Sample records for cell-mediated cardiac allograft

  1. Endogenous Memory CD8 T Cells Are Activated Within Cardiac Allografts Without Mediating Rejection

    PubMed Central

    Setoguchi, Kiyoshi; Hattori, Yusuke; Iida, Shoichi; Baldwin, William M.; Fairchild, Robert L.

    2013-01-01

    Endogenous memory CD8 T cells infiltrate MHC-mismatched cardiac allografts within 12–24 hours post-transplant in mice and are activated to proliferate and produce IFN-γ. To more accurately assess the graft injury directly imposed by these endogenous memory CD8 T cells, we took advantage of the ability of anti-LFA-1 mAb given to allograft recipients on days 3 and 4 post-transplant to inhibit the generation of primary effector T cells. When compared to grafts from IgG treated recipients on day 7 post-transplant, allografts from anti-LFA-1 mAb treated recipients had increased numbers of CD8 T cells but these grafts had marked decreases in expression levels of mRNA encoding effector mediators associated with graft injury and decreases in donor-reactive CD8 T cells producing IFN-γ. Despite this decreased activity within the allograft, CD8 T cells in allografts from recipients treated with anti-LFA-1 mAb continued to proliferate up to day 7 post-transplant and did not upregulate expression of the exhaustion marker LAG-3 but did have decreased expression of ICOS. These results indicate that endogenous memory CD8 T cells infiltrate and proliferate in cardiac allografts in mice but do not express sufficient levels of functions to mediate overt graft injury and acute rejection. PMID:23914930

  2. IL-1 Receptor Signaling on Graft Parenchymal Cells Regulates Memory and De Novo Donor-Reactive CD8 T Cell Responses to Cardiac Allografts.

    PubMed

    Iida, Shoichi; Tsuda, Hidetoshi; Tanaka, Toshiaki; Kish, Danielle D; Abe, Toyofumi; Su, Charles A; Abe, Ryo; Tanabe, Kazunari; Valujskikh, Anna; Baldwin, William M; Fairchild, Robert L

    2016-03-15

    Reperfusion of organ allografts induces a potent inflammatory response that directs rapid memory T cell, neutrophil, and macrophage graft infiltration and their activation to express functions mediating graft tissue injury. The role of cardiac allograft IL-1 receptor (IL-1R) signaling in this early inflammation and the downstream primary alloimmune response was investigated. When compared with complete MHC-mismatched wild-type cardiac allografts, IL-1R(-/-) allografts had marked decreases in endogenous memory CD8 T cell and neutrophil infiltration and expression of proinflammatory mediators at early times after transplant, whereas endogenous memory CD4 T cell and macrophage infiltration was not decreased. IL-1R(-/-) allograft recipients also had marked decreases in de novo donor-reactive CD8, but not CD4, T cell development to IFN-γ-producing cells. CD8 T cell-mediated rejection of IL-1R(-/-) cardiac allografts took 3 wk longer than wild-type allografts. Cardiac allografts from reciprocal bone marrow reconstituted IL-1R(-/-)/wild-type chimeric donors indicated that IL-1R signaling on graft nonhematopoietic-derived, but not bone marrow-derived, cells is required for the potent donor-reactive memory and primary CD8 T cell alloimmune responses observed in response to wild-type allografts. These studies implicate IL-1R-mediated signals by allograft parenchymal cells in generating the stimuli-provoking development and elicitation of optimal alloimmune responses to the grafts. Copyright © 2016 by The American Association of Immunologists, Inc.

  3. Interleukin (IL)-1 Receptor Signaling on Graft Parenchymal Cells Regulates Memory and De Novo Donor-Reactive CD8 T Cell Responses to Cardiac Allografts1

    PubMed Central

    Iida, Shoichi; Tsuda, Hidetoshi; Tanaka, Toshiaki; Kish, Danielle D.; Abe, Toyofumi; Su, Charles A.; Abe, Ryo; Tanabe, Kazunari; Valujskikh, Anna; Baldwin, William M.; Fairchild, Robert L.

    2016-01-01

    Reperfusion of organ allografts induces a potent inflammatory response that directs rapid memory T cell, neutrophil and macrophage graft infiltration and their activation to express functions mediating graft tissue injury. The role of cardiac allograft IL-1 receptor signaling in this early inflammation and the downstream primary alloimmune response was investigated. When compared to complete MHC-mismatched wild type cardiac allografts, IL-1R−/− allografts had marked decreases in endogenous memory CD8 T cell and neutrophil infiltration and expression of proinflammatory mediators at early times after transplant whereas endogenous memory CD4 T cell and macrophage infiltration was not decreased. IL-1R−/− allograft recipients also had marked decreases in de novo donor-reactive CD8, but not CD4, T cell development to IFN-γ-producing cells. CD8 T cell-mediated rejection of IL-1R−/− cardiac allografts took 3 weeks longer than wild type allografts. Cardiac allografts from reciprocal bone marrow reconstituted IL-1R−/−/wild type chimeric donors indicated that IL-1R signaling on graft non-hematopoietic-derived, but not bone marrow-derived, cells is required for the potent donor-reactive memory and primary CD8 T cell alloimmune responses observed in response to wild type allografts. These studies implicate IL-1R-mediated signals by allograft parenchymal cells in generating the stimuli provoking development and elicitation of optimal alloimmune responses to the grafts. PMID:26856697

  4. Endogenous Memory CD8 T Cells Directly Mediate Cardiac Allograft Rejection

    PubMed Central

    Su, C. A.; Iida, S.; Abe, T.; Fairchild, R. L.

    2014-01-01

    Differences in levels of environmentally induced memory T cells that cross-react with donor MHC molecules are postulated to account for the efficacy of allograft tolerance inducing strategies in rodents versus their failure in nonhuman primates and human transplant patients. Strategies to study the impact of donor-reactive memory T cells on allografts in rodents have relied on the pre-transplant induction of memory T cells cross-reactive with donor allogeneic MHC molecules through recipient viral infection, priming directly with donor antigen, or adoptive transfer of donor-antigen primed memory T cells. Each approach accelerates allograft rejection and confers resistance to tolerance induction, but also biases the T cell repertoire to strong donor-reactivity. The ability of endogenous memory T cells within unprimed mice to directly reject an allograft is unknown. Here we show a direct association between increased duration of cold ischemic allograft storage and numbers and enhanced functions of early graft infiltrating endogenous CD8 memory T cells. These T cells directly mediate rejection of allografts subjected to prolonged ischemia and this rejection is resistant to costimulatory blockade. These findings recapitulate the clinically significant impact of endogenous memory T cells with donor reactivity in a mouse transplant model in the absence of prior recipient priming. PMID:24502272

  5. Induction of transplantation tolerance to fully mismatched cardiac allografts by T cell mediated delivery of alloantigen

    PubMed Central

    Tian, Chaorui; Yuan, Xueli; Jindra, Peter T.; Bagley, Jessamyn; Sayegh, Mohamed H.; Iacomini, John

    2010-01-01

    Induction of transplantation tolerance has the potential to allow for allograft acceptance without the need for life-long immunosuppression. Here we describe a novel approach that uses delivery of alloantigen by mature T cells to induce tolerance to fully allogeneic cardiac grafts. Adoptive transfer of mature alloantigen-expressing T cells into myeloablatively conditioned mice results in long-term acceptance of fully allogeneic heart transplants without evidence of chronic rejection. Since myeloablative conditioning is clinically undesirable we further demonstrated that adoptive transfer of mature alloantigen-expressing T cells alone into mice receiving non-myeloablative conditioning resulted in long-term acceptance of fully allogeneic heart allografts with minimal evidence of chronic rejection. Mechanistically, tolerance induction involved both deletion of donor-reactive host T cells and the development of regulatory T cells. Thus, delivery of alloantigen by mature T cells induces tolerance to fully allogeneic organ allografts in non-myeloablatively conditioned recipients, representing a novel approach for tolerance induction in transplantation. PMID:20452826

  6. Tanshinol suppresses cardiac allograft rejection in a murine model.

    PubMed

    Lu, Chuanjian; Zeng, Yu-Qun; Liu, Huazhen; Xie, Qingfeng; Xu, Shengmei; Tu, Kangsheng; Dou, Changwei; Dai, Zhenhua

    2017-02-01

    Achieving long-term cardiac allograft survival without continuous immunosuppression is highly desired in organ transplantation. Studies have shown that Salvia miltiorrhiza, an herb also known as danshen, improves microcirculation and is highly effective in treating coronary heart disease. Our objective is to determine whether tanshinol, an ingredient of danshen, improves cardiac allograft survival. Fully vascularized heterotopic heart transplantation was performed using BALB/c mice as donors and C57BL/6 mice as recipients, which were then treated with tanshinol and rapamycin. CD4 + FoxP3 + regulatory T cells (Tregs) were quantified by flow analyses, whereas CCL22 was measured by real-time polymerase chain reaction and Western blotting. We found that tanshinol significantly delayed cardiac allograft rejection. It promoted long-term allograft survival induced by rapamycin, a mammalian target-of-rapamycin (mTOR) inhibitor. Tanshinol increased CD4 + FoxP3 + Treg numbers in cardiac allografts, but not spleens and lymph nodes, of recipient mice by enhancing chemokine CCL22 expression in cardiac allografts, especially cardiac dendritic cells. In contrast, rapamycin increased Treg numbers in both lymphoid organs and allografts, suggesting that it generally expands Tregs. Moreover, Tregs induced by rapamycin plus tanshinol were more potent in suppressing T-cell proliferation in vitro than those from untreated recipients. Neutralizing CCL22 hindered CD4 + FoxP3 + Treg migration to cardiac allografts and reversed long-term allograft survival induced by tanshinol plus rapamycin. Tanshinol suppresses cardiac allograft rejection by recruiting CD4 + FoxP3 + Tregs to the graft, whereas rapamycin does so via expanding the Tregs. Thus, tanshinol cooperates with rapamycin to further extend cardiac allograft survival. Copyright © 2016 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  7. Antibody-Mediated Rejection of Single Class I MHC-Disparate Cardiac Allografts

    PubMed Central

    Hattori, Yusuke; Bucy, R. Pat; Kubota, Yoshinobu; Baldwin, William M.; Fairchild, Robert L.

    2012-01-01

    Murine CCR5−/− recipients produce high titers of antibody to complete MHC-mismatched heart and renal allografts. To study mechanisms of class I MHC antibody-mediated allograft injury, we tested the rejection of heart allografts transgenically expressing a single class I MHC disparity in wild-type C57BL/6 (H-2b) and B6.CCR5−/− recipients. Donor-specific antibody titers in CCR5−/− recipients were 30-fold higher than in wild-type recipients. B6.Kd allografts survived longer than 60 days in wild-type recipients whereas CCR5−/− recipients rejected all allografts within 14 days. Rejection was accompanied by infiltration of CD8 T cells, neutrophils, and macrophages and C4d deposition in the graft capillaries. B6.Kd allografts were rejected by CD8−/−/CCR5−/−, but not μMT−/−/CCR5−/−, recipients indicating the need for antibody but not CD8 T cells. Grafts retrieved at day 10 from CCR5−/− and CD8−/−/CCR5−/− recipients and from RAG-1−/− allograft recipients injected with anti-Kd antibodies expressed high levels of perforin, myeloperoxidase and CCL5 mRNA. These studies indicate that the continual production of anti-donor class I MHC antibody can mediate allograft rejection, that donor-reactive CD8 T cells synergize with the antibody to contribute to rejection, and that expression of three biomarkers during rejection can occur in the absence of this CD8 T cell activity. PMID:22578247

  8. Prevalence of polyreactive innate clones among graft--infiltrating B cells in human cardiac allograft vasculopathy.

    PubMed

    Chatterjee, Debanjana; Moore, Carolina; Gao, Baoshan; Clerkin, Kevin J; See, Sarah B; Shaked, David; Rogers, Kortney; Nunez, Sarah; Veras, Yokarla; Addonizio, Linda; Givertz, Michael M; Naka, Yoshifumi; Mancini, Donna; Vasilescu, Rodica; Marboe, Charles; Restaino, Susan; Madsen, Joren C; Zorn, Emmanuel

    2018-03-01

    Cardiac allograft vasculopathy (CAV) has been associated with graft-infiltrating B cells, although their characteristics are still unclear. In this study we examined the frequency, localization and reactivity profile of graft-infiltrating B cells to determine their contribution to the pathophysiology of CAV. B cells, plasma cells and macrophages were examined by immunohistochemistry in 56 allografts with CAV, 49 native failed hearts and 25 autopsy specimens. A total of 102 B-cell clones were immortalized directly from the infiltrates of 3 fresh cardiac samples with CAV. Their secreted antibodies were assessed using enzyme-linked immunoassay and flow cytometry. B-cell infiltration was observed around coronary arteries in 93% of allograft explants with CAV. Comparatively, intragraft B cells were less frequent and less dense in the intraventricular myocardium from where routine biopsies are obtained. Plasma cells and macrophages were also detected in 85% and 95% of explants, respectively. Remarkably, B-cell infiltrates were not associated with circulating donor-specific antibodies (DSA) or prior episodes of antibody-mediated rejection (AMR). Among all B-cell clones generated from 3 explants with CAV, a majority secreted natural antibodies reactive to multiple autoantigens and apoptotic cells, a characteristic of innate B cells. Our study reveals a high frequency of infiltrating B cells around the coronary arteries of allografts with CAV, independent of DSA or AMR. These cells are enriched for innate B cells with a polyreactive profile. The findings shift the focus from conventional DSA-producing B cells to the potentially pathogenic polyreactive B cells in the development of clinical CAV. Copyright © 2018 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  9. Low molecular weight fucan prevents transplant coronaropathy in rat cardiac allograft model.

    PubMed

    Alkhatib, Bassam; Freguin-Bouilland, Caroline; Lallemand, Françoise; Henry, Jean Paul; Litzler, Pierre-Yves; Marie, Jean Paul; Richard, Vincent; Thuillez, Christian; Plissonnier, Didier

    2006-06-01

    Transplant arteriosclerosis is the main cause of long-term failure after cardiac transplantation. Vascular rejection is thought to be due to intimal proliferation occurring in response to arterial wall immune-mediated injury. A low molecular weight fucan (LMWF) compound, a sulfated polysaccharide, has been demonstrated to increase plasma levels of stromal cell-derived factor 1 (SDF-1) and consequently to mobilize bone marrow-derived vascular progenitor cells (BMVPC). The aim of this study was to evaluate the capacity of LMWF to prevent coronary intimal proliferation in a rat cardiac allograft model. Heterotopic abdominal cardiac graftings were performed in Brown Norway (BN) and Lewis (LEW) rats. Animals were divided into 4 groups of 10 rats. Two groups were treated intramuscularly with LMWF (5 mg/kg/day) (one BN to BN isograft group, and one BN to LEW allograft group); and two control groups were LMWF-untreated (one BN to BN isograft group and one BN to LEW allograft group). All animals were treated by cyclosporin (15 mg/kg/day) sub-cutaneously and sacrificed at day 30. The cardiac grafts were assessed by morphometry of structural parameters and by histological and immunohistochemical analyses. All cardiac isografts were devoid of any coronary and parenchymal lesions. In contrast, the majority of untreated allografts developed coronary intimal proliferation in close association with intimal and adventitial inflammatory CD68(+) cell infiltration. Further, the parenchyma exhibited large areas of actin(+) cells (myofibroblasts) of recipient origin colocalized with the CD68(+) infiltrating cells. Interestingly, all LMWF-treated allografts were well protected against coronary and parenchymal lesions and the coronary arteries exhibited an intimal monolayer of flat cells, which however were CD34 negative. treatment with LMWF appeared very effective in this rat cardiac allograft model to prevent arterial and parenchymal lesions occurring in response to alloimmune injury

  10. Allograft dendritic cell p40 homodimers activate donor-reactive memory CD8+ T cells

    PubMed Central

    Tsuda, Hidetoshi; Su, Charles A.; Tanaka, Toshiaki; Ayasoufi, Katayoun; Min, Booki; Valujskikh, Anna; Fairchild, Robert L.

    2018-01-01

    Recipient endogenous memory T cells with donor reactivity pose an important barrier to successful transplantation and costimulatory blockade–induced graft tolerance. Longer ischemic storage times prior to organ transplantation increase early posttransplant inflammation and negatively impact early graft function and long-term graft outcome. Little is known about the mechanisms enhancing endogenous memory T cell activation to mediate tissue injury within the increased inflammatory environment of allografts subjected to prolonged cold ischemic storage (CIS). Endogenous memory CD4+ and CD8+ T cell activation is markedly increased within complete MHC-mismatched cardiac allografts subjected to prolonged versus minimal CIS, and the memory CD8+ T cells directly mediate CTLA-4Ig–resistant allograft rejection. Memory CD8+ T cell activation within allografts subjected to prolonged CIS requires memory CD4+ T cell stimulation of graft DCs to produce p40 homodimers, but not IL-12 p40/p35 heterodimers. Targeting p40 abrogates memory CD8+ T cell proliferation within the allografts and their ability to mediate CTLA-4Ig–resistant allograft rejection. These findings indicate a critical role for memory CD4+ T cell–graft DC interactions to increase the intensity of endogenous memory CD8+ T cell activation needed to mediate rejection of higher-risk allografts subjected to increased CIS. PMID:29467328

  11. Mast Cells Condition Dendritic Cells to Mediate Allograft Tolerance

    PubMed Central

    de Vries, Victor C.; Pino-Lagos, Karina; Nowak, Elizabeth C.; Bennett, Kathy A.; Oliva, Carla; Noelle, Randolph J.

    2013-01-01

    SUMMARY Peripheral tolerance orchestrated by regulatory T cells, dendritic cells (DCs), and mast cells (MCs) has been studied in several models including skin allograft tolerance. We now define a role for MCs in controlling DC behavior (“conditioning”) to facilitate tolerance. Under tolerant conditions, we show that MCs mediated a marked increase in tumor necrosis factor (TNFα)-dependent accumulation of graft-derived DCs in the dLN compared to nontolerant conditions. This increase of DCs in the dLN is due to the local production of granulocyte macrophage colony-stimulating factor (GM-CSF) by MCs that induces a survival advantage of graft-derived DCs. DCs that migrated to the dLN from the tolerant allograft were tolerogenic; i.e., they dominantly suppress T cell responses and control regional immunity. This study underscores the importance of MCs in conditioning DCs to mediate peripheral tolerance and shows a functional impact of peripherally produced TNFα and GM-CSF on the migration and function of tolerogenic DCs. PMID:22035846

  12. Graft-Derived CCL2 Increases Graft Injury During Antibody-Mediated Rejection of Cardiac Allografts

    PubMed Central

    Abe, Toyofumi; Su, Charles A.; Iida, Shoichi; Baldwin, William M.; Nonomura, Norio; Takahara, Shiro; Fairchild, Robert L.

    2015-01-01

    The pathogenic role of macrophages in antibody-mediated rejection (AMR) remains unclear. Monocyte chemoattractant protein-1 (MCP-1/CCL2) is a potent chemotactic factor for monocytes and macrophages. The current studies used a murine model of AMR to investigate the role of graft-derived CCL2 in AMR and how macrophages may participate in antibody-mediated allograft injury. B6.CCR5−/−/CD8−/− recipients rejected MHC-mismatched wild type A/J allografts with high donor-reactive antibody titers and diffuse C4d deposition in the large vessels and myocardial capillaries, features consistent with AMR. In contrast, A/J.CCL2−/− allografts induced low donor-reactive antibody titers and C4d deposition at day 7 post-transplant. Decreased donor-reactive CD4 T cells producing IFN-γ were induced in response to A/J.CCL2−/− vs. wild type allografts. Consequently, A/J.CCL2−/− allograft survival was modestly but significantly longer than A/J allografts. Macrophages purified from wild type allografts expressed high levels of IL-1β and IL-12p40 and this expression and the numbers of classically activated macrophages were markedly reduced in CCL2-deficient allografts on day 7. The results indicate that allograft-derived CCL2 plays an important role in directing classically activated macrophages into allografts during AMR and that macrophages are important contributors to the inflammatory environment mediating graft tissue injury in this pathology, suggesting CCL2 as a therapeutic target for AMR. PMID:25040187

  13. Loss of Myeloid Related Protein-8/14 Exacerbates Cardiac Allograft Rejection

    PubMed Central

    Shimizu, Koichi; Libby, Peter; Rocha, Viviane Z.; Folco, Eduardo J.; Shubiki, Rica; Grabie, Nir; Jang, Sunyoung; Lichtman, Andrew H.; Shimizu, Ayako; Hogg, Nancy; Simon, Daniel I.; Mitchell, Richard N.; Croce, Kevin

    2011-01-01

    Background The calcium-binding proteins myeloid-related protein (MRP)-8 (S100A8) and MRP-14 (S100A9) form MRP-8/14 heterodimers (S100A8/A9, calprotectin) that regulate myeloid cell function and inflammatory responses, and serve as early serum markers for monitoring acute allograft rejection. Despite functioning as a pro-inflammatory mediator, the pathophysiological role of MRP-8/14 complexes in cardiovascular disease is incompletely defined. This study investigated the role of MRP-8/14 in cardiac allograft rejection using MRP-14-deficient mice (MRP14-/-) that lack MRP-8/14 complexes. Methods and Results We examined parenchymal rejection (PR) after major histocompatibility complex (MHC) class II allomismatched cardiac transplantation (bm12 donor heart and B6 recipients) in wild-type (WT) and MRP14-/- recipients. Allograft survival averaged 5.9 ± 2.9 weeks (n=10) in MRP14-/- recipients, compared to > 12 weeks (n = 15, p < 0.0001) in WT recipients. Two weeks after transplantation, allografts in MRP14-/- recipients had significantly higher PR scores (2.8 ± 0.8, n=8) than did WT recipients (0.8 ± 0.8, n=12, p<0.0001). Compared to WT recipients, allografts in MRP14-/- recipients had significantly increased T-cell and macrophage infiltration, as well as increased mRNA levels of IFN-γ and IFN-γ–associated chemokines (CXCL9, CXCL10, and CXCL11), IL-6, and IL-17, with significantly higher levels of Th17 cells. MRP14-/- recipients also had significantly more lymphocytes in the adjacent paraaortic lymph nodes than did WT recipients (cell number per lymph node: 23.7 ± 0.7 × 105 for MRP14-/- vs. 6.0 ± 0.2 × 105 for WT, p < 0.0001). The dendritic cells (DCs) of the MRP14-/- recipients of bm12 hearts expressed significantly higher levels of the co-stimulatory molecules CD80 and CD86 than did those of WT recipients 2 weeks after transplantation. Mixed leukocyte reactions using allo-EC-primed MRP14-/- DCs resulted in significantly higher antigen-presenting function than

  14. Kidney-induced cardiac allograft tolerance in miniature swine is dependent on MHC-matching of donor cardiac and renal parenchyma.

    PubMed

    Madariaga, M L; Michel, S G; La Muraglia, G M; Sekijima, M; Villani, V; Leonard, D A; Powell, H J; Kurtz, J M; Farkash, E A; Colvin, R B; Allan, J S; Cetrulo, C L; Huang, C A; Sachs, D H; Yamada, K; Madsen, J C

    2015-06-01

    Kidney allografts possess the ability to enable a short course of immunosuppression to induce tolerance of themselves and of cardiac allografts across a full-MHC barrier in miniature swine. However, the renal element(s) responsible for kidney-induced cardiac allograft tolerance (KICAT) are unknown. Here we investigated whether MHC disparities between parenchyma versus hematopoietic-derived "passenger" cells of the heart and kidney allografts affected KICAT. Heart and kidney allografts were co-transplanted into MHC-mismatched recipients treated with high-dose tacrolimus for 12 days. Group 1 animals (n = 3) received kidney and heart allografts fully MHC-mismatched to each other and to the recipient. Group 2 animals (n = 3) received kidney and heart allografts MHC-matched to each other but MHC-mismatched to the recipient. Group 3 animals (n = 3) received chimeric kidney allografts whose parenchyma was MHC-mismatched to the donor heart. Group 4 animals (n = 3) received chimeric kidney allografts whose passenger leukocytes were MHC-mismatched to the donor heart. Five of six heart allografts in Groups 1 and 3 rejected <40 days. In contrast, heart allografts in Groups 2 and 4 survived >150 days without rejection (p < 0.05). These data demonstrate that KICAT requires MHC-matching between kidney allograft parenchyma and heart allografts, suggesting that cells intrinsic to the kidney enable cardiac allograft tolerance. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  15. Tobacco smoke exposure in either the donor or recipient before transplantation accelerates cardiac allograft rejection, vascular inflammation, and graft loss.

    PubMed

    Khanna, Ashwani K; Xu, Jianping; Uber, Patricia A; Burke, Allen P; Baquet, Claudia; Mehra, Mandeep R

    2009-11-03

    Tobacco exposure in cardiac transplant recipients, before and after transplantation, may increase the risk of cardiac allograft vasculopathy and allograft loss, but no direct evidence for this phenomenon is forthcoming. In this experimental study, we investigated early consequences of tobacco smoke exposure in cardiac transplant donors and recipients with an emphasis on alloinflammatory mediators of graft outcome. Using heterotopic rat cardiac transplantation, we tested the effects of donor or recipient tobacco smoke exposure in 6 groups of animals (rat heterotopic cardiac transplantation) as follows: tobacco-naïve allogeneic rejecting controls (n=6), tobacco-naïve nonrejecting controls (n=3; killed on day 5 to simulate survival times of tobacco-treated animals), isografts (n=3), both donor and recipient rats exposed to tobacco smoke (n=4), only donor rats exposed to tobacco smoke (n=7), and only recipient rats exposed to tobacco smoke (n=6). Polymerase chain reaction studies of tissue and peripheral (systemic) protein expression were performed to evaluate inflammatory (tumor necrosis factor-alpha, interferon-gamma, interleukin-6) and alloimmune (interleukin-1 receptor 2, programmed cell death-1, and stromal cell-derived factor-1) pathways, as was histological analysis of the cardiac allografts. Our experiments reveal that pretransplantation tobacco exposure in donors and/or recipients results in heightened systemic inflammation and increased oxidative stress, reduces posttransplantation cardiac allograft survival by 33% to 57%, and increases intragraft inflammation (tumor necrosis factor-alpha, interferon-gamma, interleukin-6) and alloimmune activation (CD3, interleukin-1 receptor 2, programmed cell death-1, and stromal cell-derived factor-1) with consequent myocardial and vascular destruction. These sentinel findings confirm that tobacco smoke exposure in either donors or recipients leads to accelerated allograft rejection, vascular inflammation, and graft loss

  16. Natural killer cells play a critical role in mediating inflammation and graft failure during antibody-mediated rejection of kidney allografts

    PubMed Central

    Kohei, Naoki; Tanaka, Toshiaki; Tanabe, Kazunari; Masumori, Naoya; Dvorina, Nina; Valujskikh, Anna; Baldwin, William M.; Fairchild, Robert L.

    2016-01-01

    While the incidence of antibody-mediated kidney graft rejection has increased, the key cellular and molecular participants underlying this graft injury remain unclear. Rejection of kidney allografts in mice lacking the chemokine receptor CCR5 is dependent on production of donor-specific antibody. Here we determine if cells expressing cytotoxic function contributed to antibody-mediated kidney allograft rejection in these recipients. Wild type C57BL/6, B6.CCR5−/− and B6.CD8−/−/CCR5−/− mice were transplanted with complete MHC mismatched A/J kidney grafts and intra-graft inflammatory components were followed to rejection. B6.CCR5−/− and B6.CD8−/−/CCR5−/− recipients rejected kidney allografts by day 35 whereas 65% of allografts in wild type recipients survived past day 80 post-transplant. Rejected allografts in wild-type C57BL/6, B6.CCR5−/− and B6.CD8−/−/CCR5−/− recipients expressed high levels of VCAM-1 and MMP7 mRNA that was associated with high serum titers of donor-specific antibody. High levels of perforin and granzyme B mRNA expression peaked on day 6 post-transplant in allografts in all recipients, but were absent in isografts. Depletion of natural killer cells in B6.CD8−/−/CCR5−/− recipients reduced this expression to background levels and promoted the long-term survival of 40% of the kidney allografts. Thus, natural killer cells have a role in increased inflammation during antibody-mediated kidney allograft injury and in rejection of the grafts. PMID:27165816

  17. 21 CFR 862.1163 - Cardiac allograft gene expression profiling test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cardiac allograft gene expression profiling test... Chemistry Test Systems § 862.1163 Cardiac allograft gene expression profiling test system. (a) Identification. A cardiac allograft gene expression profiling test system is a device that measures the...

  18. Natural killer cells play a critical role in mediating inflammation and graft failure during antibody-mediated rejection of kidney allografts.

    PubMed

    Kohei, Naoki; Tanaka, Toshiaki; Tanabe, Kazunari; Masumori, Naoya; Dvorina, Nina; Valujskikh, Anna; Baldwin, William M; Fairchild, Robert L

    2016-06-01

    While the incidence of antibody-mediated kidney graft rejection has increased, the key cellular and molecular participants underlying this graft injury remain unclear. Rejection of kidney allografts in mice lacking the chemokine receptor CCR5 is dependent on production of donor-specific antibody. Here we determine if cells expressing cytotoxic function contributed to antibody-mediated kidney allograft rejection in these recipients. Wild-type C57BL/6, B6.CCR5(-/-), and B6.CD8(-/-)/CCR5(-/-) mice were transplanted with complete MHC-mismatched A/J kidney grafts, and intragraft inflammatory components were followed to rejection. B6.CCR5(-/-) and B6.CD8(-/-)/CCR5(-/-) recipients rejected kidney allografts by day 35, whereas 65% of allografts in wild-type recipients survived past day 80 post-transplant. Rejected allografts in wild-type C57BL/6, B6.CCR5(-/-), and B6.CD8(-/-)/CCR5(-/-) recipients expressed high levels of VCAM-1 and MMP7 mRNA that was associated with high serum titers of donor-specific antibody. High levels of perforin and granzyme B mRNA expression peaked on day 6 post-transplant in allografts in all recipients, but were absent in isografts. Depletion of natural killer cells in B6.CD8(-/-)/CCR5(-/-) recipients reduced this expression to background levels and promoted the long-term survival of 40% of the kidney allografts. Thus, natural killer cells have a role in increased inflammation during antibody-mediated kidney allograft injury and in rejection of the grafts. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  19. Rapamycin Prolongs Cardiac Allograft Survival in a Mouse Model by Inducing Myeloid-Derived Suppressor Cells.

    PubMed

    Nakamura, T; Nakao, T; Yoshimura, N; Ashihara, E

    2015-09-01

    Mammalian target of rapamycin (mTOR) inhibitors are the main immunosuppressive drugs for organ transplant recipients. Nevertheless, the mechanisms by which mTOR inhibitors induce immunosuppression is not fully understood. Myeloid-derived suppressor cells (MDSCs) maintain host immunity; however, the relationship between mTOR inhibitors and MDSCs is unclear. Here, the results from a murine cardiac transplantation model revealed that rapamycin treatment (3 mg/kg, intraperitoneally on postoperative days 0, 2, 4, and 6) led to the recruitment of MDSCs and increased their expression of inducible nitric oxide synthase (iNOS). Immunohistochemical analysis revealed that rapamycin induced the migration of iNOS-expressing MDSCs into the subintimal space within the allograft vessels, resulting in a significant prolongation of graft survival compared with that in the untreated group (67 days vs. 7 days, respectively). These effects were counterbalanced by the administration of an anti-Gr-1, which reduced allograft survival to 21 days. Moreover, adoptive transcoronary arterial transfer of MDSCs from rapamycin-treated recipients prolonged allograft survival; this increase was reversed by the anti-Gr-1 antibody. Finally, co-administration of rapamycin and a mitogen-activated protein kinase kinase (MEK) inhibitor trametinib reversed rapamycin-mediated MDSC recruitment. Thus, the mTOR and Raf/MEK/extracellular signal regulated kinase (ERK) signaling pathways appear to play an important role in MDSC expansion. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  20. CD4+CD25+ regulatory T cells suppress allograft rejection mediated by memory CD8+ T cells via a CD30-dependent mechanism.

    PubMed

    Dai, Zhenhua; Li, Qi; Wang, Yinong; Gao, Ge; Diggs, Lonnette S; Tellides, George; Lakkis, Fadi G

    2004-01-01

    CD4(+)CD25(+) regulatory T (Treg) cells suppress naive T cell responses, prevent autoimmunity, and delay allograft rejection. It is not known, however, whether Treg cells suppress allograft rejection mediated by memory T cells, as the latter mount faster and stronger immune responses than their naive counterparts. Here we show that antigen-induced, but not naive, Treg cells suppress allograft rejection mediated by memory CD8(+) T cells. Suppression was allospecific, as Treg cells induced by third-party antigens did not delay allograft rejection. In vivo and in vitro analyses revealed that the apoptosis of allospecific memory CD8(+) T cells is significantly increased in the presence of antigen-induced Treg cells, while their proliferation remains unaffected. Importantly, neither suppression of allograft rejection nor enhanced apoptosis of memory CD8(+) T cells was observed when Treg cells lacked CD30 or when CD30 ligand-CD30 interaction was blocked with anti-CD30 ligand Ab. This study therefore provides direct evidence that pathogenic memory T cells are amenable to suppression in an antigen-specific manner and identifies CD30 as a molecule that is critical for the regulation of memory T cell responses.

  1. CD4+CD25+ regulatory T cells suppress allograft rejection mediated by memory CD8+ T cells via a CD30-dependent mechanism

    PubMed Central

    Dai, Zhenhua; Li, Qi; Wang, Yinong; Gao, Ge; Diggs, Lonnette S.; Tellides, George; Lakkis, Fadi G.

    2004-01-01

    CD4+CD25+ regulatory T (Treg) cells suppress naive T cell responses, prevent autoimmunity, and delay allograft rejection. It is not known, however, whether Treg cells suppress allograft rejection mediated by memory T cells, as the latter mount faster and stronger immune responses than their naive counterparts. Here we show that antigen-induced, but not naive, Treg cells suppress allograft rejection mediated by memory CD8+ T cells. Suppression was allospecific, as Treg cells induced by third-party antigens did not delay allograft rejection. In vivo and in vitro analyses revealed that the apoptosis of allospecific memory CD8+ T cells is significantly increased in the presence of antigen-induced Treg cells, while their proliferation remains unaffected. Importantly, neither suppression of allograft rejection nor enhanced apoptosis of memory CD8+ T cells was observed when Treg cells lacked CD30 or when CD30 ligand–CD30 interaction was blocked with anti–CD30 ligand Ab. This study therefore provides direct evidence that pathogenic memory T cells are amenable to suppression in an antigen-specific manner and identifies CD30 as a molecule that is critical for the regulation of memory T cell responses. PMID:14722622

  2. Central memory CD8+ T lymphocytes mediate lung allograft acceptance

    PubMed Central

    Krupnick, Alexander Sasha; Lin, Xue; Li, Wenjun; Higashikubo, Ryuiji; Zinselmeyer, Bernd H.; Hartzler, Hollyce; Toth, Kelsey; Ritter, Jon H.; Berezin, Mikhail Y.; Wang, Steven T.; Miller, Mark J.; Gelman, Andrew E.; Kreisel, Daniel

    2014-01-01

    Memory T lymphocytes are commonly viewed as a major barrier for long-term survival of organ allografts and are thought to accelerate rejection responses due to their rapid infiltration into allografts, low threshold for activation, and ability to produce inflammatory mediators. Because memory T cells are usually associated with rejection, preclinical protocols have been developed to target this population in transplant recipients. Here, using a murine model, we found that costimulatory blockade–mediated lung allograft acceptance depended on the rapid infiltration of the graft by central memory CD8+ T cells (CD44hiCD62LhiCCR7+). Chemokine receptor signaling and alloantigen recognition were required for trafficking of these memory T cells to lung allografts. Intravital 2-photon imaging revealed that CCR7 expression on CD8+ T cells was critical for formation of stable synapses with antigen-presenting cells, resulting in IFN-γ production, which induced NO and downregulated alloimmune responses. Thus, we describe a critical role for CD8+ central memory T cells in lung allograft acceptance and highlight the need for tailored approaches for tolerance induction in the lung. PMID:24569377

  3. Fox smell abrogates the effect of herbal odor to prolong mouse cardiac allograft survival.

    PubMed

    Jin, Xiangyuan; Uchiyama, Masateru; Zhang, Qi; Niimi, Masanori

    2014-05-09

    Herbal medicines have unique odors, and the act of smelling may have modulatory effects on the immune system. We investigated the effect of olfactory exposure to Tokishakuyaku-san (TJ-23), a Japanese herbal medicine, on alloimmune responses in a murine model of cardiac allograft transplantation. Naïve or olfactory-dysfunctional CBA mice underwent transplantation of a C57BL/6 heart and were exposed to the odor of TJ-23 until rejection. Some naïve CBA recipients of an allograft were given olfactory exposure to Sairei-to (TJ-114), trimethylthiazoline (TMT), individual components of TJ-23, or a TJ-23 preparation lacking one component. Adoptive transfer studies were performed to determine whether regulatory cells were generated. Untreated CBA mice rejected their C57BL/6 allografts acutely, as did olfactory-dysfunctional CBA mice exposed to the odor of TJ-23. CBA recipients of a C57BL/6 heart given olfactory exposure to TJ-23 had significantly prolonged allograft survival, whereas those exposed to the odor of TJ-114, TMT, one component of TJ-23, or TJ-23 lacking a component did not. Secondary allograft recipients that were given, at 30 days after transplantation, either whole splenocytes, CD4+ cells, or CD4+CD25+ cells from primary recipients exposed to the odor of TJ-23 had indefinitely prolonged allograft survival. Prolonged survival of cardiac allografts and generation of regulatory cells was associated with exposure to the odor of TJ-23 in our model. The olfactory area of the brain may have a role in the modulation of immune responses.

  4. IL-33 expands suppressive CD11b+ Gr-1int and regulatory T cells (Treg), including ST2L+ Foxp3+ cells, and mediates Treg-dependent promotion of cardiac allograft survival

    PubMed Central

    Turnquist, Hēth R.; Zhao, Zhenlin; Rosborough, Brian R.; Liu, Quan; Castellaneta, Antonino; Isse, Kumiko; Wang, Zhiliang; Lang, Megan; Stolz, Donna Beer; Zheng, Xin Xiao; Demetris, A. Jake; Liew, Foo Y.; Wood, Kathryn J.; Thomson, Angus W.

    2011-01-01

    IL-33 administration is associated with facilitation of Th type-2 (Th2) responses and cardioprotective properties in rodent models. However, in heart transplantation, the mechanism by which IL-33, signaling through ST2L, the membrane-bound form of ST2, promotes transplant survival is unclear. We report that IL-33 administration, while facilitating Th2 responses, also increases immunoregulatory myeloid cells and CD4+ Foxp3+ regulatory T cells (Treg) in mice. IL-33 expands functional myeloid-derived suppressor cells (MDSC), -CD11b+ cells that exhibit intermediate (int) levels of Gr-1 and potent T cell suppressive function. Furthermore, IL-33 administration causes a St2-dependent expansion of suppressive CD4+ Foxp3+ Treg, including a ST2L+ population. IL-33 monotherapy following fully allogeneic mouse heart transplantation resulted in significant graft prolongation, associated with increased Th2-type responses and decreased systemic CD8+ IFN-γ+ cells. Also, despite reducing overall CD3+ cell infiltration of the graft, IL-33 administration markedly increased intragraft Foxp3+ cells. Whereas control graft recipients displayed increases in systemic CD11b+ Gr-1hi cells, IL-33-treated recipients exhibited increased CD11b+ Gr-1int cells. Enhanced ST2 expression was observed in the myocardium and endothelium of rejecting allografts, however the therapeutic effect of IL-33 required recipient St2 expression and was dependent on Treg. These findings reveal a new immunoregulatory property of IL-33. Specifically, in addition to supporting Th2 responses, IL-33 facilitates regulatory cells, particularly functional CD4+ Foxp3+ Treg that underlie IL-33-mediated cardiac allograft survival. PMID:21949025

  5. Impact of Leukocyte Function-Associated Antigen-1 Blockade on Endogenous Allospecific T Cells to Multiple Minor Histocompatibility Antigen Mismatched Cardiac Allograft.

    PubMed

    Kwun, Jean; Farris, Alton B; Song, Hyunjin; Mahle, William T; Burlingham, William J; Knechtle, Stuart J

    2015-12-01

    Blocking leukocyte function-associated antigen (LFA)-1 in organ transplant recipients prolongs allograft survival. However, the precise mechanisms underlying the therapeutic potential of LFA-1 blockade in preventing chronic rejection are not fully elucidated. Cardiac allograft vasculopathy (CAV) is the preeminent cause of late cardiac allograft failure characterized histologically by concentric intimal hyperplasia. Anti-LFA-1 monoclonal antibody was used in a multiple minor antigen-mismatched, BALB.B (H-2B) to C57BL/6 (H-2B), cardiac allograft model. Endogenous donor-specific CD8 T cells were tracked down using major histocompatibility complex multimers against the immunodominant H4, H7, H13, H28, and H60 minor Ags. The LFA-1 blockade prevented acute rejection and preserved palpable beating quality with reduced CD8 T-cell graft infiltration. Interestingly, less CD8 T cell infiltration was secondary to reduction of T-cell expansion rather than less trafficking. The LFA-1 blockade significantly suppressed the clonal expansion of minor histocompatibility antigen-specific CD8 T cells during the expansion and contraction phase. The CAV development was evaluated with morphometric analysis at postoperation day 100. The LFA-1 blockade profoundly attenuated neointimal hyperplasia (61.6 vs 23.8%; P < 0.05), CAV-affected vessel number (55.3 vs 15.9%; P < 0.05), and myocardial fibrosis (grade 3.29 vs 1.8; P < 0.05). Finally, short-term LFA-1 blockade promoted long-term donor-specific regulation, which resulted in attenuated transplant arteriosclerosis. Taken together, LFA-1 blockade inhibits initial endogenous alloreactive T-cell expansion and induces more regulation. Such a mechanism supports a pulse tolerance induction strategy with anti-LFA-1 rather than long-term treatment.

  6. The Impact of HLA Class I-Specific Killer Cell Immunoglobulin-Like Receptors on Antibody-Dependent Natural Killer Cell-Mediated Cytotoxicity and Organ Allograft Rejection.

    PubMed

    Rajalingam, Raja

    2016-01-01

    Natural killer (NK) cells of the innate immune system are cytotoxic lymphocytes that play an important roles following transplantation of solid organs and hematopoietic stem cells. Recognition of self-human leukocyte antigen (HLA) class I molecules by inhibitory killer cell immunoglobulin-like receptors (KIRs) is involved in the calibration of NK cell effector capacities during the developmental stage, allowing the subsequent recognition and elimination of target cells with decreased expression of self-HLA class I (due to virus infection or tumor transformation) or HLA class I disparities (in the setting of allogeneic transplantation). NK cells expressing an inhibitory KIR-binding self-HLA can be activated when confronted with allografts lacking a ligand for the inhibitory receptor. Following the response of the adaptive immune system, NK cells can further destroy allograft endothelium by antibody-dependent cell-mediated cytotoxicity (ADCC), triggered through cross-linking of the CD16 Fc receptor by donor-specific antibodies bound to allograft. Upon recognizing allogeneic target cells, NK cells also secrete cytokines and chemokines that drive maturation of dendritic cells to promote cellular and humoral adaptive immune responses against the allograft. The cumulative activating and inhibitory signals generated by ligation of the receptors regulates mature NK cell killing of target cells and their production of cytokines and chemokines. This review summarizes the role of NK cells in allograft rejection and proposes mechanistic concepts that indicate a prominent role for KIR-HLA interactions in facilitating NK cells for Fc receptor-mediated ADCC effector function involved in antibody-mediated rejection of solid organ transplants.

  7. The Impact of HLA Class I-Specific Killer Cell Immunoglobulin-Like Receptors on Antibody-Dependent Natural Killer Cell-Mediated Cytotoxicity and Organ Allograft Rejection

    PubMed Central

    Rajalingam, Raja

    2016-01-01

    Natural killer (NK) cells of the innate immune system are cytotoxic lymphocytes that play an important roles following transplantation of solid organs and hematopoietic stem cells. Recognition of self-human leukocyte antigen (HLA) class I molecules by inhibitory killer cell immunoglobulin-like receptors (KIRs) is involved in the calibration of NK cell effector capacities during the developmental stage, allowing the subsequent recognition and elimination of target cells with decreased expression of self-HLA class I (due to virus infection or tumor transformation) or HLA class I disparities (in the setting of allogeneic transplantation). NK cells expressing an inhibitory KIR-binding self-HLA can be activated when confronted with allografts lacking a ligand for the inhibitory receptor. Following the response of the adaptive immune system, NK cells can further destroy allograft endothelium by antibody-dependent cell-mediated cytotoxicity (ADCC), triggered through cross-linking of the CD16 Fc receptor by donor-specific antibodies bound to allograft. Upon recognizing allogeneic target cells, NK cells also secrete cytokines and chemokines that drive maturation of dendritic cells to promote cellular and humoral adaptive immune responses against the allograft. The cumulative activating and inhibitory signals generated by ligation of the receptors regulates mature NK cell killing of target cells and their production of cytokines and chemokines. This review summarizes the role of NK cells in allograft rejection and proposes mechanistic concepts that indicate a prominent role for KIR–HLA interactions in facilitating NK cells for Fc receptor-mediated ADCC effector function involved in antibody-mediated rejection of solid organ transplants. PMID:28066408

  8. Emulating Native Periosteum Cell Population and Subsequent Paracrine Factor Production To Promote Tissue Engineered Periosteum-Mediated Allograft Healing

    PubMed Central

    Hoffman, Michael D.

    2015-01-01

    Emulating autograft healing within the context of decellularized bone allografts has immediate clinical applications in the treatment of critical-sized bone defects. The periosteum, a thin, osteogenic tissue that surrounds bone, houses a heterogeneous population of stem cells and osteoprogenitors. There is evidence that periosteum-cell derived paracrine factors, specifically vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP2), orchestrate autograft healing through host cell recruitment and subsequent tissue elaboration. In previous work, we demonstrated that the use of poly(ethylene glycol) (PEG) hydrogels as a tissue engineered (T.E.) periosteum to localize mesenchymal stem cells (MSCs) to the surface of decellularized bone enhances allograft healing and integration. Herein, we utilize a mixed population of 50:50 MSCs and osteoprogenitor cells to better mimic native periosteum cell population and paracrine factor production to further promote allograft healing. This mixed cell population was localized to the surface of decellularized allografts within degradable hydrogels and shown to expedite allograft healing. Specifically, bone callus formation and biomechanical graft-host integration are increased as compared to unmodified allografts. These results demonstrate the dual importance of periosteum-mediated paracrine factors orchestrating host cell recruitment as well as new bone formation while developing clinically translatable strategies for allograft healing and integration. PMID:25818449

  9. Vav1 GEF activity is required for T cell mediated allograft rejection.

    PubMed

    Haubert, Dirk; Li, Jianping; Saveliev, Alexander; Calzascia, Thomas; Sutter, Esther; Metzler, Barbara; Kaiser, Daniel; Tybulewicz, Victor L J; Weckbecker, Gisbert

    2012-06-01

    The GDP exchange factor (GEF) Vav1 is a central signal transducer downstream of the T cell receptor and has been identified as a key factor for T cell activation in the context of allograft rejection. Vav1 has been shown to transduce signals both dependent and independent of its GEF function. The most promising approach to disrupt Vav1 activity by pharmacological inhibition would be to target its GEF function. However, the contribution of Vav1 GEF activity for allogeneic T cell activation has not been clarified yet. To address this question, we used knock-in mice bearing a mutated Vav1 with disrupted GEF activity but intact GEF-independent functions. T cells from these mice showed strongly reduced proliferation and activation in response to allogeneic stimulation. Furthermore, lack of Vav1 GEF activity strongly abrogated the in vivo expansion of T cells in a systemic graft-versus-host model. In a cardiac transplantation model, mice with disrupted Vav1 GEF activity show prolonged allograft survival. These findings demonstrate a strong requirement for Vav1 GEF activity for allogeneic T cell activation and graft rejection suggesting that disruption of Vav1 GEF activity alone is sufficient to induce significant immunosuppression. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Vav1 GEF activity is required for T cell mediated allograft rejection

    PubMed Central

    Haubert, Dirk; Li, Jianping; Saveliev, Alexander; Calzascia, Thomas; Sutter, Esther; Metzler, Barbara; Kaiser, Daniel; Tybulewicz, Victor L.J.; Weckbecker, Gisbert

    2012-01-01

    The GDP exchange factor (GEF) Vav1 is a central signal transducer downstream of the T cell receptor and has been identified as a key factor for T cell activation in the context of allograft rejection. Vav1 has been shown to transduce signals both dependent and independent of its GEF function. The most promising approach to disrupt Vav1 activity by pharmacological inhibition would be to target its GEF function. However, the contribution of Vav1 GEF activity for allogeneic T cell activation has not been clarified yet. To address this question, we used knock-in mice bearing a mutated Vav1 with disrupted GEF activity but intact GEF-independent functions. T cells from these mice showed strongly reduced proliferation and activation in response to allogeneic stimulation. Furthermore, lack of Vav1 GEF activity strongly abrogated the in vivo expansion of T cells in a systemic graft-versus-host model. In a cardiac transplantation model, mice with disrupted Vav1 GEF activity show prolonged allograft survival. These findings demonstrate a strong requirement for Vav1 GEF activity for allogeneic T cell activation and graft rejection suggesting that disruption of Vav1 GEF activity alone is sufficient to induce significant immunosuppression. PMID:22456277

  11. Comparative immunohistologic studies in an adoptive transfer model of acute rat cardiac allograft rejection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forbes, R.D.; Lowry, R.P.; Gomersall, M.

    1985-07-01

    It has been shown that fulminant acute rejection of rat cardiac allografts across a full haplotype disparity may occur as a direct result of adoptive transfer of sensitized W3/25+ MRC OX8- SIg- T helper/DTH syngeneic spleen cells to sublethally irradiated recipients. In order to establish the immunohistologic parameters of this form of rejection, allografts and recipient lymphoid tissue were analyzed using a panel of monoclonal antibodies of known cellular distribution. These data were compared with those obtained following reconstitution of irradiated allograft recipients with unseparated sensitized spleen cells, with unreconstituted irradiated donor recipient pairs, with unmodified first-set rejection, and withmore » induced myocardial infarction of syngeneic heart grafts transplanted to normal and to sublethally irradiated recipients. Rejecting cardiac allografts transplanted to all reconstituted irradiated recipients were characterized by extensive infiltration with MRC OX8+ (T cytotoxic-suppressor, natural killer) cells even when this subset was virtually excluded from the reconstituting inocula. A similar proportional accumulation of MRC OX8+ cells observed at the infarct margins of syngeneic heart grafts transplanted to irradiated unreconstituted recipients greatly exceeded that present in normal nonirradiated controls. These data provide evidence that under conditions of heavy recipient irradiation, MRC OX8+ cells may be sequestered within heart grafts in response to nonspecific injury unrelated to the rejection process.« less

  12. Electrocardiographic Characteristics of Potential Organ Donors and Associations with Cardiac Allograft Utilization

    PubMed Central

    Khush, Kiran K.; Menza, Rebecca; Nguyen, John; Goldstein, Benjamin A.; Zaroff, Jonathan G.; Drew, Barbara J.

    2012-01-01

    Background Current regulations require that all cardiac allograft offers for transplantation must include an interpreted 12-lead electrocardiogram (ECG). However, little is known about the expected ECG findings in potential organ donors, or the clinical significance of any identified abnormalities in terms of cardiac allograft function and suitability for transplantation. Methods and Results A single experienced reviewer interpreted the first ECG obtained after brainstem herniation in 980 potential organ donors managed by the California Transplant Donor Network from 2002-2007. ECG abnormalities were summarized, and associations between specific ECG findings and cardiac allograft utilization for transplantation were studied. ECG abnormalities were present in 51% of all cases reviewed. The most common abnormalities included voltage criteria for left ventricular hypertrophy (LVH), prolongation of the corrected QT interval (QTc), and repolarization changes (ST/T wave abnormalities). Fifty seven percent of potential cardiac allografts in this cohort were accepted for transplantation. LVH on ECG was a strong predictor of allograft non-utilization. No significant associations were seen between QTc prolongation, repolarization changes and allograft utilization for transplantation, after adjusting for donor clinical variables and echocardiographic findings. Conclusions We have performed the first comprehensive study of ECG findings in potential donors for cardiac transplantation. Many of the common ECG abnormalities seen in organ donors may result from the heightened state of sympathetic activation that occurs after brainstem herniation, and are not associated with allograft utilization for transplantation. PMID:22615333

  13. Auditory stimulation of opera music induced prolongation of murine cardiac allograft survival and maintained generation of regulatory CD4+CD25+ cells.

    PubMed

    Uchiyama, Masateru; Jin, Xiangyuan; Zhang, Qi; Hirai, Toshihito; Amano, Atsushi; Bashuda, Hisashi; Niimi, Masanori

    2012-03-23

    Interactions between the immune response and brain functions such as olfactory, auditory, and visual sensations are likely. This study investigated the effect of sounds on alloimmune responses in a murine model of cardiac allograft transplantation. Naïve CBA mice (H2k) underwent transplantation of a C57BL/6 (B6, H2b) heart and were exposed to one of three types of music--opera (La Traviata), classical (Mozart), and New Age (Enya)--or one of six different single sound frequencies, for 7 days. Additionally, we prepared two groups of CBA recipients with tympanic membrane perforation exposed to opera for 7 days and CBA recipients exposed to opera for 7 days before transplantation (pre-treatment). An adoptive transfer study was performed to determine whether regulatory cells were generated in allograft recipients. Immunohistochemical, cell-proliferation, cytokine, and flow cytometry assessments were also performed. CBA recipients of a B6 cardiac graft that were exposed to opera music and Mozart had significantly prolonged allograft survival (median survival times [MSTs], 26.5 and 20 days, respectively), whereas those exposed to a single sound frequency (100, 500, 1000, 5000, 10,000, or 20,000 Hz) or Enya did not (MSTs, 7.5, 8, 9, 8, 7.5, 8.5 and 11 days, respectively). Untreated, CBA mice with tympanic membrane perforations and CBA recipients exposed to opera for 7 days before transplantation (pre-treatment) rejected B6 cardiac grafts acutely (MSTs, 7, 8 and 8 days, respectively). Adoptive transfer of whole splenocytes, CD4+ cells, or CD4+CD25+ cells from opera-exposed primary allograft recipients resulted in significantly prolonged allograft survival in naive secondary recipients (MSTs, 36, 68, and > 100 days, respectively). Proliferation of splenocytes, interleukin (IL)-2 and interferon (IFN)-γ production was suppressed in opera-exposed mice, and production of IL-4 and IL-10 from opera-exposed transplant recipients increased compared to that from splenocytes of

  14. Auditory stimulation of opera music induced prolongation of murine cardiac allograft survival and maintained generation of regulatory CD4+CD25+ cells

    PubMed Central

    2012-01-01

    Background Interactions between the immune response and brain functions such as olfactory, auditory, and visual sensations are likely. This study investigated the effect of sounds on alloimmune responses in a murine model of cardiac allograft transplantation. Methods Naïve CBA mice (H2k) underwent transplantation of a C57BL/6 (B6, H2b) heart and were exposed to one of three types of music--opera (La Traviata), classical (Mozart), and New Age (Enya)--or one of six different single sound frequencies, for 7 days. Additionally, we prepared two groups of CBA recipients with tympanic membrane perforation exposed to opera for 7 days and CBA recipients exposed to opera for 7 days before transplantation (pre-treatment). An adoptive transfer study was performed to determine whether regulatory cells were generated in allograft recipients. Immunohistochemical, cell-proliferation, cytokine, and flow cytometry assessments were also performed. Results CBA recipients of a B6 cardiac graft that were exposed to opera music and Mozart had significantly prolonged allograft survival (median survival times [MSTs], 26.5 and 20 days, respectively), whereas those exposed to a single sound frequency (100, 500, 1000, 5000, 10,000, or 20,000 Hz) or Enya did not (MSTs, 7.5, 8, 9, 8, 7.5, 8.5 and 11 days, respectively). Untreated, CBA mice with tympanic membrane perforations and CBA recipients exposed to opera for 7 days before transplantation (pre-treatment) rejected B6 cardiac grafts acutely (MSTs, 7, 8 and 8 days, respectively). Adoptive transfer of whole splenocytes, CD4+ cells, or CD4+CD25+ cells from opera-exposed primary allograft recipients resulted in significantly prolonged allograft survival in naive secondary recipients (MSTs, 36, 68, and > 100 days, respectively). Proliferation of splenocytes, interleukin (IL)-2 and interferon (IFN)-γ production was suppressed in opera-exposed mice, and production of IL-4 and IL-10 from opera-exposed transplant recipients increased compared to

  15. Brief Review: Interacting Mechanisms in the Pathogenesis of Cardiac Allograft Vasculopathy

    PubMed Central

    Pober, Jordan S.; Jane-wit, Dan; Qin, Lingfeng; Tellides, George

    2014-01-01

    Cardiac allograft vasculopathy is the major cause of late graft loss in heart transplant recipients. Histological studies of characteristic end stage lesions reveal arterial changes consisting of a diffuse, confluent and concentric intimal expansion containing graft-derived cells expressing smooth muscle markers, extracellular matrix, penetrating microvessels and a host mononuclear cell infiltrate concentrated subjacent to an intact graft-derived luminal endothelial cell lining with little evidence of acute injury. This intimal expansion combined with inadequate compensatory outward remodeling produces severe generalized stenosis extending throughout the epicardial and intramyocardial arterial tree that causes ischemic graft failure. CAV lesions affect at least 50% of transplant recipients and are both progressive and refractory to treatment, resulting in about 5% graft loss per year through the first ten years post-transplant. Lesions typically stop at the suture line, implicating alloimmunity as the primary driver, but pathogenesis may be multifactorial. Here we will discuss six potential contributors to lesion formation: (1) conventional risk factors for atherosclerosis; (2) pre- or peri-transplant injuries; (3) infection; (4) innate immunity; (5) T cell-mediated immunity; and (6) B cell-mediated immunity through production of donor-specific antibody. Finally, we will consider how these various mechanisms may interact with each other. PMID:24903097

  16. International Society for Heart and Lung Transplantation working formulation of a standardized nomenclature for cardiac allograft vasculopathy-2010.

    PubMed

    Mehra, Mandeep R; Crespo-Leiro, Maria G; Dipchand, Anne; Ensminger, Stephan M; Hiemann, Nicola E; Kobashigawa, Jon A; Madsen, Joren; Parameshwar, Jayan; Starling, Randall C; Uber, Patricia A

    2010-07-01

    The development of cardiac allograft vasculopathy remains the Achilles heel of cardiac transplantation. Unfortunately, the definitions of cardiac allograft vasculopathy are diverse, and there are no uniform international standards for the nomenclature of this entity. This consensus document, commissioned by the International Society of Heart and Lung Transplantation Board, is based on best evidence and clinical consensus derived from critical analysis of available information pertaining to angiography, intravascular ultrasound imaging, microvascular function, cardiac allograft histology, circulating immune markers, non-invasive imaging tests, and gene-based and protein-based biomarkers. This document represents a working formulation for an international nomenclature of cardiac allograft vasculopathy, similar to the development of the system for adjudication of cardiac allograft rejection by histology.

  17. Long-term acceptance of major histocompatibility complex mismatched cardiac allografts induced by CTLA4Ig plus donor-specific transfusion

    PubMed Central

    1993-01-01

    Allograft rejection is a T cell-dependent process. Productive T cell activation by antigen requires antigen engagement of the T cell receptor as well as costimulatory signals delivered through other T cell surface molecules such as CD28. Engagement of CD28 by its natural ligand B7 can be blocked using a soluble recombinant fusion protein, CTLA4Ig. Administration of CTLA4Ig blocks antigen-specific immune responses in vitro and in vivo, and we have shown that treatment of rats with a 7-d course of CTLA4Ig at the time of transplantation leads to prolonged survival of cardiac allografts (median 30 d), although most grafts are eventually rejected. Here, we have explored additional strategies employing CTLA4Ig in order to achieve long-term allograft survival. Our data indicate that donor-specific transfusion (DST) plus CTLA4Ig can provide effective antigen-specific immunosuppression. When DST is administered at the time of transplantation followed by a single dose of CTLA4Ig 2 d later, all animals had long-term graft survival (> 60 d). These animals had delayed responses to donor-type skin transplants, compared with normal rejection responses to third-party skin transplants. Furthermore, donor-matched second cardiac allografts were well tolerated with minimal histologic evidence of rejection. These data indicate that peritransplant use of DST followed by subsequent treatment with CTLA4Ig can induce prolonged, often indefinite, cardiac allograft acceptance. These results may be clinically applicable for cadaveric organ and tissue transplantation in humans. PMID:8228826

  18. Music exposure induced prolongation of cardiac allograft survival and generated regulatory CD4⁺ cells in mice.

    PubMed

    Uchiyama, M; Jin, X; Zhang, Q; Amano, A; Watanabe, T; Niimi, M

    2012-05-01

    In clinical practice, music has been used to decrease stress, heart rate, and blood pressure and to provide a distraction from disease symptoms. We investigated sound effects on alloimmune responses in murine heart transplantation. Naïve and eardrum-ruptured CBA/N (CBA, H2(K)) underwent transplantation of a C57BL/6 (B6, H2(b)) heart and were exposed to 1 of 3 types of music-opera (La Traviata), classical (Mozart), and New Age (Enya)-or 1 of 6 different single sound frequencies for 7 days. An adoptive transfer study was performed to determine whether regulatory cells were generated in allograft recipients. Cell-proliferation, cytokine, and flow cytometry assessments were also performed. CBA recipients of a B6 graft exposed to opera and classical music had significantly prolonged allograft survival (median survival times [MSTs], 26.5 and 20 days, respectively), whereas those exposed to 6 single sound frequencies and New Age did not (MSTs, 7, 8, 9, 8, 8, 8, and 11 days, respectively). Untreated and eardrum-ruptured CBA rejected B6 grafts acutely (MSTs, 7 and 8.5 days, respectively). Adoptive transfer of whole splenocytes, CD4(+) cells, and CD4(+)CD25(+) cells from opera-exposed primary recipients resulted in significantly prolonged allograft survival in naive secondary recipients (MSTs, 36, 68, and >50 days, respectively). Cell-proliferation, interleukin (IL)-2 and interferon-γ were suppressed in opera-exposed mice, whereas IL-4 and IL-10 from opera-exposed recipients were up-regulated. Flow cytometry studies showed an increased CD4(+)CD25(+)Foxp3(+) cell population in splenocytes from opera-exposed mice. In conclusion, exposure to some types of music may induce prolonged survival of fully allogeneic cardiac allografts and generate CD4(+)CD25(+)Foxp3(+) regulatory cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Human umbilical cord mesenchymal stromal cells suppress MHC class II expression on rat vascular endothelium and prolong survival time of cardiac allograft

    PubMed Central

    Qiu, Ying; Yun, Mark M; Han, Xia; Zhao, Ruidong; Zhou, Erxia; Yun, Sheng

    2014-01-01

    Background: Human umbilical cord mesenchymal stromal cells (UC-MSCs) have low immunogenicity and immune regulation. To investigate immunomodulatory effects of human UC-MSCs on MHC class II expression and allograft, we transplanted heart of transgenic rats with MHC class II expression on vascular endothelium. Methods: UC-MSCs were obtained from human umbilical cords and confirmed with flow cytometry analysis. Transgenic rat line was established using the construct of human MHC class II transactivator gene (CIITA) under mouse ICAM-2 promoter control. The induced MHC class II expression on transgenic rat vascular endothelial cells (VECs) was assessed with immunohistological staining. And the survival time of cardiac allograft was compared between the recipients with and without UC-MSC transfusion. Results: Flow cytometry confirmed that the human UC-MSCs were positive for CD29, CD44, CD73, CD90, CD105, CD271, and negative for CD34 and HLA-DR. Repeated infusion of human UC-MSCs reduced MHC class II expression on vascular endothelia of transplanted hearts, and increased survival time of allograft. The UC-MSCs increased regulatory cytokines IL10, transforming growth factor (TGF)-β1 and suppressed proinflammatory cytokines IL2 and IFN-γ in vivo. The UC-MSC culture supernatant had similar effects on cytokine expression, and decreased lymphocyte proliferation in vitro. Conclusions: Repeated transfusion of the human UC-MSCs reduced MHC class II expression on vascular endothelia and prolonged the survival time of rat cardiac allograft. PMID:25126177

  20. Ultrasound molecular imaging of acute cellular cardiac allograft rejection in rat with T-cell-specific nanobubbles.

    PubMed

    Wu, Wei; Zhang, Zhe; Zhuo, Lisha; Zhou, Lina; Liu, Ping; He, Yun; Gao, Yunhua; Li, Rui; Chen, Qinghai; Hua, Xing

    2013-09-01

    Acute rejection (AR) is one of the main obstacles of cardiac transplantation; however, a noninvasive diagnostic method, which reflects its pathologic nature, has not been developed yet. In this study, we prepared a specific nanobubbles targeting to the activated T cells and applied it in the ultrasound molecular imaging of AR in heart transplantation by myocardial contrast echocardiography (MCE). Nanobubbles loading anti-CD25 antibody (NB(specific)) or isotype control antibody (NB(nonspecific)) were prepared and then applied in the ultrasound molecular imaging by MCE in a rat model. MCE was performed in 24 allografts and 18 isografts that were divided into three groups, including days 2, 4, and 6 after transplantation. Confocal laser scanning microscopy was used to evaluate the binding of nanobubbles and T cells in four allografts and four isografts. MCE with NB(specific) in allograft showed a "delayed enhancement," and the time-intensity curve presented a second peak. The intensity and time of second peak were both positively correlated with the transplant time (P<0.01) and the pathologic grade of AR (P<0.01). Confocal laser scanning microscopy demonstrated the binding of nanobubbles and lymphocytes in myocardium post-MCE with NB(specific). Ultrasound molecular imaging of AR after heart transplantation can be achieved by using MCE with the nanobubbles targeted to T cells. The appearance of delayed enhancement indicates the occurrence of AR, and the intensity and time of the second peak in time-intensity curve provide potential quantitative indications for diagnosis and severity of AR.

  1. Recent Advances in Allograft Vasculopathy

    PubMed Central

    Merola, Jonathan; Jane-Wit, Daniel D.; Pober, Jordan S.

    2017-01-01

    Purpose of review Despite considerable advances in controlling acute rejection, the longevity of cardiac and renal allografts remains significantly limited by chronic rejection in the form of allograft vasculopathy (AV). This review discusses recently reported mechanistic insights of AV pathogenesis as well recent clinical evaluations of new therapeutic approaches. Recent findings Although adaptive immunity is the major driver of AV, natural killer cells mediate vasculopathic changes in a transplanted mouse heart following treatment with donor-specific antibody (DSA). However, NK cells may also dampen chronic inflammatory responses by killing donor-derived tissue-resident CD4 T cells that provide help to host B cells, the source of DSA. DSA may directly contribute to vascular inflammation by inducing intracellular signaling cascades that upregulate leukocyte adhesion molecules, facilitating recruitment of neutrophils and monocytes. DSA-mediated complement activation additionally enhances endothelial alloimmunogenicity through activation of non-canonical NF-κB signaling. New clinical studies evaluating mTOR and proteasome inhibitors to target these pathways have been reported. Summary AV is a pathology resultant from several innate and adaptive alloimmune responses. Mechanistic insights from preclinical studies have identified agents that are currently being investigated in clinical trials. PMID:27898462

  2. Graft protective effect and induction of CD4+Foxp3+ cell by Thrombomodulin on allograft arteriosclerosis in mice.

    PubMed

    Yin, Enzhi; Matsuyama, Shigefumi; Uchiyama, Masateru; Kawai, Kento; Niimi, Masanori

    2018-05-21

    Thrombomodulin (TM) is a promising therapeutic natural anti-coagulant, which exerts the effects to control disseminated intravascular coagulation. However, little is known whether TM on micro-vessels could play an important role in the regulation of intimal hyperplasia. We investigated the vessel-protective effect of TM in the survival of fully major histocompatibility complex (MHC)-mismatched murine cardiac allograft transplantation. CBA recipients transplanted with a C57BL/6 heart received intraperitoneal administration of normal saline or 0.2, 2.0, and 20.0 μg/day of TM for 7 days (n = 5, 7, 11, and 11, respectively). Immunohistochemical and fluorescent staining studies were performed to determine whether CD4 + Foxp3 + regulatory T cell were generated at 2 and 4 weeks after grafting. Morphometric analysis for neointimal formation in the coronary arteries of the transplanted allograft was conducted at 2 and 4 weeks after grafting. Untreated CBA recipients rejected C57BL/6 cardiac grafts acutely (median survival time [MST], 7 days). CBA recipients exposed with the above doses had significantly prolonged allograft survival (MSTs, 17, 24 and 50 days, respectively). Morphometric assessment showed that intimal hyperplasia was clearly suppressed in the left and right coronary arteries or allografts from TM-exposed recipients 2 and 4 weeks. Immunohistochemical studies at 2 weeks showed more CD4 + Foxp3 + cells and lower myocardial damage in the allografts from TM-exposed recipients. Notably, fluorescent staining studies demonstrated that TM-exposed recipients 4 weeks post-engraftment had strong aggregation of CD4 + Foxp3 + cells in the intima of the coronary arteries of the cardiac allografts. TM may prolong the survival of fully MHC-mismatched cardiac allografts through suppressing intimal hyperplasia and inducing the accumulation of regulatory CD4 + Foxp3 + cells within coronary arteries.

  3. Targeting Sirtuin-1 prolongs murine renal allograft survival and function

    PubMed Central

    Levine, Matthew H.; Wang, Zhonglin; Xiao, Haiyan; Jiao, Jing; Wang, Liqing; Bhatti, Tricia R.; Hancock, Wayne W.; Beier, Ulf H.

    2016-01-01

    Current immunosuppressive medications used after transplantation have significant toxicities. Foxp3+ T-regulatory (Treg) cells can prevent allograft rejection without compromising protective host immunity. Interestingly, inhibiting the class III histone/protein deacetylase Sirtuin-1 can augment Foxp3+ Treg suppressive function through increasing Foxp3 acetylation. Here we determined whether Sirtuin-1 targeting can stabilize biological allograft function. BALB/c kidney allografts were transplanted into C57BL/6 recipients with a CD4-conditional deletion of Sirtuin-1 (Sirt1fl/flCD4cre) or mice treated with a Sirtuin-1 specific inhibitor (EX-527), and the native kidneys removed. Blood chemistries and hematocrit were followed weekly. Sirt1fl/flCD4cre recipients showed markedly longer survival and improved kidney function. Sirt1fl/flCD4cre recipients exhibited donor specific tolerance, accepted BALB/c, but rejected third-party C3H cardiac allografts. C57BL/6 recipients of BALB/c renal allografts that were treated with EX-527 showed improved survival and renal function at 1, but not 10 mg/kg/day. Pharmacologic inhibition of Sirtuin-1 also improved renal allograft survival and function with dosing effects having relevance to outcome. Thus, inhibiting Sirtuin-1 can be a useful asset in controlling T-cell mediated rejection. However, effects on non-T cells that could adversely affect allograft survival and function merit consideration. PMID:27083279

  4. 21 CFR 862.1163 - Cardiac allograft gene expression profiling test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1163 Cardiac allograft gene expression profiling test system. (a...

  5. 21 CFR 862.1163 - Cardiac allograft gene expression profiling test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1163 Cardiac allograft gene expression profiling test system. (a...

  6. 21 CFR 862.1163 - Cardiac allograft gene expression profiling test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1163 Cardiac allograft gene expression profiling test system. (a...

  7. 21 CFR 862.1163 - Cardiac allograft gene expression profiling test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1163 Cardiac allograft gene expression profiling test system. (a...

  8. Management of children undergoing cardiac transplantation with high Panel Reactive Antibodies.

    PubMed

    Asante-Korang, Alfred; Jacobs, Jeffrey P; Ringewald, Jeremy; Carapellucci, Jennifer; Rosenberg, Kristin; McKenna, Daniel; McCormack, Jorge; Wilmot, Ivan; Gjeldum, Abigail; Lopez-Cepero, Mayra; Sleasman, John

    2011-12-01

    Highly sensitised children in need of cardiac transplantation have overall poor outcomes because of increased risk for dysfunction of the cardiac allograft, acute cellular and antibody-mediated rejection, and vasculopathy of the cardiac allograft. Cardiopulmonary bypass and the frequent use of blood products in the operating room and cardiac intensive care unit, as well as the frequent use of homografts, have predisposed potential recipients of transplants to allosensitisation. The expansion in the use of ventricular assist devices and extracorporeal membrane oxygenation has also contributed to increasing rates of allosensitisation in candidates for cardiac transplantation. Antibodies to Human Leukocyte Antigen can be detected before transplantation using several different techniques, the most common being the "complement-dependent lymphocytotoxicity assays". "Solid-phase assays", particularly the "Luminex® single antigen bead method", offer improved specificity and more detailed information regarding specificities of antibodies, leading to improved matching of donors with recipients. Allosensitisation prolongs the time on the waiting list for potential recipients of transplantation and increases the risk of complications and death after transplantation. Aggressive reduction of antibodies to Human Leukocyte Antigen in these high-risk patients is therefore of vital importance for long-term survival of the patient and cardiac allograft. Strategies to decrease Panel Reactive Antibody or percent reactive antibody before transplantation include plasmapheresis, intravenous administration of immunoglobulin, and specific treatment to reduce B-cells, particularly Rituximab. These strategies have resulted in varying degrees of success. Antibody-mediated rejection and cardiac allograft vasculopathy are two of the most important complications of transplantation in patients with high Panel Reactive Antibody. The treatment of antibody-mediated rejection in recipients of cardiac

  9. The Impact of Ischemia/Reperfusion Injury on Liver Allografts from Deceased after Cardiac Death versus Deceased after Brain Death Donors.

    PubMed

    Xu, Jin; Sayed, Blayne Amir; Casas-Ferreira, Ana Maria; Srinivasan, Parthi; Heaton, Nigel; Rela, Mohammed; Ma, Yun; Fuggle, Susan; Legido-Quigley, Cristina; Jassem, Wayel

    2016-01-01

    The shortage of organs for transplantation has led to increased use of organs procured from donors after cardiac death (DCD). The effects of cardiac death on the liver remain poorly understood, however. Using livers obtained from DCD versus donors after brain death (DBD), we aimed to understand how ischemia/reperfusion (I/R) injury alters expression of pro-inflammatory markers ceramides and influences graft leukocyte infiltration. Hepatocyte inflammation, as assessed by ceramide expression, was evaluated in DCD (n = 13) and DBD (n = 10) livers. Allograft expression of inflammatory and cell death markers, and allograft leukocyte infiltration were evaluated from a contemporaneous independent cohort of DCD (n = 22) and DBD (n = 13) livers. When examining the differences between transplant stages in each group, C18, C20, C24 ceramides showed significant difference in DBD (p<0.05) and C22 ceramide (p<0.05) were more pronounced for DCD. C18 ceramide is correlated to bilirubin, INR, and creatinine after transplant in DCD. Prior to transplantation, DCD livers have reduced leukocyte infiltration compared to DBD allografts. Following reperfusion, the neutrophil infiltration and platelet deposition was less prevalent in DCD grafts while cell death and recipients levels of serum aspartate aminotransferase (AST) of DCD allografts had significantly increased. These data suggest that I/R injury generate necrosis in the absence of a strong inflammatory response in DCD livers with an appreciable effect on early graft function. The long-term consequences of increased inflammation in DBD and increased cell death in DCD allografts are unknown and warrant further investigation.

  10. Ursolic acid promotes robust tolerance to cardiac allografts in mice

    PubMed Central

    Liu, Y; Huang, X; Li, Y; Li, C; Hu, X; Xue, C; Meng, F; Zhou, P

    2011-01-01

    Nuclear factor (NF)-κB is an important molecule in T cell activation. Our previous work has found that T cell-restricted NF-κB super-repressor (IκBαΔN-Tg) mice, expressing an inhibitor of NF-κB restricted to the T cell compartment, can permanently accept fully allogeneic cardiac grafts and secondary donor skin grafts. In this study, we explore if transient NF-κB inhibition by a small molecular inhibitor could induce permanent graft survival. Ursolic acid, a small molecular compound, dose-dependently inhibited T cell receptor (TCR)-triggered NF-κB nuclear translocation and T cell activation in vitro. In vivo, ursolic acid monotherapy prolonged significantly the survival of cardiac allograft in mice. Assisted with donor-specific transfusion (DST) on day 0, ursolic acid promoted 84·6% of first cardiac grafts to survive for more than 150 days. While the mice with long-term surviving grafts (LTS) did not reject the second donor strain hearts for more than 100 days without any treatment, they all promptly rejected the third-party strain hearts within 14 days. Interestingly, this protocol did not result in an increased proportion of CD4+CD25+forkhead box P3+ regulatory T cells in splenocytes. That adoptive transfer experiments also did not support regulation was the main mechanism in this model. Splenocytes from LTS showed reduced alloreactivity to donor antigen. However, depletion of CD4+CD25+ regulatory T cells did not alter the donor-reactivity of LTS splenocytes. These data suggest that depletion of donor-reactive T cells may play an important role in this protocol. PMID:21391985

  11. The Impact of Ischemia/Reperfusion Injury on Liver Allografts from Deceased after Cardiac Death versus Deceased after Brain Death Donors

    PubMed Central

    Xu, Jin; Sayed, Blayne Amir; Casas-Ferreira, Ana Maria; Srinivasan, Parthi; Heaton, Nigel; Rela, Mohammed; Ma, Yun; Fuggle, Susan; Legido-Quigley, Cristina; Jassem, Wayel

    2016-01-01

    Background and aims The shortage of organs for transplantation has led to increased use of organs procured from donors after cardiac death (DCD). The effects of cardiac death on the liver remain poorly understood, however. Using livers obtained from DCD versus donors after brain death (DBD), we aimed to understand how ischemia/reperfusion (I/R) injury alters expression of pro-inflammatory markers ceramides and influences graft leukocyte infiltration. Methods Hepatocyte inflammation, as assessed by ceramide expression, was evaluated in DCD (n = 13) and DBD (n = 10) livers. Allograft expression of inflammatory and cell death markers, and allograft leukocyte infiltration were evaluated from a contemporaneous independent cohort of DCD (n = 22) and DBD (n = 13) livers. Results When examining the differences between transplant stages in each group, C18, C20, C24 ceramides showed significant difference in DBD (p<0.05) and C22 ceramide (p<0.05) were more pronounced for DCD. C18 ceramide is correlated to bilirubin, INR, and creatinine after transplant in DCD. Prior to transplantation, DCD livers have reduced leukocyte infiltration compared to DBD allografts. Following reperfusion, the neutrophil infiltration and platelet deposition was less prevalent in DCD grafts while cell death and recipients levels of serum aspartate aminotransferase (AST) of DCD allografts had significantly increased. Conclusion These data suggest that I/R injury generate necrosis in the absence of a strong inflammatory response in DCD livers with an appreciable effect on early graft function. The long-term consequences of increased inflammation in DBD and increased cell death in DCD allografts are unknown and warrant further investigation. PMID:26863224

  12. CD8+IL-17+ T Cells Mediate Neutrophilic Airway Obliteration in T-bet–Deficient Mouse Lung Allograft Recipients

    PubMed Central

    Dodd-o, Jeffrey M.; Coon, Tiffany A.; Miller, Hannah L.; Ganguly, Sudipto; Popescu, Iulia; O'Donnell, Christopher P.; Cardenes, Nayra; Levine, Melanie; Rojas, Mauricio; Weathington, Nathaniel M.; Zhao, Jing; Zhao, Yutong; McDyer, John F.

    2015-01-01

    Acute cellular rejection is a known risk factor for the development of obliterative bronchiolitis, which limits the long-term survival of lung transplant recipients. However, the T cell effector mechanisms in both of these processes remain incompletely understood. Using the mouse orthotopic lung transplant model, we investigated whether C57BL/6 T-bet−/− recipients of major histocompatibility complex (MHC)-mismatched BALB/c lung grafts develop rejection pathology and allospecific cytokine responses that differ from wild-type mice. T-bet−/− recipients demonstrated vigorous allograft rejection at 10 days, characterized by neutrophilic inflammation and predominantly CD8+ T cells producing allospecific IL-17 and/or IFN-γ, in contrast to IFN-γ–dominant responses in WT mice. CD4+ T cells produced IL-17 but not IFN-γ responses in T-bet−/− recipients, in contrast to WT controls. Costimulation blockade using anti-CD154 Ab significantly reduced allospecific CD8+IFN-γ+ responses in both T-bet−/− and WT mice but had no attenuating effect on lung rejection pathology in T-bet−/− recipients or on the development of obliterative airway inflammation that occurred only in T-bet−/− recipients. However, neutralization of IL-17A significantly attenuated costimulation blockade–resistant rejection pathology and airway inflammation in T-bet−/− recipients. In addition, CXCL1 (neutrophil chemokine) was increased in T-bet−/− allografts, and IL-17 induced CXCL1 from mouse lung epithelial cells in vitro. Taken together, our data show that T-bet–deficient recipients of complete MHC-mismatched lung allografts develop costimulation blockade–resistant rejection characterized by neutrophilia and obliterative airway inflammation that is predominantly mediated by CD8+IL-17+ T cells. Our data support T-bet–deficient mouse recipients of lung allografts as a viable animal model to study the immunopathogenesis of small airway injury in lung transplantation

  13. Identification of Regulatory T Cells in Tolerated Allografts

    PubMed Central

    Graca, Luis; Cobbold, Stephen P.; Waldmann, Herman

    2002-01-01

    Induction of transplantation tolerance with certain therapeutic nondepleting monoclonal antibodies can lead to a robust state of peripheral “dominant” tolerance. Regulatory CD4+ T cells, which mediate this form of “dominant” tolerance, can be isolated from spleens of tolerant animals. To determine whether there were any extra-lymphoid sites that might harbor regulatory T cells we sought their presence in tolerated skin allografts and in normal skin. When tolerated skin grafts are retransplanted onto T cell–depleted hosts, graft-infiltrating T cells exit the graft and recolonize the new host. These colonizing T cells can be shown to contain members with regulatory function, as they can prevent nontolerant lymphocytes from rejecting fresh skin allografts, without hindrance of rejection of third party skin. Our results suggest that T cell suppression of graft rejection is an active process that operates beyond secondary lymphoid tissue, and involves the persistent presence of regulatory T cells at the site of the tolerated transplant. PMID:12070291

  14. Outside-in HLA class I signaling regulates ICAM-1 clustering and endothelial cell-monocyte interactions via mTOR in transplant antibody-mediated rejection.

    PubMed

    Salehi, Sahar; Sosa, Rebecca A; Jin, Yi-Ping; Kageyama, Shoichi; Fishbein, Michael C; Rozengurt, Enrique; Kupiec-Weglinski, Jerzy W; Reed, Elaine F

    2018-05-01

    Antibody-mediated rejection (AMR) resulting in transplant allograft vasculopathy (TAV) is the major obstacle for long-term survival of solid organ transplants. AMR is caused by donor-specific antibodies to HLA, which contribute to TAV by initiating outside-in signaling transduction pathways that elicit monocyte recruitment to activated endothelium. Mechanistic target of rapamycin (mTOR) inhibitors can attenuate TAV; therefore, we sought to understand the mechanistic underpinnings of mTOR signaling in HLA class I Ab-mediated endothelial cell activation and monocyte recruitment. We used an in vitro model to assess monocyte binding to HLA I Ab-activated endothelial cells and found mTOR inhibition reduced ezrin/radixin/moesin (ERM) phosphorylation, intercellular adhesion molecule 1 (ICAM-1) clustering, and monocyte firm adhesion to HLA I Ab-activated endothelium. Further, in a mouse model of AMR, in which C57BL/6. RAG1 -/- recipients of BALB/c cardiac allografts were passively transferred with donor-specific MHC I antibodies, mTOR inhibition significantly reduced vascular injury, ERM phosphorylation, and macrophage infiltration of the allograft. Taken together, these studies indicate mTOR inhibition suppresses ERM phosphorylation in endothelial cells, which impedes ICAM-1 clustering in response to HLA class I Ab and prevents macrophage infiltration into cardiac allografts. These findings indicate a novel therapeutic application for mTOR inhibitors to disrupt endothelial cell-monocyte interactions during AMR. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  15. Comparison of Segmental Versus Longitudinal Intravascular Ultrasound Analysis for Pediatric Cardiac Allograft Vasculopathy.

    PubMed

    Kuhn, M A; Burch, M; Chinnock, R E; Fenton, M J

    2017-10-01

    Intravascular ultrasound (IVUS) has been routinely used in some centers to investigate cardiac allograft vasculopathy in pediatric heart transplant recipients. We present an alternative method using more sophisticated imaging software. This study presents a comparison of this method with an established standard method. All patients who had IVUS performed in 2014 were retrospectively evaluated. The standard technique consisted of analysis of 10 operator-selected segments along the vessel. Each study was re-evaluated using a longitudinal technique, taken at every third cardiac cycle, along the entire vessel. Semiautomatic edge detection software was used to detect vessel imaging planes. Measurements included outer and inner diameter, total and luminal area, maximal intimal thickness (MIT), and intimal index. Each IVUS was graded for severity using the Stanford classification. All results were given as mean ± standard deviation (SD). Groups were compared using Student t test. A P value <.05 was considered significant. There were 59 IVUS studies performed on 58 patients. There was no statistically significant difference between outer diameter, inner diameter, or total area. In the longitudinal group, there was a significantly smaller luminal area, higher MIT, and higher intimal index. Using the longitudinal technique, there was an increase in Stanford classification in 20 patients. The longitudinal technique appeared more sensitive in assessing the degree of cardiac allograft vasculopathy and may play a role in the increase in the degree of thickening seen. It may offer an alternative way of grading severity of cardiac allograft vasculopathy in pediatric heart transplant recipients. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Donor-Specific Antibodies Are Produced Locally in Ectopic Lymphoid Structures in Cardiac Allografts.

    PubMed

    Huibers, M M H; Gareau, A J; Beerthuijzen, J M T; Siera-de Koning, E; van Kuik, J; Kamburova, E G; Vink, A; de Jonge, N; Lee, T D G; Otten, H G; de Weger, R A

    2017-01-01

    Cardiac allograft vasculopathy (CAV) is a transplant pathology, limiting graft survival after heart transplantation. CAV arteries are surrounded by ectopic lymphoid structures (ELS) containing B cells and plasma cells. The aim of this study was to characterize the antigenic targets of antibodies produced in ELS. Coronary arteries and surrounding epicardial tissue from 56 transplant recipients were collected during autopsy. Immunofluorescence was used to identify antibody-producing plasma cells. Immunoglobulin levels in tissue lysates were measured by enzyme-linked immunosorbent assay and analyzed for donor-specific HLA antibodies by Luminex assay. Cytokine and receptor expression levels were quantified using quantitative polymerase chain reaction. Plasma cells in ELS were polyclonal and produced IgG and/or IgM antibodies. In epicardial tissue, IgG (p < 0.05) and IgM levels were higher in transplant patients with larger ELS than smaller ELS. In 4 of 21 (19%) patients with ELS, donor-specific HLA type II antibodies were detected locally. Cytokine and receptor expression (CXCR3, interferon γ and TGF-β) was higher in large ELS in the epicardial tissue than in other vessel wall layers, suggesting active recruitment and proliferation of T and B lymphocytes. ELS exhibited active plasma cells producing locally manufactured antibodies that, in some cases, were directed against the donor HLA, potentially mediating rejection with major consequences for the graft. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  17. MicroRNA-10b downregulation mediates acute rejection of renal allografts by derepressing BCL2L11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaoyou; Dong, Changgui; Jiang, Zhengyao

    Kidney transplantation is the major therapeutic option for end-stage kidney diseases. However, acute rejection could cause allograft loss in some of these patients. Emerging evidence supports that microRNA (miRNA) dysregulation is implicated in acute allograft rejection. In this study, we used next-generation sequencing to profile miRNA expression in normal and acutely rejected kidney allografts. Among 75 identified dysregulated miRNAs, miR-10b was the most significantly downregulated miRNAs in rejected allografts. Transfecting miR-10b inhibitor into human renal glomerular endothelial cells recapitulated key features of acute allograft rejection, including endothelial cell apoptosis, release of pro-inflammatory cytokines (interleukin-6, tumor necrosis factor α, interferon-γ, andmore » chemokine (C–C motif) ligand 2) and chemotaxis of macrophages whereas transfection of miR-10b mimics had opposite effects. Downregulation of miR-10b directly derepressed the expression of BCL2L11 (an apoptosis inducer) as revealed by luciferase reporter assay. Taken together, miR-10b downregulation mediates many aspects of disease pathogenicity of acute kidney allograft rejection. Restoring miR-10b expression in glomerular endothelial cells could be a novel therapeutic approach to reduce acute renal allograft loss. - Highlights: • miR-10b was the most downregulated microRNAs in acutely rejected renal allografts. • miR-10b downregulation triggered glomerular endothelial cell apoptosis. • miR-10b downregulation induced release of pro-inflammatory cytokines. • miR-10b downregulation derepressed its pro-apoptotic target BCL2L11.« less

  18. Innate Immune Mechanisms in Transplant Allograft Vasculopathy

    PubMed Central

    Jane-wit, D; Fang, C; Goldstein, DR

    2016-01-01

    Purpose of Review Allograft vasculopathy (AV) is the leading cause of late allograft loss following solid organ transplantation. Ischemia reperfusion injury (IRI) and donor specific antibody (DSA)-induced complement activation confer heightened risk for AV via numerous innate immune mechanisms including MyD88, HMGB1, and complement induced non-canonical NF-kB signaling. Recent Findings The role of MyD88, a signal adaptor downstream of the toll-like receptors (TLR), has been defined in an experimental heart transplant model, which demonstrated that recipient MyD88 enhanced AV. Importantly, triggering receptor on myeloid receptor 1(Trem1), a MyD88 amplifying signal, was present in rejecting human cardiac transplant biopsies and enhanced the development of AV in mice. HMGB1, a nuclear protein that activates TLRs, also enhanced the development of AV. Complement activation elicits assembly of membrane attack complexes (MAC) on endothelial cells which activate non-canonical NF-kB signaling, a novel complement effector pathway that induces pro-inflammatory genes and potentiates endothelial cell mediated alloimmune T cell activation, processes which enhance AV. Summary Innate immune mediators including HMGB1, MyD88, and non-canonical NFκB signaling via complement activation contribute to AV. These pathways represent potential therapeutic targets to reduce AV after solid organ transplantation. PMID:27077602

  19. Eicosapentenoic Acid Attenuates Allograft Rejection in an HLA-B27/EGFP Transgenic Rat Cardiac Transplantation Model.

    PubMed

    Liu, Zhong; Hatayama, Naoyuki; Xie, Lin; Kato, Ken; Zhu, Ping; Ochiya, Takahiro; Nagahara, Yukitoshi; Hu, Xiang; Li, Xiao-Kang

    2012-01-01

    The development of an animal model bearing definite antigens is important to facilitate the evaluation and modulation of specific allo-antigen responses after transplantation. In the present study, heterotopic cardiac transplantation was performed from F344/EGFPTg and F344/HLA-B27Tg rats to F344 rats. The F344 recipients accepted the F344/EGFPTg transplants, whereas they rejected the cardiac tissue from the F344/HLA-B27Tg rats by 39.4 ± 6.5 days, due to high production of anti-HLA-B27 IgM- and IgG-specific antibodies. In addition, immunization of F344 rats with skin grafts from F344/HLA-B27Tg rats resulted in robust production of anti- HLA-B27 IgM and IgG antibodies and accelerated the rejection of a secondary cardiac allograft (7.4 ± 1.9 days). Of interest, the F344 recipients rejected cardiac grafts from double transgenic F344/HLA-B27&EGFPTg rats within 9.0 ± 3.2 days, and this was associated with a significant increase in the infiltration of lymphocytes by day 7, suggesting a role for cellular immune rejection. Eicosapentenoic acid (EPA), one of the ω-3 polyunsaturated fatty acids in fish oil, could attenuate the production of anti-HLA IgG antibodies and B-cell proliferation, significantly prolonging double transgenic F344HLA-B27&EGFPTg to F344 rat cardiac allograft survival (36.1 ± 13.6 days). Moreover, the mRNA expression in the grafts was assessed by quantitative reverse transcription polymerase chain reaction (qRT-PCR), revealing an increase in the expression of the HO-1, IL-10, TGF-β, IDO, and Foxp3 genes in the EPA-treated group. Hence, our data indicate that HLA-B27 and/or GFP transgenic proteins are useful for establishing a unique animal transplantation model to clarify the mechanism underlying the allogeneic cellular and humoral immune response, in which the transplant antigens are specifically presented. Furthermore, we also demonstrated that EPA was effective in the treatment of rat cardiac allograft rejection and may allow the development of

  20. Involvement of dendritic cells in allograft rejection new implications of dendritic cell-endothelial cell interactions.

    PubMed

    Schlichting, C L; Schareck, W D; Kofler, S; Weis, M

    2007-04-01

    For almost half a century immunologists have tried to tear down the MHC barrier, which separates two unrelated individuals during transplantation. Latest experimental data suggest that a breakthrough in vitro is imminent. Dendritic cells (DCs), which activate naïve allo-reactive T-cells (TCs), play a central role in the establishment of allo-antigen-specific immunity. Allograft solid organ rejection is initiated at the foreign endothelial cell (EC) layer, which forms an immunogenic barrier for migrating DCs. Thus, DC/EC interactions might play a crucial role in antigen-specific allograft rejection. Organ rejection is mediated by host allo-reactive TCs, which are activated by donor DCs (direct activation) or host DCs (indirect activation). Direct allo-antigen presentation by regulatory dendritic cells (DCreg) can play an instructive role towards tolerance induction. Several groups established that, DCregs, if transplanted beforehand, enter host thymus, spleen, or bone marrow where they might eventually establish allo-antigen-specific tolerance. A fundamental aspect of DC function is migration throughout the entire organism. After solid organ transplantation, host DCs bind to ECs, invade allograft tissues, and finally transmigrate into lymphoid vessels and secondary lymphoid organs, where they present allo-antigens to naïve host TCs. Recent data suggest that in vitro manipulated DCregs may mediate allo-transplantation tolerance induction. However, the fundamental mechanisms on how such DCregs cause host TCs in the periphery towards tolerance remain unclear. One very promising experimental concept is the simultaneous manipulation of DC direct and indirect TC activation/suppression, towards donor antigen-specific allo-transplantation tolerance. The allo-antigen-specific long-term tolerance induction mediated by DCreg pre-transplantation (with simultaneous short-term immunosuppression) has become reproducible in the laboratory animal setting. Despite the shortcomings

  1. INDUCTION OF DONOR-SPECIFIC TRANSPLANTATION TOLERANCE TO SKIN AND CARDIAC ALLOGRAFTS USING MIXED CHIMERISM IN (A + B → A) IN RATS

    PubMed Central

    Markus, Peter M.; Selvaggi, Gennaro; Cai, Xin; Fung, John J.; Starzl, Thomas E.

    2010-01-01

    Mixed allogeneic chimerism (A + B → A) was induced in rats by reconstitution of lethally irradiated LEW recipients with a mixture of T-cell depleted (TCD) syngeneic and TCD allogeneic ACI bone marrow. Thirty-seven percent of animals repopulated as stable mixed lymphopoietic chimeras, while the remainder had no detectable allogeneic chimerism. When evaluated for evidence of donor-specific transplantation tolerance, only those recipients with detectable allogeneic lymphoid chimerism exhibited acceptance of donor-specific skin and cardiac allografts. Despite transplantation over a major histocompatibility complex (MHO)- and minor-disparate barrier, animals accepted donor-specific ACI skin and primarily vascularized cardiac allografts permanently, while rejecting third party Brown Norway (BN) grafts. The tolerance induced was also donor-specific in vitro as evidenced by specific hyporeactivity to the allogeneic donor lymphoid elements, yet normal reactivity to MHC-disparate third party rat lymphoid cells. This model for mixed chimerism in the rat will be advantageous to investigate specific transplantation tolerance to primarily vascularized solid organ grafts that can be performed with relative ease in the rat, but not in the mouse, and may provide a method to study the potential existence of organ- or tissue-specific alloantigens in primarily vascularized solid organ allografts. PMID:8162277

  2. Permanent acceptance of mouse cardiac allografts with CD40 siRNA to induce regulatory myeloid cells by use of a novel polysaccharide siRNA delivery system.

    PubMed

    Zhang, Q; Ichimaru, N; Higuchi, S; Cai, S; Hou, J; Fujino, M; Nonomura, N; Kobayashi, M; Ando, H; Uno, A; Sakurai, K; Mochizuki, S; Adachi, Y; Ohno, N; Zou, H; Xu, J; Li, X-K; Takahara, S

    2015-03-01

    The CD40/CD154 co-stimulatory pathway is crucial in alloimmune response. We developed a novel small interfering RNA (siRNA) delivery system with a poly-dA extension at the 5'-end of the siRNA sense strand that was stably incorporated into 1,3-β-glucan (schizophyllan, SPG). This was captured and incorporated into dendritic cells (DCs) through its receptor, Dectin-1, specifically silencing CD40 genes (siCD40) to exert immunoregulatory activity. siCD40/SPG-treated CBA mice permanently accepted B10 fully mismatched cardiac allografts. Consistent with graft survival, the infiltration of CD4(+), CD8(+) T cells into the graft was lower, and that the numbers of CD40(low)CD11c(+) DCs cells and CD4(+)Foxp3(+)cells were increased in both the graft and in the recipient spleen. In addition, naive CBA recipients given an adoptive transfer of splenocytes from the primary recipients with siCD40/SPG accepted a heart graft from donor-type B10, but not third-party Balb/c mice. In conclusion, the treatment with siCD40/SPG targeting DCs could generate antigen-specific Tregs, resulting in the permanent acceptance of mouse cardiac allografts. These findings have important implications for clarifying the mechanism underlying the induction of tolerance in DCs, and also highlight the potential of immunomodulation and the feasibility of siRNA-based clinical therapy in the transplantation field.

  3. Isatis tinctoria L. combined with co-stimulatory molecules blockade prolongs survival of cardiac allografts in alloantigen-primed mice.

