mature male canine and human male donors, were depleted of living cells and then exposed to raloxifene ex vivo. Our data show that ex vivo exposure of non-viable bone to raloxifene improves intrinsic toughness, both in canine and human cortical bone beams tested by 4-point bending. These effects are cell-independent and appear to be mediated by an increase in matrix bound water, assessed using basic gravimetric weighing and sophisticated ultrashort echo time magnetic resonance imaging. The hydroxyl groups (−OH) on raloxifene were shown to be important in both the water and toughness increases. Wide and small angle x-ray scattering patterns during 4-pt bending show that raloxifene alters the transfer of load between the collagen matrix and the mineral crystals, placing lower strains on the mineral, and allowing greater overall deformation prior to failure. Collectively, these findings provide a possible mechanistic explanation for the therapeutic effect of raloxifene and more importantly identify a cell-independent mechanism that can be utilized for novel pharmacological approaches for enhancing bone strength. PMID:24468719

  1. Bone cell-independent benefits of raloxifene on the skeleton: a novel mechanism for improving bone material properties.

    PubMed

    Gallant, Maxime A; Brown, Drew M; Hammond, Max; Wallace, Joseph M; Du, Jiang; Deymier-Black, Alix C; Almer, Jonathan D; Stock, Stuart R; Allen, Matthew R; Burr, David B

    2014-04-01

    Raloxifene is an FDA approved agent used to treat bone loss and decrease fracture risk. In clinical trials and animal studies, raloxifene reduces fracture risk and improves bone mechanical properties, but the mechanisms of action remain unclear because these benefits occur largely independent of changes to bone mass. Using a novel experimental approach, machined bone beams, both from mature male canine and human male donors, were depleted of living cells and then exposed to raloxifene ex vivo. Our data show that ex vivo exposure of non-viable bone to raloxifene improves intrinsic toughness, both in canine and human cortical bone beams tested by 4-point bending. These effects are cell-independent and appear to be mediated by an increase in matrix bound water, assessed using basic gravimetric weighing and sophisticated ultrashort echo time magnetic resonance imaging. The hydroxyl groups (OH) on raloxifene were shown to be important in both the water and toughness increases. Wide and small angle X-ray scattering patterns during 4-pt bending show that raloxifene alters the transfer of load between the collagen matrix and the mineral crystals, placing lower strains on the mineral, and allowing greater overall deformation prior to failure. Collectively, these findings provide a possible mechanistic explanation for the therapeutic effect of raloxifene and more importantly identify a cell-independent mechanism that can be utilized for novel pharmacological approaches for enhancing bone strength. PMID:24468719

  2. Bispecific antibodies.

    PubMed

    Kontermann, Roland E; Brinkmann, Ulrich

    2015-07-01

    Bispecific antibodies (bsAbs) combine specificities of two antibodies and simultaneously address different antigens or epitopes. BsAbs with 'two-target' functionality can interfere with multiple surface receptors or ligands associated, for example with cancer, proliferation or inflammatory processes. BsAbs can also place targets into close proximity, either to support protein complex formation on one cell, or to trigger contacts between cells. Examples of 'forced-connection' functionalities are bsAbs that support protein complexation in the clotting cascade, or tumor-targeted immune cell recruiters and/or activators. Following years of research and development (R&D), the first bsAb was approved in 2009. Another bsAb entered the market in December 2014 and several more are in clinical trials. Here, we describe the potentials of bsAbs to become the next wave of antibody-based therapies, focusing on molecules in clinical development. PMID:25728220

  3. Neuropsychiatric Effects of HIV Antiviral Medications.

    PubMed

    Treisman, Glenn J; Soudry, Olivia

    2016-10-01

    The development of antiretroviral therapy (ART) has dramatically increased the lifespan of HIV patients but treatment is complicated by numerous adverse effects and toxicities. ART complications include neuropsychiatric, metabolic, gastrointestinal, cardiac, and numerous other toxicities, and clinicians often have to choose one toxicity over another to offer the best medication regimen for a patient. Some antiviral drugs cause significant neuropsychiatric complications, including depression, cognitive impairment, and sleep disturbance. Even in careful studies, it may be difficult to determine which effects are related to the virus, the immune system, or the treatment. Of the six currently marketed classes of antiviral drugs, the nucleoside reverse transcriptase inhibitors and the non-nucleoside reverse transcriptase inhibitors have been most commonly associated with neuropsychiatric complications. Within these classes, certain drugs are more likely to cause difficulty than others. We review the contention regarding the central nervous system (CNS) complications of efavirenz, as well as debate about the role of CNS penetration in drug effectiveness and toxicity. A thorough working knowledge of the neuropsychiatric consequences of ART allows clinicians to tailor treatment more successfully to individual patients as well as to identify ART more quickly as the source of a problem or symptom. PMID:27534750

  4. Exploiting Genetic Interference for Antiviral Therapy.

    PubMed

    Tanner, Elizabeth J; Kirkegaard, Karla A; Weinberger, Leor S

    2016-05-01

    Rapidly evolving viruses are a major threat to human health. Such viruses are often highly pathogenic (e.g., influenza virus, HIV, Ebola virus) and routinely circumvent therapeutic intervention through mutational escape. Error-prone genome replication generates heterogeneous viral populations that rapidly adapt to new selection pressures, leading to resistance that emerges with treatment. However, population heterogeneity bears a cost: when multiple viral variants replicate within a cell, they can potentially interfere with each other, lowering viral fitness. This genetic interference can be exploited for antiviral strategies, either by taking advantage of a virus's inherent genetic diversity or through generating de novo interference by engineering a competing genome. Here, we discuss two such antiviral strategies, dominant drug targeting and therapeutic interfering particles. Both strategies harness the power of genetic interference to surmount two particularly vexing obstacles-the evolution of drug resistance and targeting therapy to high-risk populations-both of which impede treatment in resource-poor settings. PMID:27149616

  5. Antiviral agents for herpes simplex virus.

    PubMed

    Vere Hodge, R Anthony; Field, Hugh J

    2013-01-01

    This review starts with a brief description of herpes simplex virus types 1 and 2 (HSV-1 and HSV-2), the clinical diseases they cause, and the continuing clinical need for antiviral chemotherapy. A historical overview describes the progress from the early, rather toxic antivirals to acyclovir (ACV) which led the way for its prodrug, valacyclovir, to penciclovir and its prodrug, famciclovir (FCV). These compounds have been the mainstay of HSV therapy for two decades and have established a remarkable safety record. This review focuses on these compounds, the preclinical studies which reveal potentially important differences, the clinical trials, and the clinical experience through two decades. Some possible areas for further investigation are suggested. The focus shifts to new approaches and novel compounds, in particular, the combination of ACV with hydrocortisone, known as ME609 or zovirax duo, an HSV helicase-primase inhibitor, pritelivir (AIC316), and CMX001, the cidofovir prodrug for treating resistant HSV infection in immunocompromised patients. Letermovir has established that the human cytomegalovirus terminase enzyme is a valid target and that similar compounds could be sought for HSV. We discuss the difficulties facing the progression of new compounds. In our concluding remarks, we summarize the present situation including a discussion on the reclassification of FCV from prescription-only to pharmacist-controlled for herpes labialis in New Zealand in 2010; should this be repeated more widely? We conclude that HSV research is emerging from a quiescent phase. PMID:23885997

  6. Exploiting Genetic Interference for Antiviral Therapy

    PubMed Central

    Kirkegaard, Karla A.; Weinberger, Leor S.

    2016-01-01

    Rapidly evolving viruses are a major threat to human health. Such viruses are often highly pathogenic (e.g., influenza virus, HIV, Ebola virus) and routinely circumvent therapeutic intervention through mutational escape. Error-prone genome replication generates heterogeneous viral populations that rapidly adapt to new selection pressures, leading to resistance that emerges with treatment. However, population heterogeneity bears a cost: when multiple viral variants replicate within a cell, they can potentially interfere with each other, lowering viral fitness. This genetic interference can be exploited for antiviral strategies, either by taking advantage of a virus’s inherent genetic diversity or through generating de novo interference by engineering a competing genome. Here, we discuss two such antiviral strategies, dominant drug targeting and therapeutic interfering particles. Both strategies harness the power of genetic interference to surmount two particularly vexing obstacles—the evolution of drug resistance and targeting therapy to high-risk populations—both of which impede treatment in resource-poor settings. PMID:27149616

  7. Defensins Potentiate a Neutralizing Antibody Response to Enteric Viral Infection

    PubMed Central

    Treuting, Piper M.; Bromme, Beth A.; Wilson, Sarah S.; Wiens, Mayim E.; Lu, Wuyuan; Ouellette, André J.; Spindler, Katherine R.; Parks, William C.; Smith, Jason G.

    2016-01-01

    α-defensins are abundant antimicrobial peptides with broad, potent antibacterial, antifungal, and antiviral activities in vitro. Although their contribution to host defense against bacteria in vivo has been demonstrated, comparable studies of their antiviral activity in vivo are lacking. Using a mouse model deficient in activated α-defensins in the small intestine, we show that Paneth cell α-defensins protect mice from oral infection by a pathogenic virus, mouse adenovirus 1 (MAdV-1). Survival differences between mouse genotypes are lost upon parenteral MAdV-1 infection, strongly implicating a role for intestinal defenses in attenuating pathogenesis. Although differences in α-defensin expression impact the composition of the ileal commensal bacterial population, depletion studies using broad-spectrum antibiotics revealed no effect of the microbiota on α-defensin-dependent viral pathogenesis. Moreover, despite the sensitivity of MAdV-1 infection to α-defensin neutralization in cell culture, we observed no barrier effect due to Paneth cell α-defensin activation on the kinetics and magnitude of MAdV-1 dissemination to the brain. Rather, a protective neutralizing antibody response was delayed in the absence of α-defensins. This effect was specific to oral viral infection, because antibody responses to parenteral or mucosal ovalbumin exposure were not affected by α-defensin deficiency. Thus, α-defensins play an important role as adjuvants in antiviral immunity in vivo that is distinct from their direct antiviral activity observed in cell culture. PMID:26933888

  8. What Lies Beneath: Antibody Dependent Natural Killer Cell Activation by Antibodies to Internal Influenza Virus Proteins.

    PubMed

    Vanderven, Hillary A; Ana-Sosa-Batiz, Fernanda; Jegaskanda, Sinthujan; Rockman, Steven; Laurie, Karen; Barr, Ian; Chen, Weisan; Wines, Bruce; Hogarth, P Mark; Lambe, Teresa; Gilbert, Sarah C; Parsons, Matthew S; Kent, Stephen J

    2016-06-01

    The conserved internal influenza proteins nucleoprotein (NP) and matrix 1 (M1) are well characterised for T cell immunity, but whether they also elicit functional antibodies capable of activating natural killer (NK) cells has not been explored. We studied NP and M1-specific ADCC activity using biochemical, NK cell activation and killing assays with plasma from healthy and influenza-infected subjects. Healthy adults had antibodies to M1 and NP capable of binding dimeric FcγRIIIa and activating NK cells. Natural symptomatic and experimental influenza infections resulted in a rise in antibody dependent NK cell activation post-infection to the hemagglutinin of the infecting strain, but changes in NK cell activation to M1 and NP were variable. Although antibody dependent killing of target cells infected with vaccinia viruses expressing internal influenza proteins was not detected, opsonising antibodies to NP and M1 likely contribute to an antiviral microenvironment by stimulating innate immune cells to secrete cytokines early in infection. We conclude that effector cell activating antibodies to conserved internal influenza proteins are common in healthy and influenza-infected adults. Given the significance of such antibodies in animal models of heterologous influenza infection, the definition of their importance and mechanism of action in human immunity to influenza is essential. PMID:27428437

  9. Fc-optimized NKG2D-Fc constructs induce NK cell antibody-dependent cellular cytotoxicity against breast cancer cells independently of HER2/neu expression status.

    PubMed

    Raab, Stefanie; Steinbacher, Julia; Schmiedel, Benjamin J; Kousis, Philaretos C; Steinle, Alexander; Jung, Gundram; Grosse-Hovest, Ludger; Salih, Helmut R

    2014-10-15

    The ability of NK cells to mediate Ab-dependent cellular cytotoxicity (ADCC) largely contributes to the clinical success of antitumor Abs, including trastuzumab, which is approved for the treatment of breast cancer with HER2/neu overexpression. Notably, only ∼25% of breast cancer patients overexpress HER2/neu. Moreover, HER2/neu is expressed on healthy cells, and trastuzumab application is associated with side effects. In contrast, the ligands of the activating immunoreceptor NKG2D (NKG2DL) are selectively expressed on malignant cells. In this study, we took advantage of the tumor-associated expression of NKG2DL by using them as target Ags for NKG2D-IgG1 fusion proteins optimized by amino acid exchange S239D/I332E in their Fc part. Compared to constructs with wild-type Fc parts, fusion proteins carrying the S239D/I332E modification (NKG2D-Fc-ADCC) mediated highly enhanced degranulation, ADCC, and IFN-γ production of NK cells in response to breast cancer cells. NKG2D-Fc-ADCC substantially enhanced NK reactivity also against HER2/neu-low targets that were unaffected by trastuzumab, as both compounds mediated their immunostimulatory effects in strict dependence of target Ag expression levels. Thus, in line with the hierarchically organized potential of the various activating receptors governing NK reactivity and due to its highly increased affinity to CD16, NKG2D-Fc-ADCC potently enhances NK cell reactivity despite the inevitable reduction of activating signals upon binding to NKG2DL. Due to the tumor-restricted expression of NKG2DL, NKG2D-Fc-ADCC may constitute an attractive means for immunotherapy especially of HER2/neu-low or -negative breast cancer. PMID:25217158

  10. [Study of cytotoxic and antiviral effects of some eye drops].

    PubMed

    Dediulescu, Lucreţia; Dediulescu, Daniela Florentina

    2008-01-01

    The study of the cytotoxic and antiviral effect of six commercial mixtures, eye drops type, underlined the advantages of using eye drops with Indomethacin for Herpetic Keratitis, due to the antiviral effect and also for the lack of cytotoxicity. PMID:19354165

  11. Antiviral activity of luteolin against Japanese encephalitis virus.

    PubMed

    Fan, Wenchun; Qian, Suhong; Qian, Ping; Li, Xiangmin

    2016-07-15

    Japanese encephalitis virus (JEV), a member of family Flaviviridae, is a neurotropic flavivirus that causes Japanese encephalitis (JE). JEV is one of the most important causative agents of viral encephalitis in humans, and this disease leads to high fatality rates. Although effective vaccines are available, no effective antiviral therapy for JE has been developed. Hence, identifying effective antiviral agents against JEV infection is important. In this study, we found that luteolin was an antiviral bioflavonoid with potent antiviral activity against JEV replication in A549 cells with IC50=4.56μg/mL. Luteolin also showed extracellular virucidal activity on JEV. With a time-of-drug addition assay revealing that JEV replication was inhibited by luteolin after the entry stage. Overall, our results suggested that luteolin can be used to develop an antiviral drug against JEV. PMID:27126774

  12. The Antiviral Activities and Mechanisms of Marine Polysaccharides: An Overview

    PubMed Central

    Wang, Wei; Wang, Shi-Xin; Guan, Hua-Shi

    2012-01-01

    Recently, the studies on the antiviral activities of marine natural products, especially marine polysaccharides, are attracting more and more attention all over the world. Marine-derived polysaccharides and their lower molecular weight oligosaccharide derivatives have been shown to possess a variety of antiviral activities. This paper will review the recent progress in research on the antiviral activities and the mechanisms of these polysaccharides obtained from marine organisms. In particular, it will provide an update on the antiviral actions of the sulfated polysaccharides derived from marine algae including carrageenans, alginates, and fucans, relating to their structure features and the structure–activity relationships. In addition, the recent findings on the different mechanisms of antiviral actions of marine polysaccharides and their potential for therapeutic application will also be summarized in detail. PMID:23235364

  13. Antithyroid microsomal antibody

    MedlinePlus

    ... Thyroid antimicrosomal antibody; Antimicrosomal antibody; Microsomal antibody; Thyroid peroxidase antibody; TPOAb Images Blood test References Guber HA, Faraq AF. Evaluation of endocrine function. In: McPherson RA, Pincus MR, eds. Henry's Clinical ...

  14. Rational Antibody-based HIV-1 Vaccine Design: Current Approaches and Future Directions

    PubMed Central

    Walker, Laura M.; Burton, Dennis R.

    2010-01-01

    Many anti-viral vaccines elicit neutralizing antibodies as a correlate of protection. For HIV, given the huge variability of the virus, it is widely believed that the induction of a broadly neutralizing antibody (bNAb) response will be crucial in a successful vaccine against the virus. Unfortunately, despite many efforts, the development of an immunogen that elicits bNAbs remains elusive. However, recent structural studies of HIV-1 Env proteins, generation of novel bNAbs, maturation of technologies for the isolation of further antibodies, insights into the requirements for antibody-mediated protection, and novel vaccination approaches are providing grounds for renewed optimism. PMID:20299194

  15. Prophylactic antiviral therapy in allogeneic hematopoietic stem cell transplantation in hepatitis B virus patients

    PubMed Central

    Liao, Ya-Ping; Jiang, Jia-Lu; Zou, Wai-Yi; Xu, Duo-Rong; Li, Juan

    2015-01-01

    AIM: To investigate the timing, safety and efficacy of prophylactic antiviral therapy in patients with hepatitis B virus (HBV) infection undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT). METHODS: This prospective study recruited a total of 57 patients diagnosed with malignant hematological diseases and HBV infection at the First Affiliated Hospital of Sun Yat-sen University between 2006 and 2013. The patients were classified as hepatitis B surface antigen (HBsAg)-positive or HBsAg-negative/ antiHBc-positive. Patients were treated with chemotherapy followed by antiviral therapy with nucleoside analogues. Patients underwent allo-HSCT when serum HBV DNA was < 103 IU/mL. Following allo-HSCT, antiviral therapy was continued for 1 year after the discontinuation of immunosuppressive therapy. A total of 105 patients who underwent allo-HSCT and had no HBV infection were recruited as controls. The three groups were compared for incidence of graft-vs-host disease (GVHD), drug-induced liver injury, hepatic veno-occlusive disease, death and survival time. RESULTS: A total of 29 of the 41 subjects with chronic GVHD exhibited extensive involvement and 12 exhibited focal involvement. Ten of the 13 subjects with chronic GVHD in the HBsAg(-)/hepatitis B core antibody(+) group exhibited extensive involvement and 3 exhibited focal involvement. Five of the 10 subjects with chronic GVHD in the HBsAg(+) group exhibited extensive involvement and 5 exhibited focal involvement. The non HBV-infected group did not differ significantly from the HBsAg-negative/antiHBc-positive and the HBsAg-positive groups which were treated with nucleoside analogues in the incidence of graft-vs-host disease (acute GVHD; 37.1%, 46.9% and 40%, respectively; P = 0.614; chronic GVHD; 39%, 40.6% and 40%, respectively; P = 0.98), drug-induced liver injury (25.7%, 18.7% and 28%, respectively; P = 0.7), death (37.1%, 40.6% and 52%, respectively; P = 0.4) and survival times (P = 0.516). One

  16. Characterization of translational inhibitors from Phytolacca americana. Amino-terminal sequence determination and antibody-inhibitor conjugates.

    PubMed

    Bjorn, M J; Larrick, J; Piatak, M; Wilson, K J

    1984-10-23

    Two translational inhibitors (pokeweed antiviral protein and pokeweed antiviral protein II) isolated from the leaves of the pokeweed plant, Phytolacca americana, were characterized as to their behavior during reverse-phase HPLC and their amino-terminal sequences. Alignment of the sequences demonstrated that a substantial degree of homology was present (10 of 29 identical residues). Pokeweed antiviral protein was shown by reverse-phase chromatography to be composed of at least two components, pokeweed antiviral proteina and pokeweed antiviral proteinb, which comigrated on sodium dodecyl sulfate polyacrylamide gel electrophoresis, shared identical N-terminal amino-acid sequences through residue 31, and had similar specific activities in a cell-free translation inhibition assay. Pokeweed antiviral protein II was covalently coupled to a monoclonal antibody that recognizes the transferrin receptor (anti-transferrin receptor). The disulfide-linked conjugate inhibited protein synthesis in the human breast tumor cell line MCF-7, whereas anti-transferrin receptor, pokeweed antiviral protein II, or an immunotoxin composed of an irrelevant antiserum and pokeweed antiviral protein II, were nontoxic. The inhibitory dose 50% of anti-transferrin receptor-pokeweed antiviral protein II for MCF-7 cells was 0.7 nM, whereas the corresponding ricin A chain conjugate (anti-transferrin receptor-ricin A chain) was more potent with a inhibitory dose 50% of 0.1 nM. Pokeweed antiviral protein II can be added to the growing list of translation inhibitors that are effective as components of immunotoxins in vitro. Additional studies will be needed to determine whether pokeweed antiviral protein II immunotoxins provide advantageous properties for in vivo applications. PMID:6091760

  17. Novel concept on antiviral strategies to dengue.

    PubMed

    Lo, Yu-Chih; Perng, Guey Chuen

    2016-06-01

    Recent evidence has revealed that asymptomatic and/or persistent dengue virus (DENV) infections play a role in the cycling pattern of dengue outbreaks. These findings add a new dimension to the continually evolving search for effective prevention strategies in dengue. Disappointing outcomes of clinical trials in anti-dengue modalities have become commonplace. These failures may result from confounding variables and/or unresolved scientific issues that surround dengue, including the replication cycle of DENV in a natural setting, the target cells and reservoir for viral replication in vivo, and the effect of asymptomatic/persistent carriers in the dissemination of dengue. This article sets forth to address these issues using the most updated information available in the literature and to propose a novel antiviral strategy for the prevention and control of dengue. PMID:27284691

  18. RNAi: antiviral therapy against dengue virus

    PubMed Central

    Idrees, Sobia; Ashfaq, Usman A

    2013-01-01

    Dengue virus infection has become a global threat affecting around 100 countries in the world. Currently, there is no licensed antiviral agent available against dengue. Thus, there is a strong need to develop therapeutic strategies that can tackle this life threatening disease. RNA interference is an important and effective gene silencing process which degrades targeted RNA by a sequence specific process. Several studies have been conducted during the last decade to evaluate the efficiency of siRNA in inhibiting dengue virus replication. This review summarizes siRNAs as a therapeutic approach against dengue virus serotypes and concludes that siRNAs against virus and host genes can be next generation treatment of dengue virus infection. PMID:23620845

  19. Ubiquitination in the Antiviral Immune Response

    PubMed Central

    Davis, Meredith E.; Gack, Michaela U.

    2016-01-01

    Ubiquitination has long been known to regulate fundamental cellular processes through the induction of proteasomal degradation of target proteins. More recently, ‘atypical’ nondegradative types of polyubiquitin chains have been appreciated as important regulatory moieties by modulating the activity or subcellular localization of key signaling proteins. Intriguingly, many of these non-degradative types of ubiquitination regulate the innate sensing pathways initiated by pattern recognition receptors (PRRs), ultimately coordinating an effective antiviral immune response. Here we discuss recent advances in understanding the functional roles of degradative and atypical types of ubiquitination in innate immunity to viral infections, with a specific focus on the signaling pathways triggered by RIG-I-like receptors, Toll-like receptors, and the intracellular viral DNA sensor cGAS. PMID:25753787

  20. Antifungal and antiviral products of marine organisms.

    PubMed

    Cheung, Randy Chi Fai; Wong, Jack Ho; Pan, Wen Liang; Chan, Yau Sang; Yin, Cui Ming; Dan, Xiu Li; Wang, He Xiang; Fang, Evandro Fei; Lam, Sze Kwan; Ngai, Patrick Hung Kui; Xia, Li Xin; Liu, Fang; Ye, Xiu Yun; Zhang, Guo Qing; Liu, Qing Hong; Sha, Ou; Lin, Peng; Ki, Chan; Bekhit, Adnan A; Bekhit, Alaa El-Din; Wan, David Chi Cheong; Ye, Xiu Juan; Xia, Jiang; Ng, Tzi Bun

    2014-04-01

    Marine organisms including bacteria, fungi, algae, sponges, echinoderms, mollusks, and cephalochordates produce a variety of products with antifungal activity including bacterial chitinases, lipopeptides, and lactones; fungal (-)-sclerotiorin and peptaibols, purpurides B and C, berkedrimane B and purpuride; algal gambieric acids A and B, phlorotannins; 3,5-dibromo-2-(3,5-dibromo-2-methoxyphenoxy)phenol, spongistatin 1, eurysterols A and B, nortetillapyrone, bromotyrosine alkaloids, bis-indole alkaloid, ageloxime B and (-)-ageloxime D, haliscosamine, hamigeran G, hippolachnin A from sponges; echinoderm triterpene glycosides and alkene sulfates; molluscan kahalalide F and a 1485-Da peptide with a sequence SRSELIVHQR; and cepalochordate chitotriosidase and a 5026.9-Da antifungal peptide. The antiviral compounds from marine organisms include bacterial polysaccharide and furan-2-yl acetate; fungal macrolide, purpurester A, purpurquinone B, isoindolone derivatives, alterporriol Q, tetrahydroaltersolanol C and asperterrestide A, algal diterpenes, xylogalactofucan, alginic acid, glycolipid sulfoquinovosyldiacylglycerol, sulfated polysaccharide p-KG03, meroditerpenoids, methyl ester derivative of vatomaric acid, lectins, polysaccharides, tannins, cnidarian zoanthoxanthin alkaloids, norditerpenoid and capilloquinol; crustacean antilipopolysaccharide factors, molluscan hemocyanin; echinoderm triterpenoid glycosides; tunicate didemnin B, tamandarins A and B and; tilapia hepcidin 1-5 (TH 1-5), seabream SauMx1, SauMx2, and SauMx3, and orange-spotted grouper β-defensin. Although the mechanisms of antifungal and antiviral activities of only some of the aforementioned compounds have been elucidated, the possibility to use those known to have distinctly different mechanisms, good bioavailability, and minimal toxicity in combination therapy remains to be investigated. It is also worthwhile to test the marine antimicrobials for possible synergism with existing drugs. The prospects of

  1. Litsea Species as Potential Antiviral Plant Sources.

    PubMed

    Guan, Yifu; Wang, Dongying; Tan, Ghee T; Van Hung, Nguyen; Cuong, Nguyen Manh; Pezzuto, John M; Fong, Harry H S; Soejarto, Djaja Doel; Zhang, Hongjie

    2016-04-01

    Litsea verticillata Hance (Lauraceae), a Chinese medicine used to treat swelling caused by injury or by snake bites, was the first plant identified by our National Institutes of Health (NIH)-funded International Cooperative Biodiversity Group (ICBG) project to exhibit anti-HIV activities. From this plant, we discovered a class of 8 novel litseane compounds, prototypic sesquiterpenes, all of which demonstrated anti-HIV activities. In subsequent studies, 26 additional compounds of different structural types were identified. During our continuing investigation of this plant species, we identified two new litseanes, litseaverticillols L and M, and a new sesquiterpene butenolide, litseasesquibutenolide. Litseaverticillols L and M were found to inhibit HIV-1 replication, with an IC[Formula: see text] value of 49.6[Formula: see text][Formula: see text]M. To further determine the antiviral properties of this plant, several relatively abundant isolates, including a litseane compound, two eudesmane sesquiterpenes and three lignans, were evaluated against an additional 21 viral targets. Lignans 8 and 9 were shown to be active against the Epstein-Barr Virus (EBV), with EC[Formula: see text] values of 22.0[Formula: see text][Formula: see text]M ([Formula: see text]) and 16.2[Formula: see text][Formula: see text]M ([Formula: see text]), respectively. Since many antiviral compounds have been discovered in L. verticillata, we further prepared 38 plant extracts made from the different plant parts of 9 additional Litsea species. These extracts were evaluated for their anti-HIV and cytotoxic activities, and four of the extracts, which ranged across three different species, displayed 97-100% inhibitory effects against HIV replication without showing cytotoxicity to a panel of human cell lines at a concentration of 20[Formula: see text][Formula: see text]g/mL. PMID:27080941

  2. Antiviral Chemistry & Chemotherapy's current antiviral agents FactFile 2008 (2nd edition): RNA viruses.

    PubMed

    De Clercq, Erik; Field, Hugh J

    2008-01-01

    Among the RNA viruses, other than the retroviruses (that is, HIV), which are dealt with separately in the current FactFile, the most important targets for the development of antiviral agents at the moment are the orthomyxoviruses (that is, influenza), the hepaciviruses (that is, hepatitis C virus [HCV]) and, to a lesser extent, the picornaviruses. Although the uncoating inhibitors amantadine and rimantadine were the first known inhibitors of influenza A, the neuraminidase inhibitors oseltamivir, zanamivir and peramivir have now become the prime antiviral drugs for the treatment of influenza A and B virus infections. For HCV infections, standard treatment consists of the combination of pegylated interferon-alpha with ribavirin, but several other antivirals targeted at specific viral functions such as the HCV protease and/ or polymerase may be expected to soon take an important share of this important market. Still untapped is the potential of a variety of uncoating inhibitors, as well as protease and/or polymerase inhibitors against the wide spectrum of picornaviruses. While ribavirin has been available for 35 years as a broad-spectrum anti-RNA virus agent, relatively new and unexplored is favipiravir (T-705) accredited with activity against influenza as well as flaviviruses, bunyaviruses and arenaviruses. PMID:18727441

  3. Coordinated Neutralization and Immune Activation by the Cytosolic Antibody Receptor TRIM21.

    PubMed

    Fletcher, Adam J; James, Leo C

    2016-05-15

    TRIM21 is a high-affinity antibody receptor uniquely expressed in the cytosol of mammalian cells. Here we summarize its role in extending antibody protection into the intracellular environment and allowing nonprofessional cells to benefit from adaptive immunity. We highlight recent work that has shed light on how TRIM21 acts as both an immune sensor and effector. We also review how TRIM21 synergizes with other innate immune receptors to promote an integrated antiviral response. PMID:26937031

  4. Antibody Engineering and Therapeutics

    PubMed Central

    Almagro, Juan Carlos; Gilliland, Gary L; Breden, Felix; Scott, Jamie K; Sok, Devin; Pauthner, Matthias; Reichert, Janice M; Helguera, Gustavo; Andrabi, Raiees; Mabry, Robert; Bléry, Mathieu; Voss, James E; Laurén, Juha; Abuqayyas, Lubna; Barghorn, Stefan; Ben-Jacob, Eshel; Crowe, James E; Huston, James S; Johnston, Stephen Albert; Krauland, Eric; Lund-Johansen, Fridtjof; Marasco, Wayne A; Parren, Paul WHI; Xu, Kai Y

    2014-01-01

    The 24th Antibody Engineering & Therapeutics meeting brought together a broad range of participants who were updated on the latest advances in antibody research and development. Organized by IBC Life Sciences, the gathering is the annual meeting of The Antibody Society, which serves as the scientific sponsor. Preconference workshops on 3D modeling and delineation of clonal lineages were featured, and the conference included sessions on a wide variety of topics relevant to researchers, including systems biology; antibody deep sequencing and repertoires; the effects of antibody gene variation and usage on antibody response; directed evolution; knowledge-based design; antibodies in a complex environment; polyreactive antibodies and polyspecificity; the interface between antibody therapy and cellular immunity in cancer; antibodies in cardiometabolic medicine; antibody pharmacokinetics, distribution and off-target toxicity; optimizing antibody formats for immunotherapy; polyclonals, oligoclonals and bispecifics; antibody discovery platforms; and antibody-drug conjugates. PMID:24589717

  5. Antiviral Regulation in Porcine Monocytic Cells at Different Activation States

    PubMed Central

    Rowland, Raymond R. R.

    2014-01-01

    ABSTRACT Monocytic cells, including macrophages and dendritic cells, exist in different activation states that are critical to the regulation of antimicrobial immunity. Many pandemic viruses are monocytotropic, including porcine reproductive and respiratory syndrome virus (PRRSV), which directly infects subsets of monocytic cells and interferes with antiviral responses. To study antiviral responses in PRRSV-infected monocytic cells, we characterized inflammatory cytokine responses and genome-wide profiled signature genes to investigate response pathways in uninfected and PRRSV-infected monocytic cells at different activation states. Our findings showed suppressed interferon (IFN) production in macrophages in non-antiviral states and an arrest of lipid metabolic pathways in macrophages at antiviral states. Importantly, porcine monocytic cells at different activation states were susceptible to PRRSV and responded differently to viral infection. Based on Gene Ontology (GO) analysis, two approaches were used to potentiate antiviral activity: (i) pharmaceutical modulation of cellular lipid metabolism and (ii) in situ PRRSV replication-competent expression of interferon alpha (IFN-α). Both approaches significantly suppressed exogenous viral infection in monocytic cells. In particular, the engineered IFN-expressing PRRSV strain eliminated exogenous virus infection and sustained cell viability at 4 days postinfection in macrophages. These findings suggest an intricate interaction of viral infection with the activation status of porcine monocytic cells. An understanding and integration of antiviral infection with activation status of monocytic cells may provide a means of potentiating antiviral immunity. IMPORTANCE Activation statuses of monocytic cells, including monocytes, macrophages (Mϕs), and dendritic cells (DCs), are critically important for antiviral immunity. Unfortunately, the activation status of porcine monocytic cells or how cell activation status

  6. Antivirals for Respiratory Viral Infections: Problems and Prospects.

    PubMed

    Liu, Qiang; Zhou, Yuan-Hong; Ye, Feng; Yang, Zhan-Qiu

    2016-08-01

    In the past two decades, several newly emerging and reemerging viral respiratory pathogens including several influenza viruses (avian influenza and pandemic influenza), severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome coronavirus (MERS-CoV), have continued to challenge medical and public health systems. Thereafter, the development of cost-effective, broad-spectrum antiviral agents is the urgent mission of both virologists and pharmacologists. Current antiviral developments have focused targets on viral entry, replication, release, and intercellular pathways essential for viral life cycle. Here, we review the current literature on challenges and prospects in the development of these antivirals. PMID:27486742

  7. Antigen-Specific Antibody Glycosylation Is Regulated via Vaccination

    PubMed Central

    Suscovich, Todd; Dionne, Kendall; Tedesco, Jacquelynne; Chung, Amy W.; Streeck, Hendrik; Pau, Maria; Schuitemaker, Hanneke; Francis, Don; Fast, Patricia; Laufer, Dagna; Walker, Bruce D.; Baden, Lindsey; Barouch, Dan H.; Alter, Galit

    2016-01-01

    Antibody effector functions, such as antibody-dependent cellular cytotoxicity, complement deposition, and antibody-dependent phagocytosis, play a critical role in immunity against multiple pathogens, particularly in the absence of neutralizing activity. Two modifications to the IgG constant domain (Fc domain) regulate antibody functionality: changes in antibody subclass and changes in a single N-linked glycan located in the CH2 domain of the IgG Fc. Together, these modifications provide a specific set of instructions to the innate immune system to direct the elimination of antibody-bound antigens. While it is clear that subclass selection is actively regulated during the course of natural infection, it is unclear whether antibody glycosylation can be tuned, in a signal-specific or pathogen-specific manner. Here, we show that antibody glycosylation is determined in an antigen- and pathogen-specific manner during HIV infection. Moreover, while dramatic differences exist in bulk IgG glycosylation among individuals in distinct geographical locations, immunization is able to overcome these differences and elicit antigen-specific antibodies with similar antibody glycosylation patterns. Additionally, distinct vaccine regimens induced different antigen-specific IgG glycosylation profiles, suggesting that antibody glycosylation is not only programmable but can be manipulated via the delivery of distinct inflammatory signals during B cell priming. These data strongly suggest that the immune system naturally drives antibody glycosylation in an antigen-specific manner and highlights a promising means by which next-generation therapeutics and vaccines can harness the antiviral activity of the innate immune system via directed alterations in antibody glycosylation in vivo.   PMID:26982805

  8. Antigen-Specific Antibody Glycosylation Is Regulated via Vaccination.

    PubMed

    Mahan, Alison E; Jennewein, Madeleine F; Suscovich, Todd; Dionne, Kendall; Tedesco, Jacquelynne; Chung, Amy W; Streeck, Hendrik; Pau, Maria; Schuitemaker, Hanneke; Francis, Don; Fast, Patricia; Laufer, Dagna; Walker, Bruce D; Baden, Lindsey; Barouch, Dan H; Alter, Galit

    2016-03-01

    Antibody effector functions, such as antibody-dependent cellular cytotoxicity, complement deposition, and antibody-dependent phagocytosis, play a critical role in immunity against multiple pathogens, particularly in the absence of neutralizing activity. Two modifications to the IgG constant domain (Fc domain) regulate antibody functionality: changes in antibody subclass and changes in a single N-linked glycan located in the CH2 domain of the IgG Fc. Together, these modifications provide a specific set of instructions to the innate immune system to direct the elimination of antibody-bound antigens. While it is clear that subclass selection is actively regulated during the course of natural infection, it is unclear whether antibody glycosylation can be tuned, in a signal-specific or pathogen-specific manner. Here, we show that antibody glycosylation is determined in an antigen- and pathogen-specific manner during HIV infection. Moreover, while dramatic differences exist in bulk IgG glycosylation among individuals in distinct geographical locations, immunization is able to overcome these differences and elicit antigen-specific antibodies with similar antibody glycosylation patterns. Additionally, distinct vaccine regimens induced different antigen-specific IgG glycosylation profiles, suggesting that antibody glycosylation is not only programmable but can be manipulated via the delivery of distinct inflammatory signals during B cell priming. These data strongly suggest that the immune system naturally drives antibody glycosylation in an antigen-specific manner and highlights a promising means by which next-generation therapeutics and vaccines can harness the antiviral activity of the innate immune system via directed alterations in antibody glycosylation in vivo.  . PMID:26982805

  9. Overexpression of Cytochrome c by a Recombinant Rabies Virus Attenuates Pathogenicity and Enhances Antiviral Immunity

    PubMed Central

    Pulmanausahakul, Rojjanaporn; Faber, Milosz; Morimoto, Kinjiro; Spitsin, Sergei; Weihe, Eberhard; Hooper, D. Craig; Schnell, Matthias J.; Dietzschold, Bernhard

    2001-01-01

    The pathogenicity of individual rabies virus strains appears to correlate inversely with the extent of apoptotic cell death they induce and with the expression of rabies virus glycoprotein, a major inducer of an antiviral immune response. To determine whether the induction of apoptosis by rabies virus contributes to a decreased pathogenicity by stimulating antiviral immunity, we have analyzed these parameters in tissue cultures and in mice infected with a recombinant rabies virus construct that expresses the proapoptotic protein cytochrome c. The extent of apoptosis was strongly increased in primary neuron cultures infected with the recombinant virus carrying the active cytochrome c gene [SPBN-Cyto c(+)], compared with cells infected with the recombinant virus containing the inactive cytochrome c gene [SPBN-Cyto c(−)]. Mortality in mice infected intranasally with SPBN-Cyto c(+) was substantially lower than in SPBN-Cyto c(−)-infected mice. Furthermore, virus-neutralizing antibody (VNA) titers were significantly higher in mice immunized with SPBN-Cyto c(+) at the same dose. The VNA titers induced by these recombinant viruses paralleled their protective activities against a lethal rabies virus challenge infection, with SPBN-Cyto c(+) revealing an effective dose 20 times lower than that of SPBN-Cyto c(−). The strong increase in immunogenicity, coupled with the marked reduction in pathogenicity, identifies the SPBN-Cyto c(+) construct as a candidate for a live rabies virus vaccine. PMID:11602721

  10. Antiviral agents against equid alphaherpesviruses: Current status and perspectives.

    PubMed

    Vissani, María A; Thiry, Etienne; Dal Pozzo, Fabiana; Barrandeguy, María

    2016-01-01

    Equid herpesvirus infections cause respiratory, neurological and reproductive syndromes. Despite preventive and control measures and the availability of vaccines and immunostimulants, herpesvirus infections still constitute a major threat to equine health and for the equine industry worldwide. Antiviral drugs, particularly nucleoside analogues and foscarnet, are successfully used for the treatment of human alphaherpesvirus infections. In equine medicine, the use of antiviral medications in alphaherpesvirus infections would decrease the excretion of virus and diminish the risk of contagion and the convalescent time in affected horses, and would also improve the clinical outcome of equine herpesvirus myeloencephalopathy. The combined use of antiviral compounds, along with vaccines, immune modulators, and effective preventive and control measures, might be beneficial in diminishing the negative impact of alphaherpesvirus infections in horses. The purpose of this review is to analyse the available information regarding the use of antiviral agents against alphaherpesviruses, with particular emphasis on equine alphaherpesvirus infections. PMID:26654843

  11. Dengue Virus Entry as Target for Antiviral Therapy

    PubMed Central

    Alen, Marijke M. F.; Schols, Dominique

    2012-01-01

    Dengue virus (DENV) infections are expanding worldwide and, because of the lack of a vaccine, the search for antiviral products is imperative. Four serotypes of DENV are described and they all cause a similar disease outcome. It would be interesting to develop an antiviral product that can interact with all four serotypes, prevent host cell infection and subsequent immune activation. DENV entry is thus an interesting target for antiviral therapy. DENV enters the host cell through receptor-mediated endocytosis. Several cellular receptors have been proposed, and DC-SIGN, present on dendritic cells, is considered as the most important DENV receptor until now. Because DENV entry is a target for antiviral therapy, various classes of compounds have been investigated to inhibit this process. In this paper, an overview is given of all the putative DENV receptors, and the most promising DENV entry inhibitors are discussed. PMID:22529868

  12. Potential Antiviral Agents from Marine Fungi: An Overview.

    PubMed

    Moghadamtousi, Soheil Zorofchian; Nikzad, Sonia; Kadir, Habsah Abdul; Abubakar, Sazaly; Zandi, Keivan

    2015-07-01

    Biodiversity of the marine world is only partially subjected to detailed scientific scrutiny in comparison to terrestrial life. Life in the marine world depends heavily on marine fungi scavenging the oceans of lifeless plants and animals and entering them into the nutrient cycle by. Approximately 150 to 200 new compounds, including alkaloids, sesquiterpenes, polyketides, and aromatic compounds, are identified from marine fungi annually. In recent years, numerous investigations demonstrated the tremendous potential of marine fungi as a promising source to develop new antivirals against different important viruses, including herpes simplex viruses, the human immunodeficiency virus, and the influenza virus. Various genera of marine fungi such as Aspergillus, Penicillium, Cladosporium, and Fusarium were subjected to compound isolation and antiviral studies, which led to an illustration of the strong antiviral activity of a variety of marine fungi-derived compounds. The present review strives to summarize all available knowledge on active compounds isolated from marine fungi with antiviral activity. PMID:26204947

  13. Potential Antiviral Agents from Marine Fungi: An Overview

    PubMed Central

    Zorofchian Moghadamtousi, Soheil; Nikzad, Sonia; Abdul Kadir, Habsah; Abubakar, Sazaly; Zandi, Keivan

    2015-01-01

    Biodiversity of the marine world is only partially subjected to detailed scientific scrutiny in comparison to terrestrial life. Life in the marine world depends heavily on marine fungi scavenging the oceans of lifeless plants and animals and entering them into the nutrient cycle by. Approximately 150 to 200 new compounds, including alkaloids, sesquiterpenes, polyketides, and aromatic compounds, are identified from marine fungi annually. In recent years, numerous investigations demonstrated the tremendous potential of marine fungi as a promising source to develop new antivirals against different important viruses, including herpes simplex viruses, the human immunodeficiency virus, and the influenza virus. Various genera of marine fungi such as Aspergillus, Penicillium, Cladosporium, and Fusarium were subjected to compound isolation and antiviral studies, which led to an illustration of the strong antiviral activity of a variety of marine fungi-derived compounds. The present review strives to summarize all available knowledge on active compounds isolated from marine fungi with antiviral activity. PMID:26204947

  14. The Pneumovirinae fusion (F) protein: A common target for vaccines and antivirals.

    PubMed

    Melero, José A; Mas, Vicente

    2015-11-01

    The Pneumovirinae fusion (F) protein mediates fusion of the virus and cell membrane, an essential step for entry of the viral genome in the cell cytoplasm and initiation of a new infectious cycle. Accordingly, potent inhibitors of virus infectivity have been found among antibodies and chemical compounds that target the Pneumovirinae F protein. Recent developments in structure-based vaccines have led to a deeper understanding of F protein antigenicity, unveiling new conformations and epitopes which should assist in development of efficacious vaccines. Similarly, structure-based studies of potent antiviral inhibitors have provided information about their mode of action and mechanisms of resistance. The advantages and disadvantages of the different options to battle against important pathogens, such as human respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV) are summarized and critically discussed in this review. PMID:25738581

  15. Hepatitis B surface antigen escape mutations: Indications for initiation of antiviral therapy revisited

    PubMed Central

    Leong, Jennifer; Lin, Derek; Nguyen, Mindie H

    2016-01-01

    Approximately 240 million people are chronically infected with hepatitis B. The implementation of rigorous vaccination programs has led to an overall decrease in the prevalence of this disease worldwide but this may also have led to emergence of viral mutations that can escape the protection of hepatitis B surface antibody. As this phenomenon is increasingly recognized, concern for transmission to vaccinated individuals has also been raised. Herein, we describe two cases where the suspected presence of a hepatitis B surface antigen escape mutation impacted the decision to initiate early antiviral therapy, as well as provide a brief review of these mutations. Our findings described here suggest that a lower threshold for initiating therapy in these individuals should be considered in order to reduce the risk of transmission, as vaccination does not provide protection. PMID:26989671

  16. Analysis of the role of antibody-dependent cellular cytotoxic antibody activity in murine neonatal herpes simplex virus infection with antibodies to synthetic peptides of glycoprotein D and monoclonal antibodies to glycoprotein B.

    PubMed Central

    Kohl, S; Strynadka, N C; Hodges, R S; Pereira, L

    1990-01-01

    The role of antibody in neonatal herpes simplex virus (HSV) infection remains controversial. A battery of well-characterized monoclonal antibodies to HSV glycoprotein B (gB), and polyclonal antibodies against synthetic peptides of predicted epitopes of HSV glycoprotein D (gD) were used to determine in vitro functional activity and association with protection against lethal infection in a murine model of neonatal HSV disease. Antiviral neutralization activity of HSV was not associated with antibody-dependent cellular cytotoxicity (ADCC) activity to HSV-infected cells in vitro. In a model of high dose challenge (10(4) PFU), protection was not afforded by any antibody alone, but was by antibody plus human mononuclear cells, and highly associated with ADCC functional activity (P less than 0.001). In a low dose challenge model, neutralizing activity of antibody alone was associated with protection in vivo (P less than 0.001). Of the nine neutralizing epitopes of gD in vitro, eight were predicted surface regions. Four of the five epitopic sites of gD (2-21, 267-276, 288-297, and 303-312) that were determined to be important targets of ADCC and in vivo protection were also predicted to be surface regions. The only exception was the antiserum to region 52-61 which was predicted to be buried and also showed these activities. ADCC as well as neutralizing antibody activity are important in protection against neonatal HSV infection. PMID:2164044

  17. Selective utilization of Toll-like receptor and MyD88 signaling in B cells for enhancement of the anti-viral germinal center response

    PubMed Central

    Hou, Baidong; Saudan, Philippe; Ott, Gary; Wheeler, Matthew L.; Ji, Ming; Kuzmich, Lili; Lee, Linda M.; Coffman, Robert L.; Bachmann, Martin F.; DeFranco, Anthony L.

    2011-01-01

    Summary The contribution of Toll-like receptor (TLR) signaling to T cell-dependent (TD) antibody responses was assessed by using mice lacking the TLR signaling adaptor MyD88 in individual cell types. When a soluble TLR9 ligand was used as adjuvant for a protein antigen, MyD88 was required in dendritic cells but not in B cells to enhance the TD antibody response, regardless of the inherent immunogenicity of the antigen. In contrast, a TLR9 ligand contained within a virus-like particle substantially augmented the TD germinal center IgG antibody response, and this augmentation required B cell MyD88. The ability of B cells to discriminate between antigens based the physical form of a TLR ligand likely reflects an adaptation to facilitate strong anti-viral antibody responses. PMID:21353603

  18. Antiviral immunity in Drosophila requires systemic RNAi spread

    PubMed Central

    Saleh, Maria-Carla; Tassetto, Michel; van Rij, Ronald P.; Goic, Bertsy; Gausson, Valérie; Berry, Bassam; Jacquier, Caroline; Antoniewski, Christophe; Andino, Raul

    2014-01-01

    Multicellular organisms evolved sophisticated defense systems to confer protection against pathogens. An important characteristic of these immune systems is their ability to act both locally at the site of infection and at distal uninfected locations1-4. In insects, such as Drosophila melanogaster, RNA interference (RNAi) mediates antiviral immunity5-7. However, the antiviral RNAi defense in flies is thought to be a local, cell-autonomous process, since flies are considered unable to generate a systemic RNAi response8. Here we show that a recently defined double-stranded RNA (dsRNA) uptake pathway9 is essential for effective antiviral RNAi immunity in adult flies. Mutant flies defective in this dsRNA uptake pathway were hypersensitive to infection with Drosophila C virus (DCV) and Sindbis virus. Mortality in dsRNA-uptake defective flies was accompanied by 100-to 105-fold increases in viral titers and higher levels of viral RNA. Furthermore, inoculating naked dsRNA into flies elicited a sequence specific antiviral immune response that required an intact dsRNA uptake pathway. These findings suggest that spread of dsRNA to uninfected sites is essential for effective antiviral immunity. Strikingly, infection with Sindbis-GFP suppressed expression of host-encoded GFP at a distal site. Thus, similar to protein-based immunity in vertebrates, the antiviral RNAi-response in flies also relies on the systemic spread of a virus-specific immunity signal. PMID:19204732

  19. Perspective of Use of Antiviral Peptides against Influenza Virus

    PubMed Central

    Skalickova, Sylvie; Heger, Zbynek; Krejcova, Ludmila; Pekarik, Vladimir; Bastl, Karel; Janda, Jozef; Kostolansky, Frantisek; Vareckova, Eva; Zitka, Ondrej; Adam, Vojtech; Kizek, Rene

    2015-01-01

    The threat of a worldwide influenza pandemic has greatly increased over the past decade with the emergence of highly virulent avian influenza strains. The increased frequency of drug-resistant influenza strains against currently available antiviral drugs requires urgent development of new strategies for antiviral therapy, too. The research in the field of therapeutic peptides began to develop extensively in the second half of the 20th century. Since then, the mechanisms of action for several peptides and their antiviral prospect received large attention due to the global threat posed by viruses. Here, we discussed the therapeutic properties of peptides used in influenza treatment. Peptides with antiviral activity against influenza can be divided into three main groups. First, entry blocker peptides such as a Flupep that interact with influenza hemagglutinin, block its binding to host cells and prevent viral fusion. Second, several peptides display virucidal activity, disrupting viral envelopes, e.g., Melittin. Finally, a third set of peptides interacts with the viral polymerase complex and act as viral replication inhibitors such as PB1 derived peptides. Here, we present a review of the current literature describing the antiviral activity, mechanism and future therapeutic potential of these influenza antiviral peptides. PMID:26492266

  20. Perspective of Use of Antiviral Peptides against Influenza Virus.

    PubMed

    Skalickova, Sylvie; Heger, Zbynek; Krejcova, Ludmila; Pekarik, Vladimir; Bastl, Karel; Janda, Jozef; Kostolansky, Frantisek; Vareckova, Eva; Zitka, Ondrej; Adam, Vojtech; Kizek, Rene

    2015-10-01

    The threat of a worldwide influenza pandemic has greatly increased over the past decade with the emergence of highly virulent avian influenza strains. The increased frequency of drug-resistant influenza strains against currently available antiviral drugs requires urgent development of new strategies for antiviral therapy, too. The research in the field of therapeutic peptides began to develop extensively in the second half of the 20(th) century. Since then, the mechanisms of action for several peptides and their antiviral prospect received large attention due to the global threat posed by viruses. Here, we discussed the therapeutic properties of peptides used in influenza treatment. Peptides with antiviral activity against influenza can be divided into three main groups. First, entry blocker peptides such as a Flupep that interact with influenza hemagglutinin, block its binding to host cells and prevent viral fusion. Second, several peptides display virucidal activity, disrupting viral envelopes, e.g., Melittin. Finally, a third set of peptides interacts with the viral polymerase complex and act as viral replication inhibitors such as PB1 derived peptides. Here, we present a review of the current literature describing the antiviral activity, mechanism and future therapeutic potential of these influenza antiviral peptides. PMID:26492266

  1. Searching for antiviral drugs for human papillomaviruses.

    PubMed

    Underwood, M R; Shewchuk, L M; Hassell, A M; Phelps, W C

    2000-12-01

    The human papillomaviruses (HPVs) are ubiquitous human pathogens that cause a wide variety of benign and pre-malignant epithelial tumours. Of the almost 100 different types of HPV that have been characterized to date, approximately two dozen specifically infect genital and oral mucosa. Mucosal HPVs are most frequently sexually transmitted and, with an incidence roughly twice that of herpes simplex virus infection, are considered one of the most common sexually transmitted diseases throughout the world. A subset of genital HPVs, termed 'high-risk' HPVs, is highly associated with the development of genital cancers including cervical carcinoma. The absence of a simple monolayer cell culture system for analysis and propagation of the virus has substantially retarded progress in the development of diagnostic and therapeutic strategies for HPV infection. In spite of these difficulties, great progress has been made in the elucidation of the molecular controls of virus gene expression, replication and pathogenesis. With this knowledge and some important new tools, there is great potential for the development of improved diagnostic and prognostic tests, prophylactic and therapeutic vaccines, and traditional antiviral medicines. PMID:11142617

  2. Optimizing Distribution of Pandemic Influenza Antiviral Drugs

    PubMed Central

    Huang, Hsin-Chan; Morton, David P.; Johnson, Gregory P.; Gutfraind, Alexander; Galvani, Alison P.; Clements, Bruce; Meyers, Lauren A.

    2015-01-01

    We provide a data-driven method for optimizing pharmacy-based distribution of antiviral drugs during an influenza pandemic in terms of overall access for a target population and apply it to the state of Texas, USA. We found that during the 2009 influenza pandemic, the Texas Department of State Health Services achieved an estimated statewide access of 88% (proportion of population willing to travel to the nearest dispensing point). However, access reached only 34.5% of US postal code (ZIP code) areas containing <1,000 underinsured persons. Optimized distribution networks increased expected access to 91% overall and 60% in hard-to-reach regions, and 2 or 3 major pharmacy chains achieved near maximal coverage in well-populated areas. Independent pharmacies were essential for reaching ZIP code areas containing <1,000 underinsured persons. This model was developed during a collaboration between academic researchers and public health officials and is available as a decision support tool for Texas Department of State Health Services at a Web-based interface. PMID:25625858

  3. Probiotics as Antiviral Agents in Shrimp Aquaculture

    PubMed Central

    Lakshmi, Bestha; Sai Gopal, D. V. R.

