Science.gov

Sample records for cell-to-cell interaction progress

  1. Physiopathology of blood platelets: a model system for studies of cell-to-cell interaction. Progress report, November 1, 1979-October 31, 1980

    SciTech Connect

    1980-01-01

    This report covers the studies on basic mechanisms of cellular interactions, utilizing platelets as a model system and, when possible, concentrating on the influence that environmental factors (nutritional, metabolic, cellular, immunologic and others) have on them. The four major sections include: platelet interaction with tumor cells; a model for the study of cell-to-cell interaction; interaction of platelets with vessel walls; and platelet interactions with immune proteins.

  2. Cell to substratum and cell to cell interactions of microalgae.

    PubMed

    Ozkan, Altan; Berberoglu, Halil

    2013-12-01

    This paper reports the cell to substratum and cell to cell interactions of a diverse group of microalgae based on the Extended Derjaguin, Landau, Verwey, Overbeek (XDLVO) approach using the previously reported physico-chemical surface properties. The microalgae included 10 different species of green algae and diatoms from both freshwater and saltwater environments while the substrata included glass, indium-tin oxide (ITO), stainless steel, polycarbonate, polyethylene, and polystryrene. The results indicated that acid-base interactions were the dominating mechanism of interaction for microalgae. For green algae, if at least one of the interacting surfaces was hydrophobic, adhesion at primary minimum was predicted without any energy barrier. However, most diatom systems featured energy barriers for adhesion due to repulsive van der Waals interactions. The results reported in this study are expected to provide useful data and insight into the interaction mechanisms of microalgae cells with each other and with substrata for a number of practical applications including prevention of biofouling of photobioreactors and other man-made surfaces, promotion of biofilm formation in algal biofilm photobioreactors, and developing bioflocculation strategies for energy efficient harvesting of algal biomass. Particularly, Botryococcus braunii and Cerithiopsis fusiformis were identified as promising species for biofloccuation and biofilm formation in freshwater and saltwater aquatic systems, respectively. Finally, based on the observed trends in this study, use of hydrophilic algae and hydrophilic coatings over surfaces are recommended for minimizing biofouling in aquatic systems. PMID:24004676

  3. Enhancement of Chemotactic Cell Aggregation by Haptotactic Cell-To-Cell Interaction.

    PubMed

    Kwon, Tae-Goo; Yang, Taeseok Daniel; Lee, Kyoung J

    2016-01-01

    The crawling of biological cell is a complex phenomenon involving various biochemical and mechanical processes. Some of these processes are intrinsic to individual cells, while others pertain to cell-to-cell interactions and to their responses to extrinsically imposed cues. Here, we report an interesting aggregation dynamics of mathematical model cells, when they perform chemotaxis in response to an externally imposed global chemical gradient while they influence each other through a haptotaxis-mediated social interaction, which confers intriguing trail patterns. In the absence of the cell-to-cell interaction, the equilibrium population density profile fits well to that of a simple Keller-Segal population dynamic model, in which a chemotactic current density [Formula: see text] competes with a normal diffusive current density [Formula: see text], where p and ρ refer to the concentration of chemoattractant and population density, respectively. We find that the cell-to-cell interaction confers a far more compact aggregation resulting in a much higher peak equilibrium cell density. The mathematical model system is applicable to many biological systems such as swarming microglia and neutrophils or accumulating ants towards a localized food source. PMID:27128310

  4. Enhancement of Chemotactic Cell Aggregation by Haptotactic Cell-To-Cell Interaction

    PubMed Central

    Kwon, Tae-goo; Yang, Taeseok Daniel; Lee, Kyoung J.

    2016-01-01

    The crawling of biological cell is a complex phenomenon involving various biochemical and mechanical processes. Some of these processes are intrinsic to individual cells, while others pertain to cell-to-cell interactions and to their responses to extrinsically imposed cues. Here, we report an interesting aggregation dynamics of mathematical model cells, when they perform chemotaxis in response to an externally imposed global chemical gradient while they influence each other through a haptotaxis-mediated social interaction, which confers intriguing trail patterns. In the absence of the cell-to-cell interaction, the equilibrium population density profile fits well to that of a simple Keller-Segal population dynamic model, in which a chemotactic current density J→chemo∼∇p competes with a normal diffusive current density J→diff∼∇ρ, where p and ρ refer to the concentration of chemoattractant and population density, respectively. We find that the cell-to-cell interaction confers a far more compact aggregation resulting in a much higher peak equilibrium cell density. The mathematical model system is applicable to many biological systems such as swarming microglia and neutrophils or accumulating ants towards a localized food source. PMID:27128310

  5. Effect of Interaction between Chromatin Loops on Cell-to-Cell Variability in Gene Expression

    PubMed Central

    Zhou, Tianshou

    2016-01-01

    According to recent experimental evidence, the interaction between chromatin loops, which can be characterized by three factors—connection pattern, distance between regulatory elements, and communication form, play an important role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effect that addresses the question of how changes in these factors affect variability at the expression level in a systematic rather than case-by-case fashion. Here we make such an effort, based on a mechanic model that maps three fundamental patterns for two interacting DNA loops into a 4–state model of stochastic transcription. We first show that in contrast to side-by-side loops, nested loops enhance mRNA expression and reduce expression noise whereas alternating loops have just opposite effects. Then, we compare effects of facilitated tracking and direct looping on gene expression. We find that the former performs better than the latter in controlling mean expression and in tuning expression noise, but this control or tuning is distance–dependent, remarkable for moderate loop lengths, and there is a limit loop length such that the difference in effect between two communication forms almost disappears. Our analysis and results justify the facilitated chromatin–looping hypothesis. PMID:27153118

  6. A coiled-coil interaction mediates cauliflower mosaic virus cell-to-cell movement

    PubMed Central

    Stavolone, Livia; Villani, Maria Elena; Leclerc, Denis; Hohn, Thomas

    2005-01-01

    The function of the virion-associated protein (VAP) of cauliflower mosaic virus (CaMV) has long been only poorly understood. VAP is associated with the virion but is dispensable for virus morphogenesis and replication. It mediates virus transmission by aphids through simultaneous interaction with both the aphid transmission factor and the virion. However, although insect transmission is not fundamental to CaMV survival, VAP is indispensable for spreading the virus infection within the host plant. We used a GST pull-down technique to demonstrate that VAP interacts with the viral movement protein through coiled-coil domains and surface plasmon resonance to measure the interaction kinetics. We mapped the movement protein coiled-coil to the C terminus of the protein and proved that it self-assembles as a trimer. Immunogold labeling/electron microscopy revealed that the VAP and viral movement protein colocalize on CaMV particles within plasmodesmata. These results highlight the multifunctional potential of the VAP protein conferred by its efficient coiled-coil interaction system and show a plant virus possessing a surface-exposed protein (VAP) mediating viral entry into host cells. PMID:15837934

  7. A coiled-coil interaction mediates cauliflower mosaic virus cell-to-cell movement

    NASA Astrophysics Data System (ADS)

    Stavolone, Livia; Villani, Maria Elena; Leclerc, Denis; Hohn, Thomas

    2005-04-01

    The function of the virion-associated protein (VAP) of cauliflower mosaic virus (CaMV) has long been only poorly understood. VAP is associated with the virion but is dispensable for virus morphogenesis and replication. It mediates virus transmission by aphids through simultaneous interaction with both the aphid transmission factor and the virion. However, although insect transmission is not fundamental to CaMV survival, VAP is indispensable for spreading the virus infection within the host plant. We used a GST pull-down technique to demonstrate that VAP interacts with the viral movement protein through coiled-coil domains and surface plasmon resonance to measure the interaction kinetics. We mapped the movement protein coiled-coil to the C terminus of the protein and proved that it self-assembles as a trimer. Immunogold labeling/electron microscopy revealed that the VAP and viral movement protein colocalize on CaMV particles within plasmodesmata. These results highlight the multifunctional potential of the VAP protein conferred by its efficient coiled-coil interaction system and show a plant virus possessing a surface-exposed protein (VAP) mediating viral entry into host cells. movement protein | virion-associated protein | Biacore

  8. Eph/ephrin-B-mediated cell-to-cell interactions govern MTS20(+) thymic epithelial cell development.

    PubMed

    Montero-Herradón, Sara; García-Ceca, Javier; Sánchez Del Collado, Beatriz; Alfaro, David; Zapata, Agustín G

    2016-08-01

    Thymus development is a complex process in which cell-to-cell interactions between thymocytes and thymic epithelial cells (TECs) are essential to allow a proper maturation of both thymic cell components. Although signals that control thymocyte development are well known, mechanisms governing TEC maturation are poorly understood, especially those that regulate the maturation of immature TEC populations during early fetal thymus development. In this study, we show that EphB2-deficient, EphB2LacZ and EphB3-deficient fetal thymuses present a lower number of cells and delayed maturation of DN cell subsets compared to WT values. Moreover, deficits in the production of chemokines, known to be involved in the lymphoid seeding into the thymus, contribute in decreased proportions of intrathymic T cell progenitors (PIRA/B(+)) in the mutant thymuses from early stages of development. These features correlate with increased proportions of MTS20(+) cells but fewer MTS20(-) cells from E13.5 onward in the deficient thymuses, suggesting a delayed development of the first epithelial cells. In addition, in vitro the lack of thymocytes or the blockade of Eph/ephrin-B-mediated cell-to-cell interactions between either thymocytes-TECs or TECs-TECs in E13.5 fetal thymic lobes coursed with increased proportions of MTS20(+) TECs. This confirms, for the first time, that the presence of CD45(+) cells, corresponding at these stages to DN1 and DN2 cells, and Eph/ephrin-B-mediated heterotypic or homotypic cell interactions between thymocytes and TECs, or between TECs and themselves, contribute to the early maturation of MTS20(+) TECs. PMID:27060907

  9. Extracellular Membrane Vesicles as Vehicles for Brain Cell-to-Cell Interactions in Physiological as well as Pathological Conditions

    PubMed Central

    Schiera, Gabriella; Di Liegro, Carlo Maria; Di Liegro, Italia

    2015-01-01

    Extracellular vesicles are involved in a great variety of physiological events occurring in the nervous system, such as cross talk among neurons and glial cells in synapse development and function, integrated neuronal plasticity, neuronal-glial metabolic exchanges, and synthesis and dynamic renewal of myelin. Many of these EV-mediated processes depend on the exchange of proteins, mRNAs, and noncoding RNAs, including miRNAs, which occurs among glial and neuronal cells. In addition, production and exchange of EVs can be modified under pathological conditions, such as brain cancer and neurodegeneration. Like other cancer cells, brain tumours can use EVs to secrete factors, which allow escaping from immune surveillance, and to transfer molecules into the surrounding cells, thus transforming their phenotype. Moreover, EVs can function as a way to discard material dangerous to cancer cells, such as differentiation-inducing proteins, and even drugs. Intriguingly, EVs seem to be also involved in spreading through the brain of aggregated proteins, such as prions and aggregated tau protein. Finally, EVs can carry useful biomarkers for the early diagnosis of diseases. Herein we summarize possible roles of EVs in brain physiological functions and discuss their involvement in the horizontal spreading, from cell to cell, of both cancer and neurodegenerative pathologies. PMID:26583089

  10. Regulation of IL-6 and IL-8 production by reciprocal cell-to-cell interactions between tumor cells and stromal fibroblasts through IL-1α in ameloblastoma

    SciTech Connect

    Fuchigami, Takao; Kibe, Toshiro; Koyama, Hirofumi; Kishida, Shosei; Iijima, Mikio; Nishizawa, Yoshiaki; Hijioka, Hiroshi; Fujii, Tomomi; Ueda, Masahiro; Nakamura, Norifumi; Kiyono, Tohru; Kishida, Michiko

    2014-09-05

    Highlights: • We studied the interaction between tumor cells and fibroblasts in ameloblastoma. • AM-3 ameloblastoma cells secreted significantly high IL-1α levels. • IL-1α derived from AM-3 cells promoted IL-6 and IL-8 secretion of fibroblasts. • IL-6 and IL-8 activated the cellular motility and proliferation of AM-3 cells. - Abstract: Ameloblastoma is an odontogenic benign tumor that occurs in the jawbone, which invades bone and reoccurs locally. This tumor is treated by wide surgical excision and causes various problems, including changes in facial countenance and mastication disorders. Ameloblastomas have abundant tumor stroma, including fibroblasts and immune cells. Although cell-to-cell interactions are considered to be involved in the pathogenesis of many diseases, intercellular communications in ameloblastoma have not been fully investigated. In this study, we examined interactions between tumor cells and stromal fibroblasts via soluble factors in ameloblastoma. We used a human ameloblastoma cell line (AM-3 ameloblastoma cells), human fibroblasts (HFF-2 fibroblasts), and primary-cultured fibroblasts from human ameloblastoma tissues, and analyzed the effect of ameloblastoma-associated cell-to-cell communications on gene expression, cytokine secretion, cellular motility and proliferation. AM-3 ameloblastoma cells secreted higher levels of interleukin (IL)-1α than HFF-2 fibroblasts. Treatment with conditioned medium from AM-3 ameloblastoma cells upregulated gene expression and secretion of IL-6 and IL-8 of HFF-2 fibroblasts and primary-cultured fibroblast cells from ameloblastoma tissues. The AM3-stimulated production of IL-6 and IL-8 in fibroblasts was neutralized by pretreatment of AM-3 cells with anti-IL-1α antibody and IL-1 receptor antagonist. Reciprocally, cellular motility of AM-3 ameloblastoma cells was stimulated by HFF-2 fibroblasts in IL-6 and IL-8 dependent manner. In conclusion, ameloblastoma cells and stromal fibroblasts behave

  11. Cell-to-Cell Movement of Two Interacting AT-Hook Factors in Arabidopsis Root Vascular Tissue Patterning[W

    PubMed Central

    Zhou, Jing; Wang, Xu; Lee, Jung-Youn; Lee, Ji-Young

    2013-01-01

    The xylem and phloem, major conducting and supporting tissues in vascular plants, are established by cell division and cell-type specification in the procambium/cambium. The organization of the xylem, phloem, and procambium/cambium is tightly controlled. However, the underlying regulatory mechanisms remain largely unknown. In this study, we report the discovery of two transcription factors, AT-HOOK MOTIF NUCLEAR LOCALIZED PROTEIN 3 (AHL3) and AHL4, which regulate vascular tissue boundaries in Arabidopsis thaliana roots. In either of the knockout mutants of AHL3 and AHL4, encoding closely related AT-hook transcription factors, a misspecification of tissue boundaries between the xylem and procambium occurred and ectopic xylem developed in the procambium domain. In plants, specific types of transcription factors can serve as direct intercellular signals by moving from one cell to another, playing crucial roles in tissue patterning. Adding to this paradigm, AHL4 moves actively from the procambium to xylem in the root meristem to regulate the tissue boundaries. When the intercellular movement of AHL4 was impaired, AHL4 could not complement the xylem phenotype in the ahl4. Furthermore, AHL4 revealed unique characteristics in that it interacts with AHL3 in vivo and that this interaction facilitates their intercellular trafficking. Taken together, this study uncovered a novel mechanism in vascular tissue patterning that requires the intercellular trafficking of two interacting transcription factors. PMID:23335615

  12. Hydrolyzable Tannins (Chebulagic Acid and Punicalagin) Target Viral Glycoprotein-Glycosaminoglycan Interactions To Inhibit Herpes Simplex Virus 1 Entry and Cell-to-Cell Spread▿

    PubMed Central

    Lin, Liang-Tzung; Chen, Ting-Ying; Chung, Chueh-Yao; Noyce, Ryan S.; Grindley, T. Bruce; McCormick, Craig; Lin, Ta-Chen; Wang, Guey-Horng; Lin, Chun-Ching; Richardson, Christopher D.

    2011-01-01

    Herpes simplex virus 1 (HSV-1) is a common human pathogen that causes lifelong latent infection of sensory neurons. Non-nucleoside inhibitors that can limit HSV-1 recurrence are particularly useful in treating immunocompromised individuals or cases of emerging acyclovir-resistant strains of herpesvirus. We report that chebulagic acid (CHLA) and punicalagin (PUG), two hydrolyzable tannins isolated from the dried fruits of Terminalia chebula Retz. (Combretaceae), inhibit HSV-1 entry at noncytotoxic doses in A549 human lung cells. Experiments revealed that both tannins targeted and inactivated HSV-1 viral particles and could prevent binding, penetration, and cell-to-cell spread, as well as secondary infection. The antiviral effect from either of the tannins was not associated with induction of type I interferon-mediated responses, nor was pretreatment of the host cell protective against HSV-1. Their inhibitory activities targeted HSV-1 glycoproteins since both natural compounds were able to block polykaryocyte formation mediated by expression of recombinant viral glycoproteins involved in attachment and membrane fusion. Our results indicated that CHLA and PUG blocked interactions between cell surface glycosaminoglycans and HSV-1 glycoproteins. Furthermore, the antiviral activities from the two tannins were significantly diminished in mutant cell lines unable to produce heparan sulfate and chondroitin sulfate and could be rescued upon reconstitution of heparan sulfate biosynthesis. We suggest that the hydrolyzable tannins CHLA and PUG may be useful as competitors for glycosaminoglycans in the management of HSV-1 infections and that they may help reduce the risk for development of viral drug resistance during therapy with nucleoside analogues. PMID:21307190

  13. Molecular dissection of SO (SOFT) protein in stress-induced aggregation and cell-to-cell interactive functions in filamentous fungal multicellularity.

    PubMed

    Tsukasaki, Wakako; Saeki, Kei; Katayama, Takuya; Maruyama, Jun-Ichi; Kitamoto, Katsuhiko

    2016-05-01

    Filamentous fungi grow by organizing multicellularity through hyphal compartmentalization and cell fusion. SO (SOFT) protein, which was originally identified in Neurospora crassa, plays distinct functional roles in cell-to-cell interactions, such as septal plugging and cell fusion. We previously reported that AoSO, an Aspergillus oryzae SO homologue, forms aggregates at the septal pore in response to stress, as well as upon hyphal wounding. However, the functional regions that mediate the multicellular functions of AoSO, which is a large protein composed of 1195 amino acids, have not been elucidated. Here, we divided AoSO protein into regions according to amino acid sequence conservation among other fungal SO homologues. By heterologous expression of full-length and truncated forms of AoSO in the yeast Saccharomyces cerevisiae, the region responsible for the stress-induced aggregation of AoSO was identified to be between amino acids 556 and 1146. In A. oryzae, however, septal localization of AoSO aggregates required the 49 C-terminal amino acids. Thus, expression of only the C-terminal half of AoSO was sufficient for septal plugging and prevention of excessive cytoplasmic loss upon hyphal wounding. In contrast, the N-terminal half of AoSO, from amino acids 1 to 555, together with the C-terminal end, was revealed to be indispensable for cell fusion. Collectively, these findings suggest that the C-terminal half of AoSO, which mediates stress-induced aggregation, is required for both septal plugging and cell fusion, whereas the N-terminal half confers an additional functionality that is essential for cell fusion. PMID:27109373

  14. AltMV TGB1 nucleolar localization requires homologous interaction and correlates with cell wall localization associated with cell-to-cell movement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Potexvirus Alternanthera mosaic virus has multifunctional triple gene block (TGB) proteins, among which our studies have focused on the properties of the TGB1 protein. The TGB1 of AltMV has functions including RNA binding, RNA silencing suppression, and cell-to-cell movement, and is known to for...

  15. Downregulation of the NbNACa1 gene encoding a movement-protein-interacting protein reduces cell-to-cell movement of Brome mosaic virus in Nicotiana benthamiana.

    PubMed

    Kaido, Masanori; Inoue, Yosuke; Takeda, Yoshika; Sugiyama, Kazuhiko; Takeda, Atsushi; Mori, Masashi; Tamai, Atsushi; Meshi, Tetsuo; Okuno, Tetsuro; Mise, Kazuyuki

    2007-06-01

    The 3a movement protein (MP) plays a central role in the movement of the RNA plant virus, Brome mosaic virus (BMV). To identify host factor genes involved in viral movement, a cDNA library of Nicotiana benthamiana, a systemic host for BMV, was screened with far-Western blotting using a recombinant BMV MP as probe. One positive clone encoded a protein with sequence similarity to the alpha chain of nascent-polypeptide-associated complex from various organisms, which is proposed to contribute to the fidelity of translocation of newly synthesized proteins. The orthologous gene from N. benthamiana was designated NbNACa1. The binding of NbNACa1 to BMV MP was confirmed in vivo with an agroinfiltration-immunoprecipitation assay. To investigate the involvement of NbNACa1 in BMV multiplication, NbNACa1-silenced (GSNAC) transgenic N. benthamiana plants were produced. Downregulation of NbNACa1 expression reduced virus accumulation in inoculated leaves but not in protoplasts. A microprojectile bombardment assay to monitor BMV-MP-assisted viral movement demonstrated reduced virus spread in GSNAC plants. The localization to the cell wall of BMV MP fused to green fluorescent protein was delayed in GSNAC plants. From these results, we propose that NbNACa1 is involved in BMV cell-to-cell movement through the regulation of BMV MP localization to the plasmodesmata. PMID:17555275

  16. Interactions between Eph kinases and ephrins provide a mechanism to support platelet aggregation once cell-to-cell contact has occurred

    PubMed Central

    Prevost, Nicolas; Woulfe, Donna; Tanaka, Takako; Brass, Lawrence F.

    2002-01-01

    Eph kinases are receptor tyrosine kinases whose ligands, the ephrins, are also expressed on the surface of cells. Interactions between Eph kinases and ephrins on adjacent cells play a central role in neuronal patterning and vasculogenesis. Here we examine the expression of ephrins and Eph kinases on human blood platelets and explore their role in the formation of the hemostatic plug. The results show that human platelets express EphA4 and EphB1, and the ligand, ephrinB1. Forced clustering of EphA4 or ephrinB1 led to cytoskeletal reorganization, adhesion to fibrinogen, and α-granule secretion. Clustering of ephrinB1 also caused activation of the Ras family member, Rap1B. In platelets that had been activated by ADP and allowed to aggregate, EphA4 formed complexes with two tyrosine kinases, Fyn and Lyn, and the cell adhesion molecule, L1. Blockade of Eph/ephrin interactions prevented the formation of these complexes and caused platelet aggregation at low ADP concentrations to become more readily reversible. We propose that when sustained contacts between platelets have occurred in response to agonists such as collagen, ADP, and thrombin, the binding of ephrins to Eph kinases on adjacent platelets provides a mechanism to perpetuate signaling and promote stable platelet aggregation. PMID:12084815

  17. Metabolic Adaptations of Azospirillum brasilense to Oxygen Stress by Cell-to-Cell Clumping and Flocculation

    PubMed Central

    Bible, Amber N.; Khalsa-Moyers, Gurusahai K.; Mukherjee, Tanmoy; Green, Calvin S.; Mishra, Priyanka; Purcell, Alicia; Aksenova, Anastasia; Hurst, Gregory B.

    2015-01-01

    The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacterium Azospirillum brasilense navigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motile A. brasilense cells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities, we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Cell-to-cell clumping may thus license diazotrophy to microaerophilic A. brasilense cells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists. PMID:26407887

  18. Metabolic adaptations of Azospirillum brasilense to oxygen stress by cell-to-cell clumping and flocculation.

    PubMed

    Bible, Amber N; Khalsa-Moyers, Gurusahai K; Mukherjee, Tanmoy; Green, Calvin S; Mishra, Priyanka; Purcell, Alicia; Aksenova, Anastasia; Hurst, Gregory B; Alexandre, Gladys

    2015-12-01

    The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacterium Azospirillum brasilense navigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motile A. brasilense cells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities, we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Cell-to-cell clumping may thus license diazotrophy to microaerophilic A. brasilense cells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists. PMID:26407887

  19. Virus Cell-to-Cell Transmission▿

    PubMed Central

    Mothes, Walther; Sherer, Nathan M.; Jin, Jing; Zhong, Peng

    2010-01-01

    Viral infections spread based on the ability of viruses to overcome multiple barriers and move from cell to cell, tissue to tissue, and person to person and even across species. While there are fundamental differences between these types of transmissions, it has emerged that the ability of viruses to utilize and manipulate cell-cell contact contributes to the success of viral infections. Central to the excitement in the field of virus cell-to-cell transmission is the idea that cell-to-cell spread is more than the sum of the processes of virus release and entry. This implies that virus release and entry are efficiently coordinated to sites of cell-cell contact, resulting in a process that is distinct from its individual components. In this review, we will present support for this model, illustrate the ability of viruses to utilize and manipulate cell adhesion molecules, and discuss the mechanism and driving forces of directional spreading. An understanding of viral cell-to-cell spreading will enhance our ability to intervene in the efficient spreading of viral infections. PMID:20375157

  20. Metabolic Adaptations of Azospirillum brasilense to Oxygen Stress by Cell-to-Cell Clumping and Flocculation

    SciTech Connect

    Bible, Amber N.; Khalsa-Moyers, Gurusahai K.; Mukherjee, Tanmoy; Green, Calvin S.; Mishra, Priyanka; Purcell, Alicia; Aksenova, Anastasia; Hurst, Gregory B.; Alexandre, Gladys

    2015-09-25

    The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacteriumAzospirillum brasilensenavigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motileA. brasilensecells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities, we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Finally, cell-to-cell clumping may thus license diazotrophy to microaerophilicA. brasilensecells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists.

  1. Metabolic Adaptations of Azospirillum brasilense to Oxygen Stress by Cell-to-Cell Clumping and Flocculation

    DOE PAGESBeta

    Bible, Amber N.; Khalsa-Moyers, Gurusahai K.; Mukherjee, Tanmoy; Green, Calvin S.; Mishra, Priyanka; Purcell, Alicia; Aksenova, Anastasia; Hurst, Gregory B.; Alexandre, Gladys

    2015-09-25

    The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacteriumAzospirillum brasilensenavigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motileA. brasilensecells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities,more » we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Finally, cell-to-cell clumping may thus license diazotrophy to microaerophilicA. brasilensecells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists.« less

  2. Molecular Mechanisms of HTLV-1 Cell-to-Cell Transmission

    PubMed Central

    Gross, Christine; Thoma-Kress, Andrea K.

    2016-01-01

    The tumorvirus human T-cell lymphotropic virus type 1 (HTLV-1), a member of the delta-retrovirus family, is transmitted via cell-containing body fluids such as blood products, semen, and breast milk. In vivo, HTLV-1 preferentially infects CD4+ T-cells, and to a lesser extent, CD8+ T-cells, dendritic cells, and monocytes. Efficient infection of CD4+ T-cells requires cell-cell contacts while cell-free virus transmission is inefficient. Two types of cell-cell contacts have been described to be critical for HTLV-1 transmission, tight junctions and cellular conduits. Further, two non-exclusive mechanisms of virus transmission at cell-cell contacts have been proposed: (1) polarized budding of HTLV-1 into synaptic clefts; and (2) cell surface transfer of viral biofilms at virological synapses. In contrast to CD4+ T-cells, dendritic cells can be infected cell-free and, to a greater extent, via viral biofilms in vitro. Cell-to-cell transmission of HTLV-1 requires a coordinated action of steps in the virus infectious cycle with events in the cell-cell adhesion process; therefore, virus propagation from cell-to-cell depends on specific interactions between cellular and viral proteins. Here, we review the molecular mechanisms of HTLV-1 transmission with a focus on the HTLV-1-encoded proteins Tax and p8, their impact on host cell factors mediating cell-cell contacts, cytoskeletal remodeling, and thus, virus propagation. PMID:27005656

  3. Molecular Mechanisms of HTLV-1 Cell-to-Cell Transmission.

    PubMed

    Gross, Christine; Thoma-Kress, Andrea K

    2016-01-01

    The tumorvirus human T-cell lymphotropic virus type 1 (HTLV-1), a member of the delta-retrovirus family, is transmitted via cell-containing body fluids such as blood products, semen, and breast milk. In vivo, HTLV-1 preferentially infects CD4⁺ T-cells, and to a lesser extent, CD8⁺ T-cells, dendritic cells, and monocytes. Efficient infection of CD4⁺ T-cells requires cell-cell contacts while cell-free virus transmission is inefficient. Two types of cell-cell contacts have been described to be critical for HTLV-1 transmission, tight junctions and cellular conduits. Further, two non-exclusive mechanisms of virus transmission at cell-cell contacts have been proposed: (1) polarized budding of HTLV-1 into synaptic clefts; and (2) cell surface transfer of viral biofilms at virological synapses. In contrast to CD4⁺ T-cells, dendritic cells can be infected cell-free and, to a greater extent, via viral biofilms in vitro. Cell-to-cell transmission of HTLV-1 requires a coordinated action of steps in the virus infectious cycle with events in the cell-cell adhesion process; therefore, virus propagation from cell-to-cell depends on specific interactions between cellular and viral proteins. Here, we review the molecular mechanisms of HTLV-1 transmission with a focus on the HTLV-1-encoded proteins Tax and p8, their impact on host cell factors mediating cell-cell contacts, cytoskeletal remodeling, and thus, virus propagation. PMID:27005656

  4. Importin-α-Mediated Nucleolar Localization of Potato Mop-Top Virus TRIPLE GENE BLOCK1 (TGB1) Protein Facilitates Virus Systemic Movement, Whereas TGB1 Self-Interaction Is Required for Cell-to-Cell Movement in Nicotiana benthamiana1[OPEN

    PubMed Central

    Lukhovitskaya, Nina I.; Cowan, Graham H.; Vetukuri, Ramesh R.; Tilsner, Jens; Torrance, Lesley

    2015-01-01

    Recently, it has become evident that nucleolar passage of movement proteins occurs commonly in a number of plant RNA viruses that replicate in the cytoplasm. Systemic movement of Potato mop-top virus (PMTV) involves two viral transport forms represented by a complex of viral RNA and TRIPLE GENE BLOCK1 (TGB1) movement protein and by polar virions that contain the minor coat protein and TGB1 attached to one extremity. The integrity of polar virions ensures the efficient movement of RNA-CP, which encodes the virus coat protein. Here, we report the involvement of nuclear transport receptors belonging to the importin-α family in nucleolar accumulation of the PMTV TGB1 protein and, subsequently, in the systemic movement of the virus. Virus-induced gene silencing of two importin-α paralogs in Nicotiana benthamiana resulted in significant reduction of TGB1 accumulation in the nucleus, decreasing the accumulation of the virus progeny in upper leaves and the loss of systemic movement of RNA-CP. PMTV TGB1 interacted with importin-α in N. benthamiana, which was detected by bimolecular fluorescence complementation in the nucleoplasm and nucleolus. The interaction was mediated by two nucleolar localization signals identified by bioinformatics and mutagenesis in the TGB1 amino-terminal domain. Our results showed that while TGB1 self-interaction is needed for cell-to-cell movement, importin-α-mediated nucleolar targeting of TGB1 is an essential step in establishing the efficient systemic infection of the entire plant. These results enabled the identification of two separate domains in TGB1: an internal domain required for TGB1 self-interaction and cell-to-cell movement and the amino-terminal domain required for importin-α interaction in plants, nucleolar targeting, and long-distance movement. PMID:25576325

  5. Diagram of Cell to Cell Communication

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Diagram depicts the importance of cell-cell communication as central to the understanding of cancer growth and progression, the focus of the NASA bioreactor demonstration system (BDS-05) investigation. Microgravity studies will allow us to unravel the signaling and communication between these cells with the host and potential development of therapies for the treatment of cancer metastasis. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: Emory University.

  6. Cell-to-cell signaling and Pseudomonas aeruginosa infections.

    PubMed Central

    Van Delden, C.; Iglewski, B. H.

    1998-01-01

    Pseudomonas aeruginosa is a bacterium responsible for severe nosocomial infections, life-threatening infections in immunocompromised persons, and chronic infections in cystic fibrosis patients. The bacterium's virulence depends on a large number of cell-associated and extracellular factors. Cell-to-cell signaling systems control the expression and allow a coordinated, cell-density-dependent production of many extracellular virulence factors. We discuss the possible role of cell-to-cell signaling in the pathogenesis of P. aeruginosa infections and present a rationale for targeting cell-to-cell signaling systems in the development of new therapeutic approaches. PMID:9866731

  7. Long range physical cell-to-cell signalling via mitochondria inside membrane nanotubes: a hypothesis.

    PubMed

    Scholkmann, Felix

    2016-01-01

    Coordinated interaction of single cells by cell-to-cell communication (signalling) enables complex behaviour necessary for the functioning of multicellular organisms. A quite newly discovered cell-to-cell signalling mechanism relies on nanotubular cell-co-cell connections, termed "membrane nanotubes" (MNTs). The present paper presents the hypothesis that mitochondria inside MNTs can form a connected structure (mitochondrial network) which enables the exchange of energy and signals between cells. It is proposed that two modes of energy and signal transmission may occur: electrical/electrochemical and electromagnetic (optical). Experimental work supporting the hypothesis is reviewed, and suggestions for future research regarding the discussed topic are given. PMID:27267202

  8. Cell-to-cell movement of mitochondria in plants

    PubMed Central

    Gurdon, Csanad; Svab, Zora; Feng, Yaping; Kumar, Dibyendu; Maliga, Pal

    2016-01-01

    We report cell-to-cell movement of mitochondria through a graft junction. Mitochondrial movement was discovered in an experiment designed to select for chloroplast transfer from Nicotiana sylvestris into Nicotiana tabacum cells. The alloplasmic N. tabacum line we used carries Nicotiana undulata cytoplasmic genomes, and its flowers are male sterile due to the foreign mitochondrial genome. Thus, rare mitochondrial DNA transfer from N. sylvestris to N. tabacum could be recognized by restoration of fertile flower anatomy. Analyses of the mitochondrial genomes revealed extensive recombination, tentatively linking male sterility to orf293, a mitochondrial gene causing homeotic conversion of anthers into petals. Demonstrating cell-to-cell movement of mitochondria reconstructs the evolutionary process of horizontal mitochondrial DNA transfer and enables modification of the mitochondrial genome by DNA transmitted from a sexually incompatible species. Conversion of anthers into petals is a visual marker that can be useful for mitochondrial transformation. PMID:26951647

  9. Cell-to-cell movement of mitochondria in plants.

    PubMed

    Gurdon, Csanad; Svab, Zora; Feng, Yaping; Kumar, Dibyendu; Maliga, Pal

    2016-03-22

    We report cell-to-cell movement of mitochondria through a graft junction. Mitochondrial movement was discovered in an experiment designed to select for chloroplast transfer from Nicotiana sylvestris into Nicotiana tabacum cells. The alloplasmic N. tabacum line we used carries Nicotiana undulata cytoplasmic genomes, and its flowers are male sterile due to the foreign mitochondrial genome. Thus, rare mitochondrial DNA transfer from N. sylvestris to N. tabacum could be recognized by restoration of fertile flower anatomy. Analyses of the mitochondrial genomes revealed extensive recombination, tentatively linking male sterility to orf293, a mitochondrial gene causing homeotic conversion of anthers into petals. Demonstrating cell-to-cell movement of mitochondria reconstructs the evolutionary process of horizontal mitochondrial DNA transfer and enables modification of the mitochondrial genome by DNA transmitted from a sexually incompatible species. Conversion of anthers into petals is a visual marker that can be useful for mitochondrial transformation. PMID:26951647

  10. Cell-to-Cell Transmission of α-Synuclein Aggregates

    PubMed Central

    Lee, Seung-Jae; Desplats, Paula; Lee, He-Jin; Spencer, Brian; Masliah, Eliezer

    2016-01-01

    It is now recognized that the cell-to-cell transmission of misfolded proteins such as α-synuclein contributes to the neurodegenerative phenotype in neurological disorders such as idiopathic Parkinson’s disease, Dementia with Lewy bodies, and Parkinson’s disease dementia. Thus, establishing cell-based models for the transmission of α-synuclein is of importance to understand the mechanisms of neurodegeneration in these disorders and to develop new therapies. Here we describe methods to study the neuron-to-neuron propagation of α-synuclein in an in vitro setting that also has in vivo applications. PMID:22528101

  11. Progress in measuring neutrino quasielastic interactions

    SciTech Connect

    Gran, Richard

    2007-12-21

    This is an exciting time for folks who are looking at neutrino cross sections, and the especially important quasielastic interaction. We are able to inspect several recent results from K2K and MiniBooNE and are looking forward to a couple more high statistics measurements of neutrino and anti-neutrino interactions. There is additional interest because of the need for this cross section information for current and upcoming neutrino oscillation experiments. This paper is a brief review of our current understanding and some puzzles when we compare the recent results with past measurements. I articulate some of the short term challenges facing experimentalists, neutrino event generators, and theoretical work on the quasielastic interaction.

  12. Electron Donor Acceptor Interactions. Final Progress Report

    SciTech Connect

    2002-08-16

    The Gordon Research Conference (GRC) on Electron Donor Acceptor Interactions was held at Salve Regina University, Newport, Rhode Island, 8/11-16/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  13. Progress in computational studies of host-pathogen interactions.

    PubMed

    Zhou, Hufeng; Jin, Jingjing; Wong, Limsoon

    2013-04-01

    Host-pathogen interactions are important for understanding infection mechanism and developing better treatment and prevention of infectious diseases. Many computational studies on host-pathogen interactions have been published. Here, we review recent progress and results in this field and provide a systematic summary, comparison and discussion of computational studies on host-pathogen interactions, including prediction and analysis of host-pathogen protein-protein interactions; basic principles revealed from host-pathogen interactions; and database and software tools for host-pathogen interaction data collection, integration and analysis. PMID:23600809

  14. RNA transport during TMV cell-to-cell movement

    PubMed Central

    Peña, Eduardo J.; Heinlein, Manfred

    2012-01-01

    Studies during the last 25 years have provided increasing evidence for the ability of plants to support the cell-to-cell and systemic transport of RNA molecules and that this process plays a role in plant development and in the systemic orchestration of cellular responses against pathogens and other environmental challenges. Since RNA viruses exploit the cellular RNA transport machineries for spreading their genomes between cells they represent convenient models to investigate the underlying mechanisms. In this regard, the intercellular spread of Tobacco mosaic virus (TMV) has been studied for many years. The RNA of TMV moves cell-to-cell in a non-encapsidated form in a process depending on virus-encoded movement protein (MP). Here, we discuss the current state of the art in studies using TMV and its MP as a model for RNA transport. While the ability of plants to transport viral and cellular RNA molecules is consistent with RNA transport phenomena in other systems, further studies are needed to increase our ability to visualize viral RNA (vRNA) in vivo and to distinguish RNA-transport related processes from those involved in antiviral defense. PMID:22973280

  15. Consequences of cell-to-cell P-glycoprotein transfer on acquired multidrug resistance in breast cancer: a cell population dynamics model

    PubMed Central

    2011-01-01

    Background Cancer is a proliferation disease affecting a genetically unstable cell population, in which molecular alterations can be somatically inherited by genetic, epigenetic or extragenetic transmission processes, leading to a cooperation of neoplastic cells within tumoural tissue. The efflux protein P-glycoprotein (P-gp) is overexpressed in many cancer cells and has known capacity to confer multidrug resistance to cytotoxic therapies. Recently, cell-to-cell P-gp transfers have been shown. Herein, we combine experimental evidence and a mathematical model to examine the consequences of an intercellular P-gp trafficking in the extragenetic transfer of multidrug resistance from resistant to sensitive cell subpopulations. Methodology and Principal Findings We report cell-to-cell transfers of functional P-gp in co-cultures of a P-gp overexpressing human breast cancer MCF-7 cell variant, selected for its resistance towards doxorubicin, with the parental sensitive cell line. We found that P-gp as well as efflux activity distribution are progressively reorganized over time in co-cultures analyzed by flow cytometry. A mathematical model based on a Boltzmann type integro-partial differential equation structured by a continuum variable corresponding to P-gp activity describes the cell populations in co-culture. The mathematical model elucidates the population elements in the experimental data, specifically, the initial proportions, the proliferative growth rates, and the transfer rates of P-gp in the sensitive and resistant subpopulations. Conclusions We confirmed cell-to-cell transfer of functional P-gp. The transfer process depends on the gradient of P-gp expression in the donor-recipient cell interactions, as they evolve over time. Extragenetically acquired drug resistance is an additional aptitude of neoplastic cells which has implications in the diagnostic value of P-gp expression and in the design of chemotherapy regimens. Reviewers This article was reviewed by

  16. Tetraspanins regulate cell-to-cell transmission of HIV-1

    PubMed Central

    Krementsov, Dimitry N; Weng, Jia; Lambelé, Marie; Roy, Nathan H; Thali, Markus

    2009-01-01

    Background The presence of the tetraspanins CD9, CD63, CD81 and CD82 at HIV-1 budding sites, at the virological synapse (VS), and their enrichment in HIV-1 virions has been well-documented, but it remained unclear if these proteins play a role in the late phase of the viral replication cycle. Here we used overexpression and knockdown approaches to address this question. Results Neither ablation of CD9, CD63 and/or CD81, nor overexpression of these tetraspanins was found to affect the efficiency of virus release. However, confirming recently reported data, tetraspanin overexpression in virus-producing cells resulted in the release of virions with substantially reduced infectivity. We also investigated the roles of these tetraspanins in cell-to-cell transmission of HIV-1. Overexpression of CD9 and CD63 led to reduced cell-to-cell transmission of this virus. Interestingly, in knockdown experiments we found that ablation of CD63, CD9 and/or CD81 had no effect on cell-free infectivity. However, knockdown of CD81, but not CD9 and CD63, enhanced productive particle transmission to target cells, suggesting additional roles for tetraspanins in the transmission process. Finally, tetraspanins were found to be downregulated in HIV-1-infected T lymphocytes, suggesting that HIV-1 modulates the levels of these proteins in order to maximize the efficiency of its transmission within the host. Conclusion Altogether, these results establish an active role of tetraspanins in HIV-1 producer cells. PMID:19602278

  17. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing.

