Science.gov

Sample records for cells bacterial

  1. Bacterial Cell Wall Components

    NASA Astrophysics Data System (ADS)

    Ginsberg, Cynthia; Brown, Stephanie; Walker, Suzanne

    Bacterial cell-surface polysaccharides cells are surrounded by a variety of cell-surface structures that allow them to thrive in extreme environments. Components of the cell envelope and extracellular matrix are responsible for providing the cells with structural support, mediating intercellular communication, allowing the cells to move or to adhere to surfaces, protecting the cells from attack by antibiotics or the immune system, and facilitating the uptake of nutrients. Some of the most important cell wall components are polysaccharide structures. This review discusses the occurrence, structure, function, and biosynthesis of the most prevalent bacterial cell surface polysaccharides: peptidoglycan, lipopolysaccharide, arabinogalactan, and lipoarabinomannan, and capsular and extracellular polysaccharides. The roles of these polysaccharides in medicine, both as drug targets and as therapeutic agents, are also described.

  2. Electron Cryotomography of Bacterial Cells

    PubMed Central

    Chen, Songye; McDowall, Alasdair; Dobro, Megan J.; Briegel, Ariane; Ladinsky, Mark; Shi, Jian; Tocheva, Elitza I.; Beeby, Morgan; Pilhofer, Martin; Ding, H. Jane; Li, Zhuo; Gan, Lu; Morris, Dylan M.; Jensen, Grant J.

    2010-01-01

    While much is already known about the basic metabolism of bacterial cells, many fundamental questions are still surprisingly unanswered, including for instance how they generate and maintain specific cell shapes, establish polarity, segregate their genomes, and divide. In order to understand these phenomena, imaging technologies are needed that bridge the resolution gap between fluorescence light microscopy and higher-resolution methods such as X-ray crystallography and NMR spectroscopy. Electron cryotomography (ECT) is an emerging technology that does just this, allowing the ultrastructure of cells to be visualized in a near-native state, in three dimensions (3D), with "macromolecular" resolution (~4nm).1, 2 In ECT, cells are imaged in a vitreous, "frozen-hydrated" state in a cryo transmission electron microscope (cryoTEM) at low temperature (< -180°C). For slender cells (up to ~500 nm in thickness3), intact cells are plunge-frozen within media across EM grids in cryogens such as ethane or ethane/propane mixtures. Thicker cells and biofilms can also be imaged in a vitreous state by first "high-pressure freezing" and then, "cryo-sectioning" them. A series of two-dimensional projection images are then collected through the sample as it is incrementally tilted along one or two axes. A three-dimensional reconstruction, or "tomogram" can then be calculated from the images. While ECT requires expensive instrumentation, in recent years, it has been used in a few labs to reveal the structures of various external appendages, the structures of different cell envelopes, the positions and structures of cytoskeletal filaments, and the locations and architectures of large macromolecular assemblies such as flagellar motors, internal compartments and chemoreceptor arrays.1, 2 In this video article we illustrate how to image cells with ECT, including the processes of sample preparation, data collection, tomogram reconstruction, and interpretation of the results through

  3. Identification of bacterial cells by chromosomal painting.

    PubMed Central

    Lanoil, B D; Giovannoni, S J

    1997-01-01

    Chromosomal painting is a technique for the microscopic localization of genetic material. It has been applied at the subcellular level to identify regions of eukaryotic chromosomes. Here we describe the development of bacterial chromosomal painting (BCP), a related technology for the identification of bacterial cells. Purified genomic DNAs from six bacterial strains were labeled by nick translation with the fluorochrome Fluor-X, Cy3, or Cy5. The average size of the labeled fragments was ca. 50 to 200 bp. The probes were hybridized to formaldehyde-fixed microbial cells attached to slides and visualized by fluorescence microscopy. In reciprocal comparisons, distantly related members of the class Proteobacteria (Escherichia coli and Oceanospirillum linum), different species of the genus Bacillus (B. subtilis and B. megaterium), and different serotypes of the subspecies Salmonella choleraesuis subsp. choleraesuis (serotype typhimurium LT2 and serotype typhi Ty2) could easily be distinguished. A combination of two probes, each labeled with a different fluorochrome, was used successfully to simultaneously identify two cell types in a mixture. Lysozyme treatment was required for the identification of Bacillus spp., and RNase digestion and pepsin digestion were found to enhance signal strength and specificity for all cell types tested. Chromosome in situ suppression, a technique that removes cross-hybridizing fragments from the probe, was necessary for the differentiation of the Salmonella serotypes but was not required to distinguish the more distantly related taxa. BCP may have applications in diverse branches of microbiology where the objective is the identification of bacterial cells. PMID:9055426

  4. Photo-Induced Effect on Bacterial Cells

    NASA Astrophysics Data System (ADS)

    El Batanouny, M. H.; Amin, Rehab M.; Naga, M. I.; Ibrahim, M. K.

    2010-04-01

    Bacterial resistance against antibiotics is an increasing problem in medicine. This stimulates study of other bactericidal regimens, one of which is photodynamic therapy (PDT), which involves the killing of bacterial species by low power laser light (LLL) in the presence of photosensitizing agent. It has already been shown that, various gram- negative and gram-positive bacteria can be killed by photodynamic therapy in vitro, using exogenous sensitizers. The mechanisms of laser action on bacteria are not adequately understood. Here, PDT on H. pylori, as an example of gram negative bacteria was studied. The ultra structure changes of the organism after PDT were examined under electron microscope. Neither Irradiation with laser without sensitizer nor sensitizing without laser has any lethal effect on bacterial cells. However, the successful lethal photosensitization was achieved by applying certain laser dose with the corresponding concentration of the photosensitizer. On the other hand, PDT has no significant effect on the genomic DNA of the cells.

  5. Bacterial Networks in Cells and Communities.

    PubMed

    Sourjik, Victor; Vorholt, Julia A

    2015-11-20

    Research on the bacterial regulatory networks is currently experiencing a true revival, driven by advances in methodology and by emergence of novel concepts. The biannual conference Bacterial Networks (BacNet15) held in May 2015, in Sant Feliu de Guíxols, Spain, covered progress in the studies of regulatory networks that control bacterial physiology, cell biology, stress responses, metabolism, collective behavior and evolution. It demonstrated how interdisciplinary approaches that combine molecular biology and biochemistry with the latest microscopy developments, whole cell (-omics) approaches and mathematical modeling can help understand design principles relevant in microbiology. It further showed how current biotechnology and medical microbiology could profit from our knowledge of and ability to engineer regulatory networks of bacteria. PMID:26506266

  6. Macrophage cell death upon intracellular bacterial infection

    PubMed Central

    Lai, Xin-He; Xu, Yunsheng; Chen, Xiao-Ming; Ren, Yi

    2015-01-01

    Macrophage-pathogen interaction is a complex process and the outcome of this tag-of-war for both sides is to live or die. Without attempting to be comprehensive, this review will discuss the complexity and significance of the interaction outcomes between macrophages and some facultative intracellular bacterial pathogens as exemplified by Francisella, Salmonella, Shigella and Yersinia. Upon bacterial infection, macrophages can die by a variety of ways, such as apoptosis, autophagic cell death, necrosis, necroptosis, oncosis, pyronecrosis, pyroptosis etc, which is the focus of this review. PMID:26690967

  7. Colon-targeted delivery of live bacterial cell biotherapeutics including microencapsulated live bacterial cells

    PubMed Central

    Prakash, Satya; Malgorzata Urbanska, Aleksandra

    2008-01-01

    There has been an ample interest in delivery of therapeutic molecules using live cells. Oral delivery has been stipulated as best way to deliver live cells to humans for therapy. Colon, in particular, is a part of gastrointestinal (GI) tract that has been proposed to be an oral targeted site. The main objective of these oral therapy procedures is to deliver live cells not only to treat diseases like colorectal cancer, inflammatory bowel disease, and other GI tract diseases like intestinal obstruction and gastritis, but also to deliver therapeutic molecules for overall therapy in various diseases such as renal failure, coronary heart disease, hypertension, and others. This review provides a comprehensive summary of recent advancement in colon targeted live bacterial cell biotherapeutics. Current status of bacterial cell therapy, principles of artificial cells and its potentials in oral delivery of live bacterial cell biotherapeutics for clinical applications as well as biotherapeutic future perspectives are also discussed in our review. PMID:19707368

  8. Biosensors for Whole-Cell Bacterial Detection

    PubMed Central

    Rushworth, Jo V.; Hirst, Natalie A.; Millner, Paul A.

    2014-01-01

    SUMMARY Bacterial pathogens are important targets for detection and identification in medicine, food safety, public health, and security. Bacterial infection is a common cause of morbidity and mortality worldwide. In spite of the availability of antibiotics, these infections are often misdiagnosed or there is an unacceptable delay in diagnosis. Current methods of bacterial detection rely upon laboratory-based techniques such as cell culture, microscopic analysis, and biochemical assays. These procedures are time-consuming and costly and require specialist equipment and trained users. Portable stand-alone biosensors can facilitate rapid detection and diagnosis at the point of care. Biosensors will be particularly useful where a clear diagnosis informs treatment, in critical illness (e.g., meningitis) or to prevent further disease spread (e.g., in case of food-borne pathogens or sexually transmitted diseases). Detection of bacteria is also becoming increasingly important in antibioterrorism measures (e.g., anthrax detection). In this review, we discuss recent progress in the use of biosensors for the detection of whole bacterial cells for sensitive and earlier identification of bacteria without the need for sample processing. There is a particular focus on electrochemical biosensors, especially impedance-based systems, as these present key advantages in terms of ease of miniaturization, lack of reagents, sensitivity, and low cost. PMID:24982325

  9. Expression of bacterial genes in plant cells.

    PubMed Central

    Fraley, R T; Rogers, S G; Horsch, R B; Sanders, P R; Flick, J S; Adams, S P; Bittner, M L; Brand, L A; Fink, C L; Fry, J S; Galluppi, G R; Goldberg, S B; Hoffmann, N L; Woo, S C

    1983-01-01

    Chimeric bacterial genes conferring resistance to aminoglycoside antibiotics have been inserted into the Agrobacterium tumefaciens tumor-inducing (Ti) plasmid and introduced into plant cells by in vitro transformation techniques. The chimeric genes contain the nopaline synthase 5' and 3' regulatory regions joined to the genes for neomycin phosphotransferase type I or type II. The chimeric genes were cloned into an intermediate vector, pMON120, and inserted into pTiB6S3 by recombination and then introduced into petunia and tobacco cells by cocultivating A. tumefaciens cells with protoplast-derived cells. Southern hybridization was used to confirm the presence of the chimeric genes in the transformed plant tissues. Expression of the chimeric genes was determined by the ability of the transformed cells to proliferate on medium containing normally inhibitory levels of kanamycin (50 micrograms/ml) or other aminoglycoside antibiotics. Plant cells transformed by wild-type pTiB6S3 or derivatives carrying the bacterial neomycin phosphotransferase genes with their own promoters failed to grow under these conditions. The significance of these results for plant genetic engineering is discussed. Images PMID:6308651

  10. BACTERIAL FOODBORNE INFECTIONS AFTER HEMATOPOIETIC CELL TRANSPLANTATION

    PubMed Central

    Boyle, Nicole; Podczervinski, Sara; Jordan, Kim; Stednick, Zach; Butler-Wu, Susan; McMillen, Kerry; Pergam, Steven A.

    2014-01-01

    Background Diarrhea, abdominal pain and fever are common among patients undergoing hematopoietic cell transplant (HCT), but such symptoms are also typical with foodborne infections. The burden of disease caused by foodborne infections in patients undergoing HCT is unknown. We sought to describe bacterial foodborne infection incidence post-transplant within a single-center population of HCT recipients. Methods All HCT recipients transplanted from 2001 through 2011 at the Fred Hutchinson Cancer Research Center in Seattle, WA were followed for one year post-transplant. Data were collected retrospectively using center databases, which include information from transplant, on-site examinations, outside records, and collected laboratory data. Patients were considered to have a bacterial foodborne infection if Campylobacter jejuni/coli, Listeria monocytogenes, E. coli 0157:H7, Salmonella species, Shigella species, Vibrio species or Yersinia species were isolated in culture within one-year post-transplant. Non-foodborne infections with these agents and patients with preexisting bacterial foodborne infection (within 30 days of transplant) were excluded from analyses. Results A total of 12/4069 (0.3%) patients developed a bacterial foodborne infection within one year post-transplant. Patients with infections had a median age at transplant of 50.5 years (interquartile range [IQR]: 35–57), and the majority were adults ≥18 years of age (9/12 [75%]), male gender (8/12 [67%]) and post-allogeneic transplant (8/12 [67%]). Infectious episodes occurred at an incidence rate of 1.0 per 100,000 patient-days (95% CI: 0.5–1.7) and at a median of 50.5 days after transplant (IQR: 26–58.5). The most frequent pathogen detected was Campylobacter jejuni/coli (5/12 [42%]) followed by Yersinia (3/12 [25%]), while Salmonella (2/12 [17%]) and Listeria (2/12 [17%]) showed equal frequencies; no cases of Shigella, Vibrio, or E. coli 0157:H7 were detected. Most patients were diagnosed via stool

  11. One Bacterial Cell, One Complete Genome

    SciTech Connect

    Woyke, Tanja; Tighe, Damon; Mavrommatis, Konstantinos; Clum, Alicia; Copeland, Alex; Schackwitz, Wendy; Lapidus, Alla; Wu, Dongying; McCutcheon, John P.; McDonald, Bradon R.; Moran, Nancy A.; Bristow, James; Cheng, Jan-Fang

    2010-04-26

    While the bulk of the finished microbial genomes sequenced to date are derived from cultured bacterial and archaeal representatives, the vast majority of microorganisms elude current culturing attempts, severely limiting the ability to recover complete or even partial genomes from these environmental species. Single cell genomics is a novel culture-independent approach, which enables access to the genetic material of an individual cell. No single cell genome has to our knowledge been closed and finished to date. Here we report the completed genome from an uncultured single cell of Candidatus Sulcia muelleri DMIN. Digital PCR on single symbiont cells isolated from the bacteriome of the green sharpshooter Draeculacephala minerva bacteriome allowed us to assess that this bacteria is polyploid with genome copies ranging from approximately 200?900 per cell, making it a most suitable target for single cell finishing efforts. For single cell shotgun sequencing, an individual Sulcia cell was isolated and whole genome amplified by multiple displacement amplification (MDA). Sanger-based finishing methods allowed us to close the genome. To verify the correctness of our single cell genome and exclude MDA-derived artifacts, we independently shotgun sequenced and assembled the Sulcia genome from pooled bacteriomes using a metagenomic approach, yielding a nearly identical genome. Four variations we detected appear to be genuine biological differences between the two samples. Comparison of the single cell genome with bacteriome metagenomic sequence data detected two single nucleotide polymorphisms (SNPs), indicating extremely low genetic diversity within a Sulcia population. This study demonstrates the power of single cell genomics to generate a complete, high quality, non-composite reference genome within an environmental sample, which can be used for population genetic analyzes.

  12. Metabolic Responses of Bacterial Cells to Immobilization.

    PubMed

    Żur, Joanna; Wojcieszyńska, Danuta; Guzik, Urszula

    2016-01-01

    In recent years immobilized cells have commonly been used for various biotechnological applications, e.g., antibiotic production, soil bioremediation, biodegradation and biotransformation of xenobiotics in wastewater treatment plants. Although the literature data on the physiological changes and behaviour of cells in the immobilized state remain fragmentary, it is well documented that in natural settings microorganisms are mainly found in association with surfaces, which results in biofilm formation. Biofilms are characterized by genetic and physiological heterogeneity and the occurrence of altered microenvironments within the matrix. Microbial cells in communities display a variety of metabolic differences as compared to their free-living counterparts. Immobilization of bacteria can occur either as a natural phenomenon or as an artificial process. The majority of changes observed in immobilized cells result from protection provided by the supports. Knowledge about the main physiological responses occurring in immobilized cells may contribute to improving the efficiency of immobilization techniques. This paper reviews the main metabolic changes exhibited by immobilized bacterial cells, including growth rate, biodegradation capabilities, biocatalytic efficiency and plasmid stability. PMID:27455220

  13. Production of Bacterial Cells from Methane

    PubMed Central

    Sheehan, Brian T.; Johnson, Marvin J.

    1971-01-01

    A mixed methane-oxidizing bacterial culture capable of stable and predictable growth in continuous culture was isolated. The culture consisted of two types of gram-negative nonsporulating rods resembling pseudomonads. The culture grew well at 45 C on an inorganic medium without asepsis. Specific metal requirements for Ca2+, Cu2+, MoO42−, Zn2+, Mn2+, Mg2+, and Fe3+ (or Fe2+) were shown. The cells grown in continuous culture contained 11.7 to 12.1% total nitrogen. From an animal nutrition standpoint, the distribution of amino acids was satisfactory. The continuous fermentation was operated over a range of steady-state dilution rates from 0.085 to 0.301 hr−1. The maximum specific growth rate for the culture, μmax, was 0.303 hr−1 (doubling time 2.29 hr). The average yield for all fermentations analyzed was 0.616 g (dry weight of cells per g of methane used and 0.215 g (dry weight) of cells per g of oxygen used. The yields on both methane and oxygen were higher for the oxygen-limited than for the methane-limited fermentations. The maximum productivity attained in the fermentor was 2.39 g (dry weight) of cells per hr per liter at a dilution rate of 0.187 hr−1 and a cell concentration of 12.8 g (dry weight) of cells per liter. The limit on maximum cell productivity was determined only by the mass transfer rate of oxygen in the fermentor. The simultaneous volumetric mass-transfer coefficients (kLa in hr−1) for oxygen and methane were determined. The results appear to indicate an oxygen to methane mass-transfer coefficient ratio of approximately 1.4. PMID:4928605

  14. Bacterial cell curvature through mechanical control of cell growth

    PubMed Central

    Cabeen, Matthew T; Charbon, Godefroid; Vollmer, Waldemar; Born, Petra; Ausmees, Nora; Weibel, Douglas B; Jacobs-Wagner, Christine

    2009-01-01

    The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure that collapses into a helix when detached from the cell membrane, suggesting that it is normally maintained in a stretched configuration. Crescentin causes an elongation rate gradient around the circumference of the sidewall, creating a longitudinal cell length differential and hence curvature. Such curvature can be produced by physical force alone when cells are grown in circular microchambers. Production of crescentin in Escherichia coli is sufficient to generate cell curvature. Our data argue for a model in which physical strain borne by the crescentin structure anisotropically alters the kinetics of cell wall insertion to produce curved growth. Our study suggests that bacteria may use the cytoskeleton for mechanical control of growth to alter morphology. PMID:19279668

  15. An Overview of Genetic Mechanisms in the Bacterial Cell.

    ERIC Educational Resources Information Center

    Metcalfe, Judith; Baumberg, Simon

    1988-01-01

    Outlines the genetic elements found in the bacterial cell which play a role in recombining DNA sequences. Provides a core structure to which the mechanisms occurring in and between bacterial cells can be related. Discusses the practicalities of recombinant DNA techniques. (Author/CW)

  16. Messenger Functions of the Bacterial Cell Wall-derived Muropeptides

    PubMed Central

    Boudreau, Marc A.; Fisher, Jed. F.; Mobashery, Shahriar

    2012-01-01

    Bacterial muropeptides are soluble peptidoglycan structures central to recycling of the bacterial cell wall, and messengers in diverse cell-signaling events. Bacteria sense muropeptides as signals that antibiotics targeting cell-wall biosynthesis are present, and eukaryotes detect muropeptides during the innate immune response to bacterial infection. This review summarizes the roles of bacterial muropeptides as messengers, with a special emphasis on bacterial muropeptide structures and the relationship of structure to the biochemical events that the muropeptides elicit. Muropeptide sensing and recycling in both Gram-positive and Gram-negative bacteria is discussed, followed by muropeptide sensing by eukaryotes as a crucial event to the innate immune response of insects (via peptidoglycan-recognition proteins) and mammals (through Nod-like receptors) to bacterial invasion. PMID:22409164

  17. Structure of a bacterial cell surface decaheme electron conduit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits...

  18. Mechanics of Bacterial Cells and Initial Surface Colonisation.

    PubMed

    Aguayo, Sebastian; Bozec, Laurent

    2016-01-01

    The mechanical properties of bacterial cells play an important role in crucial bacterial processes such as cell growth, colonisation and biofilm formation. Recent developments in the field of nanotechnology and atomic force microscopy (AFM) have made it possible to observe, characterise and understand the nanomechanic behaviour of live bacterial cells as never before. Unlike traditional techniques, AFM makes it possible to employ living bacteria in their physiological environment with minimal or no sample preparation. The technique of AFM nanoindentation opens new possibilities to study bacterial cell wall stiffness under different mechanical and buffer conditions. Also, by attaching bacterial cells to functionalised AFM cantilevers, single-cell force spectroscopy (SCFS) can be used to measure the adhesion of bacteria to biological and non-biological substrates at the nano-newton and pico-newton scale, and provide specific information on receptor-ligand interactions. By studying the biophysics of the bacterial-surface interaction with the abovementioned techniques, it has been possible to gain new insight on the early stages of bacterial colonisation and biofilm formation. PMID:27193547

  19. Osmotic Pressure, Bacterial Cell Walls, and Penicillin: A Demonstration.

    ERIC Educational Resources Information Center

    Lennox, John E.

    1984-01-01

    An easily constructed apparatus that models the effect of penicillin on the structure of bacterial cells is described. Background information and procedures for using the apparatus during a classroom demonstration are included. (JN)

  20. Bacterial adhesion to uroepithelial cells: a morphologic study.

    PubMed

    Marrie, T J; Lam, J; Costerton, J W

    1980-08-01

    Urethral and midstream urine samples from healthy women and from patients with urinary tract infections (UTI) were examined by electron microscopy. Urethral urine samples from healthy subjects contained sparsely and densely colonized uroepithelial cells. The latter had morphologically heterogeneous bacteria adherent to each other and to the epithelial cell by a ruthenium red-positive fibrous matrix, which was present on the surface of all bacteria examined. Urethral urine samples from patients with UTI often had two distinct microcolonies of morphologically similar bacteria adherent to the same uroepithelial cell. Midstream urine samples from these patients contained large microcolonies of morphologically identical bacteria. Urine from patients with catheter-associated infections contained few uroepithelial cells and two distinct varieties of bacterial microcolonies--one of intact homogeneous cells and another of a mixture of damaged and intact bacteria. These in vivo observations indicate that the bacterial surface matrix participates in bacterial adhesion to uroepithelial cells and in bacteria-bacteria adhesion. PMID:6774033

  1. Bacterial cell biology outside the streetlight.

    PubMed

    Bulgheresi, Silvia

    2016-09-01

    As much as vertical transmission of microbial symbionts requires their deep integration into the host reproductive and developmental biology, symbiotic lifestyle might profoundly affect bacterial growth and proliferation. This review describes the reproductive oddities displayed by bacteria associated - more or less intimately - with multicellular eukaryotes. PMID:27306428

  2. Bacterial cell biology outside the streetlight

    PubMed Central

    2016-01-01

    Summary As much as vertical transmission of microbial symbionts requires their deep integration into the host reproductive and developmental biology, symbiotic lifestyle might profoundly affect bacterial growth and proliferation. This review describes the reproductive oddities displayed by bacteria associated – more or less intimately – with multicellular eukaryotes. PMID:27306428

  3. RNA-seq based transcriptomic analysis of single bacterial cells.

    PubMed

    Wang, Jiangxin; Chen, Lei; Chen, Zixi; Zhang, Weiwen

    2015-11-01

    Gene-expression heterogeneity among individual cells determines the fate of a bacterial population. Here we report the first bacterial single-cell RNA sequencing (RNA-seq), BaSiC RNA-seq, a method integrating RNA isolation, cDNA synthesis and amplification, and RNA-seq analysis of the whole transcriptome of single cyanobacterium Synechocystis sp. PCC 6803 cells which typically contain approximately 5-7 femtogram total RNA per cell. We applied the method to 3 Synechocystis single cells at 24 h and 3 single cells at 72 h after nitrogen-starvation stress treatment, as well as their bulk-cell controls under the same conditions, to determine the heterogeneity upon environmental stress. With 82-98% and 31-48% of all putative Synechocystis genes identified in single cells of 24 and 72 h, respectively, the results demonstrated that the method could achieve good identification of the transcripts in single bacterial cells. In addition, the preliminary results from nitrogen-starved cells also showed a possible increasing gene-expression heterogeneity from 24 h to 72 h after nitrogen starvation stress. Moreover, preliminary analysis of single-cell transcriptomic datasets revealed that genes from the "Mobile elements" functional category have the most significant increase of gene-expression heterogeneity upon stress, which was further confirmed by single-cell RT-qPCR analysis of gene expression in 24 randomly selected cells. PMID:26331465

  4. Bacterial Cellulose as a Substrate for Microbial Cell Culture

    PubMed Central

    Yin, Na; Santos, Thiago M. A.; Auer, George K.; Crooks, John A.; Oliver, Piercen M.

    2014-01-01

    Bacterial cellulose (BC) has a range of structural and physicochemical properties that make it a particularly useful material for the culture of bacteria. We studied the growth of 14 genera of bacteria on BC substrates produced by Acetobacter xylinum and compared the results to growth on the commercially available biopolymers agar, gellan, and xanthan. We demonstrate that BC produces rates of bacterial cell growth that typically exceed those on the commercial biopolymers and yields cultures with higher titers of cells at stationary phase. The morphology of the cells did not change during growth on BC. The rates of nutrient diffusion in BC being higher than those in other biopolymers is likely a primary factor that leads to higher growth rates. Collectively, our results suggest that the use of BC may open new avenues in microbiology by facilitating bacterial cell culture and isolation. PMID:24441155

  5. Defining heterogeneity within bacterial populations via single cell approaches.

    PubMed

    Davis, Kimberly M; Isberg, Ralph R

    2016-08-01

    Bacterial populations are heterogeneous, which in many cases can provide a selective advantage during changes in environmental conditions. In some instances, heterogeneity exists at the genetic level, in which significant allelic variation occurs within a population seeded by a single cell. In other cases, heterogeneity exists due to phenotypic differences within a clonal, genetically identical population. A variety of mechanisms can drive this latter strategy. Stochastic fluctuations can drive differential gene expression, but heterogeneity in gene expression can also be driven by environmental changes sensed by individual cells residing in distinct locales. Utilizing multiple single cell approaches, workers have started to uncover the extent of heterogeneity within bacterial populations. This review will first describe several examples of phenotypic and genetic heterogeneity, and then discuss many single cell approaches that have recently been applied to define heterogeneity within bacterial populations. PMID:27273675

  6. Efficient Immobilization and Patterning of Live Bacterial Cells

    PubMed Central

    Suo, Zhiyong; Avci, Recep; Yang, Xinghong; Pascual, David W.

    2008-01-01

    A monolayer of live bacterial cells has been patterned onto substrates through the interaction between CFA/I fimbriae and the corresponding antibody. Patterns of live bacteria have been prepared with cellular resolution on silicon and gold substrates for Salmonella enterica serovar Typhimurium as a model with high specificity and efficiency. The immobilized cells are capable of dividing in growth medium to form a self-sustaining bacterial monolayer on the patterned areas. Interestingly, the immobilized cells can alter their orientation on the substrate, from lying-down to standing-up, as a response to the cell density increase during incubation. This method was successfully used to sort a targeted bacterial species from a mixed culture within 2 h. PMID:18321142

  7. Conductivity and Dielectric Dispersion of Gram-Positive Bacterial Cells

    PubMed

    van der Wal A; Minor; Norde; Zehnder; Lyklema

    1997-02-01

    The conductivity of bacterial cell suspensions has been studied over a wide range of ionic strengths and is interpreted in terms of their cell wall properties. The experimental data have been analyzed after improving the high kappaa double-layer theory of Fixman, by accounting for ionic mobility in the hydrodynamically stagnant layer, i.e., in the bacterial wall. Static conductivity and dielectric dispersion measurements both show that the counterions in the porous gel-like cell wall give rise to a considerable surface conductance. From a comparison of the mobile charge with the total cell wall charge it is inferred that the mobilities of the ions in the bacterial wall are of the same order but somewhat lower than those in the bulk electrolyte solution. The occurrence of surface conductance reduces the electrophoretic mobility in electrophoresis studies. If this effect is not taken into account, the zeta-potential will be underestimated, especially at low electrolyte concentrations. PMID:9056304

  8. [Cashmere goat bacterial artificial chromosome recombination and cell transfection system].

    PubMed

    Huang, Tian; Cao, Zhongyang; Yang, Yaohui; Cao, Gengsheng

    2016-03-01

    The Cashmere goat is mainly used to produce cashmere, which is very popular for its delicate fiber, luscious softness and natural excellent warm property. Keratin associated protein (KAP) and bone morphogenetic protein (BMP) of the Cashmere goat play an important role in the proliferation and development of cashmere fiber follicle cells. Bacterial artificial chromosome containing kap6.3, kap8.1 and bmp4 genes were used to increase the production and quality of Cashmere. First, we constructed bacterial artificial chromosomes by homology recombination. Then Tol2 transposon was inserted into bacterial artificial chromosomes that were then transfected into Cashmere goat fibroblasts by Amaxa Nucleofector technology according to the manufacture's instructions. We successfully constructed the BAC-Tol2 vectors containing target genes. Each vector contained egfp report gene with UBC promoter, Neomycin resistant gene for cell screening and two loxp elements for resistance removing after transfected into cells. The bacterial artificial chromosome-Tol2 vectors showed a high efficiency of transfection that can reach 1% to 6% with a highest efficiency of 10%. We also obtained Cashmere goat fibroblasts integrated exogenous genes (kap6.3, kap8.1 and bmp4) preparing for the clone of Cashmere goat in the future. Our research demonstrates that the insertion of Tol2 transposons into bacterial artificial chromosomes improves the transfection efficiency and accuracy of bacterial artificial chromosome error-free recombination. PMID:27349114

  9. Attachment of motile bacterial cells to prealigned holed microarrays.

    PubMed

    Rozhok, Sergey; Fan, Zhifang; Nyamjav, Dorjderem; Liu, Chang; Mirkin, Chad A; Holz, Richard C

    2006-12-19

    Construction of biomotors is an exciting area of scientific research that holds great promise for the development of new technologies with broad potential applications in areas such as the energy industry and medicine. Herein, we demonstrate the fabrication of prealigned microarrays of motile Escherichia coli bacterial cells on SiOx substrates. To prepare these arrays, holed surfaces with a gold layer on the bottom of the holes were utilized. The attachment of bacteria to the holes was achieved via nonspecific interactions using poly-l-lysine hydrobromide (PLL). Our data suggest that a single motile bacterial cell can be selectively attached to an individual hole on a surface and bacterial cell binding can be controlled by altering the pH, with the greatest occupancy occurring at pH 7.8. Cells attached to hole arrays remained motile for at least 4 h. These data indicate that holed surface structures provide a promising footprint for the attachment of motile bacterial cells to form high-density site-specific functional bacterial microarrays. PMID:17154612

  10. Electroporation of Functional Bacterial Effectors into Mammalian Cells

    DOE PAGESBeta

    Sontag, Ryan L.; Mihai, Cosmin; Orr, Galya; Savchenko, Alexei; Skarina, Tatiana; Cui, Hong; Cort, John R.; Adkins, Joshua N.; Brown, Roslyn N.

    2015-01-19

    Electroporation was used to insert purified bacterial virulence effector proteins directly into living eukaryotic cells. Protein localization was monitored by confocal immunofluorescence microscopy. This method allows for studies on trafficking, function, and protein-protein interactions using active exogenous proteins, avoiding the need for heterologous expression in eukaryotic cells.

  11. Electroporation of Functional Bacterial Effectors into Mammalian Cells

    SciTech Connect

    Sontag, Ryan L.; Mihai, Cosmin; Orr, Galya; Savchenko, Alexei; Skarina, Tatiana; Cui, Hong; Cort, John R.; Adkins, Joshua N.; Brown, Roslyn N.

    2015-01-01

    Electroporation was used to insert purified bacterial virulence effector proteins directly into living eukaryotic cells. Protein localization was monitored by confocal immunofluorescence microscopy. This method allows for studies on trafficking, function, and protein-protein interactions using active exogenous proteins, avoiding the need for heterologous expression in eukaryotic cells.

  12. Nanomechanical Response of Bacterial Cells to Cationic Antimicrobial Peptides

    NASA Astrophysics Data System (ADS)

    Lu, Shun; Walters, Grant; Parg, Richard; Dutcher, John

    2014-03-01

    The effectiveness of antimicrobial compounds can be easily screened, however their mechanism of action is much more difficult to determine. Many compounds act by compromising the mechanical integrity of the bacterial cell envelope, and our study introduces an atomic force microscopy (AFM)-based creep deformation technique to evaluate changes in the time-dependent mechanical properties of Pseudomonas aeruginosa PAO1 bacterial cells upon exposure to two different but structurally related antimicrobial peptides: polymyxin B and polymyxin B nonapeptide. We observed a distinctive signature for the loss of integrity of the bacterial cell envelope following exposure to the peptides. Measurements performed before and after exposure, as well as time-resolved measurements and those performed at different concentrations, revealed large changes to the viscoelastic parameters that are consistent with differences in the membrane permeabilizing effects of the peptides. The AFM creep deformation measurement provides new, unique insight into the kinetics and mechanism of action of antimicrobial peptides on bacteria.

  13. Bacterial cell identification in differential interference contrast microscopy images

    PubMed Central

    2013-01-01

    Background Microscopy image segmentation lays the foundation for shape analysis, motion tracking, and classification of biological objects. Despite its importance, automated segmentation remains challenging for several widely used non-fluorescence, interference-based microscopy imaging modalities. For example in differential interference contrast microscopy which plays an important role in modern bacterial cell biology. Therefore, new revolutions in the field require the development of tools, technologies and work-flows to extract and exploit information from interference-based imaging data so as to achieve new fundamental biological insights and understanding. Results We have developed and evaluated a high-throughput image analysis and processing approach to detect and characterize bacterial cells and chemotaxis proteins. Its performance was evaluated using differential interference contrast and fluorescence microscopy images of Rhodobacter sphaeroides. Conclusions Results demonstrate that the proposed approach provides a fast and robust method for detection and analysis of spatial relationship between bacterial cells and their chemotaxis proteins. PMID:23617824

  14. Single Cell Analysis of a Bacterial Sender-Receiver System.

    PubMed

    Ramalho, Tiago; Meyer, Andrea; Mückl, Andrea; Kapsner, Korbinian; Gerland, Ulrich; Simmel, Friedrich C

    2016-01-01

    Monitoring gene expression dynamics on the single cell level provides important information on cellular heterogeneity and stochasticity, and potentially allows for more accurate quantitation of gene expression processes. We here study bacterial senders and receivers genetically engineered with components of the quorum sensing system derived from Aliivibrio fischeri on the single cell level using microfluidics-based bacterial chemostats and fluorescence video microscopy. We track large numbers of bacteria over extended periods of time, which allows us to determine bacterial lineages and filter out subpopulations within a heterogeneous population. We quantitatively determine the dynamic gene expression response of receiver bacteria to varying amounts of the quorum sensing inducer N-3-oxo-C6-homoserine lactone (AHL). From this we construct AHL response curves and characterize gene expression dynamics of whole bacterial populations by investigating the statistical distribution of gene expression activity over time. The bacteria are found to display heterogeneous induction behavior within the population. We therefore also characterize gene expression in a homogeneous bacterial subpopulation by focusing on single cell trajectories derived only from bacteria with similar induction behavior. The response at the single cell level is found to be more cooperative than that obtained for the heterogeneous total population. For the analysis of systems containing both AHL senders and receiver cells, we utilize the receiver cells as 'bacterial sensors' for AHL. Based on a simple gene expression model and the response curves obtained in receiver-only experiments, the effective AHL concentration established by the senders and their 'sending power' is determined. PMID:26808777

  15. Single Cell Analysis of a Bacterial Sender-Receiver System

    PubMed Central

    Mückl, Andrea; Kapsner, Korbinian; Gerland, Ulrich; Simmel, Friedrich C.

    2016-01-01

    Monitoring gene expression dynamics on the single cell level provides important information on cellular heterogeneity and stochasticity, and potentially allows for more accurate quantitation of gene expression processes. We here study bacterial senders and receivers genetically engineered with components of the quorum sensing system derived from Aliivibrio fischeri on the single cell level using microfluidics-based bacterial chemostats and fluorescence video microscopy. We track large numbers of bacteria over extended periods of time, which allows us to determine bacterial lineages and filter out subpopulations within a heterogeneous population. We quantitatively determine the dynamic gene expression response of receiver bacteria to varying amounts of the quorum sensing inducer N-3-oxo-C6-homoserine lactone (AHL). From this we construct AHL response curves and characterize gene expression dynamics of whole bacterial populations by investigating the statistical distribution of gene expression activity over time. The bacteria are found to display heterogeneous induction behavior within the population. We therefore also characterize gene expression in a homogeneous bacterial subpopulation by focusing on single cell trajectories derived only from bacteria with similar induction behavior. The response at the single cell level is found to be more cooperative than that obtained for the heterogeneous total population. For the analysis of systems containing both AHL senders and receiver cells, we utilize the receiver cells as ‘bacterial sensors’ for AHL. Based on a simple gene expression model and the response curves obtained in receiver-only experiments, the effective AHL concentration established by the senders and their ‘sending power’ is determined. PMID:26808777

  16. Myeloid-Derived Suppressor Cells in Bacterial Infections.

    PubMed

    Ost, Michael; Singh, Anurag; Peschel, Andreas; Mehling, Roman; Rieber, Nikolaus; Hartl, Dominik

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) comprise monocytic and granulocytic innate immune cells with the capability of suppressing T- and NK-cell responses. While the role of MDSCs has been studied in depth in malignant diseases, the understanding of their regulation and function in infectious disease conditions has just begun to evolve. Here we summarize and discuss the current view how MDSCs participate in bacterial infections and how this knowledge could be exploited for potential future therapeutics. PMID:27066459

  17. Myeloid-Derived Suppressor Cells in Bacterial Infections

    PubMed Central

    Ost, Michael; Singh, Anurag; Peschel, Andreas; Mehling, Roman; Rieber, Nikolaus; Hartl, Dominik

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) comprise monocytic and granulocytic innate immune cells with the capability of suppressing T- and NK-cell responses. While the role of MDSCs has been studied in depth in malignant diseases, the understanding of their regulation and function in infectious disease conditions has just begun to evolve. Here we summarize and discuss the current view how MDSCs participate in bacterial infections and how this knowledge could be exploited for potential future therapeutics. PMID:27066459

  18. Aerotactic Cell Density Variations in Bacterial Turbulence

    NASA Astrophysics Data System (ADS)

    Fernandez, Vicente; Smriga, Steven; Menolascina, Filippo; Rusconi, Roberto; Stocker, Roman

    2015-11-01

    Concentrated suspensions of motile bacteria such as Bacillus subtilis exhibit group dynamics much larger than the scale of an individual bacterium, visual similar to high Reynolds number turbulence. These suspensions represent a microscale realization of active matter. Individually, B. subtilis are also aerotactic, and will accumulate near oxygen sources. Using a microfluidic device for generating oxygen gradients, we investigate the relationship between individuals' attraction to oxygen and the collective motion resultant from hydrodynamic interactions. We focus on changes in density revealed by a fluorescently labeled sub-population of B. subtilis in the dense suspension. This approach allows us to examine changes in density during the onset of collective motion as well as fully developed bacterial turbulence.

  19. Nanomechanical Response of Bacterial Cells to Antimicrobial Peptides

    NASA Astrophysics Data System (ADS)

    Parg, Richard; Dutcher, John

    2015-03-01

    The effectiveness of antimicrobial compounds can be easily screened, however their mechanism of action is much more difficult to determine. Many compounds act by compromising the mechanical integrity of the bacterial cell envelope, and we have developed an atomic force microscopy (AFM)-based creep deformation technique to evaluate changes in the time-dependent mechanical properties of bacterial cells upon exposure to antimicrobial peptides. Measurements performed before and after exposure, as well as time-resolved measurements and those performed at different antimicrobial concentrations, revealed large changes to the viscoelastic parameters including a distinctive signature for the loss of integrity of the bacterial cell envelope. Our previous experiments have focused on Pseudomonas aeruginosaPAO1 bacterial cells in Milli-Q water, for which the cells can withstand the large osmotic pressure. In the present study we have focused on performing the measurements in buffer to obtain more biologically relevant results. The AFM creep deformation measurement provides new, unique insight into the kinetics and mechanism of action of antimicrobial peptides on bacteria.

  20. Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells

    PubMed Central

    2010-01-01

    Background In recent years bacterial inclusion bodies (IBs) were recognised as highly pure deposits of active proteins inside bacterial cells. Such active nanoparticles are very interesting for further downstream protein isolation, as well as for many other applications in nanomedicine, cosmetic, chemical and pharmaceutical industry. To prepare large quantities of a high quality product, the whole bioprocess has to be optimised. This includes not only the cultivation of the bacterial culture, but also the isolation step itself, which can be of critical importance for the production process. To determine the most appropriate method for the isolation of biologically active nanoparticles, three methods for bacterial cell disruption were analyzed. Results In this study, enzymatic lysis and two mechanical methods, high-pressure homogenization and sonication, were compared. During enzymatic lysis the enzyme lysozyme was found to attach to the surface of IBs, and it could not be removed by simple washing. As this represents an additional impurity in the engineered nanoparticles, we concluded that enzymatic lysis is not the most suitable method for IBs isolation. During sonication proteins are released (lost) from the surface of IBs and thus the surface of IBs appears more porous when compared to the other two methods. We also found that the acoustic output power needed to isolate the IBs from bacterial cells actually damages proteins structures, thereby causing a reduction in biological activity. High-pressure homogenization also caused some damage to IBs, however the protein loss from the IBs was negligible. Furthermore, homogenization had no side-effects on protein biological activity. Conclusions The study shows that among the three methods tested, homogenization is the most appropriate method for the isolation of active nanoparticles from bacterial cells. PMID:20831775

  1. Expression and stabilization of bacterial luciferase in mammalian cells

    NASA Astrophysics Data System (ADS)

    Patterson, Stacey S.; Dionisi, Hebe M.; Gupta, Rakesh K.; Sayler, Gary S.

    2004-06-01

    Current mammalian bioreporters using either firefly luciferase (luc) or GFP constructs require lysis and/or exogenous excitation to evoke a measurable response. Consequently, these cells cannot serve as continuous, on-line monitoring devices for in vivo imaging. Bacterial luciferase, lux, produces a photonic reaction that is cyclic, resulting in autonomous signal generation without the requirement for exogenous substrates or external activation. Therefore, lux-based bioluminescent bioreporters are the only truly autonomous light-generating sensors in existence. Unfortunately, the bacterial lux system has not yet been efficiently expressed in mammalian cells. In this research, three approaches for optimal expression of the a and b subunits of the bacterial luciferase protein were compared and reporter signal stability was evaluated from stably transfected human embryonic kidney cells. Maximum light levels were obtained from cells expressing the luciferase subunits linked with an internal ribosomal entry site (IRES). Cells harboring this construct produced bioluminescence equaling 2.6 X 106 photons/sec compared to 7.2 X 104 photons/sec obtained from cells expressing the luciferase from a dual promoter vector and 3.5 X 104 photons/sec from a Lux fusion protein. Furthermore, the bioluminescence levels remained stable for more than forty cell passages (5 months) in the absence of antibiotic selection. After this time, bioluminescence signals dropped at a rate of approximately 5% per cell passage. These data indicate that mammalian cell lines can be engineered to efficiently express the bacterial lux system, thus lending themselves to possible long-term continuous monitoring or imaging applications in vivo.

  2. Micro-magnet arrays for specific single bacterial cell positioning

    NASA Astrophysics Data System (ADS)

    Pivetal, Jérémy; Royet, David; Ciuta, Georgeta; Frenea-Robin, Marie; Haddour, Naoufel; Dempsey, Nora M.; Dumas-Bouchiat, Frédéric; Simonet, Pascal

    2015-04-01

    In various contexts such as pathogen detection or analysis of microbial diversity where cellular heterogeneity must be taken into account, there is a growing need for tools and methods that enable microbiologists to analyze bacterial cells individually. One of the main challenges in the development of new platforms for single cell studies is to perform precise cell positioning, but the ability to specifically target cells is also important in many applications. In this work, we report the development of new strategies to selectively trap single bacterial cells upon large arrays, based on the use of micro-magnets. Escherichia coli bacteria were used to demonstrate magnetically driven bacterial cell organization. In order to provide a flexible approach adaptable to several applications in the field of microbiology, cells were magnetically and specifically labeled using two different strategies, namely immunomagnetic labeling and magnetic in situ hybridization. Results show that centimeter-sized arrays of targeted, isolated bacteria can be successfully created upon the surface of a flat magnetically patterned hard magnetic film. Efforts are now being directed towards the integration of a detection tool to provide a complete micro-system device for a variety of microbiological applications.

  3. Adenylate Cyclase Toxin promotes bacterial internalisation into non phagocytic cells

    PubMed Central

    Martín, César; Etxaniz, Asier; Uribe, Kepa B.; Etxebarria, Aitor; González-Bullón, David; Arlucea, Jon; Goñi, Félix M.; Aréchaga, Juan; Ostolaza, Helena

    2015-01-01

    Bordetella pertussis causes whooping cough, a respiratory infectious disease that is the fifth largest cause of vaccine-preventable death in infants. Though historically considered an extracellular pathogen, this bacterium has been detected both in vitro and in vivo inside phagocytic and non-phagocytic cells. However the precise mechanism used by B. pertussis for cell entry, or the putative bacterial factors involved, are not fully elucidated. Here we find that adenylate cyclase toxin (ACT), one of the important toxins of B. pertussis, is sufficient to promote bacterial internalisation into non-phagocytic cells. After characterization of the entry route we show that uptake of “toxin-coated bacteria” proceeds via a clathrin-independent, caveolae-dependent entry pathway, allowing the internalised bacteria to survive within the cells. Intracellular bacteria were found inside non-acidic endosomes with high sphingomyelin and cholesterol content, or “free” in the cytosol of the invaded cells, suggesting that the ACT-induced bacterial uptake may not proceed through formation of late endolysosomes. Activation of Tyr kinases and toxin-induced Ca2+-influx are essential for the entry process. We hypothesize that B. pertussis might use ACT to activate the endocytic machinery of non-phagocytic cells and gain entry into these cells, in this way evading the host immune system. PMID:26346097

  4. Bacterial invasion of vascular cell types: vascular infectology and atherogenesis.

    PubMed

    Kozarov, Emil

    2012-01-01

    To portray the chronic inflammation in atherosclerosis, leukocytic cell types involved in the immune response to invading pathogens are often the focus. However, atherogenesis is a complex pathological deterioration of the arterial walls, where vascular cell types are participants with regards to deterioration and disease. Since other recent reviews have detailed the role of both the innate and adaptive immune response in atherosclerosis, herein we will summarize the latest developments regarding the association of bacteria with vascular cell types: infections as a risk factor for atherosclerosis; bacterial invasion of vascular cell types; the atherogenic sequelae of bacterial presence such as endothelial activation and blood clotting; and the identification of the species that are able to colonize this niche. The evidence of a polybacterial infectious component of the atheromatous lesions opens the doors for exploration of the new field of vascular infectology and for the study of atherosclerosis microbiome. PMID:22185451

  5. Sorption of heavy metals by prepared bacterial cell surfaces

    SciTech Connect

    Churchill, S.A.; Walters, J.V.; Churchill, P.F.

    1995-10-01

    Prepared biomass from two Gram-negative and one Gram-positive bacterial strains was examined for single, binary, and quaternary mixtures of polyvalent metal cation binding to cell surfaces. The biosorption of {sub 24}Cr{sup 3+}, {sub 27}Co{sup 2+}, {sub 28}Ni{sup 2+}, and {sub 29}Cu{sup 2+} for each bacterial cell type was evaluated using a batch equilibrium method. The binding of each metal by all three bacterial cells could be described by the Freundlich sorption model. The isotherm binding constants suggest that E. coli cells are the most efficient at binding copper, chromium, and nickel; and M. luteus adsorbs cobalt most efficiently. The K-values for copper bound to P. aeruginosa and E. coli are > 2-fold and > 8-fold greater, respectively, than previous reported for intact cells. The general metal-affinity series observed was Cr{sup 3+} > Cu{sup 2+} > Ni{sup 2+} > Co{sup 2+}. There was a marked lower affinity of all biosorbents for Co{sup 2+} and Ni{sup 2+}. M. luteus and E. coli had a strong preference for Co{sup 2+} over Ni{sup 2+}. Metal-binding enhancement could be ascribed to increased cell barrier surface porosity to metal-bearing solutions.

  6. Role of Innate T Cells in Anti-Bacterial Immunity

    PubMed Central

    Gao, Yifang; Williams, Anthony P.

    2015-01-01

    Innate T cells are a heterogeneous group of αβ and γδ T cells that respond rapidly (<2 h) upon activation. These innate T cells also share a non MHC class I or II restriction requirement for antigen recognition. Three major populations within the innate T cell group are recognized, namely, invariant NKT cells, mucosal associated invariant T cells, and gamma delta T cells. These cells recognize foreign/self-lipid presented by non-classical MHC molecules, such as CD1d, MR1, and CD1a. They are activated during the early stages of bacterial infection and act as a bridge between the innate and adaptive immune systems. In this review, we focus on the functional properties of these three innate T cell populations and how they are purposed for antimicrobial defense. Furthermore, we address the mechanisms through which their effector functions are targeted for bacterial control and compare this in human and murine systems. Lastly, we speculate on future roles of these cell types in therapeutic settings such as vaccination. PMID:26124758

  7. Enhanced Efflux Activity Facilitates Drug Tolerance in Dormant Bacterial Cells

    PubMed Central

    Pu, Yingying; Zhao, Zhilun; Li, Yingxing; Zou, Jin; Ma, Qi; Zhao, Yanna; Ke, Yuehua; Zhu, Yun; Chen, Huiyi; Baker, Matthew A.B.; Ge, Hao; Sun, Yujie; Xie, Xiaoliang Sunney; Bai, Fan

    2016-01-01

    Summary Natural variations in gene expression provide a mechanism for multiple phenotypes to arise in an isogenic bacterial population. In particular, a sub-group termed persisters show high tolerance to antibiotics. Previously, their formation has been attributed to cell dormancy. Here we demonstrate that bacterial persisters, under β-lactam antibiotic treatment, show less cytoplasmic drug accumulation as a result of enhanced efflux activity. Consistently, a number of multi-drug efflux genes, particularly the central component TolC, show higher expression in persisters. Time-lapse imaging and mutagenesis studies further establish a positive correlation between tolC expression and bacterial persistence. The key role of efflux systems, among multiple biological pathways involved in persister formation, indicates that persisters implement a positive defense against antibiotics prior to a passive defense via dormancy. Finally, efflux inhibitors and antibiotics together effectively attenuate persister formation, suggesting a combination strategy to target drug tolerance. PMID:27105118

  8. Resistance to antibiotics targeted to the bacterial cell wall

    PubMed Central

    Nikolaidis, I; Favini-Stabile, S; Dessen, A

    2014-01-01

    Peptidoglycan is the main component of the bacterial cell wall. It is a complex, three-dimensional mesh that surrounds the entire cell and is composed of strands of alternating glycan units crosslinked by short peptides. Its biosynthetic machinery has been, for the past five decades, a preferred target for the discovery of antibacterials. Synthesis of the peptidoglycan occurs sequentially within three cellular compartments (cytoplasm, membrane, and periplasm), and inhibitors of proteins that catalyze each stage have been identified, although not all are applicable for clinical use. A number of these antimicrobials, however, have been rendered inactive by resistance mechanisms. The employment of structural biology techniques has been instrumental in the understanding of such processes, as well as the development of strategies to overcome them. This review provides an overview of resistance mechanisms developed toward antibiotics that target bacterial cell wall precursors and its biosynthetic machinery. Strategies toward the development of novel inhibitors that could overcome resistance are also discussed. PMID:24375653

  9. Subdiffraction localization of a nanostructured photosensitizer in bacterial cells

    PubMed Central

    Delcanale, Pietro; Pennacchietti, Francesca; Maestrini, Giulio; Rodríguez-Amigo, Beatriz; Bianchini, Paolo; Diaspro, Alberto; Iagatti, Alessandro; Patrizi, Barbara; Foggi, Paolo; Agut, Monserrat; Nonell, Santi; Abbruzzetti, Stefania; Viappiani, Cristiano

    2015-01-01

    Antibacterial treatments based on photosensitized production of reactive oxygen species is a promising approach to address local microbial infections. Given the small size of bacterial cells, identification of the sites of binding of the photosensitizing molecules is a difficult issue to address with conventional microscopy. We show that the excited state properties of the naturally occurring photosensitizer hypericin can be exploited to perform STED microscopy on bacteria incubated with the complex between hypericin and apomyoglobin, a self-assembled nanostructure that confers very good bioavailability to the photosensitizer. Hypericin fluorescence is mostly localized at the bacterial wall, and accumulates at the polar regions of the cell and at sites of cell wall growth. While these features are shared by Gram-negative and Gram-positive bacteria, only the latter are effectively photoinactivated by light exposure. PMID:26494535

  10. Reducing systems protecting the bacterial cell envelope from oxidative damage.

    PubMed

    Arts, Isabelle S; Gennaris, Alexandra; Collet, Jean-François

    2015-06-22

    Exposure of cells to elevated levels of reactive oxygen species (ROS) damages DNA, membrane lipids and proteins, which can potentially lead to cell death. In proteins, the sulfur-containing residues cysteine and methionine are particularly sensitive to oxidation, forming sulfenic acids and methionine sulfoxides, respectively. The presence of protection mechanisms to scavenge ROS and repair damaged cellular components is therefore essential for cell survival. The bacterial cell envelope, which constitutes the first protection barrier from the extracellular environment, is particularly exposed to the oxidizing molecules generated by the host cells to kill invading microorganisms. Therefore, the presence of oxidative stress defense mechanisms in that compartment is crucial for cell survival. Here, we review recent findings that led to the identification of several reducing pathways protecting the cell envelope from oxidative damage. We focus in particular on the mechanisms that repair envelope proteins with oxidized cysteine and methionine residues and we discuss the major questions that remain to be solved. PMID:25957772

  11. Studying bacterial quorum-sensing at the single cell level

    NASA Astrophysics Data System (ADS)

    Delfino Perez, Pablo; Pelakh, Leslie; Young, Jonathan; Johnson, Elaine; Hagen, Stephen

    2010-03-01

    Like many bacterial species, Vibrio fischeri can detect its own population density through a quorum sensing (QS) mechanism. The bacterium releases a signal molecule (AI, autoinducer), which accumulates at high population density and triggers a genetic switch. In V.fischeri this leads to bioluminescence. Little is known about how stochastic gene expression affects QS at the level of single cells. We are imaging the luminescence of individual V.fischeri cells in a flow chamber and directly measuring the intercell variability in AI activation of the QS circuit. Our single-cell luminescence experiments allow us to track cells over time and characterize variations in their response to AI levels. We find heterogeneous response to the external signal: at a given AI concentration some cells may be strongly luminescent while others are virtually dark. The analysis of noise in the individual cell response can eventually lead to a better understanding of how cells use QS to gather information about their environment.

  12. Bacterial cells enhance laser driven ion acceleration

    PubMed Central

    Dalui, Malay; Kundu, M.; Trivikram, T. Madhu; Rajeev, R.; Ray, Krishanu; Krishnamurthy, M.

    2014-01-01

    Intense laser produced plasmas generate hot electrons which in turn leads to ion acceleration. Ability to generate faster ions or hotter electrons using the same laser parameters is one of the main outstanding paradigms in the intense laser-plasma physics. Here, we present a simple, albeit, unconventional target that succeeds in generating 700 keV carbon ions where conventional targets for the same laser parameters generate at most 40 keV. A few layers of micron sized bacteria coating on a polished surface increases the laser energy coupling and generates a hotter plasma which is more effective for the ion acceleration compared to the conventional polished targets. Particle-in-cell simulations show that micro-particle coated target are much more effective in ion acceleration as seen in the experiment. We envisage that the accelerated, high-energy carbon ions can be used as a source for multiple applications. PMID:25102948

  13. Induction of Human Regulatory T Cells with Bacterial Superantigens.

    PubMed

    Caserta, Stefano; Taylor, Amanda L; Terrazzini, Nadia; Llewelyn, Martin J

    2016-01-01

    Regulatory T cells (Tregs) that suppress the activation of immune effector cells limit immunopathology and are fast emerging as therapeutic targets for autoimmune and cancer disease. Tools enabling Treg in vitro-induction, expansion, and characterization and manipulation will help future clinical developments. In this chapter, we describe in detail how to use bacterial superantigens to induce human Tregs efficiently from peripheral blood mononuclear cells. How to assess human Treg phenotype and suppressive capacity are also described. Technical details, variations, and alternative experimental conditions are provided. PMID:26676048

  14. Bacterial-induced cell reprogramming to stem cell-like cells: new premise in host-pathogen interactions

    PubMed Central

    Hess, Samuel; Rambukkana, Anura

    2015-01-01

    Bacterial pathogens employ a myriad of strategies to alter host tissue cell functions for bacterial advantage during infection. Recent advances revealed a fusion of infection biology with stem cell biology by demonstrating developmental reprogramming of lineage committed host glial cells to progenitor/stem cell-like cells by an intracellular bacterial pathogen Mycobacterium leprae. Acquisition of migratory and immunomodulatory properties of such reprogrammed cells provides an added advantage for promoting bacterial spread. This presents a previously unseen sophistication of cell manipulation by hijacking the genomic plasticity of host cells by a human bacterial pathogen. The rationale for such extreme fate conversion of host cells may be directly linked to the exceedingly passive obligate life style of M. leprae with a degraded genome and host cell dependence for both bacterial survival and dissemination, particularly the use of host-derived stem cell-like cells as a vehicle for spreading infection without being detected by immune cells. Thus, this unexpected link between cell reprogramming and infection opens up a new premise in host-pathogen interactions. Furthermore, such bacterial ingenuity could also be harnessed for developing natural ways of reprogramming host cells for repairing damaged tissues from infection, injury and diseases. PMID:25541240

  15. Extracellular Heme Uptake and the Challenges of Bacterial Cell Membranes

    PubMed Central

    Smith, Aaron D.; Wilks, Angela

    2013-01-01

    In bacteria, the fine balance of maintaining adequate iron levels while preventing the deleterious effects of excess iron has led to the evolution of sophisticated cellular mechanisms to obtain, store, and regulate iron. Iron uptake provides a significant challenge given its limited bioavailability and need to be transported across the bacterial cell wall and membranes. Pathogenic bacteria have circumvented the iron-availability issue by utilizing the hosts' heme-containing proteins as a source of iron. Once internalized, iron is liberated from the porphyrin enzymatically for cellular processes within the bacterial cell. Heme, a lipophilic and toxic molecule, poses a significant challenge in terms of transport given its chemical reactivity. As such, pathogenic bacteria have evolved sophisticated membrane transporters to coordinate, sequester, and transport heme. Recent advances in the biochemical and structural characterization of the membrane-bound heme transport proteins are discussed in the context of ligand coordination, protein–protein interaction, and heme transfer. PMID:23046657

  16. ULTRASOUND INCREASES THE RATE OF BACTERIAL CELL GROWTH

    PubMed Central

    Pitt, William G.; Ross, S. Aaron

    2006-01-01

    Ultrasound was employed to increase the growth rate of bacterial cells attached to surfaces. Staphylococcus epidermidis, Pseudomonas aeruginosa and Escherichia coli cells adhered to and grew on a polyethylene surface in the presence of ultrasound. It was found that low frequency ultrasound (70 kHz) of low acoustic intensity (<2 W/cm2) increased the growth rate of the cells compared to growth without ultrasound. However, at high intensity levels, cells were partially removed from the surface. Ultrasound also enhanced planktonic growth of S. epidermidis and other planktonic bacteria. It is hypothesized that ultrasound increases the rate of transport of oxygen and nutrients to the cells and increases the rate of transport of waste products away from the cells, thus enhancing their growth. PMID:12790676

  17. The Role of Lipid Domains in Bacterial Cell Processes

    PubMed Central

    Barák, Imrich; Muchová, Katarína

    2013-01-01

    Membranes are vital structures for cellular life forms. As thin, hydrophobic films, they provide a physical barrier separating the aqueous cytoplasm from the outside world or from the interiors of other cellular compartments. They maintain a selective permeability for the import and export of water-soluble compounds, enabling the living cell to maintain a stable chemical environment for biological processes. Cell membranes are primarily composed of two crucial substances, lipids and proteins. Bacterial membranes can sense environmental changes or communication signals from other cells and they support different cell processes, including cell division, differentiation, protein secretion and supplementary protein functions. The original fluid mosaic model of membrane structure has been recently revised because it has become apparent that domains of different lipid composition are present in both eukaryotic and prokaryotic cell membranes. In this review, we summarize different aspects of phospholipid domain formation in bacterial membranes, mainly in Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. We describe the role of these lipid domains in membrane dynamics and the localization of specific proteins and protein complexes in relation to the regulation of cellular function. PMID:23429192

  18. Electroporation of Functional Bacterial Effectors into Mammalian Cells

    PubMed Central

    Sontag, Ryan L.; Mihai, Cosmin; Orr, Galya; Savchenko, Alexei; Skarina, Tatiana; Cui, Hong; Cort, John R.; Adkins, Joshua N.; Brown, Roslyn N.

    2015-01-01

    The study of protein interactions in the context of living cells can generate critical information about localization, dynamics, and interacting partners. This information is particularly valuable in the context of host-pathogen interactions. Many pathogen proteins function within host cells in a variety of way such as, enabling evasion of the host immune system and survival within the intracellular environment. To study these pathogen-protein host-cell interactions, several approaches are commonly used, including: in vivo infection with a strain expressing a tagged or mutant protein, or introduction of pathogen genes via transfection or transduction. Each of these approaches has advantages and disadvantages. We sought a means to directly introduce exogenous proteins into cells. Electroporation is commonly used to introduce nucleic acids into cells, but has been more rarely applied to proteins although the biophysical basis is exactly the same. A standard electroporator was used to introduce affinity-tagged bacterial effectors into mammalian cells. Human epithelial and mouse macrophage cells were cultured by traditional methods, detached, and placed in 0.4 cm gap electroporation cuvettes with an exogenous bacterial pathogen protein of interest (e.g. Salmonella Typhimurium GtgE). After electroporation (0.3 kV) and a short (4 hr) recovery period, intracellular protein was verified by fluorescently labeling the protein via its affinity tag and examining spatial and temporal distribution by confocal microscopy. The electroporated protein was also shown to be functional inside the cell and capable of correct subcellular trafficking and protein-protein interaction. While the exogenous proteins tended to accumulate on the surface of the cells, the electroporated samples had large increases in intracellular effector concentration relative to incubation alone. The protocol is simple and fast enough to be done in a parallel fashion, allowing for high

  19. Bacterial-mediated DNA delivery to tumour associated phagocytic cells.

    PubMed

    Byrne, W L; Murphy, C T; Cronin, M; Wirth, T; Tangney, M

    2014-12-28

    Phagocytic cells including macrophages, dendritic cells and neutrophils are now recognised as playing a negative role in many disease settings including cancer. In particular, macrophages are known to play a pathophysiological role in multiple diseases and present a valid and ubiquitous therapeutic target. The technology to target these phagocytic cells in situ, both selectively and efficiently, is required in order to translate novel therapeutic modalities into clinical reality. We present a novel delivery strategy using non-pathogenic bacteria to effect gene delivery specifically to tumour-associated phagocytic cells. Non-invasive bacteria lack the ability to actively enter host cells, except for phagocytic cells. We exploit this natural property to effect 'passive transfection' of tumour-associated phagocytic cells following direct administration of transgene-loaded bacteria to tumour regions. Using an in vitro-differentiated human monocyte cell line and two in vivo mouse models (an ovarian cancer ascites and a solid colon tumour model) proof of delivery is demonstrated with bacteria carrying reporter constructs. The results confirm that the delivery strategy is specific for phagocytic cells and that the bacterial vector itself recruits more phagocytic cells to the tumour. While proof of delivery to phagocytic cells is demonstrated in vivo for solid and ascites tumour models, this strategy may be applied to other settings, including non-cancer related disease. PMID:25466954

  20. Bending forces plastically deform growing bacterial cell walls.

    PubMed

    Amir, Ariel; Babaeipour, Farinaz; McIntosh, Dustin B; Nelson, David R; Jun, Suckjoon

    2014-04-22

    Cell walls define a cell's shape in bacteria. The walls are rigid to resist large internal pressures, but remarkably plastic to adapt to a wide range of external forces and geometric constraints. Currently, it is unknown how bacteria maintain their shape. In this paper, we develop experimental and theoretical approaches and show that mechanical stresses regulate bacterial cell wall growth. By applying a precisely controllable hydrodynamic force to growing rod-shaped Escherichia coli and Bacillus subtilis cells, we demonstrate that the cells can exhibit two fundamentally different modes of deformation. The cells behave like elastic rods when subjected to transient forces, but deform plastically when significant cell wall synthesis occurs while the force is applied. The deformed cells always recover their shape. The experimental results are in quantitative agreement with the predictions of the theory of dislocation-mediated growth. In particular, we find that a single dimensionless parameter, which depends on a combination of independently measured physical properties of the cell, can describe the cell's responses under various experimental conditions. These findings provide insight into how living cells robustly maintain their shape under varying physical environments. PMID:24711421

  1. Uniform dose atmospheric pressure microplasma exposure of individual bacterial cells

    NASA Astrophysics Data System (ADS)

    Rutherford, David; Mahony, Charles; Spence, Sarah; Perez-Martin, Fatima; Kelsey, Colin; Hamilton, Neil; Diver, Declan; Bennet, Euan; Potts, Hugh; Mariotti, Davide; McDowell, David; Maguire, Paul

    2015-09-01

    Plasma - bacteria interactions have been studied for some time with a view to using plasma exposure for wound healing, sterilization and decontamination. While high efficacy has been demonstrated, important fundamental mechanisms are not understood and may be critical for ultimate acceptance. The dose variation across the exposed population and the impact of non-lethal exposure on subsequent bacterial growth are important issues. We demonstrate that individual bacterial cells can remain viable after exposure to a uniform plasma dose. Each bacteria cell (E coli) is delivered to the atmospheric pressure plasma in an aerosolised droplet (d ~ 10 micron). The estimated plasma density is 1E13 - 1E14 cm-3, gas temperature <400 K, and exposure times vary between 0.04 and 0.1ms. Droplet evaporation in flight is ~2 micron and plasma - cell interactions are mediated by the surrounding liquid (Ringers solution) where plasma-induced droplet surface chemistry and charging is known to occur. We report the cell viability and recovery dynamics of individual exposed cells as well as impact on DNA and membrane components with reference to measured plasma parameters. This research was funded by EPSRC (Grants: EP/K006088/1 & EP/K006142/1).