    PubMed

    Kang, Xiangpeng; Chen, Jibing; Qin, Qing; Wang, Feng; Wang, Yongzhi; Lan, Tianshu; Xu, Shuo; Wang, Feiyu; Xia, Junjie; Ekberg, Henrik; Qi, Zhongquan; Liu, Zhongchen

    2010-05-01

    Memory T cells present a unique challenge in transplantation. Although memory T cells express robust immune responses to invading pathogens, they may be resistant to the effects of immunosuppressive therapies used to prolong graft survival. In previous studies, we found that compound K, the synthesized analogue of highly unsaturated fatty acids from Isatis tinctoria L., reduced acute cardiac allograft rejection in mice (Wang et al., 2009 [1]). Here, we further investigated the effect of compound K on cardiac allograft rejection in alloantigen-primed mice. We found that compound K significantly inhibited CD4(+) and CD8(+) memory T cells proliferation in a mixed lymphocyte reaction (MLR). In vivo, compound K combined with anti-CD154 and anti-LFA-1 monoclonal antibodies (mAbs) significantly extended the survival time of heart grafts in alloantigen-primed mice with no obvious toxic side effects. Furthermore, our data suggests that compound K works by reducing the expression of both IL-2 and IFN-gamma within the graft rather than enhancing expression of regulatory T cells (Tregs). Compound K can also inhibit the alloresponses of memory T cells, while increasing the proportion of CD4(+) memory T cells in the spleen of the recipients and significantly reducing the level of alloantibodies in the serum. Our study highlights the unique immune effects of compound K that may be further explored for clinical use in extending the survival of transplant grafts. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  4. Immune function surveillance: association with rejection, infection and cardiac allograft vasculopathy.

    PubMed

    Heikal, N M; Bader, F M; Martins, T B; Pavlov, I Y; Wilson, A R; Barakat, M; Stehlik, J; Kfoury, A G; Gilbert, E M; Delgado, J C; Hill, H R

    2013-01-01

    Rejection, cardiac allograft vasculopathy (CAV), and infection are significant causes of mortality in heart transplantation recipients. Assessing the immune status of a particular patient remains challenging. Although endomyocardial biopsy (EMB) and angiography are effective for the identification of rejection and CAV, respectively, these are expensive, invasive, and may have numerous complications. The aim of this study was to evaluate the immune function and assess its utility in predicting rejection, CAV, and infection in heart transplantation recipients. We prospectively obtained samples at the time of routine EMB and when clinically indicated for measurement of the ImmuKnow assay (IM), 12 cytokines and soluble CD30 (sCD30). EMB specimens were evaluated for acute cellular rejection, and antibody-mediated rejection (AMR). CAV was diagnosed by the development of angiographic coronary artery disease. Infectious episodes occurring during the next 30 days after testing were identified by the presence of positive bacterial or fungal cultures and/or viremia that prompted treatment with antimicrobials. We collected 162 samples from 56 cardiac transplant recipients. There were 31 infection episodes, 7 AMR, and 4 CAV cases. The average IM value was significantly lower during infection, (P = .04). Soluble CD30 concentrations showed significantly positive correlation with infection episodes, (P = .001). Significant positive correlation was observed between interleukin-5(IL-5) and AMR episodes (P = .008). Tumor necrosis factor-α and IL-8 showed significant positive correlation with CAV (P = .001). Immune function monitoring appears promising in predicting rejection, CAV, and infection in cardiac transplantation recipients. This approach may help in more individualized immunosuppression and it may also minimize unnecessary EMBs and cardiac angiographies. Published by Elsevier Inc.

  5. Hospital Resource Use with Donation after Cardiac Death Allografts in Liver Transplantation: A Matched Controlled Analysis from 2007 to 2011.

    PubMed

    Singhal, Ashish; Wima, Koffi; Hoehn, Richard S; Quillin, R Cutler; Woodle, E Steve; Paquette, Ian M; Paterno, Flavio; Abbott, Daniel E; Shah, Shimul A

    2015-05-01

    Although donation after cardiac death (DCD) liver allografts have been used to expand the donor pool, concerns exist regarding primary nonfunction and biliary complications. Our aim was to compare resource use and outcomes of DCD allografts with donation after brain death (DBD) liver allografts. Using a linkage between the University HealthSystem Consortium and Scientific Registry of Transplant Recipients databases, we identified 11,856 patients who underwent deceased donor liver transplantation (LT) from 2007 to 2011. Patients were divided into 2 cohorts based on type of allograft (DCD vs DBD). Matched pair analysis (n = 613 in each group) was used to compare outcomes of the 2 donor types. Donation after cardiac death allografts comprised 5.2% (n = 613) of all LTs in the studied cohort; DCD allograft recipients were healthier and had lower median Model of End-Stage Liver Disease (MELD) score (17 vs 19; p < 0.0001). Post LT, there was no significant difference in length of stay, perioperative mortality, and discharge to home rates. However, DCD allografts were associated with higher direct cost ($110,414 vs $99,543; p < 0.0001) and 30-day readmission rates (46.4% vs 37.1%; p < 0.0001). Matched analysis revealed that DCD allografts were associated with higher direct cost, readmission rates, and inferior graft survival. While confirming the previous reports of inferior graft survival associated with DCD allografts, this is the first national report to show increased financial and resource use associated with DCD compared with DBD allografts in a matched recipient cohort. Copyright © 2015 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Expression of CXCR6 on CD8(+) T cells was up-regulated in allograft rejection.

    PubMed

    Jiang, Xiaofeng; Sun, Wenyu; Zhu, Lei; Guo, Dawei; Jiang, Honglei; Ma, Dongyan; Jin, Junzhe; Zhao, Yu; Liang, Jian

    2010-02-01

    CXCL16/SR-PSOX is a novel transmembrane-type chemokine, which was also identified as a novel scavenger receptor for oxidized low density lipoprotein. Its receptor CXCR6 expresses on activated CD8(+) T cells, type 1-polarized CD4(+), and constitutively expresses on NKT cells. Moreover, it has been shown that CXCL16 accumulated activated CD8(+) T cells to sites of inflammation. To date, the effect of CXCL16 (SR-PSOX)/CXCR6 on CD8(+) T cells and its role in allograft rejection/acceptance are not well understood. In the current study, we show that rejected allografts showed higher expressions of CXCR6 and CXCL16. More importantly, expression of CXCR6 on CD8(+) T cells was also up-regulated by rejection. However, the blockade of CXCL16(SR-PSOX)/CXCR6 interaction could not inhibit cytotoxic activity of CD8(+) T cells, and therefore, could not prolong the cardiac graft survival time. Copyright 2009 Elsevier B.V. All rights reserved.

  7. The regulatory T cell effector molecule fibrinogen-like protein 2 is necessary for the development of rapamycin-induced tolerance to fully MHC-mismatched murine cardiac allografts

    PubMed Central

    Urbanellis, Peter; Shyu, Wendy; Khattar, Ramzi; Wang, Jihong; Zakharova, Anna; He, Wei; Sadozai, Hassan; Amir, Achiya Z; Shalev, Itay; Phillips, M James; Adeyi, Oyedele; Ross, Heather; Grant, David; Levy, Gary A; Chruscinski, Andrzej

    2015-01-01

    Therapies that promote tolerance in solid organ transplantation will improve patient outcomes by eliminating the need for long-term immunosuppression. To investigate mechanisms of rapamycin-induced tolerance, C3H/HeJ mice were heterotopically transplanted with MHC-mismatched hearts from BALB/cJ mice and were monitored for rejection after a short course of rapamycin treatment. Mice that had received rapamycin developed tolerance with indefinite graft survival, whereas untreated mice all rejected their grafts within 9 days. In vitro, splenic mononuclear cells from tolerant mice maintained primary CD4+ and CD8+ immune responses to donor antigens consistent with a mechanism that involves active suppression of immune responses. Furthermore, infection with lymphocytic choriomeningitis virus strain WE led to loss of tolerance suggesting that tolerance could be overcome by infection. Rapamycin-induced, donor-specific tolerance was associated with an expansion of regulatory T (Treg) cells in both the spleen and allograft and elevated plasma levels of fibrinogen-like protein 2 (FGL2). Depletion of Treg cells with anti-CD25 (PC61) and treatment with anti-FGL2 antibody both prevented tolerance induction. Tolerant allografts were populated with Treg cells that co-expressed FGL2 and FoxP3, whereas rejecting allografts and syngeneic grafts were nearly devoid of dual-staining cells. We examined the utility of an immunoregulatory gene panel to discriminate between tolerance and rejection. We observed that Treg-associated genes (foxp3, lag3, tgf-β and fgl2) had increased expression and pro-inflammatory genes (ifn-γ and gzmb) had decreased expression in tolerant compared with rejecting allografts. Taken together, these data strongly suggest that Treg cells expressing FGL2 mediate rapamycin-induced tolerance. Furthermore, a gene biomarker panel that includes fgl2 can distinguish between rejecting and tolerant grafts. PMID:24990517

  8. IL-7 receptor blockade following T cell depletion promotes long-term allograft survival

    PubMed Central

    Mai, Hoa-Le; Boeffard, Françoise; Longis, Julie; Danger, Richard; Martinet, Bernard; Haspot, Fabienne; Vanhove, Bernard; Brouard, Sophie; Soulillou, Jean-Paul

    2014-01-01

    T cell depletion is commonly used in organ transplantation for immunosuppression; however, a restoration of T cell homeostasis following depletion leads to increased memory T cells, which may promote transplant rejection. The cytokine IL-7 is important for controlling lymphopoiesis under both normal and lymphopenic conditions. Here, we investigated whether blocking IL-7 signaling with a mAb that targets IL-7 receptor α (IL-7Rα) alone or following T cell depletion confers an advantage for allograft survival in murine transplant models. We found that IL-7R blockade alone induced indefinite pancreatic islet allograft survival if anti–IL-7R treatment was started 3 weeks before graft. IL-7R blockade following anti-CD4– and anti-CD8–mediated T cell depletion markedly prolonged skin allograft survival. Furthermore, IL-7 inhibition in combination with T cell depletion synergized with either CTLA-4Ig administration or suboptimal doses of tacrolimus to induce long-term skin graft acceptance in this stringent transplant model. Together, these therapies inhibited T cell reconstitution, decreased memory T cell numbers, increased the relative frequency of Tregs, and abrogated both cellular and humoral alloimmune responses. Our data suggest that IL-7R blockade following T cell depletion has potential as a robust, immunosuppressive therapy in transplantation. PMID:24569454

  9. Raman Spectroscopy Detects Cardiac Allograft Rejection with Molecular Specificity

    PubMed Central

    Chung, Yoon Gi; Tu, Qiang; Cao, Dianjun; Harada, Shuko; Eisen, Howard J; Chang, Chang

    2009-01-01

    Abstract Spatially resolved Raman spectroscopy is shown here to be capable of molecular‐specific detection without exogenous labeling. This molecular specificity is achieved by detecting the strong and characteristic Raman spectral signature of an indole derivative, serotonin, whose selective existence in rejected heart transplants serves as the biomarker. The study also corroborates the increasingly recognized role of serotonin receptors in various immune responses, including cardiac allograft rejection. Combining both medical and physical sciences, this work demonstrates the potential use of Raman spectroscopy in replacing the invasive endomyocardial biopsy as the standard for post‐transplantation rejection surveillance and presents a new paradigm in advancing clinical care through interdisciplinary studies. PMID:20443894

  10. Cytokines in the regulation of allograft rejection.

    PubMed

    Huber, C; Irschick, E

    1988-01-01

    Stimulation of T lymphocytes with alloantigen leads to release of both IL-2 and IFN-gamma. IL-2 enhances clonal expansion of alloantigen-activated T cells. This permits it to overcome acquired allograft tolerance which, at the efferent limb of the cellular immune response, is caused by reduced clone size of donor-specific cytotoxic lymphocyte precursor cells. Cells exhibiting a low constitutive expression of class I MHC antigenes are refractory to lysis by cytotoxic T cells. This second type of tolerance located at the level of the allogeneic target cells can be easily broken by exogenous IFN-gamma, which increases the density of class I MHC antigens. There is suggestive evidence for enhanced endogenous production of lymphokines during rejection of cardiac allografts in mice and men. Rejection episodes are also associated with increased expression of class I and elevated frequency of class II MHC antigen-positive cells in the cardiac transplants. Whereas early immune recognition of histoincompatible grafts is primarily related to the presence of genetic barriers between donor and recipient, the further amplification of alloreactivity is driven by the release of antigen-unspecific lymphokines. Production of endogenous lymphokines can be modified by a variety of means: methylprednisone, ciclosporin and specific antibodies against lymphokines or their receptors represent effective inhibitors of this amplification mechanism which can finally lead to irreversible graft damage. It is well established in clinical experience that infectious complications subsequent to allografting may precipitate rejection or graft-vs.-host disease. Our finding of increased endogenous IFN-gamma levels during infections, in particular in those caused by cytomegalovirus, provides an explanation for this association.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Effect of a single intraoperative high-dose ATG-Fresenius on delayed graft function in donation after cardiac-death donor renal allograft recipients: a randomized study.

    PubMed

    van den Hoogen, Martijn W F; Kho, Marcia M L; Abrahams, Alferso C; van Zuilen, Arjan D; Sanders, Jan-Stephan; van Dijk, Marja; Hilbrands, Luuk B; Weimar, Willem; Hoitsma, Andries J

    2013-04-01

    Reducing the incidence of delayed graft function after transplant with donation after cardiac death donor renal allografts would facilitate managing recipients during their first weeks after a transplant. To reduce this incidence, in most studies, induction therapy with depleting anti-T-lymphocyte antibodies is coupled with a reduction of the dosage of the calcineurin inhibitor. The separate effect of anti-T-cell therapy on the incidence and duration of delayed graft function is therefore difficult to assess. We performed a randomized study to evaluate the effect of a single intraoperative high-dose of anti-T-lymphocyte immunoglobulin (ATG)-Fresenius (9 mg/kg body weight) on the incidence of delayed graft function. Eligible adult recipients of a first donation after cardiac death donor renal allograft were randomly assigned to ATG-Fresenius or no induction therapy. Maintenance immunosuppression consisted of tacrolimus, in an unadjusted dose, mycophenolate mofetil, and steroids. The study was prematurely terminated because of a lower-than-anticipated inclusion rate. Baseline characteristics were comparable in the ATG-Fresenius group (n=28) and the control group (n=24). Twenty-two patients in the ATG-Fresenius group (79%) had delayed graft function, compared with 13 in the control group (54%; P = .06). Allograft and patient survival were comparable in both groups. Serious adverse events occurred more frequently in the ATG-Fresenius group than they did in the control group (57% vs 29%; P < .05). Intraoperative administration of a single high-dose of ATG-Fresenius in donation after cardiac death donor renal allograft recipients, followed by triple immunosuppression with an unadjusted tacrolimus dose, seems ineffective to reduce the incidence of delayed graft function. Moreover, this was associated with a higher rate of serious adverse events (EudraCT-number, 2007-000210-36.).

  12. Cardiac allograft prolongation in mice treated with combined posttransplantation total-lymphoid irradiation and anti-L3T4 antibody therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trager, D.K.; Banks, B.A.; Rosenbaum, G.E.

    1989-04-01

    Neonatal cardiac allograft survival was examined in mice treated with anti-L3T4 antibody, posttransplantation total lymphoid irradiation (TLI) or a combination of both therapies. Independently, both posttransplantation TLI and short-course antibody treatment allowed minimal prolongation. However, synergistic prolongation in graft survival was observed with the combination (synergistic) therapy. Fluorescence-activated cell sorter analysis of peripheral blood lymphocytes from animals treated with combined anti-L3T4 and posttransplantation TLI additionally revealed ''synergy'' with respect to the degree of peripheral lymphocyte depletion.

  13. Laminins affect T cell trafficking and allograft fate

    PubMed Central

    Warren, Kristi J.; Iwami, Daiki; Harris, Donald G.; Bromberg, Jonathan S.; Burrell, Bryna E.

    2014-01-01

    Lymph nodes (LNs) are integral sites for the generation of immune tolerance, migration of CD4+ T cells, and induction of Tregs. Despite the importance of LNs in regulation of inflammatory responses, the LN-specific factors that regulate T cell migration and the precise LN structural domains in which differentiation occurs remain undefined. Using intravital and fluorescent microscopy, we found that alloreactive T cells traffic distinctly into the tolerant LN and colocalize in exclusive regions with alloantigen-presenting cells, a process required for Treg induction. Extracellular matrix proteins, including those of the laminin family, formed regions within the LN that were permissive for colocalization of alloantigen-presenting cells, alloreactive T cells, and Tregs. We identified unique expression patterns of laminin proteins in high endothelial venule basement membranes and the cortical ridge that correlated with alloantigen-specific immunity or immune tolerance. The ratio of laminin α4 to laminin α5 was greater in domains within tolerant LNs, compared with immune LNs, and blocking laminin α4 function or inducing laminin α5 overexpression disrupted T cell and DC localization and transmigration through tolerant LNs. Furthermore, reducing α4 laminin circumvented tolerance induction and induced cardiac allograft inflammation and rejection in murine models. This work identifies laminins as potential targets for immune modulation. PMID:24691446

  14. Early allograft dysfunction in liver transplantation with donation after cardiac death donors results in inferior survival.

    PubMed

    Lee, David D; Singh, Amandeep; Burns, Justin M; Perry, Dana K; Nguyen, Justin H; Taner, C Burcin

    2014-12-01

    Donation after cardiac death (DCD) liver allografts have been associated with increased morbidity from primary nonfunction, biliary complications, early allograft failure, cost, and mortality. Early allograft dysfunction (EAD) after liver transplantation has been found to be associated with inferior patient and graft survival. In a cohort of 205 consecutive liver-only transplant patients with allografts from DCD donors at a single center, the incidence of EAD was found to be 39.5%. The patient survival rates for those with no EAD and those with EAD at 1, 3, and 5 years were 97% and 89%, 79% and 79%, and 61% and 54%, respectively (P = 0.009). Allograft survival rates for recipients with no EAD and those with EAD at 1, 3, and 5 years were 90% and 75%, 72% and 64%, and 53% and 43%, respectively (P = 0.003). A multivariate analysis demonstrated a significant association between the development of EAD and the cold ischemia time [odds ratio (OR) = 1.26, 95% confidence interval (CI) = 1.01-1.56, P = 0.037] and hepatocellular cancer as a secondary diagnosis in recipients (OR = 2.26, 95% CI = 1.11-4.58, P = 0.025). There was no correlation between EAD and the development of ischemic cholangiopathy. In conclusion, EAD results in inferior patient and graft survival in recipients of DCD liver allografts. Understanding the events that cause EAD and developing preventive or early therapeutic approaches should be the focus of future investigations. © 2014 American Association for the Study of Liver Diseases.

  15. Uptake of donor lymphocytes treated with 8-methoxypsoralen and ultraviolet A light by recipient dendritic cells induces CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T cells and down-regulates cardiac allograft rejection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, De-Hua; Dou, Li-Ping; Wei, Yu-Xiang

    Extracorporeal photopheresis (ECP) is an effective immunomodulatory therapy and has been demonstrated to be beneficial for graft-vs-host disease and solid-organ allograft rejection. ECP involves reinfusion of a patient's autologous peripheral blood leukocytes treated ex vivo with 8-methoxypsoralen and UVA light radiation (PUVA). Previous studies focused only on ECP treatment of recipient immune cells. Our study is the first to extend the target of ECP treatment to donor immune cells. The results of in vitro co-culture experiments demonstrate uptake of donor PUVA-treated splenic lymphocytes (PUVA-SPs) by recipient immature dendritic cells (DCs). Phagocytosis of donor PUVA-SPs does not stimulate phenotype maturation ofmore » recipient DCs. In the same co-culture system, donor PUVA-SPs enhanced production of interleukin-10 and interferon-{gamma} by recipient DCs and impaired the subsequent capability of recipient DCs to stimulate recipient naive T cells. Phagocytosis of donor PUVA-SP (PUVA-SP DCs) by recipient DCs shifted T-cell responses in favor of T helper 2 cells. Infusion of PUVA-SP DCs inhibited cardiac allograft rejection in an antigen-specific manner and induced CD4{sup +}CD25{sup high}Foxp3{sup +} regulatory T cells. In conclusion, PUVA-SP DCs simultaneously deliver the donor antigen and the regulatory signal to the transplant recipient, and thus can be used to develop a novel DC vaccine for negative immune regulation and immune tolerance induction.« less

  16. Monoclonal antibody specific for TIRC7 induces donor-specific anergy and prevents rejection of cardiac allografts in mice.

    PubMed

    Kumamoto, Yusuke; Tomschegg, Antje; Bennai-Sanfourche, Fatima; Boerner, Anke; Kaser, Arthur; Schmidt-Knosalla, Isabella; Heinemann, Thomas; Schlawinsky, Mirko; Blumberg, Richard S; Volk, Hans-Dieter; Utku, Nalan

    2004-04-01

    T cell immune response c-DNA (TIRC7) is up-regulated during the early stages of T-cell activation in response to alloantigens. In this study, we analyzed the effects of newly developed monoclonal antibodies (mAb) against TIRC7 in acute cardiac allograft rejection. Fully vascularized heterotopic allogeneic heart transplantation was performed in mice across a full-mismatch barrier (C57Bl/10 into CBA). Recipients received seven injections (day 0-7) of a novel anti-TIRC7 mAb or remained untreated. Graft survival, histology and ex vivo lymphocyte functions were tested. Targeting of TIRC7 with an anti-TIRC7 mAb diminishes lymphocyte infiltration into grafts resulting in delay of morphological graft damage and prolongation of allograft survival. The lymphocytes from anti-TIRC7 mAb-treated animals exhibit hypo-responsiveness without evidence of lymphocyte depletion against the donor allo-antigens. Proliferation and expression of interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) were down-regulated while interleukin-4 (IL-4) and IL-10 expression were spared. Moreover, anti-TIRC7 mAb enhanced up-regulation of CTLA-4 expression but suppressed up-regulation of CD25 on stimulated lymphocytes in vitro and in vivo. Ligation of TIRC7 has important effects on the regulation of co-stimulatory signaling pathways associated with suppressing of T-cell activation. Targeting of TIRC7 may therefore provide a novel therapeutic approach for modulating T cell immune responses during organ transplantation.

  17. Role of T-cell-specific nuclear factor κB in islet allograft rejection.

    PubMed

    Porras, Delia Lozano; Wang, Ying; Zhou, Ping; Molinero, Luciana L; Alegre, Maria-Luisa

    2012-05-27

    Pancreatic islet transplantation has the potential to cure type 1 diabetes, a chronic lifelong disease, but its clinical applicability is limited by allograft rejection. Nuclear factor κB (NF-κB) is a transcription factor important for survival and differentiation of T cells. In this study, we tested whether NF-κB in T cells is required for the rejection of islet allografts. Mice expressing a superrepressor form of NF-κB selectively in T cells (IκBαΔN-Tg mice) with or without the antiapoptotic factor Bcl-xL, or mice with impaired T-cell receptor (TCR)- and B cell receptor-driven NF-κB activity (CARMA1-KO mice) were rendered diabetic and transplanted with islet allografts. Secondary skin transplantation in long-term acceptors of islet allografts was used to test for the development of donor-specific tolerance. Immune infiltration of the transplanted islets was examined by immunofluorescence. TCR-transgenic CD4 T cells were used to follow T-cell priming and differentiation. Islet allograft survival was prolonged in IκBαΔN-Tg mice, although the animals did not develop donor-specific tolerance. Reduced NF-κB activity did not prevent T-cell priming or differentiation but reduced survival of activated T cells, as transgenic expression of Bcl-xL restored islet allograft rejection in IκBαΔN-Tg mice. Abolishing TCR- and B cell receptor-driven activation of NF-κB selectively by CARMA1 deficiency prevented T-cell priming and islet allograft rejection. Our data suggest that T cell-NF-κB plays an important role in the rejection of islet allografts. Targeting NF-κB selectively in lymphocytes seems a promising approach to facilitate acceptance of transplanted islets.

  18. Use of [18F]FDG PET to Monitor The Development of Cardiac Allograft Rejection

    PubMed Central

    Daly, Kevin P.; Dearling, Jason L. J.; Seto, Tatsuichiro; Dunning, Patricia; Fahey, Frederic; Packard, Alan B.; Briscoe, David M.

    2014-01-01

    Background Positron Emission Tomography (PET) has the potential to be a specific, sensitive and quantitative diagnostic test for transplant rejection. To test this hypothesis, we evaluated 18F-labeled fluorodeoxyglucose ([18F]FDG) and 13N-labeled ammonia ([13N]NH3) small animal PET imaging in a well-established murine cardiac rejection model. Methods Heterotopic transplants were performed using minor MHC mismatched B6.C-H2bm12 donor hearts in C57BL/6(H-2b) recipients. C57BL/6 donor hearts into C57BL/6 recipients served as isograft controls. [18F]FDG PET imaging was performed weekly between post-transplant days 7 and 42 and the percent injected dose was computed for each graft. [13N]NH3 imaging was performed to evaluate myocardial perfusion. Results There was a significant increase in [18F]FDG uptake in allografts from day 14 to day 21 (1.6% to 5.2%; P<0.001) and uptake in allografts was significantly increased on post-transplant days 21 (5.2% vs. 0.9%; P=0.005) and 28 (4.8% vs. 0.9%; P=0.006) compared to isograft controls. Furthermore, [18F]FDG uptake correlated with an increase in rejection within allografts between days 14 and 28 post-transplant. Finally, the uptake of [13N]NH3 was significantly lower relative to the native heart in allografts with chronic vasculopathy compared to isograft controls on day 28 (P=0.01). Conclusions PET imaging with [18F]FDG can be used following transplantation to monitor the evolution of rejection. In addition, decreased uptake of [13N]NH3 in rejecting allografts may be reflective of decreased myocardial blood flow. These data suggest that combined [18F]FDG and [13N]NH3 PET imaging could be used as a non-invasive, quantitative technique for serial monitoring of allograft rejection and has potential application in human transplant recipients. PMID:25675207

  19. Primary vascularization of allografts governs their immunogenicity and susceptibility to tolerogenesis

    PubMed Central

    Kant, Cavit D.; Akiyama, Yoshinobu; Tanaka, Katsunori; Shea, Susan; Connolly, Sarah E; Germana, Sharon; Winn, Henry J.; LeGuern, Christian; Tocco, Georges; Benichou, Gilles

    2013-01-01

    We investigated the influence of allograft primary vascularization on alloimmunity, rejection and tolerance in mice. First, we showed that fully allogeneic primarily vascularized and conventional skin transplants were rejected at the same pace. Remarkably, however, short-term treatment of mice with anti-CD40L antibodies achieved long-term survival of vascularized skin and cardiac transplants but not conventional skin grafts. Non-vascularized skin transplants triggered vigorous direct and indirect pro-inflammatory type 1 T cell responses (IL-2 and γIFN) while primarily-vascularized skin allografts failed to trigger a significant indirect alloresponse. Similar lack of indirect alloreactivity was also observed after placement of different vascularized organ transplants including hearts and kidneys while hearts placed under the skin (non-vascularized) triggers potent indirect alloresponses. Altogether, these results suggest that primary vascularization of allografts is associated with lack of indirect T cell alloreactivity. Finally, we show that long-term survival of vascularized skin allografts induced by anti-CD40L antibodies was associated with a combined lack of indirect alloresponse and a shift of the direct alloresponse towards a type 2 cytokine (IL-4, IL-10) secretion pattern but no activation/expansion of regulatory T cells. Therefore, primary vascularization of allografts governs their immunogenicity and tolerogenicity. PMID:23833234

  20. Spleen tyrosine kinase contributes to acute renal allograft rejection in the rat

    PubMed Central

    Ramessur Chandran, Sharmila; Tesch, Greg H; Han, Yingjie; Woodman, Naomi; Mulley, William R; Kanellis, John; Blease, Kate; Ma, Frank Y; Nikolic-Paterson, David J

    2015-01-01

    Kidney allografts induce strong T-cell and antibody responses which mediate acute rejection. Spleen tyrosine kinase (Syk) is expressed by most leucocytes, except mature T cells, and is involved in intracellular signalling following activation of the Fcγ-receptor, B-cell receptor and some integrins. A role for Syk signalling has been established in antibody-dependent native kidney disease, but little is known of Syk in acute renal allograft rejection. Sprague–Dawley rats underwent bilateral nephrectomy and received an orthotopic Wistar renal allograft. Recipient rats were treated with a Syk inhibitor (CC0482417, 30 mg/kg/bid), or vehicle, from 1 h before surgery until being killed 5 days later. Vehicle-treated recipients developed severe allograft failure with marked histologic damage in association with dense leucocyte infiltration (T cells, macrophages, neutrophils and NK cells) and deposition of IgM, IgG and C3. Immunostaining identified Syk expression by many infiltrating leucocytes. CC0482417 treatment significantly improved allograft function and reduced histologic damage, although allograft injury was still clearly evident. CC0482417 failed to prevent T-cell infiltration and activation within the allograft. However, CC0482417 significantly attenuated acute tubular necrosis, infiltration of macrophages and neutrophils and thrombosis of peritubular capillaries. In conclusion, this study identifies a role for Syk in acute renal allograft rejection. Syk inhibition may be a useful addition to T-cell-based immunotherapy in renal transplantation. PMID:25529862

  1. Primary Angioplasty for Cardiac Allograft Vasculopathy Presenting as ST-Elevation Acute Myocardial Infarction during Endomyocardial Biopsy

    PubMed Central

    Nascimento, Bruno Ramos; Gomes, Thalles Oliveira; Borges, Júlio César; Athayde, Guilherme Rafael Sant'Anna; de Andrade, Sílvio Amadeu; Moreira, Maria da Consolação Vieira

    2013-01-01

    Cardiac allograft vasculopathy is still a major issue, with significative mortality in heart transplant patients, and the best therapeutic options are not yet established. The progressively higher survival rates after transplantation have made it a major concern. This is a case report about a patient who underwent cardiac transplantation due to chagasic cardiomiopathy. During an endomyocardial biopsy more than 2 years after the transplant, the patient arrested in ventricular fibrillation, with ST-elevation in anterior leads after defibrillation. The angiography showed total occlusion of proximal left anterior descending artery, promptly treated with primary angioplasty, with excellent angiographic and clinical results. PMID:24066253

  2. Identification of capillary rarefaction using intracoronary wave intensity analysis with resultant prognostic implications for cardiac allograft patients.

    PubMed

    Broyd, Christopher J; Hernández-Pérez, Francisco; Segovia, Javier; Echavarría-Pinto, Mauro; Quirós-Carretero, Alicia; Salas, Clara; Gonzalo, Nieves; Jiménez-Quevedo, Pilar; Nombela-Franco, Luis; Salinas, Pablo; Núñez-Gil, Ivan; Del Trigo, Maria; Goicolea, Javier; Alonso-Pulpón, Luis; Fernández-Ortiz, Antonio; Parker, Kim; Hughes, Alun; Mayet, Jamil; Davies, Justin; Escaned, Javier

    2018-05-21

    Techniques for identifying specific microcirculatory structural changes are desirable. As such, capillary rarefaction constitutes one of the earliest changes of cardiac allograft vasculopathy (CAV) in cardiac allograft recipients, but its identification with coronary flow reserve (CFR) or intracoronary resistance measurements is hampered because of non-selective interrogation of the capillary bed. We therefore investigated the potential of wave intensity analysis (WIA) to assess capillary rarefaction and thereby predict CAV. Fifty-two allograft patients with unobstructed coronary arteries and normal left ventricular (LV) function were assessed. Adequate aortic pressure and left anterior descending artery flow measurements at rest and with intracoronary adenosine were obtained in 46 of which 2 were lost to follow-up. In a subgroup of 15 patients, simultaneous RV biopsies were obtained and analysed for capillary density. Patients were followed up with 1-3 yearly screening angiography. A significant relationship with capillary density was noted with CFR (r = 0.52, P = 0.048) and the backward decompression wave (BDW) (r = -0.65, P < 0.01). Over a mean follow-up of 9.3 ± 5.2 years patients with a smaller BDW had an increased risk of developing angiographic CAV (hazard ratio 2.89, 95% CI 1.12-7.39; P = 0.03). Additionally, the index BDW was lower in those who went on to have a clinical CAV-events (P = 0.04) as well as more severe disease (P = 0.01). Within cardiac transplant patients, WIA is able to quantify the earliest histological changes of CAV and can predict clinical and angiographic outcomes. This proof-of-concept for WIA also lends weight to its use in the assessment of other disease processes in which capillary rarefaction is involved.

  3. Superagonistic CD28 antibody induces donor-specific tolerance in rat renal allografts.

    PubMed

    Azuma, H; Isaka, Y; Li, X; Hünig, T; Sakamoto, T; Nohmi, H; Takabatake, Y; Mizui, M; Kitazawa, Y; Ichimaru, N; Ibuki, N; Ubai, T; Inamoto, T; Katsuoka, Y; Takahara, S

    2008-10-01

    The ultimate goal of organ transplantation is to establish graft tolerance where CD4+CD25+FOXP3+ regulatory T (Treg) cells play an important role. We examined whether a superagonistic monoclonal antibody specific for CD28 (CD28 SA), which expands Treg cells in vivo, would prevent acute rejection and induce tolerance using our established rat acute renal allograft model (Wistar to Lewis). In the untreated or mouse IgG-treated recipients, graft function significantly deteriorated with marked destruction of renal tissue, and all rats died by 13 days with severe azotemia. In contrast, 90% of recipients treated with CD28 SA survived over 100 days, and 70% survived with well-preserved graft function until graft recovery at 180 days. Analysis by flow cytometry and immunohistochemistry demonstrated that CD28 SA induced marked infiltration of FOXP3+ Treg cells into the allografts. Furthermore, these long-surviving recipients showed donor-specific tolerance, accepting secondary (donor-matched) Wistar cardiac allografts, but acutely rejecting third-party BN allografts. We further demonstrated that adoptive transfer of CD4+CD25+ Treg cells, purified from CD28 SA-treated Lewis rats, significantly prolonged allograft survival and succeeded in inducing donor-specific tolerance. In conclusion, CD28 SA treatment successfully induces donor-specific tolerance with the involvement of Treg cells, and thus the therapeutic value of this approach warrants further investigation and preclinical studies.

  4. Dendritic Cells in Kidney Transplant Biopsy Samples Are Associated with T Cell Infiltration and Poor Allograft Survival

    PubMed Central

    De Serres, Sacha A.; Safa, Kassem; Bijol, Vanesa; Ueno, Takuya; Onozato, Maristela L.; Iafrate, A. John; Herter, Jan M.; Lichtman, Andrew H.; Mayadas, Tanya N.; Guleria, Indira; Rennke, Helmut G.; Najafian, Nader; Chandraker, Anil

    2015-01-01

    Progress in long-term renal allograft survival continues to lag behind the progress in short-term transplant outcomes. Dendritic cells are the most efficient antigen-presenting cells, but surprisingly little attention has been paid to their presence in transplanted kidneys. We used dendritic cell–specific intercellular adhesion molecule-3–grabbing nonintegrin as a marker of dendritic cells in 105 allograft biopsy samples from 105 kidney transplant recipients. High dendritic cell density was associated with poor allograft survival independent of clinical variables. Moreover, high dendritic cell density correlated with greater T cell proliferation and poor outcomes in patients with high total inflammation scores, including inflammation in areas of tubular atrophy. We then explored the association between dendritic cells and histologic variables associated with poor prognosis. Multivariate analysis revealed an independent association between the densities of dendritic cells and T cells. In biopsy samples with high dendritic cell density, electron microscopy showed direct physical contact between infiltrating lymphocytes and cells that have the ultrastructural morphologic characteristics of dendritic cells. The origin of graft dendritic cells was sought in nine sex-mismatched recipients using XY fluorescence in situ hybridization. Whereas donor dendritic cells predominated initially, the majority of dendritic cells in late allograft biopsy samples were of recipient origin. Our data highlight the prognostic value of dendritic cell density in allograft biopsy samples, suggest a new role for these cells in shaping graft inflammation, and provide a rationale for targeting dendritic cell recruitment to promote long-term allograft survival. PMID:25855773

  5. Micropuncture and pressure assisted Schwann cell seeding of nerve allograft.

    PubMed

    Isaacs, Jonathan; Richards, Nathan; McMurtry, John; Mallu, Satya; Patel, Gaurangkumar; Thompson, Matthew; Yager, Dorne

    2017-08-01

    Tissue processing to create immunotolerant nerve allograft removes neurosupportive cells. Few strategies have been described for implanting new cells into the graft to support axonal regeneration. Micropuncture of the nerve allograft surface combined with immersion into a pressurized cell-rich solution to potentiate the introduction of viable Schwann cells (SC) into processed nerve allograft. Allografts were used to repair rodent sciatic nerve defects. At 3, 7, and 21days, grafts were harvested, stained for SCs, and analyzed using total cross sectional area (CSA) occupied by SCs to quantify SC presence. At days 3 and 7, SC CSA was significantly greater for the injection group compared to all other groups. At day 21, SC CSA for the injection group (0.2252%±0.2730) was significantly greater compared to following groups: pressurized-punctured (0.0653%±0.0934), nonpressurized-nonpunctured (0.0607%±0.0709), punctured-control (0.0246%±0.0398), and nonpunctured-control (0.0126%±0.0151). A significant decrease in percent CSA occupied by SCs from day 3 to day 21 was noted in nonpressurized-punctured group (p=0.0106), pressurized-nonpunctured group (p=0.0477), and injection group (p=0.0010). Most studies have used small caliber hypodermic needles to inject the cells into grafts. Despite a presumed decrease in cell viability over the three weeks of the study, the large initial inoculum achieved by injection technique results in higher levels of final SC seeding in acellular nerve allograft compared with bathing techniques with or without micropuncture or pressurization. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A ROLE FOR ANTIBODIES TO HLA, COLLAGEN-V AND K-α1-TUBULIN IN ANTIBODY MEDIATED REJECTION AND CARDIAC ALLOGRAFT VASCULOPATHY

    PubMed Central

    Nath, Dilip S.; Tiriveedhi, Venkataswarup; Bash, Haseeb Ilias; Phelan, Donna; Moazami, Nader; Ewald, Gregory A.; Mohanakumar, T.

    2013-01-01

    Background We determined role of donor specific antibodies (DSA) and antibodies (Abs) to self-antigens, collagen-V (Col-V) and K-α1-Tubulin (KAT) in pathogenesis of acute antibody mediated rejection (AMR) and cardiac allograft vasculopathy (CAV) following human heart transplantation (HTx). Methods 137 HTx recipients - 60 early period (≤ 12months) and 77 late period (> 12months) patients were enrolled. Circulating DSA was determined using LUMINEX. Abs against Col-I, II, IV, V and KAT were measured using ELISA. Frequency of CD4+T helper cells (CD4+Th) secreting IFN-γ, IL-5, IL-10 or IL-17 specific to self-antigens were determined using ELISPOT. Results A significant association between AMR and DSA was demonstrated. Development of DSA in AMR patients correlated well with the development of auto-Abs to Col-V(AMR(+): 383±72μg/mL, AMR(−): 172±49μg/mL, p=0.033) and KAT (AMR(+): 252±49μg/mL, AMR(−): 61±21μg/mL, p=0.014). Patients who developed AMR demonstrated increased frequencies of CD4+Th secreting IFN-γ and IL-5 with reduction in IL-10 specific for Col-V/KAT. Patients diagnosed with CAV also developed DSA and auto-Abs to Col-V (CAV(+): 835±142μg/mL, CAV(−): 242±68μg/mL, p=0.025) and KAT (CAV(+): 768±206μg/mL, CAV(−): 196±72μg/mL, p=0.001) with increased frequencies of CD4+Th secreting IL-17 with reduction in IL-10 specific for Col-V/KAT. Conclusions Development of Abs to HLA and self-antigens are associated with increases in CD4+Th secreting IFN-γ and IL-5 in AMR and IL-17 in CAV, with reduction in CD4+Th secreting IL-10 in both AMR and CAV. PMID:21383658

  7. Infiltration of Macrophages Correlates with Severity of Allograft Rejection and Outcome in Human Kidney Transplantation.

    PubMed

    Bergler, Tobias; Jung, Bettina; Bourier, Felix; Kühne, Louisa; Banas, Miriam C; Rümmele, Petra; Wurm, Simone; Banas, Bernhard

    2016-01-01

    Despite substantial progress in recent years, graft survival beyond the first year still requires improvement. Since modern immunosuppression addresses mainly T-cell activation and proliferation, we studied macrophage infiltration into the allografts of 103 kidney transplant recipients during acute antibody and T-cell mediated rejection. Macrophage infiltration was correlated with both graft function and graft survival until month 36 after transplantation. Macrophage infiltration was significantly elevated in antibody-mediated and T-cell mediated rejection, but not in kidneys with established IFTA. Treatment of rejection with steroids was less successful in patients with more prominent macrophage infiltration into the allografts. Macrophage infiltration was accompanied by increased cell proliferation as well as antigen presentation. With regard to the compartmental distribution severity of T-cell-mediated rejection was correlated to the amount of CD68+ cells especially in the peritubular and perivascular compartment, whereas biopsies with ABMR showed mainly peritubular CD68 infiltration. Furthermore, severity of macrophage infiltration was a valid predictor of resulting creatinine values two weeks as well as two and three years after renal transplantation as illustrated by multivariate analysis. Additionally performed ROC curve analysis showed that magnitude of macrophage infiltration (below vs. above the median) was a valid predictor for the necessity to restart dialysis. Having additionally stratified biopsies in accordance to the magnitude of macrophage infiltration, differential CD68+ cell infiltration was reflected by striking differences in overall graft survival. The differences in acute allograft rejection have not only been reflected by different magnitudes of macrophage infiltration, but also by compartment-specific infiltration pattern and subsequent impact on resulting allograft function as well as need for dialysis initiation. There is a robust

  8. Infiltration of Macrophages Correlates with Severity of Allograft Rejection and Outcome in Human Kidney Transplantation

    PubMed Central

    Bourier, Felix; Kühne, Louisa; Banas, Miriam C.; Rümmele, Petra; Wurm, Simone; Banas, Bernhard

    2016-01-01

    Objective Despite substantial progress in recent years, graft survival beyond the first year still requires improvement. Since modern immunosuppression addresses mainly T-cell activation and proliferation, we studied macrophage infiltration into the allografts of 103 kidney transplant recipients during acute antibody and T-cell mediated rejection. Macrophage infiltration was correlated with both graft function and graft survival until month 36 after transplantation. Results Macrophage infiltration was significantly elevated in antibody-mediated and T-cell mediated rejection, but not in kidneys with established IFTA. Treatment of rejection with steroids was less successful in patients with more prominent macrophage infiltration into the allografts. Macrophage infiltration was accompanied by increased cell proliferation as well as antigen presentation. With regard to the compartmental distribution severity of T-cell-mediated rejection was correlated to the amount of CD68+ cells especially in the peritubular and perivascular compartment, whereas biopsies with ABMR showed mainly peritubular CD68 infiltration. Furthermore, severity of macrophage infiltration was a valid predictor of resulting creatinine values two weeks as well as two and three years after renal transplantation as illustrated by multivariate analysis. Additionally performed ROC curve analysis showed that magnitude of macrophage infiltration (below vs. above the median) was a valid predictor for the necessity to restart dialysis. Having additionally stratified biopsies in accordance to the magnitude of macrophage infiltration, differential CD68+ cell infiltration was reflected by striking differences in overall graft survival. Conclusion The differences in acute allograft rejection have not only been reflected by different magnitudes of macrophage infiltration, but also by compartment-specific infiltration pattern and subsequent impact on resulting allograft function as well as need for dialysis

  9. Uric acid is an independent predictor of cardiac allograft vasculopathy after heart transplantation.

    PubMed

    Asleh, Rabea; Prasad, Megha; Briasoulis, Alexandros; Nardi, Valentina; Adigun, Rosalyn; Edwards, Brooks S; Pereira, Naveen L; Daly, Richard C; Lerman, Amir; Kushwaha, Sudhir S

    2018-05-01

    Cardiac allograft vasculopathy (CAV) is a major complication after heart transplantation (HT). Uric acid (UA) may play a role in CAV due to its role in stimulating T-cell-mediated immunity. Sirolimus is associated with CAV attenuation through a number of mechanisms, including immune-mediated effects. We aimed to determine whether UA is an independent predictor of CAV and whether conversion to sirolimus as primary immunosuppression modulates UA levels. We retrospectively analyzed a cohort of 224 patients who underwent HT between 2004 and 2015 and had serial coronary intravascular ultrasound (IVUS) studies. Serum UA levels were measured at baseline and last follow-up IVUS in all participants. CAV progression was assessed by measuring the change in plaque volume (ΔPV) and plaque index (ratio of plaque volume to vessel volume [ΔPI]) between last follow-up and baseline IVUS after correction for time of follow-up. Patients with high (≥7 mg/dl) compared with low (<7 mg/dl) UA had increased median ΔPV (0.33 [interquartile range 0.08 to 0.93] vs 0.07 [-0.17 to 0.38] mm 3 /mm/year; p < 0.001) and ΔPI (2.0% [0.31% to 3.9%] vs 0.33% [-1.2% to 2.0%]; p < 0.001). Elevated UA levels were associated with a significantly increased risk of developing significant CAV progression (ΔPV >0.50 mm 3 /mm) (hazard ratio 2.2, 95% confidence interval 1.1 to 4.6; p = 0.037). Sirolimus resulted in decreased UA levels (5.8 ± 1.4 vs 5.2 ± 1.5; p = 0.002) and patients converted to sirolimus and had low UA levels had the least CAV progression (p < 0.001). After adjustment for potential confounders, change in UA level was also an independent predictor of CAV progression. UA is an independent predictor of CAV after HT. Sirolimus is associated with decreased UA levels and may explain one of the mechanisms by which sirolimus attenuates CAV progression. Copyright © 2018. Published by Elsevier Inc.

  10. Primary Cardiac Allograft Dysfunction-Validation of a Clinical Definition.

    PubMed

    Dronavalli, Vamsidhar B; Rogers, Chris A; Banner, Nicholas R

    2015-09-01

    Heart transplantation is an established treatment for advanced heart failure. Primary allograft dysfunction (PGD) is reported in up to 40% of transplants and is associated with a poor outcome. As part of Heart Evaluation and Retrieval for Transplantation study, an investigation of the assessment of donor hearts for transplantation, we proposed a clinical definition for cardiac PGD comprising severely impaired systolic function affecting one or both ventricles accompanied by hypotension, low cardiac output, and high filling pressures occurring in the first 72 hours (in the absence of hyper acute rejection and technical surgical factors, such as cardiac tamponade). Here, we examine the prospective application of this definition to 290 heart transplants. We compared the clinical outcome of PGD and non-PGD cases. Ninety-four of 290 transplants developed PGD (32.4%). Inotrope use (score) was higher in the PGD group at 24, 48, and 72 hours after transplantation (P < 0.01). In the PGD group, there was a greater requirement for, intra-aortic balloon pump (50% vs 15%, P < 0.01), mechanical support (27% vs 0%, P < 0.01), and renal replacement therapy (61% vs 26%, P < 0.01). Intensive care stay was longer for recipients with PGD (median 14 vs 5 days, P < 0.01) and early mortality was higher (37% vs 4% at 30 days, 42% vs 8% at 1 year, P < 0.01). In conclusion, our definition of PGD could be applied in a national multicenter study, and the cases it defined had more frequent complications and higher mortality.

  11. A Pilot Study of Mesenchymal Stem Cell Therapy for Acute Liver Allograft Rejection

    PubMed Central

    Liu, Zhenwen; Wang, Ying; Xu, Rounan; Sun, Yanling; Zhang, Min; Yu, Xi; Wang, Hongbo; Meng, Lingzhan; Su, Haibin; Jin, Lei

    2017-01-01

    Abstract Acute allograft rejection remains common after liver transplantation despite modern immunosuppressive agents. In addition, the long‐term side effects of these regimens, including opportunistic infections, are challenging. This study evaluated the safety and clinical feasibility of umbilical cord‐derived mesenchymal stem cell (UC‐MSC) therapy in liver transplant patients with acute graft rejection. Twenty‐seven liver allograft recipients with acute rejection were randomly assigned into the UC‐MSC infusion group or the control group. Thirteen patients received one infusion of UC‐MSCs (1 × 106/kg body weight); one patient received multiple UC‐MSC infusions; 13 patients were used as controls. All enrolled patients received conventional immunosuppressive agents with follow‐up for 12 weeks after UC‐MSC infusions. No side effects occurred in treated patients. Four weeks after UC‐MSC infusions, alanine aminotransferase levels had decreased markedly and remained lower throughout the 12‐week follow‐up period. Importantly, allograft histology was improved after administration of UC‐MSCs. The percentage of regulatory T cells (Tregs) and the Treg/T helper 17 (Th17) cell ratio were significantly increased 4 weeks after infusions; in contrast, the percentage of Th17 cells showed a decreasing trend. In controls, the percentages of Tregs and Th17 cells and the Treg/Th17 ratio were statistically unchanged from the baseline measurements. Transforming growth factor beta 1 and prostaglandin E2 were increased significantly after UC‐MSC infusions; by contrast, there were no significant changes in controls. Our data suggest that UC‐MSC infusion for acute graft rejection following liver transplantation is feasible and may mediate a therapeutic immunosuppressive effect. Stem Cells Translational Medicine 2017;6:2053–2061 PMID:29178564

  12. HEMATOPOIETIC STEM CELL INFUSION/TRANSPLANTATION FOR INDUCTION OF ALLOGRAFT TOLERANCE

    PubMed Central

    Granados, Jose M. Marino; Benichou, Gilles; Kawai, Tatsuo

    2015-01-01

    Purpose of review This review updates the current status of basic, preclinical, and clinical research on donor hematopoietic stem cell infusion for allograft tolerance induction. Recent findings Recent basic studies in mice provide evidence of significant involvement of both central deletional and peripheral regulatory mechanisms in induction and maintenance of allograft tolerance effected through a mixed chimerism approach with donor hematopoietic stem cell infusion. The presence of heterologous memory T cells in primates hampers the induction of persistent chimerism. Durable mixed chimerism, however, now has been recently induced in inbred major histocompatibility complex-mismatched swine, resulting in tolerance of vascularized composite tissue allografts. In clinical transplantation, allograft tolerance has been achieved in human leukocyte antigen-mismatched kidney transplantation after the induction of transient mixed chimerism or persistent full donor chimerism. Summary Tolerance induction in clinical kidney transplantation has been achieved by donor hematopoietic stem cell infusion. Improving the consistency and safety of tolerance induction and extending successful protocols to other organs, as well as to organs from deceased donors, are critical next steps to bringing tolerance to a wider range of clinical applications. PMID:25563992

  13. Inferior survival in liver transplant recipients with hepatocellular carcinoma receiving donation after cardiac death liver allografts.

    PubMed

    Croome, Kris P; Wall, William; Chandok, Natasha; Beck, Gavin; Marotta, Paul; Hernandez-Alejandro, Roberto

    2013-11-01

    The impact of ischemia/reperfusion injury in the setting of transplantation for hepatocellular carcinoma (HCC) has not been thoroughly investigated. The present study examined data from the Scientific Registry of Transplant Recipients for all recipients of deceased donor liver transplants performed between January 1, 1995 and October 31, 2011. In a multivariate Cox analysis, significant predictors of patient survival included the following: HCC diagnosis (P < 0.01), donation after cardiac death (DCD) allograft (P < 0.001), hepatitis C virus-positive status (P < 0.01), recipient age (P < 0.01), donor age (P < 0.001), Model for End-Stage Liver Disease score (P < 0.001), recipient race, and an alpha-fetoprotein level > 400 ng/mL at the time of transplantation. In order to test whether the decreased survival seen for HCC recipients of DCD grafts was more than would be expected because of the inferior nature of DCD grafts and the diagnosis of HCC, a DCD allograft/HCC diagnosis interaction term was created to look for potentiation of effect. In a multivariate analysis adjusted for all other covariates, this interaction term was statistically significant (P = 0.049) and confirmed that there was potentiation of inferior survival with the use of DCD allografts in recipients with HCC. In conclusion, patient survival and graft survival were inferior for HCC recipients of DCD allografts versus recipients of donation after brain death allografts. This potentiation of effect of inferior survival remained even after adjustments for the inherent inferiority observed in DCD allografts as well as other known risk factors. It is hypothesized that this difference could reflect an increased rate of recurrence of HCC. © 2013 American Association for the Study of Liver Diseases.

  14. Targeting the CXCR4-CXCL12 axis mobilizes autologous hematopoietic stem cells and prolongs islet allograft survival via PD-L1

    PubMed Central

    Fiorina, Paolo; Jurewicz, Mollie; Vergani, Andrea; Petrelli, Alessandra; Carvello, Michele; D’Addio, Francesca; Godwin, Jonathan G.; Law, Kenneth; Wu, Erxi; Tian, Ze; Thoma, Gebhard; Kovarik, Jiri; La Rosa, Stefano; Capella, Carlo; Rodig, Scott; Zerwes, Hans-Guenter; Sayegh, Mohamed H.; Abdi, Reza

    2012-01-01

    Antagonism of CXCR4 disrupts the interaction between the CXCR4 receptor on HSCs and the CXCL12 expressed by stromal cells in the bone marrow, which subsequently results in the shedding of hematopoietic stem cells (HSCs) to the periphery. Due to their profound immunomodulatory effects, HSCs have emerged as a promising therapeutic strategy for autoimmune disorders. We sought to investigate the immunomodulatory role of mobilized autologous HSCs, via target of the CXCR4-CXL12 axis, to promote engraftment of islet cell transplantation. Islets from BALB/c mice were transplanted beneath the kidney capsule of hyperglycemic C57BL/6 mice, and treatment of recipients with CXCR4 antagonist resulted in mobilization of HSCs and in prolongation of islet graft survival. Addition of Rapamycin to anti-CXCR4 therapy further promoted HSC mobilization and islet allograft survival, inducing a robust and transferable host hyporesponsiveness, while administration of an ACK2 (anti-CD117) mAb halted CXCR4 antagonist-mediated HSC release and restored allograft rejection. Mobilized HSCs were shown to express high levels of the negative co-stimulatory molecule PD-L1, and HSCs extracted from WT mice, but not from PD-L1 KO, suppressed the in vitro alloimmune response. Moreover, HSC mobilization in PD-L1 KO mice failed to prolong islet allograft survival. Targeting the CXCR4-CXCL12 axis thus mobilizes autologous HSCs and promotes long-term survival of islet allografts via a PD-L1-mediated mechanism. PMID:21131428

  15. Stress Altered Stem Cells with Decellularized Allograft to Improve Rate of Nerve Regeneration

    DTIC Science & Technology

    2015-12-01

    AWARD  NUMBER:      W81XWH-­13-­1-­0298   TITLE:    “Stress Altered Stem Cells with Decellularized Allograft to Improve Rate of Nerve Regeneration...Cells with Decellularized Allograft to Improve Rate of Nerve Regeneration 5b. GRANT NUMBER W81XWH-13-1-0298 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S... allograft , neural regeneration, stem cells, stress altered cells, peripheral nerve injury model, nerve graft 3 This comprehensive final report summarizes

  16. The Impact of Timing and Graft Dysfunction on Survival and Cardiac Allograft Vasculopathy in Antibody Mediated Rejection

    PubMed Central

    Clerkin, Kevin J.; Restaino, Susan W.; Zorn, Emmanuel; Vasilescu, Elena R.; Marboe, Charles C.; Mancini, Donna M.

    2017-01-01

    Background Antibody mediated rejection (AMR) has been associated with increased mortality and cardiac allograft vasculopathy (CAV). Early studies suggested that late AMR was rarely associated with graft dysfunction while recent reports have demonstrated an association with increased mortality. We sought to investigate the timing of AMR and its association with graft dysfunction, mortality, and CAV. Methods This retrospective cohort study identified all adult heart transplant recipients at Columbia University Medical Center from 2004–2013 (689 patients). There were 68 primary cases of AMR, which were stratified by early (<1 year post-OHT) or late (>1-year post-OHT) AMR. Kaplan-Meier survival analysis and modeling was performed with multivariable logistic regression and Cox proportional hazards regression. Results From January 1, 2004 through October 1, 2015 43 patients had early AMR (median 23 days post-OHT) and 25 had late AMR (median 1084 days post-OHT). Graft dysfunction was less common with early compared with late AMR (25.6% vs. 56%, p=0.01). Patients with late AMR had decreased post-AMR survival compared with early AMR (1-year 80% vs. 93%, 5-year 51% vs. 73%, p<0.05). When stratified by graft dysfunction, only those with late AMR and graft dysfunction had worse survival (30-day 79%, 1-year 64%, and 5-year 36%, p<0.006). The association remained irrespective of age, sex, DSA, LVAD use, reason for OHT, and recovery of graft function. Similarly, those with late AMR and graft dysfunction had accelerated development of de-novo CAV (50% at 1 year, HR 5.42, p=0.009), while all other groups were all similar to the general transplant population. Conclusion Late AMR is frequently associated with graft dysfunction. When graft dysfunction is present in late AMR there is an early and sustained increased risk of mortality and rapid development of de-novo CAV despite aggressive treatment. PMID:27423693

  17. The effect of timing and graft dysfunction on survival and cardiac allograft vasculopathy in antibody-mediated rejection.

    PubMed

    Clerkin, Kevin J; Restaino, Susan W; Zorn, Emmanuel; Vasilescu, Elena R; Marboe, Charles C; Mancini, Donna M

    2016-09-01

    Antibody-mediated rejection (AMR) has been associated with increased death and cardiac allograft vasculopathy (CAV). Early studies suggested that late AMR was rarely associated with graft dysfunction, whereas recent reports have demonstrated an association with increased mortality. We investigated the timing of AMR and its association with graft dysfunction, death, and CAV. This retrospective cohort study identified all adult orthotopic heart transplant (OHT) recipients (N = 689) at Columbia University Medical Center from 2004 to 2013. There were 68 primary cases of AMR, which were stratified by early (< 1 year post-OHT) or late (> 1 year post-OHT) AMR. Kaplan-Meier survival analysis and modeling was performed with multivariable logistic regression and Cox proportional hazards regression. From January 1, 2004, through October 1, 2015, early AMR (median 23 days post-OHT) occurred in 43 patients and late AMR (median 1,084 days post-OHT) occurred in 25. Graft dysfunction was less common with early compared with late AMR (25.6% vs 56%, p = 0.01). Patients with late AMR had decreased post-AMR survival compared with early AMR (1 year: 80% vs 93%, 5 years: 51% vs 73%, p < 0.05). When stratified by graft dysfunction, only those with late AMR and graft dysfunction had worse survival (30 days: 79%, 1 year: 64%, 5 years: 36%; p < 0.006). The association remained irrespective of age, sex, donor-specific antibodies, left ventricular assist device use, reason for OHT, and recovery of graft function. Similarly, those with late AMR and graft dysfunction had accelerated development of de novo CAV (50% at 1 year; hazard ratio, 5.42; p = 0.009), whereas all other groups were all similar to the general transplant population. Late AMR is frequently associated with graft dysfunction. When graft dysfunction is present in late AMR, there is an early and sustained increased risk of death and rapid development of de novo CAV despite aggressive treatment. Copyright © 2016 International

  18. Yogurt Feeding Induced the Prolongation of Fully Major Histocompatibility Complex-Mismatched Murine Cardiac Graft Survival by Induction of CD4+Foxp3+ Cells.

    PubMed

    Uchiyama, M; Yin, E; Yanagisawa, T; Jin, X; Hara, M; Matsuyama, S; Imazuru, T; Uchida, K; Kawamura, M; Niimi, M

    Yogurt is a nutrient-rich food and the beneficial effects of yogurt on both health and immunomodulatory effects are well documented. In this pilot study, we investigated the effects of commercially produced yogurt R-1 on alloimmune responses in a murine cardiac transplantation model. The R-1 is produced by Meiji Co., Ltd., and contains live and active lactic acid bacteria (lactobacillus bulgaricus OLL1073R-1) mainly. CBA (H2 k ) mice underwent transplantation of a C57BL/6 (H2 b ; B6) heart and received oral administration of 1 mL, 0.1 mL, and 0.01 mL of R-1 from the day of transplantation until 7 days afterward. Additionally, we prepared one group of CBA recipients given 1 mL of R-1 sterilized by microwave for 7 days. Histological and immunohistochemical studies were performed. Naïve CBA mice rejected B6 cardiac graft acutely (median survival time [MST]: 7 days). CBA recipients given of 1 mL of R-1 had significantly prolonged B6 allograft survival (MST, 27 days). However, other doses of 0.1 mL and 0.01 mL of R-1 did not prolonged allograft survival (MSTs, 9 days and 8.5 days, respectively). Also, CBA recipients administered microwaved R-1 had no prolongation of B6 allograft (MST, 9 days). Histological and immunohistochemical studies showed the cardiac allograft from R-1-exposed CBA recipients had preserved graft and vessel structure and the number of infiltrated CD4 + , CD8 + , and Foxp3 + cells in R-1-exposed CBA recipients increased, respectively. In conclusion, our findings imply that yogurt containing active lactic acid bacteria could change alloimmune responses partially and induce the prolongation of cardiac allograft survival via CD4 + Foxp3 + regulatory cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Coronary Allograft Vasculopathy after Cardiac Transplantation: Prevalence, Prognostic and Risk Factors.

    PubMed

    Antunes, André; Prieto, David; Pinto, Carlos; Branco, Carlos; Correia, Pedro; Batista, Manuel; Antunes, Manuel

    2017-01-01

    Coronary allograft vasculopathy (CAV) is still a serious long-term complication after cardiac transplantation. To evaluate the prevalence of CAV in a single institution, its impact on survival and to explore associated risk factors. From November-2003 through June-2016, 316 patients were submitted to cardiac transplantation. After excluding those with paediatric age (n=8), those with previous renal or hepatic transplantation (n=2) and those who didn't survive the first year after cardiac transplantation (n=40), the study population resulted in 266 patients. Forty two patients (15.8%) with CAV, diagnosed by a new >50% coronary artery stenosis in any vessel during follow-up, were compared with a non-CAV group. Both groups share de same median age (54+10years). Recipient male sex predominated in the CAV group (93% vs. 74%), as did ischemic etiology (52% vs. 37%). Although not reaching statistical significance, CAV patients also had more dyslipidemia (60% vs. 50%), history of smoking (52% vs. 44%) and peripheral vascular disease (45% vs. 29%). The incidence of celular acute rejection 1R is more frequent in CAV group (69% vs. 60%) such as 2R or 3R (29% vs. 27%). Prolonged use of inotropic support and mechanical assistance after cardiac transplantation were comparable between both groups. The survival of this patients, who were submitted to cardiac transplantation and had lived at least 1 year, between CAV and non-CAV group was comparable at 5-year (91% vs. 85%), but tended to be lower for CAV patients in 10-year interval (52% vs. 73%). This data confirms CAV as a common long-term complication following cardiac transplantation. Although short to mid-term survival seems not to be affected by CAV, long-term survival appears lower, hence a longer follow-up is needed.

  20. MicroRNA-133 mediates cardiac diseases: Mechanisms and clinical implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yi; Liang, Yan; Zhang, Jin-fang

    MicroRNAs (miRNAs) belong to the family of small non-coding RNAs that mediate gene expression by post-transcriptional regulation. Increasing evidence have demonstrated that miR-133 is enriched in muscle tissues and myogenic cells, and its aberrant expression could induce the occurrence and development of cardiac disorders, such as cardiac hypertrophy, heart failure, etc. In this review, we summarized the regulatory roles of miR-133 in cardiac disorders and the underlying mechanisms, which suggest that miR-133 may be a potential diagnostic and therapeutic tool for cardiac disorders. - Highlights: • miR-218 is frequently downregulated in multiple cancers. • miR-218 plays pivotal roles in carcinogenesis.more » • miR-218 mediates proliferation, apoptosis, metastasis, invasion, etc. • miR-218 mediates tumorigenesis and metastasis via multiple pathways.« less

  1. IgG Donor-Specific Anti-Human HLA Antibody Subclasses and Kidney Allograft Antibody-Mediated Injury.

    PubMed

    Lefaucheur, Carmen; Viglietti, Denis; Bentlejewski, Carol; Duong van Huyen, Jean-Paul; Vernerey, Dewi; Aubert, Olivier; Verine, Jérôme; Jouven, Xavier; Legendre, Christophe; Glotz, Denis; Loupy, Alexandre; Zeevi, Adriana

    2016-01-01

    Antibodies may have different pathogenicities according to IgG subclass. We investigated the association between IgG subclasses of circulating anti-human HLA antibodies and antibody-mediated kidney allograft injury. Among 635 consecutive kidney transplantations performed between 2008 and 2010, we enrolled 125 patients with donor-specific anti-human HLA antibodies (DSA) detected in the first year post-transplant. We assessed DSA characteristics, including specificity, HLA class specificity, mean fluorescence intensity (MFI), C1q-binding, and IgG subclass, and graft injury phenotype at the time of sera evaluation. Overall, 51 (40.8%) patients had acute antibody-mediated rejection (aABMR), 36 (28.8%) patients had subclinical ABMR (sABMR), and 38 (30.4%) patients were ABMR-free. The MFI of the immunodominant DSA (iDSA, the DSA with the highest MFI level) was 6724±464, and 41.6% of patients had iDSA showing C1q positivity. The distribution of iDSA IgG1-4 subclasses among the population was 75.2%, 44.0%, 28.0%, and 26.4%, respectively. An unsupervised principal component analysis integrating iDSA IgG subclasses revealed aABMR was mainly driven by IgG3 iDSA, whereas sABMR was driven by IgG4 iDSA. IgG3 iDSA was associated with a shorter time to rejection (P<0.001), increased microcirculation injury (P=0.002), and C4d capillary deposition (P<0.001). IgG4 iDSA was associated with later allograft injury with increased allograft glomerulopathy and interstitial fibrosis/tubular atrophy lesions (P<0.001 for all comparisons). Integrating iDSA HLA class specificity, MFI level, C1q-binding status, and IgG subclasses in a Cox survival model revealed IgG3 iDSA and C1q-binding iDSA were strongly and independently associated with allograft failure. These results suggest IgG iDSA subclasses identify distinct phenotypes of kidney allograft antibody-mediated injury. Copyright © 2016 by the American Society of Nephrology.

  2. ANTIBACTERIAL ACTIVITY OF BONE ALLOGRAFTS: COMPARISON OF A NEW VANCOMYCIN-TETHERED ALLOGRAFT WITH ALLOGRAFT LOADED WITH ADSORBED VANCOMYCIN

    PubMed Central

    Ketonis, Constantinos; Barr, Stephanie; Shapiro, Irving M.; Parvizi, Javad; Adams, Christopher S.; Hickok, Noreen J.

    2010-01-01

    Bacterial contamination of bone allograft is a significant complication of orthopaedic surgery. To address this issue, we have engineered a method for covalently modifying bone allograft tissue with the antibiotic vancomycin. The goal of this investigation was to compare the biocidal properties of this new allograft material with those of vancomycin physisorbed onto graft material. The duration of antibiotic release from the vancomycin-modified allograft matrix was determined and no elution was observed. In contrast, the adsorbed antibiotic showed a peak elution at 24 h that then decreased over several days. We next used an S. aureus disk diffusion assay to measure the activity of the eluted vancomycin. Again we found that no active antibiotic was eluted from the covalently–modified allograft. Similarly, when the vancomycin-modified allograft morsel was used in the assay, no measurable elution was observed; amounts of antibiotic released from the adsorbed samples inhibited S. aureus growth for 4-7 days. Probably the most telling property of the allograft was that after two weeks, the tethered-allograft was able to resist bacterial colonization. Unlike the elution system in which vancomycin was depleted over the course of days-weeks, the antibiotic on the allograft was stably bound even after 300 days, while its biocidal activity remained undiminished for 60 days. This finding was in stark contrast to the antibiotic impregnated allograft which was readily colonized by bacteria. Finally we chose to evaluate three indicators of cell function: expression of a key transcription factor, expression of selected transcripts, and assessment of cell morphology. Since the tethered antibiotic appeared to have little or no effect on any of these activities, it was concluded that the stable, tethered antibiotic prevented bacterial infection while not modifying bone cell function. PMID:21035576

  3. Transient blockade of Delta-like Notch ligands prevents allograft rejection mediated by cellular and humoral mechanisms in a mouse model of heart transplantation

    PubMed Central

    Wood, Sherri; Feng, Jiane; Chung, Jooho; Radojcic, Vedran; Sandy, Ashley R.; Friedman, Ann; Shelton, Amy; Yan, Minhong; Siebel, Christian W.; Bishop, D. Keith; Maillard, Ivan

    2015-01-01

    Rejection remains a major clinical challenge limiting allograft survival after solid organ transplantation. Both cellular and humoral immunity contribute to this complication, with increased recognition of antibody-mediated damage during acute and chronic rejection. Using a mouse model of MHC-mismatched heart transplantation, we report markedly protective effects of Notch inhibition, dampening both T cell and antibody-driven rejection. T cell-specific pan-Notch blockade prolonged heart allograft survival and decreased IFNγ and IL-4 production by alloreactive T cells, especially when combined with depletion of recipient CD8+ T cells. These effects were associated with decreased infiltration by conventional T cells and an increased proportion of regulatory T cells in the graft. Transient administration of neutralizing antibodies specific for Delta-like1/4 (Dll1/4) Notch ligands in the peri-transplant period led to prolonged acceptance of allogeneic hearts, with superior outcome over Notch inhibition only in T cells. Systemic Dll1/4 inhibition decreased T cell cytokines and graft infiltration, but also germinal center B cell and plasmablast numbers as well as production of donor-specific alloantibodies and complement deposition in the transplanted hearts. Dll1 or Dll4 inhibition alone provided partial protection. Thus, pathogenic signals delivered by Dll1/4 Notch ligands early after transplantation promote organ rejection through several complementary mechanisms. Transient interruption of theses signals represents a new attractive therapeutic strategy to enhance long-term allograft survival. PMID:25687759

  4. Mast cell phenotypes in the allograft after lung transplantation.

    PubMed

    Banga, Amit; Han, Yingchun; Wang, Xiaofeng; Hsieh, Fred H

    2016-07-01

    The burden of mast cell (MC) infiltration and their phenotypes, MC-tryptase (MCT ) and MC-tryptase/chymase (MCTC ), after lung transplantation (LT) has not been evaluated in human studies. We reviewed 20 transbronchial lung biopsy (TBLB) specimen from patients with early normal allograft (<6 months post-LT, n=5), late normal allograft (>6 months, n=5), A2 or worse acute cellular rejection (ACR, n=5), and chronic lung allograft dysfunction (CLAD, n=5). Slides were immunostained for tryptase and chymase. Total MC, MCT , MCTC and MCTC to-MCT ratio were compared between the four groups using a generalized linear mixed model. Irrespective of clinicopathologic diagnosis, MC burden tends to increase with time (r(2) =.56, P=.009). MCTC phenotype was significantly increased in the CLAD group (8.2±4.9 cells per HPF) in comparison with the other three groups (early normal: 1.6±1.7, P=.0026; late normal: 2.5±2.3, P=.048; ACR: 2.7±3.5, P=.021). Further, the ratio of MCTC to MCT was significantly increased in CLAD group as compared to the other three groups (P<.001 for all comparisons). The burden of MC may increase in the allograft as function of time. Patients with CLAD have an increased relative and absolute burden of MCTC phenotype MC. Future studies are needed to confirm these findings and evaluate the potential pathologic role of MCTC in allograft dysfunction. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Hair Follicle Dermal Sheath Derived Cells Improve Islet Allograft Survival without Systemic Immunosuppression

    PubMed Central

    Wang, Xiaojie; Hao, Jianqiang; Leung, Gigi; Breitkopf, Trisia; Wang, Eddy; Kwong, Nicole; Akhoundsadegh, Noushin; Warnock, Garth L.; Shapiro, Jerry; McElwee, Kevin J.

    2015-01-01

    Immunosuppressive drugs successfully prevent rejection of islet allografts in the treatment of type I diabetes. However, the drugs also suppress systemic immunity increasing the risk of opportunistic infection and cancer development in allograft recipients. In this study, we investigated a new treatment for autoimmune diabetes using naturally immune privileged, hair follicle derived, autologous cells to provide localized immune protection of islet allotransplants. Islets from Balb/c mouse donors were cotransplanted with syngeneic hair follicle dermal sheath cup cells (DSCC, group 1) or fibroblasts (FB, group 2) under the kidney capsule of immune-competent, streptozotocin induced, diabetic C57BL/6 recipients. Group 1 allografts survived significantly longer than group 2 (32.2 ± 12.2 versus 14.1 ± 3.3 days, P < 0.001) without administration of any systemic immunosuppressive agents. DSCC reduced T cell activation in the renal lymph node, prevented graft infiltrates, modulated inflammatory chemokine and cytokine profiles, and preserved better beta cell function in the islet allografts, but no systemic immunosuppression was observed. In summary, DSCC prolong islet allograft survival without systemic immunosuppression by local modulation of alloimmune responses, enhancing of beta cell survival, and promoting of graft revascularization. This novel finding demonstrates the capacity of easily accessible hair follicle cells to be used as local immunosuppression agents in islet transplantation. PMID:26000314

  6. The Calcineurin-NFAT Axis Controls Allograft Immunity in Myeloid-Derived Suppressor Cells through Reprogramming T Cell Differentiation

    PubMed Central

    Wang, Xiao; Bi, Yujing; Xue, Lixiang; Liao, Jiongbo; Chen, Xi; Lu, Yun; Zhang, Zhengguo; Wang, Jian; Liu, Huanrong; Yang, Hui

    2014-01-01

    While cyclosporine (CsA) inhibits calcineurin and is highly effective in prolonging rejection for transplantation patients, the immunological mechanisms remain unknown. Herein, the role of calcineurin signaling was investigated in a mouse allogeneic skin transplantation model. The calcineurin inhibitor CsA significantly ameliorated allograft rejection. In CsA-treated allograft recipient mice, CD11b+ Gr1+ myeloid-derived suppressor cells (MDSCs) were functional suppressive immune modulators that resulted in fewer gamma interferon (IFN-γ)-producing CD8+ T cells and CD4+ T cells (TH1 T helper cells) and more interleukin 4 (IL-4)-producing CD4+ T cells (TH2) and prolonged allogeneic skin graft survival. Importantly, the expression of NFATc1 is significantly diminished in the CsA-induced MDSCs. Blocking NFAT (nuclear factor of activated T cells) with VIVIT phenocopied the CsA effects in MDSCs and increased the suppressive activities and recruitment of CD11b+ Gr1+ MDSCs in allograft recipient mice. Mechanistically, CsA treatment enhanced the expression of indoleamine 2,3-dioxygenase (IDO) and the suppressive activities of MDSCs in allograft recipients. Inhibition of IDO nearly completely recovered the increased MDSC suppressive activities and the effects on T cell differentiation. The results of this study indicate that MDSCs are an essential component in controlling allograft survival following CsA or VIVIT treatment, validating the calcineurin-NFAT-IDO signaling axis as a potential therapeutic target in transplantation. PMID:25452304

  7. Recipient Myd88 Deficiency Promotes Spontaneous Resolution of Kidney Allograft Rejection

    PubMed Central

    Lerret, Nadine M.; Li, Ting; Wang, Jiao-Jing; Kang, Hee-Kap; Wang, Sheng; Wang, Xueqiong; Jie, Chunfa; Kanwar, Yashpal S.; Abecassis, Michael M.

    2015-01-01

    The myeloid differentiation protein 88 (MyD88) adapter protein is an important mediator of kidney allograft rejection, yet the precise role of MyD88 signaling in directing the host immune response toward the development of kidney allograft rejection remains unclear. Using a stringent mouse model of allogeneic kidney transplantation, we demonstrated that acute allograft rejection occurred equally in MyD88-sufficient (wild-type [WT]) and MyD88−/− recipients. However, MyD88 deficiency resulted in spontaneous diminution of graft infiltrating effector cells, including CD11b−Gr-1+ cells and activated CD8 T cells, as well as subsequent restoration of near-normal renal graft function, leading to long-term kidney allograft acceptance. Compared with T cells from WT recipients, T cells from MyD88−/− recipients failed to mount a robust recall response upon donor antigen restimulation in mixed lymphocyte cultures ex vivo. Notably, exogenous IL-6 restored the proliferation rate of T cells, particularly CD8 T cells, from MyD88−/− recipients to the proliferation rate of cells from WT recipients. Furthermore, MyD88−/− T cells exhibited diminished expression of chemokine receptors, specifically CCR4 and CXCR3, and the impaired ability to accumulate in the kidney allografts despite an otherwise MyD88-sufficient environment. These results provide a mechanism linking the lack of intrinsic MyD88 signaling in T cells to the effective control of the rejection response that results in spontaneous resolution of acute rejection and long-term graft protection. PMID:25788530

  8. Regulatory dendritic cell infusion prolongs kidney allograft survival in nonhuman primates.

    PubMed

    Ezzelarab, M B; Zahorchak, A F; Lu, L; Morelli, A E; Chalasani, G; Demetris, A J; Lakkis, F G; Wijkstrom, M; Murase, N; Humar, A; Shapiro, R; Cooper, D K C; Thomson, A W

    2013-08-01

    We examined the influence of regulatory dendritic cells (DCreg), generated from cytokine-mobilized donor blood monocytes in vitamin D3 and IL-10, on renal allograft survival in a clinically relevant rhesus macaque model. DCreg expressed low MHC class II and costimulatory molecules, but comparatively high levels of programmed death ligand-1 (B7-H1), and were resistant to pro-inflammatory cytokine-induced maturation. They were infused intravenously (3.5-10 × 10(6) /kg), together with the B7-CD28 costimulation blocking agent CTLA4Ig, 7 days before renal transplantation. CTLA4Ig was given for up to 8 weeks and rapamycin, started on Day -2, was maintained with tapering of blood levels until full withdrawal at 6 months. Median graft survival time was 39.5 days in control monkeys (no DC infusion; n = 6) and 113.5 days (p < 0.05) in DCreg-treated animals (n = 6). No adverse events were associated with DCreg infusion, and there was no evidence of induction of host sensitization based on circulating donor-specific alloantibody levels. Immunologic monitoring also revealed regulation of donor-reactive memory CD95(+) T cells and reduced memory/regulatory T cell ratios in DCreg-treated monkeys compared with controls. Termination allograft histology showed moderate combined T cell- and Ab-mediated rejection in both groups. These findings justify further preclinical evaluation of DCreg therapy and their therapeutic potential in organ transplantation. © Copyright 2013 The American Society of Transplantation and the American Society of Transplant Surgeons.

  9. Regulatory dendritic cell infusion prolongs kidney allograft survival in non-human primates

    PubMed Central

    Ezzelarab, M.; Zahorchak, A.F.; Lu, L.; Morelli, A.E.; Chalasani, G.; Demetris, A.J.; Lakkis, F.G.; Wijkstrom, M.; Murase, N.; Humar, A.; Shapiro, R.; Cooper, D.K.C.; Thomson, A.W.

    2014-01-01

    We examined the influence of regulatory dendritic cells (DCreg), generated from cytokine-mobilized donor blood monocytes in vitamin D3 and IL-10, on renal allograft survival in a clinically-relevant rhesus macaque model. DCreg expressed low MHC class II and costimulatory molecules, but comparatively high levels of programmed death ligand-1 (B7-H1), and were resistant to pro-inflammatory cytokine-induced maturation. They were infused intravenously (3.5–10×106/kg), together with the B7-CD28 costimulation blocking agent CTLA4Ig, 7 days before renal transplantation. CTLA4Ig was given for up to 8 weeks and rapamycin, started on day −2, was maintained with tapering of blood levels until full withdrawal at 6 months. Median graft survival time was 39.5 days in control monkeys (no DC infusion; n=6) and 113.5 days (p< 0.05) in DCreg-treated animals (n=6). No adverse events were associated with DCreg infusion, and there was no evidence of induction of host sensitization based on circulating donor-specific alloantibody levels. Immunologic monitoring also revealed regulation of donor-reactive memory CD95+ T cells and reduced memory/regulatory T cell ratios in DCreg-treated monkeys compared with controls. Termination allograft histology showed moderate combined T cell- and Ab-mediated rejection in both groups. These findings justify further pre-clinical evaluation of DCreg therapy and their therapeutic potential in organ transplantation. PMID:23758811

  10. Cardiac hypertrophy induced by active Raf depends on Yorkie-mediated transcription

    PubMed Central

    Yu, Lin; Daniels, Joseph P.; Wu, Huihui; Wolf, Matthew J.

    2015-01-01

    Organ hypertrophy can result from enlargement of individual cells or from cell proliferation or both. Activating mutations in the serine-threonine kinase Raf cause cardiac hypertrophy and contribute to Noonan syndrome in humans. Cardiac-specific expression of activated Raf also causes hypertrophy in Drosophila melanogaster. We found that Yorkie (Yki), a transcriptional coactivator in the Hippo pathway that regulates organ size, is required for Raf-induced cardiac hypertrophy in flies. Although aberrant activation of Yki orthologs stimulates cardiac hyperplasia in mice, cardiac-specific expression of an activated mutant form of Yki in fruit flies caused cardiac hypertrophy without hyperplasia. Knockdown of Yki caused cardiac dilation without loss of cardiomyocytes and prevented Raf-induced cardiac hypertrophy. In flies, Yki-induced cardiac hypertrophy required the TEA domain–containing transcription factor Scalloped, and, in mammalian cells, expression of mouse RafL613V, an activated form of Raf with a Noonan syndrome mutation, increased Yki-induced Scalloped activity. Furthermore, overexpression of Tgi (a Tondu domain–containing Scalloped-binding corepressor) in the fly heart abrogated Yki- or Raf-induced cardiac hypertrophy. Thus, crosstalk between Raf and Yki occurs in the heart and can influence Raf-mediated cardiac hypertrophy. PMID:25650441

  11. Paracrine Engineering of Human Explant-Derived Cardiac Stem Cells to Over-Express Stromal-Cell Derived Factor 1α Enhances Myocardial Repair.

    PubMed

    Tilokee, Everad L; Latham, Nicholas; Jackson, Robyn; Mayfield, Audrey E; Ye, Bin; Mount, Seth; Lam, Buu-Khanh; Suuronen, Erik J; Ruel, Marc; Stewart, Duncan J; Davis, Darryl R

    2016-07-01

    First generation cardiac stem cell products provide indirect cardiac repair but variably produce key cardioprotective cytokines, such as stromal-cell derived factor 1α, which opens the prospect of maximizing up-front paracrine-mediated repair. The mesenchymal subpopulation within explant derived human cardiac stem cells underwent lentiviral mediated gene transfer of stromal-cell derived factor 1α. Unlike previous unsuccessful attempts to increase efficacy by boosting the paracrine signature of cardiac stem cells, cytokine profiling revealed that stromal-cell derived factor 1α over-expression prevented lv-mediated "loss of cytokines" through autocrine stimulation of CXCR4+ cardiac stem cells. Stromal-cell derived factor 1α enhanced angiogenesis and stem cell recruitment while priming cardiac stem cells to readily adopt a cardiac identity. As compared to injection with unmodified cardiac stem cells, transplant of stromal-cell derived factor 1α enhanced cells into immunodeficient mice improved myocardial function and angiogenesis while reducing scarring. Increases in myocardial stromal-cell derived factor 1α content paralleled reductions in myocyte apoptosis but did not influence long-term engraftment or the fate of transplanted cells. Transplantation of stromal-cell derived factor 1α transduced cardiac stem cells increased the generation of new myocytes, recruitment of bone marrow cells, new myocyte/vessel formation and the salvage of reversibly damaged myocardium to enhance cardiac repair after experimental infarction. Stem Cells 2016;34:1826-1835. © 2016 AlphaMed Press.

  12. Interleukin 1 and Tumor Necrosis Factor Inhibit Cardiac Myocyte β -adrenergic Responsiveness

    NASA Astrophysics Data System (ADS)

    Gulick, Tod; Chung, Mina K.; Pieper, Stephen J.; Lange, Louis G.; Schreiner, George F.

    1989-09-01

    Reversible congestive heart failure can accompany cardiac allograft rejection and inflammatory myocarditis, conditions associated with an immune cell infiltrate of the myocardium. To determine whether immune cell secretory products alter cardiac muscle metabolism without cytotoxicity, we cultured cardiac myocytes in the presence of culture supernatants from activated immune cells. We observed that these culture supernatants inhibit β -adrenergic agonist-mediated increases in cultured cardiac myocyte contractility and intracellular cAMP accumulation. The myocyte contractile response to increased extracellular Ca2+ concentration is unaltered by prior exposure to these culture supernatants, as is the increase in myocyte intracellular cAMP concentration in response to stimulation with forskolin, a direct adenyl cyclase activator. Inhibition occurs in the absence of alteration in β -adrenergic receptor density or ligand binding affinity. Suppressive activity is attributable to the macrophage-derived cytokines interleukin 1 and tumor necrosis factor. Thus, these observations describe a role for defined cytokines in regulating the hormonal responsiveness and function of contractile cells. The effects of interleukin 1 and tumor necrosis factor on intracellular cAMP accumulation may be a model for immune modulation of other cellular functions dependent upon cyclic nucleotide metabolism. The uncoupling of agonist-occupied receptors from adenyl cyclase suggests that β -receptor or guanine nucleotide binding protein function is altered by the direct or indirect action of cytokines on cardiac muscle cells.

  13. MicroRNA-133 mediates cardiac diseases: Mechanisms and clinical implications.

    PubMed

    Liu, Yi; Liang, Yan; Zhang, Jin-Fang; Fu, Wei-Ming

    2017-05-15

    MicroRNAs (miRNAs) belong to the family of small non-coding RNAs that mediate gene expression by post-transcriptional regulation. Increasing evidence have demonstrated that miR-133 is enriched in muscle tissues and myogenic cells, and its aberrant expression could induce the occurrence and development of cardiac disorders, such as cardiac hypertrophy, heart failure, etc. In this review, we summarized the regulatory roles of miR-133 in cardiac disorders and the underlying mechanisms, which suggest that miR-133 may be a potential diagnostic and therapeutic tool for cardiac disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Both rejection and tolerance of allografts can occur in the absence of secondary lymphoid tissues

    PubMed Central

    Kant, Cavit D.; Akiyama, Yoshinobu; Tanaka, Katsunori; Shea, Susan; Yamada, Yohei; Connolly, Sarah E; Marino, Jose; Tocco, Georges; Benichou, Gilles

    2014-01-01

    In this study, we show that aly/aly mice, which are devoid of lymph nodes and Peyer’s patches, rejected acutely fully allogeneic skin and heart grafts. They mounted potent inflammatory direct alloresponses but failed to develop indirect alloreactivity after transplantation. Remarkably, skin allografts were also rejected acutely by splenectomized aly/aly mice (aly/aly-spl−) devoid of all secondary lymphoid organs. In these recipients, the rejection was mediated by alloreactive CD8+ T cells presumably primed in the bone marrow. In contrast, cardiac transplants were not rejected in aly/aly-spl− mice. Actually, aly/aly-spl− mice having spontaneously accepted a heart allotransplant displayed donor-specific tolerance also accepted skin grafts from the same but not a third-party donor via a mechanism involving CD4+ regulatory T cells producing IL-10 cytokine. Therefore, direct priming of alloreactive T cells, as well as rejection and regulatory tolerance of allogeneic transplants, can occur in recipient mice lacking secondary lymphoid organs. PMID:25535285

  15. [Identifying the specific causes of kidney allograft loss: A population-based study].

    PubMed

    Lohéac, Charlotte; Aubert, Olivier; Loupy, Alexandre; Legendre, Christophe

    2018-04-01

    Results of kidney transplantation have been improving but long-term allograft survival remains disappointing. The objective of the present study was to identify the specific causes of renal allograft loss, to assess their incidence and long-term outcomes. A total of 4783 patients from four French centres, transplanted between January 2004 and January 2014 were prospectively included. A total of 9959 kidney biopsies (protocol and for cause) performed between January 2004 and March 2015 were included. Donor and recipient clinical and biological parameters as well as anti-HLA antibody directed against the donor were included. The main outcome was the long-term kidney allograft survival, including the study of the associated causes of graft loss, the delay of graft loss according to their causes and the determinants of graft loss. There were 732 graft losses during the follow-up period (median time: 4.51 years) with an identified cause in 95.08 %. Kidney allograft survival at 9 years post-transplant was 78 %. The causes of allograft loss were: antibody-mediated rejection (31.69 %), thrombosis (25.55 %), medical intercurrent disease (14.62 %), recurrence of primary renal disease (7.1 %), BK- or CMV-associated nephropathy (n=35, 4.78 %), T cell-mediated rejection (4.78 %), urological disease (2.46 %) and calcineurin inhibitor nephrotoxicity (1.09 %). The main causes of allograft loss were antibody-mediated rejection and thrombosis. These results encourage efforts to prevent and detect these complications earlier in order to improve allograft survival. Copyright © 2018 Association Société de néphrologie. Published by Elsevier Masson SAS. All rights reserved.

  16. Acute allograft failure in thoracic organ transplantation.

    PubMed

    Jahania, M S; Mullett, T W; Sanchez, J A; Narayan, P; Lasley, R D; Mentzer, R M

    2000-01-01

    Thoracic organ transplantation is an effective form of treatment for end-stage heart and lung disease. Despite major advances in the field, transplant patients remain at risk for acute allograft dysfunction, a major cause of early and late mortality. The most common causes of allograft failure include primary graft failure secondary to inadequate heart and lung preservation during cold storage, cellular rejection, and various donor-recipient-related factors. During cold storage and early reperfusion, heart and lung allografts are vulnerable to intracellular calcium overload, acidosis, cell swelling, injury mediated by reactive oxygen species, and the inflammatory response. Brain death itself is associated with a reduction in myocardial contractility, and recipient-related factors such as preexisting pulmonary hypertension can lead to acute right heart failure and the pulmonary reimplantation response. The development of new methods to prevent or treat these various causes of acute graft failure could lead to a marked improvement in short- and long-term survival of patients undergoing thoracic organ transplantation.

  17. p53 and Mdm2 act synergistically to maintain cardiac homeostasis and mediate cardiomyocyte cell cycle arrest through a network of microRNAs.

    PubMed

    Stanley-Hasnain, Shanna; Hauck, Ludger; Grothe, Daniela; Aschar-Sobbi, Roozbeh; Beca, Sanja; Butany, Jagdish; Backx, Peter H; Mak, Tak W; Billia, Filio

    2017-01-01

    Defining the roadblocks responsible for cell cycle arrest in adult cardiomyocytes lies at the core of developing cardiac regenerative therapies. p53 and Mdm2 are crucial mediators of cell cycle arrest in proliferative cell types, however, little is known about their function in regulating homeostasis and proliferation in terminally differentiated cell types, like cardiomyocytes. To explore this, we generated a cardiac-specific conditional deletion of p53 and Mdm2 (DKO) in adult mice. Herein we describe the development of a dilated cardiomyopathy, in the absence of cardiac hypertrophy. In addition, DKO hearts exhibited a significant increase in cardiomyocyte proliferation. Further evaluation showed that proliferation was mediated by a significant increase in Cdk2 and cyclin E with downregulation of p21 Cip1 and p27 Kip1 . Comparison of miRNA expression profiles from DKO mouse hearts and controls revealed 11 miRNAs that were downregulated in the DKO hearts and enriched for mRNA targets involved in cell cycle regulation. Knockdown of these miRNAs in neonatal rat cardiomyocytes significantly increased cytokinesis with an upregulation in the expression of crucial cell cycle regulators. These results illustrate the importance of the cooperative activities of p53 and Mdm2 in a network of miRNAs that function to impose a barrier against aberrant cardiomyocyte cell cycle re-entry to maintain cardiac homeostasis.

  18. Combined use of rapamycin and leflunomide in prevention of acute cardiac allografts rejection in rats.

    PubMed

    Sun, Yan; Chen, Xi; Zhao, Jiabin; Zou, Xiaoming; Li, Gang; Li, Xiaolin; Shen, Bin; Sun, Shibo

    2012-08-01

    This study aimed to evaluate the role of combined use of rapamycin and leflunomide(Lef) on the prevention of acute allograft rejection in rats. After cardiac transplantations, rats were randomly divided into untreated group, rapamycin group, Lef group and rapamycin+Lef group. The drugs were given by gavage from day 0 to day 9 after transplantations. Graft survival time was observed. Some grafts were harvested for histopathological investigation on day 10 after transplantations. The levels of CD(4)(+) and CD(8)(+) T lymphocytes and the concentrations of interleukin 2(IL-2) and interferon (IFN)γ in peripheral blood were examined on day 10 after transplantations. At the same time, the body weight, the hepatic function, renal function and the haemoglobin of the recipients were also examined. The graft survival time of untreated group was 7.14 ± 1.07 days. Rapamycin group was 11.14 ± 1.35 days. Lef group was 11.29 ± 1.80 days. While in rapamycin+Lef group, the graft survival time was prolonged to 13.86 ± 1.57 days(P<0.05). Histological changes of the allografts in rapamycin+Lef group were much milder than either of the two single drug groups. The absolute number and the percentage of CD(4)(+) T lymphocytes in peripheral blood in rapamycin+Lef group were lower than those of rapamycin or Lef group on day 10 after transplantations(P<0.05), while the percentage of CD(8)(+) T lymphocytes in rapamycin+Lef group was higher than that of rapamycin or Lef group(P<0.05). The absolute number of CD(8)(+) T lymphocytes was not significantly different among rapamycin group, Lef group and rapamycin+Lef group. The levels of IL-2 and IFN-γ in rapamycin+Lef group were significantly lower than that of rapamycin group or Lef group(P<0.05). The body weight, the hepatic function, renal function and the haemoglobin were not significantly different among rapamycin group, Lef group and rapamycin+Lef group (P>0.05). Combined use of rapamycin and Lef had better effect on the prevention of

  19. Electrotaxis of cardiac progenitor cells, cardiac fibroblasts, and induced pluripotent stem cell-derived cardiac progenitor cells requires serum and is directed via PI3'K pathways.

    PubMed

    Frederich, Bert J; Timofeyev, Valeriy; Thai, Phung N; Haddad, Michael J; Poe, Adam J; Lau, Victor C; Moshref, Maryam; Knowlton, Anne A; Sirish, Padmini; Chiamvimonvat, Nipavan

    2017-11-01

    The limited regenerative capacity of cardiac tissue has long been an obstacle to treating damaged myocardium. Cell-based therapy offers an enormous potential to the current treatment paradigms. However, the efficacy of regenerative therapies remains limited by inefficient delivery and engraftment. Electrotaxis (electrically guided cell movement) has been clinically used to improve recovery in a number of tissues but has not been investigated for treating myocardial damage. The purpose of this study was to test the electrotactic behaviors of several types of cardiac cells. Cardiac progenitor cells (CPCs), cardiac fibroblasts (CFs), and human induced pluripotent stem cell-derived cardiac progenitor cells (hiPSC-CPCs) were used. CPCs and CFs electrotax toward the anode of a direct current electric field, whereas hiPSC-CPCs electrotax toward the cathode. The voltage-dependent electrotaxis of CPCs and CFs requires the presence of serum in the media. Addition of soluble vascular cell adhesion molecule to serum-free media restores directed migration. We provide evidence that CPC and CF electrotaxis is mediated through phosphatidylinositide 3-kinase signaling. In addition, very late antigen-4, an integrin and growth factor receptor, is required for electrotaxis and localizes to the anodal edge of CPCs in response to direct current electric field. The hiPSC-derived CPCs do not express very late antigen-4, migrate toward the cathode in a voltage-dependent manner, and, similar to CPCs and CFs, require media serum and phosphatidylinositide 3-kinase activity for electrotaxis. The electrotactic behaviors of these therapeutic cardiac cells may be used to improve cell-based therapy for recovering function in damaged myocardium. Published by Elsevier Inc.

  20. CD40 activation induces apoptosis in cultured human hepatocytes via induction of cell surface fas ligand expression and amplifies fas-mediated hepatocyte death during allograft rejection.

    PubMed

    Afford, S C; Randhawa, S; Eliopoulos, A G; Hubscher, S G; Young, L S; Adams, D H

    1999-01-18

    We propose that a novel mechanism of hepatocyte apoptosis, involving a cooperative interaction between CD40 and Fas, is involved in the hepatocyte loss of chronic liver allograft rejection. We detected increased hepatocyte expression of Fas, Fas ligand (FasL), and CD40 associated with dropout of centrilobular (acinar zone 3) hepatocytes in chronic allograft rejection. Expression of CD40 ligand (CD40L) was also increased but was largely restricted to CD68(+) macrophages. A functional role for CD40 and Fas in hepatocyte apoptosis was demonstrated in vitro using primary human hepatocytes and the HepG2 cell line in both of which apoptosis was induced, not only by cross-linking Fas directly but also via CD40 activation. Our data suggest that CD40 activation induces apoptosis via Fas because (a) ligation of CD40 upregulated hepatocyte FasL expression, and (b) apoptosis induced via activation of CD40 was prevented by a neutralizing monoclonal antibody to FasL. Thus, CD40 engagement triggers apoptosis of human hepatocytes and might amplify Fas-dependent hepatocyte apoptosis in chronic rejection and other inflammatory liver diseases in which Fas-mediated apoptosis is involved.

  1. Nucleostemin rejuvenates cardiac progenitor cells and antagonizes myocardial aging.

    PubMed

    Hariharan, Nirmala; Quijada, Pearl; Mohsin, Sadia; Joyo, Anya; Samse, Kaitlen; Monsanto, Megan; De La Torre, Andrea; Avitabile, Daniele; Ormachea, Lucia; McGregor, Michael J; Tsai, Emily J; Sussman, Mark A

    2015-01-20

    Functional decline in stem cell-mediated regeneration contributes to aging associated with cellular senescence in c-kit+ cardiac progenitor cells (CPCs). Clinical implementation of CPC-based therapy in elderly patients would benefit tremendously from understanding molecular characteristics of senescence to antagonize aging. Nucleostemin (NS) is a nucleolar protein regulating stem cell proliferation and pluripotency. This study sought to demonstrate that NS preserves characteristics associated with "stemness" in CPCs and antagonizes myocardial senescence and aging. CPCs isolated from human fetal (fetal human cardiac progenitor cell [FhCPC]) and adult failing (adult human cardiac progenitor cell [AhCPC]) hearts, as well as young (young cardiac progenitor cell [YCPC]) and old mice (old cardiac progenitor cell [OCPC]), were studied for senescence characteristics and NS expression. Heterozygous knockout mice with 1 functional allele of NS (NS+/-) were used to demonstrate that NS preserves myocardial structure and function and slows characteristics of aging. NS expression is decreased in AhCPCs relative to FhCPCs, correlating with lowered proliferation potential and shortened telomere length. AhCPC characteristics resemble those of OCPCs, which have a phenotype induced by NS silencing, resulting in cell flattening, senescence, multinucleated cells, decreased S-phase progression, diminished expression of stemness markers, and up-regulation of p53 and p16. CPC senescence resulting from NS loss is partially p53 dependent and is rescued by concurrent silencing of p53. Mechanistically, NS induction correlates with Pim-1 kinase-mediated stabilization of c-Myc. Engineering OCPCs and AhCPCs to overexpress NS decreases senescent and multinucleated cells, restores morphology, and antagonizes senescence, thereby preserving phenotypic properties of "stemness." Early cardiac aging with a decline in cardiac function, an increase in senescence markers p53 and p16, telomere attrition

  2. PRINS Long Noncoding RNA Involved in IP-10-Mediated Allograft Rejection in Rat Kidney Transplant.

    PubMed

    Zou, X-F; Song, B; Duan, J-H; Hu, Z-D; Cui, Z-L; Yang, T

    2018-06-01

    Previously, high levels of CXCR3+ T-cell recruitment was demonstrated in the prolonged ischemia-accelerated acute allograft rejection in rat kidney transplant. In the present study, the effect of chemokine IP-10 was investigated and the expression of chemokine-related PRINS (Psoriasis susceptibility-related RNA gene induced by stress) lncRNA determined in the allografts subjected to ischemia. F344-to-Lewis rat kidney transplantation was performed, and renal grafts were stored for 2 hours or 16 hours. Samples were removed at 24 hours and 7 days after operation. Cellular infiltration was determined with the use of immunohistochemistry, and messenger RNA expression was assessed with the use of real-time polymerase chain reaction. The 16-hour-ischemia kidney displayed acute tubule damage and up-regulation of PRINS lncRNA expression. On day 7, IP-10 expression and CD3-positive T cells were increased in allografts compared with control samples, which were inhibited by the IP-10 antibody treatment accompanied by reduced serum creatinine. These observations provide evidence for IP-10 in a regulatory role in cold ischemia-elicited acute allograft rejection and in PRINS lncRNA expression. Our data enhance the understanding of the mechanism underlying between prolonged ischemia and acute rejection. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. T-cell costimulatory pathways in allograft rejection and tolerance.