    PubMed

    Marinov, Georgi K; Williams, Brian A; McCue, Ken; Schroth, Gary P; Gertz, Jason; Myers, Richard M; Wold, Barbara J

    2014-03-01

    Single-cell RNA-seq mammalian transcriptome studies are at an early stage in uncovering cell-to-cell variation in gene expression, transcript processing and editing, and regulatory module activity. Despite great progress recently, substantial challenges remain, including discriminating biological variation from technical noise. Here we apply the SMART-seq single-cell RNA-seq protocol to study the reference lymphoblastoid cell line GM12878. By using spike-in quantification standards, we estimate the absolute number of RNA molecules per cell for each gene and find significant variation in total mRNA content: between 50,000 and 300,000 transcripts per cell. We directly measure technical stochasticity by a pool/split design and find that there are significant differences in expression between individual cells, over and above technical variation. Specific gene coexpression modules were preferentially expressed in subsets of individual cells, including one enriched for mRNA processing and splicing factors. We assess cell-to-cell variation in alternative splicing and allelic bias and report evidence of significant differences in splice site usage that exceed splice variation in the pool/split comparison. Finally, we show that transcriptomes from small pools of 30-100 cells approach the information content and reproducibility of contemporary RNA-seq from large amounts of input material. Together, our results define an experimental and computational path forward for analyzing gene expression in rare cell types and cell states. PMID:24299736

  18. Initial activation of EpCAM cleavage via cell-to-cell contact

    PubMed Central

    2009-01-01

    Background Epithelial cell adhesion molecule EpCAM is a transmembrane glycoprotein, which is frequently over-expressed in simple epithelia, progenitors, embryonic and tissue stem cells, carcinoma and cancer-initiating cells. Besides functioning as a homophilic adhesion protein, EpCAM is an oncogenic receptor that requires regulated intramembrane proteolysis for activation of its signal transduction capacity. Upon cleavage, the extracellular domain EpEX is released as a soluble ligand while the intracellular domain EpICD translocates into the cytoplasm and eventually into the nucleus in combination with four-and-a-half LIM domains protein 2 (FHL2) and β-catenin, and drives cell proliferation. Methods EpCAM cleavage, induction of the target genes, and transmission of proliferation signals were investigated under varying density conditions using confocal laser scanning microscopy, immunoblotting, cell counting, and conditional cell systems. Results EpCAM cleavage, induction of the target genes, and transmission of proliferation signals were dependent on adequate cell-to-cell contact. If cell-to-cell contact was prohibited EpCAM did not provide growth advantages. If cells were allowed to undergo contact to each other, EpCAM transmitted proliferation signals based on signal transduction-related cleavage processes. Accordingly, the pre-cleaved version EpICD was not dependent on cell-to-cell contact in order to induce c-myc and cell proliferation, but necessitated nuclear translocation. For the case of contact-inhibited cells, although cleavage of EpCAM occurred, nuclear translocation of EpICD was reduced, as were EpCAM effects. Conclusion Activation of EpCAM's cleavage and oncogenic capacity is dependent on cellular interaction (juxtacrine) to provide for initial signals of regulated intramembrane proteolysis, which then support signalling via soluble EpEX (paracrine). PMID:19925656

  19. Phosphorylation of coat protein by protein kinase CK2 regulates cell-to-cell movement of Bamboo mosaic virus through modulating RNA binding.

    PubMed

    Hung, Chien-Jen; Huang, Ying-Wen; Liou, Ming-Ru; Lee, Ya-Chien; Lin, Na-Sheng; Meng, Menghsiao; Tsai, Ching-Hsiu; Hu, Chung-Chi; Hsu, Yau-Heiu

    2014-11-01

    In this study, we investigated the fine regulation of cell-to-cell movement of Bamboo mosaic virus (BaMV). We report that the coat protein (CP) of BaMV is phosphorylated in planta at position serine 241 (S241), in a process involving Nicotiana benthamiana casein kinase 2α (NbCK2α). BaMV CP and NbCK2α colocalize at the plasmodesmata, suggesting that phosphorylation of BaMV may be involved in its movement. S241 was mutated to examine the effects of temporal and spatial dysregulation of phosphorylation on i) the interactions between CP and viral RNA and ii) the regulation of cell-to-cell movement. Replacement of S241 with alanine did not affect RNA binding affinity but moderately impaired cell-to-cell movement. A negative charge at position 241 reduced the ability of CP to bind RNA and severely interfered with cell-to-cell movement. Deletion of residues 240 to 242 increased the affinity of CP to viral RNA and dramatically impaired cell-to-cell movement. A threonine at position 241 changed the binding preference of CP toward genomic RNA and inhibited cell-to-cell movement. Together, these results reveal a fine regulatory mechanism for the cell-to-cell movement of BaMV, which involves the modulation of RNA binding affinity through appropriate phosphorylation of CP by NbCK2α. PMID:25025779

  20. Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis.

    PubMed

    Xiao, Yi; Bowen, Christopher H; Liu, Di; Zhang, Fuzhong

    2016-05-01

    Biosynthesis enables renewable production of manifold compounds, yet often biosynthetic performance must be improved for it to be economically feasible. Nongenetic, cell-to-cell variations in protein and metabolite concentrations are naturally inherent, suggesting the existence of both high- and low-performance variants in all cultures. Although having an intrinsic source of low performers might cause suboptimal ensemble biosynthesis, the existence of high performers suggests an avenue for performance enhancement. Here we develop in vivo population quality control (PopQC) to continuously select for high-performing, nongenetic variants. We apply PopQC to two biosynthetic pathways using two alternative design principles and demonstrate threefold enhanced production of both free fatty acid (FFA) and tyrosine. We confirm that PopQC improves ensemble biosynthesis by selecting for nongenetic high performers. Additionally, we use PopQC in fed-batch FFA production and achieve 21.5 g l(-1) titer and 0.5 g l(-1) h(-1) productivity. Given the ubiquity of nongenetic variation, PopQC should be applicable to a variety of metabolic pathways for enhanced biosynthesis. PMID:26999780

  1. Type II integral membrane protein, TM of J paramyxovirus promotes cell-to-cell fusion

    PubMed Central

    Li, Zhuo; Hung, Cher; Paterson, Reay G.; Michel, Frank; Fuentes, Sandra; Place, Ryan; Lin, Yuan; Hogan, Robert J.; Lamb, Robert A.; He, Biao

    2015-01-01

    Paramyxoviruses include many important animal and human pathogens. Most paramyxoviruses have two integral membrane proteins: fusion protein (F) and attachment proteins hemagglutinin, hemagglutinin–neuraminidase, or glycoprotein (G), which are critical for viral entry into cells. J paramyxovirus (JPV) encodes four integral membrane proteins: F, G, SH, and transmembrane (TM). The function of TM is not known. In this work, we have generated a viable JPV lacking TM (JPV∆TM). JPV∆TM formed opaque plaques compared with JPV. Quantitative syncytia assays showed that JPV∆TM was defective in promoting cell-to-cell fusion (i.e., syncytia formation) compared with JPV. Furthermore, cells separately expressing F, G, TM, or F plus G did not form syncytia whereas cells expressing F plus TM formed some syncytia. However, syncytia formation was much greater with coexpression of F, G, and TM. Biochemical analysis indicates that F, G, and TM interact with each other. A small hydrophobic region in the TM ectodomain from amino acid residues 118 to 132, the hydrophobic loop (HL), was important for syncytial promotion, suggesting that the TM HL region plays a critical role in cell-to-cell fusion. PMID:26392524

  2. Cell-to-cell communication and cellular environment alter the somatostatin status of delta cells

    SciTech Connect

    Kelly, Catriona; Flatt, Peter R.; McClenaghan, Neville H.

    2010-08-20

    Research highlights: {yields} TGP52 cells display enhanced functionality in pseudoislet form. {yields} Somatostatin content was reduced, but secretion increased in high glucose conditions. {yields} Cellular interactions and environment alter the somatostatin status of TGP52 cells. -- Abstract: Introduction: Somatostatin, released from pancreatic delta cells, is a potent paracrine inhibitor of insulin and glucagon secretion. Islet cellular interactions and glucose homeostasis are essential to maintain normal patterns of insulin secretion. However, the importance of cell-to-cell communication and cellular environment in the regulation of somatostatin release remains unclear. Methods: This study employed the somatostatin-secreting TGP52 cell line maintained in DMEM:F12 (17.5 mM glucose) or DMEM (25 mM glucose) culture media. The effect of pseudoislet formation and culture medium on somatostatin content and release in response to a variety of stimuli was measured by somatostatin EIA. In addition, the effect of pseudoislet formation on cellular viability (MTT and LDH assays) and proliferation (BrdU ELISA) was determined. Results: TGP52 cells readily formed pseudoislets and showed enhanced functionality in three-dimensional form with increased E-cadherin expression irrespective of the culture environment used. However, culture in DMEM decreased cellular somatostatin content (P < 0.01) and increased somatostatin secretion in response to a variety of stimuli including arginine, calcium and PMA (P < 0.001) when compared with cells grown in DMEM:F12. Configuration of TGP52 cells as pseudoislets reduced the proliferative rate and increased cellular cytotoxicity irrespective of culture medium used. Conclusions: Somatostatin secretion is greatly facilitated by cell-to-cell interactions and E-cadherin expression. Cellular environment and extracellular glucose also significantly influence the function of delta cells.

  3. An unusual dependence of human herpesvirus-8 glycoproteins-induced cell-to-cell fusion on heparan sulfate

    SciTech Connect

    Tiwari, Vaibhav; Darmani, Nissar A.; Thrush, Gerald R.; Shukla, Deepak

    2009-12-18

    Human herpesvirus-8 (HHV-8) is known to interact with cell surface heparan sulfate (HS) for entry into a target cell. Here we investigated the role of HS during HHV-8 glycoproteins-induced cell fusion. Interestingly, the observed fusion demonstrated an unusual dependence on HS as evident from following lines of evidence: (1) a significant reduction in cell-to-cell fusion occurred when target cells were treated with heparinase; (2) in a competition assay, when the effector cells expressing HHV-8 glycoproteins were challenged with soluble HS, cell-to-cell fusion was reduced; and, (3) co-expression of HHV-8 glycoproteins gH-gL on target cells resulted in inhibition of cell surface HS expression. Taken together, our results indicate that cell surface HS can play an additional role during HHV-8 pathogenesis.

  4. Local statistics allow quantification of cell-to-cell variability from high-throughput microscope images

    PubMed Central

    Handfield, Louis-François; Strome, Bob; Chong, Yolanda T.; Moses, Alan M.

    2015-01-01

    Motivation: Quantifying variability in protein expression is a major goal of systems biology and cell-to-cell variability in subcellular localization pattern has not been systematically quantified. Results: We define a local measure to quantify cell-to-cell variability in high-throughput microscope images and show that it allows comparable measures of variability for proteins with diverse subcellular localizations. We systematically estimate cell-to-cell variability in the yeast GFP collection and identify examples of proteins that show cell-to-cell variability in their subcellular localization. Conclusions: Automated image analysis methods can be used to quantify cell-to-cell variability in microscope images. Contact: alan.moses@utoronto.ca Availability and Implementation: Software and data are available at http://www.moseslab.csb.utoronto.ca/louis-f/ Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25398614

  5. Over-expression of putative transcriptional coactivator KELP interferes with Tomato mosaic virus cell-to-cell movement.

    PubMed

    Sasaki, Nobumitsu; Ogata, Takuya; Deguchi, Masakazu; Nagai, Shoko; Tamai, Atsushi; Meshi, Tetsuo; Kawakami, Shigeki; Watanabe, Yuichiro; Matsushita, Yasuhiko; Nyunoya, Hiroshi

    2009-03-01

    Tomato mosaic virus (ToMV) encodes a movement protein (MP) that is necessary for virus cell-to-cell movement. We have demonstrated previously that KELP, a putative transcriptional coactivator of Arabidopsis thaliana, and its orthologue from Brassica campestris can bind to ToMV MP in vitro. In this study, we examined the effects of the transient over-expression of KELP on ToMV infection and the intracellular localization of MP in Nicotiana benthamiana, an experimental host of the virus. In co-bombardment experiments, the over-expression of KELP inhibited virus cell-to-cell movement. The N-terminal half of KELP (KELPdC), which had been shown to bind to MP, was sufficient for inhibition. Furthermore, the over-expression of KELP and KELPdC, both of which were co-localized with ToMV MP, led to a reduction in the plasmodesmal association of MP. In the absence of MP expression, KELP was localized in the nucleus and the cytoplasm by the localization signal in its N-terminal half. It was also shown that ToMV amplified normally in protoplasts prepared from leaf tissue that expressed KELP transiently. These results indicate that over-expressed KELP interacts with MP in vivo and exerts an inhibitory effect on MP function for virus cell-to-cell movement, but not on virus amplification in individual cells. PMID:19236566

  6. Identification of a Functional Plasmodesmal Localization Signal in a Plant Viral Cell-To-Cell-Movement Protein

    PubMed Central

    Yuan, Cheng; Lazarowitz, Sondra G.

    2016-01-01

    ABSTRACT Our fundamental knowledge of the protein-sorting pathways required for plant cell-to-cell trafficking and communication via the intercellular connections termed plasmodesmata has been severely limited by the paucity of plasmodesmal targeting sequences that have been identified to date. To address this limitation, we have identified the plasmodesmal localization signal (PLS) in the Tobacco mosaic virus (TMV) cell-to-cell-movement protein (MP), which has emerged as the paradigm for dissecting the molecular details of cell-to-cell transport through plasmodesmata. We report here the identification of a bona fide functional TMV MP PLS, which encompasses amino acid residues between positions 1 and 50, with residues Val-4 and Phe-14 potentially representing critical sites for PLS function that most likely affect protein conformation or protein interactions. We then demonstrated that this PLS is both necessary and sufficient for protein targeting to plasmodesmata. Importantly, as TMV MP traffics to plasmodesmata by a mechanism that is distinct from those of the three plant cell proteins in which PLSs have been reported, our findings provide important new insights to expand our understanding of protein-sorting pathways to plasmodesmata. PMID:26787834

  7. Discussing Progress in Understanding Ice Sheet-Ocean Interactions

    NASA Astrophysics Data System (ADS)

    Herraiz Borreguero, Laura; Mottram, Ruth; Cvijanovic, Ivana

    2010-11-01

    Advanced Climate Dynamics Course 2010: Ice Sheet-Ocean Interactions; Lyngen, Norway, 8-19 June 2010; Sea level rise is one of many expected consequences of climate change, with accompanying complex social and economic challenges. Major uncertainties in sea level rise projections relate to the response of ice sheets to sea level rise and the key role that interactions with the ocean may play. Recognizing that probably no comprehensive curriculum currently exists at any single university that covers this novel and interdisciplinary subject, the Advanced Climate Dynamics Courses (ACDC) team brought together a group of 40 international students, postdocs, and lecturers from diverse backgrounds to provide an overview and discussion of state-of-the-art research into ocean-ice sheet interactions and to propose research priorities for the next decade. Among the key issues addressed were small-scale processes near the Antarctic ice shelves and Greenland outlet glaciers. These are fast changing components in the climate system, often related to large-scale forcings (atmospheric teleconnections and oceanic circulation). Progress in understanding and modeling is hampered by the range of scales involved, the lack of observations, and the difficulties in constraining, initializing, and providing adequate boundary conditions for ice sheet and ocean models.

  8. Modeling Stromal-Epithelial Interactions in Disease Progression

    PubMed Central

    Strand, Douglas W.; Hayward, Simon W.

    2014-01-01

    The role of tumor stroma in progression to malignancy has become the subject of intense experimental and clinical interest. The stromal compartment of organs is composed of all the non-epithelial cell types and maintains the proper architecture and nutrient levels required for epithelial and, ultimately, organ function. The composition of the reactive stroma surrounding tumors is vastly different from normal stromal tissue. Stromal phenotype can be correlated with, and predictive of, disease recurrence. In addition, the stroma is now seen as a legitimate target for therapeutic intervention. Although much has been learned about the role of the stromal compartment in development and disease in recent years, a number of key questions remain. Here we review how some of these questions are beginning to be addressed using new models of stromal-epithelial interaction. PMID:20587339

  9. Interactions between biomaterials and the sclera: Implications on myopia progression

    NASA Astrophysics Data System (ADS)

    Su, James

    Myopia prevalence has steadily climbed worldwide in recent decades with the most dramatic impact in East Asian countries. Treatments such as eyeglasses, contact lenses, and laser surgery for the refractive error are widely available, but none cures the underlying cause. In progressive high myopia, invasive surgical procedures using a scleral buckle for mechanical support are performed since the patient is at risk of becoming blind. The treatment outcome is highly dependent on the surgeon's skills and the patient's myopia progression rate, with limited choices in buckling materials. This dissertation, in four main studies, represents efforts made to control high myopia progression through the exploration and development of biomaterials that influence scleral growth. First, mRNA expression levels of the chick scleral matrix metalloproteinases, tissue-inhibitor of matrix metalloproteinases, and transforming growth factor-beta 2 were assessed for temporal and defocus power effects. The first study elucidated the roles that these factors play in scleral growth regulation and suggested potential motifs that can be incorporated in future biomaterials design. Second, poly(vinyl-pyrrolidone) as injectable gels and poly(2-hydroxyethyl methacrylate) as solid strips were implanted in chicks to demonstrate the concept of posterior pole scleral reinforcements. This second study found that placing appropriate biomaterials at the posterior pole of the eye could directly influence scleral remodeling by interacting with the host cells. Both studies advanced the idea that scleral tissue remodeling could be potentially controlled by well-designed biomaterials. These findings led to the exploration of biomimetic hydrogels comprising enzymatically-degradable semi-interpenetrating polymer networks (edsIPNs) to determine their biocompatibility and effects on the chick posterior eye wall. This third study demonstrated the feasibility of stimulating scleral growth by applying biomimetic

  10. Cell to Cell Variability of Radiation-Induced Foci: Relation between Observed Damage and Energy Deposition

    PubMed Central

    Voisin, Pascale; Clairand, Isabelle; Benderitter, Marc; Bottollier-Depois, Jean-François; Barquinero, Joan Francesc

    2016-01-01

    Most studies that aim to understand the interactions between different types of photon radiation and cellular DNA assume homogeneous cell irradiation, with all cells receiving the same amount of energy. The level of DNA damage is therefore generally determined by averaging it over the entire population of exposed cells. However, evaluating the molecular consequences of a stochastic phenomenon such as energy deposition of ionizing radiation by measuring only an average effect may not be sufficient for understanding some aspects of the cellular response to this radiation. The variance among the cells associated with this average effect may also be important for the behaviour of irradiated tissue. In this study, we accurately estimated the distribution of the number of radiation-induced γH2AX foci (RIF) per cell nucleus in a large population of endothelial cells exposed to 3 macroscopic doses of gamma rays from 60Co. The number of RIF varied significantly and reproducibly from cell to cell, with its relative standard deviation ranging from 36% to 18% depending on the macroscopic dose delivered. Interestingly, this relative cell-to-cell variability increased as the dose decreased, contrary to the mean RIF count per cell. This result shows that the dose effect, in terms of the number of DNA lesions indicated by RIF is not as simple as a purely proportional relation in which relative SD is constant with dose. To analyse the origins of this observed variability, we calculated the spread of the specific energy distribution for the different target volumes and subvolumes in which RIF can be generated. Variances, standard deviations and relative standard deviations all changed similarly from dose to dose for biological and calculated microdosimetric values. This similarity is an important argument that supports the hypothesis of the conservation of the association between the number of RIF per nucleus and the specific energy per DNA molecule. This comparison allowed us to

  11. Cell to Cell Variability of Radiation-Induced Foci: Relation between Observed Damage and Energy Deposition.

    PubMed

    Gruel, Gaëtan; Villagrasa, Carmen; Voisin, Pascale; Clairand, Isabelle; Benderitter, Marc; Bottollier-Depois, Jean-François; Barquinero, Joan Francesc

    2016-01-01

    Most studies that aim to understand the interactions between different types of photon radiation and cellular DNA assume homogeneous cell irradiation, with all cells receiving the same amount of energy. The level of DNA damage is therefore generally determined by averaging it over the entire population of exposed cells. However, evaluating the molecular consequences of a stochastic phenomenon such as energy deposition of ionizing radiation by measuring only an average effect may not be sufficient for understanding some aspects of the cellular response to this radiation. The variance among the cells associated with this average effect may also be important for the behaviour of irradiated tissue. In this study, we accurately estimated the distribution of the number of radiation-induced γH2AX foci (RIF) per cell nucleus in a large population of endothelial cells exposed to 3 macroscopic doses of gamma rays from 60Co. The number of RIF varied significantly and reproducibly from cell to cell, with its relative standard deviation ranging from 36% to 18% depending on the macroscopic dose delivered. Interestingly, this relative cell-to-cell variability increased as the dose decreased, contrary to the mean RIF count per cell. This result shows that the dose effect, in terms of the number of DNA lesions indicated by RIF is not as simple as a purely proportional relation in which relative SD is constant with dose. To analyse the origins of this observed variability, we calculated the spread of the specific energy distribution for the different target volumes and subvolumes in which RIF can be generated. Variances, standard deviations and relative standard deviations all changed similarly from dose to dose for biological and calculated microdosimetric values. This similarity is an important argument that supports the hypothesis of the conservation of the association between the number of RIF per nucleus and the specific energy per DNA molecule. This comparison allowed us to

  12. Malaria parasites form filamentous cell-to-cell connections during reproduction in the mosquito midgut

    PubMed Central

    Rupp, Ingrid; Sologub, Ludmilla; Williamson, Kim C; Scheuermayer, Matthias; Reininger, Luc; Doerig, Christian; Eksi, Saliha; Kombila, Davy U; Frank, Matthias; Pradel, Gabriele

    2011-01-01

    Physical contact is important for the interaction between animal cells, but it can represent a major challenge for protists like malaria parasites. Recently, novel filamentous cell-cell contacts have been identified in different types of eukaryotic cells and termed nanotubes due to their morphological appearance. Nanotubes represent small dynamic membranous extensions that consist of F-actin and are considered an ancient feature evolved by eukaryotic cells to establish contact for communication. We here describe similar tubular structures in the malaria pathogen Plasmodium falciparum, which emerge from the surfaces of the forming gametes upon gametocyte activation in the mosquito midgut. The filaments can exhibit a length of > 100 μm and contain the F-actin isoform actin 2. They actively form within a few minutes after gametocyte activation and persist until the zygote transforms into the ookinete. The filaments originate from the parasite plasma membrane, are close ended and express adhesion proteins on their surfaces that are typically found in gametes, like Pfs230, Pfs48/45 or Pfs25, but not the zygote surface protein Pfs28. We show that these tubular structures represent long-distance cell-to-cell connections between sexual stage parasites and demonstrate that they meet the characteristics of nanotubes. We propose that malaria parasites utilize these adhesive “nanotubes” in order to facilitate intercellular contact between gametes during reproduction in the mosquito midgut. PMID:21173797

  13. Quantitative Comparison of HTLV-1 and HIV-1 Cell-to-Cell Infection with New Replication Dependent Vectors

    PubMed Central

    Mazurov, Dmitriy; Ilinskaya, Anna; Heidecker, Gisela; Lloyd, Patricia

    2010-01-01

    We have developed an efficient method to quantify cell-to-cell infection with single-cycle, replication dependent reporter vectors. This system was used to examine the mechanisms of infection with HTLV-1 and HIV-1 vectors in lymphocyte cell lines. Effector cells transfected with reporter vector, packaging vector, and Env expression plasmid produced virus-like particles that transduced reporter gene activity into cocultured target cells with zero background. Reporter gene expression was detected exclusively in target cells and required an Env-expression plasmid and a viral packaging vector, which provided essential structural and enzymatic proteins for virus replication. Cell-cell fusion did not contribute to infection, as reporter protein was rarely detected in syncytia. Coculture of transfected Jurkat T cells and target Raji/CD4 B cells enhanced HIV-1 infection two fold and HTLV-1 infection ten thousand fold in comparison with cell-free infection of Raji/CD4 cells. Agents that interfere with actin and tubulin polymerization strongly inhibited HTLV-1 and modestly decreased HIV-1 cell-to-cell infection, an indication that cytoskeletal remodeling was more important for HTLV-1 transmission. Time course studies showed that HTLV-1 transmission occurred very rapidly after cell mixing, whereas slower kinetics of HIV-1 coculture infection implies a different mechanism of infectious transmission. HTLV-1 Tax was demonstrated to play an important role in altering cell-cell interactions that enhance virus infection and replication. Interestingly, superantigen-induced synapses between Jurkat cells and Raji/CD4 cells did not enhance infection for either HTLV-1 or HIV-1. In general, the dependence on cell-to-cell infection was determined by the virus, the effector and target cell types, and by the nature of the cell-cell interaction. PMID:20195464

  14. Protease inhibitors effectively block cell-to-cell spread of HIV-1 between T cells

    PubMed Central

    2013-01-01

    Background The Human Immunodeficiency Virus type-1 (HIV-1) spreads by cell-free diffusion and by direct cell-to-cell transfer, the latter being a significantly more efficient mode of transmission. Recently it has been suggested that cell-to-cell spread may permit ongoing virus replication in the presence of antiretroviral therapy (ART) based on studies performed using Reverse Transcriptase Inhibitors (RTIs). Protease Inhibitors (PIs) constitute an important component of ART; however whether this class of inhibitors can suppress cell-to-cell transfer of HIV-1 is unexplored. Here we have evaluated the inhibitory effect of PIs during cell-to-cell spread of HIV-1 between T lymphocytes. Results Using quantitative assays in cell line and primary cell systems that directly measure the early steps of HIV-1 infection we find that the PIs Lopinavir and Darunavir are equally potent against both cell-free and cell-to-cell spread of HIV-1. We further show that a protease resistant mutant maintains its resistant phenotype during cell-to-cell spread and is transmitted more efficiently than wild-type virus in the presence of drug. By contrast we find that T cell-T cell spread of HIV-1 is 4–20 fold more resistant to inhibition by the RTIs Nevirapine, Zidovudine and Tenofovir. Notably, varying the ratio of infected and uninfected cells in co-culture impacted on the degree of inhibition, indicating that the relative efficacy of ART is dependent on the multiplicity of infection. Conclusions We conclude that if the variable effects of antiviral drugs on cell-to-cell virus dissemination of HIV-1 do indeed impact on viral replication and maintenance of viral reservoirs this is likely to be influenced by the antiviral drug class, since PIs appear particularly effective against both modes of HIV-1 spread. PMID:24364896

  15. Lamellipodin Is Important for Cell-to-Cell Spread and Actin-Based Motility in Listeria monocytogenes.

    PubMed

    Wang, Jiahui; King, Jane E; Goldrick, Marie; Lowe, Martin; Gertler, Frank B; Roberts, Ian S

    2015-09-01

    Listeria monocytogenes is a foodborne pathogen capable of invading a broad range of cell types and replicating within the host cell cytoplasm. This paper describes the colocalization of host cell lamellipodin (Lpd) with intracellular L. monocytogenes detectable 6 h postinfection of epithelial cells. The association was mediated via interactions between both the peckstrin homology (PH) domain in Lpd and phosphatidylinositol (3,4)-bisphosphate [PI(3,4)P2] on the bacterial surface and by interactions between the C-terminal EVH1 (Ena/VASP [vasodilator-stimulated phosphoprotein] homology domain 1) binding domains of Lpd and the host VASP (vasodilator-stimulated phosphoprotein) recruited to the bacterial cell surface by the listerial ActA protein. Depletion of Lpd by short interfering RNA (siRNA) resulted in reduced plaque size and number, indicating a role for Lpd in cell-to-cell spread. In contrast, overexpression of Lpd resulted in an increase in the number of L. monocytogenes-containing protrusions (listeriopods). Manipulation of the levels of Lpd within the cell also affected the intracellular velocity of L. monocytogenes, with a reduction in Lpd corresponding to an increase in intracellular velocity. These data, together with the observation that Lpd accumulated at the interface between the bacteria and the developing actin tail at the initiation of actin-based movement, indicate a possible role for Lpd in the actin-based movement and the cell-to-cell spread of L. monocytogenes. PMID:26169271

  16. Quantification of Hepatitis C Virus Cell-to-Cell Spread Using a Stochastic Modeling Approach

    PubMed Central

    Martin, Danyelle N.; Perelson, Alan S.; Dahari, Harel

    2015-01-01

    ABSTRACT It has been proposed that viral cell-to-cell transmission plays a role in establishing and maintaining chronic infections. Thus, understanding the mechanisms and kinetics of cell-to-cell spread is fundamental to elucidating the dynamics of infection and may provide insight into factors that determine chronicity. Because hepatitis C virus (HCV) spreads from cell to cell and has a chronicity rate of up to 80% in exposed individuals, we examined the dynamics of HCV cell-to-cell spread in vitro and quantified the effect of inhibiting individual host factors. Using a multidisciplinary approach, we performed HCV spread assays and assessed the appropriateness of different stochastic models for describing HCV focus expansion. To evaluate the effect of blocking specific host cell factors on HCV cell-to-cell transmission, assays were performed in the presence of blocking antibodies and/or small-molecule inhibitors targeting different cellular HCV entry factors. In all experiments, HCV-positive cells were identified by immunohistochemical staining and the number of HCV-positive cells per focus was assessed to determine focus size. We found that HCV focus expansion can best be explained by mathematical models assuming focus size-dependent growth. Consistent with previous reports suggesting that some factors impact HCV cell-to-cell spread to different extents, modeling results estimate a hierarchy of efficacies for blocking HCV cell-to-cell spread when targeting different host factors (e.g., CLDN1 > NPC1L1 > TfR1). This approach can be adapted to describe focus expansion dynamics under a variety of experimental conditions as a means to quantify cell-to-cell transmission and assess the impact of cellular factors, viral factors, and antivirals. IMPORTANCE The ability of viruses to efficiently spread by direct cell-to-cell transmission is thought to play an important role in the establishment and maintenance of viral persistence. As such, elucidating the dynamics of cell-to-cell

  17. Differential effect of p7 inhibitors on hepatitis C virus cell-to-cell transmission☆

    PubMed Central

    Meredith, L.W.; Zitzmann, N.; McKeating, J.A.

    2013-01-01

    Inhibitors targeting the hepatitis C virus (HCV) encoded viroporin, p7 prevent virus release in vitro. HCV can transmit by cell-free particle infection of new target cells and via cell-to-cell dependent contact with limited exposure to the extracellular environment. The role of assembly inhibitors in preventing HCV transmission via these pathways has not been studied. We compared the efficacy of three published p7 inhibitors to inhibit cell-free and cell-to-cell transmission of two chimeric HCV strains encoding genotype 2 (GT2) or 5 (GT5) p7 using a recently developed single cycle co-culture assay. The inhibitors reduced the infectivity of extracellular GT2 and GT5 virus by 80–90% and GT2 virus cell-to-cell transmission by 50%. However, all of the p7 inhibitors had minimal effect on GT5 cell contact dependent transmission. Screening a wider panel of diverse viral genotypes demonstrated that p7 viroporin inhibitors were significantly more effective at blocking cell-free virus than cell-to-cell transmission. These results suggest an altered assembly or trafficking of cell-to-cell transmitted compared to secreted virus. These observations have important implications for the validation, therapeutic design and testing of HCV assembly inhibitors. PMID:24157306

  18. Role of Exosome Shuttle RNA in Cell-to-Cell Communication.

    PubMed

    Zhang, Wei; Peng, Peng; Shen, Keng

    2016-08-01

    There are several ways that transpire in cell-to-cell communication,with or without cell contact. Exosomes play an important role in cell-to-cell communication,which do not need cell contact,as that can result in a relatively long-distance influence. Exosome contains RNA components including mRNA and micro-RNA,which are protected by exosomes rigid membranes. This allows those components be passed long distance through the circulatory system. The mRNA components are far different from their donor cells,and the micro-RNA components may reflect the cell they originated. In this article we review the role of exosomes in cell-to-cell communication,with particular focus on their potentials in both diagnostic and therapeutic applications. PMID:27594165

  19. Non-chemical and non-contact cell-to-cell communication: a short review

    PubMed Central

    Scholkmann, Felix; Fels, Daniel; Cifra, Michal

    2013-01-01

    Cell-to-cell communication is the basis of coordinated cellular activity and thus fundamental for the functioning of biological systems. In a recently published research article by Chaban et al. (Am. J. Transl. Res., 5(1), 69-79), the authors report on interesting new experimental findings supporting a neuro-hormonal independent, non-diffusible cell-to-cell signaling. Our paper aims to (i) discuss some critical notions used by the authors to describe their findings, and (ii) briefly review related experimental work performed so far but not discussed in the original work of Chaban et al. In our opinion, the research on principles of non-chemical and non-contact cell-to-cell communication has the potential to offer new fundamental insights into biological processes. With this paper, we want to encourage future research on this topic by discussing critical issues and giving an overview of the current state of research. PMID:24093056

  20. Non-chemical and non-contact cell-to-cell communication: a short review.

    PubMed

    Scholkmann, Felix; Fels, Daniel; Cifra, Michal

    2013-01-01

    Cell-to-cell communication is the basis of coordinated cellular activity and thus fundamental for the functioning of biological systems. In a recently published research article by Chaban et al. (Am. J. Transl. Res., 5(1), 69-79), the authors report on interesting new experimental findings supporting a neuro-hormonal independent, non-diffusible cell-to-cell signaling. Our paper aims to (i) discuss some critical notions used by the authors to describe their findings, and (ii) briefly review related experimental work performed so far but not discussed in the original work of Chaban et al. In our opinion, the research on principles of non-chemical and non-contact cell-to-cell communication has the potential to offer new fundamental insights into biological processes. With this paper, we want to encourage future research on this topic by discussing critical issues and giving an overview of the current state of research. PMID:24093056

  1. Productive Entry of HIV-1 during Cell-to-Cell Transmission via Dynamin-Dependent Endocytosis

    PubMed Central

    Sloan, Richard D.; Kuhl, Björn D.; Mesplède, Thibault; Münch, Jan; Donahue, Daniel A.

    2013-01-01

    HIV-1 can be transmitted as cell-free virus or via cell-to-cell contacts. Cell-to-cell transmission between CD4+ T cells is the more efficient mode of transmission and is predominant in lymphoid tissue, where the majority of virus resides. Yet the cellular mechanisms underlying productive cell-to-cell transmission in uninfected target cells are unclear. Although it has been demonstrated that target cells can take up virus via endocytosis, definitive links between this process and productive infection remain undefined, and this route of transmission has been proposed to be nonproductive. Here, we report that productive cell-to-cell transmission can occur via endocytosis in a dynamin-dependent manner and is sensitive to clathrin-associated antagonists. These data were obtained in a number of CD4+ T-cell lines and in primary CD4+ T cells, using both CXCR4- and CCR5-tropic virus. However, we also found that HIV-1 demonstrated flexibility in its use of such endocytic pathways as certain allogeneic transmissions were seen to occur in a dynamin-dependent manner but were insensitive to clathrin-associated antagonists. Also, depleting cells of the clathrin accessory protein AP180 led to a viral uptake defect associated with enhanced infection. Collectively, these data demonstrate that endosomal uptake of HIV-1 during cell-to-cell transmission leads to productive infection, but they are also indicative of a flexible model of viral entry during cell-to-cell transmission, in which the virus can alter its entry route according to the pressures that it encounters. PMID:23678185

  2. How HIV-1 Takes Advantage of the Cytoskeleton during Replication and Cell-to-Cell Transmission

    PubMed Central

    Lehmann, Martin; Nikolic, Damjan S.; Piguet, Vincent

    2011-01-01

    Human immunodeficiency virus 1 (HIV-1) infects T cells, macrophages and dendritic cells and can manipulate their cytoskeleton structures at multiple steps during its replication cycle. Based on pharmacological and genetic targeting of cytoskeleton modulators, new imaging approaches and primary cell culture models, important roles for actin and microtubules during entry and cell-to-cell transfer have been established. Virological synapses and actin-containing membrane extensions can mediate HIV-1 transfer from dendritic cells or macrophage cells to T cells and between T cells. We will review the role of the cytoskeleton in HIV-1 entry, cellular trafficking and cell-to-cell transfer between primary cells. PMID:21994805

  3. Modulating cell-to-cell variability and sensitivity to death ligands by co-drugging

    NASA Astrophysics Data System (ADS)

    Flusberg, Deborah A.; Sorger, Peter K.

    2013-06-01

    TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) holds promise as an anti-cancer therapeutic but efficiently induces apoptosis in only a subset of tumor cell lines. Moreover, even in clonal populations of responsive lines, only a fraction of cells dies in response to TRAIL and individual cells exhibit cell-to-cell variability in the timing of cell death. Fractional killing in these cell populations appears to arise not from genetic differences among cells but rather from differences in gene expression states, fluctuations in protein levels and the extent to which TRAIL-induced death or survival pathways become activated. In this study, we ask how cell-to-cell variability manifests in cell types with different sensitivities to TRAIL, as well as how it changes when cells are exposed to combinations of drugs. We show that individual cells that survive treatment with TRAIL can regenerate the sensitivity and death-time distribution of the parental population, demonstrating that fractional killing is a stable property of cell populations. We also show that cell-to-cell variability in the timing and probability of apoptosis in response to treatment can be tuned using combinations of drugs that together increase apoptotic sensitivity compared to treatment with one drug alone. In the case of TRAIL, modulation of cell-to-cell variability by co-drugging appears to involve a reduction in the threshold for mitochondrial outer membrane permeabilization.

  4. Broadly neutralizing antibodies that inhibit HIV-1 cell to cell transmission

    PubMed Central

    Malbec, Marine; Porrot, Françoise; Rua, Rejane; Horwitz, Joshua; Klein, Florian; Halper-Stromberg, Ari; Scheid, Johannes F.; Eden, Caroline; Mouquet, Hugo; Nussenzweig, Michel C.

    2013-01-01

    The neutralizing activity of anti–HIV-1 antibodies is typically measured in assays where cell-free virions enter reporter cell lines. However, HIV-1 cell to cell transmission is a major mechanism of viral spread, and the effect of the recently described broadly neutralizing antibodies (bNAbs) on this mode of transmission remains unknown. Here we identify a subset of bNAbs that inhibit both cell-free and cell-mediated infection in primary CD4+ lymphocytes. These antibodies target either the CD4-binding site (NIH45-46 and 3BNC60) or the glycan/V3 loop (10-1074 and PGT121) on HIV-1 gp120 and act at low concentrations by inhibiting multiple steps of viral cell to cell transmission. These antibodies accumulate at virological synapses and impair the clustering and fusion of infected and target cells and the transfer of viral material to uninfected T cells. In addition, they block viral cell to cell transmission to plasmacytoid DCs and thereby interfere with type-I IFN production. Thus, only a subset of bNAbs can efficiently prevent HIV-1 cell to cell transmission, and this property should be considered an important characteristic defining antibody potency for therapeutic or prophylactic antiviral strategies. PMID:24277152

  5. The Arabidopsis synaptotagmin SYTA regulates the cell-to-cell movement of diverse plant viruses

    PubMed Central

    Uchiyama, Asako; Shimada-Beltran, Harumi; Levy, Amit; Zheng, Judy Y.; Javia, Parth A.; Lazarowitz, Sondra G.