  2. Detecting Bacterial Surface Organelles on Single Cells Using Optical Tweezers.

    PubMed

    Zakrisson, Johan; Singh, Bhupender; Svenmarker, Pontus; Wiklund, Krister; Zhang, Hanqing; Hakobyan, Shoghik; Ramstedt, Madeleine; Andersson, Magnus

    2016-05-10

    Bacterial cells display a diverse array of surface organelles that are important for a range of processes such as intercellular communication, motility and adhesion leading to biofilm formation, infections, and bacterial spread. More specifically, attachment to host cells by Gram-negative bacteria are mediated by adhesion pili, which are nanometers wide and micrometers long fibrous organelles. Since these pili are significantly thinner than the wavelength of visible light, they cannot be detected using standard light microscopy techniques. At present, there is no fast and simple method available to investigate if a single cell expresses pili while keeping the cell alive for further studies. In this study, we present a method to determine the presence of pili on a single bacterium. The protocol involves imaging the bacterium to measure its size, followed by predicting the fluid drag based on its size using an analytical model, and thereafter oscillating the sample while a single bacterium is trapped by an optical tweezer to measure its effective fluid drag. Comparison between the predicted and the measured fluid drag thereby indicate the presence of pili. Herein, we verify the method using polymer coated silica microspheres and Escherichia coli bacteria expressing adhesion pili. Our protocol can in real time and within seconds assist single cell studies by distinguishing between piliated and nonpiliated bacteria. PMID:27088225

  3. Virus and Bacterial Cell Chemical Analysis by NanoSIMS

    SciTech Connect

    Weber, P; Holt, J

    2008-07-28

    In past work for the Department of Homeland Security, the LLNL NanoSIMS team has succeeded in extracting quantitative elemental composition at sub-micron resolution from bacterial spores using nanometer-scale secondary ion mass spectrometry (NanoSIMS). The purpose of this task is to test our NanoSIMS capabilities on viruses and bacterial cells. This initial work has proven successful. We imaged Tobacco Mosaic Virus (TMV) and Bacillus anthracis Sterne cells using scanning electron microscopy (SEM) and then analyzed those samples by NanoSIMS. We were able resolve individual viral particles ({approx}18 nm by 300 nm) in the SEM and extract correlated elemental composition in the NanoSIMS. The phosphorous/carbon ratio observed in TMV is comparable to that seen in bacterial spores (0.033), as was the chlorine/carbon ratio (0.11). TMV elemental composition is consistent from spot to spot, and TMV is readily distinguished from debris by NanoSIMS analysis. Bacterial cells were readily identified in the SEM and relocated in the NanoSIMS for elemental analysis. The Ba Sterne cells were observed to have a measurably lower phosphorous/carbon ratio (0.005), as compared to the spores produced in the same run (0.02). The chlorine/carbon ratio was approximately 2.5X larger in the cells (0.2) versus the spores (0.08), while the fluorine/carbon ratio was approximately 10X lower in the cells (0.008) than the spores (0.08). Silicon/carbon ratios for both cells and spores encompassed a comparable range. The initial data in this study suggest that high resolution analysis is useful because it allows the target agent to be analyzed separate from particulates and other debris. High resolution analysis would also be useful for trace sample analysis. The next step in this work is to determine the potential utility of elemental signatures in these kinds of samples. We recommend bulk analyses of media and agent samples to determine the range of media compositions in use, and to determine how

  4. Bacterial actin and tubulin homologs in cell growth and division.

    PubMed

    Busiek, Kimberly K; Margolin, William

    2015-03-16

    In contrast to the elaborate cytoskeletal machines harbored by eukaryotic cells, such as mitotic spindles, cytoskeletal structures detectable by typical negative stain electron microscopy are generally absent from bacterial cells. As a result, for decades it was thought that bacteria lacked cytoskeletal machines. Revolutions in genomics and fluorescence microscopy have confirmed the existence not only of smaller-scale cytoskeletal structures in bacteria, but also of widespread functional homologs of eukaryotic cytoskeletal proteins. The presence of actin, tubulin, and intermediate filament homologs in these relatively simple cells suggests that primitive cytoskeletons first arose in bacteria. In bacteria such as Escherichia coli, homologs of tubulin and actin directly interact with each other and are crucial for coordinating cell growth and division. The function and direct interactions between these proteins will be the focus of this review. PMID:25784047

  5. Cell surface energy, contact angles and phase partition. II. Bacterial cells in biphasic aqueous mixtures.

    PubMed

    Gerson, D F; Akit, J

    1980-11-01

    Partition coefficients in biphasic mixtures of poly(ethylene glycol) and Dextran are compared to cell surface energies obtained from contact angles of each liquid phase on cell layers. Linear relationships are observed between these two independent measurements for a variety of bacterial cells. The results demonstrate the importance of interfacial phenomena and contact angles in the phase-partition process. PMID:6159003

  6. Human mesenchymal stem cells: New sojourn of bacterial pathogens.

    PubMed

    Kohli, Sakshi; Singh, Yadvir; Sowpati, Divya Tej; Ehtesham, Nasreen Z; Dobrindt, Ulrich; Hacker, Jörg; Hasnain, Seyed E

    2015-05-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tuberculosis), is the leading infectious disease which claims one human life every 15-20s globally. The persistence of this deadly disease in human population can be attributed to the ability of the bacterium to stay in latent form. M. tuberculosis possesses a plethora of mechanisms not only to survive latently under harsh conditions inside the host but also modulate the host immune cells in its favour. Various M. tuberculosis gene families have also been described to play a role in this process. Recently, human bone marrow derived mesenchymal stem cells (MSCs) have been reported as a niche for dormant M. tuberculosis. MSCs possess abilities to alter the host immune response. The bacterium finds this self-renewal and immune privileged nature of MSCs very favourable not only to modulate the host immune system, with some help from its own genes, but also to avoid the external drug pressure. We suggest that the MSCs not only provide a resting place for M. tuberculosis but could also, by virtue of their intrinsic ability to disseminate in the body, explain the genesis of extra-pulmonary TB. A similar exploitation of stem cells by other bacterial pathogens is a distinct possibility. It may be likely that other intracellular bacterial pathogens adopt this strategy to 'piggy-back' on to ovarian stem cells to ensure vertical transmission and successful propagation to the next generation. PMID:25648374

  7. Tiny cells meet big questions: a closer look at bacterial cell biology

    PubMed Central

    Goley, Erin D.

    2013-01-01

    While studying actin assembly as a graduate student with Matt Welch at the University of California at Berkeley, my interest was piqued by reports of surprising observations in bacteria: the identification of numerous cytoskeletal proteins, actin homologues fulfilling spindle-like functions, and even the presence of membrane-bound organelles. Curiosity about these phenomena drew me to Lucy Shapiro's lab at Stanford University for my postdoctoral research. In the Shapiro lab, and now in my lab at Johns Hopkins, I have focused on investigating the mechanisms of bacterial cytokinesis. Spending time as both a eukaryotic cell biologist and a bacterial cell biologist has convinced me that bacterial cells present the same questions as eukaryotic cells: How are chromosomes organized and accurately segregated? How is force generated for cytokinesis? How is polarity established? How are signals transduced within and between cells? These problems are conceptually similar between eukaryotes and bacteria, although their solutions can differ significantly in specifics. In this Perspective, I provide a broad view of cell biological phenomena in bacteria, the technical challenges facing those of us who peer into bacterial cells, and areas of common ground as research in eukaryotic and bacterial cell biology moves forward. PMID:23580191

  8. Microfabricated ratchet structures for concentrating and patterning motile bacterial cells

    NASA Astrophysics Data System (ADS)

    Yub Kim, Sang; Lee, Eun Se; Lee, Ho Jae; Lee, Se Yeon; Kuk Lee, Sung; Kim, Taesung

    2010-09-01

    We present a novel microfabricated concentrator for Escherichia coli that can be a stand-alone and self-contained microfluidic device because it utilizes the motility of cells. First of all, we characterize the motility of E. coli cells and various ratcheting structures that can guide cells to move in a desired direction in straight and circular channels. Then, we combine these ratcheting microstructures with the intrinsic tendency of cells to swim on the right side in microchannels to enhance the concentration rates up to 180 fold until the concentrators are fully filled with cells. Furthermore, we demonstrate that cells can be positioned and concentrated with a constant spacing distance on a surface, allowing spatial patterning of motile cells. These results can be applied to biosorption or biosensor devices that are powered by motile cells because they can be highly concentrated without any external mechanical and electrical energy sources. Hence, we believe that the concentrator design holds considerable potential to be applied for concentrating and patterning other motile microbes and providing a versatile structure for motility study of bacterial cells.

  9. Bending forces plastically deform growing bacterial cell walls

    PubMed Central

    Amir, Ariel; Babaeipour, Farinaz; McIntosh, Dustin B.; Nelson, David R.; Jun, Suckjoon

    2014-01-01

    Cell walls define a cell’s shape in bacteria. The walls are rigid to resist large internal pressures, but remarkably plastic to adapt to a wide range of external forces and geometric constraints. Currently, it is unknown how bacteria maintain their shape. In this paper, we develop experimental and theoretical approaches and show that mechanical stresses regulate bacterial cell wall growth. By applying a precisely controllable hydrodynamic force to growing rod-shaped Escherichia coli and Bacillus subtilis cells, we demonstrate that the cells can exhibit two fundamentally different modes of deformation. The cells behave like elastic rods when subjected to transient forces, but deform plastically when significant cell wall synthesis occurs while the force is applied. The deformed cells always recover their shape. The experimental results are in quantitative agreement with the predictions of the theory of dislocation-mediated growth. In particular, we find that a single dimensionless parameter, which depends on a combination of independently measured physical properties of the cell, can describe the cell’s responses under various experimental conditions. These findings provide insight into how living cells robustly maintain their shape under varying physical environments. PMID:24711421

  10. Following the Fate of Bacterial Cells Experiencing Sudden Chromosome Loss

    PubMed Central

    Elbaz, Maya

    2015-01-01

    ABSTRACT Chromosomal DNA is a constant source of information, essential for any given cell to respond and adapt to changing conditions. Here, we investigated the fate of exponentially growing bacterial cells experiencing a sudden and rapid loss of their entire chromosome. Utilizing Bacillus subtilis cells harboring an inducible copy of the endogenous toxin yqcG, which encodes an endonuclease, we induced the formation of a population of cells that lost their genetic information simultaneously. Surprisingly, these DNA-less cells, termed DLCs, did not lyse immediately and exhibited normal cellular morphology for a period of at least 5 h after DNA loss. This cellular integrity was manifested by their capacity to maintain an intact membrane and membrane potential and cell wall architecture similar to those of wild-type cells. Unlike growing cells that exhibit a dynamic profile of macromolecules, DLCs displayed steady protein and RNA reservoirs. Remarkably, following DLCs by time lapse microscopy revealed that they succeeded in synthesizing proteins, elongating, and dividing, apparently forming de novo Z rings at the midcell position. Taken together, the persistence of key cellular events in DLCs indicates that the information to carry out lengthy processes is harbored within the remaining molecular components. PMID:25922388

  11. Vaginal epithelial cells regulate membrane adhesiveness to co-ordinate bacterial adhesion.

    PubMed

    Younes, Jessica A; Klappe, Karin; Kok, Jan Willem; Busscher, Henk J; Reid, Gregor; van der Mei, Henny C

    2016-04-01

    Vaginal epithelium is colonized by different bacterial strains and species. The bacterial composition of vaginal biofilms controls the balance between health and disease. Little is known about the relative contribution of the epithelial and bacterial cell surfaces to bacterial adhesion and whether and how adhesion is regulated over cell membrane regions. Here, we show that bacterial adhesion forces with cell membrane regions not located above the nucleus are stronger than with regions above the nucleus both for vaginal pathogens and different commensal and probiotic lactobacillus strains involved in health. Importantly, adhesion force ratios over membrane regions away from and above the nucleus coincided with the ratios between numbers of adhering bacteria over both regions. Bacterial adhesion forces were dramatically decreased by depleting the epithelial cell membrane of cholesterol or sub-membrane cortical actin. Thus, epithelial cells can regulate membrane regions to which bacterial adhesion is discouraged, possibly to protect the nucleus. PMID:26477544

  12. Microarray Analysis to Monitor Bacterial Cell Wall Homeostasis.

    PubMed

    Hong, Hee-Jeon; Hesketh, Andy

    2016-01-01

    Transcriptomics, the genome-wide analysis of gene transcription, has become an important tool for characterizing and understanding the signal transduction networks operating in bacteria. Here we describe a protocol for quantifying and interpreting changes in the transcriptome of Streptomyces coelicolor that take place in response to treatment with three antibiotics active against different stages of peptidoglycan biosynthesis. The results defined the transcriptional responses associated with cell envelope homeostasis including a generalized response to all three antibiotics involving activation of transcription of the cell envelope stress sigma factor σ(E), together with elements of the stringent response, and of the heat, osmotic, and oxidative stress regulons. Many antibiotic-specific transcriptional changes were identified, representing cellular processes potentially important for tolerance to each antibiotic. The principles behind the protocol are transferable to the study of cell envelope homeostatic mechanisms probed using alternative chemical/environmental insults or in other bacterial strains. PMID:27311662

  13. Modification of Bacterial Effector Proteins Inside Eukaryotic Host Cells

    PubMed Central

    Popa, Crina M.; Tabuchi, Mitsuaki; Valls, Marc

    2016-01-01

    Pathogenic bacteria manipulate their hosts by delivering a number of virulence proteins -called effectors- directly into the plant or animal cells. Recent findings have shown that such effectors can suffer covalent modifications inside the eukaryotic cells. Here, we summarize the recent reports where effector modifications by the eukaryotic machinery have been described. We restrict our focus on proteins secreted by the type III or type IV systems, excluding other bacterial toxins. We describe the known examples of effectors whose enzymatic activity is triggered by interaction with plant and animal cell factors, including GTPases, E2-Ubiquitin conjugates, cyclophilin and thioredoxins. We focus on the structural interactions with these factors and their influence on effector function. We also review the described examples of host-mediated post-translational effector modifications which are required for proper subcellular location and function. These host-specific covalent modifications include phosphorylation, ubiquitination, SUMOylation, and lipidations such as prenylation, fatty acylation and phospholipid binding. PMID:27489796

  14. Structure of a Bacterial Cell Surface Decaheme Electron Conduit

    SciTech Connect

    Clarke, Thomas A.; Edwards, Marcus; Gates, Andrew J.; Hall, Andrea; White, Gaye; Bradley, Justin; Reardon, Catherine L.; Shi, Liang; Beliaev, Alex S.; Marshall, Matthew J.; Wang, Zheming; Watmough, Nicholas; Fredrickson, Jim K.; Zachara, John M.; Butt, Julea N.; Richardson, David J.

    2011-05-23

    Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves deca-heme cytochromes that are located on the bacterial cell surface at the termini of trans-outermembrane (OM) electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular inter-cytochrome electron exchange along ‘nanowire’ appendages. We present a 3.2 Å crystal structure of one of these deca-heme cytochromes, MtrF, that allows the spatial organization of the ten hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65 Å octa-heme chain transects the length of the protein and is bisected by a planar 45 Å tetra-heme chain that connects two extended Greek key split β-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g. minerals), soluble substrates (e.g. flavins) and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface.

  15. Lung dendritic cells facilitate extrapulmonary bacterial dissemination during pneumococcal pneumonia

    PubMed Central

    Rosendahl, Alva; Bergmann, Simone; Hammerschmidt, Sven; Goldmann, Oliver; Medina, Eva

    2013-01-01

    Streptococcus pneumoniae is a leading cause of bacterial pneumonia worldwide. Given the critical role of dendritic cells (DCs) in regulating and modulating the immune response to pathogens, we investigated here the role of DCs in S. pneumoniae lung infections. Using a well-established transgenic mouse line which allows the conditional transient depletion of DCs, we showed that ablation of DCs resulted in enhanced resistance to intranasal challenge with S. pneumoniae. DCs-depleted mice exhibited delayed bacterial systemic dissemination, significantly reduced bacterial loads in the infected organs and lower levels of serum inflammatory mediators than non-depleted animals. The increased resistance of DCs-depleted mice to S. pneumoniae was associated with a better capacity to restrict pneumococci extrapulmonary dissemination. Furthermore, we demonstrated that S. pneumoniae disseminated from the lungs into the regional lymph nodes in a cell-independent manner and that this direct way of dissemination was much more efficient in the presence of DCs. We also provide evidence that S. pneumoniae induces expression and activation of matrix metalloproteinase-9 (MMP-9) in cultured bone marrow-derived DCs. MMP-9 is a protease involved in the breakdown of extracellular matrix proteins and is critical for DC trafficking across extracellular matrix and basement membranes during the migration from the periphery to the lymph nodes. MMP-9 was also significantly up-regulated in the lungs of mice after intranasal infection with S. pneumoniae. Notably, the expression levels of MMP-9 in the infected lungs were significantly decreased after depletion of DCs suggesting the involvement of DCs in MMP-9 production during pneumococcal pneumonia. Thus, we propose that S. pneumoniae can exploit the DC-derived proteolysis to open tissue barriers thereby facilitating its own dissemination from the local site of infection. PMID:23802100

  16. Prodigiosin inhibits motility and activates bacterial cell death revealing molecular biomarkers of programmed cell death.

    PubMed

    Darshan, N; Manonmani, H K

    2016-12-01

    The antimicrobial activity of prodigiosin from Serratia nematodiphila darsh1, a bacterial pigment was tested against few food borne bacterial pathogens Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. The mode of action of prodigiosin was studied. Prodigiosin induced bactericidal activity indicating a stereotypical set of biochemical and morphological feature of Programmed cell death (PCD). PCD involves DNA fragmentation, generation of ROS, and expression of a protein with caspase-like substrate specificity in bacterial cells. Prodigiosin was observed to be internalized into bacterial cells and was localized predominantly in the membrane and the nuclear fraction, thus, facilitating intracellular trafficking and then binding of prodigiosin to the bacterial DNA. Corresponding to an increasing concentration of prodigiosin, the level of certain proteases were observed to increase in bacteria studied, thus initiating the onset of PCD. Prodigiosin at a sub-inhibitory concentration inhibits motility of pathogens. Our observations indicated that prodigiosin could be a promising antibacterial agent and could be used in the prevention of bacterial infections. PMID:27460563

  17. Functionalization of whole‐cell bacterial reporters with magnetic nanoparticles

    PubMed Central

    Zhang, Dayi; Fakhrullin, Rawil F.; Özmen, Mustafa; Wang, Hui; Wang, Jian; Paunov, Vesselin N.; Li, Guanghe; Huang, Wei E.

    2011-01-01

    Summary We developed a biocompatible and highly efficient approach for functionalization of bacterial cell wall with magnetic nanoparticles (MNPs). Three Acinetobacter baylyi ADP1 chromosomally based bioreporters, which were genetically engineered to express bioluminescence in response to salicylate, toluene/xylene and alkanes, were functionalized with 18 ± 3 nm iron oxide MNPs to acquire magnetic function. The efficiency of MNPs functionalization of Acinetobacter bioreporters was 99.96 ± 0.01%. The MNPs‐functionalized bioreporters (MFBs) can be remotely controlled and collected by an external magnetic field. The MFBs were all viable and functional as good as the native cells in terms of sensitivity, specificity and quantitative response. More importantly, we demonstrated that salicylate sensing MFBs can be applied to sediments and garden soils, and semi‐quantitatively detect salicylate in those samples by discriminably recovering MFBs with a permanent magnet. The magnetically functionalized cells are especially useful to complex environments in which the indigenous cells, particles and impurities may interfere with direct measurement of bioreporter cells and conventional filtration is not applicable to distinguish and harvest bioreporters. The approach described here provides a powerful tool to remotely control and selectively manipulate MNPs‐functionalized cells in water and soils. It would have a potential in the application of environmental microbiology, such as bioremediation enhancement and environment monitoring and assessment. PMID:21255376

  18. Imaging the action of antimicrobial peptides on living bacterial cells

    PubMed Central

    Gee, Michelle L.; Burton, Matthew; Grevis-James, Alistair; Hossain, Mohammed Akhter; McArthur, Sally; Palombo, Enzo A.; Wade, John D.; Clayton, Andrew H. A.

    2013-01-01

    Antimicrobial peptides hold promise as broad-spectrum alternatives to conventional antibiotics. The mechanism of action of this class of peptide is a topical area of research focused predominantly on their interaction with artificial membranes. Here we compare the interaction mechanism of a model antimicrobial peptide with single artificial membranes and live bacterial cells. The interaction kinetics was imaged using time-lapse fluorescence lifetime imaging of a fluorescently-tagged melittin derivative. Interaction with the synthetic membranes resulted in membrane pore formation. In contrast, the interaction with bacteria led to transient membrane disruption and corresponding leakage of the cytoplasm, but surprisingly with a much reduced level of pore formation. The discovery that pore formation is a less significant part of lipid-peptide interaction in live bacteria highlights the mechanistic complexity of these interactions in living cells compared to simple artificial systems. PMID:23532056

  19. High-efficiency transformation of bacterial cells by electroporation.

    PubMed Central

    Calvin, N M; Hanawalt, P C

    1988-01-01

    We have developed a method for efficiently generating transient pores in the outer membranes of Escherichia coli K-12 derivatives by using a new type of electroporation apparatus. The pores are large enough and persist long enough to facilitate the equilibration of plasmid molecules between the intracellular and extracellular spaces. The method has been used to transform bacterial cells with an efficiency greater than 10(9) transformants per microgram of plasmid. It has also been used to extract intact plasmid from transformed cells with efficiencies comparable to those of the traditional alkaline lysis or CsCl equilibrium density gradient techniques. The technique is simple and rapid, allowing a transformation or the preparation of microgram quantities of plasmid to be accomplished in minutes. PMID:3286620

  20. Secretion of a bacterial protein by mammalian cells.

    PubMed

    Clément, J M; Jehanno, M

    1995-12-15

    The MalE protein is a periplasmic maltooligosaccharide binding protein from Escherichia coli. This protein is widely used as a model for protein export in bacteria and as a vector for the export and one-step affinity purification of foreign polypeptides. Expression of MalE was studied in various animal cell lines. The protein was exported into the culture medium, following the classical pathway of eukaryotic protein secretion. This was shown by a combination of approaches including the use of inhibitors of the Golgi complex and immunocytological methods. The signal sequence of MalE is required for secretion and a specific signal can be added to MalE that targets it to the endoplasmic reticulum. This work opens the way to the study of the secretion of a bacterial protein and to its use as a vector for protein secretion and purification from mammalian cells. PMID:8590643

  1. Trogocytosis-associated cell to cell spread of intracellular bacterial pathogens

    PubMed Central

    Steele, Shaun; Radlinski, Lauren; Taft-Benz, Sharon; Brunton, Jason; Kawula, Thomas H

    2016-01-01

    Macrophages are myeloid-derived phagocytic cells and one of the first immune cell types to respond to microbial infections. However, a number of bacterial pathogens are resistant to the antimicrobial activities of macrophages and can grow within these cells. Macrophages have other immune surveillance roles including the acquisition of cytosolic components from multiple types of cells. We hypothesized that intracellular pathogens that can replicate within macrophages could also exploit cytosolic transfer to facilitate bacterial spread. We found that viable Francisella tularensis, as well as Salmonella enterica bacteria transferred from infected cells to uninfected macrophages along with other cytosolic material through a transient, contact dependent mechanism. Bacterial transfer occurred when the host cells exchanged plasma membrane proteins and cytosol via a trogocytosis related process leaving both donor and recipient cells intact and viable. Trogocytosis was strongly associated with infection in mice, suggesting that direct bacterial transfer occurs by this process in vivo. DOI: http://dx.doi.org/10.7554/eLife.10625.001 PMID:26802627

  2. Circular Dichroism studies on the interactions of antimicrobial peptides with bacterial cells

    NASA Astrophysics Data System (ADS)

    Avitabile, Concetta; D'Andrea, Luca Domenico; Romanelli, Alessandra

    2014-03-01

    Studying how antimicrobial peptides interact with bacterial cells is pivotal to understand their mechanism of action. In this paper we explored the use of Circular Dichroism to detect the secondary structure of two antimicrobial peptides, magainin 2 and cecropin A, with E. coli bacterial cells. The results of our studies allow us to gain two important information in the context of antimicrobial peptides- bacterial cells interactions: peptides fold mainly due to interaction with LPS, which is the main component of the Gram negative bacteria outer membrane and the time required for the folding on the bacterial cells depends on the peptide analyzed.

  3. A common clathrin-mediated machinery coordinates cell-cell adhesion and bacterial internalization

    PubMed Central

    Bonazzi, Matteo; Kühbacher, Andreas; Toledo-Arana, Alejandro; Mallet, Adeline; Vasudevan, Lavanya; Pizarro-Cerdá, Javier; Brodsky, Frances M.; Cossart, Pascale

    2013-01-01

    Invasive bacterial pathogens often target cellular proteins involved in adhesion as a first event during infection. For example, Listeria monocytogenes uses the bacterial protein InlA to interact with E-cadherin, hijack the host adherens junction machinery, and invade non-phagocytic cells by a clathrin-dependent mechanism. Here we investigate a potential role for clathrin in cell-cell adhesion. We observed that the initial steps of adherens junction formation trigger the phosphorylation of clathrin, and its transient localization at forming cell-cell contacts. Furthermore, we show that clathrin serves as a hub for the recruitment of proteins that are necessary for the actin rearrangements that accompany the maturation of adherens junctions. Using an InlA/E-cadherin chimera, we show that adherent cells expressing the chimera form adherens junctions with cells expressing E-cadherin. To model bacterial invasion, we demonstrate that non-adherent cells expressing the InlA chimera can be internalized by E-cadherin-expressing adherent cells. Together these results reveal that a common clathrin-mediated machinery may regulate internalization and cell adhesion and that the relative mobility of one of the interacting partners plays an important role in the commitment to either one of these processes. PMID:22984946

  4. (p)ppGpp and the bacterial cell cycle.

    PubMed

    Nazir, Aanisa; Harinarayanan, Rajendran

    2016-06-01

    Genes of the Rel/Spo homolog (RSH) superfamily synthesize and/or hydrolyse the modified nucleotides pppGpp/ ppGpp (collectively referred to as (p)ppGpp) and are prevalent across diverse bacteria and in plant chloroplasts. Bacteria accumulate (p)ppGpp in response to nutrient deprivation (generically called the stringent response) and elicit appropriate adaptive responses mainly through the regulation of transcription. Although at different concentrations (p)ppGpp affect the expression of distinct set of genes, the two well-characterized responses are reduction in expression of the protein synthesis machinery and increase in the expression of genes coding for amino acid biosynthesis. In Escherichia coli, the cellular (p)ppGpp level inversely correlates with the growth rate and increasing its concentration decreases the steady state growth rate in a defined growth medium. Since change in growth rate must be accompanied by changes in cell cycle parameters set through the activities of the DNA replication and cell division apparatus, (p)ppGpp could coordinate protein synthesis (cell mass increase) with these processes. Here we review the role of (p)ppGpp in bacterial cell cycle regulation. PMID:27240988

  5. Bacterial glycosidases for the production of universal red blood cells.

    PubMed

    Liu, Qiyong P; Sulzenbacher, Gerlind; Yuan, Huaiping; Bennett, Eric P; Pietz, Greg; Saunders, Kristen; Spence, Jean; Nudelman, Edward; Levery, Steven B; White, Thayer; Neveu, John M; Lane, William S; Bourne, Yves; Olsson, Martin L; Henrissat, Bernard; Clausen, Henrik

    2007-04-01

    Enzymatic removal of blood group ABO antigens to develop universal red blood cells (RBCs) was a pioneering vision originally proposed more than 25 years ago. Although the feasibility of this approach was demonstrated in clinical trials for group B RBCs, a major obstacle in translating this technology to clinical practice has been the lack of efficient glycosidase enzymes. Here we report two bacterial glycosidase gene families that provide enzymes capable of efficient removal of A and B antigens at neutral pH with low consumption of recombinant enzymes. The crystal structure of a member of the alpha-N-acetylgalactosaminidase family reveals an unusual catalytic mechanism involving NAD+. The enzymatic conversion processes we describe hold promise for achieving the goal of producing universal RBCs, which would improve the blood supply while enhancing the safety of clinical transfusions. PMID:17401360

  6. Synthetic genomics and the construction of a synthetic bacterial cell.

    PubMed

    Glass, John I

    2012-01-01

    The first synthetic cellular organism was created in 2010 and based on a very small, very simple bacterium called Mycoplasma mycoides. The bacterium was called synthetic because its DNA genome was chemically synthesized rather than replicated from an existing template DNA, as occurs in all other known cellular life on Earth. The experiment was undertaken in order to develop a system that would allow creation of a minimal bacterial cell that could lead to a better understand of the first principles of cellular life. The effort resulted in new synthetic genomics techniques called genome assembly and genome transplantation. The ability of scientists to design and build bacteria opens new possibilities for creating microbes to solve human problems. PMID:23502559

  7. Shared catalysis in virus entry and bacterial cell wall depolymerization.

    PubMed

    Cohen, Daniel N; Sham, Yuk Y; Haugstad, Greg D; Xiang, Ye; Rossmann, Michael G; Anderson, Dwight L; Popham, David L

    2009-04-01

    Bacterial virus entry and cell wall depolymerization require the breakdown of peptidoglycan (PG), the peptide-cross-linked polysaccharide matrix that surrounds bacterial cells. Structural studies of lysostaphin, a PG lytic enzyme (autolysin), have suggested that residues in the active site facilitate hydrolysis, but a clear mechanism for this reaction has remained unsolved. The active-site residues and a structural pattern of beta-sheets are conserved among lysostaphin homologs (such as LytM of Staphylococcus aureus) and the C-terminal domain of gene product 13 (gp13), a protein at the tail tip of the Bacillus subtilis bacteriophage varphi29. gp13 activity on PG and muropeptides was assayed using high-performance liquid chromatography, and gp13 was found to be a d,d-endopeptidase that cleaved the peptide cross-link. Computational modeling of the B. subtilis cross-linked peptide into the gp13 active site suggested that Asp195 may facilitate scissile-bond activation and that His247 is oriented to mediate nucleophile generation. To our knowledge, this is the first model of a Zn(2)(+) metallopeptidase and its substrate. Residue Asp195 of gp13 was found to be critical for Zn(2)(+) binding and catalysis by substitution mutagenesis with Ala or Cys. Circular dichroism and particle-induced X-ray emission spectroscopy showed that the general protein folding and Zn(2)(+) binding were maintained in the Cys mutant but reduced in the Ala mutant. These findings together support a model in which the Asp195 and His247 in gp13 and homologous residues in the LytM and lysostaphin active sites facilitate hydrolysis of the peptide substrate that cross-links PG. Thus, these autolysins and phage-entry enzymes have a shared chemical mechanism of action. PMID:19361422

  8. Mechanisms of Oxidative Protein Folding in the Bacterial Cell Envelope

    PubMed Central

    2010-01-01

    Abstract Disulfide-bond formation is important for the correct folding of a great number of proteins that are exported to the cell envelope of bacteria. Bacterial cells have evolved elaborate systems to promote the joining of two cysteines to form a disulfide bond and to repair misoxidized proteins. In the past two decades, significant advances have occurred in our understanding of the enzyme systems (DsbA, DsbB, DsbC, DsbG, and DsbD) used by the gram-negative bacterium Escherichia coli to ensure that correct pairs of cysteines are joined during the process of protein folding. However, a number of fundamental questions about these processes remain, especially about how they occur inside the cell. In addition, recent recognition of the increasing diversity among bacteria in the disulfide bond–forming capacity and in the systems for introducing disulfide bonds into proteins is raising new questions. We review here the marked progress in this field and discuss important questions that remain for future studies. Antioxid. Redox Signal. 13, 1231–1246. PMID:20367276

  9. Bacterial Infections in Hematopoietic Stem Cell Transplant Recipients

    PubMed Central

    Balletto, Elisa; Mikulska, Małgorzata

    2015-01-01

    Bacterial infections are major complications after Hematopoietic Stem Cell Transplant (HSCT). They consist mainly of bloodstream infections (BSI), followed by pneumonia and gastrointestinal infections, including typhlitis and Clostridium difficile infection. Microbiological data come mostly from BSI. Coagulase negative staphylococci and Enterobacteriaceae are the most frequent pathogens causing approximately 25% of BSI each, followed by enterococci, P. aeruginosa and viridans streptococci. Bacterial pneumonia is frequent after HSCT, and Gram-negatives are predominant. Clostridium difficile infection affects approximately 15% of HSCT recipients, being more frequent in case of allogeneic than autologous HSCT. The epidemiology and the prevalence of resistant strains vary significantly between transplant centres. In some regions, multi-drug resistant (MDR) Gram-negative rods are increasingly frequent. In others, vancomycin-resistant enterococci are predominant. In the era of increasing resistance to antibiotics, the efficacy of fluoroquinolone prophylaxis and standard treatment of febrile neutropenia have been questioned. Therefore, a thorough evaluation of local epidemiology is mandatory to decide the need for prophylaxis and the choice of the best regimen for empirical treatment of febrile neutropenia. For the latter, individualised approach has been proposed, consisting of either escalation or de-escalation strategy. De-escalation strategy is recommended since resistant bacteria should be covered upfront, mainly in patients with severe clinical presentation and previous infection or colonisation with a resistant pathogen. Non-pharmacological interventions, such as screening for resistant bacteria, applying isolation and contact precautions should be put in place to limit the spread of MDR bacteria. Antimicrobial stewardship program should be implemented in transplant centres. PMID:26185610

  10. Bacterial Cell Wall Polymer-Induced Granulomatous Inflammation

    PubMed

    Sartor; Herfarth; Van Tol EAF

    1996-04-01

    Local or systemic injection of peptidoglycan-polysaccharide polymers, which are the primary structural components of cell walls of nearly all bacteria, leads to acute inflammation, which can develop into chronic, spontaneously relapsing, granulomatous inflammation in a number of organs. Evolution into chronic granulomatous inflammation is dependent upon persistence of poorly biodegradable cell wall polymers within tissues, genetically determined host susceptibility, and generation of a T-lymphocyte-mediated immune response. Intraperitoneal injection of peptidoglycan-polysaccharide fragments from group A streptococci or selected intestinal bacteria into susceptible Lewis rats leads to chronic, spontaneously reactivating erosive arthritis and hepatic granulomas. Subserosal (intramural) injection of poorly biodegradable cell wall fragments into the distal intestine of Lewis rats induces chronic, spontaneously relapsing granulomatous enterocolitis with associated arthritis, hepatic granulomas, anemia, and leukocytosis. Chronic inflammation does not occur in T-lymphocyte-deficient rats and is prevented by cyclosporin-A therapy and degradation of peptidoglycan by the muralytic enzyme, mutanolysin. Moreover, resistant Buffalo and Fischer F344 rats, the latter sharing identical MHC antigens with Lewis rats, develop only acute inflammation with no chronic granulomatous response. Peptidoglycan-polysaccharide polymers activate almost every limb of the inflammatory response. Blockade of specific pathways suggests that interleukin-1, transforming growth factor-beta, plasma kallikrein, and T lymphocytes are dominant mediators of peptidoglycan-polysaccharide-induced arthritis, hepatic granulomas, and enterocolitis. Because of the similarity of immune mechanisms of these rat models to human disease, bacterial cell wall-induced inflammation provides unique opportunities to study pathogenic mechanisms of granuloma formation in response to ubiquitous microbial agents and to test

  11. Production of Bacteriolytic Enzymes by Streptomyces globisporus Regulated by Exogenous Bacterial Cell Walls.

    PubMed

    Brönneke, V; Fiedler, F

    1994-03-01

    Mutanolysin biosynthesis and pigment production in Streptomyces globisporus ATCC 21553 were stimulated by adding bacterial cell walls to the medium. The increased bacteriolytic activity in the supernatant correlated with an increased de novo synthesis of mutanolysin and was between 4- and 20-fold higher than in cultures grown without bacterial cell walls. The increase in mutanolysin synthesis was brought about by enhanced transcription of the mutanolysin gene. The stimulation was only observed in medium which contained dextrin or starch as the carbon source. Glucose abolished the stimulation and also inhibited the low constitutive synthesis of mutanolysin. The induction of lytic activity was observed to require minimally 0.4 mg of bacterial cell walls per ml, whereas 0.6 mg of bacterial cell walls per ml yielded maximal lytic activity. Further supplements of bacterial cell walls did not result in enhanced lytic activity. The stimulation could be achieved independently of the phase of growth of the Streptomyces strain. Cultures grown in the presence of bacterial cell walls exhibited a higher growth yield. However, the accelerated growth was not the reason for the increased amount of mutanolysin produced. The growth of cultures with peptidoglycan monomers added to the medium instead of cell walls was similarly increased, but an effect on the biosynthesis of mutanolysin was not observed. All bacterial cell walls tested were capable of eliciting the stimulation of lytic activity, including cell walls of archaea, which contained pseudomurein. PMID:16349213

  12. Molecular Architecture of the Bacterial Flagellar Motor in Cells

    PubMed Central

    2015-01-01

    The flagellum is one of the most sophisticated self-assembling molecular machines in bacteria. Powered by the proton-motive force, the flagellum rapidly rotates in either a clockwise or counterclockwise direction, which ultimately controls bacterial motility and behavior. Escherichia coli and Salmonella enterica have served as important model systems for extensive genetic, biochemical, and structural analysis of the flagellum, providing unparalleled insights into its structure, function, and gene regulation. Despite these advances, our understanding of flagellar assembly and rotational mechanisms remains incomplete, in part because of the limited structural information available regarding the intact rotor–stator complex and secretion apparatus. Cryo-electron tomography (cryo-ET) has become a valuable imaging technique capable of visualizing the intact flagellar motor in cells at molecular resolution. Because the resolution that can be achieved by cryo-ET with large bacteria (such as E. coli and S. enterica) is limited, analysis of small-diameter bacteria (including Borrelia burgdorferi and Campylobacter jejuni) can provide additional insights into the in situ structure of the flagellar motor and other cellular components. This review is focused on the application of cryo-ET, in combination with genetic and biophysical approaches, to the study of flagellar structures and its potential for improving the understanding of rotor–stator interactions, the rotational switching mechanism, and the secretion and assembly of flagellar components. PMID:24697492

  13. Macroscopic and spectroscopic analysis of lanthanide adsorption to bacterial cells

    NASA Astrophysics Data System (ADS)

    Ngwenya, Bryne T.; Mosselmans, J. Fred W.; Magennis, Marisa; Atkinson, Kirk D.; Tourney, Janette; Olive, Valerie; Ellam, Robert M.

    2009-06-01

    This study was designed to combine surface complexation modelling of macroscopic adsorption data with X-ray Absorption Spectroscopic (XAS) measurements to identify lanthanide sorption sites on the bacterial surface. The adsorption of selected representatives for light (La and Nd), middle (Sm and Gd) and heavy (Er and Yb) lanthanides was measured as a function of pH, and biomass samples exposed to 4 mg/L lanthanide at pH 3.5 and 6 were analysed using XAS. Surface complexation modelling was consistent with the light lanthanides adsorbing to phosphate sites, whereas the adsorption of middle and heavy lanthanides could be modelled equally well by carboxyl and phosphate sites. The existence of such mixed mode coordination was confirmed by Extended X-ray Absorption Fine Structure (EXAFS) analysis, which was also consistent with adsorption to phosphate sites at low pH, with secondary involvement of carboxyl sites at high adsorption density (high pH). Thus, the two approaches yield broadly consistent information with regard to surface site identity and lanthanide coordination environment. Furthermore, spectroscopic analysis suggests that coordination to phosphate sites is monodentate at the metal/biomass ratios used. Based on the best-fitting p Ka site, we infer that the phosphate sites are located on N-acetylglucosamine phosphate, the most likely polymer on gram-negative cells with potential phosphate sites that deprotonate around neutral pH.

  14. Nanomechanical Response of Pseudomonas aeruginosa PAO1 Bacterial Cells to Cationic Antimicrobial Peptides

    NASA Astrophysics Data System (ADS)

    Lu, Shun; Walters, Grant; Dutcher, John

    2013-03-01

    We have used an atomic force microscopy (AFM)-based creep deformation technique to study changes to the viscoelastic properties of individual Gram-negative Pseudomonas aeruginosa PAO1 cells as a function of time of exposure to two cationic peptides: polymyxin B (PMB), a cyclic antimicrobial peptide, and the structurally-related compound, polymyxin B nonapeptide (PMBN). The measurements provide a direct measure of the mechanical integrity of the bacterial cell envelope, and the results can be understood in terms of simple viscoelastic models of arrangements of springs and dashpots, which can be ascribed to different components within the bacterial cell. Time-resolved creep deformation experiments reveal abrupt changes to the viscoelastic properties of P. aeruginosa bacterial cells after exposure to both PMB and PMBN, with quantitatively different changes for the two cationic peptides. These measurements provide new insights into the kinetics and mechanism of action of antimicrobial peptides on bacterial cells.

  15. Bacterial IMPDH gene used for the selection of mammalian cell transfectants.

    SciTech Connect

    Baccam, M.; Huberman, E.; Energy Systems

    2003-06-01

    Stable cell transfection is used for the expression of exogenous genes or cDNAs in eukaryotic cells. Selection of these transfectants requires a dominant selectable marker. A variety of such markers has been identified and is currently in use. However, many of these are not suitable for all cell types or require unique conditions. Here we describe a simple and versatile dominant selectable marker that involves bacterial IMP dehydrogenase (IMPDH), an enzyme essential for the replication of mammalian and bacterial cells. Although IMPDH is evolutionarily conserved, the bacterial enzyme is orders of magnitude more resistant to the toxic effect of the drug mycophenolic acid, which is an IMPDH inhibitor. We have demonstrated that transfection of human, monkey or Chinese hamster cell lines with an expression vector containing bacterial IMPDH and mycophenolic acid treatment resulted in the selection of colonies with a strikingly increased resistance to mycophenolic acid toxicity. Analysis of cells derived from these colonies indicated that the acquisition of this resistance was associated with bacterial IMPDH protein expression. As a proof of principle, we showed that mammalian cell transfection with a hicistronic IMPDH/GFP expression vector and mycophenolic acid treatment can he used to successfully select transfectants that express the fluorescent protein. These results indicate that bacterial IMPDH is a practical dominant selectable marker that can be used for the selection of transfectants that express exogenous genes or cDNAs in mammalian cells.

  16. Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy

    SciTech Connect

    Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin; Lohse, Samuel E.; Lee, Chang-Soo; Torelli, Marco; Hamers, Robert J.; Murphy, Catherine; Orr, Galya; Haynes, Christy L.

    2014-01-01

    A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate efficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localization patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells.

  17. Polyclonal Mucosa-Associated Invariant T Cells Have Unique Innate Functions in Bacterial Infection

    PubMed Central

    Chua, Wei-Jen; Truscott, Steven M.; Eickhoff, Christopher S.; Blazevic, Azra

    2012-01-01

    Mucosa-associated invariant T (MAIT) cells are a unique population of αβ T cells in mammals that reside preferentially in mucosal tissues and express an invariant Vα paired with limited Vβ T-cell receptor (TCR) chains. Furthermore, MAIT cell development is dependent upon the expression of the evolutionarily conserved major histocompatibility complex (MHC) class Ib molecule MR1. Using in vitro assays, recent studies have shown that mouse and human MAIT cells are activated by antigen-presenting cells (APCs) infected with diverse microbes, including numerous bacterial strains and yeasts, but not viral pathogens. However, whether MAIT cells play an important, and perhaps unique, role in controlling microbial infection has remained unclear. To probe MAIT cell function, we show here that purified polyclonal MAIT cells potently inhibit intracellular bacterial growth of Mycobacterium bovis BCG in macrophages (MΦ) in coculture assays, and this inhibitory activity was dependent upon MAIT cell selection by MR1, secretion of gamma interferon (IFN-γ), and an innate interleukin 12 (IL-12) signal from infected MΦ. Surprisingly, however, the cognate recognition of MR1 by MAIT cells on the infected MΦ was found to play only a minor role in MAIT cell effector function. We also report that MAIT cell-deficient mice had higher bacterial loads at early times after infection compared to wild-type (WT) mice, demonstrating that MAIT cells play a unique role among innate lymphocytes in protective immunity against bacterial infection. PMID:22778103

  18. Dipeptide-Based Metabolic Labeling of Bacterial Cells for Endogenous Antibody Recruitment

    PubMed Central

    2016-01-01

    The number of antibiotic-resistant bacterial infections has increased dramatically over the past decade. To combat these pathogens, novel antimicrobial strategies must be explored and developed. We previously reported a strategy based on hapten-modified cell wall analogues to induce recruitment of endogenous antibodies to bacterial cell surfaces. Cell surface remodeling using unnatural single d-amino acid cell wall analogues led to modification at the C-terminus of the peptidoglycan stem peptide. During peptidoglycan processing, installed hapten-displaying amino acids can be subsequently removed by cell wall enzymes. Herein, we disclose a two-step dipeptide peptidoglycan remodeling strategy aimed at introducing haptens at an alternative site within the stem peptide to improve retention and diminish removal by cell wall enzymes. Through this redesigned strategy, we determined size constraints of peptidoglycan remodeling and applied these constraints to attain hapten–linker conjugates that produced high levels of antibody recruitment to bacterial cell surfaces. PMID:27294199

  19. Phase Diagram of Collective Motion of Bacterial Cells in a Shallow Circular Pool

    NASA Astrophysics Data System (ADS)

    Wakita, Jun-ichi; Tsukamoto, Shota; Yamamoto, Ken; Katori, Makoto; Yamada, Yasuyuki

    2015-12-01

    The collective motion of bacterial cells in a shallow circular pool is systematically studied using the bacterial species Bacillus subtilis. The ratio of cell length to pool diameter (i.e., the reduced cell length) ranges from 0.06 to 0.43 in our experiments. Bacterial cells in a circular pool show various types of collective motion depending on the cell density in the pool and the reduced cell length. The motion is classified into six types, which we call random motion, turbulent motion, one-way rotational motion, two-way rotational motion, random oscillatory motion, and ordered oscillatory motion. Two critical values of reduced cell lengths are evaluated, at which drastic changes in collective motion are induced. A phase diagram is proposed in which the six phases are arranged.

  20. Bacterial Manipulation of NK Cell Regulatory Activity Increases Susceptibility to Listeria monocytogenes Infection

    PubMed Central

    Guthrie, Brandon S.; Schmidt, Rebecca L.; Jamieson, Amanda; Merkel, Patricia; Knight, Vijaya; Cole, Caroline M.; Raulet, David H.; Lenz, Laurel L.

    2016-01-01

    Natural killer (NK) cells produce interferon (IFN)-γ and thus have been suggested to promote type I immunity during bacterial infections. Yet, Listeria monocytogenes (Lm) and some other pathogens encode proteins that cause increased NK cell activation. Here, we show that stimulation of NK cell activation increases susceptibility during Lm infection despite and independent from robust NK cell production of IFNγ. The increased susceptibility correlated with IL-10 production by responding NK cells. NK cells produced IL-10 as their IFNγ production waned and the Lm virulence protein p60 promoted induction of IL-10 production by mouse and human NK cells. NK cells consequently exerted regulatory effects to suppress accumulation and activation of inflammatory myeloid cells. Our results reveal new dimensions of the role played by NK cells during Lm infection and demonstrate the ability of this bacterial pathogen to exploit the induction of regulatory NK cell activity to increase host susceptibility. PMID:27295349

  1. Bacterial Manipulation of NK Cell Regulatory Activity Increases Susceptibility to Listeria monocytogenes Infection.

    PubMed

    Clark, Sarah E; Filak, Holly C; Guthrie, Brandon S; Schmidt, Rebecca L; Jamieson, Amanda; Merkel, Patricia; Knight, Vijaya; Cole, Caroline M; Raulet, David H; Lenz, Laurel L

    2016-06-01

    Natural killer (NK) cells produce interferon (IFN)-γ and thus have been suggested to promote type I immunity during bacterial infections. Yet, Listeria monocytogenes (Lm) and some other pathogens encode proteins that cause increased NK cell activation. Here, we show that stimulation of NK cell activation increases susceptibility during Lm infection despite and independent from robust NK cell production of IFNγ. The increased susceptibility correlated with IL-10 production by responding NK cells. NK cells produced IL-10 as their IFNγ production waned and the Lm virulence protein p60 promoted induction of IL-10 production by mouse and human NK cells. NK cells consequently exerted regulatory effects to suppress accumulation and activation of inflammatory myeloid cells. Our results reveal new dimensions of the role played by NK cells during Lm infection and demonstrate the ability of this bacterial pathogen to exploit the induction of regulatory NK cell activity to increase host susceptibility. PMID:27295349

  2. Mechanics of swimming of multi-body bacterial swarmers using non-labeled cell tracking algorithm

    NASA Astrophysics Data System (ADS)

    Phuyal, Kiran; Kim, Min Jun

    2013-01-01

    To better understand the survival strategy of bacterial swarmers and the mechanical advantages offered by the linear chain (head-tail) attachment of the multiple bacterial bodies in an individual swarmer cell at low Reynolds number, a non-labeled cell tracking algorithm was used to quantify the mechanics of multi-body flagellated bacteria, Serratia marcescens, swimming in a motility buffer that originally exhibited the swarming motility. Swarming is a type of bacterial motility that is characterized by the collective coordinated motion of differentiated swarmer cells on a two-dimensional surface such as agar. In this study, the bacterial swarmers with multiple cell bodies (2, 3, and 4) were extracted from the swarm plate, and then tracked individually after resuspending in the motility medium. Their motion was investigated and compared with individual undifferentiated swimming bacterial cells. The swarmers when released into the motility buffer swam actively without tumbles. Their speeds, orientations, and the diffusive properties were studied by tracking the individual cell trajectories over a short distance in two-dimensional field when the cells are swimming at a constant depth in a bulk aqueous environment. At short time scales, the ballistic trajectory was dominant for both multi-body swarmers and undifferentiated cells.

  3. Mechanism of cell integration on biomaterial implant surfaces in the presence of bacterial contamination.

    PubMed

    Yue, Chongxia; van der Mei, Henny C; Kuijer, Roel; Busscher, Henk J; Rochford, Edward T J

    2015-11-01

    Bacterial contamination during biomaterial implantation is often unavoidable, yielding a combat between cells and bacteria. Here we aim to determine the modulatory function of bacterial components on stem-cell, fibroblast, and osteoblast adhesion to a titanium alloy, including the role of toll-like-receptors (TLRs). Presence of heat-sacrificed Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, or Pseudomonas aeruginosa induced dose and cell-type dependent responses. Stem-cells were most sensitive to bacterial presence, demonstrating decreased adhesion number yet increased adhesion effort with a relatively large focal adhesion contact area. Blocking TLRs had no effect on stem-cell adhesion in presence of S. aureus, but blocking both TLR2 and TLR4 induced an increased adhesion effort in presence of E. coli. Neither lipopolysaccharide, lipoteichoic acid, nor bacterial DNA provoked the same cell response as did whole bacteria. Herewith we suggest a new mechanism as to how biomaterials are integrated by cells despite the unavoidable presence of bacterial contamination. Stimulation of host cell integration of implant surfaces may open a new window to design new biomaterials with enhanced healing, thereby reducing the risk of biomaterial-associated infection of both "hardware-based" implants as well as of tissue-engineered constructs, known to suffer from similarly high infection risks as currently prevailing in "hardware-based" implants. PMID:25966819

  4. Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells

    NASA Astrophysics Data System (ADS)

    Mejías Carpio, Isis E.; Santos, Catherine M.; Wei, Xin; Rodrigues, Debora F.

    2012-07-01

    It is critical to develop highly effective antimicrobial agents that are not harmful to humans and do not present adverse effects on the environment. Although antimicrobial studies of graphene-based nanomaterials are still quite limited, some researchers have paid particular attention to such nanocomposites as promising candidates for the next generation of antimicrobial agents. The polyvinyl-N-carbazole (PVK)-graphene oxide (GO) nanocomposite (PVK-GO), which contains only 3 wt% of GO well-dispersed in a 97 wt% PVK matrix, presents excellent antibacterial properties without significant cytotoxicity to mammalian cells. The high polymer content in this nanocomposite makes future large-scale material manufacturing possible in a high-yield process of adiabatic bulk polymerization. In this study, the toxicity of PVK-GO was assessed with planktonic microbial cells, biofilms, and NIH 3T3 fibroblast cells. The antibacterial effects were evaluated against two Gram-negative bacteria: Escherichia coli and Cupriavidus metallidurans; and two Gram-positive bacteria: Bacillus subtilis and Rhodococcus opacus. The results show that the PVK-GO nanocomposite presents higher antimicrobial effects than the pristine GO. The effectiveness of the PVK-GO in solution was demonstrated as the nanocomposite ``encapsulated'' the bacterial cells, which led to reduced microbial metabolic activity and cell death. The fact that the PVK-GO did not present significant cytotoxicity to fibroblast cells offers a great opportunity for potential applications in important biomedical and industrial fields.It is critical to develop highly effective antimicrobial agents that are not harmful to humans and do not present adverse effects on the environment. Although antimicrobial studies of graphene-based nanomaterials are still quite limited, some researchers have paid particular attention to such nanocomposites as promising candidates for the next generation of antimicrobial agents. The polyvinyl

  5. Different binarization processes validated against manual counts of fluorescent bacterial cells.

    PubMed

    Tamminga, Gerrit G; Paulitsch-Fuchs, Astrid H; Jansen, Gijsbert J; Euverink, Gert-Jan W

    2016-09-01

    State of the art software methods (such as fixed value approaches or statistical approaches) to create a binary image of fluorescent bacterial cells are not as accurate and precise as they should be for counting bacteria and measuring their area. To overcome these bottlenecks, we introduce biological significance to obtain a binary image from a greyscale microscopic image. Using our biological significance approach we are able to automatically count about the same number of cells as an individual researcher would do by manual/visual counting. Using the fixed value or statistical approach to obtain a binary image leads to about 20% less cells in automatic counting. In our procedure we included the area measurements of the bacterial cells to determine the right parameters for background subtraction and threshold values. In an iterative process the threshold and background subtraction values were incremented until the number of particles smaller than a typical bacterial cell is less than the number of bacterial cells with a certain area. This research also shows that every image has a specific threshold with respect to the optical system, magnification and staining procedure as well as the exposure time. The biological significance approach shows that automatic counting can be performed with the same accuracy, precision and reproducibility as manual counting. The same approach can be used to count bacterial cells using different optical systems (Leica, Olympus and Navitar), magnification factors (200× and 400×), staining procedures (DNA (Propidium Iodide) and RNA (FISH)) and substrates (polycarbonate filter or glass). PMID:27380963

  6. Attachment of bacterial pathogens to a bacterial cellulose-derived plant cell wall model: a proof of concept.

    PubMed

    Tan, Michelle S F; Wang, Yi; Dykes, Gary A

    2013-11-01

    This study aimed to establish, as a proof of concept, whether bacterial cellulose (BC)-derived plant cell wall models could be used to investigate foodborne bacterial pathogen attachment. Attachment of two strains each of Salmonella enterica and Listeria monocytogenes to four BC-derived plant cell wall models (namely, BC, BC-pectin [BCP], BC-xyloglucan [BCX], and BC-pectin-xyloglucan [BCPX]) was investigated. Chemical analysis indicated that the BCPX composite (31% cellulose, 45.6% pectin, 23.4% xyloglucan) had a composition typical of plant cell walls. The Salmonella strains attached in significantly (p<0.05) higher numbers (~6 log colony-forming units [CFU]/cm(2)) to the composites than the Listeria strains (~5 log CFU/cm(2)). Strain-specific differences were also apparent with one Salmonella strain, for example, attaching in significantly (p<0.05) higher numbers to the BCX composite than to the other composites. This study highlights the potential usefulness of these composites to understand attachment of foodborne bacteria to fresh produce. PMID:23941519

  7. Cell order in bacterial swarms arises from reversals of moving direction

    NASA Astrophysics Data System (ADS)

    Wu, Yilin; Jiang, Yi; Kaiser, Dale; Alber, Mark

    2010-03-01

    Bacterial swarms are a beautiful example of the emergent behavior of systems of self-propelled rods. In swarming rod-shaped bacteria cells move smoothly even though they are packed together in high density. Experimental evidence shows that long-distance signaling is not required for bacterial swarming. It naturally raises the question how a swarm develops its order. Using a biomechanical model, we show here that regular periodic reversals of gliding direction in general systems of self-propelled rod shaped bacteria can lead to the extensive ordering of cells. We also show that an optimal reversal period and an optimal cell shape exist for producing such order. Given the observations of reversing behavior in several bacterial species,we suggest that the capacity to swarm depends less on the motility engine employed by individual cells, but more on the behavioral algorithm that enhances the flow of densely packed cells near the swarming edge.

  8. Identification of individual biofilm-forming bacterial cells using Raman tweezers

    NASA Astrophysics Data System (ADS)

    Samek, Ota; Bernatová, Silvie; Ježek, Jan; Šiler, Martin; Šerý, Mojmir; Krzyžánek, Vladislav; Hrubanová, Kamila; Zemánek, Pavel; Holá, Veronika; Růžička, Filip

    2015-05-01

    A method for in vitro identification of individual bacterial cells is presented. The method is based on a combination of optical tweezers for spatial trapping of individual bacterial cells and Raman microspectroscopy for acquisition of spectral "Raman fingerprints" obtained from the trapped cell. Here, Raman spectra were taken from the biofilm-forming cells without the influence of an extracellular matrix and were compared with biofilm-negative cells. Results of principal component analyses of Raman spectra enabled us to distinguish between the two strains of Staphylococcus epidermidis. Thus, we propose that Raman tweezers can become the technique of choice for a clearer understanding of the processes involved in bacterial biofilms which constitute a highly privileged way of life for bacteria, protected from the external environment.

  9. Identification of individual biofilm-forming bacterial cells using Raman tweezers.

    PubMed

    Samek, Ota; Bernatová, Silvie; Ježek, Jan; Šiler, Martin; Šerý, Mojmir; Krzyžánek, Vladislav; Hrubanová, Kamila; Zemánek, Pavel; Holá, Veronika; Růžička, Filip

    2015-05-01

    A method for in vitro identification of individual bacterial cells is presented. The method is based on a combination of optical tweezers for spatial trapping of individual bacterial cells and Raman microspectroscopy for acquisition of spectral “Raman fingerprints” obtained from the trapped cell. Here, Raman spectra were taken from the biofilm-forming cells without the influence of an extracellular matrix and were compared with biofilm-negative cells. Results of principal component analyses of Raman spectra enabled us to distinguish between the two strains of Staphylococcus epidermidis. Thus, we propose that Raman tweezers can become the technique of choice for a clearer understanding of the processes involved in bacterial biofilms which constitute a highly privileged way of life for bacteria, protected from the external environment. PMID:25734616

  10. Transcriptional activity around bacterial cell death reveals molecular biomarkers for cell viability

    PubMed Central

    Kort, Remco; Keijser, Bart J; Caspers, Martien PM; Schuren, Frank H; Montijn, Roy

    2008-01-01

    Background In bacteriology, the ability to grow in selective media and to form colonies on nutrient agar plates is routinely used as a retrospective criterion for the detection of living bacteria. However, the utilization of indicators for bacterial viability-such as the presence of specific transcripts or membrane integrity-would overcome bias introduced by cultivation and reduces the time span of analysis from initiation to read out. Therefore, we investigated the correlation between transcriptional activity, membrane integrity and cultivation-based viability in the Gram-positive model bacterium Bacillus subtilis. Results We present microbiological, cytological and molecular analyses of the physiological response to lethal heat stress under accurately defined conditions through systematic sampling of bacteria from a single culture exposed to gradually increasing temperatures. We identified a coherent transcriptional program including known heat shock responses as well as the rapid expression of a small number of sporulation and competence genes, the latter only known to be active in the stationary growth phase. Conclusion The observed coordinated gene expression continued even after cell death, in other words after all bacteria permanently lost their ability to reproduce. Transcription of a very limited number of genes correlated with cell viability under the applied killing regime. The transcripts of the expressed genes in living bacteria – but silent in dead bacteria-include those of essential genes encoding chaperones of the protein folding machinery and can serve as molecular biomarkers for bacterial cell viability. PMID:19061518

  11. Bacterial cell wall components as immunomodulators--II. The bacterial cell wall extract OM-85 BV as unspecific activator, immunogen and adjuvant in mice.

    PubMed

    Bessler, W G; Huber, M; Baier, W

    1997-01-01

    The bacterial extract Broncho-Vaxom used for the prevention and treatment of recurrent respiratory tract infections is an immunomodulator in vitro and in vivo, as determined in a murine model. The extract acts, on the one hand, as macrophage activator and polyclonal B-lymphocyte stimulant. On the other hand, after repeated intraperitoneal or oral immunizations, the extract is immunogenic, inducing serum IgG binding to the bacterial strains used for the preparation of the extract. On bacteria, the sera recognize the cell wall components porin, lipoprotein/lipopeptide and murein. The bacterial extract also exhibits adjuvant properties when applied in mixture with antigens, such as TNP-BSA or an influenza vaccine preparation. The unspecific and the immunospecific stimulatory effect of the extract as well as its adjuvant properties could be of importance for understanding its therapeutic effect. PMID:9637353

  12. Measuring bacterial adhesion at environmental interfaces with single-cell and single-molecule techniques

    NASA Astrophysics Data System (ADS)

    Camesano, Terri A.; Liu, Yatao; Datta, Meera

    2007-06-01

    A synopsis is provided of techniques currently used to quantify the interactions between bacterial cells and surfaces. Focus is placed on techniques which allow for direct probing of nano, pico, or femto-scale interaction forces between bacteria and surfaces of relevance for environmental science and engineering. We focus on bacterial adhesion measurements and surface characterizations via techniques that measure forces on individual bacterial cells or cellular macromolecules, particularly atomic force microscopy (AFM) and related force spectroscopy. However, we also include overviews of other techniques useful for evaluating cellular forces, such as optical tweezers, evanescent wave scattering-based techniques (i.e. total internal reflection microscopy (TIRM) and total internal reflection aqueous fluorescence (TIRAF) microscopy) and the quartz crystal microbalance (QCM). These latter techniques, while most are not providing direct measurements of forces of adhesion, can be used to explain adhesion and interaction forces in bacterial systems. We review the operating principles, advantages and limitations of each technique, and key bacterial adhesion studies from each area are presented. Qualitative and quantitative methodologies for relating force measurements to bacterial attachment, particularly to bacterial retention in porous media, are discussed.

  13. Host-induced bacterial cell wall decomposition mediates pattern-triggered immunity in Arabidopsis

    PubMed Central

    Liu, Xiaokun; Grabherr, Heini M; Willmann, Roland; Kolb, Dagmar; Brunner, Frédéric; Bertsche, Ute; Kühner, Daniel; Franz-Wachtel, Mirita; Amin, Bushra; Felix, Georg; Ongena, Marc; Nürnberger, Thorsten; Gust, Andrea A

    2014-01-01

    Peptidoglycans (PGNs) are immunogenic bacterial surface patterns that trigger immune activation in metazoans and plants. It is generally unknown how complex bacterial structures such as PGNs are perceived by plant pattern recognition receptors (PRRs) and whether host hydrolytic activities facilitate decomposition of bacterial matrices and generation of soluble PRR ligands. Here we show that Arabidopsis thaliana, upon bacterial infection or exposure to microbial patterns, produces a metazoan lysozyme-like hydrolase (lysozyme 1, LYS1). LYS1 activity releases soluble PGN fragments from insoluble bacterial cell walls and cleavage products are able to trigger responses typically associated with plant immunity. Importantly, LYS1 mutant genotypes exhibit super-susceptibility to bacterial infections similar to that observed on PGN receptor mutants. We propose that plants employ hydrolytic activities for the decomposition of complex bacterial structures, and that soluble pattern generation might aid PRR-mediated immune activation in cell layers adjacent to infection sites. DOI: http://dx.doi.org/10.7554/eLife.01990.001 PMID:24957336

  14. Bacterial effectors target the plant cell nucleus to subvert host transcription

    PubMed Central

    Canonne, Joanne; Rivas, Susana

    2012-01-01

    In order to promote virulence, Gram-negative bacteria have evolved the ability to inject so-called type III effector proteins into host cells. The plant cell nucleus appears to be a subcellular compartment repeatedly targeted by bacterial effectors. In agreement with this observation, mounting evidence suggests that manipulation of host transcription is a major strategy developed by bacteria to counteract plant defense responses. It has been suggested that bacterial effectors may adopt at least three alternative, although not mutually exclusive, strategies to subvert host transcription. T3Es may (1) act as transcription factors that directly activate transcription in host cells, (2) affect histone packing and chromatin configuration, and/or (3) directly target host transcription factor activity. Here, we provide an overview on how all these strategies may lead to host transcriptional re-programming and, as a result, to improved bacterial multiplication inside plant cells. PMID:22353865

  15. New method for estimating bacterial cell abundances in natural samples by use of sublimation

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Cleaves, H. James; Schubert, Michael; Aubrey, Andrew; Bada, Jeffrey L.

    2004-01-01

    We have developed a new method based on the sublimation of adenine from Escherichia coli to estimate bacterial cell counts in natural samples. To demonstrate this technique, several types of natural samples, including beach sand, seawater, deep-sea sediment, and two soil samples from the Atacama Desert, were heated to a temperature of 500 degrees C for several seconds under reduced pressure. The sublimate was collected on a cold finger, and the amount of adenine released from the samples was then determined by high-performance liquid chromatography with UV absorbance detection. Based on the total amount of adenine recovered from DNA and RNA in these samples, we estimated bacterial cell counts ranging from approximately 10(5) to 10(9) E. coli cell equivalents per gram. For most of these samples, the sublimation-based cell counts were in agreement with total bacterial counts obtained by traditional DAPI (4,6-diamidino-2-phenylindole) staining.

  16. A microfluidic device for physical trapping and electrical lysis of bacterial cells

    NASA Astrophysics Data System (ADS)

    Bao, Ning; Lu, Chang

    2008-05-01

    In this letter, we report a simple microfluidic device that integrates the capture of bacterial cells using a microscale bead array and the rapid electrical lysis for release of intracellular materials. We study the retention of Escherichia coli cells with different concentrations in this type of bead array and the optimal electrical parameters for the electroporative release of intracellular proteins. Our design provides a simple solution to the extraction of intracellular materials from a bacterial cell population based entirely on physical methods without applying chemical or biological reagents.

  17. A simple and novel modification of comet assay for determination of bacteriophage mediated bacterial cell lysis.

    PubMed

    Khairnar, Krishna; Sanmukh, Swapnil; Chandekar, Rajshree; Paunikar, Waman

    2014-07-01

    The comet assay is the widely used method for in vitro toxicity testing which is also an alternative to the use of animal models for in vivo testing. Since, its inception in 1984 by Ostling and Johansson, it is being modified frequently for a wide range of application. In spite of its wide applicability, unfortunately there is no report of its application in bacteriophages research. In this study, a novel application of comet assay for the detection of bacteriophage mediated bacterial cell lysis was described. The conventional methods in bacteriophage research for studying bacterial lysis by bacteriophages are plaque assay method. It is time consuming, laborious and costly. The lytic activity of bacteriophage devours the bacterial cell which results in the release of bacterial genomic material that gets detected by ethidium bromide staining method by the comet assay protocol. The objective of this study was to compare efficacy of comet assay with different assay used to study phage mediated bacterial lysis. The assay was performed on culture isolates (N=80 studies), modified comet assay appear to have relatively higher sensitivity and specificity than other assay. The results of the study showed that the application of comet assay can be an economical, time saving and less laborious alternative to conventional plaque assay for the detection of bacteriophage mediated bacterial cell lysis. PMID:24681053

  18. Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells.

    PubMed

    Mejías Carpio, Isis E; Santos, Catherine M; Wei, Xin; Rodrigues, Debora F

    2012-08-01

    It is critical to develop highly effective antimicrobial agents that are not harmful to humans and do not present adverse effects on the environment. Although antimicrobial studies of graphene-based nanomaterials are still quite limited, some researchers have paid particular attention to such nanocomposites as promising candidates for the next generation of antimicrobial agents. The polyvinyl-N-carbazole (PVK)-graphene oxide (GO) nanocomposite (PVK-GO), which contains only 3 wt% of GO well-dispersed in a 97 wt% PVK matrix, presents excellent antibacterial properties without significant cytotoxicity to mammalian cells. The high polymer content in this nanocomposite makes future large-scale material manufacturing possible in a high-yield process of adiabatic bulk polymerization. In this study, the toxicity of PVK-GO was assessed with planktonic microbial cells, biofilms, and NIH 3T3 fibroblast cells. The antibacterial effects were evaluated against two Gram-negative bacteria: Escherichia coli and Cupriavidus metallidurans; and two Gram-positive bacteria: Bacillus subtilis and Rhodococcus opacus. The results show that the PVK-GO nanocomposite presents higher antimicrobial effects than the pristine GO. The effectiveness of the PVK-GO in solution was demonstrated as the nanocomposite "encapsulated" the bacterial cells, which led to reduced microbial metabolic activity and cell death. The fact that the PVK-GO did not present significant cytotoxicity to fibroblast cells offers a great opportunity for potential applications in important biomedical and industrial fields. PMID:22751735

  19. Mechanisms of ion-bombardment-induced DNA transfer into bacterial E. coli cells

    NASA Astrophysics Data System (ADS)

    Yu, L. D.; Sangwijit, K.; Prakrajang, K.; Phanchaisri, B.; Thongkumkoon, P.; Thopan, P.; Singkarat, S.; Anuntalabhochai, S.