    PubMed

    Rothstein, David M; Sayegh, Mohamed H

    2003-12-01

    The destiny of activated T cells is critical to the ultimate fate of immune response. After encountering antigen, naïve T cells receive signal 1 through the T-cell receptor (TCR)-major histocompatibility complex (MHC) plus antigenic peptide complex and signal 2 through "positive" costimulatory molecules leading to full activation. "Negative" T-cell costimulatory pathways, on the other hand, function to downregulate immune responses. The purpose of this article is to review the current state of knowledge and recent advances in our understanding of the functions of the positive and negative T-cell costimulatory pathways in alloimmune responses. Specifically, we discuss the functions of the CD28:B7 and the tumor necrosis factor receptor (TNFR):tumor necrosis factor (TNF) family of molecules in allograft rejection and tolerance. We address the following important questions: are T-cell costimulatory pathways merely redundant or do they provide distinct and unique functions? What are the important and unique interactions between the various pathways? And, what are the effects and mechanisms of targeting of these pathways in different types and patterns of allograft rejection and tolerance models?

  4. Loss of Sirt3 Limits Bone Marrow Cell-Mediated Angiogenesis and Cardiac Repair in Post-Myocardial Infarction

    PubMed Central

    Zeng, Heng; Li, Lanfang; Chen, Jian-Xiong

    2014-01-01

    Sirtuin-3 (Sirt3) has a critical role in the regulation of human aging and reactive oxygen species (ROS) formation. A recent study has identified Sirt3 as an essential regulator of stem cell aging. This study investigated whether Sirt3 is necessary for bone marrow cell (BMC)-mediated cardiac repair in post-myocardial infarction (MI). In vitro, BMC-derived endothelial progenitor cells (EPCs) from wild type (WT) and Sirt3KO mice were cultured. EPC angiogenesis, ROS formation and apoptosis were assessed. In vivo, WT and Sirt3 KO mice were subjected to MI and BMCs from WT and Sirt3 KO mice were injected into ischemic area immediately. The expression of VEGF and VEGFR2 was reduced in Sirt3KO-EPCs. Angiogenic capacities and colony formation were significantly impaired in Sirt3KO-EPCs compared to WT-EPCs. Loss of Sirt3 further enhanced ROS formation and apoptosis in EPCs. Overexpression of Sirt3 or treatment with NADPH oxidase inhibitor apocynin (Apo, 200 and 400 microM) rescued these abnormalities. In post-MI mice, BMC treatment increased number of Sca1+/c-kit+ cells; enhanced VEGF expression and angiogenesis whereas Sirt3KO-BMC treatment had little effects. BMC treatment also attenuated NADPH oxidase subunits p47phox and gp91phox expression, and significantly reduced ROS formation, apoptosis, fibrosis and hypertrophy in post-MI mice. Sirt3KO-BMC treatment did not display these beneficial effects. In contrast, Sirt3KO mice treated with BMCs from WT mice attenuated myocardial apoptosis, fibrosis and improved cardiac function. Our data demonstrate that Sirt3 is essential for BMC therapy; and loss of Sirt3 limits BMC-mediated angiogenesis and cardiac repair in post-MI. PMID:25192254

  5. The Basics of Renal Allograft Pathology.

    PubMed

    Troxell, Megan L; Houghton, Donald C

    2014-09-01

    Renal allograft biopsy provides critical information in the management of renal transplant patients, and must be analyzed in close collaboration with the clinical team. The histologic correlates of acute T-cell mediated rejection are interstitial inflammation, tubulitis, and endothelialitis; polyomavirus nephropathy is a potential mimic. Evidence of antibody-mediated rejection includes C4d deposition; morphologic acute tissue injury; and donor specific antibodies. Acute tubular injury/necrosis is a reversible cause of impaired graft function, especially in the immediate post-transplant period. Drug toxicity, recurrent disease, chronic injury, and other entities affecting both native and transplant kidneys must also be evaluated. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Orthotopic Transplantation of Achilles Tendon Allograft in Rats: With or without Incorporation of Autologous Mesenchymal Stem Cells.

    PubMed

    Aynardi, Michael; Zahoor, Talal; Mitchell, Reed; Loube, Jeffrey; Feltham, Tyler; Manandhar, Lumanti; Paudel, Sharada; Schon, Lew; Zhang, Zijun

    2018-02-01

    The biology and function of orthotopic transplantation of Achilles tendon allograft are unknown. Particularly, the revitalization of Achilles allograft is a clinical concern. Achilles allografts were harvested from donor rats and stored at -80 °C. Subcutaneous adipose tissue was harvested from the would-be allograft recipient rats for isolation of mesenchymal stem cells (MSCs). MSCs were cultured with growth differentiation factor-5 (GDF-5) and applied onto Achilles allografts on the day of transplantation. After the native Achilles tendon was resected from the left hind limb of the rats, Achilles allograft, with or without autologous MSCs, was implanted and sutured with calf muscles proximally and calcaneus distally. Animal gait was recorded presurgery and postsurgery weekly. The animals were sacrificed at week 4, and the transplanted Achilles allografts were collected for biomechanical testing and histology. The operated limbs had altered gait. By week 4, the paw print intensity, stance time, and duty cycle (percentage of the stance phase in a step cycle) of the reconstructed limbs were mostly recovered to the baselines recorded before surgery. Maximum load of failure was not different between Achilles allografts, with or without MSCs, and the native tendons. The Achilles allograft supplemented with MSCs had higher cellularity than the Achilles allograft without MSCs. Deposition of fine collagen (type III) fibers was active in Achilles allograft, with or without MSCs, but it was more evenly distributed in the allografts that were incubated with MSCs. In conclusion, orthotopically transplanted Achilles allograft healed with host tissues, regained strength, and largely restored Achilles function in 4 wk in rats. It is therefore a viable option for the reconstruction of a large Achilles tendon defect. Supplementation of MSCs improved repopulation of Achilles allograft, but large animal models, with long-term follow up and cell tracking, may be required to fully

  7. Anti-huCD20 Antibody Therapy for Antibody-Mediated Rejection of Renal Allografts in a Mouse Model

    PubMed Central

    Abe, Toyofumi; Ishii, Daisuke; Gorbacheva, Victoria; Kohei, Naoki; Tsuda, Hidetoshi; Tanaka, Toshiaki; Dvorina, Nina; Nonomura, Norio; Takahara, Shiro; Valujskikh, Anna; Baldwin, William M.; Fairchild, Robert L.

    2016-01-01

    We have reported that B6.CCR5−/− mice reject renal allografts with high serum donor-specific antibody (DSA) titers and marked C4d deposition in grafts, features consistent with AMR. B6.huCD20/CCR5−/− mice, where human CD20 expression is restricted to B cells, rejected A/J renal allografts by day 26 post-transplant with DSA first detected in serum on day 5 post-transplant and increased thereafter. Recipient treatment with anti-huCD20 mAb prior to the transplant and weekly up to 7 weeks post-transplant promoted long-term allograft survival (> 100 days) with low DSA titers. To investigate the effect of B cell depletion at the time serum DSA was first detected, recipients were treated with anti-huCD20 mAb on days 5, 8 and 12 post-transplant. This regimen significantly reduced DSA titers and graft inflammation on day 15 post-transplant and prolonged allograft survival > 60 days. However, DSA returned to the titers observed in control treated recipients by day 30 post-transplant and histological analyses on day 60 post-transplant indicated severe interstitial fibrosis. These results indicate that anti-huCD20 mAb had the greatest effect as a prophylactic treatment and that the distinct kinetics of DSA responses accounts for acute renal allograft failure versus the development of fibrosis. PMID:25731734

  8. Expression of GSK-3β in renal allograft tissue and its significance in pathogenesis of chronic allograft dysfunction.

    PubMed

    Yan, Qiang; Wang, Baoyao; Sui, Weiguo; Zou, Guimian; Chen, Huaizhou; Xie, Shenping; Zou, Hequn

    2012-01-13

    To explore the expression of Glycogen synthase kinase 3 beta (GSK-3β) in renal allograft tissue and its significance in the pathogenesis of chronic allograft dysfunction. Renal allograft biopsy was performed in all of the renal allograft recipients with proteinuria or increased serum creatinine level who came into our hospital from January 2007 to December 2009. Among them 28 cases was diagnosed as chronic allograft dysfunction based on pahtological observation, including 21 males with a mean age of 45 ± 10 years old and 7 females with a mean age of 42 ± 9 years old. The time from kidney transplantation to biopsy were 1-9 (3.5) years. Their serum creatinine level were 206 ± 122 umol/L. Immunohistochemical assay and computer-assisted genuine color image analysis system (imagepro-plus 6.0) were used to detect the expression of GSK-3β in the renal allografts of 28 cases of recipients with chronic allograft dysfunction. Mean area and mean integrated optical density of GSK-3β expression were calculated. The relationship between expression level of GSK-3β and either the grade of inflammatory cell infiltration or interstitial fibrosis/tubular atrophy in renal allograft was analyzed. Five specimens of healthy renal tissue were used as controls. The expression level of the GSK-3β was significantly increased in the renal allograft tissue of recipients with chronic allograft dysfunction, compared to normal renal tissues, and GSK-3β expression became stronger along with the increasing of the grade of either inflammatory cell infiltration or interstitial fibrosis/tubular atrophy in renal allograft tissue. There might be a positive correlation between either inflammatory cell infiltration or interstitial fibrosis/tubular atrophy and high GSK-3β expression in renal allograft tissue. The virtual slide(s) for this article can be found here:http://www.diagnosticpathology.diagnomx.eu/vs/9924478946162998.

  9. The effect of mesenchymal stem cells delivered via hydrogel-based tissue engineered periosteum on bone allograft healing.

    PubMed

    Hoffman, Michael D; Xie, Chao; Zhang, Xinping; Benoit, Danielle S W

    2013-11-01

    Allografts remain the clinical "gold standard" for treatment of critical sized bone defects despite minimal engraftment and ∼60% long-term failure rates. Therefore, the development of strategies to improve allograft healing and integration are necessary. The periosteum and its associated stem cell population, which are lacking in allografts, coordinate autograft healing. Herein we utilized hydrolytically degradable hydrogels to transplant and localize mesenchymal stem cells (MSCs) to allograft surfaces, creating a periosteum mimetic, termed a 'tissue engineered periosteum'. Our results demonstrated that this tissue engineering approach resulted in increased graft vascularization (∼2.4-fold), endochondral bone formation (∼2.8-fold), and biomechanical strength (1.8-fold), as compared to untreated allografts, over 16 weeks of healing. Despite this enhancement in healing, the process of endochondral ossification was delayed compared to autografts, requiring further modifications for this approach to be clinically acceptable. However, this bottom-up biomaterials approach, the engineered periosteum, can be augmented with alternative cell types, matrix cues, growth factors, and/or other small molecule drugs to expedite the process of ossification. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The effect of mesenchymal stem cells delivered via hydrogel-based tissue engineered periosteum on bone allograft healing

    PubMed Central

    Hoffman, Michael D.; Xie, Chao; Zhang, Xinping; Benoit, Danielle S.W.

    2013-01-01

    Allografts remain the clinical “gold standard” for treatment of critical sized bone defects despite minimal engraftment and ~60% long-term failure rates. Therefore, the development of strategies to improve allograft healing and integration are necessary. The periosteum and its associated stem cell population, which are lacking in allografts, coordinate autograft healing. Herein we utilized hydrolytically degradable hydrogels to transplant and localize mesenchymal stem cells (MSCs) to allograft surfaces, creating a periosteum mimetic, termed a ‘tissue engineered periosteum’. Our results demonstrated that this tissue engineering approach resulted in increased graft vascularization (~2.4-fold), endochondral bone formation (~2.8-fold), and biomechanical strength (1.8-fold), as compared to untreated allografts, over 16 weeks of healing. Despite this enhancement in healing, the process of endochondral ossification was delayed compared to autografts, requiring further modifications for this approach to be clinically acceptable. However, this bottom-up biomaterials approach, the engineered periosteum, can be augmented with alternative cell types, matrix cues, growth factors, and/or other small molecule drugs to expedite the process of ossification. PMID:23958029

  11. Activated effector and memory T cells contribute to circulating sCD30: potential marker for islet allograft rejection.

    PubMed

    Saini, D; Ramachandran, S; Nataraju, A; Benshoff, N; Liu, W; Desai, N; Chapman, W; Mohanakumar, T

    2008-09-01

    T-cell activation up-regulates CD30 resulting in an increase in serum soluble CD30 (sCD30). CD4+ T cells, a major source for sCD30, play a significant role in the pathogenesis of rejection. In this study, sCD30 was measured pre- and posttransplant in mouse islet allograft models and human islet allograft recipients. sCD30 was measured by ELISA in diabetic C57BL/6, CD4Knockout (KO) and CD8KO islet allograft recipients. sCD30 increased significantly prior to rejection (1.8 +/- 1 days) in 80% of allograft recipients. Sensitization with donor splenocytes, or a second graft, further increased sCD30 (282.5 +/- 53.5 for the rejecting first graft vs. 374.6 +/- 129 for the rejecting second graft) prior to rejection suggesting memory CD4+ T cells contribute to sCD30. CD4KO failed to reject islet allograft and did not demonstrate sCD30 increase. CD8KO showed elevated (227 +/- 107) sCD30 (1 day) prior to rejection. High pretransplant sCD30 (>20 U/ml) correlated with poor outcome in human islet allograft recipients. Further, increase in sCD30 posttransplant preceded (3-4 months) loss of islet function. We conclude that sCD30 is released from activated CD4 T cells prior to islet allograft rejection and monitoring sCD30 can be a valuable adjunct in the follow-up of islet transplant recipients.

  12. IFN-γ Blocks CD4+CD25+ Tregs and Abolishes Immune Privilege of Minor Histocompatibility Mismatched Corneal Allografts

    PubMed Central

    Cunnusamy, Khrishen; Niederkorn, Jerry Y.

    2014-01-01

    Th1 CD4+ cells are believed to be the primary mediators of corneal allograft rejection. However, rejection of fully allogeneic C57BL/6 corneal allografts soared from 50% to 90% in both INF-γ−/− and anti-IFN-γ-treated BALB/c mice. In contrast, similar deficits in IFN-γ in BALB/c hosts enhanced immune privilege of BALB.B (minor histocompatibility antigen-matched, MHC-mismatched) and NZB (major histocompatibility complex-matched, minor histocompatibility antigen-mismatched) corneal allografts – decreasing rejection from 80% to ~20%. This effect of IFN-γ was independent of CD4+ T cell lineage commitment as both anti-IFN-γ-treated acceptor and rejector mice displayed a Th2 cytokine profile. The presence of IFN-γ prevented the generation of alloantigen-specific CD4+CD25+ Tregs in hosts receiving either MHC only mismatched BALB.B or minor only histocompatibility (minor H)-mismatched NZB corneal allografts. Tregs in these hosts, promoted corneal allograft survival by suppressing Th2 effector cells. By contrast, IFN-γ was necessary for the generation of CD4+CD25+ Tregs that prevented rejection of fully allogeneic C57BL/6 corneal allografts in BALB/c hosts. These findings suggest that MHC-matching in combination with blockade of IFN-γ holds promise as a means of enhancing corneal allograft survival. PMID:24119152

  13. The effect of mesenchymal stem cell sheets on structural allograft healing of critical-sized femoral defects in mice

    PubMed Central

    Long, Teng; Zhu, Zhenan; Awad, Hani A.; Schwarz, Edward M.; Hilton, Matthew J.; Dong, Yufeng

    2014-01-01

    Structural bone allografts are widely used in the clinic to treat critical sized bone defects, despite lacking the osteoinductive characteristics of live autografts. To address this, we generated revitalized structural allografts wrapped with mesenchymal stem/progenitor cell (MSC) sheets, which were produced by expanding primary syngenic bone marrow derived cells on temperature-responsive plates, as a tissue engineered periosteum. In vitro assays demonstrated maintenance of the MSC phenotype in the sheets, suggesting that short-term culturing of MSC sheets is not detrimental. To test their efficacy in vivo, allografts wrapped with MSC sheets were transplanted into 4-mm murine femoral defects and compared to allografts with direct seeding of MSCs and allografts without cells. Evaluations consisted of x-ray plain radiography, 3D microCT, histology, and biomechanical testing at 4- and 6-weeks post-surgery. Our findings demonstrate that MSC sheets induce prolonged cartilage formation at the graft-host junction and enhanced bone callus formation, as well as graft-host osteointegration. Moreover, a large periosteal callus was observed spanning the allografts with MSC sheets, which partially mimics live autograft healing. Finally, biomechanical testing showed a significant increase in the structural and functional properties of MSC sheet grafted femurs. Taken together, MSC sheets exhibit enhanced osteogenicity during critical sized bone defect repair, demonstrating the feasibility of this tissue engineering solution for massive allograft healing. PMID:24393269

  14. In vitro effect of mineralized and demineralized bone allografts on proliferation and differentiation of MG-63 osteoblast-like cells.

    PubMed

    Lafzi, Ardeshir; Vahabi, Surena; Ghods, Shadab; Torshabi, Maryam

    2016-03-01

    Due to the extensive use of bone allografts in bone reconstruction and periodontal therapy as suitable alternatives to autografts, they are now marketed under different commercial brands. Considering the controversial reports regarding the osteoinductive properties of bone allografts, this study sought to assess the effect of type (mineralized/demineralized), amount and particle size of several allografts on the proliferation and differentiation of MG-63 osteoblast-like cells. MG-63 cells (24-h culture) were exposed to 20 and 40 mg amounts of nine different commercially available freeze-dried bone allografts. After 24 and 72 h of incubation, the effect of water-soluble allograft released materials on cell viability and proliferation was assessed using methyl thiazol tetrazolium (MTT) assay after 24 and 72 h of exposure. Cell differentiation and mineralization was assessed by real-time quantitative reverse transcription PCR and alizarin red staining after 72 h of exposure. The amount and particle size of understudy allografts had significant effects on cell viability after 24 h of exposure (in contrast to 72 h). Higher rate of proliferation was seen in non-differentiated or slow-differentiated groups. The amount and particle size factors had no significant effect on the amount of calcified nodules or the expression of osteogenic marker genes in most groups. Faster and more distinct differentiation and mineralization was noted in mineralized compared to demineralized groups during the 3-day study period. Based on the results, the understudy mineralized (non-demineralized) bone allografts had greater effect on osteogenic differentiation of the MG-63 cells and showed more in vitro osteoinductive activity compared to partially demineralized and fully demineralized types.

  15. A fibrin-supported myocardial organ culture for isolation of cardiac stem cells via the recapitulation of cardiac homeostasis.

    PubMed

    Kim, Jong-Tae; Chung, Hye Jin; Seo, Ji-Yeon; Yang, Young-Il; Choi, Min-Young; Kim, Hyeong-In; Yang, Tae-Hyun; Lee, Won-Jin; Youn, Young Chul; Kim, Hye Jung; Kim, Yeon Mee; Lee, Hyukjin; Jang, Yang-Soo; Lee, Seung-Jin

    2015-04-01

    There is great interest in the development of cardiac stem cells (CSCs) cell-based therapeutics; thus, clinical translation requires an efficient method for attaining therapeutic quantities of these cells. Furthermore, an in vitro model to investigate the mechanisms regulating the cardiac homeostasis is crucial. We sought to develop a simple myocardial culture method for enabling both the recapitulation of myocardial homeostasis and the simultaneous isolation of CSCs. The intact myocardial fragments were encapsulated 3-dimensionally into the fibrin and cultured under dynamic conditions. The fibrin provided secure physical support and substratum to the myocardium, which mediated integrin-mediated cell signaling that allowed in situ renewal, outgrowth and cardiomyogenic differentiation of CSCs, mimicking myocardial homeostasis. Since our culture maintained the myocardial CSCs niches, it was possible to define the identity of in vitro renewed CSCs that situated in the interstitium between cardiomyocytes and microvessels. Lastly, the use of matrix-restricted fibrinolysis enabled the selective isolation of outgrown CSCs that retained the clonogenicity, long-term growth competency and cardiovascular commitment potential. Collectively, this myocardial culture might be used as an alternative tool for studying cardiac biology and developing cell-based therapeutics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Knockdown of microRNA-155 in Kupffer cells results in immunosuppressive effects and prolongs survival of mouse liver allografts.

    PubMed

    Li, Jinzheng; Gong, Junhua; Li, Peizhi; Li, Min; Liu, Yiming; Liang, Shaoyong; Gong, Jianping

    2014-03-27

    Our previous studies have shown that Kupffer cells (KCs) play a crucial role in postoperative pathologic changes. Recent reports have demonstrated that microRNA-155 (miR-155) is associated with inflammation and upregulation of proinflammatory mediators in the peripheral blood and allografts of transplant patients. However, the precise mechanism for this remains unknown. KCs isolated from BALB/c mice were transfected with miR-155 mimic or inhibitor. Levels of suppressor of cytokine signaling 1/Janus kinase/signal transducer and activator of transcription (SOCS1/JAK/STAT) proteins and surface molecules (MHC-II, CD40, and CD86) were then measured. T-cell proliferation and apoptosis were evaluated in mixed lymphocyte reactions. Orthotopic liver transplantation was performed in mice after miR-155 short hairpin RNA lentivirus treatment, and postoperative survival, liver function and histology, and mRNA and protein expression were analyzed. miR-155 knockdown in KCs decreased MHC-II, CD40, and CD86 expression, suppressed antigen-presenting function, and affected SOCS1/JAK/STAT inflammatory pathways. In addition, KCs transfected with miR-155 inhibitor and cocultured with T lymphocytes showed reduced T-cell responses but a greater number of apoptotic T cells. Finally, miR-155 suppression in graft liver prolonged liver allograft survival and improved liver function. The changes were closely associated with the levels of T helper 1 and 2 (Th1/Th2) cytokines and T-cell apoptosis, but a direct mechanistic link in vivo was not established. These data suggest miR-155 regulates the balance of Th1/Th2 cytokines and the maturation and function of KCs in mice. miR-155 repression in KCs positively regulates KC function toward immunosuppression and prolongs liver allograft survival.

  17. Treatment options for renal cell carcinoma in renal allografts: a case series from a single institution.

    PubMed

    Swords, Darden C; Al-Geizawi, Samer M; Farney, Alan C; Rogers, Jeffrey; Burkart, John M; Assimos, Dean G; Stratta, Robert J

    2013-01-01

    Renal cell carcinoma (RCC) is more common in renal transplant and dialysis patients than the general population. However, RCC in transplanted kidneys is rare, and treatment has previously consisted of nephrectomy with a return to dialysis. There has been recent interest in nephron-sparing procedures as a treatment option for RCC in allograft kidneys in an effort to retain allograft function. Four patients with RCC in allograft kidneys were treated with nephrectomy, partial nephrectomy, or radiofrequency ablation. All of the patients are without evidence of recurrence of RCC after treatment. We found nephron-sparing procedures to be reasonable initial options in managing incidental RCCs diagnosed in functioning allografts to maintain an improved quality of life and avoid immediate dialysis compared with radical nephrectomy of a functioning allograft. However, in non-functioning renal allografts, radical nephrectomy may allow for a higher chance of cure without the loss of transplant function. Consequently, radical nephrectomy should be utilized whenever the allograft is non-functioning and the patient's surgical risk is not prohibitive. © 2013 John Wiley & Sons A/S.

  18. The effect of mesenchymal stem cell sheets on structural allograft healing of critical sized femoral defects in mice.

    PubMed

    Long, Teng; Zhu, Zhenan; Awad, Hani A; Schwarz, Edward M; Hilton, Matthew J; Dong, Yufeng

    2014-03-01

    Structural bone allografts are widely used in the clinic to treat critical sized bone defects, despite lacking the osteoinductive characteristics of live autografts. To address this, we generated revitalized structural allografts wrapped with mesenchymal stem/progenitor cell (MSC) sheets, which were produced by expanding primary syngenic bone marrow derived cells on temperature-responsive plates, as a tissue-engineered periosteum. In vitro assays demonstrated maintenance of the MSC phenotype in the sheets, suggesting that short-term culturing of MSC sheets is not detrimental. To test their efficacy in vivo, allografts wrapped with MSC sheets were transplanted into 4-mm murine femoral defects and compared to allografts with direct seeding of MSCs and allografts without cells. Evaluations consisted of X-ray plain radiography, 3D microCT, histology, and biomechanical testing at 4- and 6-weeks post-surgery. Our findings demonstrate that MSC sheets induce prolonged cartilage formation at the graft-host junction and enhanced bone callus formation, as well as graft-host osteointegration. Moreover, a large periosteal callus was observed spanning the allografts with MSC sheets, which partially mimics live autograft healing. Finally, biomechanical testing showed a significant increase in the structural and functional properties of MSC sheet grafted femurs. Taken together, MSC sheets exhibit enhanced osteogenicity during critical sized bone defect repair, demonstrating the feasibility of this tissue engineering solution for massive allograft healing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Pressure-Mediated Oligonucleotide Transfection of Rat and Human Cardiovascular Tissues

    NASA Astrophysics Data System (ADS)

    Mann, Michael J.; Gibbons, Gary H.; Hutchinson, Howard; Poston, Robert S.; Hoyt, E. Grant; Robbins, Robert C.; Dzau, Victor J.

    1999-05-01

    The application of gene therapy to human disease is currently restricted by the relatively low efficiency and potential hazards of methods of oligonucleotide or gene delivery. Antisense or transcription factor decoy oligonucleotides have been shown to be effective at altering gene expression in cell culture expreriments, but their in vivo application is limited by the efficiency of cellular delivery, the intracellular stability of the compounds, and their duration of activity. We report herein the development of a highly efficient method for naked oligodeoxynucleotide (ODN) transfection into cardiovascular tissues by using controlled, nondistending pressure without the use of viral vectors, lipid formulations, or exposure to other adjunctive, potentially hazardous substances. In this study, we have documented the ability of ex vivo, pressure-mediated transfection to achieve nuclear localization of fluorescent (FITC)-labeled ODN in approximately 90% and 50% of cells in intact human saphenous vein and rat myocardium, respectively. We have further documented that pressure-mediated delivery of antisense ODN can functionally inhibited target gene expression in both of these tissues in a sequence-specific manner at the mRNA and protein levels. This oligonucleotide transfection system may represent a safe means of achieving the intraoperative genetic engineering of failure-resistant human bypass grafts and may provide an avenue for the genetic manipulation of cardiac allograft rejection, allograft vasculopathy, or other transplant diseases.

  20. Case Series With Histopathologic and Radiographic Analyses Following Failure of Fresh Osteochondral Allografts of the Talus.

    PubMed

    Pomajzl, Ryan Joseph; Baker, Erin Ann; Baker, Kevin Charles; Fleischer, Mackenzie Marie; Salisbury, Meagan R; Phillips, Dylan M; Fortin, Paul Thomas

    2016-09-01

    Fresh osteochondral allografting of the talus is one treatment option for large chondral defects. Following positive early term results, failure rates of up to 35% have been reported. A retrieval study was performed to characterize failed talar allografts. Failed fresh osteochondral allografts of the talus were retrieved on revision. Cases of deep infection were excluded. After tissue fixation, samples were decalcified, embedded, and stained with Safranin-O/Fast Green, osteocalcin, tumor necrosis factor alpha (TNF-α), CD4, CD8, and CD68. Slides were graded according to the modified Mankin scoring system or severity scale. Medical record review was performed. Eight allografts (7 patients) were retrieved from patients, following an average term of implantation of 31 months (range, 12-58). There were 3 types of allografts in this series (hemidome, n=5; segmental, n=2; bipolar, n=1). Reasons for transplantation were post-traumatic arthritis or osteonecrosis; reasons for revision were graft failure/collapse, nonunion, progressive arthritis, and/or pain. Prior to revision, all grafts exhibited collapse and subchondral lucencies. At the graft host interface, Safranin-O staining demonstrated substantial loss of sulfated glycosaminoglycans, Osteocalcin immunostaning was nearly absent, CD68 (indicating osteoclast activity) was predominantly exhibited, and CD4+ helper T cells as well as CD8+ cytotoxic T cells and NK cells-cell types commonly implicated in allogeneic organ transplant rejection-were found in high concentrations. TNF-α was present throughout the graft. A histopathologic analysis of 8 retrieved, failed talar allografts was performed. Graft failure appeared to be primarily biologic, with an extensive loss of viable cartilaginous and osseous tissue at the graft-host interface. This study provides the first evidence of a potential CD4+ and CD8+ lymphocyte-mediated failure mechanism in fresh osteochondral allografts that were revised following collapse. Level IV

  1. Clinical Evaluation of Decellularized Nerve Allograft with Autologous Bone Marrow Stem Cells to Improve Peripheral Nerve Repair and Functional Outcomes

    DTIC Science & Technology

    2016-07-01

    AWARD NUMBER: W81XWH-15-2-0026 TITLE: Clinical Evaluation of Decellularized Nerve Allograft With Autologous Bone Marrow Stem Cells To Improve...5b. GRANT NUMBER W81XWH-15-2-0026 CClinical Evaluation of Decellularized Nerve Allograft With Autologous Bone Marrow Stem Cells To Improve...co- treatments of a commercially available decellularized processed peripheral nerve allograft scaffold (Avance® Nerve Graft, AxoGen, Alachua FL) with

  2. Clinical Evaluation of Decellularized Nerve Allograft with Autologous Bone Marrow Stem Cells to Improve Peripheral Nerve Repair and Functional Outcomes

    DTIC Science & Technology

    2017-07-01

    AWARD NUMBER: W81XWH-15-2-0026 TITLE: Clinical Evaluation of Decellularized Nerve Allograft with Autologous Bone Marrow Stem Cells to Improve...of Decellularized Nerve Allograft with 5a. CONTRACT NUMBER Autologous Bone Marrow Stem Cells to Improve Peripheral Nerve 5b. GRANT NUMBER W81XWH...commercially available decellularized processed peripheral nerve allograft scaffold (Avance® Nerve Graft, AxoGen, Alachua FL) with autologous bone marrow

  3. Rat Cytomegalovirus Vaccine Prevents Accelerated Chronic Rejection in CMV‐Naïve Recipients of Infected Donor Allograft Hearts

    PubMed Central

    Hwee, Y. K.; Kreklywich, C. N.; Andoh, T.; Denton, M.; Smith, P.; Hart, E.; Broekel, R.; Pallett, C.; Rogers, K.; Streblow, A. D.; Chuop, M.; Perry, A.; Slifka, M.; Messaoudi, I.; Orloff, S. L.

    2015-01-01

    Cytomegalovirus accelerates transplant vascular sclerosis (TVS) and chronic rejection (CR) in solid organ transplants; however, the mechanisms involved are unclear. We determined the efficacy of a CMV vaccine in preventing CMV‐accelerated rat cardiac allograft rejection in naïve recipients of CMV+ donor hearts. F344 donor rats were infected with RCMV 5 days prior to heterotopic cardiac transplantation into CMV‐naïve or H2O2‐inactivated RCMV‐vaccinated Lewis recipients. Recipients of RCMV‐infected donor hearts rejected at POD59, whereas vaccinated recipients exhibited a significantly prolonged time to rejection‐POD97, similar to recipients of uninfected donor hearts (POD108). Although all of the donor hearts were preinfected, the vaccinated recipients had lower graft and PBMC viral loads at POD 7 compared to unvaccinated controls. Adoptive T cell and passive antibody transfers from vaccinated Lewis rats into naïve recipients demonstrate that both T‐cell and B‐cell arms of the adaptive immune response provide protection against CMV‐accelerated rejection. Similar findings were obtained when testing three different adjuvants in passive transfer experiments. We have determined that the timing of the vaccine prior to transplantation and the specific adjuvant play critical roles in mediating anti‐viral responses and promoting graft survival. CMV vaccination prior to transplantation may effectively increase graft survival. PMID:25766876

  4. Urine biomarkers informative of human kidney allograft rejection and tolerance.

    PubMed

    Nissaisorakarn, Voravech; Lee, John Richard; Lubetzky, Michelle; Suthanthiran, Manikkam

    2018-05-01

    We developed urinary cell messenger RNA (mRNA) profiling to monitor in vivo status of human kidney allografts based on our conceptualization that the kidney allograft may function as an in vivo flow cell sorter allowing access of graft infiltrating cells to the glomerular ultrafiltrate and that interrogation of urinary cells is informative of allograft status. For the profiling urinary cells, we developed a two-step preamplification enhanced real-time quantitative PCR (RT-QPCR) assays with a customized amplicon; preamplification compensating for the low RNA yield from urine and the customized amplicon facilitating absolute quantification of mRNA and overcoming the inherent limitations of relative quantification widely used in RT-QPCR assays. Herein, we review our discovery and validation of urinary cell mRNAs as noninvasive biomarkers prognostic and diagnostic of acute cellular rejection (ACR) in kidney allografts. We summarize our results reflecting the utility of urinary cell mRNA profiling for predicting reversal of ACR with anti-rejection therapy; differential diagnosis of kidney allograft dysfunction; and noninvasive diagnosis and prognosis of BK virus nephropathy. Messenger RNA profiles associated with human kidney allograft tolerance are also summarized in this review. Altogether, data supporting the idea that urinary cell mRNA profiles are informative of kidney allograft status and tolerance are reviewed in this report. Copyright © 2018. Published by Elsevier Inc.

  5. Composite fatty acid ether amides suppress growth of liver cancer cells in vitro and in an in vivo allograft mouse model.

    PubMed

    Cao, Mengde; Prima, Victor; Nelson, David; Svetlov, Stanislav

    2013-06-01

    The heterogeneity of liver cancer, in particular hepatocellular carcinoma (HCC), portrays the requirement of multiple targets for both its treatment and prevention. Multifaceted agents, minimally or non-toxic for normal hepatocytes, are required to address the molecular diversity of HCC, including the resistance of putative liver cancer stem cells to chemotherapy. We designed and synthesized two fatty acid ethers of isopropylamino propanol, C16:0-AIP-1 and C18:1-AIP-2 (jointly named AIPs), and evaluated their anti-proliferative effects on the human HCC cell line Huh7 and the murine hepatoma cell line BNL 1MEA.7R.1, both in vitro and in an in vivo allograft mouse model. We found that AIP-1 and AIP-2 inhibited proliferation and caused cell death in both Huh7 and BNL 1MEA.7R.1 cells. Importantly, AIP-1 and AIP-2 were found to block the activation of putative liver cancer stem cells as manifested by suppression of clonal 'carcinosphere' development in growth factor-free and anchorage-free medium. The AIPs exhibited a relatively low toxicity against normal human or rat hepatocytes in primary cultures. In addition, we found that the AIPs utilized multifaceted pathways that mediate both autophagy and apoptosis in HCC, including the inhibition of AKTs and CAMK-1. In immune-competent mice, the AIPs significantly reduced BNL 1MEA.7R.1 cell-driven tumor allograft development, with a higher efficiency than sorafenib. A combination of AIP-1 + AIP-2 was most effective in reducing the tumor allograft incidence. AIPs represent a novel class of simple fatty acid derivatives that are effective against liver tumors via diverse pathways. They show a low toxicity towards normal hepatocytes. The addition of AIPs may represent a new avenue towards the management of chronic liver injury and, ultimately, the prevention and treatment of HCC.

  6. Intragraft vascular occlusive sickle crisis with early renal allograft loss in occult sickle cell trait.

    PubMed

    Kim, Lisa; Garfinkel, Marc R; Chang, Anthony; Kadambi, Pradeep V; Meehan, Shane M

    2011-07-01

    Early renal allograft failure due to sickle cell trait is rare. We present clinical and pathologic findings in 2 cases of early renal allograft failure associated with renal vein thrombosis and extensive erythrocyte sickling. Hemoglobin AS was identified in retrospect. In case 1, a 41-year-old female recipient of a deceased donor renal transplant developed abdominal pain and acute allograft failure on day 16, necessitating immediate nephrectomy. In case 2, the transplanted kidney in a 58-year-old female recipient was noted to be mottled blue within minutes of reperfusion. At 24 hours, the patient was oliguric; and the graft was removed. Transplant nephrectomies had diffuse enlargement with diffuse, nonhemorrhagic, cortical, and medullary necrosis. Extensive sickle vascular occlusion was evident in renal vein branches; interlobar, interlobular, and arcuate veins; vasa recta; and peritubular capillaries. The renal arteries had sickle vascular occlusion in case 1. Glomeruli had only focal sickle vascular occlusion. The erythrocytes in sickle vascular occlusion had abundant cytoplasmic filaments by electron microscopy. Acute rejection was not identified in either case. Protein C and S levels, factor V Leiden, and lupus anticoagulant assays were within normal limits. Hemoglobin analysis revealed hemoglobin S of 21.8% and 25.6%, respectively. Renal allograft necrosis with intragraft sickle crisis, characterized by extensive vascular occlusive erythrocyte sickling and prominent renal vein thrombosis, was observed in 2 patients with sickle cell trait. Occult sickle cell trait may be a risk factor for early renal allograft loss. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Peroxisome Proliferator-Activated Receptor γ Deficiency in T Cells Accelerates Chronic Rejection by Influencing the Differentiation of CD4+ T Cells and Alternatively Activated Macrophages

    PubMed Central

    Ye, Ping; Cheng, Chao; Wu, Jie; Wang, Sihua; Sun, Yuan; Liu, Zheng; Xie, Aini; Xia, Jiahong

    2014-01-01

    Background In a previous study, activation of the peroxisome proliferator–activated receptor γ (PPARγ) inhibited chronic cardiac rejection. However, because of the complexity of chronic rejection and the fact that PPARγ is widely expressed in immune cells, the mechanism of the PPARγ - induced protective effect was unclear. Materials and Methods A chronic rejection model was established using B6.C-H-2bm12KhEg (H-2bm12) mice as donors, and MHC II-mismatched T-cell-specific PPARγ knockout mice or wild type (WT) littermates as recipients. The allograft lesion was assessed by histology and immunohistochemistry. T cells infiltrates in the allograft were isolated, and cytokines and subpopulations were detected using cytokine arrays and flow cytometry. Transcription levels in the allograft were measured by RT-PCR. In vitro, the T cell subset differentiation was investigated after culture in various polarizing conditions. PPARγ-deficient regularory T cells (Treg) were cocultured with monocytes to test their ability to induce alternatively activated macrophages (AAM). Results T cell-specific PPARγ knockout recipients displayed reduced cardiac allograft survival and an increased degree of pathology compared with WT littermates. T cell-specific PPARγ knockout resulted in more CD4+ T cells infiltrating into the allograft and altered the Th1/Th2 and Th17/Treg ratios. The polarization of AAM was also reduced by PPARγ deficiency in T cells through the action of Th2 and Treg. PPARγ-deficient T cells eliminated the pioglitazone-induced polarization of AAM and reduced allograft survival. Conclusions PPARγ-deficient T cells influenced the T cell subset and AAM polarization in chronic allograft rejection. The mechanism of PPARγ activation in transplantation tolerance could yield a novel treatment without side effects. PMID:25383620

  8. Erythropoietin, but not the correction of anemia alone, protects from chronic kidney allograft injury.

    PubMed

    Cassis, Paola; Gallon, Lorenzo; Benigni, Ariela; Mister, Marilena; Pezzotta, Anna; Solini, Samantha; Gagliardini, Elena; Cugini, Daniela; Abbate, Mauro; Aiello, Sistiana; Rocchetta, Federica; Scudeletti, Pierangela; Perico, Norberto; Noris, Marina; Remuzzi, Giuseppe

    2012-05-01

    Anemia can contribute to chronic allograft injury by limiting oxygen delivery to tissues, particularly in the tubulointerstitium. To determine mechanisms by which erythropoietin (EPO) prevents chronic allograft injury we utilized a rat model of full MHC-mismatched kidney transplantation (Wistar Furth donor and Lewis recipients) with removal of the native kidneys. EPO treatment entirely corrected post-transplant anemia. Control rats developed progressive proteinuria and graft dysfunction, tubulointerstitial damage, inflammatory cell infiltration, and glomerulosclerosis, all prevented by EPO. Normalization of post-transplant hemoglobin levels by blood transfusions, however, had no impact on chronic allograft injury, indicating that EPO-mediated graft protection went beyond the correction of anemia. Compared to syngeneic grafts, control allografts had loss of peritubular capillaries, higher tubular apoptosis, tubular and glomerular oxidative injury, and reduced expression of podocyte nephrin; all prevented by EPO treatment. The effects of EPO were associated with preservation of intragraft expression of angiogenic factors, upregulation of the anti-apoptotic factor p-Akt in tubuli, and increased expression of Bcl-2. Inhibition of p-Akt by Wortmannin partially antagonized the effect of EPO on allograft injury and tubular apoptosis, and prevented EPO-induced Bcl-2 upregulation. Thus non-erythropoietic derivatives of EPO may be useful to prevent chronic renal allograft injury.

  9. Orthotopic Transplantation of Achilles Tendon Allograft in Rats

    PubMed Central

    Aynardi, Michael; Zahoor, Talal; Mitchell, Reed; Loube, Jeffrey; Feltham, Tyler; Manandhar, Lumanti; Paudel, Sharada; Schon, Lew; Zhang, Zijun

    2018-01-01

    The biology and function of orthotopic transplantation of Achilles tendon allograft are unknown. Particularly, the revitalization of Achilles allograft is a clinical concern. Achilles allografts were harvested from donor rats and stored at −80 °C. Subcutaneous adipose tissue was harvested from the would-be allograft recipient rats for isolation of mesenchymal stem cells (MSCs). MSCs were cultured with growth differentiation factor-5 (GDF-5) and applied onto Achilles allografts on the day of transplantation. After the native Achilles tendon was resected from the left hind limb of the rats, Achilles allograft, with or without autologous MSCs, was implanted and sutured with calf muscles proximally and calcaneus distally. Animal gait was recorded presurgery and postsurgery weekly. The animals were sacrificed at week 4, and the transplanted Achilles allografts were collected for biomechanical testing and histology. The operated limbs had altered gait. By week 4, the paw print intensity, stance time, and duty cycle (percentage of the stance phase in a step cycle) of the reconstructed limbs were mostly recovered to the baselines recorded before surgery. Maximum load of failure was not different between Achilles allografts, with or without MSCs, and the native tendons. The Achilles allograft supplemented with MSCs had higher cellularity than the Achilles allograft without MSCs. Deposition of fine collagen (type III) fibers was active in Achilles allograft, with or without MSCs, but it was more evenly distributed in the allografts that were incubated with MSCs. In conclusion, orthotopically transplanted Achilles allograft healed with host tissues, regained strength, and largely restored Achilles function in 4 wk in rats. It is therefore a viable option for the reconstruction of a large Achilles tendon defect. Supplementation of MSCs improved repopulation of Achilles allograft, but large animal models, with long-term follow up and cell tracking, may be required to fully

  10. Revitalization of biostatic tissue allografts: new perspectives in tissue transplantology.

    PubMed

    Olender, E; Uhrynowska-Tyszkiewicz, I; Kaminski, A

    2011-10-01

    Biostatic (nonvital) tissue allografts have been used for temporary replacement as well as to trigger, stimulate, and ensure space for the regeneration of a recipient's own tissues. Examples of biostatic allografts routinely used in clinic are bone, tendons, skin, and amniotic membrane. A characteristic feature of biostatic allografts is the lack of living cells. In the recipient's body, biostatic allografts function as scaffolds as well as sources of growth, differentiation, and chemotactic factors. After implantation, recipient cells migrate onto the graft, colonize it, and initiate synthesis of extracellular matrix, thereby regenerating the structure of the lost or damaged tissue. The allograft gradually degrades before being remodeled and substituted by the recipient's new tissue. However, this process is not always effective due to a lack of reaction by recipient cells. New concepts have proposed seeding recipient cells onto the allograft prior to implantation, that is, biostatic allografts that are revitalized ex vivo. The aim of this presentation was to review scientific publications to provide essential information on the revitalization of biostatic allografts, as a rising trend in tissue transplantology. Biostatic allografts show the following advantages: they are human-derived, nontoxic, biocompatible, and, in some cases, already display the desired shape. The process of introducing cells into the biostatic graft is described as "revitalization." The cells used in the process are recipient autologous elements that are either differentiated or progenitor elements. Cells are seeded onto the graft directly after retrieval or after propagation in culture. Revitalized biostatic allografts can be used orthotopically for the regeneration of the same tissue they have been retrieved from or heterotopically wherein the graft retrieved from a different tissue is used as a carrier for cells typical for the tissue to be regenerated. Examples of orthotopic use include

  11. Induction of tolerance and prolongation of islet allograft survival by syngeneic hematopoietic stem cell transplantation in mice.

    PubMed

    Yang, Shi-feng; Xue, Wu-jun; Lu, Wan-hong; Xie, Li-yi; Yin, Ai-ping; Zheng, Jin; Sun, Ji-ping; Li, Yang

    2015-10-01

    Syngeneic or autologous hematopoietic stem cells transplantation (HSCT) has been proposed to treat autoimmune diseases because of its immunosuppressive and immunomodulatory effects, which can also contribute to posttransplant antirejection therapy. In this study, we explored the tolerogenic effect of syngeneic HSCT on prolonging islet allograft survival. C57BL/6 mice received syngeneic HSCT plus preconditioning with sublethal irradiation. Then islets of BALB/c mice were transplanted into the renal subcapsular of C57BL/6 mice after chemically induced into diabetes. HSCT mice exhibited improved islet allograft survival and increased serum insulin compared to control mice. Islet allografts of HSCT mice displayed lower level lymphocyte infiltration and stronger insulin staining than control mice. T cells of HSCT mice proliferated poorly in response to allogeneic splenocytes compared to control mice. Mice appeared reversed interferon-γ (IFN-γ)/interleukin-4 (IL-4) ratio to a Th2 immune deviation after syngeneic HSCT. The percentage of CD8(+) T cells was lower, while percentage of CD4(+)CD25(+)Foxp3(+) T regulatory cells (Tregs) was higher in HSCT mice than control mice. HSCT mice showed higher percentage of CTLA-4(+) T cells and expression of CTLA-4 mRNA than control mice. Targeting of CTLA-4 by intraperitoneal injection of anti-CTLA-4 mAb abrogated the effect of syngeneic HSCT on prolonging islet allograft survival, inhibiting activity of T cells in response to alloantigen, promoting Th1 to Th2 immune deviation and up regulating CD4(+)CD25(+)Foxp3(+) Tregs. Syngeneic HSCT plus preconditioning of sublethal irradiation induces tolerance and improves islet allograft survival in fully mismatched mice model. Th1 to Th2 immune deviation, increased CD4(+)CD25(+)Foxp3(+) Tregs and up-regulation of CTLA-4 maybe contribute to the tolerogenic effect induced by syngeneic HSCT. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Role of Transient Receptor Potential Channels in Heart Transplantation: A Potential Novel Therapeutic Target for Cardiac Allograft Vasculopathy.

    PubMed

    Ma, Shuo; Jiang, Yue; Huang, Weiting; Li, Xintao; Li, Shuzhuang

    2017-05-18

    Heart transplantation has evolved as the criterion standard therapy for end-stage heart failure, but its efficacy is limited by the development of cardiac allograft vasculopathy (CAV), a unique and rapidly progressive form of atherosclerosis in heart transplant recipients. Here, we briefly review the key processes in the development of CAV during heart transplantation and highlight the roles of transient receptor potential (TRP) channels in these processes during heart transplantation. Understanding the roles of TRP channels in contributing to the key procedures for the development of CAV during heart transplantation could provide basic scientific knowledge for the development of new preventive and therapeutic approaches to manage patients with CAV after heart transplantation.

  13. Pathological characteristics of liver allografts from donation after brain death followed by cardiac death in pigs.

    PubMed

    Ye, Hui; Wang, Dong-Ping; Zhang, Chuan-Zhao; Zhang, Long-Juan; Wang, Hao-Chen; Li, Zhuo-Hui; Chen, Zhen; Zhang, Tao; Cai, Chang-Jie; Ju, Wei-Qiang; Ma, Yi; Guo, Zhi-Yong; He, Xiao-Shun

    2014-10-01

    Donation after brain death followed by circulatory death (DBCD) is a unique practice in China. The aim of this study was to define the pathologic characteristics of DBCD liver allografts in a porcine model. Fifteen male pigs (25-30 kg) were allocated randomly into donation after brain death (DBD), donation after circulatory death (DCD) and DBCD groups. Brain death was induced by augmenting intracranial pressure. Circulatory death was induced by withdrawal of life support in DBCD group and by venous injection of 40 mL 10% potassium chloride in DCD group. The donor livers were perfused in situ and kept in cold storage for 4 h. Liver tissue and common bile duct samples were collected for hematoxylin and eosin staining, TUNEL testing and electron microscopic examination. Spot necrosis was found in hepatic parenchyma of DBD and DBCD groups, while a large area of necrosis was shown in DCD group. The apoptosis rate of hepatocytes in DBD [(0.56±0.30)%] and DBCD [(0.50 ± 0.11)%] groups was much lower than that in DCD group [(3.78±0.33)%] (P<0.05). And there was no significant difference between DBD group and DBCD group (P>0.05)). The structures of bile duct were intact in both DBD and DBCD groups, while the biliary epithelium was totally damaged in DCD group. Under electron microscope, the DBD hepatocytes were characterized by intact cell membrane, well-organized endoplasmic reticulum, mild mitochondria edema and abundant glycogens. Broken cell membrane, mild inflammatory cell infiltration and sinusoidal epithelium edema, as well as reduced glycogen volume, were found in the DBCD hepatocytes. The DCD hepatocytes had more profound cell organelle injury and much less glycogen storage. In conclusion, the preservation injury of DBCD liver allografts is much less severe than that of un-controlled DCD, but more severe than that of DBD liver allografts under electron microscope, which might reflect post-transplant liver function to some extent.

  14. Tolerance to Vascularized Composite Allografts in Canine Mixed Hematopoietic Chimeras

    PubMed Central

    Mathes, David W.; Hwang, Billanna; Graves, Scott S.; Edwards, James; Chang, Jeff; Storer, Barry E.; Butts-Miwongtum, Tiffany; Sale, George E.; Nash, Richard A.; Storb, Rainer.

    2012-01-01

    Background Mixed donor-host chimerism, established through hematopoietic cell transplantation (HCT), is a highly reproducible strategy for the induction of tolerance towards solid organs. Here, we ask whether a nonmyeloablative conditioning regimen establishing mixed donor-host chimerism leads to tolerance of highly antigenic vascularized composite allografts. Methods Stable mixed chimerism was established in dogs given a sublethal dose (1–2 Gy) total body irradiation before and a short course of immunosuppression after dog leukocyte antigen-identical marrow transplantation. Vascularized composite allografts from marrow donors were performed after a median of 36 (range 4-54) months after HCT. Results All marrow recipients maintained mixed donor-host hematopoietic chimerism and accepted composite tissue grafts for periods ranging between 52 and 90 weeks; in turn, marrow donors rejected vascularized composite allografts from their respective marrow recipients within 18–29 days. Biopsies of muscle and skin of vascularized composite allografts from mixed chimeras showed few infiltrating cells compared to extensive infiltrates in biopsies of vascularized composite allografts from marrow donors. Elevated levels of CD3+ FoxP3+ T-regulatory cells were found in skin and muscle of vascularized composite allografts of mixed chimeras compared to normal tissues. In mixed chimeras, increased numbers of T-regulatory cells were found in draining compared to non-draining lymph nodes of vascularized composite allografts. Conclusion These data suggest that nonmyeloablative HCT may form the basis for future clinical applications of solid organ transplantation and that T-regulatory cells may function towards maintenance of the vascularized composite allograft. PMID:22082819

  15. Magnetic Resonance for Noninvasive Detection of Microcirculatory Disease Associated With Allograft Vasculopathy: Intracoronary Measurement Validation.

    PubMed

    Mirelis, Jesús G; García-Pavía, Pablo; Cavero, Miguel A; González-López, Esther; Echavarria-Pinto, Mauro; Pastrana, Miguel; Segovia, Javier; Oteo, Juan F; Alonso-Pulpón, Luis; Escaned, Javier

    2015-07-01

    Cardiac allograft vasculopathy affects both epicardial and microcirculatory coronary compartments. Magnetic resonance perfusion imaging has been proposed as a useful tool to assess microcirculation mostly outside the heart transplantation setting. Instantaneous hyperemic diastolic flow velocity-pressure slope, an intracoronary physiology index, has demonstrated a better correlation with microcirculatory remodelling in cardiac allograft vasculopathy than other indices such as coronary flow velocity reserve. To investigate the potential of magnetic resonance perfusion imaging to detect the presence of microcirculatory remodeling in cardiac allograft vasculopathy, we compared magnetic resonance perfusion data with invasive intracoronary physiological indices to study microcirculation in a population of heart transplantation recipients with macrovascular nonobstructive disease demonstrated with intravascular ultrasound. We studied 8 heart transplantation recipients (mean age, 61 [12] years, 100% male) with epicardial allograft vasculopathy defined by intravascular ultrasound, nonsignificant coronary stenoses and negative visually-assessed wall-motion/perfusion dobutamine stress magnetic resonance. Quantitative stress and rest magnetic resonance perfusion data to build myocardial perfusion reserve index, noninvasively, and 4 invasive intracoronary physiological indices were determined. Postprocessed data showed a mean (standard deviation) myocardial perfusion reserve index of 1.22 (0.27), while fractional flow reserve, coronary flow velocity reserve, hyperemic microvascular resistance and instantaneous hyperemic diastolic flow velocity-pressure slope were 0.98 (0.02), cm/s/mmHg, 2.34 (0.55) cm/s/mmHg, 2.00 (0.69) cm/s/mmHg and 0.91 (0.65) cm/s/mmHg, respectively. The myocardial perfusion reserve index correlated strongly only with the instantaneous hyperemic diastolic flow velocity-pressure slope (r=0.75; P=.033). Myocardial perfusion reserve index derived from a

  16. Cardiac Fibroblast: The Renaissance Cell

    PubMed Central

    Souders, Colby A.; Bowers, Stephanie L.K.; Baudino, Troy A.

    2012-01-01

    The permanent cellular constituents of the heart include cardiac fibroblasts, myocytes, endothelial cells and vascular smooth muscle cells. Previous studies have demonstrated that there are undulating changes in cardiac cell populations during embryonic development, through neonatal development and into the adult. Transient cell populations include lymphocytes, mast cells and macrophages, which can interact with these permanent cell types to affect cardiac function. It has also been observed that there are marked differences in the makeup of the cardiac cell populations depending on the species, which may be important when examining myocardial remodeling. Current dogma states that the fibroblast makes up the largest cell population of the heart; however, this appears to vary for different species, especially mice. Cardiac fibroblasts play a critical role in maintaining normal cardiac function, as well as in cardiac remodeling during pathological conditions such as myocardial infarct and hypertension. These cells have numerous functions, including synthesis and deposition of extracellular matrix, cell-cell communication with myocytes, cell-cell signaling with other fibroblasts, as well as with endothelial cells. These contacts affect the electrophysiological properties, secretion of growth factors and cytokines, as well as potentiating blood vessel formation. While a plethora of information is known about several of these processes, relatively little is understood about fibroblasts and their role in angiogenesis during development or cardiac remodeling. In this review we provide insight into the various properties of cardiac fibroblasts that helps illustrate their importance in maintaining proper cardiac function, as well as their critical role in the remodeling heart. PMID:19959782

  17. Co-regulation of the atrial natriuretic factor and cardiac myosin light chain-2 genes during alpha-adrenergic stimulation of neonatal rat ventricular cells. Identification of cis sequences within an embryonic and a constitutive contractile protein gene which mediate inducible expression.

    PubMed

    Knowlton, K U; Baracchini, E; Ross, R S; Harris, A N; Henderson, S A; Evans, S M; Glembotski, C C; Chien, K R

    1991-04-25

    To study the mechanisms which mediate the transcriptional activation of cardiac genes during alpha adrenergic stimulation, the present study examined the regulated expression of three cardiac genes, a ventricular embryonic gene (atrial natriuretic factor, ANF), a constitutively expressed contractile protein gene (cardiac MLC-2), and a cardiac sodium channel gene. alpha 1-Adrenergic stimulation activates the expression and release of ANF from neonatal ventricular cells. As assessed by RNase protection analyses, treatment with alpha-adrenergic agonists increases the steady-state levels of ANF mRNA by greater than 15-fold. However, a rat cardiac sodium channel gene mRNA is not induced, indicating that alpha-adrenergic stimulation does not lead to an increase in the expression of all cardiac genes. Studies employing a series of rat ANF luciferase and rat MLC-2 luciferase fusion genes identify 315- and 92-base pair cis regulatory sequences within an embryonic gene (ANF) and a constitutively expressed contractile protein gene (MLC-2), respectively, which mediate alpha-adrenergic-inducible gene expression. Transfection of various ANF luciferase reporters into neonatal rat ventricular cells demonstrated that upstream sequences which mediate tissue-specific expression (-3003 to -638) can be segregated from those responsible for inducibility. The lack of inducibility of a cardiac Na+ channel gene, and the segregation of ANF gene sequences which mediate cardiac specific from those which mediate inducible expression, provides further insight into the relationship between muscle-specific and inducible expression during cardiac myocyte hypertrophy. Based on these results, a testable model is proposed for the induction of embryonic cardiac genes and constitutively expressed contractile protein genes and the noninducibility of a subset of cardiac genes during alpha-adrenergic stimulation of neonatal rat ventricular cells.

  18. Expression of allograft inflammatory factor-1 in inflammatory skin disorders.

    PubMed

    Orsmark, Christina; Skoog, Tiina; Jeskanen, Leila; Kere, Juha; Saarialho-Kere, Ulpu

    2007-01-01

    Allograft inflammatory factor-1 (AIF-1) is an evolutionarily conserved, inflammatory protein produced by activated macrophages during chronic transplant rejection and in inflammatory brain lesions. Since T-cell-mediated inflammation is common to various dermatoses and nothing is known about AIF-1 in skin, we studied its protein expression at the tissue level and regulation in monocytic cell lines by various agents. Using immunohistochemistry, we found that AIF-1 is expressed at low levels in normal skin, but is highly upregulated in various inflammatory skin disorders, such as psoriasis, lichen planus, graft-versus-host disease and mycosis fungoides. The main cell types expressing AIF-1 in affected skin are macrophages and Langerhans' cells. We also show by real-time PCR that AIF-1 mRNA levels in monocytic THP-1 and U937 cell lines are significantly upregulated by retinoic acid as well as a number of cytokines. We conclude that AIF-1 may mediate survival and pro-inflammatory properties of macrophages in skin diseases.

  19. Dual growth factor delivery from biofunctionalized allografts: Sequential VEGF and BMP-2 release to stimulate allograft remodeling.

    PubMed

    Sharmin, Farzana; McDermott, Casey; Lieberman, Jay; Sanjay, Archana; Khan, Yusuf

    2017-05-01

    Autografts have been shown to stimulate osteogenesis, osteoclastogenesis, and angiogenesis, and subsequent rapid graft incorporation. Large structural allografts, however, suffer from limited new bone formation and remodeling, both of which are directly associated with clinical failure due to non-unions, late graft fractures, and infections, making it a priority to improve large structural allograft healing. We have previously shown the osteogenic ability of a polymer-coated allograft that delivers bone morphogenetic protein-2 both in vitro and in vivo through both burst release and sustained release kinetics. In this study, we have demonstrated largely sequential delivery of bone morphogenetic protein-2 and vascular endothelial growth factor from the same coated allograft. Release data showed that loading both growth factors onto a polymeric coating with two different techniques resulted in short-term (95% release within 2 weeks) and long-term (95% release within 5 weeks) delivery kinetics. We have also demonstrated how released VEGF, traditionally associated with angiogenesis, can also provide a stimulus for allograft remodeling via resorption. Bone marrow derived mononuclear cells were co-cultured with VEGF released from the coated allograft and showed a statistically significant (p < 0.05) and dose dependent increase in the number of tartrate-resistant acid phosphatase-positive multinucleated osteoclasts. Functionality of these osteoclasts was assessed quantitatively and qualitatively by evaluating resorption pit area from both osteo-assay plates and harvested bone. Data indicated a statistically significant higher resorption area from the cells exposed to VEGF released from the allografts over controls (p < 0.05). These results indicate that by using different loading protocols temporal control can be achieved when delivering multiple growth factors from a polymer-coated allograft. Further, released VEGF can also stimulate osteoclastogenesis that may

  20. Indoleamine 2,3-dioxygenase (IDO) and Treg Support are Critical for CTLA4Ig-Mediated Long-term Solid Organ Allograft Survival

    PubMed Central

    Sucher, Robert; Fischler, Klaus; Oberhuber, Rupert; Kronberger, Irmgard; Margreiter, Christian; Ollinger, Robert; Schneeberger, Stefan; Fuchs, Dietmar; Werner, Ernst R.; Watschinger, Katrin; Zelger, Bettina; Tellides, George; Pilat, Nina; Pratschke, Johann; Margreiter, Raimund; Wekerle, Thomas; Brandacher, Gerald

    2011-01-01

    Co-stimulatory blockade of CD28-B7 interaction with CTLA4Ig is a well-established strategy to induce transplantation tolerance. Although previous in vitro studies suggest that CTLA4Ig up-regulates expression of the immunoregulatory enzyme indoleamine 2,3-dioxygenase (IDO) in dendritic cells, the relationship of CTLA4Ig and IDO in in vivo organ transplantation remains unclear. Here we studied if concerted immunomodulation in vivo by CTLA4Ig depends on IDO. C57BL/6 recipients receiving a fully MHC-mismatched BALB/c heart graft treated with CTLA4Ig + donor specific transfusion (DST) showed indefinite graft survival [>100 days] without signs of chronic rejection or donor specific antibody formation. Recipients with long-term surviving grafts had significantly higher systemic IDO activity as compared to rejectors, which markedly correlated with intragraft IDO and Foxp3 levels. IDO inhibition with 1-methyl-DL-tryptophan, either at transplant or at POD 50, abrogated CTLA4Ig+DST-induced long-term graft survival. Importantly, IDO1 knock-out recipients experienced acute rejection and graft survival comparable to controls. In addition, αCD25 mAb-mediated depletion of Tregs resulted in decreased IDO activity and again prevented CTLA4Ig+DST induced indefinite graft survival. Our results suggest that CTLA4Ig-induced tolerance to murine cardiac allografts is critically dependent on synergistic cross-linked interplay of IDO and Tregs. These results have important implications for the clinical development of this co-stimulatory blocker. PMID:22131334

  1. Bioactive lipid coating of bone allografts directs engraftment and fate determination of bone marrow-derived cells in rat GFP chimeras

    PubMed Central

    Das, Anusuya; Segar, Claire E.; Chu, Yihsuan; Wang, Tiffany W.; Lin, Yong; Yang, Chunxi; Du, Xeujun; Ogle, Roy C.; Cui, Quanjun; Botchwey, Edward A.

    2015-01-01

    Bone grafting procedures are performed to treat wounds incurred during wartime trauma, accidents, and tumor resections. Endogenous mechanisms of repair are often insufficient to ensure integration between host and donor bone and subsequent restoration of function. We investigated the role that bone marrow-derived cells play in bone regeneration and sought to increase their contributions by functionalizing bone allografts with bioactive lipid coatings. Polymer-coated allografts were used to locally deliver the immunomodulatory small molecule FTY720 in tibial defects created in rat bone marrow chimeras containing genetically-labeled bone marrow for monitoring cell origin and fate. Donor bone marrow contributed significantly to both myeloid and osteogenic cells in remodeling tissue surrounding allografts. FTY720 coatings altered the phenotype of immune cells two weeks post-injury, which was associated with increased vascularization and bone formation surrounding allografts. Consequently, degradable polymer coating strategies that deliver small molecule growth factors such as FTY720 represent a novel therapeutic strategy for harnessing endogenous bone marrow-derived progenitors and enhancing healing in load-bearing bone defects. PMID:26125501

  2. Bioactive lipid coating of bone allografts directs engraftment and fate determination of bone marrow-derived cells in rat GFP chimeras.

    PubMed

    Das, Anusuya; Segar, Claire E; Chu, Yihsuan; Wang, Tiffany W; Lin, Yong; Yang, Chunxi; Du, Xeujun; Ogle, Roy C; Cui, Quanjun; Botchwey, Edward A

    2015-09-01

    Bone grafting procedures are performed to treat wounds incurred during wartime trauma, accidents, and tumor resections. Endogenous mechanisms of repair are often insufficient to ensure integration between host and donor bone and subsequent restoration of function. We investigated the role that bone marrow-derived cells play in bone regeneration and sought to increase their contributions by functionalizing bone allografts with bioactive lipid coatings. Polymer-coated allografts were used to locally deliver the immunomodulatory small molecule FTY720 in tibial defects created in rat bone marrow chimeras containing genetically-labeled bone marrow for monitoring cell origin and fate. Donor bone marrow contributed significantly to both myeloid and osteogenic cells in remodeling tissue surrounding allografts. FTY720 coatings altered the phenotype of immune cells two weeks post-injury, which was associated with increased vascularization and bone formation surrounding allografts. Consequently, degradable polymer coating strategies that deliver small molecule growth factors such as FTY720 represent a novel therapeutic strategy for harnessing endogenous bone marrow-derived progenitors and enhancing healing in load-bearing bone defects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Use of cultured human epidermal keratinocytes for allografting burns and conditions for temporary banking of the cultured allografts.

    PubMed

    Bolívar-Flores, J; Poumian, E; Marsch-Moreno, M; Montes de Oca, G; Kuri-Harcuch, W

    1990-02-01

    Five children who suffered burns clinically regarded as full skin thickness loss were grafted with cultured allogeneic skin from newborn prepuce. The wounds had remained open and infected without healing for about 20 days before the patients were received in the burn unit. To avoid losing surviving deep epidermal cells the wounds were débrided but not deeply excised and, a few days before allografting, they were washed with isodine solution and sterile water, and treated with silvadene cream application. All children received 76 cultured allografts of about 60 cm2 each. After allografting, the wounds were epithelized in 7-10 days and the allogeneic grafted skin began desquamation suggesting that the allograft did not 'take' permanently but was replaced by the newly formed skin. On the other hand, since allografting is an adequate therapy to provide early temporary coverage in extensively burned patients, we developed conditions for banking cultured skin to make it available for immediate use. The conditions described allow banking of the cultured grafts for 15-20 days with retention of clonal growth ability similar to that of unstored epithelia. The results show that cultured epidermal cells obtained from human newborn foreskin, when used as allografts for coverage of full skin or deep partial skin thickness burns, allow rapid epithelization of the burn wounds.

  4. Prevention of autoimmune diabetes and islet allograft rejection by beta cell expression of XIAP: Insight into possible mechanisms of local immunomodulation.

    PubMed

    Obach, Mercè; Hosseini-Tabatabaei, Azadeh; Montane, Joel; Wind, Katarina; Soukhatcheva, Galina; Dai, Derek; Priatel, John J; Orban, Paul C; Verchere, C Bruce

    2018-06-05

    Overexpression of the X-linked inhibitor of apoptosis (XIAP) prevents islet allograft rejection. We constructed an adeno-associated virus expressing XIAP driven by the rat insulin promoter (dsAAV8-RIP-XIAP) for long-term beta-cell gene expression in vivo. Pancreatic delivery of dsAAV8-RIP-XIAP prevented autoimmune diabetes in 70% of non-obese diabetic (NOD) mice, associated with decreased insulitis. Islets from Balb/c mice transduced with dsAAV8-RIP-XIAP were protected following transplantation into streptozotocin (STZ)-diabetic Bl/6 recipients, associated with decreased graft infiltration. Interestingly, dsAAV8-RIP-XIAP transduction induced expression of lactate dehydrogenase (LDHA) and monocarboxylate transporter 1 (MCT1), two genes normally suppressed in beta cells and involved in production and release of lactate, a metabolite known to suppress local immune responses. Transduction of Balb/c islets with AAV8-RIP-LDHA-MCT1 tended to prolong allograft survival following transplant into STZ-diabetic Bl/6 recipients. These findings suggest that XIAP has therapeutic potential in autoimmune diabetes and raise the possibility that local lactate production may play a role in XIAP-mediated immunomodulation. Copyright © 2018. Published by Elsevier B.V.

  5. Total fibrous obliteration of main portal vein and portal foam cell venopathy in chronic hepatic allograft rejection.

    PubMed

    Jain, Dhanpat; Robert, Marie E; Navarro, Victor; Friedman, Amy L; Crawford, James M

    2004-01-01

    Chronic hepatic allograft rejection is characterized by arteriopathy and bile duct loss. Pathology of the portal vein or its branches is not considered to play a major role in chronic rejection. A recent case of chronic rejection with total fibrous obliteration of the portal vein at the hilum and graft loss prompted us to retrospectively analyze cases of failed allografts for portal vein changes. Six cases of failed hepatic allograft recorded in our files from 1994 to 1998 were selected for the study. For comparison, 4 cases of hepatitis C cirrhosis were included. Clinical features, including arteriograms or Doppler studies, were reviewed whenever available. Sections taken from the hilum and random parenchyma stained with routine hematoxylin-eosin, elastic van Gieson, and Masson trichrome were examined by 3 experienced liver pathologists in a randomized, blinded fashion. Significant hepatic artery occlusion with foam cell change and bile duct loss was seen in all cases of chronic rejection (3/3), but not in the other cases. Foam cell change in the portal vein at the hilum (3/3) and occasionally into the distal branches (2/3) with variable occlusion of the lumen was seen only in cases of chronic hepatic allograft rejection. Mild luminal narrowing was observed in all the cases of cirrhosis (4/4) as a result of phlebosclerosis, most likely representing a change secondary to portal hypertension. Total obliteration of the portal vein at the hilum was seen in the index case (case 1) only. Portal venopathy can be a significant finding in chronic hepatic allograft rejection and may contribute to graft dysfunction or failure. Two-vessel disease must be considered in cases of chronic hepatic allograft rejection, and pathologists should thoroughly examine the hilum in explanted hepatic allografts.

  6. Donor Predictors of Allograft Utilization and Recipient Outcomes after Heart Transplantation

    PubMed Central

    Khush, Kiran K.; Menza, Rebecca; Nguyen, John; Zaroff, Jonathan G.; Goldstein, Benjamin A.

    2013-01-01

    Background Despite a national organ donor shortage and a growing population of patients with end-stage heart disease, the acceptance rate of donor hearts for transplantation is low. We sought to identify donor predictors of allograft non-utilization, and to determine whether these predictors are in fact associated with adverse recipient post-transplant outcomes. Methods and Results We studied a cohort of 1,872 potential organ donors managed by the California Transplant Donor Network from 2001–2008. Forty five percent of available allografts were accepted for heart transplantation. Donor predictors of allograft non-utilization included age>50 years, female sex, death due to cerebrovascular accident, hypertension, diabetes, a positive troponin assay, left ventricular dysfunction and regional wall motion abnormalities, and left ventricular hypertrophy. For hearts that were transplanted, only donor cause of death was associated with prolonged recipient hospitalization post-transplant, and only donor diabetes was predictive of increased recipient mortality. Conclusions While there are many donor predictors of allograft discard in the current era, these characteristics appear to have little effect on recipient outcomes when the hearts are transplanted. Our results suggest that more liberal use of cardiac allografts with relative contraindications may be warranted. PMID:23392789

  7. Paracrine Engineering of Human Cardiac Stem Cells With Insulin-Like Growth Factor 1 Enhances Myocardial Repair.

    PubMed

    Jackson, Robyn; Tilokee, Everad L; Latham, Nicholas; Mount, Seth; Rafatian, Ghazaleh; Strydhorst, Jared; Ye, Bin; Boodhwani, Munir; Chan, Vincent; Ruel, Marc; Ruddy, Terrence D; Suuronen, Erik J; Stewart, Duncan J; Davis, Darryl R

    2015-09-11

    Insulin-like growth factor 1 (IGF-1) activates prosurvival pathways and improves postischemic cardiac function, but this key cytokine is not robustly expressed by cultured human cardiac stem cells. We explored the influence of an enhanced IGF-1 paracrine signature on explant-derived cardiac stem cell-mediated cardiac repair. Receptor profiling demonstrated that IGF-1 receptor expression was increased in the infarct border zones of experimentally infarcted mice by 1 week after myocardial infarction. Human explant-derived cells underwent somatic gene transfer to overexpress human IGF-1 or the green fluorescent protein reporter alone. After culture in hypoxic reduced-serum media, overexpression of IGF-1 enhanced proliferation and expression of prosurvival transcripts and prosurvival proteins and decreased expression of apoptotic markers in both explant-derived cells and cocultured neonatal rat ventricular cardiomyocytes. Transplant of explant-derived cells genetically engineered to overexpress IGF-1 into immunodeficient mice 1 week after infarction boosted IGF-1 content within infarcted tissue and long-term engraftment of transplanted cells while reducing apoptosis and long-term myocardial scarring. Paracrine engineering of explant-derived cells to overexpress IGF-1 provided a targeted means of improving cardiac stem cell-mediated repair by enhancing the long-term survival of transplanted cells and surrounding myocardium. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  8. Lineage mapping and characterization of the native progenitor population in cellular allograft.

    PubMed

    Neman, Josh; Duenas, Vincent; Kowolik, Claudia; Hambrecht, Amanda; Chen, Mike; Jandial, Rahul

    2013-02-01

    The gold standard for bone grafting remains the autograft. However, the attractiveness of autograft is counterbalanced by donor site morbidity. To mimic autograft-and its fundamental properties of osteoconductivity, osteoinductivity, and osteogenicity-novel bone grafting materials such as cellular allograft (Osteocel Plus) are composed of allograft in which the progenitor cells are preserved. However, the true identity of these cells remains obscure largely due to the lack of specific bona fide antigenic markers for stem versus progenitor cells. To characterize the stem and progenitor population in cellular allograft, Osteocel Plus. To determine whether cells endogenous to a cellular allograft undergo extensive self-renewal (a functional hallmark of stem cells), we employed a novel use of lineage mapping using a modern and refined replication incompetent lentiviral library with high complexity to uniquely label single cells with indelible genetic tags faithfully passed on to all progeny, allowing identification of highly proliferative clones. We used genetic and proteomic profiling as well as functional assays to show that these cells are capable of multipotential differentiation (the second functional hallmark of stem cells). Use of these two functional hallmarks enabled us to establish the existence of a stem and progenitor cell population in cellular allografts. Specifically, we employed (1) cellular dissociation and (2) in vitro expansion and differentiation capacity of cells released from cellular allograft. We determined differential gene expression profiling of a bona fide human mesenchymal stem cell line and cells from cellular allograft using focused PCR arrays mesenchymal stem cell (MSC) and osteogenesis associated. Proteomic profiling of cells from cellular allograft was performed using (1) immunofluorescence for BMP-2, Runx2 SMADs, CD44, Stro-1, Collagen, RANKL, Osterix Osteocalcin, and Ki67; (2) flow cytometry for Ki67, CD44, Stro-1, Thy1, CD146, and

  9. Significant reduction of acute cardiac allograft rejection by selective janus kinase-1/3 inhibition using R507 and R545.

    PubMed

    Deuse, Tobias; Hua, Xiaoqin; Taylor, Vanessa; Stubbendorff, Mandy; Baluom, Muhammad; Chen, Yan; Park, Gary; Velden, Joachim; Streichert, Thomas; Reichenspurner, Hermann; Robbins, Robert C; Schrepfer, Sonja

    2012-10-15

    Selective inhibition of lymphocyte activation through abrogation of signal 3-cytokine transduction emerges as a new strategy for immunosuppression. This is the first report on the novel Janus kinase (JAK)1/3 inhibitors R507 and R545 for prevention of acute allograft rejection. Pharmacokinetic and in vitro enzyme inhibition assays were performed to characterize the drugs. Heterotopic Brown Norway-Lewis heart transplantations were performed to study acute cardiac allograft rejection, graft survival, suppression of cellular host responsiveness, and antibody production. Therapeutic and subtherapeutic doses of R507 (60 and 15 mg/kg 2 times per day) and R545 (20 and 5 mg/kg 2 times per day) were compared with those of tacrolimus (Tac; 4 and 1 mg/kg once per day). Plasma levels of R507 and R545 were sustained high for several hours. Cell-based enzyme assays showed selective inhibition of JAK1/3-dependent pathways with 20-fold or greater selectivity over JAK2 and Tyrosine kinase 2 kinases. After heart transplantation, both JAK1/3 inhibitors reduced early mononuclear graft infiltration, even significantly more potent than Tac. Intragraft interferon-γ release was significantly reduced by R507 and R545, and for interleukin-10 suppression, they were even significantly more potent than Tac. Both JAK1/3 inhibitors and Tac were similarly effective in reducing the host Th1 and Th2, but not Th17, responsiveness and similarly prevented donor-specific immunoglobulin M antibody production. Subtherapeutic and therapeutic R507 and R545 doses prolonged the mean graft survival and were similarly effective as 1 and 4 mg/kg Tac, respectively. In combination regimens, however, only R507 showed highly beneficial synergistic drug interactions with Tac. Both R507 and R545 are potent novel immunosuppressants with favorable pharmacokinetics and high JAK1/3 selectivity, but only R507 synergistically interacts with Tac.

  10. Ankle bipolar fresh osteochondral allograft survivorship and integration: transplanted tissue genetic typing and phenotypic characteristics.

    PubMed

    Neri, Simona; Vannini, Francesca; Desando, Giovanna; Grigolo, Brunella; Ruffilli, Alberto; Buda, Roberto; Facchini, Andrea; Giannini, Sandro

    2013-10-16

    Fresh osteochondral allografts represent a treatment option for early ankle posttraumatic arthritis. Transplanted cartilage survivorship, integration, and colonization by recipient cells have not been fully investigated. The aim of this study was to evaluate the ability of recipient cells to colonize the allograft cartilage and to assess allograft cell phenotype. Seventeen ankle allograft samples were studied. Retrieved allograft cartilage DNA from fifteen cases was compared with recipient and donor constitutional DNA by genotyping. In addition, gene expression was evaluated on six allograft cartilage samples by means of real-time reverse transcription-polymerase chain reaction. Histology and immunohistochemistry were performed to support molecular observations. Of fifteen genotyped allografts, ten completely matched to the host, three matched to the donor, and two showed a mixed profile. Gene expression analysis showed that grafted cartilage expressed cartilage-specific markers. The rare persistence of donor cells and the prevailing presence of host DNA in retrieved ankle allografts suggest the ingrowth of recipient cells into the allograft cartilage, presumably migrating from the subchondral bone, in accordance with morphological findings. The expression of chondrogenic markers in some of the samples argues for the acquisition of a chondrocyte-like phenotype by these cells. To our knowledge, this is the first report describing the colonization of ankle allograft cartilage by host cells showing the acquisition of a chondrocyte-like phenotype.

  11. PTH promotes allograft integration in a calvarial bone defect

    PubMed Central

    Sheyn, Dmitriy; Yakubovich, Doron Cohn; Kallai, Ilan; Su, Susan; Da, Xiaoyu; Pelled, Gadi; Tawackoli, Wafa; Cook-Weins, Galen; Schwarz, Edward M.; Gazit, Dan; Gazit, Zulma

    2013-01-01

    Allografts may be useful in craniofacial bone repair, although they often fail to integrate with the host bone. We hypothesized that intermittent administration of parathyroid hormone (PTH) would enhance mesenchymal stem cell recruitment and differentiation, resulting in allograft osseointegration in cranial membranous bones. Calvarial bone defects were created in transgenic mice, in which luciferase is expressed under the control of the osteocalcin promoter. The mice were given implants of allografts with or without daily PTH treatment. Bioluminescence imaging (BLI) was performed to monitor host osteprogenitor differentiation at the implantation site. Bone formation was evaluated with the aid of fluorescence imaging (FLI) and micro–computed tomography (μCT) as well as histological analyses. Reverse transcription polymerase chain reaction (RT-PCR) was performed to evaluate the expression of key osteogenic and angiogenic genes. Osteoprogenitor differentiation, as detected by BLI, in mice treated with an allograft implant and PTH was over 2-fold higher than those in mice treated with an allograft implant without PTH. FLI also demonstrated that the bone mineralization process in PTH-treated allografts was significantly higher than that in untreated allografts. The μCT scans revealed a significant increase in bone formation in Allograft + PTH–treated mice comparing to Allograft + PBS treated mice. The osteogenic genes osteocalcin (Oc/Bglap) and integrin binding sialoprotein (Ibsp) were upregulated in the Allograft + PTH–treated animals. In summary, PTH treatment enhances osteoprogenitor differentiation and augments bone formation around structural allografts. The precise mechanism is not clear, but we show that infiltration pattern of mast cells, associated with the formation of fibrotic tissue, in the defect site is significantly affected by the PTH treatment. PMID:24131143

  12. PTH promotes allograft integration in a calvarial bone defect.

    PubMed

    Sheyn, Dmitriy; Cohn Yakubovich, Doron; Kallai, Ilan; Su, Susan; Da, Xiaoyu; Pelled, Gadi; Tawackoli, Wafa; Cook-Weins, Galen; Schwarz, Edward M; Gazit, Dan; Gazit, Zulma

    2013-12-02

    Allografts may be useful in craniofacial bone repair, although they often fail to integrate with the host bone. We hypothesized that intermittent administration of parathyroid hormone (PTH) would enhance mesenchymal stem cell recruitment and differentiation, resulting in allograft osseointegration in cranial membranous bones. Calvarial bone defects were created in transgenic mice, in which luciferase is expressed under the control of the osteocalcin promoter. The mice were given implants of allografts with or without daily PTH treatment. Bioluminescence imaging (BLI) was performed to monitor host osteprogenitor differentiation at the implantation site. Bone formation was evaluated with the aid of fluorescence imaging (FLI) and microcomputed tomography (μCT) as well as histological analyses. Reverse transcription polymerase chain reaction (RT-PCR) was performed to evaluate the expression of key osteogenic and angiogenic genes. Osteoprogenitor differentiation, as detected by BLI, in mice treated with an allograft implant and PTH was over 2-fold higher than those in mice treated with an allograft implant without PTH. FLI also demonstrated that the bone mineralization process in PTH-treated allografts was significantly higher than that in untreated allografts. The μCT scans revealed a significant increase in bone formation in allograft + PTH treated mice comparing to allograft + PBS treated mice. The osteogenic genes osteocalcin (Oc/Bglap) and integrin binding sialoprotein (Ibsp) were upregulated in the allograft + PTH treated animals. In summary, PTH treatment enhances osteoprogenitor differentiation and augments bone formation around structural allografts. The precise mechanism is not clear, but we show that infiltration pattern of mast cells, associated with the formation of fibrotic tissue, in the defect site is significantly affected by the PTH treatment.

  13. New approaches to the prevention of organ allograft rejection and tolerance induction.

    PubMed

    Bagley, Jessamyn; Tian, Chaorui; Iacomini, John

    2007-07-15

    The therapeutic use of organ allograft transplantation is dependent on the discovery and clinical application of immunologic strategies to blunt the immune response and prevent graft rejection. It was the discovery of powerful immunotherapeutics such as cyclosporine A and rapamycin that has allowed for the widespread use of organ transplantation to treat organ failure. However, despite the attainment of impressive survival rates 1 year after organ transplantation, a significant number of organ allografts are lost to immune-mediated chronic rejection. Furthermore, significant morbidity and mortality can be associated with the use of currently available immunosuppressive regimens. Thus, the development of novel approaches to prevent of organ allograft rejection remains extremely important. Here we discuss two promising and novel avenues of research. First, the discovery and characterization of naturally occurring immune inhibitory signals have led to recent research aimed at exploiting these pathways to induce peripheral tolerance to alloantigen. Furthermore, we discuss new approaches to the induction of donor-specific tolerance by induction of molecular chimerism and the transfer of alloantigen-expressing mature T cells.

  14. Adenovirus-mediated HIF-1α gene transfer promotes repair of mouse airway allograft microvasculature and attenuates chronic rejection

    PubMed Central

    Jiang, Xinguo; Khan, Mohammad A.; Tian, Wen; Beilke, Joshua; Natarajan, Ramesh; Kosek, Jon; Yoder, Mervin C.; Semenza, Gregg L.; Nicolls, Mark R.

    2011-01-01

    Chronic rejection, manifested as small airway fibrosis (obliterative bronchiolitis [OB]), is the main obstacle to long-term survival in lung transplantation. Recent studies demonstrate that the airways involved in a lung transplant are relatively hypoxic at baseline and that OB pathogenesis may be linked to ischemia induced by a transient loss of airway microvasculature. Here, we show that HIF-1α mediates airway microvascular repair in a model of orthotopic tracheal transplantation. Grafts with a conditional knockout of Hif1a demonstrated diminished recruitment of recipient-derived Tie2+ angiogenic cells to the allograft, impaired repair of damaged microvasculature, accelerated loss of microvascular perfusion, and hastened denudation of epithelial cells. In contrast, graft HIF-1α overexpression induced via an adenoviral vector prolonged airway microvascular perfusion, preserved epithelial integrity, extended the time window for the graft to be rescued from chronic rejection, and attenuated airway fibrotic remodeling. HIF-1α overexpression induced the expression of proangiogenic factors such as Sdf1, Plgf, and Vegf, and promoted the recruitment of vasoreparative Tie2+ cells. This study demonstrates that a therapy that enhances vascular integrity during acute rejection may promote graft health and prevent chronic rejection. PMID:21606594

  15. Cardiac Endothelial Cell Transcriptome.

    PubMed

    Lother, Achim; Bergemann, Stella; Deng, Lisa; Moser, Martin; Bode, Christoph; Hein, Lutz

    2018-03-01

    Endothelial cells (ECs) are a highly specialized cell type with marked diversity between different organs or vascular beds. Cardiac ECs are an important player in cardiac physiology and pathophysiology but are not sufficiently characterized yet. Thus, the aim of the present study was to analyze the cardiac EC transcriptome. We applied fluorescence-assisted cell sorting to isolate pure ECs from adult mouse hearts. RNAseq revealed 1288 genes predominantly expressed in cardiac ECs versus heart tissue including several transcription factors. We found an overrepresentation of corresponding transcription factor binding motifs within the promotor region of EC-enriched genes, suggesting that they control the EC transcriptome. Cardiac ECs exhibit a distinct gene expression profile when compared with renal, cerebral, or pulmonary ECs. For example, we found the Meox2 / Tcf15, Fabp4 , and Cd36 signaling cascade higher expressed in cardiac ECs which is a key regulator of fatty acid uptake and involved in the development of atherosclerosis. The results from this study provide a comprehensive resource of gene expression and transcriptional control in cardiac ECs. The cardiac EC transcriptome exhibits distinct differences in gene expression compared with other cardiac cell types and ECs from other organs. We identified new candidate genes that have not been investigated in ECs yet as promising targets for future evaluation. © 2018 American Heart Association, Inc.

  16. Nucleostemin Rejuvenates Cardiac Progenitor Cells and Antagonizes Myocardial Aging

    PubMed Central

    Hariharan, Nirmala; Quijada, Pearl; Mohsin, Sadia; Joyo, Anya; Samse, Kaitlen; Monsanto, Megan; De La Torre, Andrea; Avitabile, Daniele; Ormachea, Lucia; McGregor, Michael J.; Tsai, Emily J; Sussman, Mark A.

    2015-01-01

    BACKGROUND Functional decline in stem cell-mediated regeneration contributes to aging associated with cellular senescence in c-kit+ cardiac progenitor cells (CPCs). Clinical implementation of CPC-based therapy with elderly patients would benefit tremendously from understanding molecular characteristics of senescence to antagonize aging. Nucleostemin (NS) is a nucleolar protein regulating stem cell proliferation and pluripotency. OBJECTIVES The goal is to demonstrate that NS preserves characteristics associated with “stemness” in CPCs and antagonizes myocardial senescence and aging. METHODS CPCs isolated from human fetal (FhCPC) and adult failing (AhCPC) hearts, as well as young (YCPC) and old mice (OCPC), were studied for senescence characteristics and NS expression. Heterozygous knockout mice with one functional allele of NS (NS+/−) were used to demonstrate that NS preserves myocardial structure and function and slows characteristics of aging. RESULTS NS expression is decreased in AhCPCs relative to FhCPC, correlating with lowered proliferation potential and shortened telomere length. AhCPC characteristics resemble OCPCs, which have a phenotype induced by NS silencing, resulting in cell flattening, senescence, multinucleated cells, decreased S phase progression, diminished expression of stemness markers and up-regulation of p53 and p16. CPC senescence resulting from NS loss is partially p53 dependent and is rescued by concurrent silencing of p53. Mechanistically, NS induction correlates with Pim-1 kinase-mediated stabilization of c-Myc. Engineering OCPCs and AhCPCs to overexpress NS decreases senescent and multinucleated cells, restores morphology, and antagonizes senescence, thereby preserving phenotypic properties of “stemness.” Early cardiac aging with decline in cardiac function, increase in senescence markers p53 and p16, telomere attrition, and accompanied CPC exhaustion is evident in NS+/− mice. CONCLUSIONS Youthful properties and antagonism of

  17. Re-exposure to beta cell autoantigens in pancreatic allograft recipients with preexisting beta cell autoantibodies.

    PubMed

    Mujtaba, Muhammad Ahmad; Fridell, Jonathan; Book, Benita; Faiz, Sara; Sharfuddin, Asif; Wiebke, Eric; Rigby, Mark; Taber, Tim

    2015-11-01

    Re-exposure to beta cell autoantigens and its relevance in the presence of donor-specific antibodies (DSA) in pancreatic allograft recipients is not well known. Thirty-three patients requiring a pancreas transplant were enrolled in an IRB approved study. They underwent prospective monitoring for DSA and beta cell autoantibody (BCAA) levels to GAD65, insulinoma-associated antigen 2 (IA-2), insulin (micro-IAA [mIAA]), and islet-specific zinc transporter isoform-8 (ZnT8). Twenty-five (75.7%) had pre-transplant BCAA. Twenty had a single antibody (mIAA n = 15, GAD65 n = 5); five had two or more BCAA (GAD65 + mIAA n = 2, GAD65 + mIAA+IA-2 n = 2, GA65 + mIAA+IA-2 + ZnT8 = 1). No changes in GAD65 (p > 0.29), IA-2 (>0.16), and ZnT8 (p > 0.07) were observed between pre-transplant and post-transplant at 6 or 12 months. A decrease in mIAA from pre- to post-6 months (p < 0.0001), 12 months (p < 0.0001), and from post-6 to post-12 months (p = 0.0002) was seen. No new BCAA was observed at one yr. Seven (21.0%) developed de novo DSA. The incidence of DSA was 24% in patients with BCAA vs. 25% in patients without BCAA (p = 0.69). Pancreatic allograft function of patients with vs. without BCAA, and with and without BCAA + DSA was comparable until last follow-up (three yr). Re-exposure to beta cell autoantigens by pancreas transplant may not lead to increased levels or development of new BCAA or pancreatic allograft dysfunction. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Concise Review: Pluripotent Stem Cell-Derived Cardiac Cells, A Promising Cell Source for Therapy of Heart Failure: Where Do We Stand?

    PubMed

    Gouadon, Elodie; Moore-Morris, Thomas; Smit, Nicoline W; Chatenoud, Lucienne; Coronel, Ruben; Harding, Sian E; Jourdon, Philippe; Lambert, Virginie; Rucker-Martin, Catherine; Pucéat, Michel

    2016-01-01

    Heart failure is still a major cause of hospitalization and mortality in developed countries. Many clinical trials have tested the use of multipotent stem cells as a cardiac regenerative medicine. The benefit for the patients of this therapeutic intervention has remained limited. Herein, we review the pluripotent stem cells as a cell source for cardiac regeneration. We more specifically address the various challenges of this cell therapy approach. We question the cell delivery systems, the immune tolerance of allogenic cells, the potential proarrhythmic effects, various drug mediated interventions to facilitate cell grafting and, finally, we describe the pathological conditions that may benefit from such an innovative approach. As members of a transatlantic consortium of excellence of basic science researchers and clinicians, we propose some guidelines to be applied to cell types and modes of delivery in order to translate pluripotent stem cell cardiac derivatives into safe and effective clinical trials. © 2015 AlphaMed Press.

  19. Enhanced cellular infiltration of human adipose-derived stem cells in allograft menisci using a needle-punch method.

    PubMed

    Nordberg, Rachel C; Charoenpanich, Adisri; Vaughn, Christopher E; Griffith, Emily H; Fisher, Matthew B; Cole, Jacqueline H; Spang, Jeffrey T; Loboa, Elizabeth G

    2016-10-28

    The meniscus plays a crucial role in knee joint stability, load transmission, and stress distribution. Meniscal tears are the most common reported knee injuries, and the current standard treatment for meniscal deficiency is meniscal allograft transplantation. A major limitation of this approach is that meniscal allografts do not have the capacity to remodel and maintain tissue homeostasis due to a lack of cellular infiltration. The purpose of this study was to provide a new method for enhanced cellular infiltration in meniscal allografts. Twenty medial menisci were collected from cadaveric human sources and split into five experimental groups: (1) control native menisci, (2) decellularized menisci, (3) decellularized menisci seeded with human adipose-derived stem cells (hASC), (4) decellularized needle-punched menisci, and (5) decellularized needle-punched menisci seeded with hASC. All experimental allografts were decellularized using a combined method with trypsin EDTA and peracetic acid. Needle punching (1-mm spacing, 28 G microneedle) was utilized to improve porosity of the allograft. Samples were recellularized with hASC at a density of 250 k/g of tissue. After 28 days of in vitro culture, menisci were analyzed for mechanical, biochemical, and histological characteristics. Menisci maintained structural integrity and material properties (compressive equilibrium and dynamic moduli) throughout preparations. Increased DNA content was observed in the needle-punched menisci but not in the samples without needle punching. Histology confirmed these results, showing enhanced cellular infiltration in needle-punched samples. The enhanced infiltration achieved in this study could help meniscal allografts better remodel post-surgery. The integration of autologous adipose-derived stem cells could improve long-term efficacy of meniscal transplantation procedures by helping to maintain the meniscus in vivo.

  20. Bim regulates alloimmune-mediated vascular injury through effects on T-cell activation and death.

    PubMed

    von Rossum, Anna; Enns, Winnie; Shi, Yu P; MacEwan, Grace E; Malekesmaeli, Mehrnoush; Brinkman, Ryan; Choy, Jonathan C

    2014-06-01

    Bim is a proapoptotic Bcl-2 protein known to downregulate immune responses and to also be required for antigen-induced T-cell activation. However, it is not known how the effect of Bim on these offsetting processes determines the outcome of allogeneic immune responses. We have defined the role of Bim in regulating alloantigen-driven T-cell responses in a model of vascular rejection. Bim was required for proliferation of CD4 and CD8 T cells, and for interleukin-2 production, in T cells stimulated with alloantigen in vitro. Moreover, a partial reduction in Bim expression was sufficient to attenuate T-cell activation, whereas a complete elimination of Bim was required to prevent CD4 T-cell death in response to cytokine withdrawl. When alloimmune-mediated vascular rejection was examined using an aortic interposition model, there was significantly less intimal thickening in Bim(+/-), but not Bim(-/-), graft recipients. T-cell proliferation in response to allograft arteries was significantly reduced in both Bim(+/-) and Bim(-/-) mice, but cell death was attenuated only in Bim(-/-) animals. Bim controls both T-cell activation and death in response to alloantigen stimulation. These processes act cooperatively to determine the outcome of immune responses in allograft arteries. © 2014 American Heart Association, Inc.

  1. Outcomes after percutaneous coronary artery revascularization procedures for cardiac allograft vasculopathy in pediatric heart transplant recipients: A multi-institutional study.

    PubMed

    Jeewa, Aamir; Chin, Clifford; Pahl, Elfriede; Atz, Andrew M; Carboni, Michael P; Pruitt, Elizabeth; Naftel, David C; Rodriguez, Rose; Dipchand, Anne I

    2015-09-01

    Cardiac allograft vasculopathy is an important cause of long-term graft loss. In adults, percutaneous revascularization procedures (PRPs) have variable success with high restenosis rates and little impact on graft survival. Limited data exist in pediatric recipients of transplants. Data from the Pediatric Heart Transplant Study (PHTS) were used to explore associations between PRPs and outcomes after heart transplant in patients listed ≤18 years old who received a first heart transplant between 1993 and 2009. Revascularization procedures were done in 28 of 3,156 (0.9%) patients; 13 patients had multiple PRPs giving a total of 51 PRPs performed across 15 centers. Mean recipient age at time of transplant was 7.7 ± 6.7 years; mean donor age was 15.9 ± 15.4 years. The mean time to first PRP was 5.7 ± 3.2 years. Vessels involved were left anterior descending artery (41%), right coronary artery (25%), circumflex artery (18%), other coronary branches/unknown (16%). PRPs consisted of 38 (75%) stent implantations and 13 (25%) balloon angioplasties with an overall procedural success rate of 73%. Freedom from graft loss after PRPs was 89%, 75%, and 61% at 1, 3, and 12 months. In addition, patients with transplants from donors >30 years old were found to have less freedom from the need for a revascularization procedure than patients with transplants from younger donors (p < 0.0001). In this large pediatric heart transplant cohort, use of PRPs for cardiac allograft vasculopathy was rare, likely related to procedural feasibility of the interventions. Despite technically successful interventions, graft loss occurred in 39% within 1 year post-procedure; relisting for heart transplant should be considered. Copyright © 2015 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  2. Inflammation Causes Resistance to Anti-CD20-Mediated B Cell Depletion.