    2013-01-01

    Shrimp farming is an aquaculture business for the cultivation of marine shrimps or prawns for human consumption and is now considered as a major economic and food production sector as it is an increasingly important source of protein available for human consumption. Intensification of shrimp farming had led to the development of a number of diseases, which resulted in the excessive use of antimicrobial agents, which is finally responsible for many adverse effects. Currently, probiotics are chosen as the best alternatives to these antimicrobial agents and they act as natural immune enhancers, which provoke the disease resistance in shrimp farm. Viral diseases stand as the major constraint causing an enormous loss in the production in shrimp farms. Probiotics besides being beneficial bacteria also possess antiviral activity. Exploitation of these probiotics in treatment and prevention of viral diseases in shrimp aquaculture is a novel and efficient method. This review discusses the benefits of probiotics and their criteria for selection in shrimp aquaculture and their role in immune power enhancement towards viral diseases. PMID:23738078

  4. The antiviral activities of ISG15

    PubMed Central

    Morales, David J.; Lenschow, Deborah J.

    2014-01-01

    Post-translational protein modification is an important strategy for the regulation of the cell proteome independent of the need for new gene expression. Ubiquitin and ubiquitin-like modifiers mediate the regulation of protein levels, signaling pathways, vesicular trafficking, and many other cellular processes through their covalent conjugation to proteins. Interferon stimulated gene 15 (ISG15) is a type I interferon induced ubiquitin-like modifier. In addition to conjugating to potentially hundreds of target proteins, ISG15 can be found in an unconjugated form both inside of the cell and released from interferon stimulated cells into the extracellular environment. Due to its robust expression after type I interferon stimulation and the broad panel of proteins that it targets, ISG15 has drawn much attention as a potential regulator of the immune response and has been shown to mediate protection in a number of different viral infection models. Here we will review the current state of the field of ISG15, the viruses against which ISG15 mediates protection, and the mechanisms by which ISG15 exerts antiviral activity. PMID:24095857

  5. [Study of the antiviral action of gentamicin].

    PubMed

    Novokhatskiĭ, A S; Gerasimova, S S

    1975-05-01

    Experimental data on the effect of various concentrations of gentamycin on reproduction of VEE and Sindbis viruses in tissue culture are presented. It was found that gentamycin had no cytotoxic effect on the primary tripsinized chick embryon fibroblasts (CEF) when used in doses of 10, 20 or 30 mg/ml and only when used in a dose of 50 mg/ml it induced 50 percent destruction of the cell layer. Multiplication of the VEE and Sindbis viruses in the culture of CEF was inhibited in the presence of gentamycin by 1.5--3.5 lg PFU/ml. Two stages in the virus inhibiting effect of gentamycin were determined on the model of VEE, i. e. the stage of inhibition in the absence of visible damages of the cells and the stage associated with their destruction. The doses of gentamycin higher than 3 mg/ml inhibited in parallel the virus specific synthesis and synthesis of the cell proteins and nucleic acids. At the same time, when gentamycin was used in a dose of 10 mg/ml, no impairement of the cell viability was observed and the cell capacity to produce high titers of the model virus was reduced after incubation without the antibiotic for 24 hours. The antiviral activity of gentamycin were therefore determined by revers inhibition of the cell metabolic activity. PMID:1225192

  6. Virus infection, antiviral immunity, and autoimmunity

    PubMed Central

    Getts, Daniel R.; Chastain, Emily M. L.; Terry, Rachael L.; Miller, Stephen D.

    2014-01-01

    Summary As a group of disorders, autoimmunity ranks as the third most prevalent cause of morbidity and mortality in the Western World. However, the etiology of most autoimmune diseases remains unknown. Although genetic linkage studies support a critical underlying role for genetics, the geographic distribution of these disorders as well as the low concordance rates in monozygotic twins suggest that a combination of other factors including environmental ones are involved. Virus infection is a primary factor that has been implicated in the initiation of autoimmune disease. Infection triggers a robust and usually well-coordinated immune response that is critical for viral clearance. However, in some instances, immune regulatory mechanisms may falter, culminating in the breakdown of self-tolerance, resulting in immune-mediated attack directed against both viral and self-antigens. Traditionally, cross-reactive T-cell recognition, known as molecular mimicry, as well as bystander T-cell activation, culminating in epitope spreading, have been the predominant mechanisms elucidated through which infection may culminate in an T-cell-mediated autoimmune response. However, other hypotheses including virus-induced decoy of the immune system also warrant discussion in regard to their potential for triggering autoimmunity. In this review, we discuss the mechanisms by which virus infection and antiviral immunity contribute to the development of autoimmunity. PMID:23947356

  7. A murine model of coxsackievirus A16 infection for anti-viral evaluation.

    PubMed

    Liu, Qingwei; Shi, Jinping; Huang, Xulin; Liu, Fei; Cai, Yicun; Lan, Ke; Huang, Zhong

    2014-05-01

    Coxsackievirus A16 (CA16) is one of the main causative agents of hand, foot and mouth disease (HFMD), which is a common infectious disease in children. CA16 infection may lead to severe nervous system damage and even death in humans. However, study of the pathogenesis of CA16 infection and development of vaccines and anti-viral agents are hindered partly by the lack of an appropriate small animal model. In the present study, we developed and characterized a murine model of CA16 infection. We show that neonatal mice are susceptible to CA16 infection via intraperitoneal inoculation. One-day-old mice infected with 2×10(6)TCID50 of CA16/SZ05 strain consistently exhibited clinical signs, including reduced mobility, and limb weakness and paralysis. About 57% of the mice died within 14days after infection. Significant damage in the brainstem, limb muscles and intestines of the infected mice in the moribund state was observed by histological examination, and the presence of CA16 in neurons of the brainstem was demonstrated by immunohistochemical staining with a CA16-specific polyclonal antibody, strongly suggesting the involvement of the central nervous system in CA16 infection. Analysis of virus titers in various organs/tissues collected at 3, 6 and 9days post-infection, showed that skeletal muscle was the major site of virus replication at the early stage of infection, while the virus mainly accumulated in the brain at the late stage. In addition, susceptibility of mice to CA16 infection was found to be age dependent. Moreover, different CA16 strains could exhibit varied virulence in vivo. Importantly, we demonstrated that post-exposure treatment with an anti-CA16 monoclonal antibody fully protected mice against lethal CA16 infection. Collectively, these results indicate the successful development of a CA16 infection mouse model for anti-viral evaluation. PMID:24583030

  8. Monoclonal antibodies.

    PubMed

    2009-01-01

    The ability to produce and exploit monoclonal antibodies (mAbs) has revolutionized many areas of biological sciences. The unique property of an mAb is that it is a single species of immunoglobulin (IG) molecule. This means that the specificity of the interaction of the paratopes on the IG, with the epitopes on an antigenic target, is the same on every molecule. This property can be used to great benefit in immunoassays to provide tests of defined specificity and sensitivity, which improve the possibilities of standardization. The performance of assays can often be determined relating the actual weight of antibody (hence the number of molecules) to the activity. Often the production of an mAb against a specific epitope is the only way that biological entities can be differentiated. This chapter outlines the areas involving the development of assays based on mAbs. The problems involved address include the physical aspects of mAbs and how they may affect assay design and also the implications of results based on monospecific reagents. Often these are not fully understood, leading to assays that are less than satisfactory, which does not justify the relatively high cost of preparing and screening of mAbs. There are many textbooks and reviews dealing with the preparation of mAbs, the principles involved, and various purification and manipulative methods for the preparation of fragments and conjugation. There has been little general information attempting to summarize the best approaches to assay design using mAbs. Much time can be wasted through bad planning, and this is particularly relevant to mAbs. A proper understanding of some basic principles is essential. It is beyond the scope of this chapter to discuss all aspects, but major areas are highlighted. PMID:19219589

  9. Viral antibody dynamics in a chiropteran host.

    PubMed

    Baker, Kate S; Suu-Ire, Richard; Barr, Jennifer; Hayman, David T S; Broder, Christopher C; Horton, Daniel L; Durrant, Christopher; Murcia, Pablo R; Cunningham, Andrew A; Wood, James L N

    2014-03-01

    Bats host many viruses that are significant for human and domestic animal health, but the dynamics of these infections in their natural reservoir hosts remain poorly elucidated. In these, and other, systems, there is evidence that seasonal life-cycle events drive infection dynamics, directly impacting the risk of exposure to spillover hosts. Understanding these dynamics improves our ability to predict zoonotic spillover from the reservoir hosts. To this end, we followed henipavirus antibody levels of >100 individual E. helvum in a closed, captive, breeding population over a 30-month period, using a powerful novel antibody quantitation method. We demonstrate the presence of maternal antibodies in this system and accurately determine their longevity. We also present evidence of population-level persistence of viral infection and demonstrate periods of increased horizontal virus transmission associated with the pregnancy/lactation period. The novel findings of infection persistence and the effect of pregnancy on viral transmission, as well as an accurate quantitation of chiropteran maternal antiviral antibody half-life, provide fundamental baseline data for the continued study of viral infections in these important reservoir hosts. PMID:24111634

  10. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds.

    PubMed

    Báez-Santos, Yahira M; St John, Sarah E; Mesecar, Andrew D

    2015-03-01

    Over 10 years have passed since the deadly human coronavirus that causes severe acute respiratory syndrome (SARS-CoV) emerged from the Guangdong Province of China. Despite the fact that the SARS-CoV pandemic infected over 8500 individuals, claimed over 800 lives and cost billions of dollars in economic loss worldwide, there still are no clinically approved antiviral drugs, vaccines or monoclonal antibody therapies to treat SARS-CoV infections. The recent emergence of the deadly human coronavirus that causes Middle East respiratory syndrome (MERS-CoV) is a sobering reminder that new and deadly coronaviruses can emerge at any time with the potential to become pandemics. Therefore, the continued development of therapeutic and prophylactic countermeasures to potentially deadly coronaviruses is warranted. The coronaviral proteases, papain-like protease (PLpro) and 3C-like protease (3CLpro), are attractive antiviral drug targets because they are essential for coronaviral replication. Although the primary function of PLpro and 3CLpro are to process the viral polyprotein in a coordinated manner, PLpro has the additional function of stripping ubiquitin and ISG15 from host-cell proteins to aid coronaviruses in their evasion of the host innate immune responses. Therefore, targeting PLpro with antiviral drugs may have an advantage in not only inhibiting viral replication but also inhibiting the dysregulation of signaling cascades in infected cells that may lead to cell death in surrounding, uninfected cells. This review provides an up-to-date discussion on the SARS-CoV papain-like protease including a brief overview of the SARS-CoV genome and replication followed by a more in-depth discussion on the structure and catalytic mechanism of SARS-CoV PLpro, the multiple cellular functions of SARS-CoV PLpro, the inhibition of SARS-CoV PLpro by small molecule inhibitors, and the prospect of inhibiting papain-like protease from other coronaviruses. This paper forms part of a series of

  11. Serum herpes simplex antibodies

    MedlinePlus

    ... gov/ency/article/003352.htm Serum herpes simplex antibodies To use the sharing features on this page, please enable JavaScript. Serum herpes simplex antibodies is a blood test that looks for antibodies ...

  12. Influenza antiviral susceptibility monitoring activities in relation to national antiviral stockpiles in Europe during the winter 2006/2007 season.

    PubMed

    Meijer, A; Lackenby, A; Hay, A; Zambon, M

    2007-04-01

    Due to the influenza pandemic threat, many countries are stockpiling antivirals in the hope of limiting the impact of a future pandemic virus. Since resistance to antiviral drugs would probably significantly alter the effectiveness of antivirals, surveillance programmes to monitor the emergence of resistance are of considerable importance. During the 2006/2007 influenza season, an inventory was conducted by the European Surveillance Network for Vigilance against Viral Resistance (VIRGIL) in collaboration with the European Influenza Surveillance Scheme (EISS) to evaluate antiviral susceptibility testing by the National Influenza Reference Laboratories (NIRL) in relation to the national antiviral stockpile in 30 European countries that are members of EISS. All countries except Ukraine had a stockpile of the neuraminidase inhibitor (NAI) oseltamivir. Additionally, four countries had a stockpile of the NAI zanamivir and three of the M2 ion channel inhibitor rimantadine. Of 29 countries with a NAI stockpile, six countries' NIRLs could determine virus susceptibility by 50% inhibitory concentration (IC50) and in 13 countries it could be done by sequencing. Only in one of the three countries with a rimantadine stockpile could the NIRL determine virus susceptibility, by sequencing only. However, including the 18 countries that had plans to introduce or extend antiviral susceptibility testing, the NIRLs of 21 of the 29 countries with a stockpile would be capable of susceptibility testing appropriate to the stockpiled drug by the end of the 2007/2008 influenza season. Although most European countries in this study have stockpiles of influenza antivirals, susceptibility surveillance capability by the NIRLs appropriate to the stockpiled antivirals is limited. PMID:17991386

  13. Spiralin, a mycoplasmal membrane lipoprotein, induces T-cell-independent B-cell blastogenesis and secretion of proinflammatory cytokines.

    PubMed Central

    Brenner, C; Wróblewski, H; Le Henaff, M; Montagnier, L; Blanchard, A

    1997-01-01

    Mycoplasmas are bacteria which can cause respiratory, arthritic, and urogenital diseases. During the early phase of infection, mycoplasmas usually induce an inflammatory response and a humoral response preferentially directed against their membrane-bound, surface-exposed lipoproteins. In this report, we describe the effects on immune cells of spiralin, a well-characterized mycoplasmal lipoprotein. Purified spiralin stimulated the in vitro proliferation of human peripheral blood mononuclear cells and murine splenocytes. The stimulation pathway was probably different from that followed by Escherichia coli lipopolysaccharide because the effect of spiralin was not abolished by polymyxin B. Comparison of the effects of whole, native spiralin with those induced by proteinase K-digested spiralin or by the C-terminal half of spiralin (peptide p[13.5]T) revealed that the first half of the protein, which contains the lipoylated N terminus, is responsible for the mitogenic activity. In contrast to whole spiralin, proteinase K-digested spiralin did not trigger murine B-cell differentiation and immunoglobulin G and M secretion. Stimulation of human or murine immune cells led to early secretion of proinflammatory cytokines (human tumor necrosis factor alpha and murine interleukin 1 or 6). Spiralin induced the T-cell-independent blastogenesis of murine B cells but did not stimulate T cells. Altogether, our data demonstrate that spiralin possesses potent immunostimulating activity, similar to that reported for lipoproteins of pathogenic gracilicutes (gram-negative eubacteria; e.g., Borrelia burgdorferi OspA and E. coli Braun lipoprotein), and are consistent with the fact that lipoproteins are major antigens during mycoplasma infections. PMID:9317043

  14. Alteration of Antiviral Signalling by Single Nucleotide Polymorphisms (SNPs) of Mitochondrial Antiviral Signalling Protein (MAVS)

    PubMed Central

    Xing, Fei; Matsumiya, Tomoh; Hayakari, Ryo; Yoshida, Hidemi; Kawaguchi, Shogo; Takahashi, Ippei; Nakaji, Shigeyuki; Imaizumi, Tadaatsu

    2016-01-01

    Genetic variation is associated with diseases. As a type of genetic variation occurring with certain regularity and frequency, the single nucleotide polymorphism (SNP) is attracting more and more attention because of its great value for research and real-life application. Mitochondrial antiviral signalling protein (MAVS) acts as a common adaptor molecule for retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), which can recognize foreign RNA, including viral RNA, leading to the induction of type I interferons (IFNs). Therefore, MAVS is thought to be a crucial molecule in antiviral innate immunity. We speculated that genetic variation of MAVS may result in susceptibility to infectious diseases. To assess the risk of viral infection based on MAVS variation, we tested the effects of twelve non-synonymous MAVS coding-region SNPs from the National Center for Biotechnology Information (NCBI) database that result in amino acid substitutions. We found that five of these SNPs exhibited functional alterations. Additionally, four resulted in an inhibitory immune response, and one had the opposite effect. In total, 1,032 human genomic samples obtained from a mass examination were genotyped at these five SNPs. However, no homozygous or heterozygous variation was detected. We hypothesized that these five SNPs are not present in the Japanese population and that such MAVS variations may result in serious immune diseases. PMID:26954674

  15. Antiviral effect of ranpirnase against Ebola virus.

    PubMed

    Hodge, Thomas; Draper, Ken; Brasel, Trevor; Freiberg, Alexander; Squiquera, Luis; Sidransky, David; Sulley, Jamie; Taxman, Debra J

    2016-08-01

    The recent epidemic of Ebola has intensified the need for the development of novel antiviral therapeutics that prolong and improve survival against deadly viral diseases. We sought to determine whether ranpirnase, an endoribonuclease from Rana pipiens with a demonstrated human safety profile in phase III oncology trials, can reduce titers of Ebola virus (EBOV) in infected cells, protect mice against mouse-adapted EBOV challenge, and reduce virus levels in infected mice. Our results demonstrate that 0.50 μg/ml ranpirnase is potently effective at reducing EBOV Zaire Kikwit infection in cultured Vero E6 cells (Selectivity Index 47.8-70.2). In a prophylactic study, a single intravenous dose of 0.1 mg/kg ranpirnase protected 70% of mice from progressive infection. Additionally, in a post-exposure prophylactic study, 100% of female mice survived infection after intraperitoneal administration of 0.1 mg/kg ranpirnase for ten days beginning 1 h post challenge. Most of the male counterparts were sacrificed due to weight loss by Study Day 8 or 9; however, the Clinical Activity/Behavior scores of these mice remained low and no significant microscopic pathologies could be detected in the kidneys, livers or spleens. Furthermore, live virus could not be detected in the sera of ranpirnase-treated mice by Study Day 8 or in the kidneys, livers or spleens by Study Day 12, and viral RNA levels declined exponentially by Study Day 12. Because ranpirnase is exceptionally stable and has a long track record of safe intravenous administration to humans, this drug provides a promising new candidate for clinical consideration in the treatment of Ebola virus disease alone or in combination with other therapeutics. PMID:27350309

  16. Antiviral macrophage responses in flavivirus encephalitis.

    PubMed

    Ashhurst, Thomas Myles; Vreden, Caryn van; Munoz-Erazo, Luis; Niewold, Paula; Watabe, Kanami; Terry, Rachael L; Deffrasnes, Celine; Getts, Daniel R; Cole King, Nicholas Jonathan

    2013-11-01

    Mosquito-borne flaviviruses are a major current and emerging threat, affecting millions of people worldwide. Global climate change, combined with increasing proximity of humans to animals and mosquito vectors by expansion into natural habitats, coupled with the increase in international travel, have resulted in significant spread and concomitant increase in the incidence of infection and severe disease. Although neuroinvasive disease has been well described for some viral infections such as Japanese Encephalitis virus (JEV) and West Nile virus (WNV), others such as dengue virus (DENV) have recently displayed an emerging pattern of neuroinvasive disease, distinct from the previously observed, systemically-induced encephalomyelopathy. In this setting, the immune response is a crucial component of host defence, in preventing viral dissemination and invasion of the central nervous system (CNS). However, subversion of the anti-viral activities of macrophages by flaviviruses can facilitate viral replication and spread, enhancing the intensity of immune responses, leading to severe immune-mediated disease which may be further exacerbated during the subsequent infection with some flaviviruses. Furthermore, in the CNS myeloid cells may be responsible for inducing specific inflammatory changes, which can lead to significant pathological damage during encephalitis. The interaction of virus and cells of the myeloid lineage is complex, and this interaction is likely responsible at least in part, for crucial differences between viral clearance and pathology. Recent studies on the role of myeloid cells in innate immunity and viral control, and the mechanisms of evasion and subversion used by flaviviruses are rapidly advancing our understanding of the immunopathological mechanisms involved in flavivirus encephalitis and will lead to the development of therapeutic strategies previously not considered. PMID:24434318

  17. Antiviral immune responses of bats: a review.

    PubMed

    Baker, M L; Schountz, T; Wang, L-F

    2013-02-01

    Despite being the second most species-rich and abundant group of mammals, bats are also among the least studied, with a particular paucity of information in the area of bat immunology. Although bats have a long history of association with rabies, the emergence and re-emergence of a number of viruses from bats that impact human and animal health has resulted in a resurgence of interest in bat immunology. Understanding how bats coexist with viruses in the absence of disease is essential if we are to begin to develop therapeutics to target viruses in humans and susceptible livestock and companion animals. Here, we review the current status of knowledge in the field of bat antiviral immunology including both adaptive and innate mechanisms of immune defence and highlight the need for further investigations in this area. Because data in this field are so limited, our discussion is based on both scientific discoveries and theoretical predictions. It is hoped that by provoking original, speculative or even controversial ideas or theories, this review may stimulate further research in this important field. Efforts to understand the immune systems of bats have been greatly facilitated in recent years by the availability of partial genome sequences from two species of bats, a megabat, Pteropus vampyrus, and a microbat, Myotis lucifugus, allowing the rapid identification of immune genes. Although bats appear to share most features of the immune system with other mammals, several studies have reported qualitative and quantitative differences in the immune responses of bats. These observations warrant further investigation to determine whether such differences are associated with the asymptomatic nature of viral infections in bats. PMID:23302292

  18. Polymorphisms of the chicken antiviral MX gene.

    PubMed

    Watanabe, T

    2007-01-01

    The Mx gene was originally found in laboratory mice in an infection experiment using influenza virus (Lindermann, 1962). Almost all of the mouse strains in that experiment died from the infection, and only the A2G strain had resistance to the virus. This resistant character was shown to be inherited as a single autosomal dominant trait (Lindermann et al., 1963; Lindermann, 1964; Haller et al., 1979). A congenic mouse strain was established by introducing the Mx+ allele of the A2G resistant strain into the Mx- sensitive inbred strain BALB/c (Staeheli et al., 1984). By immunizing parental BALB/c mice with extracts of interferon (IFN)-treated cultured cells from congenic BALB/c-Mx+ mice, a specific antibody against Mx protein was obtained (Horisberger et al., 1983; Staeheli et al., 1985). The Mx protein was detected in the nucleus of IFN-alpha/beta-treated mouse cells by immunofluorescence using the anti-Mx antibody (Dreiding et al., 1985). Thereafter, by using the antibody as an indicator, cDNA encoding the Mx protein was cloned from a cDNA library constructed from IFN-treated cells of congenic BALB/c-Mx+ mice (Staeheli et al., 1986a). IFN-treated Mx+ mouse cells contained a 3.5-kb Mx mRNA in the Northern blot, while Mx- cells failed to express the transcript. The functional Mx+ gene from an A2G mouse was found to contain 14 exons and encode 631 amino acids. The Mx- allelic mouse strains were found to be missing sequence of exons 9 through 11 or to contain a point mutation that converts lysine at position 389 to a stop codon (Staeheli et al., 1988). If these polymorphisms of the Mx gene could be detected in domestic animals, it would be possible to produce breeds that show resistance to infectious diseases. PMID:17675880

  19. Turning an antiviral into an anticancer drug: Nanoparticle delivery of acyclovir monophosphate

    PubMed Central

    Yao, Jing; Zhang, Yuan; Ramishetti, Srinivas; Wang, Yuhua; Huang, Leaf

    2013-01-01

    Anti-herpes simplex virus (HSV) drug acyclovir (ACV) is phosphorylated by the viral thymidine kinase (TK), but not the cellular TK. Phosphorylated ACV inhibits cellular DNA synthesis and kills the infected cells. We hypothesize that ACV monophosphate (ACVP), which is an activated metabolite of ACV, should be efficient in killing cells independent of HSV-TK. If so, ACVP should be a cytotoxic agent if properly delivered to the cancer cells. The Lipid/Calcium/Phosphate (LCP) nanoparticles (NPs) with a membrane/core structure were used to encapsulate ACVP to facilitate the targeted delivery of ACVP to the tumor. The LCP NPs showed entrapment efficiency of ~69%, the nano-scaled particle size and positive zeta potential. Moreover, ACVP-loaded LCP NPs (A-LCP NPs) exhibited concentration-dependent cytotoxicity against H460 cells and increased S-phase arrest. More importantly, a significant reduction of the tumor volume over 4 days following administration (p<0.05~0.005) of A-LCP NPs, suggests excellent in vivo efficacy. Whereas, two free drugs (ACV and ACVP) and blank LCP NPs showed little or no therapeutic effect. It was also found that the high efficacy of A-LCP NPs was associated with the ability to induce dramatic apoptosis of the tumor cells, as well as significantly inhibit tumor cell proliferation and cell cycle progression. In conclusion, with the help of LCP NPs, monophosphorylation modification of ACV can successfully modify an HSV-TK-dependent antiviral drug into an anti-tumor drug. PMID:23791977

  20. Selection of antibodies from synthetic antibody libraries.

    PubMed

    Harel Inbar, Noa; Benhar, Itai

    2012-10-15

    More than 2 dozen years had passed since the field of antibody engineering was established, with the first reports of bacterial [1-3] and mammalian cells [4] expression of recombinant antibody fragments, and in that time a lot of effort was dedicated to the development of efficient technological means, intended to assist in the creation of therapeutic monoclonal antibodies (mAbs). Research focus was given to two intertwined technological aspects: the selection platform and the recombinant antibody repertoires. In accordance with these areas of interest, it is the goal of this chapter to describe the various selection tools and antibody libraries existing, with emphasis on the later, and their applications. This chapter gives a far from exhaustive, subjective "historic account" of the field, describing the selection platforms, the different formats of antibody repertoires and the applications of both for selecting recombinant antibodies. Several excellent books provide detailed protocols for constructing antibody libraries and selecting antibodies from those libraries [5-13]. Such books may guide a newcomer to the field in the fine details of antibody engineering. We would like to offer advice to the novice: although seemingly simple, effective library construction and antibody isolation provide best benefits in the hands of professionals. It is an art as much as it is science. PMID:22244834

  1. Cyclin D1 is dispensable for G1 control in retinoblastoma gene-deficient cells independently of cdk4 activity.

    PubMed Central

    Lukas, J; Bartkova, J; Rohde, M; Strauss, M; Bartek, J

    1995-01-01

    To elucidate the regulator-versus-target relationship in the cyclin D1/cdk4/retinoblastoma protein (pRB) pathway, we examined fibroblasts from RB-1 gene-deficient and RB-1 wild-type littermate mouse embryos (ME) and in human tumor cell lines that differed in the status of the RB-1 gene. The RB+/+ and RB-/- ME fibroblasts expressed similar protein levels of D-type cyclins, cdk4, and cdk6, showed analogous spectra and abundance of cellular proteins complexed with cdk4 and/or cyclins D1 and D2, and exhibited comparable associated kinase activities. Of the two human cell lines established from the same sarcoma biopsy, the RB-positive SKUT1B cells contained cdk4 that was mainly associated with D-type cyclins, contrary to a predominant cdk4-p16INK4 complex in the RB-deficient SKUT1A cells. Antibody-mediated neutralization of cyclin D1 arrested the RB-positive ME and SKUT1B cells in G1, whereas this cyclin appeared dispensable in the RB-deficient ME and SKUT1A cells. Lack of requirement for cyclin D1 therefore correlated with absence of functional pRB, regardless of whether active cyclin D1/cdk4 holoenzyme was present in the cells under study. Consistent with a potential role of cyclin D/cdk4 in phosphorylation of pRB, monoclonal anti-cyclin D1 antibodies supporting the associated kinase activity failed to significantly affect proliferation of RB-positive cells, whereas the antibody DCS-6, unable to coprecipitate cdk4, efficiently inhibited G1 progression and prevented pRB phosphorylation in vivo. These data provide evidence for an upstream control function of cyclin D1/cdk4, and a downstream role for pRB, in the order of events regulating transition through late G1 phase of the mammalian cell division cycle. PMID:7739541

  2. The 17th International Conference on Antiviral Research.

    PubMed

    Buckheit, Robert W

    2004-09-01

    The focus of the 17th International Conference on Antiviral Research was the discovery and development of antiviral agents (chemistry, biology, animal models and clinical trial results) against a variety of human infectious agents including HIV, herpes viruses, hepatitis viruses, respiratory viruses and emerging/re-emerging pathogens. The meeting included the symposium 'Clinical Update on Antiviral Drugs', plenary sessions dedicated to each of the individual classes of infectious agents, a symposium on new developments surrounding emerging pathogens, and three special award lectures, which discussed the history of nucleotide antiviral agents, mechanisms of viral persistence and drug resistance, and the therapy of herpes virus infections. Within each infectious agent session the presentations included those describing the development of new and novel anti-infectives, including research based on the preclinical development of new molecules, and the results of animal modelling and clinical studies on advanced-stage antiviral agents. A summary of the meeting highlights, segregated by infectious agent, will be presented in this review. PMID:15330752

  3. Screening for Antiviral Activities of Isolated Compounds from Essential Oils

    PubMed Central

    Astani, Akram; Reichling, Jürgen; Schnitzler, Paul

    2011-01-01

    Essential oil of star anise as well as phenylpropanoids and sesquiterpenes, for example, trans-anethole, eugenol, β-eudesmol, farnesol, β-caryophyllene and β-caryophyllene oxide, which are present in many essential oils, were examined for their antiviral activity against herpes simplex virus type 1 (HSV-1) in vitro. Antiviral activity was analyzed by plaque reduction assays and mode of antiviral action was determined by addition of the drugs to uninfected cells, to the virus prior to infection or to herpesvirus-infected cells. Star anise oil reduced viral infectivity by >99%, phenylpropanoids inhibited HSV infectivity by about 60–80% and sesquiterpenes suppressed herpes virus infection by 40–98%. Both, star anise essential oil and all isolated compounds exhibited anti-HSV-1 activity by direct inactivation of free virus particles in viral suspension assays. All tested drugs interacted in a dose-dependent manner with herpesvirus particles, thereby inactivating viral infectivity. Star anise oil, rich in trans-anethole, revealed a high selectivity index of 160 against HSV, whereas among the isolated compounds only β-caryophyllene displayed a high selectivity index of 140. The presence of β-caryophyllene in many essential oils might contribute strongly to their antiviral ability. These results indicate that phenylpropanoids and sesquiterpenes present in essential oils contribute to their antiviral activity against HSV. PMID:20008902

  4. Recent developments in antiviral agents against enterovirus 71 infection

    PubMed Central

    2014-01-01

    Enterovirus 71 (EV-71) is the main etiological agent of hand, foot and mouth disease (HFMD). Recent EV-71 outbreaks in Asia-Pacific were not limited to mild HFMD, but were associated with severe neurological complications such as aseptic meningitis and brainstem encephalitis, which may lead to cardiopulmonary failure and death. The absence of licensed therapeutics for clinical use has intensified research into anti-EV-71 development. This review highlights the potential antiviral agents targeting EV-71 attachment, entry, uncoating, translation, polyprotein processing, virus-induced formation of membranous RNA replication complexes, and RNA-dependent RNA polymerase. The strategies for antiviral development include target-based synthetic compounds, anti-rhinovirus and poliovirus libraries screening, and natural compound libraries screening. Growing knowledge of the EV-71 life cycle will lead to successful development of antivirals. The continued effort to develop antiviral agents for treatment is crucial in the absence of a vaccine. The coupling of antivirals with an effective vaccine will accelerate eradication of the disease. PMID:24521134

  5. Pharmacological and biological antiviral therapeutics for cardiac coxsackievirus infections.

    PubMed

    Fechner, Henry; Pinkert, Sandra; Geisler, Anja; Poller, Wolfgang; Kurreck, Jens

    2011-01-01

    Subtype B coxsackieviruses (CVB) represent the most commonly identified infectious agents associated with acute and chronic myocarditis, with CVB3 being the most common variant. Damage to the heart is induced both directly by virally mediated cell destruction and indirectly due to the immune and autoimmune processes reacting to virus infection. This review addresses antiviral therapeutics for cardiac coxsackievirus infections discovered over the last 25 years. One group represents pharmacologically active low molecular weight substances that inhibit virus uptake by binding to the virus capsid (e.g., pleconaril) or inactivate viral proteins (e.g., NO-metoprolol and ribavirin) or inhibit cellular proteins which are essential for viral replication (e.g., ubiquitination inhibitors). A second important group of substances are interferons. They have antiviral but also immunomodulating activities. The third and most recently discovered group includes biological and cellular therapeutics. Soluble receptor analogues (e.g., sCAR-Fc) bind to the virus capsid and block virus uptake. Small interfering RNAs, short hairpin RNAs and antisense oligonucleotides bind to and led to degradation of the viral RNA genome or cellular RNAs, thereby preventing their translation and viral replication. Most recently mesenchymal stem cell transplantation has been shown to possess antiviral activity in CVB3 infections. Taken together, a number of antiviral therapeutics has been developed for the treatment of myocardial CVB infection in recent years. In addition to low molecular weight inhibitors, biological therapeutics have become promising anti-viral agents. PMID:21989310

  6. Screening for antiviral activities of isolated compounds from essential oils.

    PubMed

    Astani, Akram; Reichling, Jürgen; Schnitzler, Paul

    2011-01-01

    Essential oil of star anise as well as phenylpropanoids and sesquiterpenes, for example, trans-anethole, eugenol, β-eudesmol, farnesol, β-caryophyllene and β-caryophyllene oxide, which are present in many essential oils, were examined for their antiviral activity against herpes simplex virus type 1 (HSV-1) in vitro. Antiviral activity was analyzed by plaque reduction assays and mode of antiviral action was determined by addition of the drugs to uninfected cells, to the virus prior to infection or to herpesvirus-infected cells. Star anise oil reduced viral infectivity by >99%, phenylpropanoids inhibited HSV infectivity by about 60-80% and sesquiterpenes suppressed herpes virus infection by 40-98%. Both, star anise essential oil and all isolated compounds exhibited anti-HSV-1 activity by direct inactivation of free virus particles in viral suspension assays. All tested drugs interacted in a dose-dependent manner with herpesvirus particles, thereby inactivating viral infectivity. Star anise oil, rich in trans-anethole, revealed a high selectivity index of 160 against HSV, whereas among the isolated compounds only β-caryophyllene displayed a high selectivity index of 140. The presence of β-caryophyllene in many essential oils might contribute strongly to their antiviral ability. These results indicate that phenylpropanoids and sesquiterpenes present in essential oils contribute to their antiviral activity against HSV. PMID:20008902

  7. Antiviral responses of arthropod vectors: an update on recent advances.

    PubMed

    Rückert, Claudia; Bell-Sakyi, Lesley; Fazakerley, John K; Fragkoudis, Rennos

    2014-01-01

    Arthropod vectors, such as mosquitoes, ticks, biting midges and sand flies, transmit many viruses that can cause outbreaks of disease in humans and animals around the world. Arthropod vector species are invading new areas due to globalisation and environmental changes, and contact between exotic animal species, humans and arthropod vectors is increasing, bringing with it the regular emergence of new arboviruses. For future strategies to control arbovirus transmission, it is important to improve our understanding of virus-vector interactions. In the last decade knowledge of arthropod antiviral immunity has increased rapidly. RNAi has been proposed as the most important antiviral response in mosquitoes and it is likely to be the most important antiviral response in all arthropods. However, other newly-discovered antiviral strategies such as melanisation and the link between RNAi and the JAK/STAT pathway via the cytokine Vago have been characterised in the last few years. This review aims to summarise the most important and most recent advances made in arthropod antiviral immunity. PMID:25674592

  8. Modelling Virus and Antibody Dynamics during Dengue Virus Infection Suggests a Role for Antibody in Virus Clearance

    PubMed Central

    Clapham, Hannah E; Dorigatti, Ilaria; Simmons, Cameron P; Ferguson, Neil M

    2016-01-01

    Dengue is an infection of increasing global importance, yet uncertainty remains regarding critical aspects of its virology, immunology and epidemiology. One unanswered question is how infection is controlled and cleared during a dengue infection. Antibody is thought to play a role, but little past work has examined the kinetics of both virus and antibody during natural infections. We present data on multiple virus and antibody titres measurements recorded sequentially during infection from 53 Vietnamese dengue patients. We fit mechanistic mathematical models of the dynamics of viral replication and the host immune response to these data. These models fit the data well. The model with antibody removing virus fits the data best, but with a role suggested for ADCC or other infected cell clearance mechanisms. Our analysis therefore shows that the observed viral and antibody kinetics are consistent with antibody playing a key role in controlling viral replication. This work gives quantitative insight into the relationship between antibody levels and the efficiency of viral clearance. It will inform the future development of mechanistic models of how vaccines and antivirals might modify the course of natural dengue infection. PMID:27213681

  9. Modelling Virus and Antibody Dynamics during Dengue Virus Infection Suggests a Role for Antibody in Virus Clearance.

    PubMed

    Clapham, Hannah E; Quyen, Than Ha; Kien, Duong Thi Hue; Dorigatti, Ilaria; Simmons, Cameron P; Ferguson, Neil M

    2016-05-01

    Dengue is an infection of increasing global importance, yet uncertainty remains regarding critical aspects of its virology, immunology and epidemiology. One unanswered question is how infection is controlled and cleared during a dengue infection. Antibody is thought to play a role, but little past work has examined the kinetics of both virus and antibody during natural infections. We present data on multiple virus and antibody titres measurements recorded sequentially during infection from 53 Vietnamese dengue patients. We fit mechanistic mathematical models of the dynamics of viral replication and the host immune response to these data. These models fit the data well. The model with antibody removing virus fits the data best, but with a role suggested for ADCC or other infected cell clearance mechanisms. Our analysis therefore shows that the observed viral and antibody kinetics are consistent with antibody playing a key role in controlling viral replication. This work gives quantitative insight into the relationship between antibody levels and the efficiency of viral clearance. It will inform the future development of mechanistic models of how vaccines and antivirals might modify the course of natural dengue infection. PMID:27213681

  10. Antiviral Biologic Produced in DNA Vaccine/Goose Platform Protects Hamsters Against Hantavirus Pulmonary Syndrome When Administered Post-exposure

    PubMed Central

    Henderson, Thomas; Nilles, Matthew L.; Kwilas, Steve A.; Josleyn, Matthew D.; Hammerbeck, Christopher D.; Schiltz, James; Royals, Michael; Ballantyne, John; Hooper, Jay W.; Bradley, David S.

    2015-01-01

    Andes virus (ANDV) and ANDV-like viruses are responsible for most hantavirus pulmonary syndrome (HPS) cases in South America. Recent studies in Chile indicate that passive transfer of convalescent human plasma shows promise as a possible treatment for HPS. Unfortunately, availability of convalescent plasma from survivors of this lethal disease is very limited. We are interested in exploring the concept of using DNA vaccine technology to produce antiviral biologics, including polyclonal neutralizing antibodies for use in humans. Geese produce IgY and an alternatively spliced form, IgYΔFc, that can be purified at high concentrations from egg yolks. IgY lacks the properties of mammalian Fc that make antibodies produced in horses, sheep, and rabbits reactogenic in humans. Geese were vaccinated with an ANDV DNA vaccine encoding the virus envelope glycoproteins. All geese developed high-titer neutralizing antibodies after the second vaccination, and maintained high-levels of neutralizing antibodies as measured by a pseudovirion neutralization assay (PsVNA) for over 1 year. A booster vaccination resulted in extraordinarily high levels of neutralizing antibodies (i.e., PsVNA80 titers >100,000). Analysis of IgY and IgYΔFc by epitope mapping show these antibodies to be highly reactive to specific amino acid sequences of ANDV envelope glycoproteins. We examined the protective efficacy of the goose-derived antibody in the hamster model of lethal HPS. α-ANDV immune sera, or IgY/IgYΔFc purified from eggs, were passively transferred to hamsters subcutaneously starting 5 days after an IM challenge with ANDV (25 LD50). Both immune sera, and egg-derived purified IgY/IgYΔFc, protected 8 of 8 and 7 of 8 hamsters, respectively. In contrast, all hamsters receiving IgY/IgYΔFc purified from normal geese (n=8), or no-treatment (n=8), developed lethal HPS. These findings demonstrate that the DNA vaccine/goose platform can be used to produce a candidate antiviral biological product

  11. Origins and Evolution of tetherin, an Orphan Antiviral Gene.

    PubMed

    Blanco-Melo, Daniel; Venkatesh, Siddarth; Bieniasz, Paul D

    2016-08-10

    Tetherin encodes an interferon-inducible antiviral protein that traps a broad spectrum of enveloped viruses at infected cell surfaces. Despite the absence of any clearly related gene or activity, we describe possible scenarios by which tetherin arose that exemplify how protein modularity, evolvability, and robustness can create and preserve new functions. We find that tetherin genes in various organisms exhibit no sequence similarity and share only a common architecture and location in modern genomes. Moreover, tetherin is part of a cluster of three potential sister genes encoding proteins of similar architecture, some variants of which exhibit antiviral activity while others can be endowed with antiviral activity by a simple modification. Only in slowly evolving species (e.g., coelacanths) does tetherin exhibit sequence similarity to one potential sister gene. Neofunctionalization, drift, and genetic conflict appear to have driven a near complete loss of sequence similarity among modern tetherin genes and their sister genes. PMID:27427209

  12. Antiviral therapy for chronic hepatitis B in China.

    PubMed

    Zheng, Xin; Wang, Junzhong; Yang, Dongliang

    2015-02-01

    The vaccination program against hepatitis B virus (HBV) has greatly reduced the incidence of HBV infection. However, almost one-fourth of the HBV infected patients worldwide are still located in China. The healthcare burden from chronic HBV infection is a big challenge for the Chinese government and clinicians. Antiviral therapy plays a central role in controlling chronic HBV infection and preventing the disease progression. However, due to the specific economic and medical system issues, the first-line antiviral agents recommended by the AASLD and EASL have not been widely used for Chinese patients. In this review, we will discuss some key issues in the area of antiviral treatment for chronic hepatitis B in China. PMID:25540038

  13. An innate antiviral pathway acting before interferons at epithelial surfaces.

    PubMed

    Iversen, Marie B; Reinert, Line S; Thomsen, Martin K; Bagdonaite, Ieva; Nandakumar, Ramya; Cheshenko, Natalia; Prabakaran, Thaneas; Vakhrushev, Sergey Y; Krzyzowska, Malgosha; Kratholm, Sine K; Ruiz-Perez, Fernando; Petersen, Steen V; Goriely, Stanislas; Bibby, Bo Martin; Eriksson, Kristina; Ruland, Jürgen; Thomsen, Allan R; Herold, Betsy C; Wandall, Hans H; Frische, Sebastian; Holm, Christian K; Paludan, Søren R

    2016-02-01

    Mucosal surfaces are exposed to environmental substances and represent a major portal of entry for microorganisms. The innate immune system is responsible for early defense against infections and it is believed that the interferons (IFNs) constitute the first line of defense against viruses. Here we identify an innate antiviral pathway that works at epithelial surfaces before the IFNs. The pathway is activated independently of known innate sensors of viral infections through a mechanism dependent on viral O-linked glycans, which induce CXCR3 chemokines and stimulate antiviral activity in a manner dependent on neutrophils. This study therefore identifies a previously unknown layer of antiviral defense that exerts its action on epithelial surfaces before the classical IFN response is operative. PMID:26595890

  14. Antiviral selection in the management of acute retinal necrosis

    PubMed Central

    Tam, Patrick MK; Hooper, Claire Y; Lightman, Susan

    2010-01-01

    There is no consensus on the optimal antiviral regimen in the management of acute retinal necrosis, a disease caused by herpetic viruses with devastating consequences for the eye. The current gold standard is based on retrospective case series. Because the incidence of disease is low, few well-designed, randomized trials have evaluated treatment dosage and duration. Newer oral antiviral agents are emerging as alternatives to high-dose intravenous acyclovir, avoiding the need for inpatient intravenous treatment. Drug resistance is uncommon but may also be difficult to identify. Antiviral drugs have few side effects, but special attention needs to be paid to patients who have underlying renal disease, are pregnant or are immunocompromised. PMID:20169044

  15. Phytochemistry, cytotoxicity and antiviral activity of Eleusine indica (sambau)

    NASA Astrophysics Data System (ADS)

    Iberahim, Rashidah; Yaacob, Wan Ahmad; Ibrahim, Nazlina

    2015-09-01

    Goose grass also known as Eleusine indica (EI) is a local medicinal plant that displays antioxidant, antimicrobial and anticancer activities. The present study is to determine the phytochemical constituents, cytotoxicity and antiviral activities for both crude extract and fraction obtained from the plant. The crude extract contained more secondary metabolites compared to the hexane fraction as gauged using standard phytochemical tests. Cytotoxicity screening against Vero cells using MTT assay showed that the CC50 values for crude extract and hexane fraction were 2.07 and 5.62 mg/ml respectively. The antiviral activity towards Herpes Simplex Virus type 1 (HSV-1) was determined using plaque reduction assay. The selective indices (SI = CC50 / EC50) for both methanol extract and hexane fraction were 12.2 and 6.2 respectively. These results demonstrate that the extract prepared from E. indica possesses phytochemical compound that was non cytotoxic to the cell with potential antiviral activity.

  16. Antiviral properties from plants of the Mediterranean flora.

    PubMed

    Sanna, G; Farci, P; Busonera, B; Murgia, G; La Colla, P; Giliberti, G

    2015-01-01

    Natural products are a successful source in drug discovery, playing a significant role in maintaining human health. We investigated the in vitro cytotoxicity and antiviral activity of extracts from 18 traditionally used Mediterranean plants. Noteworthy antiviral activity was found in the extract obtained from the branches of Daphne gnidium L. against human immunodeficiency virus type-1 (EC50 = 0.08 μg/mL) and coxsackievirus B5 (EC50 = 0.10 μg/mL). Other relevant activities were found against BVDV, YFV, Sb-1, RSV and HSV-1. Interestingly, extracts from Artemisia arborescens L. and Rubus ulmifolius Schott, as well as those from D. gnidium L., showed activities against two different viruses. This extensive antiviral screening allowed us to identify attractive activities, offering opportunities to develop lead compounds with a great pharmaceutical potential. PMID:25613403

  17. The Antiviral Effect of Baicalin on Enterovirus 71 In Vitro

    PubMed Central

    Li, Xiang; Liu, Yuanyuan; Wu, Tingting; Jin, Yue; Cheng, Jianpin; Wan, Changbiao; Qian, Weihe; Xing, Fei; Shi, Weifeng

    2015-01-01

    Baicalin is a flavonoid compound extracted from Scutellaria roots that has been reported to possess antibacterial, anti-inflammatory, and antiviral activities. However, the antiviral effect of baicalin on enterovirus 71 (EV71) is still unknown. In this study, we found that baicalin showed inhibitory activity on EV71 infection and was independent of direct virucidal or prophylactic effect and inhibitory viral absorption. The expressions of EV71/3D mRNA and polymerase were significantly blocked by baicalin treatment at early stages of EV71 infection. In addition, baicalin could decrease the expressions of FasL and caspase-3, as well as inhibit the apoptosis of EV71-infected human embryonal rhabdomyosarcoma (RD) cells. Altogether, these results indicate that baicalin exhibits potent antiviral effect on EV71 infection, probably through inhibiting EV71/3D polymerase expression and Fas/FasL signaling pathways. PMID:26295407

  18. Ubiquitin in the activation and attenuation of innate antiviral immunity

    PubMed Central

    Heaton, Steven M.

    2016-01-01

    Viral infection activates danger signals that are transmitted via the retinoic acid–inducible gene 1–like receptor (RLR), nucleotide-binding oligomerization domain-like receptor (NLR), and Toll-like receptor (TLR) protein signaling cascades. This places host cells in an antiviral posture by up-regulating antiviral cytokines including type-I interferon (IFN-I). Ubiquitin modifications and cross-talk between proteins within these signaling cascades potentiate IFN-I expression, and inversely, a growing number of viruses are found to weaponize the ubiquitin modification system to suppress IFN-I. Here we review how host- and virus-directed ubiquitin modification of proteins in the RLR, NLR, and TLR antiviral signaling cascades modulate IFN-I expression. PMID:26712804

  19. Development of antiviral agents toward enterovirus 71 infection.

    PubMed

    Pourianfar, Hamid Reza; Grollo, Lara

    2015-02-01

    Enterovirus 71 (EV71) infection remains a public health problem at a global level, particularly in the Asia-Pacific region. The infection normally manifests as hand-foot-mouth disease; however, it is capable of developing into potentially fatal neurological complications. There is currently no approved vaccine or antiviral substance available for the prevention or treatment of EV71 infection. This paper, thus, reviews efforts to develop or discover synthetic as well as naturally occurring compounds directed against EV71 infection. The recent achievements in cellular receptors of EV71 are also highlighted, and their contribution to the development of antiviral drugs against EV71 is discussed in this article. PMID:24560700

  20. Is Minocycline an Antiviral Agent? A Review of Current Literature.

    PubMed

    Nagarakanti, Sandhya; Bishburg, Eliahu

    2016-01-01

    Minocycline is a second-generation semi-synthetic derivative of tetracycline and has well-known anti-bacterial effects. The drug possesses anti-inflammatory, anti-oxidant, anti-apoptotic and immunomodulatory effects. The drug is widely used in bacterial infections and non-infectious conditions such as acne, dermatitis, periodontitis and neurodegenerative conditions. Minocycline was shown to have antiviral activity in vitro and also against different viruses in some animal models. Some studies have been done on human patients infected with Human Immunodeficiency Virus. We have review the available data regarding minocycline activity as an antiviral agent. PMID:26177421

  1. New Study Shows Clinicians Under-Prescribing Flu Antiviral Drugs and Possibly Overprescribing Antibiotics

    MedlinePlus

    ... Should Know About Flu Antiviral Drugs Antiviral Drug Supply Mixing Tamiflu Capsules Drug Resistance Information for Health ... The Flu Season Seasonal Influenza, More Information Vaccine Supply for 2015-2016 Season Seasonal Influenza-Associated Hospitalizations ...

  2. Antibodies and Selection of Monoclonal Antibodies.

    PubMed

    Hanack, Katja; Messerschmidt, Katrin; Listek, Martin

    2016-01-01

    Monoclonal antibodies are universal binding molecules with a high specificity for their target and are indispensable tools in research, diagnostics and therapy. The biotechnological generation of monoclonal antibodies was enabled by the hybridoma technology published in 1975 by Köhler and Milstein. Today monoclonal antibodies are used in a variety of applications as flow cytometry, magnetic cell sorting, immunoassays or therapeutic approaches. First step of the generation process is the immunization of the organism with appropriate antigen. After a positive immune response the spleen cells are isolated and fused with myeloma cells in order to generate stable, long-living antibody-producing cell lines - hybridoma cells. In the subsequent identification step the culture supernatants of all hybridoma cells are screened weekly for the production of the antibody of interest. Hybridoma cells producing the antibody of interest are cloned by limited dilution till a monoclonal hybridoma is found. This is a very time-consuming and laborious process and therefore different selection strategies were developed since 1975 in order to facilitate the generation of monoclonal antibodies. Apart from common automation of pipetting processes and ELISA testing there are some promising approaches to select the right monoclonal antibody very early in the process to reduce time and effort of the generation. In this chapter different selection strategies for antibody-producing hybridoma cells are presented and analysed regarding to their benefits compared to conventional limited dilution technology. PMID:27236550

  3. Pharmacokinetics of antiviral polyoxometalates in rats.

    PubMed Central

    Ni, L; Boudinot, F D; Boudinot, S G; Henson, G W; Bossard, G E; Martellucci, S A; Ash, P W; Fricker, S P; Darkes, M C; Theobald, B R

    1994-01-01

    Polyoxometalates are soluble mineral compounds formed principally of oxide anions and early transition metal cations. The polyoxometalates K12H2[P2W12O48].24H2O (JM 1591), K10[P2W18Zn4(H2O)2O68].20H2O (JM 1596), and [(CH3)3NH]8[Si2W18Nb6O77] (JM 2820) demonstrate potent antiviral activity against human immunodeficiency virus types 1 and 2, herpes simplex virus, and cytomegalovirus in vitro. The preclinical pharmacokinetics of these three compounds were characterized after single-dose intravenous administration of 50 mg/kg to rats. Plasma, urine, and feces were collected for 168 h, and polyoxometalate concentrations were determined by atomic emission. Serum protein binding was measured by equilibrium dialysis. All three compounds were highly bound to serum proteins in a concentration-dependent manner. Total and unbound concentrations of the three compounds in plasma declined in a triexponential manner with terminal half-lives of 246.0 +/- 127.0, 438.4 +/- 129.4, and 32.2 +/- 5.37 h (mean +/- standard deviation) for JM 1591, JM 1596, and JM 2820, respectively. Systemic clearances based on total concentrations in plasma were low, averaging 0.016 +/- 0.002, 0.015 +/- 0.002, and 0.018 +/- 0.003 liter/h/kg for JM 1591, JM 1596, and JM 2820, respectively. The clearances of unbound compounds from plasma averaged 0.966 +/- 0.136, 0.050 +/- 0.005, and 0.901 +/- 0.165 liter/h/kg for JM 1591, JM 1596, and JM 2820, respectively. For JM 1596, the clearance of unbound compound from the kidneys was lower than the glomerular filtration rate (0.086 liter/h/kg), suggesting this polyoxometalate underwent renal tubular reabsorption. However, JM 1591 and JM 2820 appeared to undergo tubular secretion. The fraction of the dose recovered in urine was 11.5, 46.8, and 10.6% for JM 1591, JM 1596, and JM 2820, respectively. Approximately 5% of the dose of each polyoxometalate was recovered in feces. The steady-state volume of distribution based on total concentrations averaged 1.44 liters

  4. [Coincidence of a chronic Hepatitis C and an autoimmune Hepatitis Type 3 - successful therapy with the new direct-acting antiviral agents].

    PubMed

    Dikopoulos, N; Zizer, E

    2016-08-01

    Chronic hepatitis C infection may be associated with several features of autoimmunity (i. e., detection of different kinds of autoantibodies in the serum). Hepatitis C is also associated with different autoimmune diseases, such as autoimmune thyroiditis, lichen ruber planus, and membranous glomerulonephritis being the most relevant. There are very few cases of a coincidence of chronic hepatitis C with an autoimmune hepatitis, that is usually diagnosed by detection of specific autoantibodies and typical histological features. During the time of interferon-based antiviral therapies, we often faced a therapeutic dilemma as interferon could lead to an exacerbation of the coincident autoimmune disease. So, in these cases, a prophylactic immunosuppression had to be started before initiation of interferon therapy. Meanwhile, in the new era of direct antiviral agents against hepatitis C, highly specific and effective therapeutic options are available. The case report presented here describes the very rare coincidence of a chronic hepatitis C, genotype 1 with an autoimmune hepatitis type 3 diagnosed by the presence of anti-SLA-antibodies. In the past, the patient had several unsuccessful interferon-based therapies without achieving a sustained virological response in parallel with an immunosuppressive treatment with azathioprine. During the further course of the disease, the patient generated a liver cirrhosis CHILD A after only a few years. After the approval of the direct antiviral agents sofosbuvir and daclatasvir in 2014, we conducted an antiviral therapy, including ribavirin, for 24 weeks and fortunately achieved a sustained virological response. Due to the persistent disease activity caused by the autoimmune hepatitis after the end of antiviral therapy, we treated the patient with prednisolone and azathioprine and could induce a stable and persistent remission of the autoimmune disease. PMID:27529527

  5. Mitochondrial DNA Stress Primes the Antiviral Innate Immune Response

    PubMed Central

    West, A. Phillip; Khoury-Hanold, William; Staron, Matthew; Tal, Michal C.; Pineda, Cristiana M.; Lang, Sabine M.; Bestwick, Megan; Duguay, Brett A.; Raimundo, Nuno; MacDuff, Donna A.; Kaech, Susan M.; Smiley, James R.; Means, Robert E.; Iwasaki, Akiko; Shadel, Gerald S.