    2014-05-01

    As a useful ion beam biotechnology, ion-bombardment-induced DNA transfer into bacterial Escherichia coli (E. coli) cells has been successfully operated using argon ions. In the process ion bombardment of the bacterial cells modifies the cell envelope materials to favor the exogenous DNA molecules to pass through the envelope to enter the cell. The occurrence of the DNA transfer induction was found ion energy and fluence dependent in a complex manner. At ion energy of a few keV and a few tens of keV to moderate fluences the DNA transfer could be induced by ion bombardment of the bacterial cells, while at the same ion energy but to high fluences DNA transfer could not be induced. On the other hand, when the ion energy was medium, about 10-20 keV, the DNA transfer could not be induced by ion bombardment of the cells. The complexity of the experimental results indicated a complex mechanism which should be related to the complex structure of the bacterial E. coli cell envelope. A phase diagram was proposed to interpret different mechanisms involved as functions of the ion energy and fluence.

  20. Cytotoxicity in bacterial cultures: interaction and cell-specificity, possible factors in periodontal disease.

    PubMed

    Johansson, A; Bergenholtz, A; Holm, S E

    1994-09-01

    Cytotoxicity in culture media of various growing bacterial strains was estimated by Cr-51 release of labelled target-cells. Interaction studies were made by adding each of the different UV-killed bacteria to the medium with viable bacteria. The reference oral bacterial strains were: Actinobacillus actinomycetemcomitans Y4, Porphyromonas gingivalis, Fusobacterium nucleatum and Streptococcus mitis, which were compared with the reference bacteria Staphylococcus aureus 209 and Staphylococcus epidermidis. The target cells were: gingival fibroblasts (GF), periodontal membrane fibroblasts (PMF), pulpal fibroblasts (PF), HeLa-cells (HeLa), and lymphoid neoplasm cells (LN). Synergistic, as well as antagonistic, effects on target cells were observed. The cytotoxicity of A. actinomycetemcomitans in presence of P. gingivalis is neutralized while in presence of S. aureus it was increased. Bacterial interactions with F. nucleatum and P. gingivalis cytotoxicity were observed. The cytotoxicity of F. nucleatum was increased when cultured together with A. actinomycetemcomitans. Each cell type reacted differently to the toxicity of the supernatant of growth medium in which the same bacterial strain had been cultivated, which indicates cell specificity of the toxins. PMID:7799211

  1. Dynamics of phenotypic reversibility of bacterial cells with oscillating hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Nepal, Sudip; Kumar, Pradeep

    Bacterial cells encounter and respond to physiochemical fluctuations. The response depends on the extent and type of the stresses applied. The response of bacterial cells to the fluctuating stress is relatively unknown. Here, we have studied the response of wild type Escherichia coli (E. coli) under fluctuating hydrostatic pressures ranging from 1 atm to 500 atm. High pressure acts as a stress to E. coli since these bacteria are adapted to grow optimally at atmospheric pressure. Cell division of E. coli is inhibited at high pressures resulting in increase in the length of the cells. Cell-length is reversible in nature and bacterial cells revert back to normal size on a time scale that is proportional to the strength and time of continuous pressure applied upon relaxing the high pressure condition. We have studied the dynamics of cellular reversibility of E. coli under the conditions in which continuous pressure is applied and subsequently relaxed over different time scales. We have quantified the dynamics of cellular reversibility with different relaxation times. Furthermore, we propose a model to describe the reversibility of the bacterial cell with the relaxation time. Our theoretical model fits well to the experimental data. We further

  2. Bacterial cell wall-induced arthritis: chemical composition and tissue distribution of four Lactobacillus strains.

    PubMed

    Simelyte, E; Rimpiläinen, M; Lehtonen, L; Zhang, X; Toivanen, P

    2000-06-01

    To study what determines the arthritogenicity of bacterial cell walls, cell wall-induced arthritis in the rat was applied, using four strains of Lactobacillus. Three of the strains used proved to induce chronic arthritis in the rat; all were Lactobacillus casei. The cell wall of Lactobacillus fermentum did not induce chronic arthritis. All arthritogenic bacterial cell walls had the same peptidoglycan structure, whereas that of L. fermentum was different. Likewise, all arthritogenic cell walls were resistant to lysozyme degradation, whereas the L. fermentum cell wall was lysozyme sensitive. Muramic acid was observed in the liver, spleen, and lymph nodes in considerably larger amounts after injection of an arthritogenic L. casei cell wall than following injection of a nonarthritogenic L. fermentum cell wall. The L. casei cell wall also persisted in the tissues longer than the L. fermentum cell wall. The present results, taken together with those published previously, underline the possibility that the chemical structure of peptidoglycan is important in determining the arthritogenicity of the bacterial cell wall. PMID:10816508

  3. Microspectrometric insights on the uptake of antibiotics at the single bacterial cell level.

    PubMed

    Cinquin, Bertrand; Maigre, Laure; Pinet, Elizabeth; Chevalier, Jacqueline; Stavenger, Robert A; Mills, Scott; Réfrégiers, Matthieu; Pagès, Jean-Marie

    2015-01-01

    Bacterial multidrug resistance is a significant health issue. A key challenge, particularly in Gram-negative antibacterial research, is to better understand membrane permeation of antibiotics in clinically relevant bacterial pathogens. Passing through the membrane barrier to reach the required concentration inside the bacterium is a pivotal step for most antibacterials. Spectrometric methodology has been developed to detect drugs inside bacteria and recent studies have focused on bacterial cell imaging. Ultimately, we seek to use this method to identify pharmacophoric groups which improve penetration, and therefore accumulation, of small-molecule antibiotics inside bacteria. We developed a method to quantify the time scale of antibiotic accumulation in living bacterial cells. Tunable ultraviolet excitation provided by DISCO beamline (synchrotron Soleil) combined with microscopy allows spectroscopic analysis of the antibiotic signal in individual bacterial cells. Robust controls and measurement of the crosstalk between fluorescence channels can provide real time quantification of drug. This technique represents a new method to assay drug translocation inside the cell and therefore incorporate rational drug design to impact antibiotic uptake. PMID:26656111

  4. Microspectrometric insights on the uptake of antibiotics at the single bacterial cell level

    PubMed Central

    Cinquin, Bertrand; Maigre, Laure; Pinet, Elizabeth; Chevalier, Jacqueline; Stavenger, Robert A.; Mills, Scott; Réfrégiers, Matthieu; Pagès, Jean-Marie

    2015-01-01

    Bacterial multidrug resistance is a significant health issue. A key challenge, particularly in Gram-negative antibacterial research, is to better understand membrane permeation of antibiotics in clinically relevant bacterial pathogens. Passing through the membrane barrier to reach the required concentration inside the bacterium is a pivotal step for most antibacterials. Spectrometric methodology has been developed to detect drugs inside bacteria and recent studies have focused on bacterial cell imaging. Ultimately, we seek to use this method to identify pharmacophoric groups which improve penetration, and therefore accumulation, of small-molecule antibiotics inside bacteria. We developed a method to quantify the time scale of antibiotic accumulation in living bacterial cells. Tunable ultraviolet excitation provided by DISCO beamline (synchrotron Soleil) combined with microscopy allows spectroscopic analysis of the antibiotic signal in individual bacterial cells. Robust controls and measurement of the crosstalk between fluorescence channels can provide real time quantification of drug. This technique represents a new method to assay drug translocation inside the cell and therefore incorporate rational drug design to impact antibiotic uptake. PMID:26656111

  5. Mechanisms of bacterial morphogenesis: Evolutionary cell biology approaches provide new insights

    PubMed Central

    Jiang, Chao; Caccamo, Paul D.; Brun, Yves V.

    2015-01-01

    How Darwin’s “endless forms most beautiful” have evolved remains one of the most exciting questions in biology. The significant variety of bacterial shapes is most likely due to the specific advantages they confer with respect to the diverse environments they occupy. While our understanding of the mechanisms generating relatively simple shapes has improved tremendously in the last few years, the molecular mechanisms underlying the generation of complex shapes and the evolution of shape diversity are largely unknown. The emerging field of bacterial evolutionary cell biology provides a novel strategy to answer this question in a comparative phylogenetic framework. This relatively novel approach provides hypotheses and insights into cell biological mechanisms, such as morphogenesis, and their evolution that would have been difficult to obtain by studying only model organisms. We discuss the necessary steps, challenges, and impact of integrating “evolutionary thinking” into bacterial cell biology in the genomic era. PMID:25664446

  6. Single-bacterium nanomechanics in biomedicine: unravelling the dynamics of bacterial cells

    NASA Astrophysics Data System (ADS)

    Aguayo, S.; Donos, N.; Spratt, D.; Bozec, L.

    2015-02-01

    The use of the atomic force microscope (AFM) in microbiology has progressed significantly throughout the years since its first application as a high-resolution imaging instrument. Modern AFM setups are capable of characterizing the nanomechanical behaviour of bacterial cells at both the cellular and molecular levels, where elastic properties and adhesion forces of single bacterium cells can be examined under different experimental conditions. Considering that bacterial and biofilm-mediated infections continue to challenge the biomedical field, it is important to understand the biophysical events leading towards bacterial adhesion and colonization on both biological and non-biological substrates. The purpose of this review is to present the latest findings concerning the field of single-bacterium nanomechanics, and discuss future trends and applications of nanoindentation and single-cell force spectroscopy techniques in biomedicine.

  7. Antimicrobial susceptibility testing in 90 min by bacterial cell count monitoring

    PubMed Central

    Broeren, M A C; Maas, Y; Retera, E; Arents, N L A

    2013-01-01

    The rise in antimicrobial resistance has become a serious global health problem. Restrictive use of antibiotics seems the only option to temper this accession since research in new antibiotics has halted. Antimicrobial stewardship programmes rely on quick access to susceptibility data. This study evaluated the concept of bacterial cell count monitoring as a fast method to determine susceptibility. Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus strains were tested for amoxicillin/piperacillin and gentamicin by three conventional methods (VITEK2®, Etest® and broth-macrodilution). Bacterial cell count monitoring reliably predicted susceptibility after 90 min for Escherichia coli and after 120 min for Pseudomonas aeruginosa and Staphylococcus aureus without any minor, major or very major discrepancies. Time-to-result was reduced by 74%, 83% and 76%, respectively. Bacterial cell count monitoring shows great potential for rapid susceptibility testing. PMID:22390723

  8. Antimicrobial susceptibility testing in 90 min by bacterial cell count monitoring.

    PubMed

    Broeren, M A C; Maas, Y; Retera, E; Arents, N L A

    2013-03-01

    The rise in antimicrobial resistance has become a serious global health problem. Restrictive use of antibiotics seems the only option to temper this accession since research in new antibiotics has halted. Antimicrobial stewardship programmes rely on quick access to susceptibility data. This study evaluated the concept of bacterial cell count monitoring as a fast method to determine susceptibility. Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus strains were tested for amoxicillin/piperacillin and gentamicin by three conventional methods (VITEK2(®) , Etest(®) and broth-macrodilution). Bacterial cell count monitoring reliably predicted susceptibility after 90 min for Escherichia coli and after 120 min for Pseudomonas aeruginosa and Staphylococcus aureus without any minor, major or very major discrepancies. Time-to-result was reduced by 74%, 83% and 76%, respectively. Bacterial cell count monitoring shows great potential for rapid susceptibility testing. PMID:22390723

  9. Search for MicroRNAs Expressed by Intracellular Bacterial Pathogens in Infected Mammalian Cells

    PubMed Central

    Furuse, Yuki; Finethy, Ryan; Saka, Hector A.; Xet-Mull, Ana M.; Sisk, Dana M.; Smith, Kristen L. Jurcic; Lee, Sunhee; Coers, Jörn; Valdivia, Raphael H.; Tobin, David M.; Cullen, Bryan R.

    2014-01-01

    MicroRNAs are expressed by all multicellular organisms and play a critical role as post-transcriptional regulators of gene expression. Moreover, different microRNA species are known to influence the progression of a range of different diseases, including cancer and microbial infections. A number of different human viruses also encode microRNAs that can attenuate cellular innate immune responses and promote viral replication, and a fungal pathogen that infects plants has recently been shown to express microRNAs in infected cells that repress host cell immune responses and promote fungal pathogenesis. Here, we have used deep sequencing of total expressed small RNAs, as well as small RNAs associated with the cellular RNA-induced silencing complex RISC, to search for microRNAs that are potentially expressed by intracellular bacterial pathogens and translocated into infected animal cells. In the case of Legionella and Chlamydia and the two mycobacterial species M. smegmatis and M. tuberculosis, we failed to detect any bacterial small RNAs that had the characteristics expected for authentic microRNAs, although large numbers of small RNAs of bacterial origin could be recovered. However, a third mycobacterial species, M. marinum, did express an ∼23-nt small RNA that was bound by RISC and derived from an RNA stem-loop with the characteristics expected for a pre-microRNA. While intracellular expression of this candidate bacterial microRNA was too low to effectively repress target mRNA species in infected cultured cells in vitro, artificial overexpression of this potential bacterial pre-microRNA did result in the efficient repression of a target mRNA. This bacterial small RNA therefore represents the first candidate microRNA of bacterial origin. PMID:25184567

  10. Disturbance of the bacterial cell wall specifically interferes with biofilm formation.

    PubMed

    Bucher, Tabitha; Oppenheimer-Shaanan, Yaara; Savidor, Alon; Bloom-Ackermann, Zohar; Kolodkin-Gal, Ilana

    2015-12-01

    In nature, bacteria communicate via chemical cues and establish complex communities referred to as biofilms, wherein cells are held together by an extracellular matrix. Much research is focusing on small molecules that manipulate and prevent biofilm assembly by modifying cellular signalling pathways. However, the bacterial cell envelope, presenting the interface between bacterial cells and their surroundings, is largely overlooked. In our study, we identified specific targets within the biosynthesis pathways of the different cell wall components (peptidoglycan, wall teichoic acids and teichuronic acids) hampering biofilm formation and the anchoring of the extracellular matrix with a minimal effect on planktonic growth. In addition, we provide convincing evidence that biofilm hampering by transglycosylation inhibitors and D-Leucine triggers a highly specific response without changing the overall protein levels within the biofilm cells or the overall levels of the extracellular matrix components. The presented results emphasize the central role of the Gram-positive cell wall in biofilm development, resistance and sustainment. PMID:26472159

  11. Are the actively respiring cells (CTC+) those responsible for bacterial production in aquatic environments?

    PubMed

    Servais, P; Agogué, H; Courties, C; Joux, F; Lebaron, P

    2001-04-01

    The 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) staining method is commonly and increasingly used to detect and to enumerate actively respiring cells (CTC+ cells) in aquatic systems. However, this method remains controversial since some authors promote this technique while others pointed out several drawbacks of the method. Using flow cytometry (FCM), we showed that CTC staining kinetics vary greatly from one sample to another. Therefore, there is no universal staining protocol that can be applied to aquatic bacterial communities. Furthermore, using (3)H-leucine incorporation, it was shown that the CTC dye has a rapid toxic effect on bacterial cells by inhibiting protein synthesis, a key physiological function. The coupling of radioactive labelling with cell sorting by FCM suggested that CTC+ cells contribute to less than 60% of the whole bacterial activity determined at the community level. From these results, it is clearly demonstrated that the CTC method is not valid to detect active bacteria, i.e. cells responsible for bacterial production. PMID:11295456

  12. Synthesis of bacterial magnetic particles during cell cycle of Magnetospirillum magneticum AMB-1.

    PubMed

    Yang, C D; Takeyama, H; Tanaka, T; Hasegawa, A; Matsunaga, T

    2001-01-01

    We investigated the relationship between the synthesis of bacterial magnetic particles (BMPs) and the transcription of magA gene-encoding iron transport protein using synchronous culture of Magnetospirillum magneticum AMB-1. Synchronously cultured cells were subjected to transmission electron microscopic observation and fluorescence in situ hybridization. The average number of BMPs slowly increased in the cell with increasing cell size. A sharp increase in BMPs occurred just before cell division and resulted in maximum BMP production of 30 particles/cell. The transcription of magA was regulated immediately before and after cell division. PMID:11963844

  13. Bacterial Cell-Cell Communication in the Host via RRNPP Peptide-Binding Regulators.

    PubMed

    Perez-Pascual, David; Monnet, Véronique; Gardan, Rozenn

    2016-01-01

    Human microbiomes are composed of complex and dense bacterial consortia. In these environments, bacteria are able to react quickly to change by coordinating their gene expression at the population level via small signaling molecules. In Gram-positive bacteria, cell-cell communication is mostly mediated by peptides that are released into the extracellular environment. Cell-cell communication based on these peptides is especially widespread in the group Firmicutes, in which they regulate a wide array of biological processes, including functions related to host-microbe interactions. Among the different agents of communication, the RRNPP family of cytoplasmic transcriptional regulators, together with their cognate re-internalized signaling peptides, represents a group of emerging importance. RRNPP members that have been studied so far are found mainly in species of bacilli, streptococci, and enterococci. These bacteria are characterized as both human commensal and pathogenic, and share different niches in the human body with other microorganisms. The goal of this mini-review is to present the current state of research on the biological relevance of RRNPP mechanisms in the context of the host, highlighting their specific roles in commensalism or virulence. PMID:27242728

  14. Microfluidic pretreatment of bacterial cells for analysis of intracellular contents

    NASA Astrophysics Data System (ADS)

    Wang, Hsiang-Yu; Lu, Chang; Banada, Padmapriya P.; Jagadeesan, Balamurugan; Bhunia, Arun K.

    2005-11-01

    Electrical lysis of biological cells on a microfluidic platform has been raising a lot of interests due to its applications in rapid recovering intracellular contents without introducing lytic agents. In this study, we demonstrated a simple microfluidic device which lysed green fluorescent protein (GFP) expressing E. coli cells under continuous DC voltage while cells flowed through. The cell lysis only happened in a defined section of a microfluidic channel due to the local field amplification by geometric modification. The geometric modification also effectively decreased the required voltage for lysis by several folds. We found that a local field strength of 1500V/cm was required for lysis of nearly 100% of E. coli cells. This lysis field strength was considerably lower than the value reported in the literature, possibly due to the longer duration of the field. The lysis was witnessed by plate count and fluorescence spectroscopy. The devices were fabricated using low-cost soft lithography with channel widths considerably larger than the cell size to avoid clogging and ensure stable performance. Our tool will be ideal for high throughput processing of a large number of cells. Furthermore, the application of continuous DC field makes it straightforward to couple our cell lysis device with on-chip electrophoresis to realize the integration of cell pretreatment and chemical analysis. In principle, the same approach can also be applied for the lysis of mammalian cells and for the electroporation and transfection.

  15. Effect of cell physicochemical characteristics and motility on bacterial transport in groundwater

    USGS Publications Warehouse

    Becker, M.W.; Collins, S.A.; Metge, D.W.; Harvey, R.W.; Shapiro, A.M.

    2004-01-01

    The influence of physicochemical characteristics and motility on bacterial transport in groundwater were examined in flow-through columns. Four strains of bacteria isolated from a crystalline rock groundwater system were investigated, with carboxylate-modified and amidine-modified latex microspheres and bromide as reference tracers. The bacterial isolates included a gram-positive rod (ML1), a gram-negative motile rod (ML2), a nonmotile mutant of ML2 (ML2m), and a gram-positive coccoid (ML3). Experiments were repeated at two flow velocities, in a glass column packed with glass beads, and in another packed with iron-oxyhydroxide coated glass beads. Bacteria breakthrough curves were interpreted using a transport equation that incorporates a sorption model from microscopic observation of bacterial deposition in flow-cell experiments. The model predicts that bacterial desorption rate will decrease exponentially with the amount of time the cell is attached to the solid surface. Desorption kinetics appeared to influence transport at the lower flow rate, but were not discernable at the higher flow rate. Iron-oxyhydroxide coatings had a lower-than-expected effect on bacterial breakthrough and no effect on the microsphere recovery in the column experiments. Cell wall type and shape also had minor effects on breakthrough. Motility tended to increase the adsorption rate, and decrease the desorption rate. The transport model predicts that at field scale, desorption rate kinetics may be important to the prediction of bacteria transport rates. ?? 2003 Elsevier B.V. All rights reserved.

  16. Bacterial growth, detachment and cell size control on polyethylene terephthalate surfaces

    PubMed Central

    Wang, Liyun; Fan, Daming; Chen, Wei; Terentjev, Eugene M.

    2015-01-01

    In medicine and food industry, bacterial colonisation on surfaces is a common cause of infections and severe illnesses. However, the detailed quantitative information about the dynamics and the mechanisms involved in bacterial proliferation on solid substrates is still lacking. In this study we investigated the adhesion and detachment, the individual growth and colonisation, and the cell size control of Escherichia coli (E. coli) MG1655 on polyethylene terephthalate (PET) surfaces. The results show that the bacterial growth curve on PET exhibits the distinct lag and log phases, but the generation time is more than twice longer than in bulk medium. Single cells in the lag phase are more likely to detach than clustered ones in the log phase; clustered bacteria in micro-colonies have stronger adhesive bonds with surfaces and their neighbours with the progressing colonisation. We show that the cell size is under the density-dependent pathway control: when the adherent cells are at low density, the culture medium is responsible for coordinating cell division and cell size; when the clustered cells are at high population density, we demonstrate that the effect of quorum sensing causes the cell size decrease as the cell density on surfaces increases. PMID:26464114

  17. Effect of Lewis blood group antigen expression on bacterial adherence to COS-1 cells.

    PubMed Central

    Gaffney, R A; Schaeffer, A J; Anderson, B E; Duncan, J L

    1994-01-01

    Epithelial cells from secretor individuals demonstrate decreased bacterial adherence compared with cells from nonsecretors. Lewis blood group antigen expression is one component of the secretor/nonsecretor phenotype and several epidemiologic studies have suggested a link between Lewis blood group antigen phenotype and susceptibility to urinary tract infections. In this study, we examined the possibility that the expression of the difucosylated Lewis blood group determinants, Leb and Ley (associated with the secretor phenotype), made cells less susceptible to Escherichia coli adherence by masking receptors for pili. COS-1 cells, which do not produce Lewis (Lea, Leb, Le(x), and Ley) blood group antigens, were used as target cells for bacterial adherence. The surface blood group antigen expression pattern of the cells was then modified by cotransfection with plasmids containing DNA inserts encoding alpha (1,2)-fucosyltransferase and alpha (1,3)- and alpha (1,4)-fucosyltransferases, resulting in the expression of Leb and Ley. E. coli HB101 expressing various adhesins (type 1, PapJ96, PapIA2, PapAD110, Prs, and S) from recombinant plasmids bound equally well to untransfected cells and transfected cells expressing Lea and Le(x) (nonsecretor phenotype) and Leb and Ley (secretor phenotype) antigens. We conclude that the presence of Leb and Ley antigens on cells from secretors does not alone mask receptors for E. coli pili or hinder bacterial adherence. PMID:8005692

  18. Relationship between Milk Microbiota, Bacterial Load, Macronutrients, and Human Cells during Lactation.

    PubMed

    Boix-Amorós, Alba; Collado, Maria C; Mira, Alex

    2016-01-01

    Human breast milk is considered the optimal nutrition for infants, providing essential nutrients and a broad range of bioactive compounds, as well as its own microbiota. However, the interaction among those components and the biological role of milk microorganisms is still uncovered. Thus, our aim was to identify the relationships between milk microbiota composition, bacterial load, macronutrients, and human cells during lactation. Bacterial load was estimated in milk samples from a total of 21 healthy mothers through lactation time by bacteria-specific qPCR targeted to the single-copy gene fusA. Milk microbiome composition and diversity was estimated by 16S-pyrosequencing and the structure of these bacteria in the fluid was studied by flow cytometry, qPCR, and microscopy. Fat, protein, lactose, and dry extract of milk as well as the number of somatic cells were also analyzed. We observed that milk bacterial communities were generally complex, and showed individual-specific profiles. Milk microbiota was dominated by Staphylococcus, Pseudomonas, Streptococcus, and Acinetobacter. Staphylococcus aureus was not detected in any of these samples from healthy mothers. There was high variability in composition and number of bacteria per milliliter among mothers and in some cases even within mothers at different time points. The median bacterial load was 10(6) bacterial cells/ml through time, higher than those numbers reported by 16S gene PCR and culture methods. Furthermore, milk bacteria were present in a free-living, "planktonic" state, but also in equal proportion associated to human immune cells. There was no correlation between bacterial load and the amount of immune cells in milk, strengthening the idea that milk bacteria are not sensed as an infection by the immune system. PMID:27148183

  19. Relationship between Milk Microbiota, Bacterial Load, Macronutrients, and Human Cells during Lactation

    PubMed Central

    Boix-Amorós, Alba; Collado, Maria C.; Mira, Alex

    2016-01-01

    Human breast milk is considered the optimal nutrition for infants, providing essential nutrients and a broad range of bioactive compounds, as well as its own microbiota. However, the interaction among those components and the biological role of milk microorganisms is still uncovered. Thus, our aim was to identify the relationships between milk microbiota composition, bacterial load, macronutrients, and human cells during lactation. Bacterial load was estimated in milk samples from a total of 21 healthy mothers through lactation time by bacteria-specific qPCR targeted to the single-copy gene fusA. Milk microbiome composition and diversity was estimated by 16S-pyrosequencing and the structure of these bacteria in the fluid was studied by flow cytometry, qPCR, and microscopy. Fat, protein, lactose, and dry extract of milk as well as the number of somatic cells were also analyzed. We observed that milk bacterial communities were generally complex, and showed individual-specific profiles. Milk microbiota was dominated by Staphylococcus, Pseudomonas, Streptococcus, and Acinetobacter. Staphylococcus aureus was not detected in any of these samples from healthy mothers. There was high variability in composition and number of bacteria per milliliter among mothers and in some cases even within mothers at different time points. The median bacterial load was 106 bacterial cells/ml through time, higher than those numbers reported by 16S gene PCR and culture methods. Furthermore, milk bacteria were present in a free-living, “planktonic” state, but also in equal proportion associated to human immune cells. There was no correlation between bacterial load and the amount of immune cells in milk, strengthening the idea that milk bacteria are not sensed as an infection by the immune system. PMID:27148183

  20. Cooperation between Monocyte-Derived Cells and Lymphoid Cells in the Acute Response to a Bacterial Lung Pathogen

    PubMed Central

    Brown, Andrew S.; Yang, Chao; Fung, Ka Yee; Bachem, Annabell; Bourges, Dorothée; Bedoui, Sammy; Hartland, Elizabeth L.; van Driel, Ian R.

    2016-01-01

    Legionella pneumophila is the causative agent of Legionnaires’ disease, a potentially fatal lung infection. Alveolar macrophages support intracellular replication of L. pneumophila, however the contributions of other immune cell types to bacterial killing during infection are unclear. Here, we used recently described methods to characterise the major inflammatory cells in lung after acute respiratory infection of mice with L. pneumophila. We observed that the numbers of alveolar macrophages rapidly decreased after infection coincident with a rapid infiltration of the lung by monocyte-derived cells (MC), which, together with neutrophils, became the dominant inflammatory cells associated with the bacteria. Using mice in which the ability of MC to infiltrate tissues is impaired it was found that MC were required for bacterial clearance and were the major source of IL12. IL12 was needed to induce IFNγ production by lymphoid cells including NK cells, memory T cells, NKT cells and γδ T cells. Memory T cells that produced IFNγ appeared to be circulating effector/memory T cells that infiltrated the lung after infection. IFNγ production by memory T cells was stimulated in an antigen-independent fashion and could effectively clear bacteria from the lung indicating that memory T cells are an important contributor to innate bacterial defence. We also determined that a major function of IFNγ was to stimulate bactericidal activity of MC. On the other hand, neutrophils did not require IFNγ to kill bacteria and alveolar macrophages remained poorly bactericidal even in the presence of IFNγ. This work has revealed a cooperative innate immune circuit between lymphoid cells and MC that combats acute L. pneumophila infection and defines a specific role for IFNγ in anti-bacterial immunity. PMID:27300652

  1. Cell motility and antibiotic tolerance of bacterial swarms

    NASA Astrophysics Data System (ADS)

    Zuo, Wenlong

    Many bacteria species can move across moist surfaces in a coordinated manner known as swarming. It is reported that swarm cells show higher tolerance to a wide variety of antibiotics than planktonic cells. We used the model bacterium E. coli to study how motility affects the antibiotic tolerance of swarm cells. Our results provide new insights for the control of pathogenic invasion via regulating cell motility. Mailing address: Room 306 Science Centre North Block, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong SAR. Phone: +852-3943-6354. Fax: +852-2603-5204. E-mail: zwlong@live.com.

  2. Production Model Press for the Preparation of Bacterial Cell Walls

    PubMed Central

    Perrine, T. D.; Ribi, E.; Maki, W.; Miller, B.; Oertli, E.

    1962-01-01

    A modification of the apparatus previously described permits the preparation of cell walls in quantity. This consists of a heavy duty, double-acting hydraulic press with motor-driven pump, and a superstrength alloy steel pressure cell which is corrosion resistant. Liquid cooling of the jet is substituted for the previously used gas cooling to minimize aerosol formation and to facilitate subsequent treatment of the products. The device produces cell walls of excellent quality in good yield. The pressure cell has been used satisfactorily up to about 60,000 psi. Design details are given. Images FIG. 1 FIG. 2 FIG. 6 PMID:14485524

  3. Water Diffusion from a Bacterial Cell in Low-Moisture Foods.

    PubMed

    Syamaladevi, Roopesh M; Tang, Juming; Zhong, QingPing

    2016-09-01

    We used a Fick's unsteady state diffusion equation to estimate the time required for a single spherical shaped bacterium (assuming Enterococcus faecium as the target microorganism) in low-moisture foods to equilibrate with the environment. We generated water sorption isotherms of freeze-dried E. faecium. The water activity of bacterial cells at given water content increased considerably as temperature increased from 20 to 80 °C, as observed in the sorption isotherms of bacterial cells. When the water vapor diffusion coefficient was assumed as between 10(-12) and 10(-10) m(2) /s for bacterial cells, the predicted equilibration times (teq ) ranged from 8.24×10(-4) to 8.24×10(-2) s. Considering a cell membrane barrier with a lower water diffusion coefficient (10(-15) m(2) /s) around the bacterial cell with a water diffusion coefficient of 10(-12) m(2) /s, the teq predicted using COMSOL Multiphysics program was 3.8×10(-1) s. This result suggests that a single bacterium equilibrates rapidly (within seconds) with change in environmental humidity and temperature. PMID:27505687

  4. Nanoscale Electric Permittivity of Single Bacterial Cells at Gigahertz Frequencies by Scanning Microwave Microscopy.

    PubMed

    Biagi, Maria Chiara; Fabregas, Rene; Gramse, Georg; Van Der Hofstadt, Marc; Juárez, Antonio; Kienberger, Ferry; Fumagalli, Laura; Gomila, Gabriel

    2016-01-26

    We quantified the electric permittivity of single bacterial cells at microwave frequencies and nanoscale spatial resolution by means of near-field scanning microwave microscopy. To this end, calibrated complex admittance images have been obtained at ∼19 GHz and analyzed with a methodology that removes the nonlocal topographic cross-talk contributions and thus provides quantifiable intrinsic dielectric images of the bacterial cells. Results for single Escherichia coli cells provide a relative electric permittivity of ∼4 in dry conditions and ∼20 in humid conditions, with no significant loss contributions. Present findings, together with the ability of microwaves to penetrate the cell membrane, open an important avenue in the microwave label-free imaging of single cells with nanoscale spatial resolution. PMID:26643251

  5. Fluorescence imaging for bacterial cell biology: from localization to dynamics, from ensembles to single molecules.

    PubMed

    Yao, Zhizhong; Carballido-López, Rut

    2014-01-01

    Fluorescent proteins and developments in superresolution (nanoscopy) and single-molecule techniques bring high sensitivity, speed, and one order of magnitude gain in spatial resolution to live-cell imaging. These technologies have only recently been applied to prokaryotic cell biology, revealing the exquisite subcellular organization of bacterial cells. Here, we review the parallel evolution of fluorescence microscopy methods and their application to bacteria, mainly drawing examples from visualizing actin-like MreB proteins in the model bacterium Bacillus subtilis. We describe the basic principles of nanoscopy and conventional techniques and their advantages and limitations to help microbiologists choose the most suitable technique for their biological question. Looking ahead, multidimensional live-cell nanoscopy combined with computational image analysis tools, systems biology approaches, and mathematical modeling will provide movie-like, mechanistic, and quantitative description of molecular events in bacterial cells. PMID:25002084

  6. Exploring bacterial cell biology with single-molecule tracking and super-resolution imaging

    PubMed Central

    Gahlmann, Andreas; Moerner, W. E.

    2014-01-01

    The ability to detect single molecules in live bacterial cells enables us to probe biological events one molecule at a time and thereby gain knowledge of the activities of intracellular molecules that remain obscure in conventional ensemble-averaged measurements. Single-molecule fluorescence tracking and super-resolution imaging are thus providing a new window into bacterial cells and facilitating the elucidation of cellular processes at an unprecedented level of sensitivity, specificity and spatial resolution. In this Review, we consider what these technologies have taught us about the bacterial cytoskeleton, nucleoid organization and the dynamic processes of transcription and translation, and we also highlight the methodological improvements that are needed to address a number of experimental challenges in the field. PMID:24336182

  7. Effect of Micro- and Nanoscale Topography on the Adhesion of Bacterial Cells to Solid Surfaces

    PubMed Central

    Hsu, Lillian C.; Fang, Jean; Borca-Tasciuc, Diana A.; Worobo, Randy W.

    2013-01-01

    Attachment and biofilm formation by bacterial pathogens on surfaces in natural, industrial, and hospital settings lead to infections and illnesses and even death. Minimizing bacterial attachment to surfaces using controlled topography could reduce the spreading of pathogens and, thus, the incidence of illnesses and subsequent human and financial losses. In this context, the attachment of key microorganisms, including Escherichia coli, Listeria innocua, and Pseudomonas fluorescens, to silica and alumina surfaces with micron and nanoscale topography was investigated. The results suggest that orientation of the attached cells occurs preferentially such as to maximize their contact area with the surface. Moreover, the bacterial cells exhibited different morphologies, including different number and size of cellular appendages, depending on the topographical details of the surface to which they attached. This suggests that bacteria may utilize different mechanisms of attachment in response to surface topography. These results are important for the design of novel microbe-repellant materials. PMID:23416997

  8. A mechanistic stochastic framework for regulating bacterial cell division

    PubMed Central

    Ghusinga, Khem Raj; Vargas-Garcia, Cesar A.; Singh, Abhyudai

    2016-01-01

    How exponentially growing cells maintain size homeostasis is an important fundamental problem. Recent single-cell studies in prokaryotes have uncovered the adder principle, where cells add a fixed size (volume) from birth to division, irrespective of their size at birth. To mechanistically explain the adder principle, we consider a timekeeper protein that begins to get stochastically expressed after cell birth at a rate proportional to the volume. Cell-division time is formulated as the first-passage time for protein copy numbers to hit a fixed threshold. Consistent with data, the model predicts that the noise in division timing increases with size at birth. Intriguingly, our results show that the distribution of the volume added between successive cell-division events is independent of the newborn cell size. This was dramatically seen in experimental studies, where histograms of the added volume corresponding to different newborn sizes collapsed on top of each other. The model provides further insights consistent with experimental observations: the distribution of the added volume when scaled by its mean becomes invariant of the growth rate. In summary, our simple yet elegant model explains key experimental findings and suggests a mechanism for regulating both the mean and fluctuations in cell-division timing for controlling size. PMID:27456660

  9. A mechanistic stochastic framework for regulating bacterial cell division.

    PubMed

    Ghusinga, Khem Raj; Vargas-Garcia, Cesar A; Singh, Abhyudai

    2016-01-01

    How exponentially growing cells maintain size homeostasis is an important fundamental problem. Recent single-cell studies in prokaryotes have uncovered the adder principle, where cells add a fixed size (volume) from birth to division, irrespective of their size at birth. To mechanistically explain the adder principle, we consider a timekeeper protein that begins to get stochastically expressed after cell birth at a rate proportional to the volume. Cell-division time is formulated as the first-passage time for protein copy numbers to hit a fixed threshold. Consistent with data, the model predicts that the noise in division timing increases with size at birth. Intriguingly, our results show that the distribution of the volume added between successive cell-division events is independent of the newborn cell size. This was dramatically seen in experimental studies, where histograms of the added volume corresponding to different newborn sizes collapsed on top of each other. The model provides further insights consistent with experimental observations: the distribution of the added volume when scaled by its mean becomes invariant of the growth rate. In summary, our simple yet elegant model explains key experimental findings and suggests a mechanism for regulating both the mean and fluctuations in cell-division timing for controlling size. PMID:27456660

  10. Label-free isolation and deposition of single bacterial cells from heterogeneous samples for clonal culturing.

    PubMed

    Riba, J; Gleichmann, T; Zimmermann, S; Zengerle, R; Koltay, P

    2016-01-01

    The isolation and analysis of single prokaryotic cells down to 1 μm and less in size poses a special challenge and requires micro-engineered devices to handle volumes in the picoliter to nanoliter range. Here, an advanced Single-Cell Printer (SCP) was applied for automated and label-free isolation and deposition of bacterial cells encapsulated in 35 pl droplets by inkjet-like printing. To achieve this, dispenser chips to generate micro droplets have been fabricated with nozzles 20 μm in size. Further, the magnification of the optical system used for cell detection was increased. Redesign of the optical path allows for collision-free addressing of any flat substrate since no compartment protrudes below the nozzle of the dispenser chip anymore. The improved system allows for deterministic isolation of individual bacterial cells. A single-cell printing efficiency of 93% was obtained as shown by printing fluorescent labeled E. coli. A 96-well plate filled with growth medium is inoculated with single bacteria cells on average within about 8 min. Finally, individual bacterial cells from a heterogeneous sample of E. coli and E. faecalis were isolated for clonal culturing directly on agar plates in user-defined array geometry. PMID:27596612

  11. The percentage of living bacterial cells related to organic carbon release from senescent oceanic phytoplankton

    NASA Astrophysics Data System (ADS)

    Lasternas, S.; Agustí, S.

    2014-11-01

    Bacteria recycle vast amounts of organic carbon, playing key biogeochemical and ecological roles in the ocean. Bacterioplankton dynamics are expected to be dependent on phytoplankton primary production, but there is a high diversity of processes (e.g., sloppy feeding, cell exudation, viral lysis) involved in the transfer of primary production to dissolved organic carbon available to bacteria. Here, we show the percentage of living heterotrophic bacterioplankton in the subtropical NE Atlantic Ocean in relation to phytoplankton extracellular carbon release (PER). PER represents the fraction of primary production released as dissolved organic carbon. PER variability was explained by phytoplankton cell death, with communities experiencing higher phytoplankton cell mortality showing a larger proportion of phytoplankton extracellular carbon release. Both PER and the percentage of dead phytoplankton cells increased from eutrophic to oligotrophic waters, while abundance of heterotrophic bacteria was highest in the intermediate waters. The percentage of living heterotrophic bacterial cells (range: 60-95%) increased with increasing phytoplankton extracellular carbon release from productive to oligotrophic waters in the subtropical NE Atlantic. The lower PERs, observed at the upwelling waters, have resulted in a decrease in the flux of phytoplankton dissolved organic carbon (DOC) per bacterial cell. The results highlight phytoplankton cell death as a process influencing the flow of dissolved photosynthetic carbon in this region of the subtropical NE Atlantic Ocean, and suggest a close coupling between the fraction of primary production released and heterotrophic bacterial cell survival.

  12. Vehicles, Replicators, and Intercellular Movement of Genetic Information: Evolutionary Dissection of a Bacterial Cell

    PubMed Central

    Jalasvuori, Matti

    2012-01-01

    Prokaryotic biosphere is vastly diverse in many respects. Any given bacterial cell may harbor in different combinations viruses, plasmids, transposons, and other genetic elements along with their chromosome(s). These agents interact in complex environments in various ways causing multitude of phenotypic effects on their hosting cells. In this discussion I perform a dissection for a bacterial cell in order to simplify the diversity into components that may help approach the ocean of details in evolving microbial worlds. The cell itself is separated from all the genetic replicators that use the cell vehicle for preservation and propagation. I introduce a classification that groups different replicators according to their horizontal movement potential between cells and according to their effects on the fitness of their present host cells. The classification is used to discuss and improve the means by which we approach general evolutionary tendencies in microbial communities. Moreover, the classification is utilized as a tool to help formulating evolutionary hypotheses and to discuss emerging bacterial pathogens as well as to promote understanding on the average phenotypes of different replicators in general. It is also discussed that any given biosphere comprising prokaryotic cell vehicles and genetic replicators may naturally evolve to have horizontally moving replicators of various types. PMID:22567533

  13. Label-free isolation and deposition of single bacterial cells from heterogeneous samples for clonal culturing

    PubMed Central

    Riba, J.; Gleichmann, T.; Zimmermann, S.; Zengerle, R.; Koltay, P.

    2016-01-01

    The isolation and analysis of single prokaryotic cells down to 1 μm and less in size poses a special challenge and requires micro-engineered devices to handle volumes in the picoliter to nanoliter range. Here, an advanced Single-Cell Printer (SCP) was applied for automated and label-free isolation and deposition of bacterial cells encapsulated in 35 pl droplets by inkjet-like printing. To achieve this, dispenser chips to generate micro droplets have been fabricated with nozzles 20 μm in size. Further, the magnification of the optical system used for cell detection was increased. Redesign of the optical path allows for collision-free addressing of any flat substrate since no compartment protrudes below the nozzle of the dispenser chip anymore. The improved system allows for deterministic isolation of individual bacterial cells. A single-cell printing efficiency of 93% was obtained as shown by printing fluorescent labeled E. coli. A 96-well plate filled with growth medium is inoculated with single bacteria cells on average within about 8 min. Finally, individual bacterial cells from a heterogeneous sample of E. coli and E. faecalis were isolated for clonal culturing directly on agar plates in user-defined array geometry. PMID:27596612

  14. Do bacterial cell numbers follow a theoretical Poisson distribution? Comparison of experimentally obtained numbers of single cells with random number generation via computer simulation.

    PubMed

    Koyama, Kento; Hokunan, Hidekazu; Hasegawa, Mayumi; Kawamura, Shuso; Koseki, Shigenobu

    2016-12-01

    We investigated a bacterial sample preparation procedure for single-cell studies. In the present study, we examined whether single bacterial cells obtained via 10-fold dilution followed a theoretical Poisson distribution. Four serotypes of Salmonella enterica, three serotypes of enterohaemorrhagic Escherichia coli and one serotype of Listeria monocytogenes were used as sample bacteria. An inoculum of each serotype was prepared via a 10-fold dilution series to obtain bacterial cell counts with mean values of one or two. To determine whether the experimentally obtained bacterial cell counts follow a theoretical Poisson distribution, a likelihood ratio test between the experimentally obtained cell counts and Poisson distribution which parameter estimated by maximum likelihood estimation (MLE) was conducted. The bacterial cell counts of each serotype sufficiently followed a Poisson distribution. Furthermore, to examine the validity of the parameters of Poisson distribution from experimentally obtained bacterial cell counts, we compared these with the parameters of a Poisson distribution that were estimated using random number generation via computer simulation. The Poisson distribution parameters experimentally obtained from bacterial cell counts were within the range of the parameters estimated using a computer simulation. These results demonstrate that the bacterial cell counts of each serotype obtained via 10-fold dilution followed a Poisson distribution. The fact that the frequency of bacterial cell counts follows a Poisson distribution at low number would be applied to some single-cell studies with a few bacterial cells. In particular, the procedure presented in this study enables us to develop an inactivation model at the single-cell level that can estimate the variability of survival bacterial numbers during the bacterial death process. PMID:27554145

  15. Synchronization of Caulobacter crescentus for investigation of the bacterial cell cycle.

    PubMed

    Schrader, Jared M; Shapiro, Lucy

    2015-01-01

    The cell cycle is important for growth, genome replication, and development in all cells. In bacteria, studies of the cell cycle have focused largely on unsynchronized cells making it difficult to order the temporal events required for cell cycle progression, genome replication, and division. Caulobacter crescentus provides an excellent model system for the bacterial cell cycle whereby cells can be rapidly synchronized in a G0 state by density centrifugation. Cell cycle synchronization experiments have been used to establish the molecular events governing chromosome replication and segregation, to map a genetic regulatory network controlling cell cycle progression, and to identify the establishment of polar signaling complexes required for asymmetric cell division. Here we provide a detailed protocol for the rapid synchronization of Caulobacter NA1000 cells. Synchronization can be performed in a large-scale format for gene expression profiling and western blot assays, as well as a small-scale format for microscopy or FACS assays. The rapid synchronizability and high cell yields of Caulobacter make this organism a powerful model system for studies of the bacterial cell cycle. PMID:25938623

  16. MAIT cells are licensed through granzyme exchange to kill bacterially sensitized targets

    PubMed Central

    Kurioka, A; Ussher, J E; Cosgrove, C; Clough, C; Fergusson, J R; Smith, K; Kang, Y-H; Walker, L J; Hansen, T H; Willberg, C B; Klenerman, P

    2015-01-01

    Mucosal-associated invariant T (MAIT) cells are an innate-like T-cell population restricted by the non-polymorphic, major histocompatibility complex class I-related protein 1, MR1. MAIT cells are activated by a broad range of bacteria through detection of riboflavin metabolites bound by MR1, but their direct cytolytic capacity upon recognition of cognate target cells remains unclear. We show that resting human MAIT cells are uniquely characterized by a lack of granzyme (Gr) B and low perforin expression, key granule proteins required for efficient cytotoxic activity, but high levels of expression of GrA and GrK. Bacterial activation of MAIT cells rapidly induced GrB and perforin, licensing these cells to kill their cognate target cells. Using a novel flow cytometry-based killing assay, we show that licensed MAIT cells, but not ex vivo MAIT cells from the same donors, can efficiently kill Escherichia coli-exposed B-cell lines in an MR1- and degranulation-dependent manner. Finally, we show that MAIT cells are highly proliferative in response to antigenic and cytokine stimulation, maintaining high expression of GrB, perforin, and GrA, but reduced expression of GrK following antigenic proliferation. The tightly regulated cytolytic capacity of MAIT cells may have an important role in the control of intracellular bacterial infections, such as Mycobacterium tuberculosis. PMID:25269706

  17. Interactions of bacterial pathogens with dendritic cells during invasion of mucosal surfaces.

    PubMed

    Granucci, Francesca; Ricciardi-Castagnoli, Paola

    2003-02-01

    Recent studies of mucosal immunity suggest a key role for dendritic cells in the regulation of gut immune responses, in both physiological and pathological conditions. Dendritic cells are widely distributed in the lamina propria of the gut and are involved in direct bacterial uptake across mucosal surfaces, which questions the role of dendritic cells in innate mucosal responses. Approximately 400 commensal microbial species are present in the gut lumen. So how do dendritic cells distinguish pathogens from luminal microflora? Are the cytokines and chemokines induced in dendritic cells tailored to the class of microbes being recognized? Several very important questions still need to be addressed. PMID:12615223

  18. Streptomyces: A Screening Tool for Bacterial Cell Division Inhibitors

    PubMed Central

    Jani, Charul; Tocheva, Elitza I.; McAuley, Scott; Craney, Arryn; Jensen, Grant J.; Nodwell, Justin

    2016-01-01

    Cell division is essential for spore formation but not for viability in the filamentous streptomycetes bacteria. Failure to complete cell division instead blocks spore formation, a phenotype that can be visualized by the absence of gray (in Streptomyces coelicolor) and green (in Streptomyces venezuelae) spore-associated pigmentation. Despite the lack of essentiality, the streptomycetes divisome is similar to that of other prokaryotes. Therefore, the chemical inhibitors of sporulation in model streptomycetes may interfere with the cell division in rod-shaped bacteria as well. To test this, we investigated 196 compounds that inhibit sporulation in S. coelicolor. We show that 19 of these compounds cause filamentous growth in Bacillus subtilis, consistent with impaired cell division. One of the compounds is a DNA-damaging agent and inhibits cell division by activating the SOS response. The remaining 18 act independently of known stress responses and may therefore act on the divisome or on divisome positioning and stability. Three of the compounds (Fil-1, Fil-2, and Fil-3) confer distinct cell division defects on B. subtilis. They also block B. subtilis sporulation, which is mechanistically unrelated to the sporulation pathway of streptomycetes but is also dependent on the divisome. We discuss ways in which these differing phenotypes can be used in screens for cell division inhibitors. PMID:25256667

  19. The Escherichia coli baby cell column: a novel cell synchronization method provides new insight into the bacterial cell cycle

    PubMed Central

    Bates, David; Epstein, Jessica; Boye, Erik; Fahrner, Karen; Berg, Howard; Kleckner, Nancy

    2010-01-01

    Summary We describe a new method for synchronizing bacterial cells. Cells that have transiently expressed an inducible mutant ‘sticky’ flagellin are adhered to a volume of glass beads suspended in a chromatography column though which growth medium is pumped. Following repression of flagellin synthesis, newborn cells are eluted from the column in large quantities exceeding that of current baby machine techniques by approximately 10-fold. Eluted cultures of ‘baby cells’ are highly synchronous as determined by analysis of DNA replication, cell division and other events, over time after elution from the column. We also show that use of ‘minutes after elution’ as a time metric permits much greater temporal resolution among sequential chromosomal events than the commonly used metric of cell size (length). The former approach reveals the existence of transient intermediate stages that are missed by the latter approach. This finding has two important implications. First, at a practical level, the baby cell column is a particularly powerful method for temporal analysis. Second, at a conceptual level, replication-related events are more tightly linked to cell birth (i.e. cell division) than to absolute cell mass. PMID:15978072

  20. Effects of bacterial cells and two types of extracellular polymers on bioclogging of sand columns

    NASA Astrophysics Data System (ADS)

    Xia, Lu; Zheng, Xilai; Shao, Haibing; Xin, Jia; Sun, Zhaoyue; Wang, Leyun

    2016-04-01

    Microbially induced reductions in the saturated hydraulic conductivity, Ks, of natural porous media, conventionally called bioclogging, occurs frequently in natural and engineered subsurface systems. Bioclogging can affect artificial groundwater recharge, in situ bioremediation of contaminated aquifers, or permeable reactive barriers. In this study, we designed a series of percolation experiments to simulate the growth and metabolism of bacteria in sand columns. The experimental results showed that the bacterial cell amount gradually increased to a maximum of 8.91 log10 CFU/g sand at 144 h during the bioclogging process, followed by a decrease to 7.89 log10 CFU/g sand until 336 h. The same variation pattern was found for the concentration of tightly bound extracellular polymeric substances (TB-EPS), which had a peak value of 220.76 μg/g sand at 144 h. In the same experiments, the concentration of loosely bound extracellular polymeric substances (LB-EPS) increased sharply from 54.45 to 575.57 μg/g sand in 192 h, followed by a slight decline to 505.04 μg/g sand. The increase of the bacterial cell amount along with the other two concentrations could reduce the Ks of porous media, but their relative contributions varied to a large degree during different percolation stages. At the beginning of the tests (e.g., 48 h before), bacterial cells were likely responsible for the Ks reduction of porous media because no increase was found for the other two concentrations. With the accumulation of cells and EPS production from 48 to 144 h, both were important for the reduction of Ks. However, in the late period of percolation tests from 144 to 192 h, LB-EPS was probably responsible for the further reduction of Ks, as the bacterial cell amount and TB-EPS concentration decreased. Quantitative contributions of bacterial cell amount and the two types of extracellular polymers to Ks reductions were also evaluated.

  1. Life without a cell membrane: Challenging the specificity of bacterial endophytes within Bryopsis (Bryopsidales, Chlorophyta)

    PubMed Central

    2011-01-01

    Background The siphonous green macroalga Bryopsis has some remarkable characteristics. Besides hosting a rich endophytic bacterial flora, Bryopsis also displays extraordinary wound repair and propagation mechanisms. This latter feature includes the formation of protoplasts which can survive in the absence of a cell membrane for several minutes before regenerating into new individuals. This transient 'life without a membrane' state, however, challenges the specificity of the endophytic bacterial communities present and raises the question whether these bacteria are generalists, which are repeatedly acquired from the environment, or if there is some specificity towards the Bryopsis host. Results To answer this question, we examined the temporal stability and the uniqueness of endobiotic bacterial communities within Bryopsis samples from the Mexican west coast after prolonged cultivation. DGGE analysis revealed that Bryopsis endophytic bacterial communities are rather stable and clearly distinct from the epiphytic and surrounding cultivation water bacterial communities. Although these endogenous communities consist of both facultative and obligate bacteria, results suggest that Bryopsis owns some intrinsic mechanisms to selectively maintain and/or attract specific bacteria after repeated wounding events in culture. Conclusions This suggests that Bryopsis algae seem to master transient stages of life without a cell membrane well as they harbor specific - and possibly ecological significant - endophytic bacteria. PMID:22103477

  2. Biosynthesis of a Fully Functional Cyclotide inside Living Bacterial Cells

    SciTech Connect

    Camarero, J A; Kimura, R H; Woo, Y; Cantor, J; Shekhtman, A

    2007-04-05

    The cyclotide MCoTI-II is a powerful trypsin inhibitor recently isolated from the seeds of Momordica cochinchinensis, a plant member of cucurbitaceae family. We report for the first time the in vivo biosynthesis of natively-folded MCoTI-II inside live E. coli cells. Our biomimetic approach involves the intracellular backbone cyclization of a linear cyclotide-intein fusion precursor mediated by a modified protein splicing domain. The cyclized peptide then spontaneously folds into its native conformation. The use of genetically engineered E. coli cells containing mutations in the glutathione and thioredoxin reductase genes considerably improves the production of folded MCoTI-II in vivo. Biochemical and structural characterization of the recombinant MCoTI-II confirmed its identity. Biosynthetic access to correctly-folded cyclotides allows the possibility of generating cell-based combinatorial libraries that can be screened inside living cells for their ability to modulate or inhibit cellular processes.

  3. Increased electrical output when a bacterial ABTS oxidizer is used in a microbial fuel cell

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial fuel cells (MFCs) are a technology that provides electrical energy from the microbial oxidation of organic compounds. Most MFCs use oxygen as the oxidant in the cathode chamber. The present study examined the formation in culture of an unidentified bacterial oxidant and investigated the ...

  4. A portable immunomagnetic cell capture system to accelerate culture diagnosis of bacterial infections.

    PubMed

    Singh, Saurabh; Upadhyay, Mohita; Sharma, Jyoti; Gupta, Shalini; Vivekanandan, Perumal; Elangovan, Ravikrishnan

    2016-05-23

    Bacterial infections continue to be a major cause of deaths globally, particularly in resource-poor settings. In the absence of rapid and affordable diagnostic solutions, patients are mostly administered broad spectrum antibiotics leading to antibiotics resistance and poor recovery. Culture diagnosis continues to be a gold standard for diagnosis of bacterial infection, despite its long turnaround time of 24 to 48 h. We have developed a portable immunomagnetic cell capture (iMC(2)) system that allows rapid culture diagnosis of bacterial pathogens. Our approach involves the culture growth of the blood samples in broth media for 6 to 8 h, followed by immunomagnetic enrichment of the target cells using the iMC(2) device. The device comprises a disposable capture chip that has two chambers of 5 ml and 50 μl volume connected through a channel with a manual valve. Bacterial cells bound to antibody coated magnetic nanoparticles are swept from the 5 ml sample chamber into the 50 μl recovery chamber by moving an external magnetic field with respect to the capture chip using a linear positioner. This enables specific isolation and up to 100× enrichment of the target cells. The presence of bacteria in the recovered sample is confirmed visually using a lateral flow immunoassay. The system is demonstrated in buffer and blood samples spiked with S. typhi. The method has high sensitivity (10 CFU ml(-1)), specificity and a rapid turnaround time of less than 7 h, a significant improvement over conventional methods. PMID:27118505

  5. The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes

    PubMed Central

    Chindera, Kantaraja; Mahato, Manohar; Kumar Sharma, Ashwani; Horsley, Harry; Kloc-Muniak, Klaudia; Kamaruzzaman, Nor Fadhilah; Kumar, Satish; McFarlane, Alexander; Stach, Jem; Bentin, Thomas; Good, Liam

    2016-01-01

    To combat infection and antimicrobial resistance, it is helpful to elucidate drug mechanism(s) of action. Here we examined how the widely used antimicrobial polyhexamethylene biguanide (PHMB) kills bacteria selectively over host cells. Contrary to the accepted model of microbial membrane disruption by PHMB, we observed cell entry into a range of bacterial species, and treated bacteria displayed cell division arrest and chromosome condensation, suggesting DNA binding as an alternative antimicrobial mechanism. A DNA-level mechanism was confirmed by observations that PHMB formed nanoparticles when mixed with isolated bacterial chromosomal DNA and its effects on growth were suppressed by pairwise combination with the DNA binding ligand Hoechst 33258. PHMB also entered mammalian cells, but was trapped within endosomes and excluded from nuclei. Therefore, PHMB displays differential access to bacterial and mammalian cellular DNA and selectively binds and condenses bacterial chromosomes. Because acquired resistance to PHMB has not been reported, selective chromosome condensation provides an unanticipated paradigm for antimicrobial action that may not succumb to resistance. PMID:26996206

  6. The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes.

    PubMed

    Chindera, Kantaraja; Mahato, Manohar; Kumar Sharma, Ashwani; Horsley, Harry; Kloc-Muniak, Klaudia; Kamaruzzaman, Nor Fadhilah; Kumar, Satish; McFarlane, Alexander; Stach, Jem; Bentin, Thomas; Good, Liam

    2016-01-01

    To combat infection and antimicrobial resistance, it is helpful to elucidate drug mechanism(s) of action. Here we examined how the widely used antimicrobial polyhexamethylene biguanide (PHMB) kills bacteria selectively over host cells. Contrary to the accepted model of microbial membrane disruption by PHMB, we observed cell entry into a range of bacterial species, and treated bacteria displayed cell division arrest and chromosome condensation, suggesting DNA binding as an alternative antimicrobial mechanism. A DNA-level mechanism was confirmed by observations that PHMB formed nanoparticles when mixed with isolated bacterial chromosomal DNA and its effects on growth were suppressed by pairwise combination with the DNA binding ligand Hoechst 33258. PHMB also entered mammalian cells, but was trapped within endosomes and excluded from nuclei. Therefore, PHMB displays differential access to bacterial and mammalian cellular DNA and selectively binds and condenses bacterial chromosomes. Because acquired resistance to PHMB has not been reported, selective chromosome condensation provides an unanticipated paradigm for antimicrobial action that may not succumb to resistance. PMID:26996206

  7. [Detection of cell death markers as a tool for bacterial antimicrobial susceptibility testing].

    PubMed

    Mlynárčik, P; Kolář, M

    2016-01-01

    Antimicrobial resistance among nosocomial pathogens has emerged as one of the most important health care problems in the new millennium. In this review, we present new methods for bacterial antimicrobial susceptibility testing, based on the detection of antibiotic-mediated cell death markers that could provide valuable alternatives to existing phenotypic approaches in the very near future. PMID:27467325

  8. Practical Synthesis of PC190723, An Inhibitor of the Bacterial Cell Division Protein FtsZ

    PubMed Central

    Sorto, Nohemy A.; Olmstead, Marilyn M.; Shaw, Jared T.

    2010-01-01

    A high-yielding and practical synthesis of the bacterial cell division inhibitor PC190723 is described. The synthesis is completed in a longest linear sequence of five steps from commercially available starting materials and can be readily executed on a multi-gram scale. PMID:21033691

  9. CELL DENSITY AND NON-EQUILIBRIUM SORPTION EFFECTS ON BACTERIAL DISPERSAL IN GROUNDWATER MICROCOSMS

    EPA Science Inventory

    The relative importance of dispersion, physical straining, non-equilibrium sorption, and cell density on the dispersal of bacteria was examined in saturated, flow-dynamic sand columns. The bacterial breakthrough as a was followed by measuring the effluent concentration of 3H-aden...

  10. Spring constants and adhesive properties of native bacterial biofilm cells measured by atomic force microscopy.

    PubMed

    Volle, C B; Ferguson, M A; Aidala, K E; Spain, E M; Núñez, M E

    2008-11-15

    Bacterial biofilms were imaged by atomic force microscopy (AFM), and their elasticity and adhesion to the AFM tip were determined from a series of tip extension and retraction cycles. Though the five bacterial strains studied included both Gram-negative and -positive bacteria and both environmental and laboratory strains, all formed simple biofilms on glass surfaces. Cellular spring constants, determined from the extension portion of the force cycle, varied between 0.16+/-0.01 and 0.41+/-0.01 N/m, where larger spring constants were measured for Gram-positive cells than for Gram-negative cells. The nonlinear regime in the extension curve depended upon the biomolecules on the cell surface: the extension curves for the smooth Gram-negative bacterial strains with the longest lipopolysaccharides on their surface had a larger nonlinear region than the rough bacterial strain with shorter lipopolysaccharides on the surface. Adhesive forces between the retracting silicon nitride tip and the cells varied between cell types in terms of the force components, the distance components, and the number of adhesion events. The Gram-negative cells' adhesion to the tip showed the longest distance components, sometimes more than 1 microm, whereas the shortest distance adhesion events were measured between the two Gram-positive cell types and the tip. Fixation of free-swimming planktonic cells by NHS and EDC perturbed both the elasticity and the adhesive properties of the cells. Here we consider the biochemical meaning of the measured physical properties of simple biofilms and implications to the colonization of surfaces in the first stages of biofilm formation. PMID:18815013

  11. The impact of metabolic state on Cd adsorption onto bacterial cells

    USGS Publications Warehouse

    Johnson, K.J.; Ams, D.A.; Wedel, A.N.; Szymanowski, J.E.S.; Weber, D.L.; Schneegurt, M.A.; Fein, J.B.

    2007-01-01

    This study examines the effect of bacterial metabolism on the adsorption of Cd onto Gram-positive and Gram-negative bacterial cells. Metabolically active Gram-positive cells adsorbed significantly less Cd than non-metabolizing cells. Gram-negative cells, however, showed no systematic difference in Cd adsorption between metabolizing and non-metabolizing cells. The effect of metabolism on Cd adsorption to Gram-positive cells was likely due to an influx of protons in and around the cell wall from the metabolic proton motive force, promoting competition between Cd and protons for adsorption sites on the cell wall. The relative lack of a metabolic effect on Cd adsorption onto Gram-negative compared to Gram-positive cells suggests that Cd binding in Gram-negative cells is focused in a region of the cell wall that is not reached, or is unaffected by this proton flux. Thermodynamic modeling was used to estimate that proton pumping causes the pH in the cell wall of metabolizing Gram-positive bacteria to decrease from the bulk solution value of 7.0 to approximately 5.7. ?? 2007 The Authors.

  12. Exploiting Bacterial Peptide Display Technology to Engineer Biomaterials for Neural Stem Cell Culture

    PubMed Central

    Little, Lauren; Dane, Karen; Daugherty, Patrick; Healy, Kevin; Schaffer, David

    2010-01-01

    Stem cells are often cultured on substrates that present extracellular matrix (ECM) proteins; however, the heterogeneous and poorly defined nature of ECM proteins presents challenges both for basic biological investigation of cell-matrix investigations and translational applications of stem cells. Therefore, fully synthetic, defined materials conjugated with bioactive ligands, such as adhesive peptides, are preferable for stem cell biology and engineering. However, identifying novel ligands that engage cellular receptors can be challenging, and we have thus developed a high throughput approach to identify new adhesive ligands. We selected an unbiased bacterial peptide display library for the ability to bind adult neural stem cells (NSCs), and 44 bacterial clones expressing peptides were identified and found to bind to NSCs with high avidity. Of these clones, four contained RGD motifs commonly found in integrin binding domains, and three exhibited homology to ECM proteins. Three peptide clones were chosen for further analysis, and their synthetic analogs were adsorbed on tissue culture polystyrene (TCPS) or grafted onto an interpenetrating polymer network (IPN) for cell culture. These three peptides were found to support neural stem cell self-renewal in defined medium as well as multi-lineage differentiation. Therefore, bacterial peptide display offers unique advantages to isolate bioactive peptides from large, unbiased libraries for applications in biomaterials engineering. PMID:21129772

  13. Wingless homolog Wnt11 suppresses bacterial invasion and inflammation in intestinal epithelial cells.

    PubMed

    Liu, Xingyin; Wu, Shaoping; Xia, Yinglin; Li, Xi Emma; Xia, Yuxuan; Zhou, Zhongren David; Sun, Jun

    2011-12-01

    Wnt11 plays an essential role in gastrointestinal epithelial proliferation, and previous investigations have focused on development and immune responses. However, the roles of how enteric bacteria regulate Wnt11 and how Wnt11 modulates the host response to pathogenic bacteria remain unexplored. This study investigated the effects of Salmonella infection on Wnt activation in intestinal epithelial cells. We found that Wnt11 mRNA and protein expression were elevated after Salmonella colonization. Wnt11 protein secretion in epithelial cells was also elevated after bacterial infection. Furthermore, we demonstrated that pathogenic Salmonella regulated Wnt11 expression and localization in vivo. We found a decrease in Salmonella invasion in cells with Wnt11 overexpression compared with cells with normal Wnt11 level. IL-8 mRNA in Wnt11-transfected cells was low; however, it was enhanced in cells with a low level of Wnt11 expression. Functionally, Wnt11 overexpression inhibited Salmonella-induced apoptosis. AvrA is a known bacterial effector protein that stabilizes β-catenin, the downstream regulator of Wnt signaling, and inhibits bacterially induced intestinal inflammation. We observed that Wnt11 expression, secretion, and transcriptional activity were regulated by Salmonella AvrA. Overall, Wnt11 is involved in the protection of the host intestinal cells by blocking the invasion of pathogenic bacteria, suppressing inflammation, and inhibiting apoptosis. Wnt11 is a novel and important contributor to intestinal homeostasis and host defense. PMID:21903761

  14. In situ probing the interior of single bacterial cells at nanometer scale

    NASA Astrophysics Data System (ADS)

    Liu, Boyin; Hemayet Uddin, Md; Ng, Tuck Wah; Paterson, David L.; Velkov, Tony; Li, Jian; Fu, Jing

    2014-10-01

    We report a novel approach to probe the interior of single bacterial cells at nanometre resolution by combining focused ion beam (FIB) and atomic force microscopy (AFM). After removing layers of pre-defined thickness in the order of 100 nm on the target bacterial cells with FIB milling, AFM of different modes can be employed to probe the cellular interior under both ambient and aqueous environments. Our initial investigations focused on the surface topology induced by FIB milling and the hydration effects on AFM measurements, followed by assessment of the sample protocols. With fine-tuning of the process parameters, in situ AFM probing beneath the bacterial cell wall was achieved for the first time. We further demonstrate the proposed method by performing a spatial mapping of intracellular elasticity and chemistry of the multi-drug resistant strain Klebsiella pneumoniae cells prior to and after it was exposed to the ‘last-line’ antibiotic polymyxin B. Our results revealed increased stiffness occurring in both surface and interior regions of the treated cells, suggesting loss of integrity of the outer membrane from polymyxin treatments. In addition, the hydrophobicity measurement using a functionalized AFM tip was able to highlight the evident hydrophobic portion of the cell such as the regions containing cell membrane. We expect that the proposed FIB-AFM platform will help in gaining deeper insights of bacteria-drug interactions to develop potential strategies for combating multi-drug resistance.