    2014-01-01

    Synaptotagmins are a large gene family in animals that have been extensively characterized due to their role as calcium sensors to regulate synaptic vesicle exocytosis and endocytosis in neurons, and dense core vesicle exocytosis for hormone secretion from neuroendocrine cells. Thought to be exclusive to animals, synaptotagmins have recently been characterized in Arabidopsis thaliana, in which they comprise a five gene family. Using infectivity and leaf-based functional assays, we have shown that Arabidopsis SYTA regulates endocytosis and marks an endosomal vesicle recycling pathway to regulate movement protein-mediated trafficking of the Begomovirus Cabbage leaf curl virus (CaLCuV) and the Tobamovirus Tobacco mosaic virus (TMV) through plasmodesmata (Lewis and Lazarowitz, 2010). To determine whether SYTA has a central role in regulating the cell-to-cell trafficking of a wider range of diverse plant viruses, we extended our studies here to examine the role of SYTA in the cell-to-cell movement of additional plant viruses that employ different modes of movement, namely the Potyvirus Turnip mosaic virus (TuMV), the Caulimovirus Cauliflower mosaic virus (CaMV) and the Tobamovirus Turnip vein clearing virus (TVCV), which in contrast to TMV does efficiently infect Arabidopsis. We found that both TuMV and TVCV systemic infection, and the cell-to-cell trafficking of the their movement proteins, were delayed in the Arabidopsis Col-0 syta-1 knockdown mutant. In contrast, CaMV systemic infection was not inhibited in syta-1. Our studies show that SYTA is a key regulator of plant virus intercellular movement, being necessary for the ability of diverse cell-to-cell movement proteins encoded by Begomoviruses (CaLCuV MP), Tobamoviruses (TVCV and TMV 30K protein) and Potyviruses (TuMV P3N-PIPO) to alter PD and thereby mediate virus cell-to-cell spread. PMID:25414709

  6. The Arabidopsis synaptotagmin SYTA regulates the cell-to-cell movement of diverse plant viruses.

    PubMed

    Uchiyama, Asako; Shimada-Beltran, Harumi; Levy, Amit; Zheng, Judy Y; Javia, Parth A; Lazarowitz, Sondra G

    2014-01-01

    Synaptotagmins are a large gene family in animals that have been extensively characterized due to their role as calcium sensors to regulate synaptic vesicle exocytosis and endocytosis in neurons, and dense core vesicle exocytosis for hormone secretion from neuroendocrine cells. Thought to be exclusive to animals, synaptotagmins have recently been characterized in Arabidopsis thaliana, in which they comprise a five gene family. Using infectivity and leaf-based functional assays, we have shown that Arabidopsis SYTA regulates endocytosis and marks an endosomal vesicle recycling pathway to regulate movement protein-mediated trafficking of the Begomovirus Cabbage leaf curl virus (CaLCuV) and the Tobamovirus Tobacco mosaic virus (TMV) through plasmodesmata (Lewis and Lazarowitz, 2010). To determine whether SYTA has a central role in regulating the cell-to-cell trafficking of a wider range of diverse plant viruses, we extended our studies here to examine the role of SYTA in the cell-to-cell movement of additional plant viruses that employ different modes of movement, namely the Potyvirus Turnip mosaic virus (TuMV), the Caulimovirus Cauliflower mosaic virus (CaMV) and the Tobamovirus Turnip vein clearing virus (TVCV), which in contrast to TMV does efficiently infect Arabidopsis. We found that both TuMV and TVCV systemic infection, and the cell-to-cell trafficking of the their movement proteins, were delayed in the Arabidopsis Col-0 syta-1 knockdown mutant. In contrast, CaMV systemic infection was not inhibited in syta-1. Our studies show that SYTA is a key regulator of plant virus intercellular movement, being necessary for the ability of diverse cell-to-cell movement proteins encoded by Begomoviruses (CaLCuV MP), Tobamoviruses (TVCV and TMV 30K protein) and Potyviruses (TuMV P3N-PIPO) to alter PD and thereby mediate virus cell-to-cell spread. PMID:25414709

  7. Interference of bacterial cell-to-cell communication: a new concept of antimicrobial chemotherapy breaks antibiotic resistance

    PubMed Central

    Hirakawa, Hidetada; Tomita, Haruyoshi

    2013-01-01

    Bacteria use a cell-to-cell communication activity termed “quorum sensing” to coordinate group behaviors in a cell density dependent manner. Quorum sensing influences the expression profile of diverse genes, including antibiotic tolerance and virulence determinants, via specific chemical compounds called “autoinducers”. During quorum sensing, Gram-negative bacteria typically use an acylated homoserine lactone (AHL) called autoinducer 1. Since the first discovery of quorum sensing in a marine bacterium, it has been recognized that more than 100 species possess this mechanism of cell-to-cell communication. In addition to being of interest from a biological standpoint, quorum sensing is a potential target for antimicrobial chemotherapy. This unique concept of antimicrobial control relies on reducing the burden of virulence rather than killing the bacteria. It is believed that this approach will not only suppress the development of antibiotic resistance, but will also improve the treatment of refractory infections triggered by multi-drug resistant pathogens. In this paper, we review and track recent progress in studies on AHL inhibitors/modulators from a biological standpoint. It has been discovered that both natural and synthetic compounds can disrupt quorum sensing by a variety of means, such as jamming signal transduction, inhibition of signal production and break-down and trapping of signal compounds. We also focus on the regulatory elements that attenuate quorum sensing activities and discuss their unique properties. Understanding the biological roles of regulatory elements might be useful in developing inhibitor applications and understanding how quorum sensing is controlled. PMID:23720655

  8. ANK, a Host Cytoplasmic Receptor for the Tobacco mosaic virus Cell-to-Cell Movement Protein, Facilitates Intercellular Transport through Plasmodesmata

    PubMed Central

    Ueki, Shoko; Spektor, Roman; Natale, Danielle M.; Citovsky, Vitaly

    2010-01-01

    Plasmodesma (PD) is a channel structure that spans the cell wall and provides symplastic connection between adjacent cells. Various macromolecules are known to be transported through PD in a highly regulated manner, and plant viruses utilize their movement proteins (MPs) to gate the PD to spread cell-to-cell. The mechanism by which MP modifies PD to enable intercelluar traffic remains obscure, due to the lack of knowledge about the host factors that mediate the process. Here, we describe the functional interaction between Tobacco mosaic virus (TMV) MP and a plant factor, an ankyrin repeat containing protein (ANK), during the viral cell-to-cell movement. We utilized a reverse genetics approach to gain insight into the possible involvement of ANK in viral movement. To this end, ANK overexpressor and suppressor lines were generated, and the movement of MP was tested. MP movement was facilitated in the ANK-overexpressing plants, and reduced in the ANK-suppressing plants, demonstrating that ANK is a host factor that facilitates MP cell-to-cell movement. Also, the TMV local infection was largely delayed in the ANK-suppressing lines, while enhanced in the ANK-overexpressing lines, showing that ANK is crucially involved in the infection process. Importantly, MP interacted with ANK at PD. Finally, simultaneous expression of MP and ANK markedly decreased the PD levels of callose, β-1,3-glucan, which is known to act as a molecular sphincter for PD. Thus, the MP-ANK interaction results in the downregulation of callose and increased cell-to-cell movement of the viral protein. These findings suggest that ANK represents a host cellular receptor exploited by MP to aid viral movement by gating PD through relaxation of their callose sphincters. PMID:21124937

  9. Listeria monocytogenes exploits efferocytosis to promote cell-to-cell spread

    PubMed Central

    Czuczman, Mark A.; Fattouh, Ramzi; van Rijn, Jorik; Canadien, Veronica; Osborne, Suzanne; Muise, Aleixo M.; Kuchroo, Vijay K.; Higgins, Darren E.; Brumell, John H.

    2014-01-01

    Efferocytosis, the process by which dying/dead cells are removed by phagocytosis, plays an important role in development, tissue homeostasis and innate immunity1. Efferocytosis is mediated, in part, by receptors that bind to exofacial phosphatidylserine (PS) on cells or cellular debris after loss of plasma membrane asymmetry. Here we show that a bacterial pathogen, Listeria monocytogenes (Lm), can exploit efferocytosis to promote cell-to-cell spread during infection. These bacteria can escape the phagosome in host cells using the pore-forming toxin Listeriolysin O (LLO) and two phospholipases C2. Expression of the cell surface protein ActA allows Lm to activate host actin regulatory factors and undergo actin-based motility in the cytosol, eventually leading to formation of actin-rich protrusions at the cell surface. We show that protrusion formation is associated with plasma membrane damage due to LLO’s pore-forming activity. LLO also promotes the release of bacteria-containing protrusions from the host cell, generating membrane-derived vesicles with exofacial PS. The PS-binding receptor TIM-4 contributes to efficient cell-to-cell spread by Lm in macrophages in vitro and growth of these bacteria is impaired in TIM-4−/− mice. Thus, Lm promotes its dissemination in a host by exploiting efferocytosis. Our study suggests that PS-targeted therapeutics may be useful in the fight against infections by Lm and other bacteria that utilize similar strategies of cell-to-cell spread during infection. PMID:24739967

  10. Studying protein-protein interactions: progress, pitfalls and solutions.

    PubMed

    Hayes, Sheri; Malacrida, Beatrice; Kiely, Maeve; Kiely, Patrick A

    2016-08-15

    Signalling proteins are intrinsic to all biological processes and interact with each other in tightly regulated and orchestrated signalling complexes and pathways. Characterization of protein binding can help to elucidate protein function within signalling pathways. This information is vital for researchers to gain a more comprehensive knowledge of cellular networks which can then be used to develop new therapeutic strategies for disease. However, studying protein-protein interactions (PPIs) can be challenging as the interactions can be extremely transient downstream of specific environmental cues. There are many powerful techniques currently available to identify and confirm PPIs. Choosing the most appropriate range of techniques merits serious consideration. The aim of this review is to provide a starting point for researchers embarking on a PPI study. We provide an overview and point of reference for some of the many methods available to identify interactions from in silico analysis and large scale screening tools through to the methods used to validate potential PPIs. We discuss the advantages and disadvantages of each method and we also provide a workflow chart to highlight the main experimental questions to consider when planning cell lysis to maximize experimental success. PMID:27528744

  11. Cell-to-Cell Trafficking of Macromolecules through Plasmodesmata Potentiated by the Red Clover Necrotic Mosaic Virus Movement Protein.

    PubMed

    Fujiwara, T.; Giesman-Cookmeyer, D.; Ding, B.; Lommel, S. A.; Lucas, W. J.

    1993-12-01

    Direct evidence is presented for cell-to-cell trafficking of macromolecules via plasmodesmata in higher plants. The fluorescently labeled 35-kD movement protein of red clover necrotic mosaic virus (RCNMV) trafficked rapidly from cell to cell when microinjected into cowpea leaf mesophyll cells. Furthermore, this protein potentiated rapid cell-to-cell trafficking of RCNMV RNA, but not DNA. Electron microscopic studies demonstrated that the 35-kD movement protein does not unfold the RCNMV RNA molecules. Thus, if unfolding of RNA is necessary for cell-to-cell trafficking, it may well involve participation of endogenous cellular factors. These findings support the hypothesis that trafficking of macromolecules is a normal plasmodesmal function, which has been usurped by plant viruses for their cell-to-cell spread. PMID:12271056

  12. [Research in elementary particles and interactions]. Technical progress report

    SciTech Connect

    Adair, R.; Sandweiss, J.; Schmidt, M.

    1992-05-01

    Research of the Yale University groups in the areas of elementary particles and their interactions are outlined. Work on the following topics is reported: development of CDF trigger system; SSC detector development; study of heavy flavors at TPL; search for composite objects produced in relativistic heavy-ion collisions; high-energy polarized lepton-nucleon scattering; rare K{sup +} decays; unpolarized high-energy muon scattering; muon anomalous magnetic moment; theoretical high-energy physics including gauge theories, symmetry breaking, string theory, and gravitation theory; study of e{sup +}e{sup {minus}} interactions with the SLD detector at SLAC; and the production and decay of particles containing charm and beauty quarks.

  13. Progress in Long Scale Length Laser-Plasma Interactions

    SciTech Connect

    Glenzer, S H; Arnold, P; Bardsley, G; Berger, R L; Bonanno, G; Borger, T; Bower, D E; Bowers, M; Bryant, R; Buckman, S; Burkhart, S C; Campbell, K; Chrisp, M P; Cohen, B I; Constantin, G; Cooper, F; Cox, J; Dewald, E; Divol, L; Dixit, S; Duncan, J; Eder, D; Edwards, J; Erbert, G; Felker, B; Fornes, J; Frieders, G; Froula, D H; Gardner, S D; Gates, C; Gonzalez, M; Grace, S; Gregori, G; Greenwood, A; Griffith, R; Hall, T; Hammel, B A; Haynam, C; Heestand, G; Henesian, M; Hermes, G; Hinkel, D; Holder, J; Holdner, F; Holtmeier, G; Hsing, W; Huber, S; James, T; Johnson, S; Jones, O S; Kalantar, D; Kamperschroer, J H; Kauffman, R; Kelleher, T; Knight, J; Kirkwood, R K; Kruer, W L; Labiak, W; Landen, O L; Langdon, A B; Langer, S; Latray, D; Lee, A; Lee, F D; Lund, D; MacGowan, B; Marshall, S; McBride, J; McCarville, T; McGrew, L; Mackinnon, A J; Mahavandi, S; Manes, K; Marshall, C; Mertens, E; Meezan, N; Miller, G; Montelongo, S; Moody, J D; Moses, E; Munro, D; Murray, J; Neumann, J; Newton, M; Ng, E; Niemann, C; Nikitin, A; Opsahl, P; Padilla, E; Parham, T; Parrish, G; Petty, C; Polk, M; Powell, C; Reinbachs, I; Rekow, V; Rinnert, R; Riordan, B; Rhodes, M

    2003-11-11

    The first experiments on the National Ignition Facility (NIF) have employed the first four beams to measure propagation and laser backscattering losses in large ignition-size plasmas. Gas-filled targets between 2 mm and 7 mm length have been heated from one side by overlapping the focal spots of the four beams from one quad operated at 351 nm (3{omega}) with a total intensity of 2 x 10{sup 15} W cm{sup -2}. The targets were filled with 1 atm of CO{sub 2} producing of up to 7 mm long homogeneously heated plasmas with densities of n{sub e} = 6 x 10{sup 20} cm{sup -3} and temperatures of T{sub e} = 2 keV. The high energy in a NIF quad of beams of 16kJ, illuminating the target from one direction, creates unique conditions for the study of laser plasma interactions at scale lengths not previously accessible. The propagation through the large-scale plasma was measured with a gated x-ray imager that was filtered for 3.5 keV x rays. These data indicate that the beams interact with the full length of this ignition-scale plasma during the last {approx}1 ns of the experiment. During that time, the full aperture measurements of the stimulated Brillouin scattering and stimulated Raman scattering show scattering into the four focusing lenses of 6% for the smallest length ({approx}2 mm). increasing to 12% for {approx}7 mm. These results demonstrate the NIF experimental capabilities and further provide a benchmark for three-dimensional modeling of the laser-plasma interactions at ignition-size scale lengths.

  14. Cell-to-cell distances between tumor-infiltrating inflammatory cells have the potential to distinguish functionally active from suppressed inflammatory cells.

    PubMed

    Nagl, S; Haas, M; Lahmer, G; Büttner-Herold, M; Grabenbauer, G G; Fietkau, R; Distel, L V

    2016-05-01

    Beyond their mere presence, the distribution pattern of inflammatory cells is of special interest. Our hypothesis was that random distribution may be a clear indicator of being non-functional as a consequence of lack of interaction. Here, we have assessed the implication of cell-to-cell distances among inflammatory cells in anal squamous cell carcinoma and a possible association with survival data. Thirty-eight patients suffering from anal carcinoma were studied using tissue microarrays, double staining immunohistochemistry, whole slide scanning and image analysis software. Therapy consisted of concurrent radiochemotherapy. Numbers of stromal and intraepithelial tumor-infiltrating inflammatory cells (TIC) and the distances between cells were quantified. Double-staining of FoxP3(+) cells with either CD8(+), CD1a(+) or CD20(+) cells was performed. Measured cell-to-cell distances were compared to computer simulated cell-to-cell distances leading to the assumption of non-randomly distributed and therefore functional immune cells. Intraepithelial CD1a(+) and CD20(+) cells were randomly distributed and therefore regarded as non-functional. In contrary, stromal CD20(+) cells had a non-random distribution pattern. A non-random distance between CD20(+) and FoxP3(+) cells was associated with a clearly unfavorable outcome. Measured distances between FoxP3(+) cells were distinctly shorter than expected and indicate a functional active state of the regulatory T cells (Treg). Analysis of cell-to-cell distances between TIC has the potential to distinguish between suppressed non-functional and functionally active inflammatory cells. We conclude that in this tumor model most of the CD1a(+) cells are non-functional as are the intraepithelial CD20(+) cells, while stromal CD20(+) cells and FoxP3(+) cells are functional cells. PMID:27467940

  15. Cell-to-cell transmission of HIV-1 is required to trigger pyroptotic death of lymphoid tissue-derived CD4 T cells

    PubMed Central

    Monroe, Kathryn M.; Yang, Zhiyuan; Muñoz-Arias, Isa; Levy, David N; Greene, Warner C.

    2015-01-01

    The progressive depletion of CD4 T cells underlies clinical progression to AIDS in untreated HIV-infected subjects. Most dying CD4 T cells correspond to resting nonpermissive cells residing in lymphoid tissues. Death is due to an innate immune response against the incomplete cytosolic viral DNA intermediates accumulating in these cells. The viral DNA is detected by the IFI16 sensor leading to inflammasome assembly, caspase 1 activation, and the induction of pyroptosis, a highly inflammatory form of programmed cell death. We now show that cell-to-cell transmission of HIV is obligatorily required for activation of this death pathway. Cell-free HIV-1 virions, even when added in large quantities, fail to activate pyroptosis. These findings underscore the infected CD4 T cells as the major killing units promoting progression to AIDS and highlight a previously unappreciated role for the virological synapse in HIV pathogenesis. PMID:26321639

  16. Listeria monocytogenes exploits efferocytosis to promote cell-to-cell spread.

    PubMed

    Czuczman, Mark A; Fattouh, Ramzi; van Rijn, Jorik M; Canadien, Veronica; Osborne, Suzanne; Muise, Aleixo M; Kuchroo, Vijay K; Higgins, Darren E; Brumell, John H

    2014-05-01

    Efferocytosis, the process by which dying or dead cells are removed by phagocytosis, has an important role in development, tissue homeostasis and innate immunity. Efferocytosis is mediated, in part, by receptors that bind to exofacial phosphatidylserine (PS) on cells or cellular debris after loss of plasma membrane asymmetry. Here we show that a bacterial pathogen, Listeria monocytogenes, can exploit efferocytosis to promote cell-to-cell spread during infection. These bacteria can escape the phagosome in host cells by using the pore-forming toxin listeriolysin O (LLO) and two phospholipase C enzymes. Expression of the cell surface protein ActA allows L. monocytogenes to activate host actin regulatory factors and undergo actin-based motility in the cytosol, eventually leading to formation of actin-rich protrusions at the cell surface. Here we show that protrusion formation is associated with plasma membrane damage due to LLO's pore-forming activity. LLO also promotes the release of bacteria-containing protrusions from the host cell, generating membrane-derived vesicles with exofacial PS. The PS-binding receptor TIM-4 (encoded by the Timd4 gene) contributes to efficient cell-to-cell spread by L. monocytogenes in macrophages in vitro and growth of these bacteria is impaired in Timd4(-/-) mice. Thus, L. monocytogenes promotes its dissemination in a host by exploiting efferocytosis. Our results indicate that PS-targeted therapeutics may be useful in the fight against infections by L. monocytogenes and other bacteria that use similar strategies of cell-to-cell spread during infection. PMID:24739967

  17. Global Dynamics of a Virus Dynamical Model with Cell-to-Cell Transmission and Cure Rate

    PubMed Central

    Zhang, Tongqian; Meng, Xinzhu; Zhang, Tonghua

    2015-01-01

    The cure effect of a virus model with both cell-to-cell transmission and cell-to-virus transmission is studied. By the method of next generation matrix, the basic reproduction number is obtained. The locally asymptotic stability of the virus-free equilibrium and the endemic equilibrium is considered by investigating the characteristic equation of the model. The globally asymptotic stability of the virus-free equilibrium is proved by constructing suitable Lyapunov function, and the sufficient condition for the globally asymptotic stability of the endemic equilibrium is obtained by constructing suitable Lyapunov function and using LaSalle invariance principal. PMID:26504489

  18. Parameterizing cell-to-cell regulatory heterogeneities via stochastic transcriptional profiles

    PubMed Central

    Bajikar, Sameer S.; Fuchs, Christiane; Roller, Andreas; Theis, Fabian J.; Janes, Kevin A.

    2014-01-01

    Regulated changes in gene expression underlie many biological processes, but globally profiling cell-to-cell variations in transcriptional regulation is problematic when measuring single cells. Transcriptome-wide identification of regulatory heterogeneities can be robustly achieved by randomly collecting small numbers of cells followed by statistical analysis. However, this stochastic-profiling approach blurs out the expression states of the individual cells in each pooled sample. Here, we show that the underlying distribution of single-cell regulatory states can be deconvolved from stochastic-profiling data through maximum-likelihood inference. Guided by the mechanisms of transcriptional regulation, we formulated plausible mixture models for cell-to-cell regulatory heterogeneity and maximized the resulting likelihood functions to infer model parameters. Inferences were validated both computationally and experimentally for different mixture models, which included regulatory states for multicellular function that were occupied by as few as 1 in 40 cells of the population. Importantly, when the method was extended to programs of heterogeneously coexpressed transcripts, we found that population-level inferences were much more accurate with pooled samples than with one-cell samples when the extent of sampling was limited. Our deconvolution method provides a means to quantify the heterogeneous regulation of molecular states efficiently and gain a deeper understanding of the heterogeneous execution of cell decisions. PMID:24449900

  19. Neutralizing antibodies are unable to inhibit direct viral cell-to-cell spread of human cytomegalovirus.

    PubMed

    Jacob, Christian L; Lamorte, Louie; Sepulveda, Eliud; Lorenz, Ivo C; Gauthier, Annick; Franti, Michael

    2013-09-01

    Infection with human cytomegalovirus (CMV) during pregnancy is the most common cause of congenital disorders, and can lead to severe life-long disabilities with associated high cost of care. Since there is no vaccine or effective treatment, current efforts are focused on identifying potent neutralizing antibodies. A panel of CMV monoclonal antibodies identified from patent applications, was synthesized and expressed in order to reproduce data from the literature showing that anti-glycoprotein B antibodies neutralized virus entry into all cell types and that anti-pentameric complex antibodies are highly potent in preventing virus entry into epithelial cells. It had not been established whether antibodies could prevent subsequent rounds of infection that are mediated primarily by direct cell-to-cell transmission. A thorough validation of a plaque reduction assay to monitor cell-to-cell spread led to the conclusion that neutralizing antibodies do not significantly inhibit plaque formation or reduce plaque size when they are added post-infection. PMID:23849792

  20. Apolipoprotein E, but Not Apolipoprotein B, Is Essential for Efficient Cell-to-Cell Transmission of Hepatitis C Virus

    PubMed Central

    Gondar, Virgínia; Molina-Jiménez, Francisca; Hishiki, Takayuki; García-Buey, Luisa; Koutsoudakis, George; Shimotohno, Kunitada

    2015-01-01

    ABSTRACT Hepatitis C virus (HCV) infects hepatocytes through two different routes: (i) cell-free particle diffusion followed by engagement with specific cellular receptors and (ii) cell-to-cell direct transmission mediated by mechanisms not well defined yet. HCV exits host cells in association with very-low-density lipoprotein (VLDL) components. VLDL particles contain apolipoproteins B (ApoB) and E (ApoE), which are required for viral assembly and/or infectivity. Based on these precedents, we decided to study whether these VLDL components participate in HCV cell-to-cell transmission in vitro. We observed that cell-to-cell viral spread was compromised after ApoE interference in donor but not in acceptor cells. In contrast, ApoB knockdown in either donor or acceptor cells did not impair cell-to-cell viral transmission. Interestingly, ApoB participated in the assembly of cell-free infective virions, suggesting a differential regulation of cell-to-cell and cell-free HCV infection. This study identifies host-specific factors involved in these distinct routes of infection that may unveil new therapeutic targets and advance our understanding of HCV pathogenesis. IMPORTANCE This work demonstrates that cell-to-cell transmission of HCV depends on ApoE but not ApoB. The data also indicate that ApoB is required for the assembly of cell-free infective particles, strongly suggesting the existence of mechanisms involving VLDL components that differentially regulate cell-free and cell-to-cell HCV transmission. These data clarify some of the questions regarding the role of VLDL in HCV pathogenesis and the transmission of the virus cell to cell as a possible mechanism of immune evasion and open the door to therapeutic intervention. PMID:26202245

  1. Inferring alterations in cell-to-cell communication in HER2+ breast cancer using secretome profiling of three cell models

    PubMed Central

    Klinke, David J.; Kulkarni, Yogesh M.; Wu, Yueting; Byrne-Hoffman, Christina

    2015-01-01

    Challenges in demonstrating durable clinical responses to molecular-targeted therapies has sparked a re-emergence in viewing cancer as an evolutionary process. In somatic evolution, cellular variants are introduced through a random process of somatic mutation and are selected for improved fitness through a competition for survival. In contrast to Darwinian evolution, cellular variants that are retained may directly alter the fitness competition. If cell-to-cell communication is important for selection, the biochemical cues secreted by malignant cells that emerge should be altered to bias this fitness competition. To test this hypothesis, we compared the proteins secreted in vitro by two human HER2+ breast cancer cell lines (BT474 and SKBR3) relative to a normal human mammary epithelial cell line (184A1) using a proteomics workflow that leveraged two-dimensional gel electrophoresis (2DE) and MALDI-TOF mass spectrometry. Supported by the 2DE secretome maps and identified proteins, the two breast cancer cell lines exhibited secretome profiles that were similar to each other and, yet, were distinct from the 184A1 secretome. Using protein-protein interaction and pathway inference tools for functional annotation, the results suggest that all three cell lines secrete exosomes, as confirmed by scanning electron microscopy. Interestingly, the HER2+ breast cancer cell line exosomes are enriched in proteins involved in antigen processing and presentation and glycolytic metabolism. These pathways are associated with two of the emerging hallmarks of cancer: evasion of tumor immunosurveillance and deregulating cellular energetics. PMID:24752654

  2. In Vivo HIV-1 Cell-to-Cell Transmission Promotes Multicopy Micro-compartmentalized Infection.

    PubMed

    Law, Kenneth M; Komarova, Natalia L; Yewdall, Alice W; Lee, Rebecca K; Herrera, Olga L; Wodarz, Dominik; Chen, Benjamin K

    2016-06-21

    HIV-1 infection is enhanced by adhesive structures that form between infected and uninfected T cells called virological synapses (VSs). This mode of transmission results in the frequent co-transmission of multiple copies of HIV-1 across the VS, which can reduce sensitivity to antiretroviral drugs. Studying HIV-1 infection of humanized mice, we measured the frequency of co-transmission and the spatiotemporal organization of infected cells as indicators of cell-to-cell transmission in vivo. When inoculating mice with cells co-infected with two viral genotypes, we observed high levels of co-transmission to target cells. Additionally, micro-anatomical clustering of viral genotypes within lymphoid tissue indicates that viral spread is driven by local processes and not a diffuse viral cloud. Intravital splenic imaging reveals that anchored HIV-infected cells induce arrest of interacting, uninfected CD4(+) T cells to form Env-dependent cell-cell conjugates. These findings suggest that HIV-1 spread between immune cells can be anatomically localized into infectious clusters. PMID:27292632

  3. Lipid Peroxidation Product 4-Hydroxy-2-Nonenal Promotes Seeding-Capable Oligomer Formation and Cell-to-Cell Transfer of α-Synuclein

    PubMed Central

    Bae, Eun-Jin; Ho, Dong-Hwan; Park, Eunbi; Jung, Jin Woo; Cho, Kyungcho; Hong, Ji Hye; Lee, He-Jin; Kim, Kwang Pyo

    2013-01-01

    Abstract Aims: Abnormal accumulation of α-synuclein aggregates is one of the key pathological features of many neurodegenerative movement disorders and dementias. These pathological aggregates propagate into larger brain regions as the disease progresses, with the associated clinical symptoms becoming increasingly severe and complex. However, the factors that induce α-synuclein aggregation and spreading of the aggregates remain elusive. Herein, we have evaluated the effects of the major lipid peroxidation byproduct 4-hydroxy-2-nonenal (HNE) on α-synuclein oligomerization and cell-to-cell transmission of this protein. Results: Incubation with HNE promoted the oligomerization of recombinant human α-synuclein via adduct formation at the lysine and histidine residues. HNE-induced α-synuclein oligomers evidence a little β-sheet structure and are distinct from amyloid fibrils at both conformation and ultrastructure levels. Nevertheless, the HNE-induced oligomers are capable of seeding the amyloidogenesis of monomeric α-synuclein under in vitro conditions. When neuronal cells were treated with HNE, both the translocation of α-synuclein into vesicles and the release of this protein from cells were increased. Neuronal cells can internalize HNE-modified α-synuclein oligomers, and HNE treatment increased the cell-to-cell transfer of α-synuclein proteins. Innovation and Conclusion: These results indicate that HNE induces the oligomerization of α-synuclein through covalent modification and promotes the cell-to-cell transfer of seeding-capable oligomers, thereby contributing to both the initiation and spread of α-synuclein aggregates. Antioxid. Redox Signal. 18, 770–783. PMID:22867050

  4. Intrinsically disordered proteins aggregate at fungal cell-to-cell channels and regulate intercellular connectivity

    PubMed Central

    Lai, Julian; Koh, Chuan Hock; Tjota, Monika; Pieuchot, Laurent; Raman, Vignesh; Chandrababu, Karthik Balakrishna; Yang, Daiwen; Wong, Limsoon; Jedd, Gregory

    2012-01-01

    Like animals and plants, multicellular fungi possess cell-to-cell channels (septal pores) that allow intercellular communication and transport. Here, using a combination of MS of Woronin body-associated proteins and a bioinformatics approach that identifies related proteins based on composition and character, we identify 17 septal pore-associated (SPA) proteins that localize to the septal pore in rings and pore-centered foci. SPA proteins are not homologous at the primary sequence level but share overall physical properties with intrinsically disordered proteins. Some SPA proteins form aggregates at the septal pore, and in vitro assembly assays suggest aggregation through a nonamyloidal mechanism involving mainly α-helical and disordered structures. SPA loss-of-function phenotypes include excessive septation, septal pore degeneration, and uncontrolled Woronin body activation. Together, our data identify the septal pore as a complex subcellular compartment and focal point for the assembly of unstructured proteins controlling diverse aspects of intercellular connectivity. PMID:22955885

  5. Regulation of cell-to-cell variability in divergent gene expression

    NASA Astrophysics Data System (ADS)

    Yan, Chao; Wu, Shuyang; Pocetti, Christopher; Bai, Lu

    2016-03-01

    Cell-to-cell variability (noise) is an important feature of gene expression that impacts cell fitness and development. The regulatory mechanism of this variability is not fully understood. Here we investigate the effect on gene expression noise in divergent gene pairs (DGPs). We generated reporters driven by divergent promoters, rearranged their gene order, and probed their expressions using time-lapse fluorescence microscopy and single-molecule fluorescence in situ hybridization (smFISH). We show that two genes in a co-regulated DGP have higher expression covariance compared with the separate, tandem and convergent configurations, and this higher covariance is caused by more synchronized firing of the divergent transcriptions. For differentially regulated DGPs, the regulatory signal of one gene can stochastically `leak' to the other, causing increased gene expression noise. We propose that the DGPs' function in limiting or promoting gene expression noise may enhance or compromise cell fitness, providing an explanation for the conservation pattern of DGPs.

  6. Single cell Hi-C reveals cell-to-cell variability in chromosome structure

    PubMed Central

    Schoenfelder, Stefan; Yaffe, Eitan; Dean, Wendy; Laue, Ernest D.; Tanay, Amos; Fraser, Peter

    2013-01-01

    Large-scale chromosome structure and spatial nuclear arrangement have been linked to control of gene expression and DNA replication and repair. Genomic techniques based on chromosome conformation capture assess contacts for millions of loci simultaneously, but do so by averaging chromosome conformations from millions of nuclei. Here we introduce single cell Hi-C, combined with genome-wide statistical analysis and structural modeling of single copy X chromosomes, to show that individual chromosomes maintain domain organisation at the megabase scale, but show variable cell-to-cell chromosome territory structures at larger scales. Despite this structural stochasticity, localisation of active gene domains to boundaries of territories is a hallmark of chromosomal conformation. Single cell Hi-C data bridge current gaps between genomics and microscopy studies of chromosomes, demonstrating how modular organisation underlies dynamic chromosome structure, and how this structure is probabilistically linked with genome activity patterns. PMID:24067610

  7. Cell-to-cell communication in plants, animals, and fungi: a comparative review

    NASA Astrophysics Data System (ADS)

    Bloemendal, Sandra; Kück, Ulrich

    2013-01-01

    Cell-to-cell communication is a prerequisite for differentiation and development in multicellular organisms. This communication has to be tightly regulated to ensure that cellular components such as organelles, macromolecules, hormones, or viruses leave the cell in a precisely organized way. During evolution, plants, animals, and fungi have developed similar ways of responding to this biological challenge. For example, in higher plants, plasmodesmata connect adjacent cells and allow communication to regulate differentiation and development. In animals, two main general structures that enable short- and long-range intercellular communication are known, namely gap junctions and tunneling nanotubes, respectively. Finally, filamentous fungi have also developed specialized structures called septal pores that allow intercellular communication via cytoplasmic flow. This review summarizes the underlying mechanisms for intercellular communication in these three eukaryotic groups and discusses its consequences for the regulation of differentiation and developmental processes.

  8. Cell-to-cell coordination for the spontaneous cAMP oscillation in Dictyostelium

    NASA Astrophysics Data System (ADS)

    Nagano, Seido; Sakurai, Shunsuke

    2013-12-01

    We propose a new cellular dynamics scheme for the spontaneous cAMP oscillations in Dictyostelium discoideum. Our scheme seamlessly integrates both receptor dynamics and G-protein dynamics into our previously developed cellular dynamics scheme. Extensive computer simulation studies based on our new cellular dynamics scheme were conducted in mutant cells to evaluate the molecular network. The validity of our proposed molecular network as well as the controversial PKA-dependent negative feedback mechanism was supported by our simulation studies. Spontaneous cAMP oscillations were not observed in a single mutant cell. However, multicellular states of various mutant cells consistently initiated spontaneous cAMP oscillations. Therefore, cell-to-cell coordination via the cAMP receptor is essential for the robust initiation of spontaneous cAMP oscillations.

  9. HIV cell-to-cell transmission: effects on pathogenesis and antiretroviral therapy

    PubMed Central

    Agosto, Luis M.; Uchil, Pradeep D.; Mothes, Walther

    2015-01-01

    The human immunodeficiency virus (HIV) spreads more efficiently in vitro when infected cells directly contact uninfected cells to form virological synapses. A hallmark of virological synapses is that viruses can be transmitted at a higher multiplicity of infection (MOI) that, in vitro, results in a higher number of proviruses. Whether HIV also spreads by cell-cell contact in vivo is a matter of debate. Here we discuss recent data that suggest that contact-mediated transmission largely manifests itself in vivo as CD4+ T cell depletion. The assault of a cell by a large number of incoming particles is likely efficiently sensed by the innate cellular surveillance to trigger cell death. The large number of particles transferred across virological synapses has also been implicated in reduced efficacy of antiretroviral therapies. Thus, antiretroviral therapies must remain effective against the high MOI observed during cell-to-cell transmission to inhibit both viral replication and the pathogenesis associated with HIV infection. PMID:25766144

  10. Small RNA Control of Cell-to-Cell Communication in Vibrio Harveyi and Vibrio Cholerae

    NASA Astrophysics Data System (ADS)

    Svenningsen, Sine Lo

    Quorum sensing is a process of cell-to-cell communication, by which bacteria coordinate gene expression and behavior on a population-wide scale. Quorum sensing is accomplished through production, secretion, and subsequent detection of chemical signaling molecules termed autoinducers. The human pathogen Vibrio cholerae and the marine bioluminescent bacterium Vibrio harveyi incorporate information from multiple autoinducers, and also environmental signals and metabolic cues into their quorum-sensing pathways. At the core of these pathways lie several homologous small regulatory RNA molecules, the Quorum Regulatory RNAs. Small noncoding RNAs have emerged throughout the bacterial and eukaryotic kingdoms as key regulators of behavioral and developmental processes. Here, I review our present understanding of the role of the Qrr small RNAs in integrating quorum-sensing signals and in regulating the individual cells response to this information.

  11. ENVIRONMENTAL EFFECTS OF OZONE DEPLETION AND ITS INTERACTIONS WITH CLIMATE CHANGE: PROGRESS REPORT 2003

    EPA Science Inventory

    The measures needed for the protection of the Earth's ozone layer are decided regularly by the Parties to the Montreal Protocol. A section of this progress report focuses on the interactive effects of climate change and ozone depletion on biogeochemical cycles.

  12. Cell-to-cell pollution reduction effectiveness of subsurface domestic treatment wetlands.

    PubMed

    Steer, David N; Fraser, Lauchlan H; Seibert, Beth A

    2005-05-01

    Quarterly water quality data from 1998 to 2003 for eight single-family domestic systems serving 2-7 people in Ohio, USA, were studied to determine the cell-to-cell and system wide pathogen reduction efficiency and effectiveness of these systems in meeting compliance standards. Two-cell domestic wastewater treatment systems displayed significant variability in their cell-to-cell performance that directly impacted the overall ability of systems to meet effluent compliance standards. Fecal coliform was effectively reduced (approximately 99%) in these systems while two-thirds of the input biochemical oxygen demand was mitigated in each of the cells of these systems. Fecal coliform and biochemical oxygen demand were typically reduced below 2000 counts per 100 ml and 15 mg/l (respectively) before discharge to surface waters. Total suspended solids were reduced by approximately 80% overall with cell one retaining the majority of the solids (approximately 70%). These systems discharged more than 18 mg/l of suspended solids in less than 5% of the samples thus displaying a very high compliance rate. Ammonia and total phosphorus were less effectively treated (approximately 30-40% reductions in each cell) and exceeded standards (1.5 mg/l) more frequently. Analyses based on the number of occupants indicated that the two-cell design used here was most effective for smaller occupancy systems. More study is required to determine the value of this design for large occupancy systems. In the future, wetlands should be evaluated based on the total loads delivered to the watershed rather than by effluent concentrations. PMID:15627569

  13. Recent Progress in Studies of Arterivirus- and Coronavirus-Host Interactions

    PubMed Central

    Zhong, Yanxin; Tan, Yong Wah; Liu, Ding Xiang

    2012-01-01

    Animal coronaviruses, such as infectious bronchitis virus (IBV), and arteriviruses, such as porcine reproductive and respiratory syndrome virus (PRRSV), are able to manifest highly contagious infections in their specific native hosts, thereby arising in critical economic damage to animal industries. This review discusses recent progress in studies of virus-host interactions during animal and human coronavirus and arterivirus infections, with emphasis on IBV-host cell interactions. These interactions may be directly involved in viral replication or lead to the alteration of certain signaling pathways, such as cell stress response and innate immunity, to facilitate viral replication and pathogenesis. PMID:22816036

  14. Single-cell genome-wide studies give new insight into nongenetic cell-to-cell variability in animals.

    PubMed

    Golov, Arkadiy K; Razin, Sergey V; Gavrilov, Alexey A

    2016-09-01

    Huge numbers of cells form an adult animal body, ranging from several thousands in Placozoa and small nematodes to many billions in mammals. Cells are classified into separate groups known as cell types by their morphological and biochemical features. Six to several hundreds of spatially ordered cell types are recognized in different animals. This complex organization develops from one cell, a zygote, during ontogeny, and its dynamic equilibrium is often maintained in the adult body. One of the key challenges in biology is to understand the mechanisms that sustain the reproducible development of a complex ordered cell ensemble such as the animal body from a single cell. How cells with identical genomes stably maintain one of the numerous possible phenotypes? How the cell differentiation lineage is selected during development? What genes play a key role in maintaining cell identity, and how do they determine expression of other genes characteristic of the relevant cell type? How does the basically stochastic nature of transcription in an isolated cell affect the stability of cell identity, the selection of a cell lineage, and the variability of cell responses to external stimuli? Better-grounded answers to these questions have become possible with recent progress in single-cell genome-wide analysis techniques, which combine the high throughput of biochemical methods and the differential nature of microscopy. The techniques are still in their infancy, and their further development will certainly revolutionize many fields of life sciences and, in particular, developmental biology. Here, we summarize the main results that have been obtained in single-cell genome-wide analyses and describe the nongenetic cell-to-cell variability in animals. PMID:27412014

  15. Effect of several uncouplers of cell-to-cell communication on gap junction morphology in mammalian heart.

    PubMed

    Délèze, J; Hervé, J C

    1983-01-01

    Electrical conduction in sheep Purkinje fibers has been blocked by three different procedures: (I) 1 mM 2-4-dinitrophenol, (II) 3.5 mM n-Heptan-1-ol (heptanol), and (III) treatment by a hypotonic (120 mOsmoles) Ca2+-free solution for half an hour, followed by return to normal conditions. The gap junction morphology was analyzed quantitatively in freeze-fracture replicas and compared in electrically conducting and nonconducting fibers. It is found that the three uncouplers of cell-to-cell conduction induce consistent and statistically significant alterations of the gap junction structure. The investigated morphological criteria: (a) P-face junctional particle diameter, control value 8.18 +/- 0.70 nm (mean +/- SD), (b) P-face junctional particles center-to-center spacing, control value 10.23 +/- 1.57 nm, and (c) E-face pits spacing, control value 9.45 +/- 0.98 nm, are, respectively, decreased to 7.46 +/- 0.62 nm, 9.25 +/- 1.34 nm and 8.67 +/- 1.13 nm in Purkinje fibers with complete conduction blocks. All three gap junctional dimensions are seen to decline progressively with time from the onset of an uncoupling treatment towards stable minima reached in half an hour. The observed morphological transitions appear related to the electrical uncoupling for the following reasons: partial electrical uncoupling results in values of the gap junctional dimensions that are intermediate between those measured in electrically coupled and uncoupled preparations, and the three morphological indices are seen to increase again towards control values very soon after electrical conduction has been re-established. It is concluded that the junctional channels closure on electrical uncoupling correlates with a measurable (-0.72 +/- 0.01 nm, difference of the means +/- SE) decrease of the junctional particle diameters. PMID:6887233

  16. Onset of virus systemic infection in plants is determined by speed of cell-to-cell movement and number of primary infection foci

    PubMed Central

    Rodrigo, Guillermo; Zwart, Mark P.; Elena, Santiago F.