    2014-01-01

    Mitochondrial DNA (mtDNA) is normally present at thousands of copies per cell and is packaged into several hundred higher-order structures termed nucleoids1. The abundant mtDNA-binding protein, transcription factor A mitochondrial (TFAM), regulates nucleoid architecture, abundance, and segregation2. Complete mtDNA depletion profoundly impairs oxidative phosphorylation (OXPHOS), triggering calcium-dependent stress signaling and adaptive metabolic responses3. However, the cellular responses to mtDNA instability, a physiologically relevant stress observed in many human diseases and aging, remain ill-defined4. Here we show that moderate mtDNA stress elicited by TFAM deficiency engages cytosolic antiviral signaling to enhance the expression of a subset of interferon-stimulated genes (ISG). Mechanistically, we have found that aberrant mtDNA packaging promotes escape of mtDNA into the cytosol, where it engages the DNA sensor cGAS and promotes STING-IRF3-dependent signaling to elevate ISG expression, potentiate type I interferon responses, and confer broad viral resistance. Furthermore, we demonstrate that herpesviruses induce mtDNA stress, which potentiates antiviral signaling and type I interferon responses during infection. Our results further demonstrate that mitochondria are central participants in innate immunity, identify mtDNA stress as a cell-intrinsic trigger of antiviral signaling, and suggest that cellular monitoring of mtDNA homeostasis cooperates with canonical virus sensing mechanisms to fully license antiviral innate immunity. PMID:25642965

  6. Mitochondrial DNA stress primes the antiviral innate immune response.

    PubMed

    West, A Phillip; Khoury-Hanold, William; Staron, Matthew; Tal, Michal C; Pineda, Cristiana M; Lang, Sabine M; Bestwick, Megan; Duguay, Brett A; Raimundo, Nuno; MacDuff, Donna A; Kaech, Susan M; Smiley, James R; Means, Robert E; Iwasaki, Akiko; Shadel, Gerald S

    2015-04-23

    Mitochondrial DNA (mtDNA) is normally present at thousands of copies per cell and is packaged into several hundred higher-order structures termed nucleoids. The abundant mtDNA-binding protein TFAM (transcription factor A, mitochondrial) regulates nucleoid architecture, abundance and segregation. Complete mtDNA depletion profoundly impairs oxidative phosphorylation, triggering calcium-dependent stress signalling and adaptive metabolic responses. However, the cellular responses to mtDNA instability, a physiologically relevant stress observed in many human diseases and ageing, remain poorly defined. Here we show that moderate mtDNA stress elicited by TFAM deficiency engages cytosolic antiviral signalling to enhance the expression of a subset of interferon-stimulated genes. Mechanistically, we find that aberrant mtDNA packaging promotes escape of mtDNA into the cytosol, where it engages the DNA sensor cGAS (also known as MB21D1) and promotes STING (also known as TMEM173)-IRF3-dependent signalling to elevate interferon-stimulated gene expression, potentiate type I interferon responses and confer broad viral resistance. Furthermore, we demonstrate that herpesviruses induce mtDNA stress, which enhances antiviral signalling and type I interferon responses during infection. Our results further demonstrate that mitochondria are central participants in innate immunity, identify mtDNA stress as a cell-intrinsic trigger of antiviral signalling and suggest that cellular monitoring of mtDNA homeostasis cooperates with canonical virus sensing mechanisms to fully engage antiviral innate immunity. PMID:25642965

  7. Cytotoxicity and antiviral activity of methanol extract from Polygonum minus

    NASA Astrophysics Data System (ADS)

    Wahab, Noor Zarina Abd; Bunawan, Hamidun; Ibrahim, Nazlina

    2015-09-01

    A study was carried out to test the cytotoxicity and antiviral effects of methanolic extracts from the leaves and stem of Polygonum minus or kesum. Cytotoxicity tests were performed on Vero cells indicates the LC50 value for leaf extract towards the Vero cells was 875 mg/L and the LC50 value for stem extract was 95 mg/L. The LC50 values indidcate the non-cytotoxic effect of the extracts and worth for further testing. Antiviral test were carried out towards herpes simplex virus infected Vero cells using three concentration of extract which were equivalent to 1.0 LC50, 0.1 LC50 and 0.01 LC50. Three different treatments to detect antiviral activity were used. Mild antiviral activity of the stem extract was detected when cells were treated for 24 hours with plant extract before viral infection. This demonstrates the capability of the test compound to protect the cells from viral attachment and of the possible prophylactic effect of the P. minus stem methanol extract.

  8. Synergistic antiviral activity of gemcitabine and ribavirin against enteroviruses.

    PubMed

    Kang, Hyunju; Kim, Chonsaeng; Kim, Dong-eun; Song, Jae-Hyoung; Choi, Miri; Choi, Kwangman; Kang, Mingu; Lee, Kyungjin; Kim, Hae Soo; Shin, Jin Soo; Kim, Janghwan; Han, Sang-Bae; Lee, Mi-Young; Lee, Su Ui; Lee, Chong-Kyo; Kim, Meehyein; Ko, Hyun-Jeong; van Kuppeveld, Frank J M; Cho, Sungchan

    2015-12-01

    Enteroviruses are major causative agents of various human diseases, and some of them are currently considered to be an enormous threat to public health. However, no effective therapy is currently available for the treatment of these infections. We identified gemcitabine, a nucleoside-analog drug used for cancer treatment, from a screen of bioactive chemicals as a novel inhibitor of coxsackievirus B3 (CVB3) and enterovirus 71 (EV71). Gemcitabine potently inhibited the proliferation of CVB3 and EV71, as well as the replication of CVB3 and EV71 replicons, in cells with a low micromolar IC50 (1-5 μM). Its strong inhibitory effect was also observed in cells infected with human rhinoviruses, demonstrating broad-spectrum antiviral effects on enteroviruses. Mechanistically, an extensive analysis excluded the involvement of 2C, 3A, IRES-dependent translation, and also that of polyprotein processing in the antiviral effects of gemcitabine. Importantly, gemcitabine in combination with ribavirin, an antiviral drug currently being used against a few RNA viruses, exhibited a synergistic antiviral effect on the replication of CVB3 and EV71 replicons. Consequently, our results clearly demonstrate a new indication for gemcitabine as an effective broad-spectrum inhibitor of enteroviruses and strongly suggest a new therapeutic strategy using gemcitabine alone or in combination with ribavirin for the treatment of various diseases associated with enterovirus infection. PMID:26526589

  9. 75 FR 16151 - Antiviral Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... HUMAN SERVICES Food and Drug Administration Antiviral Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug Administration (FDA). The meeting will be open to...

  10. 76 FR 62418 - Antiviral Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... HUMAN SERVICES Food and Drug Administration Antiviral Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug Administration (FDA). The meeting will be open to...

  11. Novel antiviral activity of baicalein against dengue virus

    PubMed Central

    2012-01-01

    Background Dengue is a serious arboviral disease currently with no effective antiviral therapy or approved vaccine available. Therefore, finding the effective compound against dengue virus (DENV) replication is very important. Among the natural compounds, bioflavonoids derived mainly from plants are of interest because of their biological and medicinal benefits. Methods In the present study, antiviral activity of a bioflavonoid, baicalein, was evaluated against different stages of dengue virus type 2 (DENV-2) replication in Vero cells using focus forming unit reduction assay and quantitative RT-PCR. Results Baicalein inhibited DENV-2 replication in Vero cells with IC50= 6.46 μg/mL and SI= 17.8 when added after adsorption to the cells. The IC50 against DENV-2 was 5.39 μg/mL and SI= 21.3 when cells were treated 5 hours before virus infection and continuously up to 4 days post infection. Baicalein exhibited direct virucidal effect against DENV-2 with IC 50= 1.55 μg/mL and showed anti-adsorption effect with IC50 = 7.14 μg/mL. Conclusions Findings presented here suggest that baicalein exerts potent antiviral activity against DENV. Baicalein possesses direct virucidal activity against DENV besides its effects against dengue virus adsorption and intracellular replication of DENV-2. Baicalein, hence, should be considered for in vivo evaluation in the development of an effective antiviral compound against DENV. PMID:23140177

  12. Antiviral medication in sexually transmitted diseases. Part I: HSV, HPV.

    PubMed

    Mlynarczyk-Bonikowska, Beata; Majewska, Anna; Malejczyk, Magdalena; Mlynarczyk, Grazyna; Majewski, Slawomir

    2013-11-01

    Sexually transmitted diseases (STD) are one of the most prevalent infectious diseases in the world and important cause of morbidity and mortality. Especially STDs of viral etiology are difficult to cure. In many cases the antiviral therapy can relieve the symptoms but not eliminate the virus. During the past decades, considerable progress has been made in the development of antiviral drugs. One of the oldest antiviral medications is acyclovir (ACV). It is approved to treat initial and recurrent genital herpes and as a suppressive therapy in severe recurrent genital infections as well. Drug resistance to ACV and related drugs is seen among immunocompromised hosts, including human immunodeficiency virus HIV-infected patients. Resistant infections can be managed by second-line drugs - foscarnet or cidofovir- but they are more toxic than ACV. In case of HPV there is not known specific target for the medication and that is why the substances used in human papilloma virus HPV infection therapy are either antimitotics or immunomodulators. The Part I review focuses on mechanisms of actions and mechanisms of resistance to antiviral agents used in a treatment of the genital herpes and genital HPV infection. In Part II we will show the therapeutic options in other sexually transmitted infections: hepatitis B, C and HIV. PMID:24032509

  13. Gutsy Microbes Fly High in the Antiviral War.

    PubMed

    Robalino, Javier; Wu, Louisa

    2016-01-01

    The importance of microbiomes in health and disease is now well appreciated. New work from Sansone and colleagues adds to this understanding by showing that gut microbes are key for the local induction of an ERK-dependent antiviral response in flies. PMID:26690611

  14. 6-azacytidine--compound with wide spectrum of antiviral activity.

    PubMed

    Alexeeva, I; Dyachenko, N; Nosach, L; Zhovnovataya, V; Rybalko, S; Lozitskaya, R; Fedchuk, A; Lozitsky, V; Gridina, T; Shalamay, A; Palchikovskaja, L; Povnitsa, O

    2001-01-01

    6-azacytidine demonstrates activity against adenoviruses types 1, 2, 5. It inhibit synthesis of viral DNA and proteins. 6-AC shows antiherpetic and antiinfluenza action during experimental infection in mice. 6-AC is prospective for drug development as an antiviral substance with a wide spectrum of activity. PMID:11562975

  15. Small molecules with antiviral activity against the Ebola virus

    PubMed Central

    Litterman, Nadia; Lipinski, Christopher; Ekins, Sean

    2015-01-01

    The recent outbreak of the Ebola virus in West Africa has highlighted the clear shortage of broad-spectrum antiviral drugs for emerging viruses. There are numerous FDA approved drugs and other small molecules described in the literature that could be further evaluated for their potential as antiviral compounds. These molecules are in addition to the few new antivirals that have been tested in Ebola patients but were not originally developed against the Ebola virus, and may play an important role as we await an effective vaccine. The balance between using FDA approved drugs versus novel antivirals with minimal safety and no efficacy data in humans should be considered. We have evaluated 55 molecules from the perspective of an experienced medicinal chemist as well as using simple molecular properties and have highlighted 16 compounds that have desirable qualities as well as those that may be less desirable. In addition we propose that a collaborative database for sharing such published and novel information on small molecules is needed for the research community studying the Ebola virus. PMID:25713700

  16. Novel drug delivery approaches on antiviral and antiretroviral agents

    PubMed Central

    Sharma, Pooja; Chawla, Anuj; Arora, Sandeep; Pawar, Pravin

    2012-01-01

    Viruses have the property to replicate very fast in host cell. It can attack any part of host cell. Therefore, the clinical efficacy of antiviral drugs and its bioavailability is more important concern taken into account to treat viral infections. The oral and parenteral routes of drug administration have several shortcomings, however, which could lead to the search for formulating better delivery systems. Now, a day's novel drug delivery systems (NDDS) proved to be a better approach to enhance the effectiveness of the antivirals and improve the patient compliance and decrease the adverse effect. The NDDS have reduced the dosing frequency and shorten the duration of treatment, thus, which could lead the treatment more cost-effective. The development of NDDS for antiviral and antiretroviral therapy aims to deliver the drug devoid of toxicity, with high compatibility and biodegradability, targeting the drug to specific sites for viral infection and in some instances it also avoid the first pass metabolism effect. This article aims to discuss the usefulness of novel delivery approaches of antiviral agents such as niosomes, microspheres, microemulsions, nanoparticles that are used in the treatment of various Herpes viruses and in human immunodeficiency virus (HIV) infections. PMID:23057001

  17. Liposomal Systems as Nanocarriers for the Antiviral Agent Ivermectin.

    PubMed

    Croci, Romina; Bottaro, Elisabetta; Chan, Kitti Wing Ki; Watanabe, Satoru; Pezzullo, Margherita; Mastrangelo, Eloise; Nastruzzi, Claudio

    2016-01-01

    RNA virus infections can lead to the onset of severe diseases such as fever with haemorrhage, multiorgan failure, and mortality. The emergence and reemergence of RNA viruses continue to pose a significant public health threat worldwide with particular attention to the increasing incidence of flaviviruses, among others Dengue, West Nile Virus, and Yellow Fever viruses. Development of new and potent antivirals is thus urgently needed. Ivermectin, an already known antihelminthic drug, has shown potent effects in vitro on Flavivirus helicase, with EC50 values in the subnanomolar range for Yellow Fever and submicromolar EC50 for Dengue Fever, Japanese encephalitis, and tick-borne encephalitis viruses. However ivermectin is hampered in its application by pharmacokinetic problems (little solubility and high cytotoxicity). To overcome such problems we engineered different compositions of liposomes as ivermectin carriers characterizing and testing them on several cell lines for cytotoxicity. The engineered liposomes were less cytotoxic than ivermectin alone and they showed a significant increase of the antiviral activity in all the Dengue stains tested (1, 2, and S221). In the current study ivermectin is confirmed to be an effective potential antiviral and liposomes, as drug carriers, are shown to modulate the drug activity. All together the results represent a promising starting point for future improvement of ivermectin as antiviral and its delivery. PMID:27242902

  18. Liposomal Systems as Nanocarriers for the Antiviral Agent Ivermectin

    PubMed Central

    Croci, Romina; Bottaro, Elisabetta; Chan, Kitti Wing Ki; Watanabe, Satoru; Pezzullo, Margherita; Mastrangelo, Eloise; Nastruzzi, Claudio

    2016-01-01

    RNA virus infections can lead to the onset of severe diseases such as fever with haemorrhage, multiorgan failure, and mortality. The emergence and reemergence of RNA viruses continue to pose a significant public health threat worldwide with particular attention to the increasing incidence of flaviviruses, among others Dengue, West Nile Virus, and Yellow Fever viruses. Development of new and potent antivirals is thus urgently needed. Ivermectin, an already known antihelminthic drug, has shown potent effects in vitro on Flavivirus helicase, with EC50 values in the subnanomolar range for Yellow Fever and submicromolar EC50 for Dengue Fever, Japanese encephalitis, and tick-borne encephalitis viruses. However ivermectin is hampered in its application by pharmacokinetic problems (little solubility and high cytotoxicity). To overcome such problems we engineered different compositions of liposomes as ivermectin carriers characterizing and testing them on several cell lines for cytotoxicity. The engineered liposomes were less cytotoxic than ivermectin alone and they showed a significant increase of the antiviral activity in all the Dengue stains tested (1, 2, and S221). In the current study ivermectin is confirmed to be an effective potential antiviral and liposomes, as drug carriers, are shown to modulate the drug activity. All together the results represent a promising starting point for future improvement of ivermectin as antiviral and its delivery. PMID:27242902

  19. Small molecules with antiviral activity against the Ebola virus.

    PubMed

    Litterman, Nadia; Lipinski, Christopher; Ekins, Sean

    2015-01-01

    The recent outbreak of the Ebola virus in West Africa has highlighted the clear shortage of broad-spectrum antiviral drugs for emerging viruses. There are numerous FDA approved drugs and other small molecules described in the literature that could be further evaluated for their potential as antiviral compounds. These molecules are in addition to the few new antivirals that have been tested in Ebola patients but were not originally developed against the Ebola virus, and may play an important role as we await an effective vaccine. The balance between using FDA approved drugs versus novel antivirals with minimal safety and no efficacy data in humans should be considered. We have evaluated 55 molecules from the perspective of an experienced medicinal chemist as well as using simple molecular properties and have highlighted 16 compounds that have desirable qualities as well as those that may be less desirable. In addition we propose that a collaborative database for sharing such published and novel information on small molecules is needed for the research community studying the Ebola virus. PMID:25713700

  20. Unresponsiveness following immunization with the T-cell-independent antigen dextran B512. Can it be abrogated?

    PubMed Central

    Sverremark, E; Fernandez, C

    1998-01-01

    The bacterial carbohydrate dextran B512 is a thymus-independent (TI) antigen and a poor immunogen. Humoral responses consist primarily of IgM and no memory response is observed; rather, secondary responses to native dextran are similar to or suppressed compared with primary responses. However, immune responses to dextran can be enhanced. In this study we have used a protein-dextran conjugate that elicits a thymus-dependent (TD) immune response against dextran. Furthermore, we used the potent adjuvant cholera toxin (CT) for the dextran immunizations. This enables us to re-evaluate the phenomenon of poor secondary response to dextran and whether it can be abrogated. We show that native dextran-primed mice were not able to mount IgG anti-dextran antibody responses after repeated immunizations with the TD, protein-dextran conjugate. This was also apparent in the spleen, where almost no dextran-specific germinal centres were detected. However, the anti-protein antibody response was normal in these mice, demonstrating that it is only the anti-dextran-responding cells that are affected. The effect of CT adjuvant on these events was also evaluated. CT enhanced the humoral IgM anti-dextran responses as well as the splenic responses to dextran. But, the isotype profile was not altered, still no IgG was produced. In contrast, mice primed with the TD conjugate and repeatedly re-immunized with native, TI, dextran generated IgG anti-dextran responses. Our results indicate that it is probable that the lack of proper costimulation in the initiation of the response to dextran causes the suppressed secondary dextran responses. Furthermore, these results suggest that TI and TD forms of dextran activate the same type of B cells, since TI dextran-priming abrogated TD dextran IgG responses. The importance of the priming event for the induction of a classical memory response to carbohydrate antigens and the implications for vaccination strategies, are discussed. Images Figure 1 Figure 3

  1. Antibodies and antibody-derived analytical biosensors.

    PubMed

    Sharma, Shikha; Byrne, Hannah; O'Kennedy, Richard J

    2016-06-30

    The rapid diagnosis of many diseases and timely initiation of appropriate treatment are critical determinants that promote optimal clinical outcomes and general public health. Biosensors are now being applied for rapid diagnostics due to their capacity for point-of-care use with minimum need for operator input. Antibody-based biosensors or immunosensors have revolutionized diagnostics for the detection of a plethora of analytes such as disease markers, food and environmental contaminants, biological warfare agents and illicit drugs. Antibodies are ideal biorecognition elements that provide sensors with high specificity and sensitivity. This review describes monoclonal and recombinant antibodies and different immobilization approaches crucial for antibody utilization in biosensors. Examples of applications of a variety of antibody-based sensor formats are also described. PMID:27365031

  2. Antibodies and antibody-derived analytical biosensors

    PubMed Central

    Sharma, Shikha; Byrne, Hannah

    2016-01-01

    The rapid diagnosis of many diseases and timely initiation of appropriate treatment are critical determinants that promote optimal clinical outcomes and general public health. Biosensors are now being applied for rapid diagnostics due to their capacity for point-of-care use with minimum need for operator input. Antibody-based biosensors or immunosensors have revolutionized diagnostics for the detection of a plethora of analytes such as disease markers, food and environmental contaminants, biological warfare agents and illicit drugs. Antibodies are ideal biorecognition elements that provide sensors with high specificity and sensitivity. This review describes monoclonal and recombinant antibodies and different immobilization approaches crucial for antibody utilization in biosensors. Examples of applications of a variety of antibody-based sensor formats are also described. PMID:27365031

  3. Converting monoclonal antibody-based immunotherapies from passive to active: bringing immune complexes into play.

    PubMed

    Lambour, Jennifer; Naranjo-Gomez, Mar; Piechaczyk, Marc; Pelegrin, Mireia

    2016-01-01

    Monoclonal antibodies (mAbs), which currently constitute the main class of biotherapeutics, are now recognized as major medical tools that are increasingly being considered to fight severe viral infections. Indeed, the number of antiviral mAbs developed in recent years has grown exponentially. Although their direct effects on viral blunting have been studied in detail, their potential immunomodulatory actions have been overlooked until recently. The ability of antiviral mAbs to modulate antiviral immune responses in infected organisms has recently been revealed. More specifically, upon recognition of their cognate antigens, mAbs form immune complexes (ICs) that can be recognized by the Fc receptors expressed on different immune cells of infected individuals. This binding may be followed by the modulation of the host immune responses. Harnessing this immunomodulatory property may facilitate improvements in the therapeutic potential of antiviral mAbs. This review focuses on the role of ICs formed with different viral determinants and mAbs in the induction of antiviral immune responses in the context of both passive immunotherapies and vaccination strategies. Potential deleterious effects of ICs on the host immune response are also discussed. PMID:27530750

  4. Claudin-4 undergoes age-dependent change in cellular localization on pig jejunal villous epithelial cells, independent of bacterial colonization.

    PubMed

    Pasternak, J Alex; Kent-Dennis, Coral; Van Kessel, Andrew G; Wilson, Heather L

    2015-01-01

    Newborn piglets are immunologically naïve and must receive passive immunity via colostrum within 24 hours to survive. Mechanisms by which the newborn piglet gut facilitates uptake of colostral cells, antibodies, and proteins may include FcRn and pIgR receptor-mediated endocytosis and paracellular transport between tight junctions (TJs). In the present study, FcRn gene (FCGRT) was minimally expressed in 6-week-old gut and newborn jejunum but it was expressed at significantly higher levels in the ileum of newborn piglets. pIgR was highly expressed in the jejunum and ileum of 6-week-old animals but only minimally in neonatal gut. Immunohistochemical analysis showed that Claudin-5 localized to blood vessel endothelial cells. Claudin-4 was strongly localized to the apical aspect of jejunal epithelial cells for the first 2 days of life after which it was redistributed to the lateral surface between adjacent enterocytes. Claudin-4 was localized to ileal lateral surfaces within 24 hours after birth indicating regional and temporal differences. Tissue from gnotobiotic piglets showed that commensal microbiota did not influence Claudin-4 surface localization on jejunal or ileal enterocytes. Regulation of TJs by Claudin-4 surface localization requires further investigation. Understanding the factors that regulate gut barrier maturation may yield protective strategies against infectious diseases. PMID:25948883

  5. Claudin-4 Undergoes Age-Dependent Change in Cellular Localization on Pig Jejunal Villous Epithelial Cells, Independent of Bacterial Colonization

    PubMed Central

    Van Kessel, Andrew G.; Wilson, Heather L.

    2015-01-01

    Newborn piglets are immunologically naïve and must receive passive immunity via colostrum within 24 hours to survive. Mechanisms by which the newborn piglet gut facilitates uptake of colostral cells, antibodies, and proteins may include FcRn and pIgR receptor-mediated endocytosis and paracellular transport between tight junctions (TJs). In the present study, FcRn gene (FCGRT) was minimally expressed in 6-week-old gut and newborn jejunum but it was expressed at significantly higher levels in the ileum of newborn piglets. pIgR was highly expressed in the jejunum and ileum of 6-week-old animals but only minimally in neonatal gut. Immunohistochemical analysis showed that Claudin-5 localized to blood vessel endothelial cells. Claudin-4 was strongly localized to the apical aspect of jejunal epithelial cells for the first 2 days of life after which it was redistributed to the lateral surface between adjacent enterocytes. Claudin-4 was localized to ileal lateral surfaces within 24 hours after birth indicating regional and temporal differences. Tissue from gnotobiotic piglets showed that commensal microbiota did not influence Claudin-4 surface localization on jejunal or ileal enterocytes. Regulation of TJs by Claudin-4 surface localization requires further investigation. Understanding the factors that regulate gut barrier maturation may yield protective strategies against infectious diseases. PMID:25948883

  6. Monoclonal Antibody Shows Promise as Potential Therapeutic for MERS | Poster

    Cancer.gov

    A monoclonal antibody has proven effective in preventing Middle Eastern Respiratory Syndrome (MERS) in lab animals, suggesting further development as a potential intervention for the deadly disease in humans, according to new research. MERS is a newly emerged coronavirus first detected in humans in 2012. Most cases have occurred in the Middle East, but the disease has appeared elsewhere. In all, MERS has infected more than 1,700 individuals and killed more than 600, according to the World Health Organization. No vaccines or antiviral therapies currently exist. Several candidate vaccines are being developed, and some have been tested in animal models, a prerequisite to human clinical trials.

  7. Antiviral Effect of Methylated Flavonol Isorhamnetin against Influenza

    PubMed Central

    Dayem, Ahmed Abdal; Choi, Hye Yeon; Kim, Young Bong; Cho, Ssang-Goo

    2015-01-01

    Influenza is an infectious respiratory disease with frequent seasonal epidemics that causes a high rate of mortality and morbidity in humans, poultry, and animals. Influenza is a serious economic concern due to the costly countermeasures it necessitates. In this study, we compared the antiviral activities of several flavonols and other flavonoids with similar, but distinct, hydroxyl or methyl substitution patterns at the 3, 3′, and 4′ positions of the 15-carbon flavonoid skeleton, and found that the strongest antiviral effect was induced by isorhamnetin. Similar to quercetin and kaempferol, isorhamnetin possesses a hydroxyl group on the C ring, but it has a 3′-methyl group on the B ring that is absent in quercetin and kaempferol. Co-treatment and pre-treatment with isorhamnetin produced a strong antiviral effect against the influenza virus A/PR/08/34(H1N1). However, isorhamnetin showed the most potent antiviral potency when administered after viral exposure (post-treatment method) in vitro. Isorhamnetin treatment reduced virus-induced ROS generation and blocked cytoplasmic lysosome acidification and the lipidation of microtubule associated protein1 light chain 3-B (LC3B). Oral administration of isorhamnetin in mice infected with the influenza A virus significantly decreased lung virus titer by 2 folds, increased the survival rate which ranged from 70–80%, and decreased body weight loss by 25%. In addition, isorhamnetin decreased the virus titer in ovo using embryonated chicken eggs. The structure-activity relationship (SAR) of isorhamnetin could explain its strong anti-influenza virus potency; the methyl group located on the B ring of isorhamnetin may contribute to its strong antiviral potency against influenza virus in comparison with other flavonoids. PMID:25806943

  8. Discovery of Potent Broad Spectrum Antivirals Derived from Marine Actinobacteria

    PubMed Central

    Raveh, Avi; Delekta, Phillip C.; Dobry, Craig J.; Peng, Weiping; Schultz, Pamela J.; Blakely, Pennelope K.; Tai, Andrew W.; Matainaho, Teatulohi; Irani, David N.; Sherman, David H.; Miller, David J.

    2013-01-01

    Natural products provide a vast array of chemical structures to explore in the discovery of new medicines. Although secondary metabolites produced by microbes have been developed to treat a variety of diseases, including bacterial and fungal infections, to date there has been limited investigation of natural products with antiviral activity. In this report, we used a phenotypic cell-based replicon assay coupled with an iterative biochemical fractionation process to identify, purify, and characterize antiviral compounds produced by marine microbes. We isolated a compound from Streptomyces kaviengensis, a novel actinomycetes isolated from marine sediments obtained off the coast of New Ireland, Papua New Guinea, which we identified as antimycin A1a. This compound displays potent activity against western equine encephalitis virus in cultured cells with half-maximal inhibitory concentrations of less than 4 nM and a selectivity index of greater than 550. Our efforts also revealed that several antimycin A analogues display antiviral activity, and mechanism of action studies confirmed that these Streptomyces-derived secondary metabolites function by inhibiting the cellular mitochondrial electron transport chain, thereby suppressing de novo pyrimidine synthesis. Furthermore, we found that antimycin A functions as a broad spectrum agent with activity against a wide range of RNA viruses in cultured cells, including members of the Togaviridae, Flaviviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Finally, we demonstrate that antimycin A reduces central nervous system viral titers, improves clinical disease severity, and enhances survival in mice given a lethal challenge with western equine encephalitis virus. Our results provide conclusive validation for using natural product resources derived from marine microbes as source material for antiviral drug discovery, and they indicate that host mitochondrial electron transport is a viable target for the

  9. Antibody Blood Tests

    MedlinePlus

    ... discovered that people with celiac disease who eat gluten have higher than normal levels of certain antibodies ... rye and barley that are generically known as “gluten.” Antibody Testing: Only A First Step To help ...

  10. RBC Antibody Screen

    MedlinePlus

    ... be limited. Home Visit Global Sites Search Help? RBC Antibody Screen Share this page: Was this page ... Screen Related tests: Direct Antiglobulin Test ; Blood Typing ; RBC Antibody Identification ; Type and Screen; Crossmatch All content ...

  11. Antiparietal cell antibody test

    MedlinePlus

    ... Gastric ulcer - anti-gastric parietal cell antibody; Pernicious anemia - anti-gastric parietal cell antibody; Vitamin B12 - anti- ... may use this test to help diagnose pernicious anemia. Pernicious anemia is a decrease in red blood ...

  12. Lyme disease antibody

    MedlinePlus

    ... JavaScript. The Lyme disease blood test looks for antibodies in the blood to the bacteria that causes ... needed. A laboratory specialist looks for Lyme disease antibodies in the blood sample using the ELISA test . ...

  13. Epimedium koreanum Nakai displays broad spectrum of antiviral activity in vitro and in vivo by inducing cellular antiviral state.

    PubMed

    Cho, Won-Kyung; Weeratunga, Prasanna; Lee, Byeong-Hoon; Park, Jun-Seol; Kim, Chul-Joong; Ma, Jin Yeul; Lee, Jong-Soo

    2015-01-01

    Epimedium koreanum Nakai has been extensively used in traditional Korean and Chinese medicine to treat a variety of diseases. Despite the plant's known immune modulatory potential and chemical make-up, scientific information on its antiviral properties and mode of action have not been completely investigated. In this study, the broad antiviral spectrum and mode of action of an aqueous extract from Epimedium koreanum Nakai was evaluated in vitro, and moreover, the protective effect against divergent influenza A subtypes was determined in BALB/c mice. An effective dose of Epimedium koreanum Nakai markedly reduced the replication of Influenza A Virus (PR8), Vesicular Stomatitis Virus (VSV), Herpes Simplex Virus (HSV) and Newcastle Disease Virus (NDV) in RAW264.7 and HEK293T cells. Mechanically, we found that an aqueous extract from Epimedium koreanum Nakai induced the secretion of type I IFN and pro-inflammatory cytokines and the subsequent stimulation of the antiviral state in cells. Among various components present in the extract, quercetin was confirmed to have striking antiviral properties. The oral administration of Epimedium koreanum Nakai exhibited preventive effects on BALB/c mice against lethal doses of highly pathogenic influenza A subtypes (H1N1, H5N2, H7N3 and H9N2). Therefore, an extract of Epimedium koreanum Nakai and its components play roles as immunomodulators in the innate immune response, and may be potential candidates for prophylactic or therapeutic treatments against diverse viruses in animal and humans. PMID:25609307

  14. Epimedium koreanum Nakai Displays Broad Spectrum of Antiviral Activity in Vitro and in Vivo by Inducing Cellular Antiviral State

    PubMed Central

    Cho, Won-Kyung; Weeratunga, Prasanna; Lee, Byeong-Hoon; Park, Jun-Seol; Kim, Chul-Joong; Ma, Jin Yeul; Lee, Jong-Soo

    2015-01-01

    Epimedium koreanum Nakai has been extensively used in traditional Korean and Chinese medicine to treat a variety of diseases. Despite the plant’s known immune modulatory potential and chemical make-up, scientific information on its antiviral properties and mode of action have not been completely investigated. In this study, the broad antiviral spectrum and mode of action of an aqueous extract from Epimedium koreanum Nakai was evaluated in vitro, and moreover, the protective effect against divergent influenza A subtypes was determined in BALB/c mice. An effective dose of Epimedium koreanum Nakaimarkedly reduced the replication of Influenza A Virus (PR8), Vesicular Stomatitis Virus (VSV), Herpes Simplex Virus (HSV) and Newcastle Disease Virus (NDV) in RAW264.7 and HEK293T cells. Mechanically, we found that an aqueous extract from Epimedium koreanum Nakai induced the secretion of type I IFN and pro-inflammatory cytokines and the subsequent stimulation of the antiviral state in cells. Among various components present in the extract, quercetin was confirmed to have striking antiviral properties. The oral administration of Epimedium koreanum Nakai exhibited preventive effects on BALB/c mice against lethal doses of highly pathogenic influenza A subtypes (H1N1, H5N2, H7N3 and H9N2). Therefore, an extract of Epimedium koreanum Nakai and its components play roles as immunomodulators in the innate immune response, and may be potential candidates for prophylactic or therapeutic treatments against diverse viruses in animal and humans. PMID:25609307

  15. Modeling Antibody Diversity.

    ERIC Educational Resources Information Center

    Baker, William P.; Moore, Cathy Ronstadt

    1998-01-01

    Understanding antibody structure and function is difficult for many students. The rearrangement of constant and variable regions during antibody differentiation can be effectively simulated using a paper model. Describes a hands-on laboratory exercise which allows students to model antibody diversity using readily available resources. (PVD)

  16. HCV RNA Activates APCs via TLR7/TLR8 While Virus Selectively Stimulates Macrophages Without Inducing Antiviral Responses.

    PubMed

    Zhang, Yuwei; El-Far, Mohamed; Dupuy, Franck P; Abdel-Hakeem, Mohamed S; He, Zhong; Procopio, Francesco Andrea; Shi, Yu; Haddad, Elias K; Ancuta, Petronela; Sekaly, Rafick-Pierre; Said, Elias A

    2016-01-01

    The innate and adaptive immune systems fail to control HCV infection in the majority of infected individuals. HCV is an ssRNA virus, which suggests a role for Toll-like receptors (TLRs) 7 and 8 in initiating the anti-viral response. Here we demonstrate that HCV genomic RNA harbours specific sequences that initiate an anti-HCV immune response through TLR7 and TLR8 in various antigen presenting cells. Conversely, HCV particles are detected by macrophages, but not by monocytes and DCs, through a TLR7/8 dependent mechanism; this leads to chloroquine sensitive production of pro-inflammatory cytokines including IL-1β, while the antiviral type I Interferon response is not triggered in these cells. Antibodies to DC-SIGN, a c-type lectin selectively expressed by macrophages but not pDCs or mDCs, block the production of cytokines. Novel anti-HCV vaccination strategies should target the induction of TLR7/8 stimulation in APCs in order to establish potent immune responses against HCV. PMID:27385120

  17. HCV RNA Activates APCs via TLR7/TLR8 While Virus Selectively Stimulates Macrophages Without Inducing Antiviral Responses

    PubMed Central

    Zhang, Yuwei; El-Far, Mohamed; Dupuy, Franck P.; Abdel-Hakeem, Mohamed S.; He, Zhong; Procopio, Francesco Andrea; Shi, Yu; Haddad, Elias K.; Ancuta, Petronela; Sekaly, Rafick-Pierre; Said, Elias A.

    2016-01-01

    The innate and adaptive immune systems fail to control HCV infection in the majority of infected individuals. HCV is an ssRNA virus, which suggests a role for Toll-like receptors (TLRs) 7 and 8 in initiating the anti-viral response. Here we demonstrate that HCV genomic RNA harbours specific sequences that initiate an anti-HCV immune response through TLR7 and TLR8 in various antigen presenting cells. Conversely, HCV particles are detected by macrophages, but not by monocytes and DCs, through a TLR7/8 dependent mechanism; this leads to chloroquine sensitive production of pro-inflammatory cytokines including IL-1β, while the antiviral type I Interferon response is not triggered in these cells. Antibodies to DC-SIGN, a c-type lectin selectively expressed by macrophages but not pDCs or mDCs, block the production of cytokines. Novel anti-HCV vaccination strategies should target the induction of TLR7/8 stimulation in APCs in order to establish potent immune responses against HCV. PMID:27385120

  18. Toll-like receptors in antiviral innate immunity

    PubMed Central

    Lester, Sandra N.; Li, Kui

    2014-01-01

    Toll-like receptors (TLRs) are fundamental sensor molecules of the host innate immune system, which detect conserved molecular signatures of a wide range of microbial pathogens and initiate innate immune responses via distinct signaling pathways. Various TLRs are implicated in the early interplay of host cells with invading viruses, which regulates viral replication and/or host responses, ultimately impacting on viral pathogenesis. To survive the host innate defense mechanisms, many viruses have developed strategies to evade or counteract signaling through the TLR pathways, creating an advantageous environment for their propagation. Here we review the current knowledge of the roles TLRs play in antiviral innate immune responses, discuss examples of TLR-mediated viral recognition, and describe strategies used by viruses to antagonize the host antiviral innate immune responses. PMID:24316048

  19. Peptide-Induced Antiviral Protection by Cytotoxic T Cells

    NASA Astrophysics Data System (ADS)

    Schulz, Manfred; Zinkernagel, Rolf M.; Hengartner, Hans

    1991-02-01

    A specific antiviral cytotoxic immune response in vivo could be induced by the subcutaneous injection of the T-cell epitope of the lymphocytic choriomeningitis virus (LCMV) nucleoprotein as an unmodified free synthetic peptide (Arg-Pro-Gln-Ala-Ser-Gly-Val-Tyr-Met-Gly-Asn-Leu-Thr-Ala-Gln) emulsified in incomplete Freund's adjuvant. This immunization rendered mice into a LCMV-specific protective state as shown by the inhibition of LCMV replication in spleens of such mice. The protection level of these mice correlated with the ability to respond to the peptide challenge by CD8^+ virus-specific cytotoxic T cells. This is a direct demonstration that peptide vaccines can be antivirally protective in vivo, thus encouraging further search for appropriate mixtures of stable peptides that may be used as T-cell vaccines.

  20. An epimer of 5'-noraristeromycin and its antiviral properties.

    PubMed

    Siddiqi, S M; Chen, X; Schneller, S W; Ikeda, S; Snoeck, R; Andrei, G; Balzarini, J; De Clercq, E

    1994-04-29

    A derivative of 5'-noraristeromycin epimeric at the 5'-nor center ((-)-3) has been prepared enantiospecifically in three steps from (+)-((1R,4S)-4-hydroxy-2-cyclopenten- 1-yl acetate. Compound (-)-3 was evaluated for antiviral activity against a large number of viruses and found to display marked activity against varicella-zoster virus, vaccinia virus, vesicular stomatitis virus, parainfluenza virus, reovirus, and cytomegalovirus. A similar antiviral activity spectrum was shown by the S-adenosylhomocysteine hydrolase inhibitors neplanocin A and carbocyclic 3-deazaadenosine. While equally potent as neplanocin A against most of the viruses tested, compound (-)-3 was significantly less cytotoxic. The results of this study suggest that (-)-3 should be pursued for the treatment of those virus infections [that is, pox (VV), rhabdo (VSV), paramyxo (parainfluenza), and reo] that appear to be exquisitively sensitive to the compound. PMID:8176716

  1. TRIM family proteins: retroviral restriction and antiviral defence.

    PubMed

    Nisole, Sébastien; Stoye, Jonathan P; Saïb, Ali

    2005-10-01

    Members of the tripartite motif (TRIM) protein family are involved in various cellular processes, including cell proliferation, differentiation, development, oncogenesis and apoptosis. Some TRIM proteins display antiviral properties, targeting retroviruses in particular. The potential activity of TRIM19, better known as promyelocytic leukaemia protein, against several viruses has been well documented and, recently, TRIM5alpha has been identified as the factor responsible for the previously described Lv1 and Ref1 antiretroviral activities. There is also evidence indicating that other TRIM proteins can influence viral replication. These findings are reviewed here, and the possibility that TRIMs represent a new and widespread class of antiviral proteins involved in innate immunity is also considered. PMID:16175175

  2. The diversity of insect antiviral immunity: insights from viruses.

    PubMed

    Marques, João T; Imler, Jean-Luc

    2016-08-01

    Insects represent over 70% of all animal species. Recent virome analyses reveal unprecedented genetic diversity of insect viruses, which appears to match that of their hosts. Thus, insect-virus interactions may provide information on a vast repertoire of antiviral immune mechanisms. Tapping into this diversity is challenging because of several constraints imposed by the uniqueness of each insect model. Nevertheless, it is clear that many conserved and divergent pathways participate in the control of viral infection in insects. Co-evolution between hosts and viruses favors the development of immune evasion mechanisms by the pathogen. Viral suppressors can offer unique perspective on host pathways and emphasize the importance of RNA interference, apoptosis, but also NF-κB pathways and translation control in insect antiviral immunity. PMID:27232381

  3. Preventing and treating secondary bacterial infections with antiviral agents

    PubMed Central

    McCullers, Jonathan A.

    2016-01-01

    Summary Bacterial super-infections contribute to the significant morbidity and mortality associated with influenza and other respiratory virus infections. There are robust animal model data but only limited clinical information on the effectiveness of licensed antiviral agents for the treatment of bacterial complications of influenza. The association of secondary bacterial pathogens with fatal pneumonia during the recent H1N1 influenza pandemic highlights the need for new development in this area. Basic and clinical research into viral-bacterial interactions over the last decade has revealed several mechanisms that underlie this synergism. By applying these insights to antiviral drug development, the potential exists to improve outcomes by means other than direct inhibition of the virus. PMID:21447860

  4. Antiviral Activity of Resveratrol against Human and Animal Viruses.

    PubMed

    Abba, Yusuf; Hassim, Hasliza; Hamzah, Hazilawati; Noordin, Mohamed Mustapha

    2015-01-01

    Resveratrol is a potent polyphenolic compound that is being extensively studied in the amelioration of viral infections both in vitro and in vivo. Its antioxidant effect is mainly elicited through inhibition of important gene pathways like the NF-κβ pathway, while its antiviral effects are associated with inhibitions of viral replication, protein synthesis, gene expression, and nucleic acid synthesis. Although the beneficial roles of resveratrol in several viral diseases have been well documented, a few adverse effects have been reported as well. This review highlights the antiviral mechanisms of resveratrol in human and animal viral infections and how some of these effects are associated with the antioxidant properties of the compound. PMID:26693226

  5. Antiviral Treatment Guidelines for Middle East Respiratory Syndrome

    PubMed Central

    Chong, Yong Pil; Song, Joon Young; Seo, Yu Bin; Choi, Jae-Phil

    2015-01-01

    Middle East respiratory syndrome (MERS) is an acute infectious disease of the respiratory system caused by the new betacoronavirus (MERS coronavirus, MERS-CoV), which shows high mortality rates. The typical symptoms of MERS are fever, cough, and shortness of breath, and it is often accompanied by pneumonia. The MERS-CoV was introduced to Republic of Korea in May 2015 by a patient returning from Saudi Arabia. The disease spread mostly through hospital infections, and by the time the epidemic ended in August, the total number of confirmed diagnoses was 186, among which 36 patients died. Reflecting the latest evidence for antiviral drugs in the treatment of MERS-CoV infection and the experiences of treating MERS patients in Republic of Korea, these guidelines focus on antiviral drugs to achieve effective treatment of MERS-CoV infections. PMID:26483999

  6. Microbiota-Dependent Priming of Antiviral Intestinal Immunity in Drosophila.

    PubMed

    Sansone, Christine L; Cohen, Jonathan; Yasunaga, Ari; Xu, Jie; Osborn, Greg; Subramanian, Harry; Gold, Beth; Buchon, Nicolas; Cherry, Sara

    2015-11-11

    Enteric pathogens must overcome intestinal defenses to establish infection. In Drosophila, the ERK signaling pathway inhibits enteric virus infection. The intestinal microflora also impacts immunity but its role in enteric viral infection is unknown. Here we show that two signals are required to activate antiviral ERK signaling in the intestinal epithelium. One signal depends on recognition of peptidoglycan from the microbiota, particularly from the commensal Acetobacter pomorum, which primes the NF-kB-dependent induction of a secreted factor, Pvf2. However, the microbiota is not sufficient to induce this pathway; a second virus-initiated signaling event involving release of transcriptional paused genes mediated by the kinase Cdk9 is also required for Pvf2 production. Pvf2 stimulates antiviral immunity by binding to the receptor tyrosine kinase PVR, which is necessary and sufficient for intestinal ERK responses. These findings demonstrate that sensing of specific commensals primes inflammatory signaling required for epithelial responses that restrict enteric viral infections. PMID:26567510

  7. Antiviral Activity of Resveratrol against Human and Animal Viruses

    PubMed Central

    Abba, Yusuf; Hassim, Hasliza; Hamzah, Hazilawati; Noordin, Mohamed Mustapha

    2015-01-01

    Resveratrol is a potent polyphenolic compound that is being extensively studied in the amelioration of viral infections both in vitro and in vivo. Its antioxidant effect is mainly elicited through inhibition of important gene pathways like the NF-κβ pathway, while its antiviral effects are associated with inhibitions of viral replication, protein synthesis, gene expression, and nucleic acid synthesis. Although the beneficial roles of resveratrol in several viral diseases have been well documented, a few adverse effects have been reported as well. This review highlights the antiviral mechanisms of resveratrol in human and animal viral infections and how some of these effects are associated with the antioxidant properties of the compound. PMID:26693226

  8. Direct Acting Antivirals for the Treatment of Chronic Viral Hepatitis

    PubMed Central

    Karayiannis, Peter

    2012-01-01

    The development and evaluation of antiviral agents through carefully designed clinical trials over the last 25 years have heralded a new dawn in the treatment of patients chronically infected with the hepatitis B and C viruses, but not so for the D virus (HBV, HCV, and HDV). The introduction of direct acting antivirals (DDAs) for the treatment of HBV carriers has permitted the long-term use of these compounds for the continuous suppression of viral replication, whilst in the case of HCV in combination with the standard of care [SOC, pegylated interferon (PegIFN), and ribavirin] sustained virological responses (SVRs) have been achieved with increasing frequency. Progress in the case of HDV has been slow and lacking in significant breakthroughs.This paper aims to summarise the current state of play in treatment approaches for chonic viral hepatitis patients and future perspectives. PMID:24278700

  9. Antiviral Activity of Carbobenzoxy Di- and Tripeptides on Measles Virus

    PubMed Central

    Miller, F. A.; Dixon, G. J.; Arnett, G.; Dice, J. R.; Rightsel, W. A.; Schabel, F. M.; Mclean, I. W.

    1968-01-01

    A series of simple carbobenzoxy peptides showed high and consistent antiviral chemotherapeutic activity in cell culture. In general, greatest activity was found against the measles-distemper or herpesvirus groups, or both, but various representatives of the series had quantitatively and qualitatively different antiviral activities. Several of the compounds, showing the highest antimeasles activity, were investigated extensively. In human cell culture plaque assays, these compounds were active against measles virus at levels of from 15 to 500 μg/ml. At single doses of about 250 to 500 mg/kg, orally in three animal species, significant serum levels of drugs were detected in virus cell culture assays. The mode of action appeared to be therapeutic, as an effect was seen in cell systems infected for at least 24 hr before treatment. PMID:4971720

  10. Novel drugs targeting Toll-like receptors for antiviral therapy

    PubMed Central

    Patel, Mira C; Shirey, Kari Ann; Pletneva, Lioubov M; Boukhvalova, Marina S; Garzino-Demo, Alfredo; Vogel, Stefanie N; Blanco, Jorge CG

    2014-01-01

    Toll-like receptors (TLRs) are sentinel receptors of the host innate immune system that recognize conserved ‘pathogen-associated molecular patterns’ of invading microbes, including viruses. The activation of TLRs establishes antiviral innate immune responses and coordinates the development of long-lasting adaptive immunity in order to control viral pathogenesis. However, microbe-induced damage to host tissues may release ‘danger-associated molecular patterns’ that also activate TLRs, leading to an overexuberant inflammatory response and, ultimately, to tissue damage. Thus, TLRs have proven to be promising targets as therapeutics for the treatment of viral infections that result in inflammatory damage or as adjuvants in order to enhance the efficacy of vaccines. Here, we explore recent advances in TLR biology with a focus on novel drugs that target TLRs (agonists and antagonists) for antiviral therapy. PMID:25620999

  11. Evaluation of macrophage antiviral activity in patients affected by neoplasia.

    PubMed

    Merendino, R A; Iannello, D; Arena, A; Bonina, L; Greco, V; Mesiti, M; Chillemi, S; Mastroeni, P

    1988-01-01

    The intrinsic antiviral activity of macrophages has been studied in healthy donors and in patients affected by breast cancer and melanoma. In vitro differentiated macrophages from blood-derived monocytes were infected with measles virus, herpes simplex virus type 2 and adenovirus 17. The challenge was carried out with different multiplicities of infection and the synthesis of virus was tested by evaluating the single cycle growth curve in 24 h. The results obtained show that the restriction of virus infectivity by macrophages is strongly influenced by the multiplicity of infection. This was particularly evident with the adenovirus 17. Moreover, macrophages from patients with melanoma and breast cancer showed an impairment of the intrinsic antiviral activity in comparison with normal subjects. PMID:2842553

  12. Emerging antivirals for the treatment of hepatitis B.

    PubMed

    Wang, Xue-Yan; Chen, Hong-Song

    2014-06-28

    Chronic infection with hepatitis B virus (HBV) constitutes a major global public health threat, causing substantial disease burdens such as liver cirrhosis and hepatocellular carcinoma, thus representing high unmet medical needs. Currently available therapies are safe, well tolerated, and highly effective in decreasing viremia and improving measured clinical outcomes with low rates of antiviral resistance. However, long-term management remains a clinical challenge, mainly due to the slow kinetics of HBV surface antigen clearance. In this article, we review emerging antivirals directed at novel targets derived from mechanisms of viral cellular entry, viral replication, viral assembly, and the host immune response, leading to preclinical and clinical trials for possible future therapeutic intervention. The recent therapeutic advances in the development of all categories of HBV inhibitors may pave the way for regimens of finite duration that result in long-lasting control of chronic hepatitis B infection. PMID:24976708

  13. Functionalization, cyclization and antiviral activity of A-secotriterpenoids.

    PubMed

    Grishko, Victoria V; Galaiko, Natalia V; Tolmacheva, Irina A; Kucherov, Igor I; Eremin, Vladimir F; Boreko, Eugene I; Savinova, Olga V; Slepukhin, Pavel A

    2014-08-18

    Triterpene derivatives with an α,β-alkenenitrile moiety in the five-membered ring A have been synthesized by nitrile anion cyclizations of 1-cyano-2,3-secotriterpenoids. Oxime-containing precursors, 2,3-secointermediates and five-membered ring A products of cyclizations were screened for in vitro antiviral activity against enveloped viruses - influenza A virus and human immunodeficiency virus type I (HIV-1). Lupane ketoxime and the 2,3-secolupane C-3 aldoxime which possess antiviral activities against both influenza A virus (EC50 12.9-18.2 μM) and HIV-1 (EC50 0.06 μM) were the most promising compounds. PMID:24997292

  14. Genome editing and the next generation of antiviral therapy.

    PubMed

    Stone, Daniel; Niyonzima, Nixon; Jerome, Keith R

    2016-09-01

    Engineered endonucleases such as homing endonucleases (HEs), zinc finger nucleases (ZFNs), Tal-effector nucleases (TALENS) and the RNA-guided engineered nucleases (RGENs or CRISPR/Cas9) can target specific DNA sequences for cleavage, and are proving to be valuable tools for gene editing. Recently engineered endonucleases have shown great promise as therapeutics for the treatment of genetic disease and infectious pathogens. In this review, we discuss recent efforts to use the HE, ZFN, TALEN and CRISPR/Cas9 gene-editing platforms as antiviral therapeutics. We also discuss the obstacles facing gene-editing antiviral therapeutics as they are tested in animal models of disease and transition towards human application. PMID:27272125

  15. Antiviral activity of doxycycline against vesicular stomatitis virus in vitro.

    PubMed

    Wu, Zhuan-Chang; Wang, Xin; Wei, Jian-Chao; Li, Bei-Bei; Shao, Dong-Hua; Li, Yu-Ming; Liu, Ke; Shi, Yuan-Yuan; Zhou, Bin; Qiu, Ya-Feng; Ma, Zhi-Yong

    2015-11-01

    Doxycycline (Dox) is a tetracycline derivative with broad-spectrum antimicrobial activities that is used as an effector substance in inducible gene-expression systems. We investigated the antiviral activity of Dox against vesicular stomatitis virus (VSV) infection in cultured H1299 cells. Dox at concentrations of 1.0-2.0 μg ml(-1) significantly inhibited VSV replication and the VSV-induced cytopathic effect in dose-dependent manners, suggesting that Dox may have broader activity in inhibiting viral replication, in addition to its well-defined bacteriostatic activity. Dox exerted its antiviral effect at the early-mid stage of VSV infection, suggesting that it did not interfere with VSV infectivity, adsorption, or entry into target cells. These results indicate that Dox can inhibit VSV infection and may therefore have potential applications for the treatment of viral infections. PMID:26459887

  16. [Acyclic analogs of ribavirin. Synthesis and antiviral activity].