    PubMed

    Laws, L H; Parker, C E; Cherala, G; Koguchi, Y; Waisman, A; Slifka, M K; Oberbarnscheidt, M H; Obhrai, J S; Yeung, M Y; Riella, L V

    2016-11-01

    B cells play a central role in antibody-mediated rejection and certain autoimmune diseases. However, B cell-targeted therapy such as anti-CD20 B cell-depleting antibody (aCD20) has yielded mixed results in improving outcomes. In this study, we investigated whether an accelerated B cell reconstitution leading to aCD20 depletion resistance could account for these discrepancies. Using a transplantation model, we found that antigen-independent inflammation, likely through toll-like receptor (TLR) signaling, was sufficient to mitigate B cell depletion. Secondary lymphoid organs had a quicker recovery of B cells when compared to peripheral blood. Inflammation altered the pharmacokinetics (PK) and pharmacodynamics (PD) of aCD20 therapy by shortening drug half-life and accelerating the reconstitution of the peripheral B cell pool by bone marrow-derived B cell precursors. IVIG (intravenous immunoglobulin) coadministration also shortened aCD20 drug half-life and led to accelerated B cell recovery. Repeated aCD20 dosing restored B cell depletion and delayed allograft rejection, especially B cell-dependent, antibody-independent allograft rejection. These data demonstrate the importance of further clinical studies of the PK/PD of monoclonal antibody treatment in inflammatory conditions. The data also highlight the disconnect between B cell depletion on peripheral blood compared to secondary lymphoid organs, the deleterious effect of IVIG when given with aCD20 and the relevance of redosing of aCD20 for effective B cell depletion in alloimmunity. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  3. Depletion of CD8 Memory T Cells for Induction of Tolerance of a Previously Transplanted Kidney Allograft

    PubMed Central

    Koyama, I.; Nadazdin, O.; Boskovic, S.; Ochiai, T.; Smith, R. N.; Sykes, M.; Sogawa, H.; Murakami, T.; Strom, T. B.; Colvin, R. B.; Sachs, D. H.; Benichou, G.; Cosimi, A. B.; Kawai, T.

    2013-01-01

    Heterologous immunologic memory has been considered a potent barrier to tolerance induction in primates. Induction of such tolerance for a previously transplanted organ may be more difficult, because specific memory cells can be induced and activated by a transplanted organ. In the current study, we attempted to induce tolerance to a previously transplanted kidney allograft in nonhuman primates. The conditioning regimen consisted of low dose total body irradiation, thymic irradiation, antithymocyte globulin, and anti- CD154 antibody followed by a brief course of a calcineurin inhibitor. This regimen had been shown to induce mixed chimerism and allograft tolerance when kidney transplantation (KTx) and donor bone marrow transplantation (DBMT) were simultaneously performed. However, the same regimen failed to induce mixed chimerism when delayed DBMT was performed after KTx. We found that significant levels of memory T cells remained after conditioning, despite effective depletion of naïve T cells. By adding humanized anti-CD8 monoclonal antibody (cM-T807), CD8 memory T cells were effectively depleted and these recipients successfully achieved mixed chimerism and tolerance. The current studies provide ‘proof of principle’ that the mixed chimerism approach can induce renal allograft tolerance, even late after organ transplantation if memory T-cell function is adequately controlled. PMID:17286617

  4. Allograft integration in a rabbit transgenic model for anterior cruciate ligament reconstruction.

    PubMed

    Bachy, M; Sherifi, I; Zadegan, F; Petite, H; Vialle, R; Hannouche, D

    2016-04-01

    Tissue engineering strategies include both cell-based and cell homing therapies. Ligamentous tissues are highly specialized and constitute vital components of the musculoskeletal system. Their damage causes significant morbidity and loss in function. The aim of this study is to analyze tendinous graft integration, cell repopulation and ligamentization by using GFP+/- allografts in GFP+/- transgenic New Zealand white (NZW) rabbits. Graft implantation was designed to closely mimic anterior cruciate ligament (ACL) repair surgery. Allografts were implanted in 8 NZW rabbits and assessed at 5 days, 3 weeks and 6 weeks through: (1) arthroCT imaging, (2) morphological analysis of the transplanted allograft, (3) histological analysis, (4) collagen type I immunochemistry, and (5) GFP cell tracking. Collagen remodeling was appreciated at 3 and 6 weeks. Graft repopulation with host cells, chondrocyte-like cells at the tendon-bone interface and graft corticalization in the bone tunnels were noticed at 3 weeks. By contrast we noticed a central necrosis aspect in the allografts intra-articularly at 6 weeks with a cell migration towards the graft edge near the synovium. Our study has served to gain a better understanding of tendinous allograft bone integration, ligamentization and allograft repopulation. We believe that both cell-based therapies and cell homing therapies are beneficial in ligament tissue engineering. Future studies may elucidate whether cell repopulation occurs with pre-differentiated or progenitor cells. We believe that both cell-based therapies and cell homing therapies are beneficial in ligament tissue engineering. Level V (animal study). Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. Growth factors mediated differentiation of mesenchymal stem cells to cardiac polymicrotissue using hanging drop and bioreactor.

    PubMed

    Konstantinou, Dimitrios; Lei, Ming; Xia, Zhidao; Kanamarlapudi, Venkateswarlu

    2015-04-01

    Heart disease is the major leading cause of death worldwide and the use of stem cells promises new ways for its treatment. The relatively easy and quick acquisition of human umbilical cord matrix mesenchymal stem cells (HUMSCs) and their properties make them useful for the treatment of cardiac diseases. Therefore, the main aim of this investigation was to create cardiac polymicrotissue from HUMSCs using a combination of growth factors [sphingosine-1-phosphate (S1P) and suramin] and techniques (hanging drop and bioreactor). Using designated culture conditions of the growth factors (100 nM S1P and 500 µM suramin), cardiomyocyte differentiation medium (CDM), hanging drop, bioreactor and differentiation for 7 days, a potential specific cardiac polymicrotissue was derived from HUMSCs. The effectiveness of growth factors alone or in combination in differentiation of HUMSCs to cardiac polymicrotissue was analysed by assessing the presence of cardiac markers by immunocytochemistry. This analysis demonstrated the importance of those growth factors for the differentiation. This study for the first time demonstrated the formation of a cardiac polymicrotissue under specific culture conditions. The polymicrotissue thus obtained may be used in future as a 'patch' to cover the injured cardiac region and would thereby be useful for the treatment of heart diseases. © 2014 International Federation for Cell Biology.

  6. Review of immunomodulation by photopheresis: treatment of cutaneous T-cell lymphoma, autoimmune disease, and allograft rejection.

    PubMed

    Wolfe, J T; Lessin, S R; Singh, A H; Rook, A H

    1994-12-01

    Photopheresis is an apheresis-based therapy that is currently available at approximately 70 medical centers worldwide. Recent evidence indicates that extracorporeal photopheresis can significantly prolong life as well as induce a 60-75% response rate among individuals with advanced cutaneous T-cell lymphoma (CTCL). Moreover, a 10-15% cure rate, in response to photopheresis alone, or in combination with interferon-alpha, has been obtained at our institution. These complete responses have been characterized by the complete disappearance of morphologically atypical cells from the skin and blood. Southern blot analysis of peripheral blood specimens has also confirmed the indefinite disappearance of the malignant T-cell clone from the blood of patients with complete responses. Current immunological data obtained from in vitro human studies and from animal models suggest that the basis for the responses of CTCL patients are related to activation of treated macrophages resulting in release of cytokines, including substantial levels of tumor necrosis factor alpha (TNF-alpha), and perhaps, to the induction of anticlonotypic immunity directed against pathogenic clones of T lymphocytes. In addition to the treatment of CTCL, a potential role for photopheresis in the therapy of autoimmune disease has been suggested by recent pilot studies of pemphigus vulgaris, rheumatoid arthritis, and systemic lupus erythematosus. Furthermore, a randomized, single-blinded trial involving 79 patients with early onset, aggressive systemic sclerosis suggested that photopheresis could benefically affect the course of the cutaneous thickening in this form of the disease. Lastly, two independent pilot studies of cardiac transplantation have indicated that photopheresis can reverse acute cardiac allograft rejection and potentially suppress ongoing chronic rejection. Randomized, controlled trials for these new indications for photopheresis therapy are currently in the early stages of implementation.

  7. Host-Pathogen Interactions and Chronic Lung Allograft Dysfunction.

    PubMed

    Belperio, John; Palmer, Scott M; Weigt, S Sam

    2017-09-01

    Lung transplantation is now considered to be a therapeutic option for patients with advanced-stage lung diseases. Unfortunately, due to post-transplant complications, both infectious and noninfectious, it is only a treatment and not a cure. Infections (e.g., bacterial, viral, and fungal) in the immunosuppressed lung transplant recipient are a common cause of mortality post transplant. Infections have more recently been explored as factors contributing to the risk of chronic lung allograft dysfunction (CLAD). Each major class of infection-(1) bacterial (Staphylococcus aureus and Pseudomonas aeruginosa); (2) viral (cytomegalovirus and community-acquired respiratory viruses); and (3) fungal (Aspergillus)-has been associated with the development of CLAD. Mechanistically, the microbe seems to be interacting with the allograft cells, stimulating the induction of chemokines, which recruit recipient leukocytes to the graft. The recipient leukocyte interactions with the microbe further up-regulate chemokines, amplifying the influx of allograft-infiltrating mononuclear cells. These events can promote recipient leukocytes to interact with the allograft, triggering an alloresponse and graft dysfunction. Overall, interactions between the microbe-allograft-host immune system alters chemokine production, which, in part, plays a role in the pathobiology of CLAD and mortality due to CLAD.

  8. HEart trAnsplantation Registry of piTie-Salpetriere University Hospital

    ClinicalTrials.gov

    2018-01-08

    Cardiac Transplant Disorder; Cardiac Death; Heart Failure; Acute Cellular Graft Rejection; Antibody-Mediated Graft Rejection; Cardiac Allograft Vasculopathy; Heart Transplant Rejection; Immune Tolerance

  9. Ex Vivo Expanded Human Regulatory T Cells Delay Islet Allograft Rejection via Inhibiting Islet-Derived Monocyte Chemoattractant Protein-1 Production in CD34+ Stem Cells-Reconstituted NOD-scid IL2rγnull Mice

    PubMed Central

    Xiao, Fang; Ma, Liang; Zhao, Min; Huang, Guocai; Mirenda, Vincenzo; Dorling, Anthony

    2014-01-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune disease caused by immune-mediated destruction of insulin-secreting β cells of the pancreas. Near complete dependence on exogenous insulin makes T1DM very difficult to control, with the result that patients are exposed to high blood glucose and risk of diabetic complications and/or intermittent low blood glucose that can cause unconsciousness, fits and even death. Allograft transplantation of pancreatic islets restores normoglycemia with a low risk of surgical complications. However, although successful immediately after transplantation, islets are progressively lost, with most of the patients requiring exogenous insulin within 2 years post-transplant. Therefore, there is an urgent requirement for the development of new strategies to prevent islet rejection. In this study, we explored the importance of human regulatory T cells in the control of islets allograft rejection. We developed a pre-clinical model of human islet transplantation by reconstituting NOD-scid IL2rγnull mice with cord blood-derived human CD34+ stem cells and demonstrated that although the engrafted human immune system mediated the rejection of human islets, their survival was significantly prolonged following adoptive transfer of ex vivo expanded human Tregs. Mechanistically, Tregs inhibited the infiltration of innate immune cells and CD4+ T cells into the graft by down-regulating the islet graft-derived monocyte chemoattractant protein-1. Our findings might contribute to the development of clinical strategies for Treg therapy to control human islet rejection. We also show for the first time that CD34+ cells-reconstituted NOD-scid IL2rγnull mouse model could be beneficial for investigating human innate immunity in vivo. PMID:24594640

  10. In vitro comparison of the efficacy of TGF-β1 and PDGF-BB in combination with freeze-dried bone allografts for induction of osteogenic differentiation in MG-63 osteoblast-like cells.

    PubMed

    Vahabi, Surena; Torshabi, Maryam; Esmaeil Nejad, Azadeh

    2016-12-01

    Predictable regeneration of alveolar bone defects has always been a challenge in implant dentistry. Bone allografts are widely used bone substitutes with controversial osteoinductive activity. This in vitro study aimed to assess the osteogenic potential of some commercially available freeze-dried bone allografts supplemented with human recombinant platelet-derived growth factor-BB and transforming growth factor beta-1. Cell viability, mineralization, and osteogenic gene expression of MG-63 osteoblast-like cells were compared among the allograft alone, allograft/platelet-derived growth factor-BB, allograft/transforming growth factor beta-1, and allograft/platelet-derived growth factor-BB/transforming growth factor beta-1 groups. The methyl thiazol tetrazolium assay, real-time quantitative reverse transcription polymerase chain reaction and alizarin red staining were performed, respectively, for assessment of cell viability, differentiation, and mineralization at 24-72 h post treatment. The allograft with greater cytotoxic effect on MG-63 cells caused the lowest differentiation among the groups. In comparison with allograft alone, allograft/transforming growth factor beta-1, and allograft/transforming growth factor beta-1/platelet-derived growth factor-BB caused significant upregulation of bone sialoprotein and osteocalcin osteogenic mid-late marker genes, and resulted in significantly higher amounts of calcified nodules especially in mineralized non-cytotoxic allograft group. Supplementation of platelet-derived growth factor-BB alone in 5 ng/mL concentration had no significant effect on differentiation or mineralization markers. According to the results, transforming growth factor beta-1 acts synergistically with bone allografts to enhance the osteogenic differentiation potential. Therefore, this combination may be useful for rapid transformation of undifferentiated cells into bone-forming cells for bone regeneration. However, platelet-derived growth factor

  11. Elevated serum vascular endothelial growth factor and development of cardiac allograft vasculopathy in children.

    PubMed

    Watanabe, Kae; Karimpour-Fard, Anis; Michael, Alix; Miyamoto, Shelley D; Nakano, Stephanie J

    2018-04-30

    Cardiac allograft vasculopathy (CAV) is a leading cause of retransplantation and death in pediatric heart transplant recipients. Our aim was to evaluate the association between serum vascular endothelial growth factor-A (VEGF) and CAV development in the pediatric heart transplant population. In this retrospective study performed at a university hospital, VEGF concentrations were measured by enzyme-linked immunosorbent assay in banked serum from pediatric heart transplant recipients undergoing routine cardiac catheterization. In subjects with CAV (n = 29), samples were obtained at 2 time-points: before CAV diagnosis (pre-CAV) and at the time of initial CAV diagnosis (CAV). In subjects without CAV (no-CAV, n = 16), only 1 time-point was used. VEGF concentrations (n = 74) were assayed in duplicate. Serum VEGF is elevated in pediatric heart transplant recipients before catheter-based diagnosis of CAV (no-CAV mean: 144.0 ± 89.05 pg/ml; pre-CAV mean: 316.2 ± 118.3 pg/ml; p = 0.0002). Receiver-operating characteristic curve analysis of pre-CAV VEGF levels demonstrated an area under the curve of 87.7% (p = 0.0002), with a VEGF level of 226.3 pg/ml predicting CAV development with 77.8% sensitivity and 91.7% specificity. VEGF is similarly elevated in subjects with angiographically diagnosed CAV and in those with normal angiography but intravascular ultrasound (IVUS) evidence of CAV. The increase in serum VEGF before onset of detectable CAV is fundamental to its utility as a predictive biomarker and suggests further investigations of VEGF in the pathogenesis of CAV are warranted in the pediatric heart transplant population. Copyright © 2018 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  12. The impact of donor characteristics on the immune cell composition of mixture allografts of granulocyte-colony-stimulating factor-mobilized marrow harvests and peripheral blood harvests.

    PubMed

    Wang, Yu-Tong; Zhao, Xiang-Yu; Zhao, Xiao-Su; Xu, Lan-Ping; Zhang, Xiao-Hui; Wang, Yu; Liu, Kai-Yan; Chang, Ying-Jun; Huang, Xiao-Jun

    2015-12-01

    The association of donor characteristics with immune cell composition in allografts remains poorly understood. In this retrospective study, the effects of donor characteristics on immune cell composition in allografts were investigated. The correlations of donor characteristics with the immune cell composition in mixture allografts of granulocyte-colony-stimulating factor-mobilized marrow harvests and peripheral blood harvests of 390 healthy donors (male, 240; female, 150; median age, 40 years old) were analyzed. The median doses of CD3+ T cells, CD4+ T cells, CD8+ T cells, CD3+CD4-CD8- T cells, and monocytes in mixture allografts were 160.57 × 10(6), 89.29 × 10(6), 56.16 × 10(6), 10.87 × 10(6), and 137.94 × 10(6)/kg, respectively. Multivariate analysis showed that younger donor age was associated with a higher dose of CD3+ T cells (p = 0.006), CD3+CD8+ T cells (p < 0.001), CD3+CD4-CD8- T cells (p = 0.004), and monocytes (p = 0.014), as well as a higher ratio of CD3+CD4-CD8- T cells/CD3+ T cells (p < 0.001) in the mixture allografts. A negative association of donor weight with CD3+ T cells (p < 0.001), CD4+ T cells (p = 0.002), CD8+ T cells (p < 0.001), and CD3+CD4-CD8- T cells (p = 0.044) was observed. The count of peripheral blood lymphocyte pre-peripheral blood apheresis was correlated with the yield of CD3+ T cells (p < 0.001) and CD4+ T cells (p = 0.001). The peripheral blood monocyte count before marrow harvest predicted the monocyte dose (p = 0.002). The results suggested that older and overweight donors should not be chosen. The monocyte and lymphocyte counts before harvest could predict the yield of immune cells in allografts. © 2015 AABB.

  13. Bim Regulates Alloimmune-Mediated Vascular Injury Through Effects on T Cell Activation and Death

    PubMed Central

    von Rossum, Anna; Enns, Winnie; Shi, Yu P.; MacEwan, Grace E.; Malekesmaeli, Mehrnoush; Brinkman, Ryan; Choy, Jonathan C.

    2014-01-01

    Objective Bim is a pro-apoptotic Bcl-2 protein known to down-regulate immune responses and to also be required for antigen-induced T cell activation. However, it is not known how the effect of Bim on these offsetting processes determines the outcome of allogeneic immune responses. We have defined the role of Bim in regulating alloantigen-driven T cell responses in a model of vascular rejection. Approach and Results Bim was required for proliferation of CD4 and CD8 T cells, and for IL-2 production, in T cells stimulated with alloantigen in vitro. Moreover, a partial reduction in Bim expression was sufficient to attenuate T cell activation whereas a complete elimination of Bim was required to prevent CD4 T cell death in response to cytokine withdrawl. When alloimmune-mediated vascular rejection was examined using an aortic interposition model, there was significantly less intimal thickening in Bim+/−, but not Bim−/−, graft recipients. T cell proliferation in response to allograft arteries was significantly reduced in both Bim+/− and Bim−/− mice, but cell death was attenuated only in Bim−/− animals. Conclusions Bim controls both T cell activation and death in response to alloantigen stimulation. These processes act cooperatively to determine the outcome of immune responses in allograft arteries. PMID:24700126

  14. RNA-seq Analysis of Clinical-Grade Osteochondral Allografts Reveals Activation of Early Response Genes

    PubMed Central

    Lin, Yang; Lewallen, Eric A.; Camilleri, Emily T.; Bonin, Carolina A.; Jones, Dakota L.; Dudakovic, Amel; Galeano-Garces, Catalina; Wang, Wei; Karperien, Marcel J.; Larson, Annalise N.; Dahm, Diane L.; Stuart, Michael J.; Levy, Bruce A.; Smith, Jay; Ryssman, Daniel B.; Westendorf, Jennifer J.; Im, Hee-Jeong; van Wijnen, Andre J.; Riester, Scott M.; Krych, Aaron J.

    2016-01-01

    Preservation of osteochondral allografts used for transplantation is critical to ensure favorable outcomes for patients after surgical treatment of cartilage defects. To study the biological effects of protocols currently used for cartilage storage, we investigated differences in gene expression between stored allograft cartilage and fresh cartilage from living donors using high throughput molecular screening strategies. We applied next generation RNA sequencing (RNA-seq) and real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) to assess genome-wide differences in mRNA expression between stored allograft cartilage and fresh cartilage tissue from living donors. Gene ontology analysis was used to characterize biological pathways associated with differentially expressed genes. Our studies establish reduced levels of mRNAs encoding cartilage related extracellular matrix (ECM) proteins (i.e., COL1A1, COL2A1, COL10A1, ACAN, DCN, HAPLN1, TNC, and COMP) in stored cartilage. These changes occur concomitantly with increased expression of “early response genes” that encode transcription factors mediating stress/cytoprotective responses (i.e., EGR1, EGR2, EGR3, MYC, FOS, FOSB, FOSL1, FOSL2, JUN, JUNB, and JUND). The elevated expression of “early response genes” and reduced levels of ECM-related mRNAs in stored cartilage allografts suggests that tissue viability may be maintained by a cytoprotective program that reduces cell metabolic activity. These findings have potential implications for future studies focused on quality assessment and clinical optimization of osteochondral allografts used for cartilage transplantation. PMID:26909883

  15. Renal cell carcinoma in the allograft: what is the role of polyomavirus?

    PubMed

    Neirynck, Valerie; Claes, Kathleen; Naesens, Maarten; De Wever, Liesbeth; Pirenne, Jacques; Kuypers, Dirk; Vanrenterghem, Yves; Poppel, Hendrik Van; Kabanda, Andre; Lerut, Evelyne

    2012-07-01

    BK virus (BKV) is known to cause subclinical infection in childhood. The virus remains latent in the human body, mainly in the urinary tract epithelium. After initiation of an immunosuppressive treatment, reactivation can occur in renal transplant recipients. BKV can cause hemorrhagic cystitis, ureteral stenosis and BKV nephropathy in immunocompromised patients. Furthermore, a number of case reports suggest an association between BKV infection and the development of urinary tract cancer. So far, an oncogenic potential of BKV has been observed in vitro and in animal models; however, its oncogenic capacity in humans remains unclear. We report the case of a 59-year-old patient who developed a poorly differentiated renal cell carcinoma in her renal allograft, with pulmonary and abdominal metastasis. Surgical removal of the allograft and cessation of the immunosuppressive therapy resulted in complete resolution of the metastatic disease.

  16. Comprehensive morphometric analysis of mononuclear cell infiltration during experimental renal allograft rejection.

    PubMed

    Hoffmann, Ute; Bergler, Tobias; Jung, Bettina; Steege, Andreas; Pace, Claudia; Rümmele, Petra; Reinhold, Stephan; Krüger, Bernd; Krämer, Bernhard K; Banas, Bernhard

    2013-01-01

    The role of specific subtypes of infiltrating cells in acute kidney allograft rejection is still not clear and was so far not examined by different analyzing methods under standardized conditions of an experimental kidney transplantation model. Immunohistochemical staining of CD3, CD20 and CD68 was performed in rat allografts, in syngeneically transplanted rats and in control rats with a test duration of 6 and 28 days. The detailed expression and localization of infiltrating cells were analyzed manually in different kidney compartments under light microscope and by the two different morphometric software programs. Data were correlated with the corresponding kidney function as well as with histopathological classification. The information provided by the morphometric software programs on the infiltration of the specific cell types after renal transplantation was in accordance with the manual analysis. Morphometric methods were solid to analyze reliably the induction of cellular infiltrates after renal transplantation. By manual analysis we could clearly demonstrate the detailed localization of the specific cell infiltrates in the different kidney compartments. Besides infiltration of CD3 and CD68 infiltrating cells, a robust infiltration of CD20 B-cells in allogeneically transplanted rats, even at early time points after transplantation was detected. Additionally an MHC class I expression could reliable be seen in allogeneically transplanted rats. The infiltration of B-cells and the reliable antigen presentation might act as a silent subclinical trigger for subsequent chronic rejection and premature graft loss. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Early application of Met-RANTES ameliorates chronic allograft nephropathy.

    PubMed

    Song, Erwei; Zou, Hequn; Yao, Yousheng; Proudfoot, Amanda; Antus, Balazs; Liu, Shanying; Jens, Lutz; Heemann, Uwe

    2002-02-01

    Initial insults to kidney allografts, characterized by infiltration of mononuclear inflammatory cells, contribute to chronic allograft nephropathy. Chemokines such as RANTES (regulated upon activation, normal T cell expressed) are thought to be responsible for the recruitment and activation of infiltrating cells. The present study investigated whether early application of Met-RANTES, a chemokine receptor antagonist that blocks the effects of RANTES, can protect renal allografts from long-term deterioration. Fisher (F344) rat kidneys were orthotopically transplanted into Lewis recipients and treated with cyclosporine A (1.5 mg/kg/day) for the first 10 days following transplantation, together with either Met-RANTES at 40 microg/day, 200 microg/day or vehicle for the first 7 days. Animals were harvested at 2 and 28 weeks after transplantation for histologic, immunohistologic and molecular analysis. Met-RANTES treatment reduced the infiltration of lymphocytes and macrophages in allografts at 2 weeks after transplantation, accompanied by decreased mRNA expression of interleukin (IL)-2, IL-1beta, tumor necrosis factor-alpha (TNF-alpha) and RANTES. At post-transplantation week 28, Met-RANTES treatment at high and low doses reduced urinary protein excretion and significantly ameliorated glomerulosclerosis, interstitial fibrosis, tubular atrophy, intimal proliferation of graft arteries and mononuclear cell infiltration. However, creatinine clearance was not influenced by Met-RANTES. Furthermore, Met-RANTES suppressed the mRNA expression of transforming growth factor-beta (TGF-beta) and platelet-derived growth factor-B (PDGF-B). Blockade of chemokine receptors by Met-RANTES diminishes early infiltration and activation of mononuclear cells in the grafts, and thus reduces the pace of chronic allograft nephropathy.

  18. Micromanaging alloimmunity.

    PubMed

    Ford, Mandy L

    2016-07-01

    Increasing evidence indicates that microbes have a large influence on immune function. Previous studies have linked pathogenic microorganisms with decreased allograft tolerance and subsequent rejection. In this issue of the JCI, Lei and colleagues demonstrate that commensal organisms also influence the host response to allograft transplantation. Using murine skin and cardiac transplant models, the authors demonstrate that allograft rejection is accelerated in mice with a normal microbiome compared with germ-free animals and antibiotic-treated mice. The increased graft rejection observed in conventional animals was due to enhanced T cell priming and was mediated through type I IFN. Together, these results suggest that altering a patient's microbial community prior to transplant could improve allograft acceptance.

  19. Diagnostic value of plasma and bronchoalveolar lavage samples in acute lung allograft rejection: differential cytology.

    PubMed

    Speck, Nicole E; Schuurmans, Macé M; Murer, Christian; Benden, Christian; Huber, Lars C

    2016-06-21

    Diagnosis of acute lung allograft rejection is currently based on transbronchial lung biopsies. Additional methods to detect acute allograft dysfunction derived from plasma and bronchoalveolar lavage samples might facilitate diagnosis and ultimately improve allograft survival. This review article gives an overview of the cell profiles of bronchoalveolar lavage and plasma samples during acute lung allograft rejection. The value of these cells and changes within the pattern of differential cytology to support the diagnosis of acute lung allograft rejection is discussed. Current findings on the topic are highlighted and trends for future research are identified.

  20. Antibody-mediated rejection in kidney transplantation: a review of pathophysiology, diagnosis, and treatment options.

    PubMed

    Kim, Miae; Martin, Spencer T; Townsend, Keri R; Gabardi, Steven

    2014-07-01

    Antibody-mediated rejection (AMR), also known as B-cell-mediated or humoral rejection, is a significant complication after kidney transplantation that carries a poor prognosis. Although fewer than 10% of kidney transplant patients experience AMR, as many as 30% of these patients experience graft loss as a consequence. Although AMR is mediated by antibodies against an allograft and results in histologic changes in allograft vasculature that differ from cellular rejection, it has not been recognized as a separate disease process until recently. With an improved understanding about the importance of the development of antibodies against allografts as well as complement activation, significant advances have occurred in the treatment of AMR. The standard of care for AMR includes plasmapheresis and intravenous immunoglobulin that remove and neutralize antibodies, respectively. Agents targeting B cells (rituximab and alemtuzumab), plasma cells (bortezomib), and the complement system (eculizumab) have also been used successfully to treat AMR in kidney transplant recipients. However, the high cost of these medications, their use for unlabeled indications, and a lack of prospective studies evaluating their efficacy and safety limit the routine use of these agents in the treatment of AMR in kidney transplant recipients. © 2014 Pharmacotherapy Publications, Inc.

  1. Cardiac side population cells and Sca-1-positive cells.

    PubMed

    Nagai, Toshio; Matsuura, Katsuhisa; Komuro, Issei

    2013-01-01

    Since the resident cardiac stem/progenitor cells were discovered, their ability to maintain the architecture and functional integrity of adult heart has been broadly explored. The methods for isolation and purification of the cardiac stem cells are crucial for the precise analysis of their developmental origin and intrinsic potential as tissue stem cells. Stem cell antigen-1 (Sca-1) is one of the useful cell surface markers to purify the cardiac progenitor cells. Another purification strategy is based on the high efflux ability of the dye, which is a common feature of tissue stem cells. These dye-extruding cells have been called side population cells because they locate in the side of dye-retaining cells after fluorescent cell sorting. In this chapter, we describe the methodology for the isolation of cardiac SP cells and Sca-1 positive cells.

  2. Early aspirin use and the development of cardiac allograft vasculopathy.

    PubMed

    Kim, Miae; Bergmark, Brian A; Zelniker, Thomas A; Mehra, Mandeep R; Stewart, Garrick C; Page, Deborah S; Woodcome, Erica L; Smallwood, Jennifer A; Gabardi, Steven; Givertz, Michael M

    2017-12-01

    Cardiac allograft vasculopathy (CAV) remains a leading cause of morbidity and mortality after orthotopic heart transplantation (OHT). Little is known about the influence of aspirin on clinical expression of CAV. We followed 120 patients with OHT at a single center for a median of 7 years and categorized them by the presence or absence of early aspirin therapy post-transplant (aspirin treatment ≥6 months in the first year). The association between aspirin use and time to the primary end-point of angiographic moderate or severe CAV (International Society for Heart and Lung Transplantation grade ≥2) was investigated. Propensity scores for aspirin treatment were estimated using boosting models and applied by inverse probability of treatment weighting (IPTW). Despite a preponderance of risk factors for CAV among patients receiving aspirin (male sex, ischemic heart disease as the etiology of heart failure, and smoking), aspirin therapy was associated with a lower rate of moderate or severe CAV at 5 years. Event-free survival was 95.9% for patients exposed to aspirin compared with 79.6% for patients without aspirin exposure (log-rank p = 0.005). IPTW-weighted Cox regression revealed a powerful inverse association between aspirin use and moderate to severe CAV (adjusted hazard ratio 0.13; 95% confidence interval 0.03-0.59), which was directionally consistent for CAV of any severity (adjusted hazard ratio 0.50; 95% confidence interval 0.23-1.08). This propensity score-based comparative observational analysis suggests that early aspirin exposure may be associated with a reduced risk of development of moderate to severe CAV. These findings warrant prospective validation in controlled investigations. Copyright © 2017 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  3. Mast Cells: Key Contributors to Cardiac Fibrosis

    PubMed Central

    Widiapradja, Alexander

    2018-01-01

    Historically, increased numbers of mast cells have been associated with fibrosis in numerous cardiac pathologies, implicating mast cells in the development of cardiac fibrosis. Subsequently, several approaches have been utilised to demonstrate a causal role for mast cells in animal models of cardiac fibrosis including mast cell stabilising compounds, rodents deficient in mast cells, and inhibition of the actions of mast cell-specific proteases such as chymase and tryptase. Whilst most evidence supports a pro-fibrotic role for mast cells, there is evidence that in some settings these cells can oppose fibrosis. A major gap in our current understanding of cardiac mast cell function is identification of the stimuli that activate these cells causing them to promote a pro-fibrotic environment. This review will present the evidence linking mast cells to cardiac fibrosis, as well as discuss the major questions that remain in understanding how mast cells contribute to cardiac fibrosis. PMID:29329223

  4. Acute ethanol exposure-induced autophagy-mediated cardiac injury via activation of the ROS-JNK-Bcl-2 pathway.

    PubMed

    Zhu, Zhongxin; Huang, Yewei; Lv, Lingchun; Tao, Youli; Shao, Minglong; Zhao, Congcong; Xue, Mei; Sun, Jia; Niu, Chao; Wang, Yang; Kim, Sunam; Cong, Weitao; Mao, Wei; Jin, Litai

    2018-02-01

    Binge drinking is associated with increased cardiac autophagy, and often triggers heart injury. Given the essential role of autophagy in various cardiac diseases, this study was designed to investigate the role of autophagy in ethanol-induced cardiac injury and the underlying mechanism. Our study showed that ethanol exposure enhanced the levels of LC3-II and LC3-II positive puncta and promoted cardiomyocyte apoptosis in vivo and in vitro. In addition, we found that ethanol induced autophagy and cardiac injury largely via the sequential triggering of reactive oxygen species (ROS) accumulation, activation of c-Jun NH2-terminal kinase (JNK), phosphorylation of Bcl-2, and dissociation of the Beclin 1/Bcl-2 complex. By contrast, inhibition of ethanol-induced autophagic flux with pharmacologic agents in the hearts of mice and cultured cells significantly alleviated ethanol-induced cardiomyocyte apoptosis and heart injury. Elimination of ROS with the antioxidant N-acetyl cysteine (NAC) or inhibition of JNK with the JNK inhibitor SP600125 reduced ethanol-induced autophagy and subsequent autophagy-mediated apoptosis. Moreover, metallothionein (MT), which can scavenge reactive oxygen and nitrogen species, also attenuated ethanol-induced autophagy and cell apoptosis in MT-TG mice. In conclusion, our findings suggest that acute ethanol exposure induced autophagy-mediated heart toxicity and injury mainly through the ROS-JNK-Bcl-2 signaling pathway. © 2017 Wiley Periodicals, Inc.

  5. in Vitro and in Vivo Inhibitory Effects of α-Mangostin on Cholangiocarcinoma Cells and Allografts

    PubMed Central

    Aukkanimart, Ratchadawan; Boonmars, Thidarut; Sriraj, Pranee; Sripan, Panupan; Songsri, Jiraporn; Ratanasuwan, Panaratana; Laummaunwai, Porntip; Boueroy, Parichart; Khueangchaingkhwang, Sukhonthip; Pumhirunroj, Benjamabhorn; Artchayasawat, Atchara; Boonjaraspinyo, Sirintip; Wu, Zhiliang; Hahnvajanawong, Chariya; Vaeteewoottacharn, Kulthida; Wongkham, Sopit

    2017-01-01

    We investigated the anti-cholangiocarcinoma effect of α-mangostin from Garcinia mangostana pericarp extract (GM) in a human cholangiocarcinoma (CCA) cell line and a hamster CCA allograft model. In vitro, human CCA cells were treated with GM at various concentrations and for different time periods; then cell-cycle arrest and apoptosis were evaluated using flow cytometry, and metastatic potential with wound healing assays. In vivo, hamster allografts were treated with GM, gemcitabine (positive control) and a placebo (negative control) for 1 month; tumor weight and volume were then determined. Histopathological features and immunostaining (CK19 and PCNA) characteristics were examined by microscopy. The present study found that α-mangostin could: inhibit CCA cell proliferation by inducing apoptosis through the mitochondrial pathway; induce G1 cell-cycle arrest; and inhibit metastasis. Moreover, α-mangostin could inhibit CCA growth, i.e. reduce tumor mass (weight and size) and alter CCA pathology, as evidenced by reduced positive staining for CK19 and PCNA. The present study thus suggested that α-mangostin is a promising anti-CCA compound whose ready availability in tropical countries might indicate use for prevention and treatment of CCA. PMID:28441703

  6. Human iPS cell-engineered cardiac tissue sheets with cardiomyocytes and vascular cells for cardiac regeneration

    PubMed Central

    Masumoto, Hidetoshi; Ikuno, Takeshi; Takeda, Masafumi; Fukushima, Hiroyuki; Marui, Akira; Katayama, Shiori; Shimizu, Tatsuya; Ikeda, Tadashi; Okano, Teruo; Sakata, Ryuzo; Yamashita, Jun K.

    2014-01-01

    To realize cardiac regeneration using human induced pluripotent stem cells (hiPSCs), strategies for cell preparation, tissue engineering and transplantation must be explored. Here we report a new protocol for the simultaneous induction of cardiomyocytes (CMs) and vascular cells [endothelial cells (ECs)/vascular mural cells (MCs)], and generate entirely hiPSC-engineered cardiovascular cell sheets, which showed advantageous therapeutic effects in infarcted hearts. The protocol adds to a previous differentiation protocol of CMs by using stage-specific supplementation of vascular endothelial cell growth factor for the additional induction of vascular cells. Using this cell sheet technology, we successfully generated physically integrated cardiac tissue sheets (hiPSC-CTSs). HiPSC-CTS transplantation to rat infarcted hearts significantly improved cardiac function. In addition to neovascularization, we confirmed that engrafted human cells mainly consisted of CMs in >40% of transplanted rats four weeks after transplantation. Thus, our HiPSC-CTSs show promise for cardiac regenerative therapy. PMID:25336194

  7. Blockade of vascular adhesion protein-1 inhibits lymphocyte infiltration in rat liver allograft rejection.

    PubMed

    Martelius, Timi; Salaspuro, Ville; Salmi, Marko; Krogerus, Leena; Höckerstedt, Krister; Jalkanen, Sirpa; Lautenschlager, Irmeli

    2004-12-01

    Vascular adhesion protein-1 (VAP-1) has been shown to mediate lymphocyte adhesion to endothelia at sites of inflammation, but its functional role in vivo has not been tested in any rodent model. Here we report the effects of VAP-1 blockade on rat liver allograft rejection. BN recipients of PVG liver allografts (known to develop acute rejection by day 7) were treated with 2 mg/kg anti-VAP-1 (a new anti-rat VAP-1 mAb 174-5) or isotype-matched irrelevant antibody (NS1) every other day (n = 6/group) and one group with anti-VAP-1 2 mg/kg daily (n = 7). On day 7, samples were collected for transplant aspiration cytology, histology, and immunohistochemistry. Lymphocyte infiltration to the graft was clearly affected by VAP-blockade. The total inflammation, mainly the number of active lymphoid cells, in transplant aspiration cytology was significantly decreased in animals treated with anti-VAP-1 (4.7 +/- 1.0 and 2.4 +/- 1.0 corrected increment units, respectively) compared to control (6.6 +/- 1.0) (P < 0.05). In histology, the intensity of portal inflammation was significantly decreased (P < 0.05). The amount of T cells expressing activation markers diminished. This is the first demonstration in any prolonged in vivo model that VAP-1 plays an important role in lymphocyte infiltration to sites of inflammation, and, in particular, liver allograft rejection.

  8. Erythropoietin protects myocardin-expressing cardiac stem cells against cytotoxicity of tumor necrosis factor-{alpha}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madonna, Rosalinda; Institute of Cardiology, and Center of Excellence on Aging, 'G. d'Annunzio' University, Chieti; Shelat, Harnath

    2009-10-15

    Cardiac stem cells are vulnerable to inflammation caused by infarction or ischemic injury. The growth factor, erythropoietin (Epo), ameliorates the inflammatory response of the myocardium to ischemic injury. This study was designed to assess the role of Epo in regulation of expression and activation of the cell death-associated intracellular signaling components in cardiac myoblasts stimulated with the proinflammatory cytokine tumor necrosis factor (TNF)-{alpha}. Cardiac myoblasts isolated from canine embryonic hearts characterized by expression of myocardin A, a promyogenic transcription factor for cardiovascular muscle development were pretreated with Epo and then exposed to TNF-{alpha}. Compared to untreated cells, the Epo-treated cardiacmore » myoblasts exhibited better morphology and viability. Immunoblotting revealed lower levels of active caspase-3 and reductions in iNOS expression and NO production in Epo-treated cells. Furthermore, Epo pretreatment reduced nuclear translocation of NF-{kappa}B and inhibited phosphorylation of inhibitor of kappa B (I{kappa}B) in TNF-{alpha}-stimulated cardiac myoblasts. Thus, Epo protects cardiac myocyte progenitors or myoblasts against the cytotoxic effects of TNF-{alpha} by inhibiting NF-{kappa}B-mediated iNOS expression and NO production and by preventing caspase-3 activation.« less

  9. The Spectrum of Renal Allograft Failure

    PubMed Central

    Chand, Sourabh; Atkinson, David; Collins, Clare; Briggs, David; Ball, Simon; Sharif, Adnan; Skordilis, Kassiani; Vydianath, Bindu; Neil, Desley; Borrows, Richard

    2016-01-01

    Background Causes of “true” late kidney allograft failure remain unclear as study selection bias and limited follow-up risk incomplete representation of the spectrum. Methods We evaluated all unselected graft failures from 2008–2014 (n = 171; 0–36 years post-transplantation) by contemporary classification of indication biopsies “proximate” to failure, DSA assessment, clinical and biochemical data. Results The spectrum of graft failure changed markedly depending on the timing of allograft failure. Failures within the first year were most commonly attributed to technical failure, acute rejection (with T-cell mediated rejection [TCMR] dominating antibody-mediated rejection [ABMR]). Failures beyond a year were increasingly dominated by ABMR and ‘interstitial fibrosis with tubular atrophy’ without rejection, infection or recurrent disease (“IFTA”). Cases of IFTA associated with inflammation in non-scarred areas (compared with no inflammation or inflammation solely within scarred regions) were more commonly associated with episodes of prior rejection, late rejection and nonadherence, pointing to an alloimmune aetiology. Nonadherence and late rejection were common in ABMR and TCMR, particularly Acute Active ABMR. Acute Active ABMR and nonadherence were associated with younger age, faster functional decline, and less hyalinosis on biopsy. Chronic and Chronic Active ABMR were more commonly associated with Class II DSA. C1q-binding DSA, detected in 33% of ABMR episodes, were associated with shorter time to graft failure. Most non-biopsied patients were DSA-negative (16/21; 76.1%). Finally, twelve losses to recurrent disease were seen (16%). Conclusion This data from an unselected population identifies IFTA alongside ABMR as a very important cause of true late graft failure, with nonadherence-associated TCMR as a phenomenon in some patients. It highlights clinical and immunological characteristics of ABMR subgroups, and should inform clinical practice and

  10. p63 Silencing induces reprogramming of cardiac fibroblasts into cardiomyocyte-like cells.

    PubMed

    Patel, Vivekkumar; Singh, Vivek P; Pinnamaneni, Jaya Pratap; Sanagasetti, Deepthi; Olive, Jacqueline; Mathison, Megumi; Cooney, Austin; Flores, Elsa R; Crystal, Ronald G; Yang, Jianchang; Rosengart, Todd K

    2018-04-13

    Reprogramming of fibroblasts into induced cardiomyocytes represents a potential new therapy for heart failure. We hypothesized that inactivation of p63, a p53 gene family member, may help overcome human cell resistance to reprogramming. p63 Knockout ( -/- ) and knockdown murine embryonic fibroblasts (MEFs), p63 -/- adult murine cardiac fibroblasts, and human cardiac fibroblasts were assessed for cardiomyocyte-specific feature changes, with or without treatment by the cardiac transcription factors Hand2-Myocardin (HM). Flow cytometry revealed that a significantly greater number of p63 -/- MEFs expressed the cardiac-specific marker cardiac troponin T (cTnT) in culture compared with wild-type (WT) cells (38% ± 11% vs 0.9% ± 0.9%, P < .05). HM treatment of p63 -/- MEFs increased cTnT expression to 74% ± 3% of cells but did not induce cTnT expression in wild-type murine embryonic fibroblasts. shRNA-mediated p63 knockdown likewise yielded a 20-fold increase in cTnT microRNA expression compared with untreated MEFs. Adult murine cardiac fibroblasts demonstrated a 200-fold increase in cTnT gene expression after inducible p63 knockout and expressed sarcomeric α-actinin as well as cTnT. These p63 -/- adult cardiac fibroblasts exhibited calcium transients and electrically stimulated contractions when co-cultured with neonatal rat cardiomyocytes and treated with HM. Increased expression of cTnT and other marker genes was also observed in p63 knockdown human cardiac fibroblasts procured from patients undergoing procedures for heart failure. Downregulation of p63 facilitates direct cardiac cellular reprogramming and may help overcome the resistance of human cells to reprogramming. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  11. Progressive histological damage in renal allografts is associated with expression of innate and adaptive immunity genes

    PubMed Central

    Naesens, Maarten; Khatri, Purvesh; Li, Li; Sigdel, Tara K.; Vitalone, Matthew J.; Chen, Rong; Butte, Atul J.; Salvatierra, Oscar; Sarwal, Minnie M.

    2015-01-01

    The degree of progressive chronic histological damage is associated with long-term renal allograft survival. In order to identify promising molecular targets for timely intervention, we examined renal allograft protocol and indication biopsies from 120 low-risk pediatric and adolescent recipients by whole-genome microarray expression profiling. In data-driven analysis, we found a highly regulated pattern of adaptive and innate immune gene expression that correlated with established or ongoing histological chronic injury, and also with development of future chronic histological damage, even in histologically pristine kidneys. Hence, histologically unrecognized immunological injury at a molecular level sets the stage for the development of chronic tissue injury, while the same molecular response is accentuated during established and worsening chronic allograft damage. Irrespective of the hypothesized immune or nonimmune trigger for chronic allograft injury, a highly orchestrated regulation of innate and adaptive immune responses was found in the graft at the molecular level. This occurred months before histologic lesions appear, and quantitatively below the diagnostic threshold of classic T-cell or antibody-mediated rejection. Thus, measurement of specific immune gene expression in protocol biopsies may be warranted to predict the development of subsequent chronic injury in histologically quiescent grafts and as a means to titrate immunosuppressive therapy. PMID:21881554

  12. Progressive histological damage in renal allografts is associated with expression of innate and adaptive immunity genes.

    PubMed

    Naesens, Maarten; Khatri, Purvesh; Li, Li; Sigdel, Tara K; Vitalone, Matthew J; Chen, Rong; Butte, Atul J; Salvatierra, Oscar; Sarwal, Minnie M

    2011-12-01

    The degree of progressive chronic histological damage is associated with long-term renal allograft survival. In order to identify promising molecular targets for timely intervention, we examined renal allograft protocol and indication biopsies from 120 low-risk pediatric and adolescent recipients by whole-genome microarray expression profiling. In data-driven analysis, we found a highly regulated pattern of adaptive and innate immune gene expression that correlated with established or ongoing histological chronic injury, and also with development of future chronic histological damage, even in histologically pristine kidneys. Hence, histologically unrecognized immunological injury at a molecular level sets the stage for the development of chronic tissue injury, while the same molecular response is accentuated during established and worsening chronic allograft damage. Irrespective of the hypothesized immune or nonimmune trigger for chronic allograft injury, a highly orchestrated regulation of innate and adaptive immune responses was found in the graft at the molecular level. This occurred months before histologic lesions appear, and quantitatively below the diagnostic threshold of classic T-cell or antibody-mediated rejection. Thus, measurement of specific immune gene expression in protocol biopsies may be warranted to predict the development of subsequent chronic injury in histologically quiescent grafts and as a means to titrate immunosuppressive therapy.

  13. Cardiac Progenitor Cells and Bone Marrow-Derived Very Small Embryonic-Like Stem Cells for Cardiac Repair After Myocardial Infarction

    PubMed Central

    Tang, Xian-Liang; Rokosh, D. Gregg; Guo, Yiru; Bolli, Roberto

    2010-01-01

    Heart failure after myocardial infarction (MI) continues to be the most prevalent cause of morbidity and mortality worldwide. Although pharmaceutical agents and interventional strategies have contributed greatly to therapy, new and superior treatment modalities are urgently needed given the overall disease burden. Stem cell-based therapy is potentially a promising strategy to lead to cardiac repair after MI. An array of cell types has been explored in this respect, including skeletal myoblasts, bone marrow (BM)-derived stem cells, embryonic stem cells, and more recently, cardiac progenitor cells (CPCs). Recently studies have obtained evidence that transplantation of CPCs or BM-derived very small embryonic-like stem cells can improve cardiac function and alleviate cardiac remodeling, supporting the potential therapeutic utility of these cells for cardiac repair. This report summarizes the current data from those studies and discusses the potential implication of these cells in developing clinically-relevant stem cell-based therapeutic strategies for cardiac regeneration. PMID:20081317

  14. Circulating donor-specific anti-HLA antibodies are a major factor in premature and accelerated allograft fibrosis.

    PubMed

    Gosset, Clément; Viglietti, Denis; Rabant, Marion; Vérine, Jérôme; Aubert, Olivier; Glotz, Denis; Legendre, Christophe; Taupin, Jean-Luc; Duong Van-Huyen, Jean-Paul; Loupy, Alexandre; Lefaucheur, Carmen

    2017-09-01

    Addressing the causes of kidney allograft-accelerated aging is an important challenge for improving long-term transplant outcomes. Here we investigated the role of circulating donor-specific anti-HLA antibodies (HLA-DSAs) in the development and the progression of kidney allograft fibrosis with inclusion of traditional risk factors for allograft fibrosis. We prospectively enrolled 1539 consecutive kidney recipients transplanted in two centers and assessed interstitial fibrosis and tubular atrophy (IF/TA) in biopsies performed at one year post-transplantation. The HLA-DSAs and all traditional determinants of IF/TA were recorded at transplantation and within the first year post-transplantation, including histological diagnoses in 2260 "for cause" biopsies. This identified 498 (32%) patients with severe IF/TA (Banff IF/TA grade 2 or more). HLA-DSAs were significantly associated with severe IF/TA (adjusted odds ratio, 1.53; 95% confidence interval 1.16-2.01) after including 37 determinants. HLA-DSAs remained significantly associated with severe IF/TA in patients without antibody-mediated rejection (adjusted odds ratio 1.54; 1.11-2.14). HLA-DSAs were the primary contributor, being involved in 11% of cases, while T cell-mediated rejection, calcineurin-inhibitor toxicity, acute tubular necrosis, pyelonephritis, and BK virus-associated nephropathy were involved in 9%, 8%, 6%, 5%, and 4% of cases, respectively. One hundred fifty-four patients with HLA-DSA-associated severe IF/TA showed significantly increased microvascular inflammation, transplant glomerulopathy, C4d deposition in capillaries, and decreased allograft survival compared to 344 patients with severe IF/TA without HLA-DSAs. Three hundred seventy-eight patients with post-transplant HLA-DSAs exhibited significantly accelerated progression of IF/TA compared to 1161 patients without HLA-DSAs in the biopsies performed at one year post-transplant and beyond. Thus, circulating HLA-DSAs are major determinants of

  15. Macrophages: Contributors to Allograft Dysfunction, Repair or Innocent Bystanders?

    PubMed Central

    Mannon, Roslyn B.

    2012-01-01

    Purpose of this review Macrophages are members of the innate immune response. However, their role in the adaptive immune response is not known. The purpose of this review is to highlight our current understanding of macrophage structure and function and how they may participate in allograft injury. Recent Findings Studies in acute kidney injury models identify macrophages as key mediators of inflammatory injury while more recent studies indicate that they may play a reparative role, depending on phenotype—M1 or M2 type macrophages. Mregs, generated in vitro, appear to have immune suppressive abilities and a unique phenotype. In solid organ transplant, the emphasis of studies has been on acute or chronic injury. These data are derived from animal models using depletion of macrophages or antagonizing their activation and inflammatory responses. The relative contribution of macrophage phenotype in transplantation has not been explored. Summary These studies suggest that macrophages play an injurious role in acute cellular allograft rejection, as well as in chronic injury. Infiltration of an allograft with macrophages is also associated with worse graft function and poor prognosis. Further studies are needed to understand the mechanisms of macrophage mediated injury, explore their potential reparative role and determine if they or their functional products are biomarkers of poor graft outcomes. PMID:22157320

  16. Macrophages: contributors to allograft dysfunction, repair, or innocent bystanders?

    PubMed

    Mannon, Roslyn B

    2012-02-01

    Macrophages are members of the innate immune response. However, their role in the adaptive immune response is not known. The purpose of this review is to highlight our current understanding of macrophage structure and function and how they may participate in allograft injury. Studies in acute kidney injury models identify macrophages as key mediators of inflammatory injury, while more recent studies indicate that they may play a reparative role, depending on phenotype - M1 or M2 type macrophages. Mregs, generated in vitro, appear to have immune suppressive abilities and a unique phenotype. In solid-organ transplant, the emphasis of studies has been on acute or chronic injury. These data are derived from animal models using depletion of macrophages or antagonizing their activation and inflammatory responses. The relative contribution of macrophage phenotype in transplantation has not been explored. These studies suggest that macrophages play an injurious role in acute cellular allograft rejection, as well as in chronic injury. Infiltration of an allograft with macrophages is also associated with worse graft function and poor prognosis. Further studies are needed to understand the mechanisms of macrophage-mediated injury, explore their potential reparative role, and determine if they or their functional products are biomarkers of poor graft outcomes.

  17. Anterior cruciate ligament allograft transplantation in dogs.

    PubMed

    Vasseur, P B; Stevenson, S; Gregory, C R; Rodrigo, J J; Pauli, S; Heitter, D; Sharkey, N

    1991-08-01

    The biomechanical and clinical performance of bone-ligament-bone anterior cruciate ligament (ACL) allografts was studied in eight dogs. Allografts were collected from skeletally mature, healthy dogs using aseptic technique, and stored at -70 degrees for three to five weeks before implantation. The allografts were size-matched to the recipient dogs using ACL length and then rigidly fixed in position with interference screws and Kirschner wires. Three dogs regained a normal gait, and their grafts sustained breaking loads that were 25%, 41%, and 59% of controls. Partial or complete graft failure occurred in the other five dogs at some point in the study. Four had intraligamentous rupture and one had an avulsion fracture of the femoral attachment site. Joint-fluid cytology was normal in all eight dogs. Histologic examination showed persistent lymphoplasmacytic infiltrate. Eventually the allograft cores were incorporated in the host bed. Hyperplasia and fibrosis of the synovial membrane were diffuse and persisted as focal accumulations of mononuclear inflammatory cells.

  18. Effect of Adipose Tissue-Derived Osteogenic and Endothelial Cells on Bone Allograft Osteogenesis and Vascularization in Critical-Sized Calvarial Defects

    DTIC Science & Technology

    2012-05-10

    1% peni - cillin/streptomycin, and 50 ng/mL recombinant rat VEGF-C (Promocell, Heidelberg, Germany). The media were changed every other day for 8...various animal models that have demonstrated an enhanced osteogenic effect after treating bone allografts with adipose tissue or bone marrow-derived... enhanced 1560 CORNEJO ET AL. performance of bone allografts using osteogenic differentiated adipose derived mesenchymal stem cells. Biomaterials 32, 8880

  19. Use of Lung Allografts from Brain-Dead Donors after Cardiopulmonary Arrest and Resuscitation

    PubMed Central

    Worni, Mathias; Osho, Asishana A.; Snyder, Laurie D.; Palmer, Scott M.; Pietrobon, Ricardo; Davis, R. Duane; Hartwig, Matthew G.

    2013-01-01

    Rationale: Patients who progress to brain death after resuscitation from cardiac arrest have been hypothesized to represent an underused source of potential organ donors; however, there is a paucity of data regarding the viability of lung allografts after a period of cardiac arrest in the donor. Objectives: To analyze postoperative complications and survival after lung transplant from brain-dead donors resuscitated after cardiac arrest. Methods: The United Network for Organ Sharing database records donors with cardiac arrest occurring after brain death. Adult recipients of lung allografts from these arrest/resuscitation donors between 2005 and 2011 were compared with nonarrest donors. Propensity score matching was used to reduce the effect of confounding. Postoperative complications and overall survival were assessed using McNemar’s test for correlated binary proportions and Kaplan–Meier methods. Measurements and Main Results: A total of 479 lung transplant recipients from arrest/resuscitation donors were 1:1 propensity matched from a cohort of 9,076 control subjects. Baseline characteristics in the 1:1-matched cohort were balanced. There was no significant difference in perioperative mortality, airway dehiscence, dialysis requirement, postoperative length of stay (P ≥ 0.38 for all), or overall survival (P = 0.52). A subanalysis of the donor arrest group demonstrated similar survival when stratified by resuscitation time quartile (P = 0.38). Conclusions: There is no evidence of inferior outcomes after lung transplant from brain-dead donors who have had a period of cardiac arrest provided that good lung function is preserved and the donor is otherwise deemed acceptable for transplantation. Potential expansion of the donor pool to include cardiac arrest as the cause of brain death requires further study. PMID:23777361

  20. Mesenchymal stem cells and cardiac repair

    PubMed Central

    Nesselmann, Catharina; Ma, Nan; Bieback, Karen; Wagner, Wolfgang; Ho, Anthony; Konttinen, Yrjö T; Zhang, Hao; Hinescu, Mihail E; Steinhoff, Gustav

    2008-01-01

    Accumulating clinical and experimental evidence indicates that mesenchymal stem cells (MSCs) are promising cell types in the treatment of cardiac dysfunction. They may trigger production of reparative growth factors, replace damaged cells and create an environment that favours endogenous cardiac repair. However, identifying mechanisms which regulate the role of MSCs in cardiac repair is still at work. To achieve the maximal clinical benefits, ex vivo manipulation can further enhance MSC therapeutic potential. This review focuses on the mechanism of MSCs in cardiac repair, with emphasis on ex vivo manipulation. PMID:18684237

  1. Substance P induces adverse myocardial remodelling via a mechanism involving cardiac mast cells.

    PubMed

    Meléndez, Giselle C; Li, Jianping; Law, Brittany A; Janicki, Joseph S; Supowit, Scott C; Levick, Scott P

    2011-12-01

    Substance P and neurokinin A (NKA) are sensory nerve neuropeptides encoded by the TAC1 gene. Substance P is a mast cell secretagogue and mast cells are known to play a role in adverse myocardial remodelling. Therefore, we wondered whether substance P and/or NKA modulates myocardial remodelling via a mast cell-mediated mechanism. Volume overload was induced by aortocaval fistula in TAC1(-/-) mice and their respective wild types. Left ventricular internal diameter of wild-type (WT) fistulas increased by 31.9%; this was prevented in TAC1(-/-) mice (4.2%). Matrix metalloproteinase (MMP) activity was significantly increased in WT fistula mice and was prevented in TAC1(-/-) mice. Myocardial collagen volume fraction was decreased in WT fistula mice; this collagen degradation was not observed in the TAC1(-/-) group. There were no significant differences between any groups in tumour necrosis factor (TNF)-α or cell death. Cardiac mast cells were isolated from rat hearts and stimulated with substance P or NKA. We found that these cells degranulated only to substance P, via the neurokinin-1 receptor. To determine the effect of substance P on mast cells in vivo, volume overload was created in Sprague-Dawley rats treated with the NK-1 receptor antagonist L732138 (5 mg/kg/day) for a period of 3 days. L732138 prevented: (i) increases in cardiac mast cell density; (ii) increased myocardial TNF-α; and (iii) collagen degradation. Our studies suggest that substance P may be important in mediating adverse myocardial remodelling secondary to volume overload by activating cardiac mast cells, leading to increased TNF-α and MMP activation with subsequent degradation of the extracellular matrix.

  2. De novo immune complex deposition in kidney allografts: a series of 32 patients.

    PubMed

    Lloyd, Isaac E; Ahmed, Faris; Revelo, Monica P; Khalighi, Mazdak A

    2018-01-01

    Immune complex deposition in kidney allografts can include both recurrent and de novo processes. Recurrent glomerulonephritis is a well-recognized phenomenon and has been shown to be a common cause of allograft failure. De novo immune complex-mediated disease remains relatively poorly characterized, likely owing to the less frequent use of immunofluorescence and electron microscopy in the transplant setting. We performed a retrospective review of kidney allograft biopsies showing glomerular immune complex deposition. Cases with de novo deposits were identified and further organized into two groups depending on whether the immune complex deposition could be clinically and/or histologically classified. Thirty-two patients with de novo immune complex deposition were identified over a 7-year period. A broad range of immune complex-mediated injuries were observed, the majority (63%) of which could be readily classified either clinically or histologically. These included cases of membranous glomerulonephropathy, IgA nephropathy, infection-related glomerulonephritis and glomerulonephritis related to an underlying autoimmune process. A smaller subset of patients (37%) demonstrated immune complex deposition that was difficult to histologically or clinically classify. These patients typically showed mild mesangial immune complex deposition with co-dominant IgG and IgM staining by immunofluorescence microscopy. The presence of concurrent antibody-mediated rejection and donor-specific antibody positivity was significantly higher in the unclassifiable group. The significance of these deposits and their possible relationship to allograft rejection deserves further investigation. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Role of airway epithelial injury in murine orthotopic tracheal allograft rejection.

    PubMed

    Kuo, Elbert; Bharat, Ankit; Shih, Jennifer; Street, Tyler; Norris, Jenyi; Liu, Wei; Parks, William; Walter, Michael; Patterson, G Alexander; Mohanakumar, T

    2006-10-01

    Murine tracheal transplantation is a model used to study bronchiolitis obliterans syndrome, a major cause of morbidity and mortality after lung transplantation. Unlike murine heterotopic tracheal transplants, orthotopic transplantation does not cause luminal obliteration despite major histocompatibility antigen mismatch. Repopulation of the tracheal allografts with recipient-derived epithelium confers protection against luminal obliteration. The purpose of this study was to determine whether (1) orthotopic tracheal transplantation showed signs of allograft rejection, and (2) airway epithelial cell injury promoted orthotopic tracheal allograft rejection. Forty isogeneic (C57BL/6 to C57BL/6) and 40 allogeneic (BALB/c to C57BL/6) orthotopic tracheal transplants were performed. Damage to airway epithelial cells was induced by Sendai viral (SdV) infection and tracheal transplantation into non-reepithelializing matrix metalloproteinase-7 knockout (MMP7-KO) recipient mice. Percent fibrosis and lamina propria to cartilage ratio were calculated with computer assistance on harvested allografts. Allografts showed significantly more intramural fibrosis compared with isografts at 30, 60, and 180 days after transplant without luminal occlusion. Tracheal allografts infected with SdV showed an increase in fibrosis and lamina propria to cartilage ratio compared with noninfected controls. Allografts retrieved from MMP7-KO recipients also showed a significant increase in fibrosis and lamina propria to cartilage ratio. Although orthotopic tracheal transplantation does not cause luminal obliteration, it results in increased fibrosis in allografts. Damage to the respiratory epithelium by viral infection or defective reepithelialization after transplant as seen in MMP7-KO recipient mice leads to changes consistent with chronic allograft rejection, suggesting a role for epithelial injury in bronchiolitis obliterans syndrome development.

  4. Membrane estrogen receptor alpha is an important modulator of bone marrow C-Kit+ cells mediated cardiac repair after myocardial infarction

    PubMed Central

    Su, Feng; Zhang, Wentian; Liu, Jianfang

    2015-01-01

    It has been validated that c-kit positive (c-kit+) cells in infarcted myocardium are from bone marrow (BM). Given the recent study that in the heart, estrogen receptor alpha (ERα) is involved in adaptive mechanisms by supporting cardiomyocytes survival via post-infarct cardiac c-kit+ cells, we tested a novel hypothesis that membrane ERα (mERа) supports survival of BM c-kit+ cells and enhance protective paracrine function for cardiac repair. Our data showed that myocardial infarction (MI) leads to an increase in c-kit+ first in bone marrow and then specifically within the infarcted myocardium. Also up-regulated mERа in post-infarct BM c-kit+ cells was found in day 3 post MI. In vitro co-culture system, mERа+ enhances the beneficial effects of BM c-kit+ cells by increasing their viability and reducing apoptosis. Post-infarct c-kit+ mERа+ cells population expresses predominant ERα and holds self-renewal as well as cardiac differentiation potentials after MI. In vivo, BM c-kit+ cells reduced infarct size, fibrosis and improved cardiac function. In conclusion, BM c-kit+ mERа+ exerted significantly cardiac protection after MI. A potential important implication of this study is that the manipulation of BM c-kit+ stem cells with ERа-dependent fashion may be helpful in recovering functional performance after cardiac tissue injury. PMID:26191121

  5. Stem cells for cardiac repair: an introduction

    PubMed Central

    du Pré, Bastiaan C; Doevendans, Pieter A; van Laake, Linda W

    2013-01-01

    Cardiovascular disease is a major cause of morbidity and mortality throughout the world. Most cardiovascular diseases, such as ischemic heart disease and cardiomyopathy, are associated with loss of functional cardiomyocytes. Unfortunately, the heart has a limited regenerative capacity and is not able to replace these cardiomyocytes once lost. In recent years, stem cells have been put forward as a potential source for cardiac regeneration. Pre-clinical studies that use stem cell-derived cardiac cells show promising results. The mechanisms, though, are not well understood, results have been variable, sometimes transient in the long term, and often without a mechanistic explanation. There are still several major hurdles to be taken. Stem cell-derived cardiac cells should resemble original cardiac cell types and be able to integrate in the damaged heart. Integration requires administration of stem cell-derived cardiac cells at the right time using the right mode of delivery. Once delivered, transplanted cells need vascularization, electrophysiological coupling with the injured heart, and prevention of immunological rejection. Finally, stem cell therapy needs to be safe, reproducible, and affordable. In this review, we will give an introduction to the principles of stem cell based cardiac repair. PMID:23888179

  6. Therapeutic lymphangiogenesis ameliorates established acute lung allograft rejection

    PubMed Central

    Cui, Ye; Liu, Kaifeng; Monzon-Medina, Maria E.; Padera, Robert F.; Wang, Hao; George, Gautam; Toprak, Demet; Abdelnour, Elie; D’Agostino, Emmanuel; Goldberg, Hilary J.; Perrella, Mark A.; Forteza, Rosanna Malbran; Rosas, Ivan O.; Visner, Gary; El-Chemaly, Souheil

    2015-01-01

    Lung transplantation is the only viable option for patients suffering from otherwise incurable end-stage pulmonary diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Despite aggressive immunosuppression, acute rejection of the lung allograft occurs in over half of transplant recipients, and the factors that promote lung acceptance are poorly understood. The contribution of lymphatic vessels to transplant pathophysiology remains controversial, and data that directly address the exact roles of lymphatic vessels in lung allograft function and survival are limited. Here, we have shown that there is a marked decline in the density of lymphatic vessels, accompanied by accumulation of low-MW hyaluronan (HA) in mouse orthotopic allografts undergoing rejection. We found that stimulation of lymphangiogenesis with VEGF-C156S, a mutant form of VEGF-C with selective VEGFR-3 binding, alleviates an established rejection response and improves clearance of HA from the lung allograft. Longitudinal analysis of transbronchial biopsies from human lung transplant recipients demonstrated an association between resolution of acute lung rejection and decreased HA in the graft tissue. Taken together, these results indicate that lymphatic vessel formation after lung transplantation mediates HA drainage and suggest that treatments to stimulate lymphangiogenesis have promise for improving graft outcomes. PMID:26485284

  7. Efferocytosis and Outside-In Signaling by Cardiac Phagocytes. Links to Repair, Cellular Programming, and Intercellular Crosstalk in Heart

    PubMed Central

    DeBerge, Matthew; Zhang, Shuang; Glinton, Kristofor; Grigoryeva, Luba; Hussein, Islam; Vorovich, Esther; Ho, Karen; Luo, Xunrong; Thorp, Edward B.

    2017-01-01

    Phagocytic sensing and engulfment of dying cells and extracellular bodies initiate an intracellular signaling cascade within the phagocyte that can polarize cellular function and promote communication with neighboring non-phagocytes. Accumulating evidence links phagocytic signaling in the heart to cardiac development, adult myocardial homeostasis, and the resolution of cardiac inflammation of infectious, ischemic, and aging-associated etiology. Phagocytic clearance in the heart may be carried out by professional phagocytes, such as macrophages, and non-professional cells, including myofibrolasts and potentially epithelial cells. During cardiac development, phagocytosis initiates growth cues for early cardiac morphogenesis. In diseases of aging, including myocardial infarction, heightened levels of cell death require efficient phagocytic debridement to salvage further loss of terminally differentiated adult cardiomyocytes. Additional risk factors, including insulin resistance and other systemic risk factors, contribute to inefficient phagocytosis, altered phagocytic signaling, and delayed cardiac inflammation resolution. Under such conditions, inflammatory presentation of myocardial antigen may lead to autoimmunity and even possible rejection of transplanted heart allografts. Increased understanding of these basic mechanisms offers therapeutic opportunities. PMID:29163503

  8. Inhibition of the purinergic pathway prolongs mouse lung allograft survival.

    PubMed

    Liu, Kaifeng; Vergani, Andrea; Zhao, Picheng; Ben Nasr, Moufida; Wu, Xiao; Iken, Khadija; Jiang, Dawei; Su, Xiaofeng; Fotino, Carmen; Fiorina, Paolo; Visner, Gary A

    2014-08-01

    Lung transplantation has limited survival with current immunosuppression. ATP is released from activated T cells, which act as costimulatory molecules through binding to the purinergic receptor P2XR7. We investigated the role of blocking the ATP/purinergic pathway, primarily P2XR7, using its inhibitor oxidized ATP (oATP) in modulating rejection of mouse lung allografts. Mouse lung transplants were performed using mice with major histocompatibility complex mismatch, BALB/c to C57BL6. Recipients received suramin or oATP, and lung allografts were evaluated 15 to ≥ 60 days after transplantation. Recipients were also treated with oATP after the onset of moderate to severe rejection to determine its ability to rescue lung allografts. Outcomes measures included lung function, histology, thoracic imaging, and allo-immune responses. Blocking purinergic receptors with the nonselective inhibitor suramin or with the P2XR7-selective inhibitor oATP reduced acute rejection and prolonged lung allograft survival for ≥ 60 days with no progression in severity. There were fewer inflammatory cells within lung allografts, less rejection, and improved lung function, which was maintained over time. CD4 and CD8 T cells were reduced within lung allografts with impaired activation with prolonged impairment of CD8 responses. In vitro, oATP reduced CD8 activation of Th1 inflammatory cytokines IFN-γ and TNF-α and cytolytic machinery, granzyme B. Cotreatment with immunosuppressive agents, cyclosporine, rapamycin, or CTLA-4Ig resulted in no additive benefits, and oATP alone resulted in better outcomes than cyclosporine alone. This study illustrates a potential new pathway to target in hopes of prolonging survival of lung transplant recipients.

  9. Stem cells in cardiac repair.

    PubMed

    Henning, Robert J

    2011-01-01

    Myocardial infarction is the leading cause of death among people in industrialized nations. Although the heart has some ability to regenerate after infarction, myocardial restoration is inadequate. Consequently, investigators are currently exploring the use of human embryonic stem cells (hESCs), skeletal myoblasts and adult bone marrow stem cells to limit infarct size. hESCs are pluripotent cells that can regenerate myocardium in infarcted hearts, attenuate heart remodeling and contribute to left ventricle (LV) systolic force development. Since hESCs can form heart teratomas, investigators are differentiating hESCs toward cardiac progenitor cells prior to transplantation into hearts. Large quantities of hESCs cardiac progenitor cells, however, must be generated, immune rejection must be prevented and grafts must survive over the long term to significantly improve myocardial performance. Transplanted autologous skeletal myoblasts can survive in infarcted myocardium in small numbers, proliferate, differentiate into skeletal myofibers and increase the LV ejection fraction. These cells, however, do not form electromechanical connections with host cardiomyocytes. Consequently, electrical re-entry can occur and cause cardiac arrhythmias. Autologous bone marrow mononuclear cells contain hematopoietic and mesenchymal stem cells. In several meta-analyses, patients with coronary disease who received autologous bone marrow cells by intracoronary injection show significant 3.7% (range: 1.9-5.4%) increases in LV ejection fraction, decreases in LV end-systolic volume of -4.8 ml (range: -1.4 to -8.2 ml) and reductions in infarct size of 5.5% (-1.9 to -9.1%), without experiencing arrhythmias. Bone marrow cells appear to release biologically active factors that limit myocardial damage. Unfortunately, bone marrow cells from patients with chronic diseases propagate poorly and can die prematurely. Substantial challenges must be addressed and resolved to advance the use of stem cells

  10. RNA-seq analysis of clinical-grade osteochondral allografts reveals activation of early response genes.

    PubMed

    Lin, Yang; Lewallen, Eric A; Camilleri, Emily T; Bonin, Carolina A; Jones, Dakota L; Dudakovic, Amel; Galeano-Garces, Catalina; Wang, Wei; Karperien, Marcel J; Larson, Annalise N; Dahm, Diane L; Stuart, Michael J; Levy, Bruce A; Smith, Jay; Ryssman, Daniel B; Westendorf, Jennifer J; Im, Hee-Jeong; van Wijnen, Andre J; Riester, Scott M; Krych, Aaron J

    2016-11-01

    Preservation of osteochondral allografts used for transplantation is critical to ensure favorable outcomes for patients after surgical treatment of cartilage defects. To study the biological effects of protocols currently used for cartilage storage, we investigated differences in gene expression between stored allograft cartilage and fresh cartilage from living donors using high throughput molecular screening strategies. We applied next generation RNA sequencing (RNA-seq) and real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) to assess genome-wide differences in mRNA expression between stored allograft cartilage and fresh cartilage tissue from living donors. Gene ontology analysis was used to characterize biological pathways associated with differentially expressed genes. Our studies establish reduced levels of mRNAs encoding cartilage related extracellular matrix (ECM) proteins (i.e., COL1A1, COL2A1, COL10A1, ACAN, DCN, HAPLN1, TNC, and COMP) in stored cartilage. These changes occur concomitantly with increased expression of "early response genes" that encode transcription factors mediating stress/cytoprotective responses (i.e., EGR1, EGR2, EGR3, MYC, FOS, FOSB, FOSL1, FOSL2, JUN, JUNB, and JUND). The elevated expression of "early response genes" and reduced levels of ECM-related mRNAs in stored cartilage allografts suggests that tissue viability may be maintained by a cytoprotective program that reduces cell metabolic activity. These findings have potential implications for future studies focused on quality assessment and clinical optimization of osteochondral allografts used for cartilage transplantation. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1950-1959, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  11. Angiotensin II upregulates K(Ca)3.1 channels and stimulates cell proliferation in rat cardiac fibroblasts.

    PubMed

    Wang, Li-Ping; Wang, Yan; Zhao, Li-Mei; Li, Gui-Rong; Deng, Xiu-Ling

    2013-05-15

    The proliferation of cardiac fibroblasts is implicated in the pathogenesis of myocardial remodeling and fibrosis. Intermediate-conductance calcium-activated K⁺ channels (K(Ca)3.1 channels) have important roles in cell proliferation. However, it is unknown whether angiotensin II (Ang II), a potent profibrotic molecule, would regulate K(Ca)3.1 channels in cardiac fibroblasts and participate in cell proliferation. In the present study, we investigated whether K(Ca)3.1 channels were regulated by Ang II, and how the channel activity mediated cell proliferation in cultured adult rat cardiac fibroblasts using electrophysiology and biochemical approaches. It was found that mRNA, protein, and current density of K(Ca)3.1 channels were greatly enhanced in cultured cardiac fibroblasts treated with 1 μM Ang II, and the effects were countered by the angiotensin type 1 receptor (AT₁R) blocker losartan, the p38-MAPK inhibitor SB203580, the ERK1/2 inhibitor PD98059, and the PI3K/Akt inhibitor LY294002. Ang II stimulated cell proliferation and the effect was antagonized by the K(Ca)3.1 blocker TRAM-34 and siRNA targeting K(Ca)3.1. In addition, Ang II-induced increase of K(Ca)3.1 expression was attenuated by transfection of activator protein-1 (AP-1) decoy oligodeoxynucleotides. These results demonstrate for the first time that Ang II stimulates cell proliferation mediated by upregulating K(Ca)3.1 channels via interacting with the AT₁R and activating AP-1 complex through ERK1/2, p38-MAPK and PI3K/Akt signaling pathways in cultured adult rat cardiac fibroblasts. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  12. Urinary C‑X‑C motif chemokine 13 is a noninvasive biomarker of antibody‑mediated renal allograft rejection.

    PubMed

    Chen, Dajin; Zhang, Jian; Peng, Wenhan; Weng, Chunhua; Chen, Jianghua

    2018-06-22

    Noninvasive monitoring methods of immune status are preferred by transplant recipients. The present study investigated whether urinary C‑X‑C motif chemokine 13 (CXCL13) had the potential to reflect ongoing immune processes within renal allografts. Using an ELISA assay, the level of urinary CXCL13 was quantified in a total of 146 renal allograft recipients and 40 healthy controls at scheduled intervals and at the time of the indicated or protocol biopsy. The results of the present study revealed that urinary CXCL13/creatinine (Cr) was lower in normal transplants compared with in those with acute tubular necrosis (ATN; P=0.001), chronic allograft nephropathy (CAN; P=0.01), and acute rejection (AR; P<0.0001), which was associated with a good diagnostic performance for AR [area under the curve (AUC)=0.818, P<0.0001). In addition, urinary CXCL13/Cr levels in patients with AR were also higher than that of patients with graft dysfunction but no rejection, including ATN and CAN (P=0.034). Notably, urinary CXCL13 distinguished between acute antibody‑mediated rejection (ABMR) and acute cellular rejection, with an AUC of 0.856. Furthermore, patients with steroid‑resistant AR exhibited significantly increased urinary CXCL13/Cr levels than patients with reversible AR (P=0.001). Additionally, elevated levels of urinary CXCL13/Cr within the first month of transplant were predictive of graft function at 3 and 6 months (P=0.044 and P=0.04, respectively). Collectively, the findings of the present study indicated that the noninvasive investigation of urinary CXCL13/Cr may be valuable for the detection of AR, particularly ABMR. In addition, high urinary CXCL13/Cr levels predicted a poor response to steroid treatment and compromised graft function.

  13. Immunomodulatory Effect of Mesenchymal Stem Cells on B Cells

    PubMed Central

    Franquesa, Marcella; Hoogduijn, M. J.; Bestard, O.; Grinyó, J. M.

    2012-01-01

    The research on T cell immunosuppression therapies has attracted most of the attention in clinical transplantation. However, B cells and humoral immune responses are increasingly acknowledged as crucial mediators of chronic allograft rejection. Indeed, humoral immune responses can lead to renal allograft rejection even in patients whose cell-mediated immune responses are well controlled. On the other hand, newly studied B cell subsets with regulatory effects have been linked to tolerance achievement in transplantation. Better understanding of the regulatory and effector B cell responses may therefore lead to new therapeutic approaches. Mesenchymal stem cells (MSC) are arising as a potent therapeutic tool in transplantation due to their regenerative and immunomodulatory properties. The research on MSCs has mainly focused on their effects on T cells and although data regarding the modulatory effects of MSCs on alloantigen-specific humoral response in humans is scarce, it has been demonstrated that MSCs significantly affect B cell functioning. In the present review we will analyze and discuss the results in this field. PMID:22833744

  14. Microenvironmental cues enhance mesenchymal stem cell-mediated immunomodulation and regulatory T-cell expansion.

    PubMed

    Kadle, Rohini L; Abdou, Salma A; Villarreal-Ponce, Alvaro P; Soares, Marc A; Sultan, Darren L; David, Joshua A; Massie, Jonathan; Rifkin, William J; Rabbani, Piul; Ceradini, Daniel J

    2018-01-01

    Mesenchymal stem cells (MSCs) are known to both have powerful immunosuppressive properties and promote allograft tolerance. Determining the environmental oxygen tension and inflammatory conditions under which MSCs are optimally primed for this immunosuppressive function is essential to their utilization in promoting graft tolerance. Of particular interest is the mechanisms governing the interaction between MSCs and regulatory T cells (Tregs), which is relatively unknown. We performed our experiments utilizing rat bone marrow derived MSCs. We observed that priming MSCs in hypoxia promotes maintenance of stem-like characteristics, with greater expression of typical MSC cell-surface markers, increased proliferation, and maintenance of differentiation potential. Addition of autologous MSCs to CD4+/allogeneic endothelial cell (EC) co-culture increases regulatory T cell (Treg) proliferation, which is further enhanced when MSCs are primed in hypoxia. Furthermore, MSC-mediated Treg expansion does not require direct cell-cell contact. The expression of indolamine 2,3-dioxygenase, a mediator of MSC immunomodulation, increases when MSCs are primed in hypoxia, and inhibition of IDO significantly decreases the expansion of Tregs. Priming with inflammatory cytokines IFNγ and TNFα increases also expression of markers associated with MSC immunomodulatory function, but decreases MSC proliferation. The expression of IDO also increases when MSCs are primed with inflammatory cytokines. However, there is no increase in Treg expansion when MSCs are primed with IFNγ, suggesting an alternate mechanism for inflammatory-stimulated MSC immunomodulation. Overall, these results suggest that MSCs primed in hypoxia or inflammatory conditions are optimally primed for immunosuppressive function. These results provide a clearer picture of how to enhance MSC immunomodulation for clinical use.

  15. The lethal effects of cytokine-induced nitric oxide on cardiac myocytes are blocked by nitric oxide synthase antagonism or transforming growth factor beta.

    PubMed Central

    Pinsky, D J; Cai, B; Yang, X; Rodriguez, C; Sciacca, R R; Cannon, P J

    1995-01-01

    Inducible nitric oxide (NO) produced by macrophages is cytotoxic to invading organisms and has an important role in host defense. Recent studies have demonstrated inducible NO production within the heart, and that cytokine-induced NO mediates alterations in cardiac contractility, but the cytotoxic potential of nitric oxide with respect to the heart has not been defined. To evaluate the role of inducible nitric oxide synthase (iNOS) on cardiac myocyte cytotoxicity, we exposed adult rat cardiac myocytes to either cytokines alone or to activated J774 macrophages in coculture. Increased expression of both iNOS message and protein was seen in J774 macrophages treated with IFN gamma and LPS and cardiac myocytes treated with TNF-alpha, IL-1 beta, and IFN gamma. Increased NO synthesis was confirmed in both the coculture and isolated myocyte preparations by increased nitrite production. Increased NO synthesis was associated with a parallel increase in myocyte death as measured by CPK release into the culture medium as well as by loss of membrane integrity, visualized by trypan blue staining. Addition of the competitive NO synthase inhibitor L-NMMA to the culture medium prevented both the increased nitrite production and the cytotoxicity observed after cytokine treatment in both the isolated myocyte and the coculture experiments. Because transforming growth-factor beta modulates iNOS expression in other cell types, we evaluated its effects on cardiac myocyte iNOS expression and NO-mediated myocyte cytotoxicity. TGF-beta reduced expression of cardiac myocyte iNOS message and protein, reduced nitrite production, and reduced NO-mediated cytotoxicity in parallel. Taken together, these experiments show the cytotoxic potential of endogenous NO production within the heart, and suggest a role for TGF-beta or NO synthase antagonists to mute these lethal effects. These findings may help explain the cardiac response to sepsis or allograft rejection, as well as the progression of

  16. Donor CD4+ Foxp3+ regulatory T cells are necessary for posttransplantation cyclophosphamide-mediated protection against GVHD in mice

    PubMed Central

    Ganguly, Sudipto; Ross, Duncan B.; Panoskaltsis-Mortari, Angela; Kanakry, Christopher G.; Blazar, Bruce R.; Levy, Robert B.

    2014-01-01

    Posttransplantation cyclophosphamide (PTCy) is an effective prophylaxis against graft-versus-host disease (GVHD). However, it is unknown whether PTCy works singularly by eliminating alloreactive T cells via DNA alkylation or also by restoring the conventional (Tcon)/regulatory (Treg) T-cell balance. We studied the role of Tregs in PTCy-mediated GVHD prophylaxis in murine models of allogeneic blood or marrow transplantation (alloBMT). In 2 distinct MHC-matched alloBMT models, infusing Treg-depleted allografts abrogated the GVHD-prophylactic activity of PTCy. Using allografts in which Foxp3+ Tregs could be selectively depleted in vivo, either pre- or post-PTCy ablation of donor thymus–derived Tregs (tTregs) abolished PTCy protection against GVHD. PTCy treatment was associated with relative preservation of donor Tregs. Experiments using combinations of Foxp3– Tcons and Foxp3+ Tregs sorted from different Foxp3 reporter mice indicated that donor Treg persistence after PTCy treatment was predominantly caused by survival of functional tTregs that retained Treg-specific demethylation and also induction of peripherally derived Tregs. Finally, adoptive transfer of tTregs retrieved from PTCy-treated chimeras rescued PTCy-treated, Treg-depleted recipients from lethal GVHD. Our findings indicate that PTCy-mediated protection against GVHD is not singularly dependent on depletion of donor alloreactive T cells but also requires rapidly recovering donor Tregs to initiate and maintain alloimmune regulation. PMID:25139358

  17. Blockade of Vascular Adhesion Protein-1 Inhibits Lymphocyte Infiltration in Rat Liver Allograft Rejection

    PubMed Central

    Martelius, Timi; Salaspuro, Ville; Salmi, Marko; Krogerus, Leena; Höckerstedt, Krister; Jalkanen, Sirpa; Lautenschlager, Irmeli

    2004-01-01

    Vascular adhesion protein-1 (VAP-1) has been shown to mediate lymphocyte adhesion to endothelia at sites of inflammation, but its functional role in vivo has not been tested in any rodent model. Here we report the effects of VAP-1 blockade on rat liver allograft rejection. BN recipients of PVG liver allografts (known to develop acute rejection by day 7) were treated with 2 mg/kg anti-VAP-1 (a new anti-rat VAP-1 mAb 174–5) or isotype-matched irrelevant antibody (NS1) every other day (n = 6/group) and one group with anti-VAP-1 2 mg/kg daily (n = 7). On day 7, samples were collected for transplant aspiration cytology, histology, and immunohistochemistry. Lymphocyte infiltration to the graft was clearly affected by VAP-blockade. The total inflammation, mainly the number of active lymphoid cells, in transplant aspiration cytology was significantly decreased in animals treated with anti-VAP-1 (4.7 ± 1.0 and 2.4 ± 1.0 corrected increment units, respectively) compared to control (6.6 ± 1.0) (P < 0.05). In histology, the intensity of portal inflammation was significantly decreased (P < 0.05). The amount of T cells expressing activation markers diminished. This is the first demonstration in any prolonged in vivo model that VAP-1 plays an important role in lymphocyte infiltration to sites of inflammation, and, in particular, liver allograft rejection. PMID:15579442

  18. Cardiac troponin I in sickle cell crisis.

    PubMed

    Aslam, Ahmad K; Rodriguez, Carlos; Aslam, Ahmed F; Vasavada, Balendu C; Khan, Ijaz A

    2009-03-20

    Gross and microscopic findings consistent with acute and healed myocardial injury without coronary artery disease have been described in autopsy studies of patients with sickle cell crisis. The present study was designed to determine whether serum levels of cardiac troponin I are elevated in sickle cell crisis. Cardiac troponin I levels were measured in 32 patients age>18 years with the admission diagnosis of sickle cell crisis. All patients had cardiac troponin I level drawn >24 h after the onset of symptoms. The clinical profile and electrocardiograms were analyzed. Out of 32 patients, 2 patients had serum cardiac troponin I elevated, both had presented with acute chest syndrome. Serum cardiac troponin I may be elevated during sickle cell crisis, possibly by myocardial ischemia resulting from microvascular coronary obstruction during sickle cell crisis.

  19. Substance P induces adverse myocardial remodelling via a mechanism involving cardiac mast cells

    PubMed Central

    Meléndez, Giselle C.; Li, Jianping; Law, Brittany A.; Janicki, Joseph S.; Supowit, Scott C.; Levick, Scott P.

    2011-01-01

    Aims Substance P and neurokinin A (NKA) are sensory nerve neuropeptides encoded by the TAC1 gene. Substance P is a mast cell secretagogue and mast cells are known to play a role in adverse myocardial remodelling. Therefore, we wondered whether substance P and/or NKA modulates myocardial remodelling via a mast cell-mediated mechanism. Methods and results Volume overload was induced by aortocaval fistula in TAC1−/− mice and their respective wild types. Left ventricular internal diameter of wild-type (WT) fistulas increased by 31.9%; this was prevented in TAC1−/− mice (4.2%). Matrix metalloproteinase (MMP) activity was significantly increased in WT fistula mice and was prevented in TAC1−/− mice. Myocardial collagen volume fraction was decreased in WT fistula mice; this collagen degradation was not observed in the TAC1−/− group. There were no significant differences between any groups in tumour necrosis factor (TNF)-α or cell death. Cardiac mast cells were isolated from rat hearts and stimulated with substance P or NKA. We found that these cells degranulated only to substance P, via the neurokinin-1 receptor. To determine the effect of substance P on mast cells in vivo, volume overload was created in Sprague-Dawley rats treated with the NK-1 receptor antagonist L732138 (5 mg/kg/day) for a period of 3 days. L732138 prevented: (i) increases in cardiac mast cell density; (ii) increased myocardial TNF-α; and (iii) collagen degradation. Conclusions Our studies suggest that substance P may be important in mediating adverse myocardial remodelling secondary to volume overload by activating cardiac mast cells, leading to increased TNF-α and MMP activation with subsequent degradation of the extracellular matrix. PMID:21908647

  20. Reduced Myocardial Flow Reserve by Positron Emission Tomography Predicts Cardiovascular Events After Cardiac Transplantation.

    PubMed

    Konerman, Matthew C; Lazarus, John J; Weinberg, Richard L; Shah, Ravi V; Ghannam, Michael; Hummel, Scott L; Corbett, James R; Ficaro, Edward P; Aaronson, Keith D; Colvin, Monica M; Koelling, Todd M; Murthy, Venkatesh L

    2018-06-01

    We evaluated the diagnostic and prognostic value of quantification of myocardial flow reserve (MFR) with positron emission tomography (PET) in orthotopic heart transplant patients. We retrospectively identified orthotopic heart transplant patients who underwent rubidium-82 cardiac PET imaging. The primary outcome was the composite of cardiovascular death, acute coronary syndrome, coronary revascularization, and heart failure hospitalization. Cox regression was used to evaluate the association of MFR with the primary outcome. The relationship of MFR and cardiac allograft vasculopathy severity in patients with angiography within 1 year of PET imaging was assessed using Spearman rank correlation and logistic regression. A total of 117 patients (median age, 60 years; 71% men) were identified. Twenty-one of 62 patients (34%) who underwent angiography before PET had cardiac allograft vasculopathy. The median time from orthotopic heart transplant to PET imaging was 6.4 years (median global MFR, 2.31). After a median of 1.4 years, 22 patients (19%) experienced the primary outcome. On an unadjusted basis, global MFR (hazard ratio, 0.22 per unit increase; 95% confidence interval, 0.09-0.50; P <0.001) and stress myocardial blood flow (hazard ratio, 0.48 per unit increase; 95% confidence interval, 0.29-0.79; P =0.004) were associated with the primary outcome. Decreased MFR independently predicted the primary outcome after adjustment for other variables. In 42 patients who underwent angiography within 12 months of PET, MFR and stress myocardial blood flow were associated with moderate-severe cardiac allograft vasculopathy (International Society of Heart and Lung Transplantation grade 2-3). MFR assessed by cardiac rubidium-82 PET imaging is a predictor of cardiovascular events after orthotopic heart transplant and is associated with cardiac allograft vasculopathy severity. © 2018 American Heart Association, Inc.

  1. Polymer microfiber meshes facilitate cardiac differentiation of c-kit{sup +} human cardiac stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kan, Lijuan; Thayer, Patrick; Fan, Huimin

    Electrospun microfiber meshes have been shown to support the proliferation and differentiation of many types of stem cells, but the phenotypic fate of c-kit{sup +} human cardiac stem cells (hCSCs) have not been explored. To this end, we utilized thin (~5 µm) elastomeric meshes consisting of aligned 1.7 µm diameter poly (ester-urethane urea) microfibers as substrates to examine their effect on hCSC viability, morphology, proliferation, and differentiation relative to cells cultured on tissue culture polystyrene (TCPS). The results showed that cells on microfiber meshes displayed an elongated morphology aligned in the direction of fiber orientation, lower proliferation rates, but increasedmore » expressions of genes and proteins majorly associated with cardiomyocyte phenotype. The early (NK2 homeobox 5, Nkx2.5) and late (cardiac troponin I, cTnI) cardiomyocyte genes were significantly increased on meshes (Nkx=2.5 56.2±13.0, cTnl=2.9±0.56,) over TCPS (Nkx2.5=4.2±0.9, cTnl=1.6±0.5, n=9, p<0.05 for both groups) after differentiation. In contrast, expressions of smooth muscle markers, Gata6 and myosin heavy chain (SM-MHC), were decreased on meshes. Immunocytochemical analysis with cardiac antibody exhibited the similar pattern of above cardiac differentiation. We conclude that aligned microfiber meshes are suitable for guiding cardiac differentiation of hCSCs and may facilitate stem cell-based therapies for treatment of cardiac diseases. - Highlights: • First study to characterize c-kit{sup +} human cardiac stem cells on microfiber meshes. • Microfiber meshes seem reducing cell proliferation, but no effect on cell viability. • Microfiber meshes facilitate the elongation of human cardiac stem cells in culture. • Cardiac but not smooth muscle differentiation were enhanced on microfiber meshes. • Microfiber meshes may be used as cardiac patches in cell-based cardiac therapy.« less

  2. GPR30 decreases cardiac chymase/angiotensin II by inhibiting local mast cell number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Zhuo; Department of Cardiology, Jinan Central Hospital, Affiliated with Shandong University, 105 Jiefang Road, Jinan, 250013; Wang, Hao

    2015-03-27

    Chronic activation of the novel estrogen receptor GPR30 by its agonist G1 mitigates the adverse effects of estrogen (E2) loss on cardiac structure and function. Using the ovariectomized (OVX) mRen2.Lewis rat, an E2-sensitive model of diastolic dysfunction, we found that E2 status is inversely correlated with local cardiac angiotensin II (Ang II) levels, likely via Ang I/chymase-mediated production. Since chymase is released from cardiac mast cells during stress (e.g., volume/pressure overload, inflammation), we hypothesized that GPR30-related cardioprotection after E2 loss might occur through its opposing actions on cardiac mast cell proliferation and chymase production. Using real-time quantitative PCR, immunohistochemistry, andmore » immunoblot analysis, we found mast cell number, chymase expression, and cardiac Ang II levels were significantly increased in the hearts of OVX-compared to ovary-intact mRen2.Lewis rats and the GPR30 agonist G1 (50 mg/kg/day, s.c.) administered for 2 weeks limited the adverse effects of estrogen loss. In vitro studies revealed that GPR30 receptors are expressed in the RBL-2H3 mast cell line and G1 inhibits serum-induced cell proliferation in a dose-dependent manner, as determined by cell counting, BrdU incorporation assay, and Ki-67 staining. Using specific antagonists to estrogen receptors, blockage of GPR30, but not ERα or ERβ, attenuated the inhibitory effects of estrogen on BrdU incorporation in RBL-2H3 cells. Further study of the mechanism underlying the effect on cell proliferation showed that G1 inhibits cyclin-dependent kinase 1 (CDK1) mRNA and protein expression in RBL-2H3 cells in a dose-dependent manner. - Highlights: • GPR30 activation limits mast cell number in hearts from OVX mRen2.Lewis rats. • GPR30 activation decreases cardiac chymase/angiotensin II after estrogen loss. • GPR30 activation inhibits RBL-2H3 mast cell proliferation and CDK1 expression.« less

  3. Allograft tolerance induced by donor apoptotic lymphocytes requires phagocytosis in the recipient

    NASA Technical Reports Server (NTRS)

    Sun, E.; Gao, Y.; Chen, J.; Roberts, A. I.; Wang, X.; Chen, Z.; Shi, Y.

    2004-01-01

    Cell death through apoptosis plays a critical role in regulating cellular homeostasis. Whether the disposal of apoptotic cells through phagocytosis can actively induce immune tolerance in vivo, however, remains controversial. Here, we report in a rat model that without using immunosuppressants, transfusion of apoptotic splenocytes from the donor strain prior to transplant dramatically prolonged survival of heart allografts. Histological analysis verified that rejection signs were significantly ameliorated. Splenocytes from rats transfused with donor apoptotic cells showed a dramatically decreased response to donor lymphocyte stimulation. Most importantly, blockade of phagocytosis in vivo, either with gadolinium chloride to disrupt phagocyte function or with annexin V to block binding of exposed phosphotidylserine to its receptor on phagocytes, abolished the beneficial effect of transfused apoptotic cells on heart allograft survival. Our results demonstrate that donor apoptotic cells promote specific allograft acceptance and that phagocytosis of apoptotic cells in vivo plays a crucial role in maintaining immune tolerance.

  4. A20 Haploinsufficiency Aggravates Transplant Arteriosclerosis in Mouse Vascular Allografts: Implications for Clinical Transplantation

    PubMed Central

    Cervantes, Jesus Revuelta; Wojcik, Brandon M.; Parulkhar, Anshul; Mele, Alessandra; LoGerfo, Philip J.; Siracuse, Jeffrey J.; Csizmadia, Eva; da Silva, Cleide G.; Ferran, Christiane

    2016-01-01

    Background Inflammation is central to the pathogenesis of transplant arteriosclerosis (TA). We questioned whether physiologic levels of anti-inflammatory A20 influence TA severity. Methods We performed major histocompatibility complex (MHC) mismatched aorta to carotid artery interposition grafts, using wild type (WT) or A20 heterozygote (HET) C57BL/6 (H-2b) donors and BALB/c (H-2d) recipients, and conversely BALB/c donors and WT/HET recipients. We analyzed aortic allografts by histology, immunohistochemistry, immunofluorescence, and gene profiling (qPCR). We validated select in vivo A20 targets in human and mouse smooth muscle cell (SMC) cultures. Results We noted significantly greater intimal hyperplasia in HET vs. WT allografts, indicating aggravated TA. Inadequate upregulation of A20 in HET allografts after transplantation was associated with excessive NF-κB activation, gauged by higher levels of IκBα, p65, VCAM-1, ICAM-1, CXCL10, CCL2, TNF, and IL-6 (mostly localized to SMC). Correspondingly, cytokine-induced upregulation of TNF and IL-6 in human and mouse SMC cultures inversely correlated with A20 expression. Aggravated TA in HET vs. WT allografts correlated with increased intimal SMC proliferation, and a higher number of infiltrating IFNγ+ and Granzyme B+ CD4+ T cells and natural killer cells, and lower number of FoxP3+ regulatory T cells. A20 haploinsufficiency in allograft recipients did not influence TA. Conclusions A20 haploinsufficiency in vascular allografts aggravates lesions of TA by exacerbating inflammation, SMC proliferation, and infiltration of pathogenic T cells. A20 single nucleotide polymorphisms (SNPs) associating with lower A20 expression or function in donors of vascularized allografts may inform risk and severity of TA, highlighting the clinical implications of our findings. PMID:27495763

  5. Cardiac differentiation of cardiosphere-derived cells in scaffolds mimicking morphology of the cardiac extracellular matrix.