  15. Induction of apoptotic cell death leads to the development of bacterial rot caused by Pseudomonas cichorii.

    PubMed

    Kiba, Akinori; Sangawa, Yasutaka; Ohnishi, Kouhei; Yao, Nan; Park, Pyoyun; Nakayashiki, Hitoshi; Tosa, Yukio; Mayama, Shigeyuki; Hikichi, Yasufumi

    2006-02-01

    Pseudomonas cichorii is the major causal agent of bacterial rot of lettuce. Collapse and browning symptoms were observed in lettuce leaf tissue from 15 to 24 h after inoculation (HAI) with P. cichorii; superoxide anion generation was detected at 1 to 6 HAI; and cell death was induced at 6 HAI, reaching a maximum at approximately 9 and 12 HAI. Heterochromatin condensation and DNA laddering also were observed within 3 HAI. Pharmacological studies showed that induction of cell death and DNA laddering was closely associated with de novo protein synthesis, protein kinase, intracellular reactive oxygen species, DNase, serine protease, and caspase III-like protease. Moreover, chemicals, which inhibited the induction of cell death and DNA laddering, also suppressed the development of disease symptoms. These results suggest that apoptotic cell death might be closely associated with the development of bacterial rot caused by P. cichorii. PMID:16529373

  16. Note: An automated image analysis method for high-throughput classification of surface-bound bacterial cell motions

    NASA Astrophysics Data System (ADS)

    Shen, Simon; Syal, Karan; Tao, Nongjian; Wang, Shaopeng

    2015-12-01

    We present a Single-Cell Motion Characterization System (SiCMoCS) to automatically extract bacterial cell morphological features from microscope images and use those features to automatically classify cell motion for rod shaped motile bacterial cells. In some imaging based studies, bacteria cells need to be attached to the surface for time-lapse observation of cellular processes such as cell membrane-protein interactions and membrane elasticity. These studies often generate large volumes of images. Extracting accurate bacterial cell morphology features from these images is critical for quantitative assessment. Using SiCMoCS, we demonstrated simultaneous and automated motion tracking and classification of hundreds of individual cells in an image sequence of several hundred frames. This is a significant improvement from traditional manual and semi-automated approaches to segmenting bacterial cells based on empirical thresholds, and a first attempt to automatically classify bacterial motion types for motile rod shaped bacterial cells, which enables rapid and quantitative analysis of various types of bacterial motion.

  17. Note: An automated image analysis method for high-throughput classification of surface-bound bacterial cell motions.

    PubMed

    Shen, Simon; Syal, Karan; Tao, Nongjian; Wang, Shaopeng

    2015-12-01

    We present a Single-Cell Motion Characterization System (SiCMoCS) to automatically extract bacterial cell morphological features from microscope images and use those features to automatically classify cell motion for rod shaped motile bacterial cells. In some imaging based studies, bacteria cells need to be attached to the surface for time-lapse observation of cellular processes such as cell membrane-protein interactions and membrane elasticity. These studies often generate large volumes of images. Extracting accurate bacterial cell morphology features from these images is critical for quantitative assessment. Using SiCMoCS, we demonstrated simultaneous and automated motion tracking and classification of hundreds of individual cells in an image sequence of several hundred frames. This is a significant improvement from traditional manual and semi-automated approaches to segmenting bacterial cells based on empirical thresholds, and a first attempt to automatically classify bacterial motion types for motile rod shaped bacterial cells, which enables rapid and quantitative analysis of various types of bacterial motion. PMID:26724085

  18. Phase Resetting Reveals Network Dynamics Underlying a Bacterial Cell Cycle

    PubMed Central

    Lin, Yihan; Li, Ying; Crosson, Sean; Dinner, Aaron R.; Scherer, Norbert F.

    2012-01-01

    Genomic and proteomic methods yield networks of biological regulatory interactions but do not provide direct insight into how those interactions are organized into functional modules, or how information flows from one module to another. In this work we introduce an approach that provides this complementary information and apply it to the bacterium Caulobacter crescentus, a paradigm for cell-cycle control. Operationally, we use an inducible promoter to express the essential transcriptional regulatory gene ctrA in a periodic, pulsed fashion. This chemical perturbation causes the population of cells to divide synchronously, and we use the resulting advance or delay of the division times of single cells to construct a phase resetting curve. We find that delay is strongly favored over advance. This finding is surprising since it does not follow from the temporal expression profile of CtrA and, in turn, simulations of existing network models. We propose a phenomenological model that suggests that the cell-cycle network comprises two distinct functional modules that oscillate autonomously and couple in a highly asymmetric fashion. These features collectively provide a new mechanism for tight temporal control of the cell cycle in C. crescentus. We discuss how the procedure can serve as the basis for a general approach for probing network dynamics, which we term chemical perturbation spectroscopy (CPS). PMID:23209388

  19. Bacterial Cell Surface Adsorption of Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Jiao, Y.; Park, D.; Reed, D.; Fujita, Y.; Yung, M.; Anderko, A.; Eslamimanesh, A.

    2015-12-01

    Rare earth elements (REE) play a critical role in many emerging clean energy technologies, including high-power magnets, wind turbines, solar panels, hybrid/electric vehicle batteries and lamp phosphors. In order to sustain demand for such technologies given current domestic REE shortages, there is a need to develop new approaches for ore processing/refining and recycling of REE-containing materials. To this end, we have developed a microbially-mediated bioadsorption strategy with application towards enrichment of REE from complex mixtures. Specifically, the bacterium Caulobacter crescentus was genetically engineered to display lanthanide binding tags (LBTs), short peptides that possess high affinity and specificity for rare earth elements, on its cell surface S-layer protein. Under optimal conditions, LBT-displayed cells adsorbed greater than 5-fold more REE than control cells lacking LBTs. Competition binding experiments with a selection of REEs demonstrated that our engineered cells could facilitate separation of light- from heavy- REE. Importantly, binding of REE onto our engineered strains was much more favorable compared to non-REE metals. Finally, REE bound to the cell surface could be stripped off using citrate, providing an effective and non-toxic REE recovery method. Together, this data highlights the potential of our approach for selective REE enrichment from REE containing mixtures.

  20. Plasmonic imaging of protein interactions with single bacterial cells.

    PubMed

    Syal, Karan; Wang, Wei; Shan, Xiaonan; Wang, Shaopeng; Chen, Hong-Yuan; Tao, Nongjian

    2015-01-15

    Quantifying the interactions of bacteria with external ligands is fundamental to the understanding of pathogenesis, antibiotic resistance, immune evasion, and mechanism of antimicrobial action. Due to inherent cell-to-cell heterogeneity in a microbial population, each bacterium interacts differently with its environment. This large variability is washed out in bulk assays, and there is a need of techniques that can quantify interactions of bacteria with ligands at the single bacterium level. In this work, we present a label-free and real-time plasmonic imaging technique to measure the binding kinetics of ligand interactions with single bacteria, and perform statistical analysis of the heterogeneity. Using the technique, we have studied interactions of antibodies with single Escherichia coli O157:H7 cells and demonstrated a capability of determining the binding kinetic constants of single live bacteria with ligands, and quantify heterogeneity in a microbial population. PMID:25064821

  1. A Novel Mechanism of Bacterial Toxin Transfer within Host Blood Cell-Derived Microvesicles

    PubMed Central

    Ståhl, Anne-lie; Arvidsson, Ida; Johansson, Karl E.; Chromek, Milan; Rebetz, Johan; Loos, Sebastian; Kristoffersson, Ann-Charlotte; Békássy, Zivile D.; Mörgelin, Matthias; Karpman, Diana

    2015-01-01

    Shiga toxin (Stx) is the main virulence factor of enterohemorrhagic Escherichia coli, which are non-invasive strains that can lead to hemolytic uremic syndrome (HUS), associated with renal failure and death. Although bacteremia does not occur, bacterial virulence factors gain access to the circulation and are thereafter presumed to cause target organ damage. Stx was previously shown to circulate bound to blood cells but the mechanism by which it would potentially transfer to target organ cells has not been elucidated. Here we show that blood cell-derived microvesicles, shed during HUS, contain Stx and are found within patient renal cortical cells. The finding was reproduced in mice infected with Stx-producing Escherichia coli exhibiting Stx-containing blood cell-derived microvesicles in the circulation that reached the kidney where they were transferred into glomerular and peritubular capillary endothelial cells and further through their basement membranes followed by podocytes and tubular epithelial cells, respectively. In vitro studies demonstrated that blood cell-derived microvesicles containing Stx undergo endocytosis in glomerular endothelial cells leading to cell death secondary to inhibited protein synthesis. This study demonstrates a novel virulence mechanism whereby bacterial toxin is transferred within host blood cell-derived microvesicles in which it may evade the host immune system. PMID:25719452

  2. Spatial Patterning of Newly-Inserted Material during Bacterial Cell Growth

    NASA Astrophysics Data System (ADS)

    Ursell, Tristan

    2012-02-01

    In the life cycle of a bacterium, rudimentary microscopy demonstrates that cell growth and elongation are essential characteristics of cellular reproduction. The peptidoglycan cell wall is the main load-bearing structure that determines both cell shape and overall size. However, simple imaging of cellular growth gives no indication of the spatial patterning nor mechanism by which material is being incorporated into the pre-existing cell wall. We employ a combination of high-resolution pulse-chase fluorescence microscopy, 3D computational microscopy, and detailed mechanistic simulations to explore how spatial patterning results in uniform growth and maintenance of cell shape. We show that growth is happening in discrete bursts randomly distributed over the cell surface, with a well-defined mean size and average rate. We further use these techniques to explore the effects of division and cell wall disrupting antibiotics, like cephalexin and A22, respectively, on the patterning of cell wall growth in E. coli. Finally, we explore the spatial correlation between presence of the bacterial actin-like cytoskeletal protein, MreB, and local cell wall growth. Together these techniques form a powerful method for exploring the detailed dynamics and involvement of antibiotics and cell wall-associated proteins in bacterial cell growth.[4pt] In collaboration with Kerwyn Huang, Stanford University.

  3. An evolutionarily-conserved role for murine Ly-1 B cells in protection against bacterial infections.

    PubMed

    Lalor, P A

    1991-01-01

    The murine Ly-1 B cell lineage, although comprising only a minority of peripheral IgM+ B cells, secretes a major proportion of the IgM antibodies occurring naturally in serum. Ly-1 B cells also seed a large number of IgA+ plasma cells to the gut walls, thereby contributing significantly to production of natural IgA antibodies in response to chronic stimulation by the normal gut flora. Apart from these naturally-produced antibodies, Ly-1 B cells also produce specific antibodies following deliberate immunisation with the bacterial cell wall antigens, phosphorylcholine and dextran. The inability of the X-linked immunodeficient CBA/N mice to produce antibody responses to these two antigens is overcome by reconstitution with normal Ly-1 B cells from the parental CBA strain. Ly-1 B cells therefore appear to play a dominant role in natural immunity and protection against bacterial infections. The compartmentalisation of development and function within murine B cells is suggestive of an evolutionary structuring of the murine immune system, with Ly-1 B cells representing a conserved, primitive B cell lineage and retaining key, associated functions. PMID:1742426

  4. Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications.

    PubMed

    Yeo, Chew Chieng; Abu Bakar, Fauziah; Chan, Wai Ting; Espinosa, Manuel; Harikrishna, Jennifer Ann

    2016-02-01

    Toxin-antitoxin (TA) systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies. PMID:26907343

  5. Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications

    PubMed Central

    Yeo, Chew Chieng; Abu Bakar, Fauziah; Chan, Wai Ting; Espinosa, Manuel; Harikrishna, Jennifer Ann

    2016-01-01

    Toxin-antitoxin (TA) systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies. PMID:26907343

  6. Internalin must be on the bacterial surface to mediate entry of Listeria monocytogenes into epithelial cells.

    PubMed

    Lebrun, M; Mengaud, J; Ohayon, H; Nato, F; Cossart, P

    1996-08-01

    Entry of Listeria monocytogenes into cultured epithelial cells requires production of internalin, a protein with features characteristic of some Gram-positive bacterial surface proteins, in particular an LPXTG motif preceding a hydrophobic sequence and a few basic residues at its C-terminal end. By immunofluorescence and immunogold labelling, we show that in wild-type L. monocytogenes, internalin is present on the cell surface and has a polarized distribution similar to that of ActA, another surface protein of L. monocytogenes involved in actin assembly. Through a genetic analysis, we establish that the C-terminal region of internalin is necessary for cell-surface association, and that although internalin is partially released in the culture medium, its location on the bacterial surface is required to promote entry. Finally, using a 'domain-swapping' strategy-replacement of the cell wall anchor of IniA by the membrane anchor of ActA- we show that the reduced ability to adhere and enter cells of strains expressing IniA-ActA correlates with a lower amount of surface-exposed internalin. Taken together, these results suggest that internalin exposed on the bacterial surface mediates direct contact between the bacterium and the host cell. PMID:8866480

  7. Cell Wall Nonlinear Elasticity and Growth Dynamics: How Do Bacterial Cells Regulate Pressure and Growth?

    NASA Astrophysics Data System (ADS)

    Deng, Yi

    In my thesis, I study intact and bulging Escherichia coli cells using atomic force microscopy to separate the contributions of the cell wall and turgor pressure to the overall cell stiffness. I find strong evidence of power--law stress--stiffening in the E. coli cell wall, with an exponent of 1.22±0.12, such that the wall is significantly stiffer in intact cells (E = 23±8 MPa and 49±20 MPa in the axial and circumferential directions) than in unpressurized sacculi. These measurements also indicate that the turgor pressure in living cells E. coli is 29±3 kPa. The nonlinearity in cell elasticity serves as a plausible mechanism to balance the mechanical protection and tension measurement sensitivity of the cell envelope. I also study the growth dynamics of the Bacillus subtilis cell wall to help understand the mechanism of the spatiotemporal order of inserting new cell wall material. High density fluorescent markers are used to label the entire cell surface to capture the morphological changes of the cell surface at sub-cellular to diffraction-limited spatial resolution and sub-minute temporal resolution. This approach reveals that rod-shaped chaining B. subtilis cells grow and twist in a highly heterogeneous fashion both spatially and temporally. Regions of high growth and twisting activity have a typical length scale of 5 μm, and last for 10-40 minutes. Motivated by the quantification of the cell wall growth dynamics, two microscopy and image analysis techniques are developed and applied to broader applications beyond resolving bacterial growth. To resolve densely distributed quantum dots, we present a fast and efficient image analysis algorithm, namely Spatial Covariance Reconstruction (SCORE) microscopy that takes into account the blinking statistics of the fluorescence emitters. We achieve sub-diffraction lateral resolution of 100 nm from 5 to 7 seconds of imaging, which is at least an order of magnitude faster than single-particle localization based methods

  8. Cultured C2C12 cell lines as a model for assessment of bacterial attachment to bovine primary muscle cells.

    PubMed

    Zulfakar, Siti Shahara; White, Jason D; Ross, Tom; Tamplin, Mark L

    2013-06-01

    The mechanisms of bacterial attachment to meat tissues need to be understood to enhance meat safety interventions. However, little is known about attachment of foodborne pathogens to meat muscle cells. In this study, attachment of six Escherichia coli and two Salmonella strains to primary bovine muscle cells and a cultured muscle cell line, C2C12, was measured, including the effect of temperature. At 37°C, all but one strain (EC623) attached to C2C12 cells, whereas only five of eight strains (M23Sr, H10407, EC473, Sal1729a and Sal691) attached to primary cells. At 10 °C, two strains (H10407 and EC473) attached to C2C12 cells, compared to four strains (M23Sr, EC614, H10407 and Sal1729a) of primary cells. Comparing all strains at both temperatures, EC614 displayed the highest CFU per C2C12 cell (4.60±2.02CFU/muscle cell at 37 °C), whereas greater numbers of M23Sr attached per primary cell (51.88±39.43CFU/muscle cell at 37 °C). This study indicates that primary bovine muscle cells may provide a more relevant model system to study bacterial attachment to beef carcasses compared to cell lines such as C2C12. PMID:23501253

  9. Low-frequency dielectric dispersion of bacterial cell suspensions.

    PubMed

    Asami, Koji

    2014-07-01

    Dielectric spectra of Escherichia coli cells suspended in 0.1-10 mM NaCl were measured over a frequency range of 10 Hz to 10 MHz. Low-frequency dielectric dispersion, so-called the α-dispersion, was found below 10 kHz in addition to the β-dispersion, due to interfacial polarization, appearing above 100 kHz. When the cells were killed by heating at 60°C for 30 min, the β-dispersion disappeared completely, whereas the α-dispersion was little influenced. This suggests that the plasma (or inner) membranes of the dead cells are no longer the permeability barrier to small ions, and that the α-dispersion is not related to the membrane potential due to selective membrane permeability of ions. The intensity of the α-dispersion depended on both of the pH and ionic strength of the external medium, supporting the model that the α-dispersion results from the deformation of the ion clouds formed outside and inside the cell wall containing charged residues. PMID:24835050

  10. DNA-crosslinker cisplatin eradicates bacterial persister cells.

    PubMed

    Chowdhury, Nityananda; Wood, Thammajun L; Martínez-Vázquez, Mariano; García-Contreras, Rodolfo; Wood, Thomas K

    2016-09-01

    For all bacteria, nearly every antimicrobial fails since a subpopulation of the bacteria enter a dormant state known as persistence, in which the antimicrobials are rendered ineffective due to the lack of metabolism. This tolerance to antibiotics makes microbial infections the leading cause of death worldwide and makes treating chronic infections, including those of wounds problematic. Here, we show that the FDA-approved anti-cancer drug cisplatin [cis-diamminodichloroplatinum(II)], which mainly forms intra-strand DNA crosslinks, eradicates Escherichia coli K-12 persister cells through a growth-independent mechanism. Additionally, cisplatin is more effective at killing Pseudomonas aeruginosa persister cells than mitomycin C, which forms inter-strand DNA crosslinks, and cisplatin eradicates the persister cells of several pathogens including enterohemorrhagic E. coli, Staphylococcus aureus, and P. aeruginosa. Cisplatin was also highly effective against clinical isolates of S. aureus and P. aeruginosa. Therefore, cisplatin has broad spectrum activity against persister cells. Biotechnol. Bioeng. 2016;113: 1984-1992. © 2016 Wiley Periodicals, Inc. PMID:26914280

  11. Electron microscopy study of antioxidant interaction with bacterial cells

    NASA Astrophysics Data System (ADS)

    Plotnikov, Oleg P.; Novikova, Olga V.; Konnov, Nikolai P.; Korsukov, Vladimir N.; Gunkin, Ivan F.; Volkov, Uryi P.

    2000-10-01

    To maintain native microorganisms genotype and phenotype features a lyophylization technique is widely used. However in this case cells are affected by influences of vacuum and low temperature that cause a part of the cells population to be destruction. Another factor reduced microorganisms vitality is formation of reactive oxygen forms that damage certain biological targets (such as DNA, membranes etc.) Recently to raise microorganism's resistance against adverse condition natural and synthetic antioxidants are used. Antioxidant- are antagonists of free radicals. Introduction of antioxidants in protective medium for lyophylization increase bacteria storage life about 2,0-4,8 fold in comparison with reference samples. In the article the main results of our investigation of antioxidants interaction with microorganism cells is described. As bacteria cells we use vaccine strain yersinia pestis EV, that were grown for 48 h at 28 degree(s)C on the Hottinger agar (pH 7,2). Antioxidants are inserted on the agar surface in specimen under test. To investigate a localization of antioxidants for electron microscopy investigation, thallium organic antioxidants were used. The thallium organic compounds have an antioxidant features if thallium is in low concentration (about 1(mu) g/ml). The localization of the thallium organic antioxidants on bacteria Y. pestis EV is visible in electron microscopy images, thallium being heavy metal with high electron density. The negatively stained bacteria and bacteria thin sections with thallium organic compounds were investigated by means of transmission electron microscopy. The localization of the thallium organic compounds is clearly visible in electron micrographs as small dark spots with size about 10-80nm. Probably mechanisms of interaction of antioxidants with bacteria cells are discussed.

  12. Computer simulation of the processes of inactivation of bacterial cells by dynamic low-coherent speckles

    NASA Astrophysics Data System (ADS)

    Ulianova, Onega V.; Ulyanov, Sergey S.; Sazanova, Elena V.; Zhihong, Zhang; Sibo, Zhou; Luo, Qingming; Zudina, Irina; Bednov, Andrey

    2006-05-01

    Biochemical, biophysical and optical aspects of interaction of low-coherent light with bacterial cells have been discussed. Influence of low-coherent speckles on the colonies grows is investigated. It has been demonstrated that effects of light on the inhibition of cells (Francisella Tularensis) are connected with speckle dynamics. The regimes of illumination of cell suspension with purpose of devitalization of hazard bacteria, caused very dangerous infections, such as tularemia, are found. Mathematical model of interaction of low-coherent laser radiation with bacteria suspension has been proposed. Computer simulations of the processes of laser-cells interaction have been carried out.

  13. Isolation and solubilization of gram-positive bacterial cell wall-associated proteins.

    PubMed

    Cole, Jason N; Djordjevic, Steven P; Walker, Mark J

    2008-01-01

    This chapter describes a simple, rapid and reproducible method to prepare bacterial cell wall extracts for two-dimensional gel electrophoresis (2DE). The extraction process uses mutanolysin, an N-acetylmuramidase, to gently solubilize cell wall-associated proteins from Gram-positive prokaryotes. The cells are first washed with buffer and resuspended in a solution containing mutanolysin. Following incubation at 37 degrees C, the sample is centrifuged and the supernatant containing the soluble cell wall-associated proteins is harvested. Following a brief precipitation step, the pellet is solubilized in sample buffer ready for isoelectric focusing and 2DE analysis. PMID:18369905

  14. Purification of transfection-grade plasmid DNA from bacterial cells with superparamagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Chiang, Chen-Li; Sung, Ching-Shan

    2006-07-01

    The functionalized magnetic nanobeads were used to develop a rapid protocol for extracting and purifying transfection-grade plasmid DNA from bacterial culture. Nanosized superparamagnetic nanoparticles (Fe 3O 4) were prepared by chemical coprecipitation method using Fe 2+, Fe 3+ salt, and ammonium hydroxide under a nitrogen atmosphere. The surface of Fe 3O 4 nanoparticles was modified by coating with the multivalent cationic agent, polyethylenimine (PEI). The PEI-modified magnetic nanobeads were employed to simplify the purification of plasmid DNA from bacterial cells. We demonstrated a useful plasmid, pRSETB-EGFP, encoding the green fluorescent protein with T7 promoter, was amplified in DE3 strain of Escherichia coli. The loaded nanobeads are recovered by magnetically driven separation and regenerated by exposure to the elution buffer with optimal ionic strength (1.25 M) and pH (9.0). Up to approximately 819 μg of high-purity (A 260/A 280 ratio=1.86) plasmid DNA was isolated from 100 ml of overnight bacterial culture. The eluted plasmid DNA was used directly for restriction enzyme digestion, bacterial cell transformation and animal cell transfection applications with success. The PEI-modified magnetic nanobead delivers significant time-savings, overall higher yields and better transfection efficiencies compared to anion-exchange and other methods. The results presented in this report show that PEI-modified magnetic nanobeads are suitable for isolation and purification of transfection-grade plasmid DNA.

  15. Label-free mapping of single bacterial cells using surface-enhanced Raman spectroscopy.

    PubMed

    Wang, Panxue; Pang, Shintaro; Chen, Juhong; McLandsborough, Lynne; Nugen, Sam R; Fan, Mingtao; He, Lili

    2016-02-01

    Here we presented a simple, rapid and label-free surface-enhanced Raman spectroscopy (SERS) based mapping method for the detection and discrimination of Salmonella enterica and Escherichia coli on silver dendrites. The sample preparation was first optimized to maximize sensitivity. The mapping method was then used to scan through the bacterial cells adsorbed on the surface of silver dendrites. The intrinsic and distinct SERS signals of bacterial cells were used as the basis for label-free detection and discrimination. The results show the developed method is able to detect single bacterial cells adsorbed on the silver dendrites with a limit of detection as low as 10(4) CFU mL(-1), which is two orders of magnitude lower than the traditional SERS method under the same experimental condition. The time needed for collecting a 225 points map was approximately 24 minutes. Moreover, the developed SERS mapping method can realize simultaneous detection and identification of Salmonella enterica subsp. enterica BAA1045 and Escherichia coli BL21 from a mixture sample using principle component analysis. Our results demonstrate the great potential of the label-free SERS mapping method to detect, identify and quantify bacteria and bacterial mixtures simultaneously. PMID:26750611

  16. Comparative Analysis of UV Irradiation Effects on Escherichia coli and Pseudomonas aeruginosa Bacterial Cells Utilizing Biological and Computational Approaches.

    PubMed

    Margaryan, A; Badalyan, H; Trchounian, A

    2016-09-01

    Microorganisms have a large number of tools to withstand different, and sometimes strong, environmental stresses, including irradiation, but this ability should be further evaluated for certain applications. Growth inhibition and morphological alterations of Escherichia coli M-17 and Pseudomonas aeruginosa GRP3 wild-type cells caused by UV-A irradiation have been detected in the present study. Comparative analysis was carried out using well-established microbiological methods (determination of specific growth rate, growth lag phase duration, and colony-forming unit number-CFU) and computational approaches, employing light microscopy and digital image analysis to evaluate bacterial cell morphology. Decreases in the specific growth rate, prolonged lag-phases, and lowered CFUs were observed after 5 and 10 min of UV irradiation (approx. 40 Gy) compared to the control (nonirradiated) cells. Accordingly, two computational parameters-the average bacterial cell surface area and the bacterial cell perimeter (i.e., of the 2D projection of bacterial cells in microscopy image)-were reduced. The ratio of bacterial cell surface area (S) to the square of the perimeter (p (2) ) was reduced after 5 min of irradiation, but after 10 min of irradiation the studied bacterial cells became flat cylinders. The revealed findings are concluded to be highly useful in developing new, rapid analysis methods to monitor environmental and UV irradiation effects on bacteria and to detect bacterial cell morphology alterations. PMID:27334536

  17. Analysis of gene expression levels in individual bacterial cells without image segmentation

    SciTech Connect

    Kwak, In Hae; Son, Minjun; Hagen, Stephen J.

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer We present a method for extracting gene expression data from images of bacterial cells. Black-Right-Pointing-Pointer The method does not employ cell segmentation and does not require high magnification. Black-Right-Pointing-Pointer Fluorescence and phase contrast images of the cells are correlated through the physics of phase contrast. Black-Right-Pointing-Pointer We demonstrate the method by characterizing noisy expression of comX in Streptococcus mutans. -- Abstract: Studies of stochasticity in gene expression typically make use of fluorescent protein reporters, which permit the measurement of expression levels within individual cells by fluorescence microscopy. Analysis of such microscopy images is almost invariably based on a segmentation algorithm, where the image of a cell or cluster is analyzed mathematically to delineate individual cell boundaries. However segmentation can be ineffective for studying bacterial cells or clusters, especially at lower magnification, where outlines of individual cells are poorly resolved. Here we demonstrate an alternative method for analyzing such images without segmentation. The method employs a comparison between the pixel brightness in phase contrast vs fluorescence microscopy images. By fitting the correlation between phase contrast and fluorescence intensity to a physical model, we obtain well-defined estimates for the different levels of gene expression that are present in the cell or cluster. The method reveals the boundaries of the individual cells, even if the source images lack the resolution to show these boundaries clearly.

  18. Mutagenic effect of accelerated heavy ions on bacterial cells

    NASA Astrophysics Data System (ADS)

    Boreyko, A. V.; Krasavin, E. A.

    2011-11-01

    The heavy ion accelerators of the Joint Institute for Nuclear Research were used to study the regularities and mechanisms of formation of different types of mutations in prokaryote cells. The induction of direct (lac-, ton B-, col B) mutations for Esherichia coli cells and reverse his- → His+ mutations of Salmonella typhimurium, Bacillus subtilis cells under the action of radiation in a wide range of linear energy transfer (LET) was studied. The regularities of formation of gene and structural (tonB trp-) mutations for Esherichia coli bacteria under the action of accelerated heavy ions were studied. It was demonstrated that the rate of gene mutations as a function of the dose under the action of Γ rays and accelerated heavy ions is described by linear-quadratic functions. For structural mutations, linear "dose-effect" dependences are typical. The quadratic character of mutagenesis dose curves is determined by the "interaction" of two independent "hitting" events in the course of SOS repair of genetic structures. The conclusion made was that gene mutations under the action of accelerated heavy ions are induced by δ electron regions of charged particle tracks. The methods of SOS chromotest, SOS lux test, and λ prophage induction were used to study the regularities of SOS response of cells under the action of radiations in a wide LET range. The following proposition was substantiated: the molecular basis for formation of gene mutations are cluster single-strand DNA breaks, and that for structural mutations, double-strand DNA breaks. It was found out that the LET dependence of the relative biological efficiency of accelerated ions is described by curves with a local maximum. It was demonstrated that the biological efficiency of ionizing radiations with different physical characteristics on cells with different genotype, estimated by the lethal action, induction of gene and deletion mutations, precision excision of transposons, is determined by the specific

  19. Protein, cell and bacterial response to atmospheric pressure plasma grafted hyaluronic acid on poly(methylmethacrylate).

    PubMed

    D'Sa, Raechelle A; Raj, Jog; Dickinson, Peter J; McMahon, M Ann S; McDowell, David A; Meenan, Brian J

    2015-11-01

    Hyaluronic acid (HA) has been immobilised on poly(methyl methacrylate) (PMMA) surfaces using a novel dielectric barrier discharge (DBD) plasma process for the purposes of repelling protein, cellular and bacterial adhesion in the context of improving the performance of ophthalmic devices. Grafting was achieved by the following steps: (1) treatment of the PMMA with a DBD plasma operating at atmospheric pressure, (2) amine functionalisation of the activated polymer surface by exposure to a 3-aminopropyltrimethoxysilane (APTMS) linker molecule and (3) reaction of HA with the surface bound amine. The mechanism and effectiveness of the grafting process was verified by surface analysis. XPS data indicates that the APTMS linker molecule binds to PMMA via the Si-O chemistry and has the required pendant amine moiety. The carboxylic acid moiety on HA then binds with this -NH2 group via standard carbodiimide chemistry. ToF-SIMS confirms the presence of a coherent HA layer the microstructure of which is verified by AFM. The plasma grafted HA coating surfaces showed a pronounced decrease in protein and cellular adhesion when tested with bovine serum albumin and human corneal epithelial cells, respectively. The ability of these coatings to resist bacterial adhesion was established using Staphylococcus aureus NTC8325. Interestingly, the coatings did not repel bacterial adhesion, indicating that the mechanism of adhesion of bacterial cells is different to that for the surface interactions of mammalian cells. It is proposed that this difference is a consequence of the specific HA conformation that occurs under the conditions employed here. Hence, it is apparent that the microstructure/architecture of the HA coatings is an important factor in fabricating surfaces intended to repel proteins, mammalian and bacterial cells. PMID:26449450

  20. Asynchrony in the growth and motility responses to environmental changes by individual bacterial cells

    SciTech Connect

    Umehara, Senkei; Hattori, Akihiro; Inoue, Ippei; Yasuda, Kenji . E-mail: yasuda.bmi@tmd.ac.jp

    2007-05-04

    Knowing how individual cells respond to environmental changes helps one understand phenotypic diversity in a bacterial cell population, so we simultaneously monitored the growth and motility of isolated motile Escherichia coli cells over several generations by using a method called on-chip single-cell cultivation. Starved cells quickly stopped growing but remained motile for several hours before gradually becoming immotile. When nutrients were restored the cells soon resumed their growth and proliferation but remained immotile for up to six generations. A flagella visualization assay suggested that deflagellation underlies the observed loss of motility. This set of results demonstrates that single-cell transgenerational study under well-characterized environmental conditions can provide information that will help us understand distinct functions within individual cells.

  1. Cell fate regulation governed by a repurposed bacterial histidine kinase

    SciTech Connect

    Childers, W. Seth; Xu, Qingping; Mann, Thomas H.; Mathews, Irimpan I.; Blair, Jimmy A.; Deacon, Ashley M.; Shapiro, Lucy; Stock, Ann M.

    2014-10-28

    One of the simplest organisms to divide asymmetrically is the bacterium Caulobacter crescentus. The DivL pseudo-histidine kinase, positioned at one cell pole, regulates cell-fate by controlling the activation of the global transcription factor CtrA via an interaction with the response regulator (RR) DivK. DivL uniquely contains a tyrosine at the histidine phosphorylation site, and can achieve these regulatory functions in vivo without kinase activity. Determination of the DivL crystal structure and biochemical analysis of wild-type and site-specific DivL mutants revealed that the DivL PAS domains regulate binding specificity for DivK~P over DivK, which is modulated by an allosteric intramolecular interaction between adjacent domains. We discovered that DivL's catalytic domains have been repurposed as a phosphospecific RR input sensor, thereby reversing the flow of information observed in conventional histidine kinase (HK)-RR systems and coupling a complex network of signaling proteins for cell-fate regulation.

  2. Cell Fate Regulation Governed by a Repurposed Bacterial Histidine Kinase

    PubMed Central

    Mann, Thomas H.; Mathews, Irimpan I.; Blair, Jimmy A.; Deacon, Ashley M.; Shapiro, Lucy

    2014-01-01

    One of the simplest organisms to divide asymmetrically is the bacterium Caulobacter crescentus. The DivL pseudo-histidine kinase, positioned at one cell pole, regulates cell-fate by controlling the activation of the global transcription factor CtrA via an interaction with the response regulator (RR) DivK. DivL uniquely contains a tyrosine at the histidine phosphorylation site, and can achieve these regulatory functions in vivo without kinase activity. Determination of the DivL crystal structure and biochemical analysis of wild-type and site-specific DivL mutants revealed that the DivL PAS domains regulate binding specificity for DivK∼P over DivK, which is modulated by an allosteric intramolecular interaction between adjacent domains. We discovered that DivL's catalytic domains have been repurposed as a phosphospecific RR input sensor, thereby reversing the flow of information observed in conventional histidine kinase (HK)-RR systems and coupling a complex network of signaling proteins for cell-fate regulation. PMID:25349992

  3. Distributed Classifier Based on Genetically Engineered Bacterial Cell Cultures

    PubMed Central

    2015-01-01

    We describe a conceptual design of a distributed classifier formed by a population of genetically engineered microbial cells. The central idea is to create a complex classifier from a population of weak or simple classifiers. We create a master population of cells with randomized synthetic biosensor circuits that have a broad range of sensitivities toward chemical signals of interest that form the input vectors subject to classification. The randomized sensitivities are achieved by constructing a library of synthetic gene circuits with randomized control sequences (e.g., ribosome-binding sites) in the front element. The training procedure consists in reshaping of the master population in such a way that it collectively responds to the “positive” patterns of input signals by producing above-threshold output (e.g., fluorescent signal), and below-threshold output in case of the “negative” patterns. The population reshaping is achieved by presenting sequential examples and pruning the population using either graded selection/counterselection or by fluorescence-activated cell sorting (FACS). We demonstrate the feasibility of experimental implementation of such system computationally using a realistic model of the synthetic sensing gene circuits. PMID:25349924

  4. Cell fate regulation governed by a repurposed bacterial histidine kinase

    DOE PAGESBeta

    Childers, W. Seth; Xu, Qingping; Mann, Thomas H.; Mathews, Irimpan I.; Blair, Jimmy A.; Deacon, Ashley M.; Shapiro, Lucy; Stock, Ann M.

    2014-10-28

    One of the simplest organisms to divide asymmetrically is the bacterium Caulobacter crescentus. The DivL pseudo-histidine kinase, positioned at one cell pole, regulates cell-fate by controlling the activation of the global transcription factor CtrA via an interaction with the response regulator (RR) DivK. DivL uniquely contains a tyrosine at the histidine phosphorylation site, and can achieve these regulatory functions in vivo without kinase activity. Determination of the DivL crystal structure and biochemical analysis of wild-type and site-specific DivL mutants revealed that the DivL PAS domains regulate binding specificity for DivK~P over DivK, which is modulated by an allosteric intramolecular interactionmore » between adjacent domains. We discovered that DivL's catalytic domains have been repurposed as a phosphospecific RR input sensor, thereby reversing the flow of information observed in conventional histidine kinase (HK)-RR systems and coupling a complex network of signaling proteins for cell-fate regulation.« less

  5. Neutrophil left shift and white blood cell count as markers of bacterial infection.

    PubMed

    Honda, Takayuki; Uehara, Takeshi; Matsumoto, Go; Arai, Shinpei; Sugano, Mitsutoshi

    2016-06-01

    Neutrophil left shift and white blood cell (WBC) count are routine laboratory tests used to assess neutrophil state, which depends on supply from the bone marrow and consumption in the tissues. If WBC count is constant, the presence of left shift indicates an increase of neutrophil consumption that is equal to an increase of production. A decrease in WBC count indicates that neutrophil consumption surpasses supply. During a bacterial infection, large numbers of neutrophils are consumed. Thus, from onset of infection to recovery, dynamic changes occur in WBC count and left shift data, reflecting the mild to serious condition of the bacterial infection. Although various stimuli in healthy and pathological conditions also cause left shift, a change as sudden and significant is only seen in bacterial infection. Left shift does not occur in the extremely early or late phases of infection; therefore, assessing data from a single time point is unsuitable for diagnosing a bacterial infection. We argue that time-series data of left shift and WBC count reflect real-time neutrophil consumption during the course of a bacterial infection, allowing more accurate evaluation of patient condition. PMID:27034055

  6. Illumination of growth, division and secretion by metabolic labeling of the bacterial cell surface

    PubMed Central

    Siegrist, M. Sloan; Swarts, Benjamin M.; Fox, Douglas M.; Lim, Shion An; Bertozzi, Carolyn R.

    2015-01-01

    The cell surface is the essential interface between a bacterium and its surroundings. Composed primarily of molecules that are not directly genetically encoded, this highly dynamic structure accommodates the basic cellular processes of growth and division as well as the transport of molecules between the cytoplasm and the extracellular milieu. In this review, we describe aspects of bacterial growth, division and secretion that have recently been uncovered by metabolic labeling of the cell envelope. Metabolite derivatives can be used to label a variety of macromolecules, from proteins to non-genetically-encoded glycans and lipids. The embedded metabolite enables precise tracking in time and space, and the versatility of newer chemoselective detection methods offers the ability to execute multiple experiments concurrently. In addition to reviewing the discoveries enabled by metabolic labeling of the bacterial cell envelope, we also discuss the potential of these techniques for translational applications. Finally, we offer some guidelines for implementing this emerging technology. PMID:25725012

  7. Studies on bacterial cell wall inhibitors. VI. Screening method for the specific inhibitors of peptidoglycan synthesis.

    PubMed

    Omura, S; Tanaka, H; Oiwa, R; Nagai, T; Koyama, Y; Takahashi, Y

    1979-10-01

    A screening method was established for selecting new specific inhibitors of bacterial cell wall peptidoglycan synthesis. In the primary test, culture broths of soil isolates were selected based on relative microbial activity. A culture, to be retained, must be active against Bacillus subtilis and lack activities against Acholeplasma laidawii. In the secondary test, inhibitors of bacterial cell wall synthesis were identified by their ability to prevent the incorporation of meso-[3H]diaminopimelic acid but not to prevent the incorporation of L-[4C]leucine into the acid-insoluble macromolecular fraction of growing cells of Bacillus sp. ATCC 21206 (Dpm-). As the tertiary test, inhibitors with molecular weights under 1,000 were selected by passage through a Diaflo UM-2 membrane. By this screening procedure, six known antibiotics and one new one were picked out from ten thousand soil isolates. PMID:528376

  8. Helminth-Induced Interleukin-4 Abrogates Invariant Natural Killer T Cell Activation-Associated Clearance of Bacterial Infection

    PubMed Central

    Hsieh, Yi-Ju; Fu, Chi-Ling

    2014-01-01

    Helminth infections affect 1 billion people worldwide and render these individuals susceptible to bacterial coinfection through incompletely understood mechanisms. This includes urinary tract coinfection by bacteria and Schistosoma haematobium worms, the etiologic agent of urogenital schistosomiasis. To study the mechanisms of S. haematobium-bacterial urinary tract coinfections, we combined the first tractable model of urogenital schistosomiasis with an established mouse model of bacterial urinary tract infection (UTI). A single bladder exposure to S. haematobium eggs triggers interleukin-4 (IL-4) production and makes BALB/c mice susceptible to bacterial UTI when they are otherwise resistant. Ablation of IL-4 receptor alpha (IL-4Rα) signaling restored the baseline resistance of BALB/c mice to bacterial UTI despite prior exposure to S. haematobium eggs. Interestingly, numbers of NKT cells were decreased in coexposed versus bacterially monoinfected bladders. Given that schistosome-induced, non-natural killer T (NKT) cell leukocyte infiltration may dilute NKT cell numbers in the bladders of coexposed mice without exerting a specific functional effect on these cells, we next examined NKT cell biology on a per-cell basis. Invariant NKT (iNKT) cells from coexposed mice expressed less gamma interferon (IFN-γ) per cell than did those from mice with UTI alone. Moreover, coexposure resulted in lower CD1d expression in bladder antigen-presenting cells (APC) than did bacterial UTI alone in an IL-4Rα-dependent fashion. Finally, coexposed mice were protected from prolonged bacterial infection by administration of α-galactosylceramide, an iNKT cell agonist. Our findings point to a previously unappreciated role for helminth-induced IL-4 in impairment of iNKT cell-mediated clearance of bacterial coexposure. PMID:24643536

  9. Rapid fluorometric quantification of bacterial cells using Redsafe nucleic acid stain

    PubMed Central

    Khalili, Ehsan; Hosseini, Vahid; Solhi, Roya; Aminian, Mahdi

    2015-01-01

    Background and Objectives: Numerous procedures in biology and medicine require the counting of cells. Direct enumeration of Colony Forming Units (CFUs) is time-consuming and dreary accurate cell counting on plates with high numbers of CFUs is error prone. In this study we report a new indirect cell counting method that was developed based on the use of Redsafe fluorometric assay. The usefulness of Redsafe, a nucleic acid stain, in liquid medium is based on the binding of the fluorescent dye to DNA. Materials and Methods: Redsafe fluorometric assay was evaluated in comparison with MTT colorimetric assay as a colourimetric assay for enumeration of bacterial cells. Results: Obtained results showed that fluorometric assay threshold for LB grown E. coli is 6×104 CFU/ml. Redsafe fluorescent assay can be used as a rapid and inexpensive method for bacterial enumeration and quantification with increased sensitivity. Conclusion: The sensitivity of the Redsafe fluorometric assay for detection and enumeration of bacterial cells was 2-log-unit more than that was observed for the MTT assay. PMID:26885332

  10. Adherence, accumulation, and cell division of a natural adherent bacterial population.

    PubMed Central

    Bloomquist, C G; Reilly, B E; Liljemark, W F

    1996-01-01

    Developing dental bacterial plaques formed in vivo on enamel surfaces were examined in specimens from 18 adult volunteers during the first day of plaque formation. An intraoral model placing enamel pieces onto teeth was used to study bacterial plaque populations developing naturally to various cell densities per square millimeter of surface area of the enamel (W. F. Liljemark, C. G. Bloomquist, C. L. Bandt, B. L. Philstrom, J. E. Hinrichs, and L. F. Wolff, Oral Microbiol. Immunol. 8:5-15, 1993). Radiolabeled nucleoside incorporation was used to measure DNA synthesis concurrent with the taking of standard viable cell counts of the plaque samples. Results showed that in vivo plaque formation began with the rapid adherence of bacteria until ca. 12 to 32% of the enamel's salivary pellicle was saturated (ca. 2.5 x 10(5) to 6.3 x 10(5) cells per mm2). The pioneer adherent species were predominantly those of the "sanguis streptococci." At the above-noted density, the bacteria present on the salivary pellicle incorporated low levels of radiolabeled nucleoside per viable cell. As bacterial numbers reached densities between 8.0 x 10(5) and 2.0 x 10(6) cells per mm2, there was a small increase in the incorporation of radiolabeled nucleosides per cell. At 2.5 x 10(6) to 4.0 x 10(6) cells per mm2 of enamel surface, there was a marked increase in the incorporation of radiolabeled nucleosides per cell which appeared to be cell-density dependent. The predominant species group in developing dental plaque films during density-dependent growth was the sanguis streptococci; however, most other species present showed similar patterns of increased DNA synthesis as the density noted above approached 2.5 x 10(6) to 4.0 x 10(6) cells per mm2. PMID:8576054

  11. Insect Gut Symbiont Susceptibility to Host Antimicrobial Peptides Caused by Alteration of the Bacterial Cell Envelope*

    PubMed Central

    Kim, Jiyeun Kate; Son, Dae Woo; Kim, Chan-Hee; Cho, Jae Hyun; Marchetti, Roberta; Silipo, Alba; Sturiale, Luisa; Park, Ha Young; Huh, Ye Rang; Nakayama, Hiroshi; Fukatsu, Takema; Molinaro, Antonio; Lee, Bok Luel

    2015-01-01

    The molecular characterization of symbionts is pivotal for understanding the cross-talk between symbionts and hosts. In addition to valuable knowledge obtained from symbiont genomic studies, the biochemical characterization of symbionts is important to fully understand symbiotic interactions. The bean bug (Riptortus pedestris) has been recognized as a useful experimental insect gut symbiosis model system because of its cultivatable Burkholderia symbionts. This system is greatly advantageous because it allows the acquisition of a large quantity of homogeneous symbionts from the host midgut. Using these naïve gut symbionts, it is possible to directly compare in vivo symbiotic cells with in vitro cultured cells using biochemical approaches. With the goal of understanding molecular changes that occur in Burkholderia cells as they adapt to the Riptortus gut environment, we first elucidated that symbiotic Burkholderia cells are highly susceptible to purified Riptortus antimicrobial peptides. In search of the mechanisms of the increased immunosusceptibility of symbionts, we found striking differences in cell envelope structures between cultured and symbiotic Burkholderia cells. The bacterial lipopolysaccharide O antigen was absent from symbiotic cells examined by gel electrophoretic and mass spectrometric analyses, and their membranes were more sensitive to detergent lysis. These changes in the cell envelope were responsible for the increased susceptibility of the Burkholderia symbionts to host innate immunity. Our results suggest that the symbiotic interactions between the Riptortus host and Burkholderia gut symbionts induce bacterial cell envelope changes to achieve successful gut symbiosis. PMID:26116716

  12. Changes in the Mechanical Properties of Pseudomonas aeruginosa Bacterial Cells Induced by Antimicrobial Peptides

    NASA Astrophysics Data System (ADS)

    Lu, Shun; Dutcher, John

    2011-03-01

    In our research group, we have developed an atomic force microscopy nano-creep technique to study the mechanical properties of individual Pseudomonas aeruginosa bacterial cells in a liquid environment. In the present study, we have used this technique to measure changes to the mechanical properties of the cells produced by exposing the cells to well-studied antimicrobial peptides: polymyxin B (PMB) and its derivative polymyxin B nonapeptide (PMBN). We find that the creep response of cells under a fixed applied load is very different after exposure of the cells to PMB and PMBN, which is possibly due to the disruption of its outer membrane. To describe the viscoelastic properties of the cells exposed to PMB and PMBN, we found that it was necessary to use a four element spring and dashpot model, instead of the three element standard linear solid model that describes the viscoelastic properties of cells in Millipore water. We also found that PMB and PMBN have qualitatively different effects on the stiffness of the cell membrane. These measurements provide a first step towards understanding the different mechanisms of action of PMB and PMBN on bacterial cells.

  13. Attachment and Invasion of Neisseria meningitidis to Host Cells Is Related to Surface Hydrophobicity, Bacterial Cell Size and Capsule

    PubMed Central

    Bartley, Stephanie N.; Tzeng, Yih-Ling; Heel, Kathryn; Lee, Chiang W.; Mowlaboccus, Shakeel; Seemann, Torsten; Lu, Wei; Lin, Ya-Hsun; Ryan, Catherine S.; Peacock, Christopher; Stephens, David S.; Davies, John K.; Kahler, Charlene M.

    2013-01-01

    We compared exemplar strains from two hypervirulent clonal complexes, strain NMB-CDC from ST-8/11 cc and strain MC58 from ST-32/269 cc, in host cell attachment and invasion. Strain NMB-CDC attached to and invaded host cells at a significantly greater frequency than strain MC58. Type IV pili retained the primary role for initial attachment to host cells for both isolates regardless of pilin class and glycosylation pattern. In strain MC58, the serogroup B capsule was the major inhibitory determinant affecting both bacterial attachment to and invasion of host cells. Removal of terminal sialylation of lipooligosaccharide (LOS) in the presence of capsule did not influence rates of attachment or invasion for strain MC58. However, removal of either serogroup B capsule or LOS sialylation in strain NMB-CDC increased bacterial attachment to host cells to the same extent. Although the level of inhibition of attachment by capsule was different between these strains, the regulation of the capsule synthesis locus by the two-component response regulator MisR, and the level of surface capsule determined by flow cytometry were not significantly different. However, the diplococci of strain NMB-CDC were shown to have a 1.89-fold greater surface area than strain MC58 by flow cytometry. It was proposed that the increase in surface area without changing the amount of anchored glycolipid capsule in the outer membrane would result in a sparser capsule and increase surface hydrophobicity. Strain NMB-CDC was shown to be more hydrophobic than strain MC58 using hydrophobicity interaction chromatography and microbial adhesion-to-solvents assays. In conclusion, improved levels of adherence of strain NMB-CDC to cell lines was associated with increased bacterial cell surface and surface hydrophobicity. This study shows that there is diversity in bacterial cell surface area and surface hydrophobicity within N. meningitidis which influence steps in meningococcal pathogenesis. PMID:23405216

  14. Predominance of single bacterial cells in composting bioaerosols

    NASA Astrophysics Data System (ADS)

    Galès, Amandine; Bru-Adan, Valérie; Godon, Jean-Jacques; Delabre, Karine; Catala, Philippe; Ponthieux, Arnaud; Chevallier, Michel; Birot, Emmanuel; Steyer, Jean-Philippe; Wéry, Nathalie

    2015-04-01

    Bioaerosols emitted from composting plants have become an issue because of their potential harmful impact on public or workers' health. Accurate knowledge of the particle-size distribution in bioaerosols emitted from open-air composting facilities during operational activity is a requirement for improved modeling of air dispersal. In order to investigate the aerodynamic diameter of bacteria in composting bioaerosols this study used an Electrical Low Pressure Impactor for sampling and quantitative real-time PCR for quantification. Quantitative PCR results show that the size of bacteria peaked between 0.95 μm and 2.4 μm and that the geometric mean diameter of the bacteria was 1.3 μm. In addition, total microbial cells were counted by flow cytometry and revealed that these qPCR results corresponded to single whole bacteria. Finally, the enumeration of cultivable thermophilic microorganisms allowed us to set the upper size limit for fragments at an aerodynamic diameter of ∼0.3 μm. Particle-size distributions of microbial groups previously used to monitor composting bioaerosols were also investigated. In collected the bioaerosols, the aerodynamic diameter of the actinomycetes Saccharopolyspora rectivirgula-and-relatives and also of the fungus Aspergillus fumigatus, appeared to be consistent with a majority of individual cells. Together, this study provides the first culture-independent data on particle-size distribution of composting bioaerosols and reveals that airborne single bacteria were emitted predominantly from open-air composting facilities.

  15. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells

    PubMed Central

    Galán, Jorge E.; Lara-Tejero, Maria; Marlovits, Thomas C.; Wagner, Samuel

    2015-01-01

    One of the most exciting developments in the field of bacterial pathogenesis in recent years is the discovery that many pathogens utilized complex nanomachines to deliver bacterially encoded effector proteins into target eukaryotic cells. These effector proteins modulate a variety of cellular functions for the pathogen’s benefit. One of these protein-delivery machines is the type III secretion system (T3SS). T3SSs are widespread in nature and are encoded not only by bacteria pathogenic to vertebrates or plants, but also by bacteria that are symbiotic to plants or insects. A central component of T3SSs is the needle complex, a supramolecular structure that mediates the passage of the secreted proteins across the bacterial envelope. Working in conjunction with several cytoplasmic components, the needle complex engages specific substrates in sequential order, moves them across the bacterial envelope, and ultimately delivers them into eukaryotic cells. The central role of T3SSs in pathogenesis makes them great targets for novel antimicrobial strategies. PMID:25002086

  16. Lipid II: a central component in bacterial cell wall synthesis and a target for antibiotics.

    PubMed

    de Kruijff, Ben; van Dam, Vincent; Breukink, Eefjan

    2008-01-01

    The bacterial cell wall is mainly composed of peptidoglycan, which is a three-dimensional network of long aminosugar strands located on the exterior of the cytoplasmic membrane. These strands consist of alternating MurNAc and GlcNAc units and are interlinked to each other via peptide moieties that are attached to the MurNAc residues. Peptidoglycan subunits are assembled on the cytoplasmic side of the bacterial membrane on a polyisoprenoid anchor and one of the key components in the synthesis of peptidoglycan is Lipid II. Being essential for bacterial cell survival, it forms an attractive target for antibacterial compounds such as vancomycin and several lantibiotics. Lipid II consists of one GlcNAc-MurNAc-pentapeptide subunit linked to a polyiosoprenoid anchor 11 subunits long via a pyrophosphate linker. This review focuses on this special molecule and addresses three questions. First, why are special lipid carriers as polyprenols used in the assembly of peptidoglycan? Secondly, how is Lipid II translocated across the bacterial cytoplasmic membrane? And finally, how is Lipid II used as a receptor for lantibiotics to kill bacteria? PMID:19008088

  17. In vitro interactions of biomedical polyurethanes with macrophages and bacterial cells.

    PubMed

    Visai, Livia; Rindi, Simonetta; Speziale, Pietro; Petrini, Paola; Farè, Silvia; Tanzi, M Cristina

    2002-01-01

    Three commercial medical-grade polyurethanes (PUs), a poly-ether-urethane (Pellethane), and two poly-carbonate-urethanes, the one aromatic (Bionate) and the other aliphatic (Chronoflex), were tested for macrophages and bacterial cells adhesion, in the presence or absence of adhesive plasma proteins. All the experiments were carried out on PUs films obtained by solvent casting. The wettability of these films was analysed by measuring static contact angles against water. The ability of the selected PUs to adsorb human fibronectin (Fn) and fibrinogen (Fbg) was checked by ELISA with biotin-labelled proteins. All PUs were able to adsorb Fn and Fbg (Fn > Fbg). Fn adsorption was in the order: Pellethane > Chronoflex > Bionate, the highest Fbg adsorption being detected onto Bionate (Bionate > Chronoflex > Pellethane). The human macrophagic line J111, and the two main bacterial strains responsible for infection in humans (Staphylococcus aureus Newman and Staphylococcus epidermidis 14852) were incubated in turn with the three PUs, uncoated or coated with plasma proteins. No macrophage or bacterial adhesion was observed onto uncoated PUs. PUs coated with plasma, Fn or Fbg promoted bacterial adhesion (S. aureus > S. epidermidis), whereas macrophage adhered more onto PUs coated with Fn or plasma. The coating with Fbg did not promote cell adhesion. Pellethane showed the highest macrophage activation (i.e. spreading), followed, in the order, by Bionate and Chronoflex. PMID:11939455

  18. GROWTH AND METABOLISM OF INDIVIDUAL BACTERIAL CELLS UTILIZING NANOSIMS

    SciTech Connect

    NEALSON, H. K.

    2007-08-03

    This work involved the use of the Nano-SIMS Instrument at Lawrence Livermore Laboratory, in an effort to utilize this unique tool for experiments in Biology. The work consisted primarily of experiments to measure in real time, C and N fixation in cyanobacteria. The work revealed a number of the difficulties in using the nano-SIMS approach with biological material, but with collaboration from a number of individuals at USC and LLNL, major progress was made. The collaborators from LLNL were from the Chemistry Group (Dr. Peter Weber), and the Biology Group (Dr. Jennifer Pett-Ridge). In addition, there were a number of other scientists involved from LLNL. The USC group consisted of Dr. K.H. Nealson, the PI on the grant, Dr. R. Popa, a postdoctoral fellow and research associate at USC, Professor Douglas Capone, and Juliet Finze, a graduate student in biology. Two major experiments were done, both of which yielded new and exciting data. (1) We studied nitrogen and carbon fixation in Anabaena, demonstrating that fixation ofN occurred rapidly in the heterocysts, and that the fixed N was transported rapidly and completely to the vegetative cells. C fixation occurred in the vegetative cells, with labeled C remaining in these cells in support of their growth and metabolism. This work was accepted in the ISME Journal (Nature Publication), and published last month. (2) We studied nitrogen and carbon fixation in Trichodesmium, a non-heterocystous cyanobacterium that also fixes nitrogen. Interestingly, the nitrogen fixation was confined to regions within the filaments that seem to be identical to the so-called cyanophycaen granules. The fixed N is then transported to other parts of the cyanobacterium, as judged by movement of the heavy N throughout the filaments. On the basis of these very exciting results, we have applied for funding from the NSF to continue the collaboration with LLNL. The results of both studies were presented in the summer of 2007 at the Gordon Research

  19. Nonperturbative Imaging of Nucleoid Morphology in Live Bacterial Cells during an Antimicrobial Peptide Attack

    PubMed Central

    Bakshi, Somenath; Choi, Heejun; Rangarajan, Nambirajan; Barns, Kenneth J.; Bratton, Benjamin P.

    2014-01-01

    Studies of time-dependent drug and environmental effects on single, live bacterial cells would benefit significantly from a permeable, nonperturbative, long-lived fluorescent stain specific to the nucleoids (chromosomal DNA). The ideal stain would not affect cell growth rate or nucleoid morphology and dynamics, even during laser illumination for hundreds of camera frames. In this study, time-dependent, single-cell fluorescence imaging with laser excitation and a sensitive electron-multiplying charge-coupled-device (EMCCD) camera critically tested the utility of “dead-cell stains” (SYTOX orange and SYTOX green) and “live-cell stains” (DRAQ5 and SYTO 61) and also 4′,6-diamidino-2-phenylindole (DAPI). Surprisingly, the dead-cell stains were nearly ideal for imaging live Escherichia coli, while the live-cell stains and DAPI caused nucleoid expansion and, in some cases, cell permeabilization and the halting of growth. SYTOX orange performed well for both the Gram-negative E. coli and the Gram-positive Bacillus subtilis. In an initial application, we used two-color fluorescence imaging to show that the antimicrobial peptide cecropin A destroyed nucleoid-ribosome segregation over 20 min after permeabilization of the E. coli cytoplasmic membrane, reminiscent of the long-term effects of the drug rifampin. In contrast, the human cathelicidin LL-37, while similar to cecropin A in structure, length, charge, and the ability to permeabilize bacterial membranes, had no observable effect on nucleoid-ribosome segregation. Possible underlying causes are suggested. PMID:24907320

  20. Viability of adhered bacterial cells: tracking MinD protein oscillations

    NASA Astrophysics Data System (ADS)

    Barrett, Matt; Colville, Keegan; Schultz-Nielsen, Chris; Jericho, Manfred; Dutcher, John

    2010-03-01

    To study bacterial cells using atomic force microscopy, it is necessary to immobilize the cells on a substrate. Because bacterial cells and common substrates such as glass and mica have a net negative charge, positively charged polymers such as poly-L-lysine (PLL) and polyethyleneimine (PEI) are commonly used as adhesion layers. However, the use of adhesion polymers could stress the cell and even render it inviable. Viable E. coli cells use oscillations of Min proteins along the axis of the rod-shaped cells to ensure accurate cell division. By tagging MinD proteins with GFP, oscillations can be observed using fluorescence microscopy. For a healthy cell in an ideal environment, the oscillation period is measured to be ˜40 s. Prior experiments have shown that PLL increases the oscillation period significantly (up to 80%). In the present study, we have used epifluorescence and total internal reflection fluorescence (TIRF) to track MinD protein oscillations in E. coli bacteria adhered to a variety of positively charged polymers on mica as a function of polymer surface coverage.

  1. The effect of natural organic matter on the adsorption of mercury to bacterial cells

    NASA Astrophysics Data System (ADS)

    Dunham-Cheatham, Sarrah; Mishra, Bhoopesh; Myneni, Satish; Fein, Jeremy B.

    2015-02-01

    We investigated the ability of non-metabolizing Bacillus subtilis, Shewanella oneidensis MR-1, and Geobacter sulfurreducens bacterial species to adsorb mercury in the absence and presence of Suwanee River fulvic acid (FA). Bulk adsorption and X-ray absorption spectroscopy (XAS) experiments were conducted at three pH conditions, and the results indicate that the presence of FA decreases the extent of Hg adsorption to biomass under all of the pH conditions studied. Hg XAS results show that the presence of FA does not alter the binding environment of Hg adsorbed onto the biomass regardless of pH or FA concentration, indicating that ternary bacteria-Hg-FA complexes do not form to an appreciable extent under the experimental conditions, and that Hg binding on the bacteria is dominated by sulfhydryl binding. We used the experimental results to calculate apparent partition coefficients, Kd, for Hg under each experimental condition. The calculations yield similar coefficients for Hg onto each of the bacterial species studies, suggesting there is no significant difference in Hg partitioning between the three bacterial species. The calculations also indicate similar coefficients for Hg-bacteria and Hg-FA complexes. S XAS measurements confirm the presence of sulfhydryl sites on both the FA and bacterial cells, and demonstrate the presence of a wide range of S moieties on the FA in contrast to the bacterial biomass, whose S sites are dominated by thiols. Our results suggest that although FA can compete with bacterial binding sites for aqueous Hg, because of the relatively similar partition coefficients for the types of sorbents, the competition is not dominated by either bacteria or FA unless the concentration of one type of site greatly exceeds that of the other.

  2. DBIO Best Thesis Award: Mechanics, Dynamics, and Organization of the Bacterial Cytoskeleton and Cell Wall

    NASA Astrophysics Data System (ADS)

    Wang, Siyuan

    2012-02-01

    Bacteria come in a variety of shapes. While the peptidoglycan (PG) cell wall serves as an exoskeleton that defines the static cell shape, the internal bacterial cytoskeleton mediates cell shape by recruiting PG synthesis machinery and thus defining the pattern of cell-wall synthesis. While much is known about the chemistry and biology of the cytoskeleton and cell wall, much of their biophysics, including essential aspects of the functionality, dynamics, and organization, remain unknown. This dissertation aims to elucidate the detailed biophysical mechanisms of cytoskeleton guided wall synthesis. First, I find that the bacterial cytoskeleton MreB contributes nearly as much to the rigidity of an Escherichia coli cell as the cell wall. This conclusion implies that the cytoskeletal polymer MreB applies meaningful force to the cell wall, an idea favored by theoretical modeling of wall growth, and suggests an evolutionary origin of cytoskeleton-governed cell rigidity. Second, I observe that MreB rotates around the long axis of E. coli, and the motion depends on wall synthesis. This is the first discovery of a cell-wall assembly driven molecular motor in bacteria. Third, I prove that both cell-wall synthesis and the PG network have chiral ordering, which is established by the spatial pattern of MreB. This work links the molecular structure of the cytoskeleton and of the cell wall with organismal-scale behavior. Finally, I develop a mathematical model of cytoskeleton-cell membrane interactions, which explains the preferential orientation of different cytoskeleton components in bacteria.

  3. Single-cell-based sensors and synchrotron FTIR spectroscopy: a hybrid system towards bacterial detection.

    PubMed

    Veiseh, Mandana; Veiseh, Omid; Martin, Michael C; Bertozzi, Carolyn; Zhang, Miqin

    2007-09-30

    Microarrays of single macrophage cell-based sensors were developed and demonstrated for potential real-time bacterium detection by synchrotron FTIR microscopy. The cells were patterned on gold electrodes of silicon oxide substrates by a surface engineering technique, in which the gold electrodes were immobilized with fibronectin to mediate cell adhesion and the silicon oxide background was passivated with polyethylene glycol (PEG) to resist protein adsorption and cell adhesion. Cell morphology and IR spectra of single, double, and triple cells on gold electrodes exposed to lipopolysaccharide (LPS) of different concentrations were compared to reveal the detection capability of this cell-based sensing platform. The single-cell-based system was found to generate the most significant and consistent IR spectrum shifts upon exposure to LPS, thus providing the highest detection sensitivity. Changes in cell morphology and IR shifts upon cell exposure to LPS were found to be dependent on the LPS concentration and exposure time, which established a method for the identification of LPS concentration and infected cell population. Possibility of using this single-cell system with conventional IR spectroscopy as well as its limitation was investigated by comparing IR spectra of single-cell arrays with gold electrode surface areas of 25, 100, and 400 microm2 using both synchrotron and conventional FTIR spectromicroscopes. This cell-based platform may potentially provide real-time, label-free, and rapid bacterial detection, and allow for high-throughput statistical analyses, and portability. PMID:17560777

  4. Room temperature electrocompetent bacterial cells improve DNA transformation and recombineering efficiency

    PubMed Central

    Tu, Qiang; Yin, Jia; Fu, Jun; Herrmann, Jennifer; Li, Yuezhong; Yin, Yulong; Stewart, A. Francis; Müller, Rolf; Zhang, Youming

    2016-01-01

    Bacterial competent cells are essential for cloning, construction of DNA libraries, and mutagenesis in every molecular biology laboratory. Among various transformation methods, electroporation is found to own the best transformation efficiency. Previous electroporation methods are based on washing and electroporating the bacterial cells in ice-cold condition that make them fragile and prone to death. Here we present simple temperature shift based methods that improve DNA transformation and recombineering efficiency in E. coli and several other gram-negative bacteria thereby economizing time and cost. Increased transformation efficiency of large DNA molecules is a significant advantage that might facilitate the cloning of large fragments from genomic DNA preparations and metagenomics samples. PMID:27095488

  5. Hard X-ray imaging of bacterial cells: nano-diffraction and ptychographic reconstruction.

    PubMed

    Wilke, R N; Priebe, M; Bartels, M; Giewekemeyer, K; Diaz, A; Karvinen, P; Salditt, T

    2012-08-13

    Ptychographic coherent X-ray diffractive imaging (PCDI) has been combined with nano-focus X-ray diffraction to study the structure and density distribution of unstained and unsliced bacterial cells, using a hard X-ray beam of 6.2keV photon energy, focused to about 90nm by a Fresnel zone plate lens. While PCDI provides images of the bacteria with quantitative contrast in real space with a resolution well below the beam size at the sample, spatially resolved small angle X-ray scattering using the same Fresnel zone plate (cellular nano-diffraction) provides structural information at highest resolution in reciprocal space up to 2nm(-1). We show how the real and reciprocal space approach can be used synergistically on the same sample and with the same setup. In addition, we present 3D hard X-ray imaging of unstained bacterial cells by a combination of ptychography and tomography. PMID:23038565

  6. Room temperature electrocompetent bacterial cells improve DNA transformation and recombineering efficiency.

    PubMed

    Tu, Qiang; Yin, Jia; Fu, Jun; Herrmann, Jennifer; Li, Yuezhong; Yin, Yulong; Stewart, A Francis; Müller, Rolf; Zhang, Youming

    2016-01-01

    Bacterial competent cells are essential for cloning, construction of DNA libraries, and mutagenesis in every molecular biology laboratory. Among various transformation methods, electroporation is found to own the best transformation efficiency. Previous electroporation methods are based on washing and electroporating the bacterial cells in ice-cold condition that make them fragile and prone to death. Here we present simple temperature shift based methods that improve DNA transformation and recombineering efficiency in E. coli and several other gram-negative bacteria thereby economizing time and cost. Increased transformation efficiency of large DNA molecules is a significant advantage that might facilitate the cloning of large fragments from genomic DNA preparations and metagenomics samples. PMID:27095488

  7. Human-restricted bacterial pathogens block shedding of epithelial cells by stimulating integrin activation.

    PubMed

    Muenzner, Petra; Bachmann, Verena; Zimmermann, Wolfgang; Hentschel, Jochen; Hauck, Christof R

    2010-09-01

    Colonization of mucosal surfaces is the key initial step in most bacterial infections. One mechanism protecting the mucosa is the rapid shedding of epithelial cells, also termed exfoliation, but it is unclear how pathogens counteract this process. We found that carcinoembryonic antigen (CEA)-binding bacteria colonized the urogenital tract of CEA transgenic mice, but not of wild-type mice, by suppressing exfoliation of mucosal cells. CEA binding triggered de novo expression of the transforming growth factor receptor CD105, changing focal adhesion composition and activating beta1 integrins. This manipulation of integrin inside-out signaling promotes efficient mucosal colonization and represents a potential target to prevent or cure bacterial infections. PMID:20813953

  8. Regulation of bacterial virulence gene expression by cell envelope stress responses

    PubMed Central

    Flores-Kim, Josué; Darwin, Andrew J

    2014-01-01

    The bacterial cytoplasm lies within a multilayered envelope that must be protected from internal and external hazards. This protection is provided by cell envelope stress responses (ESRs), which detect threats and reprogram gene expression to ensure survival. Pathogens frequently need these ESRs to survive inside the host, where their envelopes face dangerous environmental changes and attack from antimicrobial molecules. In addition, some virulence genes have become integrated into ESR regulons. This might be because these genes can protect the cell envelope from damage by host molecules, or it might help ESRs to reduce stress by moderating the assembly of virulence factors within the envelope. Alternatively, it could simply be a mechanism to coordinate the induction of virulence gene expression with entry into the host. Here, we briefly describe some of the bacterial ESRs, followed by examples where they control virulence gene expression in both Gram-negative and Gram-positive pathogens. PMID:25603429

  9. Bacterial Folates Provide an Exogenous Signal for C. elegans Germline Stem Cell Proliferation.

    PubMed

    Chaudhari, Snehal N; Mukherjee, Madhumati; Vagasi, Alexandra S; Bi, Gaofeng; Rahman, Mohammad M; Nguyen, Christine Q; Paul, Ligi; Selhub, Jacob; Kipreos, Edward T

    2016-07-11

    Here we describe an in vitro primary culture system for Caenorhabditis elegans germline stem cells. This culture system was used to identify a bacterial folate as a positive regulator of germ cell proliferation. Folates are a family of B-complex vitamins that function in one-carbon metabolism to allow the de novo synthesis of amino acids and nucleosides. We show that germ cell proliferation is stimulated by the folate 10-formyl-tetrahydrofolate-Glun both in vitro and in animals. Other folates that can act as vitamins to rescue folate deficiency lack this germ cell stimulatory activity. The bacterial folate precursor dihydropteroate also promotes germ cell proliferation in vitro and in vivo, despite its inability to promote one-carbon metabolism. The folate receptor homolog FOLR-1 is required for the stimulation of germ cells by 10-formyl-tetrahydrofolate-Glun and dihydropteroate. This work defines a folate and folate-related compound as exogenous signals to modulate germ cell proliferation. PMID:27404357

  10. Improved lysis of single bacterial cells by a modified alkaline-thermal shock procedure.

    PubMed

    He, Jian; Du, Shiyu; Tan, Xiaohua; Arefin, Ayesha; Han, Cliff S

    2016-01-01

    Single-cell genomics (SCG) is a recently developed tool to study the genomes of unculturable bacterial species. SCG relies on multiple-strand displacement amplification (MDA), PCR, and next-generation sequencing (NGS); however, obtaining sufficient amounts of high-quality DNA from samples is a major challenge when performing this technique. Here we present an improved bacterial cell lysing procedure that combines incubation in an alkaline buffer with a thermal shock (freezing/heating) treatment to yield highly intact genomic DNA with high efficiency. This procedure is more efficient in lysing Bacillus subtilis and Synechocystis cells compared with two other frequently used lysis methods. Furthermore, 16S ribosomal RNA gene and overall genome recovery were found to be improved by this method using single cells from a Utah desert soil community or Escherichia coli single cells, respectively. The efficiency of genome recovery for E. coli single cells using our procedure is comparable with that of the REPLI-g Single Cell (sc) Kit, but our method is much more economical. By providing high-quality genome templates suitable for downstream applications, our procedure will be a promising improvement for SCG research. PMID:26956090

  11. Evidence from a carbohydrate incorporation assay for direct activation of bone marrow myelopoietic precursor cells by bacterial cell wall constitutents.