    2014-01-01

    The cornerstone of today's plant virology consists of deciphering the molecular and mechanistic basis of host–pathogen interactions. Among these interactions, the onset of systemic infection is a fundamental variable in studying both within- and between-host infection dynamics, with implications in epidemiology. Here, we developed a mechanistic model using probabilistic and spatio-temporal concepts to explain dynamic signatures of virus systemic infection. The model dealt with the inherent characteristic of plant viruses to use two different and sequential stages for their within-host propagation: cell-to-cell movement from the initial infected cell and systemic spread by reaching the vascular system. We identified the speed of cell-to-cell movement and the number of primary infection foci in the inoculated leaf as the key factors governing this dynamic process. Our results allowed us to quantitatively understand the timing of the onset of systemic infection, describing this global process as a consequence of local spread of viral populations. Finally, we considered the significance of our predictions for the evolution of plant RNA viruses. PMID:24966241

  17. Simulated microgravity allows to demonstrate cell-to-cell communication in bacteria

    NASA Astrophysics Data System (ADS)

    Mastroleo, Felice; van Houdt, Rob; Mergeay, Max; Hendrickx, Larissa; Wattiez, Ruddy; Leys, Natalie

    Through the MELiSSA project, the European Space Agency aims to develop a closed life support system for oxygen, water and food production to support human life in space in forth-coming long term space exploration missions. This production is based on the recycling of the missions organic waste, including CO2 and minerals. The photosynthetic bacterium Rhodospir-illum rubrum S1H is used in MELiSSA to degrade organics with light energy and is the first MELiSSA organism that has been studied in space related environmental conditions (Mastroleo et al., 2009). It was tested in actual space flight to the International Space Station (ISS) as well as in ground simulations of ISS-like ionizing radiation and microgravity. In the present study, R. rubrum S1H was cultured in liquid medium in 2 devices simulating microgravity conditions, i.e. the Rotating Wall Vessel (RWV) and the Random Positioning Machine (RPM). The re-sponse of the bacterium was evaluated at both the transcriptomic and proteomic levels using respectively a dedicated whole-genome microarray and high-throughput gel-free quantitative proteomics. Both at transcriptomic and proteomic level, the bacterium showed a significant response to cultivation in simulated microgravity. The response to low fluid shear modeled microgravity in RWV was different than to randomized microgravity in RPM. Nevertheless, both tests pointed out a change in and a likely interrelation between cell-to-cell communica-tion (i.e. quorum sensing) and cell pigmentation (i.e. photosynthesis) for R. rubrum S1H in microgravity conditions. A new type of cell-to-cell communication molecule in R. rubrum S1H was discovered and characterized. It is hypothised that the lack of convection currents and the fluid quiescence in (simulated) microgravity limits communications molecules to be spread throughout the medium. Cultivation in this new artificial environment of simulated micro-gravity has showed new properties of this well know bacterium

  18. The Potato virus X TGBp3 protein associates with the ER network for virus cell-to-cell movement

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, Konduru; Heppler, Marty; Mitra, Ruchira; Blancaflor, Elison; Payton, Mark; Nelson, Richard S.; Verchot-Lubicz, Jeanmarie

    2003-01-01

    Potato virus X (PVX) TGBp3 is required for virus cell-to-cell movement. Cell-to-cell movement of TGBp3 was studied using biolistic bombardment of plasmids expressing GFP:TGBp3. TGBp3 moves between cells in Nicotiana benthamiana, but requires TGBp1 to move in N. tabacum leaves. In tobacco leaves GFP:TGBp3 accumulated in a pattern resembling the endoplasmic reticulum (ER). To determine if the ER network is important for GFP:TGBp3 and for PVX cell-to-cell movement, a single mutation inhibiting membrane binding of TGBp3 was introduced into GFP:TGBp3 and into PVX. This mutation disrupted movement of GFP:TGBp3 and PVX. Brefeldin A, which disrupts the ER network, also inhibited GFP:TGBp3 movement in both Nicotiana species. Two deletion mutations, that do not affect membrane binding, hindered GFP:TGBp3 and PVX cell-to-cell movement. Plasmids expressing GFP:TGBp2 and GFP:TGBp3 were bombarded to several other PVX hosts and neither protein moved between adjacent cells. In most hosts, TGBp2 or TGBp3 cannot move cell-to-cell.

  19. Can Cell to Cell Thermal Runaway Propagation be Prevented in a Li-ion Battery Module?

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith; Lopez, Carlos; Orieukwu, Josephat

    2014-01-01

    Increasing cell spacing decreased adjacent cell damage center dotElectrically connected adjacent cells drained more than physically adjacent cells center dotRadiant barrier prevents propagation when fully installed between BP cells center dotBP cells vent rapidly and expel contents at 100% SOC -Slower vent with flame/smoke at 50% -Thermal runaway event typically occurs at 160 degC center dotLG cells vent but do not expel contents -Thermal runaway event typically occurs at 200 degC center dotSKC LFP modules did not propagate; fuses on negative terminal of cell may provide a benefit in reducing cell to cell damage propagation. New requirement in NASA-Battery Safety Requirements document: JSC 20793 Rev C 5.1.5.1 Requirements - Thermal Runaway Propagation a. For battery designs greater than a 80-Wh energy employing high specific energy cells (greater than 80 watt-hours/kg, for example, lithium-ion chemistries) with catastrophic failure modes, the battery shall be evaluated to ascertain the severity of a worst-case single-cell thermal runaway event and the propensity of the design to demonstrate cell-to-cell propagation in the intended application and environment. NASA has traditionally addressed the threat of thermal runaway incidents in its battery deployments through comprehensive prevention protocols. This prevention-centered approach has included extensive screening for manufacturing defects, as well as robust battery management controls that prevent abuse-induced runaway even in the face of multiple system failures. This focused strategy has made the likelihood of occurrence of such an event highly improbable. b. The evaluation shall include all necessary analysis and test to quantify the severity (consequence) of the event in the intended application and environment as well as to identify design modifications to the battery or the system that could appreciably reduce that severity. In addition to prevention protocols, programs developing battery designs with

  20. Influence of cell-to-cell variability on spatial pattern formation.

    PubMed

    Greese, B; Wester, K; Bensch, R; Ronneberger, O; Timmer, J; Huulskamp, M; Fleck, C

    2012-08-01

    Many spatial patterns in biology arise through differentiation of selected cells within a tissue, which is regulated by a genetic network. This is specified by its structure, parameterisation and the noise on its components and reactions. The latter, in particular, is not well examined because it is rather difficult to trace. The authors use suitable local mathematical measures based on the Voronoi diagram of experimentally determined positions of epidermal plant hairs (trichomes) to examine the variability or noise in pattern formation. Although trichome initiation is a highly regulated process, the authors show that the experimentally observed trichome pattern is substantially disturbed by cell-to-cell variations. Using computer simulations, they find that the rates concerning the availability of the protein complex that triggers trichome formation plays a significant role in noise-induced variations of the pattern. The focus on the effects of cell noise yields further insights into pattern formation of trichomes. The authors expect that similar strategies can contribute to the understanding of other differentiation processes by elucidating the role of naturally occurring fluctuations in the concentration of cellular components or their properties. PMID:23039695

  1. [Effect of the tissue architecture on cell-to-cell calcium signaling].

    PubMed

    Dokukina, I V; Tsukanov, A A; Gracheva, M E; Grachev, E A

    2008-01-01

    A novel approach based on the approximation of tissue structure by the Voronoi diagram has been elaborated to study cell-to-cell signaling in a tissue mediated by gap junctions. This methodology was applied for the analysis of Ca2+ signaling in the airway epithelium, where adjacent cells were taken to be coupled by gap junctions whose permeability depended on Ca2+ concentration in their cytoplasm. The number of junctional channels connecting a given pair of cells was postulated to be directly proportional to the length of the boundary between them. In a certain range of parameters, a modeled cell generate intracellular Ca2+ oscillations upon the stimulation with the purinergic agonist ATP, and the Ca2+ signal propagated through the tissue due to a Ca2+ rise in adjacent connected cells. The influence of variable sensitivity of cells to ATP on Ca2+ signaling in the tissue was also examined. The model also showed that a mechanical disturbance of a single airway epithelial cell resulted in a prolonged increase in Ca2+ concentration in its cytoplasm, which entailed the spreading of a Ca2+ wave along the tissue. PMID:18543773

  2. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement.

    PubMed

    Khang, Chang Hyun; Berruyer, Romain; Giraldo, Martha C; Kankanala, Prasanna; Park, Sook-Young; Czymmek, Kirk; Kang, Seogchan; Valent, Barbara

    2010-04-01

    Knowledge remains limited about how fungal pathogens that colonize living plant cells translocate effector proteins inside host cells to regulate cellular processes and neutralize defense responses. To cause the globally important rice blast disease, specialized invasive hyphae (IH) invade successive living rice (Oryza sativa) cells while enclosed in host-derived extrainvasive hyphal membrane. Using live-cell imaging, we identified a highly localized structure, the biotrophic interfacial complex (BIC), which accumulates fluorescently labeled effectors secreted by IH. In each newly entered rice cell, effectors were first secreted into BICs at the tips of the initially filamentous hyphae in the cell. These tip BICs were left behind beside the first-differentiated bulbous IH cells as the fungus continued to colonize the host cell. Fluorescence recovery after photobleaching experiments showed that the effector protein PWL2 (for prevents pathogenicity toward weeping lovegrass [Eragrostis curvula]) continued to accumulate in BICs after IH were growing elsewhere. PWL2 and BAS1 (for biotrophy-associated secreted protein 1), BIC-localized secreted proteins, were translocated into the rice cytoplasm. By contrast, BAS4, which uniformly outlines the IH, was not translocated into the host cytoplasm. Fluorescent PWL2 and BAS1 proteins that reached the rice cytoplasm moved into uninvaded neighbors, presumably preparing host cells before invasion. We report robust assays for elucidating the molecular mechanisms that underpin effector secretion into BICs, translocation to the rice cytoplasm, and cell-to-cell movement in rice. PMID:20435900

  3. Listeria monocytogenes wall teichoic acid decoration in virulence and cell-to-cell spread.

    PubMed

    Spears, Patricia A; Havell, Edward A; Hamrick, Terri S; Goforth, John B; Levine, Alexandra L; Abraham, S Thomas; Heiss, Christian; Azadi, Parastoo; Orndorff, Paul E

    2016-09-01

    Wall teichoic acid (WTA) comprises a class of glycopolymers covalently attached to the peptidoglycan of gram positive bacteria. In Listeria monocytogenes, mutations that prevent addition of certain WTA decorating sugars are attenuating. However, the steps required for decoration and the pathogenic process interrupted are not well described. We systematically examined the requirement for WTA galactosylation in a mouse oral-virulent strain by first creating mutations in four genes whose products conferred resistance to a WTA-binding bacteriophage. WTA biochemical and structural studies indicated that galactosylated WTA was directly required for bacteriophage adsorption and that mutant WTA lacked appreciable galactose in all except one mutant - which retained a level ca. 7% of the parent. All mutants were profoundly attenuated in orally infected mice and were impaired in cell-to-cell spread in vitro. Confocal microscopy of cytosolic mutants revealed that all expressed ActA on their cell surface and formed actin tails with a frequency similar to the parent. However, the mutant tails were significantly shorter - suggesting a defect in actin based motility. Roles for the gene products in WTA galactosylation are proposed. Identification and interruption of WTA decoration pathways may provide a general strategy to discover non-antibiotic therapeutics for gram positive infections. © 2016 John Wiley & Sons Ltd. PMID:26871418

  4. Simultaneous Cell-to-Cell Transmission of Human Immunodeficiency Virus to Multiple Targets through Polysynapses▿ †

    PubMed Central

    Rudnicka, Dominika; Feldmann, Jérôme; Porrot, Françoise; Wietgrefe, Steve; Guadagnini, Stéphanie; Prévost, Marie-Christine; Estaquier, Jérôme; Haase, Ashley T.; Sol-Foulon, Nathalie; Schwartz, Olivier

    2009-01-01

    Human immunodeficiency virus type 1 (HIV-1) efficiently propagates through cell-to-cell contacts, which include virological synapses (VS), filopodia, and nanotubes. Here, we quantified and characterized further these diverse modes of contact in lymphocytes. We report that viral transmission mainly occurs across VS and through “polysynapses,” a rosette-like structure formed between one infected cell and multiple adjacent recipients. Polysynapses are characterized by simultaneous HIV clustering and transfer at multiple membrane regions. HIV Gag proteins often adopt a ring-like supramolecular organization at sites of intercellular contacts and colocalize with CD63 tetraspanin and raft components GM1, Thy-1, and CD59. In donor cells engaged in polysynapses, there is no preferential accumulation of Gag proteins at contact sites facing the microtubule organizing center. The LFA-1 adhesion molecule, known to facilitate viral replication, enhances formation of polysynapses. Altogether, our results reveal an underestimated mode of viral transfer through polysynapses. In HIV-infected individuals, these structures, by promoting concomitant infection of multiple targets in the vicinity of infected cells, may facilitate exponential viral growth and escape from immune responses. PMID:19369333

  5. Systematic characterization of lncRNAs' cell-to-cell expression heterogeneity in glioblastoma cells

    PubMed Central

    Dong, Jun; Zhuang, Yan; Huang, Shuyu; Ma, Binbin; Chen, Puxiang; Li, Xiaodong; Zhang, Bo; Li, Zhiguang; Jin, Bilian

    2016-01-01

    Glioblastoma (GBM) is the most common malignant adult brain tumor generally associated with high level of cellular heterogeneity and a dismal prognosis. Long noncoding RNAs (lncRNAs) are emerging as novel mediators of tumorigenesis. Recently developed single-cell RNA-seq provides an unprecedented way for analysis of the cell-to-cell variability in lncRNA expression profiles. Here we comprehensively examined the expression patterns of 2,003 lncRNAs in 380 cells from five primary GBMs and two glioblastoma stem-like cell (GSC) lines. Employing the self-organizing maps, we displayed the landscape of the lncRNA expression dynamics for individual cells. Further analyses revealed heterogeneous nature of lncRNA in abundance and splicing patterns. Moreover, lncRNA expression variation is also ubiquitously present in the established GSC lines composed of seemingly identical cells. Through comparative analysis of GSC and corresponding differentiated cell cultures, we defined a stemness signature by the set of 31 differentially expressed lncRNAs, which can disclose stemness gradients in five tumors. Additionally, based on known classifier lncRNAs for molecular subtypes, each tumor was found to comprise individual cells representing four subtypes. Our systematic characterization of lncRNA expression heterogeneity lays the foundation for future efforts to further understand the function of lncRNA, develop valuable biomarkers, and enhance knowledge of GBM biology. PMID:26918340

  6. Plasmodesmal-mediated cell-to-cell transport in wheat roots is modulated by anaerobic stress

    NASA Technical Reports Server (NTRS)

    Cleland, R. E.; Fujiwara, T.; Lucas, W. J.

    1994-01-01

    Cell-to-cell transport of small molecules and ions occurs in plants through plasmodesmata. Plant roots are frequently subjected to localized anaerobic stress, with a resultant decrease in ATP. In order to determine the effect of this stress on plasmodesmal transport, fluorescent dyes of increasing molecular weight (0.46 to 1OkDa) were injected into epidermal and cortical cells of 3-day-old wheat roots, and their movement into neighboring cells was determined by fluorescence microscopy. Anaerobiosis was generated by N2 gas or simulated by the presence of sodium azide, both of which reduced the ATP levels in the tissue by over 80%. In the absence of such stress, the upper limit for movement, or size exclusion limit (SEL), of cortical plasmodesmata was <1 kDa. The ATP analogue TNP-ADP (mw 681) moved across the plasmodesmata of unstressed roots, indicating that plasmodesmata may be conduits for nucleotide (ATP and ADP) exchange between cells. Upon imposition of stress, the SEL rose to between 5 and 10 kDa. This response of plasmodesmata to a decrease in the level of ATP suggests that they are constricted by an ATP-dependent process so as to maintain a restricted SEL. When roots are subjected to anaerobic stress, an increase in SEL may permit enhanced delivery of sugars to the affected cells of the root where anaerobic respiration could regenerate the needed ATP.

  7. Fractional killing arises from cell-to-cell variability in overcoming a caspase activity threshold

    PubMed Central

    Roux, Jérémie; Hafner, Marc; Bandara, Samuel; Sims, Joshua J; Hudson, Hannah; Chai, Diana; Sorger, Peter K

    2015-01-01

    When cells are exposed to death ligands such as TRAIL, a fraction undergoes apoptosis and a fraction survives; if surviving cells are re-exposed to TRAIL, fractional killing is once again observed. Therapeutic antibodies directed against TRAIL receptors also cause fractional killing, even at saturating concentrations, limiting their effectiveness. Fractional killing arises from cell-to-cell fluctuations in protein levels (extrinsic noise), but how this results in a clean bifurcation between life and death remains unclear. In this paper, we identify a threshold in the rate and timing of initiator caspase activation that distinguishes cells that live from those that die; by mapping this threshold, we can predict fractional killing of cells exposed to natural and synthetic agonists alone or in combination with sensitizing drugs such as bortezomib. A phenomenological model of the threshold also quantifies the contributions of two resistance genes (c-FLIP and Bcl-2), providing new insight into the control of cell fate by opposing pro-death and pro-survival proteins and suggesting new criteria for evaluating the efficacy of therapeutic TRAIL receptor agonists. PMID:25953765

  8. 6K2-induced vesicles can move cell to cell during turnip mosaic virus infection.

    PubMed

    Grangeon, Romain; Jiang, Jun; Wan, Juan; Agbeci, Maxime; Zheng, Huanquan; Laliberté, Jean-François

    2013-01-01

    To successfully infect plants, viruses replicate in an initially infected cell and then move to neighboring cells through plasmodesmata (PDs). However, the nature of the viral entity that crosses over the cell barrier into non-infected ones is not clear. The membrane-associated 6K2 protein of turnip mosaic virus (TuMV) induces the formation of vesicles involved in the replication and intracellular movement of viral RNA. This study shows that 6K2-induced vesicles trafficked toward the plasma membrane and were associated with plasmodesmata (PD). We demonstrated also that 6K2 moved cell-to-cell into adjoining cells when plants were infected with TuMV. 6K2 was then fused to photo-activable GFP (6K2:PAGFP) to visualize how 6K2 moved intercellularly during TuMV infection. After activation, 6K2:PAGFP-tagged vesicles moved to the cell periphery and across the cell wall into adjacent cells. These vesicles were shown to contain the viral RNA-dependent RNA polymerase and viral RNA. Symplasmic movement of TuMV may thus be achieved in the form of a membrane-associated viral RNA complex induced by 6K2. PMID:24409170

  9. Fractional killing arises from cell-to-cell variability in overcoming a caspase activity threshold.

    PubMed

    Roux, Jérémie; Hafner, Marc; Bandara, Samuel; Sims, Joshua J; Hudson, Hannah; Chai, Diana; Sorger, Peter K

    2015-05-01

    When cells are exposed to death ligands such as TRAIL, a fraction undergoes apoptosis and a fraction survives; if surviving cells are re-exposed to TRAIL, fractional killing is once again observed. Therapeutic antibodies directed against TRAIL receptors also cause fractional killing, even at saturating concentrations, limiting their effectiveness. Fractional killing arises from cell-to-cell fluctuations in protein levels (extrinsic noise), but how this results in a clean bifurcation between life and death remains unclear. In this paper, we identify a threshold in the rate and timing of initiator caspase activation that distinguishes cells that live from those that die; by mapping this threshold, we can predict fractional killing of cells exposed to natural and synthetic agonists alone or in combination with sensitizing drugs such as bortezomib. A phenomenological model of the threshold also quantifies the contributions of two resistance genes (c-FLIP and Bcl-2), providing new insight into the control of cell fate by opposing pro-death and pro-survival proteins and suggesting new criteria for evaluating the efficacy of therapeutic TRAIL receptor agonists. PMID:25953765

  10. Modeling PSA Problems - II: A Cell-to-Cell Transport Theory Approach

    SciTech Connect

    Labeau, P.E.; Izquierdo, J.M.

    2005-06-15

    In the first paper of this series, we presented an extension of the classical theory of dynamic reliability in which the actual occurrence of an event causing a change in the system dynamics is possibly delayed. The concept of stimulus activation, which triggers the realization of an event after a distributed time delay, was introduced. This gives a new understanding of competing events in the sequence delineation process.In the context of the level-2 probabilistic safety analysis (PSA), the information on stimulus activation mainly consists of regions of the process variables space where the activation can occur with a given probability. The evolution equations of the extended theory of probabilistic dynamics are therefore particularized to a transport process between discrete cells defined in phase-space on this basis. Doing so, an integrated and coherent approach to level-2 PSA problems is propounded. This amounts to including the stimulus concept and the associated stochastic delays discussed in the first paper in the frame of a cell-to-cell transport process.In addition, this discrete model provides a theoretical basis for the definition of appropriate numerical schemes for integrated level-2 PSA applications.

  11. Regulation of cell-to-cell variability in divergent gene expression

    PubMed Central

    Yan, Chao; Wu, Shuyang; Pocetti, Christopher; Bai, Lu

    2016-01-01

    Cell-to-cell variability (noise) is an important feature of gene expression that impacts cell fitness and development. The regulatory mechanism of this variability is not fully understood. Here we investigate the effect on gene expression noise in divergent gene pairs (DGPs). We generated reporters driven by divergent promoters, rearranged their gene order, and probed their expressions using time-lapse fluorescence microscopy and single-molecule fluorescence in situ hybridization (smFISH). We show that two genes in a co-regulated DGP have higher expression covariance compared with the separate, tandem and convergent configurations, and this higher covariance is caused by more synchronized firing of the divergent transcriptions. For differentially regulated DGPs, the regulatory signal of one gene can stochastically ‘leak' to the other, causing increased gene expression noise. We propose that the DGPs' function in limiting or promoting gene expression noise may enhance or compromise cell fitness, providing an explanation for the conservation pattern of DGPs. PMID:27010670

  12. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2015.

    PubMed

    2016-02-01

    The Environmental Effects Assessment Panel (EEAP) is one of three Panels that regularly informs the Parties (countries) to the Montreal Protocol on the effects of ozone depletion and the consequences of climate change interactions with respect to human health, animals, plants, biogeochemistry, air quality, and materials. The Panels provide a detailed assessment report every four years. The most recent 2014 Quadrennial Assessment by the EEAP was published as a special issue of seven papers in 2015 (Photochem. Photobiol. Sci., 2015, 14, 1-184). The next Quadrennial Assessment will be published in 2018/2019. In the interim, the EEAP generally produces an annual update or progress report of the relevant scientific findings. The present progress report for 2015 assesses some of the highlights and new insights with regard to the interactive nature of the effects of UV radiation, atmospheric processes, and climate change. PMID:26822392

  13. Interaction of the Oncofetal Thomsen–Friedenreich Antigen with Galectins in Cancer Progression and Metastasis

    PubMed Central

    Sindrewicz, Paulina; Lian, Lu-Yun; Yu, Lu-Gang

    2016-01-01

    Aberrant glycosylation of cell membrane proteins is a universal feature of cancer cells. One of the most common glycosylation changes in epithelial cancer is the increased occurrence of the oncofetal Thomsen–Friedenreich disaccharide Galβ1–3GalNAc (T or TF antigen), which appears in about 90% of cancers but is rarely seen in normal epithelium. Over the past few years, increasing evidence has revealed that the increased appearance of TF antigen on cancer cell surface plays an active role in promoting cancer progression and metastasis by interaction with the β-galactoside-binding proteins, galectins, which themselves are also frequently overexpressed in cancer and pre-cancerous conditions. This review summarizes the current understanding of the molecular mechanism of the increased TF occurrence in cancer, the structural nature, and biological impact of TF interaction with galectins, in particular galectin-1 and -3, on cancer progression and metastasis. PMID:27066458

  14. Progress regarding magnetic confinement experiments, plasma-materials interactions and plasma performance

    NASA Astrophysics Data System (ADS)

    Hidalgo, Carlos

    2015-10-01

    This paper provides an overview of the results presented at the 25th IAEA Energy Conference in the sessions on confinement, plasma-material interactions and plasma performance. An important highlight of the conference is the on-going progress in combining the empirical approach to achieve fusion relevant conditions with physics understanding to predict burning plasma behaviour, where fast particle dynamics would have an important impact.

  15. The Azospirillum brasilense Che1 Chemotaxis Pathway Controls Swimming Velocity, Which Affects Transient Cell-to-Cell Clumping

    PubMed Central

    Bible, Amber; Russell, Matthew H.

    2012-01-01

    The Che1 chemotaxis-like pathway of Azospirillum brasilense contributes to chemotaxis and aerotaxis, and it has also been found to contribute to regulating changes in cell surface adhesive properties that affect the propensity of cells to clump and to flocculate. The exact contribution of Che1 to the control of chemotaxis and flocculation in A. brasilense remains poorly understood. Here, we show that Che1 affects reversible cell-to-cell clumping, a cellular behavior in which motile cells transiently interact by adhering to one another at their nonflagellated poles before swimming apart. Clumping precedes and is required for flocculation, and both processes appear to be independently regulated. The phenotypes of a ΔaerC receptor mutant and of mutant strains lacking cheA1, cheY1, cheB1, or cheR1 (alone or in combination) or with che1 deleted show that Che1 directly mediates changes in the flagellar swimming velocity and that this behavior directly modulates the transient nature of clumping. Our results also suggest that an additional receptor(s) and signaling pathway(s) are implicated in mediating other Che1-independent changes in clumping identified in the present study. Transient clumping precedes the transition to stable clump formation, which involves the production of specific extracellular polysaccharides (EPS); however, production of these clumping-specific EPS is not directly controlled by Che1 activity. Che1-dependent clumping may antagonize motility and prevent chemotaxis, thereby maintaining cells in a metabolically favorable niche. PMID:22522896

  16. The V domain of dog PVRL4 (nectin-4) mediates canine distemper virus entry and virus cell-to-cell spread

    SciTech Connect

    Delpeut, Sebastien; Noyce, Ryan S.; Richardson, Christopher D.

    2014-04-15

    The entry of canine distemper virus (CDV) is a multistep process that involves the attachment of CDV hemagglutinin (H) to its cellular receptor, followed by fusion between virus and cell membranes. Our laboratory recently identified PVRL4 (nectin-4) to be the epithelial receptor for measles and canine distemper viruses. In this study, we demonstrate that the V domain of PVRL4 is critical for CDV entry and virus cell-to-cell spread. Furthermore, four key amino acid residues within the V domain of dog PVRL4 and two within the CDV hemagglutinin were shown to be essential for receptor-mediated virus entry. - Highlights: • PVRL4 (nectin-4) is the epithelial cell receptor for measles and canine distemper viruses. • V domain of PVRL4 is critical for CDV entry, cell-to-cell spread, and syncytia formation. • Chimeric PVRL1 backbone substituted with the V domain of PVRL4 can function as a receptor. • Amino acids (F132/P133/A134/G135) within the V domain are essential for PVRL4 receptor activity. • Amino acids (P493/Y539) within CDV H protein are essential for PVRL4 receptor interaction.

  17. Modelling the Impact of Cell-To-Cell Transmission in Hepatitis B Virus.

    PubMed

    Goyal, Ashish; Murray, John M

    2016-01-01

    Cell-free virus is a well-recognized and efficient mechanism for the spread of hepatitis B virus (HBV) infection in the liver. Cell-to-cell transmission (CCT) can be a more efficient means of virus propagation. Despite experimental evidence implying CCT occurs in HBV, its relative impact is uncertain. We develop a 3-D agent-based model where each hepatocyte changes its viral state according to a dynamical process driven by cell-free virus infection, CCT and intracellular replication. We determine the relative importance of CCT in the development and resolution of acute HBV infection in the presence of cytolytic (CTL) and non-CTL mechanisms. T cell clearance number is defined as the minimum number of infected cells needed to be killed by each T cell at peak infection that results in infection clearance within 12 weeks with hepatocyte turnover (HT, number of equivalent livers) ≤3. We find that CCT has very little impact on the establishment of infection as the mean cccDNA copies/cell remains between 15 to 20 at the peak of the infection regardless of CCT strength. In contrast, CCT inhibit immune-mediated clearance of acute HBV infection as higher CCT strength requires higher T cell clearance number and increases the probability of T cell exhaustion. An effective non-CTL inhibition can counter these negative effects of higher strengths of CCT by supporting rapid, efficient viral clearance and with little liver destruction. This is evident as the T cell clearance number drops by approximately 50% when non-CTL inhibition is increased from 10% to 80%. Higher CCT strength also increases the probability of the incidence of fulminant hepatitis with this phenomenon being unlikely to arise for no CCT. In conclusion, we report the possibility of CCT impacting HBV clearance and its contribution to fulminant hepatitis. PMID:27560827

  18. Cellular Interrogation: Exploiting Cell-to-Cell Variability to Discriminate Regulatory Mechanisms in Oscillatory Signalling.

    PubMed

    Estrada, Javier; Andrew, Natalie; Gibson, Daniel; Chang, Frederick; Gnad, Florian; Gunawardena, Jeremy

    2016-07-01

    The molecular complexity within a cell may be seen as an evolutionary response to the external complexity of the cell's environment. This suggests that the external environment may be harnessed to interrogate the cell's internal molecular architecture. Cells, however, are not only nonlinear and non-stationary, but also exhibit heterogeneous responses within a clonal, isogenic population. In effect, each cell undertakes its own experiment. Here, we develop a method of cellular interrogation using programmable microfluidic devices which exploits the additional information present in cell-to-cell variation, without requiring model parameters to be fitted to data. We focussed on Ca2+ signalling in response to hormone stimulation, which exhibits oscillatory spiking in many cell types and chose eight models of Ca2+ signalling networks which exhibit similar behaviour in simulation. We developed a nonlinear frequency analysis for non-stationary responses, which could classify models into groups under parameter variation, but found that this question alone was unable to distinguish critical feedback loops. We further developed a nonlinear amplitude analysis and found that the combination of both questions ruled out six of the models as inconsistent with the experimentally-observed dynamics and heterogeneity. The two models that survived the double interrogation were mathematically different but schematically identical and yielded the same unexpected predictions that we confirmed experimentally. Further analysis showed that subtle mathematical details can markedly influence non-stationary responses under parameter variation, emphasising the difficulty of finding a "correct" model. By developing questions for the pathway being studied, and designing more versatile microfluidics, cellular interrogation holds promise as a systematic strategy that can complement direct intervention by genetics or pharmacology. PMID:27367445

  19. Cellular Interrogation: Exploiting Cell-to-Cell Variability to Discriminate Regulatory Mechanisms in Oscillatory Signalling

    PubMed Central

    Gibson, Daniel; Chang, Frederick; Gnad, Florian; Gunawardena, Jeremy

    2016-01-01

    The molecular complexity within a cell may be seen as an evolutionary response to the external complexity of the cell’s environment. This suggests that the external environment may be harnessed to interrogate the cell’s internal molecular architecture. Cells, however, are not only nonlinear and non-stationary, but also exhibit heterogeneous responses within a clonal, isogenic population. In effect, each cell undertakes its own experiment. Here, we develop a method of cellular interrogation using programmable microfluidic devices which exploits the additional information present in cell-to-cell variation, without requiring model parameters to be fitted to data. We focussed on Ca2+ signalling in response to hormone stimulation, which exhibits oscillatory spiking in many cell types and chose eight models of Ca2+ signalling networks which exhibit similar behaviour in simulation. We developed a nonlinear frequency analysis for non-stationary responses, which could classify models into groups under parameter variation, but found that this question alone was unable to distinguish critical feedback loops. We further developed a nonlinear amplitude analysis and found that the combination of both questions ruled out six of the models as inconsistent with the experimentally-observed dynamics and heterogeneity. The two models that survived the double interrogation were mathematically different but schematically identical and yielded the same unexpected predictions that we confirmed experimentally. Further analysis showed that subtle mathematical details can markedly influence non-stationary responses under parameter variation, emphasising the difficulty of finding a “correct” model. By developing questions for the pathway being studied, and designing more versatile microfluidics, cellular interrogation holds promise as a systematic strategy that can complement direct intervention by genetics or pharmacology. PMID:27367445

  20. Modelling the Impact of Cell-To-Cell Transmission in Hepatitis B Virus

    PubMed Central

    2016-01-01

    Cell-free virus is a well-recognized and efficient mechanism for the spread of hepatitis B virus (HBV) infection in the liver. Cell-to-cell transmission (CCT) can be a more efficient means of virus propagation. Despite experimental evidence implying CCT occurs in HBV, its relative impact is uncertain. We develop a 3-D agent-based model where each hepatocyte changes its viral state according to a dynamical process driven by cell-free virus infection, CCT and intracellular replication. We determine the relative importance of CCT in the development and resolution of acute HBV infection in the presence of cytolytic (CTL) and non-CTL mechanisms. T cell clearance number is defined as the minimum number of infected cells needed to be killed by each T cell at peak infection that results in infection clearance within 12 weeks with hepatocyte turnover (HT, number of equivalent livers) ≤3. We find that CCT has very little impact on the establishment of infection as the mean cccDNA copies/cell remains between 15 to 20 at the peak of the infection regardless of CCT strength. In contrast, CCT inhibit immune-mediated clearance of acute HBV infection as higher CCT strength requires higher T cell clearance number and increases the probability of T cell exhaustion. An effective non-CTL inhibition can counter these negative effects of higher strengths of CCT by supporting rapid, efficient viral clearance and with little liver destruction. This is evident as the T cell clearance number drops by approximately 50% when non-CTL inhibition is increased from 10% to 80%. Higher CCT strength also increases the probability of the incidence of fulminant hepatitis with this phenomenon being unlikely to arise for no CCT. In conclusion, we report the possibility of CCT impacting HBV clearance and its contribution to fulminant hepatitis. PMID:27560827

  1. The Diaphanous-Related Formins Promote Protrusion Formation and Cell-to-Cell Spread of Listeria monocytogenes

    PubMed Central

    Fattouh, Ramzi; Kwon, Hyunwoo; Czuczman, Mark A.; Copeland, John W.; Pelletier, Laurence; Quinlan, Margot E.; Muise, Aleixo M.; Higgins, Darren E.; Brumell, John H.

    2015-01-01

    The Gram-positive bacterium Listeria monocytogenes is a facultative intracellular pathogen whose virulence depends on its ability to spread from cell to cell within an infected host. Although the actin-related protein 2/3 (Arp2/3) complex is necessary and sufficient for Listeria actin tail assembly, previous studies suggest that other actin polymerization factors, such as formins, may participate in protrusion formation. Here, we show that Arp2/3 localized to only a minor portion of the protrusion. Moreover, treatment of L. monocytogenes–infected HeLa cells with a formin FH2-domain inhibitor significantly reduced protrusion length. In addition, the Diaphanous-related formins 1–3 (mDia1–3) localized to protrusions, and knockdown of mDia1, mDia2, and mDia3 substantially decreased cell-to-cell spread of L. monocytogenes. Rho GTPases are known to be involved in formin activation. Our studies also show that knockdown of several Rho family members significantly influenced bacterial cell-to-cell spread. Collectively, these findings identify a Rho GTPase–formin network that is critically involved in the cell-to-cell spread of L. monocytogenes. PMID:25281757

  2. The diaphanous-related formins promote protrusion formation and cell-to-cell spread of Listeria monocytogenes.

    PubMed

    Fattouh, Ramzi; Kwon, Hyunwoo; Czuczman, Mark A; Copeland, John W; Pelletier, Laurence; Quinlan, Margot E; Muise, Aleixo M; Higgins, Darren E; Brumell, John H

    2015-04-01

    The Gram-positive bacterium Listeria monocytogenes is a facultative intracellular pathogen whose virulence depends on its ability to spread from cell to cell within an infected host. Although the actin-related protein 2/3 (Arp2/3) complex is necessary and sufficient for Listeria actin tail assembly, previous studies suggest that other actin polymerization factors, such as formins, may participate in protrusion formation. Here, we show that Arp2/3 localized to only a minor portion of the protrusion. Moreover, treatment of L. monocytogenes-infected HeLa cells with a formin FH2-domain inhibitor significantly reduced protrusion length. In addition, the Diaphanous-related formins 1-3 (mDia1-3) localized to protrusions, and knockdown of mDia1, mDia2, and mDia3 substantially decreased cell-to-cell spread of L. monocytogenes. Rho GTPases are known to be involved in formin activation. Our studies also show that knockdown of several Rho family members significantly influenced bacterial cell-to-cell spread. Collectively, these findings identify a Rho GTPase-formin network that is critically involved in the cell-to-cell spread of L. monocytogenes. PMID:25281757

  3. HERC2 Interacts with Claspin and regulates DNA origin firing and replication fork progression.

    PubMed

    Izawa, Naoki; Wu, Wenwen; Sato, Ko; Nishikawa, Hiroyuki; Kato, Akihiro; Boku, Narikazu; Itoh, Fumio; Ohta, Tomohiko

    2011-09-01

    DNA replication, recombination, and repair are highly interconnected processes the disruption of which must be coordinated in cancer. HERC2, a large HECT protein required for homologous recombination repair, is an E3 ubiquitin ligase that targets breast cancer suppressor BRCA1 for degradation. Here, we show that HERC2 is a component of the DNA replication fork complex that plays a critical role in DNA elongation and origin firing. In the presence of BRCA1, endogenous HERC2 interacts with Claspin, a protein essential for G(2)-M checkpoint activation and replication fork stability. Claspin depletion slowed S-phase progression and additional HERC2 depletion reduced the effect of Claspin depletion. In addition, HERC2 interacts with replication fork complex proteins. Depletion of HERC2 alleviated the slow replication fork progression in Claspin-deficient cells, suppressed enhanced origin firing, and led to a decrease in MCM2 phosphorylation. In a HERC2-dependent manner, treatment of cells with replication inhibitor aphidicolin enhanced MCM2 phosphorylation. Taken together, our results suggest that HERC2 regulates DNA replication progression and origin firing by facilitating MCM2 phosphorylation. These findings establish HERC2 as a critical function in DNA repair, checkpoint activation, and DNA replication. PMID:21775519

  4. Roles of cell signaling pathways in cell-to-cell contact-mediated Epstein-Barr virus transmission.

    PubMed

    Nanbo, Asuka; Terada, Haruna; Kachi, Kunihiro; Takada, Kenzo; Matsuda, Tadashi

    2012-09-01

    Epstein-Barr virus (EBV), a human gamma herpesvirus, establishes a life-long latent infection in B lymphocytes and epithelial cells following primary infection. Several lines of evidence indicate that the efficiency of EBV infection in epithelial cells is accelerated up to 10(4)-fold by coculturing with EBV-infected Burkitt's lymphoma (BL) cells compared to infection with cell-free virions, indicating that EBV infection into epithelial cells is mainly mediated via cell-to-cell contact. However, the molecular mechanisms involved in this pathway are poorly understood. Here, we establish a novel assay to assess cell-to-cell contact-mediated EBV transmission by coculturing an EBV-infected BL cell line with an EBV-negative epithelial cell line under stimulation for lytic cycle induction. By using this assay, we confirmed that EBV was transmitted from BL cells to epithelial cells via cell-to-cell contact but not via cell-to-cell fusion. The inhibitor treatments of extracellular signal-regulated kinase (ERK) and nuclear factor (NF)-κB pathways blocked EBV transmission in addition to lytic induction. The blockage of the phosphoinositide 3-kinase (PI3K) pathway impaired EBV transmission coupled with the inhibition of lytic induction. Knockdown of the RelA/p65 subunit of NF-κB reduced viral transmission. Moreover, these signaling pathways were activated in cocultured BL cells and in epithelial cells. Finally, we observed that viral replication was induced in cocultured BL cells. Taken together, our data suggest that cell-to-cell contact induces multiple cell signaling pathways in BL cells and epithelial cells, contributing to the induction of the viral lytic cycle in BL cells and the enhancement of viral transmission to epithelial cells. PMID:22718812

  5. Recent progress in the fundamental understanding of hydrophilic interaction chromatography (HILIC).

    PubMed

    Guo, Yong

    2015-10-01

    With the exponential growth in the application of the HILIC technique, there has been a significant progress in understanding the fundamental aspects of hydrophilic interaction chromatography. The experimental studies tend to be more extensive in terms of the number of stationary phases investigated and the number of probe compounds employed in comparison with the earlier studies; and more theoretical studies in quantitative structure retention relationship (QSRR) and molecular dynamics simulations have also been published and provide molecular-level insights into the retention mechanism. This review focuses on the recent progress in understanding the retention mechanism, retention models, selectivity, and the kinetic performance of HILIC. A better understanding of these fundamental aspects will undoubtedly facilitate more applications of this chromatographic technique in a wider range of fields. PMID:26221630

  6. Interaction of workplace demands and cardiovascular reactivity in progression of carotid atherosclerosis: population based study.

    PubMed Central

    Everson, S. A.; Lynch, J. W.; Chesney, M. A.; Kaplan, G. A.; Goldberg, D. E.; Shade, S. B.; Cohen, R. D.; Salonen, R.; Salonen, J. T.

    1997-01-01

    OBJECTIVE: To examine the combined influence of workplace demands and changes in blood pressure induced by stress on the progression of carotid atherosclerosis. DESIGN: Population based follow up study of unestablished as well as traditional risk factors for carotid atherosclerosis, ischaemic heart disease, and other outcomes. SETTING: Eastern Finland. SUBJECTS: 591 men aged 42-60 who were fully employed at baseline and had complete data on the measures of carotid atherosclerosis, job demands, blood pressure reactivity, and covariates. MAIN OUTCOME MEASURES: Change in ultrasonographically assessed intima-media thickness of the right and left common carotid arteries from baseline to 4 year follow up. RESULTS: Significant interactions between workplace demands and stress induced reactivity were observed for all measures of progression (P < 0.04). Men with large changes in systolic blood pressure (20 mm Hg or greater) in anticipation of a maximal exercise test and with high job demands had 10-40% greater progression of mean (0.138 v 0.123 mm) and maximum (0.320 v 0.261 mm) intima-media thickness and plaque height (0.347 v 0.264) than men who were less reactive and had fewer job demands. Similar results were obtained after excluding men with prevalent ischaemic heart disease at baseline. Findings were strongest among men with at least 20% stenosis or non-stenotic plaque at baseline. In this subgroup reactive men with high job demands had more than 46% greater atherosclerotic progression than the others. Adjustment for atherosclerotic risk factors did not alter the results. CONCLUSIONS: Men who showed stress induced blood pressure reactivity and who reported high job demands experienced the greatest atherosclerotic progression, showing the association between dispositional risk characteristics and contextual determinants of disease and suggesting that behaviourally evoked cardiovascular reactivity may have a role in atherogenesis. PMID:9055713

  7. Mechanisms of interaction of radiation with matter. Progress report, July 1, 1991--August 31, 1992

    SciTech Connect

    Geacintov, N.E.; Pope, M.

    1992-08-31

    This project is concerned with studies of biological activity-structure relationships in which the mechanisms of interaction of ionizing radiation and benzopyrene (PB) compounds with DNA are being investigated and compared. Emphasis is focused on effects of DNA conformation on its mechanisms of interaction with ionizing radiation, on the influence of structure and stereochemistry of BP metabolites on mechanisms of DNA damage, and on influence of DNA conformation on interactions between BP metabolites and DNA molecules, and the structures of the complexes and adducts which are formed. One basic theme of this project is the use of photoexcited states of BP and nucleic acids as probes of these interactions. In part I of this report, recent progress on elucidating the structures of selected BP-oligonucleotide model adducts by high resolution NMR and gel electrophoresis techniques is summarized. It is shown that the stereochemical properties of benzo[a]pyrene diol epoxide-DNA adducts play a crucial role in determining their interactions with certain exonucleases. These results provide useful models for deriving a better understanding of differences biological activities of BP compounds and the relationships between mutagenicities and the structure properties of BP-DNA adducts. In Part II of this report, a new time-resolved method based on picosecond laser pulse techniques for elucidating the electronic levels involved in electron photoemission and electron transfer in BP and nucleic acid solids is described.