    PubMed

    Tsilevich, T L; Shchaveleva, I L; Nosach, L N; Zhovnovataia, V L; Smirnov, I P

    1988-05-01

    Activity of several ribavirin analogues, viz.1-(2-hydroxyethoxymethyl)-, 1-(3-hydroxypropoxymethyl)-, 1-(4-hydroxybutoxymethyl)- and 1-(2,3-dihydroxypropyl)-1,2,4-triazole 5- and 3-carboxamides, against human adenovirus type 2 in the Hep-2 cell culture has been studied. The ether oxygen atom imitating the ribose O4' was shown to be essential for the antiviral activity. 1-(2-Hydroxyethoxymethyl)-1,2,4-triazole 3-carboxamide, a structural analogue of ribavirin in which the hydroxyl group is apparently equivalent to the ribose 5'-OH, possesses the highest activity among the compounds studied. Lengthening of the alkyl side chain reduces essentially the antiviral activity. PMID:3422011

  17. Intestinal intraepithelial lymphocyte activation promotes innate antiviral resistance.

    PubMed

    Swamy, Mahima; Abeler-Dörner, Lucie; Chettle, James; Mahlakõiv, Tanel; Goubau, Delphine; Chakravarty, Probir; Ramsay, George; Reis e Sousa, Caetano; Staeheli, Peter; Blacklaws, Barbara A; Heeney, Jonathan L; Hayday, Adrian C

    2015-01-01

    Unrelenting environmental challenges to the gut epithelium place particular demands on the local immune system. In this context, intestinal intraepithelial lymphocytes (IEL) compose a large, highly conserved T cell compartment, hypothesized to provide a first line of defence via cytolysis of dysregulated intestinal epithelial cells (IEC) and cytokine-mediated re-growth of healthy IEC. Here we show that one of the most conspicuous impacts of activated IEL on IEC is the functional upregulation of antiviral interferon (IFN)-responsive genes, mediated by the collective actions of IFNs with other cytokines. Indeed, IEL activation in vivo rapidly provoked type I/III IFN receptor-dependent upregulation of IFN-responsive genes in the villus epithelium. Consistent with this, activated IEL mediators protected cells against virus infection in vitro, and pre-activation of IEL in vivo profoundly limited norovirus infection. Hence, intraepithelial T cell activation offers an overt means to promote the innate antiviral potential of the intestinal epithelium. PMID:25987506

  18. Comparative in vitro imunotoxicology of acyclovir and other antiviral agents.

    PubMed Central

    Steele, R W; Marmer, D J; Keeney, R E

    1980-01-01

    In vitro lymphocyte blastogenic responses to the commonly employed mitogens phytohemagglutinin, pokeweed, and concanavalin A were evaluated when acyclovir, adenine arabinoside, cytosine arabinoside, and idoxuridine were added to the culture materials. Similarly, specific antigen-induced blastogenic responses, including herpes group antigens, and cytotoxicity and leukocyte inhibitory factor assays with herpes group viruses were determined in the presence and absence of antiviral agents. No depression of these cellular immmune responses by acyclovir or adenine arabinoside ws demonstrated. This was in contrast to the effects of cytosine arabinoside and idoxuridine, which severely inhibited blastogenic and cytotoxic responses but not leukocyte inhibitory factor production. Even at concentrations up to 20 microgram/ml, the antiviral agent acyclovir did not depress selected cellular immune responses that are important for successful elimination of invading herpes group viruses. PMID:6249751

  19. Therapeutic Immunoglobulin Selected for High Antibody Titer to RSV also Contains High Antibody Titers to Other Respiratory Viruses

    PubMed Central

    Orange, Jordan S.; Du, Wei; Falsey, Ann R.

    2015-01-01

    Specific antibodies against infections most relevant to patients with primary immunodeficiency diseases are not routinely evaluated in commercial polyclonal immunoglobulin preparations. A polyclonal immunoglobulin prepared from plasma of donors having high neutralizing antibody titers to respiratory syncytial virus (RSV) was studied for the presence of antibody titers against seven additional respiratory viruses. While donors were not selected for antibody titers other than against RSV, the immunoglobulin preparation had significantly higher titers to 6 of 7 viruses compared to those present in 10 commercially available therapeutic immunoglobulin products (p ≤ 0.01 to p ≤ 0.001). To consider this as a donor-specific attribute, 20 random donor plasma samples were studied individually and identified a significant correlation between the RSV antibody titer and other respiratory virus titers: donors with high RSV titers were more likely to have higher titers to other respiratory viruses. These findings suggest either some humoral antiviral response bias or more frequent viral exposure of certain individuals. PMID:26379667

  20. Mechanisms of Antiviral Action of Plant Antimicrobials against Murine Norovirus

    PubMed Central

    Gilling, Damian H.; Kitajima, Masaaki; Torrey, Jason R.

    2014-01-01

    Numerous plant compounds have antibacterial or antiviral properties; however, limited research has been conducted with nonenveloped viruses. The efficacies of allspice oil, lemongrass oil, and citral were evaluated against the nonenveloped murine norovirus (MNV), a human norovirus surrogate. The antiviral mechanisms of action were also examined using an RNase I protection assay, a host cell binding assay, and transmission electron microscopy. All three antimicrobials produced significant reductions (P ≤ 0.05) in viral infectivity within 6 h of exposure (0.90 log10 to 1.88 log10). After 24 h, the reductions were 2.74, 3.00, and 3.41 log10 for lemongrass oil, citral, and allspice oil, respectively. The antiviral effect of allspice oil was both time and concentration dependent; the effects of lemongrass oil and citral were time dependent. Based on the RNase I assay, allspice oil appeared to act directly upon the viral capsid and RNA. The capsids enlarged from ≤35 nm to up to 75 nm following treatment. MNV adsorption to host cells was not significantly affected. Alternatively, the capsid remained intact following exposure to lemongrass oil and citral, which appeared to coat the capsid, causing nonspecific and nonproductive binding to host cells that did not lead to successful infection. Such contrasting effects between allspice oil and both lemongrass oil and citral suggest that though different plant compounds may yield similar reductions in virus infectivity, the mechanisms of inactivation may be highly varied and specific to the antimicrobial. This study demonstrates the antiviral properties of allspice oil, lemongrass oil, and citral against MNV and thus indicates their potential as natural food and surface sanitizers to control noroviruses. PMID:24907316

  1. Targeting human papillomavirus genome replication for antiviral drug discovery

    PubMed Central

    Archambault, Jacques; Melendy, Thomas

    2015-01-01

    Human papillomavirus (HPV) infections are a major human health problem; they are the cause of recurrent benign warts and of several cancers of the anogenital tract and head and neck region. Although there are two prophylactic HPV vaccines that could, if used universally, prevent as many as two-thirds of HPV-induced cancers, as well as several cytotoxic and immunomodulatory agents for localized treatment of infections, there are currently no HPV antiviral drugs in our arsenal of therapeutic agents. This review examines the status of past and ongoing research into the development of HPV antivirals, focused primarily upon approaches targeting the replication of the viral genome. The only HPV enzyme, E1, is a DNA helicase that interfaces with the cellular DNA replication machinery to replicate the HPV genome. To date, searches for small molecule inhibitors of E1 for use as antivirals have met with limited success. The lack of other viral enzymes has meant that the search for antivirals has shifted to a large degree to the modulation of protein–protein interactions. There has been some success in identifying small molecule inhibitors targeting interactions between HPV proteins but with activity against a small subset of viral types only. As noted in this review, it is thought that targeting E1 interactions with cellular replication proteins may provide inhibitors with broader activity against multiple HPV types. Herein, we outline the steps in HPV DNA replication and discuss those that appear to provide the most advantageous targets for the development of anti-HPV therapeutics. PMID:23615820

  2. Antibody Therapeutics in Oncology

    PubMed Central

    Wold, Erik D; Smider, Vaughn V; Felding, Brunhilde H

    2016-01-01

    One of the newer classes of targeted cancer therapeutics is monoclonal antibodies. Monoclonal antibody therapeutics are a successful and rapidly expanding drug class due to their high specificity, activity, favourable pharmacokinetics, and standardized manufacturing processes. Antibodies are capable of recruiting the immune system to attack cancer cells through complement-dependent cytotoxicity or antibody dependent cellular cytotoxicity. In an ideal scenario the initial tumor cell destruction induced by administration of a therapeutic antibody can result in uptake of tumor associated antigens by antigen-presenting cells, establishing a prolonged memory effect. Mechanisms of direct tumor cell killing by antibodies include antibody recognition of cell surface bound enzymes to neutralize enzyme activity and signaling, or induction of receptor agonist or antagonist activity. Both approaches result in cellular apoptosis. In another and very direct approach, antibodies are used to deliver drugs to target cells and cause cell death. Such antibody drug conjugates (ADCs) direct cytotoxic compounds to tumor cells, after selective binding to cell surface antigens, internalization, and intracellular drug release. Efficacy and safety of ADCs for cancer therapy has recently been greatly advanced based on innovative approaches for site-specific drug conjugation to the antibody structure. This technology enabled rational optimization of function and pharmacokinetics of the resulting conjugates, and is now beginning to yield therapeutics with defined, uniform molecular characteristics, and unprecedented promise to advance cancer treatment. PMID:27081677

  3. Discovery of a Broad-Spectrum Antiviral Compound That Inhibits Pyrimidine Biosynthesis and Establishes a Type 1 Interferon-Independent Antiviral State.

    PubMed

    Chung, Dong-Hoon; Golden, Jennifer E; Adcock, Robert S; Schroeder, Chad E; Chu, Yong-Kyu; Sotsky, Julie B; Cramer, Daniel E; Chilton, Paula M; Song, Chisu; Anantpadma, Manu; Davey, Robert A; Prodhan, Aminul I; Yin, Xinmin; Zhang, Xiang

    2016-08-01

    Viral emergence and reemergence underscore the importance of developing efficacious, broad-spectrum antivirals. Here, we report the discovery of tetrahydrobenzothiazole-based compound 1, a novel, broad-spectrum antiviral lead that was optimized from a hit compound derived from a cytopathic effect (CPE)-based antiviral screen using Venezuelan equine encephalitis virus. Compound 1 showed antiviral activity against a broad range of RNA viruses, including alphaviruses, flaviviruses, influenza virus, and ebolavirus. Mechanism-of-action studies with metabolomics and molecular approaches revealed that the compound inhibits host pyrimidine synthesis and establishes an antiviral state by inducing a variety of interferon-stimulated genes (ISGs). Notably, the induction of the ISGs by compound 1 was independent of the production of type 1 interferons. The antiviral activity of compound 1 was cell type dependent with a robust effect observed in human cell lines and no observed antiviral effect in mouse cell lines. Herein, we disclose tetrahydrobenzothiazole compound 1 as a novel lead for the development of a broad-spectrum, antiviral therapeutic and as a molecular probe to study the mechanism of the induction of ISGs that are independent of type 1 interferons. PMID:27185801

  4. Antiviral response dictated by choreographed cascade of transcription factors

    PubMed Central

    Zaslavsky, Elena; Hershberg, Uri; Seto, Jeremy; Pham, Alissa M.; Marquez, Susanna; Duke, Jamie L.; Wetmur, James G.; tenOever, Benjamin R.; Sealfon, Stuart C.; Kleinstein, Steven H.

    2010-01-01

    The dendritic cell (DC) is a master regulator of immune responses. Pathogenic viruses subvert normal immune function in DCs through the expression of immune antagonists. Understanding how these antagonists interact with the host immune system requires knowledge of the underlying genetic regulatory network that operates during an uninhibited antiviral response. In order to isolate and identify this network, we studied DCs infected with Newcastle Disease Virus (NDV), which is able to stimulate innate immunity and DC maturation through activation of RIG-I signaling, but lacks the ability to evade the human interferon response. To analyze this experimental model, we developed a new approach integrating genome-wide expression kinetics and time-dependent promoter analysis. We found that the genetic program underlying the antiviral cell-state transition during the first 18-hours post-infection could be explained by a single convergent regulatory network. Gene expression changes were driven by a step-wise multi-factor cascading control mechanism, where the specific transcription factors controlling expression changed over time. Within this network, most individual genes are regulated by multiple factors, indicating robustness against virus-encoded immune evasion genes. In addition to effectively recapitulating current biological knowledge, we predicted, and validated experimentally, antiviral roles for several novel transcription factors. More generally, our results show how a genetic program can be temporally controlled through a single regulatory network to achieve the large-scale genetic reprogramming characteristic of cell state transitions. PMID:20164420

  5. Antiviral agents and HIV prevention: controversies, conflicts, and consensus

    PubMed Central

    Cohen, Myron S.; Muessig, Kathryn E.; Smith, M. Kumi; Powers, Kimberly A.; Kashuba, Angela D.M.

    2013-01-01

    Antiviral agents can be used to prevent HIV transmission before exposure as preexpo-sure prophylaxis (PrEP), after exposure as postexposure prophylaxis, and as treatment of infected people for secondary prevention. Considerable research has shed new light on antiviral agents for PrEP and for prevention of secondary HIV transmission. While promising results have emerged from several PrEP trials, the challenges of poor adherence among HIV-negative clients and possible increase in sexual risk behaviors remain a concern. In addition, a broader pipeline of antiviral agents for PrEP that focuses on genital tract pharmacology and safety and resistance issues must be developed. Antiretroviral drugs have also been used to prevent HIV transmission from HIV-infected patients to their HIV-discordant sexual partners. The HIV Prevention Trials Network 052 trial demonstrated nearly complete prevention of HIV transmission by early treatment of infection, but the generalizability of the results to other risk groups – including intravenous drug users and MSM – has not been determined. Most importantly, the best strategy for use of antiretroviral agents to reduce the spread of HIV at either the individual level or the population level has not been developed, and remains the ultimate goal of this area of investigation. PMID:22507927

  6. Design, synthesis and antiviral activity of novel quinazolinones.

    PubMed

    Wang, Ziwen; Wang, Mingxiao; Yao, Xue; Li, Yue; Tan, Juan; Wang, Lizhong; Qiao, Wentao; Geng, Yunqi; Liu, Yuxiu; Wang, Qingmin

    2012-07-01

    HIV-1 integrase (IN) is a validated therapeutic target for antiviral drug design. However, the emergence of viral strains resistant to clinically studied IN inhibitors demands the discovery of novel inhibitors that are structurally as well as mechanistically different. Herein, a series of quinazolinones were designed and synthesized as novel HIV-1 inhibitors. The new synthetic route provides a practical method for the preparation of 5-hydroxy quinazolinones. Primary bioassay results indicated that most of the quinazolinones possess anti-HIV activity, especially for compound 11b with 77.5% inhibition rate at 10 μM emerged as a new active lead. Most of the synthesized compounds were also found to exhibit good anti-TMV activity, of which compo und 9a showed similar in vivo anti-TMV activity to commercial plant virucide Ribavirin. This work provides a new and efficient approach to evolve novel multi-functional antiviral agents by rational integration and optimization of previously reported antiviral agents. PMID:22546200

  7. Mx proteins: antiviral gatekeepers that restrain the uninvited.

    PubMed

    Verhelst, Judith; Hulpiau, Paco; Saelens, Xavier

    2013-12-01

    Fifty years after the discovery of the mouse Mx1 gene, researchers are still trying to understand the molecular details of the antiviral mechanisms mediated by Mx proteins. Mx proteins are evolutionarily conserved dynamin-like large GTPases, and GTPase activity is required for their antiviral activity. The expression of Mx genes is controlled by type I and type III interferons. A phylogenetic analysis revealed that Mx genes are present in almost all vertebrates, usually in one to three copies. Mx proteins are best known for inhibiting negative-stranded RNA viruses, but they also inhibit other virus families. Recent structural analyses provide hints about the antiviral mechanisms of Mx proteins, but it is not known how they can suppress such a wide variety of viruses lacking an obvious common molecular pattern. Perhaps they interact with a (partially) symmetrical invading oligomeric structure, such as a viral ribonucleoprotein complex. Such an interaction may be of a fairly low affinity, in line with the broad target specificity of Mx proteins, yet it would be strong enough to instigate Mx oligomerization and ring assembly. Such a model is compatible with the broad "substrate" specificity of Mx proteins: depending on the size of the invading viral ribonucleoprotein complexes that need to be wrapped, the assembly process would consume the necessary amount of Mx precursor molecules. These Mx ring structures might then act as energy-consuming wrenches to disassemble the viral target structure. PMID:24296571

  8. Antioxidants: potential antiviral agents for Japanese encephalitis virus infection.

    PubMed

    Zhang, Yu; Wang, Zehua; Chen, Huan; Chen, Zongtao; Tian, Yanping

    2014-07-01

    Japanese encephalitis (JE) is prevalent throughout eastern and southern Asia and the Pacific Rim. It is caused by the JE virus (JEV), which belongs to the family Flaviviridae. Despite the importance of JE, little is known about its pathogenesis. The role of oxidative stress in the pathogenesis of viral infections has led to increased interest in its role in JEV infections. This review focuses mainly on the role of oxidative stress in the pathogenesis of JEV infection and the antiviral effect of antioxidant agents in inhibiting JEV production. First, this review summarizes the pathogenesis of JE. The pathological changes include neuronal death, astrocyte activation, and microglial proliferation. Second, the relationship between oxidative stress and JEV infection is explored. JEV infection induces the generation of oxidants and exhausts the supply of antioxidants, which activates specific signaling pathways. Finally, the therapeutic efficacy of a variety of antioxidants as antiviral agents, including minocycline, arctigenin, fenofibrate, and curcumin, was studied. In conclusion, antioxidants are likely to be developed into antiviral agents for the treatment of JE. PMID:24780919

  9. Immunoenhancing properties and antiviral activity of 7-deazaguanosine in mice.

    PubMed Central

    Smee, D F; Alaghamandan, H A; Gilbert, J; Burger, R A; Jin, A; Sharma, B S; Ramasamy, K; Revankar, G R; Cottam, H B; Jolley, W B

    1991-01-01

    The nucleotide analog 7-deazaguanosine has not previously been reported to possess biological (antiviral or antitumor) properties in cell culture or in vivo. Up to 10(5) U of interferon per ml was detected in mouse sera 1 to 4 h following oral (200-mg/kg of body weight) and intraperitoneal (50-mg/kg) doses of the compound. 7-Deazaguanosine also caused significant activation of natural killer and phagocytic cells but did not augment T- and B-cell blastogenesis. Intraperitoneal treatments of 50, 100, and 200 mg/kg/day administered 24 and 18 h before virus inoculation were highly protective in mice inoculated with lethal doses of Semliki Forest or San Angelo viruses. Less but still significant survivor increases were evident in treated mice infected with banzi or encephalomyocarditis viruses. In most cases, the degree of antiviral activity was similar to that exhibited by the biological response modifier 7-thia-8-oxoguanosine. 7-Thia-8-oxoguanosine was more potent than 7-deazaguanosine against encephalomyocarditis virus in mice, however. Oral efficacy was achieved with 7-deazaguanosine treatments of greater than or equal to 100 mg/kg against all virus infections, whereas 7-thia-8-oxoguanosine is reported to be devoid of oral activity in rodents. Thus, 7-deazaguanosine represents the first reported orally active nucleoside biological response modifier exhibiting broad-spectrum antiviral activity against particular types of RNA viruses. PMID:1707603

  10. Antiviral activity of some South American medicinal plants.

    PubMed

    Abad, M J; Bermejo, P; Sanchez Palomino, S; Chiriboga, X; Carrasco, L

    1999-03-01

    Folk medicinal plants are potential sources of useful therapeutic compounds including some with antiviral activities. Extracts prepared from 10 South American medicinal plants (Baccharis trinervis, Baccharis teindalensis, Eupatorium articulatum, Eupatorium glutinosum, Tagetes pusilla, Neurolaena lobata, Conyza floribunda, Phytolacca bogotensis, Phytolacca rivinoides and Heisteria acuminata) were screened for in vitro antiviral activity against herpes simplex type I (HSV-1), vesicular stomatitis virus (VSV) and poliovirus type 1. The most potent inhibition was observed with an aqueous extract of B. trinervis, which inhibited HSV-1 replication by 100% at 50-200 micrograms/mL, without showing cytotoxic effects. Good activities were also found with the ethanol extract of H. acuminata and the aqueous extract of E. articulatum, which exhibited antiviral effects against both DNA and RNA viruses (HSV-1 and VSV, respectively) at 125-250 micrograms/mL. The aqueous extracts of T. pusilla (100-250 micrograms/mL), B. teindalensis (50-125 micrograms/mL) and E. glutinosum (50-125 micrograms/mL) also inhibited the replication of VSV, but none of the extracts tested had any effect on poliovirus replication. PMID:10190189

  11. Hepatitis C Virus and Natural Compounds: a New Antiviral Approach?

    PubMed Central

    Calland, Noémie; Dubuisson, Jean; Rouillé, Yves; Séron, Karin

    2012-01-01

    Hepatitis C is a major global health burden with an estimated 160 million infected individuals worldwide. This long-term disease evolves slowly, often leading to chronicity and potentially to liver failure. There is no anti-HCV vaccine, and, until recently, the only treatment available, based on pegylated interferon and ribavirin, was partially effective, and had considerable side effects. With recent advances in the understanding of the HCV life cycle, the development of promising direct acting antivirals (DAAs) has been achieved. Their use in combination with the current treatment has led to encouraging results for HCV genotype 1 patients. However, this therapy is quite expensive and will probably not be accessible for all patients worldwide. For this reason, constant efforts are being made to identify new antiviral molecules. Recent reports about natural compounds highlight their antiviral activity against HCV. Here, we aim to review the natural molecules that interfere with the HCV life cycle and discuss their potential use in HCV therapy. PMID:23202460

  12. Favipiravir elicits antiviral mutagenesis during virus replication in vivo

    PubMed Central

    Arias, Armando; Thorne, Lucy; Goodfellow, Ian

    2014-01-01

    Lethal mutagenesis has emerged as a novel potential therapeutic approach to treat viral infections. Several studies have demonstrated that increases in the high mutation rates inherent to RNA viruses lead to viral extinction in cell culture, but evidence during infections in vivo is limited. In this study, we show that the broad-range antiviral nucleoside favipiravir reduces viral load in vivo by exerting antiviral mutagenesis in a mouse model for norovirus infection. Increased mutation frequencies were observed in samples from treated mice and were accompanied with lower or in some cases undetectable levels of infectious virus in faeces and tissues. Viral RNA isolated from treated animals showed reduced infectivity, a feature of populations approaching extinction during antiviral mutagenesis. These results suggest that favipiravir can induce norovirus mutagenesis in vivo, which in some cases leads to virus extinction, providing a proof-of-principle for the use of favipiravir derivatives or mutagenic nucleosides in the clinical treatment of noroviruses. DOI: http://dx.doi.org/10.7554/eLife.03679.001 PMID:25333492

  13. In vitro antiviral effect of germacrone on feline calicivirus.

    PubMed

    Wu, Hongxia; Liu, Yongxiang; Zu, Shaopo; Sun, Xue; Liu, Chunguo; Liu, Dafei; Zhang, Xiaozhan; Tian, Jin; Qu, Liandong

    2016-06-01

    Feline calicivirus (FCV) often causes respiratory tract and oral disease in cats and is a highly contagious virus. Widespread vaccination does not prevent the spread of FCV. Furthermore, the low fidelity of the RNA-dependent RNA polymerase of FCV leads to the emergence of new variants, some of which show increased virulence. Currently, few effective anti-FCV drugs are available. Here, we found that germacrone, one of the main constituents of volatile oil from rhizoma curcuma, was able to effectively reduce the growth of FCV strain F9 in vitro. This compound exhibited a strong anti-FCV effect mainly in the early phase of the viral life cycle. The antiviral effect depended on the concentration of the drug. In addition, germacrone treatment had a significant inhibitory effect against two other reference strains, 2280 and Bolin, and resulted in a significant reduction in the replication of strains WZ-1 and HRB-SS, which were recently isolated in China. This is the first report of antiviral effects of germacrone against a calicivirus, and extensive in vivo research is needed to evaluate this drug as an antiviral therapeutic agent for FCV. PMID:26997613

  14. Insect antiviral innate immunity: pathways, effectors, and connections.

    PubMed

    Kingsolver, Megan B; Huang, Zhijing; Hardy, Richard W

    2013-12-13

    Insects are infected by a wide array of viruses some of which are insect restricted and pathogenic, and some of which are transmitted by biting insects to vertebrates. The medical and economic importance of these viruses heightens the need to understand the interaction between the infecting pathogen and the insect immune system in order to develop transmission interventions. The interaction of the virus with the insect host innate immune system plays a critical role in the outcome of infection. The major mechanism of antiviral defense is the small, interfering RNA pathway that responds through the detection of virus-derived double-stranded RNA to suppress virus replication. However, other innate antimicrobial pathways such as Imd, Toll, and Jak-STAT and the autophagy pathway have also been shown to play important roles in antiviral immunity. In this review, we provide an overview of the current understanding of the main insect antiviral pathways and examine recent findings that further our understanding of the roles of these pathways in facilitating a systemic and specific response to infecting viruses. PMID:24120681

  15. Inhibition of endoplasmic reticulum glucosidases is required for in vitro and in vivo dengue antiviral activity by the iminosugar UV-4.

    PubMed

    Warfield, Kelly L; Plummer, Emily M; Sayce, Andrew C; Alonzi, Dominic S; Tang, William; Tyrrell, Beatrice E; Hill, Michelle L; Caputo, Alessandro T; Killingbeck, Sarah S; Beatty, P Robert; Harris, Eva; Iwaki, Ren; Kinami, Kyoko; Ide, Daisuke; Kiappes, J L; Kato, Atsushi; Buck, Michael D; King, Kevin; Eddy, William; Khaliq, Mansoora; Sampath, Aruna; Treston, Anthony M; Dwek, Raymond A; Enterlein, Sven G; Miller, Joanna L; Zitzmann, Nicole; Ramstedt, Urban; Shresta, Sujan

    2016-05-01

    The antiviral activity of UV-4 was previously demonstrated against dengue virus serotype 2 (DENV2) in multiple mouse models. Herein, step-wise minimal effective dose and therapeutic window of efficacy studies of UV-4B (UV-4 hydrochloride salt) were conducted in an antibody-dependent enhancement (ADE) mouse model of severe DENV2 infection in AG129 mice lacking types I and II interferon receptors. Significant survival benefit was demonstrated with 10-20 mg/kg of UV-4B administered thrice daily (TID) for seven days with initiation of treatment up to 48 h after infection. UV-4B also reduced infectious virus production in in vitro antiviral activity assays against all four DENV serotypes, including clinical isolates. A set of purified enzyme, in vitro, and in vivo studies demonstrated that inhibition of endoplasmic reticulum (ER) α-glucosidases and not the glycosphingolipid pathway appears to be responsible for the antiviral activity of UV-4B against DENV. Along with a comprehensive safety package, these and previously published data provided support for an Investigational New Drug (IND) filing and Phases 1 and 2 clinical trials for UV-4B with an indication of acute dengue disease. PMID:26946111

  16. Rapid generation of a human monoclonal antibody to combat Middle East respiratory syndrome.

    PubMed

    Corti, Davide; Passini, Nadia; Lanzavecchia, Antonio; Zambon, Maria

    2016-01-01

    The last century has witnessed the emergence of several previously unknown viruses as life-threatening human pathogens. Several examples include HIV, Ebola, Lujo, and, most recently, the Middle East respiratory syndrome (MERS) and Ebola. In this study, we describe a method for the swift generation of a human-derived monoclonal antibody, known as LCA60, as a treatment for MERS infections. LCA60 antibody was generated using the Cellclone Technology from the immortalized B cells of a human donor recovering from MERS. Only four months were required from the initial screening of B cells to the development of a stable CHO cell line suitable for the production of clinical grade antibody, thereby delineating a rapid pathway for the development of antiviral therapies against emerging viruses. Currently, the LCA60 antibody is being considered for clinical development, which includes prophylaxis in individuals at risk and a treatment for severe MERS-CoV infections. PMID:27102927

  17. Phage Display-Derived Cross-Reactive Neutralizing Antibody against Enterovirus 71 and Coxsackievirus A16.

    PubMed

    Zhang, Xiao; Sun, Chunyun; Xiao, Xiangqian; Pang, Lin; Shen, Sisi; Zhang, Jie; Cen, Shan; Yang, Burton B; Huang, Yuming; Sheng, Wang; Zeng, Yi

    2016-01-01

    Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) are members of the Picornaviridae family and are considered the main causative agents of hand, foot and mouth disease (HFMD). In recent decades large HFMD outbreaks caused by EV71 and CVA16 have become significant public health concerns in the Asia-Pacific region. Vaccines and antiviral drugs are unavailable to prevent EV71 and CVA16 infection. In the current study, a chimeric antibody targeting a highly conserved peptide in the EV71 VP4 protein was isolated by using a phage display technique. The antibody showed cross-neutralizing capability against EV71 and CVA16 in vitro. The results suggest that this phage display-derived antibody will have great potential as a broad neutralizing antibody against EV71 and CVA16 after affinity maturation and humanization. PMID:26073737

  18. Clearance of persistent hepatitis C virus infection using a claudin-1-targeting monoclonal antibody

    PubMed Central

    Mailly, Laurent; Wilson, Garrick K.; Aubert, Philippe; Duong, François H. T.; Calabrese, Diego; Leboeuf, Céline; Fofana, Isabel; Thumann, Christine; Bandiera, Simonetta; Lütgehetmann, Marc; Volz, Tassilo; Davis, Christopher; Harris, Helen J.; Mee, Christopher J.; Girardi, Erika; Chane-Woon-Ming, Béatrice; Ericsson, Maria; Fletcher, Nicola; Bartenschlager, Ralf; Pessaux, Patrick; Vercauteren, Koen; Meuleman, Philip; Villa, Pascal; Kaderali, Lars; Pfeffer, Sébastien; Heim, Markus H.; Neunlist, Michel; Zeisel, Mirjam B.; Dandri, Maura; McKeating, Jane A.; Robinet, Eric; Baumert, Thomas F.

    2015-01-01

    Hepatitis C virus (HCV) infection is a leading cause of liver cirrhosis and cancer1. Cell entry of HCV2 and other pathogens3-5 is mediated by tight junction (TJ) proteins, but successful therapeutic targeting of TJ proteins has not been reported yet. Using a human liver-chimeric mouse model6 we show that a monoclonal antibody specific for TJ protein claudin-17 eliminates chronic HCV infection without detectable toxicity. This antibody inhibits HCV entry, cell-cell transmission and virus-induced signaling events. Antibody treatment reduces the number of HCV-infected hepatocytes in vivo, highlighting the need for de novo infection via host entry factors to maintain chronic infection. In summary, we demonstrate that an antibody targeting a virus receptor can cure chronic viral infection and uncover TJ proteins as targets for antiviral therapy. PMID:25798937

  19. Antiviral activity of tenofovir against Cauliflower mosaic virus and its metabolism in Brassica pekinensis plants.

    PubMed

    Spak, Josef; Votruba, Ivan; Pavingerová, Daniela; Holý, Antonín; Spaková, Vlastimila; Petrzik, Karel

    2011-11-01

    The antiviral effect of the acyclic nucleoside phosphonate tenofovir (R)-PMPA on double-stranded DNA Cauliflower mosaic virus (CaMV) in Brassica pekinensis plants grown in vitro on liquid medium was evaluated. Double antibody sandwich ELISA and PCR were used for relative quantification of viral protein and detecting nucleic acid in plants. (R)-PMPA at concentrations of 25 and 50 mg/l significantly reduced CaMV titers in plants within 6-9 weeks to levels detectable neither by ELISA nor by PCR. Virus-free plants were obtained after 3-month cultivation of meristem tips on semisolid medium containing 50 mg/l (R)-PMPA and their regeneration to whole plants in the greenhouse. Studying the metabolism of (R)-PMPA in B. pekinensis revealed that mono- and diphosphate, structural analogs of NDP and/or NTP, are the only metabolites formed. The data indicate very low substrate activity of the enzymes toward (R)-PMPA as substrate. The extent of phosphorylation in the plant's leaves represents only 4.5% of applied labeled (R)-PMPA. In roots, we detected no radioactive peaks of phosphorylated metabolites of (R)-PMPAp or (R)-PMPApp. PMID:21889541

  20. Anti-Viral Agents in Neurodegenerative Disorders: New Paradigm for Targeting Alzheimer's Disease.

    PubMed

    Faldu, Khushboo G; Shah, Jigna S; Patel, Snehal S

    2015-01-01

    Alzheimer's disease (AD) is a neurodegenerative disease affecting geriatric populations for which several causes have been proposed. These include a relationship with known pathogens although the exact nature of such a relationship remains uncertain. Herpes simplex virus-1 has been proposed as potential cause of AD because of its ability to form ß amyloid(Aß) and neurofibrillary tangles due to tau hyperphosphorylation and action of beta & gamma secretase on amyloid precursor protein(APP) together with genetic association with apolipoprotein-E4(ApoE-Ɛ4), which points out to latent Herpes Simplex virus-1 as an agent causing AD. There are numerous studies that linked HSV-1 with AD like anti-HSV-1 IgM antibodies, nectin-2, heme oxygenase-1, phosphorylated eukaryotic initiation factor-2A, caspase-8 and nucleus-specific alteration of raphe neurons. Various possible mechanisms by which HSV-1 might lead to development of AD such as ApoE, ß-amyloid, tau phosphorylation, inflammation and oxidative stress are also discussed. Thus, this review discusses patent information and a strong relationship between latent HSV-1 and AD and also proposes antiviral therapy for AD. PMID:25963683

  1. CD40 Activation Rescues Antiviral CD8+ T Cells from PD-1-Mediated Exhaustion

    PubMed Central

    Isogawa, Masanori; Chung, Josan; Murata, Yasuhiro; Kakimi, Kazuhiro; Chisari, Francis V.

    2013-01-01

    The intrahepatic immune environment is normally biased towards tolerance. Nonetheless, effective antiviral immune responses can be induced against hepatotropic pathogens. To examine the immunological basis of this paradox we studied the ability of hepatocellularly expressed hepatitis B virus (HBV) to activate immunologically naïve HBV-specific CD8+ T cell receptor (TCR) transgenic T cells after adoptive transfer to HBV transgenic mice. Intrahepatic priming triggered vigorous in situ T cell proliferation but failed to induce interferon gamma production or cytolytic effector function. In contrast, the same T cells differentiated into cytolytic effector T cells in HBV transgenic mice if Programmed Death 1 (PD-1) expression was genetically ablated, suggesting that intrahepatic antigen presentation per se triggers negative regulatory signals that prevent the functional differentiation of naïve CD8+ T cells. Surprisingly, coadministration of an agonistic anti-CD40 antibody (αCD40) inhibited PD-1 induction and restored T cell effector function, thereby inhibiting viral gene expression and causing a necroinflammatory liver disease. Importantly, the depletion of myeloid dendritic cells (mDCs) strongly diminished the αCD40 mediated functional differentiation of HBV-specific CD8+ T cells, suggesting that activation of mDCs was responsible for the functional differentiation of HBV-specific CD8+ T cells in αCD40 treated animals. These results demonstrate that antigen-specific, PD-1-mediated CD8+ T cell exhaustion can be rescued by CD40-mediated mDC-activation. PMID:23853599

  2. Engineering antibody therapeutics.

    PubMed

    Chiu, Mark L; Gilliland, Gary L

    2016-06-01

    The successful introduction of antibody-based protein therapeutics into the arsenal of treatments for patients has within a few decades fostered intense innovation in the production and engineering of antibodies. Reviewed here are the methods currently used to produce antibodies along with how our knowledge of the structural and functional characterization of immunoglobulins has resulted in the engineering of antibodies to produce protein therapeutics with unique properties, both biological and biophysical, that are leading to novel therapeutic approaches. Antibody engineering includes the introduction of the antibody combining site (variable regions) into a host of architectures including bi and multi-specific formats that further impact the therapeutic properties leading to further advantages and successes in patient treatment. PMID:27525816

  3. The Synthetic Antiviral Drug Arbidol Inhibits Globally Prevalent Pathogenic Viruses

    PubMed Central

    Pécheur, Eve-Isabelle; Borisevich, Viktoriya; Halfmann, Peter; Morrey, John D.; Smee, Donald F.; Prichard, Mark; Mire, Chad E.; Kawaoka, Yoshihiro; Geisbert, Thomas W.

    2016-01-01

    ABSTRACT Arbidol (ARB) is a synthetic antiviral originally developed to combat influenza viruses. ARB is currently used clinically in several countries but not in North America. We have previously shown that ARB inhibits in vitro hepatitis C virus (HCV) by blocking HCV entry and replication. In this report, we expand the list of viruses that are inhibited by ARB and demonstrate that ARB suppresses in vitro infection of mammalian cells with Ebola virus (EBOV), Tacaribe arenavirus, and human herpesvirus 8 (HHV-8). We also confirm suppression of hepatitis B virus and poliovirus by ARB. ARB inhibited EBOV Zaire Kikwit infection when added before or at the same time as virus infection and was less effective when added 24 h after EBOV infection. Experiments with recombinant vesicular stomatitis virus (VSV) expressing the EBOV Zaire glycoprotein showed that infection was inhibited by ARB at early stages, most likely at the level of viral entry into host cells. ARB inhibited HHV-8 replication to a similar degree as cidofovir. Our data broaden the spectrum of antiviral efficacy of ARB to include globally prevalent viruses that cause significant morbidity and mortality. IMPORTANCE There are many globally prevalent viruses for which there are no licensed vaccines or antiviral medicines. Some of these viruses, such as Ebola virus or members of the arenavirus family, rapidly cause severe hemorrhagic diseases that can be fatal. Other viruses, such as hepatitis B virus or human herpesvirus 8 (HHV-8), establish persistent infections that cause chronic illnesses, including cancer. Thus, finding an affordable, effective, and safe drug that blocks many viruses remains an unmet medical need. The antiviral drug arbidol (ARB), already in clinical use in several countries as an anti-influenza treatment, has been previously shown to suppress the growth of many viruses. In this report, we expand the list of viruses that are blocked by ARB in a laboratory setting to include Ebola virus

  4. Bone marrow is a major site of long-term antibody production after acute viral infection.

    PubMed Central

    Slifka, M K; Matloubian, M; Ahmed, R

    1995-01-01

    Antiviral antibody production is often sustained for long periods after resolution of an acute viral infection. Despite extensive documentation of this phenomenon, the mechanisms involved in maintaining long-term antibody production remain poorly defined. As a first step towards understanding the nature of long-term humoral immunity, we examined the anatomical location of antibody-producing cells during acute viral infection. Using the lymphocytic choriomeningitis virus (LCMV) model, we found that after resolution of the acute infection, when antiviral plasma cells in the spleen decline, a population of virus-specific plasma cells appears in the bone marrow and constitutes the major source of long-term antibody production. Following infection of adult mice, LCMV-specific antibody-secreting cells (ASC) peaked in the spleen at 8 days postinfection but were undetectable in the bone marrow at that time. The infection was essentially cleared by 15 days, and the ASC numbers in the spleen rapidly declined while an increasing population of LCMV-specific ASC began to appear in the bone marrow. Compared with the peak response at 8 days postinfection, time points from 30 days to more than 1 year later demonstrated greater-than-10-fold reductions in splenic ASC. In contrast, LCMV-specific plasma cell numbers in the bone marrow remained high and correlated with the high levels of antiviral serum antibody. The presence of LCMV-specific plasma cells in the bone marrow was not due to persistent infection at this site, since the virus was cleared from both the spleen and bone marrow with similar kinetics as determined by infectivity and PCR assays. The immunoglobulin G subclass profile of antibody-secreting cells derived from bone marrow and the spleen correlated with the immunoglobulin G subclass distribution of LCMV-specific antibody in the serum. Upon rechallenge with LCMV, the spleen exhibited a substantial increase in virus-specific plasma cell numbers during the early phase

  5. Lipopolysaccharide deacylation by an endogenous lipase controls innate antibody responses to Gram-negative bacteria.

    PubMed

    Lu, Mingfang; Zhang, Mei; Takashima, Akira; Weiss, Jerrold; Apicella, Michael A; Li, Xiang-Hong; Yuan, Dorothy; Munford, Robert S

    2005-10-01

    T cell-independent type 1 agonists such as Gram-negative bacterial lipopolysaccharides can stimulate B lymphocytes to proliferate and produce antibodies by signaling through Toll-like receptors. This phenomenon is well established in vitro, yet polyclonal B cell responses after bacterial infection in vivo are often weak and short-lived. We show here that B cell proliferation and polyclonal antibody production in response to Gram-negative bacterial infection are modulated by acyloxyacyl hydrolase, a host enzyme that deacylates bacterial lipopolysaccharides. Deacylation of lipopolysaccharide occurred over several days, allowing lipopolysaccharide to act as an innate immune stimulant yet limiting the eventual amount of B cell proliferation and polyclonal antibody production. Control of lipopolysaccharide activation by acyloxyacyl hydrolase indicates that mammals can regulate immune responses to bacterial infection by chemical modification of a Toll-like receptor agonist. PMID:16155573

  6. Viremic HIV controllers exhibit high plasmacytoid dendritic cell\\reactive opsonophagocytic IgG antibody responses against HIV-1 p24 associated with greater antibody isotype diversification

    PubMed Central

    Tjiam, M. Christian; Taylor, James P. A.; Morshidi, Mazmah A.; Sariputra, Lucy; Burrows, Sally; Martin, Jeffrey N.; Deeks, Steven G.; Tan, Dino B.A.; Lee, Silvia; Fernandez, Sonia; French, Martyn A.

    2015-01-01

    Identifying the mechanisms of natural control of HIV-1 infection could lead to novel approaches to prevent or cure HIV infection. Several studies have associated natural control of HIV-1 infection with IgG antibodies against HIV-1 Gag proteins (e.g. p24) and/or production of IgG2 antibodies against HIV-1 proteins. These antibodies likely exert their effect by activating anti-viral effector cell responses rather than virus neutralization. We hypothesized that an opsonophagocytic IgG antibody response against HIV-1 p24 that activates plasmacytoid dendritic cells (pDCs) through FcγRIIa would be associated with control of HIV and that this would be enhanced by antibody isotype diversification. Using the Gen2.2 pDC cell line, we demonstrated that pDC-reactive opsonophagocytic IgG antibody responses against HIV-1 p24 were higher in HIV controllers (HIV RNA <2000 copies/mL) than non-controllers (HIV RNA >10,000 copies/mL) particularly in controllers with low but detectable viremia (HIV RNA 75–2000 copies/mL). Opsonophagocytic antibody responses correlated with plasma levels of IgG1 and IgG2 anti-HIV-1 p24 and notably, correlated inversely with plasma HIV RNA levels in viremic HIV patients. Phagocytosis of these antibodies was mediated via FcγRIIa. Isotype diversification (towards IgG2) was greatest in HIV controllers and depletion of IgG2 from immunoglobulin preparations indicated that IgG2 antibodies to HIV-1 p24 do not enhance phagocytosis, suggesting that they enhance other aspects of antibody function, such as antigen opsonization. Our findings emulate those for pDC-reactive opsonophagocytic antibody responses against coxsackie, picorna and influenza viruses and demonstrate a previously undefined immune correlate of HIV-1 control that may be relevant to HIV vaccine development. PMID:25911748

  7. Evaluation of antiviral activity of plant extracts against foot and mouth disease virus in vitro.

    PubMed

    Younus, Ishrat; Siddiq, Afshan; Ishaq, Humera; Anwer, Laila; Badar, Sehrish; Ashraf, Muhammad

    2016-07-01

    The aim of this study was to evaluate antiviral activity of chloroformic leaves extracts of three plants: Azadirachta indica, Moringa oleifera and Morus alba against Foot and Mouth disease virus using MTT assay (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide). Antiviral and cytotoxic activity of each extract was evaluated as cell survival percentage and results were expressed as Means ± S.D. The concentrations which resulted in cell survival percentages of greater than 50% are considered to be effective antiviral concentrations. From the tested plant extracts, Moringa oleifera showed potent antiviral activity (p<0.05) while Azadirachta indica showed significant antiviral activity in the range of 1-50μ/ml & 12-100μ/ml respectively. In contrast no antiviral activity was observed by Morus alba as all the tested concentration resulted in significant reduction (p<0.05) in cell survival percentage. PMID:27393440

  8. Depletion of complement has distinct effects on the primary and secondary antibody responses to a conjugate of pneumococcal serotype 14 capsular polysaccharide and a T-cell-dependent protein carrier.

    PubMed

    Test, Samuel T; Mitsuyoshi, Joyce K; Hu, Yong

    2005-01-01

    Complement activation plays a critical role in the immune response to T-cell-dependent and T-cell-independent antigens. However, the effect of conjugation of T-cell-dependent protein carriers to T-cell-independent type 2 antigens on the requirement for complement in the humoral immune response to such antigens remains unknown. We studied the role of complement activation on the antibody response of BALB/c mice immunized with the T-cell-independent type 2 antigen serotype 14 pneumococcal capsular polysaccharide (PPS14), either in unmodified form or conjugated to ovalbumin (OVA). In mice immunized with either PPS14 or PPS14-OVA, depletion of endogenous complement at the time of primary immunization by treatment with cobra venom factor (CVF) diminished serum anti-PPS14 concentrations after primary immunization but enhanced antibody responses after secondary immunization. The secondary immunoglobulin G (IgG) anti-PPS14 antibody response after immunization with PPS14-OVA was especially enhanced by complement depletion, was observed at doses as low as 0.2 mug of antigen, and was maximal when CVF was administered within 2 days of immunization. The avidity and opsonophagocytic functions of IgG anti-PPS14 antibodies were comparable in mice immunized with PPS14-OVA with or without complement depletion. Serum anti-PPS14 antibody concentrations were near normal, and the enhancing effects of CVF treatment on the secondary anti-PPS14 antibody response were also apparent in splenectomized mice immunized with PPS14-OVA. These results demonstrate that complement activation can have distinct effects on the primary and secondary antibody responses to a T-cell-independent type 2 antigen, either unmodified or conjugated to a T-cell-dependent protein carrier. These differences should be taken into consideration when using complement to modulate the immune response to vaccines. PMID:15618164

  9. Prolonged detection of herpes simplex virus type 2 (HSV-2) DNA in cerebrospinal fluid despite antiviral therapy in a patient with HSV-2-associated radiculitis.

    PubMed

    Ganzenmueller, Tina; Karaguelle, Deniz; Schmitt, Corinna; Puppe, Wolfram; Stachan-Kunstyr, Rita; Bronzlik, Paul; Sauerbrei, Andreas; Wegner, Florian; Heim, Albert

    2012-01-01

    Herpes simplex virus type 2 (HSV-2) can cause radiculo-myelitis as a neurological manifestation. We report a case of ongoing HSV-2 DNA positivity in the cerebrospinal fluid (CSF) of at least eight weeks under antiviral therapy with acyclovir in a highly immunocompromised hemato-oncologic patient with HSV-2-associated radiculitis. Upon admission, the patient presented with pain, leg paresis, and urinary incontinence, as well as pleocytosis in the CSF. Quantitative real-time PCR of the CSF at day 3 after admission revealed HSV-2 with a concentration of 2.0×10(5) copies/ml and treatment with acyclovir intravenously and prednisolone by mouth was started. Clinical symptoms resolved almost completely after approximately 3 weeks of antiviral therapy. However, CSF samples of day 12, 19, 26, 33, 39, 48 and 54 after admission showed a slow decline of HSV-2 DNA concentrations. HSV-2 DNA was still detectable (1.6×10(4) copies/ml) at day 54 after admission. Genotypic resistance testing showed, as far as available, no mutations indicative for acyclovir resistance. Since an increasing specific antibody index for HSV was observed, we speculate that the prolonged detectability of HSV-2 DNA in the CSF might not necessarily indicate ongoing viral replication but neutralized virus. Other hypotheses and the consequences on treatment are discussed. To our knowledge this is the first report about the long-term viral load kinetics of HSV-2 in the CSF of a patient with radiculitis under antiviral therapy, highlighting the need for further studies on HSV DNA kinetics in the CSF and their significance for an appropriate antiviral treatment. PMID:22267477

  10. Decision Making with Regard to Antiviral Intervention during an Influenza Pandemic

    PubMed Central

    Shim, Eunha; Chapman, Gretchen B.; Galvani, Alison P.

    2012-01-01

    Background Antiviral coverage is defined by the proportion of the population that takes antiviral prophylaxis or treatment. High coverage of an antiviral drug has epidemiological and evolutionary repercussions. Antivirals select for drug resistance within the population, and individuals may experience adverse effects. To determine optimal antiviral coverage in the context of an influenza outbreak, we compared 2 perspectives: 1) the individual level (the Nash perspective), and 2) the population level (utilitarian perspective). Methods We developed an epidemiological game-theoretic model of an influenza pandemic. The data sources were published literature and a national survey. The target population was the US population. The time horizon was 6 months. The perspective was individuals and the population overall. The interventions were antiviral prophylaxis and treatment. The outcome measures were the optimal coverage of antivirals in an influenza pandemic. Results At current antiviral pricing, the optimal Nash strategy is 0% coverage for prophylaxis and 30% coverage for treatment, whereas the optimal utilitarian strategy is 19% coverage for prophylaxis and 100% coverage for treatment. Subsidizing prophylaxis by $440 and treatment by $85 would bring the Nash and utilitarian strategies into alignment. For both prophylaxis and treatment, the optimal antiviral coverage decreases as pricing of antivirals increases. Our study does not incorporate the possibility of an effective vaccine and lacks probabilistic sensitivity analysis. Our survey also does not completely represent the US population. Because our model assumes a homogeneous population and homogeneous antiviral pricing, it does not incorporate heterogeneity of preference. Conclusions The optimal antiviral coverage from the population perspective and individual perspectives differs widely for both prophylaxis and treatment strategies. Optimal population and individual strategies for prophylaxis and treatment might

  11. A novel reporter system for neutralizing and enhancing antibody assay against dengue virus

    PubMed Central

    2014-01-01

    Background Dengue virus (DENV) still poses a global public health threat, and no vaccine or antiviral therapy is currently available. Antibody plays distinct roles in controlling DENV infections. Neutralizing antibody is protective against DENV infection, whereas sub-neutralizing concentration of antibody can increase DENV infection, termed antibody-dependent enhancement (ADE). Plaque-based assay represents the most widely accepted method measuring neutralizing or enhancing antibodies. Results In this study, a novel reporter virus-based system was developed for measuring neutralization and ADE activity. A stable Renilla luciferase reporter DENV (Luc-DENV) that can produce robust luciferase signals in BHK-21 and K562 cells were used to establish the assay and validated against traditional plaque-based assay. Luciferase value analysis using various known DENV-specific monoclonal antibodies showed good repeatability and a well linear correlation with conventional plaque-based assays. The newly developed assay was finally validated with clinical samples from infected animals and individuals. Conclusions This reporter virus-based assay for neutralizing and enhancing antibody evaluation is rapid, lower cost, and high throughput, and will be helpful for laboratory detection and epidemiological investigation for DENV antibodies. PMID:24548533

  12. Recombinant renewable polyclonal antibodies

    PubMed Central

    Ferrara, Fortunato; D’Angelo, Sara; Gaiotto, Tiziano; Naranjo, Leslie; Tian, Hongzhao; Gräslund, Susanne; Dobrovetsky, Elena; Hraber, Peter; Lund-Johansen, Fridtjof; Saragozza, Silvia; Sblattero, Daniele; Kiss, Csaba; Bradbury, Andrew RM

    2015-01-01

    Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products. PMID:25530082

  13. Expression of Recombinant Antibodies

    PubMed Central

    Frenzel, André; Hust, Michael; Schirrmann, Thomas

    2013-01-01

    Recombinant antibodies are highly specific detection probes in research, diagnostics, and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines, and transgenic plants are promising to obtain antibodies with “human-like” post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications. PMID:23908655

  14. Antibodies as effectors.

    PubMed

    Corbeil, L B

    2002-09-10

    Antibodies are critical in protection against extracellular microbial pathogens. Although antibodies also play a role in transplant/tumor rejection and in autoimmune disease, this paper focuses on defense against bovine infections. Effector mechanisms of different bovine isotypes, subisotypes and allotypes are discussed. The importance of antigen specificity is also stressed. PMID:12072231

  15. Production Of Human Antibodies

    NASA Technical Reports Server (NTRS)

    Sammons, David W.; Neil, Garry A.

    1993-01-01

    Process for making human monoclonal antibodies based on combination of techniques. Antibodies made active against specific antigen. Process involves in vivo immunization of human B lymphocyte cells in mice. B cells of interest enriched in vitro before fusion. Method potentially applicable to any antigen. Does not rely on use of Epstein-Barr virus at any step. Human lymphocytes taken from any source.

  16. Therapeutic Recombinant Monoclonal Antibodies

    ERIC Educational Resources Information Center

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  17. Affinity purification of antibodies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antibodies are provided in a variety of formats that includes antiserum, hybridoma culture supernatant or ascites. They can all be used successfully in crude form for the detection of target antigens by immunoassay. However, it is advantageous to use purified antibody in defined quantity to facil...

  18. Antibodies in Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The expression of antibodies in plants has several promising applications that are currently being developed. Plants are being considered for the large scale production of antibodies needed for medical purposes. The benefit of using plants is that they are able to perform post-translational modifi...

  19. A bispecific antibody effectively neutralizes all four serotypes of dengue virus by simultaneous blocking virus attachment and fusion.

    PubMed

    Shi, Xin; Deng, Yongqiang; Wang, Huajing; Ji, Guanghui; Tan, Wenlong; Jiang, Tao; Li, Xiaofeng; Zhao, Hui; Xia, Tian; Meng, Yanchun; Wang, Chao; Yu, Xiaojie; Yang, Yang; Li, Bohua; Qin, E-De; Dai, Jianxin; Qin, Cheng-Feng; Guo, Yajun

    2016-01-01

    Although dengue virus (DENV) infection severely threatens the health of humans, no specific antiviral drugs are currently approved for clinical use against DENV infection. Attachment and fusion are 2 critical steps for the flavivirus infection, and the corresponding functional epitopes are located at E protein domain III (E-DIII) and domain II (E-DII), respectively. Here, we constructed a bispecific antibody (DVD-1A1D-2A10) based on the 2 well-characterized anti-DENV monoclonal antibodies 1A1D-2 (1A1D) and 2A10G6 (2A10). The 1A1D antibody binds E-DIII and can block the virus attaching to the cell surface, while the 2A10 antibody binds E-DII and is able to prevent the virus from fusing with the endosomal membrane. Our data showed that DVD-1A1D-2A10 retained the antigen-binding activity of both parental antibodies. Importantly, it was demonstrated to be significantly more effective at neutralizing DENV than its parental antibodies both in vitro and in vivo, even better than the combination of them. To eliminate the potential antibody-dependent enhancement (ADE) effect, this bispecific antibody was successfully engineered to prevent Fc-γ-R interaction. Overall, we generated a bispecific anti-DENV antibody targeting both attachment and fusion stages, and this bispecific antibody broadly neutralized all 4 serotypes of DENV without risk of ADE, suggesting that it has great potential as a novel antiviral strategy against DENV. PMID:26905804

  20. [Recombinant antibodies against bioweapons].

    PubMed

    Thullier, Philippe; Pelat, Thibaut; Vidal, Dominique

    2009-12-01

    The threat posed by bioweapons (BW) could lead to the re-emergence of such deadly diseases as plague or smallpox, now eradicated from industrialized countries. The development of recombinant antibodies allows tackling this risk because these recombinant molecules are generally well tolerated in human medicine, may be utilized for prophylaxis and treatment, and because antibodies neutralize many BW. Recombinant antibodies neutralizing the lethal toxin of anthrax, botulinum toxins and the smallpox virus have in particular been isolated recently, with different technologies. Our approach, which uses phage-displayed immune libraries built from non-human primates (M. fascicularis) to obtain recombinant antibodies, which may later be super-humanized (germlinized), has allowed us to obtain such BWs-neutralizing antibodies. PMID:20035695

  1. [Antiphospholipid antibodies in practice].