    PubMed Central

    Monner, D A; Gmeiner, J; Mühlradt, P F

    1981-01-01

    The stimulation of incorporation of [3H]galactose into membrane glycoconjugates, measured in a precipitation test, was used as a criterion for activation of bone marrow cells. In this assay, purified bacterial lipopolysaccharide, lipoprotein, and murein monomer and dimer fragments all activated rat bone marrow cells in vitro. The response was dose dependent, followed a defined time course, and was not serum dependent. O-Acetylated murein dimer fragments from Proteus mirabilis were much less active than their unsubstituted counterparts, indicating a structural specificity for murein activation. Removal of adherent and phagocytizing cells from the marrow suspensions did not alter these results. The labeled, activated cells constituted a distinct population of buoyant density 1.064 to 1.069 g/cm3 when centrifuged on a continuous gradient of Percoll. Enrichment of the target cell population was achieved by a combination of adherent cell removal and discontinuous density gradient centrifugation to remove granulocytes and erythropoietic cells. It was concluded that a population of myelopoietic precursors could be activated by direct contact with bacterial cell wall constituents. The stimulation of galactose incorporation was not coupled to active deoxyribonucleic acid synthesis in the marrow cells. Thus, the activation was interpreted as an induction of differentiation rather than a mitotic event. PMID:7014467

  12. Increased Myeloid Cell Production and Lung Bacterial Clearance in Mice Exposed to Cigarette Smoke.

    PubMed

    Basilico, Paola; Cremona, Tiziana P; Oevermann, Anna; Piersigilli, Alessandra; Benarafa, Charaf

    2016-03-01

    Pneumonia is a leading cause of hospitalization in patients with chronic obstructive pulmonary disease (COPD). Although most patients with COPD are smokers, the effects of cigarette smoke exposure on clearance of lung bacterial pathogens and on immune and inflammatory responses are incompletely defined. Here, clearance of Streptococcus pneumoniae and Pseudomonas aeruginosa and associated immune responses were examined in mice exposed to cigarette smoke or after smoking cessation. Mice exposed to cigarette smoke for 6 weeks or 4 months demonstrated decreased lung bacterial burden compared with air-exposed mice when infected 16 to 24 hours after exposure. When infection was performed after smoke cessation, bacterial clearance kinetics of mice previously exposed to smoke reversed to levels comparable to those of control mice, suggesting that the observed defects were not dependent on adaptive immunological memory to bacterial determinants found in smoke. Comparing cytokine levels and myeloid cell production before infection in mice exposed to cigarette smoke with mice never exposed or after smoke cessation revealed that reduced bacterial burden was most strongly associated with higher levels of IL-1β and granulocyte-macrophage colony-stimulating factor in the lungs and with increased neutrophil reserve and monocyte turnover in the bone marrow. Using Serpinb1a-deficient mice with reduced neutrophil numbers and treatment with granulocyte colony-stimulating factor showed that increased neutrophil numbers contribute only in part to the effect of smoke on infection. Our findings indicate that cigarette smoke induces a temporary and reversible increase in clearance of lung pathogens, which correlates with local inflammation and increased myeloid cell output from the bone marrow. PMID:26273827

  13. DNA recovery from a single bacterial cell using charge-reversible magnetic nanoparticles.

    PubMed

    Maeda, Yoshiaki; Toyoda, Takahiro; Mogi, Takeyuki; Taguchi, Tomoyuki; Tanaami, Takeo; Yoshino, Tomoko; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2016-03-01

    Highly efficient DNA recovery from a single bacterial cell was performed by means of imidazole-modified magnetic nanoparticles (Imi-MNPs). The modification by imidazole was confirmed by Fourier transform infrared spectroscopy. The Imi-MNPs were highly efficient at DNA extraction owing to the charge-reversible properties of Imi-MNPs, whereby DNA is attached to the particles at low pH and eluted at high pH because of electrostatic interactions. The DNA recovery ratio was determined by real-time PCR, and it revealed that complete recovery was guaranteed at ≥10(3) genome copies of Bacillus subtilis. Extraction of DNA from single bacterial cells was followed by PCR amplification of 16S rDNA and capillary electrophoresis. We achieved detection of single bacterial cells with a detection rate of 80%. We believe that our DNA recovery strategy may serve as a powerful tool for efficient DNA extraction and should be useful for quality control of cosmetics, foods, and pharmaceutical products. PMID:26704992

  14. Mineralization of Iron Oxyhydroxides in the Presence and in the Absence of Bacterial Cells

    NASA Astrophysics Data System (ADS)

    Châtellier, X.; West, M.; Rose, J.; Fortin, D.; Leppard, G. G.; Ferris, G.

    2001-12-01

    Because of their small size, iron oxides have a large surface area per unit weight ratio and are believed to play an important role as an adsorbing phase in lake sediments for various molecules, including potentially dangerous ones like heavy metals. They have been observed to form in close association with bacterial cells, by oxidation of ferrous ions. It is thus important to determine whether the presence of the bacterial cells can affect the mineralogy and the mesoscopic structure of the Fe-oxides particles, as well as their reactivity towards heavy metals. We synthesized in the lab nanoparticles of Fe-oxides by oxidation of ferrous ions. This was done in the presence and in the absence of various bacterial strains (Escherichia coli, Bacillus subtilis, Pseudomonas Aeruginosa and Bacillus licheniformis) and of inorganic ligands (sulfate, phosphate, silicate). The Fe-oxides particles were then observed by TEM on thin sections and on whole mounts. The chemical composition was estimated by wet chemistry and by EDS. The mineralogy was determined by XRD, SAED and EXAFS. Surface area was investigated by BET. And adsorption of cadmium was also measured at various pH. We observed that the size and the morphology of the particles as well as their mesoscopic spatial organization can be affected by the presence of the cells, whereas the mineralogy is controlled by the chemistry of the solution. The adsorption isotherms of cadmium on the various Fe-oxides will be discussed at the light of these observations.

  15. Application of silica magnetite nanocomposites to the isolation of ultrapure plasmid DNA from bacterial cells

    NASA Astrophysics Data System (ADS)

    Chiang, Chen-Li; Sung, Ching-Shan; Chen, Chuh-Yean

    2006-10-01

    The aim of this study was to develop a simple and rapid method for purification of ultrapure plasmid DNA with high yields from bacterial cultures. Nanosized superparamagnetic nanoparticles (Fe 3O 4) were prepared by chemical precipitation method using Fe 2+, Fe 3+ salt, and ammonium hydroxide under a nitrogen atmosphere. Silica-magnetite nanocomposites were prepared by the method of acid hydrolysis of tetraethoxysilane (TEOS) to coat the silica onto magnetite nanoparticles. DNA was adsorbed to the support under high salt conditions, and recovered directly in water for immediate downstream application, without the need for precipitation. We demonstrated that a useful plasmid, pRSETB-EGFP, encoding for the green fluorescent protein with T7 promoter, could be amplified in Escherichia coli of DE3 strain. Up to approximately 43 μg of high-purity ( A260/ A280 ratio=1.75) plasmid DNA was isolated from 3 ml of an overnight bacterial culture. The eluted plasmid DNA was used directly for restriction enzyme digestion, bacterial cell transformation and polymerase chain reaction (PCR) amplification with success. The protocol, starting from the preparation of bacterial lysate and ending with purified plasmid takes less than 8 min. The silica-magnetite nanocomposites deliver significant time-savings, overall higher yields, lower RNA contamination, and better PCR amplification compared to commercial available silica-based and other methods.

  16. Type III secretion: a bacterial device for close combat with cells of their eukaryotic host.

    PubMed

    Cornelis, G R

    2000-05-29

    Salmonella, Shigella, Yersinia, Pseudomonas aeruginosa, enteropathogenic Escherichia coli and several plant-pathogenic Gram-negative bacteria use a new type of systems called 'type III secretion' to attack their host. These systems are activated by contact with a eukaryotic cell membrane and they allow bacteria to inject bacterial proteins across the two bacterial membranes and the eukaryotic cell membrane to reach a given compartment and destroy or subvert the target cell. These systems consist of a secretion apparatus made up of about 25 individual proteins and a set of proteins released by this apparatus. Some of these released proteins are 'effectors' that are delivered by extracellular bacteria into the cytosol of the target cell while the others are 'translocators' that help the 'effectors' to cross the membrane of the eukaryotic cell. Most of the 'effectors' act on the cytoskeleton or on intracellular signalling cascades. One of the proteins injected by the enteropathogenic E. coli serves as a membrane receptor for the docking of the bacterium itself at the surface of the cell. PMID:10874740

  17. Bacterial cell wall research in Tübingen: a brief historical account.

    PubMed

    Braun, Volkmar

    2015-02-01

    Research in Tübingen on bacterial cell walls began in 1951 and continues to this day. The studies over the decades reflect the development in the field, which was strongly influenced by the design of suitable biochemical and genetic methods used to unravel the highly complex envelope structure. At the beginning of this period, improper crude extraction and solubilization methods were employed in an attempt to isolate pure components. Nevertheless, progress was steady and culminated in major insights into the structure and function of individual cell wall components and the cell wall as a whole. The "cell wall" has various definitions. In this short overview, the term includes the cell wall of gram-positive bacteria in the strict sense, and also the outer membrane, the murein (peptidoglycan) and the outer membrane of gram-negative bacteria and the cytoplasmic membranes. PMID:25583455

  18. Neuronal cells' behavior on polypyrrole coated bacterial nanocellulose three-dimensional (3D) scaffolds.

    PubMed

    Muller, D; Silva, J P; Rambo, C R; Barra, G M O; Dourado, F; Gama, F M

    2013-01-01

    In this work, polypyrrole (PPy) was in situ polymerized onto the surface of bacterial nanocellulose (BNC) produced by Gluconacetobacter xylinus, by chemical oxidation in aqueous medium using ammonium persulfate. Composites (BNC/PPy) were produced with varying concentrations of pyrrole (Py). The produced BNC/PPy membranes were used as a template for the seeding of PC12 rat neuronal cells. Cell suspensions were directly seeded onto the surfaces of the BNC/PPy membranes. The Py concentration affected the behavior of neuronal cells that adhered and grew significantly more on BNC/PPy comparatively to BNC. Scanning electron microscopy (SEM) micrographs revealed that PC12 cells adhered on the surface of the BNC and BNC/PPy membranes. Conductive PPy coatings on nanofibers acting as an active interface for tissue engineering may be used to regulate cell activity through electrical stimulations. PMID:23796037

  19. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms.

    PubMed

    Turnbull, Lynne; Toyofuku, Masanori; Hynen, Amelia L; Kurosawa, Masaharu; Pessi, Gabriella; Petty, Nicola K; Osvath, Sarah R; Cárcamo-Oyarce, Gerardo; Gloag, Erin S; Shimoni, Raz; Omasits, Ulrich; Ito, Satoshi; Yap, Xinhui; Monahan, Leigh G; Cavaliere, Rosalia; Ahrens, Christian H; Charles, Ian G; Nomura, Nobuhiko; Eberl, Leo; Whitchurch, Cynthia B

    2016-01-01

    Many bacteria produce extracellular and surface-associated components such as membrane vesicles (MVs), extracellular DNA and moonlighting cytosolic proteins for which the biogenesis and export pathways are not fully understood. Here we show that the explosive cell lysis of a sub-population of cells accounts for the liberation of cytosolic content in Pseudomonas aeruginosa biofilms. Super-resolution microscopy reveals that explosive cell lysis also produces shattered membrane fragments that rapidly form MVs. A prophage endolysin encoded within the R- and F-pyocin gene cluster is essential for explosive cell lysis. Endolysin-deficient mutants are defective in MV production and biofilm development, consistent with a crucial role in the biogenesis of MVs and liberation of extracellular DNA and other biofilm matrix components. Our findings reveal that explosive cell lysis, mediated through the activity of a cryptic prophage endolysin, acts as a mechanism for the production of bacterial MVs. PMID:27075392

  20. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms

    PubMed Central

    Turnbull, Lynne; Toyofuku, Masanori; Hynen, Amelia L.; Kurosawa, Masaharu; Pessi, Gabriella; Petty, Nicola K.; Osvath, Sarah R.; Cárcamo-Oyarce, Gerardo; Gloag, Erin S.; Shimoni, Raz; Omasits, Ulrich; Ito, Satoshi; Yap, Xinhui; Monahan, Leigh G.; Cavaliere, Rosalia; Ahrens, Christian H.; Charles, Ian G.; Nomura, Nobuhiko; Eberl, Leo; Whitchurch, Cynthia B.

    2016-01-01

    Many bacteria produce extracellular and surface-associated components such as membrane vesicles (MVs), extracellular DNA and moonlighting cytosolic proteins for which the biogenesis and export pathways are not fully understood. Here we show that the explosive cell lysis of a sub-population of cells accounts for the liberation of cytosolic content in Pseudomonas aeruginosa biofilms. Super-resolution microscopy reveals that explosive cell lysis also produces shattered membrane fragments that rapidly form MVs. A prophage endolysin encoded within the R- and F-pyocin gene cluster is essential for explosive cell lysis. Endolysin-deficient mutants are defective in MV production and biofilm development, consistent with a crucial role in the biogenesis of MVs and liberation of extracellular DNA and other biofilm matrix components. Our findings reveal that explosive cell lysis, mediated through the activity of a cryptic prophage endolysin, acts as a mechanism for the production of bacterial MVs. PMID:27075392

  1. Desquamated epithelial cells covered with a polymicrobial biofilm typical for bacterial vaginosis are present in randomly selected cryopreserved donor semen.

    PubMed

    Swidsinski, Alexander; Dörffel, Yvonne; Loening-Baucke, Vera; Mendling, Werner; Verstraelen, Hans; Dieterle, Stefan; Schilling, Johannes

    2010-08-01

    We tested whether the bacterial biofilm typical for bacterial vaginosis (BV) can be found on desquamated epithelial cells in cryopreserved donor semen. Bacteria were detected with FISH. Bacterial biofilm, covering the epithelial layer in vaginal biopsies of 20 women with BV, was evaluated on desquamated epithelial cells found in the urine of these same women and their male partners (N=20) and compared with the bacterial biofilm found on desquamated epithelial cells in randomly selected cryopreserved semen samples (N=20). Urine from 20 healthy women of laboratory and clinic personnel and urine from their partners were used as controls. Desquamated epithelial cells covered with a polymicrobial Gardnerella biofilm were identified in urine samples from all women with BV and 13 of their male partners and in none of the female controls and their partners. Gardnerella biofilm, typical for BV, was found in the semen of three of the 20 donors. Donor semen might be a vector for BV. PMID:20497224

  2. Imaging of Bacterial and Fungal Cells Using Fluorescent Carbon Dots Prepared from Carica papaya Juice.

    PubMed

    Kasibabu, Betha Saineelima B; D'souza, Stephanie L; Jha, Sanjay; Kailasa, Suresh Kumar

    2015-07-01

    In this paper, we have described a simple hydrothermal method for preparation of fluorescent carbon dots (C-dots) using Carica papaya juice as a precursor. The synthesized C-dots show emission peak at 461 nm with a quantum yield of 7.0 %. The biocompatible nature of C-dots was confirmed by a cytotoxicity assay on E. coli. The C-dots were used as fluorescent probes for imaging of bacterial (Bacillus subtilis) and fungal (Aspergillus aculeatus) cells and emitted green and red colors under different excitation wavelengths, which indicates that the C-dots can be used as a promising material for cell imaging. PMID:26123674

  3. Structural Insights into Protein-Protein Interactions Involved in Bacterial Cell Wall Biogenesis

    PubMed Central

    Laddomada, Federica; Miyachiro, Mayara M.; Dessen, Andréa

    2016-01-01

    The bacterial cell wall is essential for survival, and proteins that participate in its biosynthesis have been the targets of antibiotic development efforts for decades. The biosynthesis of its main component, the peptidoglycan, involves the coordinated action of proteins that are involved in multi-member complexes which are essential for cell division (the “divisome”) and/or cell wall elongation (the “elongasome”), in the case of rod-shaped cells. Our knowledge regarding these interactions has greatly benefitted from the visualization of different aspects of the bacterial cell wall and its cytoskeleton by cryoelectron microscopy and tomography, as well as genetic and biochemical screens that have complemented information from high resolution crystal structures of protein complexes involved in divisome or elongasome formation. This review summarizes structural and functional aspects of protein complexes involved in the cytoplasmic and membrane-related steps of peptidoglycan biosynthesis, with a particular focus on protein-protein interactions whereby disruption could lead to the development of novel antibacterial strategies. PMID:27136593

  4. Graphene-Iodine Nanocomposites: Highly Potent Bacterial Inhibitors that are Bio-compatible with Human Cells

    PubMed Central

    Some, Surajit; Sohn, Ji Soo; Kim, Junmoo; Lee, Su-Hyun; Lee, Su Chan; Lee, Jungpyo; Shackery, Iman; Kim, Sang Kyum; Kim, So Hyun; Choi, Nakwon; Cho, Il-Joo; Jung, Hyo-Il; Kang, Shinill; Jun, Seong Chan

    2016-01-01

    Graphene-composites, capable of inhibiting bacterial growth which is also bio-compatible with human cells have been highly sought after. Here we report for the first time the preparation of new graphene-iodine nano-composites via electrostatic interactions between positively charged graphene derivatives and triiodide anions. The resulting composites were characterized by X-ray photoemission spectroscopy, UV-spectroscopy, Raman spectroscopy and Scanning electron microscopy. The antibacterial potential of these graphene-iodine composites against Klebsiella pneumonia, Pseudomonas aeruginosa, Proteus mirobilis, Staphylococcus aureus, and E. coli was investigated. In addition, the cytotoxicity of the nanocomposite with human cells [human white blood cells (WBC), HeLa, MDA-MB-231, Fibroblast (primary human keratinocyte) and Keratinocyte (immortalized fibroblast)], was assessed. DGO (Double-oxidizes graphene oxide) was prepared by the additional oxidation of GO (graphene oxide). This generates more oxygen containing functional groups that can readily trap more H+, thus generating a positively charged surface area under highly acidic conditions. This step allowed bonding with a greater number of anionic triiodides and generated the most potent antibacterial agent among graphene-iodine and as-made povidone-iodine (PVP-I) composites also exhibited nontoxic to human cells culture. Thus, these nano-composites can be used to inhibit the growth of various bacterial species. Importantly, they are also very low-cytotoxic to human cells culture. PMID:26843066

  5. Flow cytometric analysis to detect pathogens in bacterial cell mixtures using semiconductor quantum dots.

    PubMed

    Hahn, Megan A; Keng, Peter C; Krauss, Todd D

    2008-02-01

    Compared to a common green organic dye, semiconductor quantum dots (QDs) composed of CdSe/ZnS core/shell bioconjugates display brighter fluorescence intensities, lower detection thresholds, and better accuracy in analyzing bacterial cell mixtures composed of pathogenic E. coli O157:H7 and harmless E. coli DH5alpha using flow cytometry. For the same given bacterial mixture, QDs display fluorescence intensity levels that are approximately 1 order of magnitude brighter compared to the analogous experiments that utilize the standard dye fluorescein isothiocyanate. Detection limits are lowest when QDs are used as the fluorophore label for the pathogenic E. coli O157:H7 serotype: limits of 1% O157:H7 in 99% DH5alpha result, corresponding to 106 cells/mL, which is comparable to other developing fluorescence-based techniques for pathogen detection. Finally, utilizing QDs to label E. coli O157:H7 in cell mixtures results in greater accuracy and more closely approaches the ideal fluorophore for pathogen detection using flow cytometry. With their broader absorption spectra and narrower emission spectra than organic dyes, QDs can make vast improvements in the field of flow cytometry, where single-source excitation and simultaneous detection of multicolor species without complicating experimental setups or data analysis is quite advantageous for analyzing heterogeneous cell mixtures, both for prokaryotic pathogen detection and for studies on eukaryotic cell characteristics. PMID:18186615

  6. Process to Selectively Distinguish Viable from Non-Viable Bacterial Cells

    NASA Technical Reports Server (NTRS)

    LaDuc, Myron T.; Bernardini, Jame N.; Stam, Christina N.

    2010-01-01

    The combination of ethidium monoazide (EMA) and post-fragmentation, randomly primed DNA amplification technologies will enhance the analytical capability to discern viable from non-viable bacterial cells in spacecraft-related samples. Intercalating agents have been widely used since the inception of molecular biology to stain and visualize nucleic acids. Only recently, intercalating agents such as EMA have been exploited to selectively distinguish viable from dead bacterial cells. Intercalating dyes can only penetrate the membranes of dead cells. Once through the membrane and actually inside the cell, they intercalate DNA and, upon photolysis with visible light, produce stable DNA monoadducts. Once the DNA is crosslinked, it becomes insoluble and unable to be fragmented for post-fragmentation, randomly primed DNA library formation. Viable organisms DNA remains unaffected by the intercalating agents, allowing for amplification via post-fragmentation, randomly primed technologies. This results in the ability to carry out downstream nucleic acid-based analyses on viable microbes to the exclusion of all non-viable cells.

  7. Bacterial Virulence Proteins as Tools to Rewire Kinase Pathways in Yeast and Immune Cells

    PubMed Central

    Wei, Ping; Wong, Wilson W.; Park, Jason S.; Corcoran, Ethan E.; Peisajovich, Sergio G.; Onuffer, James J.; Weiss, Arthur; Lim, Wendell A.

    2012-01-01

    Bacterial pathogens have evolved specific effector proteins that, by interfacing with host kinase signaling pathways, provide a mechanism to evade immune responses during infection1,2. Although these effectors are responsible for pathogen virulence, we realized that they might also serve as valuable synthetic biology reagents for engineering cellular behavior. Here, we have exploited two effector proteins, the Shigella flexneri OspF protein3 and Yersinia pestis YopH protein4, to systematically rewire kinase-mediated responses in both yeast and mammalian immune cells. Bacterial effector proteins can be directed to selectively inhibit specific mitogen activated protein kinase (MAPK) pathways in yeast by artificially targeting them to pathway specific complexes. Moreover, we show that unique properties of the effectors generate novel pathway behaviors: OspF, which irreversibly inactivates MAPKs4, was used to construct a synthetic feedback circuit that displays novel frequency-dependent input filtering. Finally, we show that effectors can be used in T cells, either as feedback modulators to precisely tune the T cell response amplitude, or as an inducible pause switch that can temporarily disable T cell activation. These studies demonstrate how pathogens could provide a rich toolkit of parts to engineer cells for therapeutic or biotechnological applications. PMID:22820255

  8. Graphene-Iodine Nanocomposites: Highly Potent Bacterial Inhibitors that are Bio-compatible with Human Cells.

    PubMed

    Some, Surajit; Sohn, Ji Soo; Kim, Junmoo; Lee, Su-Hyun; Lee, Su Chan; Lee, Jungpyo; Shackery, Iman; Kim, Sang Kyum; Kim, So Hyun; Choi, Nakwon; Cho, Il-Joo; Jung, Hyo-Il; Kang, Shinill; Jun, Seong Chan

    2016-01-01

    Graphene-composites, capable of inhibiting bacterial growth which is also bio-compatible with human cells have been highly sought after. Here we report for the first time the preparation of new graphene-iodine nano-composites via electrostatic interactions between positively charged graphene derivatives and triiodide anions. The resulting composites were characterized by X-ray photoemission spectroscopy, UV-spectroscopy, Raman spectroscopy and Scanning electron microscopy. The antibacterial potential of these graphene-iodine composites against Klebsiella pneumonia, Pseudomonas aeruginosa, Proteus mirobilis, Staphylococcus aureus, and E. coli was investigated. In addition, the cytotoxicity of the nanocomposite with human cells [human white blood cells (WBC), HeLa, MDA-MB-231, Fibroblast (primary human keratinocyte) and Keratinocyte (immortalized fibroblast)], was assessed. DGO (Double-oxidizes graphene oxide) was prepared by the additional oxidation of GO (graphene oxide). This generates more oxygen containing functional groups that can readily trap more H(+), thus generating a positively charged surface area under highly acidic conditions. This step allowed bonding with a greater number of anionic triiodides and generated the most potent antibacterial agent among graphene-iodine and as-made povidone-iodine (PVP-I) composites also exhibited nontoxic to human cells culture. Thus, these nano-composites can be used to inhibit the growth of various bacterial species. Importantly, they are also very low-cytotoxic to human cells culture. PMID:26843066

  9. Super-Resolution Microscopy and Tracking of DNA-Binding Proteins in Bacterial Cells

    PubMed Central

    Uphoff, Stephan

    2016-01-01

    Summary The ability to detect individual fluorescent molecules inside living cells has enabled a range of powerful microscopy techniques that resolve biological processes on the molecular scale. These methods have also transformed the study of bacterial cell biology, which was previously obstructed by the limited spatial resolution of conventional microscopy. In the case of DNA-binding proteins, super-resolution microscopy can visualize the detailed spatial organization of DNA replication, transcription, and repair processes by reconstructing a map of single-molecule localizations. Furthermore, DNA binding activities can be observed directly by tracking protein movement in real time. This allows identifying subpopulations of DNA-bound and diffusing proteins, and can be used to measure DNA-binding times in vivo. This chapter provides a detailed protocol for super-resolution microscopy and tracking of DNA-binding proteins in Escherichia coli cells. The protocol covers the construction of cell strains and describes data acquisition and analysis procedures, such as super-resolution image reconstruction, mapping single-molecule tracks, computing diffusion coefficients to identify molecular subpopulations with different mobility, and analysis of DNA-binding kinetics. While the focus is on the study of bacterial chromosome biology, these approaches are generally applicable to other molecular processes and cell types. PMID:27283312

  10. Targeting Bacterial Cell Wall Peptidoglycan Synthesis by Inhibition of Glycosyltransferase Activity.

    PubMed

    Mesleh, Michael F; Rajaratnam, Premraj; Conrad, Mary; Chandrasekaran, Vasu; Liu, Christopher M; Pandya, Bhaumik A; Hwang, You Seok; Rye, Peter T; Muldoon, Craig; Becker, Bernd; Zuegg, Johannes; Meutermans, Wim; Moy, Terence I

    2016-02-01

    Synthesis of bacterial cell wall peptidoglycan requires glycosyltransferase enzymes that transfer the disaccharide-peptide from lipid II onto the growing glycan chain. The polymerization of the glycan chain precedes cross-linking by penicillin-binding proteins and is essential for growth for key bacterial pathogens. As such, bacterial cell wall glycosyltransferases are an attractive target for antibiotic drug discovery. However, significant challenges to the development of inhibitors for these targets include the development of suitable assays and chemical matter that is suited to the nature of the binding site. We developed glycosyltransferase enzymatic activity and binding assays using the natural products moenomycin and vancomycin as model inhibitors. In addition, we designed a library of disaccharide compounds based on the minimum moenomycin fragment with peptidoglycan glycosyltransferase inhibitory activity and based on a more drug-like and synthetically versatile disaccharide building block. A subset of these disaccharide compounds bound and inhibited the glycosyltransferase enzymes, and these compounds could serve as chemical entry points for antibiotic development. PMID:26358369

  11. Fluid dynamics and noise in bacterial cell–cell and cell–surface scattering

    PubMed Central

    Drescher, Knut; Dunkel, Jörn; Cisneros, Luis H.; Ganguly, Sujoy; Goldstein, Raymond E.

    2011-01-01

    Bacterial processes ranging from gene expression to motility and biofilm formation are constantly challenged by internal and external noise. While the importance of stochastic fluctuations has been appreciated for chemotaxis, it is currently believed that deterministic long-range fluid dynamical effects govern cell–cell and cell–surface scattering—the elementary events that lead to swarming and collective swimming in active suspensions and to the formation of biofilms. Here, we report direct measurements of the bacterial flow field generated by individual swimming Escherichia coli both far from and near to a solid surface. These experiments allowed us to examine the relative importance of fluid dynamics and rotational diffusion for bacteria. For cell–cell interactions it is shown that thermal and intrinsic stochasticity drown the effects of long-range fluid dynamics, implying that physical interactions between bacteria are determined by steric collisions and near-field lubrication forces. This dominance of short-range forces closely links collective motion in bacterial suspensions to self-organization in driven granular systems, assemblages of biofilaments, and animal flocks. For the scattering of bacteria with surfaces, long-range fluid dynamical interactions are also shown to be negligible before collisions; however, once the bacterium swims along the surface within a few microns after an aligning collision, hydrodynamic effects can contribute to the experimentally observed, long residence times. Because these results are based on purely mechanical properties, they apply to a wide range of microorganisms. PMID:21690349

  12. Control of Bacterial Persister Cells by Trp/Arg-Containing Antimicrobial Peptides▿

    PubMed Central

    Chen, Xi; Zhang, Mi; Zhou, Chunhui; Kallenbach, Neville R.; Ren, Dacheng

    2011-01-01

    Persister cells are dormant phenotypic variants inherent in a bacterial population. They play important roles in chronic infections and present great challenges to therapy due to extremely enhanced tolerance to antibiotics compared to that of normal cells of the same genotype. In this study, we report that cationic membrane-penetrating peptides containing various numbers of arginine and tryptophan repeats are effective in killing persister cells of Escherichia coli HM22, a hyper-persister producer. The activities of three linear peptides [(RW)n-NH2, where n is 2, 3, or 4] and a dendrimeric peptide, (RW)4D, in killing bacterial persisters were compared. Although the dendrimeric peptide (RW)4D requires a lower threshold to kill planktonic persisters, octameric peptide (RW)4-NH2 is the most effective against planktonic persister cells at high concentrations. For example, treatment with 80 μM (RW)4-NH2 for 60 min led to a 99.7% reduction in the number of viable persister cells. The viability of persister cells residing in surface-attached biofilms was also significantly reduced by (RW)4-NH2 and (RW)4D. These two peptides were also found to significantly enhance the susceptibility of biofilm cells to ofloxacin. The potency of (RW)4-NH2 was further marked by its ability to disperse and kill preformed biofilms harboring high percentages of persister cells. Interestingly, approximately 70% of the dispersed cells were found to have lost their intrinsic tolerance and become susceptible to ampicillin if not killed directly by this peptide. These results are helpful for better understanding the activities of these peptides and may aid in future development of more effective therapies of chronic infections. PMID:21622798

  13. Crystal structure of MraY, an essential membrane enzyme for bacterial cell wall synthesis.

    PubMed

    Chung, Ben C; Zhao, Jinshi; Gillespie, Robert A; Kwon, Do-Yeon; Guan, Ziqiang; Hong, Jiyong; Zhou, Pei; Lee, Seok-Yong

    2013-08-30

    MraY (phospho-MurNAc-pentapeptide translocase) is an integral membrane enzyme that catalyzes an essential step of bacterial cell wall biosynthesis: the transfer of the peptidoglycan precursor phospho-MurNAc-pentapeptide to the lipid carrier undecaprenyl phosphate. MraY has long been considered a promising target for the development of antibiotics, but the lack of a structure has hindered mechanistic understanding of this critical enzyme and the enzyme superfamily in general. The superfamily includes enzymes involved in bacterial lipopolysaccharide/teichoic acid formation and eukaryotic N-linked glycosylation, modifications that are central in many biological processes. We present the crystal structure of MraY from Aquifex aeolicus (MraYAA) at 3.3 Å resolution, which allows us to visualize the overall architecture, locate Mg(2+) within the active site, and provide a structural basis of catalysis for this class of enzyme. PMID:23990562

  14. Enhancement of bacterial denitrification for nitrate removal in groundwater with electrical stimulation from microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Baogang; Liu, Ye; Tong, Shuang; Zheng, Maosheng; Zhao, Yinxin; Tian, Caixing; Liu, Hengyuan; Feng, Chuanping

    2014-12-01

    Electricity generated from the microbial fuel cell (MFC) is applied to the bioelectrical reactor (BER) directly as electrical stimulation means for enhancement of bacterial denitrification to remove nitrate effectively from groundwater. With maximum power density of 502.5 mW m-2 and voltage outputs ranging from 500 mV to 700 mV, the nitrate removal is accelerated, with less intermediates accumulation, compared with control sets without electrical stimulation. Denitrification bacteria proliferations and activities are promoted as its number and Adenosine-5'-triphosphate (ATP) concentration increased one order of magnitude (3.5 × 107 in per milliliter biofilm solution) and about 1.5 folds, respectively. Effects of electricity from MFCs on enhancement of bacterial behaviors are demonstrated for the first time. These results indicate that MFCs can be applied in the in-situ bioremediation of nitrate polluted groundwater for efficiency improvement.

  15. Indications for near-surface fluid circulation cells at bacterial mats

    NASA Astrophysics Data System (ADS)

    Gubsch, S.; Haeckel, M.; Wallmann, K.

    2009-04-01

    At submarine cold vents off Costa Rica detailed sediment sampling along transects across bacterial mats was conducted during expedition M66/2 with RV METEOR deploying a remotely operated vehicle (ROV). Bacterial mats occurred in patches of several m2 in size covering the sediment surface. Porewater analyses of the pushcore sediments revealed rapid sulfate consumption due to anaerobic methane oxidation (AMO) below the bacterial mats. SO4 was depleted at ~5 cm sediment depth in the center of the mat and penetrating deeper into the sediment towards the rim of the mat. Pushcores taken in the center of these mats, however, showed a subsequent increase of sulfate concentrations below a sediment depth of ~10 cm. Other dissolved compounds, such as Cl, Br, H2S, TA, NH4, PO4, and SiO4, showed a similar behaviour with concentrations returning towards bottomwater values. Since this trend is common to all of the solutes, it is most likely explained by a physical process. We assume that focussed fluid outflow near the center of the bacterial mat creates a convective flow cell with bottom waters penetrating into the adjacent sediment area and directed towards the flow channel. A set of different 2-D and 3-D transport-reaction models were developed to test this hypothesis. Fluid flow in the central channel turned out to be homogeneous and thus, could be resembled as boundary condition of the surrounding sediment domain. The model also includes AMO as the most important reaction of a cold vent system. Model results indicate that the observed porewater sulfate and chloride profiles can be reproduced fairly well, for example, when applying an advection velocity of 100 cm/a in the central fluid channel and a mean background advection of 3 cm/a in the sediment domain. A detailed sensitivity study has been performed determining the parameters dominating the establishment of the near-surface flow cell.

  16. Subversion of the B-cell compartment during parasitic, bacterial, and viral infections.

    PubMed

    Borhis, Gwenoline; Richard, Yolande

    2015-01-01

    Recent studies on HIV infection have identified new human B-cell subsets with a potentially important impact on anti-viral immunity. Current work highlights the occurrence of similar B-cell alterations in other viral, bacterial, and parasitic infections, suggesting that common strategies have been developed by pathogens to counteract protective immunity. For this review, we have selected key examples of human infections for which B-cell alterations have been described, to highlight the similarities and differences in the immune responses to a variety of pathogens. We believe that further comparisons between these models will lead to critical progress in the understanding of B-cell mechanisms and will open new target avenues for therapeutic interventions. PMID:25884828

  17. Computer models of bacterial cells: from generalized coarsegrained to genome-specific modular models

    NASA Astrophysics Data System (ADS)

    Nikolaev, Evgeni V.; Atlas, Jordan C.; Shuler, Michael L.

    2006-09-01

    We discuss a modular modelling framework to rapidly develop mathematical models of bacterial cells that would explicitly link genomic details to cell physiology and population response. An initial step in this approach is the development of a coarse-grained model, describing pseudo-chemical interactions between lumped species. A hybrid model of interest can then be constructed by embedding genome-specific detail for a particular cellular subsystem (e.g. central metabolism), called here a module, into the coarse-grained model. Specifically, a new strategy for sensitivity analysis of the cell division limit cycle is introduced to identify which pseudo-molecular processes should be delumped to implement a particular biological function in a growing cell (e.g. ethanol overproduction or pathogen viability). To illustrate the modeling principles and highlight computational challenges, the Cornell coarsegrained model of Escherichia coli B/r-A is used to benchmark the proposed framework.

  18. Live cell imaging of SOS and prophage dynamics in isogenic bacterial populations.

    PubMed

    Helfrich, Stefan; Pfeifer, Eugen; Krämer, Christina; Sachs, Christian Carsten; Wiechert, Wolfgang; Kohlheyer, Dietrich; Nöh, Katharina; Frunzke, Julia

    2015-11-01

    Almost all bacterial genomes contain DNA of viral origin, including functional prophages or degenerated phage elements. A frequent but often unnoted phenomenon is the spontaneous induction of prophage elements (SPI) even in the absence of an external stimulus. In this study, we have analyzed SPI of the large, degenerated prophage CGP3 (187 kbp), which is integrated into the genome of the Gram-positive Corynebacterium glutamicum ATCC 13032. Time-lapse fluorescence microscopy of fluorescent reporter strains grown in microfluidic chips revealed the sporadic induction of the SOS response as a prominent trigger of CGP3 SPI but also displayed a considerable fraction (∼30%) of RecA-independent SPI. Whereas approx. 20% of SOS-induced cells recovered from this stress and resumed growth, the spontaneous induction of CGP3 always led to a stop of growth and likely cell death. A carbon source starvation experiment clearly emphasized that SPI only occurs in actively proliferating cells, whereas sporadic SOS induction was still observed in resting cells. These data highlight the impact of sporadic DNA damage on the activity of prophage elements and provide a time-resolved, quantitative description of SPI as general phenomenon of bacterial populations. PMID:26235130

  19. Upregulation of TMEM16A Protein in Bronchial Epithelial Cells by Bacterial Pyocyanin

    PubMed Central

    Caci, Emanuela; Scudieri, Paolo; Di Carlo, Emma; Morelli, Patrizia; Bruno, Silvia; De Fino, Ida; Bragonzi, Alessandra; Gianotti, Ambra; Sondo, Elvira; Ferrera, Loretta; Palleschi, Alessandro; Santambrogio, Luigi; Ravazzolo, Roberto; Galietta, Luis J. V.

    2015-01-01

    Induction of mucus hypersecretion in the airway epithelium by Th2 cytokines is associated with the expression of TMEM16A, a Ca2+-activated Cl- channel. We asked whether exposure of airway epithelial cells to bacterial components, a condition that mimics the highly infected environment occurring in cystic fibrosis (CF), also results in a similar response. In cultured human bronchial epithelial cells, treatment with pyocyanin or with a P. aeruginosa culture supernatant caused a significant increase in TMEM16A function. The Ca2+-dependent Cl- secretion, triggered by stimulation with UTP, was particularly enhanced by pyocyanin in cells from CF patients. Increased expression of TMEM16A protein and of MUC5AC mucin by bacterial components was demonstrated by immunofluorescence in CF and non-CF cells. We also investigated TMEM16A expression in human bronchi by immunocytochemistry. We found increased TMEM16A staining in the airways of CF patients. The strongest signal was observed in CF submucosal glands. Our results suggest that TMEM16A expression/function is upregulated in CF lung disease, possibly as a response towards the presence of bacteria in the airways. PMID:26121472

  20. Pretreatment of Epithelial Cells with Rifaximin Alters Bacterial Attachment and Internalization Profiles▿

    PubMed Central

    Brown, Eric L.; Xue, Qiong; Jiang, Zhi-Dong; Xu, Yi; DuPont, Herbert L.

    2010-01-01

    Rifaximin is a poorly absorbed semisynthetic antibiotic derivative of rifampin licensed for use in the treatment of traveler's diarrhea. Rifaximin reduces the symptoms of enteric infection, often without pathogen eradication and with limited effects on intestinal flora. Epithelial cells (HEp-2 [laryngeal], HCT-8 [ileocecal], A549 [lung], and HeLa [cervical]) were pretreated with rifaximin (or control antibiotics) prior to the addition of enteroaggregative Escherichia coli (EAEC). EAEC adherence was significantly reduced following rifaximin pretreatment compared to pretreatment with rifampin or doxycycline for three of the four cell lines tested. The rifaximin-mediated changes to epithelial cells were explored further by testing the attachment and internalization of either Bacillus anthracis or Shigella sonnei into A549 or HeLa cells, respectively. The attachment and internalization of B. anthracis were significantly reduced following rifaximin pretreatment. In contrast, neither the attachment nor the internalization of S. sonnei was affected by rifaximin pretreatment of HeLa cells, suggesting that rifaximin-mediated modulation of host cell physiology affected bacteria utilizing distinct attachment/internalization mechanisms differently. In addition, rifaximin pretreatment of HEp-2 cells led to reduced concentrations of inflammatory cytokines from uninfected cells. The study provides evidence that rifaximin-mediated changes in epithelial cell physiology are associated with changes in bacterial attachment/internalization and reduced inflammatory cytokine release. PMID:19858255

  1. Endogenous signals released from necrotic cells augment inflammatory responses to bacterial endotoxin

    PubMed Central

    El Mezayen, Rabab; El Gazzar, Mohamed; Seeds, Michael C.; McCall, Charles E.; Dreskin, Stephen C.; Nicolls, Mark R.

    2011-01-01

    Stressed cells undergoing necrosis release molecules that acts as endogenous danger signals to alert and activate innate immune cells. Both HMGB1 and HSP70 are induced in activated monocytes/macrophages and also are released from stressed or injured cells. We investigated whether HMGB1 and HSP70 released from necrotic monocytes/macrophages, can act as danger signals to mediate proinflammatory cytokine responses to bacterial endotoxin or lipopolysaccharide (LPS). We show that cell lysate, obtained from necrotic cells directly stimulates the proinflammatory cytokine and chemokine responses in human monocyte/macrophage cell line, THP-1, as revealed by the induction of TNF-α, IL-6 and IL-8 mRNA expression and protein production. In the presence of LPS, necrotic cell lysate induced a more robust increase in all three proteins. We found that HMGB1 and HSP70 were indeed present in the necrotic cell lysate and were responsible for the significant induction of the proinflammatory cytokine expression, as neutralization with antibodies against both proteins blocked the increase in the cytokine production seen after incubating LPS-stimulated cells with the necrotic cell lysate. We also found that the newly identified triggering receptor expressed on myeloid cells-1 (TREM-1) was involved in mediating the HMGB1- and HSP70-induced cytokine production. Blocking TREM-1 on THP-1 cells with a recombinant chimera prevented the increase in cytokine production, while simultaneous blocking of TLR4 and TREM-1 completely abolished the proinflammatory response, suggesting that TREM-1 synergizes with TLR4 to mediate the effects of such signals from necrotic cells. In addition, blocking HMGB1 or HSP70 simultaneously with TREM-1 did not decrease the cytokine level further, confirming the involvement of TREM-1 in mediating the effect of HMGB1 and HSP70. Although the interaction of HMGB1 and HSP70 with TREM-1 induced IκBα and p38 expression, both of which are required for the inflammatory

  2. Comparative study of HOCl-inflicted damage to bacterial DNA ex vivo and within cells.

    PubMed

    Suquet, Christine; Warren, Jeffrey J; Seth, Nimulrith; Hurst, James K

    2010-01-15

    The prospects for using bacterial DNA as an intrinsic probe for HOCl and secondary oxidants/chlorinating agents associated with it has been evaluated using both in vitro and in vivo studies. Single-strand and double-strand breaks occurred in bare plasmid DNA that had been exposed to high levels of HOCl, although these reactions were very inefficient compared to polynucleotide chain cleavage caused by the OH.-generating reagent, peroxynitrite. Plasmid nicking was not increased when intact Escherichia coli were exposed to HOCl; rather, the amount of recoverable plasmid diminished in a dose-dependent manner. At concentration levels of HOCl exceeding lethal doses, genomic bacterial DNA underwent extensive fragmentation and the amount of precipitable DNA-protein complexes increased several-fold. The 5-chlorocytosine content of plasmid and genomic DNA isolated from HOCl-exposed E. coli was also slightly elevated above controls, as measured by mass spectrometry of the deaminated product, 5-chlorouracil. However, the yields were not dose-dependent over the bactericidal concentration range. Genomic DNA recovered from E. coli that had been subjected to phagocytosis by human neutrophils occasionally showed small increases in 5-chlorocytosine content when compared to analogous cellular reactions where myeloperoxidase activity was inhibited by azide ion. Overall, the amount of isolable 5-chlorouracil from the HOCl-exposed bacterial cells was far less than the damage manifested in polynucleotide bond cleavage and cross-linking. PMID:19850004

  3. Voltammetric detection and profiling of isoprenoid quinones hydrophobically transferred from bacterial cells.

    PubMed

    Le, Dung Quynh; Morishita, Aya; Tokonami, Shiho; Nishino, Tomoaki; Shiigi, Hiroshi; Miyake, Masami; Nagaoka, Tsutomu

    2015-08-18

    We have developed a novel bacterial detection technique by desiccating a bacterial suspension deposited on an electrode. It was also found that the use of an indium-tin-oxide (ITO) electrode dramatically improved the resolution of the voltammogram, allowing us to observe two pairs of redox peaks, each assigned to the adsorption of isoprenoid ubiquinone (UQn) and menaquinone (MKn), which were present in the bacterial cell envelopes, giving midpeak potentials of -0.015 and -0.25 V versus Ag|AgCl|saturated KCl| at pH 7.0, respectively. Most of the microorganisms classified in both the Gram-negative and -positive bacteria gave well-defined redox peaks, demonstrating that this procedure made the detection of the quinones possible without solvent extraction. It has been demonstrated that the present technique can be used not only for the detection of bacteria, but also for profiling of the isoprenoid quinones, which play important roles in electron and proton transfer in microorganisms. In this respect, the present technique provides a much more straightforward way than the solvent extraction in that one sample can be prepared in 1 min by heat evaporation of a suspension containing the targeted bacteria, which has been applied on the ITO electrode. PMID:26218886

  4. A dynamin-like protein involved in bacterial cell membrane surveillance under environmental stress.

    PubMed

    Sawant, Prachi; Eissenberger, Kristina; Karier, Laurence; Mascher, Thorsten; Bramkamp, Marc

    2016-09-01

    In ever-changing natural environments, bacteria are continuously challenged with numerous biotic and abiotic stresses. Accordingly, they have evolved both specific and more general mechanisms to counteract stress-induced damage and ensure survival. In the soil habitat of Bacillus subtilis, peptide antibiotics and bacteriophages are among the primary stressors that affect the integrity of the cytoplasmic membrane. Dynamin-like proteins (DLPs) play a major role in eukaryotic membrane re-modelling processes, including antiviral activities, but the function of the corresponding bacterial homologues was so far poorly understood. Here, we report on the protective function of a bacterial DLP, DynA from B. subtilis. We provide evidence that DynA plays an important role in a membrane surveillance system that counteracts membrane pore formation provoked by antibiotics and phages. In unstressed cells, DynA is a highly dynamic membrane-associated protein. Upon membrane damage, DynA localizes into large and static assemblies, where DynA acts locally to counteract stress-induced pores, presumably by inducing lipid bilayer fusion and sealing membrane gaps. Thus, lack of DynA increases the sensitivity to antibiotic exposure and phage infection. Taken together, our work suggests that DynA, and potentially other bacterial DLPs, contribute to the innate immunity of bacteria against membrane stress. PMID:26530236

  5. Deciphering the physiological blueprint of a bacterial cell: revelations of unanticipated complexity in transcriptome and proteome.

    PubMed

    Toledo-Arana, Alejandro; Solano, Cristina

    2010-06-01

    During the last few months, several pioneer genome-wide transcriptomic, proteomic and metabolomic studies have revolutionised the understanding of bacterial biological processes, leading to a picture that resembles eukaryotic complexity. Technological advances such as next-generation high-throughput sequencing and high-density oligonucleotide microarrays have allowed the determination, in several bacteria, of the entire boundaries of all expressed transcripts. Consequently, novel RNA-mediated regulatory mechanisms have been discovered including multifunctional RNAs. Moreover, resolution of bacterial proteome organisation (interactome) and global protein localisation (localizome) have unveiled an unanticipated complexity that highlights the significance of protein multifunctionality and localisation in the cell. Also, analysis of a complete bacterial metabolic network has again revealed a high fraction of multifunctional enzymes and an unexpectedly high level of metabolic responses and adaptation. Altogether, these novel approaches have permitted the deciphering of the entire physiological landscape of one of the smallest bacteria, Mycoplasma pneumoniae. Here, we summarise and discuss recent findings aimed at defining the blueprint of any prokaryote. PMID:20486131

  6. Staying in Shape: the Impact of Cell Shape on Bacterial Survival in Diverse Environments.

    PubMed

    Yang, Desirée C; Blair, Kris M; Salama, Nina R

    2016-03-01

    Bacteria display an abundance of cellular forms and can change shape during their life cycle. Many plausible models regarding the functional significance of cell morphology have emerged. A greater understanding of the genetic programs underpinning morphological variation in diverse bacterial groups, combined with assays of bacteria under conditions that mimic their varied natural environments, from flowing freshwater streams to diverse human body sites, provides new opportunities to probe the functional significance of cell shape. Here we explore shape diversity among bacteria, at the levels of cell geometry, size, and surface appendages (both placement and number), as it relates to survival in diverse environments. Cell shape in most bacteria is determined by the cell wall. A major challenge in this field has been deconvoluting the effects of differences in the chemical properties of the cell wall and the resulting cell shape perturbations on observed fitness changes. Still, such studies have begun to reveal the selective pressures that drive the diverse forms (or cell wall compositions) observed in mammalian pathogens and bacteria more generally, including efficient adherence to biotic and abiotic surfaces, survival under low-nutrient or stressful conditions, evasion of mammalian complement deposition, efficient dispersal through mucous barriers and tissues, and efficient nutrient acquisition. PMID:26864431

  7. The General Phosphotransferase System Proteins Localize to Sites of Strong Negative Curvature in Bacterial Cells

    PubMed Central

    Govindarajan, Sutharsan; Elisha, Yair; Nevo-Dinur, Keren; Amster-Choder, Orna

    2013-01-01

    ABSTRACT The bacterial cell poles are emerging as subdomains where many cellular activities take place, but the mechanisms for polar localization are just beginning to unravel. The general phosphotransferase system (PTS) proteins, enzyme I (EI) and HPr, which control preferential use of carbon sources in bacteria, were recently shown to localize near the Escherichia coli cell poles. Here, we show that EI localization does not depend on known polar constituents, such as anionic lipids or the chemotaxis receptors, and on the cell division machinery, nor can it be explained by nucleoid occlusion or localized translation. Detection of the general PTS proteins at the budding sites of endocytotic-like membrane invaginations in spherical cells and their colocalization with the negative curvature sensor protein DivIVA suggest that geometric cues underlie localization of the PTS system. Notably, the kinetics of glucose uptake by spherical and rod-shaped E. coli cells are comparable, implying that negatively curved “pole-like” sites support not only the localization but also the proper functioning of the PTS system in cells with different shapes. Consistent with the curvature-mediated localization model, we observed the EI protein from Bacillus subtilis at strongly curved sites in both B. subtilis and E. coli. Taken together, we propose that changes in cell architecture correlate with dynamic survival strategies that localize central metabolic systems like the PTS to subcellular domains where they remain active, thus maintaining cell viability and metabolic alertness. PMID:24129255

  8. Real-time Bacterial Detection by Single Cell Based Sensors UsingSynchrotron FTIR Spectromicroscopy

    SciTech Connect

    Veiseh, Mandana; Veiseh, Omid; Martin, Michael C.; Bertozzi,Carolyn; Zhang, Miqin

    2005-08-10

    Microarrays of single macrophage cell based sensors weredeveloped and demonstrated for real time bacterium detection bysynchrotron FTIR microscopy. The cells were patterned on gold-SiO2substrates via a surface engineering technique by which the goldelectrodes were immobilized with fibronectin to mediate cell adhesion andthe silicon oxide background were passivated with PEG to resist proteinadsorption and cell adhesion. Cellular morphology and IR spectra ofsingle, double, and triple cells on gold electrodes exposed tolipopolysaccharide (LPS) of different concentrations were compared toreveal the detection capabilities of these biosensors. The single-cellbased sensors were found to generate the most significant IR wave numbervariation and thus provide the highest detection sensitivity. Changes inmorphology and IR spectrum for single cells exposed to LPS were found tobe time- and concentration-dependent and correlated with each other verywell. FTIR spectra from single cell arrays of gold electrodes withsurface area of 25 mu-m2, 100 mu-m2, and 400 mu-m2 were acquired usingboth synchrotron and conventional FTIR spectromicroscopes to study thesensitivity of detection. The results indicated that the developedsingle-cell platform can be used with conventional FTIRspectromicroscopy. This technique provides real-time, label-free, andrapid bacterial detection, and may allow for statistic and highthroughput analyses, and portability.

  9. Phylogenetic and metagenomic analyses of substrate-dependent bacterial temporal dynamics in microbial fuel cells.

    PubMed

    Zhang, Husen; Chen, Xi; Braithwaite, Daniel; He, Zhen

    2014-01-01

    Understanding the microbial community structure and genetic potential of anode biofilms is key to improve extracellular electron transfers in microbial fuel cells. We investigated effect of substrate and temporal dynamics of anodic biofilm communities using phylogenetic and metagenomic approaches in parallel with electrochemical characterizations. The startup non-steady state anodic bacterial structures were compared for a simple substrate, acetate, and for a complex substrate, landfill leachate, using a single-chamber air-cathode microbial fuel cell. Principal coordinate analysis showed that distinct community structures were formed with each substrate type. The bacterial diversity measured as Shannon index decreased with time in acetate cycles, and was restored with the introduction of leachate. The change of diversity was accompanied by an opposite trend in the relative abundance of Geobacter-affiliated phylotypes, which were acclimated to over 40% of total Bacteria at the end of acetate-fed conditions then declined in the leachate cycles. The transition from acetate to leachate caused a decrease in output power density from 243±13 mW/m2 to 140±11 mW/m2, accompanied by a decrease in Coulombic electron recovery from 18±3% to 9±3%. The leachate cycles selected protein-degrading phylotypes within phylum Synergistetes. Metagenomic shotgun sequencing showed that leachate-fed communities had higher cell motility genes including bacterial chemotaxis and flagellar assembly, and increased gene abundance related to metal resistance, antibiotic resistance, and quorum sensing. These differentially represented genes suggested an altered anodic biofilm community in response to additional substrates and stress from the complex landfill leachate. PMID:25202990

  10. Emulsification efficiency of adsorbed chitosan for bacterial cells accumulation at the oil-water interface.

    PubMed

    Archakunakorn, Somwit; Charoenrat, Nattapat; Khamsakhon, Somruethai; Pongtharangkul, Thunyarat; Wongkongkatep, Pravit; Suphantharika, Manop; Wongkongkatep, Jirarut

    2015-04-01

    The use of bacterial cell or biocatalyst for industrial synthetic chemistry is on the way of significant growth since the biocatalyst requires low energy input compared to the chemical synthesis and can be considered as a green technology. However, majority of natural bacterial cell surface is hydrophilic which allows poor access to the hydrophobic substrate or product. In this study, Escherichia coli (E. coli) as a representative of hydrophilic bacterial cells were accumulated at the oil-water interface after association with chitosan at a concentration range of 0.75-750 mg/L. After association with negatively charged E coli having a ζ potential of -19.9 mV, a neutralization of positively charged chitosan occurred as evidenced by an increase in the ζ potential value of the mixtures with increasing chitosan concentration up to +3.5 mV at 750 mg/L chitosan. Both emulsification index and droplet size analysis revealed that chitosan-E. coli system is an excellent emulsion stabilizer to date because the threshold concentration was as low as 7.5 mg/L or 0.00075% w/v. A dramatic increase in the surface hydrophobicity of the E. coli as evidenced by an increase in contact angle from 19 to 88° with increasing chitosan concentration from 0 to 750 mg/L, respectively, resulted in an increase in the stability of oil-in-water emulsions stabilized by chitosan-E. coli system. The emulsion was highly stable even the emulsification was performed under 20% salt condition, or temperature ranged between 20 and 50 °C. Emulsification was failed when the oil volume fraction was higher than 0.5, indicating that no phase inversion occurred. The basic investigation presented in this study is a crucial platform for its application in biocatalyst industry and bioremediation of oil spill. PMID:25341365

  11. Role of Sulfhydryl Sites on Bacterial Cell Walls in the Biosorption, Mobility and Bioavailability of Mercury and Uranium

    SciTech Connect

    Myneni, Satish C.; Mishra, Bhoopesh; Fein, Jeremy

    2009-04-01

    The goal of this exploratory study is to provide a quantitative and mechanistic understanding of the impact of bacterial sulfhydryl groups on the bacterial uptake, speciation, methylation and bioavailability of Hg and redox changes of uranium. The relative concentration and reactivity of different functional groups present on bacterial surfaces will be determined, enabling quantitative predictions of the role of biosorption of Hg under the physicochemical conditions found at contaminated DOE sites.The hypotheses we propose to test in this investigation are as follows- 1) Sulfhydryl groups on bacterial cell surfaces modify Hg speciation and solubility, and play an important role, specifically in the sub-micromolar concentration ranges of metals in the natural and contaminated systems. 2) Sulfhydryl binding of Hg on bacterial surfaces significantly influences Hg transport into the cell and the methylation rates by the bacteria. 3) Sulfhydryls on cell membranes can interact with hexavalent uranium and convert to insoluble tetravalent species. 4) Bacterial sulfhydryl surface groups are inducible by the presence of metals during cell growth. Our studies focused on the first hypothesis, and we examined the nature of sulfhydryl sites on three representative bacterial species: Bacillus subtilis, a common gram-positive aerobic soil species; Shewanella oneidensis, a facultative gram-negative surface water species; and Geobacter sulfurreducens, an anaerobic iron-reducing gram-negative species that is capable of Hg methylation; and at a range of Hg concentration (and Hg:bacterial concentration ratio) in which these sites become important. A summary of our findings is as follows- Hg adsorbs more extensively to bacteria than other metals. Hg adsorption also varies strongly with pH and chloride concentration, with maximum adsorption occurring under circumneutral pH conditions for both Cl-bearing and Cl-free systems. Under these conditions, all bacterial species tested exhibit

  12. Localization of a bacterial group II intron-encoded protein in human cells.

    PubMed

    Reinoso-Colacio, Mercedes; García-Rodríguez, Fernando Manuel; García-Cañadas, Marta; Amador-Cubero, Suyapa; García Pérez, José Luis; Toro, Nicolás

    2015-01-01

    Group II introns are mobile retroelements that self-splice from precursor RNAs to form ribonucleoparticles (RNP), which can invade new specific genomic DNA sites. This specificity can be reprogrammed, for insertion into any desired DNA site, making these introns useful tools for bacterial genetic engineering. However, previous studies have suggested that these elements may function inefficiently in eukaryotes. We investigated the subcellular distribution, in cultured human cells, of the protein encoded by the group II intron RmInt1 (IEP) and several mutants. We created fusions with yellow fluorescent protein (YFP) and with a FLAG epitope. We found that the IEP was localized in the nucleus and nucleolus of the cells. Remarkably, it also accumulated at the periphery of the nuclear matrix. We were also able to identify spliced lariat intron RNA, which co-immunoprecipitated with the IEP, suggesting that functional RmInt1 RNPs can be assembled in cultured human cells. PMID:26244523

  13. A bacterial type III secretion-based protein delivery tool for broad applications in cell biology

    PubMed Central

    Ittig, Simon J.; Schmutz, Christoph; Kasper, Christoph A.; Amstutz, Marlise; Schmidt, Alexander; Sauteur, Loïc; Vigano, M. Alessandra; Low, Shyan Huey; Affolter, Markus; Cornelis, Guy R.; Nigg, Erich A.

    2015-01-01

    Methods enabling the delivery of proteins into eukaryotic cells are essential to address protein functions. Here we propose broad applications to cell biology for a protein delivery tool based on bacterial type III secretion (T3S). We show that bacterial, viral, and human proteins, fused to the N-terminal fragment of the Yersinia enterocolitica T3S substrate YopE, are effectively delivered into target cells in a fast and controllable manner via the injectisome of extracellular bacteria. This method enables functional interaction studies by the simultaneous injection of multiple proteins and allows the targeting of proteins to different subcellular locations by use of nanobody-fusion proteins. After delivery, proteins can be freed from the YopE fragment by a T3S-translocated viral protease or fusion to ubiquitin and cleavage by endogenous ubiquitin proteases. Finally, we show that this delivery tool is suitable to inject proteins in living animals and combine it with phosphoproteomics to characterize the systems-level impact of proapoptotic human truncated BID on the cellular network. PMID:26598622

  14. Identification of Bacterial Cell Wall Lyases via Pseudo Amino Acid Composition

    PubMed Central

    Tang, Hua; Li, Wen-Chao; Wu, Hao; Ding, Hui

    2016-01-01

    Owing to the abuse of antibiotics, drug resistance of pathogenic bacteria becomes more and more serious. Therefore, it is interesting to develop a more reasonable way to solve this issue. Because they can destroy the bacterial cell structure and then kill the infectious bacterium, the bacterial cell wall lyases are suitable candidates of antibacteria sources. Thus, it is urgent to develop an accurate and efficient computational method to predict the lyases. Based on the consideration, in this paper, a set of objective and rigorous data was collected by searching through the Universal Protein Resource (the UniProt database), whereafter a feature selection technique based on the analysis of variance (ANOVA) was used to acquire optimal feature subset. Finally, the support vector machine (SVM) was used to perform prediction. The jackknife cross-validated results showed that the optimal average accuracy of 84.82% was achieved with the sensitivity of 76.47% and the specificity of 93.16%. For the convenience of other scholars, we built a free online server called Lypred. We believe that Lypred will become a practical tool for the research of cell wall lyases and development of antimicrobial agents. PMID:27437396

  15. Bacterial genotoxins: The long journey to the nucleus of mammalian cells.

    PubMed

    Frisan, Teresa

    2016-03-01

    Bacterial protein genotoxins target the DNA of eukaryotic cells, causing DNA single and double strand breaks. The final outcome of the intoxication is induction of DNA damage responses and activation of DNA repair pathways. When the damage is beyond repair, the target cell either undergoes apoptosis or enters a permanent quiescent stage, known as cellular senescence. In certain instances, intoxicated cells can survive and proliferate. This event leads to accumulation of genomic instability and acquisition of malignant traits, underlining the carcinogenic potential of these toxins. The toxicity is dependent on the toxins' internalization and trafficking from the extracellular environment to the nucleus, and requires a complex interaction with several cellular membrane compartments: the plasma membrane, the endosomes, the trans Golgi network and the endoplasmic reticulum, and finally the nucleus. This review will discuss the current knowledge of the bacterial genotoxins internalization pathways and will highlight the issues that still remain unanswered. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale. PMID:26299818

  16. Molecular Mechanism of Holin Transmembrane Domain I in Pore Formation and Bacterial Cell Death.

    PubMed

    Lella, Muralikrishna; Kamilla, Soumya; Jain, Vikas; Mahalakshmi, Radhakrishnan

    2016-04-15

    Bacterial cell lysis during bacteriophage infection is timed by perfect orchestration between components of the holin-endolysin cassette. In bacteria, progressively accumulating holin in the inner membrane, retained in its inactive form by antiholin, is triggered into active hole formation, resulting in the canonical host cell lysis. However, the molecular mechanism of regulation and physical basis of pore formation in the mycobacterial cell membrane by D29 mycobacteriophage holin, particularly in the nonexistence of a known antiholin, is poorly understood. In this study, we report, for the first time, the use of fluorescence resonance transfer measurements to demonstrate that the first transmembrane domain (TM1) of D29 holin undergoes a helix ↔ β-hairpin conformational interconversion. We validate that this structural malleability is mediated by a centrally positioned proline and is responsible for controlled TM1 self-association in membrana, in the presence of a proton gradient across the lipid membrane. We demonstrate that TM1 is sufficient for bacterial growth inhibition. The biological effect of D29 holin structural alteration is presented as a holin self-regulatory mechanism, and its implications are discussed in the context of holin function. PMID:26701742

  17. Identification of Bacterial Cell Wall Lyases via Pseudo Amino Acid Composition.

    PubMed

    Chen, Xin-Xin; Tang, Hua; Li, Wen-Chao; Wu, Hao; Chen, Wei; Ding, Hui; Lin, Hao

    2016-01-01

    Owing to the abuse of antibiotics, drug resistance of pathogenic bacteria becomes more and more serious. Therefore, it is interesting to develop a more reasonable way to solve this issue. Because they can destroy the bacterial cell structure and then kill the infectious bacterium, the bacterial cell wall lyases are suitable candidates of antibacteria sources. Thus, it is urgent to develop an accurate and efficient computational method to predict the lyases. Based on the consideration, in this paper, a set of objective and rigorous data was collected by searching through the Universal Protein Resource (the UniProt database), whereafter a feature selection technique based on the analysis of variance (ANOVA) was used to acquire optimal feature subset. Finally, the support vector machine (SVM) was used to perform prediction. The jackknife cross-validated results showed that the optimal average accuracy of 84.82% was achieved with the sensitivity of 76.47% and the specificity of 93.16%. For the convenience of other scholars, we built a free online server called Lypred. We believe that Lypred will become a practical tool for the research of cell wall lyases and development of antimicrobial agents. PMID:27437396

  18. Osmoprotection of bacterial cells from toxicity caused by antimicrobial hybrid peptide CM15.

    PubMed

    Sato, Hiromi; Feix, Jimmy B

    2006-08-22

    Antimicrobial peptides exist ubiquitously as a host defense system in a broad range of species, including insects, amphibians, and mammals. The binding of these peptides is followed by the disruption of cytoplasmic membranes, leading to bacterial cell death; however, the precise mechanism of membrane destruction has remained controversial. In this study, we have examined the mechanism of action for the antimicrobial peptide, CM15 (KWKLFKKIGAVLKVL), a chimeric peptide of cecropin and mellitin. We find that the cytotoxicity of CM15 against either E. coli or Pseudomonas aeruginosa can be mitigated by the addition of sugar or poly(ethylene glycol) osmolytes to the extracellular media. The dependence of osmoprotection on solute size suggests the formation of pores with an effective diameter of 2.2-3.8 nm. In contrast, no osmoprotection was observed for cell killing by the cationic detergent dodecyltrimethylammonium bromide. Osmolytes also protected cells against the cytotoxicity of CM15 expressed intracellularly as a C-terminal extension of the carrier protein ketosteroid isomerase (KSI). Osmoprotection against the intracellularly produced peptide was also dependent on osmolyte size, in a manner that was in agreement with that observed for extracellularly added synthetic CM15. These data indicate that the formation of discrete pores in the cytoplasmic membrane is a key factor in the mechanism of bacterial killing by CM15. PMID:16906758

  19. Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals

    PubMed Central

    Tizzano, Marco; Gulbransen, Brian D.; Vandenbeuch, Aurelie; Clapp, Tod R.; Herman, Jake P.; Sibhatu, Hiruy M.; Churchill, Mair E. A.; Silver, Wayne L.; Kinnamon, Sue C.; Finger, Thomas E.