  8. X-ray emission from interacting wind massive binaries: A review of 15 years of progress

    NASA Astrophysics Data System (ADS)

    Rauw, Gregor; Nazé, Yaël

    2016-09-01

    Previous generations of X-ray observatories revealed a group of massive binaries that were relatively bright X-ray emitters. This was attributed to emission of shock-heated plasma in the wind-wind interaction zone located between the stars. With the advent of the current generation of X-ray observatories, the phenomenon could be studied in much more detail. In this review, we highlight the progress that has been achieved in our understanding of the phenomenon over the last 15 years, both on theoretical and observational grounds. All these studies have paved the way for future investigations using the next generation of X-ray satellites that will provide crucial information on the X-ray emission formed in the innermost part of the wind-wind interaction.

  9. HSPB7 interacts with dimerized FLNC and its absence results in progressive myopathy in skeletal muscles

    PubMed Central

    Juo, Liang-Yi; Liao, Wern-Chir; Shih, Yen-Ling; Yang, Bih-Ying; Liu, An-Bang

    2016-01-01

    ABSTRACT HSPB7 belongs to the small heat-shock protein (sHSP) family, and its expression is restricted to cardiac and skeletal muscles from embryonic stages to adulthood. Here, we found that skeletal-muscle-specific ablation of the HspB7 does not affect myogenesis during embryonic stages to postnatal day 1 (P1), but causes subsequent postnatal death owing to a respiration defect, with progressive myopathy phenotypes in the diaphragm. Deficiency of HSPB7 in the diaphragm muscle resulted in muscle fibrosis, sarcomere disarray and sarcolemma integrity loss. We identified dimerized filamin C (FLNC) as an interacting partner of HSPB7. Immunofluorescence studies demonstrated that the aggregation and mislocalization of FLNC occurred in the muscle of HspB7 mutant adult mice. Furthermore, the components of dystrophin glycoprotein complex, γ- and δ-sarcoglycan, but not dystrophin, were abnormally upregulated and mislocalized in HSPB7 mutant muscle. Collectively, our findings suggest that HSPB7 is essential for maintaining muscle integrity, which is achieved through its interaction with FLNC, in order to prevent the occurrence and progression of myopathy. PMID:26929074

  10. Gene I, a potential cell-to-cell movement locus of cauliflower mosaic virus, encodes an RNA-binding protein

    SciTech Connect

    Citovsky, V.; Knorr, D.; Zambryski, P. )

    1991-03-15

    Cauliflower mosaic virus (CaMV) is a double-stranded DNA (dsDNA) pararetrovirus capable of cell-to-cell movement presumably through intercellular connections, the plasmodesmata, of the infected plant. This movement is likely mediated by a specific viral protein encoded by the gene I locus. Here we report that the purified gene I protein binds RNA and single-stranded DNA (ssDNA) but not dsDNA regardless of nucleotide sequence specificity. The binding is highly cooperative, and the affinity of the gene I protein for RNA is 10-fold higher than for ssDNA. CaMV replicates by reverse transcription of a 35S RNA that is homologous to the entire genome. The authors propose that the 35S RNA may be involved in cell-to-cell movement of CaMV as an intermediate that is transported through plasmodesmata as an RNA-gene I protein complex.

  11. Nonlinear signalling networks and cell-to-cell variability transform external signals into broadly distributed or bimodal responses

    PubMed Central

    Dobrzyński, Maciej; Nguyen, Lan K.; Birtwistle, Marc R.; von Kriegsheim, Alexander; Blanco Fernández, Alfonso; Cheong, Alex; Kolch, Walter; Kholodenko, Boris N.

    2014-01-01

    We show theoretically and experimentally a mechanism behind the emergence of wide or bimodal protein distributions in biochemical networks with nonlinear input–output characteristics (the dose–response curve) and variability in protein abundance. Large cell-to-cell variation in the nonlinear dose–response characteristics can be beneficial to facilitate two distinct groups of response levels as opposed to a graded response. Under the circumstances that we quantify mathematically, the two distinct responses can coexist within a cellular population, leading to the emergence of a bimodal protein distribution. Using flow cytometry, we demonstrate the appearance of wide distributions in the hypoxia-inducible factor-mediated response network in HCT116 cells. With help of our theoretical framework, we perform a novel calculation of the magnitude of cell-to-cell heterogeneity in the dose–response obtained experimentally. PMID:24966234

  12. HIV-1 Nef promotes the localization of Gag to the cell membrane and facilitates viral cell-to-cell transfer

    PubMed Central

    2013-01-01

    Background Newly synthesized HIV-1 particles assemble at the plasma membrane of infected cells, before being released as free virions or being transferred through direct cell-to-cell contacts to neighboring cells. Localization of HIV-1 Gag precursor at the cell membrane is necessary and sufficient to trigger viral assembly, whereas the GagPol precursor is additionally required to generate a fully matured virion. HIV-1 Nef is an accessory protein that optimizes viral replication through partly defined mechanisms. Whether Nef modulates Gag and/or GagPol localization and assembly at the membrane and facilitates viral cell-to-cell transfer has not been extensively characterized so far. Results We report that Nef increases the total amount of Gag proteins present in infected cells, and promotes Gag localization at the cell membrane. Moreover, the processing of p55 into p24 is improved in the presence of Nef. We also examined the effect of Nef during HIV-1 cell-to-cell transfer. We show that without Nef, viral transfer through direct contacts between infected cells and target cells is impaired. With a nef-deleted virus, the number of HIV-1 positive target cells after a short 2h co-culture is reduced, and viral material transferred to uninfected cells is less matured. At later time points, this defect is associated with a reduction in the productive infection of new target cells. Conclusions Our results highlight a previously unappreciated role of Nef during the viral replication cycle. Nef promotes HIV-1 Gag membrane localization and processing, and facilitates viral cell-to-cell transfer. PMID:23899341

  13. A Functional Assay to Assess Connexin 43-Mediated Cell-to-Cell Communication of Second Messengers in Cultured Bone Cells.

    PubMed

    Stains, Joseph P; Civitelli, Roberto

    2016-01-01

    Cell-to-cell transfer of small molecules is a fundamental way by which multicellular organisms coordinate function. Recent work has highlighted the complexity of biologic responses downstream of gap junctions. As the connexin-regulated effectors are coming into focus, there is a need to develop functional assays that allow specific testing of biologically relevant second messengers. Here, we describe a modification of the classic gap junction parachute assay to assess biologically relevant molecules passed through gap junctions. PMID:27207296

  14. Cell-to-cell movement of Alfalfa mosaic virus can be mediated by the movement proteins of Ilar-, bromo-, cucumo-, tobamo- and comoviruses and does not require virion formation.

    PubMed

    Sánchez-Navarro, Jesús A; Carmen Herranz, María; Pallás, Vicente

    2006-03-01

    RNA 3 of Alfalfa mosaic virus (AMV) encodes the movement protein (MP) and coat protein (CP). Chimeric RNA 3 with the AMV MP gene replaced by the corresponding MP gene of Prunus necrotic ringspot virus, Brome mosaic virus, Cucumber mosaic virus or Cowpea mosaic virus efficiently moved from cell-to-cell only when the expressed MP was extended at its C-terminus with the C-terminal 44 amino acids of AMV MP. MP of Tobacco mosaic virus supported the movement of the chimeric RNA 3 whether or not the MP was extended with the C-terminal AMV MP sequence. The replacement of the CP gene in RNA 3 by a mutant gene encoding a CP defective in virion formation did not affect cell-to-cell transport of the chimera's with a functional MP. A GST pull-down technique was used to demonstrate for the first time that the C-terminal 44 amino acids of the MP of a virus belonging to the family Bromoviridae interact specifically with AMV virus particles. Together, these results demonstrate that AMV RNA 3 can be transported from cell-to-cell by both tubule-forming and non-tubule-forming MPs if a specific MP-CP interaction occurs. PMID:16316673

  15. Focus on Extracellular Vesicles: New Frontiers of Cell-to-Cell Communication in Cancer

    PubMed Central

    Ciardiello, Chiara; Cavallini, Lorenzo; Spinelli, Cristiana; Yang, Julie; Reis-Sobreiro, Mariana; de Candia, Paola; Minciacchi, Valentina Renè; Di Vizio, Dolores

    2016-01-01

    Extracellular Vesicles (EVs) have received considerable attention in recent years, both as mediators of intercellular communication pathways that lead to tumor progression, and as potential sources for discovery of novel cancer biomarkers. For many years, research on EVs has mainly investigated either the mechanism of biogenesis and cargo selection and incorporation, or the methods of EV isolation from available body fluids for biomarker discovery. Recent studies have highlighted the existence of different populations of cancer-derived EVs, with distinct molecular cargo, thus pointing to the possibility that the various EV populations might play diverse roles in cancer and that this does not happen randomly. However, data attributing cancer specific intercellular functions to given populations of EVs are still limited. A deeper functional, biochemical and molecular characterization of the various EV classes might identify more selective clinical markers, and significantly advance our knowledge of the pathogenesis and disease progression of many cancer types. PMID:26861306

  16. Focus on Extracellular Vesicles: New Frontiers of Cell-to-Cell Communication in Cancer.

    PubMed

    Ciardiello, Chiara; Cavallini, Lorenzo; Spinelli, Cristiana; Yang, Julie; Reis-Sobreiro, Mariana; de Candia, Paola; Minciacchi, Valentina Renè; Di Vizio, Dolores

    2016-01-01

    Extracellular Vesicles (EVs) have received considerable attention in recent years, both as mediators of intercellular communication pathways that lead to tumor progression, and as potential sources for discovery of novel cancer biomarkers. For many years, research on EVs has mainly investigated either the mechanism of biogenesis and cargo selection and incorporation, or the methods of EV isolation from available body fluids for biomarker discovery. Recent studies have highlighted the existence of different populations of cancer-derived EVs, with distinct molecular cargo, thus pointing to the possibility that the various EV populations might play diverse roles in cancer and that this does not happen randomly. However, data attributing cancer specific intercellular functions to given populations of EVs are still limited. A deeper functional, biochemical and molecular characterization of the various EV classes might identify more selective clinical markers, and significantly advance our knowledge of the pathogenesis and disease progression of many cancer types. PMID:26861306

  17. Regulation of Varicella-Zoster Virus-Induced Cell-to-Cell Fusion by the Endocytosis-Competent Glycoproteins gH and gE

    PubMed Central

    Pasieka, Tracy Jo; Maresova, Lucie; Shiraki, Kimiyasu; Grose, Charles

    2004-01-01

    The gH glycoprotein of varicella-zoster virus (VZV) is a major fusogen. The realigned short cytoplasmic tail of gH (18 amino acids) harbors a functional endocytosis motif (YNKI) that mediates internalization in both VZV-infected and transfected cells (T. J. Pasieka, L. Maresova, and C. Grose, J. Virol. 77: 4194-4202, 2003). During subsequent confocal microscopy studies of endocytosis-deficient gH mutants, we observed that cells transfected with the gH tail mutants exhibited marked fusion. Therefore, we postulated that VZV gH endocytosis served to regulate cell-to-cell fusion. Subsequent analyses of gH+gL transfection fusion assays by the Kolmogorov-Smirnov statistical test demonstrated that expression of the endocytosis-deficient gH mutants resulted in a statistically significant enhancement of cell-to-cell fusion (P < 0.0001) compared to wild-type gH. On the other hand, coexpression of VZV gE, another endocytosis-competent VZV glycoprotein, was able to temper the fusogenicity of the gH endocytosis mutants by facilitating internalization of the mutant gH protein from the cell surface. When the latter results were similarly analyzed, there was no longer any enhanced fusion by the endocytosis-deficient gH mutant protein. In summary, these studies support a role for gH endocytosis in regulating the cell surface expression of gH and thereby regulating gH-mediated fusion. The data also confirm and extend prior observations of a gE-gH interaction during viral glycoprotein trafficking in a VZV transfection system. PMID:14990707

  18. Progress in sub-grid scale modeling of shock-turbulence interaction

    SciTech Connect

    Buckingham, A.C.; Grun, J.

    1994-12-01

    The authors report on progress in the development of sub grid scale (SGS) closure relationships for the unresolved motion scales in compressible large eddy simulations (LES). At present they are refining the SGS model and overall LES procedure to include: a linearized viscoelastic model for finite thickness shock distortions and shocked turbulence field response; multiple scale asymptotic considerations to improve predictions of average near-wall surface behavior; and a spectral statistical model simulating the effects of high wave number stochastic feed-back from the unresolved SGS nonlinear motion influences on the explicitly resolved grid scale motions. Predicted amplification levels, modal energy partition, shock translational to turbulence kinetic energy transfer, and viscoelastic spatio-temporal response of turbulence to shock interaction are examined in comparison with available experimental evidence. Supplemental hypersonic compressible turbulence experimental information is developed from sub nanosecond interval pulsed shadowgraph evidence of laser impulse generated hypervelocity shocks interacting with intense, previously developed and carefully characterized initial turbulence. Accurate description of the influence of shock-turbulence interactions is vital for predicting their influence on: Supersonic/hypersonic flow field analysis, aerodynamic design, and aerostructural materials selection. Practical applications also include interior supersonic combustion analysis and combustion chamber design. It is also the essential foundation for accurately predicting the development and evolution of flow-field generated thermal and electromagnetic radiation important to hypersonic flight vehicle survivability, detection and communication.

  19. Progress in sub-grid scale modeling of shock-turbulence interaction

    NASA Astrophysics Data System (ADS)

    Buckingham, A. C.; Grun, J.

    1994-12-01

    The authors report on progress in the development of sub-grid scale (SGS) closure relationships for the unresolved motion scales in compressible large eddy simulations (LES). At present they are refining the SGS model and overall LES procedure to include: a linearized viscoelastic model for finite thickness shock distortions and shocked turbulence field response; multiple scale asymptotic considerations to improve predictions of average near-wall surface behavior; and a spectral statistical model simulating the effects of high wave number stochastic feed-back from the unresolved SGS nonlinear motion influences on the explicitly resolved grid scale motions. Predicted amplification levels, modal energy partition, shock translational to turbulence kinetic energy transfer, and viscoelastic spatio-temporal response of turbulence to shock interaction are examined in comparison with available experimental evidence. Supplemental hypersonic compressible turbulence experimental information is developed from sub nanosecond interval pulsed shadowgraph evidence of laser impulse generated hypervelocity shocks interacting with intense, previously developed and carefully characterized initial turbulence. Accurate description of the influence of shock-turbulence interactions is vital for predicting their influence on: Supersonic/hypersonic flow field analysis, aerodynamic design, and aerostructural materials selection. Practical applications also include interior supersonic combustion analysis and combustion chamber design. It is also the essential foundation for accurately predicting the development and evolution of flow-field generated thermal and electromagnetic radiation important to hypersonic flight vehicle survivability, detection and communication.

  20. Analyzing Systolic-Diastolic Interval Interaction Characteristics in Diabetic Cardiac Autonomic Neuropathy Progression

    PubMed Central

    Imam, Mohammad Hasan; Jelinek, Herbert F.; Palaniswami, Marimuthu; Khandoker, Ahsan H.

    2015-01-01

    Cardiac autonomic neuropathy (CAN), one of the major complications in diabetes, if detected at the subclinical stage allows for effective treatment and avoiding further complication including cardiovascular pathology. Surface ECG (Electrocardiogram)-based diagnosis of CAN is useful to overcome the limitation of existing cardiovascular autonomic reflex tests traditionally used for CAN identification in clinical settings. The aim of this paper is to analyze the changes in the mechanical function of the ventricles in terms of systolic-diastolic interval interaction (SDI) from a surface ECG to assess the severity of CAN progression [no CAN, early CAN (ECAN) or subclinical CAN, and definite CAN (DCAN) or clinical CAN]. ECG signals recorded in supine resting condition from 72 diabetic subjects without CAN (CAN-) and 70 diabetic subjects with CAN were analyzed in this paper. The severity of CAN was determined by Ewing’s Cardiovascular autonomic reflex tests. Fifty-five subjects of the CAN group had ECAN and 15 subjects had DCAN. In this paper, we propose an improved version of the SDI parameter (i.e., TQ/RR interval ratio) measured from the electrical diastolic interval (i.e., TQ interval) and the heart rate interval (i.e., RR interval). The performance of the proposed SDI measure was compared with the performance of the existing SDI measure (i.e., QT/TQ interval ratio). The proposed SDI parameter showed significant differences among three groups (no CAN, ECAN, and DCAN). In addition, the proposed SDI parameter was found to be more sensitive in detecting CAN progression than other ECG interval-based features traditionally used for CAN diagnosis. The modified SDI parameter might be used as an alternative measure for the Ewing autonomic reflex tests to identify CAN progression for those subjects who are unable to perform the traditional tests. These findings could also complement the echocardiographic findings of the left ventricular diastolic dysfunction by providing

  1. Methods and progress in studying inelastic interactions between positrons and atoms

    NASA Astrophysics Data System (ADS)

    DuBois, R. D.

    2016-06-01

    Progress and methods used in positron based studies of inelastic atomic interactions are traced from the original discovery of the positron to the present. Following a historic overview and introduction, this review will show how new experimental techniques were critical in advancing experimental studies from total or integral cross section measurements to highly differential investigations that are now being performed. The primary emphasis is on ionization of atoms and simple molecules by low-energy (tens to hundreds of eV) positrons and in showing similarities and differences between positron, electron and proton impact data. Selected examples of Ps based studies are also included. Experimental techniques associated with the generation, moderation, and transport of low-energy positron beams plus an extensive reference list and tables summarizing existing experimental studies are provided. Comments with respect to future studies and directions, plus how they might be achieved, are presented.

  2. Lithium-ion cell-to-cell variation during battery electric vehicle operation

    NASA Astrophysics Data System (ADS)

    Schuster, Simon F.; Brand, Martin J.; Berg, Philipp; Gleissenberger, Markus; Jossen, Andreas

    2015-11-01

    484 new and 1908 aged lithium-ion cells out of two identical battery electric vehicles (i.e. 954 cells each) were characterized by capacity and impedance measurements to yield a broad set of data for distribution fit analysis. Results prove alteration from normal to Weibull distribution for the parameters of lithium-ion cells with the progress of aging. Cells with abnormal characteristics in the aged state mostly exhibit lower capacities as compared to the distribution mode which is typical for the left-skewed Weibull shape. In addition, the strength of variation and the amount of outliers both are generally increased with the aging progress. Obtained results are compared to vehicles' operational data to provide recommendations with the aim to minimize the increasing parameter spread. However, neither temperature gradients in the battery pack nor an insufficient balancing procedure were determined. As the appearance of cells with suspicious parameters could not be assigned to local weak spots of the battery pack, a random and inevitable type of origin is assumed. Hence, the battery management system must ensure to detect outliers in a reliable manner and to balance resulting drifts of cells' states of charge to guarantee a safe battery storage operation.

  3. Small-molecule inhibitors of protein-protein interactions: progressing towards the reality

    PubMed Central

    Arkin, Michelle R.; Tang, Yinyan; Wells, James A.

    2014-01-01

    Summary The past twenty years have seen many advances in our understanding of protein-protein interactions (PPI) and how to target them with small-molecule therapeutics. In 2004, we reviewed some early successes; since then, potent inhibitors have been developed for diverse protein complexes, and compounds are now in clinical trials for six targets. Surprisingly, many of these PPI clinical candidates have efficiency metrics typical of ‘lead-like’ or ‘drug-like’ molecules and are orally available. Successful discovery efforts have integrated multiple disciplines and make use of all the modern tools of target-based discovery - structure, computation, screening, and biomarkers. PPI become progressively more challenging as the interfaces become more complex, i.e., as binding epitopes are displayed on primary, secondary, or tertiary structures. Here, we review the last ten years of progress, focusing on the properties of PPI inhibitors that have advanced to clinical trials and prospects for the future of PPI drug discovery. PMID:25237857

  4. Modeling fluid-rock interaction at Yucca Mountain, Nevada; A progress report, April 15, 1992

    SciTech Connect

    Viani, B.E.; Bruton, C.J.

    1992-08-01

    Volcanic rocks at Yucca Mountain, Nevada aie being assessed for their suitability as a potential repository for high-level nuclear waste. Recent progress in modeling fluid-rock interactions, in particular the mineralogical and chemical changes that may accompany waste disposal at Yucca Mountain, will be reviewed in this publication. In Part 1 of this publication, ``Geochemical Modeling of Clinoptilolite-Water Interactions,`` solid-solution and cation-exchange models for the zeolite clinoptilolite are developed and compared to experimental and field observations. At Yucca Mountain, clinoptilolite which is found lining fractures and as a major component of zeolitized tuffs, is expected to play an important role in sequestering radionuclides that may escape from a potential nuclear waste repository. The solid-solution and ion-exchange models were evaluated by comparing predicted stabilities and exchangeable cation distributions of clinoptilolites with: (1) published binary exchange data; (2) compositions of coexisting clinoptilolites and formation waters at Yucca Mountain; (3) experimental sorption isotherms of Cs and Sr on zeolitized tuff, and (4) high temperature experimental data. Good agreement was found between predictions and expertmental data, especially for binary exchange and Cs and Sr sorption on clinoptilolite. Part 2 of this publication, ``Geochemical Simulation of Fluid-Rock Interactions at Yucca Mountain,`` describes preliminary numerical simulations of fluid-rock interactions at Yucca Mountain. The solid-solution model developed in the first part of the paper is used to evaluate the stability and composition of clinciptilolite and other minerals in the host rock under ambient conditions and after waste emplacement.

  5. The Insulin Degrading Enzyme Binding Domain of Varicella-Zoster Virus (VZV) Glycoprotein E is Important for Cell-to-Cell Spread and VZV Infectivity, while a Glycoprotein I Binding Domain is Essential for Infection

    PubMed Central

    Ali, Mir A.; Li, Qingxue; Fischer, Elizabeth R.; Cohen, Jeffrey I.

    2009-01-01

    Varicella-zoster virus (VZV) glycoprotein E (gE) interacts with glycoprotein I and with insulin degrading enzyme (IDE), which is a receptor for the virus. We found that a VZV gE deletion mutant could only be grown in cells expressing gE. Expression of VZV gE on the surface of cells did not interfere with VZV infection. HSV deleted for gE is impaired for cell-to-cell spread; VZV gE could not complement this activity in an HSV gE null mutant. VZV lacking the IDE binding domain of gE grew to peak titers nearly equivalent to parental virus; however, it was impaired for cell-to-cell spread and for infectivity with cell-free virus. VZV deleted for a region of gE that binds glycoprotein I could not replicate in cell culture unless grown in cells expressing gE. We conclude that the IDE binding domain is important for efficient cell-to-cell spread and infectivity of cell-free virus. PMID:19233447

  6. [Research Progress on the Interaction Effects and Its Neural Mechanisms between Physical Fatigue and Mental Fatigue].

    PubMed

    Zhang, Lixin; Zhang, Chuncui; He, Feng; Zhao, Xin; Qi, Hongzhi; Wan, Baikun; Ming, Dong

    2015-10-01

    Fatigue is an exhaustion state caused by prolonged physical work and mental work, which can reduce working efficiency and even cause industrial accidents. Fatigue is a complex concept involving both physiological and psychological factors. Fatigue can cause a decline of concentration and work performance and induce chronic diseases. Prolonged fatigue may endanger life safety. In most of the scenarios, physical and mental workloads co-lead operator into fatigue state. Thus, it is very important to study the interaction influence and its neural mechanisms between physical and mental fatigues. This paper introduces recent progresses on the interaction effects and discusses some research challenges and future development directions. It is believed that mutual influence between physical fatigue and mental fatigue may occur in the central nervous system. Revealing the basal ganglia function and dopamine release may be important to explore the neural mechanisms between physical fatigue and mental fatigue. Future effort is to optimize fatigue models, to evaluate parameters and to explore the neural mechanisms so as to provide scientific basis and theoretical guidance for complex task designs and fatigue monitoring. PMID:26964325

  7. Cucumovirus- and bromovirus-encoded movement functions potentiate cell-to-cell movement of tobamo- and potexviruses.

    PubMed

    Tamai, Atsushi; Kubota, Kenji; Nagano, Hideaki; Yoshii, Motoyasu; Ishikawa, Masayuki; Mise, Kazuyuki; Meshi, Tetsuo

    2003-10-10

    Cucumber mosaic virus (CMV, a cucumovirus) and Brome mosaic virus (BMV, a bromovirus) require the coat protein (CP) in addition to the 3a movement protein (MP) for cell-to-cell movement, while Cowpea chlorotic mottle virus (CCMV, a bromovirus) does not. Using bombardment-mediated transcomplementation assays, we investigated whether the movement functions encoded by these viruses potentiate cell-to-cell movement of movement-defective Tomato mosaic virus (ToMV, a tobamovirus) and Potato virus X (PVX, a potexvirus) mutants in Nicotiana benthamiana. Coexpression of CMV 3a and CP, but neither protein alone, complemented the defective movement of ToMV and PVX. A C-terminal deletion in CMV 3a (3a Delta C33) abolished the requirement of CP in transporting the ToMV genome. The action of 3a Delta C33 was inhibited by coexpression of wild-type 3a. These findings were confirmed in tobacco with ToMV-CMV chimeric viruses. Either BMV 3a or CCMV 3a alone efficiently complemented the movement-defective phenotype of the ToMV mutant. Therefore, every 3a protein examined intrinsically possesses the activity required to act as MP. In transcomplementation of the PVX mutant, the activities of BMV 3a, CCMV 3a, and CMV 3a Delta C33 were very low. The activities of the bromovirus 3a proteins were enhanced by coexpression of the cognate CP but the activity of CMV 3a Delta C33 was not. Based on these results, possible roles of cucumo- and bromovirus CPs in cell-to-cell movement are discussed. PMID:14592759

  8. Free-virus and cell-to-cell transmission in models of equine infectious anemia virus infection.

    PubMed

    Allen, Linda J S; Schwartz, Elissa J

    2015-12-01

    Equine infectious anemia virus (EIAV) is a lentivirus in the retrovirus family that infects horses and ponies. Two strains, referred to as the sensitive strain and the resistant strain, have been isolated from an experimentally-infected pony. The sensitive strain is vulnerable to neutralization by antibodies whereas the resistant strain is neutralization-insensitive. The sensitive strain mutates to the resistant strain. EIAV may infect healthy target cells via free virus or alternatively, directly from an infected target cell through cell-to-cell transfer. The proportion of transmission from free-virus or from cell-to-cell transmission is unknown. A system of ordinary differential equations (ODEs) is formulated for the virus-cell dynamics of EIAV. In addition, a Markov chain model and a branching process approximation near the infection-free equilibrium (IFE) are formulated. The basic reproduction number R0 is defined as the maximum of two reproduction numbers, R0s and R0r, one for the sensitive strain and one for the resistant strain. The IFE is shown to be globally asymptotically stable for the ODE model in a special case when the basic reproduction number is less than one. In addition, two endemic equilibria exist, a coexistence equilibrium and a resistant strain equilibrium. It is shown that if R0>1, the infection persists with at least one of the two strains. However, for small infectious doses, the sensitive strain and the resistant strain may not persist in the Markov chain model. Parameter values applicable to EIAV are used to illustrate the dynamics of the ODE and the Markov chain models. The examples highlight the importance of the proportion of cell-to-cell versus free-virus transmission that either leads to infection clearance or to infection persistence with either coexistence of both strains or to dominance by the resistant strain. PMID:25865935

  9. A Nonlinear Mixed Effects Approach for Modeling the Cell-To-Cell Variability of Mig1 Dynamics in Yeast

    PubMed Central

    Almquist, Joachim; Bendrioua, Loubna; Adiels, Caroline Beck; Goksör, Mattias; Hohmann, Stefan; Jirstrand, Mats

    2015-01-01

    The last decade has seen a rapid development of experimental techniques that allow data collection from individual cells. These techniques have enabled the discovery and characterization of variability within a population of genetically identical cells. Nonlinear mixed effects (NLME) modeling is an established framework for studying variability between individuals in a population, frequently used in pharmacokinetics and pharmacodynamics, but its potential for studies of cell-to-cell variability in molecular cell biology is yet to be exploited. Here we take advantage of this novel application of NLME modeling to study cell-to-cell variability in the dynamic behavior of the yeast transcription repressor Mig1. In particular, we investigate a recently discovered phenomenon where Mig1 during a short and transient period exits the nucleus when cells experience a shift from high to intermediate levels of extracellular glucose. A phenomenological model based on ordinary differential equations describing the transient dynamics of nuclear Mig1 is introduced, and according to the NLME methodology the parameters of this model are in turn modeled by a multivariate probability distribution. Using time-lapse microscopy data from nearly 200 cells, we estimate this parameter distribution according to the approach of maximizing the population likelihood. Based on the estimated distribution, parameter values for individual cells are furthermore characterized and the resulting Mig1 dynamics are compared to the single cell times-series data. The proposed NLME framework is also compared to the intuitive but limited standard two-stage (STS) approach. We demonstrate that the latter may overestimate variabilities by up to almost five fold. Finally, Monte Carlo simulations of the inferred population model are used to predict the distribution of key characteristics of the Mig1 transient response. We find that with decreasing levels of post-shift glucose, the transient response of Mig1 tend

  10. Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay.

    PubMed

    Xu, Jinhu; Zhou, Yicang

    2016-04-01

    A within-host viral infection model with both virus-to-cell and cell-to-cell transmissions and time delay in immune response is investigated. Mathematical analysis shows that delay may destabilize the infected steady state and lead to Hopf bifurcation. Moreover, the direction of the Hopf bifurcation and the stability of the periodic solutions are investigated by normal form and center manifold theory. Numerical simulations are done to explore the rich dynamics, including stability switches, Hopf bifurcations, and chaotic oscillations. PMID:27105992

  11. Dynamic competition between transcription initiation and repression: Role of nonequilibrium steps in cell-to-cell heterogeneity.

    PubMed

    Mitarai, Namiko; Semsey, Szabolcs; Sneppen, Kim

    2015-08-01

    Transcriptional repression may cause transcriptional noise by a competition between repressor and RNA polymerase binding. Although promoter activity is often governed by a single limiting step, we argue here that the size of the noise strongly depends on whether this step is the initial equilibrium binding or one of the subsequent unidirectional steps. Overall, we show that nonequilibrium steps of transcription initiation systematically increase the cell-to-cell heterogeneity in bacterial populations. In particular, this allows also weak promoters to give substantial transcriptional noise. PMID:26382435

  12. GAPDH-A Recruits a Plant Virus Movement Protein to Cortical Virus Replication Complexes to Facilitate Viral Cell-to-Cell Movement

    PubMed Central

    Kaido, Masanori; Abe, Kazutomo; Mine, Akira; Hyodo, Kiwamu; Taniguchi, Takako; Taniguchi, Hisaaki; Mise, Kazuyuki; Okuno, Tetsuro

    2014-01-01

    The formation of virus movement protein (MP)-containing punctate structures on the cortical endoplasmic reticulum is required for efficient intercellular movement of Red clover necrotic mosaic virus (RCNMV), a bipartite positive-strand RNA plant virus. We found that these cortical punctate structures constitute a viral replication complex (VRC) in addition to the previously reported aggregate structures that formed adjacent to the nucleus. We identified host proteins that interacted with RCNMV MP in virus-infected Nicotiana benthamiana leaves using a tandem affinity purification method followed by mass spectrometry. One of these host proteins was glyceraldehyde 3-phosphate dehydrogenase-A (NbGAPDH-A), which is a component of the Calvin-Benson cycle in chloroplasts. Virus-induced gene silencing of NbGAPDH-A reduced RCNMV multiplication in the inoculated leaves, but not in the single cells, thereby suggesting that GAPDH-A plays a positive role in cell-to-cell movement of RCNMV. The fusion protein of NbGAPDH-A and green fluorescent protein localized exclusively to the chloroplasts. In the presence of RCNMV RNA1, however, the protein localized to the cortical VRC as well as the chloroplasts. Bimolecular fluorescence complementation assay and GST pulldown assay confirmed in vivo and in vitro interactions, respectively, between the MP and NbGAPDH-A. Furthermore, gene silencing of NbGAPDH-A inhibited MP localization to the cortical VRC. We discuss the possible roles of NbGAPDH-A in the RCNMV movement process. PMID:25411849

  13. Eavesdropping on altered cell-to-cell signaling in cancer by secretome profiling

    PubMed Central

    Klinke, David J

    2016-01-01

    In the past decade, cumulative clinical experiences with molecular targeted therapies and immunotherapies for cancer have promoted a shift in our conceptual understanding of cancer. This view shifted from viewing solid tumors as a homogeneous mass of malignant cells to viewing tumors as heterogeneous structures that are dynamically shaped by intercellular interactions among the variety of stromal, immune, and malignant cells present within the tumor microenvironment. As in any dynamic system, identifying how cells communicate to maintain homeostasis and how this communication is altered during oncogenesis are key hurdles for developing therapies to restore normal tissue homeostasis. Here, I discuss tissues as dynamic systems, using the mammary gland as an example, and the evolutionary concepts applied to oncogenesis. Drawing from these concepts, I present 2 competing hypotheses for how intercellular communication might be altered during oncogenesis. As an initial test of these competing hypotheses, a recent secretome comparison between normal human mammary and HER2+ breast cancer cell lines suggested that the particular proteins secreted by the malignant cells reflect a convergent evolutionary path associated with oncogenesis in a specific anatomical niche, despite arising in different individuals. Overall, this study illustrates the emerging power of secretome proteomics to probe, in an unbiased way, how intercellular communication changes during oncogenesis. PMID:27308541

  14. Histochemical approaches to assess cell-to-cell transmission of misfolded proteins in neurodegenerative diseases

    PubMed Central

    Natale, G.; Pompili, E.; Biagioni, F.; Paparelli, S.; Lenzi, P.; Fornai, F.

    2013-01-01

    Formation, aggregation and transmission of abnormal proteins are common features in neurodegenerative disorders including Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, and Huntington's disease. The mechanisms underlying protein alterations in neurodegenerative diseases remain controversial. Novel findings highlighted altered protein clearing systems as common biochemical pathways which generate protein misfolding, which in turn causes protein aggregation and protein spreading. In fact, proteinaceous aggregates are prone to cell-tocell propagation. This is reminiscent of what happens in prion disorders, where the prion protein misfolds thus forming aggregates which spread to neighbouring cells. For this reason, the term prionoids is currently used to emphasize how several misfolded proteins are transmitted in neurodegenerative diseases following this prion-like pattern. Histochemical techniques including the use of specific antibodies covering both light and electron microscopy offer a powerful tool to describe these phenomena and investigate specific molecular steps. These include: prion like protein alterations; glycation of prion-like altered proteins to form advanced glycation end-products (AGEs); mechanisms of extracellular secretion; interaction of AGEs with specific receptors placed on neighbouring cells (RAGEs). The present manuscript comments on these phenomena aimed to provide a consistent scenario of the available histochemical approaches to dissect each specific step. PMID:23549464

  15. Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths

    NASA Astrophysics Data System (ADS)

    Kepezhinskas, Pavel; Defant, Marc J.; Drummond, Mark S.

    1996-04-01

    The Pliocene (7 Ma) Nb-enriched arc basalts of the Valovayam Volcanic Field (VVF) in the northern segment of Kamchatka arc (Russia) host abundant xenoliths of spinel peridotites and pyroxenites. Textural and microstructural evidence for the high-temperature, multistage creep-related deformations in spinel peridotites supports a sub-arc mantle derivation. Pyroxenites show re-equilibrated mosaic textures, indicating recrystallization during cooling under the ambient thermal conditions. Three textural groups of clinopyroxenes exhibit progressive enrichment in Na, Al, Sr, La, and Ce accompanied by increase in Sr/Y, La/Yb, and Zr/Sm. Trace elements in various mineral phases and from felsic veins obtained through ion microprobe analysis suggest that the xenoliths have interacted with a siliceous (dacitic) melt completely unlike the host basalt. The suite of xenoliths grade from examples that display little evidence of metasomatic reaction to those containing an assemblage of minerals that have been reproduced experimentally from the reaction of a felsic melt with ultramafic rock, e.g., pargasitic amphibole, albite-rich plagioclase, Al-rich augite, and garnet. The dacitic veins within spinel lherzolite display a strong enrichment in Sr and depletion in Y and the heavy rare earth elements (e.g., Yb). The dacites are comparable to adakites (melts derived from subducted metabasalt), and not typical arc melts. We believe that these potential slab melts were introduced into the mantle beneath this portion of Kamchatka subsequent to partial melting of a relatively young (and hot) subducted crust. Island arc metasomatism by peridotite-slab melt interaction is an important mantle hybridization process responsible for arc-related alkaline magma generation from a veined sub-arc mantle.

  16. Extracellular microRNAs from the epididymis as potential mediators of cell-to-cell communication

    PubMed Central

    Belleannée, Clémence

    2015-01-01

    Ribonucleic acid (RNA) was previously thought to remain inside cells as an intermediate between genes and proteins during translation. However, it is now estimated that 98% of the mammalian genomic output is transcribed as noncoding RNAs, which are involved in diverse gene expression regulatory mechanisms and can be transferred from one cell to another through extracellular communication. For instance, microRNAs are 22-nucleotide-long noncoding RNAs that are generated by endonuclease cleavage of precursors inside the cells and are secreted as extracellular microRNAs to regulate target cell posttranscriptional gene expression via RNA interference. We and others have shown that different populations of microRNAs are expressed in distinct regions of the human epididymis and regulate the expression of target genes that are involved in the control of male fertility as indicated by knock-out mouse models. Importantly, some microRNAs, including the microRNA-888 (miR-888) cluster that is exclusively expressed in the reproductive system of human and nonhuman primates, are released in the sperm-surrounding fluid in the epididymis via extracellular vesicles, the so-called epididymosomes. In addition to interacting with the membrane of maturing spermatozoa, these extracellular vesicles containing microRNAs communicate with epithelial cells located downstream from their release site, suggesting a role in the luminal exocrine control of epididymal functions. Apart from their potential roles as mediators of intercellular communication within the epididymis, these extracellular microRNAs are potent molecular targets for the noninvasive diagnosis of male infertility. PMID:26178395

  17. Hydrogen peroxide produced inside mitochondria takes part in cell-to-cell transmission of apoptotic signal.

    PubMed

    Pletjushkina, O Yu; Fetisova, E K; Lyamzaev, K G; Ivanova, O Yu; Domnina, L V; Vyssokikh, M Yu; Pustovidko, A V; Alexeevski, A V; Alexeevski, D A; Vasiliev, J M; Murphy, M P; Chernyak, B V; Skulachev, V P

    2006-01-01

    In monolayer of HeLa cells treated with tumor necrosis factor (TNF), apoptotic cells formed clusters indicating possible transmission of apoptotic signal via the culture media. To investigate this phenomenon, a simple method of enabling two cell cultures to interact has been employed. Two coverslips were placed side by side in a Petri dish, one coverslip covered with apoptogen-treated cells (the inducer) and another with non-treated cells (the recipient). TNF, staurosporine, or H2O2 treatment of the inducer cells is shown to initiate apoptosis on the recipient coverslip. This effect is increased by a catalase inhibitor aminotriazole and is arrested by addition of catalase or by pre-treatment of either the inducer or the recipient cells with nanomolar concentrations of mitochondria-targeted cationic antioxidant MitoQ (10-(6 -ubiquinolyl)decyltriphenylphosphonium), which specifically arrests H2O2-induced apoptosis. The action of MitoQ is abolished by an uncoupler preventing accumulation of MitoQ in mitochondria. It is concluded that reactive oxygen species (ROS) produced by mitochondria in the apoptotic cells initiate the release of H2O2 from these cells. The H2O2 released is employed as a long-distance cell suicide messenger. In processing of such a signal by the recipient cells, mitochondrial ROS production is also involved. It is suggested that the described phenomenon may be involved in expansion of the apoptotic region around a damaged part of the tissue during heart attack or stroke as well as in "organoptosis", i.e. disappearance of organs during ontogenesis. PMID:16457620

  18. Revisiting a Progressive Pedagogy. The Developmental-Interaction Approach. SUNY Series, Early Childhood Education: Inquiries and Insights.

    ERIC Educational Resources Information Center

    Nager, Nancy, Ed.; Shapiro, Edna K., Ed.

    This book reviews the history of the developmental-interactive approach, a formulation rooted in developmental psychology and educational practice, progressively informing educational thinking since the early 20th century. The book describes and analyzes key assumptions and assesses the compatibility of new theoretical approaches, focuses on…

  19. Progressive and Regressive Developmental Changes in Neural Substrates for Face Processing: Testing Specific Predictions of the Interactive Specialization Account

    ERIC Educational Resources Information Center

    Joseph, Jane E.; Gathers, Ann D.; Bhatt, Ramesh S.

    2011-01-01

    Face processing undergoes a fairly protracted developmental time course but the neural underpinnings are not well understood. Prior fMRI studies have only examined progressive changes (i.e. increases in specialization in certain regions with age), which would be predicted by both the Interactive Specialization (IS) and maturational theories of…

  20. Diversity training for signal transduction: leveraging cell-to-cell variability to dissect cellular signaling, differentiation and death

    PubMed Central

    Cotari, Jesse W.; Voisinne, Guillaume; Altan-Bonnet, Grégoire

    2013-01-01

    Populations of “identical” cells are rarely truly identical. Even when in the same state of differentiation, isogenic cells may vary in expression of key signaling regulators, activate signal transduction at different thresholds, and consequently respond heterogeneously to a given stimulus. Here, we review how new experimental and analytical techniques are suited to connect these different levels of variability, quantitatively mapping the effects of cell-to-cell variability on cellular decision-making. In particular, we summarize how this helps classify signaling regulators according to the impact of their variability on biological functions. We further discuss how variability can also be leveraged to shed light on the molecular mechanisms regulating cellular signaling, from the individual cell to the population of cells as a whole. PMID:23747193

  1. Defect Generation and Propagation in MC-Si Ingots: Influence on Cell-to-Cell Performance Variation

    SciTech Connect

    Sopori, B.; Rupnowski, P.; Shet, S.; Mehta, V.; Seacrist, M.; Shi, G.; Chen, J.; Deshpande, A.