    PubMed

    Miyara, M; Diemert, M-C; Amoura, Z; Musset, L

    2012-04-01

    Antiphospholipid syndrome (APS) is an autoimmune disorder characterized by the occurrence of thrombotic or obstetrical events associated with the presence in the serum of patients of antibodies that are associated with thrombosis. For the diagnosis of APS, the presence of either lupus anticoagulant, anticardiolipin or anti-β2-glycoprotein1 antibodies of IgG or IgM isotype is required through laboratory testing. Other autoantibodies such as antiphosphatidylethanolamin or antiphosphatidylserin/prothrombin complex antibodies may be interesting in the diagnosis of APS when common antiphospholipid antibodies are missing. These autoantibodies are still under evaluation for their diagnostic contribution. Despite numerous attempts, the assays that are available for the identification of antiphospholipid antibodies have not been standardized yet, which leads to high variability between reagents and laboratories. Thus, to optimize the biological monitoring of APS syndromes, it is mandatory to have consecutive samples analyzed in the same laboratory. PMID:22100197

  2. Affinity Purification of Antibodies.

    PubMed

    Hnasko, Robert M; McGarvey, Jeffery A

    2015-01-01

    Antibodies are provided in a variety of formats that include antiserum, hybridoma culture supernatant, or ascites. They can all be used successfully in crude form for the detection of target antigens by immunoassay. However, it is advantageous to use purified antibody in defined quantity to facilitate assay reproducibility, economy, and reduced interference of nonspecific components as well as improved storage, stability, and bio-conjugation. Although not always necessary, the relative simplicity of antibody purification using commercially available protein-A, protein-G, or protein-L resins with basic chromatographic principles warrants purification when antibody source material is available in sufficient quantity. Here, we define three simple methods using immobilized (1) protein-A, (2) protein-G, and (3) protein-L agarose beads to yield highly purified antibody. PMID:26160561

  3. Impact of Helicobacter pylori eradication on refractory thrombocytopenia in patients with chronic HCV awaiting antiviral therapy.

    PubMed

    Hanafy, A S; El Hawary, A T; Hamed, E F; Hassaneen, A M

    2016-07-01

    The possibility of delaying treatment of HCV due to severe thrombocytopenia is challenging. This study aimed to detect the prevalence of active helicobacter infection as a claimed cause of thrombocytopenia in a cohort of Egyptian patients with chronic active HCV awaiting combined anti-viral therapy. The study included 400 chronic HCV patients with thrombocytopenia. Laboratory investigations included liver function tests, real time quantitative PCR, reticulocytic count, ESR, ANA, bone marrow aspiration, measurement of anti-helicobacter antibodies, and helicobacter stool antigen. Positive cases for active H. pylori were given the standard triple therapy for 2 weeks. Helicobacter stool antigen was detected 4 weeks after termination of therapy and the change in platelet count was detected 1 month after eradication. A total of 248 out of 281 seropositive patients for H. pylori (88.3 %) showed positive stool antigen (p = 0.01). Eradication was achieved in 169 (68.1 %) patients with platelet mean count 114.9 ± 18.8 × 10(3)/μl with highly significant statistical difference from pretreatment value (49.7 ± 9.2 × 10(3)/μl, p = 0.000). Seventy-nine patients were resistant to conventional triple therapy and given a 7-day course of moxifloxacin-based therapy; 61 patients responded (77.1 %) with mean platelet improvement from 76.4 ± 17.4 × 10(3)/μl to 104.2 ± 15.2 × 10(3)/μl (p = 0.000). The non-responders showed no improvement in their platelet count (74.6 ± 20.5 vs. 73.6 ± 15.3 × 10(3)/ul, P = 0.5). Eradication of active H. pylori in HCV augments platelet count and enhances the early start of antiviral therapy. PMID:27180243

  4. Human antibodies reveal a protective epitope that is highly conserved among human and nonhuman influenza A viruses.

    PubMed

    Grandea, Andres G; Olsen, Ole A; Cox, Thomas C; Renshaw, Mark; Hammond, Philip W; Chan-Hui, Po-Ying; Mitcham, Jennifer L; Cieplak, Witold; Stewart, Shaun M; Grantham, Michael L; Pekosz, Andrew; Kiso, Maki; Shinya, Kyoko; Hatta, Masato; Kawaoka, Yoshihiro; Moyle, Matthew

    2010-07-13

    Influenza remains a serious public health threat throughout the world. Vaccines and antivirals are available that can provide protection from infection. However, new viral strains emerge continuously because of the plasticity of the influenza genome, which necessitates annual reformulation of vaccine antigens, and resistance to antivirals can appear rapidly and become entrenched in circulating virus populations. In addition, the spread of new pandemic strains is difficult to contain because of the time required to engineer and manufacture effective vaccines. Monoclonal antibodies that target highly conserved viral epitopes might offer an alternative protection paradigm. Herein we describe the isolation of a panel of monoclonal antibodies derived from the IgG(+) memory B cells of healthy, human subjects that recognize a previously unknown conformational epitope within the ectodomain of the influenza matrix 2 protein, M2e. This antibody binding region is highly conserved in influenza A viruses, being present in nearly all strains detected to date, including highly pathogenic viruses that infect primarily birds and swine, and the current 2009 swine-origin H1N1 pandemic strain (S-OIV). Furthermore, these human anti-M2e monoclonal antibodies protect mice from lethal challenges with either H5N1 or H1N1 influenza viruses. These results suggest that viral M2e can elicit broadly cross-reactive and protective antibodies in humans. Accordingly, recombinant forms of these human antibodies may provide useful therapeutic agents to protect against infection from a broad spectrum of influenza A strains. PMID:20615945

  5. Human antibodies reveal a protective epitope that is highly conserved among human and nonhuman influenza A viruses

    PubMed Central

    Grandea, Andres G.; Olsen, Ole A.; Cox, Thomas C.; Renshaw, Mark; Hammond, Philip W.; Chan-Hui, Po-Ying; Mitcham, Jennifer L.; Cieplak, Witold; Stewart, Shaun M.; Grantham, Michael L.; Pekosz, Andrew; Kiso, Maki; Shinya, Kyoko; Hatta, Masato; Kawaoka, Yoshihiro; Moyle, Matthew

    2010-01-01

    Influenza remains a serious public health threat throughout the world. Vaccines and antivirals are available that can provide protection from infection. However, new viral strains emerge continuously because of the plasticity of the influenza genome, which necessitates annual reformulation of vaccine antigens, and resistance to antivirals can appear rapidly and become entrenched in circulating virus populations. In addition, the spread of new pandemic strains is difficult to contain because of the time required to engineer and manufacture effective vaccines. Monoclonal antibodies that target highly conserved viral epitopes might offer an alternative protection paradigm. Herein we describe the isolation of a panel of monoclonal antibodies derived from the IgG+ memory B cells of healthy, human subjects that recognize a previously unknown conformational epitope within the ectodomain of the influenza matrix 2 protein, M2e. This antibody binding region is highly conserved in influenza A viruses, being present in nearly all strains detected to date, including highly pathogenic viruses that infect primarily birds and swine, and the current 2009 swine-origin H1N1 pandemic strain (S-OIV). Furthermore, these human anti-M2e monoclonal antibodies protect mice from lethal challenges with either H5N1 or H1N1 influenza viruses. These results suggest that viral M2e can elicit broadly cross-reactive and protective antibodies in humans. Accordingly, recombinant forms of these human antibodies may provide useful therapeutic agents to protect against infection from a broad spectrum of influenza A strains. PMID:20615945

  6. Associations between serum lipids and hepatitis C antiviral treatment efficacy

    PubMed Central

    Ramcharran, Darmendra; Wahed, Abdus S.; Conjeevaram, Hari S.; Evans, Rhobert W.; Wang, Tianyi; Belle, Steven H.; Yee, Leland J.

    2010-01-01

    Approximately one half of patients who undergo antiviral therapy for chronic hepatitis C virus (HCV) genotype 1 infection will not respond to treatment. African Americans (AAs) are less responsive to treatment than Caucasian Americans (CAs) and the reasons for this disparity are largely unknown. Recent studies suggest that serum lipids may be associated with treatment response. The aims of this study were to evaluate baseline and changes in serum lipids during therapy, determine if serum lipids are associated with virological response, and assess if these measures explain the racial difference in efficacy. Participants were from Virahep-C, a prospective study of treatment naïve participants with type 1 HCV infection who received peginterferon alfa-2a (PEG-IFN) plus ribavirin therapy for up to 48 weeks. Fasting serum lipids were analyzed at baseline, during, and after therapy in 160 AAs and 170 CAs. A relative risk (RR) model was employed to evaluate characteristics associated with sustained virological response (SVR). Antiviral therapy was associated with changes in serum lipids during and after antiviral therapy, with the changes differing by race and the amount of PEG-IFN taken. Baseline lipid measures independently associated with a higher rate of SVR were lower TG and higher LDLc, with an interaction between high density lipoprotein cholesterol (HDLc) and gender. Lipid measures did not contribute significantly to explaining the racial difference in SVR. Conclusion Lipid levels are associated with SVR, although lipid parameters did not explain the racial difference in treatment response. Results are compatible with proposed biological mechanisms of HCV entry, replication, and secretion, and may underscore new potential therapeutic targets for HCV eradication. PMID:20690192

  7. Selection of Recombinant Human Antibodies.

    PubMed

    Tomszak, Florian; Weber, Susanne; Zantow, Jonas; Schirrmann, Thomas; Hust, Michael; Frenzel, André

    2016-01-01

    Since the development of therapeutic antibodies the demand of recombinant human antibodies is steadily increasing. Traditionally, therapeutic antibodies were generated by immunization of rat or mice, the generation of hybridoma clones, cloning of the antibody genes and subsequent humanization and engineering of the lead candidates. In the last few years, techniques were developed that use transgenic animals with a human antibody gene repertoire. Here, modern recombinant DNA technologies can be combined with well established immunization and hybridoma technologies to generate already affinity maturated human antibodies. An alternative are in vitro technologies which enabled the generation of fully human antibodies from antibody gene libraries that even exceed the human antibody repertoire. Specific antibodies can be isolated from these libraries in a very short time and therefore reduce the development time of an antibody drug at a very early stage.In this review, we describe different technologies that are currently used for the in vitro and in vivo generation of human antibodies. PMID:27236551

  8. Update on hepatitis C: Direct-acting antivirals

    PubMed Central

    Seifert, Leon L; Perumpail, Ryan B; Ahmed, Aijaz

    2015-01-01

    Hepatitis C virus (HCV) was discovered 26 years ago. For decades, interferon-based therapy has been the mainstay of treatment for HCV. Recently, several direct-acting antivirals (DAAs) have been approved for treatment of HCV-infected patients and to help combat the virus. These drugs have revolutionized the management of HCV as all-oral regimens with favorable side effect profiles and superior rates of sustained virological response. Emerging real-world data are demonstrating results comparable to registration trials for DAA agents. Suddenly, the potential for eradicating HCV is on the horizon. PMID:26668694

  9. In vitro antiviral activity of germacrone against porcine parvovirus.

    PubMed

    Chen, Ye; Dong, Yunxia; Jiao, Yiren; Hou, Lianjie; Shi, Yuzhen; Gu, Ting; Zhou, Pei; Shi, Zhongyuan; Xu, Lulu; Wang, Chong

    2015-06-01

    Porcine parvovirus (PPV) infections can lead to significant losses to the swine industry by causing reproductive failure in pigs. Germacrone has been reported to efficiently suppress the replication of influenza virus. In this report, the antiviral activity of germacrone on PPV in swine testis (ST) cells was investigated. Here, we show for the first time that germacrone protects cells from PPV infection and suppresses the synthesis of viral mRNA and protein. Furthermore, we show that germacrone inhibits PPV replication at an early stage in a dose-dependent manner. These findings suggest that germacrone is a potential candidate for anti-PPV therapy. PMID:25813663

  10. In Vitro Efficacy of Antiviral Compounds against Enterovirus D68

    PubMed Central

    Rhoden, Eric; Zhang, Mingyu; Nix, W. Allan

    2015-01-01

    In 2014, the United States experienced a large outbreak of severe respiratory illness associated with enterovirus D68 (EV-D68). We used a homogeneous, cell-based assay to assess the antiviral activity of compounds developed for EV/rhinovirus infection or other indications. Three of 15 compounds were highly active against all four strains tested (the prototype and three 2014 strains), with 50% effective concentrations of 0.0012 to 0.027 μM. Additional studies are needed to assess their in vivo efficacy against EV-D68. PMID:26149998

  11. Henipavirus outbreaks to antivirals: the current status of potential therapeutics.

    PubMed

    Broder, Christopher C

    2012-04-01

    The henipaviruses, Hendra virus and Nipah virus, are classic examples of recently emerged viral zoonoses. In a relatively short time since their discoveries in the mid and late 1990s, respectively, a great deal of new information has been accumulated detailing their biology and certain unique characteristics. Their broad species tropism and abilities to cause severe and often fatal respiratory and/or neurologic disease in both animals and humans has sparked considerable interest in developing effective antiviral strategies to prevent or treat henipavirus infection and disease. Here, recent findings on the few most advanced henipavirus countermeasures are summarized and discussed. PMID:22482714

  12. Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus

    PubMed Central

    Corti, Davide; Zhao, Jincun; Pedotti, Mattia; Simonelli, Luca; Agnihothram, Sudhakar; Fett, Craig; Fernandez-Rodriguez, Blanca; Foglierini, Mathilde; Agatic, Gloria; Vanzetta, Fabrizia; Gopal, Robin; Langrish, Christopher J.; Barrett, Nicholas A; Sallusto, Federica; Baric, Ralph S.; Varani, Luca; Zambon, Maria; Perlman, Stanley; Lanzavecchia, Antonio

    2015-01-01

    Middle East Respiratory Syndrome (MERS) is a highly lethal pulmonary infection caused by a previously unidentified coronavirus (CoV), likely transmitted to humans by infected camels. There is no licensed vaccine or antiviral for MERS, therefore new prophylactic and therapeutic strategies to combat human infections are needed. In this study, we describe, for the first time, to our knowledge, the isolation of a potent MERS-CoV–neutralizing antibody from memory B cells of an infected individual. The antibody, named LCA60, binds to a novel site on the spike protein and potently neutralizes infection of multiple MERS-CoV isolates by interfering with the binding to the cellular receptor CD26. Importantly, using mice transduced with adenovirus expressing human CD26 and infected with MERS-CoV, we show that LCA60 can effectively protect in both prophylactic and postexposure settings. This antibody can be used for prophylaxis, for postexposure prophylaxis of individuals at risk, or for the treatment of human cases of MERS-CoV infection. The fact that it took only 4 mo from the initial screening of B cells derived from a convalescent patient for the development of a stable chinese hamster ovary (CHO) cell line producing neutralizing antibodies at more than 5 g/L provides an example of a rapid pathway toward the generation of effective antiviral therapies against emerging viruses. PMID:26216974

  13. Antibody-dependent enhancement of dengue virus infection is inhibited by SA-17, a doxorubicin derivative.

    PubMed

    Ayala-Nuñez, Nilda V; Jarupathirun, Patsaporn; Kaptein, Suzanne J F; Neyts, Johan; Smit, Jolanda M

    2013-10-01

    Antibody-dependent enhancement (ADE) is thought to play a critical role in the exacerbation of dengue virus (DENV)-induced disease during a heterologous re-infection. Despite ADE's clinical impact, only a few antiviral compounds have been assessed for their anti-ADE activity. We reported earlier that SA-17, a doxorubicin derivative, efficiently inhibits the in vitro infection of DENV and yellow fever virus. Here we explored SA-17's mechanism of inhibition and investigated if the compound is active against ADE of DENV infection. Since enhanced infectivity stimulated by antibodies has been observed with standard and immature DENV, both types of virions were included in the study. We observed that SA-17 (i) inhibits DENV infection by preventing binding/entry to the cell and (ii) interferes with antibody-mediated infection of both standard and immature DENV2. SA-17 markedly reduced the infectivity of DENV2 in ADE conditions, with IC50s ranging from 0.26 to 2.89μM. The compound exerted its activity when added before, during, and after antibody-opsonization of standard and immature virus. Thus, molecules with the characteristics of SA-17 may be attractive antiviral agents since they can be used both to block DENV2 entry during primary and secondary infection and to inhibit ADE of standard and immature virus. PMID:23994499

  14. NMDA receptor antibodies

    PubMed Central

    Ramberger, Melanie; Bsteh, Gabriel; Schanda, Kathrin; Höftberger, Romana; Rostásy, Kevin; Baumann, Matthias; Aboulenein-Djamshidian, Fahmy; Lutterotti, Andreas; Deisenhammer, Florian; Berger, Thomas

    2015-01-01

    Objectives: To analyze the frequency of NMDA receptor (NMDAR) antibodies in patients with various inflammatory demyelinating diseases of the CNS and to determine their clinical correlates. Methods: Retrospective case-control study from 2005 to 2014 with the detection of serum IgG antibodies to NMDAR, aquaporin-4, and myelin oligodendrocyte glycoprotein by recombinant live cell-based immunofluorescence assays. Fifty-one patients with acute disseminated encephalomyelitis, 41 with neuromyelitis optica spectrum disorders, 34 with clinically isolated syndrome, and 89 with multiple sclerosis (MS) were included. Due to a known association of NMDAR antibodies with seizures and behavioral symptoms, patients with those clinical manifestations were preferentially included and are therefore overrepresented in our cohort. Nine patients with NMDAR encephalitis, 94 patients with other neurologic diseases, and 48 healthy individuals were used as controls. Results: NMDAR antibodies were found in all 9 patients with NMDAR encephalitis but in only 1 of 215 (0.5%) patients with inflammatory demyelination and in none of the controls. This patient had relapsing-remitting MS with NMDAR antibodies present at disease onset, with an increase in NMDAR antibody titer with the onset of psychiatric symptoms and cognitive deficits. Conclusion: In demyelinating disorders, NMDAR antibodies are uncommon, even in those with symptoms seen in NMDAR encephalitis. PMID:26309901

  15. Monoclonal antibody "gold rush".

    PubMed

    Maggon, Krishan

    2007-01-01

    The market, sales and regulatory approval of new human medicines, during the past few years, indicates increasing number and share of new biologics and emergence of new multibillion dollar molecules. The global sale of monoclonal antibodies in 2006 were $20.6 billion. Remicade had annual sales gain of $1 billion during the past 3 years and five brands had similar increase in 2006. Rituxan with 2006 sales of $4.7 billion was the best selling monoclonal antibody and biological product and the 6th among the top selling medicinal brand. It may be the first biologic and monoclonal antibody to reach $10 billion annual sales in the near future. The strong demand from cancer and arthritis patients has surpassed almost all commercial market research reports and sales forecast. Seven monoclonal antibody brands in 2006 had sales exceeding $1 billion. Humanized or fully human monoclonal antibodies with low immunogenicity, enhanced antigen binding and reduced cellular toxicity provide better clinical efficacy. The higher technical and clinical success rate, overcoming of technical hurdles in large scale manufacturing, low cost of market entry and IND filing, use of fully human and humanized monoclonal antibodies has attracted funds and resources towards R&D. Review of industry research pipeline and sales data during the past 3 years indicate a real paradigm shift in industrial R&D from pharmaceutical to biologics and monoclonal antibodies. The antibody bandwagon has been joined by 200 companies with hundreds of new projects and targets and has attracted billions of dollars in R&D investment, acquisitions and licensing deals leading to the current Monoclonal Antibody Gold Rush. PMID:17691940

  16. Heart antibodies in cardiomyopathies.

    PubMed Central

    Trueman, T; Thompson, R A; Cummins, P; Littler, W A

    1981-01-01

    The reported frequency of circulating heart reactive antibodies in cardiomyopathies has varied and their significance is unknown. In this study such antibodies were sought in patients with primary congestive and hypertrophic cardiomyopathies and other heart diseases. Standard "single sandwich" and the more sensitive "double sandwich" indirect immunofluorescence techniques failed to disclose a significant difference between any cardiomyopathic group and controls in repeated experiments. With both techniques results were subject to considerable method-specific artefacts and observer variation. No published work associating heart antibodies detected by immunofluorescence methods with cariomyopathies adequately takes these into account. PMID:7028058

  17. Early antiviral response and virus-induced genes in fish.

    PubMed

    Verrier, Eloi R; Langevin, Christelle; Benmansour, Abdenour; Boudinot, Pierre

    2011-12-01

    In fish as in mammals, virus infections induce changes in the expression of many host genes. Studies conducted during the last fifteen years revealed a major contribution of the interferon system in fish antiviral response. This review describes the screening methods applied to compare the impact of virus infections on the transcriptome in different fish species. These approaches identified a "core" set of genes that are strongly induced in most viral infections. The "core" interferon-induced genes (ISGs) are generally conserved in vertebrates, some of them inhibiting a wide range of viruses in mammals. A selection of ISGs -PKR, vig-1/viperin, Mx, ISG15 and finTRIMs - is further analyzed here to illustrate the diversity and complexity of the mechanisms involved in establishing an antiviral state. Most of the ISG-based pathways remain to be directly determined in fish. Fish ISGs are often duplicated and the functional specialization of multigenic families will be of particular interest for future studies. PMID:21414349

  18. Antiviral Drug- and Multidrug Resistance in Cytomegalovirus Infected SCT Patients

    PubMed Central

    Göhring, Katharina; Hamprecht, Klaus; Jahn, Gerhard

    2015-01-01

    In pediatric and adult patients after stem cell transplantation (SCT) disseminated infections caused by human cytomegalovirus (HCMV) can cause life threatening diseases. For treatment, the three antivirals ganciclovir (GCV), foscarnet (PFA) and cidofovir (CDV) are approved and most frequently used. Resistance to all of these antiviral drugs may induce a severe problem in this patient cohort. Responsible for resistance phenomena are mutations in the HCMV phosphotransferase-gene (UL97) and the polymerase-gene (UL54). Most frequently mutations in the UL97-gene are associated with resistance to GCV. Resistance against all three drugs is associated to mutations in the UL54-gene. Monitoring of drug resistance by genotyping is mostly done by PCR-based Sanger sequencing. For phenotyping with cell culture the isolation of HCMV is a prerequisite. The development of multidrug resistance with mutation in both genes is rare, but it is often associated with a fatal outcome. The manifestation of multidrug resistance is mostly associated with combined UL97/UL54-mutations. Normally, mutations in the UL97 gene occur initially followed by UL54 mutation after therapy switch. The appearance of UL54-mutation alone without any detection of UL97-mutation is rare. Interestingly, in a number of patients the UL97 mutation could be detected in specific compartments exclusively and not in blood. PMID:25750703

  19. Inborn errors of anti-viral interferon immunity in humans

    PubMed Central

    Sancho-Shimizu, Vanessa; de Diego, Rebeca Perez; Jouanguy, Emmanuelle; Zhang, Shen-Ying; Casanova, Jean-Laurent

    2011-01-01

    The three types of interferon (IFNs) are essential for immunity against at least some viruses in the mouse model of experimental infections, type I IFNs displaying the broadest and strongest anti-viral activity. Consistently, human genetic studies have shown that type II IFN is largely redundant for immunity against viruses in the course of natural infections. The precise contributions of human type I and III IFNs remain undefined. However, various inborn errors of anti-viral IFN immunity have been described, which can result in either broad or narrow immunological and viral phenotypes. The broad disorders impair the response to (STAT1, TYK2) or the production of at least type I and type III IFNs following multiple stimuli (NEMO), resulting in multiple viral infections at various sites, including herpes simplex encephalitis (HSE). The narrow disorders impair exclusively (TLR3) or mostly (UNC-93B, TRIF, TRAF3) the TLR3-dependent induction of type I and III IFNs, leading to HSE in apparently otherwise healthy individuals. These recent discoveries highlight the importance of human type I and III IFNs in protective immunity against viruses, including the TLR3-IFN pathway in protection against HSE. PMID:22347990

  20. Human IFNAR2 deficiency: lessons for antiviral immunity

    PubMed Central

    Duncan, C.J.A.; Mohamad, S.M.B; Young, D.F.; Skelton, A.J.; Leahy, T.R.; Munday, D.C.; Butler, K.M.; Morfopoulou, S.; Brown, J.R.; Hubank, M.; Connell, J.; Gavin, P.J.; McMahon, C.; Dempsey, E.; Lynch, N.E.; Jacques, T.S.; Valappil, M.; Cant, A.J.; Breuer, J.; Engelhardt, K.R.; Randall, R.E.; Hambleton, S.

    2016-01-01

    Type I interferon (IFN-α/β) is a fundamental antiviral defense mechanism. Mouse models have been pivotal to understanding the role of IFN-α/β in immunity, although validation of these findings in humans has been limited. We investigated a previously healthy child with fatal encephalitis following inoculation of the live-attenuated measles, mumps and rubella (MMR) vaccine. By targeted resequencing we identified a homozygous mutation in the high-affinity interferon-α/β receptor (IFNAR2) in the proband, as well as a newborn sibling, that rendered cells unresponsive to IFN-α/β. Reconstitution of the proband’s cells with wild-type IFNAR2 restored IFN-α/β responsiveness and control of IFN-attenuated viruses. Despite the severe outcome of systemic live-vaccine challenge, the proband had previously shown no evidence of heightened susceptibility to respiratory viral pathogens. The phenotype of IFNAR2 deficiency, together with similar findings in STAT2 deficient patients, supports an essential but narrow role for IFN-α/β in human antiviral immunity. Summary Human IFNAR2 deficiency causes fatal susceptibility to live viral vaccines, revealing a vital but narrow nonredundant role for IFN-α/β in viral immunity. PMID:26424569

  1. Antiviral Activity of Natural Products Extracted from Marine Organisms

    PubMed Central

    Uzair, Bushra; Mahmood, Zahra; Tabassum, Sobia

    2011-01-01

    Many epidemics have broken out over the centuries. Hundreds and thousands of humans have died over a disease. Available treatments for infectious diseases have always been limited. Some infections are more deadly than the others, especially viral pathogens. These pathogens have continuously resisted all kinds of medical treatment, due to a need for new treatments to be developed. Drugs are present in nature and are also synthesized in vitro and they help in combating diseases and restoring health. Synthesizing drugs is a hard and time consuming task, which requires a lot of man power and financial aid. However, the natural compounds are just lying around on the earth, may it be land or water. Over a thousand novel compounds isolated from marine organisms are used as antiviral agents. Others are being pharmacologically tested. Today, over forty antiviral compounds are present in the pharmacological market. Some of these compounds are undergoing clinical and preclinical stages. Marine compounds are paving the way for a new trend in modern medicine. PMID:23678429

  2. Drosha as an interferon-independent antiviral factor.

    PubMed

    Shapiro, Jillian S; Schmid, Sonja; Aguado, Lauren C; Sabin, Leah R; Yasunaga, Ari; Shim, Jaehee V; Sachs, David; Cherry, Sara; tenOever, Benjamin R

    2014-05-13

    Utilization of antiviral small interfering RNAs is thought to be largely restricted to plants, nematodes, and arthropods. In an effort to determine whether a physiological interplay exists between the host small RNA machinery and the cellular response to virus infection in mammals, we evaluated antiviral activity in the presence and absence of Dicer or Drosha, the RNase III nucleases responsible for generating small RNAs. Although loss of Dicer did not compromise the cellular response to virus infection, Drosha deletion resulted in a significant increase in virus levels. Here, we demonstrate that diverse RNA viruses trigger exportin 1 (XPO1/CRM1)-dependent Drosha translocation into the cytoplasm in a manner independent of de novo protein synthesis or the canonical type I IFN system. Additionally, increased virus infection in the absence of Drosha was not due to a loss of viral small RNAs but, instead, correlated with cleavage of viral genomic RNA and modulation of the host transcriptome. Taken together, we propose that Drosha represents a unique and conserved arm of the cellular defenses used to combat virus infection. PMID:24778219

  3. Human IFNAR2 deficiency: Lessons for antiviral immunity.

    PubMed

    Duncan, Christopher J A; Mohamad, Siti M B; Young, Dan F; Skelton, Andrew J; Leahy, T Ronan; Munday, Diane C; Butler, Karina M; Morfopoulou, Sofia; Brown, Julianne R; Hubank, Mike; Connell, Jeff; Gavin, Patrick J; McMahon, Cathy; Dempsey, Eugene; Lynch, Niamh E; Jacques, Thomas S; Valappil, Manoj; Cant, Andrew J; Breuer, Judith; Engelhardt, Karin R; Randall, Richard E; Hambleton, Sophie

    2015-09-30

    Type I interferon (IFN-α/β) is a fundamental antiviral defense mechanism. Mouse models have been pivotal to understanding the role of IFN-α/β in immunity, although validation of these findings in humans has been limited. We investigated a previously healthy child with fatal encephalitis after inoculation of the live attenuated measles, mumps, and rubella (MMR) vaccine. By targeted resequencing, we identified a homozygous mutation in the high-affinity IFN-α/β receptor (IFNAR2) in the proband, as well as a newborn sibling, that rendered cells unresponsive to IFN-α/β. Reconstitution of the proband's cells with wild-type IFNAR2 restored IFN-α/β responsiveness and control of IFN-attenuated viruses. Despite the severe outcome of systemic live vaccine challenge, the proband had previously shown no evidence of heightened susceptibility to respiratory viral pathogens. The phenotype of IFNAR2 deficiency, together with similar findings in STAT2-deficient patients, supports an essential but narrow role for IFN-α/β in human antiviral immunity. PMID:26424569

  4. Mechanisms of Hepatitis C Viral Resistance to Direct Acting Antivirals

    PubMed Central

    Ahmed, Asma; Felmlee, Daniel J.

    2015-01-01

    There has been a remarkable transformation in the treatment of chronic hepatitis C in recent years with the development of direct acting antiviral agents targeting virus encoded proteins important for viral replication including NS3/4A, NS5A and NS5B. These agents have shown high sustained viral response (SVR) rates of more than 90% in phase 2 and phase 3 clinical trials; however, this is slightly lower in real-life cohorts. Hepatitis C virus resistant variants are seen in most patients who do not achieve SVR due to selection and outgrowth of resistant hepatitis C virus variants within a given host. These resistance associated mutations depend on the class of direct-acting antiviral drugs used and also vary between hepatitis C virus genotypes and subtypes. The understanding of these mutations has a clear clinical implication in terms of choice and combination of drugs used. In this review, we describe mechanism of action of currently available drugs and summarize clinically relevant resistance data. PMID:26694454

  5. RNAi and Antiviral Defense in the Honey Bee

    PubMed Central

    Brutscher, Laura M.; Flenniken, Michelle L.

    2015-01-01

    Honey bees play an important agricultural and ecological role as pollinators of numerous agricultural crops and other plant species. Therefore, investigating the factors associated with high annual losses of honey bee colonies in the US is an important and active area of research. Pathogen incidence and abundance correlate with Colony Collapse Disorder- (CCD-) affected colonies in the US and colony losses in the US and in some European countries. Honey bees are readily infected by single-stranded positive sense RNA viruses. Largely dependent on the host immune response, virus infections can either remain asymptomatic or result in deformities, paralysis, or death of adults or larvae. RNA interference (RNAi) is an important antiviral defense mechanism in insects, including honey bees. Herein, we review the role of RNAi in honey bee antiviral defense and highlight some parallels between insect and mammalian immune systems. A more thorough understanding of the role of pathogens on honey bee health and the immune mechanisms bees utilize to combat infectious agents may lead to the development of strategies that enhance honey bee health and result in the discovery of additional mechanisms of immunity in metazoans. PMID:26798663

  6. Antiviral activity of Solanum paniculatum extract and constituents.

    PubMed

    Valadares, Ydia M; Brandão'a, Geraldo C; Kroon, Erna G; Filho, José D Souza; Oliveira, Alaņņde B; Braga, Fernão C

    2009-01-01

    Solanum species are traditionally employed as antiherpes and anticancer agents in different countries. S. paniculatum has widespread ethnomedical uses in Brazil, including the treatment of viral infections. This paper reports on the isolation of neotigogenin (1) and the new compound delta25(27)-tigogenin-3-O-beta-D-glucopyranoside (2), obtained as a mixture of R and S diastereoisomers at C22 from an ethanol extract of S. paniculatum leaves, along with the determination of their cytotoxicity against Vero cells and antiviral effect against human herpes virus type 1 (HHV-1), murine encephalomyocarditis virus (EMCv), and vaccinia virus strain Western Reserve (VACV-WR). The extract of S. paniculatum inhibited HHV-1 replication [EC50 = (298.0 +/- 11.2) microg/ml] and showed no effect on EMCv and VACV-WR. On its turn, 1 was inactive against the assayed strains but presented high cytotoxicity [CC50 = (2.03 +/- 0.03) microg/ml], whereas 2 exhibited significant antiherpes [EC50 = (170.8 +/- 1.7) microg/ml] and antivaccinia virus effects [EC50 = (177.0 +/- 3.3) microg/ml], with low cytotoxicity (CC50 > 400 microg/ml). The results corroborate Solanum paniculatum as a source of cytotoxic and antiviral compounds. PMID:20158151

  7. Flexibility as a Strategy in Nucleoside Antiviral Drug Design.

    PubMed

    Peters, H L; Ku, T C; Seley-Radtke, K L

    2015-01-01

    As far back as Melville Wolfrom's acyclic sugar synthesis in the 1960's, synthesis of flexible nucleoside analogues have been an area of interest. This concept, however, went against years of enzyme-substrate binding theory. Hence, acyclic methodology in antiviral drug design did not take off until the discovery and subsequent FDA approval of such analogues as Acyclovir and Tenofovir. More recently, the observation that flexible nucleosides could overcome drug resistance spawned a renewed interest in the field of nucleoside drug design. The next generation of flexible nucleosides shifted the focus from the sugar moiety to the nucleobase. With analogues such as Seley-Radtke "fleximers", and Herdewijn's C5 substituted 2'-deoxyuridines, the area of base flexibility has seen great expansion. More recently, the marriage of these methodologies with acyclic sugars has resulted in a series of acyclic flex-base nucleosides with a wide range of antiviral properties, including some of the first to exhibit anti-coronavirus activity. Various flexible nucleosides and their corresponding nucleobases will be compared in this review. PMID:26282942

  8. Autophagy and selective deployment of Atg proteins in antiviral defense

    PubMed Central

    2013-01-01

    Autophagy is an evolutionarily ancient process eukaryotic cells utilize to remove and recycle intracellular material in order to maintain cellular homeostasis. In metazoans, the autophagy machinery not only functions in this capacity but also has evolved to perform a diverse repertoire of intracellular transport and regulatory functions. In response to virus infections, the autophagy machinery degrades viruses, shuttles viral pathogen-associated molecular patterns to endosomes containing Toll-like receptors, facilitates viral-antigen processing for major histocompatibility complex presentation and transports antiviral proteins to viral replication sites. This is accomplished through canonical autophagy or through processes involving distinct subsets of the autophagy-related genes (Atgs). Herein, we discuss how the variable components of the autophagy machinery contribute to antiviral defense and highlight three emerging themes: first, autophagy delivers viral cytosolic components to several distinct endolysosomal compartments; second, Atg proteins act alone, as subgroups or collectively; and third, the specificity of autophagy and the autophagy machinery is achieved by recognition of triggers and selective targeting by adaptors. PMID:23042773

  9. Anti-N-Methyl-D-Aspartate Receptor Antibody Mediated Neurologic Relapse Post Herpes Simplex Encephalitis: A Case Series.

    PubMed

    Geoghegan, Sarah; Walsh, Aoibhinn; King, Mary D; Lynch, Bryan; Webb, David; Twomey, Eilish; Ronan Leahy, T; Butler, Karina; Gavin, Patrick

    2016-08-01

    Despite the advent of antiviral therapy, herpes simplex encephalitis (HSE) remains a devastating condition with significant morbidity and mortality. Neurologic relapse after initial improvement is generally attributed to herpes simplex virus reactivation. In 2013, inflammation caused by anti-N-methyl-D-aspartate receptor antibodies was reported in association with cases of neurologic relapse after herpes simplex encephalitis. We present 3 such cases and discuss diagnostic and management dilemmas. PMID:27171680

  10. Chemical Space Mapping and Structure-Activity Analysis of the ChEMBL Antiviral Compound Set.

    PubMed

    Klimenko, Kyrylo; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre

    2016-08-22

    Curation, standardization and data fusion of the antiviral information present in the ChEMBL public database led to the definition of a robust data set, providing an association of antiviral compounds to seven broadly defined antiviral activity classes. Generative topographic mapping (GTM) subjected to evolutionary tuning was then used to produce maps of the antiviral chemical space, providing an optimal separation of compound families associated with the different antiviral classes. The ability to pinpoint the specific spots occupied (responsibility patterns) on a map by various classes of antiviral compounds opened the way for a GTM-supported search for privileged structural motifs, typical for each antiviral class. The privileged locations of antiviral classes were analyzed in order to highlight underlying privileged common structural motifs. Unlike in classical medicinal chemistry, where privileged structures are, almost always, predefined scaffolds, privileged structural motif detection based on GTM responsibility patterns has the decisive advantage of being able to automatically capture the nature ("resolution detail"-scaffold, detailed substructure, pharmacophore pattern, etc.) of the relevant structural motifs. Responsibility patterns were found to represent underlying structural motifs of various natures-from very fuzzy (groups of various "interchangeable" similar scaffolds), to the classical scenario in medicinal chemistry (underlying motif actually being the scaffold), to very precisely defined motifs (specifically substituted scaffolds). PMID:27410486

  11. Antiviral effect of diammonium glycyrrhizinate on cell infection by porcine parvovirus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Porcine parvovirus (PPV) can cause reproductive failure in swine resulting in economic losses to the industry. Antiviral effects of diammonium glycyrrhizinate (DG) have been reported on several animal viruses; however, to date it has yet to be tested on PPV. In this study, the antiviral activity of ...

  12. Impact of antivirals and emergence of drug resistance: HSV-2 epidemic control.

    PubMed

    Gershengorn, H B; Blower, S M

    2000-03-01

    Genital herpes, caused by herpes simplex virus type-2 (HSV-2), affects more people world-wide than any other sexually transmitted disease (STD). Antivirals are effective in decreasing the duration of symptoms and in reducing viral shedding; however, currently antiviral usage is extremely low. Increased usage of antivirals would have a beneficial epidemic-level effect (due to the decreased transmission of drug-sensitive strains) as well as potentially a detrimental epidemic-level effect (if drug-resistant strains emerge and are transmitted). Previously, we have developed a mathematical model that we have used to predict (with a degree of uncertainty) the beneficial and the potential detrimental epidemic-level effects of increased antiviral usage. Here, we use our model to make further predictions about the impact of increasing antiviral usage. We calculate the effect, on individual patients, of antiviral usage in terms of: (1) the decrease in the average number of infectious days per year and (2) an individual's lifetime probability of acquiring permanent drug resistance. We also use our model: (1) to determine the probability of eliminating herpes by antivirals and (2) to quantify the effect of increasing antiviral usage on decreasing HSV-2 prevalence. Our results show that theoretically it would be possible to eliminate herpes epidemics by using a drug that does not cure. PMID:10763542

  13. Respiratory Viral Testing and Influenza Antiviral Prescriptions During Hospitalization for Acute Respiratory Illnesses

    PubMed Central

    Rolfes, Melissa A.; Yousey-Hindes, Kimberly M.; Meek, James I.; Fry, Alicia M.; Chaves, Sandra S.

    2016-01-01

    We examined respiratory viral testing and influenza antiviral prescriptions at a US tertiary care hospital. During the 2010–11 to 2012–13 influenza seasons, antiviral prescriptions among acute respiratory illness (ARI) hospitalizations were associated with viral testing (rate ratio = 15.0), and empiric prescriptions were rare (<1% of ARI hospitalizations). PMID:26885545

  14. Hypericum in Infection: Identification of Anti-viral and Anti-inflammatory Constituents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Iowa Center for Research on Botanical Dietary Supplements seeks to optimize Echinacea, Hypericum and Prunella supplements for human-health benefit, focusing on anti-viral, anti-inflammatory and anti-pain effects. This paper reports on ongoing anti-viral and anti-inflammatory studies on Hypericu...

  15. Synthesis of phosphonate analogues of the antiviral cyclopropane nucleoside A-5021.

    PubMed

    Onishi, Tomoyuki; Sekiyama, Takaaki; Tsuji, Takashi

    2005-01-01

    A series of phosphonate analogues of the antiviral cyclopropane nucleoside A-5021 were synthesized from (1S*, 7R*)-3,5-dioxa-4,4-diphenylbicyclo[5. 1.0]octane-l-methanol by a 10-step process. In contrast to the potent antiherpetic activity of A-5021, they were all devoid of antiviral activity. PMID:16270661

  16. Systematic identification of type I and type II interferon-induced antiviral factors.

    PubMed

    Liu, Su-Yang; Sanchez, David Jesse; Aliyari, Roghiyh; Lu, Sun; Cheng, Genhong

    2012-03-13

    Type I and type II interferons (IFNs) are cytokines that establish the cellular antiviral state through the induction of IFN-stimulated genes (ISGs). We sought to understand the basis of the antiviral activity induced by type I and II IFNs in relation to the functions of their ISGs. Based on gene expression studies, we systematically identified antiviral ISGs by performing blinded, functional screens on 288 type I and type II ISGs. We assessed and validated the antiviral activity of these ISGs against an RNA virus, vesicular stomatitis virus (VSV), and a DNA virus, murine gammaherpes virus (MHV-68). Overall, we identified 34 ISGs that elicited an antiviral effect on the replication of either one or both viruses. Fourteen ISGs have uncharacterized antiviral functions. We further defined ISGs that affect critical life-cycle processes in expression of VSV protein and MHV-68 immediate-early genes. Two previously undescribed antiviral ISGs, TAP1 and BMP2, were further validated. TAP1-deficient fibroblasts were more susceptible to VSV infection but less so to MHV-68 infection. On the other hand, exogenous BMP2 inhibits MHV-68 lytic growth but did not affect VSV growth. These results delineate common and distinct sets of type I and type II IFN-induced genes as well as identify unique ISGs that have either broad or specific antiviral effects on these viruses. PMID:22371602

  17. Anti-sulfotyrosine antibodies

    DOEpatents

    Bertozzi, Carolyn R.; Kehoe, John; Bradbury, Andrew M.

    2009-09-15

    The invention provides anti-sulfotyrosine specific antibodies capable of detecting and isolating polypeptides that are tyrosine-sulfated. The sulfotyrosine antibodies and antibody fragments of the invention may be used to discriminate between the non-sulfated and sulfated forms of such proteins, using any number of immunological assays, such ELISAs, immunoblots, Western Blots, immunoprecipitations, and the like. Using a phage-display system, single chain antibodies (scFvs) were generated and screened against tyrosine-sulfated synthetic peptide antigens, resulting in the isolation of scFvs that specifically recognize sulfotyrosine-containing peptides and/or demonstrate sulfotyrosine-specific binding in tyrosine sulfated proteins. The VH and VL genes from one such sulfotyrosine-specific scFv were employed to generate a full length, sulfotyrosine-specific immunoglobulin.

  18. HIV Antibody Test

    MedlinePlus

    ... despite the fact that the person is infected ( false negative ). If an HIV antibody test is negative ... infection (around 28 days) and may give a false-negative result. ^ Back to top Is there anything ...

  19. Platelet associated antibodies

    MedlinePlus

    ... of the following: For unknown reasons (idiopathic thrombocytopenic purpura, or ITP ) Side effect of certain drugs such ... 2012:chap 134. Read More Antibody Idiopathic thrombocytopenic purpura (ITP) Platelet count Serum globulin electrophoresis Thrombocytopenia Update ...

  20. Spectroscopic investigation of herpes simplex viruses infected cells and their response to antiviral therapy

    NASA Astrophysics Data System (ADS)

    Erukhimovitch, Vitaly; Talyshinsky, Marina; Souprun, Yelena; Huleihel, Mahmoud

    2006-07-01

    In the present study, we used microscopic Fourier transform infrared spectroscopy (FTIR) to evaluate the antiviral activity of known antiviral agents against herpes viruses. The antiviral activity of Caffeic acid phenethyl ester (CAPE) (which is an active compound of propolis) against herpes simplex type 1 and 2 was examined in cell culture. The advantage of microscopic FTIR spectroscopy over conventional FTIR spectroscopy is that it facilitates inspection of restricted regions of cell culture or tissue. Our results showed significant spectral differences at early stages of infection between infected and non-infected cells, and between infected cells treated with the used antiviral agent and those not treated. In infected cells, there was a considerable increase in phosphate levels. Our results show that treatment with used antiviral agent considerably abolish the spectral changes induced by the viral infection. In addition, it is possible to track by FTIR microscopy method the deferential effect of various doses of the drug.

  1. Antiviral activity of glycoprotein GP-1 isolated from Streptomyces kanasensis ZX01.

    PubMed

    Zhang, Guoqiang; Feng, Juntao; Han, Lirong; Zhang, Xing

    2016-07-01

    Plant virus diseases have seriously damaged global food security. However, current antiviral agents are not efficient enough for the requirement of agriculture production. So, developing new efficient and nontoxic antiviral agents is imperative. GP-1, from Streptomyces kanasensis ZX01, is a new antiviral glycoprotein, of which the antiviral activity and the mode of action against Tobacco mosaic virus (TMV) were investigated in this study. The results showed that GP-1 could fracture TMV particles, and the infection and accumulation of TMV in host plants were inhibited. Moreover, GP-1 could induce systematic resistance against TMV in the host, according to the results of activities of defensive enzymes increasing, MDA decreasing and overexpression of pathogenesis-related proteins. Furthermore, GP-1 could promote growth of the host plant. In conclusion, GP-1 showed the ability to be developed as an efficient antiviral agent and a fertilizer for agriculture. PMID:27091231

  2. Engineered mammalian RNAi can elicit antiviral protection that negates the requirement for the interferon response

    PubMed Central

    Bouhaddou, Mehdi; Sachs, David; tenOever, Benjamin Robert

    2015-01-01

    SUMMARY While the intrinsic antiviral cell defenses of many kingdoms utilize pathogen-specific small RNAs, the antiviral response of chordates is primarily protein-based and not uniquely tailored to the incoming microbe. In an effort to explain this evolutionary bifurcation, we determined whether antiviral RNA interference (RNAi) was sufficient to replace the protein-based type I interferon (IFN-I) system of mammals. To this end, we recreated an RNAi-like response in mammals and determined its effectiveness to combat influenza A virus in vivo in the presence and absence of the canonical IFN-I system. Mammalian antiviral RNAi, elicited by either host- or virus-derived small RNAs, effectively attenuated virus and prevented disease independently of the innate immune response. These data find that chordates could have utilized RNAi as their primary antiviral cell defense and suggest that the IFN-I system emerged as a result of natural selection imposed by ancient pathogens. PMID:26549455

  3. Conjugation of a nonspecific antiviral sapogenin with a specific HIV fusion inhibitor: a promising strategy for discovering new antiviral therapeutics.

    PubMed

    Wang, Chao; Lu, Lu; Na, Heya; Li, Xiangpeng; Wang, Qian; Jiang, Xifeng; Xu, Xiaoyu; Yu, Fei; Zhang, Tianhong; Li, Jinglai; Zhang, Zhenqing; Zheng, Baohua; Liang, Guodong; Cai, Lifeng; Jiang, Shibo; Liu, Keliang

    2014-09-11

    Triterpene saponins are a major group of active components in natural products with nonspecific antiviral activities, while T20 peptide (enfuvirtide), which contains a helix zone-binding domain (HBD), is a gp41-specific HIV-1 fusion inhibitor. In this paper, we report the design, synthesis, and structure-activity relationship (SAR) of a group of hybrid molecules in which bioactive triterpene sapogenins were covalently attached to the HBD-containing peptides via click chemistry. We found that either the triterpenes or peptide part alone showed weak activity against HIV-1 Env-mediated cell-cell fusion, while the hybrids generated a strong cooperative effect. Among them, P26-BApc exhibited anti-HIV-1 activity against both T20-sensitive and -resistant HIV-1 strains and improved pharmacokinetic properties. These results suggest that this scaffold design is a promising strategy for developing new HIV-1 fusion inhibitors and possibly novel antiviral therapeutics against other viruses with class I fusion proteins. PMID:25156906

  4. Monoclonal antibodies and cancer therapy

    SciTech Connect

    Reisfeld, R.A.; Sell, S.

    1985-01-01

    These proceedings collect papers on the subject of monoclonal antibodies. Topics include: Monoclonal antibody, biochemical effects and cancer therapeutic potential of tunicamycin, use of monoclonal antibodies for detection of lymph node metastases, active specific immunotherapy, and applications of monoclonal antibodies to investigations of growth factors.

  5. The Complexity of a Dengue Vaccine: A Review of the Human Antibody Response

    PubMed Central

    Flipse, Jacky; Smit, Jolanda M.

    2015-01-01

    Dengue is the most prevalent mosquito-borne viral disease worldwide. Yet, there are no vaccines or specific antivirals available to prevent or treat the disease. Several dengue vaccines are currently in clinical or preclinical stages. The most advanced vaccine is the chimeric tetravalent CYD-TDV vaccine of Sanofi Pasteur. This vaccine has recently cleared Phase III, and efficacy results have been published. Excellent tetravalent seroconversion was seen, yet the protective efficacy against infection was surprisingly low. Here, we will describe the complicating factors involved in the generation of a safe and efficacious dengue vaccine. Furthermore, we will discuss the human antibody responses during infection, including the epitopes targeted in humans. Also, we will discuss the current understanding of the assays used to evaluate antibody response. We hope this review will aid future dengue vaccine development as well as fundamental research related to the phenomenon of antibody-dependent enhancement of dengue virus infection. PMID:26065421

  6. Sensitive radioimmunoassay for detection of antibodies to recombinant human interferon-alpha A

    SciTech Connect

    Palleroni, A.V.; Trown, P.W.

    1986-12-01

    A radioimmunoassay (RIA) for the detection of antibodies to recombinant human leukocyte interferon A (rHuIFN-alpha A) in human serum has been developed and validated against the standard antiviral neutralization bioassay (ANB). The assay measures the binding of /sup 125/I-labeled rHuIFN-alpha A to immunoglobulins in serum. Aliquots of patients' sera are incubated with /sup 125/I-rHuIFN-alpha A and the complexes formed between antibodies in the sera and the /sup 125/I-rHuIFN-alpha A are precipitated with goat anti-human IgG serum. The radioactivity in the immune precipitate is a measure of the quantity of antibody (if present) in the serum. The sensitivity of this RIA is 5 ng of IgG/ml of serum.

  7. The Complexity of a Dengue Vaccine: A Review of the Human Antibody Response.

    PubMed

    Flipse, Jacky; Smit, Jolanda M

    2015-01-01

    Dengue is the most prevalent mosquito-borne viral disease worldwide. Yet, there are no vaccines or specific antivirals available to prevent or treat the disease. Several dengue vaccines are currently in clinical or preclinical stages. The most advanced vaccine is the chimeric tetravalent CYD-TDV vaccine of Sanofi Pasteur. This vaccine has recently cleared Phase III, and efficacy results have been published. Excellent tetravalent seroconversion was seen, yet the protective efficacy against infection was surprisingly low. Here, we will describe the complicating factors involved in the generation of a safe and efficacious dengue vaccine. Furthermore, we will discuss the human antibody responses during infection, including the epitopes targeted in humans. Also, we will discuss the current understanding of the assays used to evaluate antibody response. We hope this review will aid future dengue vaccine development as well as fundamental research related to the phenomenon of antibody-dependent enhancement of dengue virus infection. PMID:26065421

  8. Anti-Erythropoietin Antibody Associated Pure Red Cell Aplasia Resolved after Liver Transplantation

    PubMed Central

    Hung, Annie K.; Guy, Jennifer; Behler, Caroline M.; Lee, Eugene E.

    2015-01-01

    Patients undergoing antiviral therapy for chronic hepatitis C often develop anemia secondary to ribavirin and interferon. Recombinant erythropoietin has been used to improve anemia associated with antiviral therapy and to minimize dose reductions, which are associated with decreased rates of sustained virologic response. A rare potential side effect of recombinant erythropoietin is anti-erythropoietin antibody associated pure red cell aplasia. In chronic kidney disease patients with this entity, there have been good outcomes associated with renal transplant and subsequent immunosuppression. In this case, a chronic liver disease patient developed anti-erythropoietin associated pure red cell aplasia and recovered after liver transplantation and immunosuppression. It is unclear whether it is the transplanted organ, the subsequent immunosuppression, or the combination that contributed to the response. In conclusion, anti-erythropoietin associated pure red cell aplasia is a serious complication of erythropoietin therapy, but this entity should not be considered a contraindication for solid organ transplantation. PMID:26240773

  9. Antiviral activity of 5-ethyl-2'-deoxyuridine against herpes simplex viruses in cell culture, mice, and guinea pigs.

    PubMed Central

    Schinazi, R F; Scott, R T; Peters, J; Rice, V; Nahmias, A J

    1985-01-01

    The susceptibility of 3 laboratory strains and 24 clinical isolates of herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) to 5-ethyl-2'-deoxyuridine was determined in plaque reduction assays in Vero cells. The median effective doses were 8.6 and 7.8 microM, respectively. The drug was less potent than acyclovir and other related antiviral drugs, but it had a high therapeutic index against both HSV-1 and HSV-2. Drug-resistant viruses were readily produced in cell culture. These variants were cross-resistant to acyclovir, 2'-fluoro-5-iodoaracytosine, and 2'-fluoro-5-methylarauracil but were susceptible to vidarabine or phosphonoformate. These findings confirm that the selective antiviral activity of 5-ethyl-2'-deoxyuridine is mediated by the virus-induced thymidine kinase. Oral or intraperitoneal administration of the drug at nontoxic doses was ineffective in protecting mice against intracerebral challenge with virus. Using implanted osmotic minipumps or coadministering the drug with dimethyl sulfoxide failed to decrease the mortality rate. In guinea pigs infected genitally with HSV-2, topical drug treatment was more effective than placebo in reducing lesion severity and other clinical and virological variables. These effects were noted whether the drug treatment was initiated 3 or 24 h after infection (ascertained serologically). Drug-treated animals had a significantly lower herpes antibody titer than did placebo-treated guinea pigs, suggesting that the drug can also reduce the viral antigen load. In this model, the drug appeared to be as effective as topical phosphonoformate or acyclovir. PMID:3000291

  10. Antiviral protection following immunization correlates with humoral but not cell-mediated immunity.

    PubMed

    Panchanathan, Vijay; Chaudhri, Geeta; Karupiah, Gunasegaran

    2010-01-01

    Smallpox was a deadly disease when it was rife yet despite its eradication more than 30 years ago, the possibility of accidental or intentional release has driven research in search of better definitions of correlates of protective immunity. Mousepox, a disease caused by ectromelia virus (ECTV), is arguably one of the best surrogate small animal models for smallpox. Correlates of protection in mousepox are well defined during primary infection, whereas those in a secondary infection, which have definite relevance to vaccination strategies, are less well understood. We previously established that neutralizing antibody (Ab), which is generated far more rapidly during a secondary infection compared with a primary infection, has a key role during a secondary virus challenge. In this study, we show that the route of immunization or the use of homologous or heterologous virus vaccines for immunization does not influence the ability of mice to control high-dose virulent ECTV challenge or to mount a substantial secondary neutralizing Ab response. In contrast, the recall cytotoxic T lymphocyte (CTL) responses generated under these regimes of immunization were varied and did not correlate with virus control. Furthermore, unlike the recall Ab response that was generated rapidly, the kinetics of the secondary antiviral CTL response was no different to a primary infection and peaked only at day 8 post-challenge. This finding further underscores the importance of Ab in conferring protection during secondary poxvirus infection. This information could potentially prove useful in the design of safer and more efficacious vaccines against poxviruses or other diseases using poxvirus vectors. PMID:20066003

  11. 6-[2-(Phosphonomethoxy)alkoxy]pyrimidines with antiviral activity.