    2010-01-01

    The upper respiratory tract is continually assaulted with harmful dusts and xenobiotics carried on the incoming airstream. Detection of such irritants by the trigeminal nerve evokes protective reflexes, including sneezing, apnea, and local neurogenic inflammation of the mucosa. Although free intra-epithelial nerve endings can detect certain lipophilic irritants (e.g., mints, ammonia), the epithelium also houses a population of trigeminally innervated solitary chemosensory cells (SCCs) that express T2R bitter taste receptors along with their downstream signaling components. These SCCs have been postulated to enhance the chemoresponsive capabilities of the trigeminal irritant-detection system. Here we show that transduction by the intranasal solitary chemosensory cells is necessary to evoke trigeminally mediated reflex reactions to some irritants including acyl–homoserine lactone bacterial quorum-sensing molecules, which activate the downstream signaling effectors associated with bitter taste transduction. Isolated nasal chemosensory cells respond to the classic bitter ligand denatonium as well as to the bacterial signals by increasing intracellular Ca2+. Furthermore, these same substances evoke changes in respiration indicative of trigeminal activation. Genetic ablation of either Gα-gustducin or TrpM5, essential elements of the T2R transduction cascade, eliminates the trigeminal response. Because acyl–homoserine lactones serve as quorum-sensing molecules for Gram-negative pathogenic bacteria, detection of these substances by airway chemoreceptors offers a means by which the airway epithelium may trigger an epithelial inflammatory response before the bacteria reach population densities capable of forming destructive biofilms. PMID:20133764

  20. Role of eukaryotic-like serine/threonine kinases in bacterial cell division and morphogenesis.

    PubMed

    Manuse, Sylvie; Fleurie, Aurore; Zucchini, Laure; Lesterlin, Christian; Grangeasse, Christophe

    2016-01-01

    Bacteria possess a repertoire of versatile protein kinases modulating diverse aspects of their physiology by phosphorylating proteins on various amino acids including histidine, cysteine, aspartic acid, arginine, serine, threonine and tyrosine. One class of membrane serine/threonine protein kinases possesses a catalytic domain sharing a common fold with eukaryotic protein kinases and an extracellular mosaic domain found in bacteria only, named PASTA for 'Penicillin binding proteins And Serine/Threonine kinase Associated'. Over the last decade, evidence has been accumulating that these protein kinases are involved in cell division, morphogenesis and developmental processes in Firmicutes and Actinobacteria. However, observations differ from one species to another suggesting that a general mechanism of activation of their kinase activity is unlikely and that species-specific regulation of cell division is at play. In this review, we survey the latest research on the structural aspects and the cellular functions of bacterial serine/threonine kinases with PASTA motifs to illustrate the diversity of the regulatory mechanisms controlling bacterial cell division and morphogenesis. PMID:26429880

  1. Modification of N-glycosylation sites allows secretion of bacterial chondroitinase ABC from mammalian cells

    PubMed Central

    Muir, Elizabeth M.; Fyfe, Ian; Gardiner, Sonya; Li, Li; Warren, Philippa; Fawcett, James W.; Keynes, Roger J.; Rogers, John H.

    2010-01-01

    Although many eukaryotic proteins have been secreted by transfected bacterial cells, little is known about how a bacterial protein is treated as it passes through the secretory pathway when expressed in a eukaryotic cell. The eukaryotic N-glycosylation system could interfere with folding and secretion of prokaryotic proteins whose sequence has not been adapted for glycosylation in structurally appropriate locations. Here we show that such interference does indeed occur for chondroitinase ABC from the bacterium Proteus vulgaris, and can be overcome by eliminating potential N-glycosylation sites. Chondroitinase ABC was heavily glycosylated when expressed in mammalian cells or in a mammalian translation system, and this process prevented secretion of functional enzyme. Directed mutagenesis of selected N-glycosylation sites allowed efficient secretion of active chondroitinase. As these proteoglycans are known to inhibit regeneration of axons in the mammalian central nervous system, the modified chondroitinase gene is a potential tool for gene therapy to promote neural regeneration, ultimately in human spinal cord injury. PMID:19900493

  2. Contribution of bacterial cells to lacustrine organic matter based on amino sugars and D-amino acids

    NASA Astrophysics Data System (ADS)

    Carstens, Dörte; Köllner, Krista E.; Bürgmann, Helmut; Wehrli, Bernhard; Schubert, Carsten J.

    2012-07-01

    Amino sugars (ASs), D-amino acids (D-AAs), and bacterial cell counts were measured in two Swiss lakes to study the contribution of bacterial cells to organic matter (OM) and the fate of ASs and bacterial amino biomarkers during OM degradation. Concentrations of individual ASs (glucosamine, galactosamine, muramic acid, and mannosamine) in the particulate and total OM pools were analyzed in water-column profiles of Lake Brienz (oligotrophic and oxic throughout the entire water column) and Lake Zug (eutrophic, stratified, and permanently anoxic below 170 m) in spring and in fall. Generally, carbon-normalized AS concentrations decreased with water depth, indicating the preferential decomposition of ASs. For Lake Brienz the relative loss of particulate ASs was higher than in Lake Zug, suggesting enhanced AS turnover in an oligotrophic environment. AS ratio changes in the water column revealed a replacement of plankton biomass with OM from heterotrophic microorganisms with increasing water depth. Similar to the ASs, highest carbon normalized D-AA concentrations were found in the upper water column with decreasing concentrations with depth and an increase close to the sediments. In Lake Zug, an increase in the percentage of D-AAs also showed the involvement of bacteria in OM degradation. Estimations of OM derived from bacterial cells using cell counts and the bacterial biomarkers muramic acid and D-AAs gave similar results. For Lake Brienz 0.2-14% of the organic carbon pool originated from bacterial cells, compared to only 0.1-5% in Lake Zug. Based on our estimates, muramic acid appeared primarily associated with bacterial biomass and not with refractory bacterial necromass. Our study underscores that bacteria are not only important drivers of OM degradation in lacustrine systems, they also represent a significant source of OM themselves, especially in oligotrophic lakes.

  3. Cytokines and progenitor cells of granulocytopoiesis in peripheral blood of patients with bacterial infections.

    PubMed Central

    Selig, C; Nothdurft, W

    1995-01-01

    To investigate the physiological role of granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in the adaptation mechanisms of myelopoiesis to enhanced demand, we studied both cytokines and their myeloid target cells in hematologically healthy patients suffering from acute bacterial infections. Endogenous serum levels of G-CSF and GM-CSF, granulocyte-macrophage colony-forming cell (GM-CFC) concentrations, and differential counts were determined for the peripheral blood of 57 patients with clinically apparent bacterial infections (26 males and 31 females aged 16 to 89 years) and 18 healthy controls (8 males and 10 females aged 23 to 84 years). Patients were selected for acute-phase protein and at least two additional clinical signs reflecting a bacterial infection. Patients showed significantly higher numbers of myeloid progenitor cells than controls (median, 68 versus 26 GM-CFC/ml; P < or = 0.01). G-CSF but not GM-CSF levels were found to be elevated (> or = 50 to 863 pg/ml). In the acute stage of infection, progenitor and cytokine levels were not influenced by gender, differences in therapy, or localization of the infection. Progenitor and G-CSF levels were not associated with absolute neutrophil counts or C-reactive protein. However, a negative correlation between number of GM-CFC per milliliter and age (R = -0.47; P < or = 0.001) and an inverse relationship between the incidence of high GM-CFC concentrations and elevated G-CSF levels (phi = -0.34; P < or = 0.01) were found. Combining both parameters into a cytokine-progenitor pattern, we observed a highly significant age-dependent response of myelopoiesis to inflammation (P < or = 0.001). Younger patients had high progenitor counts (> 75 GM-CFC/ml) associated with G-CSF levels below 50 pg/ml, whereas for the older patients, the reverse pattern was predominant. The results indicate that the age-dependent myelopoietic response to acute bacterial infections is

  4. Selective removal of DNA from dead cells of mixed bacterial communities by use of ethidium monoazide.

    PubMed

    Nocker, Andreas; Camper, Anne K

    2006-03-01

    The distinction between viable and dead bacterial cells poses a major challenge in microbial diagnostics. Due to the persistence of DNA in the environment after cells have lost viability, DNA-based quantification methods overestimate the number of viable cells in mixed populations or even lead to false-positive results in the absence of viable cells. On the other hand, RNA-based diagnostic methods, which circumvent this problem, are technically demanding and suffer from some drawbacks. A promising and easy-to-use alternative utilizing the DNA-intercalating dye ethidium monoazide bromide (EMA) was published recently. This chemical is known to penetrate only into "dead" cells with compromised cell membrane integrity. Subsequent photoinduced cross-linking was reported to inhibit PCR amplification of DNA from dead cells. We provide evidence here that in addition to inhibition of amplification, most of the DNA from dead cells is actually lost during the DNA extraction procedure, probably together with cell debris which goes into the pellet fraction. Exposure of bacteria to increasing stress and higher proportions of dead cells in defined populations led to increasing loss of genomic DNA. Experiments were performed using Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium as model pathogens and using real-time PCR for their quantification. Results showed that EMA treatment of mixed populations of these two species provides a valuable tool for selective removal of DNA of nonviable cells by using conventional extraction protocols. Furthermore, we provide evidence that prior to denaturing gradient gel electrophoresis, EMA treatment of a mature mixed-population drinking-water biofilm containing a substantial proportion of dead cells can result in community fingerprints dramatically different from those for an untreated biofilm. The interpretation of such fingerprints can have important implications in the field of microbial ecology. PMID:16517648

  5. Selective Removal of DNA from Dead Cells of Mixed Bacterial Communities by Use of Ethidium Monoazide

    PubMed Central

    Nocker, Andreas; Camper, Anne K.

    2006-01-01

    The distinction between viable and dead bacterial cells poses a major challenge in microbial diagnostics. Due to the persistence of DNA in the environment after cells have lost viability, DNA-based quantification methods overestimate the number of viable cells in mixed populations or even lead to false-positive results in the absence of viable cells. On the other hand, RNA-based diagnostic methods, which circumvent this problem, are technically demanding and suffer from some drawbacks. A promising and easy-to-use alternative utilizing the DNA-intercalating dye ethidium monoazide bromide (EMA) was published recently. This chemical is known to penetrate only into “dead” cells with compromised cell membrane integrity. Subsequent photoinduced cross-linking was reported to inhibit PCR amplification of DNA from dead cells. We provide evidence here that in addition to inhibition of amplification, most of the DNA from dead cells is actually lost during the DNA extraction procedure, probably together with cell debris which goes into the pellet fraction. Exposure of bacteria to increasing stress and higher proportions of dead cells in defined populations led to increasing loss of genomic DNA. Experiments were performed using Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium as model pathogens and using real-time PCR for their quantification. Results showed that EMA treatment of mixed populations of these two species provides a valuable tool for selective removal of DNA of nonviable cells by using conventional extraction protocols. Furthermore, we provide evidence that prior to denaturing gradient gel electrophoresis, EMA treatment of a mature mixed-population drinking-water biofilm containing a substantial proportion of dead cells can result in community fingerprints dramatically different from those for an untreated biofilm. The interpretation of such fingerprints can have important implications in the field of microbial ecology. PMID:16517648

  6. Simultaneous selection of soil electroactive bacterial communities associated to anode and cathode in a two-chamber Microbial Fuel Cell

    NASA Astrophysics Data System (ADS)

    Chiellini, Carolina; Bacci, Giovanni; Fani, Renato; Mocali, Stefano

    2016-04-01

    Different bacteria have evolved strategies to transfer electrons over their cell surface to (or from) their extracellular environment. This electron transfer enables the use of these bacteria in bioelectrochemical systems (BES) such as Microbial Fuel Cells (MFCs). In MFC research the biological reactions at the cathode have long been a secondary point of interest. However, bacterial biocathodes in MFCs represent a potential advantage compared to traditional cathodes, for both their low costs and their low impact on the environment. The main challenge in biocathode set-up is represented by the selection of a bacterial community able to efficiently accept electrons from the electrode, starting from an environmental matrix. In this work, a constant voltage was supplied on a two-chamber MFC filled up with soil over three weeks in order to simultaneously select an electron donor bacterial biomass on the anode and an electron acceptor biomass on the cathode, starting from the same soil. Next Generation Sequencing (NGS) analysis was performed to characterize the bacterial community of the initial soil, in the anode, in the cathode and in the control chamber not supplied with any voltage. Results highlighted that both the MFC conditions and the voltage supply affected the soil bacterial communities, providing a selection of different bacterial groups preferentially associated to the anode (Betaproteobacteria, Bacilli and Clostridia) and to the cathode (Actinobacteria and Alphaproteobacteria). These results confirmed that several electroactive bacteria are naturally present within a top soil and, moreover, different soil bacterial genera could provide different electrical properties.

  7. Fate study of water-borne gram positive vegetative bacterial cells with Raman microscopy

    NASA Astrophysics Data System (ADS)

    Guicheteau, Jason; Tripathi, Ashish; Minter, Jennifer; Wilcox, Phillip; Christesen, Steven

    2010-04-01

    We present an initial bacterial fate study of Gram positive vegetative cells suspended in water and stored at ambient room temperature via Raman spectroscopy monitoring. Two types of cells were considered for this study: vegetative cells of Bacillus cereus, Bacillus thuringiensis which contain the polyhydroxybutyric acid (PHBA) as an energy storage compound and Bacillus subtlilis cells which do not. The cells were cultured specifically for this project. Immediately following the culturing phase, the bacteria were extracted, cleaned and at the onset of the study were suspended in de-ionized water and stored at room temperature. Aliquots of suspensions were deposited onto aluminum slides at different times and allowed to dry for Raman analysis. Spectra from multiple regions of each dried spot and each deposit time were acquired along with the bright-field and fluorescence images. Results were examined to investigate the effect of suspension time on the spectral signatures as well as the fate behavior of the three types of cells investigated. The cells were monitored daily for over a 14 period during which time the onset of starvation induced sporulation was observed.

  8. Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria.

    PubMed

    Mistou, Michel-Yves; Sutcliffe, Iain C; van Sorge, Nina M

    2016-07-01

    The composition of the Gram-positive cell wall is typically described as containing peptidoglycan, proteins and essential secondary cell wall structures called teichoic acids, which comprise approximately half of the cell wall mass. The cell walls of many species within the genera Streptococcus, Enterococcus and Lactococcus contain large amounts of the sugar rhamnose, which is incorporated in cell wall-anchored polysaccharides (CWP) that possibly function as homologues of well-studied wall teichoic acids (WTA). The presence and chemical structure of many rhamnose-containing cell wall polysaccharides (RhaCWP) has sometimes been known for decades. In contrast to WTA, insight into the biosynthesis and functional role of RhaCWP has been lacking. Recent studies in human streptococcal and enterococcal pathogens have highlighted critical roles for these complex polysaccharides in bacterial cell wall architecture and pathogenesis. In this review, we provide an overview of the RhaCWP with regards to their biosynthesis, genetics and biological function in species most relevant to human health. We also briefly discuss how increased knowledge in this field can provide interesting leads for new therapeutic compounds and improve biotechnological applications. PMID:26975195

  9. Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria

    PubMed Central

    Mistou, Michel-Yves; Sutcliffe, Iain C.; van Sorge, Nina M.

    2016-01-01

    The composition of the Gram-positive cell wall is typically described as containing peptidoglycan, proteins and essential secondary cell wall structures called teichoic acids, which comprise approximately half of the cell wall mass. The cell walls of many species within the genera Streptococcus, Enterococcus and Lactococcus contain large amounts of the sugar rhamnose, which is incorporated in cell wall-anchored polysaccharides (CWP) that possibly function as homologues of well-studied wall teichoic acids (WTA). The presence and chemical structure of many rhamnose-containing cell wall polysaccharides (RhaCWP) has sometimes been known for decades. In contrast to WTA, insight into the biosynthesis and functional role of RhaCWP has been lacking. Recent studies in human streptococcal and enterococcal pathogens have highlighted critical roles for these complex polysaccharides in bacterial cell wall architecture and pathogenesis. In this review, we provide an overview of the RhaCWP with regards to their biosynthesis, genetics and biological function in species most relevant to human health. We also briefly discuss how increased knowledge in this field can provide interesting leads for new therapeutic compounds and improve biotechnological applications. PMID:26975195

  10. Functional Heterogeneity in CD4(+) T Cell Responses Against a Bacterial Pathogen.

    PubMed

    Milam, Ashley Viehmann; Allen, Paul M

    2015-01-01

    To investigate how CD4(+) T cells function against a bacterial pathogen, we generated a Listeria monocytogenes-specific CD4(+) T cell model. In this system, two TCRtg mouse lines, LLO56 and LLO118, recognize the same immunodominant epitope (LLO190-205) of L. monocytogenes and have identical in vitro responses. However, in vivo LLO56 and LLO118 display vastly different responses during both primary and secondary infection. LLO118 dominates in the primary response and in providing CD8 T cell help. LLO56 predominates in the secondary response. We have also shown that both specific [T cell receptor (TCR)-mediated] and non-specific stimuli (bypassing the TCR) elicit distinct responses from the two transgenics, leading us to conclude that the strength of self-pMHC signaling during development tightly dictates the cell's future response in the periphery. Herein, we review our findings in this transfer system, focusing on the contribution of the immunomodulatory molecule CD5 and the importance of self-interaction in peripheral maintenance of the cell. We also discuss the manner in which individual TCR affinities to foreign and self-pMHC contribute to the outcome of an immune response; our assertion is that there exists a spectrum of possible T cell responses to recognition of cognate antigen during infection, adding immense diversity to the immune system's response to pathogens. PMID:26697015

  11. Response Mechanisms of Bacterial Degraders to Environmental Contaminants on the Level of Cell Walls and Cytoplasmic Membrane

    PubMed Central

    2014-01-01

    Bacterial strains living in the environment must cope with the toxic compounds originating from humans production. Surface bacterial structures, cell wall and cytoplasmic membrane, surround each bacterial cell and create selective barriers between the cell interior and the outside world. They are a first site of contact between the cell and toxic compounds. Organic pollutants are able to penetrate into cytoplasmic membrane and affect membrane physiological functions. Bacteria had to evolve adaptation mechanisms to counteract the damage originated from toxic contaminants and to prevent their accumulation in cell. This review deals with various adaptation mechanisms of bacterial cell concerning primarily the changes in cytoplasmic membrane and cell wall. Cell adaptation maintains the membrane fluidity status and ratio between bilayer/nonbilayer phospholipids as well as the efflux of toxic compounds, protein repair mechanisms, and degradation of contaminants. Low energy consumption of cell adaptation is required to provide other physiological functions. Bacteria able to survive in toxic environment could help us to clean contaminated areas when they are used in bioremediation technologies. PMID:25057269

  12. Bacterial Infection of endometrial stromal cells influences bovine herpersvirus 4 immediate early gene activation: a new insight into bacterial and viral interaction for uterine disease

    PubMed Central

    Donofrio, Gaetano; Ravanetti, Lara; Cavirani, Sandro; Herath, Shan; Capocefalo, Antonio; Sheldon, Iain Martin

    2009-01-01

    Experimental infection with the gammaherpesvirus Bovine herpesvirus 4 (BoHV-4) rarely establishes disease, yet BoHV-4 is commonly associated with uterine disease in cattle. Uterine disease involves co-infection with bacteria such as Escherichia coli, which stimulate the production of prostaglandin E2 (PGE2) by endometrial cells. BoHV-4 replication depends on Immediate Early 2 (IE2) gene transactivation, and in the present study, PGE2, E. coli or its lipopolysaccharide (LPS), up-regulated the IE2 gene promoter in uterine cells. Bacterial co-infection is important for BoHV-4 uterine disease. PMID:18577555

  13. Dihydrolipoic but not alpha-lipoic acid affects susceptibility of eukaryotic cells to bacterial invasion.

    PubMed

    Bozhokina, Ekaterina; Khaitlina, Sofia; Gamaley, Irina

    2015-05-01

    Sensitivity of eukaryotic cells to facultative pathogens can depend on physiological state of host cells. Previously we have shown that pretreatment of HeLa cells with N-acetylcysteine (NAC) makes the cells 2-3-fold more sensitive to invasion by the wild-type Serratia grimesii and recombinant Escherichia coli expressing gene of actin-specific metalloprotease grimelysin [1]. To evaluate the impact of chemically different antioxidants, in the present work we studied the effects of α-Lipoic acid (LA) and dihydrolipoic acid (DHLA) on efficiency of S. grimesii and recombinant E. coli expressing grimelysin gene to penetrate into HeLa and CaCo cells. Similarly to the effect of NAC, pretreatment of HeLa and CaCo cells with 0.6 or 1.25 mM DHLA increased the entry of grimelysin producing bacteria by a factor of 2.5 and 3 for the wild-type S. grimesii and recombinant E. coli, respectively. In contrast, pretreatment of the cells with 0.6 or 1.25 mM LA did not affect the bacteria uptake. The increased invasion of HeLa and CaCo cells correlated with the enhanced expression of E-cadherin and β-catenin genes, whereas expression of these genes in the LA-treated cells was not changed. Comparison of these results suggests that it is sulfhydryl group of DHLA that promotes efficient modification of cell properties assisting bacterial uptake. We assume that the NAC- and DHLA-induced stimulation of the E-cadherin-catenin pathway contributes to the increased internalization of the grimelysin producing bacteria within transformed cells. PMID:25817791

  14. T-cell activation or tolerization: the Yin and Yang of bacterial superantigens.

    PubMed

    Sähr, Aline; Förmer, Sandra; Hildebrand, Dagmar; Heeg, Klaus

    2015-01-01

    Bacterial superantigens (SAg) are exotoxins from pathogens which interact with innate and adaptive immune cells. The paradox that SAgs cause activation and inactivation/anergy of T-cells was soon recognized. The structural and molecular events following SAg binding to antigen presenting cells (APCs) followed by crosslinking of T-cell receptors were characterized in detail. Activation, cytokine burst and T-cell anergy have been described in vitro and in vivo. Later it became clear that SAg-induced T-cell anergy is in part caused by SAg-dependent activation of T-regulatory cells (Tregs). Although the main focus of analyses was laid on T-cells, it was also shown that SAg binding to MHC class II molecules on APCs induces a signal, which leads to activation and secretion of pro-inflammatory cytokines. Accordingly APCs are mandatory for T-cell activation. So far it is not known, whether APCs play a role during SAg-triggered activation of Tregs. We therefore tested whether in SAg (Streptococcal pyrogenic exotoxin A) -treated APCs an anti-inflammatory program is triggered in addition. We show here that not only the anti-inflammatory cytokine IL-10 and the co-inhibitory surface molecule PD-L1 (CD274) but also inhibitory effector systems like indoleamine 2,3-dioxygenase (IDO) or intracellular negative feedback loops (suppressor of cytokine signaling molecules, SOCS) are induced by SAgs. Moreover, cyclosporine A completely prevented induction of this program. We therefore propose that APCs triggered by SAgs play a key role in T-cell activation as well as inactivation and induction of Treg cells. PMID:26539181

  15. Disruption of bacterial cell-to-cell communication by marine organisms and its relevance to aquaculture.

    PubMed

    Natrah, F M I; Defoirdt, Tom; Sorgeloos, Patrick; Bossier, Peter

    2011-04-01

    Bacterial disease is one of the most critical problems in commercial aquaculture. Although various methods and treatments have been developed to curb the problem, yet they still have significant drawbacks. A novel and environmental-friendly approach in solving this problem is through the disruption of bacterial communication or quorum sensing (QS). In this communication scheme, bacteria regulate their own gene expression by producing, releasing, and sensing chemical signals from the environment. There seems to be a link between QS and diseases through the regulation of certain phenotypes and the induction of virulence factors responsible for pathogen-host association. Several findings have reported that numerous aquatic organisms such as micro-algae, macro-algae, invertebrates, or even other bacteria have the potential to disrupt QS. The mechanism of action varies from degradation of signals through enzymatic or chemical inactivation to antagonistic as well as agonistic activities. This review focuses on the existing marine organisms that are able to interfere with QS with potential application for aquaculture as bacterial control. PMID:21246235

  16. Bacterial cell surface properties: role of loosely bound extracellular polymeric substances (LB-EPS).

    PubMed

    Zhao, Wenqiang; Yang, Shanshan; Huang, Qiaoyun; Cai, Peng

    2015-04-01

    This study investigated the effect of loosely bound extracellular polymeric substances (LB-EPS) on the comprehensive surface properties of four bacteria (Bacillus subtilis, Streptococcus suis, Escherichia coli and Pseudomonas putida). The removal of LB-EPS from bacterial surfaces by high-speed centrifugation (12,000×g) was confirmed by SEM images. Viability tests showed that the percentages of viable cells ranged from 95.9% to 98.0%, and no significant difference was found after treatment (P>0.05). FTIR spectra revealed the presence of phosphodiester, carboxylic, phosphate, and amino functional groups on bacteria surfaces, and the removal of LB-EPS did not alter the types of cell surface functional groups. Potentiometric titration results suggested the total site concentrations on the intact bacteria were higher than those on LB-EPS free bacteria. Most of the acidity constants (pKa) were almost identical, except the increased pKa values of phosphodiester groups on LB-EPS free S. suis and E. coli surfaces. The electrophoretic mobilities and hydrodynamic diameters of the intact and LB-EPS free bacteria were statistically unchanged (P>0.05), indicating LB-EPS had no influence on the net surface charges and size distribution of bacteria. However, LB-ESP could enhance cell aggregation processes. The four LB-EPS free bacteria all exhibited fewer hydrophobicity values (26.1-65.0%) as compared to the intact cells (47.4-69.3%), suggesting the removal of uncharged nonpolar compounds (e.g., carbohydrates) in LB-EPS. These findings improve our understanding of the changes in cell surface characterizations induced by LB-EPS, and have important implications for assessing the role of LB-EPS in bacterial adhesion and transport behaviors. PMID:25805151

  17. Involvement of the cell-specific pigment genes pks and sult in bacterial defense response of sea urchins Strongylocentrotus intermedius.

    PubMed

    Kiselev, Konstantin V; Ageenko, Natalya V; Kurilenko, Valeria V

    2013-03-26

    Bacterial infections are one of the most important problems in mass aquaculture, causing the loss of millions of juvenile organisms. We isolated 22 bacterial strains from the cavity fluid of the sea urchin Strongylocentrotus pallidus and used phylogenetic analysis based on 16S rRNA gene sequences to separate the bacterial strains into 9 genera (Aliivibrio, Bizionia, Colwellia, Olleya, Paenibacillus, Photobacterium, Pseudoalteromonas, Shewanella, and Vibrio). Incubating Strongylocentrotus intermedius larvae with a strain from each of the 9 bacterial genera, we investigated the viability of the larvae, the amount of pigment cells, and the level of polyketide synthase (pks) and sulfotransferase (sult) gene expression. Results of the assay on sea urchin development showed that all bacterial strains, except Pseudoalteromonas and Bizionia, suppressed sea urchin development (resulting in retardation of the embryos' development with cellular disorders) and reduced cell viability. We found that pks expression in the sea urchin larvae after incubation with the bacteria of 9 tested genera was significantly increased, while the sult expression was increased only after the treatment with Pseudoalteromonas and Shewanella. Shikimic acid, which is known to activate the biosynthesis of naphthoquinone pigments, increased the tolerance of the sea urchin embryos to the bacteria. In conclusion, we show that the cell-specific pigment genes pks and sult are involved in the bacterial defense response of sea urchins. PMID:23548362

  18. A 17-mer Membrane-Active MSI-78 Derivative with Improved Selectivity toward Bacterial Cells.

    PubMed

    Monteiro, Claudia; Pinheiro, Marina; Fernandes, Mariana; Maia, Sílvia; Seabra, Catarina L; Ferreira-da-Silva, Frederico; Reis, Salette; Gomes, Paula; Martins, M Cristina L

    2015-08-01

    Antimicrobial peptides are widely recognized as an excellent alternative to conventional antibiotics. MSI-78, a highly effective and broad spectrum AMP, is one of the most promising AMPs for clinical application. In this study, we have designed shorter derivatives of MSI-78 with the aim of improving selectivity while maintaining antimicrobial activity. Shorter 17-mer derivatives were created by truncating MSI-78 at the N- and/or C-termini, while spanning MSI-78 sequence. Despite the truncations made, we found a 17-mer peptide, MSI-78(4-20) (KFLKKAKKFGKAFVKIL), which was demonstrated to be as effective as MSI-78 against the Gram-positive Staphylococcus strains tested and the Gram-negative Pseudomonas aeruginosa. This shorter derivative is more selective toward bacterial cells as it was less toxic to erythrocytes than MSI-78, representing an improved version of the lead peptide. Biophysical studies support a mechanism of action for MSI-78(4-20) based on the disruption of the bacterial membrane permeability barrier, which in turn leads to loss of membrane integrity and ultimately to cell death. These features point to a mechanism of action similar to the one described for the lead peptide MSI-78. PMID:26066462

  19. The DSF Family of Cell–Cell Signals: An Expanding Class of Bacterial Virulence Regulators

    PubMed Central

    Ryan, Robert P.; An, Shi-qi; Allan, John H.; McCarthy, Yvonne; Dow, J. Maxwell

    2015-01-01

    Many pathogenic bacteria use cell–cell signaling systems involving the synthesis and perception of diffusible signal molecules to control virulence as a response to cell density or confinement to niches. Bacteria produce signals of diverse structural classes. Signal molecules of the diffusible signal factor (DSF) family are cis-2-unsaturated fatty acids. The paradigm is cis-11-methyl-2-dodecenoic acid from Xanthomonas campestris pv. campestris (Xcc), which controls virulence in this plant pathogen. Although DSF synthesis was thought to be restricted to the xanthomonads, it is now known that structurally related molecules are produced by the unrelated bacteria Burkholderia cenocepacia and Pseudomonas aeruginosa. Furthermore, signaling involving these DSF family members contributes to bacterial virulence, formation of biofilms and antibiotic tolerance in these important human pathogens. Here we review the recent advances in understanding DSF signaling and its regulatory role in different bacteria. These advances include the description of the pathway/mechanism of DSF biosynthesis, identification of novel DSF synthases and new members of the DSF family, the demonstration of a diversity of DSF sensors to include proteins with a Per-Arnt-Sim (PAS) domain and the description of some of the signal transduction mechanisms that impinge on virulence factor expression. In addition, we address the role of DSF family signals in interspecies signaling that modulates the behavior of other microorganisms. Finally, we consider a number of recently reported approaches for the control of bacterial virulence through the modulation of DSF signaling. PMID:26181439

  20. Influence of dietary nucleotide restriction on bacterial sepsis and phagocytic cell function in mice.

    PubMed

    Kulkarni, A D; Fanslow, W C; Drath, D B; Rudolph, F B; Van Buren, C T

    1986-02-01

    Although enzyme defects in purine metabolism have revealed the importance of these substrates to maintenance of a normal immune response, the role of exogenous nucleotides on the cells that mediate the host defense system has remained largely unexplored. Recent investigations have revealed that dietary nucleotides are vital to the maintenance of cell-mediated responses to antigen stimulation. To test the influence of dietary nucleotide deprivation on resistance to infection, Balb/c mice were maintained on chow, a nucleotide-free (NF) diet, or an NF diet repleted with adenine, uracil, or RNA. Mice on the NF diet suffered 100% mortality following intravenous challenge with Staphylococcus aureus, while chow-fed and RNA- or uracil-repleted mice demonstrated significantly greater resistance to this bacterial challenge. Macrophages from mice on the NF diet had decreased phagocytic activity as measured by uptake of radiolabeled bacteria compared with mice maintained on the NF diet supplemented with adenine, uracil, or RNA. No change in S aureus antibody response was noted on the various diets. Although the mechanism of this suppression of nonspecific immunity remains unclear, provision of nucleotides to defined diets appears vital to maintain host resistance to bacterial challenge. PMID:3947217

  1. Testing an agent-based model of bacterial cell motility: How nutrient concentration affects speed distribution

    NASA Astrophysics Data System (ADS)

    Garcia, V.; Birbaumer, M.; Schweitzer, F.

    2011-08-01

    We revisit a recently proposed agent-based model of active biological motion and compare its predictions with own experimental findings for the speed distribution of bacterial cells, Salmonella typhimurium. Agents move according to a stochastic dynamics and use energy stored in an internal depot for metabolism and active motion. We discuss different assumptions of how the conversion from internal to kinetic energy d( v) may depend on the actual speed, to conclude that d 2 v ξ with either ξ = 2 or 1 < ξ < 2 are promising hypotheses. To test these, we compare the model's prediction with the speed distribution of bacteria which were obtained in media of different nutrient concentration and at different times. We find that both hypotheses are in line with the experimental observations, with ξ between 1.67 and 2.0. Regarding the influence of a higher nutrient concentration, we conclude that the take-up of energy by bacterial cells is indeed increased. But this energy is not used to increase the speed, with 40 μm/s as the most probable value of the speed distribution, but is rather spend on metabolism and growth.

  2. Proteasomal Degradation of Nod2 Protein Mediates Tolerance to Bacterial Cell Wall Components*

    PubMed Central

    Lee, Kyoung-Hee; Biswas, Amlan; Liu, Yuen-Joyce; Kobayashi, Koichi S.

    2012-01-01

    The innate immune system serves as the first line of defense by detecting microbes and initiating inflammatory responses. Although both Toll-like receptor (TLR) and nucleotide binding domain and leucine-rich repeat (NLR) proteins are important for this process, their excessive activation is hazardous to hosts; thus, tight regulation is required. Endotoxin tolerance is refractory to repeated lipopolysaccharide (LPS) stimulation and serves as a host defense mechanism against septic shock caused by an excessive TLR4 response during Gram-negative bacterial infection. Gram-positive bacteria as well as their cell wall components also induce shock. However, the mechanism underlying tolerance is not understood. Here, we show that activation of Nod2 by its ligand, muramyl dipeptide (MDP) in the bacterial cell wall, induces rapid degradation of Nod2, which confers MDP tolerance in vitro and in vivo. Nod2 is constitutively associated with a chaperone protein, Hsp90, which is required for Nod2 stability and protects Nod2 from degradation. Upon MDP stimulation, Hsp90 rapidly dissociates from Nod2, which subsequently undergoes ubiquitination and proteasomal degradation. The SOCS-3 protein induced by Nod2 activation further facilitates this degradation process. Therefore, Nod2 protein stability is a key factor in determining responsiveness to MDP stimulation. This indicates that TLRs and NLRs induce a tolerant state through distinct molecular mechanisms that protect the host from septic shock. PMID:23019338

  3. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation

    PubMed Central

    Jenq, Robert R.; Perales, Miguel-Angel; Littmann, Eric R.; Morjaria, Sejal; Ling, Lilan; No, Daniel; Gobourne, Asia; Viale, Agnes; Dahi, Parastoo B.; Ponce, Doris M.; Barker, Juliet N.; Giralt, Sergio; van den Brink, Marcel; Pamer, Eric G.

    2014-01-01

    Highly diverse bacterial populations inhabit the gastrointestinal tract and modulate host inflammation and promote immune tolerance. In allogeneic hematopoietic stem cell transplantation (allo-HSCT), the gastrointestinal mucosa is damaged, and colonizing bacteria are impacted, leading to an impaired intestinal microbiota with reduced diversity. We examined the impact of intestinal diversity on subsequent mortality outcomes following transplantation. Fecal specimens were collected from 80 recipients of allo-HSCT at the time of stem cell engraftment. Bacterial 16S rRNA gene sequences were characterized, and microbial diversity was estimated using the inverse Simpson index. Subjects were classified into high, intermediate, and low diversity groups and assessed for differences in outcomes. Mortality outcomes were significantly worse in patients with lower intestinal diversity; overall survival at 3 years was 36%, 60%, and 67% for low, intermediate, and high diversity groups, respectively (P = .019, log-rank test). Low diversity showed a strong effect on mortality after multivariate adjustment for other clinical predictors (transplant related mortality: adjusted hazard ratio, 5.25; P = .014). In conclusion, the diversity of the intestinal microbiota at engraftment is an independent predictor of mortality in allo-HSCT recipients. These results indicate that the intestinal microbiota may be an important factor in the success or failure in allo-HSCT. PMID:24939656

  4. Study on the Coordination Structure of Pt Sorbed on Bacterial Cells Using X-Ray Absorption Fine Structure Spectroscopy

    PubMed Central

    Tanaka, Kazuya; Watanabe, Naoko

    2015-01-01

    Biosorption has been intensively investigated as a promising technology for the recovery of precious metals from solution. However, the detailed mechanism responsible for the biosorption of Pt on a biomass is not fully understood because of a lack of spectroscopic studies. We applied X-ray absorption fine structure spectroscopy to elucidate the coordination structure of Pt sorbed on bacterial cells. We examined the sorption of Pt(II) and Pt(IV) species on bacterial cells of Bacillus subtilis and Shewanella putrefaciens in NaCl solutions. X-ray absorption near-edge structure and extended X-ray absorption fine structure (EXAFS) of Pt-sorbed bacteria suggested that Pt(IV) was reduced to Pt(II) on the cell’s surface, even in the absence of an organic material as an exogenous electron donor. EXAFS spectra demonstrated that Pt sorbed on bacterial cells has a fourfold coordination of chlorine ions, similar to PtCl42-, which indicated that sorption on the protonated amine groups of the bacterial cells. This work clearly demonstrated the coordination structure of Pt sorbed on bacterial cells. The findings of this study will contribute to the understanding of Pt biosorption on biomass, and facilitate the development of recovery methods for rare metals using biosorbent materials. PMID:25996945

  5. Interaction of Colicins with Bacterial Cells I. Studies with Radioactive Colicins1

    PubMed Central

    Maeda, Akio; Nomura, Masayasu

    1966-01-01

    Maeda, Akio (Department of Genetics, University of Wisconsin, Madison), and Masayasu Nomura. Interaction of colicins with bacterial cells. I. Studies with radioactive colicins. J. Bacteriol. 91:685–694. 1966.—By use of a preparation of radioactive colicin E2, the following conclusions, which had been obtained previously from indirect experiments, were tested directly: (i) colicin stays at the receptor site on the cell and acts from there; (ii) colicins E2 and E3 share the same receptor, although their mode of action is entirely different; (iii) colicinogenic cells adsorb homologous colicin, although they are resistant to that colicin. Our experimental results confirmed the above conclusions. When sensitive cells of Escherichia coli K-12 pretreated with radioactive E2 were disrupted with a French pressure cell, and fractionated by differential centrifugation, it was found that most of the radioactivity stayed with the cell envelope fraction. Trypsin removed a major part of radioactivity from cells pretreated with radioactive E2, as was expected from the previous experiments on trypsin reversal of colicin action. Furthermore, it was shown that the trypsin treatment causes a recovery of the capacity of E2-pretreated cells to adsorb further colicin E2. When cells were first treated with various amounts of nonradioactive E3, and then treated with radioactive E2, the amount of radioactive E2 adsorbed was found to be inversely related to the amount of nonradioactive E3 adsorbed first. It was also shown that E2-colicinogenic cells adsorb radioactive E2, and yet are resistant to this colicin. PMID:5327363

  6. Accumulation of Poly(3-hydroxybutyrate) Helps Bacterial Cells to Survive Freezing

    PubMed Central

    Krzyzanek, Vladislav; Mravec, Filip; Hrubanova, Kamila; Samek, Ota; Kucera, Dan; Benesova, Pavla; Marova, Ivana

    2016-01-01

    Accumulation of polyhydroxybutyrate (PHB) seems to be a common metabolic strategy adopted by many bacteria to cope with cold environments. This work aimed at evaluating and understanding the cryoprotective effect of PHB. At first a monomer of PHB, 3-hydroxybutyrate, was identified as a potent cryoprotectant capable of protecting model enzyme (lipase), yeast (Saccharomyces cerevisiae) and bacterial cells (Cupriavidus necator) against the adverse effects of freezing-thawing cycles. Further, the viability of the frozen–thawed PHB accumulating strain of C. necator was compared to that of the PHB non-accumulating mutant. The presence of PHB granules in cells was revealed to be a significant advantage during freezing. This might be attributed to the higher intracellular level of 3-hydroxybutyrate in PHB accumulating cells (due to the action of parallel PHB synthesis and degradation, the so-called PHB cycle), but the cryoprotective effect of PHB granules seems to be more complex. Since intracellular PHB granules retain highly flexible properties even at extremely low temperatures (observed by cryo-SEM), it can be expected that PHB granules protect cells against injury from extracellular ice. Finally, thermal analysis indicates that PHB-containing cells exhibit a higher rate of transmembrane water transport, which protects cells against the formation of intracellular ice which usually has fatal consequences. PMID:27315285

  7. Individuals in the crowd: studying bacterial quorum-sensing at the single-cell level

    NASA Astrophysics Data System (ADS)

    Delfino Perez, Pablo; Young, Jonathan; Johnson, Elaine L.; Hagen, Stephen J.

    2009-03-01

    Like many bacterial species, the marine bacterium Vibrio fischeri can detect its own population density through a quorum sensing (QS) mechanism. The bacterium releases a small molecule signal -- the autoinducer (AI) -- into its environment: high AI concentration indicates high population density and triggers a genetic switch that, in V.fischeri, leads to bioluminescence. Although the QS behavior of bulk cultures of V.fischeri has been extensively studied, little is known about either the response of individual cells to AI signal levels or the role of noise and local diffusion in QS signaling. We have used a photon-counting camera to record the luminescence of individual V.fischeri cells immobilized in a flow cell and subject to varying concentrations of AI. We observe that light output by individual cells varies not only with bulk AI concentration, but also over time, between cells, with local (micron-scale) population density, and even with the flow rate of the medium. Most of these variations would not be evident in a bulk culture. We will present an analysis of this heterogeneity at the cell level and its implications for the role of noise in QS signaling.

  8. Accumulation of Poly(3-hydroxybutyrate) Helps Bacterial Cells to Survive Freezing.

    PubMed

    Obruca, Stanislav; Sedlacek, Petr; Krzyzanek, Vladislav; Mravec, Filip; Hrubanova, Kamila; Samek, Ota; Kucera, Dan; Benesova, Pavla; Marova, Ivana

    2016-01-01

    Accumulation of polyhydroxybutyrate (PHB) seems to be a common metabolic strategy adopted by many bacteria to cope with cold environments. This work aimed at evaluating and understanding the cryoprotective effect of PHB. At first a monomer of PHB, 3-hydroxybutyrate, was identified as a potent cryoprotectant capable of protecting model enzyme (lipase), yeast (Saccharomyces cerevisiae) and bacterial cells (Cupriavidus necator) against the adverse effects of freezing-thawing cycles. Further, the viability of the frozen-thawed PHB accumulating strain of C. necator was compared to that of the PHB non-accumulating mutant. The presence of PHB granules in cells was revealed to be a significant advantage during freezing. This might be attributed to the higher intracellular level of 3-hydroxybutyrate in PHB accumulating cells (due to the action of parallel PHB synthesis and degradation, the so-called PHB cycle), but the cryoprotective effect of PHB granules seems to be more complex. Since intracellular PHB granules retain highly flexible properties even at extremely low temperatures (observed by cryo-SEM), it can be expected that PHB granules protect cells against injury from extracellular ice. Finally, thermal analysis indicates that PHB-containing cells exhibit a higher rate of transmembrane water transport, which protects cells against the formation of intracellular ice which usually has fatal consequences. PMID:27315285

  9. Lipid-linked cell wall precursors regulate membrane association of bacterial actin MreB

    PubMed Central

    Schirner, Kathrin; Eun, Ye-Jin; Dion, Mike; Luo, Yun; Helmann, John D.; Garner, Ethan C.; Walker, Suzanne

    2014-01-01

    Summary The bacterial actin homolog MreB, which is critical for rod shape determination, forms filaments that rotate around the cell width on the inner surface of the cytoplasmic membrane. What determines filament association with the membranes or with other cell wall elongation proteins is not known. Using specific chemical and genetic perturbations while following MreB filament motion, we find that MreB membrane association is an actively regulated process that depends on the presence of lipid-linked peptidoglycan precursors. When precursors are depleted, MreB filaments disassemble into the cytoplasm and peptidoglycan synthesis becomes disorganized. In cells that lack wall teichoic acids, but continue to make peptidoglycan, dynamic MreB filaments are observed, although their presence is not sufficient to establish a rod shape. We propose that the cell regulates MreB filament association with the membrane, allowing rapid and reversible inactivation of cell wall enzyme complexes in response to the inhibition of cell wall synthesis. PMID:25402772

  10. Structure of Ristocetin A in Complex with a Bacterial Cell-wall Mimetic

    SciTech Connect

    Nahoum, V.; Spector, S; Loll, P

    2009-01-01

    Antimicrobial drug resistance is a serious public health problem and the development of new antibiotics has become an important priority. Ristocetin A is a class III glycopeptide antibiotic that is used in the diagnosis of von Willebrand disease and which has served as a lead compound for the development of new antimicrobial therapeutics. The 1.0 A resolution crystal structure of the complex between ristocetin A and a bacterial cell-wall peptide has been determined. As is observed for most other glycopeptide antibiotics, it is shown that ristocetin A forms a back-to-back dimer containing concave binding pockets that recognize the cell-wall peptide. A comparison of the structure of ristocetin A with those of class I glycopeptide antibiotics such as vancomycin and balhimycin identifies differences in the details of dimerization and ligand binding. The structure of the ligand-binding site reveals a likely explanation for ristocetin A's unique anticooperativity between dimerization and ligand binding.

  11. Metabolic Regulation of a Bacterial Cell System with Emphasis on Escherichia coli Metabolism

    PubMed Central

    Shimizu, Kazuyuki

    2013-01-01

    It is quite important to understand the overall metabolic regulation mechanism of bacterial cells such as Escherichia coli from both science (such as biochemistry) and engineering (such as metabolic engineering) points of view. Here, an attempt was made to clarify the overall metabolic regulation mechanism by focusing on the roles of global regulators which detect the culture or growth condition and manipulate a set of metabolic pathways by modulating the related gene expressions. For this, it was considered how the cell responds to a variety of culture environments such as carbon (catabolite regulation), nitrogen, and phosphate limitations, as well as the effects of oxygen level, pH (acid shock), temperature (heat shock), and nutrient starvation. PMID:25937963

  12. Sulfotransferase-independent genotoxicity of illudin S and its acylfulvene derivatives in bacterial and mammalian cells.

    PubMed

    Glatt, Hansruedi; Pietsch, Kathryn E; Sturla, Shana J; Meinl, Walter

    2014-01-01

    Acylfulvenes are a class of antitumor agents derived from illudin S, a sesquiterpenoid toxin isolated from mushrooms of the genus Omphalotus. Although DNA appears to be their major target, no data concerning mutagenicity of acylfulvenes are available in the literature, and limited data have been published on illudin S. Enzyme-mediated biotransformations have been demonstrated to influence the cytotoxicity of acylfulvenes. Illudin S and some acylfulvenes [e.g., (-)-6-hydroxymethylacylfulvene (HMAF)] are allylic alcohols with potential for enhanced cytotoxicity and genotoxicity by means of metabolic sulfation. Therefore, we studied the influence of various heterologously expressed human sulfotransferases (SULTs) on biological activities of illudin S and HMAF in bacterial and mammalian cells. (-)-Acylfulvene (AF) was tested as a congener lacking an allylic hydroxyl group. We found: (1) all three compounds were mutagenic in standard Salmonella typhimurium strains TA98, TA100 and TA104; (2) they induced gene mutations (at the hypoxanthine phosphoribosyl transferase locus) and sister chromatid exchange (SCE) in Chinese hamster V79 cells; (3) these effects were practically unaffected when human SULTs were expressed in the target bacteria or mammalian cells (using SCE as the endpoint); (4) illudin S demonstrated 40-600 times higher genotoxic activities than the semisynthetic acylfulvenes studied; it was positive in the SCE test even at a concentration of 0.3 nM; (5) genotoxicity in mammalian cells was observed at substantially lower concentrations of the compounds than required for a positive result in the bacterial test (400 nM with illudin S). We conclude that illudin S, HMAF and AF are potent genotoxicants and human SULTs do not play a significant role in their bioactivation. PMID:23881331

  13. Analysis of a Stochastic Model for Bacterial Growth and the Lognormality of the Cell-Size Distribution

    NASA Astrophysics Data System (ADS)

    Yamamoto, Ken; Wakita, Jun-ichi

    2016-07-01

    This paper theoretically analyzes a phenomenological stochastic model for bacterial growth. This model comprises cell division and the linear growth of cells, where growth rates and cell cycles are drawn from lognormal distributions. We find that the cell size is expressed as a sum of independent lognormal variables. We show numerically that the quality of the lognormal approximation greatly depends on the distributions of the growth rate and cell cycle. Furthermore, we show that actual parameters of the growth rate and cell cycle take values that give a good lognormal approximation; thus, the experimental cell-size distribution is in good agreement with a lognormal distribution.

  14. Dynamics of different bacterial communities are capable of generating sustainable electricity from microbial fuel cells with organic waste.

    PubMed

    Yamamoto, Shuji; Suzuki, Kei; Araki, Yoko; Mochihara, Hiroki; Hosokawa, Tetsuya; Kubota, Hiroko; Chiba, Yusuke; Rubaba, Owen; Tashiro, Yosuke; Futamata, Hiroyuki

    2014-01-01

    The relationship between the bacterial communities in anolyte and anode biofilms and the electrochemical properties of microbial fuel cells (MFCs) was investigated when a complex organic waste-decomposing solution was continuously supplied to MFCs as an electron donor. The current density increased gradually and was maintained at approximately 100 to 150 mA m(-2). Polarization curve analyses revealed that the maximum power density was 7.4 W m(-3) with an internal resistance of 110 Ω. Bacterial community structures in the organic waste-decomposing solution and MFCs differed from each other. Clonal analyses targeting 16S rRNA genes indicated that bacterial communities in the biofilms on MFCs developed to specific communities dominated by novel Geobacter. Multidimensional scaling analyses based on DGGE profiles revealed that bacterial communities in the organic waste-decomposing solution fluctuated and had no dynamic equilibrium. Bacterial communities on the anolyte in MFCs had a dynamic equilibrium with fluctuations, while those of the biofilm converged to the Geobacter-dominated structure. These bacterial community dynamics of MFCs differed from those of control-MFCs under open circuit conditions. These results suggested that bacterial communities in the anolyte and biofilm have a gentle symbiotic system through electron flow, which resulted in the advance of current density from complex organic waste. PMID:24789988

  15. Dynamics of Different Bacterial Communities Are Capable of Generating Sustainable Electricity from Microbial Fuel Cells with Organic Waste

    PubMed Central

    Yamamoto, Shuji; Suzuki, Kei; Araki, Yoko; Mochihara, Hiroki; Hosokawa, Tetsuya; Kubota, Hiroko; Chiba, Yusuke; Rubaba, Owen; Tashiro, Yosuke; Futamata, Hiroyuki

    2014-01-01

    The relationship between the bacterial communities in anolyte and anode biofilms and the electrochemical properties of microbial fuel cells (MFCs) was investigated when a complex organic waste-decomposing solution was continuously supplied to MFCs as an electron donor. The current density increased gradually and was maintained at approximately 100 to 150 mA m−2. Polarization curve analyses revealed that the maximum power density was 7.4 W m−3 with an internal resistance of 110 Ω. Bacterial community structures in the organic waste-decomposing solution and MFCs differed from each other. Clonal analyses targeting 16S rRNA genes indicated that bacterial communities in the biofilms on MFCs developed to specific communities dominated by novel Geobacter. Multidimensional scaling analyses based on DGGE profiles revealed that bacterial communities in the organic waste-decomposing solution fluctuated and had no dynamic equilibrium. Bacterial communities on the anolyte in MFCs had a dynamic equilibrium with fluctuations, while those of the biofilm converged to the Geobacter-dominated structure. These bacterial community dynamics of MFCs differed from those of control-MFCs under open circuit conditions. These results suggested that bacterial communities in the anolyte and biofilm have a gentle symbiotic system through electron flow, which resulted in the advance of current density from complex organic waste. PMID:24789988

  16. Concentrating bacterial cells using a ratchet system: a lattice Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Tao, Yuguo; Slater, Gary

    2012-02-01

    Rectification of motile E. coli bacteria has been observed in the presence of funnel-like channels. We present a lattice Monte Carlo model which takes into account both the size and the mechanical and thermodynamic properties of autonomous bacterial cells. The motion of the cells is composed of alternating run and tumble periods. We show that the rectification effect of the funnels is strongly dependent upon the effective random walk step length of the run/tumble cycle as well as the size of the funnel's aperture. Our results agree with experimental observations, and also confirm some conclusions from a previous simulation model of point-like bacteria. We also explore series of funnels as a means to pump and concentrate cells. We observe deviations from theoretical predictions when the size of the cells is comparable to that of the aperture of the funnel. The current model can be extended to study cells with different shapes, e.g. cigar-shape bacteria.

  17. Cytotoxicity and genotoxicity of bacterial magnetosomes against human retinal pigment epithelium cells

    PubMed Central

    Qi, Lei; Lv, Xiujuan; Zhang, Tongwei; Jia, Peina; Yan, Ruiying; Li, Shuli; Zou, Ruitao; Xue, Yuhua; Dai, Liming

    2016-01-01

    A variety of nanomaterials have been developed for ocular diseases. The ability of these nanomaterials to pass through the blood-ocular barrier and their biocompatibility are essential characteristics that must be considered. Bacterial magnetosomes (BMs) are a type of biogenic magnetic nanomaterials synthesized by magnetotactic bacteria. Due to their unique biomolecular membrane shell and narrow size distribution of approximately 30 nm, BMs can pass through the blood-brain barrier. The similarity of the blood-ocular barrier to the blood-brain barrier suggests that BMs have great potential as treatments for ocular diseases. In this work, BMs were isolated from magnetotactic bacteria and evaluated in various cytotoxicity and genotoxicity studies in human retinal pigment epithelium (ARPE-19) cells. The BMs entered ARPE-19 cells by endocytosis after a 6-h incubation and displayed much lower cytotoxicity than chemically synthesized magnetic nanoparticles (MNPs). MNPs exhibited significantly higher genotoxicity than BMs and promoted the expression of Bax (the programmed cell death acceleration protein) and the induction of greater cell necrosis. In BM-treated cells, apoptosis tended to be suppressed via increased expression of the Bcl-2 protein. In conclusion, BMs display excellent biocompatibility and potential for use in the treatment of ocular diseases. PMID:27246808

  18. Chronic bacterial infection activates autoreactive B cells and induces isotype switching and autoantigen-driven mutations.

    PubMed

    Jung, Sophie; Schickel, Jean-Nicolas; Kern, Aurélie; Knapp, Anne-Marie; Eftekhari, Pierre; Da Silva, Sylvia; Jaulhac, Benoît; Brink, Robert; Soulas-Sprauel, Pauline; Pasquali, Jean-Louis; Martin, Thierry; Korganow, Anne-Sophie

    2016-01-01

    The links between infections and the development of B-cell-mediated autoimmune diseases are still unclear. In particular, it has been suggested that infection-induced stimulation of innate immune sensors can engage low affinity autoreactive B lymphocytes to mature and produce mutated IgG pathogenic autoantibodies. To test this hypothesis, we established a new knock-in mouse model in which autoreactive B cells could be committed to an affinity maturation process. We show that a chronic bacterial infection allows the activation of such B cells and the production of nonmutated IgM autoantibodies. Moreover, in the constitutive presence of their soluble antigen, some autoreactive clones are able to acquire a germinal center phenotype, to induce Aicda gene expression and to introduce somatic mutations in the IgG heavy chain variable region on amino acids forming direct contacts with the autoantigen. Paradoxically, only lower affinity variants are detected, which strongly suggests that higher affinity autoantibodies secreting B cells are counterselected. For the first time, we demonstrate in vivo that a noncross-reactive infectious agent can activate and induce autoreactive B cells to isotype switching and autoantigen-driven mutations, but on a nonautoimmune background, tolerance mechanisms prevent the formation of consequently dangerous autoimmunity. PMID:26474536

  19. Cytotoxicity and genotoxicity of bacterial magnetosomes against human retinal pigment epithelium cells.

    PubMed

    Qi, Lei; Lv, Xiujuan; Zhang, Tongwei; Jia, Peina; Yan, Ruiying; Li, Shuli; Zou, Ruitao; Xue, Yuhua; Dai, Liming

    2016-01-01

    A variety of nanomaterials have been developed for ocular diseases. The ability of these nanomaterials to pass through the blood-ocular barrier and their biocompatibility are essential characteristics that must be considered. Bacterial magnetosomes (BMs) are a type of biogenic magnetic nanomaterials synthesized by magnetotactic bacteria. Due to their unique biomolecular membrane shell and narrow size distribution of approximately 30 nm, BMs can pass through the blood-brain barrier. The similarity of the blood-ocular barrier to the blood-brain barrier suggests that BMs have great potential as treatments for ocular diseases. In this work, BMs were isolated from magnetotactic bacteria and evaluated in various cytotoxicity and genotoxicity studies in human retinal pigment epithelium (ARPE-19) cells. The BMs entered ARPE-19 cells by endocytosis after a 6-h incubation and displayed much lower cytotoxicity than chemically synthesized magnetic nanoparticles (MNPs). MNPs exhibited significantly higher genotoxicity than BMs and promoted the expression of Bax (the programmed cell death acceleration protein) and the induction of greater cell necrosis. In BM-treated cells, apoptosis tended to be suppressed via increased expression of the Bcl-2 protein. In conclusion, BMs display excellent biocompatibility and potential for use in the treatment of ocular diseases. PMID:27246808

  20. Peptidoglycan at its peaks: how chromatographic analyses can reveal bacterial cell-wall structure and assembly

    PubMed Central

    Desmarais, Samantha M.; De Pedro, Miguel A.; Cava, Felipe; Huang, Kerwyn Casey

    2013-01-01

    The peptidoglycan (PG) cell wall is a unique macromolecule responsible for both shape determination and cellular integrity under osmotic stress in virtually all bacteria. A quantitative understanding of the relationships between PG architecture, morphogenesis, immune system activation, and pathogenesis can provide molecular-scale insights into the function of proteins involved in cell-wall synthesis and cell growth. High Performance Liquid Chromatography (HPLC) has played an important role in our understanding of the structural and chemical complexity of the cell wall by providing an analytical method to quantify differences in chemical composition. Here, we present a primer on the basic chemical features of wall structure that can be revealed through HPLC, along with a description of the applications of HPLC PG analyses for interpreting the effects of genetic and chemical perturbations to a variety of bacterial species in different environments. We describe the physical consequences of different PG compositions on cell shape, and review complementary experimental and computational methodologies for PG analysis. Finally, we present a partial list of future targets of development for HPLC and related techniques. PMID:23679048

  1. Cytotoxicity and genotoxicity of bacterial magnetosomes against human retinal pigment epithelium cells

    NASA Astrophysics Data System (ADS)

    Qi, Lei; Lv, Xiujuan; Zhang, Tongwei; Jia, Peina; Yan, Ruiying; Li, Shuli; Zou, Ruitao; Xue, Yuhua; Dai, Liming

    2016-06-01

    A variety of nanomaterials have been developed for ocular diseases. The ability of these nanomaterials to pass through the blood-ocular barrier and their biocompatibility are essential characteristics that must be considered. Bacterial magnetosomes (BMs) are a type of biogenic magnetic nanomaterials synthesized by magnetotactic bacteria. Due to their unique biomolecular membrane shell and narrow size distribution of approximately 30 nm, BMs can pass through the blood-brain barrier. The similarity of the blood-ocular barrier to the blood-brain barrier suggests that BMs have great potential as treatments for ocular diseases. In this work, BMs were isolated from magnetotactic bacteria and evaluated in various cytotoxicity and genotoxicity studies in human retinal pigment epithelium (ARPE-19) cells. The BMs entered ARPE-19 cells by endocytosis after a 6-h incubation and displayed much lower cytotoxicity than chemically synthesized magnetic nanoparticles (MNPs). MNPs exhibited significantly higher genotoxicity than BMs and promoted the expression of Bax (the programmed cell death acceleration protein) and the induction of greater cell necrosis. In BM-treated cells, apoptosis tended to be suppressed via increased expression of the Bcl-2 protein. In conclusion, BMs display excellent biocompatibility and potential for use in the treatment of ocular diseases.

  2. Controlled delivery of bioactive molecules into live cells using the bacterial mechanosensitive channel MscL

    PubMed Central

    Doerner, Julia F.; Febvay, Sebastien; Clapham, David E.

    2013-01-01

    Bacterial mechanosensitive channels are some of the largest pores in nature. In particular, MscL, with a pore diameter > 25 Å, allows passage of large organic ions and small proteins. Functional MscL reconstitution into lipids has been proposed for applications in vesicular-based drug release. Here we show that these channels can be functionally expressed in mammalian cells to afford rapid controlled uptake of membrane impermeable molecules. We first demonstrate that MscL gating in response to increased membrane tension is preserved in mammalian cell membranes. Molecular delivery is controlled by adopting an established method of MscL charge-induced activation. We then determine pore size limitations using fluorescently labeled model cargoes. Finally, we activate MscL to introduce the cell-impermeable bi-cyclic peptide phalloidin, a specific marker for actin filaments, into cells. We propose that MscL will be a useful tool for gated and controlled delivery of bioactive molecules into cells. PMID:22871809

  3. Colour removal from aqueous solutions of metal-complex azo dyes using bacterial cells of Shewanella strain J18 143.

    PubMed

    Li, Tie; Guthrie, James Thomas

    2010-06-01

    The decoloration treatment of textile dye effluents through biodegradation, using bacterial cells, has been studied as a possible means of solving some of the problems that are associated with the pollution of water sources by colorants. In this paper, the use of whole bacterial cells of Shewanella J18 143 for the reduction of aqueous solutions of selected mono-azo, metal-complex dyes, namely Irgalan Grey GLN, Irgalan Black RBLN and Irgalan Blue 3GL, was investigated. The effects of temperature, pH and dye concentration on colour removal were also investigated and shown to be important. The operative conditions for the removal of colour were 30 degrees C, at pH 6.8, with a final dye concentration of 0.12 g/L in the colour reduction system. This study provides an extension to the application of Shewanella strain J18 143 bacterial cells in the decoloration of textile wastewaters. PMID:20167478

  4. Micro Corona Ionizer as an Ozone Source for Bacterial Cell Lysis

    NASA Astrophysics Data System (ADS)

    Lee, Eun-Hee; Lim, Hyun Jeong; Chua, Beelee; Son, Ahjeong

    2015-04-01

    DNA extraction is a critical process of DNA assays including polymerase chain reaction (PCR), microarrays, molecular cloning, and DNA hybridization which has been well established and can be implemented by commercial kits. DNA extraction involves cell lysis, precipitation, and purification through the combination of physical and chemical processes. Cell lysis is essential to high DNA recovery yield which can be achieved via a variety of physical, chemical, and enzymatic methods. However, these methods were originally developed for bioassays that were labor intensive, time consuming, and vulnerable to contamination and inhibition. Here, we proposed to employ a micro corona ionizer as an ozone source to lyse bacterial cells. Ozone has been well known and used as a disinfectant which allows cell lysis and DNA extraction. Previously, we have shown that a micro corona ionizer is capable of generating a significant amount of ozone. In this study, we employed the micro corona ionizer for the bacterial cell lysis which consists of a 50 μm diameter cantilever wire as the discharge cathode and a 50 μm thick copper foil as anode. Applied voltages varied from 1900 to 2200 V with corresponding corona currents from 16 to 28 μA. The resultant ozone (concentration > 0.14 ppm) generated from the micro corona ionizer was bubbled into the sample via a miniature pump. We demonstrated the cell lysis of Pseudomonas putida as the target bacterium using the micro corona ionizer. At a flow rate of 38 ml/min and applied corona voltage of 2000 V, 98.5 ± 0.2% lysis (normalized to sonication result) was achieved after 10 min. In comparison, untreated and air-treated samples showed normalized % lysis of 11.9 ± 2.4 and 36.1 ± 1.7%, respectively. We also showed that the cell lysis efficiency could be significantly increased by increasing the flow rate and the applied corona voltage. By comparing the experimental results for continuous and pulsed treatment, we verified that the percentage of

  5. Seasonal and spatial distribution of bacterial biomass and the percentage of viable cells in a reservoir of Alabama

    USGS Publications Warehouse

    Tietjen, T.E.; Wetzel, R.G.

    2003-01-01

    Spatial community dynamics of bacterioplankton were evaluated along the length of the former stream channel of Elledge Lake, a small reservoir in western Alabama. The reservoir was strongly stratified from April to October with up to a 10??C temperature difference across the 1 m deep metalimnion. Bacterial biomass was highest during late summer, with a general pattern of increasing abundance from the inflowing river (???10 ??g C l-1) to the dam (???20-30 ??g C l-1). Bacterial numbers also increased following a >10-fold increase in turbidity associated with a major precipitation event, although only ???10% of these cells were viable. The percentage of viable cells generally increased through the stratified period with 50-70% viable cells in late summer. Overall, an average of 38% of bacterial cells were viable, with a range from <20 to 70%. Although these values were similar to those found by others, additional patterns were identified that have not been previously observed: a marked decline in viable cells was found following turbid storm inflows and increases in the percentage of viable cells occurred during spring warming and following autumnal mixing events. Although a modest increase in abundance occurred along the gradient from inflow down-reservoir to the dam, bacterial abundance did not increase near the dam in a pattern coincident with the commonly observed increased algal biomass in the lacustrine portion of reservoir ecosystems. The increases observed in bacterial viability moving from the inflowing rivers towards the dam and later in stratified periods stress the importance of differences in environmental conditions in time and space in regulating bacterial biomass and development, as well as of shifts that would be anticipated accompanying altered hydrological regimes under climatic change.