    2011-01-01

    This paper describes results of our study aimed at understanding mechanism(s) of dislocation generation and propagation in multicrystalline silicon (mc-Si) ingots, and evaluating their influence on the solar cell performance. This work was done in two parts: (i) Measurement of dislocation distributions along various bricks, selected from strategic locations within several ingots; and (ii) Theoretical modeling of the cell performance corresponding to the measured dislocation distributions. Solar cells were fabricated on wafers of known dislocation distribution, and the results were compared with the theory. These results show that cell performance can be accurately predicted from the dislocation distribution, and the changes in the dislocation distribution are the primary cause for variations in the cell-to-cell performance. The dislocation generation and propagation mechanisms, suggested by our results, are described in this paper.

  2. Deciphering Cell-to-Cell Communication in Acquisition of Cancer Traits: Extracellular Membrane Vesicles Are Regulators of Tissue Biomechanics.

    PubMed

    Pokharel, Deep; Wijesinghe, Philip; Oenarto, Vici; Lu, Jamie F; Sampson, David D; Kennedy, Brendan F; Wallace, Vincent P; Bebawy, Mary

    2016-08-01

    Deciphering the role of cell-to-cell communication in acquisition of cancer traits such as metastasis is one of the key challenges of integrative biology and clinical oncology. In this context, extracellular vesicles (EVs) are important vectors in cell-to-cell communication and serve as conduits in the transfer of cellular constituents required for cell function and for the establishment of cellular phenotypes. In the case of malignancy, they have been shown to support the acquisition of common traits defined as constituting the hallmarks of cancer. Cellular biophysics has contributed to our understanding of some of these central traits with changes in tissue biomechanics reflective of cell state. Indeed, much is known about stiffness of the tissue scaffold in the context of cell invasion and migration. This article advances this knowledge frontier by showing for the first time that EVs are mediators of tissue biomechanical properties and, importantly, demonstrates a link between the acquisition of cancer multidrug resistance and increased tissue stiffness of the malignant mass. The methodology used in the study employed optical coherence elastography and atomic force microscopy on breast cancer cell monolayers and tumor spheroids. Specifically, we show here that the acquired changes in tissue stiffness can be attributed to the intracellular transfer of a protein complex comprising ezrin, radixin, moesin, CD44, and P-glycoprotein. This has important implications in facilitating mechano-transduced signaling cascades that regulate the acquisition of cancer traits, such as invasion and metastasis. Finally, this study also introduces novel targets and strategies for diagnostic and therapeutic innovation in oncology, with a view to prevention of metastatic spread and personalized medicine in cancer treatment. PMID:27501296

  3. Plasmodesmata formation and cell-to-cell transport are reduced in decreased size exclusion limit 1 during embryogenesis in Arabidopsis

    PubMed Central

    Xu, Min; Cho, Euna; Burch-Smith, Tessa M.; Zambryski, Patricia C.

    2012-01-01

    In plants, plasmodesmata (PD) serve as channels for micromolecular and macromolecular cell-to-cell transport. Based on structure, PD in immature tissues are classified into two types, simple and branched (X- and Y-shaped) or twinned. The maximum size of molecules capable of PD transport defines PD aperture, known as the PD size exclusion limit. Here we report an Arabidopsis mutation, decreased size exclusion limit1 (dse1), that exhibits reduced cell-to-cell transport of the small (524 Da) fluorescent tracer 8-hydroxypyrene-1,3,6-trisulfonic acid at the midtorpedo stage of embryogenesis. Correspondingly, the fraction of X- and Y-shaped and twinned PD was reduced in dse1 embryos compared with WT embryos at this stage, suggesting that the frequency of PD is related to transport capability. dse1 is caused by a point mutation in At4g29860 (previously termed TANMEI) at the last donor splice site of its transcript, resulting in alternative splicing in both the first intron and the last intron. AtDSE1 is a conserved eukaryotic 386-aa WD-repeat protein critical for Arabidopsis morphogenesis and reproduction. Similar to its homologs in mouse, null mutants are embryo-lethal. The weak loss-of-function mutant dse1 exhibits pleiotropic phenotypes, including retarded vegetative growth, delayed flowering time, dysfunctional male and female organs, and delayed senescence. Finally, silencing of DSE1 in Nicotiana benthamiana leaves leads to reduced movement of GFP fused to tobacco mosaic virus movement protein. Thus, DSE1 is important for regulating PD transport between plant cells. PMID:22411811

  4. ENVIRONMENTAL EFFECTS OF OZONE DEPLETION AND ITS INTERACTIONS WITH CLIMATE CHANGE: PROGRESS REPORT 2004

    EPA Science Inventory

    The measures needed for the protection of the Earth's ozone layer are decided regularly by the Parties to the Montreal Protocol. This progress report is the 2004 update by the Environmental Effects Assessment Panel.

  5. Quantitative evaluation of cell-to-cell communication effects in cell group class using on-chip individual-cell-based cultivation system.

    PubMed

    Wakamoto, Yuichi; Yasuda, Kenji

    2006-10-27

    Cell-to-cell communication is considered to underlie the coordinated behavior and the multicellularity of cell group class, which cannot be explained only by the knowledge of lower class of life system from molecule to individual cell, because they are determined by at least two different ways: diffusible chemical signals and their direct physical contacts. We show in this paper a new method of individual-cell-based cell observation that can estimate the role of cell-to-cell communication, diffusible chemical signals, and physical contacts as separated properties, by applying an on-chip individual-cell-based cultivation system. The exchange of stationary phase medium on isolated individual Escherichia coli from exponential phase medium and the control of physical contacts indicated that the cell-to-cell direct contact did not affect the growth rate; only the communication through diffusible signals affects the growth rates as Hill's equation manner. PMID:16970916

  6. Subcellular dynamics and role of Arabidopsis β-1,3-glucanases in cell-to-cell movement of tobamoviruses.

    PubMed

    Zavaliev, Raul; Levy, Amit; Gera, Abed; Epel, Bernard L

    2013-09-01

    β-1,3-Glucanases (BG) have been implicated in enhancing virus spread by degrading callose at plasmodesmata (Pd). Here, we investigate the role of Arabidopsis BG in tobamovirus spread. During Turnip vein clearing virus infection, the transcription of two pathogenesis-related (PR)-BG AtBG2 and AtBG3 increased but that of Pd-associated BG AtBG_pap did not change. In transgenic plants, AtBG2 was retained in the endoplasmic reticulum (ER) network and was not secreted. As a stress response mediated by salicylic acid, AtBG2 was secreted and appeared as a free extracellular protein localized in the entire apoplast but did not accumulate at Pd sites. At the leading edge of Tobacco mosaic virus spread, AtBG2 co-localized with the viral movement protein in the ER-derived bodies, similarly to other ER proteins, but was not secreted to the cell wall. In atbg2 mutants, callose levels at Pd and virus spread were unaffected. Likewise, AtBG2 overexpression had no effect on virus spread. However, in atbg_pap mutants, callose at Pd was increased and virus spread was reduced. Our results demonstrate that the constitutive Pd-associated BG but not the stress-regulated extracellular PR-BG are directly involved in regulation of callose at Pd and cell-to-cell transport in Arabidopsis, including the spread of viruses. PMID:23656331

  7. Candidate topical microbicides bind herpes simplex virus glycoprotein B and prevent viral entry and cell-to-cell spread.

    PubMed

    Cheshenko, Natalia; Keller, Marla J; MasCasullo, Veronica; Jarvis, Gary A; Cheng, Hui; John, Minnie; Li, Jin-Hua; Hogarty, Kathleen; Anderson, Robert A; Waller, Donald P; Zaneveld, Lourens J D; Profy, Albert T; Klotman, Mary E; Herold, Betsy C

    2004-06-01

    Topical microbicides designed to prevent acquisition of sexually transmitted infections are urgently needed. Nonoxynol-9, the only commercially available spermicide, damages epithelium and may enhance human immunodeficiency virus transmission. The observation that herpes simplex virus (HSV) and human immunodeficiency virus bind heparan sulfate provided the rationale for the development of sulfated or sulfonated polymers as topical agents. Although several of the polymers have advanced to clinical trials, the spectrum and mechanism of anti-HSV activity and the effects on soluble mediators of inflammation have not been evaluated. The present studies address these gaps. The results indicate that PRO 2000, polystyrene sulfonate, cellulose sulfate, and polymethylenehydroquinone sulfonate inhibit HSV infection 10,000-fold and are active against clinical isolates, including an acyclovir-resistant variant. The compounds formed stable complexes with glycoprotein B and inhibit viral binding, entry, and cell-to-cell spread. The effects may be long lasting due to the high affinity and stability of the sulfated compound-virus complex, as evidenced by surface plasmon resonance studies. The candidate microbicides retained their antiviral activities in the presence of cervical secretions and over a broad pH range. There was little reduction in cell viability following repeated exposure of human endocervical cells to these compounds, although a reduction in secretory leukocyte protease inhibitor levels was observed. These studies support further development and rigorous evaluation of these candidate microbicides. PMID:15155195

  8. Partial Inhibition of Human Immunodeficiency Virus Replication by Type I Interferons: Impact of Cell-to-Cell Viral Transfer▿

    PubMed Central

    Vendrame, Daniela; Sourisseau, Marion; Perrin, Virginie; Schwartz, Olivier; Mammano, Fabrizio

    2009-01-01

    Type I interferons (IFN) inhibit several steps of the human immunodeficiency virus type 1 (HIV) replication cycle. Some HIV proteins, like Vif and Vpu, directly counteract IFN-induced restriction factors. Other mechanisms are expected to modulate the extent of IFN inhibition. Here, we studied the impact of IFN on various aspects of HIV replication in primary T lymphocytes. We confirm the potent effect of IFN on Gag p24 production in supernatants. Interestingly, IFN had a more limited effect on HIV spread, measured as the appearance of Gag-expressing cells. Primary isolates displayed similar differences in the inhibition of p24 release and virus spread. Virus emergence was the consequence of suboptimal inhibition of HIV replication and was not due to the selection of resistant variants. Cell-to-cell HIV transfer, a potent means of virus replication, was less sensitive to IFN than infection by cell-free virions. These results suggest that IFN are less active in cell cultures than initially thought. They help explain the incomplete protection by naturally secreted IFN during HIV infection and the unsatisfactory outcome of IFN treatment in HIV-infected patients. PMID:19706714

  9. SAMHD1 Restricts HIV-1 Cell-to-Cell Transmission and Limits Immune Detection in Monocyte-Derived Dendritic Cells

    PubMed Central

    Puigdomènech, Isabel; Casartelli, Nicoletta; Porrot, Françoise

    2013-01-01

    SAMHD1 is a viral restriction factor expressed in dendritic cells and other cells, inhibiting infection by cell-free human immunodeficiency virus type 1 (HIV-1) particles. SAMHD1 depletes the intracellular pool of deoxynucleoside triphosphates, thus impairing HIV-1 reverse transcription and productive infection in noncycling cells. The Vpx protein from HIV-2 or simian immunodeficiency virus (SIVsm/SIVmac) antagonizes the effect of SAMHD1 by triggering its degradation. A large part of HIV-1 spread occurs through direct contacts between infected cells and bystander target cells. Here, we asked whether SAMHD1 impairs direct HIV-1 transmission from infected T lymphocytes to monocyte-derived dendritic cells (MDDCs). HIV-1-infected lymphocytes were cocultivated with MDDCs that have been pretreated or not with Vpx or with small interfering RNA against SAMHD1. We show that in the cocultures, SAMHD1 significantly inhibits productive cell-to-cell transmission to target MDDCs and prevents the type I interferon response and expression of the interferon-stimulated gene MxA. Therefore, SAMHD1, by controlling the sensitivity of MDDCs to HIV-1 infection during intercellular contacts, impacts their ability to sense the virus and to trigger an innate immune response. PMID:23269793

  10. Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner.

    PubMed

    Takegahara, Yuki; Yamanouchi, Keitaro; Nakamura, Katsuyuki; Nakano, Shin-ichi; Nishihara, Masugi

    2014-05-15

    Intramuscular adipose tissue (IMAT) formation is observed in some pathological conditions such as Duchenne muscular dystrophy (DMD) and sarcopenia. Several studies have suggested that IMAT formation is not only negatively correlated with skeletal muscle mass but also causes decreased muscle contraction in sarcopenia. In the present study, we examined w hether adipocytes affect myogenesis. For this purpose, skeletal muscle progenitor cells were transfected with siRNA of PPARγ (siPPARγ) in an attempt to inhibit adipogenesis. Myosin heavy chain (MHC)-positive myotube formation was promoted in cells transfected with siPPARγ compared to that of cells transfected with control siRNA. To determine whether direct cell-to-cell contact between adipocytes and myoblasts is a prerequisite for adipocytes to affect myogenesis, skeletal muscle progenitor cells were cocultured with pre- or mature adipocytes in a Transwell coculture system. MHC-positive myotube formation was inhibited when skeletal muscle progenitor cells were cocultured with mature adipocytes, but was promoted when they were cocultured with preadipocytes. Similar effects were observed when pre- or mature adipocyte-conditioned medium was used. These results indicate that preadipocytes play an important role in maintaining skeletal muscle mass by promoting myogenesis; once differentiated, the resulting mature adipocytes negatively affect myogenesis, leading to the muscle deterioration observed in skeletal muscle pathologies. PMID:24720912

  11. Physical and chemical analysis of lithium-ion battery cell-to-cell failure events inside custom fire chamber

    NASA Astrophysics Data System (ADS)

    Spinner, Neil S.; Field, Christopher R.; Hammond, Mark H.; Williams, Bradley A.; Myers, Kristina M.; Lubrano, Adam L.; Rose-Pehrsson, Susan L.; Tuttle, Steven G.

    2015-04-01

    A 5-cubic meter decompression chamber was re-purposed as a fire test chamber to conduct failure and abuse experiments on lithium-ion batteries. Various modifications were performed to enable remote control and monitoring of chamber functions, along with collection of data from instrumentation during tests including high speed and infrared cameras, a Fourier transform infrared spectrometer, real-time gas analyzers, and compact reconfigurable input and output devices. Single- and multi-cell packages of LiCoO2 chemistry 18650 lithium-ion batteries were constructed and data was obtained and analyzed for abuse and failure tests. Surrogate 18650 cells were designed and fabricated for multi-cell packages that mimicked the thermal behavior of real cells without using any active components, enabling internal temperature monitoring of cells adjacent to the active cell undergoing failure. Heat propagation and video recordings before, during, and after energetic failure events revealed a high degree of heterogeneity; some batteries exhibited short burst of sparks while others experienced a longer, sustained flame during failure. Carbon monoxide, carbon dioxide, methane, dimethyl carbonate, and ethylene carbonate were detected via gas analysis, and the presence of these species was consistent throughout all failure events. These results highlight the inherent danger in large format lithium-ion battery packs with regards to cell-to-cell failure, and illustrate the need for effective safety features.

  12. Origins of stochastic intracellular processes and consequences for cell-to-cell variability and cellular survival strategies.

    PubMed

    Schwabe, A; Dobrzyński, M; Rybakova, K; Verschure, P; Bruggeman, F J

    2011-01-01

    Quantitative analyses of the dynamics of single cells have become a powerful approach in current cell biology. They give us an unprecedented opportunity to study dynamics of molecular networks at a high level of accuracy in living single cells. Genetically identical cells, growing in the same environment and sharing the same growth history, can differ remarkably in their molecular makeup and physiological behaviors. The origins of this cell-to-cell variability have in many cases been traced to the inevitable stochasticity of molecular reactions. Those mechanisms can cause isogenic cells to have qualitatively different life histories. Many studies indicate that molecular noise can be exploited by cell populations to enhance survival prospects in uncertain environments. On the other hand, cells have evolved noise-suppression mechanisms to cope with the inevitable noise in their functioning so as to reduce the hazardous effects of noise. In this chapter, we discuss key experiments, theoretical results, and physiological consequences of molecular stochasticity to introduce this exciting field to a broader community of (systems) biologists. PMID:21943916

  13. Cell-to-Cell Diversity in a Synchronized Chlamydomonas Culture As Revealed by Single-Cell Analyses

    PubMed Central

    Garz, Andreas; Sandmann, Michael; Rading, Michael; Ramm, Sascha; Menzel, Ralf; Steup, Martin

    2012-01-01

    In a synchronized photoautotrophic culture of Chlamydomonas reinhardtii, cell size, cell number, and the averaged starch content were determined throughout the light-dark cycle. For single-cell analyses, the relative cellular starch was quantified by measuring the second harmonic generation (SHG). In destained cells, amylopectin essentially represents the only biophotonic structure. As revealed by various validation procedures, SHG signal intensities are a reliable relative measure of the cellular starch content. During photosynthesis-driven starch biosynthesis, synchronized Chlamydomonas cells possess an unexpected cell-to-cell diversity both in size and starch content, but the starch-related heterogeneity largely exceeds that of size. The cellular volume, starch content, and amount of starch/cell volume obey lognormal distributions. Starch degradation was initiated by inhibiting the photosynthetic electron transport in illuminated cells or by darkening. Under both conditions, the averaged rate of starch degradation is almost constant, but it is higher in illuminated than in darkened cells. At the single-cell level, rates of starch degradation largely differ but are unrelated to the initial cellular starch content. A rate equation describing the cellular starch degradation is presented. SHG-based three-dimensional reconstructions of Chlamydomonas cells containing starch granules are shown. PMID:23009858

  14. Single-cell analysis and stochastic modelling unveil large cell-to-cell variability in influenza A virus infection

    PubMed Central

    Heldt, Frank S.; Kupke, Sascha Y.; Dorl, Sebastian; Reichl, Udo; Frensing, Timo

    2015-01-01

    Biochemical reactions are subject to stochastic fluctuations that can give rise to cell-to-cell variability. Yet, how this variability affects viral infections, which themselves involve noisy reactions, remains largely elusive. Here we present single-cell experiments and stochastic simulations that reveal a large heterogeneity between influenza A virus (IAV)-infected cells. In particular, experimental data show that progeny virus titres range from 1 to 970 plaque-forming units and intracellular viral RNA (vRNA) levels span three orders of magnitude. Moreover, the segmentation of IAV genomes seems to increase the susceptibility of their replication to noise, since the level of different genome segments can vary substantially within a cell. In addition, simulations suggest that the abortion of virus entry and random degradation of vRNAs can result in a large fraction of non-productive cells after single-hit infection. These results challenge current beliefs that cell population measurements and deterministic simulations are an accurate representation of viral infections. PMID:26586423

  15. Dynamic changes in protein interaction between AKAP95 and Cx43 during cell cycle progression of A549 cells

    PubMed Central

    Chen, Xiaoxuan; Kong, Xiangyu; Zhuang, Wenxin; Teng, Bogang; Yu, Xiuyi; Hua, Suhang; Wang, Su; Liang, Fengchao; Ma, Dan; Zhang, Suhui; Zou, Xuan; Dai, Yue; Yang, Wei; Zhang, Yongxing

    2016-01-01

    Here we show that A-kinase anchoring protein 95 (AKAP95) and connexin 43 (Cx43) dynamically interact during cell cycle progression of lung cancer A549 cells. Interaction between AKAP95 and Cx43 at different cell cycle phases was examined by tandem mass spectrometry(MS/MS), confocal immunofluorescence microscopy, Western blot, and co-immunoprecipitation(Co-IP). Over the course of a complete cell cycle, interaction between AKAP95 and Cx43 occurred in two stages: binding stage from late G1 to metaphase, and separating stage from anaphase to late G1. The binding stage was further subdivided into complex binding to DNA in interphase and complex separating from DNA in metaphase. In late G1, Cx43 translocated to the nucleus via AKAP95; in anaphase, Cx43 separated from AKAP95 and aggregated between two daughter nuclei. In telophase, Cx43 aggregated at the membrane of the cleavage furrow. After mitosis, Cx43 was absent from the furrow membrane and was located in the cytoplasm. Binding between AKAP95 and Cx43 was reduced by N-(2-[P-Bromocinnamylamino]-ethyl)-5-isoquinolinesulfonmide (H89) treatment and enhanced by Forskolin. dynamic interaction between AKAP95 and Cx43 varies with cell cycle progression to regulate multiple biological processes. PMID:26880274

  16. A novel human T-leukemia virus type 1 cell-to-cell transmission assay permits definition of SU glycoprotein amino acids important for infectivity.

    PubMed Central

    Delamarre, L; Rosenberg, A R; Pique, C; Pham, D; Dokhélar, M C

    1997-01-01

    Human T-leukemia virus type 1 (HTLV-1) envelope glycoproteins play a major role in viral transmission, which in the case of this virus occurs almost exclusively via cell-to-cell contact. Until very recently, the lack of an HTLV-1 infectivity assay precluded the determination of the HTLV-1 protein domains required for infectivity. Here, we describe an assay which allows the quantitative evaluation of HTLV-1 cell-to-cell transmission in a single round of infection. Using this assay, we demonstrate that in this system, cell-to-cell transmission is at least 100 times more efficient than transmission with free viral particles. We have examined 46 surface (SU) glycoprotein mutants in order to define the amino acids of the HTLV-1 SU glycoprotein required for full infectivity. We demonstrate that these amino acids are distributed along the entire length of the SU glycoprotein, including the N-terminus and C-terminus regions, which have not been previously defined as being important for HTLV-1 glycoprotein function. For most of the mutated glycoproteins, the capacity to mediate cell-to-cell transmission is correlated with the ability to induce formation of syncytia. This result indicates that the fusion capacity is the main factor responsible for infectivity mediated by the HTLV-1 SU envelope glycoprotein, as is the case for other retroviral glycoproteins. However, other factors must also intervene, since two of the mutated glycoproteins were correctly fusogenic but could not mediate cell-to-cell transmission. Existence of this phenotype shows that capacity for fusion is not sufficient to confer infectivity, even in cell-to-cell transmission, and could suggest that postfusion events involve the SU. PMID:8985345

  17. Reinforcing Efficacy of Interactions with Preferred and Nonpreferred Staff under Progressive-Ratio Schedules

    ERIC Educational Resources Information Center

    Jerome, Jared; Sturmey, Peter

    2008-01-01

    Research has not systematically assessed and validated preferences for staff in adults with developmental disabilities. Three adults with developmental disabilities (aged 32 to 43 years) identified preferred and nonpreferred staff using verbal and pictorial preference assessments. During break-point analyses with progressive-ratio schedules, all 3…

  18. Identification of a Novel Drug Lead That Inhibits HCV Infection and Cell-to-Cell Transmission by Targeting the HCV E2 Glycoprotein

    SciTech Connect

    Al Olaby, Reem R.; Cocquerel, Laurence; Zemla, Adam; Saas, Laure; Dubuisson, Jean; Vielmetter, Jost; Marcotrigiano, Joseph; Khan, Abdul Ghafoor; Catalan, Felipe Vences; Perryman, Alexander L.; Freundlich, Joel S.; Forli, Stefano; Levy, Shoshana; Balhorn, Rod; Azzazy, Hassan M.

    2014-10-30

    We report that Hepatitis C Virus (HCV) infects 200 million individuals worldwide. Although several FDA approved drugs targeting the HCV serine protease and polymerase have shown promising results, there is a need for better drugs that are effective in treating a broader range of HCV genotypes and subtypes without being used in combination with interferon and/or ribavirin. Recently, two crystal structures of the core of the HCV E2 protein (E2c) have been determined, providing structural information that can now be used to target the E2 protein and develop drugs that disrupt the early stages of HCV infection by blocking E2’s interaction with different host factors. Using the E2c structure as a template, we have created a structural model of the E2 protein core (residues 421–645) that contains the three amino acid segments that are not present in either structure. Computational docking of a diverse library of 1,715 small molecules to this model led to the identification of a set of 34 ligands predicted to bind near conserved amino acid residues involved in the HCV E2: CD81 interaction. We used surface plasmon resonance detection to screen the ligand set for binding to recombinant E2 protein, and the best binders were subsequently tested to identify compounds that inhibit the infection of Huh-7 cells by HCV. One compound, 281816, blocked E2 binding to CD81 and inhibited HCV infection in a genotype-independent manner with IC50’s ranging from 2.2 µM to 4.6 µM. 281816 blocked the early and late steps of cell-free HCV entry and also abrogated the cell-to-cell transmission of HCV. Collectively the results obtained with this new structural model of E2c suggest the development of small molecule inhibitors such as 281816 that target E2 and disrupt its interaction with CD81 may provide a new paradigm for HCV treatment.

  19. Identification of a Novel Drug Lead That Inhibits HCV Infection and Cell-to-Cell Transmission by Targeting the HCV E2 Glycoprotein

    DOE PAGESBeta

    Al Olaby, Reem R.; Cocquerel, Laurence; Zemla, Adam; Saas, Laure; Dubuisson, Jean; Vielmetter, Jost; Marcotrigiano, Joseph; Khan, Abdul Ghafoor; Catalan, Felipe Vences; Perryman, Alexander L.; et al

    2014-10-30

    We report that Hepatitis C Virus (HCV) infects 200 million individuals worldwide. Although several FDA approved drugs targeting the HCV serine protease and polymerase have shown promising results, there is a need for better drugs that are effective in treating a broader range of HCV genotypes and subtypes without being used in combination with interferon and/or ribavirin. Recently, two crystal structures of the core of the HCV E2 protein (E2c) have been determined, providing structural information that can now be used to target the E2 protein and develop drugs that disrupt the early stages of HCV infection by blocking E2’smore » interaction with different host factors. Using the E2c structure as a template, we have created a structural model of the E2 protein core (residues 421–645) that contains the three amino acid segments that are not present in either structure. Computational docking of a diverse library of 1,715 small molecules to this model led to the identification of a set of 34 ligands predicted to bind near conserved amino acid residues involved in the HCV E2: CD81 interaction. We used surface plasmon resonance detection to screen the ligand set for binding to recombinant E2 protein, and the best binders were subsequently tested to identify compounds that inhibit the infection of Huh-7 cells by HCV. One compound, 281816, blocked E2 binding to CD81 and inhibited HCV infection in a genotype-independent manner with IC50’s ranging from 2.2 µM to 4.6 µM. 281816 blocked the early and late steps of cell-free HCV entry and also abrogated the cell-to-cell transmission of HCV. Collectively the results obtained with this new structural model of E2c suggest the development of small molecule inhibitors such as 281816 that target E2 and disrupt its interaction with CD81 may provide a new paradigm for HCV treatment.« less

  20. Heparan Sulfate Proteoglycans May Promote or Inhibit Cancer Progression by Interacting with Integrins and Affecting Cell Migration

    PubMed Central

    Soares, Mariana A.; Teixeira, Felipe C. O. B.; Fontes, Miguel; Arêas, Ana Lúcia; Leal, Marcelo G.; Pavão, Mauro S. G.; Stelling, Mariana P.

    2015-01-01

    The metastatic disease is one of the main consequences of tumor progression, being responsible for most cancer-related deaths worldwide. This review intends to present and discuss data on the relationship between integrins and heparan sulfate proteoglycans in health and cancer progression. Integrins are a family of cell surface transmembrane receptors, responsible for cell-matrix and cell-cell adhesion. Integrins' main functions include cell adhesion, migration, and survival. Heparan sulfate proteoglycans (HSPGs) are cell surface molecules that play important roles as cell receptors, cofactors, and overall direct or indirect contributors to cell organization. Both molecules can act in conjunction to modulate cell behavior and affect malignancy. In this review, we will discuss the different contexts in which various integrins, such as α5, αV, β1, and β3, interact with HSPGs species, such as syndecans and perlecans, affecting tissue homeostasis. PMID:26558271

  1. Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner

    SciTech Connect

    Takegahara, Yuki; Yamanouchi, Keitaro Nakamura, Katsuyuki; Nakano, Shin-ichi; Nishihara, Masugi

    2014-05-15

    Intramuscular adipose tissue (IMAT) formation is observed in some pathological conditions such as Duchenne muscular dystrophy (DMD) and sarcopenia. Several studies have suggested that IMAT formation is not only negatively correlated with skeletal muscle mass but also causes decreased muscle contraction in sarcopenia. In the present study, we examined w hether adipocytes affect myogenesis. For this purpose, skeletal muscle progenitor cells were transfected with siRNA of PPARγ (siPPARγ) in an attempt to inhibit adipogenesis. Myosin heavy chain (MHC)-positive myotube formation was promoted in cells transfected with siPPARγ compared to that of cells transfected with control siRNA. To determine whether direct cell-to-cell contact between adipocytes and myoblasts is a prerequisite for adipocytes to affect myogenesis, skeletal muscle progenitor cells were cocultured with pre- or mature adipocytes in a Transwell coculture system. MHC-positive myotube formation was inhibited when skeletal muscle progenitor cells were cocultured with mature adipocytes, but was promoted when they were cocultured with preadipocytes. Similar effects were observed when pre- or mature adipocyte-conditioned medium was used. These results indicate that preadipocytes play an important role in maintaining skeletal muscle mass by promoting myogenesis; once differentiated, the resulting mature adipocytes negatively affect myogenesis, leading to the muscle deterioration observed in skeletal muscle pathologies. - Highlights: • We examined the effects of pre- and mature adipocytes on myogenesis in vitro. • Preadipocytes and mature adipocytes affect myoblast fusion. • Preadipocytes play an important role in maintaining skeletal muscle mass. • Mature adipocytes lead to muscle deterioration observed in skeletal muscle pathologies.

  2. Cell-to-cell pathway dominates xylem-epidermis hydraulic connection in Tradescantia fluminensis (Vell. Conc.) leaves.

    PubMed

    Ye, Qing; Holbrook, N Michele; Zwieniecki, Maciej A

    2008-05-01

    A steady supply of water is indispensable for leaves to fulfil their photosynthetic function. Understanding water movement in leaves, especially factors that regulate the movement of water flux from xylem to epidermis, requires that the nature of the transport pathway be elucidated. To determine the hydraulic linkage between xylem and epidermis, epidermal cell turgor pressure (P (t)) in leaves of Tradescantia fluminensis was monitored using a cell pressure probe in response to a 0.2 MPa step change in xylem pressure applied at the leaf petiole. Halftime of P (t) changes (T(x)(1/2)) were 10-30 times greater than that of water exchange across an individual cell membrane (T(m)(1/2)) suggesting that cell-to-cell water transport constitutes a significant part of the leaf hydraulic path from xylem to epidermis. Furthermore, perfusion of H(2)O(2) resulted in increases of both T(m)(1/2) and T(x)(1/2) by a factor of 2.5, indicating that aquaporins may play a role in the xylem to epidermis hydraulic link. The halftime for water exchange (T(m)(1/2)) did not differ significantly between cells located at the leaf base (2.5 s), middle (2.6 s) and tip (2.5 s), indicating that epidermal cell hydraulic properties are similar along the length of the leaf. Following the pressure application to the xylem (0.2 MPa), P (t) changed by 0.12, 0.06 and 0.04 MPa for epidermal cells at the base, middle and the tip of the leaf, respectively. This suggests that pressure dissipation between xylem and epidermis is significant, and that the pressure drop along the vein may be due to its structural similarities to a porous pipe, an idea which was further supported by measurements of xylem hydraulic resistance using a perfusion technique. PMID:18273638

  3. Vasodilator-stimulated phosphoprotein restricts cell-to-cell spread of Shigella flexneri at the cell periphery.

    PubMed

    Lee, Soo Young; Gertler, Frank B; Goldberg, Marcia B

    2015-11-01

    Shigella spp. are intracellular bacterial pathogens that cause diarrhoeal disease in humans. Shigella utilize the host actin cytoskeleton to enter cells, move through the cytoplasm of cells and pass into adjacent cells. Ena/VASP family proteins are highly conserved proteins that participate in actin-dependent dynamic cellular processes. We tested whether Ena/VASP family members VASP (vasodilator-stimulated phosphoprotein), Mena (mammalian-enabled) or EVL (Ena-VASP-like) contribute to Shigella flexneri spread through cell monolayers. VASP and EVL restricted cell-to-cell spread without significantly altering actin-based motility, whereas Mena had no effect on these processes. Phosphorylation of VASP on Ser153, Ser235 and Thr274 regulated its subcellular distribution and function. VASP derivatives that lack the Ena/VASP homology 1 (EVH1) domain or contain a phosphoablative mutation of Ser153 were defective in restricting S. flexneri spread, indicating that the EVH1 domain and phosphorylation on Ser153 are required for this process. The EVH1 domain and Ser153 of VASP were required for VASP localization to focal adhesions, and localization of VASP to focal adhesions and/or the leading edge was required for restriction of spread. The contribution of the EVH1 domain was from both the donor and the recipient cell, whereas the contribution of Ser153 phosphorylation was only from the donor cell. Thus, unlike host proteins characterized in Shigella pathogenesis that promote bacterial spread, VASP and EVL function to limit it. The ability of VASP and EVL to limit spread highlights the critical role of focal adhesion complexes and/or the leading edge in bacterial passage between cells. PMID:26358985

  4. Structural Studies of Chikungunya Virus-Like Particles Complexed with Human Antibodies: Neutralization and Cell-to-Cell Transmission

    PubMed Central

    Mangala Prasad, Vidya; Wang, Cheng-I; Akahata, Wataru; Ng, Lisa F. P.

    2015-01-01

    ABSTRACT Chikungunya virus is a positive-stranded RNA alphavirus. Structures of chikungunya virus-like particles in complex with strongly neutralizing antibody Fab fragments (8B10 and 5F10) were determined using cryo-electron microscopy and X-ray crystallography. By fitting the crystallographically determined structures of these Fab fragments into the cryo-electron density maps, we show that Fab fragments of antibody 8B10 extend radially from the viral surface and block receptor binding on the E2 glycoprotein. In contrast, Fab fragments of antibody 5F10 bind the tip of the E2 B domain and lie tangentially on the viral surface. Fab 5F10 fixes the B domain rigidly to the surface of the virus, blocking exposure of the fusion loop on glycoprotein E1 and therefore preventing the virus from becoming fusogenic. Although Fab 5F10 can neutralize the wild-type virus, it can also bind to a mutant virus without inhibiting fusion or attachment. Although the mutant virus is no longer able to propagate by extracellular budding, it can, however, enter the next cell by traveling through junctional complexes without being intercepted by a neutralizing antibody to the wild-type virus, thus clarifying how cell-to-cell transmission can occur. IMPORTANCE Alphaviral infections are transmitted mainly by mosquitoes. Chikungunya virus (CHIKV), which belongs to the Alphavirus genus, has a wide distribution in the Old World that has expanded in recent years into the Americas. There are currently no vaccines or drugs against alphaviral infections. Therefore, a better understanding of CHIKV and its associated neutralizing antibodies will aid in the development of effective treatments. PMID:26537684

  5. Xanthomonas campestris overcomes Arabidopsis stomatal innate immunity through a DSF cell-to-cell signal-regulated virulence factor.

    PubMed

    Gudesblat, Gustavo E; Torres, Pablo S; Vojnov, Adrián A

    2009-02-01

    Pathogen-induced stomatal closure is part of the plant innate immune response. Phytopathogens using stomata as a way of entry into the leaf must avoid the stomatal response of the host. In this article, we describe a factor secreted by the bacterial phytopathogen Xanthomonas campestris pv campestris (Xcc) capable of interfering with stomatal closure induced by bacteria or abscisic acid (ABA). We found that living Xcc, as well as ethyl acetate extracts from Xcc culture supernatants, are capable of reverting stomatal closure induced by bacteria, lipopolysaccharide, or ABA. Xcc ethyl acetate extracts also complemented the infectivity of Pseudomonas syringae pv tomato (Pst) mutants deficient in the production of the coronatine toxin, which is required to overcome stomatal defense. By contrast, the rpfF and rpfC mutant strains of Xcc, which are unable to respectively synthesize or perceive a diffusible molecule involved in bacterial cell-to-cell signaling, were incapable of reverting stomatal closure, indicating that suppression of stomatal response by Xcc requires an intact rpf/diffusible signal factor system. In addition, we found that guard cell-specific Arabidopsis (Arabidopsis thaliana) Mitogen-Activated Protein Kinase3 (MPK3) antisense mutants were unresponsive to bacteria or lipopolysaccharide in promotion of stomatal closure, and also more sensitive to Pst coronatine-deficient mutants, showing that MPK3 is required for stomatal immune response. Additionally, we found that, unlike in wild-type Arabidopsis, ABA-induced stomatal closure in MPK3 antisense mutants is not affected by Xcc or by extracts from Xcc culture supernatants, suggesting that the Xcc factor might target some signaling component in the same pathway as MPK3. PMID:19091877

  6. Elementary particle interactions. Progress report, October 1, 1994--September 30, 1995

    SciTech Connect

    Bugg, W.M.; Condo, G.T.; Handler, T.; Hart, E.L.; Read, K.; Siopsis, G.; Ward, B.F.L.

    1995-10-01

    This year has been a busy and demanding one with completion of a long SLD run, much progress on light quark states from E-687 resulting in strong evidence for two new states, observation in E-144 of non-linear Compton scattering (multiphoton absorption by electrons) up to N-4 and initial evidence for e{sup +}e{sup {minus}} pair production in Compton process. The authors have also made considerable progress toward preparation for a n-{bar n} oscillation experiment and have carried out experimental studies of quartz fiber calorimetry for SLD polarimeter and forward calorimeter for CMS and LHC including a thorough set of gamma ray and neutron radiation damage studies on quartz fiber. Two graduate students received their Ph.D.s this year, Kathy Danyo Blackett on data from Fermilab E-687 and Sharon White on SLD radiative Bhabha scattering.

  7. Mutational analysis of the RNA-binding domain of the Prunus necrotic ringspot virus (PNRSV) movement protein reveals its requirement for cell-to-cell movement

    SciTech Connect

    Carmen Herranz, Ma; Mingarro, Ismael; Pallas, Vicente . E-mail: vpallas@ibmcp.upv.es

    2005-08-15

    The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is required for cell-to-cell movement. MP subcellular localization studies using a GFP fusion protein revealed highly punctate structures between neighboring cells, believed to represent plasmodesmata. Deletion of the RNA-binding domain (RBD) of PNRSV MP abolishes the cell-to-cell movement. A mutational analysis on this RBD was performed in order to identify in vivo the features that govern viral transport. Loss of positive charges prevented the cell-to-cell movement even though all mutants showed a similar accumulation level in protoplasts to those observed with the wild-type (wt) MP. Synthetic peptides representing the mutants and wild-type RBDs were used to study RNA-binding affinities by EMSA assays being approximately 20-fold lower in the mutants. Circular dichroism analyses revealed that the secondary structure of the peptides was not significantly affected by mutations. The involvement of the affinity changes between the viral RNA and the MP in the viral cell-to-cell movement is discussed.

  8. Mechanical interactions of rough surfaces. Quarterly progress report, July 1-September 30, 1986

    SciTech Connect

    McCool, J.I.

    1986-09-01

    Objectives are to study lubricated contacts of rough surfaces under combined rolling, sliding, and spinning, and to develop techniques for analyzing digitized rough surface profiles. A summary is presented of annual progress and of the papers presented at conferences and those published. An example is given of the use of the computer tool MICROCOND. Rq (surface roughness), q, and microfracture data are discussed for silicon nitride coupons. (DLC)

  9. MMP3-Mediated tumor progression is controlled transcriptionally by a novel IRF8-MMP3 interaction

    PubMed Central

    Banik, Debarati; Netherby, Colleen S.; Bogner, Paul N.; Abrams, Scott I.

    2015-01-01

    Interferon regulatory factor-8 (IRF8), originally identified as a leukemic tumor suppressor, can also exert anti-neoplastic activities in solid tumors. We previously showed that IRF8-loss enhanced tumor growth, which was accompanied by reduced tumor-cell susceptibility to apoptosis. However, the impact of IRF8 expression on tumor growth could not be explained solely by its effects on regulating apoptotic response. Exploratory gene expression profiling further revealed an inverse relationship between IRF8 and MMP3 expression, implying additional intrinsic mechanisms by which IRF8 modulated neoplastic behavior. Although MMP3 expression was originally linked to tumor initiation, the role of MMP3 beyond this stage has remained unclear. Therefore, we hypothesized that MMP3 governed later stages of disease, including progression to metastasis, and did so through a novel IRF8-MMP3 axis. Altogether, we showed an inverse mechanistic relationship between IRF8 and MMP3 expression in tumor progression. Importantly, the growth advantage due to IRF8-loss was significantly compromised after silencing MMP3 expression. Moreover, MMP3-loss reduced spontaneous lung metastasis in an orthotopic mouse model of mammary carcinoma. MMP3 acted, in part, in a cell-intrinsic manner and served as a direct transcriptional target of IRF8. Thus, we identified a novel role of an IRF8-MMP3 axis in tumor progression, which unveils new therapeutic opportunities. PMID:26008967

  10. Elementary particle interactions. Progress report, October 1, 1991--September 30, 1992

    SciTech Connect

    Bugg, W.M.; Condo, G.T.; Handler, T.; Hart, E.L.; Read, K.; Ward, B.F.L.

    1992-10-01

    Work continues on strange particle production in weak interactions using data from a high-energy neutrino exposure in a freon bubble chamber. Meson photoproduction has also consumed considerable effort. Detector research and development activities have been carried out.

  11. Experimental studies of pion-nucleus interactions at intermediate energies. Annual progress report

    SciTech Connect

    Not Available

    1991-12-31

    This report summarizes the work on experimental research in intermediate energy nuclear physics carried out at New Mexico State University in 1991 under a great from the US Department of Energy. Most of these studies have involved investigations of various pion-nucleus interactions. The work has been carried out both with the LAMPF accelerator at the Los Alamos National Laboratory and with the cyclotron at the Paul Scherrer Institute (PSI) near Zurich, Switzerland. Part of the experimental work involves measurements of new data on double-charge-exchange scattering, using facilities at LAMPF which we helped modify, and on pion absorption, using a new detector system at PSI that covers nearly the full solid-angle region which we helped construct. Other work involved preparation for future experiments using polarized nuclear targets and a new high-resolution spectrometer system for detecting {pi}{sup 0} mesons. We also presented several proposals for works to be done in future years, involving studies related to pi-mesonic atoms, fundamental pion-nucleon interactions, studies of the difference between charged and neutral pion interactions with the nucleon, studies of the isospin structure of pion-nucleus interactions, and pion scattering from polarized {sup 3}He targets. This work is aimed at improving our understanding of the pion-nucleon interaction, of the pion-nucleus interaction mechanism, and of nuclear structure.