    PubMed

    Holý, Antonín; Votruba, Ivan; Masojídková, Milena; Andrei, Graciela; Snoeck, Robert; Naesens, Lieve; De Clercq, Erik; Balzarini, Jan

    2002-04-25

    6-Hydroxypyrimidines substituted at positions 2 and 4 by hydrogen, methyl, amino, cyclopropylamino, dimethylamino, methylsulfanyl, or hydroxyl group afford by the reaction with diisopropyl 2-(chloroethoxy)methylphosphonate in the presence of NaH, Cs(2)CO(3), or DBU a mixture of N(1)- and O(6)-[2-(diisopropylphosphorylmethoxy)ethyl] isomers which were converted to the free phosphonic acids by treatment with bromotrimethylsilane followed by hydrolysis. Analogously, 2,4-diamino-6-hydroxypyrimidine gave on reaction with [(R)- and (S)-2-(diisopropylphosphorylmethoxy)propyl] tosylate, followed by deprotection, the enantiomeric 6-[2-(phosphonomethoxy)propoxy]pyrimidines. 2,4-Diamino-6-sulfanylpyrimidine gave, on treatment with diisopropyl 2-(chloroethoxy)methylphosphonate in the presence of NaH and subsequent deprotection, 2,4-diamino-6-[[2-(phosphonomethoxy)ethyl]sulfanyl]pyrimidine. 2-Amino-4-hydroxy-6-[2-(phosphonomethoxy)ethyl]pyrimidine was obtained from the appropriate 2-amino-4-chloropyrimidine derivative by alkaline hydrolysis and ester cleavage. Direct alkylation of 2-amino-4,6-dihydroxypyrimidine afforded a mixture of 2-amino-4,6-bis[2-(phosphonomethoxy)ethyl]- and 2-amino-1,4-bis[2-(phosphonomethoxy)ethyl]pyrimidine. None of the N(1)-[2-(phosphonomethoxy)ethyl] isomers exhibited any antiviral activity against DNA viruses or RNA viruses tested in vitro. On the contrary, the O(6)-isomers, namely the compounds derived from 2,4-diamino-, 2-amino-4-hydroxy-, or 2-amino-4-[2-(phosphonomethoxy)ethoxy]-6-hydroxypyrimidine, inhibited the replication of herpes viruses [herpes simplex type 1 (HSV-1) and type 2 (HSV-2), varicella-zoster virus (VZV), and cytomegalovirus (CMV)] and retroviruses [Moloney sarcoma virus (MSV) and human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2)], their activity being most pronounced against the latter. The antiviral activity was lower if the oxygen at the position 6 was replaced by a sulfur atom, as in 2,4-diamino-6

  12. Antinuclear antibodies in mice

    PubMed Central

    Teague, P. O.; Friou, G. J.

    1969-01-01

    Seven-week-old and 16-week-old A/Jax mice were injected with viable spleen cells or homogenates of spleen cells obtained from older syngeneic mice which either had autoimmune anti-deoxyribonucleoprotein (DNP) antibody in their sera or lacked this activity. None of the 7-week-old recipients developed detectable anti-DNP antibody. However, most of the animals in the 16-week-old group developed this autoantibody. The viability of the cells and the presence of or absence of anti-DNP antibody in the donor's sera did not appear to influence the autoimmune response of these recipients. When viable thymus cells which were obtained from young A/Jax mice were transferred to groups of older syngeneic animals that had developed anti-DNP antibody spontaneously, the anti-DNP decreased or disappeared from the sera of most recipients. Untreated controls did not show this variation. When 36-week-old A/Jax mice which lacked anti-DNP antibody were injected with thymus or spleen cells obtained from young donors, none of the recipients or untreated controls developed anti-DNP antibody. After specific immunization with DNP, however, the control animals began to produce autoimmune anti-DNP antibody while the animals treated with thymus or spleen cells remained unresponsive. These observations support the hypothesis that in A/Jax mice: (1) autoimmunity to DNP may result from failure of normal homeostasis mechanisms which allow proliferation of autoimmune cells; (2) the number of cells with autoimmune potential may increase during ageing; (3) the efficiency of the homeostasis system may decrease during ageing as the result of microbial or genetic factors; and (4) cells which participate in homeostasis are found in the thymus and spleen of young mice and may be the thymus dependent lymphocytes. PMID:5307745

  13. Clearance of persistent hepatitis C virus infection in humanized mice using a claudin-1-targeting monoclonal antibody.

    PubMed

    Mailly, Laurent; Xiao, Fei; Lupberger, Joachim; Wilson, Garrick K; Aubert, Philippe; Duong, François H T; Calabrese, Diego; Leboeuf, Céline; Fofana, Isabel; Thumann, Christine; Bandiera, Simonetta; Lütgehetmann, Marc; Volz, Tassilo; Davis, Christopher; Harris, Helen J; Mee, Christopher J; Girardi, Erika; Chane-Woon-Ming, Béatrice; Ericsson, Maria; Fletcher, Nicola; Bartenschlager, Ralf; Pessaux, Patrick; Vercauteren, Koen; Meuleman, Philip; Villa, Pascal; Kaderali, Lars; Pfeffer, Sébastien; Heim, Markus H; Neunlist, Michel; Zeisel, Mirjam B; Dandri, Maura; McKeating, Jane A; Robinet, Eric; Baumert, Thomas F

    2015-05-01

    Hepatitis C virus (HCV) infection is a leading cause of liver cirrhosis and cancer. Cell entry of HCV and other pathogens is mediated by tight junction (TJ) proteins, but successful therapeutic targeting of TJ proteins has not been reported yet. Using a human liver-chimeric mouse model, we show that a monoclonal antibody specific for the TJ protein claudin-1 (ref. 7) eliminates chronic HCV infection without detectable toxicity. This antibody inhibits HCV entry, cell-cell transmission and virus-induced signaling events. Antibody treatment reduces the number of HCV-infected hepatocytes in vivo, highlighting the need for de novo infection by means of host entry factors to maintain chronic infection. In summary, we demonstrate that an antibody targeting a virus receptor can cure chronic viral infection and uncover TJ proteins as targets for antiviral therapy. PMID:25798937

  14. Delivery of suramin as an antiviral agent through liposomal systems.

    PubMed

    Mastrangelo, Eloise; Mazzitelli, Stefania; Fabbri, Jacopo; Rohayem, Jacques; Ruokolainen, Janne; Nykänen, Antti; Milani, Mario; Pezzullo, Margherita; Nastruzzi, Claudio; Bolognesi, Martino

    2014-05-01

    Norovirus RNA-dependent RNA polymerase (RdRp) is a promising target enzyme for the development of new antiviral drugs. Starting from the crystal structure of norovirus RdRp, we had previously performed an in silico docking search using a library of low-molecular-weight compounds that enabled us to select molecules with predicted enzyme inhibitory activity. Among these, the polysulfonated naphthylurea suramin proved to inhibit in vitro both murine and human norovirus polymerases, with IC50 values in the low micromolar range. The negatively charged inhibitor, however, displayed poor cell permeability in cell-based experiments. Therefore, we produced different suramin-loaded liposome formulations and evaluated their activities in cell-based assays using murine norovirus cultivated in RAW 264.7 macrophages, as a model for norovirus genus. The results obtained show that suramin, when delivered through liposomes, can effectively inhibit murine norovirus replication. PMID:24616282

  15. Hepatitis C Virus. Strategies to Evade Antiviral Responses

    PubMed Central

    Gokhale, Nandan S.; Vazquez, Christine; Horner, Stacy M.

    2015-01-01

    Summary Hepatitis C virus (HCV) causes chronic liver disease and poses a major clinical and economic burden worldwide. HCV is an RNA virus that is sensed as non-self in the infected liver by host pattern recognition receptors, triggering downstream signaling to interferons (IFNs). The type III IFNs play an important role in immunity to HCV, and human genetic variation in their gene loci is associated with differential HCV infection outcomes. HCV evades host antiviral innate immune responses to mediate a persistent infection in the liver. This review focuses on anti-HCV innate immune sensing, innate signaling and effectors, and the processes and proteins used by HCV to evade and regulate host innate immunity. PMID:25983854

  16. Regulation of antiviral T cell responses by type I interferons.

    PubMed

    Crouse, Josh; Kalinke, Ulrich; Oxenius, Annette

    2015-04-01

    Type I interferons (IFNs) are pro-inflammatory cytokines that are rapidly induced in different cell types during viral infections. The consequences of type I IFN signalling include direct antiviral activity, innate immune cell activation and regulation of adaptive immune responses. In this Review, we discuss recent conceptual advances in our understanding of indirect and direct regulation of T cell immunity by type I IFNs, which can either promote or inhibit T cell activation, proliferation, differentiation and survival. This regulation depends, to a large extent, on the timing of type I IFN exposure relative to T cell receptor signalling. Type I IFNs also provide activated T cells with resistance to natural killer cell-mediated elimination. PMID:25790790

  17. Orthopoxvirus targets for the development of new antiviral agents

    PubMed Central

    Prichard, Mark N.; Kern, Earl R.

    2013-01-01

    Investments in the development of new drugs for orthopoxvirus infections have fostered new avenues of research, provided an improved understanding of orthopoxvirus biology and yielded new therapies that are currently progressing through clinical trials. These broad-based efforts have also resulted in the identification of new inhibitors of orthopoxvirus replication that target many different stages of viral replication cycle. This review will discuss progress in the development of new anti-poxvirus drugs and the identification of new molecular targets that can be exploited for the development of new inhibitors. The prototype of the orthopoxvirus group is vaccinia virus and its replication cycle will be discussed in detail noting specific viral functions and their associated gene products that have the potential to serve as new targets for drug development. Progress that has been achieved in recent years should yield new drugs for the treatment of these infections and might also reveal new approaches for antiviral drug development with other viruses. PMID:22406470

  18. Antiviral Strategies Based on Lethal Mutagenesis and Error Threshold.

    PubMed

    Perales, Celia; Domingo, Esteban

    2016-01-01

    The concept of error threshold derived from quasispecies theory is at the basis of lethal mutagenesis, a new antiviral strategy based on the increase of virus mutation rate above an extinction threshold. Research on this strategy is justified by several inhibitor-escape routes that viruses utilize to ensure their survival. Successive steps in the transition from an organized viral quasispecies into loss of biologically meaningful genomic sequences are dissected. The possible connections between theoretical models and experimental observations on lethal mutagenesis are reviewed. The possibility of using combination of virus-specific mutagenic nucleotide analogues and broad-spectrum, non-mutagenic inhibitors is evaluated. We emphasize the power that quasispecies theory has had to stimulate exploration of new means to combat pathogenic viruses. PMID:26294225

  19. Total Synthesis of the Antiviral Natural Product Houttuynoid B.

    PubMed

    Kerl, Thomas; Berger, Florian; Schmalz, Hans-Günther

    2016-02-24

    The first total synthesis of houttuynoid B, a powerful antiviral flavonoid glycoside from the Chinese plant Houttuynia cordata, is described. In a key step, a Baker-Venkataraman rearrangement employing an already glycosylated substrate was used to efficiently set up the fully functionalized carbon skeleton. The required benzofuran building block was prepared through a domino Sonogashira coupling/5-endo-dig cyclization and converted into a stable 1-hydroxybenzotriazole-derived active ester prior to linking with a galactosylated hydroxyacetophenone unit. The elaborated synthesis requires only nine steps (11 % overall yield) along the longest linear sequence and paves the way for the preparation of structurally related compounds for further biological evaluation. PMID:26748612

  20. Type I Interferons in Newborns-Neurotoxicity versus Antiviral Defense.

    PubMed

    Bogunovic, Dusan

    2016-01-01

    In most children and adults, primary infection with herpes simplex virus 1 (HSV-1) is asymptomatic. However, very rarely (incidence of 1 in 1,000,000), it can cause herpes simplex encephalitis (HSE). HSE also occurs in infants but with a much starker incidence of one in three. This age difference in susceptibility to HSV-1-caused HSE is not well understood. In a recent article in mBio, authors have identified the choroid plexus as the anatomical site of robust HSV-1 replication in the brain. They point to low levels of type I interferon (IFN) receptor as causal of the lack of HSV-1 replication control in neonates, in contrast to adults. Here, I discuss these findings in the context of human genetic evidence. I point to the balancing act of type I IFN acting as a neurotoxin and an antiviral agent, an evolutionary choice of a lesser evil. PMID:27190218

  1. Recent Advances in Antiviral Therapy for Chronic Hepatitis C

    PubMed Central

    Tamori, Akihiro; Enomoto, Masaru; Kawada, Norifumi

    2016-01-01

    Hepatitis C virus (HCV) infection is a major worldwide health problem. Chronic infection induces continuous inflammation in the liver, progression of hepatic fibrosis, eventual cirrhosis, and possible hepatocellular carcinoma. Eradication of the virus is one of the most important treatment aims. A number of promising new direct-acting antivirals (DAAs) have been developed over the past 10 years. Due to their increased efficacy, safety, and tolerability, interferon-free oral therapies with DAAs have been approved for patients with HCV, including those with cirrhosis. This review introduces the characteristics and results of recent clinical trials of several DAAs: NS3/4A protease inhibitors, NS5A inhibitors, and NS5B inhibitors. DAA treatment failure and prognosis after DAA therapy are also discussed. PMID:27022210

  2. DOCK8 regulates lymphocyte shape integrity for skin antiviral immunity

    PubMed Central

    Zhang, Qian; Dove, Christopher G.; Hor, Jyh Liang; Murdock, Heardley M.; Strauss-Albee, Dara M.; Garcia, Jordan A.; Mandl, Judith N.; Grodick, Rachael A.; Jing, Huie; Chandler-Brown, Devon B.; Lenardo, Timothy E.; Crawford, Greg; Matthews, Helen F.; Freeman, Alexandra F.; Cornall, Richard J.; Germain, Ronald N.

    2014-01-01

    DOCK8 mutations result in an inherited combined immunodeficiency characterized by increased susceptibility to skin and other infections. We show that when DOCK8-deficient T and NK cells migrate through confined spaces, they develop cell shape and nuclear deformation abnormalities that do not impair chemotaxis but contribute to a distinct form of catastrophic cell death we term cytothripsis. Such defects arise during lymphocyte migration in collagen-dense tissues when DOCK8, through CDC42 and p21-activated kinase (PAK), is unavailable to coordinate cytoskeletal structures. Cytothripsis of DOCK8-deficient cells prevents the generation of long-lived skin-resident memory CD8 T cells, which in turn impairs control of herpesvirus skin infections. Our results establish that DOCK8-regulated shape integrity of lymphocytes prevents cytothripsis and promotes antiviral immunity in the skin. PMID:25422492

  3. DOCK8 regulates lymphocyte shape integrity for skin antiviral immunity.

    PubMed

    Zhang, Qian; Dove, Christopher G; Hor, Jyh Liang; Murdock, Heardley M; Strauss-Albee, Dara M; Garcia, Jordan A; Mandl, Judith N; Grodick, Rachael A; Jing, Huie; Chandler-Brown, Devon B; Lenardo, Timothy E; Crawford, Greg; Matthews, Helen F; Freeman, Alexandra F; Cornall, Richard J; Germain, Ronald N; Mueller, Scott N; Su, Helen C

    2014-12-15

    DOCK8 mutations result in an inherited combined immunodeficiency characterized by increased susceptibility to skin and other infections. We show that when DOCK8-deficient T and NK cells migrate through confined spaces, they develop cell shape and nuclear deformation abnormalities that do not impair chemotaxis but contribute to a distinct form of catastrophic cell death we term cytothripsis. Such defects arise during lymphocyte migration in collagen-dense tissues when DOCK8, through CDC42 and p21-activated kinase (PAK), is unavailable to coordinate cytoskeletal structures. Cytothripsis of DOCK8-deficient cells prevents the generation of long-lived skin-resident memory CD8 T cells, which in turn impairs control of herpesvirus skin infections. Our results establish that DOCK8-regulated shape integrity of lymphocytes prevents cytothripsis and promotes antiviral immunity in the skin. PMID:25422492

  4. Type I Interferons in Newborns—Neurotoxicity versus Antiviral Defense

    PubMed Central

    2016-01-01

    ABSTRACT In most children and adults, primary infection with herpes simplex virus 1 (HSV-1) is asymptomatic. However, very rarely (incidence of 1 in 1,000,000), it can cause herpes simplex encephalitis (HSE). HSE also occurs in infants but with a much starker incidence of one in three. This age difference in susceptibility to HSV-1-caused HSE is not well understood. In a recent article in mBio, authors have identified the choroid plexus as the anatomical site of robust HSV-1 replication in the brain. They point to low levels of type I interferon (IFN) receptor as causal of the lack of HSV-1 replication control in neonates, in contrast to adults. Here, I discuss these findings in the context of human genetic evidence. I point to the balancing act of type I IFN acting as a neurotoxin and an antiviral agent, an evolutionary choice of a lesser evil. PMID:27190218

  5. Antiviral Activity of Some Plants Used in Nepalese Traditional Medicine

    PubMed Central

    Rajbhandari, M.; Mentel, R.; Jha, P. K.; Chaudhary, R. P.; Bhattarai, S.; Gewali, M. B.; Karmacharya, N.; Hipper, M.

    2009-01-01

    Methanolic extracts of 41 plant species belonging to 27 families used in the traditional medicine in Nepal have been investigated for in vitro antiviral activity against Herpes simplex virus type 1 (HSV-1) and influenza virus A by dye uptake assay in the systems HSV-1/Vero cells and influenza virus A/MDCK cells. The extracts of Astilbe rivularis, Bergenia ciliata, Cassiope fastigiata and Thymus linearis showed potent anti-herpes viral activity. The extracts of Allium oreoprasum, Androsace strigilosa, Asparagus filicinus, Astilbe rivularis, Bergenia ciliata and Verbascum thapsus exhibited strong anti-influenza viral activity. Only the extracts of A. rivularis and B. ciliata demonstrated remarkable activity against both viruses. PMID:18955262

  6. Antiviral activity of squalamine: Role of electrostatic membrane binding

    NASA Astrophysics Data System (ADS)

    Beckerman, Bernard; Qu, Wei; Mishra, Abhijit; Zasloff, Michael; Wong, Gerard; Luijten, Erik

    2012-02-01

    Recent workootnotetextM. Zasloff et al., Proc. Nat. Acad. Sci. (USA) 108, 15978 (2011). has demonstrated that squalamine, a molecule found in the liver of sharks, exhibits broad-spectrum antiviral properties. It has been proposed that this activity results from the charge-density matching of squalamine and phospholipid membranes, causing squalamine to bind to membranes and displace proteins such as Rac1 that are crucial for the viral replication cycle. Here we investigate this hypothesis by numerical simulation of a coarse-grained model for the competition between Rac1 and squalamine in binding affinity to a flat lipid bilayer. We perform free-energy calculations to test the ability of squalamine to condense stacked bilayer systems and thereby displace bulkier Rac1 molecules. We directly compare our findings to small-angle x-ray scattering results for the same setup.

  7. Mucin biopolymers as broad-spectrum antiviral agents

    PubMed Central

    Lieleg, Oliver; Lieleg, Corinna; Bloom, Jesse; Buck, Christopher B.; Ribbeck, Katharina

    2012-01-01

    Mucus is a porous biopolymer matrix that coats all wet epithelia in the human body and serves as the first line of defense against many pathogenic bacteria and viruses. However, under certain conditions viruses are able to penetrate this infection barrier, which compromises the protective function of native mucus. Here, we find that isolated porcine gastric mucin polymers, key structural components of native mucus, can protect an underlying cell layer from infection by small viruses such as human papillomavirus (HPV), Merkel cell polyomavirus (MCV), or a strain of influenza A virus. Single particle analysis of virus mobility inside the mucin barrier reveals that this shielding effect is in part based on a retardation of virus diffusion inside the biopolymer matrix. Our findings suggest that purified mucins may be used as a broad-range antiviral supplement to personal hygiene products, baby formula or lubricants to support our immune system. PMID:22475261

  8. A case for developing antiviral drugs against polio.

    PubMed

    Collett, Marc S; Neyts, Johan; Modlin, John F

    2008-09-01

    Polio eradication is within sight. In bringing the world close to this ultimate goal, the Global Polio Eradication Initiative (GPEI) has relied exclusively on the live, attenuated oral poliovirus vaccine (OPV). However, as eradication nears, continued OPV use becomes less tenable due to the incidence of vaccine associated paralytic poliomyelitis (VAPP) in vaccine recipients and disease caused by circulating vaccine-derived polioviruses (cVDPVs) in contacts. Once wild poliovirus transmission has been interrupted globally, OPV use will stop. This will leave the inactivated poliovirus vaccine (IPV) as the only weapon to defend a polio-free world. Outbreaks caused by cVDPVs are expected post-OPV cessation, and accidental or deliberate releases of virus could also occur. There are serious doubts regarding the ability of IPV alone to control outbreaks. Here, we argue that antiviral drugs against poliovirus be added to the arsenal. Anti-poliovirus drugs could be used to treat the infected and protect the exposed, acting rapidly on their own to contain an outbreak and used as a complement to IPV. While there are no polio antiviral drugs today, the technological feasibility of developing such drugs and their probability of clinical success have been established by over three decades of drug development targeting the related rhinoviruses and non-polio enteroviruses (NPEVs). Because of this history, there are known compounds with anti-poliovirus activity in vitro that represent excellent starting points for polio drug development. Stakeholders must come to understand the potential public health benefits of polio drugs, the feasibility of their development, and the relatively modest costs involved. Given the timelines for eradication and those for drug development, the time for action is now. PMID:18513807

  9. TLR Ligands Induce Antiviral Responses in Chicken Macrophages

    PubMed Central

    Barjesteh, Neda; Behboudi, Shahriar; Brisbin, Jennifer T.; Villanueva, Alexander Ian; Nagy, Éva; Sharif, Shayan

    2014-01-01

    Chicken macrophages express several receptors for recognition of pathogens, including Toll-like receptors (TLRs). TLRs bind to pathogen-associated molecular patterns (PAMPs) derived from bacterial or viral pathogens leading to the activation of macrophages. Macrophages play a critical role in immunity against viruses, including influenza viruses. The present study was designed to test the hypothesis that treatment of chicken macrophages with TLR ligands reduces avian influenza replication. Furthermore, we sought to study the expression of some of the key mediators involved in the TLR-mediated antiviral responses of macrophages. Chicken macrophages were treated with the TLR2, 3, 4, 7 and 21 ligands, Pam3CSK4, poly(I:C), LPS, R848 and CpG ODN, respectively, at different doses and time points pre- and post-H4N6 avian influenza virus (AIV) infection. The results revealed that pre-treatment of macrophages with Pam3CSK4, LPS and CpG ODN reduced the replication of AIV in chicken macrophages. In addition, the relative expression of genes involved in inflammatory and antiviral responses were quantified at 3, 8 and 18 hours post-treatment with the TLR2, 4 and 21 ligands. Pam3CSK4, LPS and CpG ODN increased the expression of interleukin (IL)-1β, interferon (IFN)-γ, IFN-β and interferon regulatory factor (IFR) 7. The expression of these genes correlated with the reduction of viral replication in macrophages. These results shed light on the process of immunity to AIV in chickens. PMID:25165812

  10. Curious discoveries in antiviral drug development: the role of serendipity.

    PubMed

    De Clercq, Erik

    2015-07-01

    Antiviral drug development has often followed a curious meandrous route, guided by serendipity rather than rationality. This will be illustrated by ten examples. The polyanionic compounds (i) polyethylene alanine (PEA) and (ii) suramin were designed as an antiviral agent (PEA) or known as an antitrypanosomal agent (suramin), before they emerged as, respectively, a depilatory agent, or reverse transcriptase inhibitor. The 2',3'-dideoxynucleosides (ddNs analogues) (iii) have been (and are still) used in the "Sanger" DNA sequencing technique, although they are now commercialized as nucleoside reverse transcriptase inhibitors (NRTIs) in the treatment of HIV infections. (E)-5-(2-Bromovinyl)-2'-deoxyuridine (iv) was discovered as a selective anti-herpes simplex virus compound and is now primarily used for the treatment of varicella-zoster virus infections. The prototype of the acyclic nucleoside phosphonates (ANPs), (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine [(S)-HPMPA], (v) was never commercialized, although it gave rise to several marketed products (cidofovir, adefovir, and tenofovir). 1-[2-(Hydroxyethoxy)methyl]-6-(phenylthio)thymine (vi) and TIBO (tetrahydroimidazo[4,5,1-jk][1,4-benzodiazepin-2(1H)]-one and -thione) (vii) paved the way to a number of compounds (i.e., nevirapine, delavirdine, etravirine, and rilpivirine), which are now collectively called non-NRTIs. The bicyclam AMD3100 (viii) was originally described as an anti-HIV agent before it became later marketed as a stem cell mobilizer. The S-adenosylhomocysteine hydrolase inhibitors (ix), while active against a broad range of (-)RNA viruses and poxviruses may be particularly effective against Ebola virus, and for (x) the O-ANP derivatives, the potential application range encompasses virtually all DNA viruses. PMID:25726922

  11. Predictive factors associated with hepatitis C antiviral therapy response.

    PubMed

    Cavalcante, Lourianne Nascimento; Lyra, André Castro

    2015-06-28

    Hepatitis C virus (HCV) infection may lead to significant liver injury, and viral, environmental, host, immunologic and genetic factors may contribute to the differences in the disease expression and treatment response. In the early 2000s, dual therapy using a combination of pegylated interferon plus ribavirin (PR) became the standard of care for HCV treatment. In this PR era, predictive factors of therapy response related to virus and host have been identified. In 2010/2011, therapeutic regimens for HCV genotype 1 patients were modified, and the addition of NS3/4a protease inhibitors (boceprevir or telaprevir) to dual therapy increased the effectiveness and chances of sustained virologic response (SVR). Nevertheless, the first-generation triple therapy is associated with many adverse events, some of which are serious and associated with death, particularly in cirrhotic patients. This led to the need to identify viral and host predictive factors that might influence the SVR rate to triple therapy and avoid unnecessary exposure to these drugs. Over the past four years, hepatitis C treatment has been rapidly changing with the development of new therapies and other developments. Currently, with the more recent generations of pangenotipic antiviral therapies, there have been higher sustained virologic rates, and prognostic factors may not have the same importance and strength as before. Nonetheless, some variables may still be consistent with the low rates of non-response with regimens that include sofosbuvir, daclatasvir and ledipasvir. In this manuscript, we review the predictive factors of therapy response across the different treatment regimens over the last decade including the new antiviral drugs. PMID:26140082

  12. Loss of miR-182 affects B-cell extrafollicular antibody response.

    PubMed

    Li, Yan-Feng; Ou, Xijun; Xu, Shengli; Jin, Zi-Bing; Iwai, Naoharu; Lam, Kong-Peng

    2016-06-01

    MicroRNAs have been shown to play a role in B-cell differentiation and activation. Here, we found miR-182 to be highly induced in activated B cells. However, mice lacking miR-182 have normal B-cell and T-cell development. Interestingly, mutant mice exhibited a defective antibody response at early time-points in the immunization regimen when challenged with a T-cell-dependent antigen. Germinal centres were formed but the generation of extrafollicular plasma cells was defective in the spleens of immunized miR-182-deficient mice. Mutant mice were also not able to respond to a T-cell-independent type 2 antigen, which typically elicited an extrafollicular B-cell response. Taken together, the data indicated that miR-182 plays a critical role in driving extrafollicular B-cell antibody responses. PMID:26849109

  13. Dysbiosis-induced IL-33 contributes to impaired antiviral immunity in the genital mucosa

    PubMed Central

    Oh, Ji Eun; Kim, Byoung-Chan; Chang, Dong-Ho; Kwon, Meehyang; Lee, Sun Young; Kang, Dukjin; Kim, Jin Young; Hwang, Inhwa; Yu, Je-Wook; Nakae, Susumu

    2016-01-01

    Commensal microbiota are well known to play an important role in antiviral immunity by providing immune inductive signals; however, the consequence of dysbiosis on antiviral immunity remains unclear. We demonstrate that dysbiosis caused by oral antibiotic treatment directly impairs antiviral immunity following viral infection of the vaginal mucosa. Antibiotic-treated mice succumbed to mucosal herpes simplex virus type 2 infection more rapidly than water-fed mice, and also showed delayed viral clearance at the site of infection. However, innate immune responses, including type I IFN and proinflammatory cytokine production at infection sites, as well as induction of virus-specific CD4 and CD8 T-cell responses in draining lymph nodes, were not impaired in antibiotic-treated mice. By screening the factors controlling antiviral immunity, we found that IL-33, an alarmin released in response to tissue damage, was secreted from vaginal epithelium after the depletion of commensal microbiota. This cytokine suppresses local antiviral immunity by blocking the migration of effector T cells to the vaginal tissue, thereby inhibiting the production of IFN-γ, a critical cytokine for antiviral defense, at local infection sites. These findings provide insight into the mechanisms of homeostasis maintained by commensal bacteria, and reveal a deleterious consequence of dysbiosis in antiviral immune defense. PMID:26811463

  14. Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus

    NASA Astrophysics Data System (ADS)

    Mori, Yasutaka; Ono, Takeshi; Miyahira, Yasushi; Nguyen, Vinh Quang; Matsui, Takemi; Ishihara, Masayuki

    2013-02-01

    Silver nanoparticle (Ag NP)/chitosan (Ch) composites with antiviral activity against H1N1 influenza A virus were prepared. The Ag NP/Ch composites were obtained as yellow or brown floc-like powders following reaction at room temperature in aqueous medium. Ag NPs (3.5, 6.5, and 12.9 nm average diameters) were embedded into the chitosan matrix without aggregation or size alternation. The antiviral activity of the Ag NP/Ch composites was evaluated by comparing the TCID50 ratio of viral suspensions treated with the composites to untreated suspensions. For all sizes of Ag NPs tested, antiviral activity against H1N1 influenza A virus increased as the concentration of Ag NPs increased; chitosan alone exhibited no antiviral activity. Size dependence of the Ag NPs on antiviral activity was also observed: antiviral activity was generally stronger with smaller Ag NPs in the composites. These results indicate that Ag NP/Ch composites interacting with viruses exhibit antiviral activity.

  15. Dysbiosis-induced IL-33 contributes to impaired antiviral immunity in the genital mucosa.

    PubMed

    Oh, Ji Eun; Kim, Byoung-Chan; Chang, Dong-Ho; Kwon, Meehyang; Lee, Sun Young; Kang, Dukjin; Kim, Jin Young; Hwang, Inhwa; Yu, Je-Wook; Nakae, Susumu; Lee, Heung Kyu

    2016-02-01

    Commensal microbiota are well known to play an important role in antiviral immunity by providing immune inductive signals; however, the consequence of dysbiosis on antiviral immunity remains unclear. We demonstrate that dysbiosis caused by oral antibiotic treatment directly impairs antiviral immunity following viral infection of the vaginal mucosa. Antibiotic-treated mice succumbed to mucosal herpes simplex virus type 2 infection more rapidly than water-fed mice, and also showed delayed viral clearance at the site of infection. However, innate immune responses, including type I IFN and proinflammatory cytokine production at infection sites, as well as induction of virus-specific CD4 and CD8 T-cell responses in draining lymph nodes, were not impaired in antibiotic-treated mice. By screening the factors controlling antiviral immunity, we found that IL-33, an alarmin released in response to tissue damage, was secreted from vaginal epithelium after the depletion of commensal microbiota. This cytokine suppresses local antiviral immunity by blocking the migration of effector T cells to the vaginal tissue, thereby inhibiting the production of IFN-γ, a critical cytokine for antiviral defense, at local infection sites. These findings provide insight into the mechanisms of homeostasis maintained by commensal bacteria, and reveal a deleterious consequence of dysbiosis in antiviral immune defense. PMID:26811463

  16. Antiviral activity of ginsenosides against coxsackievirus B3, enterovirus 71, and human rhinovirus 3

    PubMed Central

    Song, Jae-Hyoung; Choi, Hwa-Jung; Song, Hyuk-Hwan; Hong, Eun-Hye; Lee, Bo-Ra; Oh, Sei-Ryang; Choi, Kwangman; Yeo, Sang-Gu; Lee, Yong-Pyo; Cho, Sungchan; Ko, Hyun-Jeong

    2014-01-01

    Background Ginsenosides are the major components responsible for the biochemical and pharmacological actions of ginseng, and have been shown to have various biological activities. In this study, we investigated the antiviral activities of seven ginsenosides [protopanaxatriol (PT) type: Re, Rf, and Rg2; protopanaxadiol (PD) type: Rb1, Rb2, Rc, and Rd)] against coxsackievirus B3 (CVB3), enterovirus 71 (EV71), and human rhinovirus 3 (HRV3). Methods Assays of antiviral activity and cytotoxicity were evaluated by the sulforhodamine B method using the cytopathic effect (CPE) reduction assay. Results The antiviral assays demonstrated that, of the seven ginsenosides, the PT-type ginsenosides (Re, Rf, and Rg2) possess significant antiviral activities against CVB3 and HRV3 at a concentration of 100 μg/mL. Among the PT-type ginsenosides, only ginsenoside Rg2 showed significant anti-EV71 activity with no cytotoxicity to cells at 100 μg/mL. The PD-type ginsenosides (Rb1, Rb2, Rc, and Rd), by contrast, did not show any significant antiviral activity against CVB3, EV71, and HRV3, and exhibited cytotoxic effects to virus-infected cells. Notably, the antiviral efficacies of PT-type ginsenosides were comparable to those of ribavirin, a commonly used antiviral drug. Conclusion Collectively, our findings suggest that the ginsenosides Re, Rf, and Rg2 have the potential to be effective in the treatment of CVB3, EV71, and HRV3 infection. PMID:25378991

  17. Polyreactive Antibodies: Function and Quantification

    PubMed Central

    Gunti, Sreenivasulu; Notkins, Abner Louis

    2015-01-01

    Polyreactive antibodies, a major component of the natural antibody repertoire, bind with low affinity to a variety of structurally unrelated antigens. Many of these antibodies are germline or near germline in sequence. Little is known, however, about the function of these antibodies. In the present mini-review we show: (1) that the broad antibacterial activity of the natural antibody repertoire is largely due to polyreactive antibodies, which in the presence of complement lyse bacteria and enhance phagocytosis; (2) that polyreactive antibodies bind to UV- or human immunodeficiency virus-induced apoptotic cells and with complement enhance the phagocytosis of these cells by macrophages; and (3) that dinitrophenol can be used as a surrogate for quantitating the level of polyreactive antibodies in serum. We conclude that polyreactive antibodies protect the host against both foreign invaders and its own damaged/apoptotic cells. PMID:26116731

  18. Clinical development of monoclonal antibody-based drugs in HIV and HCV diseases.

    PubMed

    Flego, Michela; Ascione, Alessandro; Cianfriglia, Maurizio; Vella, Stefano

    2013-01-01

    Today there are many licensed antiviral drugs, but the emergence of drug resistant strains sometimes invalidates the effects of the current therapies used in the treatment of infectious diseases. Compared to conventional antiviral drugs, monoclonal antibodies (mAbs) used as pharmacological molecules have particular physical characteristics and modes of action, and, therefore, they should be considered as a distinct therapeutic class. Despite being historically validated, antibodies may represent a novel tool for combatting infectious diseases. The current high cost of mAbs' production, storage and administration (by injection only) and the consequent obstacles to development are outweighed by mAbs' clinical advantages. These are related to a low toxicity combined with high specificity and versatility, which allows a specific antibody to mediate various biological effects, ranging from the virus neutralization mechanisms to the modulation of immune responses.This review briefly summarizes the recent technological advances in the field of immunoglobulin research, and the current status of mAb-based drugs in clinical trials for HIV and HCV diseases. For each clinical trial the available data are reported and the emerging conceptual problems of the employed mAbs are highlighted.This overview helps to give a clear picture of the efficacy and challenges of the mAbs in the field of these two infectious diseases which have such a global impact. PMID:23289632

  19. [Antiviral activity of aqueous extracts of the birch fungus Inonotus obliquus on the human immunodeficiency virus].

    PubMed

    Shibnev, V A; Garaev, T M; Finogenova, M P; Kalnina, L B; Nosik, D N

    2015-01-01

    Fractions of aqueous and water-alcohol extracts of the birch fungus Inonotus obliquus have antiviral effect against the human immunodeficiency virus type 1 (HIV-1). Antiviral properties of low toxic extracts were manifested in the concentration of 5.0 μg/ml upon simultaneous application with the virus in the lymphoblastoid cells culture MT-4. The extract of the birch fungus can be used for development of new antiviral drugs, inhibitors of HIV-replication when used both in the form of individual drugs and as a part of complex therapy. PMID:26182655

  20. Antiviral activities of isometric dideoxynucleosides of D- and L-related stereochemistry.

    PubMed Central

    Nair, V; Jahnke, T S

    1995-01-01

    In summary, many isomeric analogs of ddNs of both D-related and L-related absolute stereochemistries have been synthesized and evaluated in vitro for their antiviral activities. A few of these compounds exhibit potent antiviral activity and, interestingly, belong to both the D and L families. The synthetic methodologies developed will allow accessibility to many more novel modified nucleosides. While some structure-activity relationships are emerging from this work, it is clear that these chiral isomeric nucleosides have opened a new chapter in the field of antiviral nucleosides. PMID:7625783

  1. [Effectiveness and safety of antiviral therapy of military personnel suffering from chronic hepatitis C].

    PubMed

    Zhdanov, K V; Gusev, D A; Kozlov, K V; Shishkin, M K; Sukachev, V S; Shakhmanov, D M; Zhabrov, S S

    2015-04-01

    In order to evaluate effectiveness and safety of antiviral therapy schemes examined and treated 191 patients with chronic bepatitis C were assigned standard interferon and ribavirin, pegslated interferon and ribavirin, the total duration of the course coput 24-48 weeks. Based on clinical and laboratory parameters evaluated the safety of antiviral therapy. Formation of sustainable viral response, depending on the genotype observed, was given at 58,9-70%.of patients. In case of insufficient. antiviral therapy was prescribed a second course that will improve the effectiveness of treatment to 90-95%. Correction of adverse events was held lower dosages of interferon and/or ribavirin. PMID:26454938

  2. Surfactant-Modified Nanoclay Exhibits an Antiviral Activity with High Potency and Broad Spectrum

    PubMed Central

    Liang, Jian-Jong; Wei, Jiun-Chiou; Lee, Yi-Ling; Lin, Jiang-Jen

    2014-01-01

    ABSTRACT Nanomaterials have the characteristics associated with high surface-to-volume ratios and have been explored for their antiviral activity. Despite some success, cytotoxicity has been an issue in nanomaterial-based antiviral strategies. We previously developed a novel method to fully exfoliate montmorillonite clay to generate the most fundamental units of nanoscale silicate platelet (NSP). We further modified NSP by capping with various surfactants and found that the surfactant-modified NSP (NSQ) was less cytotoxic. In this study, we tested the antiviral potentials of a series of natural-clay-derived nanomaterials. Among the derivatives, NSP modified with anionic sodium dodecyl sulfate (NSQc), but not the pristine clay, unmodified NSP, a silver nanoparticle-NSP hybrid, NSP modified with cationic n-octadecanylamine hydrochloride salt, or NSP modified with nonionic Triton X-100, significantly suppressed the plaque-forming ability of Japanese encephalitis virus (JEV) at noncytotoxic concentrations. NSQc also blocked infection with dengue virus (DEN) and influenza A virus. Regarding the antiviral mechanism, NSQc interfered with viral binding through electrostatic interaction, since its antiviral activity can be neutralized by Polybrene, a cationic polymer. Furthermore, NSQc reduced the lethality of JEV and DEN infection in mouse challenge models. Thus, the surfactant-modified exfoliated nanoclay NSQc may be a novel nanomaterial with broad and potent antiviral activity. IMPORTANCE Nanomaterials have being investigated as antimicrobial agents, yet their antiviral potential is overshadowed by their cytotoxicity. By using a novel method, we fully exfoliated montmorillonite clay to generate the most fundamental units of nanoscale silicate platelet (NSP). Here, we show that the surfactant-modified NSP (NSQ) is less cytotoxic and that NSQc (NSP modified with sodium dodecyl sulfate) could potently block infection by dengue virus (DEN), Japanese encephalitis virus (JEV

  3. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb

    PubMed Central

    Wang, Liqiang; Yang, Rui; Yuan, Bochuan; Liu, Ying; Liu, Chunsheng

    2015-01-01

    Licorice is a common herb which has been used in traditional Chinese medicine for centuries. More than 20 triterpenoids and nearly 300 flavonoids have been isolated from licorice. Recent studies have shown that these metabolites possess many pharmacological activities, such as antiviral, antimicrobial, anti-inflammatory, antitumor and other activities. This paper provides a summary of the antiviral and antimicrobial activities of licorice. The active components and the possible mechanisms for these activities are summarized in detail. This review will be helpful for the further studies of licorice for its potential therapeutic effects as an antiviral or an antimicrobial agent. PMID:26579460

  4. Isolation of the anthropogenic compound fluoranthene in a screening of Chinese medicinal plants for antiviral compounds.

    PubMed

    Yip, L; Hudson, J B; Towers, G H

    1995-04-01

    Thirty-one species of medicinal plants used in the treatment of diseases of viral origin in Yunnan Province of China were assayed for inhibition of Sindbis and murine cytomegalovirus in mammalian cell cultures. Sixteen species displayed antiviral activity. A compound, which exhibited long wavelength UV-mediated antiviral activity, was isolated from leaves and twigs of Elsholtzia ciliata (Lamiaceae) using bioassay-guided fractionation and identified as the polycyclic aromatic hydrocarbon, fluoranthene. The discovery of an anthropogenic photosensitizer with antiviral activity in a plant has implications in studies of plants as sources of bioactive constituents. PMID:7753931

  5. Nitric oxide attenuates matrix metalloproteinase-9 production by endothelial cells independent of cGMP- or NFκB-mediated mechanisms.

    PubMed

    Meschiari, Cesar A; Izidoro-Toledo, Tatiane; Gerlach, Raquel F; Tanus-Santos, Jose E

    2013-06-01

    Cardiovascular diseases involve critical mechanisms including impaired nitric oxide (NO) levels and abnormal matrix metalloproteinase (MMP) activity. While NO downregulates MMP expression in some cell types, no previous study has examined whether NO downregulates MMP levels in endothelial cells. We hypothesized that NO donors could attenuate MMP-9 production by human umbilical vein endothelial cells (HUVECs) as a result of less NFκB activation or cyclic GMP (cGMP)-mediated mechanisms. We studied the effects of DetaNONOate (10-400 μM) or SNAP (50-400 μM) on phorbol 12-myristate 13-acetate (PMA; 10 nM)-induced increases in MMP-9 activity (by gel zymography) or concentrations (by ELISA) as well as on a tissue inhibitor of MMPs' (TIMP)-1 concentrations (by ELISA) in the conditioned medium of HUVECs incubated for 24 h with these drugs. We also examined whether the irreversible inhibitor of soluble guanylyl cyclase ODQ modified the effects of SNAP or whether 8-bromo-cGMP (a cell-permeable analog of cGMP) influenced PMA-induced effects on MMP-9 expression. Total and phospho-NFκB p65 concentrations were measured in HUVEC lysates to assess NFκB activation. Both NO donors attenuated PMA-induced increases in MMP-9 activity and concentrations without significantly affecting TIMP-1 concentrations. This effect was not modified by ODQ, and 8-bromo-cGMP did not affect MMP-9 concentrations. While PMA increased phospho-NFκB p65 concentrations, SNAP had no influence on this effect. In conclusion, this study shows that NO donors may attenuate imbalanced MMP expression and activity in endothelial cells independent of cGMP- or NFκB-mediated mechanisms. Our results may offer an important pharmacological strategy to approach cardiovascular diseases. PMID:23456480

  6. Accommodation and antibodies.

    PubMed

    Dehoux, Jean-Paul; Gianello, Pierre

    2009-06-01

    Accommodation refers to the condition in which an organ transplant functions normally by acquiring resistance to immune-mediated injury (especially), despite the presence of anti-transplant antibodies in the recipient. This status is associated with several modifications in the recipient as well as in the graft, such as previous depletion of anti-graft antibodies and their slow return once the graft is placed; expression of several protective genes in the graft; a Th2 immune response in the recipient; and inhibition of the membrane attack complex of complement. PMID:18973811

  7. Rapid induction and persistence of paracrine-induced cellular antiviral states arrest viral infection spread in A549 cells.

    PubMed

    Voigt, Emily A; Swick, Adam; Yin, John

    2016-09-01

    The virus/host interaction is a complex interplay between pro- and anti-viral factors that ultimately determines the spread or halt of virus infections in tissues. This interplay develops over multiple rounds of infection. The purpose of this study was to determine how cellular-level processes combine to impact the spatial spread of infection. We measured the kinetics of virus replication (VSV), antiviral paracrine signal upregulation and secretion, spatial spread of virus and paracrine antiviral signaling, and inhibition of virus production in antiviral-exposed A549 human lung epithelial cells. We found that initially infected cells released antiviral signals 4-to-7h following production of virus. However, the subsequent rapid dissemination of signal and fast induction of a robust and persistent antiviral state ultimately led to a suppression of infection spread. This work shows how cellular responses to infection and activation of antiviral responses can integrate to ultimately control infection spread across host cell populations. PMID:27254596

  8. Progress in the development of poliovirus antiviral agents and their essential role in reducing risks that threaten eradication.

    PubMed

    McKinlay, Mark A; Collett, Marc S; Hincks, Jeffrey R; Oberste, M Steven; Pallansch, Mark A; Okayasu, Hiromasa; Sutter, Roland W; Modlin, John F; Dowdle, Walter R

    2014-11-01

    Chronic prolonged excretion of vaccine-derived polioviruses by immunodeficient persons (iVDPV) presents a personal risk of poliomyelitis to the patient as well as a programmatic risk of delayed global eradication. Poliovirus antiviral drugs offer the only mitigation of these risks. Antiviral agents may also have a potential role in the management of accidental exposures and in certain outbreak scenarios. Efforts to discover and develop poliovirus antiviral agents have been ongoing in earnest since the formation in 2007 of the Poliovirus Antivirals Initiative. The most advanced antiviral, pocapavir (V-073), is a capsid inhibitor that has recently demonstrated activity in an oral poliovirus vaccine human challenge model. Additional antiviral candidates with differing mechanisms of action continue to be profiled and evaluated preclinically with the goal of having 2 antivirals available for use in combination to treat iVDPV excreters. PMID:25316866

  9. Interferon-λ1 Linked to a Stabilized Dimer of Fab Potently Enhances both Antitumor and Antiviral Activities in Targeted Cells

    PubMed Central

    Liu, Donglin; Chang, Chien-Hsing; Rossi, Edmund A.; Cardillo, Thomas M.; Goldenberg, David M.

    2013-01-01

    The type III interferons (IFNs), comprising IFN-λ1, IFN-λ2, and IFN-λ3, behave similarly to IFN-α in eliciting antiviral, antitumor, and immune-modulating activities. Due to their more restricted cellular targets, IFN-λs are attractive as potential alternatives to existing therapeutic regimens based on IFN-αs. We have applied the DOCK-AND-LOCK™ method to improve the anti-proliferative potency of IFN-λ1 up to 1,000-fold in targeted cancer cell lines by tethering stabilized Fab dimers, derived from hRS7 (humanized anti-Trop-2), hMN-15 (humanized anti-CEACAM6), hL243 (humanized anti-HLA-DR), and c225 (chimeric anti-EGFR), to IFN-λ1 site-specifically, resulting in novel immunocytokines designated (E1)-λ1, (15)-λ1, (C2)-λ1, and (c225)-λ1, respectively. Targeted delivery of IFN-λ1 via (15)-λ1 or (c225)-λ1 to respective antigen-expressing cells also significantly increased antiviral activity when compared with non-targeting (C2)-λ1, as demonstrated in human lung adenocarcinoma cell line A549 by (15)-λ1 against encephalomyocarditis virus (EC50 = 22.2 pM versus 223 pM), and in human hepatocarcinoma cell line Huh-7 by (c225)-λ1 against hepatitis C virus (EC50 = 0.56 pM versus 91.2 pM). These promising results, which are attributed to better localization and stronger binding of IFN-λ1 to antibody-targeted cells, together with the favorable pharmacokinetic profile of (E1)-λ1 in mice (T1/2 = 8.6 h), support further investigation of selective prototypes as potential antiviral and antitumor therapeutic agents. PMID:23696859

  10. Reshaping Antibody Diversity

    PubMed Central

    Wang, Feng; Ekiert, Damian C.; Ahmad, Insha; Yu, Wenli; Zhang, Yong; Bazirgan, Omar; Torkamani, Ali; Raudsepp, Terje; Mwangi, Waithaka; Criscitiello, Michael F.; Wilson, Ian A.; Schultz, Peter G.; Smider, Vaughn V.

    2014-01-01

    Summary Unlike humans or mice, some species have limited genome encoded combinatorial diversity potential, yet mount a robust antibody response. Cows are unusual in having exceptionally long CDR H3 loops and few V-regions, but the mechanism for creating diversity is not understood. Deep sequencing revealed that ultralong CDR H3s contain a remarkable complexity of cysteines, suggesting that disulfide-bonded mini-domains may arise during repertoire development. Indeed, crystal structures of two cow antibodies reveal that these CDR H3s form a very unusual architecture composed of a β-strand “stalk” that supports a structurally diverse, disulfide-bonded, “knob” domain. Sequence analysis suggests that diversity arises from somatic hypermutation of an ultralong DH with a severe codon bias towards mutation to cysteine. These unusual antibodies can be elicited to recognize defined antigens through the knob domain. Thus, the bovine immune system produces an antibody repertoire composed of CDR H3s of unprecedented length that fold into a diversity of mini-domains generated through combinations of somatically generated disulfides. PMID:23746848

  11. Monoclonal Antibodies against Pectin

    PubMed Central

    Liners, Françoise; Letesson, Jean-Jacques; Didembourg, Christian; Van Cutsem, Pierre

    1989-01-01

    Monoclonal antibodies have been produced that recognize a conformation of homopolygalacturonic acid (pectic acid) induced by an optimum concentration of calcium and sodium of about 1 and 150 millinormal, respectively. The epitope recognized is probably part of the dimers of pectin chains associated according to the `egg box' model. Images Figure 2 PMID:16667195

  12. Identification of Antiviral Agents Targeting Hepatitis B Virus Promoter from Extracts of Indonesian Marine Organisms by a Novel Cell-Based Screening Assay

    PubMed Central

    Yamashita, Atsuya; Fujimoto, Yuusuke; Tamaki, Mayumi; Setiawan, Andi; Tanaka, Tomohisa; Okuyama-Dobashi, Kaori; Kasai, Hirotake; Watashi, Koichi; Wakita, Takaji; Toyama, Masaaki; Baba, Masanori; de Voogd, Nicole J.; Maekawa, Shinya; Enomoto, Nobuyuki; Tanaka, Junichi; Moriishi, Kohji

    2015-01-01

    The current treatments of chronic hepatitis B (CHB) face a limited choice of vaccine, antibody and antiviral agents. The development of additional antiviral agents is still needed for improvement of CHB therapy. In this study, we established a screening system in order to identify compounds inhibiting the core promoter activity of hepatitis B virus (HBV). We prepared 80 extracts of marine organisms from the coral reefs of Indonesia and screened them by using this system. Eventually, two extracts showed high inhibitory activity (>95%) and low cytotoxicity (66% to 77%). Solvent fractionation, column chromatography and NMR analysis revealed that 3,5-dibromo-2-(2,4-dibromophenoxy)-phenol (compound 1) and 3,4,5-tribromo-2-(2,4-dibromophenoxy)-phenol (compound 2), which are classified as polybrominated diphenyl ethers (PBDEs), were identified as anti-HBV agents in the extracts. Compounds 1 and 2 inhibited HBV core promoter activity as well as HBV production from HepG2.2.15.7 cells in a dose-dependent manner. The EC50 values of compounds 1 and 2 were 0.23 and 0.80 µM, respectively, while selectivity indexes of compound 1 and 2 were 18.2 and 12.8, respectively. These results suggest that our cell-based HBV core promoter assay system is useful to determine anti-HBV compounds, and that two PBDE compounds are expected to be candidates of lead compounds for the development of anti-HBV drugs. PMID:26561821

  13. Identification of Antiviral Agents Targeting Hepatitis B Virus Promoter from Extracts of Indonesian Marine Organisms by a Novel Cell-Based Screening Assay.

    PubMed

    Yamashita, Atsuya; Fujimoto, Yuusuke; Tamaki, Mayumi; Setiawan, Andi; Tanaka, Tomohisa; Okuyama-Dobashi, Kaori; Kasai, Hirotake; Watashi, Koichi; Wakita, Takaji; Toyama, Masaaki; Baba, Masanori; de Voogd, Nicole J; Maekawa, Shinya; Enomoto, Nobuyuki; Tanaka, Junichi; Moriishi, Kohji

    2015-11-01

    The current treatments of chronic hepatitis B (CHB) face a limited choice of vaccine, antibody and antiviral agents. The development of additional antiviral agents is still needed for improvement of CHB therapy. In this study, we established a screening system in order to identify compounds inhibiting the core promoter activity of hepatitis B virus (HBV). We prepared 80 extracts of marine organisms from the coral reefs of Indonesia and screened them by using this system. Eventually, two extracts showed high inhibitory activity (>95%) and low cytotoxicity (66% to 77%). Solvent fractionation, column chromatography and NMR analysis revealed that 3,5-dibromo-2-(2,4-dibromophenoxy)-phenol (compound 1) and 3,4,5-tribromo-2-(2,4-dibromophenoxy)-phenol (compound 2), which are classified as polybrominated diphenyl ethers (PBDEs), were identified as anti-HBV agents in the extracts. Compounds 1 and 2 inhibited HBV core promoter activity as well as HBV production from HepG2.2.15.7 cells in a dose-dependent manner. The EC50 values of compounds 1 and 2 were 0.23 and 0.80 µM, respectively, while selectivity indexes of compound 1 and 2 were 18.2 and 12.8, respectively. These results suggest that our cell-based HBV core promoter assay system is useful to determine anti-HBV compounds, and that two PBDE compounds are expected to be candidates of lead compounds for the development of anti-HBV drugs. PMID:26561821

  14. Preventive Activity against Influenza (H1N1) Virus by Intranasally Delivered RNA-Hydrolyzing Antibody in Respiratory Epithelial Cells of Mice.