    PubMed

    Xu, Yanyi; Patnaik, Sourav; Guo, Xiaolei; Li, Zhenqing; Lo, Wilson; Butler, Ryan; Claude, Andrew; Liu, Zhenguo; Zhang, Ge; Liao, Jun; Anderson, Peter M; Guan, Jianjun

    2014-08-01

    Stem cell therapy has the potential to regenerate heart tissue after myocardial infarction (MI). The regeneration is dependent upon cardiac differentiation of the delivered stem cells. We hypothesized that timing of the stem cell delivery determines the extent of cardiac differentiation as cell differentiation is dependent on matrix properties such as biomechanics, structure and morphology, and these properties in cardiac extracellular matrix (ECM) continuously vary with time after MI. In order to elucidate the relationship between ECM properties and cardiac differentiation, we created an in vitro model based on ECM-mimicking fibers and a type of cardiac progenitor cell, cardiosphere-derived cells (CDCs). A simultaneous fiber electrospinning and cell electrospraying technique was utilized to fabricate constructs. By blending a highly soft hydrogel with a relatively stiff polyurethane and modulating fabrication parameters, tissue constructs with similar cell adhesion property but different global modulus, single fiber modulus, fiber density and fiber alignment were achieved. The CDCs remained alive within the constructs during a 1week culture period. CDC cardiac differentiation was dependent on the scaffold modulus, fiber volume fraction and fiber alignment. Two constructs with relatively low scaffold modulus, ∼50-60kPa, most significantly directed the CDC differentiation into mature cardiomyocytes as evidenced by gene expressions of cardiac troponin T (cTnT), calcium channel (CACNA1c) and cardiac myosin heavy chain (MYH6), and protein expressions of cardiac troponin I (cTnI) and connexin 43 (CX43). Of these two low-modulus constructs, the extent of differentiation was greater for lower fiber alignment and higher fiber volume fraction. These results suggest that cardiac ECM properties may have an effect on cardiac differentiation of delivered stem cells. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Self-organizing human cardiac microchambers mediated by geometric confinement

    NASA Astrophysics Data System (ADS)

    Ma, Zhen; Wang, Jason; Loskill, Peter; Huebsch, Nathaniel; Koo, Sangmo; Svedlund, Felicia L.; Marks, Natalie C.; Hua, Ethan W.; Grigoropoulos, Costas P.; Conklin, Bruce R.; Healy, Kevin E.

    2015-07-01

    Tissue morphogenesis and organ formation are the consequences of biochemical and biophysical cues that lead to cellular spatial patterning in development. To model such events in vitro, we use PEG-patterned substrates to geometrically confine human pluripotent stem cell colonies and spatially present mechanical stress. Modulation of the WNT/β-catenin pathway promotes spatial patterning via geometric confinement of the cell condensation process during epithelial-mesenchymal transition, forcing cells at the perimeter to express an OCT4+ annulus, which is coincident with a region of higher cell density and E-cadherin expression. The biochemical and biophysical cues synergistically induce self-organizing lineage specification and creation of a beating human cardiac microchamber confined by the pattern geometry. These highly defined human cardiac microchambers can be used to study aspects of embryonic spatial patterning, early cardiac development and drug-induced developmental toxicity.

  7. JAK-STAT signaling in cardiomyogenesis of cardiac stem cells

    PubMed Central

    Mohri, Tomomi; Iwakura, Tomohiko; Nakayama, Hiroyuki; Fujio, Yasushi

    2012-01-01

    Recently various kinds of cardiac stem/progenitor cells have been identified and suggested to be involved in cardiac repair and regeneration in injured myocardium. In this review, we focus on the roles of JAK-STAT signaling in cardiac stem/progenitor cells in cardiomyogenesis. JAK-STAT signaling plays important roles in the differentiation of stem cells into cardiac lineage cells. The activation of JAK-STAT signal elicits the mobilization of mesenchymal stem cells as well, contributing to the maintenance of cardiac function. Thus we propose that JAK-STAT could be a target signaling pathway in cardiac regenerative therapy. PMID:24058761

  8. Gender-related differences in β-adrenergic receptor-mediated cardiac remodeling.

    PubMed

    Zhu, Baoling; Liu, Kai; Yang, Chengzhi; Qiao, Yuhui; Li, Zijian

    2016-12-01

    Cardiac remodeling is the pathological basis of various cardiovascular diseases. In this study, we found gender-related differences in β-adrenergic receptor (AR)-mediated pathological cardiac remodeling. Cardiac remodeling model was established by subcutaneous injection of isoprenaline (ISO) for 14 days. Heart rate (HR), mean arterial pressure (MAP), and echocardiography were obtained on 7th and 14th days during ISO administration. Myocardial cross-sectional area and the ratio of heart mass to tibia length (HM/TL) were detected to assess cardiac hypertrophy. Picro-Sirius red staining (picric acid + Sirius red F3B) was used to evaluate cardiac fibrosis. Myocardial capillary density was assessed by immunohistochemistry for von Willebrand factor. Further, real-time PCR was used to measure the expression of β1-AR and β2-AR. Results showed that ISO induced cardiac remodeling, the extent of which was different between female and male mice. The extent of increase in cardiac wall thickness, myocardial cross-sectional area, and collagen deposition in females was less than that in males. However, no gender-related difference was observed in HR, MAP, cardiac function, and myocardial capillary density. The distinctive decrease of β2-AR expression, rather than a decrease of β1-AR expression, seemed to result in gender-related differences in cardiac remodeling.

  9. Challenges in Cardiac Tissue Engineering

    PubMed Central

    Tandon, Nina; Godier, Amandine; Maidhof, Robert; Marsano, Anna; Martens, Timothy P.; Radisic, Milica

    2010-01-01

    Cardiac tissue engineering aims to create functional tissue constructs that can reestablish the structure and function of injured myocardium. Engineered constructs can also serve as high-fidelity models for studies of cardiac development and disease. In a general case, the biological potential of the cell—the actual “tissue engineer”—is mobilized by providing highly controllable three-dimensional environments that can mediate cell differentiation and functional assembly. For cardiac regeneration, some of the key requirements that need to be met are the selection of a human cell source, establishment of cardiac tissue matrix, electromechanical cell coupling, robust and stable contractile function, and functional vascularization. We review here the potential and challenges of cardiac tissue engineering for developing therapies that could prevent or reverse heart failure. PMID:19698068

  10. Depression and reduced heart rate variability after cardiac surgery: the mediating role of emotion regulation.

    PubMed

    Patron, Elisabetta; Messerotti Benvenuti, Simone; Favretto, Giuseppe; Gasparotto, Renata; Palomba, Daniela

    2014-02-01

    Heart rate variability (HRV), as an index of autonomic nervous system (ANS) functioning, is reduced by depression after cardiac surgery, but the underlying mechanisms of this relationship are poorly understood. Poor emotion regulation as a core symptom of depression has also been associated with altered ANS functioning. The present study aimed to examine whether emotion dysregulation could be a mediator of the depression-reduced HRV relationship observed after cardiac surgery. Self-reported emotion regulation and four-minute HRV were measured in 25 depressed and 43 nondepressed patients after cardiac surgery. Mediation analysis was conducted to evaluate emotion regulation as a mediator of the depression-reduced HRV relationship. Compared to nondepressed patients, those with depression showed lower standard deviation of normal-to-normal (NN) intervals (p<.05), root mean square successive difference of NN intervals (p<.004), and number of interval differences of successive NN intervals greater than 50ms (NN50) (p<.05). Increased low frequency (LF) in normalized units (n.u.) and reduced high frequency (HF) n.u. were also found in depressed compared to nondepressed patients (p's<.01). Mediation analysis revealed that suppression of emotion-expressive behavior partially mediated the effect of depression on LF n.u. and HF n.u. Results confirmed previous findings showing that depression is associated with reduced HRV, especially a reduced vagal tone and a sympathovagal imbalance, after cardiac surgery. This study also provides preliminary evidence that increased trait levels of suppression of emotion-expressive behavior may mediate the depression-related sympathovagal imbalance after cardiac surgery. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Rapamycin-treated human endothelial cells preferentially activate allogeneic regulatory T cells

    PubMed Central

    Wang, Chen; Yi, Tai; Qin, Lingfeng; Maldonado, Roberto A.; von Andrian, Ulrich H.; Kulkarni, Sanjay; Tellides, George; Pober, Jordan S.

    2013-01-01

    Human graft endothelial cells (ECs) can act as antigen-presenting cells to initiate allograft rejection by host memory T cells. Rapamycin, an mTOR inhibitor used clinically to suppress T cell responses, also acts on DCs, rendering them tolerogenic. Here, we report the effects of rapamycin on EC alloimmunogenicity. Compared with mock-treated cells, rapamycin-pretreated human ECs (rapa-ECs) stimulated less proliferation and cytokine secretion from allogeneic CD4+ memory cells, an effect mimicked by shRNA knockdown of mTOR or raptor in ECs. The effects of rapamycin persisted for several days and were linked to upregulation of the inhibitory molecules PD-L1 and PD-L2 on rapa-ECs. Additionally, rapa-ECs produced lower levels of the inflammatory cytokine IL-6. CD4+ memory cells activated by allogeneic rapa-ECs became hyporesponsive to restimulation in an alloantigen-specific manner and contained higher percentages of suppressive CD4+CD25hiCD127loFoxP3+ cells that did not produce effector cytokines. In a human-mouse chimeric model of allograft rejection, rapamycin pretreatment of human arterial allografts increased graft EC expression of PD-L1 and PD-L2 and reduced subsequent infiltration of allogeneic effector T cells into the artery intima and intimal expansion. Preoperative conditioning of allograft ECs with rapamycin could potentially reduce immune-mediated rejection. PMID:23478407

  12. Cardiac mast cell-derived renin promotes local angiotensin formation, norepinephrine release, and arrhythmias in ischemia/reperfusion.

    PubMed

    Mackins, Christina J; Kano, Seiichiro; Seyedi, Nahid; Schäfer, Ulrich; Reid, Alicia C; Machida, Takuji; Silver, Randi B; Levi, Roberto

    2006-04-01

    Having identified renin in cardiac mast cells, we assessed whether its release leads to cardiac dysfunction. In Langendorff-perfused guinea pig hearts, mast cell degranulation with compound 48/80 released Ang I-forming activity. This activity was blocked by the selective renin inhibitor BILA2157, indicating that renin was responsible for Ang I formation. Local generation of cardiac Ang II from mast cell-derived renin also elicited norepinephrine release from isolated sympathetic nerve terminals. This action was mediated by Ang II-type 1 (AT1) receptors. In 2 models of ischemia/reperfusion using Langendorff-perfused guinea pig and mouse hearts, a significant coronary spillover of renin and norepinephrine was observed. In both models, this was accompanied by ventricular fibrillation. Mast cell stabilization with cromolyn or lodoxamide markedly reduced active renin overflow and attenuated both norepinephrine release and arrhythmias. Similar cardioprotection was observed in guinea pig hearts treated with BILA2157 or the AT1 receptor antagonist EXP3174. Renin overflow and arrhythmias in ischemia/reperfusion were much less prominent in hearts of mast cell-deficient mice than in control hearts. Thus, mast cell-derived renin is pivotal for activating a cardiac renin-angiotensin system leading to excessive norepinephrine release in ischemia/reperfusion. Mast cell-derived renin may be a useful therapeutic target for hyperadrenergic dysfunctions, such as arrhythmias, sudden cardiac death, myocardial ischemia, and congestive heart failure.

  13. Effect of the Purinergic Inhibitor Oxidized ATP in a Model of Islet Allograft Rejection

    PubMed Central

    Vergani, Andrea; Fotino, Carmen; D’Addio, Francesca; Tezza, Sara; Podetta, Michele; Gatti, Francesca; Chin, Melissa; Bassi, Roberto; Molano, Ruth D.; Corradi, Domenico; Gatti, Rita; Ferrero, Maria E.; Secchi, Antonio; Grassi, Fabio; Ricordi, Camillo; Sayegh, Mohamed H.; Maffi, Paola; Pileggi, Antonello; Fiorina, Paolo

    2013-01-01

    The lymphocytic ionotropic purinergic P2X receptors (P2X1R-P2X7R, or P2XRs) sense ATP released during cell damage-activation, thus regulating T-cell activation. We aim to define the role of P2XRs during islet allograft rejection and to establish a novel anti-P2XRs strategy to achieve long-term islet allograft function. Our data demonstrate that P2X1R and P2X7R are induced in islet allograft-infiltrating cells, that only P2X7R is increasingly expressed during alloimmune response, and that P2X1R is augmented in both allogeneic and syngeneic transplantation. In vivo short-term P2X7R targeting (using periodate-oxidized ATP [oATP]) delays islet allograft rejection, reduces the frequency of Th1/Th17 cells, and induces hyporesponsiveness toward donor antigens. oATP-treated mice displayed preserved islet grafts with reduced Th1 transcripts. P2X7R targeting and rapamycin synergized in inducing long-term islet function in 80% of transplanted mice and resulted in reshaping of the recipient immune system. In vitro P2X7R targeting using oATP reduced T-cell activation and diminished Th1/Th17 cytokine production. Peripheral blood mononuclear cells obtained from long-term islet-transplanted patients showed an increased percentage of P2X7R+CD4+ T cells compared with controls. The beneficial effects of oATP treatment revealed a role for the purinergic system in islet allograft rejection, and the targeting of P2X7R is a novel strategy to induce long-term islet allograft function. PMID:23315496

  14. Microenvironmental cues enhance mesenchymal stem cell-mediated immunomodulation and regulatory T-cell expansion

    PubMed Central

    Abdou, Salma A.; Villarreal-Ponce, Alvaro P.; Soares, Marc A.; Sultan, Darren L.; David, Joshua A.; Massie, Jonathan; Rabbani, Piul

    2018-01-01

    Mesenchymal stem cells (MSCs) are known to both have powerful immunosuppressive properties and promote allograft tolerance. Determining the environmental oxygen tension and inflammatory conditions under which MSCs are optimally primed for this immunosuppressive function is essential to their utilization in promoting graft tolerance. Of particular interest is the mechanisms governing the interaction between MSCs and regulatory T cells (Tregs), which is relatively unknown. We performed our experiments utilizing rat bone marrow derived MSCs. We observed that priming MSCs in hypoxia promotes maintenance of stem-like characteristics, with greater expression of typical MSC cell-surface markers, increased proliferation, and maintenance of differentiation potential. Addition of autologous MSCs to CD4+/allogeneic endothelial cell (EC) co-culture increases regulatory T cell (Treg) proliferation, which is further enhanced when MSCs are primed in hypoxia. Furthermore, MSC-mediated Treg expansion does not require direct cell-cell contact. The expression of indolamine 2,3-dioxygenase, a mediator of MSC immunomodulation, increases when MSCs are primed in hypoxia, and inhibition of IDO significantly decreases the expansion of Tregs. Priming with inflammatory cytokines IFNγ and TNFα increases also expression of markers associated with MSC immunomodulatory function, but decreases MSC proliferation. The expression of IDO also increases when MSCs are primed with inflammatory cytokines. However, there is no increase in Treg expansion when MSCs are primed with IFNγ, suggesting an alternate mechanism for inflammatory-stimulated MSC immunomodulation. Overall, these results suggest that MSCs primed in hypoxia or inflammatory conditions are optimally primed for immunosuppressive function. These results provide a clearer picture of how to enhance MSC immunomodulation for clinical use. PMID:29513756

  15. PEG-coated gold nanoparticles attenuate β-adrenergic receptor-mediated cardiac hypertrophy.

    PubMed

    Qiao, Yuhui; Zhu, Baoling; Tian, Aiju; Li, Zijian

    2017-01-01

    Gold nanoparticles (AuNPs) are widely used as a drug delivery vehicle, which can accumulate in the heart through blood circulation. Therefore, it is very important to understand the effect of AuNPs on the heart, especially under pathological conditions. In this study, we found that PEG-coated AuNPs attenuate β-adrenergic receptor (β-AR)-mediated acute cardiac hypertrophy and inflammation. However, both isoproterenol, a non-selective β-AR agonist, and AuNPs did not induce cardiac function change or cardiac fibrosis. AuNPs exerted an anti-cardiac hypertrophy effect by decreasing β 1 -AR expression and its downstream ERK1/2 hypertrophic pathway. Our results indicated that AuNPs might be safe and have the potential to be used as multi-functional materials (drug carrier systems and anti-cardiac hypertrophy agents).

  16. Genetic modification of embryonic stem cells with VEGF enhances cell survival and improves cardiac function.

    PubMed

    Xie, Xiaoyan; Cao, Feng; Sheikh, Ahmad Y; Li, Zongjin; Connolly, Andrew J; Pei, Xuetao; Li, Ren-Ke; Robbins, Robert C; Wu, Joseph C

    2007-01-01

    Cardiac stem cell therapy remains hampered by acute donor cell death posttransplantation and the lack of reliable methods for tracking cell survival in vivo. We hypothesize that cells transfected with inducible vascular endothelial growth factor 165 (VEGF(165)) can improve their survival as monitored by novel molecular imaging techniques. Mouse embryonic stem (ES) cells were transfected with an inducible, bidirectional tetracycline (Bi-Tet) promoter driving VEGF(165) and renilla luciferase (Rluc). Addition of doxycycline induced Bi-Tet expression of VEGF(165) and Rluc significantly compared to baseline (p<0.05). Expression of VEGF(165) enhanced ES cell proliferation and inhibited apoptosis as determined by Annexin-V staining. For noninvasive imaging, ES cells were transduced with a double fusion (DF) reporter gene consisting of firefly luciferase and enhanced green fluorescence protein (Fluc-eGFP). There was a robust correlation between cell number and Fluc activity (R(2)=0.99). Analysis by immunostaining, histology, and RT-PCR confirmed that expression of Bi-Tet and DF systems did not affect ES cell self-renewal or pluripotency. ES cells were differentiated into beating embryoid bodies expressing cardiac markers such as troponin, Nkx2.5, and beta-MHC. Afterward, 5 x 10(5) cells obtained from these beating embryoid bodies or saline were injected into the myocardium of SV129 mice (n=36) following ligation of the left anterior descending (LAD) artery. Bioluminescence imaging (BLI) and echocardiography showed that VEGF(165) induction led to significant improvements in both transplanted cell survival and cardiac function (p<0.05). This is the first study to demonstrate imaging of embryonic stem cell-mediated gene therapy targeting cardiovascular disease. With further validation, this platform may have broad applications for current basic research and further clinical studies.

  17. Absence of Activation-induced Cytidine Deaminase, a Regulator of Class Switch Recombination and Hypermutation in B Cells, Suppresses Aorta Allograft Vasculopathy in Mice.

    PubMed

    Nakanishi, Tomonori; Xu, Xiaoyan; Wynn, Carmen; Yamada, Toshiko; Pan, Fan; Erickson, Laurie; Teo, Haeman; Nakagawa, Terry; Masunaga, Taro; Abe, Jumpei; Akamatsu, Masahiko; Tamura, Kouichi; Jiang, Hongsi

    2015-08-01

    Antibody-mediated rejection is caused in part by increasing circulation/production of donor-specific antibody (DSA). Activation-induced cytidine deaminase (AID) is a key regulator of class switch recombination and somatic hypermutation of immunoglobulin in B cells, yet its role in antibody-mediated transplant rejection remains unclear. We show here that AID deficiency in mice enables suppression of allograft vasculopathy (AV) after aorta transplantation, a DSA-mediated process. Splenocytes from C57BL/6 J (B6) AID(−/−) mice were used for determining in vitro proliferation responses, alloreactivity, cell surface marker expression, and antibody production. BALB/c mouse aortas were transplanted into B6 AID(−/−) mice with or without FK506 treatment. Blood and aorta grafts were harvested on day 30 after transplantation and were subjected to DSA, histological, and immunohistological analyses. The AID(−/−) splenocytes were comparable to wild type splenocytes in proliferation responses, alloreactivity, and expression of cell surface markers in vitro. However, they completely failed to produce immunoglobulin G, although they were not impaired in immunoglobulin M production relative to controls. Furthermore, BALB/c aorta grafts from B6 AID(−/−) recipient mice on day 30 after transplantation showed reduced signs of AV compared to the grafts from B6 wild type recipient mice which had severe vascular intimal hyperplasia, interstitial fibrosis, and inflammation. Treatment with FK506 produced a synergistic effect in the grafts from AID(−/−) recipients with further reduction of intimal hyperplasia and fibrosis scores. The AID deficiency inhibits DSA-mediated AV after aorta transplantation in mice. We propose that AID could be a novel molecular target for controlling antibody-mediated rejection in organ transplantation.

  18. Two-Stage, In Silico Deconvolution of the Lymphocyte Compartment of the Peripheral Whole Blood Transcriptome in the Context of Acute Kidney Allograft Rejection

    PubMed Central

    Shannon, Casey P.; Balshaw, Robert; Ng, Raymond T.; Wilson-McManus, Janet E.; Keown, Paul; McMaster, Robert; McManus, Bruce M.; Landsberg, David; Isbel, Nicole M.; Knoll, Greg; Tebbutt, Scott J.

    2014-01-01

    Acute rejection is a major complication of solid organ transplantation that prevents the long-term assimilation of the allograft. Various populations of lymphocytes are principal mediators of this process, infiltrating graft tissues and driving cell-mediated cytotoxicity. Understanding the lymphocyte-specific biology associated with rejection is therefore critical. Measuring genome-wide changes in transcript abundance in peripheral whole blood cells can deliver a comprehensive view of the status of the immune system. The heterogeneous nature of the tissue significantly affects the sensitivity and interpretability of traditional analyses, however. Experimental separation of cell types is an obvious solution, but is often impractical and, more worrying, may affect expression, leading to spurious results. Statistical deconvolution of the cell type-specific signal is an attractive alternative, but existing approaches still present some challenges, particularly in a clinical research setting. Obtaining time-matched sample composition to biologically interesting, phenotypically homogeneous cell sub-populations is costly and adds significant complexity to study design. We used a two-stage, in silico deconvolution approach that first predicts sample composition to biologically meaningful and homogeneous leukocyte sub-populations, and then performs cell type-specific differential expression analysis in these same sub-populations, from peripheral whole blood expression data. We applied this approach to a peripheral whole blood expression study of kidney allograft rejection. The patterns of differential composition uncovered are consistent with previous studies carried out using flow cytometry and provide a relevant biological context when interpreting cell type-specific differential expression results. We identified cell type-specific differential expression in a variety of leukocyte sub-populations at the time of rejection. The tissue-specificity of these differentially

  19. Risk of Infection After Allograft Anterior Cruciate Ligament Reconstruction: Are Nonprocessed Allografts More Likely to Get Infected? A Cohort Study of Over 10,000 Allografts.

    PubMed

    Yu, Anthony; Prentice, Heather A; Burfeind, William E; Funahashi, Tadashi; Maletis, Gregory B

    2018-03-01

    Allograft tissue is frequently used in anterior cruciate ligament reconstruction (ACLR). It is often irradiated and/or chemically processed to decrease the risk of disease transmission, but some tissue is aseptically harvested without further processing. Irradiated and chemically processed allograft tissue appears to have a higher risk of revision, but whether this processing decreases the risk of infection is not clear. To determine the incidence of deep surgical site infection after ACLR with allograft in a large community-based sample and to evaluate the association of allograft processing and the risk of deep infection. Cohort study; Level of evidence, 3. The authors conducted a cohort study using the Kaiser Permanente Anterior Cruciate Ligament Reconstruction Registry. Primary isolated unilateral ACLR with allograft were identified from February 1, 2005 to September 30, 2015. Ninety-day postoperative deep infections were identified via an electronic screening algorithm and then validated through chart review. Logistic regression was used to evaluate the likelihood of 90-day postoperative deep infection per allograft processing method: processed (graft treated chemically and/or irradiated) or nonprocessed (graft not irradiated or chemically processed). Of 10,190 allograft cases, 8425 (82.7%) received a processed allograft, and 1765 (17.3%) received a nonprocessed allograft. There were 15 (0.15%) deep infections during the study period: 4 (26.7%) coagulase-negative Staphylococcus, 4 (26.7%) methicillin-sensitive Staphylococcus aureus, 1 (6.7%) Peptostreptococcus micros, and 6 (40.0%) with no growth. There was no difference in the likelihood for 90-day deep infection for processed versus nonprocessed allografts (odds ratio = 1.36, 95% CI = 0.31-6.04). The overall incidence of deep infection after ACLR with allograft tissue was very low (0.15%), suggesting that the methods currently employed by tissue banks to minimize the risk of infection are effective. In this

  20. In vivo effects of high-dose steroids on nucleic acid content of immunocompetent cells of renal allograft recipients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walle, A.J.; Wong, G.Y.; Suthanthiran, M.

    1988-03-01

    High-dose steroids administered to renal allograft recipients for treatment of acute graft rejection episodes may affect cell cycle progression of peripheral blood mononuclear (PBM) cells. DNA synthesis and cellular DNA and RNA contents of PBM cells were measured in 8 patients during clinically stable periods, and in another 10 patients both during acute rejection episodes and during 7 days of administration of high-dose steroids. Improved renal function documented successful reversal of the rejection episodes in the 10 patients. Compared with the stable patients, the rejecting patients had higher numbers of cells undergoing clonal expansion--namely, higher proportions of G1-cells and ofmore » proliferating, or S, G2, and M (SG2M) cells. Steroid treatment had no acute effects on proportions of G1 or SG2M cells in vivo or on incorporation of /sup 3/H thymidine by PBM cells in vitro. However, cells in the prereplicative compartment of the cell cycle (G0/1 cells) had significantly lower RNA content within 7 days of treatment with high doses of steroids. The results suggest that steroids do not acutely influence the posttranscriptional synthesis and the contents of nucleic acids of cells undergoing clonal expansion in vivo. The prereplicative phase of allogeneically stimulated PBM cells of renal allograft recipients may therefore be the cell cycle phase most sensitive to steroids in vivo.« less

  1. Factors associated with the development of cardiac allograft vasculopathy--a systematic review of observational studies.

    PubMed

    Braga, J R; Santos, I S O; McDonald, M; Shah, P S; Ross, H J

    2012-01-01

    Cardiac allograft vasculopathy (CAV) is a significant factor impacting outcomes after heart transplant. We performed a systematic review of risk factors for the development of CAV. A search of electronic databases was performed. The eligibility criteria included cohort and case-control studies with more than 50 adult patients submitted to a heart transplant. The outcome should be CAV diagnosed by angiography and/or intravascular ultrasound (IVUS). Two reviewers performed study selection, data abstraction, and quality assessment. Of 2514 citations, 66 articles were included--46 had 200 participants or less; 61 were single-center; and 44 were retrospective cohorts. The most used definition of CAV using angiography was the detection of any degree of abnormality (21 studies of 58). In studies using IVUS, an intimal thickness ≥0.5 mm was the most used definition (five of eight studies). Quality assessment revealed an inadequate description of patient selection, attrition, and accounting of potential confounders. Donor age, recipient age, recipient gender, etiology of heart failure, ischemic time, human leukocyte antigen matching, cytomegalovirus, lipid profile, and rejection episodes were the most studied factors. Our review indicates that the current evidence is not consistent across different studies. The definite contribution of risk factors for the development of CAV is still to be determined. © 2011 John Wiley & Sons A/S.

  2. CXCL1-CXCR2 axis mediates angiotensin II-induced cardiac hypertrophy and remodelling through regulation of monocyte infiltration.

    PubMed

    Wang, Lei; Zhang, Yun-Long; Lin, Qiu-Yue; Liu, Yu; Guan, Xu-Min; Ma, Xiao-Lei; Cao, Hua-Jun; Liu, Ying; Bai, Jie; Xia, Yun-Long; Du, Jie; Li, Hui-Hua

    2018-05-21

    Chemokine-mediated monocyte infiltration into the damaged heart represents an initial step in inflammation during cardiac remodelling. Our recent study demonstrates a central role for chemokine receptor CXCR2 in monocyte recruitment and hypertension; however, the role of chemokine CXCL1 and its receptor CXCR2 in angiotensin II (Ang II)-induced cardiac remodelling remain unknown. Angiotensin II (1000 ng kg-1 min-1) was administrated to wild-type (WT) mice treated with CXCL1 neutralizing antibody or CXCR2 inhibitor SB265610, knockout (CXCR2 KO) or bone marrow (BM) reconstituted chimeric mice for 14 days. Microarray revealed that CXCL1 was the most highly upregulated chemokine in the WT heart at Day 1 after Ang II infusion. The CXCR2 expression and the CXCR2+ immune cells were time-dependently increased in Ang II-infused hearts. Moreover, administration of CXCL1 neutralizing antibody markedly prevented Ang II-induced hypertension, cardiac dysfunction, hypertrophy, fibrosis, and macrophage accumulation compared with Immunoglobulin G (IgG) control. Furthermore, Ang II-induced cardiac remodelling and inflammatory response were also significantly attenuated in CXCR2 KO mice and in WT mice treated with SB265610 or transplanted with CXCR2-deficienct BM cells. Co-culture experiments in vitro further confirmed that CXCR2 deficiency inhibited macrophage migration and activation, and attenuated Ang II-induced cardiomyocyte hypertrophy and fibroblast differentiation through multiple signalling pathways. Notably, circulating CXCL1 level and CXCR2+ monocytes were higher in patients with heart failure compared with normotensive individuals. Angiotensin II-induced infiltration of monocytes in the heart is largely mediated by CXCL1-CXCR2 signalling which initiates and aggravates cardiac remodelling. Inhibition of CXCL1 and/or CXCR2 may represent new therapeutic targets for treating hypertensive heart diseases.

  3. CARDIAC-LIKE OSCILLATION IN LIVER STEM CELLS INDUCE THEIR ACQUISITION OF CARDIAC PHENOTYPE

    EPA Science Inventory

    We examined in a cardiac microenvironment the plasticity of a liver stem cell line (WB F344) generated from a cloned, single, non-parenchymal epithelial cell from a normal adult male rat. Our previous studies suggested that WB F344 cells acquire a cardiac phenotype in the absenc...

  4. Bacterial contamination of tissue allografts - experiences of the donor tissue bank of Victoria.

    PubMed

    Ireland, Lyn; Spelman, Denis

    2005-01-01

    The aim of this study is to report the experience of the Donor Tissue Bank of Victoria with bacteria isolated from musculoskeletal, skin and cardiac allografts retrieved from cadaveric donors. The results of all quality control samples for bacterial culture, taken during retrieval and processing of allografts at the DTBV for a 12 month period, were extracted and analysed. It was found that 15.7% of skin, 15.1% of heart valves and 5.8% of musculoskeletal samples had positive culture results. The number and types of organisms isolated varied with tissue type. The most commonly isolated organisms were Staphylococcus species (including S. aureus). The identity of the isolate and the number of positive specimens from the same donor were considerations in the decision concerning the suitability of tissue for subsequent implantation.

  5. Nardosinone protects H9c2 cardiac cells from angiotensin II-induced hypertrophy.

    PubMed

    Du, Meng; Huang, Kun; Gao, Lu; Yang, Liu; Wang, Wen-Shuo; Wang, Bo; Huang, Kai; Huang, Dan

    2013-12-01

    Pathological cardiac hypertrophy induced by angiotensin II (AngII) can subsequently give rise to heart failure, a leading cause of mortality. Nardosinone is a pharmacologically active compound extracted from the roots of Nardostachys chinensis, a well-known traditional Chinese medicine. In order to investigate the effects of nardosinone on AngII-induced cardiac cell hypertrophy and the related mechanisms, the myoblast cell line H9c2, derived from embryonic rat heart, was treated with nardosinone (25, 50, 100, and 200 μmol/L) or AngII (1 μmol/L). Then cell surface area and mRNA expression of classical markers of hypertrophy were detected. The related protein levels in PI3K/Akt/mTOR and MEK/ERK signaling pathways were examined by Western blotting. It was found that pretreatment with nardosinone could significantly inhibit the enlargement of cell surface area induced by AngII. The mRNA expression of ANP, BNP and β-MHC was obviously elevated in AngII-treated H9c2 cells, which could be effectively blocked by nardosinone at the concentration of 100 μmol/L. Further study revealed that the protective effects of nardosinone might be mediated by repressing the phosphorylation of related proteins in PI3K/Akt and MEK/ERK signaling pathways. It was suggested that the inhibitory effect of nardosinone on Ang II-induced hypertrophy in H9c2 cells might be mediated by targeting PI3K/Akt and MEK/ERK signaling pathways.

  6. Phospholipase C/protein kinase C pathway mediates angiotensin II-dependent apoptosis in neonatal rat cardiac fibroblasts expressing AT1 receptor.

    PubMed

    Vivar, Raul; Soto, Cristian; Copaja, Miguel; Mateluna, Francisca; Aranguiz, Pablo; Muñoz, Juan Pablo; Chiong, Mario; Garcia, Lorena; Letelier, Alan; Thomas, Walter G; Lavandero, Sergio; Díaz-Araya, Guillermo

    2008-08-01

    Cardiac fibroblasts are the major non-myocyte cell constituent in the myocardium, and they are involved in heart remodeling. Angiotensin II type 1 receptor (AT1R) mediates the established actions of angiotensin II (Ang II), and changes in its expression have been reported in cardiac fibroblasts after myocardial infarction. However, the AT1R-dependent signaling pathways involved in cardiac fibroblast death remain unknown. Using adenovirus, we ectopically expressed AT1R in cultured neonatal rat cardiac fibroblasts and investigated the role of the phospholipase (PLC)/protein kinase C (PKC) pathway on Ang II-dependent death. Ang II induced cardiac fibroblast death characterized by an early loss of mitochondrial membrane potential, increased Bax/Bcl-2 ratio, caspase-3 activation, and DNA fragmentation. All these effects were prevented by the AT1R antagonist losartan, PLC inhibitor U73122, and PKC inhibitor Gö6976. We conclude that Ang II stimulates the intrinsic apoptotic pathway in cultured cardiac fibroblasts by the AT1R/PLC/PKC signaling pathway.

  7. Effect of a stable prostacyclin analogue on canine renal allograft rejection.

    PubMed Central

    Tobimatsu, M; Ueda, Y; Toyoda, K; Saito, S; Konomi, K

    1987-01-01

    The effect of OP-41483 (Ono Pharmaceutical Co., Osaka, Japan), a stable prostacyclin analogue, on canine renal allograft rejection was investigated. Administration for 4 days after transplantation significantly increased renal cortical blood flow and urine output when compared with untreated dogs with renal allografts. Serum creatinine levels remained relatively low during postoperative days 1-4. Mean animal survival time was prolonged. Vascular lesions and mononuclear cell infiltration were greatly diminished in biopsy specimens removed on day 4. This stable prostacyclin analogue provided a degree of protection against canine renal allograft rejection. Images Figs. 1A and B. PMID:3545109

  8. [The clinical use of cryopreserved human skin allografts for transplantation].

    PubMed

    Martínez-Flores, Francisco; Chacón-Gómez, María; Madinaveitia-Villanueva, Juan Antonio; Barrera-Lopez, Araceli; Aguirre-Cruz, Lucinda; Querevalu-Murillo, Walter

    2015-01-01

    The biological recovery of human skin allografts is the gold standard for preservation in Skin Banks. However, there is no worldwide consensus about specific allocation criteria for preserved human skin allografts with living cells. A report is presented on the results of 5 years of experience of using human skin allografts in burned patient in the Skin and Tissue Bank at the "Instituto Nacional de Rehabilitacion" The human skin allografts were obtained from multi-organ donors. processed and preserved at -80 °C for 12 months. Allocation criteria were performed according to blood type match, clinical history, and burned body surface. Up to now, the Skin and Tissue Bank at 'Instituto Nacional de Rehabilitacion" has processed and recovered 125,000 cm(2) of human skin allografts. It has performed 34 surgical implants on 21 burned patients. The average of burn body surface was 59.2%. More than two-thirds (67.7%) of recipients of skin allografts were matched of the same to type blood of the donor, and 66.6% survived after 126 days hospital stay. It is proposed to consider recipient's blood group as allocation criteria to assign tissue; and use human skin allografts on patiens affected with burns over 30% of body surface (according the "rule of the 9"). Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  9. Issues in solid-organ transplantation in children: translational research from bench to bedside

    PubMed Central

    Lipshultz, Steven E.; Chandar, Jayanthi J.; Rusconi, Paolo G.; Fornoni, Alessia; Abitbol, Carolyn L.; Burke III, George W.; Zilleruelo, Gaston E.; Pham, Si M.; Perez, Elena E.; Karnik, Ruchika; Hunter, Juanita A.; Dauphin, Danielle D.; Wilkinson, James D.

    2014-01-01

    In this review, we identify important challenges facing physicians responsible for renal and cardiac transplantation in children based on a review of the contemporary medical literature. Regarding pediatric renal transplantation, we discuss the challenge of antibody-mediated rejection, focusing on both acute and chronic antibody-mediated rejection. We review new diagnostic approaches to antibody-mediated rejection, such as panel-reactive antibodies, donor-specific cross-matching, antibody assays, risk assessment and diagnosis of antibody-mediated rejection, the pathology of antibody-mediated rejection, the issue of ABO incompatibility in renal transplantation, new therapies for antibody-mediated rejection, inhibiting of residual antibodies, the suppression or depletion of B-cells, genetic approaches to treating acute antibody-mediated rejection, and identifying future translational research directions in kidney transplantation in children. Regarding pediatric cardiac transplantation, we discuss the mechanisms of cardiac transplant rejection, including the role of endomyocardial biopsy in detecting graft rejection and the role of biomarkers in detecting cardiac graft rejection, including biomarkers of inflammation, cardiomyocyte injury, or stress. We review cardiac allograft vasculopathy. We also address the role of genetic analyses, including genome-wide association studies, gene expression profiling using entities such as AlloMap®, and adenosine triphosphate release as a measure of immune function using the Cylex® ImmuKnow™ cell function assay. Finally, we identify future translational research directions in heart transplantation in children. PMID:24860861

  10. GATA4-mediated cardiac hypertrophy induced by D-myo-inositol 1,4,5-tris-phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Zhiming; Zhu Shanjun; Liu Daoyan

    2005-12-16

    We evaluated the effects of D-myo-inositol 1,4,5-tris-phosphate on cardiac hypertrophy. D-myo-inositol 1,4,5-tris-phosphate augmented cardiac hypertrophy as evidenced by its effects on DNA synthesis, protein synthesis, and expression of immediate-early genes c-myc and c-fos, {beta}-myosin heavy chain, and {alpha}-actin. The administration of D-myo-inositol 1,4,5-tris-phosphate increased the expression of nuclear factor of activated T-cells and cardiac-restricted zinc finger transcription factor (GATA4). Real-time quantitative RT-PCR showed that D-myo-inositol 1,4,5-tris-phosphate-induced GATA4 mRNA was significantly enhanced even in the presence of the calcineurin inhibitor, cyclosporine A. The effect of D-myo-inositol 1,4,5-tris-phosphate was blocked after inhibition of inositol-trisphosphate receptors but not after inhibition of c-Raf/mitogen-activated proteinmore » kinase kinase (MEK)/mitogen-activated protein kinase (ERK) or p38 mitogen-activated protein kinase pathways. The study shows that D-myo-inositol 1,4,5-tris-phosphate-induced cardiac hypertrophy is mediated by GATA4 but independent from the calcineurin pathway.« less

  11. Popeye domain containing proteins are essential for stress-mediated modulation of cardiac pacemaking in mice

    PubMed Central

    Froese, Alexander; Breher, Stephanie S.; Waldeyer, Christoph; Schindler, Roland F.R.; Nikolaev, Viacheslav O.; Rinné, Susanne; Wischmeyer, Erhard; Schlueter, Jan; Becher, Jan; Simrick, Subreena; Vauti, Franz; Kuhtz, Juliane; Meister, Patrick; Kreissl, Sonja; Torlopp, Angela; Liebig, Sonja K.; Laakmann, Sandra; Müller, Thomas D.; Neumann, Joachim; Stieber, Juliane; Ludwig, Andreas; Maier, Sebastian K.; Decher, Niels; Arnold, Hans-Henning; Kirchhof, Paulus; Fabritz, Larissa; Brand, Thomas

    2012-01-01

    Cardiac pacemaker cells create rhythmic pulses that control heart rate; pacemaker dysfunction is a prevalent disorder in the elderly, but little is known about the underlying molecular causes. Popeye domain containing (Popdc) genes encode membrane proteins with high expression levels in cardiac myocytes and specifically in the cardiac pacemaking and conduction system. Here, we report the phenotypic analysis of mice deficient in Popdc1 or Popdc2. ECG analysis revealed severe sinus node dysfunction when freely roaming mutant animals were subjected to physical or mental stress. In both mutants, bradyarrhythmia developed in an age-dependent manner. Furthermore, we found that the conserved Popeye domain functioned as a high-affinity cAMP-binding site. Popdc proteins interacted with the potassium channel TREK-1, which led to increased cell surface expression and enhanced current density, both of which were negatively modulated by cAMP. These data indicate that Popdc proteins have an important regulatory function in heart rate dynamics that is mediated, at least in part, through cAMP binding. Mice with mutant Popdc1 and Popdc2 alleles are therefore useful models for the dissection of the mechanisms causing pacemaker dysfunction and could aid in the development of strategies for therapeutic intervention. PMID:22354168

  12. Serum from Diesel Exhaust-Exposed Rats with Cardiac Dysfunction Alters Aortic Endothelial Cell Function In Vitro: Circulating Mediators as Causative Factors?

    EPA Science Inventory

    Although circulating inflammatory mediators are strongly associated with adverse cardiovascular outcomes triggered by inhaled air pollution, direct cause-effect linkage has not been established. Given that endothelial toxicity often precedes and precipitates cardiac dysfunction, ...

  13. Osteochondral allograft.

    PubMed

    Torrie, Arissa M; Kesler, William W; Elkin, Joshua; Gallo, Robert A

    2015-12-01

    Over the past decade, osteochondral allograft transplantation has soared in popularity. Advances in storage techniques have demonstrated improved chondrocyte viability at longer intervals and allowed for potential of increased graft availability. Recent studies have stratified outcomes according to location and etiology of the chondral or osteochondral defect. Unipolar lesions generally have favorable outcomes with promising 10-year survival rates. Though those undergoing osteochondral allograft transplantation often require reoperation, patient satisfaction remains high.

  14. Ex Vivo Expanded Human Regulatory T Cells Can Prolong Survival of a Human Islet Allograft in a Humanized Mouse Model

    PubMed Central

    Wu, Douglas C.; Hester, Joanna; Nadig, Satish N.; Zhang, Wei; Trzonkowski, Piotr; Gray, Derek; Hughes, Stephen; Johnson, Paul; Wood, Kathryn J.

    2013-01-01

    Background Human regulatory T cells (Treg) offer an attractive adjunctive therapy to reduce current reliance on lifelong, nonspecific immunosuppression after transplantation. Here, we evaluated the ability of ex vivo expanded human Treg to prevent the rejection of islets of Langerhans in a humanized mouse model and examined the mechanisms involved. Methods We engrafted human pancreatic islets of Langerhans into the renal subcapsular space of immunodeficient BALB/c.rag2−/−.cγ−/− mice, previously rendered diabetic via injection of the β-cell toxin streptozocin. After the establishment of stable euglycemia, mice were reconstituted with allogeneic human peripheral blood mononuclear cells (PBMC) and the resultant alloreactive response studied. Ex vivo expanded CD25highCD4+ human Treg, which expressed FoxP3, CTLA-4, and CD62L and remained CD127low, were then cotransferred together with human PBMC and islet allografts and monitored for evidence of rejection. Results Human islets transplanted into diabetic immunodeficient mice reversed diabetes but were rejected rapidly after the mice were reconstituted with allogeneic human PBMC. Cotransfer of purified, ex vivo expanded human Treg prolonged islet allograft survival resulting in the accumulation of Treg in the peripheral lymphoid tissue and suppression of proliferation and interferon-γ production by T cells. In vitro, Treg suppressed activation of signal transducers and activators of transcription and inhibited the effector differentiation of responder T cells. Conclusions Ex vivo expanded Treg retain regulatory activity in vivo, can protect a human islet allograft from rejection by suppressing signal transducers and activators of transcription activation and inhibiting T-cell differentiation, and have clinical potential as an adjunctive cellular therapy. PMID:23917725

  15. Galectin-1 Prevents Infection and Damage Induced by Trypanosoma cruzi on Cardiac Cells

    PubMed Central

    Benatar, Alejandro F.; García, Gabriela A.; Bua, Jacqeline; Cerliani, Juan P.; Postan, Miriam; Tasso, Laura M.; Scaglione, Jorge; Stupirski, Juan C.; Toscano, Marta A.

    2015-01-01

    Background Chronic Chagas cardiomyopathy caused by Trypanosoma cruzi is the result of a pathologic process starting during the acute phase of parasite infection. Among different factors, the specific recognition of glycan structures by glycan-binding proteins from the parasite or from the mammalian host cells may play a critical role in the evolution of the infection. Methodology and Principal Findings Here we investigated the contribution of galectin–1 (Gal–1), an endogenous glycan-binding protein abundantly expressed in human and mouse heart, to the pathophysiology of T. cruzi infection, particularly in the context of cardiac pathology. We found that exposure of HL–1 cardiac cells to Gal–1 reduced the percentage of infection by two different T. cruzi strains, Tulahuén (TcVI) and Brazil (TcI). In addition, Gal–1 prevented exposure of phosphatidylserine and early events in the apoptotic program by parasite infection on HL–1 cells. These effects were not mediated by direct interaction with the parasite surface, suggesting that Gal–1 may act through binding to host cells. Moreover, we also observed that T. cruzi infection altered the glycophenotype of cardiac cells, reducing binding of exogenous Gal–1 to the cell surface. Consistent with these data, Gal–1 deficient (Lgals1 -/-) mice showed increased parasitemia, reduced signs of inflammation in heart and skeletal muscle tissues, and lower survival rates as compared to wild-type (WT) mice in response to intraperitoneal infection with T. cruzi Tulahuén strain. Conclusion/Significance Our results indicate that Gal–1 modulates T. cruzi infection of cardiac cells, highlighting the relevance of galectins and their ligands as regulators of host-parasite interactions. PMID:26451839

  16. Sirolimus use and incidence of venous thromboembolism in cardiac transplant recipients.

    PubMed

    Thibodeau, Jennifer T; Mishkin, Joseph D; Patel, Parag C; Kaiser, Patricia A; Ayers, Colby R; Mammen, Pradeep P A; Markham, David W; Ring, W Steves; Peltz, Matthias; Drazner, Mark H

    2012-01-01

    Sirolimus is an immunosuppressive agent increasingly used in cardiac transplant recipients in the setting of allograft vasculopathy or worsening renal function. Recently, sirolimus has been associated with increased risk of venous thromboembolism (VTE) in lung transplant recipients. To investigate whether this association is also present in cardiac transplant recipients, we retrospectively reviewed the charts of 67 cardiac transplant recipients whose immunosuppressive regimen included sirolimus and 134 matched cardiac transplant recipients whose regimen did not include sirolimus. Rates of VTE were compared. Multivariable Cox proportional hazards models tested the association of sirolimus use with VTE. A higher incidence of VTE was seen in patients treated with vs. without sirolimus (8/67 [12%] vs. 9/134 [7%], log-rank statistic: 4.66, p=0.03). Lower body mass index (BMI) and total cholesterol levels were also associated with VTE (p<0.05). The association of sirolimus with VTE persisted when adjusting for BMI (hazard ratio [95% confidence interval]: 2.96 [1.13, 7.75], p=0.03) but not when adjusting for total cholesterol (p=0.08). These data suggest that sirolimus is associated with an increased risk of VTE in cardiac transplant recipients, a risk possibly mediated through comorbid conditions. Larger, more conclusive studies are needed. Until such studies are completed, a heightened level of awareness for VTE in cardiac transplant recipients treated with sirolimus appears warranted. © 2012 John Wiley & Sons A/S.

  17. Banff schema for grading pancreas allograft rejection: working proposal by a multi-disciplinary international consensus panel.

    PubMed

    Drachenberg, C B; Odorico, J; Demetris, A J; Arend, L; Bajema, I M; Bruijn, J A; Cantarovich, D; Cathro, H P; Chapman, J; Dimosthenous, K; Fyfe-Kirschner, B; Gaber, L; Gaber, O; Goldberg, J; Honsová, E; Iskandar, S S; Klassen, D K; Nankivell, B; Papadimitriou, J C; Racusen, L C; Randhawa, P; Reinholt, F P; Renaudin, K; Revelo, P P; Ruiz, P; Torrealba, J R; Vazquez-Martul, E; Voska, L; Stratta, R; Bartlett, S T; Sutherland, D E R

    2008-06-01

    Accurate diagnosis and grading of rejection and other pathological processes are of paramount importance to guide therapeutic interventions in patients with pancreas allograft dysfunction. A multi-disciplinary panel of pathologists, surgeons and nephrologists was convened for the purpose of developing a consensus document delineating the histopathological features for diagnosis and grading of rejection in pancreas transplant biopsies. Based on the available published data and the collective experience, criteria for the diagnosis of acute cell-mediated allograft rejection (ACMR) were established. Three severity grades (I/mild, II/moderate and III/severe) were defined based on lesions known to be more or less responsive to treatment and associated with better- or worse-graft outcomes, respectively. The features of chronic rejection/graft sclerosis were reassessed, and three histological stages were established. Tentative criteria for the diagnosis of antibody-mediated rejection were also characterized, in anticipation of future studies that ought to provide more information on this process. Criteria for needle core biopsy adequacy and guidelines for pathology reporting were also defined. The availability of a simple, reproducible, clinically relevant and internationally accepted schema for grading rejection should improve the level of diagnostic accuracy and facilitate communication between all parties involved in the care of pancreas transplant recipients.

  18. Cardiac Myocyte Cell Cycle Control in Development, Disease and Regeneration

    PubMed Central

    Ahuja, Preeti; Sdek, Patima; Maclellan, W. Robb

    2009-01-01

    Cardiac myocytes rapidly proliferate during fetal life but exit the cell cycle soon after birth in mammals. Although the extent to which adult cardiac myocytes are capable of cell cycle reentry is controversial and species-specific differences may exist, it appears that for the vast majority of adult cardiac myocytes the predominant form of growth postnatally is an increase in cell size (hypertrophy) not number. Unfortunately, this limits the ability of the heart to restore function after any significant injury. Interst in novel regenerative therapies has led to the accumulation of much information on the mechanisms that regulate the rapid proliferation of cardiac myocytes in utero, their cell cycle exit in the perinatal period and the permanent arrest (terminal differentiation) in adult myocytes. The recent identification of cardiac progenitor cells capable of giving rise to cardiac myocyte-like cells has challenged the dogma that the heart is a terminally differentiated organ and opened new prospects for cardiac regeneration. In this review, we summarize the current understanding of cardiomyocyte cell cycle control in normal development and disease. In addition, we also discuss the potential usefulness of cardiomyocyte self-renewal as well as feasibility of therapeutic manipulation of the cardiac myocyte cell cycle for cardiac regeneration. PMID:17429040

  19. Toll‐Like Receptor‐2 Mediates Adaptive Cardiac Hypertrophy in Response to Pressure Overload Through Interleukin‐1β Upregulation via Nuclear Factor κB Activation

    PubMed Central

    Higashikuni, Yasutomi; Tanaka, Kimie; Kato, Megumi; Nureki, Osamu; Hirata, Yasunobu; Nagai, Ryozo; Komuro, Issei; Sata, Masataka

    2013-01-01

    Background Inflammation is induced in the heart during the development of cardiac hypertrophy. The initiating mechanisms and the role of inflammation in cardiac hypertrophy, however, remain unclear. Toll‐like receptor‐2 (TLR2) recognizes endogenous molecules that induce noninfectious inflammation. Here, we examined the role of TLR2‐mediated inflammation in cardiac hypertrophy. Methods and Results At 2 weeks after transverse aortic constriction, Tlr2−/− mice showed reduced cardiac hypertrophy and fibrosis with greater left ventricular dilatation and impaired systolic function compared with wild‐type mice, which indicated impaired cardiac adaptation in Tlr2−/− mice. Bone marrow transplantation experiment revealed that TLR2 expressed in the heart, but not in bone marrow–derived cells, is important for cardiac adaptive response to pressure overload. In vitro experiments demonstrated that TLR2 signaling can induce cardiomyocyte hypertrophy and fibroblast and vascular endothelial cell proliferation through nuclear factor–κB activation and interleukin‐1β upregulation. Systemic administration of a nuclear factor–κB inhibitor or anti–interleukin‐1β antibodies to wild‐type mice resulted in impaired adaptive cardiac hypertrophy after transverse aortic constriction. We also found that heat shock protein 70, which was increased in murine plasma after transverse aortic constriction, can activate TLR2 signaling in vitro and in vivo. Systemic administration of anti–heat shock protein 70 antibodies to wild‐type mice impaired adaptive cardiac hypertrophy after transverse aortic constriction. Conclusions Our results demonstrate that TLR2‐mediated inflammation induced by extracellularly released heat shock protein 70 is essential for adaptive cardiac hypertrophy in response to pressure overload. Thus, modulation of TLR2 signaling in the heart may provide a novel strategy for treating heart failure due to inadequate adaptation to hemodynamic

  20. Sustained βAR Stimulation Mediates Cardiac Insulin Resistance in a PKA-Dependent Manner

    PubMed Central

    Denkaew, Tananat; Phosri, Sarawuth; Pinthong, Darawan; Parichatikanond, Warisara; Shimauchi, Tsukasa; Nishida, Motohiro

    2016-01-01

    Insulin resistance is a condition in which cells are defective in response to the actions of insulin in tissue glucose uptake. Overstimulation of β-adrenergic receptors (βARs) leads to the development of heart failure and is associated with the pathogenesis of insulin resistance in the heart. However, the mechanisms by which sustained βAR stimulation affects insulin resistance in the heart are incompletely understood. In this study, we demonstrate that sustained βAR stimulation resulted in the inhibition of insulin-induced glucose uptake, and a reduction of insulin induced glucose transporter (GLUT)4 expression that were mediated by the β2AR subtype in cardiomyocytes and heart tissue. Overstimulation of β2AR inhibited the insulin-induced translocation of GLUT4 to the plasma membrane of cardiomyocytes. Additionally, βAR mediated cardiac insulin resistance by reducing glucose uptake and GLUT4 expression via the cAMP-dependent and protein kinase A-dependent pathways. Treatment with β-blockers, including propranolol and metoprolol antagonized isoproterenol-mediated insulin resistance in the heart. The data in this present study confirm a critical role for protein kinase A in βAR-mediated insulin resistance. PMID:26652903

  1. The revitalisation of flexor tendon allografts with bone marrow stromal cells and mechanical stimulation: An ex vivo model revitalising flexor tendon allografts.

    PubMed

    Wu, J H; Thoreson, A R; Gingery, A; An, K N; Moran, S L; Amadio, P C; Zhao, C

    2017-03-01

    , mechanical stimulation of a cell-seeded tendon can promote cell proliferation and enhance expression of collagen types I and III in vitro . Cite this article: J. H. Wu, A. R. Thoreson, A. Gingery, K. N. An, S. L. Moran, P. C. Amadio, C. Zhao. The revitalisation of flexor tendon allografts with bone marrow stromal cells and mechanical stimulation: An ex vivo model revitalising flexor tendon allografts. Bone Joint Res 2017;6:179-185. DOI: 10.1302/2046-3758.63.BJR-2016-0207.R1. © 2017 Zhao et al.

  2. The Presence of HLA-E-Restricted, CMV-Specific CD8+ T Cells in the Blood of Lung Transplant Recipients Correlates with Chronic Allograft Rejection.

    PubMed

    Sullivan, Lucy C; Westall, Glen P; Widjaja, Jacqueline M L; Mifsud, Nicole A; Nguyen, Thi H O; Meehan, Aislin C; Kotsimbos, Tom C; Brooks, Andrew G

    2015-01-01

    The human cytomegalovirus (CMV) immune evasion protein, UL40, shares an identical peptide sequence with that found in the leader sequence of many human leukocyte antigen (HLA)-C alleles and when complexed with HLA-E, can modulate NK cell functions via interactions with the CD94-NKG2 receptors. However the UL40-derived sequence can also be immunogenic, eliciting robust CD8+ T cell responses. In the setting of solid organ transplantation these T cells may not only be involved in antiviral immunity but also can potentially contribute to allograft rejection when the UL40 epitope is also present in allograft-encoded HLA. Here we assessed 15 bilateral lung transplant recipients for the presence of HLA-E-restricted UL40 specific T cells by tetramer staining of peripheral blood mononuclear cells (PBMC). UL40-specific T cells were observed in 7 patients post-transplant however the magnitude of the response varied significantly between patients. Moreover, unlike healthy CMV seropositive individuals, longitudinal analyses revealed that proportions of such T cells fluctuated markedly. Nine patients experienced low-grade acute cellular rejection, of which 6 also demonstrated UL40-specific T cells. Furthermore, the presence of UL40-specific CD8+ T cells in the blood was significantly associated with allograft dysfunction, which manifested as Bronchiolitis Obliterans Syndrome (BOS). Therefore, this study suggests that minor histocompatibility antigens presented by HLA-E can represent an additional risk factor following lung transplantation.

  3. Proinflammatory Stem Cell Signaling in Cardiac Ischemia

    PubMed Central

    Herrmann, Jeremy L.; Markel, Troy A.; Abarbanell, Aaron M.; Weil, Brent R.; Wang, Meijing; Wang, Yue; Tan, Jiangning

    2009-01-01

    Abstract Cardiovascular disease remains a leading cause of mortality in developed nations, despite continued advancement in modern therapy. Progenitor and stem cell–based therapy is a novel treatment for cardiovascular disease, and modest benefits in cardiac recovery have been achieved in small clinical trials. This therapeutic modality remains challenged by limitations of low donor-cell survival rates, transient recovery of cardiac function, and the technical difficulty of applying directed cell therapy. Understanding the signaling mechanisms involved in the stem cell response to ischemia has revealed opportunities to modify directly aspects of these pathways to improve their cardioprotective abilities. This review highlights general considerations of stem cell therapy for cardiac disease, reviews the major proinflammatory signaling pathways of mesenchymal stem cells, and reviews ex vivo modifications of stem cells based on these pathways. Antioxid. Redox Signal. 11, 1883–1896. PMID:19187005

  4. Acceleration of Regeneration of Large-Gap Peripheral Nerve Injuries Using Accellular Nerve Allografts Plus Amniotic Fluid Derived Stem Cells (AFS)

    DTIC Science & Technology

    2015-09-01

    Nerve Allografts plus amniotic Fluid Derived Stem Cells (AFS). PRINCIPAL INVESTIGATOR: Li, Zhongyu CONTRACTING ORGANIZATION: Wake Forest ...NUMBER: Wake Forest University Health Sciences Medical Center Boulevard Winston-Salem, NC 27157 9. SPONSORING / MONITORING AGENCY NAME(S) AND

  5. [Attitude towards organ and tissue donation in Europe : Prerequisite for osteochondral allograft treatment].

    PubMed

    Schmidt, S; Schulte, A; Schwarz, S; Hofmann, N; Tietz, S; Boergel, M; Sixt, S U

    2017-11-01

    The biggest obstacle to overcome for routine treatment of various pathologies with fresh osteochondral allograft is the availability of tissue for transplantation. Large fresh osteochondral allografts are usually harvested from organ donors, but in contrast to organs, tissues can be procured after cardiac arrest. Medical staff as well the general public are much less aware of the possibilities and requirements of tissue donation compared to organ donation. This review aims to highlight the current situation of organ and tissue donation in Europe and to raise this much needed awareness. For this research, PubMed database was scanned using the terms "tissue/organ donation", "bone donation/transplantation", "cartilage transplantation/allografts" and "osteochrondral allografts". Relatives of potential donors are often not approached because physicians and nurses do not feel sufficiently prepared for this task and, thus, are reluctant to address this topic. Different options could alleviate the pressure medical staff is feeling. Furthermore, there are different factors influencing consent that can be addressed to increase donation rates. Currently, a lot of potential concerning musculoskeletal tissue grafts remains unused. Most importantly, families should be encouraged to speak about their potenzial will to donate and educational programs should be established to increase trust in organ and tissue donation and the allocation system and to increase knowledge about the importance of transplantation medicine. But joined efforts of different parts of the medical systems and different organizations involved in tissue transplantation should improve the situation for patients waiting for much needed transplants.

  6. Cytokines affecting CD4+T regulatory cells in transplant tolerance. III. Interleukin-5 (IL-5) promotes survival of alloantigen-specific CD4+ T regulatory cells.

    PubMed

    Hall, Bruce M; Plain, Karren M; Tran, Giang T; Verma, Nirupama D; Robinson, Catherine M; Nomura, Masaru; Boyd, Rochelle; Hodgkinson, Suzanne J

    2017-08-01

    CD4 + T cells mediate antigen-specific allograft tolerance, but die in culture without activated lymphocyte derived cytokines. Supplementation of the media with cytokine rich supernatant, from ConA activated spleen cells, preserves the capacity of tolerant cells to transfer tolerance and suppress rejection. rIL-2 or rIL-4 alone are insufficient to maintain these cells, however. We observed that activation of naïve CD4 + CD25 + FOXP3 + Treg with alloantigen and the Th2 cytokine rIL-4 induces them to express interleukin-5 specific receptor alpha (IL-5Rα) suggesting that IL-5, a Th2 cytokine that is produced later in the immune response may promote tolerance mediating Treg. This study examined if recombinant IL-5(rIL-5) promoted survival of tolerant CD4 + , especially CD4 + CD25 + T cells. CD4 + T cells, from DA rats tolerant to fully allogeneic PVG heart allografts surviving over 100days without on-going immunosuppression, were cultured with PVG alloantigen and rIL-5. The ability of these cells to adoptively transfer tolerance to specific-donor allograft and suppress normal CD4 + T cell mediated rejection in adoptive DA hosts was examined. Tolerant CD4 + CD25 + T cells' response to rIL-5 and expression of IL-5Rα was also assessed. rIL-5 was sufficient to promote transplant tolerance mediating CD4 + T cells' survival in culture with specific-donor alloantigen. Tolerant CD4 + T cells cultured with rIL-5 retained the capacity to transfer alloantigen-specific tolerance and inhibited naïve CD4 + T cells' capacity to effect specific-donor graft rejection. rIL-5 promoted tolerant CD4 + CD25 + T cells' proliferation in vitro when stimulated with specific-donor but not third-party stimulator cells. Tolerant CD4 + CD25 + T cells expressed IL-5Rα. This study demonstrated that IL-5 promoted the survival of alloantigen-specific CD4 + CD25 + T cells that mediate transplant tolerance. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Should fractures in massive intercalary bone allografts of the lower limb be treated with ORIF or with a new allograft?

    PubMed

    Aponte-Tinao, Luis A; Ayerza, Miguel A; Muscolo, D Luis; Farfalli, Germán L

    2015-03-01

    Massive bone allografts have been used for limb salvage of bone tumor resections as an alternative to endoprostheses, although they have different outcomes and risks. There is no general consensus about when to use these alternatives, but when it is possible to save the native joints after the resection of a long bone tumor, intercalary allografts offer some advantages despite complications, such as fracture. The management and outcomes of this complication deserve more study. The purposes of this study were to (1) analyze the fracture frequency in a group of patients treated with massive intercalary bone allografts of the femur and tibia; (2) compare the results of allografts treated with open reduction and internal fixation (ORIF) with those treated with resection and repeat allograft reconstruction; and (3) determine the likelihood that treatment of a fracture resulted in a healed intercalary reconstruction. We reviewed patients treated with intercalary bone allografts between 1991 and 2011. During this period, patients were generally treated with intercalary allografts when after tumor resection at least 1 cm of residual epiphysis remained to allow fixation of the osteotomy junction. To obtain a homogeneous group of patients, we excluded allograft-prosthesis composites and osteoarticular and hemicylindrical intercalary allografts from this study. We analyzed the fracture rate of 135 patients reconstructed with segmental intercalary bone allografts of the lower extremities (98 femurs and 37 tibias). In patients whose grafts fractured were treated either by internal fixation or a second allograft, ORIF generally was attempted but after early failures in femur fractures, these fractures were treated with a second allograft. Using a chart review, we ascertained the frequency of osseous union, complications, and reoperations after the treatment of fractured intercalary allografts. Followup was at a mean of 101 months (range, 24-260 months); of the original 135

  8. Design, synthesis, and evaluation of 4,6-diaminonicotinamide derivatives as novel and potent immunomodulators targeting JAK3.

    PubMed

    Nakajima, Yutaka; Aoyama, Naohiro; Takahashi, Fumie; Sasaki, Hiroshi; Hatanaka, Keiko; Moritomo, Ayako; Inami, Masamichi; Ito, Misato; Nakamura, Koji; Nakamori, Fumihiro; Inoue, Takayuki; Shirakami, Shohei

    2016-10-01

    In organ transplantation, T cell-mediated immune responses play a key role in the rejection of allografts. Janus kinase 3 (JAK3) is specifically expressed in hematopoietic cells and associated with regulation of T cell development via interleukin-2 signaling pathway. Here, we designed novel 4,6-diaminonicotinamide derivatives as immunomodulators targeting JAK3 for prevention of transplant rejection. Our optimization of C4- and C6-substituents and docking calculations to JAK3 protein confirmed that the 4,6-diaminonicotinamide scaffold resulted in potent inhibition of JAK3. We also investigated avoidance of human ether-a-go-go related gene (hERG) inhibitory activity. Selected compound 28 in combination with tacrolimus prevented allograft rejection in a rat heterotopic cardiac transplantation model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Egr-1 mediated cardiac miR-99 family expression diverges physiological hypertrophy from pathological hypertrophy.

    PubMed

    Ramasamy, Subbiah; Velmurugan, Ganesan; Rekha, Balakrishnan; Anusha, Sivakumar; Shanmugha Rajan, K; Shanmugarajan, Suresh; Ramprasath, Tharmarajan; Gopal, Pandi; Tomar, Dhanendra; Karthik, Karuppusamy V; Verma, Suresh Kumar; Garikipati, Venkata Naga Srikanth; Sudarsan, Rajan

    2018-04-01

    The physiological cardiac hypertrophy is an adaptive condition without myocyte cell death, while pathological hypertrophy is a maladaptive condition associated with myocyte cell death. This study explores the miRNome of α-2M-induced physiologically hypertrophied cardiomyocytes and the role of miRNA-99 family during cardiac hypertrophy. Physiological and pathological cardiac hypertrophy was induced in H9c2 cardiomyoblast cell lines using α-2M and isoproterenol respectively. Total RNA isolation and small RNA sequencing were executed for physiological hypertrophy model. The differentially expressed miRNAs and its target mRNAs were validated in animal models. Transcription factor binding sites were predicted in the promoter of specific miRNAs and validated by ChIP-PCR. Subsequently, the selected miRNA was functionally characterized by overexpression and silencing. The effects of silencing of upstream regulator and downstream target gene were studied. Analysis of small RNA reads revealed the differential expression of a large set of miRNAs during hypertrophy, of which miR-99 family was highly downregulated upon α-2M treatment. However, this miR-99 family expression was upregulated during pathological hypertrophy and confirmed in animal models. ChIP-PCR confirms the binding of Egr-1 transcription factor to the miR-99 promoter. Further, silencing of Egr-1 decreased the expression of miR-99. The overexpression or silencing of miR-99 diverges the physiological hypertrophy to pathological hypertrophy and vice versa by regulating Akt-1 pathway. Silencing of Akt-1 replicates the effect of overexpression of miR-99. The results proved Egr-1 mediated regulation of miR-99 family that plays a key role in determining the fate of cardiac hypertrophy by regulating Akt-1 signaling. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Cardiac Cells Beating in Culture: A Laboratory Exercise

    ERIC Educational Resources Information Center

    Weaver, Debora

    2007-01-01

    This article describes how to establish a primary tissue culture, where cells are taken directly from an organ of a living animal. Cardiac cells are taken from chick embryos and transferred to culture dishes. These cells are not transformed and therefore have a limited life span. However, the unique characteristics of cardiac cells are maintained…

  11. Proliferation of murine c-kit(pos) cardiac stem cells stimulated with IGF-1 is associated with Akt-1 mediated phosphorylation and nuclear export of FoxO3a and its effect on downstream cell cycle regulators.

    PubMed

    Johnson, Ann Mary; Kartha, C C

    2014-04-01

    Insulin-like growth factor-1 (IGF-1) is known to promote proliferation in many cell types including c-kit(pos) cardiac stem cells (CSCs). Downstream signaling pathways of IGF-1 induced CSC proliferation have not been investigated. An important downstream target of IGF-1/Akt-1 signaling is FoxO3a, a key negative regulator of cell-cycle progression. We studied the effect of IGF-1 on proliferation of c-kit(pos) murine CSCs and found that IGF-1-mediated cell proliferation is associated with FoxO3a phosphorylation and inactivation of its transcriptional activity. PI3 inhibitors LY294002 and Wortmannin abolished the effect of IGF-1 on FoxO3a phosphorylation indicating that FoxO3a phosphorylation is mediated by PI3/Akt-1 pathway. In cells with FoxO3a translocation to the cytoplasm, there is decreased expression of cell-cycle inhibitors such as p27(kip1) and p57(kip2) and increased expression of CyclinD1. Our study provides evidence that IGF-1 induced CSC proliferation could be the result of FoxO3a inactivation and its downstream effect on cell-cycle regulators.

  12. No prolongation of skin allograft survival by immunoproteasome inhibition in mice.

    PubMed

    Mundt, Sarah; Basler, Michael; Sawitzki, Birgit; Groettrup, Marcus

    2017-08-01

    The immunoproteasome, a distinct class of proteasomes, which is inducible under inflammatory conditions and constitutively expressed in monocytes and lymphocytes, is known to shape the antigenic repertoire presented on major histocompatibility complex (MHC) class I molecules. Moreover, inhibition of the immunoproteasome subunit LMP7 ameliorates clinical symptoms of autoimmune diseases in vivo and was shown to suppress the development of T helper cell (Th) 1 and Th17 cells and to promote regulatory T-cell (Treg) generation independently of its function in antigen processing. Since Th1 and Th17 cells are detrimental and Treg cells are critical for transplant acceptance, we investigated the influence of the LMP7-selective inhibitor ONX 0914 in a mixed lymphocyte reaction (MLR) in vitro as well as on allograft rejection in a MHC-disparate (C57BL/6 to BALB/c) and a multiple minor histocompatibility antigen (miHA)-disparate (B10.Br to C3H) model of skin transplantation in vivo. Although we observed reduced allo-specific IL-17 production of T cells in vitro, we found that selective inhibition of LMP7 had neither an influence on allograft survival in an MHC-mismatch model nor in a multiple minor mismatch skin transplantation model. We conclude that inhibition of the immunoproteasome is not effective in prolonging skin allograft survival in skin allotransplantation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Absence of MyD88 Signaling Induces Donor-Specific Kidney Allograft Tolerance

    PubMed Central

    Noordmans, Gerda A.; O’Brien, Maya R.; Ma, Jin; Zhao, Cathy Y.; Zhang, Geoff Y.; Kwan, Tony K.T.; Alexander, Stephen I.; Chadban, Steven J.

    2012-01-01

    Toll-like receptors (TLRs) play a fundamental role in innate immunity and provide a link between innate and adaptive responses to an allograft; however, whether the development of acute and chronic allograft rejection requires TLR signaling is unknown. Here, we studied TLR signaling in a fully MHC-mismatched, life-sustaining murine model of kidney allograft rejection. Mice deficient in the TLR adaptor protein MyD88 developed donor antigen-specific tolerance, which protected them from both acute and chronic allograft rejection and increased their survival after transplantation compared with wild-type controls. Administration of an anti-CD25 antibody to MyD88-deficient recipients depleted CD4+CD25+FoxP3+ cells and broke tolerance. In addition, defective development of Th17 immune responses to alloantigen both in vitro and in vivo occurred, resulting in an increased ratio of Tregs to Th17 effectors. Thus, MyD88 deficiency was associated with an altered balance of Tregs over Th17 cells, promoting tolerance instead of rejection. This study provides evidence that targeting innate immunity may be a clinically relevant strategy to facilitate transplantation tolerance. PMID:22878960

  14. Interplay between immune responses to HLA and non-HLA self-antigens in allograft rejection.

    PubMed

    Angaswamy, Nataraju; Tiriveedhi, Venkataswarup; Sarma, Nayan J; Subramanian, Vijay; Klein, Christina; Wellen, Jason; Shenoy, Surendra; Chapman, William C; Mohanakumar, T

    2013-11-01

    Recent studies strongly suggest an increasing role for immune responses against self-antigens (Ags) which are not encoded by the major histocompatibility complex in the immunopathogenesis of allograft rejection. Although, improved surgical techniques coupled with improved methods to detect and avoid sensitization against donor human leukocyte antigen (HLA) have improved the immediate and short term function of transplanted organs. However, acute and chronic rejection still remains a vexing problem for the long term function of the transplanted organ. Immediately following organ transplantation, several factors both immune and non immune mechanisms lead to the development of local inflammatory milieu which sets the stage for allograft rejection. Traditionally, development of antibodies (Abs) against mismatched donor HLA have been implicated in the development of Ab mediated rejection. However, recent studies from our laboratory and others have demonstrated that development of humoral and cellular immune responses against non-HLA self-Ags may contribute in the pathogenesis of allograft rejection. There are reports demonstrating that immune responses to self-Ags especially Abs to the self-Ags as well as cellular immune responses especially through IL17 has significant pro-fibrotic properties leading to chronic allograft failure. This review summarizes recent studies demonstrating the role for immune responses to self-Ags in allograft immunity leading to rejection as well as present recent evidence suggesting there is interplay between allo- and autoimmunity leading to allograft dysfunction. Copyright © 2013 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  15. Mediator complex dependent regulation of cardiac development and disease.

    PubMed

    Grueter, Chad E

    2013-06-01

    Cardiovascular disease (CVD) is a leading cause of morbidity and mortality. The risk factors for CVD include environmental and genetic components. Human mutations in genes involved in most aspects of cardiovascular function have been identified, many of which are involved in transcriptional regulation. The Mediator complex serves as a pivotal transcriptional regulator that functions to integrate diverse cellular signals by multiple mechanisms including recruiting RNA polymerase II, chromatin modifying proteins and non-coding RNAs to promoters in a context dependent manner. This review discusses components of the Mediator complex and the contribution of the Mediator complex to normal and pathological cardiac development and function. Enhanced understanding of the role of this core transcriptional regulatory complex in the heart will help us gain further insights into CVD. Copyright © 2013. Production and hosting by Elsevier Ltd.

  16. Albumin-coated structural lyophilized bone allografts: a clinical report of 10 cases.

    PubMed

    Klára, Tamás; Csönge, Lajos; Janositz, Gábor; Csernátony, Zoltán; Lacza, Zsombor

    2014-03-01

    Bone replacement and the use of bone supplementary biological substances have become widespread in clinical practice. Although autografts have excellent properties, their limited availability, difficulties with shaping and donor site morbidity have made allografts a viable and increasingly preferred alternative. The main drawback of allografts is that the preparation destroys osteogenic cells and results in denaturation of osteoinductive proteins. Serum albumin is a well-known constituent of stem cell culture media and we found that lyophilizing albumin onto bone allografts markedly improves stem-cell attachment and bone healing in animal models thus replacing some of the osteoinductive potential. As a first step in the clinical introduction of albumin coated grafts, we aimed to test surgical handling and early incorporation in aseptic revision arthroplasty in humans. We selected patients who needed large structural allografts and the current operation was the last attempt at preserving a moving joint. In a series of 10 cases of hip and knee revision surgery we did not experience any drawbacks of the albumin-coated grafts during handling and implantation. Twelve months radiographic and SPECT-CT follow-up showed that the graft was well received by the host and active remodelling was observed. The lack of graft-related complications and the good 1-year results indicate that controlled trials may be initiated in more common bone grafting indications where long-term effectiveness can be evaluated.

  17. Sphingosine mediates the immediate negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian cardiac myocyte.

    PubMed

    Oral, H; Dorn, G W; Mann, D L

    1997-02-21

    To determine whether activation of the neutral sphingomyelinase pathway was responsible for the immediate (<30 min) negative inotropic effects of tumor necrosis factor-alpha (TNF-alpha), we examined sphingosine levels in diluent and TNF-alpha-stimulated cardiac myocytes. TNF-alpha stimulation of adult feline cardiac myocytes provoked a rapid (<15 min) increase in the hydrolysis of [14C]sphingomyelin in cell-free extracts, as well as an increase in ceramide mass, consistent with cytokine-induced activation of the neutral sphingomyelinase pathway. High performance liquid chromatographic analysis of lipid extracts from TNF-alpha-stimulated cardiac myocytes showed that TNF-alpha stimulation produced a rapid (<30 min) increase in free sphingosine levels. Moreover, exogenous D-sphingosine mimicked the effects of TNF-alpha on intracellular calcium homeostasis, as well as the negative inotropic effects of TNF-alpha in isolated contracting myocytes; time course studies showed that exogenous D-sphingosine produced abnormalities in cell shortening that were maximal at 5 min. Finally, blocking sphingosine production using an inhibitor of ceramidase, n-oleoylethanolamine, completely abrogated the negative inotropic effects of TNF-alpha in isolated contracting cardiac myocytes. Additional studies employing biologically active ceramide analogs and sphingosine 1-phosphate suggested that neither the immediate precursor of sphingosine nor the immediate metabolite of sphingosine, respectively, were likely to be responsible for the immediate negative inotropic effects of TNF-alpha. Thus, these studies suggest that sphingosine mediates the immediate negative inotropic effects of TNF-alpha in isolated cardiac myocytes.

  18. Aldosterone Promotes Cardiac Endothelial Cell Proliferation In Vivo

    PubMed Central

    Gravez, Basile; Tarjus, Antoine; Pelloux, Véronique; Ouvrard‐Pascaud, Antoine; Delcayre, Claude; Samuel, Janelise; Clément, Karine; Farman, Nicolette; Jaisser, Fréderic; Messaoudi, Smail

    2015-01-01

    Background Experimentally, aldosterone in association with NaCl induces cardiac fibrosis, oxidative stress, and inflammation through mineralocorticoid receptor activation; however, the biological processes regulated by aldosterone alone in the heart remain to be identified. Methods and Results Mice were treated for 7 days with aldosterone, and then cardiac transcriptome was analyzed. Aldosterone regulated 60 transcripts (51 upregulated and 9 downregulated) in the heart (fold change ≥1.5, false discovery rate <0.01). To identify the biological processes modulated by aldosterone, a gene ontology analysis was performed. The majority of aldosterone‐regulated genes were involved in cell division. The cardiac Ki‐67 index (an index of proliferation) of aldosterone‐treated mice was higher than that of nontreated mice, confirming microarray predictions. Costaining of Ki‐67 with vinculin, CD68, α‐smooth muscle actin, CD31, or caveolin 1 revealed that the cycling cells were essentially endothelial cells. Aldosterone‐induced mineralocorticoid receptor–dependent proliferation was confirmed ex vivo in human endothelial cells. Moreover, pharmacological‐specific blockade of mineralocorticoid receptor by eplerenone inhibited endothelial cell proliferation in a preclinical model of heart failure (transverse aortic constriction). Conclusions Aldosterone modulates cardiac gene expression and induces the proliferation of cardiac endothelial cells in vivo. PMID:25564371

  19. Extracellular Matrix-Mediated Maturation of Human Pluripotent Stem Cell-Derived Cardiac Monolayer Structure and Electrophysiological Function.

    PubMed

    Herron, Todd J; Rocha, Andre Monteiro Da; Campbell, Katherine F; Ponce-Balbuena, Daniela; Willis, B Cicero; Guerrero-Serna, Guadalupe; Liu, Qinghua; Klos, Matt; Musa, Hassan; Zarzoso, Manuel; Bizy, Alexandra; Furness, Jamie; Anumonwo, Justus; Mironov, Sergey; Jalife, José

    2016-04-01

    Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) monolayers generated to date display an immature embryonic-like functional and structural phenotype that limits their utility for research and cardiac regeneration. In particular, the electrophysiological function of hPSC-CM monolayers and bioengineered constructs used to date are characterized by slow electric impulse propagation velocity and immature action potential profiles. Here, we have identified an optimal extracellular matrix for significant electrophysiological and structural maturation of hPSC-CM monolayers. hPSC-CM plated in the optimal extracellular matrix combination have impulse propagation velocities ≈2× faster than previously reported (43.6±7.0 cm/s; n=9) and have mature cardiomyocyte action potential profiles, including hyperpolarized diastolic potential and rapid action potential upstroke velocity (146.5±17.7 V/s; n=5 monolayers). In addition, the optimal extracellular matrix promoted hypertrophic growth of cardiomyocytes and the expression of key mature sarcolemmal (SCN5A, Kir2.1, and connexin43) and myofilament markers (cardiac troponin I). The maturation process reported here relies on activation of integrin signaling pathways: neutralization of β1 integrin receptors via blocking antibodies and pharmacological blockade of focal adhesion kinase activation prevented structural maturation. Maturation of human stem cell-derived cardiomyocyte monolayers is achieved in a 1-week period by plating cardiomyocytes on PDMS (polydimethylsiloxane) coverslips rather than on conventional 2-dimensional cell culture formats, such as glass coverslips or plastic dishes. Activation of integrin signaling and focal adhesion kinase is essential for significant maturation of human cardiac monolayers. © 2016 American Heart Association, Inc.

  20. Cardiac cell: a biological laser?

    PubMed

    Chorvat, D; Chorvatova, A

    2008-04-01

    We present a new concept of cardiac cells based on an analogy with lasers, practical implementations of quantum resonators. In this concept, each cardiac cell comprises a network of independent nodes, characterised by a set of discrete energy levels and certain transition probabilities between them. Interaction between the nodes is given by threshold-limited energy transfer, leading to quantum-like behaviour of the whole network. We propose that in cardiomyocytes, during each excitation-contraction coupling cycle, stochastic calcium release and the unitary properties of ionic channels constitute an analogue to laser active medium prone to "population inversion" and "spontaneous emission" phenomena. This medium, when powered by an incoming threshold-reaching voltage discharge in the form of an action potential, responds to the calcium influx through L-type calcium channels by stimulated emission of Ca2+ ions in a coherent, synchronised and amplified release process known as calcium-induced calcium release. In parallel, phosphorylation-stimulated molecular amplification in protein cascades adds tuneable features to the cells. In this framework, the heart can be viewed as a coherent network of synchronously firing cardiomyocytes behaving as pulsed laser-like amplifiers, coupled to pulse-generating pacemaker master-oscillators. The concept brings a new viewpoint on cardiac diseases as possible alterations of "cell lasing" properties.

  1. Acceleration of Regeneration of Large-Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts plus amniotic Fluid Derived Stem Cells (AFS)

    DTIC Science & Technology

    2016-09-01

    AWARD NUMBER: W81XWH-13-1-0309 TITLE: Acceleration of Regeneration of Large-Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts...plus amniotic Fluid Derived Stem Cells (AFS). PRINCIPAL INVESTIGATOR: Thomas L. Smith, PhD RECIPIENT: Wake Forest University Health Sciences

  2. Silk fibroin scaffolds enhance cell commitment of adult rat cardiac progenitor cells.

    PubMed

    Di Felice, Valentina; Serradifalco, Claudia; Rizzuto, Luigi; De Luca, Angela; Rappa, Francesca; Barone, Rosario; Di Marco, Patrizia; Cassata, Giovanni; Puleio, Roberto; Verin, Lucia; Motta, Antonella; Migliaresi, Claudio; Guercio, Annalisa; Zummo, Giovanni

    2015-11-01

    The use of three-dimensional (3D) cultures may induce cardiac progenitor cells to synthesize their own extracellular matrix (ECM) and sarcomeric proteins to initiate cardiac differentiation. 3D cultures grown on synthetic scaffolds may favour the implantation and survival of stem cells for cell therapy when pharmacological therapies are not efficient in curing cardiovascular diseases and when organ transplantation remains the only treatment able to rescue the patient's life. Silk fibroin-based scaffolds may be used to increase cell affinity to biomaterials and may be chemically modified to improve cell adhesion. In the present study, porous, partially orientated and electrospun nanometric nets were used. Cardiac progenitor cells isolated from adult rats were seeded by capillarity in the 3D structures and cultured inside inserts for 21 days. Under this condition, the cells expressed a high level of sarcomeric and cardiac proteins and synthesized a great quantity of ECM. In particular, partially orientated scaffolds induced the synthesis of titin, which is a fundamental protein in sarcomere assembly. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Renal PKC-ε deficiency attenuates acute kidney injury and ischemic allograft injury via TNF-α-dependent inhibition of apoptosis and inflammation.

    PubMed

    Rong, Song; Hueper, Katja; Kirsch, Torsten; Greite, Robert; Klemann, Christian; Mengel, Michael; Meier, Matthias; Menne, Jan; Leitges, Michael; Susnik, Nathan; Meier, Martin; Haller, Hermann; Shushakova, Nelli; Gueler, Faikah

    2014-09-15

    Acute kidney injury (AKI) increases the risk of morbidity and mortality after major surgery and transplantation. We investigated the effect of PKC-ε deficiency on AKI and ischemic allograft damage after kidney transplantation. PKC-ε-deficient and wild type (WT) control mice were subjected to 35 min of renal pedicle clamping to induce AKI. PKC-ε deficiency was associated with a marked improvement in survival and an attenuated loss of kidney function. Furthermore, functional MRI experiments revealed better renal perfusion in PKC-ε-deficient mice than in WT mice one day after IRI. Acute tubular necrosis and neutrophil infiltration were markedly reduced in PKC-ε-deficient mice. To determine whether this resistance to ischemia-reperfusion injury resulted from changes in local renal cells or infiltrating leukocytes, we studied a life-supporting renal transplant model of ischemic graft injury. We transplanted kidneys from H(2b) PKC-ε-deficient mice (129/SV) and their corresponding WT littermates into major histocompatibility complex-incompatible H(2d) recipients (BALB/c) and induced ischemic graft injury by prolonged cold ischemia time. Recipients of WT allografts developed severe renal failure and died within 10 days of transplantation. Recipients of PKC-ε-deficient allografts had better renal function and survival; they had less generation of ROS and upregulation of proinflammatory proteins (i.e., ICAM-1, inducible nitric oxide synthase, and TNF-α) and showed less tubular epithelial cell apoptosis and inflammation in their allografts. These data suggest that local renal PKC-ε expression mediates proapoptotic and proinflammatory signaling and that an inhibitor of PKC-ε signaling could be used to prevent hypoxia-induced AKI. Copyright © 2014 the American Physiological Society.

  4. Developmental origin and lineage plasticity of endogenous cardiac stem cells

    PubMed Central

    Santini, Maria Paola; Forte, Elvira; Harvey, Richard P.; Kovacic, Jason C.

    2016-01-01

    Over the past two decades, several populations of cardiac stem cells have been described in the adult mammalian heart. For the most part, however, their lineage origins and in vivo functions remain largely unexplored. This Review summarizes what is known about different populations of embryonic and adult cardiac stem cells, including KIT+, PDGFRα+, ISL1+ and SCA1+ cells, side population cells, cardiospheres and epicardial cells. We discuss their developmental origins and defining characteristics, and consider their possible contribution to heart organogenesis and regeneration. We also summarize the origin and plasticity of cardiac fibroblasts and circulating endothelial progenitor cells, and consider what role these cells have in contributing to cardiac repair. PMID:27095490

  5. Everolimus Inhibits Anti-HLA I Antibody-Mediated Endothelial Cell Signaling, Migration and Proliferation More Potently than Sirolimus

    PubMed Central

    Jin, Yi-Ping; Valenzuela, Nicole M.; Ziegler, Mary E.; Rozengurt, Enrique; Reed, Elaine F.

    2017-01-01

    Antibody (Ab) crosslinking of HLA I molecules on the surface of endothelial cells triggers proliferative and pro-survival intracellular signaling, which is implicated in the process of chronic allograft rejection, also known as transplant vasculopathy. The purpose of this study was to investigate the role of mammalian target of rapamycin (mTOR) in HLA I antibody-induced signaling cascades. Everolimus provides a tool to establish how the mTOR signal network regulates HLA I-mediated migration, proliferation, and survival. We found that everolimus inhibits mTORC1 by disassociating Raptor from mTOR, thereby preventing class I-induced phosphorylation of mTOR, p70S6K, S6RP, and 4E-BP1, and resultant class I-stimulated cell migration and proliferation. Furthermore, we found that everolimus inhibits class I-mediated mTORC2 activation (1) by disassociating Rictor and Sin1 from mTOR; (2) by preventing class I-stimulated Akt phosphorylation; and (3) by preventing class I-mediated ERK phosphorylation. These results suggest that everolimus is more effective than sirolimus at antagonizing both mTORC1 and mTORC2, the latter of which is critical in endothelial cell functional changes leading to transplant vasculopathy in solid organ transplantation after HLA I crosslinking. Our findings point to a potential therapeutic effect of everolimus in prevention of chronic antibody-mediated rejection. PMID:24580843

  6. [Cardiac manifestations of sickle cell anemia].

    PubMed

    Gacon, P H; Donatien, Y

    HEMOGLOBINS S AND C: Drepanocytosis, the occurrence of sickle cells (drepanocytes) in the blood, is an inherited condition. Electrophoresis demonstrates hemoglobin SS in homozygous subjects who present the typical clinical features of severe hemolytic sickle-cell anemia. Heterozygous subjects have sickle-cell anemia trait, an asymptomatic condition associated with a 50% hemoglobin S and 50% hemoglobin C at electrophoresis. Hemoglobin S and C are transmitted by Mendelian inheritance. CARDIAC DISORDERS: Well-known, cardiac disorders occur in more than 82% of homozygous subjects while only 2% of heterozygous subjects are affected. Heart murmur, radiological cardiomegaly, or eletrocardiographic anomalies are often the only signs. There is a risk of fatal heart failure in children and neonates. Acute rheumatic fever or infectious endocarditis, particularly due to pneumococcal or Haemophilus influenzae infection, may trigger heart failure. CARDIAC ANOMALIES: Patients with sickle-cell anemia can develop an "anemic heart" expressed by an elevated cardiac output and systemic ejection volume at rest and a fall in arteriolar peripheral resistance. Patients who develop cor pulmonae have an elevated pulmonary pressure at exercise and experience venous occlusive events with a progressive reduction in the pulmonary vascular bed and development of a left-right shunt. Myocardiopathy leads to left ventricular dysfunction contrasting with the dilated right heart seen at echocardiography and rare cases of transmural infarction.

  7. [Pedal bypass using venous allograft].

    PubMed

    Pluháčková, H; Staffa, R; Konečný, Z; Kříž, Z; Vlachovský, R

    Pedal or distal crural bypass surgery for limb salvage is a method with very good long-term results. For patients in whom a suitable autologous venous graft is not available, the use of a venous allograft is an alternative procedure. A 68 years old man with ischaemic disease of lower extremities and gangrene of the left foot was admitted to our Centre in August 2014. He underwent percutaneous transluminal angioplasty of crural arteries of his left lower extremity. This, however, failed to improve peripheral circulation. The patient was then indicated for pedal or distal crural vascular reconstruction. Since no suitable autologous vein was available, distal bypass surgery using a donor graft remained the only option for limb salvage. Amputation of the toes on the left foot due to gangrene was necessary. Subsequently, femoro-pedal bypass to the left common plantar artery was performed using a great saphenous vein allograft. The post-operative course was without complications, the pedal bypass was patent and toe amputation was with good healing. The patient remained in follow-up care. A good outcome of vascular reconstruction with an allograft depends on the availability of a suitable allograft and good patient compliance with post-operative care. In the case presented here, the pedal bypass grafting by means of an allograft helped to save the patients limb. pedal bypass venous allograft limb salvage.

  8. Characterization of skin allograft use in thermal injury.

    PubMed

    Fletcher, John L; Caterson, E J; Hale, Robert G; Cancio, Leopoldo C; Renz, Evan M; Chan, Rodney K

    2013-01-01

    This study provides objective data on the practice of allograft usage in severely burned patients. Furthermore, gaps in our knowledge are identified, and areas for further research are delineated. Using an institutional review board-approved protocol, active duty military patients injured while deployed in support of overseas contingency operations and treated at our burn center between March 2003 and December 2010 were identified. Their electronic medical records were reviewed for allograft use, TBSA burned, injury severity score, anatomic distribution of burns, operative burden, length of stay, transfusions, and outcome. Among 844 patients, 112 (13.3%) received allograft and 732 (86.7%) did not. The amount of allograft used per patient varied and was not normally distributed (median, 23.5; interquartile range, 69.5). Patients received allograft skin an average of 12.75 times during their admission. Allografted patients sustained severe burns (μ, 53.8% TBSA); most were transfused (71.2%) and grafted frequently, averaging every 7.45 days. Most commonly, allograft was placed on the extremities (66.5%) followed by the trunk (44.2%); however, the vast majority of allografted patients also had concomitant burns of the head (91.1%) and hands (87.5%). All-cause mortality among the allografted patients was 19.1%. In conclusion, allograft is commonly used in the surgical treatment of severe burns. Although there are no anatomic limitations to allograft placement, there are distinct patterns of use. Given the role of allograft in the acute management of large burns, there is need for further investigation of its effect on mortality, morbidity, and antigenicity.

  9. Long-term tolerance to kidney allografts in a preclinical canine model.

    PubMed

    Kuhr, Christian S; Yunusov, Murad; Sale, George; Loretz, Carol; Storb, Rainer

    2007-08-27

    Durable immune tolerance supporting vascularized allotransplantation offers the possibility of extending graft survival and avoiding harmful complications of chronic immunosuppression. Immune tolerance to renal allografts was induced in a preclinical canine model through engraftment of donor hematopoietic cells using a combination of low-dose total body irradiation and a short course of immunosuppression. Subsequently, donor renal allografts were transplanted accompanied by bilateral native nephrectomies. With 5-year follow up, we found normal renal function in all recipients and no histological evidence of acute or chronic rejection. This tolerance does not extend universally to donor skin grafts, however, with two of four animals rejecting delayed donor skin grafts. Hematopoietic chimerism produces durable and robust immune tolerance to kidney allografts, although incomplete tolerance to donor skin grafting.

  10. Stem Cells for Cardiac Regeneration by Cell Therapy and Myocardial Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Zeng, Faquan; Weisel, Richard D.; Li, Ren-Ke

    Congestive heart failure, which often occurs progressively following a myocardial infarction, is characterized by impaired myocardial perfusion, ventricular dilatation, and cardiac dysfunction. Novel treatments are required to reverse these effects - especially in older patients whose endogenous regenerative responses to currently available therapies are limited by age. This review explores the current state of research for two related approaches to cardiac regeneration: cell therapy and tissue engineering. First, to evaluate cell therapy, we review the effectiveness of various cell types for their ability to limit ventricular dilatation and promote functional recovery following implantation into a damaged heart. Next, to assess tissue engineering, we discuss the characteristics of several biomaterials for their potential to physically support the infarcted myocardium and promote implanted cell survival following cardiac injury. Finally, looking ahead, we present recent findings suggesting that hybrid constructs combining a biomaterial with stem and supporting cells may be the most effective approaches to cardiac regeneration.

  11. Induced Pluripotent Stem Cells 10 Years Later: For Cardiac Applications.

    PubMed

    Yoshida, Yoshinori; Yamanaka, Shinya

    2017-06-09

    Induced pluripotent stem cells (iPSCs) are reprogrammed cells that have features similar to embryonic stem cells, such as the capacity of self-renewal and differentiation into many types of cells, including cardiac myocytes. Although initially the reprogramming efficiency was low, several improvements in reprogramming methods have achieved robust and efficient generation of iPSCs without genomic insertion of transgenes. iPSCs display clonal variations in epigenetic and genomic profiles and cellular behavior in differentiation. iPSC-derived cardiac myocytes (iPSC cardiac myocytes) recapitulate phenotypic differences caused by genetic variations, making them attractive human disease models, and are useful for drug discovery and toxicology testing. In addition, iPSC cardiac myocytes can help with patient stratification in regard to drug responsiveness. Furthermore, they can be used as source cells for cardiac regeneration in animal models. Here, we review recent progress in iPSC technology and its applications to cardiac diseases. © 2017 American Heart Association, Inc.