  6. Modulation of pokeweed mitogen-induced B cell differentiation by polymorphonuclear cells: effects of bacterial lipopolysaccharides.

    PubMed

    Tortorella, C; Ottolenghi, A; Testa, A; Decandia, P; Jirillo, E; Antonaci, S

    1994-01-01

    The capacity of polymorphonuclear (PMN) cells to release several cytokines stresses the potential immunomodulatory role of these cells. The effects mediated by purified PMN cell suspensions on pokeweed mitogen (PWM)-driven B cell differentiation was investigated. Results showed that the addition of increasing concentrations of resting PMN cells to peripheral blood mononuclear cell (PBMC) cultures gave rise to inhibition of immunoglobulin (Ig) production. At the same time, similar results were obtained using lipopolysaccharide (LPS)-pretreated PMN cells. In contrast, when LPS, at different concentrations, and PMN cells were both added to PBMC cultures an enhancement of IgG or IgM release in comparison with cultures treated with PMN cells only occurred at low PMN cell/PBMC ratios (1:20 and 1:10), which was maximal in the presence of 10 or 100 ng/ml LPS. This effect was probably mediated by LPS-induced monocyte stimulation, since the supplementation of LPS-activated monocyte supernatants to PMN cell/PBMC cocultures led to an Ig synthesis which mimicked that seen in similarly-treated PBMC cultures. These data suggest the occurrence of various in vitro modulatory effects in the interactions between PMN, LPS and lymphocytes in a PWM-induced B cell polyclonal responsiveness system. PMID:8047026

  7. Fluorescence-Activated Cell Sorting of Live Versus Dead Bacterial Cells and Spores

    NASA Technical Reports Server (NTRS)

    Bernardini, James N.; LaDuc, Myron T.; Diamond, Rochelle; Verceles, Josh

    2012-01-01

    This innovation is a coupled fluorescence-activated cell sorting (FACS) and fluorescent staining technology for purifying (removing cells from sampling matrices), separating (based on size, density, morphology, and live versus dead), and concentrating cells (spores, prokaryotic, eukaryotic) from an environmental sample.

  8. CAP-D3 Promotes Bacterial Clearance in Human Intestinal Epithelial Cells by Repressing Expression of Amino Acid Transporters

    PubMed Central

    Kemp, Jacqueline R.; Nickerson, Kourtney P.; Deutschman, Emily; Kim, Yeojung; West, Gail; Sadler, Tammy; Stylianou, Eleni; Krokowski, Dawid; Hatzoglou, Maria; de la Motte, Carol; Rubin, Brian P.; Fiocchi, Claudio

    2015-01-01

    BACKGROUND & AIMS Defects in colonic epithelial barrier defenses are associated with ulcerative colitis (UC). The proteins that regulate bacterial clearance in the colonic epithelium have not been completely identified. The chromosome-associated protein D3 (dCAP-D3), regulates responses to bacterial infection. We examined whether CAP-D3 promotes bacterial clearance in human colonic epithelium. METHODS Clearance of Salmonella or adherent-invasive Escherichia coli LF82 was assessed by gentamycin protection assays in HT-29 and Caco-2 cells expressing small hairpin RNAs against CAP-D3. We used immunoblot assays to measure levels of CAP-D3 in colonic epithelial cells from patients with UC and healthy individuals (controls). RNA sequencing identified genes activated by CAP-D3. We analyzed the roles of CAP-D3 target genes in bacterial clearance using gentamycin protection and immunofluorescence assays and studies with pharmacologic inhibitors. RESULTS CAP-D3 expression was reduced in colonic epithelial cells from patients with active UC. Reduced CAP-D3 expression decreased autophagy and impaired intracellular bacterial clearance by HT-29 and Caco-2 colonic epithelial cells. Lower levels of CAP-D3 increased transcription of genes encoding SLC7A5 and SLC3A2, whose products heterodimerize to form an amino acid transporter in HT-29 cells following bacterial infection; levels of SLC7A5–SLC3A2 were increased in tissues from patients with UC, compared with controls. Reduced CAP-D3 in HT-29 cells resulted in earlier recruitment of SLC7A5 to Salmonella-containing vacuoles, increased activity of mTORC1, and increased survival of bacteria. Inhibition of SLC7A5–SLC3A2 or mTORC1 activity rescued the bacterial clearance defects of CAP-D3– deficient cells. CONCLUSIONS CAP-D3 downregulates transcription of genes that encode amino acid transporters (SLC7A5 and SLC3A2) to promote bacterial autophagy by colon epithelial cells. Levels of CAP-D3 protein are reduced in patients with

  9. Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities.

    PubMed

    Penesyan, Anahit; Gillings, Michael; Paulsen, Ian T

    2015-01-01

    Bacterial resistance is a rapidly escalating threat to public health as our arsenal of effective antibiotics dwindles. Therefore, there is an urgent need for new antibiotics. Drug discovery has historically focused on bacteria growing in planktonic cultures. Many antibiotics were originally developed to target individual bacterial cells, being assessed in vitro against microorganisms in a planktonic mode of life. However, towards the end of the 20th century it became clear that many bacteria live as complex communities called biofilms in their natural habitat, and this includes habitats within a human host. The biofilm mode of life provides advantages to microorganisms, such as enhanced resistance towards environmental stresses, including antibiotic challenge. The community level resistance provided by biofilms is distinct from resistance mechanisms that operate at a cellular level, and cannot be overlooked in the development of novel strategies to combat infectious diseases. The review compares mechanisms of antibiotic resistance at cellular and community levels in the light of past and present antibiotic discovery efforts. Future perspectives on novel strategies for treatment of biofilm-related infectious diseases are explored. PMID:25812150

  10. Specific Interactions of Clausin, a New Lantibiotic, with Lipid Precursors of the Bacterial Cell Wall

    PubMed Central

    Bouhss, Ahmed; Al-Dabbagh, Bayan; Vincent, Michel; Odaert, Benoit; Aumont-Nicaise, Magalie; Bressolier, Philippe; Desmadril, Michel; Mengin-Lecreulx, Dominique; Urdaci, Maria C.; Gallay, Jacques

    2009-01-01

    Abstract We investigated the specificity of interaction of a new type A lantibiotic, clausin, isolated from Bacillus clausii, with lipid intermediates of bacterial envelope biosynthesis pathways. Isothermal calorimetry and steady-state fluorescence anisotropy (with dansylated derivatives) identified peptidoglycan lipids I and II, embedded in dodecylphosphocholine micelles, as potential targets. Complex formation with dissociation constants of ∼0.3 μM and stoichiometry of ∼2:1 peptides/lipid intermediate was observed. The interaction is enthalpy-driven. For the first time, to our knowledge, we evidenced the interaction between a lantibiotic and C55-PP-GlcNAc, a lipid intermediate in the biosynthesis of other bacterial cell wall polymers, including teichoic acids. The pyrophosphate moiety of these lipid intermediates was crucial for the interaction because a strong binding with undecaprenyl pyrophosphate, accounting for 80% of the free energy of binding, was observed. No binding occurred with the undecaprenyl phosphate derivative. The pentapeptide and the N-acetylated sugar moieties strengthened the interaction, but their contributions were weaker than that of the pyrophosphate group. The lantibiotic decreased the mobility of the pentapeptide. Clausin did not interact with the water-soluble UDP-MurNAc- and pyrophosphoryl-MurNAc-pentapeptides, pointing out the importance of the hydrocarbon chain of the lipid target. PMID:19720027

  11. Specific interactions of clausin, a new lantibiotic, with lipid precursors of the bacterial cell wall.

    PubMed

    Bouhss, Ahmed; Al-Dabbagh, Bayan; Vincent, Michel; Odaert, Benoit; Aumont-Nicaise, Magalie; Bressolier, Philippe; Desmadril, Michel; Mengin-Lecreulx, Dominique; Urdaci, Maria C; Gallay, Jacques

    2009-09-01

    We investigated the specificity of interaction of a new type A lantibiotic, clausin, isolated from Bacillus clausii, with lipid intermediates of bacterial envelope biosynthesis pathways. Isothermal calorimetry and steady-state fluorescence anisotropy (with dansylated derivatives) identified peptidoglycan lipids I and II, embedded in dodecylphosphocholine micelles, as potential targets. Complex formation with dissociation constants of approximately 0.3 muM and stoichiometry of approximately 2:1 peptides/lipid intermediate was observed. The interaction is enthalpy-driven. For the first time, to our knowledge, we evidenced the interaction between a lantibiotic and C(55)-PP-GlcNAc, a lipid intermediate in the biosynthesis of other bacterial cell wall polymers, including teichoic acids. The pyrophosphate moiety of these lipid intermediates was crucial for the interaction because a strong binding with undecaprenyl pyrophosphate, accounting for 80% of the free energy of binding, was observed. No binding occurred with the undecaprenyl phosphate derivative. The pentapeptide and the N-acetylated sugar moieties strengthened the interaction, but their contributions were weaker than that of the pyrophosphate group. The lantibiotic decreased the mobility of the pentapeptide. Clausin did not interact with the water-soluble UDP-MurNAc- and pyrophosphoryl-MurNAc-pentapeptides, pointing out the importance of the hydrocarbon chain of the lipid target. PMID:19720027

  12. Effects of mimosine on Wolbachia in mosquito cells: cell cycle suppression reduces bacterial abundance

    PubMed Central

    Fallon, Ann M.

    2016-01-01

    The plant allelochemical l-mimosine (β-[N-(3-hydroxy-4-pyridone)]-α-aminopropionic acid; leucenol) resembles the nonessential amino acid, tyrosine. Because the obligate intracellular alphaproteobacterium, Wolbachia pipientis, metabolizes amino acids derived from host cells, the effects of mimosine on infected and uninfected mosquito cells were investigated. The EC50 for mimosine was 6–7 μM with Aedes albopictus C7-10 and C/wStr cell lines, and was not influenced by infection status. Mosquito cells responded to concentrations of mimosine substantially lower than those used to synchronize the mammalian cell cycle; at concentrations of 30–35 μM, mimosine reversibly arrested the mosquito cell cycle at the G1/S boundary and inhibited growth of Wolbachia strain wStr. Although lower concentrations of mimosine slightly increased wStr abundance, concentrations that suppressed the cell cycle reduced Wolbachia levels. PMID:26019119

  13. EXAFS study on the cause of enrichment of heavy REEs on bacterial cell surfaces

    NASA Astrophysics Data System (ADS)

    Takahashi, Yoshio; Yamamoto, Mika; Yamamoto, Yuhei; Tanaka, Kazuya

    2010-10-01

    Rare earth element (REE) pattern is a unique geochemical tracer and has been measured for various natural materials. Among these, the REE distribution pattern between bacteria and water exhibits anomalous enrichment in the heavy REE (HREE) part, which can act as a signature of bacteria-related materials in natural samples. In this study, the REE binding site on the cell surface of a Gram-positive bacterium ( Bacillus subtilis) responsible for HREE enrichment has been identified using extended X-ray absorption fine structure (EXAFS) coupled with a study of the variation in REE distribution patterns. The EXAFS data showed that the HREEs form complexes with multiple phosphate site (including phosphoester site) with a larger coordination number (CN) at lower REE-bacteria ratios ([REE]/[bac]), while light and middle REEs form complexes to the phosphate site with a lower CN. The fraction coordinated to carboxylate increased for all REEs with increasing [REE]/[bac] ratio. On the other hand, the enrichment of HREE in the REE distribution patterns of the bacteria was less marked with increasing [REE]/[bac] ratio. This result is consistent with the EXAFS data, because the REE pattern of surface complex with multiple phosphate in a reference material exhibits a monotonous increase for heavier REE, while phosphate surface complex with a low CN and a carboxylate site reach a maximum around Sm and Eu. Based on these results, it is clear that the REE are primarily bound to the phosphate site and subsequently to the carboxylate site on the bacterial cell surface. Regarding the pH dependence in the range (3 < pH < 7), both the EXAFS and REE pattern data indicate that the fraction of REE-carboxylate increased as the pH increases. The results above obtained for B. subtilis were also valid for Escherichia coli, a Gram-negative bacterium, showing that similar phosphate and carboxylate sites are also available in the cell walls of E. coli, or other Gram negative bacteria. In all our

  14. Genome-scale quantitative characterization of bacterial protein localization dynamics throughout the cell cycle

    PubMed Central

    Kuwada, Nathan J; Traxler, Beth; Wiggins, Paul A

    2015-01-01

    Bacterial cells display both spatial and temporal organization, and this complex structure is known to play a central role in cellular function. Although nearly one-fifth of all proteins in Escherichia coli localize to specific subcellular locations, fundamental questions remain about how cellular-scale structure is encoded at the level of molecular-scale interactions. One significant limitation to our understanding is that the localization behavior of only a small subset of proteins has been characterized in detail. As an essential step toward a global model of protein localization in bacteria, we capture and quantitatively analyze spatial and temporal protein localization patterns throughout the cell cycle for nearly every protein in E. coli that exhibits nondiffuse localization. This genome-scale analysis reveals significant complexity in patterning, notably in the behavior of DNA-binding proteins. Complete cell-cycle imaging also facilitates analysis of protein partitioning to daughter cells at division, revealing a broad and robust assortment of asymmetric partitioning behaviors. PMID:25353361

  15. Relative Rates of Surface and Volume Synthesis Set Bacterial Cell Size.

    PubMed

    Harris, Leigh K; Theriot, Julie A

    2016-06-01

    Many studies have focused on the mechanisms underlying length and width determination in rod-shaped bacteria. Here, we focus instead on cell surface area to volume ratio (SA/V) and demonstrate that SA/V homeostasis underlies size determination. We propose a model whereby the instantaneous rates of surface and volume synthesis both scale with volume. This model predicts that these relative rates dictate SA/V and that cells approach a new steady-state SA/V exponentially, with a decay constant equal to the volume growth rate. To test this, we exposed diverse bacterial species to sublethal concentrations of a cell wall biosynthesis inhibitor and observed dose-dependent decreases in SA/V. Furthermore, this decrease was exponential and had the expected decay constant. The model also quantitatively describes SA/V alterations induced by other chemical, nutritional, and genetic perturbations. We additionally present evidence for a surface material accumulation threshold underlying division, sensitizing cell length to changes in SA/V requirements. PMID:27259152

  16. Increased electrical output when a bacterial ABTS oxidizer is used in a microbial fuel cell.

    PubMed

    Hunter, William J; Manter, Daniel K

    2011-02-01

    Microbial fuel cells (MFCs) are a technology that provides electrical energy from the microbial oxidation of organic compounds. Most MFCs use oxygen as the oxidant in the cathode chamber. This study examined the formation in culture of an unidentified bacterial oxidant and investigated the performance of this oxidant in a two-chambered MFC with a proton exchange membrane and an uncoated carbon cathode. DNA, FAME profile and characterization studies identified the microorganism that produced the oxidant as Burkholderia cenocepacia. The oxidant was produced by log phase cells, oxidized the dye 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), had a mass below 1 kD, was heat stable (121°C) and was soluble in ethanol. In a MFC with a 1000 Ω load and ABTS as a mediator, the oxidizer increased cell voltage 11 times higher than atmospheric oxygen and 2.9 times higher than that observed with ferricyanide in the cathode chamber. No increase in cell voltage was observed when no mediator was present. Organisms that produce and release oxidizers into the media may prove useful as bio-cathodes by improving the electrical output of MFCs. PMID:20853166

  17. Bacterial porin disrupts mitochondrial membrane potential and sensitizes host cells to apoptosis.

    PubMed

    Kozjak-Pavlovic, Vera; Dian-Lothrop, Elke A; Meinecke, Michael; Kepp, Oliver; Ross, Katharina; Rajalingam, Krishnaraj; Harsman, Anke; Hauf, Eva; Brinkmann, Volker; Günther, Dirk; Herrmann, Ines; Hurwitz, Robert; Rassow, Joachim; Wagner, Richard; Rudel, Thomas

    2009-10-01

    The bacterial PorB porin, an ATP-binding beta-barrel protein of pathogenic Neisseria gonorrhoeae, triggers host cell apoptosis by an unknown mechanism. PorB is targeted to and imported by host cell mitochondria, causing the breakdown of the mitochondrial membrane potential (DeltaPsi(m)). Here, we show that PorB induces the condensation of the mitochondrial matrix and the loss of cristae structures, sensitizing cells to the induction of apoptosis via signaling pathways activated by BH3-only proteins. PorB is imported into mitochondria through the general translocase TOM but, unexpectedly, is not recognized by the SAM sorting machinery, usually required for the assembly of beta-barrel proteins in the mitochondrial outer membrane. PorB integrates into the mitochondrial inner membrane, leading to the breakdown of DeltaPsi(m). The PorB channel is regulated by nucleotides and an isogenic PorB mutant defective in ATP-binding failed to induce DeltaPsi(m) loss and apoptosis, demonstrating that dissipation of DeltaPsi(m) is a requirement for cell death caused by neisserial infection. PMID:19851451

  18. Cell resistant zwitterionic polyelectrolyte coating promotes bacterial attachment: an adhesion contradiction.

    PubMed

    Martinez, Jessica S; Kelly, Kristopher D; Ghoussoub, Yara E; Delgado, Jose D; Keller Iii, Thomas C S; Schlenoff, Joseph B

    2016-04-01

    Polymers of various architectures with zwitterionic functionality have recently been shown to effectively suppress nonspecific fouling of surfaces by proteins and prokaryotic (bacteria) or eukaryotic (mammalian) cells as well as other microorganisms and environmental contaminants. In this work, zwitterionic copolymers were used to make thin coatings on substrates with the layer-by-layer method. Polyelectrolyte multilayers, PEMUs, were built with [poly(allylamine hydrochloride)], PAH, and copolymers of acrylic acid and either the AEDAPS zwitterionic group 3-[2-(acrylamido)-ethyldimethyl ammonio] propane sulfonate (PAA-co-AEDAPS), or benzophenone (PAABp). Benzophenone allowed the PEMU to be toughened by photocrosslinking post-deposition. The attachment of two mammalian cell lines, rat aortic smooth muscle (A7r5) and mouse fibroblasts (3T3), and the biofilm-forming Gram-negative bacteria Escherichia coli was studied on PEMUs terminated with PAA-co-AEDAPS. Consistent with earlier studies, it is shown that PAH/PAA-co-AEDAPS PEMUs resist the adhesion of mammalian cells, but, contrary to our initial hypothesis, are bacterial adhesive and significantly so after maximizing the surface presentation of PAA-co-AEDAPS. This unexpected contrast in the adhesive behavior of prokaryotic and eukaryotic cells is explained by differences in adhesion mechanisms as well as different responses to the topology and morphology of the multilayer surface. PMID:26872345

  19. Bacterial capsular polysaccharide prevents the onset of asthma through T-cell activation.

    PubMed

    Johnson, Jenny L; Jones, Mark B; Cobb, Brian A

    2015-04-01

    Over the last four decades, increases in the incidence of immune-mediated diseases in the Western world have been linked to changes in microbial exposure. It is becoming increasingly clear that the normal microbiota in the gut can profoundly alter susceptibility to a wide range of diseases, such as asthma, in which immune homeostasis is disrupted, yet the mechanisms governing this microbial influence remains poorly defined. In this study, we show that gastrointestinal exposure to PSA, a capsular polysaccharide derived from the commensal bacterium Bacteroides fragilis, significantly limits susceptibility to the induction of experimental asthma. We report that direct treatment of mice with PSA generates protection from asthma, and this effect can be given to a naïve recipient by adoptive transfer of CD4(+) T cells from PSA-exposed mice. Remarkably, we found that these PSA-induced T cells are not canonical FoxP3(+) regulatory T cells, but that they potently inhibit both Th1 and Th2 models of asthma in an IL-10-dependent fashion. These findings reveal that bacterial polysaccharides link the microbiota with the peripheral immune system by activating CD4(+)Foxp3(-) T cells upon exposure in the gut, and they facilitate resistance to unnecessary inflammatory responses via the production of IL-10. PMID:25347992

  20. Autonomous bacterial localization and gene expression based on nearby cell receptor density

    PubMed Central

    Wu, Hsuan-Chen; Tsao, Chen-Yu; Quan, David N; Cheng, Yi; Servinsky, Matthew D; Carter, Karen K; Jee, Kathleen J; Terrell, Jessica L; Zargar, Amin; Rubloff, Gary W; Payne, Gregory F; Valdes, James J; Bentley, William E

    2013-01-01

    Escherichia coli were genetically modified to enable programmed motility, sensing, and actuation based on the density of features on nearby surfaces. Then, based on calculated feature density, these cells expressed marker proteins to indicate phenotypic response. Specifically, site-specific synthesis of bacterial quorum sensing autoinducer-2 (AI-2) is used to initiate and recruit motile cells. In our model system, we rewired E. coli's AI-2 signaling pathway to direct bacteria to a squamous cancer cell line of head and neck (SCCHN), where they initiate synthesis of a reporter (drug surrogate) based on a threshold density of epidermal growth factor receptor (EGFR). This represents a new type of controller for targeted drug delivery as actuation (synthesis and delivery) depends on a receptor density marking the diseased cell. The ability to survey local surfaces and initiate gene expression based on feature density represents a new area-based switch in synthetic biology that will find use beyond the proposed cancer model here. PMID:23340842

  1. Effects of zinc oxide nanoparticles on Kupffer cell phagosomal motility, bacterial clearance, and liver function

    PubMed Central

    Watson, Christa Y; Molina, Ramon M; Louzada, Andressa; Murdaugh, Kimberly M; Donaghey, Thomas C; Brain, Joseph D

    2015-01-01

    Background Zinc oxide engineered nanoparticles (ZnO ENPs) have potential as nanomedicines due to their inherent properties. Studies have described their pulmonary impact, but less is known about the consequences of ZnO ENP interactions with the liver. This study was designed to describe the effects of ZnO ENPs on the liver and Kupffer cells after intravenous (IV) administration. Materials and methods First, pharmacokinetic studies were conducted to determine the tissue distribution of neutron-activated 65ZnO ENPs post-IV injection in Wistar Han rats. Then, a noninvasive in vivo method to assess Kupffer cell phagosomal motility was employed using ferromagnetic iron particles and magnetometry. We also examined whether prior IV injection of ZnO ENPs altered Kupffer cell bactericidal activity on circulating Pseudomonas aeruginosa. Serum and liver tissues were collected to assess liver-injury biomarkers and histological changes, respectively. Results We found that the liver was the major site of initial uptake of 65ZnO ENPs. There was a time-dependent decrease in tissue levels of 65Zn in all organs examined, refecting particle dissolution. In vivo magnetometry showed a time-dependent and transient reduction in Kupffer cell phagosomal motility. Animals challenged with P. aeruginosa 24 hours post-ZnO ENP injection showed an initial (30 minutes) delay in vascular bacterial clearance. However, by 4 hours, IV-injected bacteria were cleared from the blood, liver, spleen, lungs, and kidneys. Seven days post-ZnO ENP injection, creatine phosphokinase and aspartate aminotransferase levels in serum were significantly increased. Histological evidence of hepatocyte damage and marginated neutrophils were observed in the liver. Conclusion Administration of ZnO ENPs transiently inhibited Kupffer cell phagosomal motility and later induced hepatocyte injury, but did not alter bacterial clearance from the blood or killing in the liver, spleen, lungs, or kidneys. Our data show that

  2. A miniature porous aluminum oxide-based flow-cell for online water quality monitoring using bacterial sensor cells.

    PubMed

    Yagur-Kroll, Sharon; Schreuder, Erik; Ingham, Colin J; Heideman, René; Rosen, Rachel; Belkin, Shimshon

    2015-02-15

    The use of live bacterial reporters as sensing entities in whole-cell biosensors allows the investigation of the biological effects of a tested sample, as well as the bioavailability of its components. Here we present a proof of concept for a new design for online continuous water monitoring flow-cell biosensor, incorporating recombinant reporter bacteria, engineered to generate an optical signal (fluorescent or bioluminescent) in the presence of the target compound(s). At the heart of the flow-cell is a disposable chip made of porous aluminum oxide (PAO), which retains the sensor microorganisms on its rigid planar surface, while its high porosity allows an undisturbed access both to the sample and to essential nutrients. The ability of the bacterial reporters to detect model toxic chemicals was first demonstrated using a "naked" PAO chip placed on solid agar, and later in a chip encased in a specially designed flow-through configuration which enables continuous on-line monitoring. The applicability of the PAO chip to simultaneous online detection of diverse groups of chemicals was demonstrated by the incorporation of a 6-member sensor array into the flow-through chip. The selective response of the array was also confirmed in spiked municipal wastewater effluents. Sensing activity was retained by the bacteria after 12-weeks storage of freeze-dried biochips, demonstrating the biochip potential as a simple minimal maintenance "plug-in" cartridge. This low-cost and easy to handle PAO-based flow-cell biosensor may serve as a basis for a future platform for water quality monitoring. PMID:25441411

  3. Enthalpies and entropies of proton and cadmium adsorption onto Bacillus subtilis bacterial cells from calorimetric measurements

    NASA Astrophysics Data System (ADS)

    Gorman-Lewis, Drew; Fein, Jeremy B.; Jensen, Mark P.

    2006-10-01

    We used titration calorimetry to measure the bulk heats of proton and Cd adsorption onto a common Gram positive soil bacterium Bacillus subtilis at 25.0 °C. Using the 4-site non-electrostatic model of Fein et al. [Fein, J.B., Boily, J.-F., Yee, N., Gorman-Lewis, D., Turner, B.F., 2005. Potentiometric titrations of Bacillus subtilis cells to low pH and a comparison of modeling approaches. Geochim. Cosmochim. Acta69 (5), 1123-1132.] to describe the bacterial surface reactivity to protons, our bulk enthalpy measurements can be used to determine the following site-specific enthalpies of proton adsorption for Sites 1-4, respectively: -3.5 ± 0.2, -4.2 ± 0.2, -15.4 ± 0.9, and -35 ± 2 kJ/mol, and these values yield the following third law entropies of proton adsorption onto Sites 1-4, respectively: +51 ± 4, +78 ± 4, +79 ± 5, and +60 ± 20 J/mol K. An alternative data analysis using a 2-site Langmuir-Freundlich model to describe proton binding to the bacterial surface (Fein et al., 2005) resulted in the following site-specific enthalpies of proton adsorption for Sites 1 and 2, respectively: -3.6 ± 0.2 and -35.1 ± 0.3 kJ/mol. The thermodynamic values for Sites 1-3 for the non-electrostatic model and Site 1 of the Langmuir-Freundlich model of proton adsorption onto the bacterial surface are similar to those associated with multifunctional organic acid anions, such as citrate, suggesting that the protonation state of a bacterial surface site can influence the energetics of protonation of neighboring sites. Our bulk Cd enthalpy data, interpreted using the 2-site non-electrostatic Cd adsorption model of Borrok et al. [Borrok, D., Fein, J.B., Tischler, M., O'Loughlin, E., Meyer, H., Liss, M., Kemner, K.M., 2004b. The effect of acidic solutions and growth conditions on the adsorptive properties of bacterial surfaces. Chem. Geol.209 (1-2), 107-119.] to account for Cd adsorption onto B. subtilis, yield the following site-specific enthalpies of Cd adsorption onto bacterial

  4. Coronatine inhibits stomatal closure and delays hypersensitive response cell death induced by nonhost bacterial pathogens

    PubMed Central

    Lee, Seonghee; Ishiga, Yasuhiro; Clermont, Kristen

    2013-01-01

    Pseudomonas syringae is the most widespread bacterial pathogen in plants. Several strains of P. syringae produce a phytotoxin, coronatine (COR), which acts as a jasmonic acid mimic and inhibits plant defense responses and contributes to disease symptom development. In this study, we found that COR inhibits early defense responses during nonhost disease resistance. Stomatal closure induced by a nonhost pathogen, P. syringae pv. tabaci, was disrupted by COR in tomato epidermal peels. In addition, nonhost HR cell death triggered by P. syringae pv. tabaci on tomato was remarkably delayed when COR was supplemented along with P. syringae pv. tabaci inoculation. Using isochorismate synthase (ICS)-silenced tomato plants and transcript profiles of genes in SA- and JA-related defense pathways, we show that COR suppresses SA-mediated defense during nonhost resistance. PMID:23638370

  5. Nitrogen oxide cycle regulates nitric oxide levels and bacterial cell signaling

    PubMed Central

    Sasaki, Yasuyuki; Oguchi, Haruka; Kobayashi, Takuya; Kusama, Shinichiro; Sugiura, Ryo; Moriya, Kenta; Hirata, Takuya; Yukioka, Yuriya; Takaya, Naoki; Yajima, Shunsuke; Ito, Shinsaku; Okada, Kiyoshi; Ohsawa, Kanju; Ikeda, Haruo; Takano, Hideaki; Ueda, Kenji; Shoun, Hirofumi

    2016-01-01

    Nitric oxide (NO) signaling controls various metabolic pathways in bacteria and higher eukaryotes. Cellular enzymes synthesize and detoxify NO; however, a mechanism that controls its cellular homeostasis has not been identified. Here, we found a nitrogen oxide cycle involving nitrate reductase (Nar) and the NO dioxygenase flavohemoglobin (Fhb), that facilitate inter-conversion of nitrate, nitrite, and NO in the actinobacterium Streptomyces coelicolor. This cycle regulates cellular NO levels, bacterial antibiotic production, and morphological differentiation. NO down-regulates Nar and up-regulates Fhb gene expression via the NO-dependent transcriptional factors DevSR and NsrR, respectively, which are involved in the auto-regulation mechanism of intracellular NO levels. Nitrite generated by the NO cycles induces gene expression in neighboring cells, indicating an additional role of the cycle as a producer of a transmittable inter-cellular communication molecule. PMID:26912114

  6. Nitrogen oxide cycle regulates nitric oxide levels and bacterial cell signaling.

    PubMed

    Sasaki, Yasuyuki; Oguchi, Haruka; Kobayashi, Takuya; Kusama, Shinichiro; Sugiura, Ryo; Moriya, Kenta; Hirata, Takuya; Yukioka, Yuriya; Takaya, Naoki; Yajima, Shunsuke; Ito, Shinsaku; Okada, Kiyoshi; Ohsawa, Kanju; Ikeda, Haruo; Takano, Hideaki; Ueda, Kenji; Shoun, Hirofumi

    2016-01-01

    Nitric oxide (NO) signaling controls various metabolic pathways in bacteria and higher eukaryotes. Cellular enzymes synthesize and detoxify NO; however, a mechanism that controls its cellular homeostasis has not been identified. Here, we found a nitrogen oxide cycle involving nitrate reductase (Nar) and the NO dioxygenase flavohemoglobin (Fhb), that facilitate inter-conversion of nitrate, nitrite, and NO in the actinobacterium Streptomyces coelicolor. This cycle regulates cellular NO levels, bacterial antibiotic production, and morphological differentiation. NO down-regulates Nar and up-regulates Fhb gene expression via the NO-dependent transcriptional factors DevSR and NsrR, respectively, which are involved in the auto-regulation mechanism of intracellular NO levels. Nitrite generated by the NO cycles induces gene expression in neighboring cells, indicating an additional role of the cycle as a producer of a transmittable inter-cellular communication molecule. PMID:26912114

  7. Dynamics of the expanding DNA nucleoid released from a bacterial cell

    NASA Astrophysics Data System (ADS)

    Odijk, T.

    2000-03-01

    A semiquantitative theoretical discussion is given of a DNA nucleoid escaping from a bacterial cell after lysis. There is a strong excluded-volume effect causing the nucleoid to expand, though it may be held together globally by various constraints. It is argued that the friction is dominated by the fairly local motion of superhelical segments. In an intermediate regime, hydrodynamic screening is strong. In a diffusion model a self-similar solution is presented of the non-linear diffusion equation. An affinely deforming model for the expanding nucleoid is also given. The predicted rate of expansion seems to be in qualitative accord with recent, preliminary experiments on lysed Escherichia coli viewed under the microscope.

  8. Innate immunity: Bacterial cell-wall muramyl peptide targets the conserved transcription factor YB-1.

    PubMed

    Laman, A G; Lathe, R; Savinov, G V; Shepelyakovskaya, A O; Boziev, Kh M; Baidakova, L K; Chulin, A N; Brovko, F A; Svirshchevskaya, E V; Kotelevtsev, Y; Eliseeva, I A; Guryanov, S G; Lyabin, D N; Ovchinnikov, L P; Ivanov, V T

    2015-07-01

    The bacterial cell wall muramyl dipeptides MDP and glucosaminyl-MDP (GMDP) are powerful immunostimulators but their binding target remains controversial. We previously reported expression cloning of GMDP-binding polypeptides and identification of Y-box protein 1 (YB-1) as their sole target. Here we show specific binding of GMDP to recombinant YB-1 protein and subcellular colocalization of YB-1 and GMDP. GMDP binding to YB-1 upregulated gene expression levels of NF-κB2, a mediator of innate immunity. Furthermore, YB-1 knockdown abolished GMDP-induced Nfkb2 expression. GMDP/YB-1 stimulation led to NF-κB2 cleavage, transport of activated NF-κB2 p52 to the nucleus, and upregulation of NF-κB2-dependent chemokine Cxcr4 gene expression. Therefore, our findings identify YB-1 as new target for muramyl peptide signaling. PMID:26026270

  9. Using bacterial catalyst in the cathode of microbial desalination cell to improve wastewater treatment and desalination.

    PubMed

    Wen, Qinxue; Zhang, Huichao; Chen, Zhiqiang; Li, Yufei; Nan, Jun; Feng, Yujie

    2012-12-01

    A microbial desalination cell (MDC) is able to desalinate salt water without energy consumption whilst generating bioenergy. Previously MDCs used abiotic cathodes, which are restricted in application by high operating costs and low levels of sustainability whereas, in the present study, an aerobic biocathode consisting of carbon felt and bacterial catalysts was tested. The biocathode MDC produced a maximum voltage of 609 mV, the value of which was 136 mV higher than that of an air cathode MDC operated under the same conditions. The salinity of 39 mL of salt water (35 g L(-1) NaCl) was reduced by 92% using 0.441 L of anode solution (11.3:1), with a coulombic efficiency of 96.2 ± 3.8% and a total desalination rate of 2.83 mg h(-1). The biocathode MDC proved to be a promising approach for efficient desalination of salt water. PMID:23026321

  10. Effect of Bacterial Cell Moisture on the Sporicidal Activity of β-Propiolactone Vapor

    PubMed Central

    Hoffman, Robert K.

    1968-01-01

    The activity of a vapor-phase disinfectant is usually expressed in terms of the atmospheric relative humidity (RH). This study shows that, in β-propiolactone (BPL) vapor disinfection, the important factor is really the moisture content and location of water in the cell, and not necessarily the atmospheric RH. Previous studies revealed that only about 50% of the bacterial spores equilibrated to 45% RH were killed when exposed to the same RH to BPL vapor. On the other hand, all the spores equilibrated to and then exposed at 75% RH to BPL were readily killed. The present study shows that spores equilibrated to 98% RH are readily killed by BPL at 45% RH, but only 99% of the spores equilibrated to 75% RH are killed by BPL at 45% RH. Also, in order to be killed, desiccated spores must be exposed to BPL at higher humidities than would be required if the spores had not been previously desiccated. PMID:4967453

  11. Light-scattering Characteristics of Metal Nanoparticles on a Single Bacterial Cell.

    PubMed

    Kinoshita, Takamasa; Kiso, Keita; LE, Dung Q; Shiigi, Hiroshi; Nagaoka, Tsutomu

    2016-01-01

    Metal nanoparticles express unique light-scattering characteristics based on the localized surface plasmon resonance, which depends on the metal species, particle size, and aggregation state of the nanoparticles. Therefore, we focused on the light-scattering characteristics of metal nanoparticles, such as silver, gold, and copper oxide, adsorbed on a bacterium. Monodisperse silver nanoparticles expressed the strongest scattered light among them, and showed various colors of scattered light. Although a monodisperse gold nanoparticle produced monochromatic light (green color), the color of the scattered light strongly depended on the aggregation state of the nanoparticles on a bacterium. On the other hand, copper oxide nanoparticles expressed monochromatic light (blue color), regardless of their aggregation states on a bacterium. We examined details concerning the light-scattering characteristics of metal nanoparticles, and discussed the possibility of their applications to bacterial cell imaging. PMID:26960609

  12. A silicon cell cycle in a bacterial model of calcium phosphate mineralogenesis.

    PubMed

    Linton, Kathryn M; Tapping, Charles R; Adams, David G; CarterR, D Howard; Shore, Roger C; Aaron, Jean E

    2013-01-01

    The prokaryote Corynebacterium matruchotii produces calcium phosphate (bone salt) and may serve as a convenient model for examining individual factors relevant to vertebrate calcification. A factor of current clinical uncertainty is silicon. To investigate its possible role in biomineralisation advanced optical (digital deconvolution and 3D fluorescent image rendering) and electron microscopy (EDX microanalysis and elemental mapping) were applied to calcifying microbial colonies grown in graded Si concentrations (0-60mM). Cell viability was confirmed throughout by TO-PRO-3-iodide and SYTO-9 nucleic acid staining. It was observed that calcium accumulated in dense intracellular microspherical objects (types i-iii) as nanoparticles (5 nm, type i), nanospheres (30-50 nm, type ii) and filamentous clusters (0.1-0.5 μm, type iii), with a regular transitory Si content evident. With bacterial colony development (7-28 days) the P content increased from 5 to 60%, while Si was displaced from 60 to 5%, distinguishing the phenomenon from random contamination, and with a significant relationship (p<0.001) found between calcified object number and Si supplementation (optimum 0.01mM). The Si-containing, intracellular calcified objects (also positive for Mg and negative with Lysensor blue DND-167 for acidocalcisomes) were extruded naturally in bubble-like chains to complete the cycle by coating the cell surface with discrete mineral particles. These could be harvested by lysis, French press and density fractionation when Si was confirmed in a proportion. It was concluded that the unexplained orthopaedic activity of Si may derive from its special property to facilitate calcium phosphorylation in biological systems, thereby recapitulating an ancient and conserved bacterial cycle of calcification via silicification. PMID:23098642

  13. Bacterial nanocellulose/Nafion composite membranes for low temperature polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Jiang, Gao-peng; Zhang, Jing; Qiao, Jin-li; Jiang, Yong-ming; Zarrin, Hadis; Chen, Zhongwei; Hong, Feng

    2015-01-01

    Novel nanocomposite membranes aimed for both proton-exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) are presented in this work. The membranes are based on blending bacterial nanocellulose pulp and Nafion (abbreviated as BxNy, where x and y indicates the mass ratio of bacterial cellulose to Nafion). The structure and properties of BxNy membranes are characterized by FTIR, SEM, TG, DMA and EIS, along with water uptake, swelling behavior and methanol permeability tests. It is found that the BxNy composite membranes with reinforced concrete-like structure show excellent mechanical and thermal stability regardless of annealing. The water uptake plus area and volume swelling ratios are all decreased compared to Nafion membranes. The proton conductivities of pristine and annealed B1N9 are 0.071 and 0.056 S cm-1, respectively, at 30 °C and 100% humidity. Specifically, annealed B1N1 exhibited the lowest methanol permeability of 7.21 × 10-7 cm2 s-1. Through the selectivity analysis, pristine and annealed B1N7 are selected to assemble the MEAs. The performances of annealed B1N7 in PEMFC and DMFC show the maximum power densities of 106 and 3.2 mW cm-2, respectively, which are much higher than those of pristine B1N7 at 25 °C. The performances of the pristine and annealed B1N7 reach a level as high as 21.1 and 20.4 mW cm-2 at 80 °C in DMFC, respectively.

  14. Duodenal mucosal T cell subpopulation and bacterial cultures in acquired immune deficiency syndrome.

    PubMed

    Budhraja, M; Levendoglu, H; Kocka, F; Mangkornkanok, M; Sherer, R

    1987-05-01

    Enteric infections, chronic diarrhea frequently with no obvious etiology, and weight loss cause major morbidity and mortality in acquired immune deficiency syndrome (AIDS). Alterations in mucosal immunity may explain the increased incidence of enteric infections, and contamination of the upper small intestine with bacteria may be the cause of weight loss observed in these patients. To test this hypothesis we studied the mucosal T lymphocyte subset in duodenal mucosal biopsies in 14 AIDS and seven control patients. Duodenal fluid was also cultured for aerobic and anaerobic bacteria. There was a significant decrease among leu-3a T cells (helper/inducer) subset in AIDS. The proportion of mucosal T cells reacting with leu-2a (cytotoxic/suppressor) was significantly increased in AIDS patients. These patients also had a significant reversal of the normal mucosal helper/suppressor T cell ratio. There was no change in the number of leu-7 cells (cells mediate natural killer and antibody-dependent cellular cytotoxicity) as compared to controls. All patients with diarrhea and three of five patients without diarrhea had bacteria in their duodenal fluid. Mean number of organisms was 4.5 X 10(4)/ml. Cultures were negative in all control subjects. The results reveal that the abnormalities of T cell subpopulation in the blood of AIDS patients also occur in their duodenal mucosa. This immunological abnormality is associated with the bacterial colonization of upper gastrointestinal tract which may explain the diarrhea and weight loss observed in majority of our patients. The results also indicate that increased incidence of enteric infections in AIDS may be explained on the basis of altered mucosal immunity. PMID:2953237

  15. Carbon K-Edge Scanning Transmission X-ray Spectromicroscopy (STXM) of Uranium Binding to Bacterial Cells

    NASA Astrophysics Data System (ADS)

    Gillow, J.; Wirick, S.; Feser, M.; Jacobsen, C.; Francis, A.

    2002-12-01

    The sorption of uranium by bacteria was studied by interrogation of the C K-absorption edge using scanning transmission x-ray spectromicroscopy (STXM). The unique imaging and spectroscopy capability of STXM was used to elucidate the chemical environment of C in the bacterial cell. Washed whole cells and cell wall preparations of bacteria commonly found in soil environments including Pseudomonas fluorescens, Bacillus subtilis, the facultative anaerobe Shewanella putrefaciens and the strict anaerobe Clostridium sp. were exposed to uranyl nitrate at pH 5. After washing to remove potential surface precipitates and non-bonded uranium the cells and walls were dried onto TEM gridx. Standards (uranyl salts and organic complexes), bacterial cells unexposed, and U-exposed cells were analyzed by STXM at 280-310 eV with the C K-edge x-ray absorption near-edge spectroscopy (XANES) examined for evidence of U in the C coordination environment. Principle spectral features of the bacteria included the 285 eV C=C and 288 eV C=O 1s-π * resonances due to the major C function groups that comprise the bacterial cell wall. There was no change in peak position of 1s-π * spectral features for whole cells or cell walls when U was present. This indicates that U does not exert an influence on the electron resonance of C when bonded as carboxylate species at the bacterial cell surface. This finding is supported by the analysis of uranyl citrate and uranyl alanine standards. The extended x-ray absorption fine structure spectroscopy region of the C K-edge of bacterial cells exposed to U shows slight changes in spectral features at >290 eV. Other absorption edges accessible by soft x-ray spectroscopy were examined; U was detected at it's NV (736.2 eV) and NIV (778.3 eV) edges however there was poor resolution of U associated with the bacteria. Analysis at the O K-edge (529 eV) provided evidence for metal-ligand interaction and forms the basis for further study to gain a molecular

  16. Improved Method for Bacterial Cell Capture after Flow Cytometry Cell Sorting ▿

    PubMed Central

    Guillebault, D.; Laghdass, M.; Catala, P.; Obernosterer, I.; Lebaron, P.

    2010-01-01

    Fixed cells with different nucleic acid contents and scatter properties (low nucleic acid [LNA], high nucleic acid 1 [HNA1], and HNA2) were sorted by flow cytometry (FCM). For each sort, 10,000 cells were efficiently captured on poly-l-lysine-coated microplates, resulting in efficient and reproducible PCR amplification. PMID:20817799

  17. Atomic Force Microscopy Measurements of the Mechanical Properties of Cell Walls on Living Bacterial Cells

    NASA Astrophysics Data System (ADS)

    Bailey, Richard; Mullin, Nic; Turner, Robert; Foster, Simon; Hobbs, Jamie

    2014-03-01

    Staphylococcus aureus is a major cause of infection in humans, including the Methicillin resistant strain, MRSA. However, very little is known about the mechanical properties of these cells. Our investigations use AFM to examine live S. aureus cells to quantify mechanical properties. These were explored using force spectroscopy with different trigger forces, allowing the properties to be extracted at different indentation depths. A value for the cell wall stiffness has been extracted, along with a second, higher value which is found upon indenting at higher forces. This higher value drops as the cells are exposed to high salt, sugar and detergent concentrations, implying that this measurement contains a contribution from the internal turgor pressure. We have monitored these properties as the cells progress through the cell cycle. Force maps were taken over the cells at different stages of the growth process to identify changes in the mechanics throughout the progression of growth and division. The effect of Oxacillin has also been studied, to better understand its mechanism of action. Finally mutant strains of S. aureus and a second species Bacillus subtilis have been used to link the mechanical properties of the cell walls with the chain lengths and substructures involved.

  18. Quantitative investigation of bacterial chemotaxis at the single-cell level

    NASA Astrophysics Data System (ADS)

    Min, Taejin

    Living cells sense and respond to constantly changing environmental conditions. Depending on the type of stimuli, the cell may response by altering gene expression pattern, secreting molecules, or migrating to a different environment. Directed movement of cells in response to chemical stimuli is called chemotaxis. In bacterial chemotaxis, small extracellular molecules bind receptor proteins embedded in the cell membrane, which then transmit the signal inside the cell through a cascade of protein-protein interactions. This chain of events influences the behavior of motor proteins that drive the rotation of helical filaments called flagella. Individual cells of the gut-dwelling bacteria Escherichia coli (E. coli) have many such flagella, whose collective action results in the swimming behavior of the cell. A recent study found that in absence of chemical stimuli, fluctuations in the protein cascade can cause non-Poissonian switching behavior in the flagellar motor (2). A corollary was that extension of such behavior to the whole-cell swimming level would have implications for E. coli's foraging strategy. However, existence of such behavior at the swimming cell level could not be predicted a priori, since the mapping from single flagellum behavior to the swimming behavior of a multi-flagellated cell is complex and poorly understood (3, 4). Here we characterize the chemotactic behavior of swimming E. coli cells using a novel optical trap-based measurement technique. This technique allows us to trap individual cells and monitor their swimming behavior over long time periods with high temporal resolution. We find that swimming cells exhibit non-Poissonian switching statistics between different swimming states, in a manner similar to the rotational direction-switching behavior seen in individual flagella. Furthermore, we develop a data analysis routine that allows us to characterize higher order swimming features such as reversal of swimming direction and existence of

  19. Phenotypic T Cell Exhaustion in a Murine Model of Bacterial Infection in the Setting of Pre-Existing Malignancy

    PubMed Central

    Mittal, Rohit; Wagener, Maylene; Breed, Elise R.; Liang, Zhe; Yoseph, Benyam P.; Burd, Eileen M.; Farris, Alton B.

    2014-01-01

    While much of cancer immunology research has focused on anti-tumor immunity both systemically and within the tumor microenvironment, little is known about the impact of pre-existing malignancy on pathogen-specific immune responses. Here, we sought to characterize the antigen-specific CD8+ T cell response following a bacterial infection in the setting of pre-existing pancreatic adenocarcinoma. Mice with established subcutaneous pancreatic adenocarcinomas were infected with Listeria monocytogenes, and antigen-specific CD8+ T cell responses were compared to those in control mice without cancer. While the kinetics and magnitude of antigen-specific CD8+ T cell expansion and accumulation was comparable between the cancer and non-cancer groups, bacterial antigen-specific CD8+ T cells and total CD4+ and CD8+ T cells in cancer mice exhibited increased expression of the coinhibitory receptors BTLA, PD-1, and 2B4. Furthermore, increased inhibitory receptor expression was associated with reduced IFN-γ and increased IL-2 production by bacterial antigen-specific CD8+ T cells in the cancer group. Taken together, these data suggest that cancer's immune suppressive effects are not limited to the tumor microenvironment, but that pre-existing malignancy induces phenotypic exhaustion in T cells by increasing expression of coinhibitory receptors and may impair pathogen-specific CD8+ T cell functionality and differentiation. PMID:24796533

  20. Phenotypic T cell exhaustion in a murine model of bacterial infection in the setting of pre-existing malignancy.

    PubMed

    Mittal, Rohit; Wagener, Maylene; Breed, Elise R; Liang, Zhe; Yoseph, Benyam P; Burd, Eileen M; Farris, Alton B; Coopersmith, Craig M; Ford, Mandy L

    2014-01-01

    While much of cancer immunology research has focused on anti-tumor immunity both systemically and within the tumor microenvironment, little is known about the impact of pre-existing malignancy on pathogen-specific immune responses. Here, we sought to characterize the antigen-specific CD8+ T cell response following a bacterial infection in the setting of pre-existing pancreatic adenocarcinoma. Mice with established subcutaneous pancreatic adenocarcinomas were infected with Listeria monocytogenes, and antigen-specific CD8+ T cell responses were compared to those in control mice without cancer. While the kinetics and magnitude of antigen-specific CD8+ T cell expansion and accumulation was comparable between the cancer and non-cancer groups, bacterial antigen-specific CD8+ T cells and total CD4+ and CD8+ T cells in cancer mice exhibited increased expression of the coinhibitory receptors BTLA, PD-1, and 2B4. Furthermore, increased inhibitory receptor expression was associated with reduced IFN-γ and increased IL-2 production by bacterial antigen-specific CD8+ T cells in the cancer group. Taken together, these data suggest that cancer's immune suppressive effects are not limited to the tumor microenvironment, but that pre-existing malignancy induces phenotypic exhaustion in T cells by increasing expression of coinhibitory receptors and may impair pathogen-specific CD8+ T cell functionality and differentiation. PMID:24796533

  1. Sensing the Structural Differences in Cellulose from Apple and Bacterial Cell Wall Materials by Raman and FT-IR Spectroscopy

    PubMed Central

    Szymańska-Chargot, Monika; Cybulska, Justyna; Zdunek, Artur

    2011-01-01

    Raman and Fourier Transform Infrared (FT-IR) spectroscopy was used for assessment of structural differences of celluloses of various origins. Investigated celluloses were: bacterial celluloses cultured in presence of pectin and/or xyloglucan, as well as commercial celluloses and cellulose extracted from apple parenchyma. FT-IR spectra were used to estimate of the Iβ content, whereas Raman spectra were used to evaluate the degree of crystallinity of the cellulose. The crystallinity index (XCRAMAN%) varied from −25% for apple cellulose to 53% for microcrystalline commercial cellulose. Considering bacterial cellulose, addition of xyloglucan has an impact on the percentage content of cellulose Iβ. However, addition of only xyloglucan or only pectins to pure bacterial cellulose both resulted in a slight decrease of crystallinity. However, culturing bacterial cellulose in the presence of mixtures of xyloglucan and pectins results in an increase of crystallinity. The results confirmed that the higher degree of crystallinity, the broader the peak around 913 cm−1. Among all bacterial celluloses the bacterial cellulose cultured in presence of xyloglucan and pectin (BCPX) has the most similar structure to those observed in natural primary cell walls. PMID:22163913

  2. Activation of natural killer cells and cytokine production in man by bacterial extracts.

    PubMed

    Wybran, J; Libin, M; Schandene, L

    1989-01-01

    Broncho-Vaxon (OM-85 BV) is a bacterial extract of eight bacterias usually involved in the respiratory tract infections. Since Broncho-Vaxom is clinically active in decreasing the incidence of such infections, its immunological effect was investigated, in vitro, using peripheral blood mononuclear cells (PBMC). The experimental data indicate that Broncho-Vaxom can modulate various immune functions. It was shown, using a radioimmunoassay for these cytokines, that Broncho-Vaxom will spontaneously enhance TNF alpha and IL-2 production whereas it has no action on IF gamma production. However, when the PBMC are stimulated with PHA, an increased production for IF gamma, TNF alpha and IL-2 was observed suggesting that, under appropriate conditions, Broncho-Vaxom enhances the production of these cytokines. In other experiments, Broncho-Vaxom was shown to markedly increase the natural killer activity of PBMC. All these results demonstrate that Broncho-Vaxom is an immunomodulator affecting multiple immunological mechanisms including the activation of natural killer cells, of monocytes and of T cells through direct mechanisms or through the cytokine cascade. PMID:2503554

  3. Ankyrin-mediated self-protection during cell invasion by the bacterial predator Bdellovibrio bacteriovorus

    PubMed Central

    Lambert, Carey; Cadby, Ian T.; Till, Rob; Bui, Nhat Khai; Lerner, Thomas R.; Hughes, William S.; Lee, David J.; Alderwick, Luke J.; Vollmer, Waldemar; Sockett, Elizabeth R.; Lovering, Andrew L.

    2015-01-01

    Predatory Bdellovibrio bacteriovorus are natural antimicrobial organisms, killing other bacteria by whole-cell invasion. Self-protection against prey-metabolizing enzymes is important for the evolution of predation. Initial prey entry involves the predator's peptidoglycan DD-endopeptidases, which decrosslink cell walls and prevent wasteful entry by a second predator. Here we identify and characterize a self-protection protein from B. bacteriovorus, Bd3460, which displays an ankyrin-based fold common to intracellular pathogens of eukaryotes. Co-crystal structures reveal Bd3460 complexation of dual targets, binding a conserved epitope of each of the Bd3459 and Bd0816 endopeptidases. Complexation inhibits endopeptidase activity and cell wall decrosslinking in vitro. Self-protection is vital — ΔBd3460 Bdellovibrio deleteriously decrosslink self-peptidoglycan upon invasion, adopt a round morphology, and lose predatory capacity and cellular integrity. Our analysis provides the first mechanistic examination of self-protection in Bdellovibrio, documents protection-multiplicity for products of two different genomic loci, and reveals an important evolutionary adaptation to an invasive predatory bacterial lifestyle. PMID:26626559

  4. Desialylation of Spermatozoa and Epithelial Cell Glycocalyx Is a Consequence of Bacterial Infection of the Epididymis.

    PubMed

    Khosravi, Farhad; Michel, Vera; Galuska, Christina E; Bhushan, Sudhanshu; Christian, Philipp; Schuppe, Hans-Christian; Pilatz, Adrian; Galuska, Sebastian P; Meinhardt, Andreas

    2016-08-19

    Urinary tract infections caused by uropathogenic Escherichia coli (UPEC) pathovars belong to the most frequent infections in humans. In men, pathogens can also spread to the genital tract via the continuous ductal system, eliciting bacterial prostatitis and/or epididymo-orchitis. Antibiotic treatment usually clears pathogens in acute epididymitis; however, the fertility of patients can be permanently impaired. Because a premature acrosome reaction was observed in an UPEC epididymitis mouse model, and sialidases on the sperm surface are considered to be activated via proteases of the acrosome, we aimed to investigate whether alterations of the sialome of epididymal spermatozoa and surrounding epithelial cells occur during UPEC infection. In UPEC-elicited acute epididymitis in mice, a substantial loss of N-acetylneuraminic acid residues was detected in epididymal spermatozoa and epithelial cells using combined laser microdissection/HPLC-ESI-MS analysis. In support, a substantial reduction of sialic acid residues bound to the surface of spermatozoa was documented in men with a recent history of E. coli-associated epididymitis. In vitro, such an UPEC induced N-acetylneuraminic acid release from human spermatozoa was effectively counteracted by a sialidase inhibitor. These findings strongly suggest a substantial remodeling of the glycocalyx of spermatozoa and epididymal epithelial cells by endogenous sialidases after a premature acrosome reaction during acute epididymitis. PMID:27339898

  5. Bioactive cell-like hybrids coassembled from (glyco)dendrimersomes with bacterial membranes

    PubMed Central

    Xiao, Qi; Yadavalli, Srujana S.; Zhang, Shaodong; Sherman, Samuel E.; Fiorin, Elodie; da Silva, Louise; Wilson, Daniela A.; Hammer, Daniel A.; André, Sabine; Gabius, Hans-Joachim; Klein, Michael L.; Goulian, Mark; Percec, Virgil

    2016-01-01

    A library of amphiphilic Janus dendrimers including two that are fluorescent and one glycodendrimer presenting lactose were used to construct giant dendrimersomes and glycodendrimersomes. Coassembly with the components of bacterial membrane vesicles by a dehydration–rehydration process generated giant cell-like hybrid vesicles, whereas the injection of their ethanol solution into PBS produced monodisperse nanometer size assemblies. These hybrid vesicles contain transmembrane proteins including a small membrane protein, MgrB, tagged with a red fluorescent protein, lipopolysaccharides, and glycoproteins from the bacterium Escherichia coli. Incorporation of two colored fluorescent probes in each of the components allowed fluorescence microscopy to visualize and demonstrate coassembly and the incorporation of functional membrane channels. Importantly, the hybrid vesicles bind a human galectin, consistent with the display of sugar moieties from lipopolysaccharides or possibly glycosylated membrane proteins. The present coassembly method is likely to create cell-like hybrids from any biological membrane including human cells and thus may enable practical application in nanomedicine. PMID:26884210

  6. Genome-Wide Analysis of Alternative Splicing during Dendritic Cell Response to a Bacterial Challenge

    PubMed Central

    Rodrigues, Raquel; Grosso, Ana Rita; Moita, Luís

    2013-01-01

    The immune system relies on the plasticity of its components to produce appropriate responses to frequent environmental challenges. Dendritic cells (DCs) are critical initiators of innate immunity and orchestrate the later and more specific adaptive immunity. The generation of diversity in transcriptional programs is central for effective immune responses. Alternative splicing is widely considered a key generator of transcriptional and proteomic complexity, but its role has been rarely addressed systematically in immune cells. Here we used splicing-sensitive arrays to assess genome-wide gene- and exon-level expression profiles in human DCs in response to a bacterial challenge. We find widespread alternative splicing events and splicing factor transcriptional signatures induced by an E. coli challenge to human DCs. Alternative splicing acts in concert with transcriptional modulation, but these two mechanisms of gene regulation affect primarily distinct functional gene groups. Alternative splicing is likely to have an important role in DC immunobiology because it affects genes known to be involved in DC development, endocytosis, antigen presentation and cell cycle arrest. PMID:23613991

  7. [Disinfectants - bacterial cells interactions in the view of hygiene and public health].

    PubMed

    Książczyk, Marta; Krzyżewska, Eva; Futoma-Kołoch, Bożena; Bugla-Płoskońska, Gabriela

    2015-01-01

    In recent years, the use of biocides has increased rapidly. One common example is triclosan, with wide application in households as well as medical and industrial fields, especially food industry and animal husbandry. Chemical disinfection is a major mean to control and eliminate pathogenic bacteria, particularly those with multidrug resistance (MDR) phenotype. However, exposition to biocides results in an adaptive response in microorganisms, causing them to display a wide range of resistance mechanisms. Numerous microorganisms are characterized by either natural resistance to chemical compounds or an ability to adapt to biocides using various strategies, such as: modification of cell surface structures (lipopolisaccharide), membrane fatty acids), over-expression of efflux pumps (a system for active transport of toxic compounds out of bacterial cell), enzymatic inactivation of biocides or altering biocide targets. For instance, it was shown that in vitro exposition of Salmonella Typhimurium to subinhibitory concentration of biocides (triclosan, quaternary ammonium compounds [QACs]) resulted in selection of variants resistant to tested biocides and, additionally, to acridine dyes and antibiotics. Bacillus subtilis and Micrococcus luteus strains isolated from chlorine dioxide containing disinfection devices were found to be resistant to chlorine dioxide and also to other oxidizing compounds, such as peracetic acid and hydrogen peroxide. Interaction between chemical compounds, including disinfectants and microbial cells, can create a serious threat to public health and sanitary-hygienic security. This phenomenon is connected with factor risk that intensify the probability of selection and dissemination of multidrug resistance among pathogenic bacteria. PMID:26400890

  8. Ankyrin-mediated self-protection during cell invasion by the bacterial predator Bdellovibrio bacteriovorus.

    PubMed

    Lambert, Carey; Cadby, Ian T; Till, Rob; Bui, Nhat Khai; Lerner, Thomas R; Hughes, William S; Lee, David J; Alderwick, Luke J; Vollmer, Waldemar; Sockett, R Elizabeth; Sockett, Elizabeth R; Lovering, Andrew L

    2015-01-01

    Predatory Bdellovibrio bacteriovorus are natural antimicrobial organisms, killing other bacteria by whole-cell invasion. Self-protection against prey-metabolizing enzymes is important for the evolution of predation. Initial prey entry involves the predator's peptidoglycan DD-endopeptidases, which decrosslink cell walls and prevent wasteful entry by a second predator. Here we identify and characterize a self-protection protein from B. bacteriovorus, Bd3460, which displays an ankyrin-based fold common to intracellular pathogens of eukaryotes. Co-crystal structures reveal Bd3460 complexation of dual targets, binding a conserved epitope of each of the Bd3459 and Bd0816 endopeptidases. Complexation inhibits endopeptidase activity and cell wall decrosslinking in vitro. Self-protection is vital - ΔBd3460 Bdellovibrio deleteriously decrosslink self-peptidoglycan upon invasion, adopt a round morphology, and lose predatory capacity and cellular integrity. Our analysis provides the first mechanistic examination of self-protection in Bdellovibrio, documents protection-multiplicity for products of two different genomic loci, and reveals an important evolutionary adaptation to an invasive predatory bacterial lifestyle. PMID:26626559

  9. Functional Expression of Recombinant Human Stefin A in Mammalian and Bacterial Cells

    PubMed Central

    Calkins, Catharine C.; Dosescu, Julie; Day, Nancy A.; Ren, Wei-Ping; Fridman, Rafael; Sloane, Bonnie F.; Moin, Kamiar

    2007-01-01

    Recombinant human cysteine protease inhibitor, stefin A, was expressed in both E. coli and BSC-1 monkey kidney cells utilizing pET and recombinant Vaccinia virus systems, respectively. The expressed protein was purified and analyzed by SDS-PAGE and western blot analysis utilizing a polyclonal antibody against rat cystatin α. In both cases the purified protein appeared as a single band corresponding to the molecular weight of stefin A (~10 kDa). Viability of the expressed stefin A was determined by the inhibition of the plant cysteine protease, papain. Recombinant human stefin A expressed in both E. coli and BSC-1 cells was shown to almost completely inhibit papain. The expression of a fully functional recombinant human stefin A in the bacterial system provides a highly efficient tool for the production of large quantities of the protein. This can be an important tool in kinetic studies as well as in production of antibodies for other analytical studies (immunoblot, immunohistochemical studies, etc.). Expression in the mammalian cells on the other hand, can provide a significant research tool to study the functional roles of stefin A in the mammalian systems such as the regulation of cysteine proteases. PMID:17208452

  10. Evaluation of an in vitro cell assay to select attenuated bacterial mutants of Aeromonas hydrophila and Edwardsiella tarda to channel catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To evaluate the feasibility of using an in vitro cell assay to select attenuated bacterial mutants. Using catfish gill cells G1B, the feasibility of using an in vitro assay instead of in vivo virulence assay using live fish to select attenuated bacterial mutants was evaluated in this study. Pearson ...

  11. Structure of the complex between teicoplanin and a bacterial cell-wall peptide: use of a carrier-protein approach

    SciTech Connect

    Economou, Nicoleta J.; Zentner, Isaac J.; Lazo, Edwin; Jakoncic, Jean; Stojanoff, Vivian; Weeks, Stephen D.; Grasty, Kimberly C.; Cocklin, Simon; Loll, Patrick J.

    2013-04-01

    Using a carrier-protein strategy, the structure of teicoplanin bound to its bacterial cell-wall target has been determined. The structure reveals the molecular determinants of target recognition, flexibility in the antibiotic backbone and intrinsic radiation sensitivity of teicoplanin. Multidrug-resistant bacterial infections are commonly treated with glycopeptide antibiotics such as teicoplanin. This drug inhibits bacterial cell-wall biosynthesis by binding and sequestering a cell-wall precursor: a d-alanine-containing peptide. A carrier-protein strategy was used to crystallize the complex of teicoplanin and its target peptide by fusing the cell-wall peptide to either MBP or ubiquitin via native chemical ligation and subsequently crystallizing the protein–peptide–antibiotic complex. The 2.05 Å resolution MBP–peptide–teicoplanin structure shows that teicoplanin recognizes its ligand through a combination of five hydrogen bonds and multiple van der Waals interactions. Comparison of this teicoplanin structure with that of unliganded teicoplanin reveals a flexibility in the antibiotic peptide backbone that has significant implications for ligand recognition. Diffraction experiments revealed an X-ray-induced dechlorination of the sixth amino acid of the antibiotic; it is shown that teicoplanin is significantly more radiation-sensitive than other similar antibiotics and that ligand binding increases radiosensitivity. Insights derived from this new teicoplanin structure may contribute to the development of next-generation antibacterials designed to overcome bacterial resistance.

  12. BIODEGRADATION DURING CONTAMINANT TRANSPORT IN POROUS MEDIA. 4. IMPACT OF MICROBIAL LAG AND BACTERIAL CELL GROWTH. (R825415)

    EPA Science Inventory

    Abstract

    Miscible-displacement experiments were conducted to examine the impact of microbial lag and bacterial cell growth on the transport of salicylate, a model hydrocarbon compound. The impacts of these processes were examined separately, as well as jointly, to dete...

  13. Probing interaction of gram-positive and gram-negative bacterial cells with ZnO nanorods.

    PubMed

    Jain, Aanchal; Bhargava, Richa; Poddar, Pankaj

    2013-04-01

    In the present work, the physiological effects of the ZnO nanorods on the Gram positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Aerobacter aerogenes) bacterial cells have been studied. The analysis of bacterial growth curves for various concentrations of ZnO nanorods indicates that Gram positive and Gram negative bacterial cells show inhibition at concentrations of ~64 and ~256 μg/mL respectively. The marked difference in susceptibility towards nanorods was also validated by spread plate and disk diffusion methods. In addition, the scanning electron micrographs show a clear damage to the cells via changed morphology of the cells from rod to coccoid etc. The confocal optical microscopy images of these cells also demonstrate the reduction in live cell count in the presence of ZnO nanorods. These, results clearly indicate that the antibacterial activity of ZnO nanorods is higher towards Gram positive bacterium than Gram negative bacterium which indicates that the structure of the cell wall might play a major role in the interaction with nanostructured materials and shows high sensitivity to the particle concentration. PMID:23827568

  14. Complement activation and cytokine response by BioProtein, a bacterial single cell protein.

    PubMed

    Sikkeland, L I B; Thorgersen, E B; Haug, T; Mollnes, T E

    2007-04-01

    The bacterial single cell protein (BSCP), BioProtein, is dried bacterial mass derived from fermentation of the gram negative bacteria Methylococcus capsulatus, used for animal and fish feed. Workers in this industry suffer frequently from pulmonary and systemic symptoms which may be induced by an inflammatory reaction. The aim of the present study was to examine the effect of BSCP on inflammation in vitro as evaluated by complement activation and cytokine production. Human serum was incubated with BSCP and complement activation products specific for all pathways were detected by enzyme-linked immunosorbent assay (ELISA). Human whole blood anti-coagulated with lepirudin was incubated with BSCP and a panel of 27 biological mediators was measured using multiplex technology. BSCP induced a dose-dependent complement activation as revealed by a pronounced increase in alternative and terminal pathway activation (fivefold and 20-fold, respectively) at doses from 1 microg BSCP/ml serum and a similar, but less extensive (two- to fourfold) increase in activation of the lectin and classical pathways at doses from 100 and 1000 microg BSCP/ml serum, respectively. Similarly, BSCP induced a dose-dependent production of a number of cytokines, chemokines and growth factors in human whole blood. At doses as low as 0 x 05-0 x 5 microg BSCP/ml blood a substantial increase was seen for tumour necrosis factor (TNF)-alpha, interleukin (IL)-1-beta, IL-6, interferon (IFN)-gamma, IL-8, monocyte chemoattractant protein (MCP)-1, macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, IL-4, IL-9, IL-17, IL-1Ra, granulocyte-colony-stimulating factor (G-CSF) and vascular endothelial growth factor (VEGF). Thus, BSCP induced a substantial activation of all three initial complement pathways as well as a pronounced cytokine response in vitro, indicating a potent inflammatory property of this agent. PMID:17302729

  15. Bacterial Surface Appendages Strongly Impact Nanomechanical and Electrokinetic Properties of Escherichia coli Cells Subjected to Osmotic Stress

    PubMed Central

    Francius, Grégory; Polyakov, Pavel; Merlin, Jenny; Abe, Yumiko; Ghigo, Jean-Marc; Merlin, Christophe; Beloin, Christophe; Duval, Jérôme F. L.