    PubMed

    Cho, Seungchan; Youn, Ha-Na; Hoang, Phuong Mai; Cho, Sungrae; Kim, Kee-Eun; Kil, Eui-Joon; Lee, Gunsup; Cho, Mun-Ju; Hong, Juhyun; Byun, Sung-June; Song, Chang-Seon; Lee, Sukchan

    2015-09-01

    The antiviral effect of a catalytic RNA-hydrolyzing antibody, 3D8 scFv, for intranasal administration against avian influenza virus (H1N1) was described. The recombinant 3D8 scFv protein prevented BALB/c mice against H1N1 influenza virus infection by degradation of the viral RNA genome through its intrinsic RNA-hydrolyzing activity. Intranasal administration of 3D8 scFv (50 μg/day) for five days prior to infection demonstrated an antiviral activity (70% survival) against H1N1 infection. The antiviral ability of 3D8 scFv to penetrate into epithelial cells from bronchial cavity via the respiratory mucosal layer was confirmed by immunohistochemistry, qRT-PCR, and histopathological examination. The antiviral activity of 3D8 scFv against H1N1 virus infection was not due to host immune cytokines or chemokines, but rather to direct antiviral RNA-hydrolyzing activity of 3D8 scFv against the viral RNA genome. Taken together, our results suggest that the RNase activity of 3D8 scFv, coupled with its ability to penetrate epithelial cells through the respiratory mucosal layer, directly prevents H1N1 virus infection in a mouse model system. PMID:26402693

  15. Preventive Activity against Influenza (H1N1) Virus by Intranasally Delivered RNA-Hydrolyzing Antibody in Respiratory Epithelial Cells of Mice

    PubMed Central

    Cho, Seungchan; Youn, Ha-Na; Hoang, Phuong Mai; Cho, Sungrae; Kim, Kee-Eun; Kil, Eui-Joon; Lee, Gunsup; Cho, Mun-Ju; Hong, Juhyun; Byun, Sung-June; Song, Chang-Seon; Lee, Sukchan

    2015-01-01

    The antiviral effect of a catalytic RNA-hydrolyzing antibody, 3D8 scFv, for intranasal administration against avian influenza virus (H1N1) was described. The recombinant 3D8 scFv protein prevented BALB/c mice against H1N1 influenza virus infection by degradation of the viral RNA genome through its intrinsic RNA-hydrolyzing activity. Intranasal administration of 3D8 scFv (50 μg/day) for five days prior to infection demonstrated an antiviral activity (70% survival) against H1N1 infection. The antiviral ability of 3D8 scFv to penetrate into epithelial cells from bronchial cavity via the respiratory mucosal layer was confirmed by immunohistochemistry, qRT-PCR, and histopathological examination. The antiviral activity of 3D8 scFv against H1N1 virus infection was not due to host immune cytokines or chemokines, but rather to direct antiviral RNA-hydrolyzing activity of 3D8 scFv against the viral RNA genome. Taken together, our results suggest that the RNase activity of 3D8 scFv, coupled with its ability to penetrate epithelial cells through the respiratory mucosal layer, directly prevents H1N1 virus infection in a mouse model system. PMID:26402693

  16. Antiviral activity of carnosic acid against respiratory syncytial virus

    PubMed Central

    2013-01-01

    Background Human respiratory syncytial virus (hRSV) is a leading cause of severe lower respiratory infection and a major public health threat worldwide. To date, no vaccine or effective therapeutic agent has been developed. In a screen for potential therapeutic agents against hRSV, we discovered that an extract of Rosmarinus officinalis exerted a strong inhibitory effect against hRSV infection. Subsequent studies identified carnosic acid as a bioactive constituent responsible for anti-hRSV activity. Carnosic acid has been shown to exhibit potent antioxidant and anti-cancer activities. Anti-RSV activity of carnosic acid was further investigated in this study. Methods Effects of extracts from various plants and subfractions from R. officinalis on hRSV replication were determined by microneutralization assay and plaque assay. Several constituents were isolated from ethyl acetate fraction of R. officinalis and their anti-RSV activities were assessed by plaque assay as well as reverse-transcription quantitative PCR to determine the synthesis of viral RNAs. Results Among the tested bioactive constituents of R. officinalis, carnosic acid displayed the most potent anti-hRSV activity and was effective against both A- and B-type viruses. Carnosic acid efficiently suppressed the replication of hRSV in a concentration-dependent manner. Carnosic acid effectively suppressed viral gene expression without inducing type-I interferon production or affecting cell viability, suggesting that it may directly affect viral factors. A time course analysis showed that addition of carnosic acid 8 hours after infection still effectively blocked the expression of hRSV genes, further suggesting that carnosic acid directly inhibited the replication of hRSV. Conclusions The current study demonstrates that carnosic acid, a natural compound that has already been shown to be safe for human consumption, has anti-viral activity against hRSV, efficiently blocking the replication of this virus. Carnosic

  17. Influenza neuraminidase inhibitors: antiviral action and mechanisms of resistance

    PubMed Central

    McKimm‐Breschkin, Jennifer L.

    2012-01-01

    Please cite this paper as: McKimm‐Breschkin (2012) Influenza neuraminidase inhibitors: Antiviral action and mechanisms of resistance. Influenza and Other Respiratory Viruses 7(Suppl. 1), 25–36. There are two major classes of antivirals available for the treatment and prevention of influenza, the M2 inhibitors and the neuraminidase inhibitors (NAIs). The M2 inhibitors are cheap, but they are only effective against influenza A viruses, and resistance arises rapidly. The current influenza A H3N2 and pandemic A(H1N1)pdm09 viruses are already resistant to the M2 inhibitors as are many H5N1 viruses. There are four NAIs licensed in some parts of the world, zanamivir, oseltamivir, peramivir, and a long‐acting NAI, laninamivir. This review focuses on resistance to the NAIs. Because of differences in their chemistry and subtle differences in NA structures, resistance can be both NAI‐ and subtype specific. This results in different drug resistance profiles, for example, the H274Y mutation confers resistance to oseltamivir and peramivir, but not to zanamivir, and only in N1 NAs. Mutations at E119, D198, I222, R292, and N294 can also reduce NAI sensitivity. In the winter of 2007–2008, an oseltamivir‐resistant seasonal influenza A(H1N1) strain with an H274Y mutation emerged in the northern hemisphere and spread rapidly around the world. In contrast to earlier evidence of such resistant viruses being unfit, this mutant virus remained fully transmissible and pathogenic and became the major seasonal A(H1N1) virus globally within a year. This resistant A(H1N1) virus was displaced by the sensitive A(H1N1)pdm09 virus. Approximately 0·5–1·0% of community A(H1N1)pdm09 isolates are currently resistant to oseltamivir. It is now apparent that variation in non‐active site amino acids can affect the fitness of the enzyme and compensate for mutations that confer high‐level oseltamivir resistance resulting in minimal impact on enzyme function. PMID:23279894

  18. Lupus anticoagulants and antiphospholipid antibodies

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000547.htm Lupus anticoagulants and antiphospholipid antibodies To use the sharing features on this page, please enable JavaScript. Lupus anticoagulants are antibodies against substances in the lining ...

  19. Red Blood Cell Antibody Identification

    MedlinePlus

    ... be limited. Home Visit Global Sites Search Help? RBC Antibody Identification Share this page: Was this page helpful? Also known as: Alloantibody Identification; Antibody ID, RBC; RBC Ab ID Formal name: Red Blood Cell ...

  20. Anti-smooth muscle antibody

    MedlinePlus

    ... medlineplus.gov/ency/article/003531.htm Anti-smooth muscle antibody To use the sharing features on this page, please enable JavaScript. Anti-smooth muscle antibody is a blood test that detects the ...

  1. Lupus anticoagulants and antiphospholipid antibodies

    MedlinePlus

    ... may make the diagnosis of antiphospholipid antibody syndrome (APS) if: You have had a blood clot or ... your risk of blood clots. ANTIPHOSPHOLIPID ANTIBODY SYNDROME (APS) In general you will need long-term treatment ...

  2. The Art of Making Antibodies.

    ERIC Educational Resources Information Center

    Headon, Denis R.

    1986-01-01

    Provides background information for teachers on the nature and production of antibodies. Points out that the production of monoclonal antibodies blends the malignant with the beneficial to create a medical tool of exciting potential. (JN)

  3. Anti-insulin antibody test

    MedlinePlus

    Insulin antibodies - serum; Insulin Ab test ... Normally, there are no antibodies against insulin in your blood. Normal value ranges may vary slightly among different laboratories. Some labs use different measurements or ...

  4. 5α-reductase inhibitors, antiviral and anti-tumor activities of some steroidal cyanopyridinone derivatives.

    PubMed

    Al-Mohizea, Abdullah M; Al-Omar, Mohamed A; Abdalla, Mohamed M; Amr, Abdel-Galil E

    2012-01-01

    We herein report the 5α-reductase inhibitors, antiviral and anti-tumor activities of some synthesized heterocyclic cyanopyridone and cyanothiopyridone derivatives fused with steroidal structure. Initially the acute toxicity of the compounds was assayed via the determination of their LD(50). All the compounds, except 3b, were interestingly less toxic than the reference drug (Prednisolone(®)). Seventeen heterocyclic derivatives containing a cyanopyridone or cyanothiopyridone rings fused to a steroidal moiety were synthesized and screened for their 5α-reductase inhibitors, antiviral and anti-tumor activities comparable to that of Anastrozole, Bicalutamide, Efavirenz, Capravirine, Ribavirin, Oseltamivir and Amantadine as the reference drugs. Some of the compounds exhibited better 5α-reductase inhibitors, antiviral and anti-tumor activities than the reference drugs. The detailed 5α-reductase inhibitors, antiviral and anti-tumor activities of the synthesized compounds were reported. PMID:22057085

  5. Antiviral Potential of Algae Polysaccharides Isolated from Marine Sources: A Review

    PubMed Central

    Ahmadi, Azin; Zorofchian Moghadamtousi, Soheil; Abubakar, Sazaly; Zandi, Keivan

    2015-01-01

    From food to fertilizer, algal derived products are largely employed in assorted industries, including agricultural, biomedical, food, and pharmaceutical industries. Among different chemical compositions isolated from algae, polysaccharides are the most well-established compounds, which were subjected to a variety of studies due to extensive bioactivities. Over the past few decades, the promising results for antiviral potential of algae-derived polysaccharides have advocated them as inordinate candidates for pharmaceutical research. Numerous studies have isolated various algal polysaccharides possessing antiviral activities, including carrageenan, alginate, fucan, laminaran, and naviculan. In addition, different mechanisms of action have been reported for these polysaccharides, such as inhibiting the binding or internalization of virus into the host cells or suppressing DNA replication and protein synthesis. This review strives for compiling previous antiviral studies of algae-derived polysaccharides and their mechanism of action towards their development as natural antiviral agents for future investigations. PMID:26484353

  6. Antiviral effect of lithium chloride on infection of cells by canine parvovirus.

    PubMed

    Zhou, Pei; Fu, Xinliang; Yan, Zhongshan; Fang, Bo; Huang, San; Fu, Cheng; Hong, Malin; Li, Shoujun

    2015-11-01

    Canine parvovirus type 2 causes significant viral disease in dogs, with high morbidity, high infectivity, and high mortality. Lithium chloride is a potential antiviral drug for viruses. We determined the antiviral effect of Lithium Chloride on canine parvovirus type 2 in feline kidney cells. The viral DNA and proteins of canine parvovirus were suppressed in a dose-dependent manner by lithium chloride. Further investigation verified that viral entry into cells was inhibited in a dose-dependent manner by lithium chloride. These results indicated that lithium chloride could be a potential antiviral drug for curing dogs with canine parvovirus infection. The specific steps of canine parvovirus entry into cells that are affected by lithium chloride and its antiviral effect in vivo should be explored in future studies. PMID:26315688

  7. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs

    PubMed Central

    Karlas, Alexander; Berre, Stefano; Couderc, Thérèse; Varjak, Margus; Braun, Peter; Meyer, Michael; Gangneux, Nicolas; Karo-Astover, Liis; Weege, Friderike; Raftery, Martin; Schönrich, Günther; Klemm, Uwe; Wurzlbauer, Anne; Bracher, Franz; Merits, Andres; Meyer, Thomas F.; Lecuit, Marc

    2016-01-01

    Chikungunya virus (CHIKV) is a globally spreading alphavirus against which there is no commercially available vaccine or therapy. Here we use a genome-wide siRNA screen to identify 156 proviral and 41 antiviral host factors affecting CHIKV replication. We analyse the cellular pathways in which human proviral genes are involved and identify druggable targets. Twenty-one small-molecule inhibitors, some of which are FDA approved, targeting six proviral factors or pathways, have high antiviral activity in vitro, with low toxicity. Three identified inhibitors have prophylactic antiviral effects in mouse models of chikungunya infection. Two of them, the calmodulin inhibitor pimozide and the fatty acid synthesis inhibitor TOFA, have a therapeutic effect in vivo when combined. These results demonstrate the value of loss-of-function screening and pathway analysis for the rational identification of small molecules with therapeutic potential and pave the way for the development of new, host-directed, antiviral agents. PMID:27177310

  8. Photo-distributed lichenoid eruption secondary to direct anti-viral therapy for hepatitis C.

    PubMed

    Simpson, Cory L; McCausland, Drew; Chu, Emily Y

    2015-10-01

    Novel direct anti-viral agents are emerging as effective treatments for hepatitis C virus (HCV) and provide an alternative to the year-long standard therapy with interferon and ribavirin. However, cutaneous side effects from these new medications, including rash, pruritus and photosensitivity, are among the most commonly reported adverse events and have resulted in therapy discontinuation in some cases. Here, we report two cases of a photo-distributed lichenoid eruption that occurred within 1  month of starting anti-viral therapy with simeprevir and sofosbuvir without interferon or ribavirin. This report provides the first histologic description of the cutaneous eruption associated with direct anti-viral therapy for HCV and highlights the importance of recognizing and treating the often intolerable dermatologic side effects of these novel medications, the incidence of which is likely to increase as direct anti-viral agents may become the standard of care for HCV. PMID:25974215

  9. AXL receptor tyrosine kinase is required for T cell priming and antiviral immunity.

    PubMed

    Schmid, Edward T; Pang, Iris K; Carrera Silva, Eugenio A; Bosurgi, Lidia; Miner, Jonathan J; Diamond, Michael S; Iwasaki, Akiko; Rothlin, Carla V

    2016-01-01

    The receptor tyrosine kinase (RTK) AXL is induced in response to type I interferons (IFNs) and limits their production through a negative feedback loop. Enhanced production of type I IFNs in Axl(-/-) dendritic cells (DCs) in vitro have led to speculation that inhibition of AXL would promote antiviral responses. Notwithstanding, type I IFNs also exert potent immunosuppressive functions. Here we demonstrate that ablation of AXL enhances the susceptibility to infection by influenza A virus and West Nile virus. The increased type I IFN response in Axl(-/-) mice was associated with diminished DC maturation, reduced production of IL-1β, and defective antiviral T cell immunity. Blockade of type I IFN receptor or administration of IL-1β to Axl(-/-) mice restored the antiviral adaptive response and control of infection. Our results demonstrate that AXL is essential for limiting the immunosuppressive effects of type I IFNs and enabling the induction of protective antiviral adaptive immunity. PMID:27350258

  10. [ANTIVIRAL ACTIVITY OF THE DIHYDROQUERCETIN DURING THE COXSACKIEVIRUS B4 REPLICATION IN VITRO].

    PubMed

    Galochkina, A V; Zarubaev, V V; Kiselev, O I; Babkin, V A; Ostroukhova, L A

    2016-01-01

    A study of the antiviral activity of antioxidants against viral infections is believed to be essential for creating complex antiviral agents. Dihydroquercetin is considered as the most active antioxidant extracted from Larix gmelinii. In this work, we present results of experiments of the antiviral properties of dihydroquercetin against a member of the family Picarnaviridae--Coxsackievirus B4 in vitro. We have estimated that dihydroquercetin reduces viral titers at 100 µg/ml concentration as compared with control of virus. We have shown using the plaque assay that CPE of virusis reduced in the presence of dihydroquercetin at 100 µg/ml. Study of the phase of viral lifecycle, in which dihydroquercetin acted, demonstrated that the highest efficacy of the antiviral therapy was reached at early stages of virus reproduction (1-3 hours post infection). These results show that dihydroquercetin has antiviralproperty against Coxsackievirus B4. This drug and other antioxidants can be tested as inhibitors of viral replication. PMID:27145597

  11. Therapeutic antibodies in ophthalmology

    PubMed Central

    Magdelaine-Beuzelin, Charlotte; Pinault, Coralie; Paintaud, Gilles

    2010-01-01

    More than a century after the first successful use of serotherapy, antibody-based therapy has been renewed by the availability of recombinant monoclonal antibodies. As in the past, current clinical experience has prompted new pharmacological questions and induced much debate among practitioners, notably in the field of ophthalmology. An examination of the history of antibodies as treatments for ocular disorders reveals interesting parallels to the modern era. The fact that a treatment administered by a systemic route could be efficacious in a local disease was not widely accepted and the “chemical” nature of antibodies was not clearly understood in the late 19th century. Clinical studies by Henry Coppez, a Belgian ophthalmologist, established in 1894 that antidiphtheric antitoxins could be used to treat conjunctival diphtheria. Nearly 20 years later, Coppez and Danis described age-related macular degeneration, a disorder which today benefits from ranibizumab therapy. The product, a locally-administered recombinant monoclonal Fab fragment, is directed against vascular endothelial growth factor A. Interestingly, its full-size counterpart, bevacizumab, which is approved for the treatment of solid tumors, has also demonstrated efficacy in age-related macular degeneration when administered either intravenously or locally, which raises new questions about antibody pharmacology and biodistribution. In order to shed some light on this debate, we recount the early history of serotherapy applied to ophthalmology, review the exact molecular differences between ranibizumab and bevacizumab, and discuss what is known about IgG and the blood-retina barrier and the possible role of FcRn, an IgG transporter. PMID:21358858

  12. Trifunctional antibody ertumaxomab

    PubMed Central

    Diermeier-Daucher, Simone; Ortmann, Olaf; Buchholz, Stefan; Brockhoff, Gero

    2012-01-01

    Background: The trifunctional antibody ertumaxomab bivalently targets the human epidermal growth factor receptor 2 (Her2) on epithelial (tumor) cells and the T cell specific CD3 antigen, and its Fc region is selectively recognized by Fcγ type I/III receptor-positive immune cells. As a trifunctional immunoglobulin, ertumaxomab therefore not only targets Her2 on cancer cells, but also triggers immunological effector mechanisms mediated by T and accessory cells (e.g., macrophages, dendritic cells, natural killer cells). Whether molecular effects, however, might contribute to the cellular antitumor efficiency of ertumaxomab are largely unknown. Methods: Potential molecular effects of ertumaxomab on Her2-overexpressing BT474 and SK-BR-3 breast cancer cells were evaluated. The dissociation constant Kd of ertumaxomab was calculated from titration curves that were recorded by flow cytometry. Treatment-induced changes in Her2 homodimerization were determined by flow cytometric fluorescence resonance energy transfer measurements on a cell-by-cell basis. Potential activation / deactivation of Her2, ERK1/2, AKT and STAT3 were analyzed by western blotting, Immunochemistry and immunofluorescent cell staining. Results: The Kd of ertumaxomab for Her2-binding was determined at 265 nM and the ertumaxomab binding epitope was found to not overlap with that of the therapeutic anti-Her2 monoclonal antibodies trastuzumab and pertuzumab. Ertumaxomab caused an increase in Her2 phosphorylation at higher antibody concentrations, but changed neither the rate of Her2-homodimerization /-phosphorylation nor the activation state of key downstream signaling proteins analyzed. Conclusions: The unique mode of action of ertumaxomab, which relies more on activation of immune-mediated mechanisms against tumor cells compared with currently available therapeutic antibodies for breast cancer treatment, suggests that modular or sequential treatment with the trifunctional bivalent antibody might complement

  13. Antibodies to cardiac receptors.

    PubMed

    Boivin-Jahns, V; Schlipp, A; Hartmann, S; Panjwani, P; Klingel, K; Lohse, M J; Ertl, G; Jahns, R

    2012-12-01

    Inflammation of cardiac tissue is generally associated with an activation of the host's immune system. On the one hand, this activation is mandatory to protect the heart by fighting the invading microbial agents or toxins and by engaging myocardial reparation and healing processes. On the other hand, uncontrolled activation of the immune defense has the risk of an arousal of auto- or cross-reactive immune cells, which in some cases bring more harm than good. Dependent on the individual genetic predisposition, such heart-directed autoimmune reactions most likely occur as a result of myocyte apoptosis or necrosis and subsequent liberation of self-antigens previously hidden to the immune system. During the past two decades, evidence for a pathogenic relevance of autoimmunity in human heart disease has substantially increased. Conformational cardiac (auto)antibodies affecting cardiac function and, in particular, (auto)antibodies that target G protein-coupled cardiac membrane receptors are thought to play a key role in the development of heart failure. Clinical pilot studies even suggest that such antibodies negatively affect survival in heart failure patients. However, the true prevalence and clinical impact of many cardiac (auto)antibodies in human heart diseases are still unclear, as are the events triggering their formation, their titer course, and their patterns of clearance and/or persistence. The present article summarizes current knowledge in the field of cardiac receptor (auto)antibodies including recent efforts to address some of the aforementioned gaps of knowledge, thereby attempting to pave the way for novel, more specific therapeutic approaches. PMID:23183584

  14. The role of antifungal and antiviral agents in primary dental care.

    PubMed

    Lewis, Mike

    2014-11-01

    In comparison to the range of antibiotics used in medicine, the spectrum of antifungal and antiviral drugs used in primary dental care is relatively limited. In practical terms, there are only three antifungal agents and two antiviral agents that have a role. This paper will describe the clinical presentation of orofacial candidal and viral infections and the use of antimicrobial drugs in their management. PMID:25668378

  15. Optimizing Tactics for Use of the U.S. Antiviral Strategic National Stockpile for Pandemic Influenza

    PubMed Central

    Dimitrov, Nedialko B.; Goll, Sebastian; Hupert, Nathaniel; Pourbohloul, Babak; Meyers, Lauren Ancel

    2011-01-01

    In 2009, public health agencies across the globe worked to mitigate the impact of the swine-origin influenza A (pH1N1) virus. These efforts included intensified surveillance, social distancing, hygiene measures, and the targeted use of antiviral medications to prevent infection (prophylaxis). In addition, aggressive antiviral treatment was recommended for certain patient subgroups to reduce the severity and duration of symptoms. To assist States and other localities meet these needs, the U.S. Government distributed a quarter of the antiviral medications in the Strategic National Stockpile within weeks of the pandemic's start. However, there are no quantitative models guiding the geo-temporal distribution of the remainder of the Stockpile in relation to pandemic spread or severity. We present a tactical optimization model for distributing this stockpile for treatment of infected cases during the early stages of a pandemic like 2009 pH1N1, prior to the wide availability of a strain-specific vaccine. Our optimization method efficiently searches large sets of intervention strategies applied to a stochastic network model of pandemic influenza transmission within and among U.S. cities. The resulting optimized strategies depend on the transmissability of the virus and postulated rates of antiviral uptake and wastage (through misallocation or loss). Our results suggest that an aggressive community-based antiviral treatment strategy involving early, widespread, pro-rata distribution of antivirals to States can contribute to slowing the transmission of mildly transmissible strains, like pH1N1. For more highly transmissible strains, outcomes of antiviral use are more heavily impacted by choice of distribution intervals, quantities per shipment, and timing of shipments in relation to pandemic spread. This study supports previous modeling results suggesting that appropriate antiviral treatment may be an effective mitigation strategy during the early stages of future influenza

  16. Antibody-gold cluster conjugates

    DOEpatents

    Hainfeld, J.F.

    1988-06-28

    Antibody- or antibody fragment-gold cluster conjugates are shown wherein the conjugate size can be about 5.0 nm. Methods and reagents are disclosed in which antibodies or Fab' fragments thereof are covalently bound to a stable cluster of gold atoms. 2 figs.

  17. Antibody-dependent enhancement of dengue virus infection inhibits RLR-mediated Type-I IFN-independent signalling through upregulation of cellular autophagy

    PubMed Central

    Huang, Xinwei; Yue, Yaofei; Li, Duo; Zhao, Yujiao; Qiu, Lijuan; Chen, Junying; Pan, Yue; Xi, Juemin; Wang, Xiaodan; Sun, Qiangming; Li, Qihan

    2016-01-01

    Antibody dependent enhancement (ADE) of dengue virus (DENV) infection is identified as the main risk factor of severe Dengue diseases. Through opsonization by subneutralizing or non-neutralizing antibodies, DENV infection suppresses innate cell immunity to facilitate viral replication. However, it is largely unknown whether suppression of type-I IFN is necessary for a successful ADE infection. Here, we report that both DENV and DENV-ADE infection induce an early ISG (NOS2) expression through RLR-MAVS signalling axis independent of the IFNs signaling. Besides, DENV-ADE suppress this early antiviral response through increased autophagy formation rather than induction of IL-10 secretion. The early induced autophagic proteins ATG5-ATG12 participate in suppression of MAVS mediated ISGs induction. Our findings suggest a mechanism for DENV to evade the early antiviral response before IFN signalling activation. Altogether, these results add knowledge about the complexity of ADE infection and contribute further to research on therapeutic strategies. PMID:26923481

  18. piRNA pathway is not required for antiviral defense in Drosophila melanogaster.

    PubMed

    Petit, Marine; Mongelli, Vanesa; Frangeul, Lionel; Blanc, Hervé; Jiggins, Francis; Saleh, Maria-Carla

    2016-07-19

    Since its discovery, RNA interference has been identified as involved in many different cellular processes, and as a natural antiviral response in plants, nematodes, and insects. In insects, the small interfering RNA (siRNA) pathway is the major antiviral response. In recent years, the Piwi-interacting RNA (piRNA) pathway also has been implicated in antiviral defense in mosquitoes infected with arboviruses. Using Drosophila melanogaster and an array of viruses that infect the fruit fly acutely or persistently or are vertically transmitted through the germ line, we investigated in detail the extent to which the piRNA pathway contributes to antiviral defense in adult flies. Following virus infection, the survival and viral titers of Piwi, Aubergine, Argonaute-3, and Zucchini mutant flies were similar to those of wild type flies. Using next-generation sequencing of small RNAs from wild type and siRNA mutant flies, we showed that no viral-derived piRNAs were produced in fruit flies during different types of viral infection. Our study provides the first evidence, to our knowledge, that the piRNA pathway does not play a major role in antiviral defense in adult Drosophila and demonstrates that viral-derived piRNA production depends on the biology of the host-virus combination rather than being part of a general antiviral process in insects. PMID:27357659

  19. Using the Ferret as an Animal Model for Investigating Influenza Antiviral Effectiveness.

    PubMed

    Oh, Ding Y; Hurt, Aeron C

    2016-01-01

    The concern of the emergence of a pandemic influenza virus has sparked an increased effort toward the development and testing of novel influenza antivirals. Central to this is the animal model of influenza infection, which has played an important role in understanding treatment effectiveness and the effect of antivirals on host immune responses. Among the different animal models of influenza, ferrets can be considered the most suitable for antiviral studies as they display most of the human-like symptoms following influenza infections, they can be infected with human influenza virus without prior viral adaptation and have the ability to transmit influenza virus efficiently between one another. However, an accurate assessment of the effectiveness of an antiviral treatment in ferrets is dependent on three major experimental considerations encompassing firstly, the volume and titer of virus, and the route of viral inoculation. Secondly, the route and dose of drug administration, and lastly, the different methods used to assess clinical symptoms, viral shedding kinetics and host immune responses in the ferrets. A good understanding of these areas is necessary to achieve data that can accurately inform the human use of influenza antivirals. In this review, we discuss the current progress and the challenges faced in these three major areas when using the ferret model to measure influenza antiviral effectiveness. PMID:26870031

  20. Bcl6 Sets a Threshold for Antiviral Signaling by Restraining IRF7 Transcriptional Program

    PubMed Central

    Xu, Feng; Kang, Yanhua; Zhuang, Ningtong; Lu, Zhe; Zhang, Hang; Xu, Dakang; Ding, Yina; Yin, Hongping; Shi, Liyun

    2016-01-01

    The coordination of restraining and priming of antiviral signaling constitute a fundamental aspect of immunological functions. However, we currently know little about the molecular events that can translate the pathogenic cues into the appropriate code for antiviral defense. Our present study reports a specific role of B cell lymphoma (Bcl)6 as a checkpoint in the initiation of the host response to cytosolic RNA viruses. Remarkably, Bcl6 specifically binds to the interferon-regulatory factor (IRF)7 loci and restrains its transcription, thereby functioning as a negative regulator for interferon (IFN)-β production and antiviral responses. The signal-controlled turnover of the Bcl6, most likely mediated by microRNA-127, coordinates the antiviral response and inflammatory sequelae. Accordingly, de-repression of Bcl6 resulted in a phenotypic conversion of macrophages into highly potent IFN-producing cells and rendered mice more resistant to pathogenic RNA virus infection. The failure to remove the Bcl6 regulator, however, impedes the antiviral signaling and exaggerates viral pneumonia in mice. We thus reveal a novel key molecular checkpoint to orchestrate antiviral innate immunity. PMID:26728228

  1. Using the Ferret as an Animal Model for Investigating Influenza Antiviral Effectiveness

    PubMed Central

    Oh, Ding Y.; Hurt, Aeron C.

    2016-01-01

    The concern of the emergence of a pandemic influenza virus has sparked an increased effort toward the development and testing of novel influenza antivirals. Central to this is the animal model of influenza infection, which has played an important role in understanding treatment effectiveness and the effect of antivirals on host immune responses. Among the different animal models of influenza, ferrets can be considered the most suitable for antiviral studies as they display most of the human-like symptoms following influenza infections, they can be infected with human influenza virus without prior viral adaptation and have the ability to transmit influenza virus efficiently between one another. However, an accurate assessment of the effectiveness of an antiviral treatment in ferrets is dependent on three major experimental considerations encompassing firstly, the volume and titer of virus, and the route of viral inoculation. Secondly, the route and dose of drug administration, and lastly, the different methods used to assess clinical symptoms, viral shedding kinetics and host immune responses in the ferrets. A good understanding of these areas is necessary to achieve data that can accurately inform the human use of influenza antivirals. In this review, we discuss the current progress and the challenges faced in these three major areas when using the ferret model to measure influenza antiviral effectiveness. PMID:26870031

  2. piRNA pathway is not required for antiviral defense in Drosophila melanogaster

    PubMed Central

    Petit, Marine; Mongelli, Vanesa; Frangeul, Lionel; Blanc, Hervé; Jiggins, Francis; Saleh, Maria-Carla

    2016-01-01

    Since its discovery, RNA interference has been identified as involved in many different cellular processes, and as a natural antiviral response in plants, nematodes, and insects. In insects, the small interfering RNA (siRNA) pathway is the major antiviral response. In recent years, the Piwi-interacting RNA (piRNA) pathway also has been implicated in antiviral defense in mosquitoes infected with arboviruses. Using Drosophila melanogaster and an array of viruses that infect the fruit fly acutely or persistently or are vertically transmitted through the germ line, we investigated in detail the extent to which the piRNA pathway contributes to antiviral defense in adult flies. Following virus infection, the survival and viral titers of Piwi, Aubergine, Argonaute-3, and Zucchini mutant flies were similar to those of wild type flies. Using next-generation sequencing of small RNAs from wild type and siRNA mutant flies, we showed that no viral-derived piRNAs were produced in fruit flies during different types of viral infection. Our study provides the first evidence, to our knowledge, that the piRNA pathway does not play a major role in antiviral defense in adult Drosophila and demonstrates that viral-derived piRNA production depends on the biology of the host–virus combination rather than being part of a general antiviral process in insects. PMID:27357659

  3. A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses

    PubMed Central

    Zhao, Hanjun; Zhou, Jie; Zhang, Ke; Chu, Hin; Liu, Dabin; Poon, Vincent Kwok-Man; Chan, Chris Chung-Sing; Leung, Ho-Chuen; Fai, Ng; Lin, Yong-Ping; Zhang, Anna Jin-Xia; Jin, Dong-Yan; Yuen, Kwok-Yung; Zheng, Bo-Jian

    2016-01-01

    A safe, potent and broad-spectrum antiviral is urgently needed to combat emerging respiratory viruses. In light of the broad antiviral activity of β-defensins, we tested the antiviral activity of 11 peptides derived from mouse β-defensin-4 and found that a short peptide, P9, exhibited potent and broad-spectrum antiviral effects against multiple respiratory viruses in vitro and in vivo, including influenza A virus H1N1, H3N2, H5N1, H7N7, H7N9, SARS-CoV and MERS-CoV. The antiviral activity of P9 was attributed to its high-affinity binding to viral glycoproteins, as well as the abundance of basic amino acids in its composition. After binding viral particles through viral surface glycoproteins, P9 entered into cells together with the viruses via endocytosis and prevented endosomal acidification, which blocked membrane fusion and subsequent viral RNA release. This study has paved the avenue for developing new prophylactic and therapeutic agents with broad-spectrum antiviral activities. PMID:26911565

  4. Antiviral Activity of Graphene–Silver Nanocomposites against Non-Enveloped and Enveloped Viruses

    PubMed Central

    Chen, Yi-Ning; Hsueh, Yi-Huang; Hsieh, Chien-Te; Tzou, Dong-Ying; Chang, Pai-Ling

    2016-01-01

    The discovery of novel antiviral materials is important because many infectious diseases are caused by viruses. Silver nanoparticles have demonstrated strong antiviral activity, and graphene is a potential antimicrobial material due to its large surface area, high carrier mobility, and biocompatibility. No studies on the antiviral activity of nanomaterials on non-enveloped viruses have been reported. To investigate the antiviral activity of graphene oxide (GO) sheets and GO sheets with silver particles (GO-Ag) against enveloped and non-enveloped viruses, feline coronavirus (FCoV) with an envelope and infectious bursal disease virus (IBDV) without an envelope were chosen. The morphology and sizes of GO and GO-Ag were characterized by transmission, scanning electron microscopy, and X-ray diffraction. A virus inhibition assay was used to identify the antiviral activity of GO and GO-Ag. Go-Ag inhibited 25% of infection by FCoV and 23% by IBDV, whereas GO only inhibited 16% of infection by FCoV but showed no antiviral activity against the infection by IBDV. Further application of GO and GO-Ag can be considered for personal protection equipment to decrease the transmission of viruses. PMID:27104546

  5. Antiviral Activity of Graphene-Silver Nanocomposites against Non-Enveloped and Enveloped Viruses.

    PubMed

    Chen, Yi-Ning; Hsueh, Yi-Huang; Hsieh, Chien-Te; Tzou, Dong-Ying; Chang, Pai-Ling

    2016-01-01

    The discovery of novel antiviral materials is important because many infectious diseases are caused by viruses. Silver nanoparticles have demonstrated strong antiviral activity, and graphene is a potential antimicrobial material due to its large surface area, high carrier mobility, and biocompatibility. No studies on the antiviral activity of nanomaterials on non-enveloped viruses have been reported. To investigate the antiviral activity of graphene oxide (GO) sheets and GO sheets with silver particles (GO-Ag) against enveloped and non-enveloped viruses, feline coronavirus (FCoV) with an envelope and infectious bursal disease virus (IBDV) without an envelope were chosen. The morphology and sizes of GO and GO-Ag were characterized by transmission, scanning electron microscopy, and X-ray diffraction. A virus inhibition assay was used to identify the antiviral activity of GO and GO-Ag. Go-Ag inhibited 25% of infection by FCoV and 23% by IBDV, whereas GO only inhibited 16% of infection by FCoV but showed no antiviral activity against the infection by IBDV. Further application of GO and GO-Ag can be considered for personal protection equipment to decrease the transmission of viruses. PMID:27104546

  6. Current management and recommendations for access to antiviral therapy of herpes labialis

    PubMed Central

    Cunningham, Anthony; Griffiths, Paul; Leone, Peter; Mindel, Adrian; Patel, Rajul; Stanberry, Lawrence; Whitley, Richard

    2012-01-01

    Herpes labialis is a common skin infective condition, worldwide, which is primarily caused by HSV-1. Recurrent episodes of herpes labialis, also known as cold sores, can be frequent, painful, long-lasting and disfiguring for infected patients. At present, there are two types of antivirals for the treatment of herpes labialis, topical and oral, which are available over the counter or as prescription-only. The aim of antiviral therapy is to block viral replication to enable shortening the duration of symptoms and to accelerate healing of the lesions associated with herpes labialis. This review examines the evidence for the effectiveness of current topical and oral antivirals in the management of recurrent episodes of herpes labialis. In most countries, oral antivirals for herpes labialis are available as prescription-only. However, in early 2010, the oral antiviral famciclovir was reclassified from prescription-only medicine to pharmacist-controlled status in New Zealand. The benefits and risks associated with moving an antiviral therapy for herpes labialis from prescription-only to pharmacist-controlled status are reviewed here, and the implications for patients, general physicians and pharmacists are considered. PMID:21889905

  7. Antiviral Indolosesquiterpenoid Xiamycins C-E from a Halophilic Actinomycete.

    PubMed

    Kim, Seong-Hwan; Ha, Thi-Kim-Quy; Oh, Won Keun; Shin, Jongheon; Oh, Dong-Chan

    2016-01-22

    New metabolites, xiamycins C-E (1-3), were isolated from a Streptomyces. sp (#HK18) culture inhabiting the topsoil in a Korean solar saltern. The planar structures of the xiamycins C-E were elucidated as carbazole-bearing indolosesquiterpenoids using a combined analysis of NMR, MS, UV, and IR spectroscopic data. The absolute configurations of these new compounds were determined by analyses of NOESY and ECD data. When the xiamycins were tested for inhibitory activity on porcine epidemic diarrhea virus (PEDV), xiamycin D (2) showed the strongest inhibitory effect on PEDV replication (EC50 = 0.93 μM) with low cytotoxicity (CC50 = 56.03 μM), thus displaying a high selective index (60.31). Quantitative real-time PCR data revealed the inhibitory effect of 2 on genes encoding essential structural proteins (GP6 nucleocapsid, GP2 spike, and GP5 membrane) for PEDV replication in a dose-dependent manner. The antiviral activity of xiamycin D (2) was also supported by both Western blotting of the GP2 spike and GP6 nucleocapsid protein synthesis of PEDV. Therefore, xiamycin D shows the potential of indolosesquiterpenoids as new and promising chemical skeletons against PEDV-related viruses. PMID:26698879

  8. [Antiviral activity of representatives of the family Crassulaceae].

    PubMed

    Shirobokov, V P; Evtushenko, A I; Lapchik, V F; Shirobokova, D N; Suptel', E A

    1981-12-01

    The antiviral properties of the juice of 11 species of the orpine family were studied. 8 of them belonged to the genera Kalanchoe, i. e. Kalanchoe diagremontiona R. Hamet, K. pinnata (Zam.) Persoon, K. Peteri Werd., K. prolifera (Bovie) R. Hamet, K. marnierriana (Mann. et Boit) Jacobs; K. blossfeldiana v. Poelln, K. beharensis Drake del Gastillo, K. waldheimii R. Hamet et Perr and 3 belonged to the Sedum genera, i. e. Sedum telephium L., S. spectabile Boreau, S. acre L. A high virus neutralizing activity of the juice from 4 species of Kalanchoe, i. e. K. blossfeldiana, K. waldheimii, K. pinnata and K. beharensis was shown. Inhibition of the virus infecting activity was observed at the juice dilutions from 1-2 to 1-8000 and higher. The viricidal factor of Kalanchoe is stable. It is not destroyed by ether, alcohol and potassium periodate. It is not absorbed by bentonite at the acid pH values. Addition of cattle serum or purified proteins to the juice resulted in their precipitation which suppressed the viricidal activity of the juice. PMID:7198890

  9. Regulation of the Host Antiviral State by Intercellular Communications.

    PubMed

    Assil, Sonia; Webster, Brian; Dreux, Marlène

    2015-08-01

    Viruses usually induce a profound remodeling of host cells, including the usurpation of host machinery to support their replication and production of virions to invade new cells. Nonetheless, recognition of viruses by the host often triggers innate immune signaling, preventing viral spread and modulating the function of immune cells. It conventionally occurs through production of antiviral factors and cytokines by infected cells. Virtually all viruses have evolved mechanisms to blunt such responses. Importantly, it is becoming increasingly recognized that infected cells also transmit signals to regulate innate immunity in uninfected neighboring cells. These alternative pathways are notably mediated by vesicular secretion of various virus- and host-derived products (miRNAs, RNAs, and proteins) and non-infectious viral particles. In this review, we focus on these newly-described modes of cell-to-cell communications and their impact on neighboring cell functions. The reception of these signals can have anti- and pro-viral impacts, as well as more complex effects in the host such as oncogenesis and inflammation. Therefore, these "broadcasting" functions, which might be tuned by an arms race involving selective evolution driven by either the host or the virus, constitute novel and original regulations of viral infection, either highly localized or systemic. PMID:26295405

  10. The antiviral activity of tetrazole phosphonic acids and their analogues.

    PubMed Central

    Hutchinson, D W; Naylor, M

    1985-01-01

    5-(Phosphonomethyl)-1H-tetrazole and a number of related tetrazoles have been prepared and their effects on the replication of Herpes Simplex Viruses-1 and -2 have been investigated as well as their abilities to inhibit the DNA polymerases induced by these viruses and the RNA transcriptase activity of influenza virus A. Contrary to an earlier report, 5-(phosphonomethyl)-1H-tetrazole was not an efficient inhibitor of the replication of HSV-1 and HSV-2 in tissue culture. Analogues of 5-(phosphonomethyl)-1H-tetrazole were also devoid of significant antiviral activity. Only 5-(phosphonomethyl)-1H-tetrazole and 5-(thiophosphonomethyl)-1H-tetrazole inhibited the influenza virus transcriptase, and both were more effective as inhibitors than phosphonoacetic acid under the same conditions. The DNA polymerases induced by HSV-1 and HSV-2 were inhibited slightly by 5-(phosphonomethyl)-1H-tetrazole and to a lesser extent by its N-ethyl analogue and 3-(phosphonomethyl)-1H-1,2,4-triazole. None of these compounds were as effective as phosphonoacetic acid. 5-(Thiophosphonomethyl)-1H-tetrazole was a better inhibitor of the DNA polymerase induced by HSV-1 than 5-(phosphonomethyl)-1H-tetrazole. PMID:2417198

  11. CMV infection, diagnosis and antiviral strategies after liver transplantation.

    PubMed

    Lautenschlager, Irmeli

    2009-11-01

    Cytomegalovirus (CMV) is a significant pathogen complicating the post-transplant course of organ recipients. In liver transplant patients, the febrile clinical illness caused by CMV may be associated with end-organ disease, such as hepatitis or infection of the gastrointestinal tract. In addition to direct effects, CMV may have indirect effects including the risk of other infections or graft rejection. Recently, major advances in the management of CMV infection have been achieved through the development of new diagnostic techniques and antiviral strategies to prevent CMV disease. Quantitative nucleic acid testing to monitor viral load is now commonly used to diagnose and guide the treatment of CMV infections. The standardization of the testing, however, needs to be improved. There are two main strategies to prevent CMV disease after liver transplantation: prophylaxis and pre-emptive therapy. Both strategies are effective, but also have disadvantages. The disadvantages of prophylaxis include prolonged drug exposure, the development of resistance and, most of all, the development of delayed and late-onset CMV disease. On the other hand, the pre-emptive strategy is based on frequent laboratory monitoring of viral loads, and some patients may develop symptomatic infection before the diagnosis of CMV. This overview summarizes the current status of CMV in liver transplantation. PMID:19619175

  12. Antiviral mechanism of polyanionic carbosilane dendrimers against HIV-1

    PubMed Central

    Vacas-Córdoba, Enrique; Maly, Marek; De la Mata, Francisco J; Gómez, Rafael; Pion, Marjorie; Muñoz-Fernández, Mª Ángeles

    2016-01-01

    Nanotechnology-derived platforms, such as dendrimers, are very attractive in several biological applications. In the case of human immunodeficiency virus (HIV) infection, polyanionic carbosilane dendrimers have shown great potential as antiviral agents in the development of novel microbicides to prevent the sexual transmission of HIV-1. In this work, we studied the mechanism of two sulfated and naphthylsulfonated functionalized carbosilane dendrimers, G3-S16 and G2-NF16. They are able to inhibit viral infection at fusion and thus at the entry step. Both compounds impede the binding of viral particles to target cell surface and membrane fusion through the blockage of gp120–CD4 interaction. In addition, and for the first time, we demonstrate that dendrimers can inhibit cell-to-cell HIV transmission and difficult infectious synapse formation. Thus, carbosilane dendrimers’ mode of action is a multifactorial process targeting several proteins from viral envelope and from host cells that could block HIV infection at different stages during the first step of infection. PMID:27103798

  13. Predicting antiviral compliance: physicians' responsibilities vs. patients' rights.

    PubMed

    Senak, M

    1997-06-01

    Predicting which patients will comply with anti-HIV drug regimens is a very serious issue, since lack of compliance may cause development of drug-resistant strains of HIV that can be passed on to others. Ethical issues include addressing the well-being of the patient versus public health. Physicians are put in the position of trying to judge whether patients will comply with treatment; there are many factors involved in making this judgment. Some of these involve socioeconomic factors, e.g., a patient might sell his drugs, while other factors are failure to keep appointments or taking drugs incorrectly. Physicians should carefully examine the question of a possible noncompliance before prescribing common antiviral therapies; however, there is concern that physicians' personal biases may enter into this decision. Appropriate care and helping patients comply necessitates a partnership between the physician and patient, and decision making should be a shared process. Physicians should try to understand and address the reasons for noncompliance, so that their patients can be treated. If at all possible, the regimen should be simplified to help the patient comply with a less-difficult regimen. PMID:11364430

  14. Regulation of the Host Antiviral State by Intercellular Communications

    PubMed Central

    Assil, Sonia; Webster, Brian; Dreux, Marlène

    2015-01-01

    Viruses usually induce a profound remodeling of host cells, including the usurpation of host machinery to support their replication and production of virions to invade new cells. Nonetheless, recognition of viruses by the host often triggers innate immune signaling, preventing viral spread and modulating the function of immune cells. It conventionally occurs through production of antiviral factors and cytokines by infected cells. Virtually all viruses have evolved mechanisms to blunt such responses. Importantly, it is becoming increasingly recognized that infected cells also transmit signals to regulate innate immunity in uninfected neighboring cells. These alternative pathways are notably mediated by vesicular secretion of various virus- and host-derived products (miRNAs, RNAs, and proteins) and non-infectious viral particles. In this review, we focus on these newly-described modes of cell-to-cell communications and their impact on neighboring cell functions. The reception of these signals can have anti- and pro-viral impacts, as well as more complex effects in the host such as oncogenesis and inflammation. Therefore, these “broadcasting” functions, which might be tuned by an arms race involving selective evolution driven by either the host or the virus, constitute novel and original regulations of viral infection, either highly localized or systemic. PMID:26295405

  15. Antiviral mechanism of polyanionic carbosilane dendrimers against HIV-1.

    PubMed

    Vacas-Córdoba, Enrique; Maly, Marek; De la Mata, Francisco J; Gómez, Rafael; Pion, Marjorie; Muñoz-Fernández, M Ángeles

    2016-01-01

    Nanotechnology-derived platforms, such as dendrimers, are very attractive in several biological applications. In the case of human immunodeficiency virus (HIV) infection, polyanionic carbosilane dendrimers have shown great potential as antiviral agents in the development of novel microbicides to prevent the sexual transmission of HIV-1. In this work, we studied the mechanism of two sulfated and naphthylsulfonated functionalized carbosilane dendrimers, G3-S16 and G2-NF16. They are able to inhibit viral infection at fusion and thus at the entry step. Both compounds impede the binding of viral particles to target cell surface and membrane fusion through the blockage of gp120-CD4 interaction. In addition, and for the first time, we demonstrate that dendrimers can inhibit cell-to-cell HIV transmission and difficult infectious synapse formation. Thus, carbosilane dendrimers' mode of action is a multifactorial process targeting several proteins from viral envelope and from host cells that could block HIV infection at different stages during the first step of infection. PMID:27103798

  16. Current approaches in antiviral drug discovery against the Flaviviridae family.

    PubMed

    Baharuddin, Aida; Hassan, Asfarina Amir; Sheng, Gan Chye; Nasir, Shah Bakhtiar; Othman, Shatrah; Yusof, Rohana; Othman, Rozana; Rahman, Noorsaadah Abdul

    2014-01-01

    Viruses belonging to the Flaviviridae family primarily spread through arthropod vectors, and are the major causes of illness and death around the globe. The Flaviviridae family consists of 3 genera which include the Flavivirus genus (type species, yellow fever virus) as the largest genus, the Hepacivirus (type species, hepatitis C virus) and the Pestivirus (type species, bovine virus diarrhea). The flaviviruses (Flavivirus genus) are small RNA viruses transmitted by mosquitoes and ticks that take over host cell machinery in order to propagate. However, hepaciviruses and pestiviruses are not antropod-borne. Despite the extensive research and public health concern associated with flavivirus diseases, to date, there is no specific treatment available for any flavivirus infections, though commercially available vaccines for yellow fever, Japanese encephalitis and tick-born encephalitis exist. Due to the global threat of viral pandemics, there is an urgent need for new drugs. In many countries, patients with severe cases of flavivirus infections are treated only by supportive care, which includes intravenous fluids, hospitalization, respiratory support, and prevention of secondary infections. This review discusses the strategies used towards the discovery of antiviral drugs, focusing on rational drug design against Dengue virus (DENV), West Nile virus (WNV), Japanese encephalitis virus (JEV), Yellow Fever virus (YFV) and Hepatitis C virus (HCV). Only modified peptidic, nonpeptidic, natural compounds and fragment-based inhibitors (typically of mass less than 300 Da) against structural and non-structural proteins are discussed. PMID:24001228

  17. Antiviral effects of an iminosugar derivative on flavivirus infections.

    PubMed

    Wu, Shu-Fen; Lee, Chyan-Jang; Liao, Ching-Len; Dwek, Raymond A; Zitzmann, Nicole; Lin, Yi-Ling

    2002-04-01

    Endoplasmic reticulum (ER) alpha-glucosidase inhibitors, which block the trimming step of N-linked glycosylation, have been shown to eliminate the production of several ER-budding viruses. Here we investigated the effects of one such inhibitor, N-nonyl-deoxynojirimycin (NN-DNJ), a 9-carbon alkyl iminosugar derivative, on infection by Japanese encephalitis virus (JEV) and dengue virus serotype 2 (DEN-2). In the presence of NN-DNJ, JEV and DEN-2 infections were suppressed in a dose-dependent manner. This inhibitory effect appeared to influence DEN-2 infection more than JEV infection, since lower concentrations of NN-DNJ substantially blocked DEN-2 replication. Secretion of the flaviviral glycoproteins E and NS1 was greatly reduced, and levels of DEN-2 viral RNA replication measured by fluorogenic reverse transcription-PCR were also decreased, by NN-DNJ. Notably, the viral glycoproteins, prM, E, and NS1 were found to associate transiently with the ER chaperone calnexin, and this interaction was affected by NN-DNJ, suggesting a potential role of calnexin in the folding of flaviviral glycoproteins. Additionally, in a mouse model of lethal challenge by JEV infection, oral delivery of NN-DNJ reduced the mortality rate. These findings show that NN-DNJ has an antiviral effect on flavivirus infection, likely through interference with virus replication at the posttranslational modification level, occurring mainly in the ER. PMID:11907199

  18. Novel antiviral activity of bromocriptine against dengue virus replication.

    PubMed

    Kato, Fumihiro; Ishida, Yuki; Oishi, Shinya; Fujii, Nobutaka; Watanabe, Satoru; Vasudevan, Subhash G; Tajima, Shigeru; Takasaki, Tomohiko; Suzuki, Youichi; Ichiyama, Koji; Yamamoto, Naoki; Yoshii, Kentaro; Takashima, Ikuo; Kobayashi, Takeshi; Miura, Tomoyuki; Igarashi, Tatsuhiko; Hishiki, Takayuki

    2016-07-01

    Dengue virus (DENV) infectious disease is a major public health problem worldwide; however, licensed vaccines or specific antiviral drugs against this infection are not available. To identify novel anti-DENV compounds, we screened 1280 pharmacologically active compounds using focus reduction assay. Bromocriptine (BRC) was found to have potent anti-DENV activity and low cytotoxicity (half maximal effective concentration [EC50], 0.8-1.6 μM; and half maximal cytotoxicity concentration [CC50], 53.6 μM). Time-of-drug-addition and time-of-drug-elimination assays suggested that BRC inhibits translation and/or replication steps in the DENV life cycle. A subgenomic replicon system was used to verify that BRC restricts RNA replication step. Furthermore, a single amino acid substitution (N374H) was detected in the NS3 protein that conferred resistance to BRC. In summary, BRC was found to be a novel DENV inhibitor and a potential candidate for the treatment of DENV infectious disease. PMID:27181378

  19. Antiviral Therapy in Elderly Patients With Hepatitis C Virus Infection

    PubMed Central

    Rheem, Justin; Sundaram, Vinay

    2015-01-01

    The emergence of direct-acting antiviral (DAA) agents has revolutionized the treatment schema for hepatitis C virus (HCV) infection. From cure rates to tolerability, DAA agents have shown outstanding profiles compared with the prior therapy of pegylated interferon with ribavirin. However, the efficacy and safety profiles of DAA therapy in older patients, particularly the elderly, have been unclear, and patients in the 1945 to 1965 birth cohort constitute the largest proportion of the HCV population in the United States. Treating elderly patients with pegylated interferon and ribavirin has been challenging due to the frequent presence of multiple comorbidities in the elderly and high discontinuation rates caused by adverse events. Now, as more DAA agents have become widely studied and approved, subgroup analyses for the elderly population are being elucidated. Analysis of the current literature shows that these agents have been effective, well tolerated, and safe in the elderly population. This article highlights the efficacy and safety differences in interferon-based therapy and interferon-free regimens for elderly patients with HCV infection.