  12. Pharmacologic inhibition of the menin-MLL interaction blocks progression of MLL leukemia in vivo

    PubMed Central

    Borkin, Dmitry; He, Shihan; Miao, Hongzhi; Kempinska, Katarzyna; Pollock, Jonathan; Chase, Jennifer; Purohit, Trupta; Malik, Bhavna; Zhao, Ting; Wang, Jingya; Wen, Bo; Zong, Hongliang; Jones, Morgan; Danet-Desnoyers, Gwenn; Guzman, Monica L.; Talpaz, Moshe; Bixby, Dale L.; Sun, Duxin; Hess, Jay L.; Muntean, Andrew G.; Maillard, Ivan; Cierpicki, Tomasz; Grembecka, Jolanta

    2015-01-01

    Summary Chromosomal translocations affecting Mixed Lineage Leukemia gene (MLL) result in acute leukemias resistant to therapy. The leukemogenic activity of MLL fusion proteins is dependent on their interaction with menin, providing basis for therapeutic intervention. Here we report development of highly potent and orally bioavailable small molecule inhibitors of the menin-MLL interaction, MI-463 and MI-503, show their profound effects in MLL leukemia cells and substantial survival benefit in mouse models of MLL leukemia. Finally, we demonstrate efficacy of these compounds in primary samples derived from MLL leukemia patients. Overall, we demonstrate that pharmacologic inhibition of the menin-MLL interaction represents an effective treatment for MLL leukemias in vivo and provide advanced molecular scaffold for clinical lead identification. PMID:25817203

  13. Further Progress on a Design for a Super-B Interaction Region

    SciTech Connect

    Sullivan, M; Bertsche, K.; Seeman, J.; Wienands, U.; Biagini, M.E.; Raimondi, P.; Paoloni, E.; Bettoni, S.; /CERN

    2009-05-20

    We present an improved design for a SuperB interaction region. The new design minimizes local bending of the two colliding beams by separating all beam magnetic elements near the Interaction Point (IP). The total crossing angle at the IP is increased from 48 mrad to 60 mrad. The first magnetic element is a six slice Permanent Magnet (PM) quadrupole with an elliptical aperture allowing us to increase the vertical space for the beam. This magnet starts 36 cm from the Interaction Point (IP). This magnet is only seen by the Low-Energy Beam (LEB), the High-Energy Beam (HEB) has a drift space at this location. This allows the preliminary focusing of the LEB which has a smaller beta y* at the IP than the HEB. The rest of the final focusing for both beams is achieved by two super-conducting side-by-side quadrupoles (QD0 and QF1). These sets of magnets are enclosed in a warm bore cryostat located behind the PM quadrupole for the LEB. We describe this design for the interaction region.

  14. Current progress on genetic interactions of rice with rice blast and sheath blight fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analysis of genetic interactions between rice and its pathogenic fungi Magnaporthe oryzae and Rhizoctonia solani should lead to a better understanding of molecular mechanisms of host resistance, and the improvement of strategies to manage rice blast and sheath blight diseases. Presently dozens of ri...

  15. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2015

    EPA Science Inventory

    The Environmental Effects Assessment Panel (EEAP) is one of three Panels that regularly informs the Parties (countries) to the Montreal Protocol on the effects of ozone depletion and the consequences of climate change interactions with respect to human health, animals, plants, bi...

  16. Electric Cell-Substrate Impedance Sensing (ECIS) with Microelectrode Arrays for Investigation of Cancer Cell – Fibroblasts Interaction

    PubMed Central

    Tran, Trong Binh; Baek, Changyoon; Min, Junhong

    2016-01-01

    The tumor microenvironment, including stromal cells, surrounding blood vessels and extracellular matrix components, has been defined as a crucial factor that influences the proliferation, drug-resistance, invasion and metastasis of malignant epithelial cells. Among other factors, the communications and interaction between cancer cells and stromal cells have been reported to play pivotal roles in cancer promotion and progression. To investigate these relationships, an on-chip co-culture model was developed to study the cellular interaction between A549—human lung carcinoma cells and MRC-5—human lung epithelial cells in both normal proliferation and treatment conditions. In brief, a co-culture device consisting of 2 individual fluidic chambers in parallel, which were separated by a 100 μm fence was utilized for cell patterning. Microelectrodes arrays were installed within each chamber including electrodes at various distances away from the confrontation line for the electrochemical impedimetric sensing assessment of cell-to-cell influence. After the fence was removed and cell-to-cell contact occurred, by evaluating the impedance signal responses representing cell condition and behavior, both direct and indirect cell-to-cell interactions through conditioned media were investigated. The impact of specific distances that lead to different influences of fibroblast cells on cancer cells in the co-culture environment was also defined. PMID:27088611

  17. [The mechanism of progression without androgen receptor interaction in prostate cancer].

    PubMed

    Matsuyama, Hideyasu; Matsumoto, Hiroaki

    2016-01-01

    Recently, new generation androgen receptor (AK) targeted agents enzautamide or abiraterone etc.) has been clinically utilized in patients with castration-resistant prostate cancer (CRPC). However, metastatic CRPC has also AR-independent survival pathway which leads to lethal phenotype by either adaptation or clonal selection resistant mechanism after AR targeted therapy. There are many studies regarding the progression mechanisms without AR signal transduction, such as growth factor, anti-apoptotic factor, and PTEN/mTOR pathway and so on. Also, cancer microenvironment and cancer stem cell is a hot research area for CRPC. It is very important to repress both AR-dependent and -independent signaling pathway to improve the clinical outcome in CRPC patients. Application of the new technology, such as next generation sequencing, would be developing for the prostate cancer research, providing pre-clinical proof-of-principle as a promising approach in CRPC. PMID:26793881

  18. The Extracellular Domain of Herpes Simplex Virus gE Is Indispensable for Efficient Cell-to-Cell Spread: Evidence for gE/gI Receptors

    PubMed Central

    Polcicova, Katarina; Goldsmith, Kim; Rainish, Barb L.; Wisner, Todd W.; Johnson, David C.

    2005-01-01

    Herpes simplex virus (HSV) spreads rapidly and efficiently within epithelial and neuronal tissues. The HSV glycoprotein heterodimer gE/gI plays a critical role in promoting cell-to-cell spread but does not obviously function during entry of extracellular virus into cells. Thus, gE/gI is an important molecular handle on the poorly understood process of cell-to-cell spread. There was previous evidence that the large extracellular (ET) domains of gE/gI might be important in cell-to-cell spread. First, gE/gI extensively accumulates at cell junctions, consistent with being tethered there. Second, expression of gE/gI in trans interfered with HSV spread between epithelial cells. To directly test whether the gE ET domain was necessary for gE/gI to promote virus spread, a panel of gE mutants with small insertions in the ET domain was constructed. Cell-to-cell spread was reduced when insertions were made within either of two regions, residues 256 to 291 or 348 to 380. There was a strong correlation between loss of cell-to-cell spread function and binding of immunoglobulin. gE ET domain mutants 277, 291, and 348 bound gI, produced mature forms of gE that reached the cell surface, and were incorporated into virions yet produced plaques similar to gE null mutants. Moreover, all three mutants were highly restricted in spread within the corneal epithelium, in the case of mutant 277 to only 4 to 6% of the number of cells compared with wild-type HSV. Therefore, the ET domain of gE is indispensable for efficient cell-to-cell spread. These observations are consistent with our working hypothesis that gE/gI can bind extracellular ligands, so-called gE/gI receptors that are concentrated at epithelial cell junctions. This fits with similarities in structure and function of gE/gI and gD, which is a receptor binding protein. PMID:16140775

  19. New Insights into the Understanding of Hepatitis C Virus Entry and Cell-to-Cell Transmission by Using the Ionophore Monensin A

    PubMed Central

    Fénéant, Lucie; Potel, Julie; François, Catherine; Sané, Famara; Douam, Florian; Belouzard, Sandrine; Calland, Noémie; Vausselin, Thibaut; Rouillé, Yves; Descamps, Véronique; Baumert, Thomas F.; Duverlie, Gilles; Lavillette, Dimitri; Hober, Didier; Dubuisson, Jean; Wychowski, Czeslaw

    2015-01-01

    ABSTRACT In our study, we characterized the effect of monensin, an ionophore that is known to raise the intracellular pH, on the hepatitis C virus (HCV) life cycle. We showed that monensin inhibits HCV entry in a pangenotypic and dose-dependent manner. Monensin induces an alkalization of intracellular organelles, leading to an inhibition of the fusion step between viral and cellular membranes. Interestingly, we demonstrated that HCV cell-to-cell transmission is dependent on the vesicular pH. Using the selective pressure of monensin, we selected a monensin-resistant virus which has evolved to use a new entry route that is partially pH and clathrin independent. Characterization of this mutant led to the identification of two mutations in envelope proteins, the Y297H mutation in E1 and the I399T mutation in hypervariable region 1 (HVR1) of E2, which confer resistance to monensin and thus allow HCV to use a pH-independent entry route. Interestingly, the I399T mutation introduces an N-glycosylation site within HVR1 and increases the density of virions and their sensitivity to neutralization with anti-apolipoprotein E (anti-ApoE) antibodies, suggesting that this mutation likely induces conformational changes in HVR1 that in turn modulate the association with ApoE. Strikingly, the I399T mutation dramatically reduces HCV cell-to-cell spread. In summary, we identified a mutation in HVR1 that overcomes the vesicular pH dependence, modifies the biophysical properties of particles, and drastically reduces cell-to-cell transmission, indicating that the regulation by HVR1 of particle association with ApoE might control the pH dependence of cell-free and cell-to-cell transmission. Thus, HVR1 and ApoE are critical regulators of HCV propagation. IMPORTANCE Although several cell surface proteins have been identified as entry factors for hepatitis C virus (HCV), the precise mechanisms regulating its transmission to hepatic cells are still unclear. In our study, we used monensin A, an

  20. Progress in the development and application of small molecule inhibitors of bromodomain-acetyl-lysine interactions.

    PubMed

    Hewings, David S; Rooney, Timothy P C; Jennings, Laura E; Hay, Duncan A; Schofield, Christopher J; Brennan, Paul E; Knapp, Stefan; Conway, Stuart J

    2012-11-26

    Bromodomains, protein modules that recognize and bind to acetylated lysine, are emerging as important components of cellular machinery. These acetyl-lysine (KAc) "reader" domains are part of the write-read-erase concept that has been linked with the transfer of epigenetic information. By reading KAc marks on histones, bromodomains mediate protein-protein interactions between a diverse array of partners. There has been intense activity in developing potent and selective small molecule probes that disrupt the interaction between a given bromodomain and KAc. Rapid success has been achieved with the BET family of bromodomains, and a number of potent and selective probes have been reported. These compounds have enabled linking of the BET bromodomains with diseases, including cancer and inflammation, suggesting that bromodomains are druggable targets. Herein, we review the biology of the bromodomains and discuss the SAR for the existing small molecule probes. The biology that has been enabled by these compounds is summarized. PMID:22924434

  1. PROGRESS ON THE INTERACTION REGION DESIGN AND DETECTOR INTEGRATION AT JLAB'S MEIC

    SciTech Connect

    Morozov, Vasiliy; Brindza, Paul; Camsonne, Alexandre; Derbenev, Yaroslav; Ent, Rolf; Gaskell, David; Lin, Fanglei; Nadel-Turonski, Pawel; Ungaro, Maurizio; Zhang, Yuhong; Hyde, Charles; Park, Kijun; Sullivan, Michael; Zhao, Zhiwen

    2014-07-01

    One of the unique features of JLab's Medium-energy Electron-Ion Collider (MEIC) is a full-acceptance detector with a dedicated, small-angle, high-resolution detection system, capable of covering a wide range of momenta (and charge-to-mass ratios) with respect to the original ion beam to enable access to new physics. We present an interaction region design developed with close integration of the detection and beam dynamical aspects. The dynamical aspect of the design rests on a symmetry-based concept for compensation of non-linear effects. The optics and geometry have been optimized to accommodate the detection requirements and to ensure the interaction region's modularity for ease of integration into the collider ring lattices. As a result, the design offers an excellent detector performance combined with the necessary provisions for non-linear dynamical optimization.

  2. [The interaction of ferredoxin:NADP{sup +} oxidoreductase and ferredoxin:thioredoxin reductase with substrates]. Progress report

    SciTech Connect

    Not Available

    1992-09-01

    We seek to map the ferredoxin-binding sites on three soluble enzymes located in spinach chloroplasts which utilize ferredoxin as an electron donor:Ferredoxin:NADP{sup +}oxidoreductase (FNR); ferredoxin:thioredoxin reductase (FTR) and glutamate synthase. As the availability of amino acid sequences for the enzymes are important in such studies, that the amino acid sequence of glutamate synthase needs be determined, the amino acid sequences of FNR, FTR and ferredoxin are already known. Related to an aim elucidate the binding sites for ferredoxin to determine whether there is a common binding site on all of these ferredoxin-dependent chloroplast enzymes and, if so, to map it. Additionally thioredoxin binding by FTR needs be determine to resolve whether the same site on FTR is involved in binding both ferredoxin and thioredoxin. Considerable progress is reported on the prosthetic groups of glutamate synthase, in establishing the role of arginine and lysine residues in ferredoxin binding by, ferredoxin:nitrite oxidoreductase nitrite reductase, labelling carboxyl groups on ferredoxin with taurine and labelling lysine residues biotinylation, and low potential heme proteins have been isolated and characterized from a non-photosynthetic plant tissue. Although the monoclonal antibodies raised against FNR turned out not to be useful for mapping the FNR/ferredoxin or FNR/NADPinteraction domains, good progress has been made on mapping the FNR/ferredoxin interaction domains by an alternative technique. The techniques developed for differential chemical modification of these two proteins - taurine modification of aspartate and glutamate residues and biotin modification of lysine residues - should be useful for mapping the interaction domains of many proteins that associate through electrostatic interactions.

  3. Progressive acclimation alters interaction between salinity and temperature in experimental Daphnia populations.

    PubMed

    Loureiro, Cláudia; Cuco, Ana P; Claro, Maria Teresa; Santos, Joana I; Pedrosa, M Arminda; Gonçalves, Fernando; Castro, Bruno B

    2015-11-01

    Environmental stressors rarely act in isolation, giving rise to interacting environmental change scenarios. However, the impacts of such interactions on natural populations must consider the ability of organisms to adapt to environmental changes. The phenotypic adaptability of a Daphnia galeata clone to temperature rise and salinisation was investigated in this study, by evaluating its halotolerance at two different temperatures, along a short multigenerational acclimation scenario. Daphniids were acclimated to different temperatures (20°C and 25°C) and salinities (0gL(-1) and 1gL(-1), using NaCl as a proxy) in a fully crossed design. The objective was to understand whether acclimation to environmental stress (combinations of temperature and salinity) influenced the response to the latter exposure to these stressors. We hypothesize that acclimation to different temperature×salinity regimes should elicit an acclimation response of daphniids to saline stress or its interaction with temperature. Acute (survival time) and chronic (juvenile growth) halotolerance measures were obtained at discrete timings along the acclimation period (generations F1, F3 and F9). Overall, exposure temperature was the main determinant of the acute and chronic toxicity of NaCl: daphniid sensitivity (measured as the decrease of survival time or juvenile growth) was consistently higher at the highest temperature, irrespective of background conditions. However, this temperature-dependent effect was nullified after nine generations, but only when animals had been acclimated to both stressors (high salinity and high temperature). Such complex interaction scenarios should be taken in consideration in risk assessment practices. PMID:26079923

  4. Numerical and laboratory experiments on the dynamics of plume-ridge interaction. Progress report

    SciTech Connect

    Kincaid, C.; Gable, C.W.

    1995-09-01

    Mantle plumes and passive upwelling beneath ridges are the two dominant modes of mantle transport and thermal/chemical fluxing between the Earth`s deep interior and surface. While plumes and ridges independently contribute to crustal accretion, they also interact and the dispersion of plumes within the upper mantle is strongly modulated by mid-ocean ridges. The simplest mode of interaction, with the plume centered on the ridge, has been well documented and modeled. The remaining question is how plumes and ridges interact when the plume is located off-axis; it has been suggested that a pipeline-like flow from the off-axis plume to the ridge axis at the base of the rigid lithosphere may develop. Mid-ocean ridges migrating away from hot mantle plumes can be affected by plume discharges over long times and ridge migration distances. Salient feature of this model is that off-axis plumes communicate with the ridge through a channel resulting from the refraction and dispersion of an axi-symmetric plume conduit along the base of the sloping lithosphere. To test the dynamics of this model, a series of numerical and laboratory dynamic experiments on the problem of a fixed ridge and an off-axis buoyant upwelling were conducted. Results are discussed.

  5. Recent Progress on Nonlinear Schrödinger Systems with Quadratic Interactions

    PubMed Central

    Li, Chunhua; Hayashi, Nakao

    2014-01-01

    The study of nonlinear Schrödinger systems with quadratic interactions has attracted much attention in the recent years. In this paper, we summarize time decay estimates of small solutions to the systems under the mass resonance condition in 2-dimensional space. We show the existence of wave operators and modified wave operators of the systems under some mass conditions in n-dimensional space, where n ≥ 2. The existence of scattering operators and finite time blow-up of the solutions for the systems in higher space dimensions is also shown. PMID:25143965

  6. Origins of Cell-to-Cell Bioprocessing Diversity and Implications of the Extracellular Environment Revealed at the Single-Cell Level

    PubMed Central

    Vasdekis, A. E.; Silverman, A. M.; Stephanopoulos, G.

    2015-01-01

    Bioprocess limitations imposed by microbial cell-to-cell phenotypic diversity remain poorly understood. To address this, we investigated the origins of such culture diversity during lipid production and assessed the impact of the fermentation microenvironment. We measured the single-cell lipid production dynamics in a time-invariant microfluidic environment and discovered that production is not monotonic, but rather sporadic with time. To characterize this, we introduce bioprocessing noise and identify its epigenetic origins. We linked such intracellular production fluctuations with cell-to-cell productivity diversity in culture. This unmasked the phenotypic diversity amplification by the culture microenvironment, a critical parameter in strain engineering as well as metabolic disease treatment. PMID:26657999

  7. The DIII-D Boundary/Plasma Materials Interaction Center (BPMIC): Progress and Prospects

    NASA Astrophysics Data System (ADS)

    Thomas, D.

    2015-11-01

    The boundary of a putative fusion reactor remains a key unresolved issue in the development of useful fusion energy. The BPMIC was established to develop validated boundary/PMI solutions for burning plasma devices by leveraging the existing DIII-D resources in well controlled, variable geometry edge plasmas and extensive boundary diagnostic set. During the first part of the 2015 campaign we have made significant progress in experiments designed to isolate specific known boundary and PMI physics issues and provide data for challenging existing analytical modeling tools such as the SOLPS suite and UEDGE. Topics include characterizing the relation between upstream and divertor parameters, the separate effects of closure and local magnetic geometry on detachment performance, leading edge tungsten erosion studies, and scaling relationships for the divertor heat flux width. This poster summarizes results from these experiments and will describe our high-level goals for the remainder of the 2015 campaign as well as for the 2016 campaign where we plan a campaign to study high-Z material migration and integration. Work supported by the US Department of Energy under DE-FC02-04ER54698.

  8. Pharmacogenomic interaction between the Haptoglobin genotype and vitamin E on atherosclerotic plaque progression and stability

    PubMed Central

    Veiner, Hilla-Lee; Gorbatov, Rostic; Vardi, Moshe; Doros, Gheorghe; Miller-Lotan, Rachel; Zohar, Yaniv; Sabo, Edmond; Asleh, Rabea; Levy, Nina S.; Goldfarb, Levi J.; Berk, Thomas A.; Haas, Tali; Shalom, Hadar; Suss-Toby, Edith; Kam, Adi; Kaplan, Marielle; Tamir, Ronit; Ziskind, Anna; Levy, Andrew P.

    2015-01-01

    Structured Abstract Objective Homozygosity for a 1.7kb intragenic duplication of the Haptoglobin (Hp) gene (Hp 2-2 genotype), present in 36% of the population, has been associated with a 2–3 fold increased incidence of atherothrombosis in individuals with Diabetes (DM) in 10 longitudinal studies compared to DM individuals not homozygous for this duplication (Hp 1-1/2-1). The increased CVD risk associated with the Hp 2-2 genotype has been shown to be prevented with vitamin E supplementation in man. We sought to determine if there was an interaction between the Hp genotype and vitamin E on atherosclerotic plaque growth and stability in a transgenic model of the Hp polymorphism. Methods and Results Brachiocephalic artery atherosclerotic plaque volume was serially assessed by high resolution ultrasound in 28 Hp 1-1 and 26 Hp 2-2 mice in a C57Bl/6 ApoE−/− background. Hp 2-2 mice had more rapid plaque growth and an increased incidence of plaque hemorrhage and rupture. Vitamin E significantly reduced plaque growth in Hp 2-2 but not in Hp 1-1 mice with a significant pharmacogenomic interaction between the Hp genotype and vitamin E on plaque growth. Conclusions These results may help explain why vitamin E supplementation in man can prevent CVD in Hp 2-2 DM but not in non Hp 2-2 DM individuals. PMID:25618031

  9. Polycyclic aromatic hydrocarbon: protein interactions. Progress report, March 1, 1980-February 28, 1981

    SciTech Connect

    Fujimori, E.

    1980-11-01

    Interacting with bovine serum albumin (BSA), both the very weak carcinogenic hydrocarbon benzo(e)pyrene (Bep) and the powerful carcinogen benzo(a)pyrene (BaP) form pyrene-type compounds, indicating chemical modification at the bay region of the molecules. In constrast to the BaP-BSA reaction apparently similar to the metabolic activation to the bay region oxidation product, the BeP-BSA reaction differs from the known metabolic change of BeP which occurs at the K-region. While the BaP-BSA reaction also produces a BaP radical as well as other uv-fluorescent species, no BeP radical is formed in interaction with BSA and two sharp uv fluorescences at about 330 and 350 nm probably come from the higher excited states of BeP. Furthermore, from fluorescence and excitation spectral studies particularly at low temperature, it is suggested that the uv fluorescences at 320 to 380 nm of the BaP-BSA complex originate from a few distinct species. A new uv fluorescence at 330 nm (preferentially excited at 295 nm), as well as a new excitation peak at 325 nm for the longer wavelength uv fluorescences at 357 and 378 nm, has been found. The extract from the aqueous BaP-BSA solution also emits phosphorescence at 400-440 nm (excited at 310 nm) in EPA solution.

  10. Quarterly Technical Progress Report - Investigation of Syngas Interaction in Alcohol Synthesis Catalysts

    SciTech Connect

    Murty A. Akundi

    1998-11-10

    This report presents the work done on " Investigation of Syngas Interaction in Alcohol Synthesis Catalysts" during the last quarter. The major activity during this period is on FTIR absorption studies of Co/Cr catalysts using CO as a probe molecule. Transition metals cobalt and copper play significant roles in the conversion of syngas (CO + H2 ) to liquid fuels. With a view to examine the nature of interaction between CO and metal, the FTIR spectra of CO adsorbed on Co-Cr2 O3 composites were investigated. The results indicate that as cobalt loading increases, the intensity of the CO adsorption bands increase and several vibrational modes seem to be promoted. Heat treatment of the sample revealed two distinct processes of adsorption. Bands due to physisorption disappeared while bands due to chemisorption not only increased in intensity but persisted even after desorption. It seems that the physisorption process is more active when the catalyst is fresh and is hindered when carbidic/carbonyl formations occur on the metal surfaces.

  11. Progress in Spacecraft Environment Interactions: International Space Station (ISS) Development and Operations

    NASA Technical Reports Server (NTRS)

    Koontz, Steve; Suggs, Robb; Schneider, Todd; Minow, Joe; Alred, John; Cooke, Bill; Mikatarian, Ron; Kramer, Leonard; Boeder, paul; Soares, Carlos

    2007-01-01

    The set of spacecraft interactions with the space flight environment that have produced the largest impacts on the design, verification, and operation of the International Space Station (ISS) Program during the May 2000 to May 2007 time frame are the focus of this paper. In-flight data, flight crew observations, and the results of ground-based test and analysis directly supporting programmatic and operational decision-making are reported as are the analysis and simulation efforts that have led to new knowledge and capabilities supporting current and future space explorations programs. The specific spacecraft-environment interactions that have had the greatest impact on ISS Program activities during the first several years of flight are: 1) spacecraft charging, 2) micrometeoroids and orbital debris effects, 3) ionizing radiation (both total dose to materials and single event effects [SEE] on avionics), 4) hypergolic rocket engine plume impingement effects, 5) venting/dumping of liquids, 6) spacecraft contamination effects, 7) neutral atmosphere and atomic oxygen effects, 8) satellite drag effects, and 9) solar ultraviolet effects. Orbital inclination (51.6deg) and altitude (nominally between 350 km and 460 km) determine the set of natural environment factors affecting the performance and reliability of materials and systems on ISS. ISS operates in the F2 region of Earth s ionosphere in well-defined fluxes of atomic oxygen, other ionospheric plasma species, solar UV, VUV, and x-ray radiation as well as galactic cosmic rays, trapped radiation, and solar cosmic rays. The micrometeoroid and orbital debris environment is an important determinant of spacecraft design and operations in any orbital inclination. The induced environment results from ISS interactions with the natural environment as well as environmental factors produced by ISS itself and visiting vehicles. Examples include ram-wake effects, hypergolic thruster plume impingement, materials out-gassing, venting

  12. Interaction Between Plasma and Magnetic Fields in the Earth’s Inner Magnetosphere: Progress and Challenges (Invited)

    NASA Astrophysics Data System (ADS)

    Zaharia, S. G.; Jordanova, V.; Welling, D. T.; Reeves, G. D.

    2009-12-01

    Significant progress has been made in recent years in understanding and modeling the coupling between the inner magnetospheric plasma and the magnetic field. This coupling is especially important during geomagnetic storms, when the large ring current pressure significantly distorts the field; in turn, the distorted field strongly alters the transport and evolution of the particle populations (both low-energy plasma and radiation belts). To describe this complex plasma/field interaction we have developed a self-consistent inner magnetosphere numerical model, RAM-SCB. The RAM-SCB code couples a kinetic ring current model (RAM) with a 3-D plasma equilibrium code. A unique strength of RAM-SCB is that the magnetic field is computed in force balance with fully anisotropic pressures. The anisotropy-dependent plasma wave excitation is an important factor in storm-time inner magnetosphere dynamics. RAM-SCB takes boundary conditions from either empirical models or large-scale space weather models such as the Space Weather Modeling Framework (SWMF). Through describing results from simulations of actual geomagnetic storms we outline the major findings from our work with RAM-SCB. These include the effect of the coupling on the ring current and Dst, the role of anisotropy, and the importance of the induced electric fields. We also describe recent progress advancing the predictive capabilities of RAM-SCB and its role as an inner magnetosphere module in a global space weather model: this progress includes the expansion of the outer boundary from geosynchronous orbit to 10 RE from Earth and the addition of the geodipole tilt. Finally, we outline several outstanding challenges in inner magnetosphere modeling research, as well as their possible resolutions.

  13. Experimental studies of pion-nucleus interactions at intermediate energies. Annual progress report

    SciTech Connect

    Not Available

    1992-12-31

    This report summarizes investigations of various pion-nucleus interactions and nucleon-nucleus charge-exchange reactions. The work was carried out with the LAMPF accelerator at the Los Alamos National Laboratory and the cyclotrons at the Paul Scherrer Institute (PSI) near Zurich, Switzerland, and at Indiana University (IUCF), as a collaborative effort among several laboratories and universities. The experimental activity at LAMPF involved measurements of new data on pion double-charge-exchange scattering, some initial work on a new Neutral Meson Spectrometer system, a search for deeply-bound pionic atoms, measurements of elastic scattering, and studies of the (n,p) reaction on various nuclei. At PSI measurements of pion quasielastic scattering were carried out, with detection of the recoil proton. Work on the analysis of data from a previous experiment at PSI on pion absorption in nuclei was continued. This experiment involved using a detector system that covered nearly the full solid angle.

  14. Proteomic approaches to uncovering virus–host protein interactions during the progression of viral infection

    PubMed Central

    Lum, Krystal K; Cristea, Ileana M

    2016-01-01

    The integration of proteomic methods to virology has facilitated a significant breadth of biological insight into mechanisms of virus replication, antiviral host responses and viral subversion of host defenses. Throughout the course of infection, these cellular mechanisms rely heavily on the formation of temporally and spatially regulated virus–host protein–protein interactions. Reviewed here are proteomic-based approaches that have been used to characterize this dynamic virus–host interplay. Specifically discussed are the contribution of integrative mass spectrometry, antibody-based affinity purification of protein complexes, cross-linking and protein array techniques for elucidating complex networks of virus–host protein associations during infection with a diverse range of RNA and DNA viruses. The benefits and limitations of applying proteomic methods to virology are explored, and the contribution of these approaches to important biological discoveries and to inspiring new tractable avenues for the design of antiviral therapeutics is highlighted. PMID:26817613

  15. Gravity Wave Interactions and Effects in the Middle and Upper Atmosphere: Recent Progress and Outstanding Issues

    NASA Astrophysics Data System (ADS)

    Fritts, D. C.

    2005-12-01

    Gravity waves are now recognized to have significant influences on the large-scale structure and variability throughout the atmosphere. In the mesosphere and lower thermosphere (MLT), these effects can be dramatic and include 1) vigorous wave breaking, turbulence generation, and local boding forcing, 2) strong forcing of the mean circulation and thermal structure, and 3) significant filtering by and interactions with tidal and planetary waves. Gravity wave influences also extend to significantly higher altitudes, though these are less quantified at this time. Potential influences at these higher altitudes include seeding of plasma instabilities, local body forces and heating, and mapping of MLT influences to higher altitudes, all of which are also anticipated to exhibit significant solar cycle variations.

  16. Progress in the epidemiological understanding of gene-environment interactions in major diseases: cancer

    PubMed Central

    Clavel, Jacqueline

    2007-01-01

    Cancer epidemiology has undergone marked development since the nineteen-fifties. One of the most spectacular and specific contributions was the demonstration of the massive effect of smoking on the occurrence of lung, larynx and bladder cancer. Major chemical, physical and biological carcinogenic agents have been identified in the working environment and in the overall environment. The chain of events from environmental exposures to cancer requires hundreds of polymorphic genes coding for proteins involved in the transport and metabolism of xenobiotics, or in repair, or in an immune or inflammatory response. The multifactorial and multistage characteristics of cancer create the theoretical conditions for statistical interactions which have been exceptionnally detected. Over the last two decades, a considerable mass of data has been generated, mostly addressing the interactions between smoking and xenobiotic-metabolizing enzymes in smoking-related cancers. They are sometimes considered disappointing but they actually brought a lot of information and raised many methodological issues. In parallel, the number of polymorphisms which can be considered candidate per function increased so much that multiple testing has become a major issue, and genome wide screening approaches have more and more gained in interest. Facing the resulting complexity, some instruments are being set up: our studies are now equipped with carefully sampled biological collections, high-throughput genotyping systems are becoming available, work on statistical methodologies is ongoing, bioinformatics databases are growing larger and access to them is becoming simpler; international consortiums are being organized. The roles of environmental and genetic factors are being jointly elucidated. The basic rules of epidemiology, which are demanding with respect to sampling, with respect to the histological and molecular criteria for cancer classification, with respect to the evaluation of environmental

  17. Negative regulation of beta4 integrin transcription by homeodomain-interacting protein kinase 2 and p53 impairs tumor progression.

    PubMed

    Bon, Giulia; Di Carlo, Selene E; Folgiero, Valentina; Avetrani, Paolo; Lazzari, Chiara; D'Orazi, Gabriella; Brizzi, Maria Felice; Sacchi, Ada; Soddu, Silvia; Blandino, Giovanni; Mottolese, Marcella; Falcioni, Rita

    2009-07-15

    Increased expression of alpha(6)beta(4) integrin in several epithelial cancers promotes tumor progression; however, the mechanism underlying its transcriptional regulation remains unclear. Here, we show that depletion of homeodomain-interacting protein kinase 2 (HIPK2) activates beta(4) transcription that results in a strong increase of beta(4)-dependent mitogen-activated protein kinase and Akt phosphorylation, anchorage-independent growth, and invasion. In contrast, stabilization of HIPK2 represses beta(4) expression in wild-type p53 (wtp53)-expressing cells but not in p53-null cells or cells expressing mutant p53, indicating that HIPK2 requires a wtp53 to inhibit beta(4) transcription. Consistent with our in vitro findings, a strong correlation between beta(4) overexpression and HIPK2 inactivation by cytoplasmic relocalization was observed in wtp53-expressing human breast carcinomas. Under loss of function of HIPK2 or p53, the p53 family members TAp63 and TAp73 strongly activate beta(4) transcription. These data, by revealing that beta(4) expression is transcriptionally repressed in tumors by HIPK2 and p53 to impair beta(4)-dependent tumor progression, suggest that loss of p53 function favors the formation of coactivator complex with the TA members of the p53 family to allow beta(4) transcription. PMID:19567674

  18. RovS and Its Associated Signaling Peptide Form a Cell-To-Cell Communication System Required for Streptococcus agalactiae Pathogenesis

    PubMed Central

    Gaudu, Philippe; Fleuchot, Betty; Besset, Colette; Rosinski-Chupin, Isabelle; Guillot, Alain; Monnet, Véronique; Gardan, Rozenn

    2015-01-01

    ABSTRACT  Bacteria can communicate with each other to coordinate their biological functions at the population level. In a previous study, we described a cell-to-cell communication system in streptococci that involves a transcriptional regulator belonging to the Rgg family and short hydrophobic peptides (SHPs) that act as signaling molecules. Streptococcus agalactiae, an opportunistic pathogenic bacterium responsible for fatal infections in neonates and immunocompromised adults, has one copy of the shp/rgg locus. The SHP-associated Rgg is called RovS in S. agalactiae. In this study, we found that the SHP/RovS cell-to-cell communication system is active in the strain NEM316 of S. agalactiae, and we identified different partners that are involved in this system, such as the Eep peptidase, the PptAB, and the OppA1-F oligopeptide transporters. We also identified a new target gene controlled by this system and reexamined the regulation of a previously proposed target gene, fbsA, in the context of the SHP-associated RovS system. Furthermore, our results are the first to indicate the SHP/RovS system specificity to host liver and spleen using a murine model, which demonstrates its implication in streptococci virulence. Finally, we observed that SHP/RovS regulation influences S. agalactiae’s ability to adhere to and invade HepG2 hepatic cells. Hence, the SHP/RovS cell-to-cell communication system appears to be an essential mechanism that regulates pathogenicity in S. agalactiae and represents an attractive target for the development of new therapeutic strategies. Importance  Rgg regulators and their cognate pheromones, called small hydrophobic peptides (SHPs), are present in nearly all streptococcal species. The general pathways of the cell-to-cell communication system in which Rgg and SHP take part are well understood. However, many other players remain unidentified, and the direct targets of the system, as well as its link to virulence, remain unclear. Here, we

  19. Recent Progress in Treating Protein–Ligand Interactions with Quantum-Mechanical Methods

    PubMed Central

    Yilmazer, Nusret Duygu; Korth, Martin

    2016-01-01

    We review the first successes and failures of a “new wave” of quantum chemistry-based approaches to the treatment of protein/ligand interactions. These approaches share the use of “enhanced”, dispersion (D), and/or hydrogen-bond (H) corrected density functional theory (DFT) or semi-empirical quantum mechanical (SQM) methods, in combination with ensemble weighting techniques of some form to capture entropic effects. Benchmark and model system calculations in comparison to high-level theoretical as well as experimental references have shown that both DFT-D (dispersion-corrected density functional theory) and SQM-DH (dispersion and hydrogen bond-corrected semi-empirical quantum mechanical) perform much more accurately than older DFT and SQM approaches and also standard docking methods. In addition, DFT-D might soon become and SQM-DH already is fast enough to compute a large number of binding modes of comparably large protein/ligand complexes, thus allowing for a more accurate assessment of entropic effects. PMID:27196893

  20. Natural gas storage and end user interaction: A progress report, September 30, 1994--March 31, 1995

    SciTech Connect

    Crook, L.R. Jr.; Reich, S.; Godec, M.L.

    1995-07-01

    In late 1994, ICF Resources began a contract with the Morgantown Energy Technology Center (METC) to conduct a study of natural gas storage and end user interaction. This study is being conducted in three phases: the first phase is an assessment of the market requirements for natural gas storage and in particular to identify those end user requirements for storage that could benefit from METC-sponsored research and development (R&D) in storage technology; the second phase will address the particular technical and economic feasibility for expanding conventional storage; and the third phase will address alternative, unconventional technologies. ICF is approaching the conclusion of the first phase of the study and the second phase has begun. This paper summarizes the scope of the study and reports some of the preliminary findings of the first phase. We begin by providing an overview of the goals of the effort and of natural gas storage. We will address the evolving market requirements for storage and the regulatory and institutional changes that are having a major impact on the use of natural gas storage. We address the demand for storage and the alternatives for meeting this demand, with specific reference to regional and end use issues.

  1. Sleeping Beauty transposase modulates cell-cycle progression through interaction with Miz-1

    PubMed Central

    Walisko, Oliver; Izsvák, Zsuzsanna; Szabó, Kornélia; Kaufman, Christopher D.; Herold, Steffi; Ivics, Zoltán

    2006-01-01

    We used the Sleeping Beauty (SB) transposable element as a tool to probe transposon–host cell interactions in vertebrates. The Miz-1 transcription factor was identified as an interactor of the SB transposase in a yeast two-hybrid screen. Through its association with Miz-1, the SB transposase down-regulates cyclin D1 expression in human cells, as evidenced by differential gene expression analysis using microarray hybridization. Down-regulation of cyclin D1 results in a prolonged G1 phase of the cell cycle and retarded growth of transposase-expressing cells. G1 slowdown is associated with a decrease of cyclin D1/cdk4-specific phosphorylation of the retinoblastoma protein. Both cyclin D1 down-regulation and the G1 slowdown induced by the transposase require Miz-1. A temporary G1 arrest enhances transposition, suggesting that SB transposition is favored in the G1 phase of the cell cycle, where the nonhomologous end-joining pathway of DNA repair is preferentially active. Because nonhomologous end-joining is required for efficient SB transposition, the transposase-induced G1 slowdown is probably a selfish act on the transposon’s part to maximize the chance for a successful transposition event. PMID:16537485

  2. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2007.

    PubMed

    2008-01-01

    This year the Montreal Protocol celebrates its 20th Anniversary. In September 1987, 24 countries signed the Montreal Protocol on Substances that Deplete the Ozone Layer. Today 191 countries have signed and have met strict commitments on phasing out of ozone depleting substances with the result that a 95% reduction of these substances has been achieved. The Montreal Protocol has also contributed to slowing the rate of global climate change, since most of the ozone depleting substances are also effective greenhouse gases. Even though much has been achieved, the future of the stratospheric ozone layer relies on full compliance of the Montreal Protocol by all countries for the remaining substances, including methyl bromide, as well as strict monitoring of potential risks from the production of substitute chemicals. Also the ozone depleting substances existing in banks and equipment need special attention to prevent their release to the stratosphere. Since many of the ozone depleting substances already in the atmosphere are long-lived, recovery cannot be immediate and present projections estimate a return to pre-1980 levels by 2050 to 2075. It has also been predicted that the interactions of the effects of the ozone layer and that of other climate change factors will become increasingly important. PMID:18274006

  3. Recent Progress in Treating Protein-Ligand Interactions with Quantum-Mechanical Methods.

    PubMed

    Yilmazer, Nusret Duygu; Korth, Martin

    2016-01-01

    We review the first successes and failures of a "new wave" of quantum chemistry-based approaches to the treatment of protein/ligand interactions. These approaches share the use of "enhanced", dispersion (D), and/or hydrogen-bond (H) corrected density functional theory (DFT) or semi-empirical quantum mechanical (SQM) methods, in combination with ensemble weighting techniques of some form to capture entropic effects. Benchmark and model system calculations in comparison to high-level theoretical as well as experimental references have shown that both DFT-D (dispersion-corrected density functional theory) and SQM-DH (dispersion and hydrogen bond-corrected semi-empirical quantum mechanical) perform much more accurately than older DFT and SQM approaches and also standard docking methods. In addition, DFT-D might soon become and SQM-DH already is fast enough to compute a large number of binding modes of comparably large protein/ligand complexes, thus allowing for a more accurate assessment of entropic effects. PMID:27196893

  4. Interaction of carbon and sulfur on metal catalysts: Technical progress report

    SciTech Connect

    McCarty, J.G.; Vajo, J.

    1989-02-17

    At high coverage, sulfur generally deactivates metal catalysts, but at low coverage, chemisorbed sulfur can have a more subtle effect on catalyst activity and selectivity. The general goal of the current project is to examine fundamental aspects of selective poisoning by fractional monolayers of chemisorbed sulfur on a variety of metal catalysts used for commercially important reactions such as hydrocarbon re-forming, light alkane steam re-forming, and hydrocarbon synthesis. Specific objectives of the research program are to experimentally measure as a function of coverage the influence of chemisorbed sulfur on the thermodynamics, reactivity, and structure of surface and bulk carbon occupying both dispersed and well-characterized metal catalyst surfaces. Special methods, such as reversible sulfur chemisorption on supported metals and temperature-programmed reaction (TPR) characterization of catalyst carbon, have been developed that are well suited to examining the interaction of sulfur and carbon on metal surfaces. New analytical instruments with greatly improved sensitivity have been recently developed and applied: a helium discharge ionization detector (DID) is being used with a gas recirculation thermodynamic system, and the surface analysis by laser ionization (SALI) technique is used with surface carbon segregation systems.