  12. The ovine fetal endocrine reflex responses to haemorrhage are not mediated by cardiac nerves

    PubMed Central

    Wood, Charles E

    2002-01-01

    This study was designed to test the hypothesis that cardiac receptors tonically inhibit the secretion of renin, arginine vasopressin (AVP) and adrenocorticotropic hormone (ACTH) in late-gestation fetal sheep. Eight chronically catheterised fetal sheep between 122 and 134 days gestation were subjected to injection or infusion of saline or 4 % procaine into the pericardial space. Fetal blood pressure and heart rate were monitored and fetal blood samples were drawn to measure the response to these injections. Injection of procaine into the pericardial space effectively blocked cardiac nerves, as evidenced by a reduction in the variability of fetal heart rate and by the blockade of reflex reductions in fetal heart rate after intravenous injection of phenylephrine (an α-adrenergic agonist which raises blood pressure). Injection of saline had no discernable effects on any of the measured variables. A single injection of procaine, followed by a slow infusion, produced a transient blockade of cardiac nerves. Multiple injections of procaine produced a sustained blockade of cardiac nerves and a sustained rise in fetal plasma renin activity and ACTH. In none of the experiments did procaine significantly alter fetal plasma AVP concentrations. In 11 fetuses between 121 and 134 days gestation, we combined the cardiac nerve blockade with slow haemorrhage to test the cardiac nerves as mediators of the endocrine response to haemorrhage in utero. Cardiac nerve blockade exaggerated the fetal blood gas response to haemorrhage somewhat but did not significantly alter the magnitude of the ACTH, AVP, or plasma renin activity response to haemorrhage. We conclude that cardiac nerves in the late-gestation fetal sheep have minor influences on plasma renin activity and ACTH in normovolaemic fetuses, but that changes in cardiac nerve activity do not mediate the endocrine responsiveness to haemorrhage. PMID:12042365

  13. Novel mechanism of cardiac protection by valsartan: synergetic roles of TGF-β1 and HIF-1α in Ang II-mediated fibrosis after myocardial infarction

    PubMed Central

    Sui, Xizhong; Wei, Hongchao; Wang, Dacheng

    2015-01-01

    Transforming growth factor (TGF)-β1 is a known factor in angiotensin II (Ang II)-mediated cardiac fibrosis after myocardial infarction (MI). Hypoxia inducible factor-1 (Hif-1α) was recently demonstrated to involve in the tissue fibrosis and influenced by Ang II. However, whether Hif-1α contributed to the Ang II-mediated cardiac fibrosis after MI, and whether interaction or synergetic roles between Hif-1α and TGF-β pathways existed in the process was unclear. In vitro, cardiac cells were incubated under hypoxia or Ang II to mimic ischaemia. In vivo, valsartan was intravenously injected into Sprague–Dawley rats with MI daily for 1 week; saline and hydralazine (another anti-hypertensive agent like valsartan) was used as control. The fibrosis-related proteins were detected by Western blotting. Cardiac structure and function were assessed with multimodality methods. We demonstrated in vitro that hypoxia would induce the up-regulation of Ang II, TGF-β/Smad and Hif-1α, which further induced collagen accumulation. By blocking with valsartan, a blocker of Ang II type I (AT1) receptor, we confirmed that the up-regulation of TGF-β/Smad and Hif-1α was through the Ang II-mediated pathway. By administering TGF-β or dimethyloxalylglycine, we determined that both TGF-β/Smad and Hif-1α contributed to Ang II-mediated collagen accumulation and a synergetic effect between them was observed. Consistent with in vitro results, valsartan significantly attenuated the expression of TGF-β/Smad, Hif-1α and fibrosis-related protein in rats after MI. Heart function, infarcted size, wall thickness as well as myocardial vascularization of ischaemic hearts were also significantly improved by valsartan compared with saline and hydralazine. Our study may provide novel insights into the mechanisms of Ang II-induced cardiac fibrosis as well as into the cardiac protection of valsartan. PMID:25823960

  14. Induction of MHC-mismatched Mouse Lung Allograft Acceptance with Combined Donor Bone Marrow: Lung Transplant using a 12-Hour Nonmyeloablative Conditioning Regimen

    PubMed Central

    Vulic, Ante; Panoskaltsis-Mortari, Angela; McDyer, John F.; Luznik, Leo

    2016-01-01

    Background Despite broad and intense conventional immunosuppression, long-term survival after lung transplantation lags behind that for other solid organ transplants, primarily because of allograft rejection. Therefore, new strategies to promote lung allograft acceptance are urgently needed. The purpose of the present study was to induce allograft tolerance with a protocol compatible with deceased donor organ utilization. Methods Using the MHC-mismatched mouse orthotopic lung transplant model, we investigated a conditioning regimen consisting of pretransplant T cell depletion, low dose total body irradiation and posttransplant (donor) bone marrow and splenocyte infusion followed by posttransplantation cyclophosphamide (PTTT-PTB/PTCy). Results Our results show that C57BL/6 recipients of BALB/c lung allografts undergoing this complete short-duration nonmyeloablative conditioning regimen had durable lung allograft acceptance. Mice that lacked 1 or more components of this regimen exhibited significant graft loss. Mechanistically, animals with lung allograft acceptance had established higher levels of donor chimerism, lymphocyte responses which were attenuated to donor antigens but maintained to third-party antigens, and clonal deletion of donor-reactive host Vβ T cells. Frequencies of Foxp3+ T regulatory cells were comparable in both surviving and rejected allografts implying that their perturbation was not a dominant cell-regulatory mechanism. Donor chimerism was indispensable for sustained tolerance, as evidenced by acute rejection of allografts in established chimeric recipients of PTTT-PTB/PTCy following a chimerism-ablating secondary recipient lymphocyte infusion. Conclusion Together, these data provide proof-of-concept for establishing lung allograft tolerance with tandem donor bone marrow transplantation (BMT) using a short-duration nonmyeloablative conditioning regimen and PTCy. PMID:27861294

  15. Tracing Donor-MHC Class II Reactive B cells in Mouse Cardiac Transplantation: Delayed CTLA4-Ig Treatment Prevents Memory Alloreactive B-Cell Generation.

    PubMed

    Yang, Jinghui; Chen, Jianjun; Young, James S; Wang, Qiang; Yin, Dengping; Sciammas, Roger; Chong, Anita S

    2016-08-01

    The dual role of B cells as drivers and suppressors of the immune responses have underscored the need to trace the fate of B cells recognizing donor major histocompatibility complex class I and class II after allograft transplantation. In this study, we used donor class II tetramers to trace the fate of I-E-specific B cells after immunization with BALB/c spleen cells or cardiac transplantation, in naive or sensitized C57BL/6 recipients. We combined this approach with genetic lineage tracing of memory B cells in activation-induced cytidine deaminase regulated Cre transgenic mice crossed to the ROSA26-enhanced yellow fluorescent protein reporter mice to track endogenous I-E-specific memory B cell generation. Immunization with BALB/c splenocytes or heart transplantation induced an expansion and differentiation of I-E-specific B cells into germinal center B cells, whereas BALB/c heart transplantation into sensitized recipients induced the preferential differentiation into antibody-secreting cells. A 10.8-fold increase in the frequency of I-E-specific memory B cells was observed by day 42 postimmunization. Treatment with CTLA4-Ig starting on day 0 or day 7 postimmunization abrogated I-E-specific memory B cell generation and sensitized humoral responses, but not if treatment commenced on day 14. The majority of donor-specific memory B cells are generated between days 7 and 14 postimmunization, thus revealing a flexible timeframe whereby delayed CTLA4-Ig administration can inhibit sensitization and the generation of memory graft-reactive B cells.

  16. In situ bone tissue engineering via ultrasound-mediated gene delivery to endogenous progenitor cells in mini-pigs.

    PubMed

    Bez, Maxim; Sheyn, Dmitriy; Tawackoli, Wafa; Avalos, Pablo; Shapiro, Galina; Giaconi, Joseph C; Da, Xiaoyu; David, Shiran Ben; Gavrity, Jayne; Awad, Hani A; Bae, Hyun W; Ley, Eric J; Kremen, Thomas J; Gazit, Zulma; Ferrara, Katherine W; Pelled, Gadi; Gazit, Dan

    2017-05-17

    More than 2 million bone-grafting procedures are performed each year using autografts or allografts. However, both options carry disadvantages, and there remains a clear medical need for the development of new therapies for massive bone loss and fracture nonunions. We hypothesized that localized ultrasound-mediated, microbubble-enhanced therapeutic gene delivery to endogenous stem cells would induce efficient bone regeneration and fracture repair. To test this hypothesis, we surgically created a critical-sized bone fracture in the tibiae of Yucatán mini-pigs, a clinically relevant large animal model. A collagen scaffold was implanted in the fracture to facilitate recruitment of endogenous mesenchymal stem/progenitor cells (MSCs) into the fracture site. Two weeks later, transcutaneous ultrasound-mediated reporter gene delivery successfully transfected 40% of cells at the fracture site, and flow cytometry showed that 80% of the transfected cells expressed MSC markers. Human bone morphogenetic protein-6 ( BMP - 6 ) plasmid DNA was delivered using ultrasound in the same animal model, leading to transient expression and secretion of BMP-6 localized to the fracture area. Micro-computed tomography and biomechanical analyses showed that ultrasound-mediated BMP-6 gene delivery led to complete radiographic and functional fracture healing in all animals 6 weeks after treatment, whereas nonunion was evident in control animals. Collectively, these findings demonstrate that ultrasound-mediated gene delivery to endogenous mesenchymal progenitor cells can effectively treat nonhealing bone fractures in large animals, thereby addressing a major orthopedic unmet need and offering new possibilities for clinical translation. Copyright © 2017, American Association for the Advancement of Science.

  17. In situ bone tissue engineering via ultrasound-mediated gene delivery to endogenous progenitor cells in mini-pigs

    PubMed Central

    Bez, Maxim; Sheyn, Dmitriy; Tawackoli, Wafa; Avalos, Pablo; Shapiro, Galina; Giaconi, Joseph C.; Da, Xiaoyu; Ben David, Shiran; Gavrity, Jayne; Awad, Hani A.; Bae, Hyun W.; Ley, Eric J.; Kremen, Thomas J.; Gazit, Zulma; Ferrara, Katherine W.; Pelled, Gadi; Gazit, Dan

    2017-01-01

    More than 2 million bone-grafting procedures are performed each year using autografts or allografts. However, both options carry disadvantages, and there remains a clear medical need for the development of new therapies for massive bone loss and fracture nonunions. We hypothesized that localized ultrasound-mediated, microbubble-enhanced therapeutic gene delivery to endogenous stem cells would induce efficient bone regeneration and fracture repair. To test this hypothesis, we surgically created a critical-sized bone fracture in the tibiae of Yucatán mini-pigs, a clinically relevant large animal model. A collagen scaffold was implanted in the fracture to facilitate recruitment of endogenous mesenchymal stem/progenitor cells (MSCs) into the fracture site. Two weeks later, transcutaneous ultrasound-mediated reporter gene delivery successfully transfected 40% of cells at the fracture site, and flow cytometry showed that 80% of the transfected cells expressed MSC markers. Human bone morphogenetic protein-6 (BMP-6) plasmid DNA was delivered using ultrasound in the same animal model, leading to transient expression and secretion of BMP-6 localized to the fracture area. Micro–computed tomography and biomechanical analyses showed that ultrasound-mediated BMP-6 gene delivery led to complete radiographic and functional fracture healing in all animals 6 weeks after treatment, whereas nonunion was evident in control animals. Collectively, these findings demonstrate that ultrasound-mediated gene delivery to endogenous mesenchy-mal progenitor cells can effectively treat nonhealing bone fractures in large animals, thereby addressing a major orthopedic unmet need and offering new possibilities for clinical translation. PMID:28515335

  18. Allograft replacement for absent native tissue.

    PubMed

    Chaudhury, Salma; Wanivenhaus, Florian; Fox, Alice J; Warren, Russell F; Doyle, Maureen; Rodeo, Scott A

    2013-03-01

    Structural instability due to poor soft tissue quality often requires augmentation. Allografts are important biological substitutes that are used for the symptomatic patient in the reconstruction of deficient ligaments, tendons, menisci, and osteochondral defects. Interest in the clinical application of allografts has arisen from the demand to obtain stable anatomy with restoration of function and protection against additional injury, particularly for high-demand patients who participate in sports. Traditionally, allografts were employed to reinforce weakened tissue. However, they can also be employed to substitute deficient or functionally absent tissue, particularly in the sports medicine setting. This article presents a series of 6 cases that utilized allografts to restore functionally deficient anatomic architecture, rather than just simply augmenting the degenerated or damaged native tissue. Detailed discussions are presented of the use of allografts as a successful treatment strategy to replace functionally weakened tissue, often after failed primary repairs.

  19. Allograft Replacement for Absent Native Tissue

    PubMed Central

    Chaudhury, Salma; Wanivenhaus, Florian; Fox, Alice J.; Warren, Russell F.; Doyle, Maureen; Rodeo, Scott A.

    2013-01-01

    Context: Structural instability due to poor soft tissue quality often requires augmentation. Allografts are important biological substitutes that are used for the symptomatic patient in the reconstruction of deficient ligaments, tendons, menisci, and osteochondral defects. Interest in the clinical application of allografts has arisen from the demand to obtain stable anatomy with restoration of function and protection against additional injury, particularly for high-demand patients who participate in sports. Traditionally, allografts were employed to reinforce weakened tissue. However, they can also be employed to substitute deficient or functionally absent tissue, particularly in the sports medicine setting. Objective: This article presents a series of 6 cases that utilized allografts to restore functionally deficient anatomic architecture, rather than just simply augmenting the degenerated or damaged native tissue. Detailed discussions are presented of the use of allografts as a successful treatment strategy to replace functionally weakened tissue, often after failed primary repairs. PMID:24427387

  20. Novel Micropatterned Cardiac Cell Cultures with Realistic Ventricular Microstructure

    PubMed Central

    Badie, Nima; Bursac, Nenad

    2009-01-01

    Systematic studies of cardiac structure-function relationships to date have been hindered by the intrinsic complexity and variability of in vivo and ex vivo model systems. Thus, we set out to develop a reproducible cell culture system that can accurately replicate the realistic microstructure of native cardiac tissues. Using cell micropatterning techniques, we aligned cultured cardiomyocytes at micro- and macroscopic spatial scales to follow local directions of cardiac fibers in murine ventricular cross sections, as measured by high-resolution diffusion tensor magnetic resonance imaging. To elucidate the roles of ventricular tissue microstructure in macroscopic impulse conduction, we optically mapped membrane potentials in micropatterned cardiac cultures with realistic tissue boundaries and natural cell orientation, cardiac cultures with realistic tissue boundaries but random cell orientation, and standard isotropic monolayers. At 2 Hz pacing, both microscopic changes in cell orientation and ventricular tissue boundaries independently and synergistically increased the spatial dispersion of conduction velocity, but not the action potential duration. The realistic variations in intramural microstructure created unique spatial signatures in micro- and macroscopic impulse propagation within ventricular cross-section cultures. This novel in vitro model system is expected to help bridge the existing gap between experimental structure-function studies in standard cardiac monolayers and intact heart tissues. PMID:19413993

  1. Recent Progress in Stem Cell Modification for Cardiac Regeneration

    PubMed Central

    Voronina, Natalia; Steinhoff, Gustav

    2018-01-01

    During the past decades, stem cell-based therapy has acquired a promising role in regenerative medicine. The application of novel cell therapeutics for the treatment of cardiovascular diseases could potentially achieve the ambitious aim of effective cardiac regeneration. Despite the highly positive results from preclinical studies, data from phase I/II clinical trials are inconsistent and the improvement of cardiac remodeling and heart performance was found to be quite limited. The major issues which cardiac stem cell therapy is facing include inefficient cell delivery to the site of injury, accompanied by low cell retention and weak effectiveness of remaining stem cells in tissue regeneration. According to preclinical and clinical studies, various stem cells (adult stem cells, embryonic stem cells, and induced pluripotent stem cells) represent the most promising cell types so far. Beside the selection of the appropriate cell type, researchers have developed several strategies to produce “second-generation” stem cell products with improved regenerative capacity. Genetic and nongenetic modifications, chemical and physical preconditioning, and the application of biomaterials were found to significantly enhance the regenerative capacity of transplanted stem cells. In this review, we will give an overview of the recent developments in stem cell engineering with the goal to facilitate stem cell delivery and to promote their cardiac regenerative activity. PMID:29535769

  2. Allografts for Ligament Reconstruction: Where Are We Now?

    PubMed

    Wydra, Frank B; York, Philip J; Johnson, Christopher R; Silvestri, Lorenzo

    The use of musculoskeletal allografts by orthopedic surgeons continues to rise. The process of procuring and sterilizing allografts is evolving with much consideration to limiting the spread of infectious diseases and preserving tissue integrity. Research involving the application of allografts, particularly for ligament repair, is quite active, necessitating an update for the practicing orthopedist. Avoiding donor site morbidities is one of the most commonly cited advantages of allografts over autografts. There is controversy amongst studies for allografts in terms of their biological incorporation and clinical outcomes compared to autografts. This article focuses on reviewing the most current literature and usage of allograft tissue for ligamentous reconstruction amongst orthopedic surgeons today. It includes an in-depth analysis of the current processing, handling, and safety standards employed today, in addition to the advantages and disadvantages of allograft use.

  3. Establishment of a PRKAG2 cardiac syndrome disease model and mechanism study using human induced pluripotent stem cells.

    PubMed

    Zhan, Yongkun; Sun, Xiaolei; Li, Bin; Cai, Huanhuan; Xu, Chen; Liang, Qianqian; Lu, Chao; Qian, Ruizhe; Chen, Sifeng; Yin, Lianhua; Sheng, Wei; Huang, Guoying; Sun, Aijun; Ge, Junbo; Sun, Ning

    2018-04-01

    PRKAG2 cardiac syndrome is a distinct form of human cardiomyopathy characterized by cardiac hypertrophy, ventricular pre-excitation and progressive cardiac conduction disorder. However, it remains unclear how mutations in the PRKAG2 gene give rise to such a complicated disease. To investigate the underlying molecular mechanisms, we generated disease-specific hiPSC-derived cardiomyocytes from two brothers both carrying a heterozygous missense mutation c.905G>A (R302Q) in the PRKAG2 gene and further corrected the R302Q mutation with CRISPR-Cas9 mediated genome editing. Disease-specific hiPSC-cardiomyocytes recapitulated many phenotypes of PRKAG2 cardiac syndrome including cellular enlargement, electrophysiological irregularities and glycogen storage. In addition, we found that the PRKAG2-R302Q mutation led to increased AMPK activities, resulting in extensive glycogen deposition and cardiomyocyte hypertrophy. Finally we confirmed that disrupted phenotypes of PRKAG2 cardiac syndrome caused by the specific PRKAG2-R302Q mutation can be alleviated by small molecules inhibiting AMPK activity and be rescued with CRISPR-Cas9 mediated genome correction. Our results showed that disease-specific hiPSC-CMs and genetically-corrected hiPSC-cardiomyocytes would be a very useful platform for understanding the pathogenesis of, and testing autologous cell-based therapies for, PRKAG2 cardiac syndrome. Copyright © 2018. Published by Elsevier Ltd.

  4. Electrical stimulation of cardiac adipose tissue-derived progenitor cells modulates cell phenotype and genetic machinery.

    PubMed

    Llucià-Valldeperas, A; Sanchez, B; Soler-Botija, C; Gálvez-Montón, C; Prat-Vidal, C; Roura, S; Rosell-Ferrer, J; Bragos, R; Bayes-Genis, A

    2015-11-01

    A major challenge of cardiac tissue engineering is directing cells to establish the physiological structure and function of the myocardium being replaced. Our aim was to examine the effect of electrical stimulation on the cardiodifferentiation potential of cardiac adipose tissue-derived progenitor cells (cardiac ATDPCs). Three different electrical stimulation protocols were tested; the selected protocol consisted of 2 ms monophasic square-wave pulses of 50 mV/cm at 1 Hz over 14 days. Cardiac and subcutaneous ATDPCs were grown on biocompatible patterned surfaces. Cardiomyogenic differentiation was examined by real-time PCR and immunocytofluorescence. In cardiac ATDPCs, MEF2A and GATA-4 were significantly upregulated at day 14 after stimulation, while subcutaneous ATDPCs only exhibited increased Cx43 expression. In response to electrical stimulation, cardiac ATDPCs elongated, and both cardiac and subcutaneous ATDPCs became aligned following the linear surface pattern of the construct. Cardiac ATDPC length increased by 11.3%, while subcutaneous ATDPC length diminished by 11.2% (p = 0.013 and p = 0.030 vs unstimulated controls, respectively). Compared to controls, electrostimulated cells became aligned better to the patterned surfaces when the pattern was perpendicular to the electric field (89.71 ± 28.47º for cardiac ATDPCs and 92.15 ± 15.21º for subcutaneous ATDPCs). Electrical stimulation of cardiac ATDPCs caused changes in cell phenotype and genetic machinery, making them more suitable for cardiac regeneration approaches. Thus, it seems advisable to use electrical cell training before delivery as a cell suspension or within engineered tissue. Copyright © 2013 John Wiley & Sons, Ltd.

  5. A biomechanical cadaveric study comparing superior capsule reconstruction using fascia lata allograft with human dermal allograft for irreparable rotator cuff tear.

    PubMed

    Mihata, Teruhisa; Bui, Christopher N H; Akeda, Masaki; Cavagnaro, Matthew A; Kuenzler, Michael; Peterson, Alexander B; McGarry, Michelle H; Itami, Yasuo; Limpisvasti, Orr; Neo, Masashi; Lee, Thay Q

    2017-12-01

    Biomechanical and clinical success of the superior capsule reconstruction (SCR) using fascia lata (FL) grafts has been reported. In the United States, human dermal (HD) allograft has been used successfully for SCRs; however, the biomechanical characteristics have not been reported. Eight cadaveric shoulders were tested in 5 conditions: (1) intact; (2) irreparable supraspinatus tear; (3) SCR using FL allograft with anterior and posterior suturing; (4) SCR using HD allograft with anterior and posterior suturing; and (5) SCR using HD allograft with posterior suturing. Rotational range of motion, superior translation, glenohumeral joint force, and subacromial contact were measured at 0°, 30°, and 60° of glenohumeral abduction in the scapular plane. Graft dimensions before and after testing were also recorded. Biomechanical parameters were compared using a repeated-measures analysis of variance with Tukey post hoc test, and graft dimensions were compared using a Student t-test (P < .05). Irreparable supraspinatus tear significantly increased superior translation, superior glenohumeral joint force, and subacromial contact pressure, which were completely restored with the SCR FL allografts. Both SCR HD allograft repairs partially restored superior translation and completely restored subacromial contact and superior glenohumeral joint force. The HD allografts significantly elongated by 15% during testing, whereas the FL allograft lengths were unchanged. Single-layered HD SCR allografts partially restored superior glenohumeral stability, whereas FL allograft SCR completely restored the superior glenohumeral stability. This may be due to the greater flexibility of the HD allograft, and the SCR procedure used was developed on the basis of FL grafts. Published by Elsevier Inc.

  6. A Novel Class of Human Cardiac Stem Cells

    PubMed Central

    Moccetti, Tiziano; Leri, Annarosa; Goichberg, Polina; Rota, Marcello; Anversa, Piero

    2015-01-01

    Following the recognition that hematopoietic stem cells improve the outcome of myocardial infarction in animal models, bone marrow mononuclear cells, CD34-positive cells and mesenchymal stromal cells have been introduced clinically. The intracoronary or intramyocardial injection of these cell classes has been shown to be safe and to produce a modest but significant enhancement in systolic function. However, the identification of resident cardiac stem cells in the human heart (hCSCs) has created great expectation concerning the potential implementation of this category of autologous cells for the management of the human disease. Although phase 1 clinical trials have been conducted with encouraging results, the search for the most powerful hCSC for myocardial regeneration is in its infancy. This manuscript discusses the efforts performed in our laboratory to characterize the critical biological variables that define the growth reserve of hCSCs. Based on the theory of the immortal DNA template, we propose that stem cells retaining the old DNA represent one of the most powerful cells for myocardial regeneration. Similarly, the expression of insulin-like growth factor-1 receptors in hCSCs recognizes a cell phenotype with superior replicating reserve. However, the impressive recovery in ventricular hemodynamics and anatomy mediated by clonal hCSCs carrying the “mother” DNA underscores the clinical relevance of this hCSC class for the treatment of human heart failure. PMID:25807105

  7. Association of periarterial neovascularization with progression of cardiac allograft vasculopathy and long-term clinical outcomes in heart transplant recipients.

    PubMed

    Kitahara, Hideki; Okada, Kozo; Tanaka, Shigemitsu; Yang, Hyoung-Mo; Miki, Kojiro; Kobayashi, Yuhei; Kimura, Takumi; Luikart, Helen; Yock, Paul G; Yeung, Alan C; Fitzgerald, Peter J; Khush, Kiran K; Fearon, William F; Honda, Yasuhiro

    2016-06-01

    This study investigated the relationship between periarterial neovascularization, development of cardiac allograft vasculopathy (CAV), and long-term clinical outcomes after heart transplantation. Proliferation of the vasa vasorum is associated with arterial inflammation. The contribution of angiogenesis to the development of CAV has been suggested. Serial (baseline and 1-year post-transplant) intravascular ultrasound was performed in 102 heart transplant recipients. Periarterial small vessels (PSV) were defined as echolucent luminal structures <1 mm in diameter, located ≤2 mm outside of the external elastic membrane. The signal void structures were excluded when they connected to the coronary lumen (considered as side branches) or could not be followed in ≥3 contiguous frames. The number of PSV was counted at 1-mm intervals throughout the first 50 mm of the left anterior descending artery, and the PSV score was calculated as the sum of cross-sectional values. Patients with a PSV score increase of ≥ 4 between baseline and 1-year post-transplant were classified as the "proliferative" group. Maximum intimal thickness was measured for the entire analysis segment. During the first year post-transplant, the proliferative group showed a greater increase in maximum intimal thickness (0.33 ± 0.36 mm vs 0.10 ± 0.28 mm, p < 0.001) and had a higher incidence of acute cellular rejection (50.0% vs 23.9%, p = 0.025) than the non-proliferative group. On Kaplan-Meier analysis, cardiac death-free survival rate over a median of 4.7 years was significantly lower in the proliferative group than in the non-proliferative group (hazard ratio, 3.10; p = 0.036). The increase in PSV, potentially representing an angioproliferative response around the coronary arteries, was associated with early CAV progression and reduced survival after heart transplantation. Copyright © 2016 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  8. Heart grafts tolerized through third-party multipotent adult progenitor cells can be retransplanted to secondary hosts with no immunosuppression.

    PubMed

    Eggenhofer, Elke; Popp, Felix C; Mendicino, Michael; Silber, Paula; Van't Hof, Wouter; Renner, Philipp; Hoogduijn, Martin J; Pinxteren, Jef; van Rooijen, Nico; Geissler, Edward K; Deans, Robert; Schlitt, Hans J; Dahlke, Marc H

    2013-08-01

    Multipotent adult progenitor cells (MAPCs) are an adherent stem cell population that belongs to the mesenchymal-type progenitor cell family. Although MAPCs are emerging as candidate agents for immunomodulation after solid organ transplantation, their value requires further validation in a clinically relevant cell therapy model using an organ donor- and organ recipient-independent, third-party cell product. We report that stable allograft survival can be achieved following third-party MAPC infusion in a rat model of fully allogeneic, heterotopic heart transplantation. Furthermore, long-term accepted heart grafts recovered from MAPC-treated animals can be successfully retransplanted to naïve animals without additional immunosuppression. This prolongation of MAPC-mediated allograft acceptance depends upon a myeloid cell population since depletion of macrophages by clodronate abrogates the tolerogenic MAPC effect. We also show that MAPC-mediated allograft acceptance differs mechanistically from drug-induced tolerance regarding marker gene expression, T regulatory cell induction, retransplantability, and macrophage dependence. MAPC-based immunomodulation represents a promising pathway for clinical immunotherapy that has led us to initiate a phase I clinical trial for testing safety and feasibility of third-party MAPC therapy after liver transplantation.

  9. Engineered extracellular microenvironment with a tunable mechanical property for controlling cell behavior and cardiomyogenic fate of cardiac stem cells.

    PubMed

    Choi, Min-Young; Kim, Jong-Tae; Lee, Won-Jin; Lee, Yunki; Park, Kyung Min; Yang, Young-Il; Park, Ki Dong

    2017-03-01

    Endogenous cardiac stem cells (CSCs) are known to play a certain role in the myocardial homeostasis of the adult heart. The extracellular matrix (ECM) surrounding CSCs provides mechanical signals to regulate a variety of cell behaviors, yet the impact in the adult heart of these mechanical properties of ECM on CSC renewal and fate decisions is mostly unknown. To elucidate CSC mechanoresponses at the individual cell and myocardial level, we used the sol-to-gel transitional gelatin-poly(ethylene glycol)-tyramine (GPT) hydrogel with a tunable mechanical property to construct a three-dimensional (3D) matrix for culturing native myocardium and CSCs. The elastic modulus of the GPT hydrogel was controlled by adjusting cross-linking density using hydrogen peroxide. The GPT hydrogel showed an ability to transduce integrin-mediated signals into the myocardium and to permit myocardial homeostatic processes in vitro, including CSC migration and proliferation into the hydrogel from the myocardium. Decreasing the elastic modulus of the hydrogel resulted in upregulation of phosphorylated integrin-mediated signaling molecules in CSCs, which were associated with significant increases in cell spreading, migration, and proliferation of CSCs in a modulus-dependent manner. However, increasing the elastic modulus of hydrogel induced the arrest of cell growth but led to upregulation of cardiomyocyte-associated mRNAs in CSCs. This work demonstrates that tunable 3D-engineered microenvironments created by GPT hydrogel are able to control CSC behavior and to direct cardiomyogenic fate. Our system may also be appropriate for studying the mechanoresponse of CSCs in a 3D context as well as for developing therapeutic strategies for in situ myocardial regeneration. The extracellular matrix (ECM) provides a physical framework of myocardial niches in which endogenous cardiac stem cells (CSCs) reside, renew, differentiate, and replace cardiac cells. Interactions between ECM and CSCs might be

  10. Second line options for hyperlipidemia management after cardiac transplantation.

    PubMed

    Shah, M K H; Critchley, W R; Yonan, N; Williams, S G; Shaw, S M

    2013-06-01

    Despite widespread statin therapy, 91% of cardiac transplant patients have hyperlipidemia within 5 years from cardiac transplantation. The implications of this are profound, particularly given that coronary allograft vasculopathy is a leading cause of death. Unfortunately the solution is not easy, with problems of toleration at higher statin doses and a lack of good quality evidence for second line agents. We review the literature and discuss some of the key issues transplant physicians are faced with when considering alternatives to statin therapy. © 2012 Blackwell Publishing Ltd.

  11. Use of polyvinylpyrrolidone-iodine solution for sterilisation and preservation improves mechanical properties and osteogenesis of allografts

    NASA Astrophysics Data System (ADS)

    Zhao, Yantao; Hu, Xiantong; Li, Zhonghai; Wang, Fuli; Xia, Yang; Hou, Shuxun; Zhong, Hongbin; Zhang, Feimin; Gu, Ning

    2016-12-01

    Allografts eliminate the disadvantages associated with autografts and synthetic scaffolds but are associated with a disease-transmission risk. Therefore, allograft sterilisation is crucial. We aimed to determine whether polyvinylpyrrolidone-iodine (PVP-I) can be used for sterilisation and as a new wet-preservation method. PVP-I-sterilised and preserved allografts demonstrated improved mechanical property, osteogenesis, and excellent microbial inhibition. A thigh muscle pouch model of nude mice showed that PVP-I-preserved allografts demonstrated better ectopic formation than Co60-sterilised allografts (control) in vivo (P < 0.05). Furthermore, the PVP-I-preserved group showed no difference between 24 h and 12 weeks of allograft preservation (P > 0.05). PVP-I-preserved allografts showed more hydrophilic surfaces and PVP-I-sterilised tendons showed higher mechanical strength than Co60-sterilised tendons (P < 0.05). The level of residual PVP-I was higher without washing and with prolonged preservation (P < 0.05). In vitro cellular tests showed that appropriate PVP-I concentration was nontoxic to preosteoblast cells, and cellular differentiation measured by alkaline phosphatase activity and osteogenic gene markers was enhanced (P < 0.05). Therefore, the improved biological performance of implanted allografts may be attributable to better surface properties and residual PVP-I, and PVP-I immersion can be a simple, easy method for allograft sterilisation and preservation.

  12. Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells

    PubMed Central

    Cao, Nan; Liu, Zumei; Chen, Zhongyan; Wang, Jia; Chen, Taotao; Zhao, Xiaoyang; Ma, Yu; Qin, Lianju; Kang, Jiuhong; Wei, Bin; Wang, Liu; Jin, Ying; Yang, Huang-Tian

    2012-01-01

    Generation of induced pluripotent stem cells (iPSCs) has opened new avenues for the investigation of heart diseases, drug screening and potential autologous cardiac regeneration. However, their application is hampered by inefficient cardiac differentiation, high interline variability, and poor maturation of iPSC-derived cardiomyocytes (iPS-CMs). To identify efficient inducers for cardiac differentiation and maturation of iPSCs and elucidate the mechanisms, we systematically screened sixteen cardiomyocyte inducers on various murine (m) iPSCs and found that only ascorbic acid (AA) consistently and robustly enhanced the cardiac differentiation of eleven lines including eight without spontaneous cardiogenic potential. We then optimized the treatment conditions and demonstrated that differentiation day 2-6, a period for the specification of cardiac progenitor cells (CPCs), was a critical time for AA to take effect. This was further confirmed by the fact that AA increased the expression of cardiovascular but not mesodermal markers. Noteworthily, AA treatment led to approximately 7.3-fold (miPSCs) and 30.2-fold (human iPSCs) augment in the yield of iPS-CMs. Such effect was attributed to a specific increase in the proliferation of CPCs via the MEK-ERK1/2 pathway by through promoting collagen synthesis. In addition, AA-induced cardiomyocytes showed better sarcomeric organization and enhanced responses of action potentials and calcium transients to β-adrenergic and muscarinic stimulations. These findings demonstrate that AA is a suitable cardiomyocyte inducer for iPSCs to improve cardiac differentiation and maturation simply, universally, and efficiently. These findings also highlight the importance of stimulating CPC proliferation by manipulating extracellular microenvironment in guiding cardiac differentiation of the pluripotent stem cells. PMID:22143566

  13. Perspectives on stem cell therapy for cardiac regeneration. Advances and challenges.

    PubMed

    Choi, Sung Hyun; Jung, Seok Yun; Kwon, Sang-Mo; Baek, Sang Hong

    2012-01-01

    Ischemic heart disease (IHD) accelerates cardiomyocyte loss, but the developing stem cell research could be useful for regenerating a variety of tissue cells, including cardiomyocytes. Diverse sources of stem cells for IHD have been reported, including embryonic stem cells, induced pluripotent stem cells, skeletal myoblasts, bone marrow-derived stem cells, mesenchymal stem cells, and cardiac stem cells. However, stem cells have unique advantages and disadvantages for cardiac tissue regeneration, which are important considerations in determining the specific cells for improving cell survival and long-term engraftment after transplantation. Additionally, the dosage and administration method of stem cells need to be standardized to increase stability and efficacy for clinical applications. Accordingly, this review presents a summary of the stem cell therapies that have been studied for cardiac regeneration thus far, and discusses the direction of future cardiac regeneration research for stem cells.

  14. Engineered Biomaterials to Enhance Stem Cell-Based Cardiac Tissue Engineering and Therapy.

    PubMed

    Hasan, Anwarul; Waters, Renae; Roula, Boustany; Dana, Rahbani; Yara, Seif; Alexandre, Toubia; Paul, Arghya

    2016-07-01

    Cardiovascular disease is a leading cause of death worldwide. Since adult cardiac cells are limited in their proliferation, cardiac tissue with dead or damaged cardiac cells downstream of the occluded vessel does not regenerate after myocardial infarction. The cardiac tissue is then replaced with nonfunctional fibrotic scar tissue rather than new cardiac cells, which leaves the heart weak. The limited proliferation ability of host cardiac cells has motivated investigators to research the potential cardiac regenerative ability of stem cells. Considerable progress has been made in this endeavor. However, the optimum type of stem cells along with the most suitable matrix-material and cellular microenvironmental cues are yet to be identified or agreed upon. This review presents an overview of various types of biofunctional materials and biomaterial matrices, which in combination with stem cells, have shown promises for cardiac tissue replacement and reinforcement. Engineered biomaterials also have applications in cardiac tissue engineering, in which tissue constructs are developed in vitro by combining stem cells and biomaterial scaffolds for drug screening or eventual implantation. This review highlights the benefits of using biomaterials in conjunction with stem cells to repair damaged myocardium and give a brief description of the properties of these biomaterials that make them such valuable tools to the field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Influence of preformed donor-specific antibodies and C4d on early liver allograft function.

    PubMed

    Perera, M T; Silva, M A; Murphy, N; Briggs, D; Mirza, D F; Neil, D A H

    2013-12-01

    INTRODUCTION. The impact of preformed donor-specific antibodies (DSA) is incompletely understood in liver transplantation. The incidence and impact of preformed DSA on early post liver transplant were assessed and these were correlated with compliment fragment C4d on allograft biopsy. METHODS. Pretransplant serum from 41 consecutive liver transplant recipients (brain dead donors; DBD = 27 and cardiac death donors; DCD = 14) were tested for class-specific anti-human leukocyte antigen (HLA) and compared against donor HLA types. Liver biopsies were taken during cold storage (t-1) and post-reperfusion (t0) stained with C4d and graded for preservation-reperfusion injury (PRI). RESULTS. Of the 41 recipients, 8 (20%) had anti-HLA class I/II antibodies pretransplant, 3 (7%) were confirmed preformed DSA; classes I and II (n=1) and class I only (n=2). No biopsies showed definite evidence of antibody-mediated rejection. Graft biopsies in overall showed only mild PRI with ischemic hepatocyte C4d pattern similar in both positive and negative DSA patients. One DSA-positive (33%) compared with four DSA-negative patients (10%) had significant early graft dysfunction; severe PRI causing graft loss from primary nonfunction was seen only in DSA-negative group. Allograft biopsy of preformed DSA-positive patient demonstrated only minimal PRI; however, no identifiable cause could be attributed to graft dysfunction other than preformed DSA. CONCLUSION. Preformed DSA are present in 5-10% liver transplant recipients. There is no association between anti-HLA DSA and PRI and C4d, but preformed DSA may cause early morbidity. Larger studies on the impact of DSA with optimization of C4d techniques are required.

  16. HSF1 deficiency accelerates the transition from pressure overload-induced cardiac hypertrophy to heart failure through endothelial miR-195a-3p-mediated impairment of cardiac angiogenesis.

    PubMed

    Wang, Shijun; Wu, Jian; You, Jieyun; Shi, Hongyu; Xue, Xiaoyu; Huang, Jiayuan; Xu, Lei; Jiang, Guoliang; Yuan, Lingyan; Gong, Xue; Luo, Haiyan; Ge, Junbo; Cui, Zhaoqiang; Zou, Yunzeng

    2018-05-01

    Heat shock transcription factor 1 (HSF1) deficiency aggravates cardiac remodeling under pressure overload. However, the mechanism is still unknown. Here we employed microRNA array analysis of the heart tissue of HSF1-knockout (KO) mice to investigate the potential roles of microRNAs in pressure overload-induced cardiac remodeling under HSF-1 deficiency, and the profiles of 478 microRNAs expressed in the heart tissues of adult HSF1-KO mice were determined. We found that the expression of 5 microRNAs was over 2-fold higher expressed in heart tissues of HSF1-KO mice than in those of wild-type (WT) control mice. Of the overexpressed microRNAs, miR-195a-3p had the highest expression level in HSF1-null endothelial cells (ECs). Induction with miR-195a-3p in ECs significantly suppressed CD31 and VEGF, promoted AngII-induced EC apoptosis, and impaired capillary-like tube formation. In vivo, the upregulation of miR-195a-3p accentuated cardiac hypertrophy, increased the expression of β-MHC and ANP, and compromised systolic function in mice under pressure overload induced by transverse aortic constriction (TAC). By contrast, antagonism of miR-195a-3p had the opposite effect on HSF1-KO mice. Further experiments confirmed that AMPKα2 was the direct target of miR-195a-3p. AMPKα2 overexpression rescued the reduction of eNOS and VEGF, and the impairment of angiogenesis that was induced by miR-195a-3p. In addition, upregulation of AMPKα2 in the myocardium of HSF1-null mice by adenovirus-mediated gene delivery enhanced CD31, eNOS and VEGF, reduced β-MHC and ANP, alleviated pressure overload-mediated cardiac hypertrophy and restored cardiac function. Our findings revealed that the upregulation of miR-195a-3p due to HSF1 deficiency impaired cardiac angiogenesis by regulating AMPKα2/VEGF signaling, which disrupted the coordination between the myocardial blood supply and the adaptive hypertrophic response and accelerated the transition from cardiac hypertrophy to heart failure in

  17. Cytokines in single layer amnion allografts compared to multilayer amnion/chorion allografts for wound healing.

    PubMed

    Koob, Thomas J; Lim, Jeremy J; Zabek, Nicole; Massee, Michelle

    2015-07-01

    Human amniotic membrane allografts have proven effective at improving healing of cutaneous wounds. The mechanism of action for these therapeutic effects is poorly understood but is thought to involve the resident growth factors present in near term amniotic tissue. To determine the relative cytokine contribution of the amnion and chorion in amniotic allografts, the content of 18 cytokines involved in wound healing were measured in samples of PURION® Processed dehydrated amnion, chorion, and amnion/chorion membrane (dHACM) grafts by multiplex enzyme-linked immunosorbent assay array. Both amnion and chorion contained similar amounts of each factor when normalized per dry weight; however, when calculated per surface area of tissue applied to a wound, amnion contained on average only 25% as much of each factor as the chorion. Therefore, an allograft containing both amnion and chorion would contain four to five times more cytokine than a single layer amnion allograft alone. Both single layer amnion and multilayer allografts containing amnion and chorion are currently marketed for wound repair. To examine the role of tissue processing technique in cytokine retention, cytokine contents in representative dehydrated single layer wound care products were measured. The results demonstrated that cytokine content varied significantly among the allografts tested, and that PURION® Processed single layer amnion grafts contained more cytokines than other single layer products. These results suggest that PURION® Processed dHACM contains substantially more cytokines than single layer amnion products, and therefore dHACM may be more effective at delivering growth factors to a healing wound than amnion alone. © 2014 Wiley Periodicals, Inc.

  18. C4d Deposition and Cellular Infiltrates as Markers of Acute Rejection in Rat Models of Orthotopic Lung Transplantation

    PubMed Central

    Murata, Kazunori; Iwata, Takekazu; Nakashima, Shinji; Fox-Talbot, Karen; Qian, Zhiping; Wilkes, David S.; Baldwin, William M.

    2008-01-01

    Background C4d is a useful marker of antibody-mediated rejection in cardiac and renal transplants, but clinical studies examining correlations between circulating alloantibodies, C4d deposition, and rejection in lung transplants have yielded conflicting results. Methods We studied circulating alloantibody levels and C4d deposition in two rat models of lung transplantation: Brown Norway (BN) to Wistar-Kyoto (WKY) and PVG.R8 to PVG.1U lung allografts. The availability of C6 deficient (C6−) and C6 sufficient (C6+) PVG 1U rats allowed evaluation of the effects of the terminal complement components on graft injury and C4d deposition. Results The lung allografts had histologic features resembling human posttransplant capillaritis, characterized by neutrophilic infiltration of alveoli, edema, and hemorrhage. Immunoperoxidase stains on cross sections of allografts showed intense, diffuse, C4d deposition in a continuous linear pattern on the vascular endothelium. C4d deposits were found in both BN to WKY and PVG R8 to 1U allografts, whereas no staining was detectable in WKY to WKY isografts or native lungs. Complement deposition was associated with vascular disruption in C6−, but not in C6+ recipients. The presence of circulating donor-specific alloantibodies was verified by flow cytometry. Cell-specific staining revealed perivascular accumulation of macrophages and T lymphocytes whereas neutrophils were sequestered in the intravascular and alveolar capillary compartments. Conclusions The deposition of C4d on vascular endothelium as well as the coincident presence of alloantibodies is consistent with previous findings in antibody-mediated rejection of renal and cardiac transplants. Furthermore, the histological features of our allografts support the concept that posttransplant capillaritis is a form of humoral rejection. PMID:18622289

  19. Patient-Specific Induced Pluripotent Stem Cell Models: Generation and Characterization of Cardiac Cells.

    PubMed

    Zanella, Fabian; Sheikh, Farah

    2016-01-01

    The generation of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes has been of utmost interest for the study of cardiac development, cardiac disease modeling, and evaluation of cardiotoxic effects of novel candidate drugs. Several protocols have been developed to guide human stem cells toward the cardiogenic path. Pioneering work used serum to promote cardiogenesis; however, low cardiogenic throughputs, lack of chemical definition, and batch-to-batch variability of serum lots constituted a considerable impediment to the implementation of those protocols to large-scale cell biology. Further work focused on the manipulation of pathways that mouse genetics indicated to be fundamental in cardiac development to promote cardiac differentiation in stem cells. Although extremely elegant, those serum-free protocols involved the use of human recombinant cytokines that tend to be quite costly and which can also be variable between lots. The latest generation of cardiogenic protocols aimed for a more cost-effective and reproducible definition of the conditions driving cardiac differentiation, using small molecules to manipulate cardiogenic pathways overriding the need for cytokines. This chapter details methods based on currently available cardiac differentiation protocols for the generation and characterization of robust numbers of hiPSC-derived cardiomyocytes under chemically defined conditions.

  20. CXCL4 Contributes to the Pathogenesis of Chronic Liver Allograft Dysfunction

    PubMed Central

    Li, Jing; Shi, Yuan; Xie, Ke-Liang; Yin, Hai-Fang; Yan, Lu-nan; Lau, Wan-yee; Wang, Guo-Lin

    2016-01-01

    Chronic liver allograft dysfunction (CLAD) remains the most common cause of patient morbidity and allograft loss in liver transplant patients. However, the pathogenesis of CLAD has not been completely elucidated. By establishing rat CLAD models, in this study, we identified the informative CLAD-associated genes using isobaric tags for relative and absolute quantification (iTRAQ) proteomics analysis and validated these results in recipient rat liver allografts. CXCL4, CXCR3, EGFR, JAK2, STAT3, and Collagen IV were associated with CLAD pathogenesis. We validated that CXCL4 is upstream of these informative genes in the isolated hepatic stellate cells (HSC). Blocking CXCL4 protects against CLAD by reducing liver fibrosis. Therefore, our results indicated that therapeutic approaches that neutralize CXCL4, a newly identified target of fibrosis, may represent a novel strategy for preventing and treating CLAD after liver transplantation. PMID:28053995

  1. CXCL4 Contributes to the Pathogenesis of Chronic Liver Allograft Dysfunction.

    PubMed

    Li, Jing; Liu, Bin; Shi, Yuan; Xie, Ke-Liang; Yin, Hai-Fang; Yan, Lu-Nan; Lau, Wan-Yee; Wang, Guo-Lin

    2016-01-01

    Chronic liver allograft dysfunction (CLAD) remains the most common cause of patient morbidity and allograft loss in liver transplant patients. However, the pathogenesis of CLAD has not been completely elucidated. By establishing rat CLAD models, in this study, we identified the informative CLAD-associated genes using isobaric tags for relative and absolute quantification (iTRAQ) proteomics analysis and validated these results in recipient rat liver allografts. CXCL4, CXCR3, EGFR, JAK2, STAT3, and Collagen IV were associated with CLAD pathogenesis. We validated that CXCL4 is upstream of these informative genes in the isolated hepatic stellate cells (HSC). Blocking CXCL4 protects against CLAD by reducing liver fibrosis. Therefore, our results indicated that therapeutic approaches that neutralize CXCL4, a newly identified target of fibrosis, may represent a novel strategy for preventing and treating CLAD after liver transplantation.

  2. Intravascular ultrasound of the proximal left anterior descending artery is sufficient to detect early cardiac allograft vasculopathy.

    PubMed

    Floré, Vincent; Brown, Adam J; Pettit, Stephen J; West, Nick E J; Lewis, Clive; Parameshwar, Jayan; Hoole, Stephen P

    2018-02-01

    Cardiac allograft vasculopathy (CAV) can be detected early with intravascular ultrasound (IVUS), but there is limited information on the most efficient imaging protocol. Coronary angiography and IVUS of the three coronary arteries were performed. Volumetric IVUS analysis was performed, and a Stanford grade determined for each vessel. Eighteen patients were included 18 (range 12-24) months after transplantation. Angiographic CAV severity ranged from none (CAV0) to mild (CAV1), whereas IVUS CAV severity ranged from none (Stanford grade I) to severe (grade IV). Maximal intimal thickness measured with IVUS was significantly greater in the LAD (0.84 ± 0.48 mm) than in the LCX (0.46 ± 0.32 mm) or the RCA (0.53 ± 0.41 mm, P = .005). Diagnostic accuracy of IVUS in the left anterior descending artery was 100% (18 of 18 Stanford grades matched the patient's highest overall Stanford grade), 66% in the right coronary artery (12 of 18), and 56% in the left circumflex artery (11 of 18). The minimal required length of left anterior descending artery pullbacks to attain 100% accuracy was 36 mm (range 3-36 mm) distal from the guide catheter ostium. These data suggest that focal IVUS imaging of the proximal LAD followed by volumetric analysis may suffice when screening for transplant vasculopathy. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. The inferior impact of antibody-mediated rejection on the clinical outcome of kidney allografts that develop de novo thrombotic microangiopathy.

    PubMed

    Wu, Kaiyin; Budde, Klemens; Schmidt, Danilo; Neumayer, Hans-Hellmut; Lehner, Lukas; Bamoulid, Jamal; Rudolph, Birgit

    2016-02-01

    Antibody-mediated rejection (AMR) can induce and develop thrombotic microangiopathy (TMA) in renal allografts. A definitive AMR (dAMR) co-presents three diagnostic features. A suspicious AMR (sAMR) is designated when one of the three features is missing. Thirty-two TMA cases overlapping with AMR (AMR+ TMA) were studied, which involved 14 cases of sAMR+ TMA and 18 cases of dAMR+ TMA. Thirty TMA cases free of AMR features (AMR- TMA) were enrolled as control group. The ratio of complete response to treatment was similar between AMR- TMA and AMR+ TMA group (23.3% vs. 12.5%, p = 0.33), or between sAMR+ TMA and dAMR+ TMA group (14.3% vs. 11.1%, p = 0.79). At eight yr post-transplantation, the death-censored graft survival (DCGS) rate of AMR- TMA group was 62.8%, which was significantly higher than 28.0% of AMR+ TMA group (p = 0.01), but similar between sAMR+ TMA and dAMR+ TMA group (30.0% vs. 26.7%, p = 0.92). Overall, the intimal arteritis and the broad HLA (Human leukocyte antigens) mismatches were closely associated with over time renal allograft failure. The AMR+ TMA has inferior long-term graft survival, but grafts with sAMR+ TMA or dAMR+ TMA have similar characteristics and clinical courses. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Microfluidic cardiac cell culture model (μCCCM).

    PubMed

    Giridharan, Guruprasad A; Nguyen, Mai-Dung; Estrada, Rosendo; Parichehreh, Vahidreza; Hamid, Tariq; Ismahil, Mohamed Ameen; Prabhu, Sumanth D; Sethu, Palaniappan

    2010-09-15

    Physiological heart development and cardiac function rely on the response of cardiac cells to mechanical stress during hemodynamic loading and unloading. These stresses, especially if sustained, can induce changes in cell structure, contractile function, and gene expression. Current cell culture techniques commonly fail to adequately replicate physical loading observed in the native heart. Therefore, there is a need for physiologically relevant in vitro models that recreate mechanical loading conditions seen in both normal and pathological conditions. To fulfill this need, we have developed a microfluidic cardiac cell culture model (μCCCM) that for the first time allows in vitro hemodynamic stimulation of cardiomyocytes by directly coupling cell structure and function with fluid induced loading. Cells are cultured in a small (1 cm diameter) cell culture chamber on a thin flexible silicone membrane. Integrating the cell culture chamber with a pump, collapsible pulsatile valve and an adjustable resistance element (hemostatic valve) in series allow replication of various loading conditions experienced in the heart. This paper details the design, modeling, fabrication and characterization of fluid flow, pressure and stretch generated at various frequencies to mimic hemodynamic conditions associated with the normal and failing heart. Proof-of-concept studies demonstrate successful culture of an embryonic cardiomyoblast line (H9c2 cells) and establishment of an in vivo like phenotype within this system.

  5. Making it stick: chasing the optimal stem cells for cardiac regeneration

    PubMed Central

    Quijada, Pearl; Sussman, Mark A

    2014-01-01

    Despite the increasing use of stem cells for regenerative-based cardiac therapy, the optimal stem cell population(s) remains in a cloud of uncertainty. In the past decade, the field has witnessed a surge of researchers discovering stem cell populations reported to directly and/or indirectly contribute to cardiac regeneration through processes of cardiomyogenic commitment and/or release of cardioprotective paracrine factors. This review centers upon defining basic biological characteristics of stem cells used for sustaining cardiac integrity during disease and maintenance of communication between the cardiac environment and stem cells. Given the limited successes achieved so far in regenerative therapy, the future requires development of unprecedented concepts involving combinatorial approaches to create and deliver the optimal stem cell(s) that will enhance myocardial healing. PMID:25340282

  6. Cardiac Remodeling: Endothelial Cells Have More to Say Than Just NO

    PubMed Central

    Segers, Vincent F. M.; Brutsaert, Dirk L.; De Keulenaer, Gilles W.

    2018-01-01

    The heart is a highly structured organ consisting of different cell types, including myocytes, endothelial cells, fibroblasts, stem cells, and inflammatory cells. This pluricellularity provides the opportunity of intercellular communication within the organ, with subsequent optimization of its function. Intercellular cross-talk is indispensable during cardiac development, but also plays a substantial modulatory role in the normal and failing heart of adults. More specifically, factors secreted by cardiac microvascular endothelial cells modulate cardiac performance and either positively or negatively affect cardiac remodeling. The role of endothelium-derived small molecules and peptides—for instance NO or endothelin-1—has been extensively studied and is relatively well defined. However, endothelial cells also secrete numerous larger proteins. Information on the role of these proteins in the heart is scattered throughout the literature. In this review, we will link specific proteins that modulate cardiac contractility or cardiac remodeling to their expression by cardiac microvascular endothelial cells. The following proteins will be discussed: IL-6, periostin, tenascin-C, thrombospondin, follistatin-like 1, frizzled-related protein 3, IGF-1, CTGF, dickkopf-3, BMP-2 and−4, apelin, IL-1β, placental growth factor, LIF, WISP-1, midkine, and adrenomedullin. In the future, it is likely that some of these proteins can serve as markers of cardiac remodeling and that the concept of endothelial function and dysfunction might have to be redefined as we learn more about other factors secreted by ECs besides NO. PMID:29695980

  7. Tolerability of sirolimus: a decade of experience at a single cardiac transplant center.

    PubMed

    Thibodeau, Jennifer T; Mishkin, Joseph D; Patel, Parag C; Kaiser, Patricia A; Ayers, Colby R; Mammen, Pradeep P A; Markham, David W; Ring, William Steves; Peltz, Matthias; Drazner, Mark H

    2013-01-01

    Sirolimus is used in cardiac transplant recipients to prevent rejection, progression of cardiac allograft vasculopathy, and renal dysfunction. However, sirolimus has many potential side effects and its tolerability when used outside of clinical trials is not well established. We describe a decade of experience with sirolimus in cardiac transplant recipients at our institution. We retrospectively reviewed records of all adult cardiac transplant recipients living between September 1999 and February 2010 (n = 329) and identified 67 patients (20%) who received sirolimus. The indications for sirolimus were cardiac allograft vasculopathy (67%), renal dysfunction (25%), rejection (4%), and intolerability of tacrolimus (3%). One-third of patients discontinued sirolimus at a median (25th, 75th percentiles) of 0.9 (0.2, 1.6) yr of duration. Over 70% of subjects experienced an adverse event attributed to sirolimus. Adverse events were associated with higher average sirolimus levels (9.1 ng/mL vs. 7.1 ng/mL, p = 0.004). We conclude that sirolimus is frequently used in cardiac transplant recipients (20%) and commonly causes side effects, often necessitating discontinuation. Higher average sirolimus levels were associated with adverse events, suggesting that tolerability may improve if levels are maintained within the lower end of the current therapeutic range; however, the improvement in tolerability would need to be balanced with the potential for decreased efficacy. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Severe hepatitis C virus recurrence is nearly universal after donation after cardiac death liver transplant.

    PubMed

    Ortiz, Jorge; Feyssa, Eyob L; Parsikia, Afshin; Azhar, Ashaur; Hashemi, Nikroo; Campos, Stalin; Khanmoradi, Kamran; Zaki, Radi; Balasubramanian, Manjula; Araya, Victor

    2011-04-01

    The rate of hepatitis C virus recurrence after donation after cardiac death liver transplant is not clearly defined. This is a retrospective review of 39 donations after cardiac death-liver transplant recipients. Biopsies were performed at 6, 12, 24, and 36 months for all hepatitis C virus positive donation after cardiac death recipients. The 6-, 12-, 24-, and 36-month severe hepatitis C virus recurrence rates were 60%, 73%, 87%, and 94%. A histologic comparison group of 26 long-surviving hepatitis C virus positive donation after neurologic death recipients had severe hepatitis C virus recurrence 27%, 31%, 42%, and 52% of the time. Six of the 19 hepatitis C virus donation after cardiac death patients developed cirrhosis at a median of 56 months (range, 14-119 months). There was no significant 3-year allograft and patient survival difference between hepatitis C virus and nonhepatitis C virus donation after cardiac death recipients. The factors most associated with decreased survival in the entire cohort included biliary and vascular complications. Organs procured by our institution's attending surgeons were associated with a better 3-year allograft survival. Severe hepatitis C virus recurrence was nearly universal but did not lead to increased graft loss when compared with nonhepatitis C virus donation after cardiac death at 3 years. These data may justify early interferon treatment in these at-risk patients.

  9. Amnion allografts prepared in the Central Tissue Bank in Warsaw.

    PubMed

    Tyszkiewicz, J T; Uhrynowska-Tyszkiewicz, I A; Kaminski, A; Dziedzic-Goclawska, A

    1999-01-01

    Applications of allogenic amnion grafts range from wound dressing of severe burns, dermabrasions and lower extremity ulcer treatments to plastic surgery, laryngology and ophthalmology. The aim of the present study was to elaborate the method of processing, preservation and sterilization of human amnion allografts prepared as wound dressing used mainly for burned patients. During the amniotic sac processing (after separation of chorion) special attention was paid to ensure that the epithelial side of amnion is placed directly on polyester net used as a support. After application on the wound, the epithelial side with the basement membrane is facing outwards; this will promote migration, attachment and spreading of the host cells encouraging epithelialization. Human amnion allografts were preserved by lyophilization or deep-freezing and subsequently radiation-sterilized with a dose of 35 kGy. It has been observed, however, that lyophilized irradiated allografts are resorbed within a few days, while frozen irradiated ones better adhere to wound and persist even 3 weeks after grafting, therefore, it has been decided to preserve amnion by deep-freezing. Since the beginning of 1998 over 400 preserved radiation-sterilized amnion allografts (with a total surface area over 40,000 cm2) have been prepared at the Central Tissue Bank in Warsaw and distributed to clinics and hospitals throughout the country.

  10. Noninvasive PET quantitative myocardial blood flow with regadenoson for assessing cardiac allograft vasculopathy in orthotopic heart transplantation patients

    PubMed Central

    Pampaloni, Miguel Hernandez; Shrestha, Uttam M.; Sciammarella, Maria; Seo, Youngho; Gullberg, Grant T.; Botvinick, Elias H.

    2016-01-01

    Background Risk stratification and early detection of cardiac allograft vasculopathy (CAV) is essential in orthotopic heart transplantation (OHT) patients. This study assesses the changes in myocardial blood flow (MBF) noninvasively in OHT patients using quantitative cardiac PET with regadenoson. Methods Twelve patients (Group 1) (8 males, 4 females, mean age 55 ± 7 y) with no history of post OHT myocardial ischemia were enrolled after 5.4± 2.0 y after OHT. Fifteen patients (Group 2) (9 males, 6 females, mean age 71 ± 9 y) with intermediate pretest probability but not documented evidence for coronary artery disease (CAD) were also included to serve as control. Global and regional MBFs were assessed using dynamic 13N-NH3 PET at rest and during regadenoson-induced hyperemia. The coronary flow reserve (CFR) was also calculated as the ratio of hyperemic to resting MBF. Results Mean regadenoson-induced rate-pressure products were similar in both groups, while there was an increase in resting rate-pressure product in Group 1 patients. Both mean and median values of resting MBF were higher in Group 1 than Group 2 patients (1.33±0.31 and 1.01±0.21 mL/min/g for Groups 1 and 2, respectively, P<.001), while mean hyperemic MBF values were similar in both Groups (2.68±0.84 and 2.64±0.94 mL/min/g, P=NS) but median hyperemic MBF values were lower in Group 1 than Group 2 patients (2.0 vs. 2.60 mL/min/g, P=.018). Both mean and median CFR values demonstrated a significant reduction toward the Group 1 compared to Group 2 patients (2.07±0.74 vs. 2.63±0.48, P = .025). Conclusions This study suggests that the MBF in OHT patients may be abnormal at resting state with diminished CFR. This hints that the epicardial and microvascular coronary subsystem may be exacerbated after OHT leading to the gradual progression of CAV. PMID:28138813

  11. The Effects of Bio-Lubricating Molecules on Flexor Tendon Reconstruction in A Canine Allograft Model In Vivo

    PubMed Central

    Zhao, Chunfeng; Wei, Zhuang; Kirk, Ramona L.; Thoreson, Andrew R.; Jay, Gregory D.; Moran, Steven L.; An, Kai-Nan; Amadio, Peter C.

    2014-01-01

    Background Using allograft is an attractive alternative for flexor tendon reconstruction because of the lack of donor morbidity, and better matching to the intrasynovial environment. The purpose of this study was to use biolubricant molecules to modify the graft surface to decrease adhesions and improve digit function. Methods 28 flexor digitorum profundus (FDP) tendons from the 2nd and 5th digits of 14 dogs were first lacerated and repaired to create a model with repair failure and scar digit for tendon reconstruction. Six weeks after the initial surgery, the tendons were reconstructed with FDP allograft tendons obtained from canine cadavers. One graft tendon in each dog was treated with saline as a control and the other was treated with gelatin, carbodiimide derivatized, hyaluronic acid and lubricin (cd-HA-Lubricin). Six weeks postoperatively, digit function, graft mechanics, and biology were analyzed. Results Allograft tendons treated with cd-HA-Lubricin had decreased adhesions at the proximal tendon/graft repair and within flexor sheath, improved digit function, and increased graft gliding ability. The treatment also reduced the strength at the distal tendon to bone repair, but the distal attachment rupture rate was similar for both graft types. Histology showed that viable cells migrated to the allograft, but these were limited to the tendon surface. Conclusion cd-HA-Lubricin treatment of tendon allograft improves digit functional outcomes after flexor tendon reconstruction. However, delayed bone-tendon healing should be a caution. Furthermore, the cell infiltration into the allograft tendons substance should be a target for future studies, to shorten the allograft self-regeneration period. PMID:24445876

  12. Nanotechnology-Based Cardiac Targeting and Direct Cardiac Reprogramming: The Betrothed.

    PubMed

    Passaro, Fabiana; Testa, Gianluca; Ambrosone, Luigi; Costagliola, Ciro; Tocchetti, Carlo Gabriele; di Nezza, Francesca; Russo, Michele; Pirozzi, Flora; Abete, Pasquale; Russo, Tommaso; Bonaduce, Domenico

    2017-01-01

    Cardiovascular diseases represent the first cause of morbidity in Western countries, and chronic heart failure features a significant health care burden in developed countries. Efforts in the attempt of finding new possible strategies for the treatment of CHF yielded several approaches based on the use of stem cells. The discovery of direct cardiac reprogramming has unveiled a new approach to heart regeneration, allowing, at least in principle, the conversion of one differentiated cell type into another without proceeding through a pluripotent intermediate. First developed for cancer treatment, nanotechnology-based approaches have opened new perspectives in many fields of medical research, including cardiovascular research. Nanotechnology could allow the delivery of molecules with specific biological activity at a sustained and controlled rate in heart tissue, in a cell-specific manner. Potentially, all the mediators and structural molecules involved in the fibrotic process could be selectively targeted by nanocarriers, but to date, only few experiences have been made in cardiac research. This review highlights the most prominent concepts that characterize both the field of cardiac reprogramming and a nanomedicine-based approach to cardiovascular diseases, hypothesizing a possible synergy between these two very promising fields of research in the treatment of heart failure.

  13. Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome

    PubMed Central

    Tang, Junnan; Shen, Deliang; Caranasos, Thomas George; Wang, Zegen; Vandergriff, Adam C.; Allen, Tyler A.; Hensley, Michael Taylor; Dinh, Phuong-Uyen; Cores, Jhon; Li, Tao-Sheng; Zhang, Jinying; Kan, Quancheng; Cheng, Ke

    2017-01-01

    Stem cell therapy represents a promising strategy in regenerative medicine. However, cells need to be carefully preserved and processed before usage. In addition, cell transplantation carries immunogenicity and/or tumourigenicity risks. Mounting lines of evidence indicate that stem cells exert their beneficial effects mainly through secretion (of regenerative factors) and membrane-based cell–cell interaction with the injured cells. Here, we fabricate a synthetic cell-mimicking microparticle (CMMP) that recapitulates stem cell functions in tissue repair. CMMPs carry similar secreted proteins and membranes as genuine cardiac stem cells do. In a mouse model of myocardial infarction, injection of CMMPs leads to the preservation of viable myocardium and augmentation of cardiac functions similar to cardiac stem cell therapy. CMMPs (derived from human cells) do not stimulate T-cell infiltration in immuno-competent mice. In conclusion, CMMPs act as ‘synthetic stem cells’ which mimic the paracrine and biointerfacing activities of natural stem cells in therapeutic cardiac regeneration. PMID:28045024

  14. Transplantation of Epigenetically Modified Adult Cardiac c-Kit+ Cells Retards Remodeling and Improves Cardiac Function in Ischemic Heart Failure Model

    PubMed Central

    Zakharova, Liudmila; Nural-Guvener, Hikmet; Feehery, Lorraine; Popovic-Sljukic, Snjezana

    2015-01-01

    Cardiac c-Kit+ cells have a modest cardiogenic potential that could limit their efficacy in heart disease treatment. The present study was designed to augment the cardiogenic potential of cardiac c-Kit+ cells through class I histone deacetylase (HDAC) inhibition and evaluate their therapeutic potency in the chronic heart failure (CHF) animal model. Myocardial infarction (MI) was created by coronary artery occlusion in rats. c-Kit+ cells were treated with mocetinostat (MOCE), a specific class I HDAC inhibitor. At 3 weeks after MI, CHF animals were retrogradely infused with untreated (control) or MOCE-treated c-Kit+ cells (MOCE/c-Kit+ cells) and evaluated at 3 weeks after cell infusion. We found that class I HDAC inhibition in c-Kit+ cells elevated the level of acetylated histone H3 (AcH3) and increased AcH3 levels in the promoter regions of pluripotent and cardiac-specific genes. Epigenetic changes were accompanied by increased expression of cardiac-specific markers. Transplantation of CHF rats with either control or MOCE/c-Kit+ cells resulted in an improvement in cardiac function, retardation of CHF remodeling made evident by increased vascularization and scar size, and cardiomyocyte hypertrophy reduction. Compared with CHF infused with control cells, infusion of MOCE/c-Kit+ cells resulted in a further reduction in left ventricle end-diastolic pressure and total collagen and an increase in interleukin-6 expression. The low engraftment of infused cells suggests that paracrine effects might account for the beneficial effects of c-Kit+ cells in CHF. In conclusion, selective inhibition of class I HDACs induced expression of cardiac markers in c-Kit+ cells and partially augmented the efficacy of these cells for CHF repair. Significance The study has shown that selective class 1 histone deacetylase inhibition is sufficient to redirect c-Kit+ cells toward a cardiac fate. Epigenetically modified c-Kit+ cells improved contractile function and retarded remodeling of the

  15. Effect of hypothermia on doxorubicin-induced cardiac myoblast signaling and cell death.

    PubMed

    L'Ecuyer, Thomas J; Aggarwal, Sanjeev; Zhang, Jiang Ping; Van der Heide, Richard S

    2012-01-01

    Anthracyclines (AC) are useful chemotherapeutic agents whose principal limitation is cardiac toxicity, which may progress to heart failure, transplantation or even death. We have shown that this toxicity involves oxidative stress-induced activation of the DNA damage pathway. Hypothermia has been shown to be protective against other diseases involving oxidative stress but has not been studied in models of AC toxicity. In the current experiments, H9C2 cardiac myoblasts were treated with varying concentrations of the AC doxorubicin (DOX) during normothermia (37°C) or mild hypothermia (35°C). Total cell death was assayed using trypan blue exclusion and apoptosis by terminal deoxynucleotidyl transferase-mediated deoxyuridine-biotin nick end labeling (TUNEL) staining. Oxidative stress was assayed using the fluorescent indicator 2'7'-dichlorofluorescein diacetate. DNA damage pathway activation was assayed by immunostaining for H2AX and p53. Mitochondrial membrane potential was assayed by JC-1 staining. At all concentrations of DOX examined (1, 2.5 and 5 μM), hypothermia reduced oxidative stress, activation of H2AX and p53, loss of mitochondrial membrane potential and total and apoptotic cell death (P=.001-.03 for each observation). The reduction of oxidative stress-induced activation of the DNA damage pathway and consequent cell death by mild hypothermia supports a possible protective role to reduce the clinical impact of DOX-induced cardiac toxicity. Such an approach may allow expanded use of these effective chemotherapeutic agents to increase cancer cure rates. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Differential participation of angiotensin II type 1 and 2 receptors in the regulation of cardiac cell death triggered by angiotensin II.

    PubMed

    Aránguiz-Urroz, Pablo; Soto, Dagoberto; Contreras, Ariel; Troncoso, Rodrigo; Chiong, Mario; Montenegro, José; Venegas, Daniel; Smolic, Christian; Ayala, Pedro; Thomas, Walter G; Lavandero, Sergio; Díaz-Araya, Guillermo

    2009-05-01

    The Angiotensin II (Ang II) type 1 (AT(1)R) and type 2 (AT(2)R) receptors are increased in the heart following myocardial infarction and dilated cardiomyopathy, yet their contribution at a cellular level to compensation and/or failure remains controversial. We ectopically expressed AT(1)R and AT(2)R in cultured adult rat cardiomyocytes and cardiac fibroblasts to investigate Ang II-mediated cardiomyocyte hypertrophy and cardiac cell viability. In adult rat cardiomyocytes, Ang II did not induce hypertrophy via the AT(1)R, and no effect of Ang II on cell viability was observed following AT(1)R or AT(2)R expression. In adult rat cardiac fibroblasts, Ang II stimulated cell death by apoptosis via the AT(1)R (but not the AT(2)R), which required the presence of extracellular calcium, and induced a rapid dissipation of mitochondrial membrane potential, which was significant from 8 h. We conclude that Ang II/AT(1)R triggers apoptosis in adult rat cardiac fibroblasts, which is dependent on Ca2+ influx.

  17. A cost-effective method for femoral head allograft procurement for spinal arthrodesis: an alternative to commercially available allograft.

    PubMed

    Brown, Desmond A; Mallory, Grant W; Higgins, Dominique M; Abdulaziz, Mohammed; Huddleston, Paul M; Nassr, Ahmad; Fogelson, Jeremy L; Clarke, Michelle J

    2014-07-01

    A cost-effective procurement process for harvesting, storing, and using femoral head allografts is described. A brief review of the literature on the use of these allografts and a discussion of costs are provided. To describe a cost-effective method for the harvesting, storage, and use of femoral heads from patients undergoing total hip arthroplasty at our institution as a source of allograft bone. Spine fusion surgery uses a large proportion of commercially available bone grafts and bone substitutes. As the number of such surgical procedures performed in the United States continues to rise, these materials are at a historically high level of demand, which is projected to continue. Iliac crest bone autograft has historically been the standard of care, although this may be losing favor due to potential donor site morbidity. Although many substitutes are effective in promoting arthrodesis, their use is limited because of cost. Femoral heads are harvested under sterile conditions during total hip arthroplasty. The patient is tested per Food and Drug Administration regulations, and the tissue sample is cultured. The tissue is frozen and quarantined for a 6-month minimum pending repeat testing of donors and subsequently released for use. The relative cost-effectiveness of this tissue as a source of allograft bone is discussed. The average femoral head allograft is 54 to 56 mm in diameter and yields 50 cm of bone graft, with an average cost of US $435 for processing of the tissue resulting in a cost of US $8.70 per cm of allograft produced. Average production costs are significantly lower than those for other commonly available commercial bone grafts and substitutes. Femoral head allograft is a cost-effective alternative to commercially available allografts and bone substitutes. The method of procurement, storage, and use described could be adopted by other institutions in an effort to mitigate cost and increase supply. N/A.

  18. CD8+CD28+ T cells might mediate injury of cardiomyocytes in acute myocardial infarction.

    PubMed

    Zhang, Lili; Wang, Zhiyan; Wang, Di; Zhu, Jumo; Wang, Yi

    2018-06-07

    CD8 + T cells accumulate in the necrotic myocardium of acute myocardial infarction (AMI). It is unclear whether CD8 + CD28 + T cells, a specific subset of CD8 + T cells, contribute to myocardial injury. In this study, 92 consecutive patients with AMI and 28 healthy control subjects were enrolled. The frequency of CD8 + CD28 + T cells in peripheral blood samples was assayed by flow cytometry. Plasma cardiac troponin I (TNI) and left ventricular ejection fraction (LVEF) were determined. Long-term prognosis of the patients was evaluated by major adverse cardiac and cerebrovascular events (MACCE) over a 12-month follow-up period. Our findings indicated that patients with AMI who presented with high numbers of CD8 + CD28 + T cells had an increased infarction size and aggravated ventricular function. We proposed that cytotoxic CD8 + CD28 + T cell-mediated myocardial necrosis may act as a novel and alternative pathway of AMI. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Novel mechanism of cardiac protection by valsartan: synergetic roles of TGF-β1 and HIF-1α in Ang II-mediated fibrosis after myocardial infarction.

    PubMed

    Sui, Xizhong; Wei, Hongchao; Wang, Dacheng

    2015-08-01

    Transforming growth factor (TGF)-β1 is a known factor in angiotensin II (Ang II)-mediated cardiac fibrosis after myocardial infarction (MI). Hypoxia inducible factor-1 (Hif-1α) was recently demonstrated to involve in the tissue fibrosis and influenced by Ang II. However, whether Hif-1α contributed to the Ang II-mediated cardiac fibrosis after MI, and whether interaction or synergetic roles between Hif-1α and TGF-β pathways existed in the process was unclear. In vitro, cardiac cells were incubated under hypoxia or Ang II to mimic ischaemia. In vivo, valsartan was intravenously injected into Sprague-Dawley rats with MI daily for 1 week; saline and hydralazine (another anti-hypertensive agent like valsartan) was used as control. The fibrosis-related proteins were detected by Western blotting. Cardiac structure and function were assessed with multimodality methods. We demonstrated in vitro that hypoxia would induce the up-regulation of Ang II, TGF-β/Smad and Hif-1α, which further induced collagen accumulation. By blocking with valsartan, a blocker of Ang II type I (AT1) receptor, we confirmed that the up-regulation of TGF-β/Smad and Hif-1α was through the Ang II-mediated pathway. By administering TGF-β or dimethyloxalylglycine, we determined that both TGF-β/Smad and Hif-1α contributed to Ang II-mediated collagen accumulation and a synergetic effect between them was observed. Consistent with in vitro results, valsartan significantly attenuated the expression of TGF-β/Smad, Hif-1α and fibrosis-related protein in rats after MI. Heart function, infarcted size, wall thickness as well as myocardial vascularization of ischaemic hearts were also significantly improved by valsartan compared with saline and hydralazine. Our study may provide novel insights into the mechanisms of Ang II-induced cardiac fibrosis as well as into the cardiac protection of valsartan. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and

  20. Heterogeneity of prejunctional NPY receptor-mediated inhibition of cardiac neurotransmission

    PubMed Central

    Serone, Adrian P; Wright, Christine E; Angus, James A

    1999-01-01

    Neuropeptide Y (NPY) has been proposed as the candidate inhibitory peptide mediating interactions between sympathetic and vagal neurotransmission in several species, including man. Here, we have defined the NPY receptors involved in modulation of cardiac autonomic neurotransmission using receptor-selective agonists and antagonists in the rabbit and guinea-pig isolated right atria.In isolated atrial preparations, sympathetically-mediated tachycardia (ST; with atropine 1 μM) or vagally-mediated bradycardia (VB; with propranolol 0.1–1 μM) in response to electrical field stimulation (EFS, 1–4 pulses) were tested 0–30 min after incubation with single concentrations of vehicle, NPY (0.01–10 μM), the Y2 receptor agonist N-Acetyl-[Leu28,31]NPY(24–36) (termed N-A[L]NPY(24–36)) or the Y1 receptor agonist [Leu31,Pro34]NPY (LP). The effect of NPY on the concentration-chronotropic response curves to isoprenaline and bethanechol were also assessed.Guinea-pig atria: NPY and N-A[L]NPY(24–36) caused concentration-dependent inhibition of VB and ST to EFS. Both peptides caused maximal inhibition of VB and ST within 10 min incubation and this remained constant. LP caused a concentration-dependent, transient inhibition of ST which was antagonized by the Y1-receptor antagonist GR231118 (0.3 μM), with apparent competitive kinetics. Rabbit atria: NPY (1 or 10 μM) had no effect on VB at any time point, but both NPY and LP caused a transient (∼10 min) inhibition of sympathetic tachycardia. This inhibition could be prevented by 0.3 μM GR231118. N-A[L]NPY(24–36) had no effect on ST. NPY had no effect on the response to β-adrenoceptor stimulation by isoprenaline nor muscarinic-receptor stimulation by bethanechol in either species.Thus, in the guinea-pig, NPY causes a stable inhibition of both VB and ST to EFS via Y2 receptors and transient inhibition of ST via Y1 receptors. In contrast in the rabbit, NPY has no effect on the cardiac vagus and

  1. Early treatment with xenon protects against the cold ischemia associated with chronic allograft nephropathy in rats.

    PubMed

    Zhao, Hailin; Luo, Xianghong; Zhou, Zhaowei; Liu, Juying; Tralau-Stewart, Catherine; George, Andrew J T; Ma, Daqing

    2014-01-01

    Chronic allograft nephropathy (CAN) is a common finding in kidney grafts with functional impairment. Prolonged hypothermic storage-induced ischemia-reperfusion injury is associated with the early onset of CAN. As the noble gas xenon is clinically used as an anesthetic and has renoprotective properties in a rodent model of ischemia-reperfusion injury, we studied whether early treatment with xenon could attenuate CAN associated with prolonged hypothermic storage. Exposure to xenon enhanced the expression of insulin growth factor-1 (IGF-1) and its receptor in human proximal tubular (HK-2) cells, which, in turn, increased cell proliferation. Xenon treatment before or after hypothermia-hypoxia decreased cell apoptosis and cell inflammation after reoxygenation. The xenon-induced HK-2 cell proliferation was abolished by blocking the IGF-1 receptor, mTOR, and HIF-1α individually. In the Fischer-to-Lewis rat allogeneic renal transplantation model, xenon exposure of donors before graft retrieval or recipients after engraftment enhanced tubular cell proliferation and decreased tubular cell death and cell inflammation associated with ischemia-reperfusion injury. Compared with control allografts, xenon treatment significantly suppressed T-cell infiltration and fibrosis, prevented the development of CAN, and improved renal function. Thus, xenon treatment promoted recovery from ischemia-reperfusion injury and reduced susceptibility to the subsequent development of CAN in allografts.

  2. Cardiac microRNA-133 is down-regulated in thyroid hormone-mediated cardiac hypertrophy partially via Type 1 Angiotensin II receptor.

    PubMed

    Diniz, Gabriela Placoná; Lino, Caroline Antunes; Guedes, Elaine Castilho; Moreira, Luana do Nascimento; Barreto-Chaves, Maria Luiza Morais

    2015-09-01

    Elevated thyroid hormone (TH) levels induce cardiac hypertrophy partially via type 1 Angiotensin II receptor (AT1R). MicroRNAs (miRNAs) are key regulators of cardiac homeostasis, and miR-133 has been shown to be involved in cardiac hypertrophy. However, the potential role of miR-133 in cardiac growth induced by TH is unknown. Thus, we aimed to investigate the miR-133 expression, as well as its potential role in cardiac hypertrophy in response to TH. Wistar rats were subjected to hyperthyroidism combined or not with the AT1R blocker. T3 serum levels were assessed to confirm the hyperthyroid status. TH induced cardiac hypertrophy, as evidenced by higher cardiac weight/tibia length ratio and α-actin mRNA levels, which was prevented by AT1R blocker. miR-133 expression was decreased in TH-induced cardiac hypertrophy in part through the AT1R. Additionally, the cardiac mRNA levels of miR-133 targets, SERCA2a and calcineurin were increased in hyperthyroidism partially via AT1R, as evaluated by real-time RT-PCR. Interestingly, miR-133 levels were unchanged in T3-induced cardiomyocyte hypertrophy in vitro. However, a gain-of-function study revealed that miR-133 mimic blunted the T3-induced cardiomyocyte hypertrophy in vitro. Together, our data indicate that miR-133 expression is reduced in TH-induced cardiac hypertrophy partially by the AT1R and that miR-133 mimic prevents the cardiomyocyte hypertrophy in response to T3 in vitro. These findings provide new insights regarding the mechanisms involved in the cardiac growth mediated by TH, suggesting that miR-133 plays a key role in TH-induced cardiomyocyte hypertrophy.

  3. The potential of cardiac allografts from donors after cardiac death at the University of Wisconsin Organ Procurement Organization.

    PubMed

    Osaki, Satoru; Anderson, James E; Johnson, Maryl R; Edwards, Niloo M; Kohmoto, Takushi

    2010-01-01

    The purpose of this study is to investigate the potential availability of hearts from adult donation after cardiac death (DCD) donors within an acceptable hypoxic period. We retrospectively reviewed a donor database from the University of Wisconsin Organ Procurement Organization Donor Tracking System between 2004 and 2006. The DCD population (n=78) was screened using our inclusion criteria for DCD cardiac donor suitability, including warm ischaemic time (WIT) limit of 30 min. In the same period, 70 hearts were donated from brain-dead donors. Of 78 DCD donors, 12 (15%) met our proposed DCD cardiac donor criteria. The mean WIT of these 12 DCD donors was 21 min (range 14-29 min). When inclusion criteria are further narrowed to (1) age <30 years, (2) WIT <20 min and (3) male gender, only two out of 12 met the criteria. Based on our proposed DCD cardiac donor criteria, the potential application of DCD cardiac donors would represent an increase in cardiac donation of 17% (12/70) during the 3-year period. When the criteria were narrowed to the initial 'ideal' case, only two donors met such criteria, suggesting that such 'ideal' DCD donors are rare but they do exist. Copyright 2009 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.

  4. Chronic Lung Allograft Dysfunction: A Systematic Review of Mechanisms.

    PubMed

    Royer, Pierre-Joseph; Olivera-Botello, Gustavo; Koutsokera, Angela; Aubert, John-David; Bernasconi, Eric; Tissot, Adrien; Pison, Christophe; Nicod, Laurent; Boissel, Jean-Pierre; Magnan, Antoine

    2016-09-01

    Chronic lung allograft dysfunction (CLAD) is the major limitation of long-term survival after lung transplantation. Chronic lung allograft dysfunction manifests as bronchiolitis obliterans syndrome or the recently described restrictive allograft syndrome. Although numerous risk factors have been identified so far, the physiopathological mechanisms of CLAD remain poorly understood. We investigate here the immune mechanisms involved in the development of CLAD after lung transplantation. We explore the innate or adaptive immune reactions induced by the allograft itself or by the environment and how they lead to allograft dysfunction. Because current literature suggests bronchiolitis obliterans syndrome and restrictive allograft syndrome as 2 distinct entities, we focus on the specific factors behind one or the other syndromes. Chronic lung allograft dysfunction is a multifactorial disease that remains irreversible and unpredictable so far. We thus finally discuss the potential of systems-biology approach to predict its occurrence and to better understand its underlying mechanisms.

  5. Structural allograft reconstruction of the foot and ankle after tumor resections.

    PubMed

    Ayerza, M A; Piuzzi, N S; Aponte-Tinao, L A; Farfalli, G L; Muscolo, D L

    2016-08-01

    Structural allografts have been used to correct deformities or to fill bone defects secondary to tumor excisions, trauma, osteochondral lesions, or intercalary arthrodesis. However, the quality of published evidence supporting the use of allograft transplantation in foot and ankle surgery has been reported as fair. The purpose of this study was to report the overall survival of structural allograft in the foot and ankle after tumor resection, and the survival according to the type of allograft and the complication rates in the medium to long term. From January 1989 to June 2011, 44 structural allograft reconstructions of the foot and ankle were performed in 42 patients (28 men and 14 women) due to musculoskeletal tumor resections. Mean age at presentation was 27 years. Mean follow-up was 53 months. Demographic data, diagnosis, site of the neoplasm, operations performed, operative complications, outcomes after surgery, date of last follow-up evaluation, and local recurrences were reviewed for all patients. Regarding the type of 44 allograft reconstructions, 16 were hemicylindrical allografts (HA), 12 intercalary allografts (IA), 10 osteoarticular allografts (OA), and 6 were total calcaneal allograft (CA). The overall allograft survival rate, as calculated with the Kaplan-Meier method, at 5 and 10 years was 79 % (95 % CI 64-93 %). When allocated by type of allograft reconstruction the specific allograft survival at 5 and 10 years was: 83 % for CA, 80 % for HA, 77 % for OA, and 75 % for IA. The complications rate for this series was 36 % including: articular failure, local recurrence, infection, fracture and nonunion. This study showed that structural allograft reconstruction in the foot and ankle after tumor resection may be durable with a 79 % survival rate at 5 and 10 years. The two types of allografts that showed better survival rate were hemicylindrical allografts (80 %) and calcaneus allografts (83 %). The highest complication rates occurred

  6. Clinical application and viability of cryopreserved cadaveric skin allografts in severe burn: a retrospective analysis.

    PubMed

    Cleland, Heather; Wasiak, Jason; Dobson, Hannah; Paul, Michelle; Pratt, George; Paul, Eldho; Herson, Marisa; Akbarzadeh, Shiva

    2014-02-01

    Cadaveric cutaneous allografts are used in burns surgery both as a temporary bio-dressing and occasionally as definitive management of partial thickness burns. Nonetheless, limitations in the understanding of the biology of these grafts have meant that their role in burns surgery continues to be controversial. A review of all patients suffering 20% or greater total body surface area (TBSA) burns over an eight year period that received cadaveric allografts were identified. To investigate whether tissue viability plays a role in engraftment success, five samples of cryopreserved cadaveric cutaneous allograft processed at the Donor Tissue Bank of Victoria (DTBV) were submitted to our laboratory for viability analysis using two methods of Trypan Blue Exclusion and tetrazolium salt (MTT) assays. During the study period, 36 patients received cadaveric allograft at our institution. The average total burn surface area (TBSA) for this group of patients was 40% and all patients received cadaveric skin as a temporizing measure prior to definitive grafting. Cadaveric allograft was used in complicated cases such as wound contamination, where synthetic dressings had failed. Viability tests showed fewer than 30% viability in processed allografts when compared to fresh skin following the thawing process. However, the skin structure in the frozen allografts was histologically well preserved. Cryopreserved cutaneous cadaveric allograft has a positive and definite role as an adjunct to conventional dressing and grafting where available, particularly in patients with large TBSA burns. The low viability of cryopreserved specimens processed at DTBV suggests that cell viability in cadaveric allograft may not be essential for its clinical function as a wound dressing or even as permanent dermal substitute. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  7. Allograft materials in phalloplasty: a comparative analysis.

    PubMed

    Solomon, Mark P; Komlo, Caroline; Defrain, Molly

    2013-09-01

    Allograft use has increased recently with the rising use of allograft materials in breast surgery. There are few data that compare the performance of the various allograft materials in this application, despite marketing efforts by the manufacturers to present one allograft material as superior to another. Phalloplasty is a procedure that uses allografts for penis girth augmentation. Preparation of these grafts differs with each manufacturer. We report our experience with 3 different types of allografts for this procedure. This allows for the comparison of these materials in their performance with a single model. Forty-seven patients who underwent penis girth enhancement with allograft material were reviewed. All patients underwent circumferential grafting to the shaft of the penis at the level of Buck's fascia. Graft materials included AlloDerm (n = 9), Belladerm (n = 20), and Repriza (n = 21). Charts were reviewed for material type, presence and type of infection, wound exposure, and graft loss with attention to the type of allograft material that was used. Follow-up ranged from 1 to 120 months with an average of 11.25 months. Infection, defined as an open wound with graft exposure, occurred in 20 (42%) of 47 patients. Of these, graft exposure only occurred in 17 (36%) patients, whereas 3 (6%) patients sustained total graft loss. Graft exposure or loss occurred in 3 patients who had AlloDerm, 9 patients with Belladerm, and 8 patients with Repriza. No patients with AlloDerm sustained graft loss, whereas 2 patients with Belladerm and 1 patient with Repriza sustained graft loss. There were no statistical differences among these graft types with regard to infection or graft loss. Three different brands of allograft material were used in 1 surgical procedure and followed up for their performance with regard to exposure and infection. In this model, there is no difference in the rate of infection in these materials despite their different methods of preparation

  8. Immunological and inflammatory mapping of vascularized composite allograft rejection processes in a rat model

    PubMed Central

    Friedman, Or; Carmel, Narin; Sela, Meirav; Abu Jabal, Ameen; Inbal, Amir; Ben Hamou, Moshe; Krelin, Yakov; Gur, Eyal

    2017-01-01

    Background Hand and face vascularized composite allotransplantation (VCA) is an evolving and challenging field with great opportunities. During VCA, massive surgical damage is inflicted on both donor and recipient tissues, which may contribute to the high VCA rejection rates. To segregate between the damage-induced and rejection phase of post-VCA responses, we compared responses occurring up to 5 days following syngeneic versus allogeneic vascularized groin flap transplantations, culminating in transplant acceptance or rejection, respectively. Methods The immune response elicited upon transplantation of a syngeneic versus allogeneic vascularized groin flap was compared at Post-operative days 2 or 5 by histology, immunohistochemistry and by broad-scope gene and protein analyses using quantitative real-time PCR and Multiplex respectively. Results Immune cell infiltration began at the donor-recipient interface and paralleled expression of a large group of wound healing-associated genes in both allografts and syngrafts. By day 5 post-transplantation, cell infiltration spread over the entire allograft but remained confined to the wound site in the syngraft. This shift correlated with upregulation of IL-18, INFg, CXCL9, 10 and 11, CCL2, CCL5, CX3CL1 and IL-10 in the allograft only, suggesting their role in the induction of the anti-alloantigen adaptive immune response. Conclusions High resemblance between the cues governing VCA and solid organ rejection was observed. Despite this high resemblance we describe also, for the first time, a damage induced inflammatory component in VCA rejection as immune cell infiltration into the graft initiated at the surgical damage site spreading to the entire allograft only at late stage rejection. We speculate that the highly inflammatory setting created by the unique surgical damage during VCA may enhance acute allograft rejection. PMID:28746417

  9. Rejection Triggers Liver Transplant Tolerance: Involvements of Mesenchyme-Mediated Immune Control Mechanisms

    PubMed Central

    Morita, Miwa; Joyce, Daniel; Miller, Charles; Fung, John J.; Lu, Lina; Qian, Shiguang

    2015-01-01

    Liver tolerance was initially recognized by the spontaneous acceptance of liver allograft in many species. The underlying mechanisms are not completely understood. We have been inspired by an unexpected phenomenon that the liver transplant tolerance absolutely requires interferon (IFN)-γ, a rejection-associated inflammatory cytokine. In this study, we investigate the rejection of liver allografts deficient in IFN-γ receptor and reveal that the liver graft is equipped with machineries capable of counterattacking the host immune response through a mesenchyme-mediated immune control (MMIC) mechanism. MMIC is triggered by T effectors (Tef) cell-derived IFN-γ to drive the expression of B7-H1 on graft mesenchymal cells leading to Tef cell apoptosis. We describe the negative feedback loop between graft mesenchymal and Tef cells that ultimately results in liver transplant tolerance. Comparable elevations of T regulatory cells and myeloid-derived suppressor cells are seen in both rejection and tolerance groups, and are not dependent on IFN-γ stimulation, suggesting a critical role of Tef cell elimination in tolerance induction. We identify potent MMIC activity in hepatic stellate cells and liver sinusoidal endothelial cells. MMIC is unlikely exclusive to the liver, as spontaneous acceptance of kidney allografts has been reported, although less commonly, probably reflecting variance in MMIC activity. MMCI may represent an important homeostatic mechanism that supports peripheral tolerance, and could be a target for the prevention and treatment of transplant rejection. This study highlights that the graft is actively participant in the equipoise between tolerance and rejection and warrants more attention in the search for tolerance biomarkers. PMID:25998530

  10. [Ursolic acid inhibits corneal graft rejection following orthotopic allograft transplantation in rats].

    PubMed

    Wang, Bo; Wu, Jing; Ma, Ming; Li, Ping-Ping; Yu, Jian

    2015-04-01

    To investigate the effects of ursolic acid on corneal graft rejection in a rat model of othotopic corneal allograft transplantation. Forty-eight recipient Wistar rats were divided into normal control group with saline treatment (group A), autograft group with saline treatment (group B), SD rat allograft group with saline treatment (group C), and SD rat allograft group with intraperitoneal ursolic acid (UA) treatment group (group D). The rats received saline or UC (20 mg·kg(-1)·d(-1)) treatment for 12 days following othotopic graft transplantation. The grafts were evaluated using the Larkin corneal rejection rating system, and the graft survival was assessed with Kaplan-Meier analysis. On day 14, the grafts were harvested for histological examination, Western blotting, and assessment of expressions of interlukin-2 (IL-2), interferon-γ (IFN-γ), nuclear transcription factor-κB (NF-κB) p65, vascular endothelial growth factor (VEGF) and intercellular adhesion molecule-1 (ICAM-1). The allograft survival was significantly longer in group D than in group C (29.12±9.58 vs 9.67±2.16 days, P<0.05). UC treatment obviously reduced the expression levels of IL-2, IFN-γ, NF-κBp65, ICAM-1 and VEGF and increased inhibitory kappa B alpha (IκB-α) expression in the grafts, where no obvious inflammatory cell infiltration or corneal neovascularization was found. As a NF-κB inhibitor, ursolic acid can prevent corneal neovascularization and corneal allograft rejection to promote graft survival in rats following orthotopic corneal allograft transplantation.

  11. CMV allograft pancreatitis: diagnosis, treatment, and histological features.

    PubMed

    Klassen, D K; Drachenberg, C B; Papadimitriou, J C; Cangro, C B; Fink, J C; Bartlett, S T; Weir, M R

    2000-05-15

    Cytomegalovirus (CMV) infection is a common problem in solid organ transplant recipients. CMV infection of pancreas allografts is not, however, well described. We report the clinical presentation, histologic findings, treatment, and outcome in four patients with CMV allograft pancreatitis. These patients presented 18 weeks to 44 months after transplantation with elevated serum amylase and lipase and were suspected to have acute rejection. Percutaneous pancreas allograft biopsy specimens showed evidence of tissue invasive CMV infection. One patient had simultaneous CMV infection and acute rejection. Prolonged treatment with ganciclovir resulted in clinical and histologic resolution of the CMV disease. Rejection was successfully treated. Primary CMV infection in seronegative recipients seemed to be a risk factor. Three patients maintain normal allograft function; one patient lost function due to chronic rejection. The histology of tissue-invasive CMV pancreas allograft infection and its differentiation from acute rejection is described. Prompt diagnosis and prolonged therapy with antiviral agents can result in maintenance of allograft function.

  12. Genetic dissection of cardiac growth control pathways

    NASA Technical Reports Server (NTRS)

    MacLellan, W. R.; Schneider, M. D.

    2000-01-01

    Cardiac muscle cells exhibit two related but distinct modes of growth that are highly regulated during development and disease. Cardiac myocytes rapidly proliferate during fetal life but exit the cell cycle irreversibly soon after birth, following which the predominant form of growth shifts from hyperplastic to hypertrophic. Much research has focused on identifying the candidate mitogens, hypertrophic agonists, and signaling pathways that mediate these processes in isolated cells. What drives the proliferative growth of embryonic myocardium in vivo and the mechanisms by which adult cardiac myocytes hypertrophy in vivo are less clear. Efforts to answer these questions have benefited from rapid progress made in techniques to manipulate the murine genome. Complementary technologies for gain- and loss-of-function now permit a mutational analysis of these growth control pathways in vivo in the intact heart. These studies have confirmed the importance of suspected pathways, have implicated unexpected pathways as well, and have led to new paradigms for the control of cardiac growth.

  13. Transplantation of marrow-derived cardiac stem cells carried in fibrin improves cardiac function after myocardial infarction.

    PubMed

    Guo, Hai-Dong; Wang, Hai-Jie; Tan, Yu-Zhen; Wu, Jin-Hong

    2011-01-01

    The high death rate of the transplanted stem cells in the infarcted heart and the low efficiency of differentiation toward cardiomyocytes influence the outcome of stem cell transplantation for treatment of myocardial infarction (MI). Fibrin glue (FG) has been extensively used as a cell implantation matrix to increase cell survival. However, mechanisms of the effects of FG for stem cell transplantation to improve cardiac function are unclear. We have isolated c-kit+/Sca-1+ marrow-derived cardiac stem cells (MCSCs) from rat bone marrow; the cells expressed weakly early cardiac transcription factor Nkx2.5, GATA-4, Mef2C, and Tbx5. Effects of FG on survival, proliferation, and migration of MCSCs were examined in vitro. Cytoprotective effects of FG were assessed by exposure of MCSCs to anoxia. Efficacy of MCSC transplantation in FG was evaluated in the female rat MI model. The MCSCs survived well and proliferated in FG, and they may migrate out from the edge of FG in the wound and nature state. Acridine orange/ethidium bromide staining and lactate dehydrogenase analysis showed that MCSCs in FG were more resistant to anoxia as compared with MCSCs alone. In a rat MI model, cardiac function was improved and scar area was obviously reduced in group of MCSCs in FG compared with group of MCSCs and FG alone, respectively. Y chromosome fluorescence in situ hybridization showed that there were more survived MCSCs in group of MCSCs in FG than those in group of MCSCs alone, and most Y chromosome positive cells expressed cardiac troponin T (cTnT) and connexin-43 (Cx-43). Cx-43 was located between Y chromosome positive cells and recipient cardiomyocytes. Microvessel density in the peri-infarct regions and infarct regions significantly increased in group of MCSCs in FG. These results suggest that FG provide a suitable microenvironment for survival and proliferation of MCSCs and protect cells from apoptosis and necrosis caused by anoxia. MCSCs could differentiate into cardiomyocytes

  14. Autograft versus Allograft for Cervical Spinal Fusion

    PubMed Central

    Brodke, Darrel S.; Youssef, Jim A.; Meisel, Hans-Jörg; Dettori, Joseph R.; Park, Jong-Beom; Yoon, S. Tim; Wang, Jeffrey C.

    2017-01-01

    Study Design Systematic review. Objective To compare the effectiveness and safety between iliac crest bone graft (ICBG), non-ICBG autologous bone, and allograft in cervical spine fusion. To avoid problems at the donor site, various allograft materials have been used as a substitute for autograft. However, there are still questions as to the comparative effectiveness and safety of cadaver allograft compared with autologous ICBG. Methods A systematic search of multiple major medical reference databases was conducted to identify studies evaluating spinal fusion in patients with cervical degenerative disk disease using ICBG compared with non-ICBG autograft or allograft or non-ICBG autograft compared with allograft in the cervical spine. Radiographic fusion, patient-reported outcomes, and functional outcomes were the primary outcomes of interest. Adverse events were evaluated for safety. Results The search identified 13 comparative studies that met our inclusion criteria: 2 prospective cohort studies and 11 retrospective cohort studies. Twelve cohort studies compared allograft with ICBG autograft during anterior cervical fusion and demonstrated with a low evidence level of support that there are no differences in fusion percentages, pain scores, or functional results. There was insufficient evidence comparing patients receiving allograft with non-ICBG autograft for fusion, pain, revision, and functional and safety outcomes. No publications directly comparing non-ICBG autograft with ICBG were found. Conclusion Although the available literature suggests ICBG and allograft may have similar effectiveness in terms of fusion rates, pain scores, and functional outcomes following anterior cervical fusion, there are too many limitations in the available literature to draw any significant conclusions. No individual study provided greater than class III evidence, and when evaluating the overall body of literature, no conclusion had better than low evidence support. A prospective

  15. Current state of pediatric cardiac transplantation

    PubMed Central

    2018-01-01

    Pediatric heart transplantation is standard of care for children with end-stage heart failure. The diverse age range, diagnoses, and practice variations continue to challenge the development of evidence-based practices and new technologies. Outcomes in the most recent era are excellent, especially with the more widespread use of ventricular assist devices (VADs). Waitlist mortality remains high and knowledge of risk factors for death while waiting and following transplantation contributes to decision-making around transplant candidacy and timing of listing. The biggest gap impacting both waitlist and overall survival remains mechanical support options for infants and patients with single ventricle physiology. Though acute rejection has decreased progressively, both diagnosis and management of antibody-mediated rejection has become increasingly challenging and complex, as has the ability to understand the implication of anti-HLA antibodies detected both pre- and post-transplantation—including when and how to intervene. Trends in immunosuppression protocols include more use of induction therapy and steroid avoidance or withdrawal protocols. Common long-term morbidities include renal insufficiency, which can be mitigated with surveillance and renal-sparing strategies, and infections. Functional outcomes are excellent, but significant psychosocial challenges exist in relation to neurodevelopment, non-adherence, and transition from child-centered to adult-centered care. Cardiac allograft vasculopathy (CAV) remains a barrier to long-term survival, though it is more apparent that objective evidence of an impact on the allograft is important with regards to impact on outcomes. Retransplantation is rare in pediatric heart transplant recipients. Pediatric heart transplantation continues to evolve in order to address the challenges of the diverse group of patients that reach end-stage heart failure during childhood. PMID:29492382

  16. In Utero Exposure to Exosomal and B-Cell Alloantigens Lessens Alloreactivity of Recipients' Lymphocytes Rather than Confers Allograft Tolerance.