  20. Matrix Metalloproteinase 9 Exerts Antiviral Activity against Respiratory Syncytial Virus

    PubMed Central

    Dabo, Abdoulaye J.; Cummins, Neville; Eden, Edward; Geraghty, Patrick

    2015-01-01

    Increased lung levels of matrix metalloproteinase 9 (MMP9) are frequently observed during respiratory syncytial virus (RSV) infection and elevated MMP9 concentrations are associated with severe disease. However little is known of the functional role of MMP9 during lung infection with RSV. To determine whether MMP9 exerted direct antiviral potential, active MMP9 was incubated with RSV, which showed that MMP9 directly prevented RSV infectivity to airway epithelial cells. Using knockout mice the effect of the loss of Mmp9 expression was examined during RSV infection to demonstrate MMP9’s role in viral clearance and disease progression. Seven days following RSV infection, Mmp9-/- mice displayed substantial weight loss, increased RSV-induced airway hyperresponsiveness (AHR) and reduced clearance of RSV from the lungs compared to wild type mice. Although total bronchoalveolar lavage fluid (BALF) cell counts were similar in both groups, neutrophil recruitment to the lungs during RSV infection was significantly reduced in Mmp9-/- mice. Reduced neutrophil recruitment coincided with diminished RANTES, IL-1β, SCF, G-CSF expression and p38 phosphorylation. Induction of p38 signaling was required for RANTES and G-CSF expression during RSV infection in airway epithelial cells. Therefore, MMP9 in RSV lung infection significantly enhances neutrophil recruitment, cytokine production and viral clearance while reducing AHR. PMID:26284919

  1. Chemical diversity and antiviral potential in the pantropical Diospyros genus.

    PubMed

    Peyrat, Laure-Anne; Eparvier, Véronique; Eydoux, Cécilia; Guillemot, Jean-Claude; Stien, Didier; Litaudon, Marc

    2016-07-01

    A screening using a dengue replicon virus-cell-based assay was performed on 3563 ethyl acetate (EtOAc) extracts from different parts of 1500 plants. The screening led to the selection of species from the genus Diospyros (Ebenaceae), among which 25 species distributed in tropical areas showed significant inhibitory activity on dengue virus replication. A metabolic analysis was conducted from the UPLC-HRMS profiles of 33 biologically active and inactive plant extracts, and their metabolic proximity is presented in the form of a dendrogram. The results of the study showed that chemical similarity is not related to plant species or organ. Overall, metabolomic profiling allowed us to define large groups of extracts, comprising both active and inactive ones. Closely related profiles from active extracts might indicate that the common major components of these extracts were responsible for the antiviral activity, while the comparison of chemically similar active and inactive extracts, will permit to find compounds of interest. Eventually, the phytochemical investigation of Diospyros glans bark EtOAc extract afforded usnic acid and 7 known ursane- and lupane-type triterpenoids, among which 5 were found significantly active against dengue virus replication. The inhibitory potency of these compounds was also evaluated on a DENV-NS5 RNA-dependant RNA polymerase assay. PMID:27126897

  2. Single domain antibody multimers confer protection against rabies infection.

    PubMed

    Boruah, Bhargavi M; Liu, Dawei; Ye, Duan; Gu, Tie-Jun; Jiang, Chun-Lai; Qu, Mingsheng; Wright, Edward; Wang, Wei; He, Wen; Liu, Changzhen; Gao, Bin

    2013-01-01

    Post-exposure prophylactic (PEP) neutralizing antibodies against Rabies are the most effective way to prevent infection-related fatality. The outer envelope glycoprotein of the Rabies virus (RABV) is the most significant surface antigen for generating virus-neutralizing antibodies. The small size and uncompromised functional specificity of single domain antibodies (sdAbs) can be exploited in the fields of experimental therapeutic applications for infectious diseases through formatting flexibilities to increase their avidity towards target antigens. In this study, we used phage display technique to select and identify sdAbs that were specific for the RABV glycoprotein from a naïve llama-derived antibody library. To increase their neutralizing potencies, the sdAbs were fused with a coiled-coil peptide derived from the human cartilage oligomeric matrix protein (COMP48) to form homogenous pentavalent multimers, known as combodies. Compared to monovalent sdAbs, the combodies, namely 26424 and 26434, exhibited high avidity and were able to neutralize 85-fold higher input of RABV (CVS-11 strain) pseudotypes in vitro, as a result of multimerization, while retaining their specificities for target antigen. 26424 and 26434 were capable of neutralizing CVS-11 pseudotypes in vitro by 90-95% as compared to human rabies immunoglobulin (HRIG), currently used for PEP in Rabies. The multimeric sdAbs were also demonstrated to be partially protective for mice that were infected with lethal doses of rabies virus in vivo. The results demonstrate that the combodies could be valuable tools in understanding viral mechanisms, diagnosis and possible anti-viral candidate for RABV infection. PMID:23977032

  3. Evaluation of Ag nanoparticle coated air filter against aerosolized virus: Anti-viral efficiency with dust loading.

    PubMed

    Joe, Yun Haeng; Park, Dae Hoon; Hwang, Jungho

    2016-01-15

    In this study, the effect of dust loading on the anti-viral ability of an anti-viral air filter was investigated. Silver nanoparticles approximately 11 nm in diameter were synthesized via a spark discharge generation system and were used as anti-viral agents coated onto a medium air filter. The pressure drop, filtration efficiency, and anti-viral ability of the filter against aerosolized bacteriophage MS2 virus particles were tested with dust loading. The filtration efficiency and pressure drop increased with dust loading, while the anti-viral ability decreased. Theoretical analysis of anti-viral ability with dust loading was carried out using a mathematical model based on that presented by Joe et al. (J. Hazard. Mater.; 280: 356-363, 2014). Our model can be used to compare anti-viral abilities of various anti-viral agents, determine appropriate coating areal density of anti-viral agent on a filter, and predict the life cycle of an anti-viral filter. PMID:26434534

  4. Antibody mimetics: promising complementary agents to animal-sourced antibodies.

    PubMed

    Baloch, Abdul Rasheed; Baloch, Abdul Wahid; Sutton, Brian J; Zhang, Xiaoying

    2016-01-01

    Despite their wide use as therapeutic, diagnostic and detection agents, the limitations of polyclonal and monoclonal antibodies have inspired scientists to design the next generation biomedical agents, so-called antibody mimetics that offer many advantages over conventional antibodies. Antibody mimetics can be constructed by protein-directed evolution or fusion of complementarity-determining regions through intervening framework regions. Substantial progress in exploiting human, butterfly (Pieris brassicae) and bacterial systems to design and select mimetics using display technologies has been made in the past 10 years, and one of these mimetics [Kalbitor® (Dyax)] has made its way to market. Many challenges lie ahead to develop mimetics for various biomedical applications, especially those for which conventional antibodies are ineffective, and this review describes the current characteristics, construction and applications of antibody mimetics compared to animal-sourced antibodies. The possible limitations of mimetics and future perspectives are also discussed. PMID:25264572

  5. Antibody Engineering and Therapeutics Conference

    PubMed Central

    Almagro, Juan Carlos; Gilliland, Gary L; Scott, Jamie; Larrick, James W; Plückthun, Andreas; Veldman, Trudi; Adams, Gregory P; Parren, Paul WHI; Chester, Kerry A; Bradbury, Andrew; Reichert, Janice M; Huston, James S

    2013-01-01

    The Antibody Engineering and Therapeutics conference, which serves as the annual meeting of The Antibody Society, will be held in Huntington Beach, CA from Sunday December 8 through Thursday December 12, 2013. The scientific program will cover the full spectrum of challenges in antibody research and development, and provide updates on recent progress in areas from basic science through approval of antibody therapeutics. Keynote presentations will be given by Leroy Hood (Institute of System Biology), who will discuss a systems approach for studying disease that is enabled by emerging technology; Douglas Lauffenburger (Massachusetts Institute of Technology), who will discuss systems analysis of cell communication network dynamics for therapeutic biologics design; David Baker (University of Washington), who will describe computer-based design of smart protein therapeutics; and William Schief (The Scripps Research Institute), who will discuss epitope-focused immunogen design.   In this preview of the conference, the workshop and session chairs share their thoughts on what conference participants may learn in sessions on: (1) three-dimensional structure antibody modeling; (2) identifying clonal lineages from next-generation data sets of expressed VH gene sequences; (3) antibodies in cardiometabolic medicine; (4) the effects of antibody gene variation and usage on the antibody response; (5) directed evolution; (6) antibody pharmacokinetics, distribution and off-target toxicity; (7) use of knowledge-based design to guide development of complementarity-determining regions and epitopes to engineer or elicit the desired antibody; (8) optimizing antibody formats for immunotherapy; (9) antibodies in a complex environment; (10) polyclonal, oligoclonal and bispecific antibodies; (11) antibodies to watch in 2014; and (12) polyreactive antibodies and polyspecificity.

  6. Macrophage- and Neutrophil-Derived TNF-α Instructs Skin Langerhans Cells to Prime Antiviral Immune Responses

    PubMed Central

    Epaulard, Olivier; Adam, Lucille; Poux, Candice; Zurawski, Gerard; Salabert, Nina; Rosenbaum, Pierre; Dereuddre-Bosquet, Nathalie; Zurawski, Sandra; Flamar, Anne-Laure; Oh, Sangkon; Romain, Gabrielle; Chapon, Catherine; Banchereau, Jacques; Lévy, Yves; Le Grand, Roger; Martinon, Frédéric

    2014-01-01

    Dendritic cells (DCs) are major antigen presenting cells that can efficiently prime immune responses. However, the roles of skin resident Langerhans cells (LCs) in eliciting immune responses have not been fully understood. We here demonstrate for the first time that LCs in cynomolgus macaque skin are capable of inducing antiviral-specific immune responses in vivo. Targeting HIV-Gag or influenza hemagglutinin antigens to skin LCs using recombinant fusion proteins of anti-Langerin antibody and antigens resulted in the induction of the viral antigen-specific responses. We further demonstrated that such antigen-specific immune responses elicited by skin LCs were greatly enhanced by TLR ligands (TLR-Ls), polyriboinosinic polyribocytidylic acid (poly(I:C)) and R848. These enhancements were not due to the direct actions of TLR-Ls on LCs, but mainly dependent on TNF-α secreted from macrophages and neutrophils recruited to local tissues. Skin LC activation and migration out of the epidermis are associated with macrophage and neutrophil infiltration into the tissues. More importantly, blocking TNF-α abrogated the activation and migration of skin LCs. This study highlights that the cross-talk between innate immune cells in local tissues is an important component for the establishment of adaptive immunity. Understanding the importance of local immune networks will help us to design new and effective vaccines against microbial pathogens. PMID:25057007

  7. Do antibodies to myelin basic protein isolated from multiple sclerosis cross-react with measles and other common virus antigens?

    PubMed Central

    Bernard, C C; Townsend, E; Randell, V B; Williamson, H G

    1983-01-01

    Immunological activity to various antigens, including brain components, measles and other viruses, has been associated with IgG in multiple sclerosis (MS). One possible explanation for the presence of anti-viral antibodies and antibody to myelin basic protein (MBP) in MS patients is that there are antigenic determinants common to certain viruses and MBP. To assess this possibility, IgG from individual brains and sera from patients with MS, subacute sclerosing panencephalitis (SSPE) and controls was isolated by protein A and MBP-Sepharose affinity chromatography. Antibody to MBP was measured with a solid phase radioimmunoassay and antibody to measles and other viruses by immunofluorescence and/or complement fixation. Anti-MBP activity was detected in brain extracts and sera of all MS patients tested. In contrast to the low levels of antibody to MBP in control brains, high levels of anti-MBP antibodies were found in most of the normal sera. There was no correlation between the presence and levels of serum anti-measles antibodies and the anti-MBP activity. None of the anti-MBP antibodies affinity purified from brain and serum of MS patients reacted with any of the viruses tested, including measles. IgG purified from SSPE patients or from a rabbit hyperimmunized with measles antigen had no reactivity to MBP, despite high levels of anti-measles antibody. It is concluded that there is not direct link between the presence of antibody to MBP and antibody to measles and other viruses in MS patients. PMID:6190599

  8. Inhibition of Dengue and Chikungunya Virus Infections by RIG-I-Mediated Type I Interferon-Independent Stimulation of the Innate Antiviral Response

    PubMed Central

    Olagnier, David; Scholte, Florine E. M.; Chiang, Cindy; Albulescu, Irina C.; Nichols, Carmen; He, Zhong; Lin, Rongtuan; Snijder, Eric J.

    2014-01-01

    ABSTRACT RIG-I is a cytosolic sensor critically involved in the activation of the innate immune response to RNA virus infection. In the present study, we evaluated the inhibitory effect of a RIG-I agonist on the replication of two emerging arthropod-borne viral pathogens, dengue virus (DENV) and chikungunya virus (CHIKV), for which no therapeutic options currently exist. We demonstrate that when a low, noncytotoxic dose of an optimized 5′triphosphorylated RNA (5′pppRNA) molecule was administered, RIG-I stimulation generated a robust antiviral response against these two viruses. Strikingly, 5′pppRNA treatment before or after challenge with DENV or CHIKV provided protection against infection. In primary human monocytes and monocyte-derived dendritic cells, the RIG-I agonist blocked both primary infection and antibody-dependent enhancement of DENV infection. The protective response against DENV and CHIKV induced by 5′pppRNA was dependent on an intact RIG-I/MAVS/TBK1/IRF3 axis and was largely independent of the type I IFN response. Altogether, this in vitro analysis of the antiviral efficacy of 5′pppRNA highlights the therapeutic potential of RIG-I agonists against emerging viruses such as DENV and CHIKV. IMPORTANCE DENV and CHIKV are two reemerging mosquito-borne viruses for which no therapeutic options currently exist. Both viruses overlap geographically in tropical regions of the world, produce similar fever-like symptoms, and are difficult to diagnose. This study investigated the inhibitory effect of a RIG-I agonist on the replication of these two viruses. RIG-I stimulation using 5′pppRNA before or after DENV or CHIKV infection generated a protective antiviral response against both pathogens in immune and nonimmune cells; interestingly, the protective response against the viruses was largely independent of the classical type I interferon response. The antiviral efficacy of 5′pppRNA highlights the therapeutic potential of RIG-I agonists against

  9. Targeting antibodies to the cytoplasm

    PubMed Central

    Marschall, Andrea L J; Frenzel, André; Schirrmann, Thomas; Schüngel, Manuela

    2011-01-01

    A growing number of research consortia are now focused on generating antibodies and recombinant antibody fragments that target the human proteome. A particularly valuable application for these binding molecules would be their use inside a living cell, e.g., for imaging or functional intervention. Animal-derived antibodies must be brought into the cell through the membrane, whereas the availability of the antibody genes from phage display systems allows intracellular expression. Here, the various technologies to target intracellular proteins with antibodies are reviewed. PMID:21099369

  10. [Antibody therapy for Alzheimer's disease].

    PubMed

    Tabira, Takeshi; Matsumoto, Shin-Ei; Jin, Haifeng

    2011-11-01

    In order to avoid Abeta-induced autoimmune encephalitis, several monoclonal and polyclonal antibodies are in clinical trials. These are bapineuzumab, solanezumab, ponezumab, gantenerumab, BAN2401, gammaguard and octagam. Since each antibody has a different antigen epitope of Abeta, anti-amyloid activities are different. It is unknown which antibody is effective for Alzheimer disease, and we must wait for the result of clinical trials. Some patients who developed tissue amyloid plaque immuno-reactive (TAPIR) antibody showed slower decline after AN-1792 vaccination. We developed TAPIR-like monoclonal antibody, which was found to react with Abeta oligomers preferentially. PMID:22277519

  11. Monoclonal antibodies to gonadotropin subunits

    SciTech Connect

    Ehrlich, P.H.; Moyle, W.R.; Canfield, R.E.

    1985-01-01

    The production of monoclonal antibodies to peptide hormones, with their unifocal binding sites, can provide tools for understanding hormone structure and function. The paper focuses on techniques that are important for the study of monoclonal antibodies to chorionic gonadotropin (hCG), including hybridoma production, methods of screening for desired clones, properties of the monoclonal antibodies, effect of antibodies on hormone-receptor interaction, inhibition of binding of radiolabeled hCG, inhibition of hCG induced steroidogenesis, determination of relative orientation of epitopes, and synergistic actions of monoclonal antibodies to hCG.

  12. Therapeutic antibodies against cancer

    PubMed Central

    Adler, Mark J.; Dimitrov, Dimiter S.

    2012-01-01

    Antibody-based therapeutics against cancer are highly successful in clinic and currently enjoy unprecedented recognition of their potential; 13 monoclonal antibodies (mAbs) have been approved for clinical use in the European Union and in the United States (one, mylotarg, was withdrawn from market in 2010). Three of the mAbs (bevacizumab, rituximab, trastuzumab) are in the top six selling protein therapeutics with sales in 2010 of more than $5 bln each. Hundreds of mAbs including bispecific mAbs and multispecific fusion proteins, mAbs conjugated with small molecule drugs and mAbs with optimized pharmacokinetics are in clinical trials. However, challenges remain and it appears that deeper understanding of mechanisms is needed to overcome major problems including resistance to therapy, access to targets, complexity of biological systems and individual variations. PMID:22520975

  13. Antibody Therapy for Histoplasmosis

    PubMed Central

    Nosanchuk, Joshua D.; Zancopé-Oliveira, Rosely M.; Hamilton, Andrew J.; Guimarães, Allan J.

    2012-01-01

    The endemic human pathogenic fungus Histoplasma capsulatum is a major fungal pathogen with a broad variety of clinical presentations, ranging from mild, focal pulmonary disease to life-threatening systemic infections. Although azoles, such as itraconazole and voriconazole, and amphotericin B have significant activity against H. capsulatum, about 1 in 10 patients hospitalized due to histoplasmosis die. Hence, new approaches for managing disease are being sought. Over the past 10 years, studies have demonstrated that monoclonal antibodies (mAbs) can modify the pathogenesis of histoplasmosis. Disease has been shown to be impacted by mAbs targeting either fungal cell surface proteins or host co-stimulatory molecules. This review will detail our current knowledge regarding the impact of antibody therapy on histoplasmosis. PMID:22347215

  14. Antibody-mediated radiotherapy

    SciTech Connect

    Bloomer, W.D.; Lipsztein, R.; Dalton, J.F.

    1985-05-01

    Antibodies that react with antigens on the surface of tumor cells but not normal cells have great potential for cancer detection and therapy. If radiolabeled without loss of immunologic specificity, such antibodies may be able to deliver cytoxic amounts of radiation. Target- cell specificity and a high extraction coefficient are necessary with any radionuclide in order to minimize normal tissue irradiation. Tumor- cell-retention time and the rate of catabolized radionuclide will also influence ultimate applicability. Among the unanswered questions for choosing a radionuclide is the choice of particle emitter. Although classic beta emitters have been used in a number of clinical situations, they have not had a major impact on disease outcome except in diseases of the thyroid. Unfortunately, Auger emitters such as iodine 125 are cytotoxic only when localized within close proximity to the genome. On the other hand, alpha emitters such as astatine 211 eliminate the need for subcellular sequestration but not cell-specific localization. 34 references.

  15. Prediction of Antibody Epitopes.

    PubMed

    Nielsen, Morten; Marcatili, Paolo

    2015-01-01

    Antibodies recognize their cognate antigens in a precise and effective way. In order to do so, they target regions of the antigenic molecules that have specific features such as large exposed areas, presence of charged or polar atoms, specific secondary structure elements, and lack of similarity to self-proteins. Given the sequence or the structure of a protein of interest, several methods exploit such features to predict the residues that are more likely to be recognized by an immunoglobulin. Here, we present two methods (BepiPred and DiscoTope) to predict linear and discontinuous antibody epitopes from the sequence and/or the three-dimensional structure of a target protein. PMID:26424260

  16. Commercial antibodies and their validation

    PubMed Central

    Voskuil, JLA

    2014-01-01

    Despite an impressive growth in the business of research antibodies a general lack of trust in commercial antibodies remains in place. A variety of issues, each one potentially causing an antibody to fail, underpin the frustrations that scientists endure. Lots of money goes to waste in buying and trying one failing antibody after the other without realizing all the pitfalls that come with the product: Antibodies can get inactivated, both the biological material and the assay itself can potentially be flawed, a single antibody featuring in many different catalogues can be deemed as a set of different products, and a bad choice of antibody type, wrong dilutions, and lack of proper validation can all jeopardize the intended experiments. Antibodies endorsed by scientific research papers do not always meet the scientist’s requirements either due to flawed specifications, or due to batch-to-batch variations. Antibodies can be found with Quality Control data obtained from previous batches that no longer represent the batch on sale. In addition, one cannot assume that every antibody is fit for every application. The best chance of success is to try an antibody that already was confirmed to perform correctly in the required platform. PMID:25324967

  17. Antibody Production with Synthetic Peptides.

    PubMed

    Lee, Bao-Shiang; Huang, Jin-Sheng; Jayathilaka, Lasanthi P; Lee, Jenny; Gupta, Shalini

    2016-01-01

    Peptides (usually 10-20 amino acid residues in length) can be used as effectively as proteins in raising antibodies producing both polyclonal and monoclonal antibodies routinely with titers higher than 20,000. Peptide antigens do not function as immunogens unless they are conjugated to proteins. Production of high quality antipeptide antibodies is dependent upon peptide sequence selection, the success of peptide synthesis, peptide-carrier protein conjugation, the humoral immune response in the host animal, the adjuvant used, the peptide dose administered, the injection method, and the purification of the antibody. Peptide sequence selection is probably the most critical step in the production of antipeptide antibodies. Although the process for designing peptide antigens is not exact, several guidelines and computational B-cell epitope prediction methods can help maximize the likelihood of producing antipeptide antibodies that recognize the protein. Antibodies raised by peptides have become essential tools in life science research. Virtually all phospho-specific antibodies are now produced using phosphopeptides as antigens. Typically, 5-20 mg of peptide is enough for antipeptide antibody production. It takes 3 months to produce a polyclonal antipeptide antibody in rabbits that yields ~100 mL of serum which corresponds to ~8-10 mg of the specific antibody after affinity purification using a peptide column. PMID:27515072

  18. A monoclonal antibody against leptin.

    PubMed

    Mahmoudian, Jafar; Jeddi-Tehrani, Mahmood; Bayat, Ali Ahmad; Mahmoudi, Ahmad Reza; Vojgani, Yasaman; Tavangar, Banafsheh; Hadavi, Reza; Zarei, Saeed

    2012-10-01

    Leptin is an important protein that regulates energy storage and homeostasis in humans and animals. Leptin deficiency results in various abnormalities such as diabetes, obesity, and infertility. Producing a high affinity monoclonal antibody against human leptin provides an important tool to monitor and trace leptin function in different biological fluids. In this study, recombinant human leptin was conjugated to KLH and injected into mice. After immunization, mouse myeloma SP2/0 cells were fused with murine splenocytes followed by selection of antibody-producing hybridoma cells. After screening of different hybridoma colonies by ELISA, a high affinity antibody was selected and purified by affinity chromatography. The affinity constant of the antibody was measured by ELISA. Western blot, immunocytochemistry, and flow cytometry experiments were used to characterize the antibody. The anti-leptin antibody had a high affinity (around 1.13 × 10(-9) M) for its antigen. The saturation of the antibody with leptin (20 moles leptin per 1 mole antibody) in Western blot analysis proved that the antibody had specific binding to its antigen. Immunocytochemistry and flow cytometry on JEG-3 (human placental choriocarcinoma cell) cells revealed that the anti-leptin antibody recognized intracellular leptin. In conclusion, we report here the production and characterization of a murine anti-leptin antibody with high affinity for human leptin. PMID:23098305

  19. Monoclonal Antibodies for Cancer Immunotherapy

    PubMed Central

    Weiner, Louis M.; Dhodapkar, Madhav V.; Ferrone, Soldano

    2008-01-01

    Monoclonal antibodies have emerged as effective therapeutic agents for many human malignancies. However, the ability of antibodies to initiate tumor antigen-specific immune responses has not received as much attention as other mechanisms of antibody action. Here we describe the rationale and evidence for developing anti-cancer antibodies that can stimulate host tumor antigen-specific immune responses. This may be accomplished by inducing antibody-dependent cellular cytotoxicity, by promoting antibody-targeted cross-presentation of tumor antigens or by triggering the idiotypic network. Future treatment modifications or combinations should be able to prolong, amplify and shape these immune responses to increase the clinical benefits of antibody therapy of human cancer. PMID:19304016

  20. Antibody therapy for Ebola

    PubMed Central

    Qiu, Xiangguo; Kobinger, Gary P

    2014-01-01

    Ebola viruses can cause severe hemorrhagic fever in humans and nonhuman primates with fatality rates up to 90%, and are identified as biosafety level 4 pathogens and CDC Category A Agents of Bioterrorism. To date, there are no approved therapies and vaccines available to treat these infections. Antibody therapy was estimated to be an effective and powerful treatment strategy against infectious pathogens in the late 19th, early 20th centuries but has fallen short to meet expectations to widely combat infectious diseases. Passive immunization for Ebola virus was successful in 2012, after over 15 years of failed attempts leading to skepticism that the approach would ever be of potential benefit. Currently, monoclonal antibody (mAbs)-based therapies are the most efficient at reversing the progression of a lethal Ebola virus infection in nonhuman primates, which recapitulate the human disease with the highest similarity. Novel combinations of mAbs can even fully cure lethally infected animals after clinical symptoms and circulating virus have been detected, days into the infection. These new developments have reopened the door for using antibody-based therapies for filovirus infections. Furthermore, they are reigniting hope that these strategies will contribute to better control the spread of other infectious agents and provide new tools against infectious diseases. PMID:24503566

  1. Primary antibody deficiency syndromes.

    PubMed

    Wood, P

    2009-03-01

    The primary antibody deficiency syndromes are a group of rare disorders characterized by an inability to produce clinically effective immunoglobulin responses. Some of these disorders result from genetic mutations in genes involved in B cell development, whereas others appear to be complex polygenic disorders. They most commonly present with recurrent infections due to encapsulated bacteria, although in the most common antibody deficiency, Common Variable Immunodeficiency, systemic and organ-specific autoimmunity can be a presenting feature. Diagnostic delay in this group of disorders remains a problem, and the laboratory has a vital role in the detection of abnormalities in immunoglobulin concentration and function. It is critical to distinguish this group of disorders from secondary causes of hypogammaglobulinaemia, in particular lymphoid malignancy, and appropriate laboratory investigations are of critical importance. Treatment of primary antibody deficiencies involves immunoglobulin replacement therapy, either via the intravenous or subcutaneous route. Patients remain at risk of a wide variety of complications, not all linked to diagnostic delay and inadequate therapy. In common variable immunodeficiency (CVID) in particular, patients remain at significantly increased risk of lymphoid malignancy, and regular clinical and laboratory monitoring is required. This review aims to give an overview of these conditions for the general reader, covering pathogenesis, clinical presentation, laboratory investigation, therapy and clinical management. PMID:19151170

  2. A Lentiviral Vector Allowing Physiologically Regulated Membrane-anchored and Secreted Antibody Expression Depending on B-cell Maturation Status.

    PubMed

    Fusil, Floriane; Calattini, Sara; Amirache, Fouzia; Mancip, Jimmy; Costa, Caroline; Robbins, Justin B; Douam, Florian; Lavillette, Dimitri; Law, Mansun; Defrance, Thierry; Verhoeyen, Els; Cosset, François-Loïc

    2015-11-01

    The development of lentiviral vectors (LVs) for expression of a specific antibody can be achieved through the transduction of mature B-cells. This approach would provide a versatile tool for active immunotherapy strategies for infectious diseases or cancer, as well as for protein engineering. Here, we created a lentiviral expression system mimicking the natural production of these two distinct immunoglobulin isoforms. We designed a LV (FAM2-LV) expressing an anti-HCV-E2 surface glycoprotein antibody (AR3A) as a membrane-anchored Ig form or a soluble Ig form, depending on the B-cell maturation status. FAM2-LV induced high-level and functional membrane expression of the transgenic antibody in a nonsecretory B-cell line. In contrast, a plasma cell (PC) line transduced with FAM2-LV preferentially produced the secreted transgenic antibody. Similar results were obtained with primary B-cells transduced ex vivo. Most importantly, FAM2-LV transduced primary B-cells efficiently differentiated into PCs, which secreted the neutralizing anti-HCV E2 antibody upon adoptive transfer into immunodeficient NSG (NOD/SCIDγc(-/-)) recipient mice. Altogether, these results demonstrate that the conditional FAM2-LV allows preferential expression of the membrane-anchored form of an antiviral neutralizing antibody in B-cells and permits secretion of a soluble antibody following B-cell maturation into PCs in vivo. PMID:26281898

  3. Broadly neutralizing antibodies that inhibit HIV-1 cell to cell transmission

    PubMed Central

    Malbec, Marine; Porrot, Françoise; Rua, Rejane; Horwitz, Joshua; Klein, Florian; Halper-Stromberg, Ari; Scheid, Johannes F.; Eden, Caroline; Mouquet, Hugo; Nussenzweig, Michel C.

    2013-01-01

    The neutralizing activity of anti–HIV-1 antibodies is typically measured in assays where cell-free virions enter reporter cell lines. However, HIV-1 cell to cell transmission is a major mechanism of viral spread, and the effect of the recently described broadly neutralizing antibodies (bNAbs) on this mode of transmission remains unknown. Here we identify a subset of bNAbs that inhibit both cell-free and cell-mediated infection in primary CD4+ lymphocytes. These antibodies target either the CD4-binding site (NIH45-46 and 3BNC60) or the glycan/V3 loop (10-1074 and PGT121) on HIV-1 gp120 and act at low concentrations by inhibiting multiple steps of viral cell to cell transmission. These antibodies accumulate at virological synapses and impair the clustering and fusion of infected and target cells and the transfer of viral material to uninfected T cells. In addition, they block viral cell to cell transmission to plasmacytoid DCs and thereby interfere with type-I IFN production. Thus, only a subset of bNAbs can efficiently prevent HIV-1 cell to cell transmission, and this property should be considered an important characteristic defining antibody potency for therapeutic or prophylactic antiviral strategies. PMID:24277152

  4. Antiviral Combination Approach as a Perspective to Combat Enterovirus Infections.

    PubMed

    Galabov, Angel S; Nikolova, Ivanka; Vassileva-Pencheva, Ralitsa; Stoyanova, Adelina

    2015-01-01

    Human enteroviruses distributed worldwide are causative agents of a broad spectrum of diseases with extremely high morbidity, including a series of severe illnesses of the central nervous system, heart, endocrine pancreas, skeleton muscles, etc., as well as the common cold contributing to the development of chronic respiratory diseases, including the chronic obstructive pulmonary disease. The above mentioned diseases along with the significantly high morbidity and mortality in children, as well as in the high-risk populations (immunodeficiencies, neonates) definitely formulate the chemotherapy as the main tool for the control of enterovirus infections. At present, clinically effective antivirals for use in the treatment of enteroviral infection do not exist, in spite of the large amount of work carried out in this field. The main reason for this is the development of drug resistance. We studied the process of development of resistance to the strongest inhibitors of enteroviruses, WIN compounds (VP1 protein hydrophobic pocket blockers), especially in the models in vivo, Coxsackievirus B (CV-B) infections in mice. We introduced the tracing of a panel of phenotypic markers (MIC50 value, plaque shape and size, stability at 50℃, pathogenicity in mice) for characterization of the drug-mutants (resistant and dependent) as a very important stage in the study of enterovirus inhibitors. Moreover, as a result of VP1 RNA sequence analysis performed on the model of disoxaril mutants of CVB1, we determined the molecular basis of the drug-resistance. The monotherapy courses were the only approach used till now. For the first time in the research for anti-enterovirus antivirals our team introduced the testing of combination effect of the selective inhibitors of enterovirus replication with different mode of action. This study resulted in the selection of a number of very effective in vitro double combinations with synergistic effect and a broad spectrum of sensitive

  5. Chemically sulfated natural galactomannans with specific antiviral and anticoagulant activities.

    PubMed

    Muschin, Tegshi; Budragchaa, Davaanyam; Kanamoto, Taisei; Nakashima, Hideki; Ichiyama, Koji; Yamamoto, Naoki; Shuqin, Han; Yoshida, Takashi

    2016-08-01

    Naturally occurring galactomannans were sulfated to give sulfated galactomannans with degrees of substitution of 0.7-1.4 per sugar unit and molecular weights of M¯n=0.6×10(4)-2.4×10(4). Sulfated galactomannans were found to have specific biological activities in vitro such as anticoagulant, anti-HIV and anti-Dengue virus activities. The biological activities were compared with those of standard dextran and curdlan sulfates, which are polysaccharides with potent antiviral activity and low cytotoxicity. It was found that sulfated galactomannans had moderate to high anticoagulant activity, 13.4-36.6unit/mg, compared to that of dextran and curdlan sulfates, 22.7 and 10.0unit/mg, and high anti-HIV and anti-Dengue virus activities, 0.04-0.8μg/mL and 0.2-1.1μg/mL, compared to those curdlan sulfates, 0.1μg/mL, respectively. The cytotoxicity on MT-4 and LCC-MK2 cells was low. Surface plasmon resonance (SPR) of sulfated galactomannans revealed strong interaction with poly-l-lysine as a model compound of virus proteins, and suggested that the specific biological activities might originate in the electrostatic interaction of negatively charged sulfate groups of sulfated galactomannans and positively charged amino groups of surface proteins of viruses. These results suggest that sulfated galactomannans effectively prevented the infection of cells by viruses and the degree of substitution and molecular weights played important roles in the biological activities. PMID:27154517

  6. The Broad-Spectrum Antiviral Protein ZAP Restricts Human Retrotransposition

    PubMed Central

    Goodier, John L.; Pereira, Gavin C.; Cheung, Ling E.; Rose, Rebecca J.; Kazazian, Haig H.

    2015-01-01

    Intrinsic immunity describes the set of recently discovered but poorly understood cellular mechanisms that specifically target viral pathogens. Their discovery derives in large part from intensive studies of HIV and SIV that revealed restriction factors acting at various stages of the retroviral life cycle. Recent studies indicate that some factors restrict both retroviruses and retrotransposons but surprisingly in ways that may differ. We screened known interferon-stimulated antiviral proteins previously untested for their effects on cell culture retrotransposition. Several factors, including BST2, ISG20, MAVS, MX2, and ZAP, showed strong L1 inhibition. We focused on ZAP (PARP13/ZC3HAV1), a zinc-finger protein that targets viruses of several families, including Retroviridae, Tiloviridae, and Togaviridae, and show that ZAP expression also strongly restricts retrotransposition in cell culture through loss of L1 RNA and ribonucleoprotein particle integrity. Association of ZAP with the L1 ribonucleoprotein particle is supported by co-immunoprecipitation and co-localization with ORF1p in cytoplasmic stress granules. We also used mass spectrometry to determine the protein components of the ZAP interactome, and identified many proteins that directly interact and colocalize with ZAP, including MOV10, an RNA helicase previously shown to suppress retrotransposons. The detection of a chaperonin complex, RNA degradation proteins, helicases, post-translational modifiers, and components of chromatin modifying complexes suggest mechanisms of ZAP anti-retroelement activity that function in the cytoplasm and perhaps also in the nucleus. The association of the ZAP ribonucleoprotein particle with many interferon-stimulated gene products indicates it may be a key player in the interferon response. PMID:26001115

  7. Carbohydrate recognition by the antiviral lectin cyanovirin-N.

    PubMed

    Fujimoto, Yukiji K; Green, David F

    2012-12-01

    Cyanovirin-N (CVN) is a cyanobacterial lectin with potent antiviral activity and has been the focus of extensive preclinical investigation as a potential prophylactic for the prevention of the sexual transmission of the human immunodeficiency virus (HIV). Here we present a detailed analysis of carbohydrate recognition by this important protein, using a combination of computational methods, including extensive molecular dynamics simulations and molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) energetic analysis. The simulation results strongly suggest that the observed tendency of wild-type CVN to form domain-swapped dimers is the result of a previously unidentified cis-peptide bond present in the monomeric state. The energetic analysis additionally indicates that the highest-affinity ligand for CVN characterized to date (α-Man-(1,2)-α-Man-(1,2)-α-Man) is recognized asymmetrically by the two binding sites. Finally, we are able to provide a detailed map of the role of all binding site functional groups (both backbone and side chain) to various aspects of molecular recognition: general affinity for cognate ligands, specificity for distinct oligosaccharide targets, and the asymmetric recognition of α-Man-(1,2)-α-Man-(1,2)-α-Man. Taken as a whole, these results complement past experimental characterization (both structural and thermodynamic) to provide the most complete understanding of carbohydrate recognition by CVN to date. The results also provide strong support for the application of similar approaches to the understanding of other protein-carbohydrate complexes. PMID:23057413

  8. [Significance of hepatitis C virus baseline polymorphism during the antiviral therapy].

    PubMed

    Tornai, István

    2015-05-24

    The treatment of chronic hepatitis C has developed significantly during the last 25 years. In patients with genotype 1 infection 40-50% sustained virologic response could be achieved using pegylated interferon and ribavirin dual combination, which could be increased significantly with the introduction of direct acting antivirals. Three major groups of direct acting antivirals are known, which directly inhibit different phases of viral life cycle, by inhibiting the function of several non-structural proteins (NS3/4A protease, NS5A protein and NS5B polymerase). Due to the rapid replication rate of hepatitis C virus and the error-prone NS5B polymerase activity, mutant virions are generated, which might have reduced susceptibility to direct acting antiviral therapy. Since these resistance associated variants might exist before the antiviral therapy, they are still able to replicate during the direct acting antiviral treatment. Due to this selection pressure, the resistant virus will replace the wild type. This was especially detected during monotherapy, therefore, the first generation of direct acting antivirals have been combined with pegylated interferon and ribavirin, while recently interferon-free combinations are being developed including 2 or 3 direct acting antivirals. Using the first generation protease inhibitors boceprevir and telaprevir, it could have been seen, that the rate of resistance associated variants is higher and the therapeutic outcome is worse in patients with hepatitis C virus genotype 1a, than in 1b. Similar phenomenon was seen with the second generation of NS3/4A protease inhibitors as well as with NS5A or NS5B polymerase. This is due to the lower genetic barrier to resistance, ie. usually fewer mutations are enough for the emergence of resistance in genotype 1a. The selection of resistance associated variants is one of the most important challenges during the interferon-free therapy. PMID:26038992

  9. Antibody Therapy for Pediatric Leukemia

    PubMed Central

    Vedi, Aditi; Ziegler, David S.

    2014-01-01

    Despite increasing cure rates for pediatric leukemia, relapsed disease still carries a poor prognosis with significant morbidity and mortality. Novel targeted therapies are currently being investigated in an attempt to reduce adverse events and improve survival outcomes. Antibody therapies represent a form of targeted therapy that offers a new treatment paradigm. Monoclonal antibodies are active in pediatric acute lymphoblastic leukemia (ALL) and are currently in Phase III trials. Antibody-drug conjugates (ADCs) are the next generation of antibodies where a highly potent cytotoxic agent is bound to an antibody by a linker, resulting in selective targeting of leukemia cells. ADCs are currently being tested in clinical trials for pediatric acute myeloid leukemia and ALL. Bispecific T cell engager (BiTE) antibodies are a construct whereby each antibody contains two binding sites, with one designed to engage the patient’s own immune system and the other to target malignant cells. BiTE antibodies show great promise as a novel and effective therapy for childhood leukemia. This review will outline recent developments in targeted agents for pediatric leukemia including monoclonal antibodies, ADCs, and BiTE antibodies. PMID:24795859

  10. Induction of antihemagglutinin antibodies by polyclonal antiidiotype antibodies.

    PubMed

    Dinca, L; Neuwirth, S; Schulman, J; Bona, C

    1993-01-01

    Antiidiotypic antibodies can be envisioned as an alternative approach in the development of vaccines against influenza virus, which exhibits natural antigenic variations. In our work, we obtained two polyclonal cross-reactive anti-Id antibodies against PY102, VM113, and VM202 mAbs, which in turn are specific respectively for PR8 virus and laboratory-induced virus variants (PY102-V1 and VM113-V1). With these cross-reactive anti-Id antibodies, we were able to elicit anti-HA antibodies in mice. In comparing the anti-HA antibody response in animals injected with anti-Id antibodies to those immunized with PR8 influenza virus, we demonstrated that the HI titer was higher after virus immunization and that the PR8 virus boost was more efficient in this group. Our results showed that the polyclonal cross-reactive anti-Id antibodies were more efficient than the individual anti-Ids at eliciting responses. At the same time, we demonstrated that PR8-primed T cells, cultured with B cells from animals immunized with anti-Id antibodies, were able to produce anti-PR8 antibodies subsequent to stimulation with influenza virus. PMID:8476510

  11. How antibodies use complement to regulate antibody responses.

    PubMed

    Sörman, Anna; Zhang, Lu; Ding, Zhoujie; Heyman, Birgitta

    2014-10-01

    Antibodies, forming immune complexes with their specific antigen, can cause complete suppression or several 100-fold enhancement of the antibody response. Immune complexes containing IgG and IgM may activate complement and in such situations also complement components will be part of the immune complex. Here, we review experimental data on how antibodies via the complement system upregulate specific antibody responses. Current data suggest that murine IgG1, IgG2a, and IgG2b upregulate antibody responses primarily via Fc-receptors and not via complement. In contrast, IgM and IgG3 act via complement and require the presence of complement receptors 1 and 2 (CR1/2) expressed on both B cells and follicular dendritic cells. Complement plays a crucial role for antibody responses not only to antigen complexed to antibodies, but also to antigen administered alone. Lack of C1q, but not of Factor B or MBL, severely impairs antibody responses suggesting involvement of the classical pathway. In spite of this, normal antibody responses are found in mice lacking several activators of the classical pathway (complement activating natural IgM, serum amyloid P component (SAP), specific intracellular adhesion molecule-grabbing non-integrin R1 (SIGN-R1) or C-reactive protein. Possible explanations to these observations will be discussed. PMID:25001046

  12. Dynamic Antibody Specificities and Virion Concentrations in Circulating Immune Complexes in Acute to Chronic HIV-1 Infection ▿ †

    PubMed Central

    Liu, Pinghuang; Overman, R. Glenn; Yates, Nicole L.; Alam, S. Munir; Vandergrift, Nathan; Chen, Yue; Graw, Frederik; Freel, Stephanie A.; Kappes, John C.; Ochsenbauer, Christina; Montefiori, David C.; Gao, Feng; Perelson, Alan S.; Cohen, Myron S.; Haynes, Barton F.; Tomaras, Georgia D.

    2011-01-01

    Understanding the interactions between human immunodeficiency virus type 1 (HIV-1) virions and antibodies (Ab) produced during acute HIV-1 infection (AHI) is critical for defining antibody antiviral capabilities. Antibodies that bind virions may prevent transmission by neutralization of virus or mechanically prevent HIV-1 migration through mucosal layers. In this study, we quantified circulating HIV-1 virion-immune complexes (ICs), present in approximately 90% of AHI subjects, and compared the levels and antibody specificity to those in chronic infection. Circulating HIV-1 virions coated with IgG (immune complexes) were in significantly lower levels relative to the viral load in acute infection than in chronic HIV-1 infection. The specificities of the antibodies in the immune complexes differed between acute and chronic infection (anti-gp41 Ab in acute infection and anti-gp120 in chronic infection), potentially suggesting different roles in immunopathogenesis for complexes arising at different stages of infection. We also determined the ability of circulating IgG from AHI to bind infectious versus noninfectious virions. Similar to a nonneutralizing anti-gp41 monoclonal antibody (MAb), purified plasma IgG from acute HIV-1 subjects bound both infectious and noninfectious virions. This was in contrast to the neutralizing antibody 2G12 MAb that bound predominantly infectious virions. Moreover, the initial antibody response captured acute HIV-1 virions without selection for different HIV-1 envelope sequences. In total, this study demonstrates that the composition of immune complexes are dynamic over the course of HIV-1 infection and are comprised initially of antibodies that nonselectively opsonize both infectious and noninfectious virions, likely contributing to the lack of efficacy of the antibody response during acute infection. PMID:21865397

  13. mRNA Capping by Venezuelan Equine Encephalitis Virus nsP1: Functional Characterization and Implications for Antiviral Research

    PubMed Central

    Li, Changqing; Guillén, Jaime; Rabah, Nadia; Blanjoie, Alexandre; Debart, Françoise; Vasseur, Jean-Jacques; Canard, Bruno; Decroly, Etienne

    2015-01-01

    ABSTRACT Alphaviruses are known to possess a unique viral mRNA capping mechanism involving the viral nonstructural protein nsP1. This enzyme harbors methyltransferase (MTase) and nsP1 guanylylation (GT) activities catalyzing the transfer of the methyl group from S-adenosylmethionine (AdoMet) to the N7 position of a GTP molecule followed by the formation of an m7GMP-nsP1 adduct. Subsequent transfer of m7GMP onto the 5′ end of the viral mRNA has not been demonstrated in vitro yet. Here we report the biochemical characterization of Venezuelan equine encephalitis virus (VEEV) nsP1. We have developed enzymatic assays uncoupling the different reactions steps catalyzed by nsP1. The MTase and GT reaction activities were followed using a nonhydrolyzable GTP (GIDP) substrate and an original Western blot assay using anti-m3G/m7G-cap monoclonal antibody, respectively. The GT reaction is stimulated by S-adenosyl-l-homocysteine (Ado-Hcy), the product of the preceding MTase reaction, and metallic ions. The covalent linking between nsP1 and m7GMP involves a phosphamide bond between the nucleotide and a histidine residue. Final guanylyltransfer onto RNA was observed for the first time with an alphavirus nsP1 using a 5′-diphosphate RNA oligonucleotide whose sequence corresponds to the 5′ end of the viral genome. Alanine scanning mutagenesis of residues H37, H45, D63, E118, Y285, D354, R365, N369, and N375 revealed their respective roles in MT and GT reactions. Finally, the inhibitory effects of sinefungin, aurintricarboxylic acid (ATA), and ribavirin triphosphate on MTase and capping reactions were investigated, providing possible avenues for antiviral research. IMPORTANCE Emergence or reemergence of alphaviruses represents a serious health concern, and the elucidation of their replication mechanisms is a prerequisite for the development of specific inhibitors targeting viral enzymes. In particular, alphaviruses are able, through an original reaction sequence, to add to their

  14. In vitro antiviral activity of plant extracts from Asteraceae medicinal plants

    PubMed Central

    2013-01-01

    Background Due to the high prevalence of viral infections having no specific treatment and the constant appearance of resistant viral strains, the development of novel antiviral agents is essential. The aim of this study was to evaluate the antiviral activity against bovine viral diarrhea virus, herpes simplex virus type 1 (HSV-1), poliovirus type 2 (PV-2) and vesicular stomatitis virus of organic (OE) and aqueous extracts (AE) from: Baccharis gaudichaudiana, B. spicata, Bidens subalternans, Pluchea sagittalis, Tagetes minuta and Tessaria absinthioides. A characterization of the antiviral activity of B. gaudichaudiana OE and AE and the bioassay-guided fractionation of the former and isolation of one active compound is also reported. Methods The antiviral activity of the OE and AE of the selected plants was evaluated by reduction of the viral cytopathic effect. Active extracts were then assessed by plaque reduction assays. The antiviral activity of the most active extracts was characterized by evaluating their effect on the pretreatment, the virucidal activity and the effect on the adsorption or post-adsorption period of the viral cycle. The bioassay-guided fractionation of B. gaudichaudiana OE was carried out by column chromatography followed by semipreparative high performance liquid chromatography fractionation of the most active fraction and isolation of an active compound. The antiviral activity of this compound was also evaluated by plaque assay. Results B. gaudichaudiana and B. spicata OE were active against PV-2 and VSV. T. absinthioides OE was only active against PV-2. The corresponding three AE were active against HSV-1. B. gaudichaudiana extracts (OE and AE) were the most selective ones with selectivity index (SI) values of 10.9 (PV-2) and >117 (HSV-1). For this reason, both extracts of B. gaudichaudiana were selected to characterize their antiviral effects. Further bioassay-guided fractionation of B. gaudichaudiana OE led to an active fraction, FC (EC50

  15. Characterization of Poliovirus Neutralization Escape Mutants of Single-Domain Antibody Fragments (VHHs)

    PubMed Central

    Schotte, Lise; Thys, Bert; Strauss, Mike; Filman, David J.; Rombaut, Bart

    2015-01-01

    To complete the eradication of poliovirus and to protect unvaccinated people subsequently, the development of one or more antiviral drugs will be necessary. A set of five single-domain antibody fragments (variable parts of the heavy chain of a heavy-chain antibody [VHHs]) with an in vitro neutralizing activity against poliovirus type 1 was developed previously (B. Thys, L. Schotte, S. Muyldermans, U. Wernery, G. Hassanzadeh-Ghassabeh, and B. Rombaut, Antiviral Res 87:257–264, 2010, http://dx.doi.org/10.1016/j.antiviral.2010.05.012), and their mechanisms of action have been studied (L. Schotte, M. Strauss, B. Thys, H. Halewyck, D. J. Filman, M. Bostina, J. M. Hogle, and B. Rombaut, J Virol 88:4403–4413, 2014, http://dx.doi.org/10.1128/JVI.03402-13). In this study, neutralization escape mutants were selected for each VHH. Sequencing of the P1 region of the genome showed that amino acid substitutions are found in the four viral proteins of the capsid and that they are located both in proximity to the binding sites of the VHHs and in regions further away from the canyon and hidden beneath the surface. Characterization of the mutants demonstrated that they have single-cycle replication kinetics that are similar to those of their parental strain and that they are all drug (VHH) independent. Their resistant phenotypes are stable, as they do not regain full susceptibility to the VHH after passage over HeLa cells in the absence of VHH. They are all at least as stable as the parental strain against heat inactivation at 44°C, and three of them are even significantly (P < 0.05) more resistant to heat inactivation. The resistant variants all still can be neutralized by at least two other VHHs and retain full susceptibility to pirodavir and 35-1F4. PMID:26014941

  16. Overcoming drug-resistant herpes simplex virus (HSV) infection by a humanized antibody

    PubMed Central

    Krawczyk, Adalbert; Arndt, Michaela A. E.; Grosse-Hovest, Ludger; Weichert, Wilko; Giebel, Bernd; Dittmer, Ulf; Hengel, Hartmut; Jäger, Dirk; Schneweis, Karl E.; Eis-Hübinger, Anna M.; Roggendorf, Michael; Krauss, Jürgen

    2013-01-01

    Despite the availability of antiviral chemotherapy, herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) infections remain a severe global health problem. Of particular concern is the growing incidence of drug resistance in immunocompromised patients, which stresses the urgency to develop new effective treatment alternatives. We have developed a humanized monoclonal antibody (mAb hu2c) that completely abrogates viral cell-to-cell spread, a key mechanism by which HSV-1/2 escapes humoral immune surveillance. Moreover, mAb hu2c neutralized HSV fully independent of complement and/or immune effector cell recruitment in a highly efficient manner. Prophylactic and therapeutic administration of mAb hu2c completely prevented infection-related mortality of severely immunodeficient mice being challenged with a lethal dose of HSV-1. The high neutralization capacity of mAb hu2c was fully maintained toward clinical HSV isolates being multiresistant to standard antiviral drugs, and infection was fully resolved in 7/8 nonobese diabetic/SCID mice being infected with a multidrug resistant HSV-1 patient isolate. Immunohistochemical studies revealed no significant cross-reactivity of the antibody toward human tissues. These features warrant further clinical development of mAb hu2c as an immunotherapeutic compound for the management of severe and particularly drug-resistant HSV infections. PMID:23569258

  17. Antibody Glossary —

    Cancer.gov

    The components of the immune system have diverse roles in the initial development of cancers, progression of early-stage malignancies to invasive tumors, establishment of metastatic lesions, tumor dormancy, and response or resistance to therapy. Characterizing the components of the immune system and their functional status in tissues and in tumors requires the use of highly specific reagents. Researchers employ antibodies in a variety of in vitro and in vivo applications to delineate, enrich, or deplete specific immune subsets in order to understand their role(s) in tumorigenesis. This is a glossary of validated reagents and protocols that are useful for functional phenotyping of the immune system in murine cancer models.

  18. Cytotoxic, Virucidal, and Antiviral Activity of South American Plant and Algae Extracts

    PubMed Central

    Faral-Tello, Paula; Mirazo, Santiago; Dutra, Carmelo; Pérez, Andrés; Geis-Asteggiante, Lucía; Frabasile, Sandra; Koncke, Elina; Davyt, Danilo; Cavallaro, Lucía; Heinzen, Horacio; Arbiza, Juan

    2012-01-01

    Herpes simplex virus type 1 (HSV-1) infection has a prevalence of 70% in the human population. Treatment is based on acyclovir, valacyclovir, and foscarnet, three drugs that share the same mechanism of action and of which resistant strains have been isolated from patients. In this aspect, innovative drug therapies are required. Natural products offer unlimited opportunities for the discovery of antiviral compounds. In this study, 28 extracts corresponding to 24 plant species and 4 alga species were assayed in vitro to detect antiviral activity against HSV-1. Six of the methanolic extracts inactivated viral particles by direct interaction and 14 presented antiviral activity when incubated with cells already infected. Most interesting antiviral activity values obtained are those of Limonium brasiliense, Psidium guajava, and Phyllanthus niruri, which inhibit HSV-1 replication in vitro with 50% effective concentration (EC50) values of 185, 118, and 60 μg/mL, respectively. For these extracts toxicity values were calculated and therefore selectivity indexes (SI) obtained. Further characterization of the bioactive components of antiviral plants will pave the way for the discovery of new compounds against HSV-1. PMID:22619617

  19. Synthesis and antiviral properties of novel indole-based thiosemicarbazides and 4-thiazolidinones.

    PubMed

    Cihan-Üstündağ, Gökçe; Gürsoy, Elif; Naesens, Lieve; Ulusoy-Güzeldemirci, Nuray; Çapan, Gültaze

    2016-01-15

    A novel series of indolylthiosemicarbazides (6a-6g) and their cyclization products, 4-thiazolidinones (7a-7g), have been designed, synthesized and evaluated, in vitro, for their antiviral activity against a wide range of DNA and RNA viruses. Compounds 6a, 6b, 6c and 6d exhibited notable antiviral activity against Coxsackie B4 virus, at EC50 values ranging from 0.4 to 2.1 μg/mL. The selectivity index (ratio of cytotoxic to antivirally effective concentration) values of these compounds were between 9 and 56. Besides, 6b, 6c and 6d also inhibited the replication of two other RNA viruses, Sindbis virus and respiratory syncytial virus, although these EC50 values were higher compared to those noted for Coxsackie B4 virus. The SAR analysis indicated that keeping the free thiosemicarbazide moiety is crucial to obtain this antiviral activity, since the cyclization products (7a-7g) did not produce any antiviral effect. PMID:26707844

  20. Clinical application of transient elastography in patients with chronic viral hepatitis receiving antiviral treatment.

    PubMed

    Kim, Jun Hyung; Kim, Mi Na; Han, Kwang-Hyub; Kim, Seung Up

    2015-04-01

    Accurate evaluation of the degree of liver fibrosis in patients with chronic liver diseases (CLD) is crucial, as liver fibrosis is important in determining the prognosis of liver diseases. Currently, liver biopsy (LB) is considered the gold standard for staging liver fibrosis or cirrhosis. However, utilization of LB in clinical practice is often limited because of its invasive nature, sampling error and interobserver variability. Recently, transient elastography (TE) was introduced as a noninvasive, highly reproducible technique for assessing the degree of liver fibrosis. After extensive studies, TE is now regarded as a reliable surrogate marker for grading the severity of liver fibrosis in patients with CLD. In the past few years, the role of TE in monitoring liver stiffness and determining prognosis in patients with chronic hepatitis B (CHB) or chronic hepatitis C (CHC) who are undergoing antiviral treatment has been investigated. In patients with CHB, liver stiffness values decrease with antiviral treatment. TE can also be used to predict the incidence of liver-related events during antiviral treatment. In patients with CHC, TE can be used to monitor potential regression of liver fibrosis after antiviral treatment and may predict the treatment outcome of CHC. In addition, TE is an adjunct tool for distinguishing inactive hepatitis B virus carriers from patients with chronic active hepatitis. This review article discusses the important findings from recent studies focusing on the clinical application of TE in patients with chronic viral hepatitis who are undergoing antiviral treatments. PMID:24976523