  5. Studies of particle interactions in bubble chamber, spark chambers and counter experiments. Annual progress report

    SciTech Connect

    Holloway, L.E.; O'Halloran, T.A. Jr.; Simmons, R.O.

    1983-07-01

    During the past six years we have carried out and planned experiments which predominantly studied the production and decay of particles containing charmed quarks. A series of photoproduction and neutron production experiments started with the very early observation of the production of J/psi by neutrons and by photons at Fermilab. From subsequent experiments using these neutral beams and the basic detecting system, we have reported results on the photoproduction of the ..lambda../sub c/ charmed baryon and the D and D* charmed mesons. More recent runs are studying the high energy photoproduction of vector mesons including the psi'. The present experiment in this sequence is using neutrons to produce a large number of D mesons. Another series of experiments at Fermilab set out to study the hadronic production of charmed mesons. The Chicago Cyclotron facility was modified with a detector sensitive to various possible production mechanisms. The experiments were a success; clean signals of D mesons were observed to be produced by pions, and also the production of chi/sub c/ with the subsequent decay via a ..gamma..-ray to psi was observed. The charmonium experiments run this year have better photon resolution for measuring the decays of chi/sub c/ to psi. We are part of a collaboration which is working on the Collider Detector Facility for Fermilab. The CDF at Fermilab is a possible source of (weak) intermediate vector bosons from the collisions of protons and anti-protons. Our responsibilities in the CDF include both the construction of the muon detector and the designing, planning, and testing of the FASTBUS electronics. The second part of our weak interaction program is the Neutrino Oscillation experiment which is now under construction at Brookhaven.

  6. Inhibiting DX2-p14/ARF Interaction Exerts Antitumor Effects in Lung Cancer and Delays Tumor Progression.

    PubMed

    Oh, Ah-Young; Jung, Youn Sang; Kim, Jiseon; Lee, Jee-Hyun; Cho, Jung-Hyun; Chun, Ho-Young; Park, Soyoung; Park, Hyunchul; Lim, Sikeun; Ha, Nam-Chul; Park, Jong Sook; Park, Choon-Sik; Song, Gyu-Yong; Park, Bum-Joon

    2016-08-15

    The aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2) splice variant designated DX2 is induced by cigarette smoke carcinogens and is often detected in human lung cancer specimens. However, the function of DX2 in lung carcinogenesis is obscure. In this study, we found that DX2 expression was induced by oncogenes in human lung cancer tissues and cells. DX2 prevented oncogene-induced apoptosis and senescence and promoted drug resistance by directly binding to and inhibiting p14/ARF. Through chemical screening, we identified SLCB050, a novel compound that blocks the interaction between DX2 and p14/ARF in vitro and in vivo SLCB050 reduced the viability of human lung cancer cells, especially small cell lung cancer cells, in a p14/ARF-dependent manner. Moreover, in a mouse model of K-Ras-driven lung tumorigenesis, ectopic expression of DX2 induced small cell and non-small cell lung cancers, both of which could be suppressed by SLCB050 treatment. Taken together, our findings show how DX2 promotes lung cancer progression and how its activity may be thwarted as a strategy to treat patients with lung cancers exhibiting elevated DX2 levels. Cancer Res; 76(16); 4791-804. ©2016 AACR. PMID:27302160

  7. Dual Functions of the KNOTTED1 Homeodomain: Sequence-Specific DNA Binding and Regulation of Cell-to-Cell Transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The homeodomain forms a trihelical structure, with the third helix conferring specific interactions with the DNA major groove. A specific class of plant homeodomain proteins, called KNOX [KNOTTED1 (KN1)-like homeobox], also has the ability to signal between cells by directly trafficking through inte...

  8. Pathological Propagation through Cell-to-Cell Transmission of Non-Prion Protein Aggregates in Neurodegenerative Disorders

    PubMed Central

    Lee, Seung-Jae; Desplats, Paula; Sigurdson, Christina; Tsigelny, Igor; Masliah, Eliezer

    2016-01-01

    Neurodegenerative disorders such as Alzheimer's Disease, Parkinson's Disease, fronto-temporal dementia, Huntington's Disease and Creutzfeldt-Jakob Disease (CJD) are characterized by progressive accumulation of protein aggregates in selected brain regions. Protein misfolding and templated assembly into aggregates might result from an imbalance between protein synthesis, aggregation and clearance. While protein misfolding and aggregation occur in most neurodegenerative disorders, the concept of spreading and infectivity of aggregates in the CNS has been reserved to prion diseases such as CJD and bovine spongiform encephalopathy. Emerging evidence suggests that prion-like spreading may occur in other neurodegenerative disorders, taking place with secreted proteins, such as amyloid-β,) and cytosolic proteins, such as tau, huntingtin and α-synuclein. Underlying molecular mechanisms and therapeutic implications are discussed. PMID:21045796

  9. Haploinsufficiency of cathepsin D leads to lysosomal dysfunction and promotes cell-to-cell transmission of α-synuclein aggregates

    PubMed Central

    Bae, E-J; Yang, N Y; Lee, C; Kim, S; Lee, H-J; Lee, S-J

    2015-01-01

    Lysosomal dysfunction has been implicated both pathologically and genetically in neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease (PD). Lysosomal gene deficiencies cause lysosomal storage disorders, many of which involve neurodegeneration. Heterozygous mutations of some of these genes, such as GBA1, are associated with PD. CTSD is the gene encoding Cathepsin D (CTSD), a lysosomal protein hydrolase, and homozygous CTSD deficiency results in neuronal ceroid-lipofuscinosis, which is characterized by the early onset, progressive neurodegeneration. CTSD deficiency was also associated with deposition of α-synuclein aggregates, the hallmark of PD. However, whether partial deficiency of CTSD has a role in the late onset progressive neurodegenerative disorders, including PD, remains unknown. Here, we generated cell lines harboring heterozygous nonsense mutations in CTSD with genomic editing using the zinc finger nucleases. Heterozygous mutation in CTSD resulted in partial loss of CTSD activity, leading to reduced lysosomal activity. The CTSD mutation also resulted in increased accumulation of intracellular α-synuclein aggregates and the secretion of the aggregates. When α-synuclein was introduced in the media, internalized α-synuclein aggregates accumulated at higher levels in CTSD+/− cells than in the wild-type cells. Consistent with these results, transcellular transmission of α-synuclein aggregates was increased in CTSD+/− cells. The increased transmission of α-synuclein aggregates sustained during the successive passages of CTSD+/− cells. These results suggest that partial loss of CTSD activity is sufficient to cause a reduction in lysosomal function, which in turn leads to α-synuclein aggregation and propagation of the aggregates. PMID:26448324

  10. AKAP95 promotes cell cycle progression via interactions with cyclin E and low molecular weight cyclin E

    PubMed Central

    Kong, Xiang-Yu; Zhang, Deng-Cheng; Zhuang, Wen-Xin; Hua, Su-Hang; Dai, Yue; Yuan, Yang-Yang; Feng, Li-Li; Huang, Qian; Teng, Bo-Gang; Yu, Xiu-Yi; Liu, Wen-Zhi; Zhang, Yong-Xing

    2016-01-01

    AKAP95 in lung cancer tissues showed higher expression than in paracancerous tissues. AKAP95 can bind with cyclin D and cyclin E during G1/S cell cycle transition, but its molecular mechanisms remain unclear. To identify the mechanism of AKAP95 in cell cycle progression, we performed AKAP95 transfection and silencing in A549 cells, examined AKAP95, cyclin E1 and cyclin E2 expression, and the interactions of AKAP95 with cyclins E1 and E2. Results showed that over-expression of AKAP95 promoted cell growth and AKAP95 bound cyclin E1 and E2, low molecular weight cyclin E1 (LWM-E1) and LWM-E2. Additionally AKAP95 bound cyclin E1 and LMW-E2 in the nucleus during G1/S transition, bound LMW-E1 during G1, S and G2/M, and bound cyclin E2 mainly on the nuclear membrane during interphase. Cyclin E2 and LMW-E2 were also detected. AKAP95 over-expression increased cyclin E1 and LMW-E2 expression but decreased cyclin E2 levels. Unlike cyclin E1 and LMW-E2 that were nuclear located during the G1, S and G1/S phases, cyclin E2 and LMW-E1 were expressed in all cell cycle phases, with cyclin E2 present in the cytoplasm and nuclear membrane, with traces in the nucleus. LMW-E1 was present in both the cytoplasm and nucleus. The 20 kDa form of LMW-E1 showed only cytoplasmic expression, while the 40 kDa form was nuclear expressed. The expression of AKAP95, cyclin E1, LMW-E1 and -E2, might be regulated by cAMP. We conclude that AKAP95 might promote cell cycle progression by interacting with cyclin E1 and LMW-E2. LMW-E2, but not cyclin E2, might be involved in G1/S transition. The binding of AKAP95 and LMW-E1 was found throughout cell cycle. PMID:27158371

  11. Hibiscus Chlorotic Ringspot Virus Coat Protein Is Essential for Cell-to-Cell and Long-Distance Movement but Not for Viral RNA Replication

    PubMed Central

    Niu, Shengniao; Gil-Salas, Francisco M.; Tewary, Sunil Kumar; Samales, Ashwin Kuppusamy; Johnson, John; Swaminathan, Kunchithapadam; Wong, Sek-Man

    2014-01-01

    Hibiscus chlorotic ringspot virus (HCRSV) is a member of the genus Carmovirus in the family Tombusviridae. In order to study its coat protein (CP) functions on virus replication and movement in kenaf (Hibiscus cannabinus L.), two HCRSV mutants, designated as p2590 (A to G) in which the first start codon ATG was replaced with GTG and p2776 (C to G) in which proline 63 was replaced with alanine, were constructed. In vitro transcripts of p2590 (A to G) were able to replicate to a similar level as wild type without CP expression in kenaf protoplasts. However, its cell-to-cell movement was not detected in the inoculated kenaf cotyledons. Structurally the proline 63 in subunit C acts as a kink for β-annulus formation during virion assembly. Progeny of transcripts derived from p2776 (C to G) was able to move from cell-to-cell in inoculated cotyledons but its long-distance movement was not detected. Virions were not observed in partially purified mutant virus samples isolated from 2776 (C to G) inoculated cotyledons. Removal of the N-terminal 77 amino acids of HCRSV CP by trypsin digestion of purified wild type HCRSV virions resulted in only T = 1 empty virus-like particles. Taken together, HCRSV CP is dispensable for viral RNA replication but essential for cell-to-cell movement, and virion is required for the virus systemic movement. The proline 63 is crucial for HCRSV virion assembly in kenaf plants and the N-terminal 77 amino acids including the β-annulus domain is required in T = 3 assembly in vitro. PMID:25402344

  12. Remote Sensing of Aerosols from Satellites: Why Has It Been Do Difficult to Quantify Aerosol-Cloud Interactions for Climate Assessment, and How Can We Make Progress?

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2015-01-01

    The organizers of the National Academy of Sciences Arthur M. Sackler Colloquia Series on Improving Our Fundamental Understanding of the Role of Aerosol-Cloud Interactions in the Climate System would like to post Ralph Kahn's presentation entitled Remote Sensing of Aerosols from Satellites: Why has it been so difficult to quantify aerosol-cloud interactions for climate assessment, and how can we make progress? to their public website.

  13. The Scaffolding Protein Dlg1 Is a Negative Regulator of Cell-Free Virus Infectivity but Not of Cell-to-Cell HIV-1 Transmission in T Cells

    PubMed Central

    Nzounza, Patrycja; Chazal, Maxime; Guedj, Chloé; Schmitt, Alain; Massé, Jean-Marc; Randriamampita, Clotilde; Pique, Claudine; Ramirez, Bertha Cecilia

    2012-01-01

    Background Cell-to-cell virus transmission of Human immunodeficiency virus type-1 (HIV-1) is predominantly mediated by cellular structures such as the virological synapse (VS). The VS formed between an HIV-1-infected T cell and a target T cell shares features with the immunological synapse (IS). We have previously identified the human homologue of the Drosophila Discs Large (Dlg1) protein as a new cellular partner for the HIV-1 Gag protein and a negative regulator of HIV-1 infectivity. Dlg1, a scaffolding protein plays a key role in clustering protein complexes in the plasma membrane at cellular contacts. It is implicated in IS formation and T cell signaling, but its role in HIV-1 cell-to-cell transmission was not studied before. Methodology/Principal Findings Kinetics of HIV-1 infection in Dlg1-depleted Jurkat T cells show that Dlg1 modulates the replication of HIV-1. Single-cycle infectivity tests show that this modulation does not take place during early steps of the HIV-1 life cycle. Immunofluorescence studies of Dlg1-depleted Jurkat T cells show that while Dlg1 depletion affects IS formation, it does not affect HIV-1-induced VS formation. Co-culture assays and quantitative cell-to-cell HIV-1 transfer analyses show that Dlg1 depletion does not modify transfer of HIV-1 material from infected to target T cells, or HIV-1 transmission leading to productive infection via cell contact. Dlg1 depletion results in increased virus yield and infectivity of the viral particles produced. Particles with increased infectivity present an increase in their cholesterol content and during the first hours of T cell infection these particles induce higher accumulation of total HIV-1 DNA. Conclusion Despite its role in the IS formation, Dlg1 does not affect the VS and cell-to-cell spread of HIV-1, but plays a role in HIV-1 cell-free virus transmission. We propose that the effect of Dlg1 on HIV-1 infectivity is at the stage of virus entry. PMID:22272285

  14. Chronic lymphocytic leukemia disease progression is accelerated by APRIL-TACI interaction in the TCL1 transgenic mouse model

    PubMed Central

    Lascano, Valeria; Guadagnoli, Marco; Schot, Jan G.; Luijks, Dieuwertje M.; Guikema, Jeroen E. J.; Cameron, Katherine; Hahne, Michael; Pals, Steven; Slinger, Erik; Kipps, Thomas J.; van Oers, Marinus H. J.; Eldering, Eric; Medema, Jan Paul

    2013-01-01

    Although in vitro studies pointed to the tumor necrosis factor family member APRIL (a proliferation-inducing ligand) in mediating survival of chronic lymphocytic leukemia (CLL) cells, clear evidence for a role in leukemogenesis and progression in CLL is lacking. APRIL significantly prolonged in vitro survival of CD5+B220dull leukemic cells derived from the murine Eμ-TCL1-Tg (TCL1-Tg [transgenic]) model for CLL. APRIL-TCL1 double-Tg mice showed a significantly earlier onset of leukemia and disruption of splenic architecture, and survival was significantly reduced. Interestingly, clonal evolution of CD5+B220dull cells (judged by BCR clonality) did not seem to be accelerated by APRIL; both mouse strains were oligoclonal at 4 months. Although APRIL binds different receptors, APRIL-mediated leukemic cell survival depended on tumor necrosis factor receptor superfamily member 13B (TACI) ligation. These findings indicate that APRIL has an important role in CLL and that the APRIL-TACI interaction might be a selective novel therapeutic target for human CLL. PMID:24100449

  15. PGE2 maintains self-renewal of human adult stem cells via EP2-mediated autocrine signaling and its production is regulated by cell-to-cell contact

    PubMed Central

    Lee, Byung-Chul; Kim, Hyung-Sik; Shin, Tae-Hoon; Kang, Insung; Lee, Jin Young; Kim, Jae-Jun; Kang, Hyun Kyoung; Seo, Yoojin; Lee, Seunghee; Yu, Kyung-Rok; Choi, Soon Won; Kang, Kyung-Sun

    2016-01-01

    Mesenchymal stem cells (MSCs) possess unique immunomodulatory abilities. Many studies have elucidated the clinical efficacy and underlying mechanisms of MSCs in immune disorders. Although immunoregulatory factors, such as Prostaglandin E2 (PGE2), and their mechanisms of action on immune cells have been revealed, their effects on MSCs and regulation of their production by the culture environment are less clear. Therefore, we investigated the autocrine effect of PGE2 on human adult stem cells from cord blood or adipose tissue, and the regulation of its production by cell-to-cell contact, followed by the determination of its immunomodulatory properties. MSCs were treated with specific inhibitors to suppress PGE2 secretion, and proliferation was assessed. PGE2 exerted an autocrine regulatory function in MSCs by triggering E-Prostanoid (EP) 2 receptor. Inhibiting PGE2 production led to growth arrest, whereas addition of MSC-derived PGE2 restored proliferation. The level of PGE2 production from an equivalent number of MSCs was down-regulated via gap junctional intercellular communication. This cell contact-mediated decrease in PGE2 secretion down-regulated the suppressive effect of MSCs on immune cells. In conclusion, PGE2 produced by MSCs contributes to maintenance of self-renewal capacity through EP2 in an autocrine manner, and PGE2 secretion is down-regulated by cell-to-cell contact, attenuating its immunomodulatory potency. PMID:27230257

  16. In vitro T-cell activation of monocyte-derived macrophages by soluble messengers or cell-to-cell contact in bovine tuberculosis

    PubMed Central

    Liébana, E; Aranaz, A; Welsh, M; Neill, S D; Pollock, J M

    2000-01-01

    The macrophage plays a dual role in tuberculosis, promoting not only protection against mycobacteria, but also survival of the pathogen. Macrophages inhibit multiplication of mycobacteria but also act in concert with lymphocytes through presentation of antigens to T cells. Studies in animal and human infections have suggested a correlation of in vitro growth rates of mycobacteria with in vivo virulence, using uracil uptake to assess mycobacterial metabolism. This study found that blood-derived, non-activated bovine macrophages were capable of controlling Mycobacterium bovis bacillus Calmette–Guérin growth for up to 96 hr, but were permissive to intracellular growth of virulent M. bovis. The present investigation compared the in vitro modulation of these macrophage activities by cytokine-rich T-cell supernatants or cell-to-cell contact. On the one hand, treatment of cultured monocytes with mitogen-produced T-cell supernatants promoted morphological changes suggestive of an activation status, enhanced the antigen presentation capabilities of monocytes and up-regulated major histocompatibility complex class II expression. However, this activation was not associated with enhanced anti-M. bovis activity. On the other hand, incubation of infected monocytes with T-cell populations resulted in proportionally increased inhibition of M. bovis uracil uptake. This inhibition was also seen using cells from uninfected animals and indicated the necessity for cell-to-cell contact to promote antimycobacterial capability. PMID:10886395

  17. The potato virus X TGBp2 protein association with the endoplasmic reticulum plays a role in but is not sufficient for viral cell-to-cell movement

    NASA Technical Reports Server (NTRS)

    Mitra, Ruchira; Krishnamurthy, Konduru; Blancaflor, Elison; Payton, Mark; Nelson, Richard S.; Verchot-Lubicz, Jeanmarie

    2003-01-01

    Potato virus X (PVX) TGBp1, TGBp2, TGBp3, and coat protein are required for virus cell-to-cell movement. Plasmids expressing GFP fused to TGBp2 were bombarded to leaf epidermal cells and GFP:TGBp2 moved cell to cell in Nicotiana benthamiana leaves but not in Nicotiana tabacum leaves. GFP:TGBp2 movement was observed in TGBp1-transgenic N. tabacum, indicating that TGBp2 requires TGBp1 to promote its movement in N. tabacum. In this study, GFP:TGBp2 was detected in a polygonal pattern that resembles the endoplasmic reticulum (ER) network. Amino acid sequence analysis revealed TGBp2 has two putative transmembrane domains. Two mutations separately introduced into the coding sequences encompassing the putative transmembrane domains within the GFP:TGBp2 plasmids and PVX genome, disrupted membrane binding of GFP:TGBp2, inhibited GFP:TGBp2 movement in N. benthamiana and TGBp1-expressing N. tabacum, and inhibited PVX movement. A third mutation, lying outside the transmembrane domains, had no effect on GFP:TGBp2 ER association or movement in N. benthamiana but inhibited GFP:TGBp2 movement in TGBp1-expressing N. tabacum and PVX movement in either Nicotiana species. Thus, ER association of TGBp2 may be required but not be sufficient for virus movement. TGBp2 likely provides an activity for PVX movement beyond ER association.

  18. PGE2 maintains self-renewal of human adult stem cells via EP2-mediated autocrine signaling and its production is regulated by cell-to-cell contact.

    PubMed

    Lee, Byung-Chul; Kim, Hyung-Sik; Shin, Tae-Hoon; Kang, Insung; Lee, Jin Young; Kim, Jae-Jun; Kang, Hyun Kyoung; Seo, Yoojin; Lee, Seunghee; Yu, Kyung-Rok; Choi, Soon Won; Kang, Kyung-Sun

    2016-01-01

    Mesenchymal stem cells (MSCs) possess unique immunomodulatory abilities. Many studies have elucidated the clinical efficacy and underlying mechanisms of MSCs in immune disorders. Although immunoregulatory factors, such as Prostaglandin E2 (PGE2), and their mechanisms of action on immune cells have been revealed, their effects on MSCs and regulation of their production by the culture environment are less clear. Therefore, we investigated the autocrine effect of PGE2 on human adult stem cells from cord blood or adipose tissue, and the regulation of its production by cell-to-cell contact, followed by the determination of its immunomodulatory properties. MSCs were treated with specific inhibitors to suppress PGE2 secretion, and proliferation was assessed. PGE2 exerted an autocrine regulatory function in MSCs by triggering E-Prostanoid (EP) 2 receptor. Inhibiting PGE2 production led to growth arrest, whereas addition of MSC-derived PGE2 restored proliferation. The level of PGE2 production from an equivalent number of MSCs was down-regulated via gap junctional intercellular communication. This cell contact-mediated decrease in PGE2 secretion down-regulated the suppressive effect of MSCs on immune cells. In conclusion, PGE2 produced by MSCs contributes to maintenance of self-renewal capacity through EP2 in an autocrine manner, and PGE2 secretion is down-regulated by cell-to-cell contact, attenuating its immunomodulatory potency. PMID:27230257

  19. Cell-to-cell contact and antimicrobial peptides play a combined role in the death of Lachanchea thermotolerans during mixed-culture alcoholic fermentation with Saccharomyces cerevisiae.

    PubMed

    Kemsawasd, Varongsiri; Branco, Patrícia; Almeida, Maria Gabriela; Caldeira, Jorge; Albergaria, Helena; Arneborg, Nils

    2015-07-01

    The roles of cell-to-cell contact and antimicrobial peptides in the early death of Lachanchea thermotolerans CBS2803 during anaerobic, mixed-culture fermentations with Saccharomyces cerevisiae S101 were investigated using a commercially available, double-compartment fermentation system separated by cellulose membranes with different pore sizes, i.e. 1000 kDa for mixed- and single-culture fermentations, and 1000 and 3.5-5 kDa for compartmentalized-culture fermentations. SDS-PAGE and gel filtration chromatography were used to determine an antimicrobial peptidic fraction in the fermentations. Our results showed comparable amounts of the antimicrobial peptidic fraction in the inner compartments of the mixed-culture and 1000 kDa compartmentalized-culture fermentations containing L. thermotolerans after 4 days of fermentation, but a lower death rate of L. thermotolerans in the 1000 kDa compartmentalized-culture fermentation than in the mixed-culture fermentation. Furthermore, L. thermotolerans died off even more slowly in the 3.5-5 kDa than in the 1000 kDa compartmentalized-culture fermentation, which coincided with the presence of less of the antimicrobial peptidic fraction in the inner compartment of that fermentation than of the 1000 kDa compartmentalized-culture fermentation. Taken together, these results indicate that the death of L. thermotolerans in mixed cultures with S. cerevisiae is caused by a combination of cell-to-cell contact and antimicrobial peptides. PMID:26109361

  20. Cell to cell communication in response to mechanical stress via bilateral release of ATP and UTP in polarized epithelia.

    PubMed

    Homolya, L; Steinberg, T H; Boucher, R C

    2000-09-18

    Airway epithelia are positioned at the interface between the body and the environment, and generate complex signaling responses to inhaled toxins and other stresses. Luminal mechanical stimulation of airway epithelial cells produces a propagating wave of elevated intracellular Ca(2+) that coordinates components of the integrated epithelial stress response. In polarized airway epithelia, this response has been attributed to IP(3) permeation through gap junctions. Using a combination of approaches, including enzymes that destroy extracellular nucleotides, purinergic receptor desensitization, and airway cells deficient in purinoceptors, we demonstrated that Ca(2+) waves induced by luminal mechanical stimulation in polarized airway epithelia were initiated by the release of the 5' nucleotides, ATP and UTP, across both apical and basolateral membranes. The nucleotides released into the extracellular compartment interacted with purinoceptors at both membranes to trigger Ca(2+) mobilization. Physiologically, apical membrane nucleotide-release coordinates airway mucociliary clearance responses (mucin and salt, water secretion, increased ciliary beat frequency), whereas basolateral release constitutes a paracrine mechanism by which mechanical stresses signal adjacent cells not only within the epithelium, but other cell types (nerves, inflammatory cells) in the submucosa. Nucleotide-release ipsilateral and contralateral to the surface stimulated constitutes a unique mechanism by which epithelia coordinate local and distant airway defense responses to mechanical stimuli. PMID:10995440

  1. Evolution of stalk/spore ratio in a social amoeba: cell-to-cell interaction via a signaling chemical shaped by cheating risk.

    PubMed

    Uchinomiya, Kouki; Iwasa, Yoh

    2013-11-01

    The social amoeba (or cellular slime mold) is a model system for cell cooperation. When food is depleted in the environment, cells aggregate together. Some of these cells become stalks, raising spores to aid in their dispersal. Differentiation-inducing factor-1 (DIF-1) is a signaling chemical produced by prespore cells and decomposed by prestalk cells. It affects the rate of switching between prestalk and prespore cells, thereby achieving a stable stalk/spore ratio. In this study we analyzed the evolution of the stalk/spore ratio. Strains may differ in the production and decomposition rates of the signaling chemical, and in the sensitivity of cells to switch in response to the signaling chemical exposure. When two strains with the same stalk/spore ratio within their own fruiting body are combined into a single fruiting body, one strain may develop into prespores to a greater degree than the other. Direct evolutionary simulations and quantitative genetic dynamics demonstrate that if a fruiting body is always formed by a single strain, the cells evolve to produce less signaling chemical and become more sensitive to the signaling chemical due to the cost of producing the chemical. In contrast, if a fruiting body is formed by multiple strains, the cells evolve to become less sensitive to the signaling chemical and produce more signaling chemical in order to reduce the risk of being exploited. In contrast, the stalk-spore ratio is less likely to be affected by small cheating risk. PMID:23911583

  2. Pfh1 Is an Accessory Replicative Helicase that Interacts with the Replisome to Facilitate Fork Progression and Preserve Genome Integrity.

    PubMed

    McDonald, Karin R; Guise, Amanda J; Pourbozorgi-Langroudi, Parham; Cristea, Ileana M; Zakian, Virginia A; Capra, John A; Sabouri, Nasim

    2016-09-01

    Replicative DNA helicases expose the two strands of the double helix to the replication apparatus, but accessory helicases are often needed to help forks move past naturally occurring hard-to-replicate sites, such as tightly bound proteins, RNA/DNA hybrids, and DNA secondary structures. Although the Schizosaccharomyces pombe 5'-to-3' DNA helicase Pfh1 is known to promote fork progression, its genomic targets, dynamics, and mechanisms of action are largely unknown. Here we address these questions by integrating genome-wide identification of Pfh1 binding sites, comprehensive analysis of the effects of Pfh1 depletion on replication and DNA damage, and proteomic analysis of Pfh1 interaction partners by immunoaffinity purification mass spectrometry. Of the 621 high confidence Pfh1-binding sites in wild type cells, about 40% were sites of fork slowing (as marked by high DNA polymerase occupancy) and/or DNA damage (as marked by high levels of phosphorylated H2A). The replication and integrity of tRNA and 5S rRNA genes, highly transcribed RNA polymerase II genes, and nucleosome depleted regions were particularly Pfh1-dependent. The association of Pfh1 with genomic integrity at highly transcribed genes was S phase dependent, and thus unlikely to be an artifact of high transcription rates. Although Pfh1 affected replication and suppressed DNA damage at discrete sites throughout the genome, Pfh1 and the replicative DNA polymerase bound to similar extents to both Pfh1-dependent and independent sites, suggesting that Pfh1 is proximal to the replication machinery during S phase. Consistent with this interpretation, Pfh1 co-purified with many key replisome components, including the hexameric MCM helicase, replicative DNA polymerases, RPA, and the processivity clamp PCNA in an S phase dependent manner. Thus, we conclude that Pfh1 is an accessory DNA helicase that interacts with the replisome and promotes replication and suppresses DNA damage at hard-to-replicate sites. These data

  3. Liquid Lithium Divertor and Scrape-Off-Layer Interactions on the National Spherical Torus Experiment: 2010 ? 2013 Progress Report

    SciTech Connect

    2013-08-27

    The implementation of the liquid Lithium Divertor (LLD) in NSTX presented a unique opportunity in plasma-material interactions studies. A high density Langmuir Probe (HDLP) array utilizing a dense pack of triple Langmuir probes was built at PPPL and the electronics designed and built by UIUC. It was shown that the HDLP array could be used to characterize the modification of the EEDF during lithium experiments on NSTX as well as characterize the transient particle loads during lithium experiments as a means to study ELMs. With NSTX being upgraded and a new divertor being installed, the HDLP array will not be used in NSTX-U. However UIUC is currently helping to develop two new systems for depositing lithium into NSTX-U, a Liquid Lithium Pellet Dripper (LLPD) for use with the granular injector for ELM mitigation and control studies as well as an Upward-Facing Lithium Evaporator (U-LITER) based on a flash evaporation system using an electron beam. Currently UIUC has Daniel Andruczyk Stationed at PPPL and is developing these systems as well as being involved in preparing the Materials Analysis Particle Probe (MAPP) for use in LTX and NSTX-U. To date the MAPP preparations have been completed. New sample holders were designed by UIUC?s Research Engineer at PPPL and manufactured at PPPL and installed. MAPP is currently being used on LTX to do calibration and initial studies. The LLPD has demonstrated that it can produce pellets. There is still some adjustments needed to control the frequency and particle size. Equipment for the U-LITER has arrived and initial test are being made of the electron beam and design of the U-LITER in progress. It is expected to have these ready for the first run campaign of NSTX-U.

  4. Advanced Ring-Shaped Microelectrode Assay Combined with Small Rectangular Electrode for Quasi-In vivo Measurement of Cell-to-Cell Conductance in Cardiomyocyte Network

    NASA Astrophysics Data System (ADS)

    Nomura, Fumimasa; Kaneko, Tomoyuki; Hamada, Tomoyo; Hattori, Akihiro; Yasuda, Kenji

    2013-06-01

    To predict the risk of fatal arrhythmia induced by cardiotoxicity in the highly complex human heart system, we have developed a novel quasi-in vivo electrophysiological measurement assay, which combines a ring-shaped human cardiomyocyte network and a set of two electrodes that form a large single ring-shaped electrode for the direct measurement of irregular cell-to-cell conductance occurrence in a cardiomyocyte network, and a small rectangular microelectrode for forced pacing of cardiomyocyte beating and for acquiring the field potential waveforms of cardiomyocytes. The advantages of this assay are as follows. The electrophysiological signals of cardiomyocytes in the ring-shaped network are superimposed directly on a single loop-shaped electrode, in which the information of asynchronous behavior of cell-to-cell conductance are included, without requiring a set of huge numbers of microelectrode arrays, a set of fast data conversion circuits, or a complex analysis in a computer. Another advantage is that the small rectangular electrode can control the position and timing of forced beating in a ring-shaped human induced pluripotent stem cell (hiPS)-derived cardiomyocyte network and can also acquire the field potentials of cardiomyocytes. First, we constructed the human iPS-derived cardiomyocyte ring-shaped network on the set of two electrodes, and acquired the field potential signals of particular cardiomyocytes in the ring-shaped cardiomyocyte network during simultaneous acquisition of the superimposed signals of whole-cardiomyocyte networks representing cell-to-cell conduction. Using the small rectangular electrode, we have also evaluated the response of the cell network to electrical stimulation. The mean and SD of the minimum stimulation voltage required for pacing (VMin) at the small rectangular electrode was 166+/-74 mV, which is the same as the magnitude of amplitude for the pacing using the ring-shaped electrode (179+/-33 mV). The results showed that the

  5. Cellular uptake and cell-to-cell transfer of polyelectrolyte microcapsules within a triple co-culture system representing parts of the respiratory tract

    NASA Astrophysics Data System (ADS)

    Kuhn, Dagmar A.; Hartmann, Raimo; Fytianos, Kleanthis; Petri-Fink, Alke; Rothen-Rutishauser, Barbara; Parak, Wolfgang J.

    2015-06-01

    Polyelectrolyte multilayer microcapsules around 3.4 micrometers in diameter were added to epithelial cells, monocyte-derived macrophages, and dendritic cells in vitro and their uptake kinetics were quantified. All three cell types were combined in a triple co-culture model, mimicking the human epithelial alveolar barrier. Hereby, macrophages were separated in a three-dimensional model from dendritic cells by a monolayer of epithelial cells. While passing of small nanoparticles has been demonstrated from macrophages to dendritic cells across the epithelial barrier in previous studies, for the micrometer-sized capsules, this process could not be observed in a significant amount. Thus, this barrier is a limiting factor for cell-to-cell transfer of micrometer-sized particles.

  6. Multi-Scale Characean Experimental System: From Electrophysiology of Membrane Transporters to Cell-to-Cell Connectivity, Cytoplasmic Streaming and Auxin Metabolism.

    PubMed

    Beilby, Mary J

    2016-01-01

    The morphology of characean algae could be mistaken for a higher plant: stem-like axes with leaf-like branchlets anchored in the soil by root-like rhizoids. However, all of these structures are made up of giant multinucleate cells separated by multicellular nodal complexes. The excised internodal cells survive long enough for the nodes to give rise to new thallus. The size of the internodes and their thick cytoplasmic layer minimize impalement injury and allow specific micro-electrode placement. The cell structure can be manipulated by centrifugation, perfusion of cell contents or creation of cytoplasmic droplets, allowing access to both vacuolar and cytoplasmic compartments and both sides of the cell membranes. Thousands of electrical measurements on intact or altered cells and cytoplasmic droplets laid down basis to modern plant electrophysiology. Furthermore, the giant internodal cells and whole thalli facilitate research into many other plant properties. As nutrients have to be transported from rhizoids to growing parts of the thallus and hormonal signals need to pass from cell to cell, Characeae possess very fast cytoplasmic streaming. The mechanism was resolved in the characean model. Plasmodesmata between the internodal cells and nodal complexes facilitate transport of ions, nutrients and photosynthates across the nodes. The internal structure was found to be similar to those of higher plants. Recent experiments suggest a strong circadian influence on metabolic pathways producing indole-3-acetic acid (IAA) and serotonin/melatonin. The review will discuss the impact of the characean models arising from fragments of cells, single cells, cell-to-cell transport or whole thalli on understanding of plant evolution and physiology. PMID:27504112

  7. Role of the C-terminal domain of the HIV-1 glycoprotein in cell-to-cell viral transmission between T lymphocytes

    PubMed Central

    2010-01-01

    Background Mutant HIV (HIV-Env-Tr712) lacking the cytoplasmic tail of the viral glycoprotein (Env-CT) exhibits a cell-type specific replication phenotype such that replicative spread occurs in some T-cell lines (referred to as permissive cells) but fails to do so in most T-cell lines or in PBMCs (referred to as non-permissive cells). We aim to gain insight on the underlying requirement for the Env-CT for viral spread in non-permissive cells. Results We established that in comparison to HIV-Wt, both cell-free and cell-to-cell transmission of mutant HIV-Env-Tr712 from non-permissive cells were severely impaired under naturally low infection conditions. This requirement for Env-CT could be largely overcome by using saturating amounts of virus for infection. We further observed that in permissive cells, which supported both routes of mutant virus transmission, viral gene expression levels, Gag processing and particle release were inherently higher than in non-permissive cells, a factor which may be significantly contributing to their permissivity phenotype. Additionally, and correlating with viral transfer efficiencies in these cell types, HIV-Gag accumulation at the virological synapse (VS) was reduced to background levels in the absence of the Env-CT in conjugates of non-permissive cells but not in permissive cells. Conclusions During natural infection conditions, the HIV-Env-CT is critically required for viral transmission in cultures of non-permissive cells by both cell-free and cell-to-cell routes and is instrumental for Gag accumulation to the VS. The requirement of the Env-CT for these related processes is abrogated in permissive cells, which exhibit higher HIV gene expression levels. PMID:20459872

  8. Multi-Scale Characean Experimental System: From Electrophysiology of Membrane Transporters to Cell-to-Cell Connectivity, Cytoplasmic Streaming and Auxin Metabolism

    PubMed Central

    Beilby, Mary J.

    2016-01-01

    The morphology of characean algae could be mistaken for a higher plant: stem-like axes with leaf-like branchlets anchored in the soil by root-like rhizoids. However, all of these structures are made up of giant multinucleate cells separated by multicellular nodal complexes. The excised internodal cells survive long enough for the nodes to give rise to new thallus. The size of the internodes and their thick cytoplasmic layer minimize impalement injury and allow specific micro-electrode placement. The cell structure can be manipulated by centrifugation, perfusion of cell contents or creation of cytoplasmic droplets, allowing access to both vacuolar and cytoplasmic compartments and both sides of the cell membranes. Thousands of electrical measurements on intact or altered cells and cytoplasmic droplets laid down basis to modern plant electrophysiology. Furthermore, the giant internodal cells and whole thalli facilitate research into many other plant properties. As nutrients have to be transported from rhizoids to growing parts of the thallus and hormonal signals need to pass from cell to cell, Characeae possess very fast cytoplasmic streaming. The mechanism was resolved in the characean model. Plasmodesmata between the internodal cells and nodal complexes facilitate transport of ions, nutrients and photosynthates across the nodes. The internal structure was found to be similar to those of higher plants. Recent experiments suggest a strong circadian influence on metabolic pathways producing indole-3-acetic acid (IAA) and serotonin/melatonin. The review will discuss the impact of the characean models arising from fragments of cells, single cells, cell-to-cell transport or whole thalli on understanding of plant evolution and physiology. PMID:27504112

  9. The Envelope Cytoplasmic Tail of HIV-1 Subtype C Contributes to Poor Replication Capacity through Low Viral Infectivity and Cell-to-Cell Transmission.

    PubMed

    Santos da Silva, Eveline; Mulinge, Martin; Lemaire, Morgane; Masquelier, Cécile; Beraud, Cyprien; Rybicki, Arkadiusz; Servais, Jean-Yves; Iserentant, Gilles; Schmit, Jean-Claude; Seguin-Devaux, Carole; Perez Bercoff, Danielle

    2016-01-01

    The cytoplasmic tail (gp41CT) of the HIV-1 envelope (Env) mediates Env incorporation into virions and regulates Env intracellular trafficking. Little is known about the functional impact of variability in this domain. To address this issue, we compared the replication of recombinant virus pairs carrying the full Env (Env viruses) or the Env ectodomain fused to the gp41CT of NL4.3 (EnvEC viruses) (12 subtype C and 10 subtype B pairs) in primary CD4+ T-cells and monocyte-derived-macrophages (MDMs). In CD4+ T-cells, replication was as follows: B-EnvEC = B-Env>C-EnvEC>C-Env, indicating that the gp41CT of subtype C contributes to the low replicative capacity of this subtype. In MDMs, in contrast, replication capacity was comparable for all viruses regardless of subtype and of gp41CT. In CD4+ T-cells, viral entry, viral release and viral gene expression were similar. However, infectivity of free virions and cell-to-cell transmission of C-Env viruses released by CD4+ T-cells was lower, suggestive of lower Env incorporation into virions. Subtype C matrix only minimally rescued viral replication and failed to restore infectivity of free viruses and cell-to-cell transmission. Taken together, these results show that polymorphisms in the gp41CT contribute to viral replication capacity and suggest that the number of Env spikes per virion may vary across subtypes. These findings should be taken into consideration in the design of vaccines. PMID:27598717

  10. A Millifluidic Study of Cell-to-Cell Heterogeneity in Growth-Rate and Cell-Division Capability in Populations of Isogenic Cells of Chlamydomonas reinhardtii

    PubMed Central

    Damodaran, Shima P.; Eberhard, Stephan; Boitard, Laurent; Rodriguez, Jairo Garnica; Wang, Yuxing; Bremond, Nicolas; Baudry, Jean; Bibette, Jérôme; Wollman, Francis-André

    2015-01-01

    To address possible cell-to-cell heterogeneity in growth dynamics of isogenic cell populations of Chlamydomonas reinhardtii, we developed a millifluidic drop-based device that not only allows the analysis of populations grown from single cells over periods of a week, but is also able to sort and collect drops of interest, containing viable and healthy cells, which can be used for further experimentation. In this study, we used isogenic algal cells that were first synchronized in mixotrophic growth conditions. We show that these synchronized cells, when placed in droplets and kept in mixotrophic growth conditions, exhibit mostly homogeneous growth statistics, but with two distinct subpopulations: a major population with a short doubling-time (fast-growers) and a significant subpopulation of slowly dividing cells (slow-growers). These observations suggest that algal cells from an isogenic population may be present in either of two states, a state of restricted division and a state of active division. When isogenic cells were allowed to propagate for about 1000 generations on solid agar plates, they displayed an increased heterogeneity in their growth dynamics. Although we could still identify the original populations of slow- and fast-growers, drops inoculated with a single progenitor cell now displayed a wider diversity of doubling-times. Moreover, populations dividing with the same growth-rate often reached different cell numbers in stationary phase, suggesting that the progenitor cells differed in the number of cell divisions they could undertake. We discuss possible explanations for these cell-to-cell heterogeneities in growth dynamics, such as mutations, differential aging or stochastic variations in metabolites and macromolecules yielding molecular switches, in the light of single-cell heterogeneities that have been reported among isogenic populations of other eu- and prokaryotes. PMID:25760649