    PubMed

    Chen, Jeng-Chang; Ou, Liang-Shiou; Chan, Cheng-Chi; Kuo, Ming-Ling; Tseng, Li-Yun; Chang, Hsueh-Ling

    2018-01-01

    According to actively acquired tolerance, antigen exposure before full immune development in fetal or early neonatal life will cause tolerance to this specific antigen. In this study, we aimed to examine whether allogeneic tolerance could be elicited by in utero exposure to surface MHC antigens of allogenic cells or soluble form of MHC exosomes. Gestational day 14 FVB/N fetuses were subjected to intraperitoneal injection of allogeneic major histocompatibility complex (MHC) exosomes or highly enriched B-cells. Postnatally, the recipients were examined for the immune responses to donor alloantigens by lymphocyte proliferative reactions and skin transplantation. In utero exposure to allogeneic MHC exosomes abolished the alloreactivity of recipients' lymphocytes to the alloantigens, but could not confer skin allograft tolerance. In utero transplantation of highly enriched allogeneic B-cells generated low-level B-cell chimerism in the recipients. However, it only extended the survivals of skin allograft by a few days despite the lack of donor-specific alloreactivity of recipients' lymphocyte. Thus, an early in utero contact with exosomal or B-cell alloantigens did not lead to full skin tolerance but rather, at best, only to delayed skin rejection in the presence of microchimerism made by B-cell inocula. These results argued against the theory of actively acquired tolerance, and implicated that in utero exposure to marrow cells in previous studies was a unique model of allo-tolerance induction that involved the establishment of significant hematopoietic chimerism. Taken together with the discovery of in utero sensitization to ovalbumin in our previous studies, the immunological consequences of fetal exposure to foreign antigens might vary according to the type or nature of antigens introduced.

  17. Asymptomatic Changes in Cardiac Function Can Occur in DCIS Patients Following Treatment with HER-2/neu Pulsed Dendritic Cell Vaccines

    PubMed Central

    Bahl, Susan; Roses, Robert; Sharma, Anupama; Koldovsky, Ursula; Xu, Shuwen; Weinstein, Susan; Nisenbaum, Harvey; Fox, Kevin; Pasha, Theresa; Zhang, Paul; Araujo, Louis; Carver, Joseph; Czerniecki, Brian J

    2009-01-01

    Background Targeting HER-2/neu with Trastuzumab has been associated with development of cardiac toxicity. Methods Twenty-seven patients with ductal carcinoma in situ (DCIS) of the breast completed an IRB approved clinical trial of a HER-2/neu targeted dendritic cell based vaccine. Four weekly vaccinations were administered prior to surgical resection. All subjects underwent pre- and post-vaccine cardiac monitoring by MUGA/ECHO scanning allowing for a comparison of cardiac function. Results In 3 of 27 vaccinated patients (11%) transient asymptomatic decrements in ejection fraction of greater than 15% were noted after vaccination. Notably, evidence of circulating anti-HER-2/neu antibody was found prior to vaccination in all three patients, but cardiac toxicity was not noted until induction of cellular mediated immune responses. Conclusions This is the first description of HER-2/neu targeted vaccination associated with an incidence of cardiac changes, and the induction of cellular immune responses combined with antibody may contribute to changes in cardiac function. PMID:19800453

  18. Mesodermal iPSC–derived progenitor cells functionally regenerate cardiac and skeletal muscle

    PubMed Central

    Quattrocelli, Mattia; Swinnen, Melissa; Giacomazzi, Giorgia; Camps, Jordi; Barthélemy, Ines; Ceccarelli, Gabriele; Caluwé, Ellen; Grosemans, Hanne; Thorrez, Lieven; Pelizzo, Gloria; Muijtjens, Manja; Verfaillie, Catherine M.; Blot, Stephane; Janssens, Stefan; Sampaolesi, Maurilio

    2015-01-01

    Conditions such as muscular dystrophies (MDs) that affect both cardiac and skeletal muscles would benefit from therapeutic strategies that enable regeneration of both of these striated muscle types. Protocols have been developed to promote induced pluripotent stem cells (iPSCs) to differentiate toward cardiac or skeletal muscle; however, there are currently no strategies to simultaneously target both muscle types. Tissues exhibit specific epigenetic alterations; therefore, source-related lineage biases have the potential to improve iPSC-driven multilineage differentiation. Here, we determined that differential myogenic propensity influences the commitment of isogenic iPSCs and a specifically isolated pool of mesodermal iPSC-derived progenitors (MiPs) toward the striated muscle lineages. Differential myogenic propensity did not influence pluripotency, but did selectively enhance chimerism of MiP-derived tissue in both fetal and adult skeletal muscle. When injected into dystrophic mice, MiPs engrafted and repaired both skeletal and cardiac muscle, reducing functional defects. Similarly, engraftment into dystrophic mice of canine MiPs from dystrophic dogs that had undergone TALEN-mediated correction of the MD-associated mutation also resulted in functional striatal muscle regeneration. Moreover, human MiPs exhibited the same capacity for the dual differentiation observed in murine and canine MiPs. The findings of this study suggest that MiPs should be further explored for combined therapy of cardiac and skeletal muscles. PMID:26571398

  19. The changes in beta-adrenoceptor-mediated cardiac function in experimental hypothyroidism: the possible contribution of cardiac beta3-adrenoceptors.

    PubMed

    Arioglu, E; Guner, S; Ozakca, I; Altan, V M; Ozcelikay, A T

    2010-02-01

    Thyroid hormone deficiency has been reported to decrease expression and function of both beta(1)- and beta(2)-adrenoceptor in different tissues including heart. The purpose of this study was to examine the possible contribution of beta(3)-adrenoceptors to cardiac dysfunction in hypothyroidism. In addition, effect of this pathology on beta(1)- and beta(2)-adrenoceptor was investigated. Hypothyroidism was induced by adding methimazole (300 mg/l) to drinking water of rats for 8 weeks. Cardiac hemodynamic parameters were measured in anesthetised rats in vivo. Responses to beta-adrenoceptor agonists were examined in rat papillary muscle in vitro. We also studied the effect of hypotyroidism on mRNA expression of beta-adrenoceptors, Gialpha, GRK, and eNOS in rat heart. All of the hemodynamic parameters (systolic, diastolic and mean arterial pressure, left ventricular pressure, heart rate, +dp/dt, and -dp/dt) were significantly reduced by the methimazole treatment. The negative inotropic effect elicited by BRL 37344 (a beta(3)-adrenoceptor preferential agonist) and positive inotropic effects produced by isoprenaline and noradrenaline, respectively, were significantly decreased in papillary muscle of hypothyroid rats as compared to those of controls. On the other hand, hypothyroidism resulted in increased cardiac beta(2)- and beta(3)-adrenoceptor, Gialpha(2), Gialpha(3), GRK3, and eNOS mRNA expressions. However, beta(1)-adrenoceptor and GRK2 mRNA expressions were not changed significantly in this pathology. These results show that mRNA expression of beta(3)-adrenoceptors as well as the signalling pathway components mediated through beta(3)-adrenoceptors are significantly increased in hypothyroid rat heart. Since we could not correlate these alternates with the decreased negative inotropic response mediated by this receptor subtype, it is not clear whether these changes are important for hypothyroid induced reduction in cardiac function.

  20. Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering

    NASA Astrophysics Data System (ADS)

    Rogozhnikov, Dmitry; O'Brien, Paul J.; Elahipanah, Sina; Yousaf, Muhammad N.

    2016-12-01

    There has been tremendous interest in constructing in vitro cardiac tissue for a range of fundamental studies of cardiac development and disease and as a commercial system to evaluate therapeutic drug discovery prioritization and toxicity. Although there has been progress towards studying 2-dimensional cardiac function in vitro, there remain challenging obstacles to generate rapid and efficient scaffold-free 3-dimensional multiple cell type co-culture cardiac tissue models. Herein, we develop a programmed rapid self-assembly strategy to induce specific and stable cell-cell contacts among multiple cell types found in heart tissue to generate 3D tissues through cell-surface engineering based on liposome delivery and fusion to display bio-orthogonal functional groups from cell membranes. We generate, for the first time, a scaffold free and stable self assembled 3 cell line co-culture 3D cardiac tissue model by assembling cardiomyocytes, endothelial cells and cardiac fibroblast cells via a rapid inter-cell click ligation process. We compare and analyze the function of the 3D cardiac tissue chips with 2D co-culture monolayers by assessing cardiac specific markers, electromechanical cell coupling, beating rates and evaluating drug toxicity.

  1. Dose response of fish oil versus safflower oil on graft arteriosclerosis in rabbit heterotopic cardiac allografts.

    PubMed Central

    Yun, K L; Fann, J I; Sokoloff, M H; Fong, L G; Sarris, G E; Billingham, M E; Miller, D C

    1991-01-01

    With the advent of cyclosporin A, accelerated coronary arteriosclerosis has become the major impediment to the long-term survival of heart transplant recipients. Due to epidemiologic reports suggesting a salutary effect of fish oil, the dose response of fish oil on graft coronary arteriosclerosis in a rabbit heterotopic cardiac allograft model was assessed using safflower oil as a caloric control. Seven groups of New Zealand White rabbits (n = 10/group) received heterotropic heart transplants from Dutch-Belted donors and were immunosuppressed with low-dose cyclosporin A (7.5 mg/kg/day). Group 1 animals were fed a normal diet and served as control. Group 2, 3, and 4 animals received a daily supplement of low- (0.25 mL/kg/day), medium- (0.75 mL/kg/day), and high- (1.5 mL/kg/day) dose fish oil (116 mg n-3 polyunsaturated fatty acid/mL), respectively. Group 5, 6, and 7 animals were supplemented with equivalent dose of safflower oil (i.e., 0.25, 0.75, and 1.5 mL/kg/day). Oil-supplemented rabbits were pretreated for 3 weeks before transplantation and maintained on the same diet for 6 weeks after operation. The extent of graft coronary arteriosclerosis was quantified using computer-assisted, morphometric planimetry. When the animals were killed, cyclosporin A was associated with elevated plasma total cholesterol and triglyceride levels in the control group. While safflower oil prevented the increase in plasma lipids at all dosages, fish oil ameliorated the cyclosporin-induced increase in total cholesterol only with high doses. Compared to control animals, there was a trend for more graft vessel disease with increasing fish oil dose, as assessed by mean luminal occlusion and intimal thickness. A steeper trend was observed for increasing doses of safflower oil; compared to the high-dose safflower oil group, animals supplemented with low-dose safflower oil had less mean luminal occlusion (16.3% +/- 5.9% versus 41.4% +/- 7.6%, p less than 0.017) and intimal thickness (7

  2. Acellular Nerve Allografts in Peripheral Nerve Regeneration: A Comparative Study

    PubMed Central

    Moore, Amy M.; MacEwan, Matthew; Santosa, Katherine B.; Chenard, Kristofer E.; Ray, Wilson Z.; Hunter, Daniel A.; Mackinnon, Susan E.; Johnson, Philip J.

    2011-01-01

    Background Processed nerve allografts offer a promising alternative to nerve autografts in the surgical management of peripheral nerve injuries where short deficits exist. Methods Three established models of acellular nerve allograft (cold-preserved, detergent-processed, and AxoGen® -processed nerve allografts) were compared to nerve isografts and silicone nerve guidance conduits in a 14 mm rat sciatic nerve defect. Results All acellular nerve grafts were superior to silicone nerve conduits in support of nerve regeneration. Detergent-processed allografts were similar to isografts at 6 weeks post-operatively, while AxoGen®-processed and cold-preserved allografts supported significantly fewer regenerating nerve fibers. Measurement of muscle force confirmed that detergent-processed allografts promoted isograft-equivalent levels of motor recovery 16 weeks post-operatively. All acellular allografts promoted greater amounts of motor recovery compared to silicone conduits. Conclusions These findings provide evidence that differential processing for removal of cellular constituents in preparing acellular nerve allografts affects recovery in vivo. PMID:21660979

  3. Successful liver allografts in mice by combination with allogeneic bone marrow transplantation.

    PubMed Central

    Nakamura, T; Good, R A; Yasumizu, R; Inoue, S; Oo, M M; Hamashima, Y; Ikehara, S

    1986-01-01

    Successful liver allografts were established by combination with allogeneic bone marrow transplantation. When liver tissue of BALB/c (H-2d) or C57BL/6J (H-2b) mice was minced and grafted under the kidney capsules of C3H/HeN (H-2k) mice, it was rejected. However, when C3H/HeN mice were irradiated and reconstituted with T-cell-depleted BALB/c or BALB/c nu/nu bone marrow cells, or with fetal liver cells of BALB/c mice, they accepted both donor (stem-cell)-type (BALB/c) and host (thymus)-type (C3H/HeN) liver tissue. Assays for both mixed-lymphocyte reaction and induction of cytotoxic T lymphocytes revealed that the newly developed T cells were tolerant of both donor (stem-cell)-type and host (thymus)-type major histocompatibility complex determinants. We propose that liver allografts combined with bone marrow transplantation should be considered as a viable therapy for patients with liver disease such as liver cirrhosis and hepatoma. Images PMID:3520575

  4. Xenon treatment attenuates early renal allograft injury associated with prolonged hypothermic storage in rats.

    PubMed

    Zhao, Hailin; Yoshida, Akira; Xiao, Wei; Ologunde, Rele; O'Dea, Kieran P; Takata, Masao; Tralau-Stewart, Catherine; George, Andrew J T; Ma, Daqing

    2013-10-01

    Prolonged hypothermic storage elicits severe ischemia-reperfusion injury (IRI) to renal grafts, contributing to delayed graft function (DGF) and episodes of acute immune rejection and shortened graft survival. Organoprotective strategies are therefore needed for improving long-term transplant outcome. The aim of this study is to investigate the renoprotective effect of xenon on early allograft injury associated with prolonged hypothermic storage. Xenon exposure enhanced the expression of heat-shock protein 70 (HSP-70) and heme oxygenase 1 (HO-1) and promoted cell survival after hypothermia-hypoxia insult in human proximal tubular (HK-2) cells, which was abolished by HSP-70 or HO-1 siRNA. In the brown Norway to Lewis rat renal transplantation, xenon administered to donor or recipient decreased the renal tubular cell death, inflammation, and MHC II expression, while delayed graft function (DGF) was therefore reduced. Pathological changes associated with acute rejection, including T-cell, macrophage, and fibroblast infiltration, were also decreased with xenon treatment. Donors or recipients treated with xenon in combination with cyclosporin A had prolonged renal allograft survival. Xenon protects allografts against delayed graft function, attenuates acute immune rejection, and enhances graft survival after prolonged hypothermic storage. Furthermore, xenon works additively with cyclosporin A to preserve post-transplant renal function.

  5. Current status of stem cells in cardiac repair.

    PubMed

    Henning, Robert J

    2018-03-01

    One out of every two men and one out of every three women greater than the age of 40 will experience an acute myocardial infarction (AMI) at some time during their lifetime. As more patients survive their AMIs, the incidence of congestive heart failure (CHF) is increasing. 6 million people in the USA have ischemic cardiomyopathies and CHF. The search for new and innovative treatments for patients with AMI and CHF has led to investigations and use of human embryonic stem cells, cardiac stem/progenitor cells, bone marrow-derived mononuclear cells and mesenchymal stem cells for treatment of these heart conditions. This paper reviews current investigations with human embryonic, cardiac, bone marrow and mesenchymal stem cells, and also stem cell paracrine factors and exosomes.

  6. Donor-specific HLA alloantibodies: Impact on cardiac allograft vasculopathy, rejection, and survival after pediatric heart transplantation.

    PubMed

    Tran, Andrew; Fixler, David; Huang, Rong; Meza, Tiffany; Lacelle, Chantale; Das, Bibhuti B

    2016-01-01

    There is increasing evidence that donor-specific anti-HLA antibodies (DSA) are associated with poor outcomes after cardiac transplantation in adults, but data are limited in children. The objective of this study was to examine the development and consequences of de novo DSA in pediatric recipients of heart transplants. We analyzed 105 pediatric patients who received heart transplants at our center from January 2002 to December 2012. All patients had negative T-cell and B-cell post-transplant crossmatches. Patients underwent HLA antibody screening at 1, 2, 3, 6, and 12 months post-transplant and annually thereafter unless there was suspicion for rejection. HLA class I and II antibodies were identified using Luminex assay. Coronary angiography was performed at 1 year and annually thereafter. Acute cellular rejection, antibody-mediated rejection, and treated clinical rejections were included together as rejection events. Of 105 patients, 45 (43%) developed de novo DSA. DSA-positive patients had significantly higher rates of coronary artery vasculopathy (CAV) compared with DSA-negative patients (36% vs 13%). CAV-free survival at 1 year and 5 years post-transplant for DSA-negative patients was 90% and 25%, respectively, compared with 70% and 0%, respectively, for DSA-positive patients (p < 0.01). DSA-positive patients had 2.5 times more rejection events per year than DSA-negative patients. The 5-year graft survival rate was 72.4% for DSA-negative patients and 21% for DSA-positive patients (p < 0.001). De novo DSA has a strong negative impact on CAV, rejection, and graft survival in pediatric recipients of heart transplants. Copyright © 2016 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  7. Radiation sterilization of tissue allografts: A review.

    PubMed

    Singh, Rita; Singh, Durgeshwer; Singh, Antaryami

    2016-04-28

    Tissue substitutes are required in a number of clinical conditions for treatment of injured and diseased tissues. Tissues like bone, skin, amniotic membrane and soft tissues obtained from human donor can be used for repair or reconstruction of the injured part of the body. Allograft tissues from human donor provide an excellent alternative to autografts. However, major concern with the use of allografts is the risk of infectious disease transmission. Therefore, tissue allografts should be sterilized to make them safe for clinical use. Gamma radiation has several advantages and is the most suitable method for sterilization of biological tissues. This review summarizes the use of gamma irradiation technology as an effective method for sterilization of biological tissues and ensuring safety of tissue allografts.

  8. Radiation sterilization of tissue allografts: A review

    PubMed Central

    Singh, Rita; Singh, Durgeshwer; Singh, Antaryami

    2016-01-01

    Tissue substitutes are required in a number of clinical conditions for treatment of injured and diseased tissues. Tissues like bone, skin, amniotic membrane and soft tissues obtained from human donor can be used for repair or reconstruction of the injured part of the body. Allograft tissues from human donor provide an excellent alternative to autografts. However, major concern with the use of allografts is the risk of infectious disease transmission. Therefore, tissue allografts should be sterilized to make them safe for clinical use. Gamma radiation has several advantages and is the most suitable method for sterilization of biological tissues. This review summarizes the use of gamma irradiation technology as an effective method for sterilization of biological tissues and ensuring safety of tissue allografts. PMID:27158422

  9. Regulation of basal and reserve cardiac pacemaker function by interactions of cAMP mediated PKA-dependent Ca2+ cycling with surface membrane channels

    PubMed Central

    Vinogradova, Tatiana M.; Lakatta, Edward G.

    2009-01-01

    Decades of intensive research of primary cardiac pacemaker, the sinoatrial node, have established potential roles of specific membrane channels in the generation of the diastolic depolarization, the major mechanism allowing sinoatrial node cells generate spontaneous beating. During the last three decades, multiple studies made either in the isolated sinoatrial node or sinoatrial node cells have demonstrated a pivotal role of Ca2+ and, specifically Ca2+-release from sarcoplasmic reticulum, for spontaneous beating of cardiac pacemaker. Recently, spontaneous, rhythmic local subsarcolemmal Ca2+ releases from ryanodine receptors during late half of the diastolic depolarization have been implicated as a vital factor in the generation of sinoatrial node cells spontaneous firing. Local Ca2+ releases are driven by a unique combination of high basal cAMP production by adenylyl cyclases, high basal cAMP degradation by phosphodiesterases and a high level of cAMP-mediated PKA-dependent phosphorylation. These local Ca2+ releases activate an inward Na+-Ca2+ exchange current which accelerates the terminal diastolic depolarization rate and, thus, controls the spontaneous pacemaker firing. Both the basal primary pacemaker beating rate and its modulation via β-adrenergic receptor stimulation appear to be critically dependent upon intact RyR function and local subsarcolemmal sarcoplasmic reticulum generated Ca2+ releases. This review aspires to integrate the traditional viewpoint that has emphasized the supremacy of the ensemble of surface membrane ion channels in spontaneous firing of the primary cardiac pacemaker, and these novel perspectives of cAMP-mediated PKA-dependent Ca2+ cycling in regulation of the heart pacemaker clock, both in the basal state and during β-adrenergic receptor stimulation. PMID:19573534

  10. Innovations in cardiac transplantation.

    PubMed

    Hasan, Reema; Ela, Ashraf Abou El; Goldstein, Daniel

    2017-03-16

    As the number of people living with heart failure continues to grow, future treatments will focus on efficient donor organ donation and ensuring safe and durable outcomes. This review will focus on organ procurement, graft surveillance and emerging therapies. Preliminary studies into donation after cardiac death have indicated that this may be an effective means to increase the donor pool. Novel preservation techniques that include ex-vivo perfusion to improve donor metabolic stabilization prior to implantation may also expand the donor pool. Biomarkers, including circulating-free DNA, are emerging that could replace the endomyocardial biopsy for acute graft rejection, but we lack a risk predictive biomarker in heart transplantation. Novel immune suppressants are being investigated. Emerging therapeutics to reduce the development of chronic allograft vasculopathy are yet to be found. This review highlights the most recent studies and future possible therapies that will improve outcomes in cardiac transplantation. Larger clinical trials are currently taking place and will be needed in the future to develop and sustain current trends toward better survival rates with cardiac transplantation.

  11. Boosters and barriers for direct cardiac reprogramming.

    PubMed

    Talkhabi, Mahmood; Zonooz, Elmira Rezaei; Baharvand, Hossein

    2017-06-01

    Heart disease is currently the most significant cause of morbidity and mortality worldwide, which accounts for approximately 33% of all deaths. Recently, a promising and alchemy-like strategy has been developed called direct cardiac reprogramming, which directly converts somatic cells such as fibroblasts to cardiac lineage cells such as cardiomyocytes (CMs), termed induced CMs or iCMs. The first in vitro cardiac reprogramming study, mediated by cardiac transcription factors (TFs)-Gata4, Tbx5 and Mef2C-, was not enough efficient to produce an adequate number of fully reprogrammed, functional iCMs. As a result, numerous combinations of cardiac TFs exist for direct cardiac reprogramming of mouse and human fibroblasts. However, the efficiency of direct cardiac reprogramming remains low. Recently, a number of cellular and molecular mechanisms have been identified to increase the efficiency of direct cardiac reprogramming and the quality of iCMs. For example, microgrooved substrate, cardiogenic growth factors [VEGF, FGF, BMP4 and Activin A], and an appropriate stoichiometry of TFs boost the direct cardiac reprogramming. On the other hand, serum, TGFβ signaling, activators of epithelial to mesenchymal transition, and some epigenetic factors (Bmi1 and Ezh2) are barriers for direct cardiac reprogramming. Manipulating these mechanisms by the application of boosters and removing barriers can increase the efficiency of direct cardiac reprogramming and possibly make iCMs reliable for cell-based therapy or other potential applications. In this review, we summarize the latest trends in cardiac TF- or miRNA-based direct cardiac reprogramming and comprehensively discuses all molecular and cellular boosters and barriers affecting direct cardiac reprogramming. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Cardiac integrins the ties that bind.

    PubMed

    Simpson, D G; Reaves, T A; Shih, D T; Burgess, W; Borg, T K; Terracio, L

    1998-01-01

    An elaborate series of morphogenetic events must be precisely coordinated during development to promote the formation of the elaborate three-dimensional structure of the normal heart. In this study we focus on discussing how interconnections between the cardiac myocyte and its surrounding environment regulate cardiac form and function. In vitro experiments from our laboratories provide direct evidence that cardiac cell shape is regulated by a dynamic interaction between constituents of the extracellular matrix (ECM) and by specific members of the integrin family of matrix receptors. Our data indicates that phenotypic information is stored in the tertiary structure and chemical identity of the ECM. This information appears to be actively communicated and transduced by the α1β1 integrin molecule into an intracellular signal that regulates cardiac cell shape and myofibrillar organization. In this study we have assessed the phenotypic consequences of suppressing the expression and accumulation of the α1 integrin molecule in aligned cultures of cardiac myocytes. In related experiments we have examined how the overexpression of α2 and α5 integrin, integrins normally not present or present at very low copy number on the cell surface of neonatal cardiac myocytes, affect cardiac protein metabolism. We also consider how biochemical signals and the mechanical signals mediated by the integrins may converge on common intracellular signaling pathways in the heart. Experiments with the whole embryo culture system indicate that angiotensin II, a peptide that carries information concerning cardiac load, plays a role in controling cardiac looping and the proliferation of myofibrils during development.

  13. Nanotechnology-Based Cardiac Targeting and Direct Cardiac Reprogramming: The Betrothed

    PubMed Central

    Pirozzi, Flora; Abete, Pasquale; Bonaduce, Domenico

    2017-01-01

    Cardiovascular diseases represent the first cause of morbidity in Western countries, and chronic heart failure features a significant health care burden in developed countries. Efforts in the attempt of finding new possible strategies for the treatment of CHF yielded several approaches based on the use of stem cells. The discovery of direct cardiac reprogramming has unveiled a new approach to heart regeneration, allowing, at least in principle, the conversion of one differentiated cell type into another without proceeding through a pluripotent intermediate. First developed for cancer treatment, nanotechnology-based approaches have opened new perspectives in many fields of medical research, including cardiovascular research. Nanotechnology could allow the delivery of molecules with specific biological activity at a sustained and controlled rate in heart tissue, in a cell-specific manner. Potentially, all the mediators and structural molecules involved in the fibrotic process could be selectively targeted by nanocarriers, but to date, only few experiences have been made in cardiac research. This review highlights the most prominent concepts that characterize both the field of cardiac reprogramming and a nanomedicine-based approach to cardiovascular diseases, hypothesizing a possible synergy between these two very promising fields of research in the treatment of heart failure. PMID:29375623

  14. Calcium dynamics in cardiac excitatory and non-excitatory cells and the role of gap junction.

    PubMed

    Das, Phonindra Nath; Mehrotra, Parul; Mishra, Aseem; Bairagi, Nandadulal; Chatterjee, Samrat

    2017-07-01

    Calcium ions aid in the generation of action potential in myocytes and are responsible for the excitation-contraction coupling of heart. The heart muscle has specialized patches of cells, called excitatory cells (EC) such as the Sino-atrial node cells capable of auto-generation of action potential and cells which receive signals from the excitatory cells, called non-excitatory cells (NEC) such as cells of the ventricular and auricular walls. In order to understand cardiac calcium homeostasis, it is, therefore, important to study the calcium dynamics taking into account both types of cardiac cells. Here we have developed a model to capture the calcium dynamics in excitatory and non-excitatory cells taking into consideration the gap junction mediated calcium ion transfer from excitatory cell to non-excitatory cell. Our study revealed that the gap junctional coupling between excitatory and non-excitatory cells plays important role in the calcium dynamics. It is observed that any reduction in the functioning of gap junction may result in abnormal calcium oscillations in NEC, even when the calcium dynamics is normal in EC cell. Sensitivity of gap junction is observed to be independent of the pacing rate and hence a careful monitoring is required to maintain normal cardiomyocyte condition. It also highlights that sarcoplasmic reticulum may not be always able to control the amount of cytoplasmic calcium under the condition of calcium overload. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Biomarker evaluation of face transplant rejection: association of donor T cells with target cell injury.

    PubMed

    Lian, Christine Guo; Bueno, Ericka M; Granter, Scott R; Laga, Alvaro C; Saavedra, Arturo P; Lin, William M; Susa, Joseph S; Zhan, Qian; Chandraker, Anil K; Tullius, Stefan G; Pomahac, Bohdan; Murphy, George F

    2014-06-01

    This series of 113 sequential biopsies of full facial transplants provides findings of potential translational significance as well as biological insights that could prompt reexamination of conventional paradigms of effector pathways in skin allograft rejection. Serial biopsies before, during, and after rejection episodes were evaluated for clinicopathological assessment that in selected cases included specific biomarkers for donor-versus-recipient T cells. Histologic evidence of rejection included lymphocyte-associated injury to epidermal rete ridges, follicular infundibula, and dermal microvessels. Surprisingly, during active rejection, immune cells spatially associated with target cell injury consisted abundantly or predominantly of lymphocytes of donor origin with an immunophenotype typical of the resident memory T-cell subset. Current dogma assumes that skin allograft rejection is mediated by recipient T cells that attack epidermal targets, and the association of donor T cells with sites of target cell injury raises questions regarding the potential complexity of immune cell interactions in the rejection process. A more histopathologically refined and immune-based biomarker approach to assessment of rejection of facial transplants is now indicated.

  16. Mesenchymal Stem Cell Therapy Prevents Interstitial Fibrosis and Tubular Atrophy in a Rat Kidney Allograft Model

    PubMed Central

    Herrero, Esther; Torras, Joan; Ripoll, Elia; Flaquer, Maria; Gomà, Montse; Lloberas, Nuria; Anegon, Ignacio; Cruzado, Josep M.; Grinyó, Josep M.; Herrero-Fresneda, Immaculada

    2012-01-01

    In solid organ transplantation, mesenchymal stem cell (MSC) therapy is strongly emerging among other cell therapies due to the positive results obtained in vitro and in vivo as an immunomodulatory agent and their potential regenerative role. We aimed at testing whether a single dose of MSCs, injected at 11 weeks after kidney transplantation for the prevention of chronic mechanisms, enhanced regeneration and provided protection against the inflammatory and fibrotic processes that finally lead to the characteristic features of chronic allograft nephropathy (CAN). Either bone marrow mononuclear cells (BMCs) injection or no-therapy (NT) were used as control treatments. A rat kidney transplantation model of CAN with 2.5 h of cold ischemia was used, and functional, histological, and molecular parameters were assessed at 12 and 24 weeks after transplantation. MSC and BMC cell therapy preserves renal function at 24 weeks and abrogates proteinuria, which is typical of this model (NT24w: 68.9±26.5 mg/24 h, MSC24w: 16.6±2.3 mg/24 h, BMC24w: 24.1±5.3 mg/24 h, P<0.03). Only MSC-treated animals showed a reduction in interstitial fibrosis and tubular atrophy (NT24w: 2.3±0.29, MSC24w: 0.4±0.2, P<0.03), less T cells (NT: 39.6±9.5, MSC: 8.1±0.9, P<0.03) and macrophages (NT: 20.9±4.7, MSC: 5.9±1.7, P<0.05) infiltrating the parenchyma and lowered expression of inflammatory cytokines while increasing the expression of anti-inflammatory factors. MSCs appear to serve as a protection from injury development rather than regenerate the damaged tissue, as no differences were observed in Ki67 expression, and kidney injury molecule-1, Clusterin, NGAL, and hepatocyte growth factor expression were only up-regulated in nontreated animals. Considering the results, a single delayed MSC injection is effective for the long-term protection of kidney allografts. PMID:22494435

  17. Nonexpanded Adipose Stromal Vascular Fraction Local Therapy on Peripheral Nerve Regeneration Using Allografts.

    PubMed

    Mohammadi, Rahim; Mehrtash, Moein; Mehrtash, Moeid; Sajjadi, Seyedeh-Sepideh

    2016-06-01

    Adipose tissue possesses a population of multi-potent stem cells which can be differentiated to a Schwann cell phenotype and may be of benefit for treatment of peripheral nerve injuries. Effects of local therapy of nonexpanded adipose stromal vascular fraction (SVF) on peripheral nerve regeneration was studied using allografts in a rat sciatic nerve model. Thirty male white Wistar rats were divided into three experimental groups (n = 10), randomly: Sham-operated group (SHAM), allograft group (ALLO), SVF-treated group (ALLO/SVF). In SHAM group left sciatic nerve was exposed through a gluteal muscle incision and after homeostasis muscle was sutured. In the ALLO group the left sciatic nerve was exposed through a gluteal muscle incision and transected proximal to the tibio-peroneal bifurcation where a 10 mm segment was excised. The same procedure was performed in the ALLO/SVF group. The harvested nerves of the rats of ALLO group were served as allograft for ALLO/SVF group and vice versa. The SHAM and ALLO groups received 100 μL phosphate buffered saline and the ALLO/SVF group received 100 μL SVF (2.25 ± 0.45 × 10(7) cells) locally where the grafting was performed. Behavioral, functional, biomechanical, and gastrocnemius muscle mass showed earlier regeneration of axons in ALLO/SVF than in ALLO group (p < .05). Histomorphometic and immunohistochemical studies also showed earlier regeneration of axons in ALLO/SVF than in ALLO group (p < .05). Administration of nonexpanded SVF could accelerate functional recovery after nerve allografting in sciatic nerve. It may have clinical implications for the surgical management of patients after nerve transection.

  18. Human-induced pluripotent stem cell-derived cardiomyocytes from cardiac progenitor cells: effects of selective ion channel blockade.

    PubMed

    Altomare, Claudia; Pianezzi, Enea; Cervio, Elisabetta; Bolis, Sara; Biemmi, Vanessa; Benzoni, Patrizia; Camici, Giovanni G; Moccetti, Tiziano; Barile, Lucio; Vassalli, Giuseppe

    2016-12-01

    Human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes are likely to revolutionize electrophysiological approaches to arrhythmias. Recent evidence suggests the somatic cell origin of hiPSCs may influence their differentiation potential. Owing to their cardiomyogenic potential, cardiac-stromal progenitor cells (CPCs) are an interesting cellular source for generation of hiPSC-derived cardiomyocytes. The effect of ionic current blockade in hiPSC-derived cardiomyocytes generated from CPCs has not been characterized yet. Human-induced pluripotent stem cell-derived cardiomyocytes were generated from adult CPCs and skin fibroblasts from the same individuals. The effect of selective ionic current blockade on spontaneously beating hiPSC-derived cardiomyocytes was assessed using multi-electrode arrays. Cardiac-stromal progenitor cells could be reprogrammed into hiPSCs, then differentiated into hiPSC-derived cardiomyocytes. Human-induced pluripotent stem cell-derived cardiomyocytes of cardiac origin showed higher upregulation of cardiac-specific genes compared with those of fibroblastic origin. Human-induced pluripotent stem cell-derived cardiomyocytes of both somatic cell origins exhibited sensitivity to tetrodotoxin, a blocker of Na +  current (I Na ), nifedipine, a blocker of L-type Ca 2+  current (I CaL ), and E4031, a blocker of the rapid component of delayed rectifier K +  current (I Kr ). Human-induced pluripotent stem cell-derived cardiomyocytes of cardiac origin exhibited sensitivity to JNJ303, a blocker of the slow component of delayed rectifier K +  current (I Ks ). In hiPSC-derived cardiomyocytes of cardiac origin, I Na , I CaL , I Kr , and I Ks were present as tetrodotoxin-, nifedipine-, E4031-, and JNJ303-sensitive currents, respectively. Although cardiac differentiation efficiency was improved in hiPSCs of cardiac vs. non-cardiac origin, no major functional differences were observed between hiPSC-derived cardiomyocytes of different somatic

  19. Chemical genetics and its potential in cardiac stem cell therapy

    PubMed Central

    Vieira, Joaquim M; Riley, Paul R

    2013-01-01

    Over the last decade or so, intensive research in cardiac stem cell biology has led to significant discoveries towards a potential therapy for cardiovascular disease; the main cause of morbidity and mortality in humans. The major goal within the field of cardiovascular regenerative medicine is to replace lost or damaged cardiac muscle and coronaries following ischaemic disease. At present, de novo cardiomyocytes can be generated either in vitro, for cell transplantation or disease modelling using directed differentiation of embryonic stem cells or induced pluripotent stem cells, or in vivo via direct reprogramming of resident adult cardiac fibroblast or ectopic stimulation of resident cardiac stem or progenitor cells. A major bottleneck with all of these approaches is the low efficiency of cardiomyocyte differentiation alongside their relative functional immaturity. Chemical genetics, and the application of phenotypic screening with small molecule libraries, represent a means to enhance understanding of the molecular pathways controlling cardiovascular cell differentiation and, moreover, offer the potential for discovery of new drugs to invoke heart repair and regeneration. Here, we review the potential of chemical genetics in cardiac stem cell therapy, highlighting not only the major contributions to the field so far, but also the future challenges. LINKED ARTICLES This article is part of a themed section on Regenerative Medicine and Pharmacology: A Look to the Future. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.169.issue-2 PMID:22385148

  20. Effect of oxidative insult on young and adult cardiac muscle cells in vitro.

    PubMed

    Nag, A C; Sreepathi, P; Lee, M L; Reddan, J R

    1996-01-01

    The effect of hydrogen peroxide on cultured neonatal and adult cardiac myocytes was investigated. On neonatal cardiac myocytes the effect was very pronounced at a low concentration (0.03 mM), whereas the adult cardiac myocytes were resistant to the same concentration of H2O2. Dividing neonatal cardiac myocytes were more susceptible to H2O2 insult than the non-dividing adult cardiac myocytes. At a concentration of 0.1 mM H2O2, the neonatal cardiac myocytes were significantly damaged compared with the adult cardiac myocytes. Cardiac muscle cells from neonatal and adult hearts at high density culture were more tolerant to the oxidative insult by H2O2 than cells in low density culture. The damaging effect of H2O2 was very selective on F-actin in neonatal and adult cardiac muscle cells. The effect of H2O2 on myosin, titin, alpha-actinin, desmin or tubulin was not pronounced. Microscopical studies suggested a more marked protection by catalase than by glutathione reductase in the neonatal cells.

  1. Comparative Analysis of Telomerase Activity in CD117⁺ CD34⁺ Cardiac Telocytes with Bone Mesenchymal Stem Cells, Cardiac Fibroblasts and Cardiomyocytes.

    PubMed

    Li, Yuan-Yuan; Lu, Shan-Shan; Xu, Ting; Zhang, Hong-Qi; Li, Hua

    2015-07-20

    This study characterized the cardiac telocyte (TC) population both in vivo and in vitro, and investigated its telomerase activity related to mitosis. Using transmission electron microscopy and a phase contrast microscope, the typical morphological features of cardiac TCs were observed; by targeting the cell surface proteins CD117 and CD34, CD117 + CD34 + cardiac TCs were sorted via flow cytometry and validated by immunofluorescence based on the primary cell culture. Then the optimized basal nutrient medium for selected population was examined with the cell counting kit 8. Under this conditioned medium, the process of cell division was captured, and the telomerase activity of CD117 + CD34 + cardiac TCs was detected in comparison with bone mesenchymal stem cells (BMSCs), cardiac fibroblasts (CFBs), cardiomyocytes (CMs). Cardiac TCs projected characteristic telopodes with thin segments (podomers) in alternation with dilation (podoms). In addition, 64% of the primary cultured cardiac TCs were composed of CD117 + CD34 + cardiac TCs; which was verified by immunofluorescence. In a live cell imaging system, CD117 + CD34 + cardiac TCs were observed to enter into cell division in a short time, followed by an significant invagination forming across the middle of the cell body. Using a real-time quantitative telomeric-repeat amplification assay, the telomerase concentration in CD117 + CD34 + cardiac TCs was obviously lower than in BMSCs and CFBs, and significantly higher than in CMs. Cardiac TCs represent a unique cell population and CD117 + CD34 + cardiac TCs have relative low telomerase activity that differs from BMSCs, CFBs and CMs and thus they might play an important role in maintaining cardiac homeostasis.

  2. Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells in Phenotypic Screening: A Transforming Growth Factor-β Type 1 Receptor Kinase Inhibitor Induces Efficient Cardiac Differentiation.

    PubMed

    Drowley, Lauren; Koonce, Chad; Peel, Samantha; Jonebring, Anna; Plowright, Alleyn T; Kattman, Steven J; Andersson, Henrik; Anson, Blake; Swanson, Bradley J; Wang, Qing-Dong; Brolen, Gabriella

    2016-02-01

    Several progenitor cell populations have been reported to exist in hearts that play a role in cardiac turnover and/or repair. Despite the presence of cardiac stem and progenitor cells within the myocardium, functional repair of the heart after injury is inadequate. Identification of the signaling pathways involved in the expansion and differentiation of cardiac progenitor cells (CPCs) will broaden insight into the fundamental mechanisms playing a role in cardiac homeostasis and disease and might provide strategies for in vivo regenerative therapies. To understand and exploit cardiac ontogeny for drug discovery efforts, we developed an in vitro human induced pluripotent stem cell-derived CPC model system using a highly enriched population of KDR(pos)/CKIT(neg)/NKX2.5(pos) CPCs. Using this model system, these CPCs were capable of generating highly enriched cultures of cardiomyocytes under directed differentiation conditions. In order to facilitate the identification of pathways and targets involved in proliferation and differentiation of resident CPCs, we developed phenotypic screening assays. Screening paradigms for therapeutic applications require a robust, scalable, and consistent methodology. In the present study, we have demonstrated the suitability of these cells for medium to high-throughput screens to assess both proliferation and multilineage differentiation. Using this CPC model system and a small directed compound set, we identified activin-like kinase 5 (transforming growth factor-β type 1 receptor kinase) inhibitors as novel and potent inducers of human CPC differentiation to cardiomyocytes. Significance: Cardiac disease is a leading cause of morbidity and mortality, with no treatment available that can result in functional repair. This study demonstrates how differentiation of induced pluripotent stem cells can be used to identify and isolate cell populations of interest that can translate to the adult human heart. Two separate examples of phenotypic

  3. Allograft-prosthesis composites after bone tumor resection at the proximal tibia.

    PubMed

    Biau, David Jean; Dumaine, Valérie; Babinet, Antoine; Tomeno, Bernard; Anract, Philippe

    2007-03-01

    The survival of irradiated allograft-prosthesis composites at the proximal tibia is mostly unknown. However, allograft-prosthesis composites have proved beneficial at other reconstruction sites. We presumed allograft-prosthesis composites at the proximal tibia would improve survival and facilitate reattachment of the extensor mechanism compared with that of conventional (megaprostheses) reconstructions. We retrospectively reviewed 26 patients who underwent resection of proximal tibia tumors followed by reconstruction with allo-graft-prosthesis composites. Patients received Guepar massive custom-made fully constrained prostheses. Allografts were sterilized with gamma radiation, and the stems were cemented into the allograft and host bone. The minimum followup was 6 months (median, 128 months; range, 6-195 months). Fourteen patients had one or more components removed. The median allograft-prosthesis composite survival was 102 months (95% confidence interval, 64.2-infinity). Of the 26 allografts, seven fractured, six showed signs of partial resorption, and six had infections develop. Seven allografts showed signs of fusion with the host bone. Six extensor mechanism reconstructions failed. Allograft-prosthesis composites sterilized by gamma radiation yielded poor results for proximal tibial reconstruction as complications and failures were common. We do not recommend irradiated allograft-prosthesis composites for proximal tibia reconstruction.

  4. Histomorphological Assessment of Phlebitis in Renal Allografts

    PubMed Central

    Jurčić, Vesna; Jeruc, Jera; Marić, Stela; Ferluga, Dušan

    2007-01-01

    Aim To evaluate the histomorphological features of veins in normal and transplanted kidneys. Methods Between 1992 and 1997 at the Institute of Pathology in Ljubljana, we semiquantitatively evaluated histomorphological changes in veins in nephrectomy specimens of 29 renal allografts with rejection and in 31 control kidneys. The structure of different segments of renal veins was additionally analyzed. Results Small interlobular veins were composed of endothelium and basement membrane, similar to capillaries, while the walls of large interlobular and arcuate veins had smooth muscle cell bundles forming the medial layer, similar to large extrarenal veins. In the control group, only focal mononuclear infiltration around small interlobular veins was found (8/31). In rejected kidney allografts, the veins were frequently infiltrated with inflammatory cells, predominantly T lymphocytes and macrophages (29/29). Other changes included thrombosis (16/29), fibrinoid necrosis (7/29), and sclerosis (9/29), and in one case an intimal lipid deposition. Conclusion This study, performed on whole explanted kidney specimens, revealed that rejection vasculitis often involved extrarenal and intrarenal veins, showing a whole spectrum of histopathological changes similar to those in arteries. Since large intrarenal veins have a muscle wall, we believe that the term »rejection phlebitis« could be used in renal transplant pathology. PMID:17589975

  5. Angiotensin II promotes differentiation of mouse c-kit-positive cardiac stem cells into pacemaker-like cells

    PubMed Central

    XUE, CHENG; ZHANG, JUN; LV, ZHAN; LIU, HUI; HUANG, CONGXIN; YANG, JING; WANG, TEN

    2015-01-01

    Cardiac stem cells (CSCs) can differentiate into cardiac muscle-like cells; however, it remains unknown whether CSCs may possess the ability to differentiate into pacemaker cells. The aim of the present study was to determine whether angiotensin II (Ang II) could promote the specialization of CSCs into pacemaker-like cells. Mouse CSCs were treated with Ang II from day 3–5, after cell sorting. The differentiation potential of the cells was then analyzed by morphological analysis, flow cytometry, reverse transcription-polymerase chain reaction, immunohistochemistry and patch clamp analysis. Treatment with Ang II resulted in an increased number of cardiac muscle-like cells (32.7±4.8% vs. 21.5±4.8%; P<0.05), and inhibition of smooth muscle-like cells (6.2±7.3% vs. 20.5±5.1%; P<0.05). Following treatment with Ang II, increased levels of the cardiac progenitor-specific markers GATA4 and Nkx2.5 were observed in the cells. Furthermore, the transcript levels of pacemaker function-related genes, including hyperpolarization-activated cyclic nucleotide-gated (HCN)2, HCN4, T-box (Tbx)2 and Tbx3, were significantly upregulated. Immunofluorescence analysis confirmed the increased number of pacemaker-like cells. The pacemaker current (If) was recorded in the cells derived from CSCs, treated with Ang II. In conclusion, treatment of CSCs with Ang II during the differentiation process modified cardiac-specific gene expression and resulted in the enhanced formation of pacemaker-like cells. PMID:25572000

  6. Musculoskeletal allograft risks and recalls in the United States.

    PubMed

    Mroz, Thomas E; Joyce, Michael J; Steinmetz, Michael P; Lieberman, Isador H; Wang, Jeffrey C

    2008-10-01

    There have been several improvements to the US tissue banking industry over the past decade. Tissue banks had limited active government regulation until 1993, at which time the US Food and Drug Administration began regulatory oversight because of reports of disease transmission from allograft tissues. Reports in recent years of disease transmission associated with the use of allografts have further raised concerns about the safety of such implants. A retrospective review of allograft recall data was performed to analyze allograft recall by tissue type, reason, and year during the period from January 1994 to June 30, 2007. During the study period, more than 96.5% of all allograft tissues recalled were musculoskeletal. The reasons underlying recent musculoskeletal tissue recalls include insufficient or improper donor evaluation, contamination, recipient infection, and positive serologic tests. Infectious disease transmission following allograft implantation may occur if potential donors are not adequately evaluated or screened serologically during the prerecovery phase and if the implant is not sterilized before implantation.

  7. Management of sickle cell disease in patients undergoing cardiac surgery.

    PubMed

    Crawford, Todd C; Carter, Michael V; Patel, Rina K; Suarez-Pierre, Alejandro; Lin, Sophie Z; Magruder, Jonathan Trent; Grimm, Joshua C; Cameron, Duke E; Baumgartner, William A; Mandal, Kaushik

    2017-02-01

    Sickle cell disease is a life-limiting inherited hemoglobinopathy that poses inherent risk for surgical complications following cardiac operations. In this review, we discuss preoperative considerations, intraoperative decision-making, and postoperative strategies to optimize the care of a patient with sickle cell disease undergoing cardiac surgery. © 2017 Wiley Periodicals, Inc.

  8. A bird's-eye view of cell therapy and tissue engineering for cardiac regeneration.

    PubMed

    Soler-Botija, Carolina; Bagó, Juli R; Bayes-Genis, Antoni

    2012-04-01

    Complete recovery of ischemic cardiac muscle after myocardial infarction is still an unresolved concern. In recent years, intensive research efforts have focused on mimicking the physical and biological properties of myocardium for cardiac repair. Here we show how heart regeneration approaches have evolved from cell therapy to refined tissue engineering. Despite progressive improvements, the best cell type and delivery strategy are not well established. Our group has identified a new population of cardiac adipose tissue-derived progenitor cells with inherent cardiac and angiogenic potential that is a promising candidate for cell therapy to restore ischemic myocardium. We also describe results from three strategies for cell delivery into a murine model of myocardial infarction: intramyocardial injection, implantation of a fibrin patch loaded with cells, and an engineered bioimplant (a combination of chemically designed scaffold, peptide hydrogel, and cells); dual-labeling noninvasive bioluminescence imaging enables in vivo monitoring of cardiac-specific markers and cell survival. © 2012 New York Academy of Sciences.

  9. A Small Molecule β2 Integrin Agonist Improves Chronic Kidney Allograft Survival by Reducing Leukocyte Recruitment and Accompanying Vasculopathy

    PubMed Central

    Khan, Samia Q.; Guo, Lingling; Cimbaluk, David J.; Elshabrawy, Hatem; Faridi, Mohd Hafeez; Jolly, Meenakshi; George, James F.; Agarwal, Anupam; Gupta, Vineet

    2014-01-01

    Kidney allograft rejection is associated with infiltration of inflammatory CD11b+ leukocytes. A CD11b agonist leukadherin-1 (LA1) increases leukocyte adhesion, preventing their transmigration and tissue recruitment in vivo. Here, we test the extent to which LA1-mediated activation of CD11b/CD18 enhances kidney allograft survival in a mouse model of fully MHC-mismatched orthotopic kidney transplantation, where C57BL/6J (H-2b) recipients received kidney allografts from Balb/c mice (H-2d). Isograft control recipients received a kidney from a littermate. Control isograft and allograft recipients were treated daily with cyclosporine (CsA) for 2 weeks, while the test group received CsA therapy and daily LA1 injections during week 1 and alternate days during weeks 2–8. LA1 treatment reduced interstitial leukocyte infiltration in the allograft, reduced neointimal hyperplasia and glomerular damage, and prolonged graft survival from 48.5% (CsA only) to 100% (CsA and LA1) on day 60. Serum creatinine levels showed significantly improved kidney function in LA1-treated mice compared to CsA-treated allograft controls [0.52 ± 0.18 mg/dL vs 0.24 ± 0.07 mg/dL (n = 5), respectively]. Furthermore, combination therapy reduced macrophage infiltration and increased the frequency of FoxP3 + Tregs in the allograft. These findings indicate a crucial role for CD11b/CD18 in the control of leukocyte migration to the transplanted kidney and identify integrin agonist LA1 as a novel potential therapeutic agent for kidney transplantation. PMID:25593918

  10. Noninvasive PET quantitative myocardial blood flow with regadenoson for assessing cardiac allograft vasculopathy in orthotopic heart transplantation patients.

    PubMed

    Pampaloni, Miguel Hernandez; Shrestha, Uttam M; Sciammarella, Maria; Seo, Youngho; Gullberg, Grant T; Botvinick, Elias H

    2017-08-01

    Risk stratification and early detection of cardiac allograft vasculopathy (CAV) is essential in orthotopic heart transplantation (OHT) patients. This study assesses the changes in myocardial blood flow (MBF) noninvasively in OHT patients using quantitative cardiac PET with regadenoson. Twelve patients (Group 1) (8 males, 4 females, mean age 55 ± 7 years) with no history of post OHT myocardial ischemia were enrolled 5.4 ± 2.0 years after OHT. Fifteen patients (Group 2) (9 males, 6 females, mean age 71 ± 9 years) with intermediate pretest probability but not documented evidence for coronary artery disease (CAD) were also included to serve as control. Global and regional MBFs were assessed using dynamic 13 N-NH 3 PET at rest and during regadenoson-induced hyperemia. The coronary flow reserve (CFR) was also calculated as the ratio of hyperemic to resting MBF. Mean regadenoson-induced rate-pressure products were similar in both groups, while there was an increase in resting rate-pressure product in Group 1 patients. Both mean and median values of resting MBF were higher in Group 1 than Group 2 patients (1.33 ± 0.31 and 1.01 ± 0.21 mL/min/g for Groups 1 and 2, respectively, P < .001), while mean hyperemic MBF values were similar in both Groups (2.68 ± 0.84 and 2.64 ± 0.94 mL/min/g, P = NS) but median hyperemic MBF values were lower in Group 1 than Group 2 patients (2.0 vs. 2.60 mL/min/g, P = .018). Both mean and median CFR values demonstrated a significant reduction for Group 1 compared to Group 2 patients (2.07 ± 0.74 vs 2.63 ± 0.48, P = .025). This study suggests that the MBF in OHT patients may be abnormal at resting state with diminished CFR. This hints that the epicardial and microvascular coronary subsystem may be exacerbated after OHT leading to the gradual progression of CAV.

  11. Treatment of Articular Cartilage Defects in the Goat with Frozen Versus Fresh Osteochondral Allografts: Effects on Cartilage Stiffness, Zonal Composition, and Structure at Six Months

    PubMed Central

    Pallante, Andrea L.; Görtz, Simon; Chen, Albert C.; Healey, Robert M.; Chase, Derek C.; Ball, Scott T.; Amiel, David; Sah, Robert L.; Bugbee, William D.

    2012-01-01

    this animal model, frozen allografts displayed signs of failure at six months, with cartilage softening, loss of cells and matrix, and/or graft subsidence, supporting the importance of maintaining cell viability during allograft storage and suggesting that outcomes at six months may be indicative of long-term (dys)function. Clinical Relevance: Fresh versus frozen allografts represent the “best versus worst” conditions with respect to chondrocyte viability, but “difficult versus simple” with respect to acquisition and distribution. The outcomes described from these two conditions expand the current understanding of in vivo cartilage remodeling and describe structural properties (initial graft subsidence), which may have implications for impending graft failure. PMID:23138239

  12. Production of zebrafish cardiospheres and cardiac progenitor cells in vitro and three-dimensional culture of adult zebrafish cardiac tissue in scaffolds.

    PubMed

    Zeng, Wendy R; Beh, Siew-Joo; Bryson-Richardson, Robert J; Doran, Pauline M

    2017-09-01

    The hearts of adult zebrafish (Danio rerio) are capable of complete regeneration in vivo even after major injury, making this species of particular interest for understanding the growth and differentiation processes required for cardiac tissue engineering. To date, little research has been carried out on in vitro culture of adult zebrafish cardiac cells. In this work, progenitor-rich cardiospheres suitable for cardiomyocyte differentiation and myocardial regeneration were produced from adult zebrafish hearts. The cardiospheres contained a mixed population of c-kit + and Mef2c + cells; proliferative peripheral cells of possible mesenchymal lineage were also observed. Cellular outgrowth from cardiac explants and cardiospheres was enhanced significantly using conditioned medium harvested from cultures of a rainbow trout cell line, suggesting that fish-specific trophic factors are required for zebrafish cardiac cell expansion. Three-dimensional culture of zebrafish heart cells in fibrous polyglycolic acid (PGA) scaffolds was carried out under dynamic fluid flow conditions. High levels of cell viability and cardiomyocyte differentiation were maintained within the scaffolds. Expression of cardiac troponin T, a marker of differentiated cardiomyocytes, increased during the first 7 days of scaffold culture; after 15 days, premature disintegration of the biodegradable scaffolds led to cell detachment and a decline in differentiation status. This work expands our technical capabilities for three-dimensional zebrafish cardiac cell culture with potential applications in tissue engineering, drug and toxicology screening, and ontogeny research. Biotechnol. Bioeng. 2017;114: 2142-2148. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Cytomegalovirus infection and disease reduce 10-year cardiac allograft vasculopathy-free survival in heart transplant recipients.

    PubMed

    Johansson, Inger; Andersson, Rune; Friman, Vanda; Selimovic, Nedim; Hanzen, Lars; Nasic, Salmir; Nyström, Ulla; Sigurdardottir, Vilborg

    2015-12-24

    Cytomegalovirus (CMV) is associated with an increased risk of cardiac allograft vasculopathy (CAV), the major limiting factor for long-term survival after heart transplantation (HTx). The purpose of this study was to evaluate the impact of CMV infection during long-term follow-up after HTx. A retrospective, single-centre study analyzed 226 HTx recipients (mean age 45 ± 13 years, 78 % men) who underwent transplantation between January 1988 and December 2000. The incidence and risk factors for CMV infection during the first year after transplantation were studied. Risk factors for CAV were included in an analyses of CAV-free survival within 10 years post-transplant. The effect of CMV infection on the grade of CAV was analyzed. Survival to 10 years post-transplant was higher in patients with no CMV infection (69 %) compared with patients with CMV disease (55 %; p = 0.018) or asymptomatic CMV infection (54 %; p = 0.053). CAV-free survival time was higher in patients with no CMV infection (6.7 years; 95 % CI, 6.0-7.4) compared with CMV disease (4.2 years; CI, 3.2-5.2; p < 0.001) or asymptomatic CMV infection (5.4 years; CI, 4.3-6.4; p = 0.013). In univariate analysis, recipient age, donor age, coronary artery disease (CAD), asymptomatic CMV infection and CMV disease were significantly associated with CAV-free survival. In multivariate regression analysis, CMV disease, asymptomatic CMV infection, CAD and donor age remained independent predictors of CAV-free survival at 10 years post-transplant. CAV-free survival was significantly reduced in patients with CMV disease and asymptomatic CMV infection compared to patients without CMV infection. These findings highlight the importance of close monitoring of CMV viral load and appropriate therapeutic strategies for preventing asymptomatic CMV infection.

  14. Pathologic Stimulus Determines Lineage Commitment of Cardiac C-kit+ Cells.

    PubMed

    Chen, Zhongming; Zhu, Wuqiang; Bender, Ingrid; Gong, Wuming; Kwak, Il-Youp; Yellamilli, Amritha; Hodges, Thomas J; Nemoto, Natsumi; Zhang, Jianyi; Garry, Daniel J; van Berlo, Jop H

    2017-12-12

    Although cardiac c-kit + cells are being tested in clinical trials, the circumstances that determine lineage differentiation of c-kit + cells in vivo are unknown. Recent findings suggest that endogenous cardiac c-kit + cells rarely contribute cardiomyocytes to the adult heart. We assessed whether various pathological stimuli differentially affect the eventual cell fates of c-kit + cells. We used single-cell sequencing and genetic lineage tracing of c-kit + cells to determine whether various pathological stimuli would result in different fates of c-kit + cells. Single-cell sequencing of cardiac CD45 - c-kit + cells showed innate heterogeneity, indicative of the existence of vascular and mesenchymal c-kit + cells in normal hearts. Cardiac pressure overload resulted in a modest increase in c-kit-derived cardiomyocytes, with significant increases in the numbers of endothelial cells and fibroblasts. Doxorubicin-induced acute cardiotoxicity did not increase c-kit-derived endothelial cell fates but instead induced cardiomyocyte differentiation. Mechanistically, doxorubicin-induced DNA damage in c-kit + cells resulted in expression of p53. Inhibition of p53 blocked cardiomyocyte differentiation in response to doxorubicin, whereas stabilization of p53 was sufficient to increase c-kit-derived cardiomyocyte differentiation. These results demonstrate that different pathological stimuli induce different cell fates of c-kit + cells in vivo. Although the overall rate of cardiomyocyte formation from c-kit + cells is still below clinically relevant levels, we show that p53 is central to the ability of c-kit + cells to adopt cardiomyocyte fates, which could lead to the development of strategies to preferentially generate cardiomyocytes from c-kit + cells. © 2017 American Heart Association, Inc.

  15. Hepatitis B transmission by cell and tissue allografts: How safe is safe enough?

    PubMed Central

    Solves, Pilar; Mirabet, Vicente; Alvarez, Manuel

    2014-01-01

    More than 2 million human tissue transplants (bone, tendon, cartilage, skin, cornea, amniotic membrane, stem cells, heart valve, blood vessel, etc.), are performed worldwide every year. Cells and tissues are shared between countries which have different regulations and laboratory equipment and represent a risk of hepatitis B virus (HBV) transmission that has become a global safety concern. While the risk of transfusion-transmitted HBV infection from blood donations has been estimated, the rate of HBV transmission from donors to recipients of allografts is unknown and varies between different tissues. There are various important ways of reducing the transmission risk, but donor screening and donor testing are still the main factors for preventing HBV transmission. HBV detection is included in the routine screening tests for cell and tissue donors. The standard test for preventing transplant-transmitted hepatitis B is the hepatitis B surface antigen. The implementation of methods involving nucleic acid amplification and the new generation of reactives to detect viral antibodies or antigens with an immunoassay, has increased the sensitivity and the specificity of the screening tests. The objective of our research was to review the literature and critically analyse the different steps for avoiding HBV transmission in cell and tissue donors, focusing on the screening tests performed. PMID:24966613

  16. c-kit Positive Cardiac Outgrowth Cells Demonstrate Better Ability for Cardiac Recovery Against Ischemic Myopathy.

    PubMed

    Li, Chuan; Matsushita, Satoshi; Li, Zhengqing; Guan, Jianjun; Amano, Atsushi

    2017-10-01

    Resident cardiac stem cells are expected to be a therapeutic option for patients who suffer from severe heart failure. However, uncertainty remains over whether sorting cells for c-kit, a stem cell marker, improves therapeutic outcomes. Cardiac outgrowth cells cultured from explants of rat heart atrium were sorted according to their positivity (+) or negativity (-) for c-kit. These cells were exposed to hypoxia for 3 d, and subsequently harvested for mRNA expression measurement. The cell medium was also collected to assess cytokine secretion. To test for a functional benefit in animals, myocardial infarction (MI) was induced in rats, and c-kit+ or c-kit- cells were injected. The left ventricular ejection fraction (LVEF) was measured for up to 4 weeks, after which the heart was harvested for biological and histological analyses. Expression of the angiogenesis-related genes, VEGF and ANGPTL2, was significantly higher in c-kit+ cells after 3 d of hypoxic culture, although we found no such difference prior to hypoxia. Secretion of VEGF and ANGPTL2 was greater in the c-kit+ group than in the c-kit- group, while hypoxia tended to increase cytokine expression in both groups. In addition, IGF-1 was significantly increased in the c-kit+ group, consistent with the relatively low expression of cleaved-caspase 3 revealed by western blot assay, and the relatively low count of apoptotic cells revealed by histochemical analysis. Administration of c-kit+cells into the MI heart improved the LVEF and increased neovascularization. These results indicate that c-kit+cells may be useful in cardiac stem cell therapy.

  17. Endogenous Cardiac Troponin T Modulates Ca2+-Mediated Smooth Muscle Contraction

    PubMed Central

    Kajioka, Shunichi; Takahashi-Yanaga, Fumi; Shahab, Nouval; Onimaru, Mitsuho; Matsuda, Miho; Takahashi, Ryosuke; Asano, Haruhiko; Morita, Hiromitsu; Morimoto, Sachio; Yonemitsu, Yoshikazu; Hayashi, Maya; Seki, Narihito; Sasaguri, Toshiuyki; Hirata, Masato; Nakayama, Shinsuke; Naito, Seiji

    2012-01-01

    Mechanisms linked to actin filaments have long been thought to cooperate in smooth muscle contraction, although key molecules were unclear. We show evidence that cardiac troponin T (cTnT) substantially contributes to Ca2+-mediated contraction in a physiological range of cytosolic Ca2+ concentration ([Ca2+]i). cTnT was detected in various smooth muscles of the aorta, trachea, gut and urinary bladder, including in humans. Also, cTnT was distributed along with tropomyosin in smooth muscle cells, suggesting that these proteins are ready to cause smooth muscle contraction. In chemically permeabilised smooth muscle of cTnT+/− mice in which cTnT reduced to ~50%, the Ca2+-force relationship was shifted toward greater [Ca2+]i, indicating a sizeable contribution of cTnT to smooth muscle contraction at [Ca2+]i < 1 μM. Furthermore, addition of supplemental TnI and TnC reconstructed a troponin system to enhance contraction. The results indicated that a Tn/Tn-like system on actin-filaments cooperates together with the thick-filament pathway. PMID:23248744

  18. Bone tissue engineering by way of allograft revitalization: mechanistic and mechanical investigations using a porcine model.

    PubMed

    Runyan, Christopher M; Ali, Samantha T; Chen, Wendy; Calder, Bennet W; Rumburg, Aaron E; Billmire, David A; Taylor, Jesse A

    2014-05-01

    "Allograft revitalization" is a process in which cadaveric bone is used to generate well-vascularized living bone. We had previously found that porcine allograft hemimandibles filled with autologous adipose-derived stem cells (ASCs) and recombinant human bone morphogenetic protein-2-soaked absorbable collagen sponge (rhBMP-2/ACS) were completely replaced by vascularized bone, provided the construct had been incubated within a periosteal envelope. The present study sought to deepen our understanding of allograft revitalization by investigating the individual contributions of ASCs and rhBMP-2 in the process and the mechanical properties of the revitalized allograft. Porcine allograft hemimandible constructs were implanted bilaterally into rib periosteal envelopes in 8 pigs. To examine the contributions of ASCs and rhBMP-2, the following groups were assessed: group 1, periosteum alone; group 2, periosteum+ASCs; group 3, periosteum+rhBMP-2/ACS; and group 4, periosteum+ASCs+rhBMP-2/ACS. After 8 weeks, the allograft constructs were harvested for micro-computed tomography (CT) and histologic analyses and 3-point bending to assess the strength. On harvesting, the constructs receiving rhBMP-2/ACS had significantly greater bone shown by micro-CT than those receiving periosteum only (51,463 vs. 34,310 mm3; P = .031). The constructs receiving ASCs had increased bone compared to group 1 (periosteum only), although not significantly (P = .087). The combination of rhBMP-2/ACS with ASCs produced bone (50,399 mm3) equivalent to that of the constructs containing rhBMP-2/ACS only. The 3-point bending tests showed no differences between the 4 groups and a nonimplanted allograft or native mandible (P = .586), suggesting the absence of decreased strength of the allograft bone when revitalized. These data have shown that rhBMP-2/ACS significantly stimulates new bone formation by way of allograft revitalization and that the revitalized allograft has equivalent mechanical strength to

  19. Skin allograft and vascularized composite allograft: potential for long-term efficacy in the context of lymphatic modulation.

    PubMed

    Rinkinen, Jacob; Selley, Ryan; Agarwal, Shailesh; Loder, Shawn; Levi, Benjamin

    2014-01-01

    Tissue transplantation restores form and function in burn patients. The treatment of burn injuries is influenced by severity, location, and the percentage of total body surface area. There have been a number of different techniques developed to temporize and repair the destroyed tissue. However, in patients with large wound burden, sufficient donor site tissue may not be available for autograft harvesting. Such extensive burns necessitate other temporary and permanent options for wound coverage such as skin or vascularized composite allografts (VCA). Rejection of these tissues presents an ongoing problem which is currently managed using a host of systemic immunosuppressive medications. This article discusses the mechanism behind the innate and adaptive immune systems rejection of the allografts. By understanding these pathways, various techniques using immunomodulatory protocols have led to increased allograft survival. However, our primary interest lies in the initial recognition of the graft. We tailor this article to have a specific emphasis on lymphatic modulation as a potential adjunctive therapy. Reviews of the studies evaluating the effect of lymph node modulation on graft survival are described with future implications to allograft transplant research.

  20. Deterministic Encapsulation of Human Cardiac Stem Cells in Variable Composition Nanoporous Gel Cocoons To Enhance Therapeutic Repair of Injured Myocardium.

    PubMed

    Kanda, Pushpinder; Alarcon, Emilio I; Yeuchyk, Tanya; Parent, Sandrine; de Kemp, Robert A; Variola, Fabio; Courtman, David; Stewart, Duncan J; Davis, Darryl R

    2018-04-20

    Although cocooning explant-derived cardiac stem cells (EDCs) in protective nanoporous gels (NPGs) prior to intramyocardial injection boosts long-term cell retention, the number of EDCs that finally engraft is trivial and unlikely to account for salutary effects on myocardial function and scar size. As such, we investigated the effect of varying the NPG content within capsules to alter the physical properties of cocoons without influencing cocoon dimensions. Increasing NPG concentration enhanced cell migration and viability while improving cell-mediated repair of injured myocardium. Given that the latter occurred with NPG content having no detectable effect on the long-term engraftment of transplanted cells, we found that changing the physical properties of cocoons prompted explant-derived cardiac stem cells to produce greater amounts of cytokines, nanovesicles, and microRNAs that boosted the generation of new blood vessels and new cardiomyocytes. Thus, by altering the physical properties of cocoons by varying NPG content, the paracrine signature of encapsulated cells can be enhanced to promote greater endogenous repair of injured myocardium.

  1. Pericardial constriction after cardiac transplantation.

    PubMed

    Bansal, Ramesh; Perez, Leandro; Razzouk, Anees; Wang, Nan; Bailey, Leonard

    2010-03-01

    In this study we present a series of 5 cases that developed constrictive pericarditis after orthotopic heart transplantation. All 5 patients had pericardial effusion of non-infectious etiology in the early post-transplant period. They subsequently presented with heart failure unresponsive to standard medical management. The diagnosis was made by comprehensive echo-Doppler studies. Findings were confirmed at surgical inspection and complete pericardiectomy led to improvement in hemodynamics in 4 patients. One patient had relief from constriction but died of non-cardiac complications. One patient with constriction has been re-listed for transplantation due to intermittent heart block and associated cardiac allograft vasculopathy. Early diagnosis of pericardial constriction after orthotopic heart transplantation requires a high index of clinical suspicion and optimal use of Doppler echocardiography. Early diagnosis and timely surgical pericardiectomy may correct this condition entirely and result in satisfactory long-term results.

  2. High glucose-induced Ca2+ overload and oxidative stress contribute to apoptosis of cardiac cells through mitochondrial dependent and independent pathways.

    PubMed

    Kumar, Sandeep; Kain, Vasundhara; Sitasawad, Sandhya L

    2012-07-01

    Cardiac cell apoptosis is the initiating factor of cardiac complications especially diabetic cardiomyopathy. Mitochondria are susceptible to the damaging effects of elevated glucose condition. Calcium overload and oxidative insult are the two mutually non-exclusive phenomena suggested to cause cardiac dysfunction. Here, we examined the effect of high-glucose induced calcium overload in calpain-1 mediated cardiac apoptosis in an in vitro setting. H9c2, rat ventricular myoblast cell line was treated with elevated glucose condition and the cellular consequences were studied. Intracellular calcium trafficking, ROS generation, calpain-1 activation and caspase-12 and caspase-9 pathway were studied using flow cytometry, confocal microscopy and Western blot analysis. High-glucose treatment resulted in increased intracellular calcium ([Ca2+]i) which was mobilized to the mitochondria. Concomitant intra-mitochondrial calcium ([Ca2+]m) increase resulted in enhanced reactive oxygen and nitrogen species generation. These events led to mitochondrial dysfunction and apoptosis. Cardiomyocyte death exhibited several classical markers of apoptosis, including activation of caspases, appearance of annexin V on the outer plasma membrane, increased population of cells with sub-G0/G1 DNA content and nuclear condensation. Key findings include elucidation of cell signaling mechanism of high-glucose induced calcium-dependent cysteine protease calpain-1 activation, which triggers non-conventional caspases as alternate mode of cell death. This information increases the understanding of cardiac cell death under hyperglycemic condition and can possibly be extended for designing new therapeutic strategies for diabetic cardiomyopathy. The novel findings of the study reveal that high glucose induces apoptosis by both mitochondria-dependent and independent pathways via concomitant rise in intracellular calcium. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Acceleration of Regeneration of Large Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts plus amniotic Fluid Derived Stem Cells (AFS)

    DTIC Science & Technology

    2016-09-01

    AWARD NUMBER: W811XWH-13-1-0310 TITLE: Acceleration of Regeneration of Large-Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts...plus amniotic Fluid Derived Stem Cells (AFS). PRINCIPAL INVESTIGATOR: Zhongyu Li, MD, PhD RECIPIENT: Wake Forest University Health Sciences...REPORT DATE September 2016 2. REPORT TYPE Annual 3. DATES COVERED 1Sep2015 - 31Aug2016 4. TITLE AND SUBTITLE Acceleration of Regeneration of Large

  4. Local delivery of FTY720 accelerates cranial allograft incorporation and bone formation.

    PubMed

    Huang, Cynthia; Das, Anusuya; Barker, Daniel; Tholpady, Sunil; Wang, Tiffany; Cui, Quanjun; Ogle, Roy; Botchwey, Edward

    2012-03-01

    Endogenous stem cell recruitment to the site of skeletal injury is key to enhanced osseous remodeling and neovascularization. To this end, this study utilized a novel bone allograft coating of poly(lactic-co-glycolic acid) (PLAGA) to sustain the release of FTY720, a selective agonist for sphingosine 1-phosphate (S1P) receptors, from calvarial allografts. Uncoated allografts, vehicle-coated, low dose FTY720 in PLAGA (1:200 w:w) and high dose FTY720 in PLAGA (1:40) were implanted into critical size calvarial bone defects. The ability of local FTY720 delivery to promote angiogenesis, maximize osteoinductivity and improve allograft incorporation by recruitment of bone progenitor cells from surrounding soft tissues and microcirculation was evaluated. FTY720 bioactivity after encapsulation and release was confirmed with sphingosine kinase 2 assays. HPLC-MS quantified about 50% loaded FTY720 release of the total encapsulated drug (4.5 μg) after 5 days. Following 2 weeks of defect healing, FTY720 delivery led to statistically significant increases in bone volumes compared to controls, with total bone volume increases for uncoated, coated, low FTY720 and high FTY720 of 5.98, 3.38, 7.2 and 8.9 mm(3), respectively. The rate and extent of enhanced bone growth persisted through week 4 but, by week 8, increases in bone formation in FTY720 groups were no longer statistically significant. However, micro-computed tomography (microCT) of contrast enhanced vascular ingrowth (MICROFIL®) and histological analysis showed enhanced integration as well as directed bone growth in both high and low dose FTY720 groups compared to controls.

  5. Local delivery of FTY720 accelerates cranial allograft incorporation and bone formation

    PubMed Central

    Huang, Cynthia; Das, Anusuya; Barker, Daniel; Tholpady, Sunil; Wang, Tiffany; Cui, Quanjun; Ogle, Roy

    2012-01-01

    Endogenous stem cell recruitment to the site of skeletal injury is key to enhanced osseous remodeling and neovascularization. To this end, this study utilized a novel bone allograft coating of poly(lactic-co-glycolic acid) (PLAGA) to sustain the release of FTY720, a selective agonist for sphingosine 1-phosphate (S1P) receptors, from calvarial allografts. Uncoated allografts, vehicle-coated, low dose FTY720 in PLAGA (1:200 w:w) and high dose FTY720 in PLAGA (1:40) were implanted into critical size calvarial bone defects. The ability of local FTY720 delivery to promote angiogenesis, maximize osteoinductivity and improve allograft incorporation by recruitment of bone progenitor cells from surrounding soft tissues and microcirculation was evaluated. FTY720 bioactivity after encapsulation and release was confirmed with sphingosine kinase 2 assays. HPLC-MS quantified about 50% loaded FTY720 release of the total encapsulated drug (4.5 µg) after 5 days. Following 2 weeks of defect healing, FTY720 delivery led to statistically significant increases in bone volumes compared to controls, with total bone volume increases for uncoated, coated, low FTY720 and high FTY720 of 5.98, 3.38, 7.2 and 8.9 mm3, respectively. The rate and extent of enhanced bone growth persisted through week 4 but, by week 8, increases in bone formation in FTY720 groups were no longer statistically significant. However, micro-computed tomography (microCT) of contrast enhanced vascular ingrowth (MICROFIL®) and histological analysis showed enhanced integration as well as directed bone growth in both high and low dose FTY720 groups compared to controls. PMID:21863314

  6. The safety of bone allografts used in dentistry: a review.

    PubMed

    Holtzclaw, Dan; Toscano, Nicholas; Eisenlohr, Lisa; Callan, Don

    2008-09-01

    Recent media reports concerning "stolen body parts" have shaken the public's trust in the safety of and the use of ethical practices involving human allografts. The authors provide a comprehensive review of the safety aspects of human bone allografts. The authors reviewed U.S. government regulations, industry standards, independent industry association guidelines, company guidelines and scientific articles related to the use of human bone allografts in the practice of dentistry published in the English language. The use of human bone allografts in the practice of dentistry involves the steps of procurement, processing, use and tracking. Rigorous donor screening and aseptic proprietary processing programs have rendered the use of human bone allografts safe and effective as a treatment option. When purchasing human bone allografts for the practice of dentistry, one should choose products accredited by the American Association of Tissue Banks for meeting uniformly high safety and quality control measures. Knowledge of human bone allograft procurement, processing, use and tracking procedures may allow dental clinicians to better educate their patients and address concerns about this valuable treatment option.

  7. Bone marrow mesenchymal stromal cells protect allograft lung transplants from acute rejection via the PD-L1/IL-17A axis.

    PubMed

    Ishibashi, Naoya; Watanabe, Tatsuaki; Kanehira, Masahiko; Watanabe, Yui; Hoshikawa, Yasushi; Notsuda, Hirotsugu; Noda, Masafumi; Sakurada, Akira; Ohkouchi, Shinya; Kondo, Takashi; Okada, Yoshinori

    2018-03-15

    Using a rat model of allograft lung transplantation, we investigated the effectiveness of mesenchymal stromal cells (MSCs) as prophylactic and therapeutic agents against the acute rejection of lung grafts. Lung grafts were harvested from donor rats and transplanted orthotopically into major histocompatibility complex-mismatched rats. MSCs were administered to the recipients once (on day 0) or twice (on days 0 and 3) after transplantation. The grade of acute rejection was evaluated both macroscopically and microscopically 6 days after transplantation. To elucidate the related mechanism, mRNA levels of inflammatory cytokines and immunomodulatory receptors in the transplanted grafts were measured using quantitative RT-PCR. The lung graft tissue from the rats that received MSCs post-surgically was protected from acute rejection significantly better than that from the untreated controls. Notably, the rats administered MSCs twice after surgery exhibited the least signs of rejection, with a markedly upregulated mRNA level of PD-L1 and a downregulated mRNA level of IL-17A. This study assessed MSC protection of lung allografts from acute rejection by modulating T cell activity via enforced expression of PD-L1 in transplants and downregulation of IL-17A.

  8. The Lymphatic Phenotype of Lung Allografts in Patients With Bronchiolitis Obliterans Syndrome and Restrictive Allograft Syndrome.

    PubMed

    Traxler, Denise; Schweiger, Thomas; Schwarz, Stefan; Schuster, Magdalena Maria; Jaksch, Peter; Lang, Gyoergy; Birner, Peter; Klepetko, Walter; Ankersmit, Hendrik Jan; Hoetzenecker, Konrad

    2017-02-01

    Chronic lung allograft dysfunction (CLAD), presenting as bronchiolitis obliterans syndrome (BOS) or restrictive allograft syndrome (RAS) is the major limiting factor of long-term survival in lung transplantation. Its pathogenesis is still obscure. In BOS, persistent alloimmune injury and chronic airway inflammation are suggested. One of the main tasks of the lymphatic vessel (LV) system is the promotion of immune cell trafficking. The formation of new LVs has been shown to trigger chronic allograft rejection in kidney transplants. We therefore sought to address the role of lymphangiogenesis in CLAD. Formalin-fixed paraffin-embedded tissue samples of 22 patients receiving a lung retransplantation due to BOS or RAS were collected. Lymphatic vessel density (LVD) was determined by immunohistochemical staining for podoplanin. Lung tissue obtained from 13 non-CLAD patients served as control. The impact of LVD on graft survival was assessed. Lymphatic vessel density in CLAD patients did not differ from those in control subjects (median number of LVs per bronchiole: 4.75 (BOS), 6.47 (RAS), 4.25 (control), P = 0.97). Moreover, the number of LVs was not associated with regions of cellular infiltrates (median number of LVs per bronchiole: with infiltrates, 5.00 (BOS), 9.00 (RAS), 4.00 (control), P = 0.62; without infiltrates, 4.5 (BOS), 0.00 (RAS), 4.56 (control), P = 0.74). Lymphatic vessel density did not impact the time to development of BOS or RAS in lung transplantation (low vs high LVD: 38.5 vs 86.0 months, P = 0.15 [BOS]; 60.5 vs 69.5 months, P = 0.80 [RAS]). Unlike chronic organ failure in kidney transplantation, lymphangiogenesis is not altered in CLAD patients. Our findings highlight unique immunological processes leading to BOS and RAS.

  9. Cardiac presentation of ALK positive anaplastic large cell lymphoma.

    PubMed

    Lim, Z Y; Grace, R; Salisbury, J R; Creamer, D; Jayaprakasam, A; Ho, A Y L; Devereux, S; Mufti, G J; Pagliuca, A

    2005-12-01

    Cardiac involvement as an initial presentation of malignant lymphoma is a rare occurrence. We report the case of an immunocompetent 29-year-old male who presented with syncope and arrythmias secondary to a ventricular cardiac mass. Transcutaneous cardiac biopsy was non-diagnostic, therefore an open cardiac biopsy was performed from which a provisional diagnosis of a cardiac inflammatory pseudotumour was made. Six months after presentation, he developed several subcutaneous lesions with systemic symptoms. Histological and immunophenotypic review of the initial cardiac biopsy revealed features consistent with a diagnosis of CD30, ALK1 positive anaplastic large cell lymphoma (ALCL). Despite intensive treatment with combination chemotherapy, there was significant progression of disease, and he died 11 months after diagnosis. The overall prognosis of cardiac lymphoma remains poor, which may be due to the often late presentation of the tumour. To our knowledge, this is the first reported case of a cardiac ALK positive ALCL. Although rare, cardiac presentation of ALCL should be added to the list of differential diagnoses of cardiac lymphomas.

  10. Transcriptional Reversion of Cardiac Myocyte Fate During Mammalian Cardiac Regeneration

    PubMed Central

    O’Meara, Caitlin C.; Wamstad, Joseph A.; Gladstone, Rachel; Fomovsky, Gregory M.; Butty, Vincent L.; Shrikumar, Avanti; Gannon, Joseph; Boyer, Laurie A.; Lee, Richard T.

    2014-01-01

    Rationale Neonatal mice have the capacity to regenerate their hearts in response to injury, but this potential is lost after the first week of life. The transcriptional changes that underpin mammalian cardiac regeneration have not been fully characterized at the molecular level. Objective The objectives of our study were to determine if myocytes revert the transcriptional phenotype to a less differentiated state during regeneration and to systematically interrogate the transcriptional data to identify and validate potential regulators of this process. Methods and Results We derived a core transcriptional signature of injury-induced cardiac myocyte regeneration in mouse by comparing global transcriptional programs in a dynamic model of in vitro and in vivo cardiac myocyte differentiation, in vitro cardiac myocyte explant model, as well as a neonatal heart resection model. The regenerating mouse heart revealed a transcriptional reversion of cardiac myocyte differentiation processes including reactivation of latent developmental programs similar to those observed during de-stabilization of a mature cardiac myocyte phenotype in the explant model. We identified potential upstream regulators of the core network, including interleukin 13 (IL13), which induced cardiac myocyte cell cycle entry and STAT6/STAT3 signaling in vitro. We demonstrate that STAT3/periostin and STAT6 signaling are critical mediators of IL13 signaling in cardiac myocytes. These downstream signaling molecules are also modulated in the regenerating mouse heart. Conclusions Our work reveals new insights into the transcriptional regulation of mammalian cardiac regeneration and provides the founding circuitry for identifying potential regulators for stimulating heart regeneration. PMID:25477501

  11. Genetic engineering of somatic cells to study and improve cardiac function.

    PubMed

    Kirkton, Robert D; Bursac, Nenad

    2012-11-01

    To demonstrate the utility of genetically engineered excitable cells for studies of basic electrophysiology and cardiac cell therapy. 'Zig-zag' networks of neonatal rat ventricular myocytes (NRVMs) were micropatterned onto thin elastomeric films to mimic the slow action potential (AP) conduction found in fibrotic myocardium. Addition of genetically engineered excitable human embryonic kidney cells (HEK-293 cells) ('Ex-293' cells stably expressing Kir2.1, Na(v)1.5, and Cx43 channels) increased both cardiac conduction velocity by 370% and twitch force amplitude by 64%. Furthermore, we stably expressed mutant Na(v)1.5 [A1924T (fast sodium channel mutant (substitution of alanine by threonine at amino acid 1924)] channels with hyperpolarized steady-state activation and showed that, despite a 71.6% reduction in peak I(Na), these cells propagated APs at the same velocity as the wild-type Na(v)1.5-expressing Ex-293 cells. Stable expression of Ca(v)3.3 (T-type voltage-gated calcium) channels in Ex-293 cells (to generate an 'ExCa-293' line) significantly increased their AP duration and reduced repolarization gradients in cocultures of these cells and NRVMs. Additional expression of an optogenetic construct [ChIEF (light-gated Channelrhodopsin mutant)]enabled light-based control of AP firing in ExCa-293 cells. We show that, despite being non-contractile, genetically engineered excitable cells can significantly improve both electrical and mechanical function of engineered cardiac tissues in vitro. We further demonstrate the utility of engineered cells for tissue-level studies of basic electrophysiology and cardiac channelopathies. In the future, this novel platform could be utilized in the high-throughput design of new genetically encoded indicators of cell electrical function, validation, and improvement of computer models of AP conduction, and development of novel engineered somatic cell therapies for the treatment of cardiac infarction and arrhythmias.

  12. Biochemistry and biology: heart-to-heart to investigate cardiac progenitor cells.

    PubMed

    Chimenti, Isotta; Forte, Elvira; Angelini, Francesco; Messina, Elisa; Giacomello, Alessandro

    2013-02-01

    Cardiac regenerative medicine is a rapidly evolving field, with promising future developments for effective personalized treatments. Several stem/progenitor cells are candidates for cardiac cell therapy, and emerging evidence suggests how multiple metabolic and biochemical pathways strictly regulate their fate and renewal. In this review, we will explore a selection of areas of common interest for biology and biochemistry concerning stem/progenitor cells, and in particular cardiac progenitor cells. Numerous regulatory mechanisms have been identified that link stem cell signaling and functions to the modulation of metabolic pathways, and vice versa. Pharmacological treatments and culture requirements may be exploited to modulate stem cell pluripotency and self-renewal, possibly boosting their regenerative potential for cell therapy. Mitochondria and their many related metabolites and messengers, such as oxygen, ROS, calcium and glucose, have a crucial role in regulating stem cell fate and the balance of their functions, together with many metabolic enzymes. Furthermore, protein biochemistry and proteomics can provide precious clues on the definition of different progenitor cell populations, their physiology and their autocrine/paracrine regulatory/signaling networks. Interdisciplinary approaches between biology and biochemistry can provide productive insights on stem/progenitor cells, allowing the development of novel strategies and protocols for effective cardiac cell therapy clinical translation. This article is part of a Special Issue entitled Biochemistry of Stem Cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Pharmacologic and genetic strategies to enhance cell therapy for cardiac regeneration.

    PubMed

    Kanashiro-Takeuchi, Rosemeire M; Schulman, Ivonne Hernandez; Hare, Joshua M

    2011-10-01

    Cell-based therapy is emerging as an exciting potential therapeutic approach for cardiac regeneration following myocardial infarction (MI). As heart failure (HF) prevalence increases over time, development of new interventions designed to aid cardiac recovery from injury are crucial and should be considered more broadly. In this regard, substantial efforts to enhance the efficacy and safety of cell therapy are continuously growing along several fronts, including modifications to improve the reprogramming efficiency of inducible pluripotent stem cells (iPS), genetic engineering of adult stem cells, and administration of growth factors or small molecules to activate regenerative pathways in the injured heart. These interventions are emerging as potential therapeutic alternatives and/or adjuncts based on their potential to promote stem cell homing, proliferation, differentiation, and/or survival. Given the promise of therapeutic interventions to enhance the regenerative capacity of multipotent stem cells as well as specifically guide endogenous or exogenous stem cells into a cardiac lineage, their application in cardiac regenerative medicine should be the focus of future clinical research. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure." Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Embryonic Stem Cell-Based Cardiopatches Improve Cardiac Function in Infarcted Rats

    PubMed Central

    Vallée, Jean-Paul; Hauwel, Mathieu; Lepetit-Coiffé, Matthieu; Bei, Wang; Montet-Abou, Karin; Meda, Paolo; Gardier, Stephany; Zammaretti, Prisca; Kraehenbuehl, Thomas P.; Herrmann, Francois; Hubbell, Jeffrey A.

    2012-01-01

    Pluripotent stem cell-seeded cardiopatches hold promise for in situ regeneration of infarcted hearts. Here, we describe a novel cardiopatch based on bone morphogenetic protein 2-primed cardiac-committed mouse embryonic stem cells, embedded into biodegradable fibrin matrices and engrafted onto infarcted rat hearts. For in vivo tracking of the engrafted cardiac-committed cells, superparamagnetic iron oxide nanoparticles were magnetofected into the cells, thus enabling detection and functional evaluation by high-resolution magnetic resonance imaging. Six weeks after transplantation into infarcted rat hearts, both local (p < .04) and global (p < .015) heart function, as well as the left ventricular dilation (p < .0011), were significantly improved (p < .001) as compared with hearts receiving cardiopatches loaded with iron nanoparticles alone. Histological analysis revealed that the fibrin scaffolds had degraded over time and clusters of myocyte enhancer factor 2-positive cardiac-committed cells had colonized most of the infarcted myocardium, including the fibrotic area. De novo CD31-positive blood vessels were formed in the vicinity of the transplanted cardiopatch. Altogether, our data provide evidence that stem cell-based cardiopatches represent a promising therapeutic strategy to achieve efficient cell implantation and improved global and regional cardiac function after myocardial infarction. PMID:23197784

  15. Determination of residual dimethylsulfoxide in cryopreserved cardiovascular allografts.

    PubMed

    Díaz Rodríguez, R; Van Hoeck, B; De Gelas, S; Blancke, F; Ngakam, R; Bogaerts, K; Jashari, R

    2017-06-01

    Dimethylsulfoxide (DMSO) is a solvent which protects the structure of allografts during the cryopreservation and thawing process. However, several toxic effects of DMSO in patients after transplantation of cryopreserved allografts have been described. The aim of this study is to determine the residual DMSO in the cardiovascular allografts after thawing and preparation of cryopreserved allografts for clinical application following guidelines of the European Pharmacopoeia for DMSO detection. Four types of EHB allografts (aortic valve-AV, pulmonary valve-PV, descending thoracic aorta-DA, and femoral artery-FA) are cryopreserved using as cryoprotecting solution a 10% of DMSO in medium 199. Sampling is carried out after thawing, after DMSO dilution and after delay of 30 min from final dilution (estimated delay until allograft implantation). After progressive thawing in sterile water bath at 37-42 °C (duration of about 20 min), DMSO dilution is carried out by adding consecutively 33, 66 and 200 mL of saline. Finally, tissues are transferred into 200 mL of a new physiologic solution. Allograft samples are analysed for determination of the residual DSMO concentration using a validated Gas Chromatography analysis. Femoral arteries showed the most important DMSO reduction after the estimated delay: 92.97% of decrease in the cryoprotectant final amount while a final reduction of 72.30, 72.04 and 76.29% in DMSO content for AV, PV and DA, was found, respectively. The residual DMSO in the allografts at the moment of implantation represents a final dose of 1.95, 1.06, 1.74 and 0.26 mg kg -1 in AV, PV, DA and FA, respectively, for men, and 2.43, 1.33, 2.17 and 0.33 mg kg -1 for same tissues for women (average weight of 75 kg in men, and 60 kg in women). These results are seriously below the maximum recommended dose of 1 g DMSO kg -1 (Regan et al. in Transfusion 50:2670-2675, 2010) of weight of the patient guaranteeing the safety and quality of allografts.

  16. Electrical Stimulation Promotes Cardiac Differentiation of Human Induced Pluripotent Stem Cells

    PubMed Central

    Hernández, Damián; Millard, Rodney; Sivakumaran, Priyadharshini; Wong, Raymond C. B.; Crombie, Duncan E.; Hewitt, Alex W.; Liang, Helena; Hung, Sandy S. C.; Pébay, Alice; Shepherd, Robert K.; Dusting, Gregory J.; Lim, Shiang Y.

    2016-01-01

    Background. Human induced pluripotent stem cells (iPSCs) are an attractive source of cardiomyocytes for cardiac repair and regeneration. In this study, we aim to determine whether acute electrical stimulation of human iPSCs can promote their differentiation to cardiomyocytes. Methods. Human iPSCs were differentiated to cardiac cells by forming embryoid bodies (EBs) for 5 days. EBs were then subjected to brief electrical stimulation and plated down for 14 days. Results. In iPS(Foreskin)-2 cell line, brief electrical stimulation at 65 mV/mm or 200 mV/mm for 5 min significantly increased the percentage of beating EBs present by day 14 after plating. Acute electrical stimulation also significantly increased the cardiac gene expression of ACTC1, TNNT2, MYH7, and MYL7. However, the cardiogenic effect of electrical stimulation was not reproducible in another iPS cell line, CERA007c6. Beating EBs from control and electrically stimulated groups expressed various cardiac-specific transcription factors and contractile muscle markers. Beating EBs were also shown to cycle calcium and were responsive to the chronotropic agents, isoproterenol and carbamylcholine, in a concentration-dependent manner. Conclusions. Our results demonstrate that brief electrical stimulation can promote cardiac differentiation of human iPS cells. The cardiogenic effect of brief electrical stimulation is dependent on the cell line used. PMID:26788064

  17. Connective tissue growth factor induces cardiac hypertrophy through Akt signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayata, Nozomi; Fujio, Yasushi; Yamamoto, Yasuhiro

    2008-05-30

    In the process of cardiac remodeling, connective tissue growth factor (CTGF/CCN2) is secreted from cardiac myocytes. Though CTGF is well known to promote fibroblast proliferation, its pathophysiological effects in cardiac myocytes remain to be elucidated. In this study, we examined the biological effects of CTGF in rat neonatal cardiomyocytes. Cardiac myocytes stimulated with full length CTGF and its C-terminal region peptide showed the increase in cell surface area. Similar to hypertrophic ligands for G-protein coupled receptors, such as endothelin-1, CTGF activated amino acid uptake; however, CTGF-induced hypertrophy is not associated with the increased expression of skeletal actin or BNP, analyzedmore » by Northern-blotting. CTGF treatment activated ERK1/2, p38 MAPK, JNK and Akt. The inhibition of Akt by transducing dominant-negative Akt abrogated CTGF-mediated increase in cell size, while the inhibition of MAP kinases did not affect the cardiac hypertrophy. These findings indicate that CTGF is a novel hypertrophic factor in cardiac myocytes.« less

  18. Fresh-frozen Complete Extensor Mechanism Allograft versus Autograft Reconstruction in Rabbits

    PubMed Central

    Chen, Guanyin; Zhang, Hongtao; Ma, Qiong; Zhao, Jian; Zhang, Yinglong; Fan, Qingyu; Ma, Baoan

    2016-01-01

    Different clinical results have been reported in the repair of extensor mechanism disruption using fresh-frozen complete extensor mechanism (CEM) allograft, creating a need for a better understanding of fresh-frozen CME allograft reconstruction. Here, we perform histological and biomechanical analyses of fresh-frozen CEM allograft or autograft reconstruction in an in vivo rabbit model. Our histological results show complete incorporation of the quadriceps tendon into the host tissues, patellar survival and total integration of the allograft tibia, with relatively fewer osteocytes, into the host tibia. Vascularity and cellularity are reduced and delayed in the allograft but exhibit similar distributions to those in the autograft. The infrapatellar fat pad provides the main blood supply, and the lowest cellularity is observed in the patellar tendon close to the tibia in both the allograft and autograft. The biomechanical properties of the junction of quadriceps tendon and host tissues and those of the allograft patellar tendon are completely and considerably restored, respectively. Therefore, fresh-frozen CEM allograft reconstruction is viable, but the distal patellar tendon and the tibial block may be the weak links of the reconstruction. These findings provide new insight into the use of allograft in repairing disruption of the extensor mechanism. PMID:26911538

  19. Fresh-frozen Complete Extensor Mechanism Allograft versus Autograft Reconstruction in Rabbits.

    PubMed

    Chen, Guanyin; Zhang, Hongtao; Ma, Qiong; Zhao, Jian; Zhang, Yinglong; Fan, Qingyu; Ma, Baoan

    2016-02-25

    Different clinical results have been reported in the repair of extensor mechanism disruption using fresh-frozen complete extensor mechanism (CEM) allograft, creating a need for a better understanding of fresh-frozen CME allograft reconstruction. Here, we perform histological and biomechanical analyses of fresh-frozen CEM allograft or autograft reconstruction in an in vivo rabbit model. Our histological results show complete incorporation of the quadriceps tendon into the host tissues, patellar survival and total integration of the allograft tibia, with relatively fewer osteocytes, into the host tibia. Vascularity and cellularity are reduced and delayed in the allograft but exhibit similar distributions to those in the autograft. The infrapatellar fat pad provides the main blood supply, and the lowest cellularity is observed in the patellar tendon close to the tibia in both the allograft and autograft. The biomechanical properties of the junction of quadriceps tendon and host tissues and those of the allograft patellar tendon are completely and considerably restored, respectively. Therefore, fresh-frozen CEM allograft reconstruction is viable, but the distal patellar tendon and the tibial block may be the weak links of the reconstruction. These findings provide new insight into the use of allograft in repairing disruption of the extensor mechanism.

  20. Elimination of remaining undifferentiated induced pluripotent stem cells in the process of human cardiac cell sheet fabrication using a methionine-free culture condition.

    PubMed

    Matsuura, Katsuhisa; Kodama, Fumiko; Sugiyama, Kasumi; Shimizu, Tatsuya; Hagiwara, Nobuhisa; Okano, Teruo

    2015-03-01

    Cardiac tissue engineering is a promising method for regenerative medicine. Although we have developed human cardiac cell sheets by integration of cell sheet-based tissue engineering and scalable bioreactor culture, the risk of contamination by induced pluripotent stem (iPS) cells in cardiac cell sheets remains unresolved. In the present study, we established a novel culture method to fabricate human cardiac cell sheets with a decreased risk of iPS cell contamination while maintaining viabilities of iPS cell-derived cells, including cardiomyocytes and fibroblasts, using a methionine-free culture condition. When cultured in the methionine-free condition, human iPS cells did not survive without feeder cells and could not proliferate or form colonies on feeder cells or in coculture with cells for cardiac cell sheet fabrication. When iPS cell-derived cells after the cardiac differentiation were transiently cultured in the methionine-free condition, gene expression of OCT3/4 and NANOG was downregulated significantly compared with that in the standard culture condition. Furthermore, in fabricated cardiac cell sheets, spontaneous and synchronous beating was observed in the whole area while maintaining or upregulating the expression of various cardiac and extracellular matrix genes. These findings suggest that human iPS cells are methionine dependent and a methionine-free culture condition for cardiac cell sheet fabrication might reduce the risk of iPS cell contamination.

  1. Interleukin-27 induces the endothelial differentiation in Sca-1+ cardiac resident stem cells.

    PubMed

    Tanaka, Tomohiro; Obana, Masanori; Mohri, Tomomi; Ebara, Masaki; Otani, Yuta; Maeda, Makiko; Fujio, Yasushi

    2015-10-01

    Cytokines play important roles in cardiac repair and regeneration. Recently, we demonstrated that interleukin (IL)-6 family cytokines induce the endothelial differentiation of Sca-1+ cardiac resident stem cells through STAT3/Pim-1 signaling pathway. In contrast, the biological functions of IL-12 family cytokines in heart remain to be elucidated, though they show structural homology with IL-6. In the present study, we examined the effects of IL-12 family cytokines on the transdifferentiation of cardiac Sca-1+ cells into cardiac cells. RT-PCR analyses revealed that IL-27 receptor α (IL-27Rα), but not IL-12R or IL-23R, was expressed in cardiac Sca-1+ cells. The transcript expression of IL-27 was elevated in murine hearts in cardiac injury models. Intriguingly, IL-27 stimulation for 14 days induced the endothelial cell (EC) marker genes, such as CD-31 and VE-cadherin. Immunoblot analyses clarified that IL-27 treatment rapidly phosphorylated STAT3. IL-27 upregulated the expression of Pim-1, but the overexpression of dominant negative STAT3 abrogated the induction of Pim-1 by IL-27. Finally, adenoviral transfection of dominant negative Pim-1 inhibited IL-27-induced EC differentiation of cardiac Sca-1+ cells. These findings demonstrated that IL-27 promoted the commitment of cardiac stem cells into the EC lineage, possibly leading to neovascularization as a novel biological function. IL-27 could not only regulate the inflammation but also contribute to the maintenance of the tissue homeostasis through stem cell differentiation at inflammatory sites. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Micro-organisms isolated from cadaveric samples of allograft musculoskeletal tissue.

    PubMed

    Varettas, Kerry

    2013-12-01

    Allograft musculoskeletal tissue is commonly used in orthopaedic surgical procedures. Cadaveric donors of musculoskeletal tissue supply multiple allografts such as tendons, ligaments and bone. The microbiology laboratory of the South Eastern Area Laboratory Services (SEALS, Australia) has cultured cadaveric allograft musculoskeletal tissue samples for bacterial and fungal isolates since 2006. This study will retrospectively review the micro-organisms isolated over a 6-year period, 2006-2011. Swab and tissue samples were received for bioburden testing and were inoculated onto agar and/or broth culture media. Growth was obtained from 25.1 % of cadaveric allograft musculoskeletal tissue samples received. The predominant organisms isolated were coagulase-negative staphylococci and coliforms, with the heaviest bioburden recovered from the hemipelvis. The rate of bacterial and fungal isolates from cadaveric allograft musculoskeletal tissue samples is higher than that from living donors. The type of organism isolated may influence the suitability of the allograft for transplant.

  3. Bone allograft banking in South Australia.

    PubMed

    Campbell, D G; Oakeshott, R D

    1995-12-01

    The South Australian Bone Bank had expanded to meet an increased demand for allograft bone. During a 5 year period from 1988 to 1992, 2361 allografts were harvested from 2146 living donors and 30 cadaveric donors. The allografts were screened by contemporary banking techniques which include a social history, donor serum tests for HIV-1, HIV-2, hepatitis B and C, syphilis serology, graft microbiology and histology. Grafts were irradiated with 25 kGy. The majority of grafts were used for arthroplasty or spinal surgery and 99 were used for tumour reconstruction. Of the donated grafts 336 were rejected by the bank. One donor was HIV-positive and two had false positive screens. There were seven donors with positive serology for hepatitis B, eight for hepatitis C and nine for syphilis. Twenty-seven grafts had positive cultures. Bone transplantation is the most frequent non-haematogenous allograft in South Australia and probably nationally. The low incidence of infectious viral disease in the donor population combined with an aggressive discard policy has ensured relative safety of the grafts. The frequency of graft rejection was similar to other bone banks but the incidence of HIV was lower.

  4. BK-virus nephropathy and simultaneous C4d positive staining in renal allografts.

    PubMed

    Honsová, E; Lodererová, A; Viklický, O; Boucek, P

    2005-10-01

    The role of antibodies in rejection of transplanted kidneys was the subject of debate at the last two Banff meetings and in medical journals. Diffuse C4d positive staining of peritubular capillaries (PTCs) was recognized as a marker of antibody-mediated rejection and this morphological feature was included in the updated Banff schema. At the same time polyomavirus infection of the renal allografts has been reported more frequently and is emerging as an important cause of renal allograft dysfunction and graft loss. At the present time, BK-virus nephropathy (BKN) represents the most common viral disease affecting renal allografts. BKN was identified in 6 patients in 12 biopsies and 2 graft nephrectomy specimens of 1115 biopsies between September 2000 and December 2003. Definite virus identification was done by immunohistochemistry. The reason for graft nephrectomies was graft failure due to BKN in a recipient after kidney-pancreas transplantation with good function of his pancreas graft and the necessity of continuing immunosuppression. Detection of C4d deposits was performed by immunofluorescence or by immunohistochemistry. In graftectomy samples C4d detection was performed by immunohistochemistry and retrospectively in all cases of BKN. Focal C4d positive PTCs and BKN were found simultaneously in 9 of 12 needle biopsies and in both graft nephrectomy samples. Detection of C4d by immunohistochemistry disclosed focal C4d positive staining in kidney tissue but diffuse in the sites where BK-virus inclusions in tubular epithelial cells were found. The complement system is part of the host defense response and is crucial to our natural ability to ward off infection. In cases of BKN, virus likely gains access to the bloodstream through injured tubular walls and via PTCs. Vascular endothelium in the PTCs represents a potential target antigen for alloresponse, and simultaneously possibly represents an imprint of complement activation or complement production in the places

  5. Concise Review: Cardiac Disease Modeling Using Induced Pluripotent Stem Cells.

    PubMed

    Yang, Chunbo; Al-Aama, Jumana; Stojkovic, Miodrag; Keavney, Bernard; Trafford, Andrew; Lako, Majlinda; Armstrong, Lyle

    2015-09-01

    Genetic cardiac diseases are major causes of morbidity and mortality. Although animal models have been created to provide some useful insights into the pathogenesis of genetic cardiac diseases, the significant species differences and the lack of genetic information for complex genetic diseases markedly attenuate the application values of such data. Generation of induced pluripotent stem cells (iPSCs) from patient-specific specimens and subsequent derivation of cardiomyocytes offer novel avenues to study the mechanisms underlying cardiac diseases, to identify new causative genes, and to provide insights into the disease aetiology. In recent years, the list of human iPSC-based models for genetic cardiac diseases has been expanding rapidly, although there are still remaining concerns on the level of functionality of iPSC-derived cardiomyocytes and their ability to be used for modeling complex cardiac diseases in adults. This review focuses on the development of cardiomyocyte induction from pluripotent stem cells, the recent progress in heart disease modeling using iPSC-derived cardiomyocytes, and the challenges associated with understanding complex genetic diseases. To address these issues, we examine the similarity between iPSC-derived cardiomyocytes and their ex vivo counterparts and how this relates to the method used to differentiate the pluripotent stem cells into a cardiomyocyte phenotype. We progress to examine categories of congenital cardiac abnormalities that are suitable for iPSC-based disease modeling. © AlphaMed Press.

  6. Tendon allograft sterilized by peracetic acid/ethanol combined with gamma irradiation.

    PubMed

    Zhou, Mo; Zhang, Naili; Liu, Xiaoming; Li, Youchen; Zhang, Yumin; Wang, Xusheng; Li, Baoming; Li, Baoxing

    2014-07-01

    Research and clinical applications have demonstrated that the effects of tendon allografts are comparable to those of autografts when reconstructing injured tendons or ligaments, but allograft safety remains problematic. Sterilisation could eliminate or decrease the possibility of disease transmission, but current methods seldom achieve satisfactory sterilisation without affecting the mechanical properties of the tendon. Peracetic acid-ethanol in combination with low-dose gamma irradiation (PE-R) would inactivate potential deleterious microorganisms without affecting mechanical and biocompatible properties of tendon allograft. Controlled laboratory design. HIV, PPV, PRV and BVDV inactivation was evaluated. After verifying viral inactivation, the treated tendon allografts were characterised by optical microscopy, scanning electron microscopy and tensile testing, and the cytocompatibility was assessed with an MTT assay and by subcutaneous implantation. Effective and efficient inactivation of HIV, PPV, PRV and BVDV was observed. Histological structure and ultrastructure were unchanged in the treated tendon allograft, which also exhibited comparable biomechanical properties and good biocompatibility. The preliminary results confirmed our hypothesis and demonstrated that the PE-R tendon allograft has significant potential as an alternative to ligament/tendon reconstruction. Tendon allografts have been extensively used in ligament reconstruction and tendon repair. However, current sterilisation methods have various shortcomings, so PE-R has been proposed. This study suggests that PE-R tendon allograft has great potential as an alternative for ligament/tendon reconstruction. Sterilisation has been a great concern for tendon allografts. However, most sterilisation methods cannot inactivate viruses and bacteria without impairing the mechanical properties of the tendon allograft. Peracetic acid/ethanol with gamma irradiation can effectively inactivate viruses and bacteria

  7. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures.

    PubMed

    Muraoka, Naoto; Yamakawa, Hiroyuki; Miyamoto, Kazutaka; Sadahiro, Taketaro; Umei, Tomohiko; Isomi, Mari; Nakashima, Hanae; Akiyama, Mizuha; Wada, Rie; Inagawa, Kohei; Nishiyama, Takahiko; Kaneda, Ruri; Fukuda, Toru; Takeda, Shu; Tohyama, Shugo; Hashimoto, Hisayuki; Kawamura, Yoshifumi; Goshima, Naoki; Aeba, Ryo; Yamagishi, Hiroyuki; Fukuda, Keiichi; Ieda, Masaki

    2014-07-17

    Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors or microRNAs. However, induction of functional cardiomyocytes is inefficient, and molecular mechanisms of direct reprogramming remain undefined. Here, we demonstrate that addition of miR-133a (miR-133) to Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Mesp1 and Myocd improved cardiac reprogramming from mouse or human fibroblasts by directly repressing Snai1, a master regulator of epithelial-to-mesenchymal transition. MiR-133 overexpression with GMT generated sevenfold more beating iCMs from mouse embryonic fibroblasts and shortened the duration to induce beating cells from 30 to 10 days, compared to GMT alone. Snai1 knockdown suppressed fibroblast genes, upregulated cardiac gene expression, and induced more contracting iCMs with GMT transduction, recapitulating the effects of miR-133 overexpression. In contrast, overexpression of Snai1 in GMT/miR-133-transduced cells maintained fibroblast signatures and inhibited generation of beating iCMs. MiR-133-mediated Snai1 repression was also critical for cardiac reprogramming in adult mouse and human cardiac fibroblasts. Thus, silencing fibroblast signatures, mediated by miR-133/Snai1, is a key molecular roadblock during cardiac reprogramming. © 2014 The Authors.

  8. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures

    PubMed Central

    Muraoka, Naoto; Yamakawa, Hiroyuki; Miyamoto, Kazutaka; Sadahiro, Taketaro; Umei, Tomohiko; Isomi, Mari; Nakashima, Hanae; Akiyama, Mizuha; Wada, Rie; Inagawa, Kohei; Nishiyama, Takahiko; Kaneda, Ruri; Fukuda, Toru; Takeda, Shu; Tohyama, Shugo; Hashimoto, Hisayuki; Kawamura, Yoshifumi; Goshima, Naoki; Aeba, Ryo; Yamagishi, Hiroyuki; Fukuda, Keiichi; Ieda, Masaki

    2014-01-01

    Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors or microRNAs. However, induction of functional cardiomyocytes is inefficient, and molecular mechanisms of direct reprogramming remain undefined. Here, we demonstrate that addition of miR-133a (miR-133) to Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Mesp1 and Myocd improved cardiac reprogramming from mouse or human fibroblasts by directly repressing Snai1, a master regulator of epithelial-to-mesenchymal transition. MiR-133 overexpression with GMT generated sevenfold more beating iCMs from mouse embryonic fibroblasts and shortened the duration to induce beating cells from 30 to 10 days, compared to GMT alone. Snai1 knockdown suppressed fibroblast genes, upregulated cardiac gene expression, and induced more contracting iCMs with GMT transduction, recapitulating the effects of miR-133 overexpression. In contrast, overexpression of Snai1 in GMT/miR-133-transduced cells maintained fibroblast signatures and inhibited generation of beating iCMs. MiR-133-mediated Snai1 repression was also critical for cardiac reprogramming in adult mouse and human cardiac fibroblasts. Thus, silencing fibroblast signatures, mediated by miR-133/Snai1, is a key molecular roadblock during cardiac reprogramming. PMID:24920580

  9. Rejection triggers liver transplant tolerance: Involvement of mesenchyme-mediated immune control mechanisms in mice.

    PubMed

    Morita, Miwa; Joyce, Daniel; Miller, Charles; Fung, John J; Lu, Lina; Qian, Shiguang

    2015-09-01

    Liver tolerance was initially recognized by the spontaneous acceptance of liver allografts in many species. The underlying mechanisms are not completely understood. However, liver transplant (LT) tolerance absolutely requires interferon (IFN)-γ, a rejection-associated inflammatory cytokine. In this study, we investigated the rejection of liver allografts deficient in the IFN-γ receptor and reveal that the liver graft is equipped with machineries capable of counterattacking the host immune response through a mesenchyme-mediated immune control (MMIC) mechanism. MMIC is triggered by T effector (Tef) cell-derived IFN-γ that drives expression of B7-H1 on graft mesenchymal cells leading to Tef cell apoptosis. We describe the negative feedback loop between graft mesenchymal and Tef cells that ultimately results in LT tolerance. Comparable elevations of T-regulatory cells and myeloid-derived suppressor cells were observed in both rejection and tolerance groups and were not dependent on IFN-γ stimulation, suggesting a critical role of Tef cell elimination in tolerance induction. We identify potent MMIC activity in hepatic stellate cells and liver sinusoidal endothelial cells. MMIC is unlikely exclusive to the liver, given that spontaneous acceptance of kidney allografts has been reported, although less commonly, probably reflecting variance in MMIC activity. MMIC may represent an important homeostatic mechanism that supports peripheral tolerance and could be a target for the prevention and treatment of transplant rejection. This study highlights that the graft is an active participant in the equipoise between tolerance and rejection and warrants more attention in the search for tolerance biomarkers. © 2015 by the American Association for the Study of Liver Diseases.

  10. Cardiac Biomarkers: a Focus on Cardiac Regeneration

    PubMed Central

    Forough, Reza; Scarcello, Catherine; Perkins, Matthew

    2011-01-01

    Historically, biomarkers have been used in two major ways to maintain and improve better health status: first, for diagnostic purposes, and second, as specific targets to treat various diseases. A new era in treatment and even cure for the some diseases using reprograming of somatic cells is about to be born. In this approach, scientists are successfully taking human skin cells (previously considered terminally-differentiated cells) and re-programming them into functional cardiac myocytes and other cell types in vitro. A cell reprograming approach for treatment of cardiovascular diseases will revolutionize the field of medicine and significantly expand the human lifetime. Availability of a comprehensive catalogue for cardiac biomarkers is necessary for developing cell reprograming modalities to treat cardiac diseases, as well as for determining the progress of reprogrammed cells as they become cardiac cells. In this review, we present a comprehensive survey of the cardiac biomarkers currently known. PMID:23074366

  11. Recipient-Matching of Passenger Leukocytes Prolongs Survival of Donor Lung Allografts in Miniature Swine

    PubMed Central

    Madariaga, Maria Lucia L.; Michel, Sebastian G.; La Muraglia, Glenn M.; Sihag, Smita; Leonard, David A.; Farkash, Evan A.; Colvin, Robert B.; Cetrulo, Curtis L.; Huang, Christene A.; Sachs, David H.; Madsen, Joren C.; Allan, James S.

    2014-01-01

    Background Allograft rejection continues to be a vexing problem in clinical lung transplantation, and the role played by passenger leukocytes in the rejection or acceptance of an organ is unclear. Here we tested whether recipient-matching of donor graft passenger leukocytes would impact graft survival in a preclinical model of orthotopic left lung transplantation. Methods In the experimental group (Group 1), donor lungs were obtained from chimeric swine, in which the passenger leukocytes (but not the parenchyma) were MHC-matched to the recipients (n=3). In the control group (Group 2), both the donor parenchyma and the passenger leukocytes were MHC-mismatched to the recipients (n = 3). Results Lungs harvested from swine previously rendered chimeric by hematopoietic stem cell transplantation using recipient-type cells showed a high degree of passenger leukocyte chimerism by immunohistochemistry and flow cytometry. The chimeric lungs containing passenger leukocytes matched to the lung recipient (Group 1) survived on average 107 days (range 80–156). Control lung allografts (Group 2) survived on average 45 days (range 29–64; p<0.05). Conclusion Our data indicate that recipient-matching of passenger leukocytes significantly prolongs lung allograft survival. PMID:25757217

  12. Design and formulation of functional pluripotent stem cell-derived cardiac microtissues

    PubMed Central

    Thavandiran, Nimalan; Dubois, Nicole; Mikryukov, Alexander; Massé, Stéphane; Beca, Bogdan; Simmons, Craig A.; Deshpande, Vikram S.; McGarry, J. Patrick; Chen, Christopher S.; Nanthakumar, Kumaraswamy; Keller, Gordon M.; Radisic, Milica; Zandstra, Peter W.

    2013-01-01

    Access to robust and information-rich human cardiac tissue models would accelerate drug-based strategies for treating heart disease. Despite significant effort, the generation of high-fidelity adult-like human cardiac tissue analogs remains challenging. We used computational modeling of tissue contraction and assembly mechanics in conjunction with microfabricated constraints to guide the design of aligned and functional 3D human pluripotent stem cell (hPSC)-derived cardiac microtissues that we term cardiac microwires (CMWs). Miniaturization of the platform circumvented the need for tissue vascularization and enabled higher-throughput image-based analysis of CMW drug responsiveness. CMW tissue properties could be tuned using electromechanical stimuli and cell composition. Specifically, controlling self-assembly of 3D tissues in aligned collagen, and pacing with point stimulation electrodes, were found to promote cardiac maturation-associated gene expression and in vivo-like electrical signal propagation. Furthermore, screening a range of hPSC-derived cardiac cell ratios identified that 75% NKX2 Homeobox 5 (NKX2-5)+ cardiomyocytes and 25% Cluster of Differentiation 90 OR (CD90)+ nonmyocytes optimized tissue remodeling dynamics and yielded enhanced structural and functional properties. Finally, we demonstrate the utility of the optimized platform in a tachycardic model of arrhythmogenesis, an aspect of cardiac electrophysiology not previously recapitulated in 3D in vitro hPSC-derived cardiac microtissue models. The design criteria identified with our CMW platform should accelerate the development of predictive in vitro assays of human heart tissue function. PMID:24255110

  13. Cryopreserved Cadaveric Arterial Allograft for Arterial Reconstruction in Patients with Prosthetic Infection.

    PubMed

    Lejay, Anne; Delay, Charline; Girsowicz, Elie; Chenesseau, Bettina; Bonnin, Emilie; Ghariani, Mohamed-Zied; Thaveau, Fabien; Georg, Yannick; Geny, Bernard; Chakfe, Nabil

    2017-11-01

    The aim of this study was to report outcomes of cryopreserved arterial allografts used as a vascular substitute in the setting of prosthetic material infection. A retrospective analysis of prospectively collected data was conducted including all consecutive interventions performed with cryopreserved arterial allografts used for vascular reconstruction in the setting of prosthetic material infection between January 2005 and December 2014. Five year outcomes included allograft related re-interventions, survival, primary patency, and limb salvage rates. Fifty-three procedures were performed using cryopreserved allografts for vascular prosthetic infection: 25 procedures (47%) were performed at aorto-iliac level (Group 1) and 28 procedures (53%) at peripheral level (Group 2). The mean follow-up was 52 months. Five year allograft related re-intervention was 55% in Group 1 (6 allograft ruptures and 5 allograft aneurysm degenerations) and 33% in Group 2 (2 allograft ruptures and 7 allograft aneurysm degenerations). Five year survival was 40% and 68%, primary patency was 89% and 59% and limb salvage was 100% and 89% for Group 1 and 2 respectively. Use of cryopreserved arterial allografts provides acceptable results but is tempered by suboptimal 5 year outcomes with high re-intervention rates. Copyright © 2017 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  14. Serum Uromodulin: A Biomarker of Long-Term Kidney Allograft Failure.

    PubMed

    Bostom, Andrew; Steubl, Dominik; Garimella, Pranav S; Franceschini, Nora; Roberts, Mary B; Pasch, Andreas; Ix, Joachim H; Tuttle, Katherine R; Ivanova, Anastasia; Shireman, Theresa; Kim, S Joseph; Gohh, Reginald; Weiner, Daniel E; Levey, Andrew S; Hsu, Chi-Yuan; Kusek, John W; Eaton, Charles B

    2018-01-01

    Uromodulin is a kidney-derived glycoprotein and putative tubular function index. Lower serum uromodulin was recently associated with increased risk for kidney allograft failure in a preliminary, longitudinal single-center -European study involving 91 kidney transplant recipients (KTRs). The Folic Acid for Vascular Outcome Reduction in Transplantation (FAVORIT) trial is a completed, large, multiethnic controlled clinical trial cohort, which studied chronic, stable KTRs. We conducted a case cohort analysis using a randomly selected subset of patients (random subcohort, n = 433), and all individuals who developed kidney allograft failure (cases, n = 226) during follow-up. Serum uromodulin was determined in this total of n = 613 FAVORIT trial participants at randomization. Death-censored kidney allograft failure was the study outcome. The 226 kidney allograft failures occurred during a median surveillance of 3.2 years. Unadjusted, weighted Cox proportional hazards modeling revealed that lower serum uromodulin, tertile 1 vs. tertile 3, was associated with a threefold greater risk for kidney allograft failure (hazards ratio [HR], 95% CI 3.20 [2.05-5.01]). This association was attenuated but persisted at twofold greater risk for allograft failure, after adjustment for age, sex, smoking, allograft type and vintage, prevalent diabetes mellitus and cardiovascular disease (CVD), total/high-density lipoprotein cholesterol ratio, systolic blood pressure, estimated glomerular filtration rate, and natural log urinary albumin/creatinine: HR 2.00, 95% CI (1.06-3.77). Lower serum uromodulin, a possible indicator of less well-preserved renal tubular function, remained associated with greater risk for kidney allograft failure, after adjustment for major, established clinical kidney allograft failure and CVD risk factors, in a large, multiethnic cohort of long-term, stable KTRs. © 2018 S. Karger AG, Basel.

  15. Electromechanical Conditioning of Adult Progenitor Cells Improves Recovery of Cardiac Function After Myocardial Infarction

    PubMed Central

    Llucià‐Valldeperas, Aida; Soler‐Botija, Carolina; Gálvez‐Montón, Carolina; Roura, Santiago; Prat‐Vidal, Cristina; Perea‐Gil, Isaac; Sanchez, Benjamin; Bragos, Ramon; Vunjak‐Novakovic, Gordana

    2016-01-01

    Abstract Cardiac cells are subjected to mechanical and electrical forces, which regulate gene expression and cellular function. Therefore, in vitro electromechanical stimuli could benefit further integration of therapeutic cells into the myocardium. Our goals were (a) to study the viability of a tissue‐engineered construct with cardiac adipose tissue‐derived progenitor cells (cardiac ATDPCs) and (b) to examine the effect of electromechanically stimulated cardiac ATDPCs within a myocardial infarction (MI) model in mice for the first time. Cardiac ATDPCs were electromechanically stimulated at 2‐millisecond pulses of 50 mV/cm at 1 Hz and 10% stretching during 7 days. The cells were harvested, labeled, embedded in a fibrin hydrogel, and implanted over the infarcted area of the murine heart. A total of 39 animals were randomly distributed and sacrificed at 21 days: groups of grafts without cells and with stimulated or nonstimulated cells. Echocardiography and gene and protein analyses were also carried out. Physiologically stimulated ATDPCs showed increased expression of cardiac transcription factors, structural genes, and calcium handling genes. At 21 days after implantation, cardiac function (measured as left ventricle ejection fraction between presacrifice and post‐MI) increased up to 12% in stimulated grafts relative to nontreated animals. Vascularization and integration with the host blood supply of grafts with stimulated cells resulted in increased vessel density in the infarct border region. Trained cells within the implanted fibrin patch expressed main cardiac markers and migrated into the underlying ischemic myocardium. To conclude, synchronous electromechanical cell conditioning before delivery may be a preferred alternative when considering strategies for heart repair after myocardial infarction. Stem Cells Translational Medicine 2017;6:970–981 PMID:28297585

  16. Effects of Trichothecenes on Cardiac Cell Electrical Function

    DTIC Science & Technology

    1985-12-16

    toxic effects . These studies demonstrated unequivocal reversible effects of certain mycotoxins on heart cell electrical activity. Preliminary studies...muscle cells shown in Figure 8 illustrate the typical effects of trichothecene mycotoxins in canine ventricular cells. T-2 tetraol, for 3xample...false tendon cells and V ventricular muscle cells (shown in Figure 8) illustrate the typical effects of trichothecene mycotoxins in canine cardiac

  17. Deletion of CXCR4 in cardiomyocytes exacerbates cardiac dysfunction following isoproterenol administration

    PubMed Central

    Wang, ER; Jarrah, AA; Benard, L; Chen, J; Schwarzkopf, M; Hadri, L; Tarzami, ST

    2014-01-01

    Altered alpha- and beta-adrenergic receptor signaling is associated with cardiac hypertrophy and failure. Stromal cell-derived factor-1α (SDF-1α) and its cognate receptor CXCR4 have been reported to mediate cardioprotection after injury through the mobilization of stem cells into injured tissue. However, little is known regarding whether SDF-1/CXCR4 induces acute protection following pathological hypertrophy and if so, by what molecular mechanism. We have previously reported that CXCR4 physically interacts with the beta-2 adrenergic receptor and modulates its down stream signaling. Here we have shown that CXCR4 expression prevents beta-adrenergic receptor induced hypertrophy. Cardiac beta-adrenergic receptors were stimulated with the implantation of a subcutaneous osmotic pump administrating isoproterenol and CXCR4 expression was selectively abrogated in cardiomyocytes using Cre-loxP-mediated gene recombination. CXCR4 knockout mice showed worsened fractional shortening and ejection fraction. CXCR4 ablation increased susceptibility to isoproterenol-induced heart failure, by upregulating apoptotic markers and reducing mitochondrial function; cardiac function decreases while fibrosis increases. Additionally, CXCR4 expression was rescued with the use of cardiotropic Adeno-associated viral-9 (AAV9) vectors. CXCR4 gene transfer reduced cardiac apoptotic signaling, improved mitochondrial function and resulted in a recovered cardiac function. Our results represent the first evidence that SDF-1/CXCR4 signaling mediates acute cardioprotection through modulating beta-adrenergic receptor signaling in vivo. PMID:24646609

  18. Simple suspension culture system of human iPS cells maintaining their pluripotency for cardiac cell sheet engineering.

    PubMed

    Haraguchi, Yuji; Matsuura, Katsuhisa; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo

    2015-12-01

    In this study, a simple three-dimensional (3D) suspension culture method for the expansion and cardiac differentiation of human induced pluripotent stem cells (hiPSCs) is reported. The culture methods were easily adapted from two-dimensional (2D) to 3D culture without any additional manipulations. When hiPSCs were directly applied to 3D culture from 2D in a single-cell suspension, only a few aggregated cells were observed. However, after 3 days, culture of the small hiPSC aggregates in a spinner flask at the optimal agitation rate created aggregates which were capable of cell passages from the single-cell suspension. Cell numbers increased to approximately 10-fold after 12 days of culture. The undifferentiated state of expanded hiPSCs was confirmed by flow cytometry, immunocytochemistry and quantitative RT-PCR, and the hiPSCs differentiated into three germ layers. When the hiPSCs were subsequently cultured in a flask using cardiac differentiation medium, expression of cardiac cell-specific genes and beating cardiomyocytes were observed. Furthermore, the culture of hiPSCs on Matrigel-coated dishes with serum-free medium containing activin A, BMP4 and FGF-2 enabled it to generate robust spontaneous beating cardiomyocytes and these cells expressed several cardiac cell-related genes, including HCN4, MLC-2a and MLC-2v. This suggests that the expanded hiPSCs might maintain the potential to differentiate into several types of cardiomyocytes, including pacemakers. Moreover, when cardiac cell sheets were fabricated using differentiated cardiomyocytes, they beat spontaneously and synchronously, indicating electrically communicative tissue. This simple culture system might enable the generation of sufficient amounts of beating cardiomyocytes for use in cardiac regenerative medicine and tissue engineering. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Fetal bovine serum enables cardiac differentiation of human embryonic stem cells.

    PubMed

    Bettiol, Esther; Sartiani, Laura; Chicha, Laurie; Krause, Karl Heinz; Cerbai, Elisabetta; Jaconi, Marisa E

    2007-10-01

    During development, cardiac commitment within the mesoderm requires endoderm-secreted factors. Differentiation of embryonic stem cells into the three germ layers in vitro recapitulates developmental processes and can be influenced by supplements added to culture medium. Hence, we investigated the effect of fetal bovine serum (FBS) and KnockOut serum replacement (SR) on germ layers specification and cardiac differentiation of H1 human embryonic stem cells (hESC) within embryoid bodies (EB). At the time of EB formation, FBS triggered an increased apoptosis. As assessed by quantitative PCR on 4-, 10-, and 20-day-old EB, FBS promoted a faster down-regulation of pluripotency marker Oct4 and an increased expression of endodermal (Sox17, alpha-fetoprotein, AFP) and mesodermal genes (Brachyury, CSX). While neuronal and hematopoietic differentiation occurred in both supplements, spontaneously beating cardiomyocytes were only observed in FBS. Action potential (AP) morphology of hESC-derived cardiomyocytes indicated that ventricular cells were present only after 2 months of culture. However, quantification of myosin light chain 2 ventricular (mlc2v)-positive areas revealed that mlc2v-expressing cardiomyocytes could be detected already after 2 weeks of differentiation, but not in all beating clusters. In conclusion, FBS enabled cardiac differentiation of hESC, likely in an endodermal-dependent pathway. Among cardiac cells, ventricular cardiomyocytes differentiated over time, but not as the predominant cardiac cell subtype.

  20. Cardiac stem cell therapy and arrhythmogenicity: prometheus and the arrows of Apollo and Artemis.

    PubMed

    Lyon, Alexander R; Harding, Sian E; Peters, Nicholas S

    2008-09-01

    Cardiac cell therapy is an expanding scientific field which is yielding new insights into the pathogenesis of cardiac disease and offers new therapeutic strategies. Inherent to both these areas of research are the electrical properties of individual cells, the electrical interplay between cardiomyocytes, and their roles in arrhythmogenesis. This review discusses the potential mechanisms by which various candidate cells for cardiac therapy may modulate the ventricular arrhythmic substrate and highlights the data and lessons learnt from the clinical cardiac cell therapy trials published to date. Pro- and antiarrhythmic mechanistic factors are discussed, and the importance of their consideration in the design of any future clinical cell therapy trials.

  1. Trait anxiety mediates the effect of stress exposure on post-traumatic stress disorder and depression risk in cardiac surgery patients.

    PubMed

    Kok, Lotte; Sep, Milou S; Veldhuijzen, Dieuwke S; Cornelisse, Sandra; Nierich, Arno P; van der Maaten, Joost; Rosseel, Peter M; Hofland, Jan; Dieleman, Jan M; Vinkers, Christiaan H; Joëls, Marian; van Dijk, Diederik; Hillegers, Manon H

    2016-12-01

    Post-traumatic stress disorder (PTSD) and depression are common after cardiac surgery. Lifetime stress exposure and personality traits may influence the development of these psychiatric conditions. Self-reported rates of PTSD and depression and potential determinants (i.e., trait anxiety and stress exposure) were established 1.5 to 4 years after cardiac surgery. Data was available for 1125 out of 1244 (90.4%) participants. Multivariable linear regressions were conducted to investigate mediating and/or moderating effects of trait anxiety on the relationship between stress exposure, and PTSD and depression. Pre-planned subgroup analyses were performed for both sexes. PTSD and depression symptoms were present in 10.2% and 13.1% of the participants, respectively. Trait anxiety was a full mediator of the association between stress exposure and depression in both the total cohort and female and male subgroups. Moreover, trait anxiety partially mediated the relationship between stress exposure and PTSD in the full cohort and the male subgroup, whereas trait anxiety fully mediated this relationship in female patients. Trait anxiety did not play a moderating role in the total patient sample, nor after stratification on gender. The unequal distribution of male (78%) and female patients (22%) might limit the generalizability of our findings. Furthermore, risk factors were investigated retrospectively and with variable follow-up time. In cardiac surgery patients, trait anxiety was found to be an important mediator of postoperative PTSD and depression. Prospective research is necessary to verify whether these factors are reliable screening measures of individuals' vulnerability for psychopathology development after cardiac surgery. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Characterization of Epicardial-Derived Cardiac Interstitial Cells: Differentiation and Mobilization of Heart Fibroblast Progenitors

    PubMed Central

    Ehrbar, Martin; Pérez-Pomares, José M.

    2013-01-01

    The non-muscular cells that populate the space found between cardiomyocyte fibers are known as ‘cardiac interstitial cells’ (CICs). CICs are heterogeneous in nature and include different cardiac progenitor/stem cells, cardiac fibroblasts and other cell types. Upon heart damage CICs soon respond by initiating a reparative response that transforms with time into extensive fibrosis and heart failure. Despite the biomedical relevance of CICs, controversy remains on the ontogenetic relationship existing between the different cell kinds homing at the cardiac interstitium, as well as on the molecular signals that regulate their differentiation, maturation, mutual interaction and role in adult cardiac homeostasis and disease. Our work focuses on the analysis of epicardial-derived cells, the first cell type that colonizes the cardiac interstitium. We present here a characterization and an experimental analysis of the differentiation potential and mobilization properties of a new cell line derived from mouse embryonic epicardium (EPIC). Our results indicate that these cells express some markers associated with cardiovascular stemness and retain part of the multipotent properties of embryonic epicardial derivatives, spontaneously differentiating into smooth muscle, and fibroblast/myofibroblast-like cells. Epicardium-derived cells are also shown to initiate a characteristic response to different growth factors, to display a characteristic proteolytic expression profile and to degrade biological matrices in 3D in vitro assays. Taken together, these data indicate that EPICs are relevant to the analysis of epicardial-derived CICs, and are a god model for the research on cardiac fibroblasts and the role these cells play in ventricular remodeling in both ischemic or non/ischemic myocardial disease. PMID:23349729

  3. Electrical and mechanical stimulation of cardiac cells and tissue constructs.

    PubMed

    Stoppel, Whitney L; Kaplan, David L; Black, Lauren D

    2016-01-15

    The field of cardiac tissue engineering has made significant strides over the last few decades, highlighted by the development of human cell derived constructs that have shown increasing functional maturity over time, particularly using bioreactor systems to stimulate the constructs. However, the functionality of these tissues is still unable to match that of native cardiac tissue and many of the stem-cell derived cardiomyocytes display an immature, fetal like phenotype. In this review, we seek to elucidate the biological underpinnings of both mechanical and electrical signaling, as identified via studies related to cardiac development and those related to an evaluation of cardiac disease progression. Next, we review the different types of bioreactors developed to individually deliver electrical and mechanical stimulation to cardiomyocytes in vitro in both two and three-dimensional tissue platforms. Reactors and culture conditions that promote functional cardiomyogenesis in vitro are also highlighted. We then cover the more recent work in the development of bioreactors that combine electrical and mechanical stimulation in order to mimic the complex signaling environment present in vivo. We conclude by offering our impressions on the important next steps for physiologically relevant mechanical and electrical stimulation of cardiac cells and engineered tissue in vitro. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Electromechanical Conditioning of Adult Progenitor Cells Improves Recovery of Cardiac Function After Myocardial Infarction.

    PubMed

    Llucià-Valldeperas, Aida; Soler-Botija, Carolina; Gálvez-Montón, Carolina; Roura, Santiago; Prat-Vidal, Cristina; Perea-Gil, Isaac; Sanchez, Benjamin; Bragos, Ramon; Vunjak-Novakovic, Gordana; Bayes-Genis, Antoni

    2017-03-01

    Cardiac cells are subjected to mechanical and electrical forces, which regulate gene expression and cellular function. Therefore, in vitro electromechanical stimuli could benefit further integration of therapeutic cells into the myocardium. Our goals were (a) to study the viability of a tissue-engineered construct with cardiac adipose tissue-derived progenitor cells (cardiac ATDPCs) and (b) to examine the effect of electromechanically stimulated cardiac ATDPCs within a myocardial infarction (MI) model in mice for the first time. Cardiac ATDPCs were electromechanically stimulated at 2-millisecond pulses of 50 mV/cm at 1 Hz and 10% stretching during 7 days. The cells were harvested, labeled, embedded in a fibrin hydrogel, and implanted over the infarcted area of the murine heart. A total of 39 animals were randomly distributed and sacrificed at 21 days: groups of grafts without cells and with stimulated or nonstimulated cells. Echocardiography and gene and protein analyses were also carried out. Physiologically stimulated ATDPCs showed increased expression of cardiac transcription factors, structural genes, and calcium handling genes. At 21 days after implantation, cardiac function (measured as left ventricle ejection fraction between presacrifice and post-MI) increased up to 12% in stimulated grafts relative to nontreated animals. Vascularization and integration with the host blood supply of grafts with stimulated cells resulted in increased vessel density in the infarct border region. Trained cells within the implanted fibrin patch expressed main cardiac markers and migrated into the underlying ischemic myocardium. To conclude, synchronous electromechanical cell conditioning before delivery may be a preferred alternative when considering strategies for heart repair after myocardial infarction. Stem Cells Translational Medicine 2017;6:970-981. © 2016 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  5. Stem Cell Technology in Cardiac Regeneration: A Pluripotent Stem Cell Promise.

    PubMed

    Duelen, Robin; Sampaolesi, Maurilio

    2017-02-01

    Despite advances in cardiovascular biology and medical therapy, heart disorders are the leading cause of death worldwide. Cell-based regenerative therapies become a promising treatment for patients affected by heart failure, but also underline the need for reproducible results in preclinical and clinical studies for safety and efficacy. Enthusiasm has been tempered by poor engraftment, survival and differentiation of the injected adult stem cells. The crucial challenge is identification and selection of the most suitable stem cell type for cardiac regenerative medicine. Human pluripotent stem cells (PSCs) have emerged as attractive cell source to obtain cardiomyocytes (CMs), with potential applications, including drug discovery and toxicity screening, disease modelling and innovative cell therapies. Lessons from embryology offered important insights into the development of stem cell-derived CMs. However, the generation of a CM population, uniform in cardiac subtype, adult maturation and functional properties, is highly recommended. Moreover, hurdles regarding tumorigenesis, graft cell death, immune rejection and arrhythmogenesis need to be overcome in clinical practice. Here we highlight the recent progression in PSC technologies for the regeneration of injured heart. We review novel strategies that might overcome current obstacles in heart regenerative medicine, aiming at improving cell survival and functional integration after cell transplantation. Copyright © 2017. Published by Elsevier B.V.

  6. Concise Review: Fluorescent Reporters in Human Pluripotent Stem Cells: Contributions to Cardiac Differentiation and Their Applications in Cardiac Disease and Toxicity.

    PubMed

    Den Hartogh, Sabine C; Passier, Robert

    2016-01-01

    In the last decade, since the first report of induced pluripotent stem cells, the stem cell field has made remarkable progress in the differentiation to specialized cell-types of various tissues and organs, including the heart. Cardiac lineage- and tissue-specific human pluripotent stem cell (hPSC) reporter lines have been valuable for the identification, selection, and expansion of cardiac progenitor cells and their derivatives, and for our current understanding of the underlying molecular mechanisms. In order to further advance the use of hPSCs in the fields of regenerative medicine, disease modeling, and preclinical drug development in cardiovascular research, it is crucial to identify functionally distinct cardiac subtypes and to study their biological signaling events and functional aspects in healthy and diseased conditions. In this review, we discuss the various strategies that have been followed to generate and study fluorescent reporter lines in hPSCs and provide insights how these reporter lines contribute to a better understanding and improvement of cell-based therapies and preclinical drug and toxicity screenings in the cardiac field. © AlphaMed Press.

  7. Reducing the radiation sterilization dose improves mechanical and biological quality while retaining sterility assurance levels of bone allografts.

    PubMed

    Nguyen, Huynh; Cassady, Alan I; Bennett, Michael B; Gineyts, Evelyne; Wu, Andy; Morgan, David A F; Forwood, Mark R

    2013-11-01

    Bone allografts carry a risk of infection, so terminal sterilization by gamma irradiation at 25kGy is recommended; but is deleterious to bone quality. Contemporary bone banking significantly reduces initial allograft bioburden, questioning the need to sterilize at 25kGy. We inoculated allograft bone with Staphylococcus epidermidis and Bacillus pumilus, then exposed them to gamma irradiation at 0, 5, 10, 15, 20 and 25kGy. Mechanical and biological properties of allografts were also assessed. Our aim was to determine an optimal dose that achieves sterility assurance while minimizing deleterious effects on allograft tissue. 20-25kGy eliminated both organisms at concentrations from 10(1) to 10(3)CFU, while 10-15kGy sterilized bone samples to a bioburden concentration of 10(2)CFU. Irradiation did not generate pro-inflammatory bone surfaces, as evidenced by macrophage activation, nor did it affect attachment or proliferation of osteoblasts. At doses ≥10kGy, the toughness of cortical bone was reduced (P<0.05), and attachment and fusion of osteoclasts onto irradiated bone declined at 20 and 25kGy (P<0.05). There was no change in collagen cross-links, but a significant dose-response increase in denatured collagen (P<0.05). Our mechanical and cell biological data converge on 15kGy as a threshold for radiation sterilization of bone allografts. Between 5 and 15kGy, bone banks can undertake validation that provides allografts with an acceptable sterility assurance level, improving their strength and biocompatibility significantly. The application of radiation sterilization doses between 5 and 15kGy will improve bone allograft mechanical performance and promote integration, while retaining sterility assurance levels. Improved quality of allograft bone will promote superior clinical outcomes. © 2013.

  8. Severe Hypoglycemia–Induced Lethal Cardiac Arrhythmias Are Mediated by Sympathoadrenal Activation

    PubMed Central

    Reno, Candace M.; Daphna-Iken, Dorit; Chen, Y. Stefanie; VanderWeele, Jennifer; Jethi, Krishan; Fisher, Simon J.

    2013-01-01

    For people with insulin-treated diabetes, severe hypoglycemia can be lethal, though potential mechanisms involved are poorly understood. To investigate how severe hypoglycemia can be fatal, hyperinsulinemic, severe hypoglycemic (10–15 mg/dL) clamps were performed in Sprague-Dawley rats with simultaneous electrocardiogram monitoring. With goals of reducing hypoglycemia-induced mortality, the hypotheses tested were that: 1) antecedent glycemic control impacts mortality associated with severe hypoglycemia; 2) with limitation of hypokalemia, potassium supplementation could limit hypoglycemia-associated deaths; 3) with prevention of central neuroglycopenia, brain glucose infusion could prevent hypoglycemia-associated arrhythmias and deaths; and 4) with limitation of sympathoadrenal activation, adrenergic blockers could prevent hypoglycemia-induced arrhythmic deaths. Severe hypoglycemia–induced mortality was noted to be worsened by diabetes, but recurrent antecedent hypoglycemia markedly improved the ability to survive an episode of severe hypoglycemia. Potassium supplementation tended to reduce mortality. Severe hypoglycemia caused numerous cardiac arrhythmias including premature ventricular contractions, tachycardia, and high-degree heart block. Intracerebroventricular glucose infusion reduced severe hypoglycemia–induced arrhythmias and overall mortality. β-Adrenergic blockade markedly reduced cardiac arrhythmias and completely abrogated deaths due to severe hypoglycemia. Under conditions studied, sudden deaths caused by insulin-induced severe hypoglycemia were mediated by lethal cardiac arrhythmias triggered by brain neuroglycopenia and the marked sympathoadrenal response. PMID:23835337

  9. Disinfection of human cardiac valve allografts in tissue banking: systematic review report.

    PubMed

    Germain, M; Strong, D M; Dowling, G; Mohr, J; Duong, A; Garibaldi, A; Simunovic, N; Ayeni, O R

    2016-12-01

    Cardiovascular allografts are usually disinfected using antibiotics, but protocols vary significantly between tissue banks. It is likely that different disinfection protocols will not have the same level of efficacy; they may also have varying effects on the structural integrity of the tissue, which could lead to significant differences in terms of clinical outcome in recipients. Ideally, a disinfection protocol should achieve the greatest bioburden reduction with the lowest possible impact on tissue integrity. We conducted a systematic review of methods applied to disinfect cardiovascular tissues. The use of multiple broad spectrum antibiotics in conjunction with an antifungal agent resulted in the greatest reduction in bioburden. Antibiotic incubation periods were limited to less than 24 h, and most protocols incubated tissues at 4 °C, however one study demonstrated a greater reduction of microbial load at 37 °C. None of the reviewed studies looked at the impact of these disinfection protocols on the risk of infection or any other clinical outcome in recipients.

  10. Fresh vein allograft survival in dogs after cyclosporine treatment.

    PubMed

    Mingoli, A; Edwards, J D; Feldhaus, R J; Hunter, W J; Naspetti, R; Cavallari, N; Sapienza, P; Kretchmar, D H; Cavallaro, A

    1996-04-01

    Synthetic grafts are widely used for peripheral arterial reconstructions when autologous veins are not available, but their results have not been satisfactory. Venous allograft may be used as an alternative to synthetic prostheses. The aim of the study was to explore the immunosuppressive efficacy of Cyclosporine A (CyA) as a means of preventing venous allograft failures and rejection. We utilized 56 mongrel dogs. Immunological incompatibility was checked with the skin graft method. Donor inferior vena cava was transplanted into the infrarenal abdominal aorta of recipient animals. One group (group 1, 10 dogs) served as a control and three groups received CyA treatment regimens. Group 2 (10 dogs) received postoperative oral CyA treatment for 30 days. Group 3 (12 dogs) received a vein graft pretreated with a CyA solution without postoperative immunosuppressive therapy. Group 4 (9 dogs) received a vein graft pretreated with a CyA solution and postoperative CyA treatment for 30 days. Allografts were examined at 30 days for patency, aneurysmal dilatation, gross structural changes, inflammatory response, and lymphocytic infiltration. Sex chromatine assessment determined the origin (donor or recipient) of the endothelial cells. The allografts from groups 1 and 3 showed significant aneurysmal dilatation and perivenous inflammation when compared to dogs treated with oral CyA therapy (P < 0.0002). Moreover allografts treated with CyA therapy had a better-developed venous neointima (P < 0.009) with less fibrin (P < 0.02) and thinner medial (P < 0.0009) with less fibrin (P < 0.02), and thinner medial (P < 0.0009) and adventitial layers (P < 0.02). No significant differences were observed in neointimal thickness among the four groups. Lymphocytic infiltration was greater in the group of animals who did not receive oral CyA therapy (P < 0.0004). Barr bodies status showed significant differences between oral CyA treated groups and nontreated groups (P < 0.0003). Oral CyA therapy

  11. Intraoperative culture positive allograft bone and subsequent postoperative infections: a retrospective review.

    PubMed

    Sims, Laura; Kulyk, Paul; Woo, Allan

    2017-04-01

    Obtaining intraoperative cultures of allograft bone just before use in orthopedic procedures is standard practice in many centres; however, the association between positive cultures and subsequent surgical infections is unknown. Our study had 3 goals: to determine the prevalence of positive intraoperative allograft culture and subsequent infection; to determine if, in cases of subsequent infection, organisms isolated at reoperation were the same as those cultured from the allograft at the time of the index procedure; and to assess the costs associated with performing intraoperative allograft cultures. In this retrospective case series, we obtained data on patients receiving allograft bone between 2009 and 2012. Patients receiving allograft with positive cultures were reviewed to identify cases of significant infection. Organisms isolated at reoperation were compared with the allograft culture taken at the time of implantation, and we performed a cost assessment. Of the 996 allograft bone grafts used, 43 (4.3%) had positive intraoperative cultures and significant postoperative infections developed in 2, requiring reoperation. Antibiotics based on culture results were prescribed in 24% of cases. Organisms cultured at the time of reoperation differed from those isolated initially. The cost of performing 996 allograft cultures was $169 320. This series suggests that rates of positive intraoperative bone allograft culture are low, and subsequent infection is rare. In cases of postoperative infection, primary allograft culture and secondary tissue cultures isolated different organisms. Costs associated with performing cultures are high. Eliminating initial culture testing could save $42 500 per year in our health region.

  12. Intraoperative culture positive allograft bone and subsequent postoperative infections: a retrospective review

    PubMed Central

    Sims, Laura; Kulyk, Paul; Woo, Allan

    2017-01-01

    Background Obtaining intraoperative cultures of allograft bone just before use in orthopedic procedures is standard practice in many centres; however, the association between positive cultures and subsequent surgical infections is unknown. Our study had 3 goals: to determine the prevalence of positive intraoperative allograft culture and subsequent infection; to determine if, in cases of subsequent infection, organisms isolated at reoperation were the same as those cultured from the allograft at the time of the index procedure; and to assess the costs associated with performing intraoperative allograft cultures. Methods In this retrospective case series, we obtained data on patients receiving allograft bone between 2009 and 2012. Patients receiving allograft with positive cultures were reviewed to identify cases of significant infection. Organisms isolated at reoperation were compared with the allograft culture taken at the time of implantation, and we performed a cost assessment. Results Of the 996 allograft bone grafts used, 43 (4.3%) had positive intraoperative cultures and significant postoperative infections developed in 2, requiring reoperation. Antibiotics based on culture results were prescribed in 24% of cases. Organisms cultured at the time of reoperation differed from those isolated initially. The cost of performing 996 allograft cultures was $169 320. Conclusion This series suggests that rates of positive intraoperative bone allograft culture are low, and subsequent infection is rare. In cases of postoperative infection, primary allograft culture and secondary tissue cultures isolated different organisms. Costs associated with performing cultures are high. Eliminating initial culture testing could save $42 500 per year in our health region. PMID:28234217

  13. Cytokine-mediated induction of endothelial adhesion molecule and histocompatibility leukocyte antigen expression by cytomegalovirus-activated T cells.

    PubMed Central

    Waldman, W. J.; Knight, D. A.

    1996-01-01

    Cytomegalovirus (CMV) has been associated with allograft rejection and transplantation-associated arteriosclerosis. CMV infects endothelium, the interface between allograft tissue and the host immune system; however, mechanisms by which such interaction might exacerbate the rejection process remain unresolved. Here we test the hypothesis that host immune activity, triggered by CMV-infected graft endothelial cells (ECs), can result in the production of cytokines capable of enhancing the alloimmunogenicity of nearby uninfected endothelia. To model these phenomena in vitro, confluent monolayers of ECs derived from human umbilical vein or adult gonadal vein were incubated 5 days beneath trans-well culture inserts containing CMV-seropositive or CMV-seronegative donor-derived CD3+ or CD4+ T cells alone or in combination with CMV-infected or uninfected allogeneic ECs. The extent of T cell proliferation was determined by [3H]thymidine labeling of trans-well contents after transfer to microtiter plates. Endothelial responses to soluble factors elaborated by CMV-activated T cells were determined by immunohistochemical staining and immunofluorescence flow cytometric analysis of underlying EC monolayers. Results of experiments with CMV-seropositive donor-derived CD4+ T cells demonstrated enhancement of ICAM-1 and histocompatibility leukocyte antigen class I, as well as induction of histocompatibility leukocyte antigen DR on ECs incubated beneath T cell/EC/CMV trans-well co-cultures. Total (CD3+) T cells co-cultured with EC/CMV induced VCAM-1 as well. Furthermore, [3H]thymidine incorporation by these T cells indicated a strong proliferative response. Endothelial responses to T cells alone or in combination with uninfected ECs were minimal, and T cells cultured under these conditions showed little proliferative activity. Similarly, little or no endothelial responses were apparent in monolayers beneath trans-wells containing T cells isolated from CMV-seronegative individuals

  14. Genome-Nuclear Lamina Interactions Regulate Cardiac Stem Cell Lineage Restriction.

    PubMed

    Poleshko, Andrey; Shah, Parisha P; Gupta, Mudit; Babu, Apoorva; Morley, Michael P; Manderfield, Lauren J; Ifkovits, Jamie L; Calderon, Damelys; Aghajanian, Haig; Sierra-Pagán, Javier E; Sun, Zheng; Wang, Qiaohong; Li, Li; Dubois, Nicole C; Morrisey, Edward E; Lazar, Mitchell A; Smith, Cheryl L; Epstein, Jonathan A; Jain, Rajan

    2017-10-19

    Progenitor cells differentiate into specialized cell types through coordinated expression of lineage-specific genes and modification of complex chromatin configurations. We demonstrate that a histone deacetylase (Hdac3) organizes heterochromatin at the nuclear lamina during cardiac progenitor lineage restriction. Specification of cardiomyocytes is associated with reorganization of peripheral heterochromatin, and independent of deacetylase activity, Hdac3 tethers peripheral heterochromatin containing lineage-relevant genes to the nuclear lamina. Deletion of Hdac3 in cardiac progenitor cells releases genomic regions from the nuclear periphery, leading to precocious cardiac gene expression and differentiation into cardiomyocytes; in contrast, restricting Hdac3 to the nuclear periphery rescues myogenesis in progenitors otherwise lacking Hdac3. Our results suggest that availability of genomic regions for activation by lineage-specific factors is regulated in part through dynamic chromatin-nuclear lamina interactions and that competence of a progenitor cell to respond to differentiation signals may depend upon coordinated movement of responding gene loci away from the nuclear periphery. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Cardiac Med1 deletion promotes early lethality, cardiac remodeling, and transcriptional reprogramming

    PubMed Central

    Spitler, Kathryn M.; Ponce, Jessica M.; Oudit, Gavin Y.; Hall, Duane D.

    2017-01-01

    The mediator complex, a multisubunit nuclear complex, plays an integral role in regulating gene expression by acting as a bridge between transcription factors and RNA polymerase II. Genetic deletion of mediator subunit 1 (Med1) results in embryonic lethality, due in large part to impaired cardiac development. We first established that Med1 is dynamically expressed in cardiac development and disease, with marked upregulation of Med1 in both human and murine failing hearts. To determine if Med1 deficiency protects against cardiac stress, we generated two cardiac-specific Med1 knockout mouse models in which Med1 is conditionally deleted (Med1cKO mice) or inducibly deleted in adult mice (Med1cKO-MCM mice). In both models, cardiac deletion of Med1 resulted in early lethality accompanied by pronounced changes in cardiac function, including left ventricular dilation, decreased ejection fraction, and pathological structural remodeling. We next defined how Med1 deficiency alters the cardiac transcriptional profile using RNA-sequencing analysis. Med1cKO mice demonstrated significant dysregulation of genes related to cardiac metabolism, in particular genes that are coordinated by the transcription factors Pgc1α, Pparα, and Errα. Consistent with the roles of these transcription factors in regulation of mitochondrial genes, we observed significant alterations in mitochondrial size, mitochondrial gene expression, complex activity, and electron transport chain expression under Med1 deficiency. Taken together, these data identify Med1 as an important regulator of vital cardiac gene expression and maintenance of normal heart function. NEW & NOTEWORTHY Disruption of transcriptional gene expression is a hallmark of dilated cardiomyopathy; however, its etiology is not well understood. Cardiac-specific deletion of the transcriptional coactivator mediator subunit 1 (Med1) results in dilated cardiomyopathy, decreased cardiac function, and lethality. Med1 deletion disrupted cardiac

  16. Dendritic cell-associated immune inflammation of cardiac mucosa: a possible factor in the formation of Barrett's esophagus.

    PubMed

    Bobryshev, Yuri V; Tran, Dinh; Killingsworth, Murray C; Buckland, Michael; Lord, Reginald V N

    2009-03-01

    The development of Barrett's esophagus is poorly understood, but it has been suggested that cardiac mucosa is a precursor of intestinal type metaplasia and that inflammation of cardiac mucosa may play a role in the formation of Barrett's esophagus. The present study was undertaken to examine the presence and distribution of immune-inflammatory cells in cardiac mucosa, specifically focusing on dendritic cells because of their importance as regulators of immune reactions. Endoscopic biopsy specimens were obtained from 12 patients with cardiac mucosa without Barrett's esophagus or adenocarcinoma and from 21 patients with Barrett's esophagus without dysplasia (intestinal metaplasia). According to histology, in nine of the 21 specimens with Barrett's esophagus, areas of mucosa composed of cardiac type epithelium-lined glands were present as well. Immunohistochemical staining and electron microscopy were used to examine immune-inflammatory cells in paraffin-embedded sections. Immune-inflammatory cells, including T cells, B cells, dendritic cells, macrophages, and mast cells, were present in the connective tissue matrix that surrounded cardiac type epithelium-lined glands in all patients with cardiac mucosa. Clustering of dendritic cells with each other and with lymphocytes and the intrusion of dendritic cells between glandular mucus cells were observed. In the Barrett's esophagus specimens that contained cardiac type glands, computerized CD83 expression quantitation revealed that there were more dendritic cells in cardiac mucosa than in intestinal metaplasia. Immune-inflammatory infiltrates containing dendritic cells are consistently present in cardiac mucosa. The finding of a larger number of dendritic cells in areas of cardiac mucosa in Barrett's esophagus biopsies suggests that the immune inflammation of cardiac mucosa might play a role in modifying the local tissue environment to promote the development of specialized intestinal type metaplasia.

  17. Doxorubicin Regulates Autophagy Signals via Accumulation of Cytosolic Ca2+ in Human Cardiac Progenitor Cells.

    PubMed

    Park, Ji Hye; Choi, Sung Hyun; Kim, Hyungtae; Ji, Seung Taek; Jang, Woong Bi; Kim, Jae Ho; Baek, Sang Hong; Kwon, Sang Mo

    2016-10-09

    Doxorubicin (DOXO) is widely used to treat solid tumors. However, its clinical use is limited by side effects including serious cardiotoxicity due to cardiomyocyte damage. Resident cardiac progenitor cells (hCPCs) act as key regulators of homeostasis in myocardial cells. However, little is known about the function of hCPCs in DOXO-induced cardiotoxicity. In this study, we found that DOXO-mediated hCPC toxicity is closely related to calcium-related autophagy signaling and was significantly attenuated by blocking mTOR signaling in human hCPCs. DOXO induced hCPC apoptosis with reduction of SMP30 (regucalcin) and autophagosome marker LC3, as well as remarkable induction of the autophagy-related markers, Beclin-1, APG7, and P62/SQSTM1 and induction of calcium-related molecules, CaM (Calmodulin) and CaMKII (Calmodulin kinase II). The results of an LC3 puncta assay further indicated that DOXO reduced autophagosome formation via accumulation of cytosolic Ca 2+ . Additionally, DOXO significantly induced mTOR expression in hCPCs, and inhibition of mTOR signaling by rapamycin, a specific inhibitor, rescued DOXO-mediated autophagosome depletion in hCPCs with significant reduction of DOXO-mediated cytosolic Ca 2+ accumulation in hCPCs, and restored SMP30 and mTOR expression. Thus, DOXO-mediated hCPC toxicity is linked to Ca 2+ -related autophagy signaling, and inhibition of mTOR signaling may provide a cardio-protective effect against DOXO-mediated hCPC toxicity.

  18. Doxorubicin Regulates Autophagy Signals via Accumulation of Cytosolic Ca2+ in Human Cardiac Progenitor Cells

    PubMed Central

    Park, Ji Hye; Choi, Sung Hyun; Kim, Hyungtae; Ji, Seung Taek; Jang, Woong Bi; Kim, Jae Ho; Baek, Sang Hong; Kwon, Sang Mo

    2016-01-01

    Doxorubicin (DOXO) is widely used to treat solid tumors. However, its clinical use is limited by side effects including serious cardiotoxicity due to cardiomyocyte damage. Resident cardiac progenitor cells (hCPCs) act as key regulators of homeostasis in myocardial cells. However, little is known about the function of hCPCs in DOXO-induced cardiotoxicity. In this study, we found that DOXO-mediated hCPC toxicity is closely related to calcium-related autophagy signaling and was significantly attenuated by blocking mTOR signaling in human hCPCs. DOXO induced hCPC apoptosis with reduction of SMP30 (regucalcin) and autophagosome marker LC3, as well as remarkable induction of the autophagy-related markers, Beclin-1, APG7, and P62/SQSTM1 and induction of calcium-related molecules, CaM (Calmodulin) and CaMKII (Calmodulin kinase II). The results of an LC3 puncta assay further indicated that DOXO reduced autophagosome formation via accumulation of cytosolic Ca2+. Additionally, DOXO significantly induced mTOR expression in hCPCs, and inhibition of mTOR signaling by rapamycin, a specific inhibitor, rescued DOXO-mediated autophagosome depletion in hCPCs with significant reduction of DOXO-mediated cytosolic Ca2+ accumulation in hCPCs, and restored SMP30 and mTOR expression. Thus, DOXO-mediated hCPC toxicity is linked to Ca2+-related autophagy signaling, and inhibition of mTOR signaling may provide a cardio-protective effect against DOXO-mediated hCPC toxicity. PMID:27735842

  19. Single-Cell Sequencing Technologies for Cardiac Stem Cell Studies.

    PubMed

    Liu, Tiantian; Wu, Hongjin; Wu, Shixiu; Wang, Charles

    2017-11-01

    Today with the rapid advancements in stem cell studies and the promising potential of using stem cells in clinical therapy, there is an increasing demand for in-depth comprehensive analysis on individual cell transcriptome and epigenome, as they play critical roles in a number of cell functions such as cell differentiation, growth, and reprogramming. The development of single-cell sequencing technologies has helped in revealing some exciting new perspectives in stem cells and regenerative medicine research. Among the various potential applications, single-cell analysis for cardiac stem cells (CSCs) holds tremendous promises in understanding the mechanisms of heart development and regeneration, which might light up the path toward cell therapy for cardiovascular diseases. This review briefly highlights the recent progresses in single-cell sequencing analysis technologies and their applications in CSC research.

  20. Reversal of Diabetes by Islet Transplantation: Vulnerability of the Established Allograft

    NASA Astrophysics Data System (ADS)

    Bowen, K. M.; Prowse, S. J.; Lafferty, K. J.

    1981-09-01

    Nonspecific stimulation of the immune system of CBA mice carrying a functional BALB/c islet allograft failed to trigger graft rejection. Only three of six animals rejected their graft when injected intravenously with 105, 106, and 107 peritoneal cells of BALB/c origin over a 3-month period commencing 100 days after transplantation.

  1. Force Generation via β-Cardiac Myosin, Titin, and α-Actinin Drives Cardiac Sarcomere Assembly from Cell-Matrix Adhesions.

    PubMed

    Chopra, Anant; Kutys, Matthew L; Zhang, Kehan; Polacheck, William J; Sheng, Calvin C; Luu, Rebeccah J; Eyckmans, Jeroen; Hinson, J Travis; Seidman, Jonathan G; Seidman, Christine E; Chen, Christopher S

    2018-01-08

    Truncating mutations in the sarcomere protein titin cause dilated cardiomyopathy due to sarcomere insufficiency. However, it remains mechanistically unclear how these mutations decrease sarcomere content in cardiomyocytes. Utilizing human induced pluripotent stem cell-derived cardiomyocytes, CRISPR/Cas9, and live microscopy, we characterize the fundamental mechanisms of human cardiac sarcomere formation. We observe that sarcomerogenesis initiates at protocostameres, sites of cell-extracellular matrix adhesion, where nucleation and centripetal assembly of α-actinin-2-containing fibers provide a template for the fusion of Z-disk precursors, Z bodies, and subsequent striation. We identify that β-cardiac myosin-titin-protocostamere form an essential mechanical connection that transmits forces required to direct α-actinin-2 centripetal fiber assembly and sarcomere formation. Titin propagates diastolic traction stresses from β-cardiac myosin, but not α-cardiac myosin or non-muscle myosin II, to protocostameres during sarcomerogenesis. Ablating protocostameres or decoupling titin from protocostameres abolishes sarcomere assembly. Together these results identify the mechanical and molecular components critical for human cardiac sarcomerogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Expression of bone morphogenetic proteins 4, 6 and 7 is downregulated in kidney allografts with interstitial fibrosis and tubular atrophy.

    PubMed

    Furic-Cunko, Vesna; Kes, Petar; Coric, Marijana; Hudolin, Tvrtko; Kastelan, Zeljko; Basic-Jukic, Nikolina

    2015-07-01

    Bone morphogenetic proteins (BMPs) are pleiotropic growth factors. This paper investigates the connection between the expression pattern of BMPs in kidney allograft tissue versus the cause of allograft dysfunction. The expression pattern of BMP2, BMP4, BMP6 and BMP7 in 50 kidney allografts obtained by transplant nephrectomy is investigated. Immunohistochemical staining is semiquantitatively evaluated for intensity to identify the expression pattern of BMPs in normal and allograft kidney tissues. The expression of BMP4 is unique between different tubular cell types in grafts without signs of fibrosis. This effect is not found in specimens with high grades of interstitial fibrosis and tubular atrophy (IFTA). In samples with IFTA grades II and III, the BMP7 expression is reduced in a significant fraction of specimens relative to those without signs of IFTA. The expression pattern of BMP6 indicates that its activation may be triggered by the act of transplantation and subsequent reperfusion injury. The expression of BMP2 is strong in all types of tubular epithelial cells and does not differ between the compared allografts and control kidney specimens. The intensity and expression pattern of BMP4, BMP6 and BMP7 in transplanted kidney tissue are found to be dependent upon the length of the transplanted period, the clinical indication for transplant nephrectomy and signs of IFTA in kidney tissue.

  3. Modern Perspectives on Numerical Modeling of Cardiac Pacemaker Cell

    PubMed Central

    Maltsev, Victor A.; Yaniv, Yael; Maltsev, Anna V.; Stern, Michael D.; Lakatta, Edward G.

    2015-01-01

    Cardiac pacemaking is a complex phenomenon that is still not completely understood. Together with experimental studies, numerical modeling has been traditionally used to acquire mechanistic insights in this research area. This review summarizes the present state of numerical modeling of the cardiac pacemaker, including approaches to resolve present paradoxes and controversies. Specifically we discuss the requirement for realistic modeling to consider symmetrical importance of both intracellular and cell membrane processes (within a recent “coupled-clock” theory). Promising future developments of the complex pacemaker system models include the introduction of local calcium control, mitochondria function, and biochemical regulation of protein phosphorylation and cAMP production. Modern numerical and theoretical methods such as multi-parameter sensitivity analyses within extended populations of models and bifurcation analyses are also important for the definition of the most realistic parameters that describe a robust, yet simultaneously flexible operation of the coupled-clock pacemaker cell system. The systems approach to exploring cardiac pacemaker function will guide development of new therapies, such as biological pacemakers for treating insufficient cardiac pacemaker function that becomes especially prevalent with advancing age. PMID:24748434

  4. Uterine-derived progenitor cells are immunoprivileged and effectively improve cardiac regeneration when used for cell therapy.

    PubMed

    Ludke, Ana; Wu, Jun; Nazari, Mansoreh; Hatta, Kota; Shao, Zhengbo; Li, Shu-Hong; Song, Huifang; Ni, Nathan C; Weisel, Richard D; Li, Ren-Ke

    2015-07-01

    Cell therapy to prevent cardiac dysfunction after myocardial infarction (MI) is less effective in aged patients because aged cells have decreased regenerative capacity. Allogeneic transplanted stem cells (SCs) from young donors are usually rejected. Maintaining transplanted SC immunoprivilege may dramatically improve regenerative outcomes. The uterus has distinct immune characteristics, and we showed that reparative uterine SCs home to the myocardium post-MI. Here, we identify immunoprivileged uterine SCs and assess their effects on cardiac regeneration after allogeneic transplantation. We found more than 20% of cells in the mouse uterus have undetectable MHC I expression by flow cytometry. Uterine MHC I((neg)) and MHC I((pos)) cells were separated by magnetic cell sorting. The MHC I((neg)) population expressed the SC markers CD34, Sca-1 and CD90, but did not express MHC II or c-kit. In vitro, MHC I((neg)) and ((pos)) SCs show colony formation and endothelial differentiation capacity. In mixed leukocyte co-culture, MHC I((neg)) cells showed reduced cell death and leukocyte proliferation compared to MHC I((pos)) cells. MHC I((neg)) and ((pos)) cells had significantly greater angiogenic capacity than mesenchymal stem cells. The benefits of intramyocardial injection of allogeneic MHC I((neg)) cells after MI were comparable to syngeneic bone marrow cell transplantation, with engraftment in cardiac tissue and limited recruitment of CD4 and CD8 cells up to 21 days post-MI. MHC I((neg)) cells preserved cardiac function, decreased infarct size and improved regeneration post-MI. This new source of immunoprivileged cells can induce neovascularization and could be used as allogeneic cell therapy for regenerative medicine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. AMP-activated protein kinase confers protection against TNF-{alpha}-induced cardiac cell death.

    PubMed

    Kewalramani, Girish; Puthanveetil, Prasanth; Wang, Fang; Kim, Min Suk; Deppe, Sylvia; Abrahani, Ashraf; Luciani, Dan S; Johnson, James D; Rodrigues, Brian

    2009-10-01

    Although a substantial role for 5' adenosine monophosphate-activated protein kinase (AMPK) has been established in regulating cardiac metabolism, a less studied action of AMPK is its ability to prevent cardiac cell death. Using established AMPK activators like dexamethasone (DEX) or metformin (MET), the objective of the present study was to determine whether AMPK activation prevents tumour necrosis factor-alpha (TNF-alpha) induced apoptosis in adult rat ventricular cardiomyocytes. Cardiomyocytes were incubated with DEX, MET, or TNF-alpha for varying durations (0-12 h). TNF-alpha-induced cell damage was evaluated by measuring caspase-3 activity and Hoechst staining. Protein and gene estimation techniques were employed to determine the mechanisms mediating the effects of AMPK activators on TNF-alpha-induced cardiomyocyte apoptosis. Incubation of myocytes with TNF-alpha for 8 h has increased caspase-3 activation and apoptotic cell death, an effect that was abrogated by DEX and MET. The beneficial effect of DEX and MET was associated with stimulation of AMPK, which led to a rapid and sustained increase in Bad phosphorylation. This event reduced the interaction between Bad and Bcl-xL, limiting cytochrome c release and caspase-3 activation. Addition of Compound C to inhibit AMPK reduced Bad phosphorylation and prevented the beneficial effects of AMPK against TNF-alpha-induced cytotoxicity. Our data demonstrate that although DEX and MET are used as anti-inflammatory agents or insulin sensitizers, respectively, their common property to phosphorylate AMPK promotes cardiomyocyte cell survival through its regulation of Bad and the mitochondrial apoptotic mechanism.

  6. Unilateral dampening of Bmp activity by nodal generates cardiac left-right asymmetry.

    PubMed

    Veerkamp, Justus; Rudolph, Franziska; Cseresnyes, Zoltan; Priller, Florian; Otten, Cécile; Renz, Marc; Schaefer, Liliana; Abdelilah-Seyfried, Salim

    2013-03-25

    Signaling by Nodal and Bmp is essential for cardiac laterality. How activities of these pathways translate into left-right asymmetric organ morphogenesis is largely unknown. We show that, in zebrafish, Nodal locally reduces Bmp activity on the left side of the cardiac field. This effect is mediated by the extracellular matrix enzyme Hyaluronan synthase 2, expression of which is induced by Nodal. Unilateral reduction of Bmp signaling results in lower expression of nonmuscle myosin II and higher cell motility on the left, driving asymmetric displacement of the entire cardiac field. In silico modeling shows that left-right differences in cell motility are sufficient to induce a robust, directional migration of cardiac tissue. Thus, the mechanism underlying the formation of cardiac left-right asymmetry involves Nodal modulating an antimotogenic Bmp activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Epigenomic Reprogramming of Adult Cardiomyocyte-Derived Cardiac Progenitor Cells

    PubMed Central

    Zhang, Yiqiang; Zhong, Jiang F; Qiu, Hongyu; Robb MacLellan, W.; Marbán, Eduardo; Wang, Charles

    2015-01-01

    It has been believed that mammalian adult cardiomyocytes (ACMs) are terminally-differentiated and are unable to proliferate. Recently, using a bi-transgenic ACM fate mapping mouse model and an in vitro culture system, we demonstrated that adult mouse cardiomyocytes were able to dedifferentiate into cardiac progenitor-like cells (CPCs). However, little is known about the molecular basis of their intrinsic cellular plasticity. Here we integrate single-cell transcriptome and whole-genome DNA methylation analyses to unravel the molecular mechanisms underlying the dedifferentiation and cell cycle reentry of mouse ACMs. Compared to parental cardiomyocytes, dedifferentiated mouse cardiomyocyte-derived CPCs (mCPCs) display epigenomic reprogramming with many differentially-methylated regions, both hypermethylated and hypomethylated, across the entire genome. Correlated well with the methylome, our transcriptomic data showed that the genes encoding cardiac structure and function proteins are remarkably down-regulated in mCPCs, while those for cell cycle, proliferation, and stemness are significantly up-regulated. In addition, implantation of mCPCs into infarcted mouse myocardium improves cardiac function with augmented left ventricular ejection fraction. Our study demonstrates that the cellular plasticity of mammalian cardiomyocytes is the result of a well-orchestrated epigenomic reprogramming and a subsequent global transcriptomic alteration. PMID:26657817

  8. Factors Predicting Meniscal Allograft Transplantation Failure

    PubMed Central

    Parkinson, Ben; Smith, Nicholas; Asplin, Laura; Thompson, Peter; Spalding, Tim

    2016-01-01

    Background: Meniscal allograft transplantation (MAT) is performed to improve symptoms and function in patients with a meniscal-deficient compartment of the knee. Numerous studies have shown a consistent improvement in patient-reported outcomes, but high failure rates have been reported by some studies. The typical patients undergoing MAT often have multiple other pathologies that require treatment at the time of surgery. The factors that predict failure of a meniscal allograft within this complex patient group are not clearly defined. Purpose: To determine predictors of MAT failure in a large series to refine the indications for surgery and better inform future patients. Study Design: Cohort study; Level of evidence, 3. Methods: All patients undergoing MAT at a single institution between May 2005 and May 2014 with a minimum of 1-year follow-up were prospectively evaluated and included in this study. Failure was defined as removal of the allograft, revision transplantation, or conversion to a joint replacement. Patients were grouped according to the articular cartilage status at the time of the index surgery: group 1, intact or partial-thickness chondral loss; group 2, full-thickness chondral loss 1 condyle; and group 3, full-thickness chondral loss both condyles. The Cox proportional hazards model was used to determine significant predictors of failure, independently of other factors. Kaplan-Meier survival curves were produced for overall survival and significant predictors of failure in the Cox proportional hazards model. Results: There were 125 consecutive MATs performed, with 1 patient lost to follow-up. The median follow-up was 3 years (range, 1-10 years). The 5-year graft survival for the entire cohort was 82% (group 1, 97%; group 2, 82%; group 3, 62%). The probability of failure in group 1 was 85% lower (95% CI, 13%-97%) than in group 3 at any time. The probability of failure with lateral allografts was 76% lower (95% CI, 16%-89%) than medial allografts at

  9. c-Raf/MEK/ERK pathway controls protein kinase C-mediated p70S6K activation in adult cardiac muscle cells.

    PubMed

    Iijima, Yoshihiro; Laser, Martin; Shiraishi, Hirokazu; Willey, Christopher D; Sundaravadivel, Balasubramanian; Xu, Lin; McDermott, Paul J; Kuppuswamy, Dhandapani

    2002-06-21

    p70S6 kinase (S6K1) plays a pivotal role in hypertrophic cardiac growth via ribosomal biogenesis. In pressure-overloaded myocardium, we show S6K1 activation accompanied by activation of protein kinase C (PKC), c-Raf, and mitogen-activated protein kinases (MAPKs). To explore the importance of the c-Raf/MAPK kinase (MEK)/MAPK pathway, we stimulated adult feline cardiomyocytes with 12-O-tetradecanoylphorbol-13-acetate (TPA), insulin, or forskolin to activate PKC, phosphatidylinositol-3-OH kinase, or protein kinase A (PKA), respectively. These treatments resulted in S6K1 activation with Thr-389 phosphorylation as well as mammalian target of rapamycin (mTOR) and S6 protein phosphorylation. Thr-421/Ser-424 phosphorylation of S6K1 was observed predominantly in TPA-treated cells. Dominant negative c-Raf expression or a MEK1/2 inhibitor (U0126) treatment showed a profound blocking effect only on the TPA-stimulated phosphorylation of S6K1 and mTOR. Whereas p38 MAPK inhibitors exhibited only partial effect, MAPK-phosphatase-3 expression significantly blocked the TPA-stimulated S6K1 and mTOR phosphorylation. Inhibition of mTOR with rapamycin blocked the Thr-389 but not the Thr-421/Ser-424 phosphorylation of S6K1. Therefore, during PKC activation, the c-Raf/MEK/extracellular signal-regulated kinase-1/2 (ERK1/2) pathway mediates both the Thr-421/Ser-424 and the Thr-389 phosphorylation in an mTOR-independent and -dependent manner, respectively. Together, our in vivo and in vitro studies indicate that the PKC/c-Raf/MEK/ERK pathway plays a major role in the S6K1 activation in hypertrophic cardiac growth.

  10. Donor-Derived Regulatory Dendritic Cell Infusion Maintains Donor-Reactive CD4+CTLA4hi T Cells in Non-Human Primate Renal Allograft Recipients Treated with CD28 Co-Stimulation Blockade.

    PubMed

    Ezzelarab, Mohamed B; Lu, Lien; Shufesky, William F; Morelli, Adrian E; Thomson, Angus W

    2018-01-01

    Donor-derived regulatory dendritic cell (DCreg) infusion before transplantation, significantly prolongs renal allograft survival in non-human primates. This is associated with enhanced expression of the immunoregulatory molecules cytotoxic T-lymphocyte-associated antigen (Ag) 4 (CTLA4) and programmed cell death protein 1 (PD1) by host donor-reactive T cells. In rodents and humans, CD28 co-stimulatory pathway blockade with the fusion protein CTLA4:Ig (CTLA4Ig) is associated with reduced differentiation and development of regulatory T cells (Treg). We hypothesized that upregulation of CTLA4 by donor-reactive CD4 + T cells in DCreg-infused recipients treated with CTLA4Ig, might be associated with higher incidences of donor-reactive CD4 + T cells with a Treg phenotype. In normal rhesus monkeys, allo-stimulated CD4 + CTLA4 hi , but not CD4 + CTLA4 med/lo T cells exhibited a regulatory phenotype, irrespective of PD1 expression. CTLA4Ig significantly reduced the incidence of CD4 + CTLA4 hi , but not CD4 + CTLA4 med/lo T cells following allo-stimulation, associated with a significant reduction in the CD4 + CTLA4 hi /CD4 + CTLA4 med/lo T cell ratio. In CTLA4Ig-treated renal allograft recipient monkeys, there was a marked reduction in circulating donor-reactive CD4 + CTLA4 hi T cells. In contrast, in CTLA4Ig-treated monkeys with DCreg infusion, no such reduction was observed. In parallel, the donor-reactive CD4 + CTLA4 hi /CD4 + CTLA4 med/lo T cell ratio was reduced significantly in graft recipients without DCreg infusion, but increased in those given DCreg. These observations suggest that pre-transplant DCreg infusion promotes and maintains donor-reactive CD4 + CTLA4 hi T cells with a regulatory phenotype after transplantation, even in the presence of CD28 co-stimulation blockade.

  11. Xenografted human amniotic membrane-derived mesenchymal stem cells are immunologically tolerated and transdifferentiated into cardiomyocytes.

    PubMed

    Tsuji, Hiroko; Miyoshi, Shunichiro; Ikegami, Yukinori; Hida, Naoko; Asada, Hironori; Togashi, Ikuko; Suzuki, Junshi; Satake, Masaki; Nakamizo, Hikaru; Tanaka, Mamoru; Mori, Taisuke; Segawa, Kaoru; Nishiyama, Nobuhiro; Inoue, Junko; Makino, Hatsune; Miyado, Kenji; Ogawa, Satoshi; Yoshimura, Yasunori; Umezawa, Akihiro

    2010-05-28

    Amniotic membrane is known to have the ability to transdifferentiate into multiple organs and is expected to stimulate a reduced immunologic reaction. Determine whether human amniotic membrane-derived mesenchymal cells (hAMCs) can be an ideal allograftable stem cell source for cardiac regenerative medicine. We established hAMCs. After cardiomyogenic induction in vitro, hAMCs beat spontaneously, and the calculated cardiomyogenic transdifferentiation efficiency was 33%. Transplantation of hAMCs 2 weeks after myocardial infarction improved impaired left ventricular fractional shortening measured by echocardiogram (34+/-2% [n=8] to 39+/-2% [n=11]; P<0.05) and decreased myocardial fibrosis area (18+/-1% [n=9] to 13+/-1% [n=10]; P<0.05), significantly. Furthermore hAMCs transplanted into the infarcted myocardium of Wistar rats were transdifferentiated into cardiomyocytes in situ and survived for more than 4 weeks after the transplantation without using any immunosuppressant. Immunologic tolerance was caused by the hAMC-derived HLA-G expression, lack of MHC expression of hAMCs, and activation of FOXP3-positive regulatory T cells. Administration of IL-10 or progesterone, which is known to play an important role in feto-maternal tolerance during pregnancy, markedly increased HLA-G expression in hAMCs in vitro and, surprisingly, also increased cardiomyogenic transdifferentiation efficiency in vitro and in vivo. Because hAMCs have a high ability to transdifferentiate into cardiomyocytes and to acquire immunologic tolerance in vivo, they can be a promising cellular source for allograftable stem cells for cardiac regenerative medicine.

  12. Repair of facial nerve defects with decellularized artery allografts containing autologous adipose-derived stem cells in a rat model.

    PubMed

    Sun, Fei; Zhou, Ke; Mi, Wen-Juan; Qiu, Jian-Hua

    2011-07-20

    The purpose of this study was to investigate the effects of a decellularized artery allograft containing autologous adipose-derived stem cells (ADSCs) on an 8-mm facial nerve branch lesion in a rat model. At 8 weeks postoperatively, functional evaluation of unilateral vibrissae movements, morphological analysis of regenerated nerve segments and retrograde labeling of facial motoneurons were all analyzed. Better regenerative outcomes associated with functional improvement, great axonal growth, and improved target reinnervation were achieved in the artery-ADSCs group (2), whereas the cut nerves sutured with artery conduits alone (group 1) achieved inferior restoration. Furthermore, transected nerves repaired with nerve autografts (group 3) resulted in significant recovery of whisking, maturation of myelinated fibers and increased number of labeled facial neurons, and the latter two parameters were significantly different from those of group 2. Collectively, though our combined use of a decellularized artery allograft with autologous ADSCs achieved regenerative outcomes inferior to a nerve autograft, it certainly showed a beneficial effect on promoting nerve regeneration and thus represents an alternative approach for the reconstruction of peripheral facial nerve defects. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Recruitment of endosomal signaling mediates the forskolin modulation of guinea pig cardiac neuron excitability.

    PubMed

    Hardwick, Jean C; Clason, Todd A; Tompkins, John D; Girard, Beatrice M; Baran, Caitlin N; Merriam, Laura A; May, Victor; Parsons, Rodney L

    2017-08-01

    Forskolin, a selective activator of adenylyl cyclase (AC), commonly is used to establish actions of G protein-coupled receptors (GPCRs) that are initiated primarily through activation of AC/cAMP signaling pathways. In the present study, forskolin was used to evaluate the potential role of AC/cAMP, which is a major signaling mechanism for the pituitary adenylate cyclase-activating polypeptide (PACAP)-selective PAC1 receptor, in the regulation of guinea pig cardiac neuronal excitability. Forskolin (5-10 µM) increases excitability in ~60% of the cardiac neurons. The forskolin-mediated increase in excitability was considered related to cAMP regulation of a cyclic nucleotide gated channel or via protein kinase A (PKA)/ERK signaling, mechanisms that have been linked to PAC1 receptor activation. However, unlike PACAP mechanisms, forskolin enhancement of excitability was not significantly reduced by treatment with cesium to block currents through hyperpolarization-activated nonselective cation channels ( I h ) or by treatment with PD98059 to block MEK/ERK signaling. In contrast, treatment with the clathrin inhibitor Pitstop2 or the dynamin inhibitor dynasore eliminated the forskolin-induced increase in excitability; treatments with the inactive Pitstop analog or PP2 treatment to inhibit Src-mediated endocytosis mechanisms were ineffective. The PKA inhibitor KT5702 significantly suppressed the forskolin-induced change in excitability; further, KT5702 and Pitstop2 reduced the forskolin-stimulated MEK/ERK activation in cardiac neurons. Collectively, the present results suggest that forskolin activation of AC/cAMP/PKA signaling leads to the recruitment of clathrin/dynamin-dependent endosomal transduction cascades, including MEK/ERK signaling, and that endosomal signaling is the critical mechanism underlying the forskolin-induced increase in cardiac neuron excitability. Copyright © 2017 the American Physiological Society.

  14. Early embryonic sensitivity to cyclophosphamide in cardiac differentiation from human embryonic stem cells.

    PubMed

    Zhu, Ming-Xia; Zhao, Jin-Yuan; Chen, Gui-An; Guan, Li

    2011-09-01

    hESCs (human embryonic stem cells) can differentiate into tissue derivatives of all three germ layers in vitro and mimic the development of the embryo in vivo. In this study, we have investigated the potential of an hESC-based assay for the detection of toxicity to cardiac differentiation in embryonic development. First of all, we developed the protocol of cardiac induction from hESCs according to our previous work and distinguished cardiac precursor cells and late mature cardiomyocytes from differentiated cells, demonstrated by the Q-PCR (quantitative real-time PCR), immunocytochemistry and flow cytometry analysis. In order to test whether CPA (cyclophosphamide) induces developmental and cellular toxicity in the human embryo, we exposed the differentiating cells from hESCs to CPA (a well-known proteratogen) at different stages. We have found that a high concentration of CPA could inhibit cardiac differentiation of hESCs. Two separate exposure intervals were used to determine the effects of CPA on cardiac precursor cells and late mature cardiomyocytes respectively. The cardiac precursor cells were sensitive to CPA in non-cytotoxic concentrations for the expression of the cardiac-specific mRNA markers Nkx2.5 (NK2 transcription factor related, locus 5), GATA-4 (GATA binding protein 4 transcription factor) and TNNT2 (troponin T type 2). Non-cytotoxic CPA concentrations did not affect the mRNA markers' expression in late mature cardiomyocytes, indicating that cardiac precursors were more sensitive to CPA than late cardiomyocytes in cardiogenesis. We set up the in vitro developmental toxicity test model so as to reduce the number of test animals and expenses without compromising the safety of consumers and patients. Furthermore, such in vitro methods may be possibly suited to test a large number of chemicals than the classical employed in vivo tests.

  15. A key role for peroxynitrite-mediated inhibition of cardiac ERG (Kv11.1) K+ channels in carbon monoxide–induced proarrhythmic early afterdepolarizations

    PubMed Central

    Al-Owais, Moza M.; Hettiarachchi, Nishani T.; Kirton, Hannah M.; Hardy, Matthew E.; Boyle, John P.; Scragg, Jason L.; Steele, Derek S.; Peers, Chris

    2017-01-01

    Exposure to CO causes early afterdepolarization arrhythmias. Previous studies in rats have indicated that arrhythmias arose as a result of augmentation of the late Na+ current. The purpose of the present study was to examine the basis for CO-induced arrhythmias in guinea pig myocytes in which action potentials (APs) more closely resemble those of human myocytes. Whole-cell current- and voltage-clamp recordings were made from isolated guinea pig myocytes as well as from human embryonic kidney 293 (HEK293) cells that express wild-type or a C723S mutant form of ether-a-go-go–related gene (ERG; Kv11.1). We also monitored the formation of peroxynitrite (ONOO−) in HEK293 cells fluorimetrically. CO—applied as the CO-releasing molecule, CORM-2—prolonged the APs and induced early afterdepolarizations in guinea pig myocytes. In HEK293 cells, CO inhibited wild-type, but not C723S mutant, Kv11.1 K+ currents. Inhibition was prevented by an antioxidant, mitochondrial inhibitors, or inhibition of NO formation. CO also raised ONOO− levels, an effect that was reversed by the ONOO− scavenger, FeTPPS [5,10,15,20-tetrakis-(4-sulfonatophenyl)-porphyrinato-iron(III)], which also prevented the CO inhibition of Kv11.1 currents and abolished the effects of CO on Kv11.1 tail currents and APs in guinea pig myocytes. Our data suggest that CO induces arrhythmias in guinea pig cardiac myocytes via the ONOO−-mediated inhibition of Kv11.1 K+ channels.—Al-Owais, M. M., Hettiarachchi, N. T., Kirton, H. M., Hardy, M. E., Boyle, J. P., Scragg, J. L., Steele, D. S., Peers, C. A key role for peroxynitrite-mediated inhibition of cardiac ERG (Kv11.1) K+ channels in carbon monoxide–induced proarrhythmic early afterdepolarizations. PMID:28743763

  16. Importance of leptin signaling and signal transducer and activator of transcription-3 activation in mediating the cardiac hypertrophy associated with obesity.

    PubMed

    Leifheit-Nestler, Maren; Wagner, Nana-Maria; Gogiraju, Rajinikanth; Didié, Michael; Konstantinides, Stavros; Hasenfuss, Gerd; Schäfer, Katrin

    2013-07-11

    The adipokine leptin and its receptor are expressed in the heart, and leptin has been shown to promote cardiomyocyte hypertrophy in vitro. Obesity is associated with hyperleptinemia and hypothalamic leptin resistance as well as an increased risk to develop cardiac hypertrophy and heart failure. However, the role of cardiac leptin signaling in mediating the cardiomyopathy associated with increased body weight is unclear, in particular, whether it develops subsequently to cardiac leptin resistance or overactivation of hypertrophic signaling pathways via elevated leptin levels. The cardiac phenotype of high-fat diet (HFD)-induced obese wildtype (WT) mice was examined and compared to age-matched genetically obese leptin receptor (LepR)-deficient (LepRdb/db) or lean WT mice. To study the role of leptin-mediated STAT3 activation during obesity-induced cardiac remodeling, mice in which tyrosine residue 1138 within LepR had been replaced with a serine (LepRS1138) were also analyzed. Obesity was associated with hyperleptinemia and elevated cardiac leptin expression in both diet-induced and genetically obese mice. Enhanced LepR and STAT3 phosphorylation levels were detected in hearts of obese WT mice, but not in those with LepR mutations. Moreover, exogenous leptin continued to induce cardiac STAT3 activation in diet-induced obese mice. Although echocardiography revealed signs of cardiac hypertrophy in all obese mice, the increase in left ventricular (LV) mass and diameter was significantly more pronounced in LepRS1138 animals. LepRS1138 mice also exhibited an increased activation of signaling proteins downstream of LepR, including Jak2 (1.8-fold), Src kinase (1.7-fold), protein kinase B (1.3-fold) or C (1.6-fold). Histological analysis of hearts revealed that the inability of leptin to activate STAT3 in LepRdb/db and LepRS1138 mice was associated with reduced cardiac angiogenesis as well as increased apoptosis and fibrosis. Our findings suggest that hearts from obese mice

  17. Development of CD3 cell quantitation algorithms for renal allograft biopsy rejection assessment utilizing open source image analysis software.

    PubMed

    Moon, Andres; Smith, Geoffrey H; Kong, Jun; Rogers, Thomas E; Ellis, Carla L; Farris, Alton B Brad

    2018-02-01

    Renal allograft rejection diagnosis depends on assessment of parameters such as interstitial inflammation; however, studies have shown interobserver variability regarding interstitial inflammation assessment. Since automated image analysis quantitation can be reproducible, we devised customized analysis methods for CD3+ T-cell staining density as a measure of rejection severity and compared them with established commercial methods along with visual assessment. Renal biopsy CD3 immunohistochemistry slides (n = 45), including renal allografts with various degrees of acute cellular rejection (ACR) were scanned for whole slide images (WSIs). Inflammation was quantitated in the WSIs using pathologist visual assessment, commercial algorithms (Aperio nuclear algorithm for CD3+ cells/mm 2 and Aperio positive pixel count algorithm), and customized open source algorithms developed in ImageJ with thresholding/positive pixel counting (custom CD3+%) and identification of pixels fulfilling "maxima" criteria for CD3 expression (custom CD3+ cells/mm 2 ). Based on visual inspections of "markup" images, CD3 quantitation algorithms produced adequate accuracy. Additionally, CD3 quantitation algorithms correlated between each other and also with visual assessment in a statistically significant manner (r = 0.44 to 0.94, p = 0.003 to < 0.0001). Methods for assessing inflammation suggested a progression through the tubulointerstitial ACR grades, with statistically different results in borderline versus other ACR types, in all but the custom methods. Assessment of CD3-stained slides using various open source image analysis algorithms presents salient correlations with established methods of CD3 quantitation. These analysis techniques are promising and highly customizable, providing a form of on-slide "flow cytometry" that can facilitate additional diagnostic accuracy in tissue-based assessments.

  18. Cre-mediated cell ablation contests mast cell contribution in models of antibody- and T cell-mediated autoimmunity.

    PubMed

    Feyerabend, Thorsten B; Weiser, Anne; Tietz, Annette; Stassen, Michael; Harris, Nicola; Kopf, Manfred; Radermacher, Peter; Möller, Peter; Benoist, Christophe; Mathis, Diane; Fehling, Hans Jörg; Rodewald, Hans-Reimer

    2011-11-23

    Immunological functions of mast cells remain poorly understood. Studies in Kit mutant mice suggest key roles for mast cells in certain antibody- and T cell-mediated autoimmune diseases. However, Kit mutations affect multiple cell types of both immune and nonimmune origin. Here, we show that targeted insertion of Cre-recombinase into the mast cell carboxypeptidase A3 locus deleted mast cells in connective and mucosal tissues by a genotoxic Trp53-dependent mechanism. Cre-mediated mast cell eradication (Cre-Master) mice had, with the exception of a lack of mast cells and reduced basophils, a normal immune system. Cre-Master mice were refractory to IgE-mediated anaphylaxis, and this defect was rescued by mast cell reconstitution. This mast cell-deficient strain was fully susceptible to antibody-induced autoimmune arthritis and to experimental autoimmune encephalomyelitis. Differences comparing Kit mutant mast cell deficiency models to selectively mast cell-deficient mice call for a systematic re-evaluation of immunological functions of mast cells beyond allergy. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Histone Deacetylase Inhibitors Prolong Cardiac Repolarization through Transcriptional Mechanisms.

    PubMed

    Spence, Stan; Deurinck, Mark; Ju, Haisong; Traebert, Martin; McLean, LeeAnne; Marlowe, Jennifer; Emotte, Corinne; Tritto, Elaine; Tseng, Min; Shultz, Michael; Friedrichs, Gregory S

    2016-09-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of anticancer agents that modify gene expression by altering the acetylation status of lysine residues of histone proteins, thereby inducing transcription, cell cycle arrest, differentiation, and cell death or apoptosis of cancer cells. In the clinical setting, treatment with HDAC inhibitors has been associated with delayed cardiac repolarization and in rare instances a lethal ventricular tachyarrhythmia known as torsades de pointes. The mechanism(s) of HDAC inhibitor-induced effects on cardiac repolarization is unknown. We demonstrate that administration of structurally diverse HDAC inhibitors to dogs causes delayed but persistent increases in the heart rate corrected QT interval (QTc), an in vivo measure of cardiac repolarization, at timepoints far removed from the Tmax for parent drug and metabolites. Transcriptional profiling of ventricular myocardium from dogs treated with various HDAC inhibitors demonstrated effects on genes involved in protein trafficking, scaffolding and insertion of various ion channels into the cell membrane as well as genes for specific ion channel subunits involved in cardiac repolarization. Extensive in vitro ion channel profiling of various structural classes of HDAC inhibitors (and their major metabolites) by binding and acute patch clamp assays failed to show any consistent correlations with direct ion channel blockade. Drug-induced rescue of an intracellular trafficking-deficient mutant potassium ion channel, hERG (G601S), and decreased maturation (glycosylation) of wild-type hERG expressed by CHO cells in vitro correlated with prolongation of QTc intervals observed in vivo The results suggest that HDAC inhibitor-induced prolongation of cardiac repolarization may be mediated in part by transcriptional changes of genes required for ion channel trafficking and localization to the sarcolemma. These data have broad implications for the development of these drug classes and

  20. CALCIUM-DRIVEN TRANSCRIPTION OF CARDIAC SPECIFYING GENE PROGRAM IN LIVER STEM CELLS

    EPA Science Inventory

    We have previously shown that a cloned liver stem cell line (WB F344) acquires a cardiac phenotype when seeded in a cardiac microenvironment in vivo and ex vivo. Here we investigated the mechanisms of this transdifferentiation in early (<72 hr) WB F344 cell, rat neonatal ventricu...