    2011-01-01

    The physicochemical properties and dynamics of bacterial envelope, play a major role in bacterial activity. In this study, the morphological, nanomechanical and electrohydrodynamic properties of Escherichia coli K-12 mutant cells were thoroughly investigated as a function of bulk medium ionic strength using atomic force microscopy (AFM) and electrokinetics (electrophoresis). Bacteria were differing according to genetic alterations controlling the production of different surface appendages (short and rigid Ag43 adhesins, longer and more flexible type 1 fimbriae and F pilus). From the analysis of the spatially resolved force curves, it is shown that cells elasticity and turgor pressure are not only depending on bulk salt concentration but also on the presence/absence and nature of surface appendage. In 1 mM KNO3, cells without appendages or cells surrounded by Ag43 exhibit large Young moduli and turgor pressures (∼700–900 kPa and ∼100–300 kPa respectively). Under similar ionic strength condition, a dramatic ∼50% to ∼70% decrease of these nanomechanical parameters was evidenced for cells with appendages. Qualitatively, such dependence of nanomechanical behavior on surface organization remains when increasing medium salt content to 100 mM, even though, quantitatively, differences are marked to a much smaller extent. Additionally, for a given surface appendage, the magnitude of the nanomechanical parameters decreases significantly when increasing bulk salt concentration. This effect is ascribed to a bacterial exoosmotic water loss resulting in a combined contraction of bacterial cytoplasm together with an electrostatically-driven shrinkage of the surface appendages. The former process is demonstrated upon AFM analysis, while the latter, inaccessible upon AFM imaging, is inferred from electrophoretic data interpreted according to advanced soft particle electrokinetic theory. Altogether, AFM and electrokinetic results clearly demonstrate the intimate

  16. Bacterial Ghosts of Escherichia coli Drive Efficient Maturation of Bovine Monocyte-Derived Dendritic Cells

    PubMed Central

    Hajam, Irshad Ahmed; Dar, Pervaiz Ahmad; Appavoo, Elamurugan; Kishore, Subodh; Bhanuprakash, Veerakyathappa; Ganesh, Kondabattula

    2015-01-01

    Bacterial ghosts (BGs) are empty cell envelopes derived from Gram-negative bacteria. They not only represent a potential platform for development of novel vaccines but also provide a tool for efficient adjuvant and antigen delivery system. In the present study, we investigated the interaction between BGs of Escherichia coli (E. coli) and bovine monocyte-derived dendritic cells (MoDCs). MoDCs are highly potent antigen-presenting cells and have the potential to act as a powerful tool for manipulating the immune system. We generated bovine MoDCs in vitro from blood monocytes using E. coli expressed bovine GM-CSF and IL-4 cytokines. These MoDCs displayed typical morphology and functions similar to DCs. We further investigated the E. coli BGs to induce maturation of bovine MoDCs in comparison to E. coli lipopolysaccharide (LPS). We observed the maturation marker molecules such as MHC-II, CD80 and CD86 were induced early and at higher levels in BG stimulated MoDCs as compared to the LPS stimulated MoDCs. BG mediated stimulation induced significantly higher levels of cytokine expression in bovine MoDCs than LPS. Both pro-inflammatory (IL-12 and TNF-α) and anti-inflammatory (IL-10) cytokines were induced in MoDCs after BGs stimulation. We further analysed the effects of BGs on the bovine MoDCs in an allogenic mixed lymphocyte reaction (MLR). We found the BG-treated bovine MoDCs had significantly (p<0.05) higher capacity to stimulate allogenic T cell proliferation in MLR as compared to the LPS. Taken together, these findings demonstrate the E. coli BGs induce a strong activation and maturation of bovine MoDCs. PMID:26669936

  17. Mitomycin resistance in mammalian cells expressing the bacterial mitomycin C resistance protein MCRA.

    PubMed

    Belcourt, M F; Penketh, P G; Hodnick, W F; Johnson, D A; Sherman, D H; Rockwell, S; Sartorelli, A C

    1999-08-31

    The mitomycin C-resistance gene, mcrA, of Streptomyces lavendulae produces MCRA, a protein that protects this microorganism from its own antibiotic, the antitumor drug mitomycin C. Expression of the bacterial mcrA gene in mammalian Chinese hamster ovary cells causes profound resistance to mitomycin C and to its structurally related analog porfiromycin under aerobic conditions but produces little change in drug sensitivity under hypoxia. The mitomycins are prodrugs that are enzymatically reduced and activated intracellularly, producing cytotoxic semiquinone anion radical and hydroquinone reduction intermediates. In vitro, MCRA protects DNA from cross-linking by the hydroquinone reduction intermediate of these mitomycins by oxidizing the hydroquinone back to the parent molecule; thus, MCRA acts as a hydroquinone oxidase. These findings suggest potential therapeutic applications for MCRA in the treatment of cancer with the mitomycins and imply that intrinsic or selected mitomycin C resistance in mammalian cells may not be due solely to decreased bioactivation, as has been hypothesized previously, but instead could involve an MCRA-like mechanism. PMID:10468636

  18. Mitomycin resistance in mammalian cells expressing the bacterial mitomycin C resistance protein MCRA

    PubMed Central

    Belcourt, Michael F.; Penketh, Philip G.; Hodnick, William F.; Johnson, David A.; Sherman, David H.; Rockwell, Sara; Sartorelli, Alan C.

    1999-01-01

    The mitomycin C-resistance gene, mcrA, of Streptomyces lavendulae produces MCRA, a protein that protects this microorganism from its own antibiotic, the antitumor drug mitomycin C. Expression of the bacterial mcrA gene in mammalian Chinese hamster ovary cells causes profound resistance to mitomycin C and to its structurally related analog porfiromycin under aerobic conditions but produces little change in drug sensitivity under hypoxia. The mitomycins are prodrugs that are enzymatically reduced and activated intracellularly, producing cytotoxic semiquinone anion radical and hydroquinone reduction intermediates. In vitro, MCRA protects DNA from cross-linking by the hydroquinone reduction intermediate of these mitomycins by oxidizing the hydroquinone back to the parent molecule; thus, MCRA acts as a hydroquinone oxidase. These findings suggest potential therapeutic applications for MCRA in the treatment of cancer with the mitomycins and imply that intrinsic or selected mitomycin C resistance in mammalian cells may not be due solely to decreased bioactivation, as has been hypothesized previously, but instead could involve an MCRA-like mechanism. PMID:10468636

  19. Delivery of bacterial artificial chromosomes into mammalian cells with psoralen-inactivated adenovirus carrier.

    PubMed Central

    Baker, A; Cotten, M

    1997-01-01

    Molecular biology has many applications where the introduction of large (>100 kb) DNA molecules is required. The current methods of large DNA transfection are very inefficient. We reasoned that two limits to improving transfection methods with these large DNA molecules were the difficulty of preparing workable quantities of clean DNA and the lack of rapid assays to determine transfection success. We have used bacterial artificial chromosomes (BACs) based on the Escherichia coli F factor plasmid system, which are simple to manipulate and purify in microgram quantities. Because BAC plasmids are kept at one to two copies per cell, the problems of rearrangement observed with YACs are eliminated. We have generated two series of BAC vectors bearing marker genes for luciferase and green fluorescent protein (GFP). Using these reagents, we have developed methods of delivering BACs of up to 170 kb into mammalian cells with transfection efficiency comparable to 5-10 kb DNA. Psoralen-inactivated adenovirus is used as the carrier, thus eliminating the problems associated with viral gene expression. The delivered DNA is linked to the carrier virus with a condensing polycation. Further improvements in gene delivery were obtained by replacing polylysine with low molecular weight polyethylenimine (PEI) as the DNA condensing agent. PMID:9115362

  20. The impact of hypoxia on intestinal epithelial cell functions: consequences for invasion by bacterial pathogens.

    PubMed

    Zeitouni, Nathalie E; Chotikatum, Sucheera; von Köckritz-Blickwede, Maren; Naim, Hassan Y

    2016-12-01

    The maintenance of oxygen homeostasis in human tissues is mediated by several cellular adaptations in response to low-oxygen stress, called hypoxia. A decrease in tissue oxygen levels is initially counteracted by increasing local blood flow to overcome diminished oxygenation and avoid hypoxic stress. However, studies have shown that the physiological oxygen concentrations in several tissues are much lower than atmospheric (normoxic) conditions, and the oxygen supply is finely regulated in individual cell types. The gastrointestinal tract has been described to subsist in a state of physiologically low oxygen level and is thus depicted as a tissue in the state of constant low-grade inflammation. The intestinal epithelial cell layer plays a vital role in the immune response to inflammation and infections that occur within the intestinal tissue and is involved in many of the adaptation responses to hypoxic stress. This is especially relevant in the context of inflammatory disorders, such as inflammatory bowel disease (IBD). Therefore, this review aims to describe the intestinal epithelial cellular response to hypoxia and the consequences for host interactions with invading gastrointestinal bacterial pathogens. PMID:27002817

  1. Altered host cell-bacteria interaction due to nanoparticle interaction with a bacterial biofilm.

    PubMed

    Raftery, Tara D; Lindler, Heidi; McNealy, Tamara L

    2013-02-01

    Nanoparticle (NP) use in everyday applications creates the potential for NPs to enter the environment where, in aquatic systems, they are likely to settle on substrates and interact with microbial communities. Legionella pneumophila biofilms are found as part of microbial communities in both natural and man-made environments, especially in man-made cooling systems. The bacterium is the causative agent of Legionnaires' disease. Legionella requires a host cell for replication in the environment, and amoebae commonly serve as this host cell. Our previous work demonstrated significant changes in Legionella biofilm morphology after exposure to 0.7 μg/L gold NPs (AuNPs). Here, we investigate how these morphology changes alter host-bacteria interactions using Acanthamoeba polyphaga as a model. Host-bacteria-NP interactions are affected by NP characteristics. Biofilms exposed to 4- and 18-nm, citrate-capped, spherical AuNPs significantly altered the grazing ability of A. polyphaga, which was not observed in biofilms exposed to 24-nm polystyrene beads. Uptake and replication of NP-exposed planktonic L. pneumophila within A. polyphaga were not altered regardless of NP size or core chemistry. Nanomaterial effects on the interaction of benthic organisms and bacteria may be directly or, as shown here, indirectly dependent on bacterial morphology. NP contamination therefore may alter interactions in a normal ecosystem function. PMID:23052925

  2. The Membrane Steps of Bacterial Cell Wall Synthesis as Antibiotic Targets.

    PubMed

    Liu, Yao; Breukink, Eefjan

    2016-01-01

    Peptidoglycan is the major component of the cell envelope of virtually all bacteria. It has structural roles and acts as a selective sieve for molecules from the outer environment. Peptidoglycan synthesis is therefore one of the most important biogenesis pathways in bacteria and has been studied extensively over the last twenty years. The pathway starts in the cytoplasm, continues in the cytoplasmic membrane and finishes in the periplasmic space, where the precursor is polymerized into the peptidoglycan layer. A number of proteins involved in this pathway, such as the Mur enzymes and the penicillin binding proteins (PBPs), have been studied and regarded as good targets for antibiotics. The present review focuses on the membrane steps of peptidoglycan synthesis that involve two enzymes, MraY and MurG, the inhibitors of these enzymes and the inhibition mechanisms. We also discuss the challenges of targeting these two cytoplasmic membrane (associated) proteins in bacterial cells and the perspectives on how to overcome the issues. PMID:27571111

  3. Multiphase flow models of biogels from crawling cells to bacterial biofilms

    PubMed Central

    Cogan, N. G.; Guy, Robert D.

    2010-01-01

    This article reviews multiphase descriptions of the fluid mechanics of cytoplasm in crawling cells and growing bacterial biofilms. These two systems involve gels, which are mixtures composed of a polymer network permeated by water. The fluid mechanics of these systems is essential to their biological function and structure. Their mathematical descriptions must account for the mechanics of the polymer, the water, and the interaction between these two phases. This review focuses on multiphase flow models because this framework is natural for including the relative motion between the phases, the exchange of material between phases, and the additional stresses within the network that arise from nonspecific chemical interactions and the action of molecular motors. These models have been successful in accounting for how different forces are generated and transmitted to achieve cell motion and biofilm growth and they have demonstrated how emergent structures develop though the interactions of the two phases. A short description of multiphase flow models of tumor growth is included to highlight the flexibility of the model in describing diverse biological applications. PMID:20676304

  4. Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells.

    PubMed

    Cacicedo, Maximiliano L; León, Ignacio E; Gonzalez, Jimena S; Porto, Luismar M; Alvarez, Vera A; Castro, Guillermo R

    2016-04-01

    Bacterial cellulose (BC) films modified by the in situ method with the addition of alginate (Alg) during the microbial cultivation of Gluconacetobacter hansenii under static conditions increased the loading of doxorubicin by at least three times. Biophysical analysis of BC-Alg films by scanning electron microscopy, thermogravimetry, X-ray diffraction and FTIR showed a highly homogeneous interpenetrated network scaffold without changes in the BC crystalline structure but with an increased amorphous phase. The main molecular interactions determined by FTIR between both biopolymers clearly suggest high compatibility. These results indicate that alginate plays a key role in the biophysical properties of the hybrid BC matrix. BC-Alg scaffold analysis by nitrogen adsorption isotherms revealed by the Brunauer-Emmett-Teller (BET) method an increase in surface area of about 84% and in pore volume of more than 200%. The Barrett-Joyner-Halenda (BJH) model also showed an increase of about 25% in the pore size compared to the BC film. Loading BC-Alg scaffolds with different amounts of doxorubicin decreased the cell viability of HT-29 human colorectal adenocarcinoma cell line compared to the free Dox from around 95-53% after 24h and from 63% to 37% after 48 h. Dox kinetic release from the BC-Alg nanocomposite displayed hyperbolic curves related to the different amounts of drug payload and was stable for at least 14 days. The results of the BC-Alg nanocomposites show a promissory potential for anticancer therapies of solid tumors. PMID:26784658

  5. A 16 × 16 CMOS Capacitive Biosensor Array Towards Detection of Single Bacterial Cell.

    PubMed

    Couniot, Numa; Francis, Laurent A; Flandre, Denis

    2016-04-01

    We present a 16 × 16 CMOS biosensor array aiming at impedance detection of whole-cell bacteria. Each 14 μm × 16 μm pixel comprises high-sensitive passivated microelectrodes connected to an innovative readout interface based on charge sharing principle for capacitance-to-voltage conversion and subthreshold gain stage to boost the sensitivity. Fabricated in a 0.25 μm CMOS process, the capacitive array was experimentally shown to perform accurate dielectric measurements of the electrolyte up to electrical conductivities of 0.05 S/m, with maximal sensitivity of 55 mV/fF and signal-to-noise ratio (SNR) of 37 dB. As biosensing proof of concept, real-time detection of Staphylococcus epidermidis binding events was experimentally demonstrated and provides detection limit of ca. 7 bacteria per pixel and sensitivity of 2.18 mV per bacterial cell. Models and simulations show good matching with experimental results and provide a comprehensive analysis of the sensor and circuit system. Advantages, challenges and limits of the proposed capacitive biosensor array are finally described with regards to literature. With its small area and low power consumption, the present capacitive array is particularly suitable for portable point-of-care (PoC) diagnosis tools and lab-on-chip (LoC) systems. PMID:25974947

  6. Bacterial Cell–Cell Communication in the Host via RRNPP Peptide-Binding Regulators

    PubMed Central

    Perez-Pascual, David; Monnet, Véronique; Gardan, Rozenn

    2016-01-01

    Human microbiomes are composed of complex and dense bacterial consortia. In these environments, bacteria are able to react quickly to change by coordinating their gene expression at the population level via small signaling molecules. In Gram-positive bacteria, cell–cell communication is mostly mediated by peptides that are released into the extracellular environment. Cell–cell communication based on these peptides is especially widespread in the group Firmicutes, in which they regulate a wide array of biological processes, including functions related to host–microbe interactions. Among the different agents of communication, the RRNPP family of cytoplasmic transcriptional regulators, together with their cognate re-internalized signaling peptides, represents a group of emerging importance. RRNPP members that have been studied so far are found mainly in species of bacilli, streptococci, and enterococci. These bacteria are characterized as both human commensal and pathogenic, and share different niches in the human body with other microorganisms. The goal of this mini-review is to present the current state of research on the biological relevance of RRNPP mechanisms in the context of the host, highlighting their specific roles in commensalism or virulence. PMID:27242728

  7. Mechanism of Bacterial Cell-Surface Attachment Revealed by the Structure of Cellulosomal Type II Cohesin-dockerin Complex

    SciTech Connect

    Adams,J.; Pal, G.; Jia, Z.; Smith, S.

    2006-01-01

    Bacterial cell-surface attachment of macromolecular complexes maintains the microorganism in close proximity to extracellular substrates and allows for optimal uptake of hydrolytic byproducts. The cellulosome is a large multienzyme complex used by many anaerobic bacteria for the efficient degradation of plant cell-wall polysaccharides. The mechanism of cellulosome retention to the bacterial cell surface involves a calcium-mediated protein-protein interaction between the dockerin (Doc) module from the cellulosomal scaffold and a cohesin (Coh) module of cell-surface proteins located within the proteoglycan layer. Here, we report the structure of an ultra-high-affinity (K{sub a} = 1.44 x 10{sup 10} M{sup 1-}) complex between type II Doc, together with its neighboring X module from the cellulosome scaffold of Clostridium thermocellum, and a type II Coh module associated with the bacterial cell surface. Identification of X module-Doc and X module-Coh contacts reveal roles for the X module in Doc stability and enhanced Coh recognition. This extremely tight interaction involves one face of the Coh and both helices of the Doc and comprises significant hydrophobic character and a complementary extensive hydrogen-bond network. This structure represents a unique mechanism for cell-surface attachment in anaerobic bacteria and provides a rationale for discriminating between type I and type II Coh modules.

  8. Placing Single-Molecule T4 Lysozyme Enzymes on a Bacterial Cell Surface: Toward Probing Single-Molecule Enzymatic Reaction in Living Cells

    SciTech Connect

    Hu, Dehong; Lu, H PETER.

    2004-07-01

    TheT4 lysozyme enzymatic hydrolyzation reaction of bacterial cell walls is an important biological process, and single-molecule enzymatic reaction dynamics had been studied under physiological condition using purified E. Coli cell walls as substrates. Here, we report progress toward characterizing the T4 lysozyme enzymatic reaction on a living bacterial cell wall using a combined single-molecule placement and spectroscopy. Placing a dye-labeled single T4 lysozyme molecule on a targeted cell wall by using a hydrodynamic micro-injection approach, we monitored single-molecule rotational motions during binding, attachment to, and dissociation from the cell wall by tracing single-molecule fluorescence intensity time trajectories and polarization. The single-molecule attachment duration of the T4 lysozyme to the cell wall during enzymatic reactions was typically shorter than photobleaching time under physiological conditions.

  9. Partitioning of phenanthrene into surfactant hemi-micelles on the bacterial cell surface and implications for surfactant-enhanced biodegradation.

    PubMed

    Lanzon, Jacquelyn B; Brown, Derick G

    2013-09-01

    Recent studies have suggested that the ability of a surfactant to enhance the bioavailability of hydrophobic organic compounds (HOC) requires the formation of surfactant hemi-micelles on the bacterial cell surface and subsequent partitioning of HOC into the hemi-micelles. However, the studies did not provide direct evidence of HOC partitioning into surfactant hemi-micelles on the bacterial cell surface. In this study, direct evidence is provided to demonstrate that the nonionic surfactant Brij 30 forms hemi-micelles on the bacterial cell surface and that phenanthrene sorption at the bacterial surface is enhanced by the surfactant. These results are in agreement with the current theory describing surfactant-enhanced HOC bioavailability. This enhanced bioavailability is put into context with microbial kinetics and system partitioning processes, and it is demonstrated that the addition of surfactant can enhance, have no effect, or inhibit HOC biodegradation depending upon surfactant concentration and microbial growth rate. Understanding these non-linear relationships between surfactant-enhanced HOC bioavailability, biodegradation kinetics, and system partitioning will assist in the design and implementation of surfactant-enhanced bioremediation programs. PMID:23764610

  10. Lectin microarray reveals binding profiles of Lactobacillus casei strains in a comprehensive analysis of bacterial cell wall polysaccharides.

    PubMed

    Yasuda, Emi; Tateno, Hiroaki; Hirabayashi, Jun; Hirabarashi, Jun; Iino, Tohru; Sako, Tomoyuki

    2011-07-01

    We previously showed a pivotal role of the polysaccharide (PS) moiety in the cell wall of the Lactobacillus casei strain Shirota (YIT 9029) as a possible immune modulator (E. Yasuda M. Serata, and T. Sako, Appl. Environ. Microbiol. 74:4746-4755, 2008). To distinguish PS structures on the bacterial cell surface of individual strains in relation to their activities, it would be useful to have a rapid and high-throughput methodology. Recently, a new technique called lectin microarray was developed for rapid profiling of glycosylation in eukaryotic polymers and cell surfaces. Here, we report on the development of a simple and sensitive method based on this technology for direct analysis of intact bacterial cell surface glycomes. The method involves labeling bacterial cells with SYTOX Orange before incubation with the lectin microarray. After washing, bound cells are directly detected using an evanescent-field fluorescence scanner in a liquid phase. Using this method, we compared the cell surface glycomes from 16 different strains of L. casei. The patterns of lectin-binding affinity of most strains were found to be unique. There appears to be two types of lectin-binding profiles: the first is characterized by a few lectins, and the other is characterized by multiple lectins with different specificities. We also showed a dramatic change in the lectin-binding profile of a YIT 9029 derivative with a mutation in the cps1C gene, encoding a putative glycosyltransferase. In conclusion, the developed technique provided a novel strategy for rapid profiling and, more importantly, differentiating numerous bacterial strains with relevance to the biological functions of PS. PMID:21602390

  11. Lectin Microarray Reveals Binding Profiles of Lactobacillus casei Strains in a Comprehensive Analysis of Bacterial Cell Wall Polysaccharides▿†

    PubMed Central

    Yasuda, Emi; Tateno, Hiroaki; Hirabarashi, Jun; Iino, Tohru; Sako, Tomoyuki

    2011-01-01

    We previously showed a pivotal role of the polysaccharide (PS) moiety in the cell wall of the Lactobacillus casei strain Shirota (YIT 9029) as a possible immune modulator (E. Yasuda M. Serata, and T. Sako, Appl. Environ. Microbiol. 74:4746-4755, 2008). To distinguish PS structures on the bacterial cell surface of individual strains in relation to their activities, it would be useful to have a rapid and high-throughput methodology. Recently, a new technique called lectin microarray was developed for rapid profiling of glycosylation in eukaryotic polymers and cell surfaces. Here, we report on the development of a simple and sensitive method based on this technology for direct analysis of intact bacterial cell surface glycomes. The method involves labeling bacterial cells with SYTOX Orange before incubation with the lectin microarray. After washing, bound cells are directly detected using an evanescent-field fluorescence scanner in a liquid phase. Using this method, we compared the cell surface glycomes from 16 different strains of L. casei. The patterns of lectin-binding affinity of most strains were found to be unique. There appears to be two types of lectin-binding profiles: the first is characterized by a few lectins, and the other is characterized by multiple lectins with different specificities. We also showed a dramatic change in the lectin-binding profile of a YIT 9029 derivative with a mutation in the cps1C gene, encoding a putative glycosyltransferase. In conclusion, the developed technique provided a novel strategy for rapid profiling and, more importantly, differentiating numerous bacterial strains with relevance to the biological functions of PS. PMID:21602390

  12. Effect of bacterial cell size on electricity generation in a single-compartmented microbial fuel cell.

    PubMed

    Lee, Seung Won; Jeon, Bo Young; Park, Doo Hyun

    2010-04-01

    A single-compartmented microbial fuel cell composed of a graphite felt anode modified with Neutral Red (NR-anode) and a porous Fe(II)-carbon cathode (FeC-cathode) were compared for electricity generation from Microbacterium sp. and Pseudomonas sp. under identical conditions. Pseudomonas sp. was more than four times the size of Microbacterium sp. based on SEM images. In cyclic voltammetry, the redox reaction between Microbacterium sp and electrode was three times the rate observed between Pseudomonas sp. and the electrode based on the Y-axis (current) variation of cyclic voltammogram. The electric power generated by Microbacterium sp. was approx 3-4 times higher than that with Pseudomonas sp. during incubation for more than 150 days in the fuel cell. PMID:20013300

  13. Bacterial β-(1,3)-glucan prevents DSS-induced IBD by restoring the reduced population of regulatory T cells.

    PubMed

    Lee, Kwang-Ho; Park, Min; Ji, Kon-Young; Lee, Hwa-Youn; Jang, Ji-Hun; Yoon, Il-Joo; Oh, Seung-Su; Kim, Su-Man; Jeong, Yun-Hwa; Yun, Chul-Ho; Kim, Mi-Kyoung; Lee, In-Young; Choi, Ha-Rim; Ko, Ki-sung; Kang, Hyung-Sik

    2014-10-01

    Bacterial β-(1,3)-glucan has more advantages in terms of cost, yield and efficiency than that derived from mushrooms, plants, yeasts and fungi. We have previously developed a novel and high-yield β-(1,3)-glucan produced by Agrobacterium sp. R259. This study aimed to elucidate the functional mechanism and therapeutic efficacy of bacterial β-(1,3)-glucan in dextran sulfate sodium (DSS)-induced inflammatory bowel disease (IBD).Mice were orally pretreated with bacterial β-(1,3)-glucan at daily doses of 2.5 or 5mg/kg for 2 weeks. After 6 days of DSS treatment, clinical assessment of IBD severity and expression of pro-inflammatory cytokines were evaluated. In vivo cell proliferation was examined by immunohistochemistry using Ki-67 and ER-TR7 antibodies. The frequency of regulatory T cells (Tregs) was analyzed by flow cytometry. Natural killer (NK) activity and IgA level were evaluated using NK cytotoxicity assay and ELISA.The deterioration of body weight gain, colonic architecture, disease score and histological score was recovered in DSS-induced IBD mice when pretreated with bacterial β-(1,3)-glucan. The recruitment of macrophages and the gene expression of proinflammatory cytokines, such as IL-1β, IL-6 and IL-17A/F, were markedly decreased in the colon of β-(1,3)-glucan-pretreated mice. β-(1,3)-Glucan induced the recovery of Tregs in terms of their frequency in DSS-induced IBD mice. Intriguingly, β-(1,3)-glucan reversed the functional defects of NK cells and excessive IgA production in DSS-induced IBD mice.We conclude that bacterial β-(1,3)-glucan prevented the progression of DSS-induced IBD by recovering the reduction of Tregs, functional defect of NK cells and excessive IgA production. PMID:25092569

  14. A conformational switch controls cell wall remodeling enzymes required for bacterial cell division

    PubMed Central

    Yang, Desirée C.; Tan, Kemin; Joachimiak, Andrzej; Bernhardt, Thomas G.

    2012-01-01

    Summary Remodeling of the peptidoglycan (PG) exoskeleton is intimately tied to the growth and division of bacteria. Enzymes that hydrolyze PG are critical for these processes, but their activities must be tightly regulated to prevent the generation of lethal breaches in the PG matrix. Despite their importance, the mechanisms regulating PG hydrolase activity have remained elusive. Here we investigate the control of cell division hydrolases called amidases (AmiA, AmiB, and AmiC) required for Escherichia coli cell division. Poorly regulated amiB mutants were isolated encoding lytic AmiB variants with elevated basal PG hydrolase activities in vitro. The structure of an AmiB ortholog was also solved, revealing that the active site of AmiB is occluded by a conserved alpha-helix. Strikingly, most of the amino acid substitutions in the lytic AmiB variants mapped to this domain and are predicted to disrupt its interaction with the active site. Our results therefore support a model in which cell separation is stimulated by the reversible relief of amidase auto-inhibition governed by conserved sub-complexes within the cytokinetic ring. Analogous conformational control mechanisms are likely to be part of a general strategy used to control PG hydrolases present within multi-enzyme PG remodeling machines. PMID:22715947

  15. Bacterial biofilm mechanical properties persist upon antibiotic treatment and survive cell death

    NASA Astrophysics Data System (ADS)

    Zrelli, K.; Galy, O.; Latour-Lambert, P.; Kirwan, L.; Ghigo, J. M.; Beloin, C.; Henry, N.

    2013-12-01

    Bacteria living on surfaces form heterogeneous three-dimensional consortia known as biofilms, where they exhibit many specific properties one of which is an increased tolerance to antibiotics. Biofilms are maintained by a polymeric network and display physical properties similar to that of complex fluids. In this work, we address the question of the impact of antibiotic treatment on the physical properties of biofilms based on recently developed tools enabling the in situ mapping of biofilm local mechanical properties at the micron scale. This approach takes into account the material heterogeneity and reveals the spatial distribution of all the small changes that may occur in the structure. With an Escherichia coli biofilm, we demonstrate using in situ fluorescent labeling that the two antibiotics ofloxacin and ticarcillin—targeting DNA replication and membrane assembly, respectively—induced no detectable alteration of the biofilm mechanical properties while they killed the vast majority of the cells. In parallel, we show that a proteolytic enzyme that cleaves extracellular proteins into short peptides, but does not alter bacterial viability in the biofilm, clearly affects the mechanical properties of the biofilm structure, inducing a significant increase of the material compliance. We conclude that conventional biofilm control strategy relying on the use of biocides targeting cells is missing a key target since biofilm structural integrity is preserved. This is expected to efficiently promote biofilm resilience, especially in the presence of persister cells. In contrast, the targeting of polymer network cross-links—among which extracellular proteins emerge as major players—offers a promising route for the development of rational multi-target strategies to fight against biofilms.

  16. Studies on penetration of antibiotic in bacterial cells in space conditions (7-IML-1)

    NASA Technical Reports Server (NTRS)

    Tixador, R.

    1992-01-01

    The Cytos 2 experiment was performed aboard Salyut 7 in order to test the antibiotic sensitivity of bacteria cultivated in vitro in space. An increase of the Minimal Inhibitory Concentration (MIC) in the inflight cultures (i.e., an increase of the antibiotic resistance) was observed. Complementary studies of the ultrastructure showed a thickening of the cell envelope. In order to confirm the results of the Cytos 2 experiment, we performed the ANTIBIO experiment during the D1 mission to try to differentiate, by means of the 1 g centrifuge in the Biorack, between the biological effects of cosmic rays and those caused by microgravity conditions. The originality of this experiment was in the fact that it was designed to test the antibiotic sensitivity of bacteria cultivated in vitro during the orbital phase of the flight. The results show an increase in resistance to Colistin in in-flight bacteria. The MIC is practically double in the in-flight cultures. A cell count of living bacteria in the cultures containing the different Colistin concentrations showed a significant difference between the cultures developed during space flight and the ground based cultures. The comparison between the 1 g and 0 g in-flight cultures show similar behavior for the two sets. Nevertheless, a small difference between the two sets of ground based control cultures was noted. The cultures developed on the ground centrifuge (1.4 g) present a slight decrease in comparison with the cultures developed in the static rack (1 g). In order to approach the mechanisms of the increase of antibiotic resistance on bacteria cultivated in vitro in space, we have proposed the study on penetration of antibiotics in bacterial cells in space conditions. This experiment was selected for the International Microgravity Laboratory 1 (IML-1) mission.

  17. Efficiency of fluorescence in situ hybridization for bacterial cell identification in temporary river sediments with contrasting water content.

    PubMed

    Fazi, Stefano; Amalfitano, Stefano; Pizzetti, Ilaria; Pernthaler, Jakob

    2007-09-01

    We studied the efficiency of two hybridization techniques for the analysis of benthic bacterial community composition under varying sediment water content. Microcosms were set up with sediments from four European temporary rivers. Wet sediments were dried, and dry sediments were artificially rewetted. The percentage of bacterial cells detected by fluorescence in situ hybridization with fluorescently monolabeled probes (FISH) significantly increased from dry to wet sediments, showing a positive correlation with the community activity measured via incorporation of (3)H leucine. FISH and signal amplification by catalyzed reporter deposition (CARD-FISH) could significantly better detect cells with low activity in dried sediments. Through the application of an optimized cell permeabilization protocol, the percentage of hybridized cells by CARD-FISH showed comparable values in dry and wet conditions. This approach was unrelated to (3)H leucine incorporation rates. Moreover, the optimized protocol allowed a significantly better visualization of Gram-positive Actinobacteria in the studied samples. CARD-FISH is, therefore, proposed as an effective technique to compare bacterial communities residing in sediments with contrasting water content, irrespective of differences in the activity state of target cells. Considering the increasing frequencies of flood and drought cycles in European temporary rivers, our approach may help to better understand the dynamics of microbial communities in such systems. PMID:17452089

  18. Effects of natural antimicrobials on bacterial cell hydrophobicity, adhesion, and zeta potential / Vpliv naravnih protimikrobnih snovi na bakterijsko hidrofobnost, adhezijo in zeta potencial.

    PubMed

    Kurinčič, Marija; Jeršek, Barbara; Klančnik, Anja; Možina, Sonja Smole; Fink, Rok; Dražić, Goran; Raspor, Peter; Bohinc, Klemen

    2016-03-01

    Interactions between bacterial cells and contact materials play an important role in food safety and technology. As bacterial strains become ever more resistant to antibiotics, the aim of this study was to analyse adhesion of selected foodborne bacterial strains on polystyrene surface and to evaluate the effects of natural antimicrobials on bacterial cell hydrophobicity, adhesion, and zeta potential as strategies of adhesion prevention. The results showed strain-specific adhesion rate on polystyrene. The lowest and the highest adhesion were found for two B. cereus lines. Natural antimicrobials ferulic and rosmarinic acid substantially decreased adhesion, whereas the effect of epigallocatechin gallate was neglectful. Similar results were found for the zeta potential, indicating that natural antimicrobials reduce bacterial adhesion. Targeting bacterial adhesion using natural extracts we can eliminate potential infection at an early stage. Future experimental studies should focus on situations that are as close to industrial conditions as possible. PMID:27092638

  19. Cytotoxic responses to 405nm light exposure in mammalian and bacterial cells: Involvement of reactive oxygen species.

    PubMed

    Ramakrishnan, Praveen; Maclean, Michelle; MacGregor, Scott J; Anderson, John G; Grant, M Helen

    2016-06-01

    Light at wavelength 405 nm is an effective bactericide. Previous studies showed that exposing mammalian cells to 405 nm light at 36 J/cm(2) (a bactericidal dose) had no significant effect on normal cell function, although at higher doses (54 J/cm(2)), mammalian cell death became evident. This research demonstrates that mammalian and bacterial cell toxicity induced by 405 nm light exposure is accompanied by reactive oxygen species production, as detected by generation of fluorescence from 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate. As indicators of the resulting oxidative stress in mammalian cells, a decrease in intracellular reduced glutathione content and a corresponding increase in the efflux of oxidised glutathione were observed from 405 nm light treated cells. The mammalian cells were significantly protected from dying at 54 J/cm(2) in the presence of catalase, which detoxifies H2O2. Bacterial cells were significantly protected by sodium pyruvate (H2O2 scavenger) and by a combination of free radical scavengers (sodium pyruvate, dimethyl thiourea (OH scavenger) and catalase) at 162 and 324 J/cm(2). Results therefore suggested that the cytotoxic mechanism of 405 nm light in mammalian cells and bacteria could be oxidative stress involving predominantly H2O2 generation, with other ROS contributing to the damage. PMID:26916085

  20. NAIPs: building an innate immune barrier against bacterial pathogens. NAIPs function as sensors that initiate innate immunity by detection of bacterial proteins in the host cell cytosol.

    PubMed

    Kofoed, Eric M; Vance, Russell E

    2012-07-01

    The innate immune system of mammals encodes several families of immune detector proteins that monitor the cytosol for signs of pathogen invasion. One important but poorly understood family of cytosolic immunosurveillance proteins is the NLR (nucleotide-binding domain, leucine-rich repeat containing) proteins. Recent work has demonstrated that one subfamily of NLRs, the NAIPs (NLR family, apoptosis inhibitory proteins), are activated by specific interaction with bacterial ligands, such as flagellin. NAIP activation leads to assembly of a large multiprotein complex called the inflammasome, which initiates innate immune responses by activation of the Caspase-1 protease. NAIPs therefore appear to detect pathogen molecules via a simple and direct receptor-ligand mechanism. Interestingly, other NLR family members appear to detect pathogens indirectly, perhaps by responding to host cell "stress" caused by the pathogen. Thus, the NLR family may have evolved surprisingly diverse mechanisms for detecting pathogens. PMID:22513803

  1. A novel functional T cell hybridoma recognizes macrophage cell death induced by bacteria: a possible role for innate lymphocytes in bacterial infection.

    PubMed

    Kubota, Koichi

    2006-06-15

    We have established a novel TCRalphabeta (TCRVbeta6)(+)CD4(-)CD8(-) T cell hybridoma designated B6HO3. When the B6HO3 cells were cocultured with bacterial-infected J774 macrophage-like cells, IFN-gamma production by B6HO3 cells was triggered through direct cell-cell contact with dying J774 cells infected with Listeria monocytogenes (LM), Shigella flexneri, or Salmonella typhimurium that expressed the type III secretion system, but not with intact J774 cells infected with heat-killed LM, nonhemolytic lysteriolysin O-deficient (Hly(-)) LM, plasmid-cured Shigella, or stationary-phase Salmonella. However, the triggering of B6HO3 cells for IFN-gamma production involved neither dying hepatoma cells infected with LM nor dying J774 cells caused by gliotoxin treatment or freeze thawing. Cycloheximide and Abs to H-2K(d), H-2D(d), Ia(d), CD1d, TCRVbeta6, and IL-12 did not inhibit the contact-dependent IFN-gamma response, indicating that this IFN-gamma response did not require de novo protein synthesis in bacterial-infected J774 cells and was TCR and IL-12 independent. Thus, in an as yet undefined way, B6HO3 hybridoma recognizes a specialized form of macrophage cell death resulting from bacterial infection and consequently produces IFN-gamma. Moreover, contact-dependent interaction of minor subsets of splenic alphabeta T cells, including NKT cells with dying LM-infected J774 and bone marrow-derived macrophage (BMM) cells, proved to provide an IFN-gamma-productive stimulus for these minor T cell populations, to which the parental T cell of the B6HO3 hybridoma appeared to belong. Unexpectedly, subsets of gammadelta T and NK cells similarly responded to dying LM-infected macrophage cells. These results propose that innate lymphocytes may possess a recognition system sensing macrophage cell "danger" resulting from bacterial infection. PMID:16751404

  2. Degradation of endogenous bacterial cell wall polymers by the muralytic enzyme mutanolysin prevents hepatobiliary injury in genetically susceptible rats with experimental intestinal bacterial overgrowth.

    PubMed Central

    Lichtman, S N; Okoruwa, E E; Keku, J; Schwab, J H; Sartor, R B

    1992-01-01

    Jejunal self-filling blind loops with subsequent small bowel bacterial overgrowth (SBBO) induce hepatobiliary injury in genetically susceptible Lewis rats. Lesions consist of portal tract inflammation, bile duct proliferation, and destruction. To determine the pathogenesis of SBBO-induced hepatobiliary injury, we treated Lewis rats with SBBO by using several agents with different mechanisms of activity. Buffer treatment, ursodeoxycholic acid, prednisone, methotrexate, and cyclosporin A failed to prevent SBBO-induced injury as demonstrated by increased plasma aspartate aminotransferase (AST) and elevated histology scores. However, hepatic injury was prevented by mutanolysin, a muralytic enzyme whose only known activity is to split the beta 1-4 N-acetylmuramyl-N-acetylglucosamine linkage of peptidoglycan-polysaccharide (PG-PS), a bacterial cell wall polymer with potent inflammatory and immunoregulatory properties. Mutanolysin therapy started on the day blind loops were surgically created and continued for 8 wk significantly diminished AST (101 +/- 37 U/liter) and liver histology scores (2.2 +/- 2.7) compared to buffer-treated rats (228 +/- 146 U/liter, P < 0.05, 8.2 +/- 1.9, P < 0.001 respectively). Mutanolysin treatment started during the early phase of hepatic injury, 16-21 d after surgery, decreased AST in 7 of 11 rats from 142 +/- 80 to 103 +/- 24 U/liter contrasted to increased AST in 9 of 11 buffer-treated rats from 108 +/- 52 to 247 +/- 142 U/liter, P < 0.05. Mutanolysin did not change total bacterial numbers within the loop, eliminate Bacteroides sp., have in vitro antibiotic effects, or diminish mucosal PG-PS transport. However, mutanolysin treatment prevented elevation of plasma anti-PG antibodies and tumor necrosis factor-alpha (TNF alpha) levels which occurred in buffer treated rats with SBBO and decreased TNF alpha production in isolated Kupffer cells stimulated in vitro with PG-PS. Based on the preventive and therapeutic activity of this highly specific

  3. Induction of apoptosis in cancer cell lines by the Red Sea brine pool bacterial extracts

    PubMed Central

    2013-01-01

    Background Marine microorganisms are considered to be an important source of bioactive molecules against various diseases and have great potential to increase the number of lead molecules in clinical trials. Progress in novel microbial culturing techniques as well as greater accessibility to unique oceanic habitats has placed the marine environment as a new frontier in the field of natural product drug discovery. Methods A total of 24 microbial extracts from deep-sea brine pools in the Red Sea have been evaluated for their anticancer potential against three human cancer cell lines. Downstream analysis of these six most potent extracts was done using various biological assays, such as Caspase-3/7 activity, mitochondrial membrane potential (MMP), PARP-1 cleavage and expression of γH2Ax, Caspase-8 and -9 using western blotting. Results In general, most of the microbial extracts were found to be cytotoxic against one or more cancer cell lines with cell line specific activities. Out of the 13 most active microbial extracts, six extracts were able to induce significantly higher apoptosis (>70%) in cancer cells. Mechanism level studies revealed that extracts from Chromohalobacter salexigens (P3-86A and P3-86B(2)) followed the sequence of events of apoptotic pathway involving MMP disruption, caspase-3/7 activity, caspase-8 cleavage, PARP-1 cleavage and Phosphatidylserine (PS) exposure, whereas another Chromohalobacter salexigens extract (K30) induced caspase-9 mediated apoptosis. The extracts from Halomonas meridiana (P3-37B), Chromohalobacter israelensis (K18) and Idiomarina loihiensis (P3-37C) were unable to induce any change in MMP in HeLa cancer cells, and thus suggested mitochondria-independent apoptosis induction. However, further detection of a PARP-1 cleavage product, and the observed changes in caspase-8 and -9 suggested the involvement of caspase-mediated apoptotic pathways. Conclusion Altogether, the study offers novel findings regarding the anticancer

  4. Defective disposal of immune complexes and polyclonal B cell activation persist long after exposure to bacterial lipopolysaccharide in mice

    SciTech Connect

    Granholm, N.A.; Cavallo, T. )

    1989-11-01

    Patients with systemic lupus erythematosus experience clinical exacerbation during superimposed bacterial infection. Previous studies in mice indicated that heightened immune phenomena during exposure to bacterial lipopolysaccharide (LPS) appear to be related, in part, to polyclonal B cell activation, to abnormal disposal of immune complexes (IC), and to increased localization of IC in tissues. To investigate whether such effects were reversible, we administered bacterial LPS to C57BL/6 mice for 5 weeks. Control mice received vehicle alone. We then discontinued LPS, and 6 weeks later LPS and control mice were challenged with a subsaturating dose of radiolabeled IC; the removal of IC from the circulation, their localization in the liver, spleen, and kidney were determined. In comparison to values in control mice, in mice previously exposed to LPS, serologic features of polyclonal B cell activation persisted; liver uptake of pathogenic IC (greater than Ag2Ab2) was normal, but removal of small size IC (less than or equal to Ag2Ab2) from the circulation was delayed; localization of IC in the kidneys was enhanced, and pathologic proteinuria developed. The effects of repeated exposure to bacterial LPS are partially reversible, but they last long after LPS is discontinued and may contribute to altered disposal of IC, enhanced organ localization of IC, and organ dysfunction.

  5. T cell-dependent IgM memory B cells generated during bacterial infection are required for IgG responses to antigen challenge.

    PubMed

    Yates, Jennifer L; Racine, Rachael; McBride, Kevin M; Winslow, Gary M

    2013-08-01

    Immunological memory has long considered to be harbored in B cells that express high-affinity class-switched IgG. IgM-positive memory B cells can also be generated following immunization, although their physiological role has been unclear. In this study, we show that bacterial infection elicited a relatively large population of IgM memory B cells that were uniquely identified by their surface expression of CD11c, CD73, and programmed death-ligand 2. The cells lacked expression of cell surface markers typically expressed by germinal center B cells, were CD138 negative, and did not secrete Ab ex vivo. The population was also largely quiescent and accumulated somatic mutations. The IgM memory B cells were located in the region of the splenic marginal zone and were not detected in blood or other secondary lymphoid organs. Generation of the memory cells was CD4 T cell dependent and required IL-21R signaling. In vivo depletion of the IgM memory B cells abrogated the IgG recall responses to specific Ag challenge, demonstrating that the cell population was required for humoral memory, and underwent class-switch recombination following Ag encounter. Our findings demonstrate that T cell-dependent IgM memory B cells can be elicited at high frequency and can play an important role in maintaining long-term immunity during bacterial infection. PMID:23804710

  6. α–Intercalated cells defend the urinary system from bacterial infection

    PubMed Central

    Paragas, Neal; Kulkarni, Ritwij; Werth, Max; Schmidt-Ott, Kai M.; Forster, Catherine; Deng, Rong; Zhang, Qingyin; Singer, Eugenia; Klose, Alexander D.; Shen, Tian Huai; Francis, Kevin P.; Ray, Sunetra; Vijayakumar, Soundarapandian; Seward, Samuel; Bovino, Mary E.; Xu, Katherine; Takabe, Yared; Amaral, Fábio E.; Mohan, Sumit; Wax, Rebecca; Corbin, Kaitlyn; Sanna-Cherchi, Simone; Mori, Kiyoshi; Johnson, Lynne; Nickolas, Thomas; D’Agati, Vivette; Lin, Chyuan-Sheng; Qiu, Andong; Al-Awqati, Qais; Ratner, Adam J.; Barasch, Jonathan

    2014-01-01

    α–Intercalated cells (A-ICs) within the collecting duct of the kidney are critical for acid-base homeostasis. Here, we have shown that A-ICs also serve as both sentinels and effectors in the defense against urinary infections. In a murine urinary tract infection model, A-ICs bound uropathogenic E. coli and responded by acidifying the urine and secreting the bacteriostatic protein lipocalin 2 (LCN2; also known as NGAL). A-IC–dependent LCN2 secretion required TLR4, as mice expressing an LPS-insensitive form of TLR4 expressed reduced levels of LCN2. The presence of LCN2 in urine was both necessary and sufficient to control the urinary tract infection through iron sequestration, even in the harsh condition of urine acidification. In mice lacking A-ICs, both urinary LCN2 and urinary acidification were reduced, and consequently bacterial clearance was limited. Together these results indicate that A-ICs, which are known to regulate acid-base metabolism, are also critical for urinary defense against pathogenic bacteria. They respond to both cystitis and pyelonephritis by delivering bacteriostatic chemical agents to the lower urinary system. PMID:24937428

  7. Volumetric measurements of bacterial cells and extracellular polymeric substance glycoconjugates in biofilms.

    PubMed

    Staudt, C; Horn, H; Hempel, D C; Neu, T R

    2004-12-01

    In this study an enrichment culture developed from activated sludge was used to investigate the architecture of fully hydrated multispecies biofilms. The assessment of biofilm structure and volume was carried out using confocal laser scanning microscopy (CLSM). Bacterial cell distribution was determined with the nucleic acid-specific stain SYTO 60, whereas glycoconjugates of extracellular polymeric substances (EPS) were stained with the Alexa-488-labeled lectin of Aleuria aurantia. Digital image analysis was employed for visualization and quantification of three-dimensional CLSM data sets. The specific volumes of the polymeric and cellular biofilm constituents were quantified. In addition, gravimetric measurements were done to determine dry mass and thickness of the biofilms. The data recorded by the CLSM technique and the gravimetric data were then compared. It was shown that the biofilm thicknesses determined with both methods agree well for slow-growing heterotrophic and chemoautotrophic biofilms. In addition, for slow-growing biofilms, the volumes and masses calculated from CLSM and the biomass calculated from gravimetric measurements were also comparable. For fast-growing heterotrophic biofilms cultivated with high glucose concentrations the data sets fit to a lesser degree, but still showed the same common trend. Compared with traditional gravimetric measurements, CLSM allowed differential recording of multiple biofilm parameters with subsequent three-dimensional visualization and quantification. The quantitative three-dimensional results recorded by CLSM are an important basis for understanding, controlling, exploiting, and modeling of biofilms. PMID:15470707

  8. Whole‐cell bacterial bioreporter for actively searching and sensing of alkanes and oil spills

    PubMed Central

    Zhang, Dayi; He, Yi; Wang, Yun; Wang, Hui; Wu, Lin; Aries, Eric; Huang, Wei E.

    2012-01-01

    Summary Acinetobacter baylyi ADP1 was found to tolerate seawater and have a special ability of adhering to an oil–water interface of 10–80 µm emulsified mineral and crude oil droplets. These properties make ADP1 an ideal bacterial chassis for constructing bioreporters that are able to actively search and sense oil spill in water and soils. Acinetobacter baylyi bioreporter ADPWH_alk was developed and applied to the detection of alkanes and alkenes in water, seawater and soils. Bioreporter ADPWH_alk was able to detect a broad range of alkanes and alkenes with carbon chain length from C7 to C36. So far, ADPWH_alk is the only bioreporter that is able to detect alkane with carbon chain length greater than C18. This bioreporter responded to the alkanes in about 30 min and it was independent to the cell growth phase because of two point mutations in alkM promoter recognized by alkane regulatory protein ALKR. ADPWH_alk was applied to detect mineral oil, Brent, Chestnut and Sirri crude oils in water and seawater in the range 0.1–100 mg l−1, showing that the bioreporter oil detection was semi‐quantitative. This study demonstrates that ADPWH_alk is a rapid, sensitive and semi‐quantitative bioreporter that can be useful for environmental monitoring and assessment of oil spills in seawater and soils. PMID:21951420

  9. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells

    SciTech Connect

    Fiedler, Tomas; Salamon, Achim; Adam, Stefanie; Herzmann, Nicole; Taubenheim, Jan; Peters, Kirsten

    2013-11-01

    Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions. - Highlights: • Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli bind to and internalize into adMSC. • Heat-inactivated cells of these bacterial species trigger proliferation of adMSC. • Heat-inactivated E. coli and LPS induce osteogenic differentiation of adMSC. • Heat-inactivated E. coli and LPS reduce adipogenic differentiation of adMSC. • LTA does not influence adipogenic or osteogenic differentiation of adMSC.

  10. Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers.

    PubMed Central

    Erickson, H P; Taylor, D W; Taylor, K A; Bramhill, D

    1996-01-01

    The bacterial cell division protein FtsZ is a homolog of tubulin, but it has not been determined whether FtsZ polymers are structurally related to the microtubule lattice. In the present study, we have obtained high-resolution electron micrographs of two FtsZ polymers that show remarkable similarity to tubulin polymers. The first is a two-dimensional sheet of protofilaments with a lattice very similar to that of the microtubule wall. The second is a miniring, consisting of a single protofilament in a sharply curved, planar conformation. FtsZ minirings are very similar to tubulin rings that are formed upon disassembly of microtubules but are about half the diameter. This suggests that the curved conformation occurs at every FtsZ subunit, but in tubulin rings the conformation occurs at either beta- or alpha-tubulin subunits but not both. We conclude that the functional polymer of FtsZ in bacterial cell division is a long thin sheet of protofilaments. There is sufficient FtsZ in Escherichia coli to form a protofilament that encircles the cell 20 times. The similarity of polymers formed by FtsZ and tubulin implies that the protofilament sheet is an ancient cytoskeletal system, originally functioning in bacterial cell division and later modified to make microtubules. Images Fig. 1 Fig. 2 Fig. 3 PMID:8552673

  11. In vitro inhibitory properties of ferrocene-substituted chalcones and aurones on bacterial and human cell cultures.

    PubMed

    Tiwari, Keshri Nath; Monserrat, Jean-Philippe; Hequet, Arnaud; Ganem-Elbaz, Carine; Cresteil, Thierry; Jaouen, Gérard; Vessières, Anne; Hillard, Elizabeth A; Jolivalt, Claude

    2012-06-01

    Two series of ten chalcones and ten aurones, where ferrocene replaces the C ring and with diverse substituents on the A ring were synthesized. The compounds were tested against two antibiotic-sensitive bacterial strains, E. coli ATCC 25922 and S. aureus ATCC 25923, and two antibiotic-resistant strains, S. aureus SA-1199B and S. epidermidis IPF896. The unsubstituted compound and those with methoxy substitution showed an inhibitory effect on all bacterial strains at minimum inhibitory concentrations ranging between 2 and 32 mg L(-1). For four of these compounds, the effect was bactericidal, as opposed to bacteriostatic. The corresponding organic aurones did not show growth inhibition, underscoring the role of the ferrocene group. The methoxy-substituted aurones and the unsubstituted aurone also showed low micromolar (IC(50)) activity against MRC-5 non-tumoral lung cells and MDA-MB-231 breast cancer cells, suggesting non-specific toxicity. PMID:22240736

  12. Plate acoustic wave sensor for detection of small amounts of bacterial cells in micro-litre liquid samples.

    PubMed

    Anisimkin, V I; Kuznetsova, I Е; Kolesov, V V; Pyataikin, I I; Sorokin, V V; Skladnev, D A

    2015-09-01

    Ultrasonic acoustic waves propagating in thin piezoelectric plates with free faces are used for bacteria detection in micro-litre liquid samples deposited on one of the plate surface. The limits of the detection at normal conditions are as low as 0.04% for highly diluted rich cultural Luria-Bertani broth (LB-media) in distillate water, 0.07% for bacterial cells in distillate water, and 0.6% for bacterial cells in LB-media. For all analytes the most probable detection mechanism is the change in liquid conductivity. Because of no using any sorbent film the long-term stability of the detection is expected as very high. PMID:26049732

  13. Bacterial Cell Wall Synthesis Gene uppP Is Required for Burkholderia Colonization of the Stinkbug Gut

    PubMed Central

    Kim, Jiyeun Kate; Lee, Ho Jin; Kikuchi, Yoshitomo; Kitagawa, Wataru; Nikoh, Naruo

    2013-01-01

    To establish a host-bacterium symbiotic association, a number of factors involved in symbiosis must operate in a coordinated manner. In insects, bacterial factors for symbiosis have been poorly characterized at the molecular and biochemical levels, since many symbionts have not yet been cultured or are as yet genetically intractable. Recently, the symbiotic association between a stinkbug, Riptortus pedestris, and its beneficial gut bacterium, Burkholderia sp., has emerged as a promising experimental model system, providing opportunities to study insect symbiosis using genetically manipulated symbiotic bacteria. Here, in search of bacterial symbiotic factors, we targeted cell wall components of the Burkholderia symbiont by disruption of uppP gene, which encodes undecaprenyl pyrophosphate phosphatase involved in biosynthesis of various bacterial cell wall components. Under culture conditions, the ΔuppP mutant showed higher susceptibility to lysozyme than the wild-type strain, indicating impaired integrity of peptidoglycan of the mutant. When administered to the host insect, the ΔuppP mutant failed to establish normal symbiotic association: the bacterial cells reached to the symbiotic midgut but neither proliferated nor persisted there. Transformation of the ΔuppP mutant with uppP-encoding plasmid complemented these phenotypic defects: lysozyme susceptibility in vitro was restored, and normal infection and proliferation in the midgut symbiotic organ were observed in vivo. The ΔuppP mutant also exhibited susceptibility to hypotonic, hypertonic, and centrifugal stresses. These results suggest that peptidoglycan cell wall integrity is a stress resistance factor relevant to the successful colonization of the stinkbug midgut by Burkholderia symbiont. PMID:23747704

  14. Effect of bacterial lectin on acceleration of fat cell lipolysis at in vitro diode laser treatment using encapsulated ICG

    NASA Astrophysics Data System (ADS)

    Yanina, Irina Yu.; Kochubey, Vyacheslav I.; Tuchin, Valery V.; Portnov, Sergey A.; Svenskaya, Yuliya I.; Gorin, Dmitry A.; Ponomareva, Elena G.; Nikitina, Valentina E.

    2012-03-01

    The influence of bacterial lectin on photochemically induced fat cell lipolysis was studied. Resulting capsules were tested for ICG absorption by optical spectra measurements. To separate released and encapsulated ICG supernatant was removed and capsules were redispered in pure deionized water. Supernatant and capsule suspension spectra were measured separately. It was also found that pretreatment of tissue by lectin leads to acceleration of lipolysis at photochemical treatment. The data obtained can be used to enhance efficiency of photochemical therapy.

  15. Effect of bacterial lectin on acceleration of fat cell lipolysis at in vitro diode laser treatment using encapsulated ICG

    NASA Astrophysics Data System (ADS)

    Yanina, Irina Yu.; Kochubey, Vyacheslav I.; Tuchin, Valery V.; Portnov, Sergey A.; Svenskaya, Yuliya I.; Gorin, Dmitry A.; Ponomareva, Elena G.; Nikitina, Valentina E.

    2011-10-01

    The influence of bacterial lectin on photochemically induced fat cell lipolysis was studied. Resulting capsules were tested for ICG absorption by optical spectra measurements. To separate released and encapsulated ICG supernatant was removed and capsules were redispered in pure deionized water. Supernatant and capsule suspension spectra were measured separately. It was also found that pretreatment of tissue by lectin leads to acceleration of lipolysis at photochemical treatment. The data obtained can be used to enhance efficiency of photochemical therapy.

  16. Proteomic Analyses of Intracellular Salmonella enterica Serovar Typhimurium Reveal Extensive Bacterial Adaptations to Infected Host Epithelial Cells

    PubMed Central

    Liu, Yanhua; Zhang, Qiufeng; Hu, Mo; Yu, Kaiwen; Fu, Jiaqi; Zhou, Fan

    2015-01-01

    Salmonella species can gain access into nonphagocytic cells, where the bacterium proliferates in a unique membrane-bounded compartment. In order to reveal bacterial adaptations to their intracellular niche, here we conducted the first comprehensive proteomic survey of Salmonella isolated from infected epithelial cells. Among ∼3,300 identified bacterial proteins, we found that about 100 proteins were significantly altered at the onset of Salmonella intracellular replication. In addition to substantially increased iron-uptake capacities, bacterial high-affinity manganese and zinc transporters were also upregulated, suggesting an overall limitation of metal ions in host epithelial cells. We also found that Salmonella induced multiple phosphate utilization pathways. Furthermore, our data suggested upregulation of the two-component PhoPQ system as well as of many downstream virulence factors under its regulation. Our survey also revealed that intracellular Salmonella has increased needs for certain amino acids and biotin. In contrast, Salmonella downregulated glycerol and maltose utilization as well as chemotaxis pathways. PMID:25939512

  17. Instrumental improvements and sample preparations that enable reproducible, reliable acquisition of mass spectra from whole bacterial cells

    PubMed Central

    Alusta, Pierre; Buzatu, Dan; Williams, Anna; Cooper, Willie-Mae; Tarasenko, Olga; Dorey, R Cameron; Hall, Reggie; Parker, W Ryan; Wilkes, Jon G

    2015-01-01

    Rationale Rapid sub-species characterization of pathogens is required for timely responses in outbreak situations. Pyrolysis mass spectrometry (PyMS) has the potential to be used for this purpose. Methods However, in order to make PyMS practical for traceback applications, certain improvements related to spectrum reproducibility and data acquisition speed were required. The main objectives of this study were to facilitate fast detection (<30 min to analyze 6 samples, including preparation) and sub-species-level bacterial characterization based on pattern recognition of mass spectral fingerprints acquired from whole cells volatilized and ionized at atmospheric pressure. An AccuTOF DART mass spectrometer was re-engineered to permit ionization of low-volatility bacteria by means of Plasma Jet Ionization (PJI), in which an electric discharge, and, by extension, a plasma beam, impinges on sample cells. Results Instrumental improvements and spectral acquisition methodology are described. Performance of the re-engineered system was assessed using a small challenge set comprised of assorted bacterial isolates differing in identity by varying amounts. In general, the spectral patterns obtained allowed differentiation of all samples tested, including those of the same genus and species but different serotypes. Conclusions Fluctuations of ±15% in bacterial cell concentrations did not substantially compromise replicate spectra reproducibility. © 2015 National Center for Toxicological Research. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd. PMID:26443394

  18. Slight Pro-Inflammatory Immunomodulation Properties of Dendritic Cells by Gardnerella vaginalis: The “Invisible Man” of Bacterial Vaginosis?

    PubMed Central

    Bertran, Thomas; Brachet, Patrick; Vareille-Delarbre, Marjolaine; Falenta, Julie; Dosgilbert, Annie; Vasson, Marie-Paule; Forestier, Christiane; Tridon, Arlette; Evrard, Bertrand

    2016-01-01

    Bacterial vaginosis (BV), the most common genital infection in reproductive-aged women, is associated with increased risk of sexually transmitted infections. Its etiology remains unclear, especially the role of Gardnerella (G.) vaginalis, an anaerobic bacterium characteristic of the BV-alteration of the vaginal ecosystem. In the genital mucosa, dendritic cells (DCs) sense bacteria of the microenvironment via receptors and then orchestrate the immune response by induction of different T cell subtypes. We investigated the interactions between G. vaginalis and human monocyte-derived DCs using a wide range of bacterial concentrations (multiplicity of infection from 0.01 to 100), and the effects of this pathogen on PHA-induced lymphocyte proliferation. As observed by electron microscopy and cytometry, G. vaginalis reduced the internalization ability of DCs by forming extracellular clusters and induced neither DC maturation, nor DC secretion of cytokines, except at the highest dose with a very early DC maturation state. The same profile was observed on lymphocytes with significant increases of proliferation and cytokine secretion only at the highest bacterial concentration. Our findings indicate that G. vaginalis possesses slight immune-stimulating activities against DCs and T cells, reflecting thus a defective inflammatory response and giving rise to the atypical, non- or low-grade, inflammatory clinical disease profile. PMID:26989700

  19. Structure of the complex between teicoplanin and a bacterial cell-wall peptide: use of a carrier-protein approach

    PubMed Central

    Economou, Nicoleta J.; Zentner, Isaac J.; Lazo, Edwin; Jakoncic, Jean; Stojanoff, Vivian; Weeks, Stephen D.; Grasty, Kimberly C.; Cocklin, Simon; Loll, Patrick J.

    2013-01-01

    Multidrug-resistant bacterial infections are commonly treated with glycopeptide antibiotics such as teicoplanin. This drug inhibits bacterial cell-wall biosynthesis by binding and sequestering a cell-wall precursor: a d-alanine-containing peptide. A carrier-protein strategy was used to crystallize the complex of teicoplanin and its target peptide by fusing the cell-wall peptide to either MBP or ubiquitin via native chemical ligation and subsequently crystallizing the protein–peptide–antibiotic complex. The 2.05 Å resolution MBP–peptide–teicoplanin structure shows that teicoplanin recognizes its ligand through a combination of five hydrogen bonds and multiple van der Waals interactions. Comparison of this teicoplanin structure with that of unliganded teicoplanin reveals a flexibility in the antibiotic peptide backbone that has significant implications for ligand recognition. Diffraction experiments revealed an X-ray-induced dechlorination of the sixth amino acid of the antibiotic; it is shown that teicoplanin is significantly more radiation-sensitive than other similar antibiotics and that ligand binding increases radiosensitivity. Insights derived from this new teicoplanin structure may contribute to the development of next-generation antibacterials designed to overcome bacterial resistance. PMID:23519660

  20. An experimental study of Au removal from solution by non-metabolizing bacterial cells and their exudates

    NASA Astrophysics Data System (ADS)

    Kenney, Janice P. L.; Song, Zhen; Bunker, Bruce A.; Fein, Jeremy B.

    2012-06-01

    In this study, we examine the initial interactions between aqueous Au(III)-hydroxide-chloride aqueous complexes and bacteria by measuring the effects of non-metabolizing cells on the speciation and distribution of Au. We conducted batch Au(III) removal experiments, measuring the kinetics and pH dependence of Au removal, and tracking valence state transformations and binding environments using XANES spectroscopy. These experiments were conducted using non-metabolizing cells of Bacillus subtilis or Pseudomonas putida suspended in a 5 ppm Au(III)-(hydroxide)-chloride starting solution of 0.1 M NaClO4 to buffer ionic strength. Both bacterial species removed greater than 85% of the Au from solution after 2 h of exposure time below approximately pH 5. Above pH 5, the extent of Au removed from solution decreased with increasing pH, with less than approximately 10% removal of Au from solution above pH 7.5. Kinetics experiments indicated that the Au removal with both bacterial species was rapid at pH 3, and slowed with increasing pH. Reversibility experiments demonstrated that (1) once the Au was removed from solution, adjusting 35 the pH alone did not remobilize the Au into solution and (2) the presence of cysteine in solution in the reversibility experiments caused Au to desorb, suggesting that the Au was not internalized within the bacterial cells. Our results suggest that Au removal occurs as a two-step pH-dependent adsorption reduction process. The speciation of the aqueous Au and the bacterial surface appears to control the rate of Au removal from solution. Under low pH conditions, the cell walls are only weakly negatively charged and aqueous Au complexes adsorb readily and rapidly. With increasing pH, the cell wall becomes more negatively charged, slowing adsorption significantly. The XANES data demonstrate that the reduction of Au(III) by bacterial exudates is slower and less extensive than the reduction observed in the bacteria-bearing systems, and we conclude that

  1. Yeast cell wall extract induces disease resistance against bacterial and fungal pathogens in Arabidopsis thaliana and Brassica crop.

    PubMed

    Narusaka, Mari; Minami, Taichi; Iwabuchi, Chikako; Hamasaki, Takashi; Takasaki, Satoko; Kawamura, Kimito; Narusaka, Yoshihiro

    2015-01-01

    Housaku Monogatari (HM) is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated increased expression of several plant defense-related genes. HM treatment appears to induce early activation of jasmonate/ethylene and late activation of salicylic acid (SA) pathways. Analysis using signaling mutants revealed that HM required SA accumulation and SA signaling to facilitate resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Colletotrichum higginsianum. In addition, HM-induced resistance conferred chitin-independent disease resistance to bacterial pathogens in A. thaliana. These results suggest that HM contains multiple microbe-associated molecular patterns that activate defense responses in plants. These findings suggest that the application of HM is a useful tool that may facilitate new disease control methods. PMID:25565273

  2. Yeast Cell Wall Extract Induces Disease Resistance against Bacterial and Fungal Pathogens in Arabidopsis thaliana and Brassica Crop

    PubMed Central

    Narusaka, Mari; Minami, Taichi; Iwabuchi, Chikako; Hamasaki, Takashi; Takasaki, Satoko; Kawamura, Kimito; Narusaka, Yoshihiro

    2015-01-01

    Housaku Monogatari (HM) is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated increased expression of several plant defense-related genes. HM treatment appears to induce early activation of jasmonate/ethylene and late activation of salicylic acid (SA) pathways. Analysis using signaling mutants revealed that HM required SA accumulation and SA signaling to facilitate resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Colletotrichum higginsianum. In addition, HM-induced resistance conferred chitin-independent disease resistance to bacterial pathogens in A. thaliana. These results suggest that HM contains multiple microbe-associated molecular patterns that activate defense responses in plants. These findings suggest that the application of HM is a useful tool that may facilitate new disease control methods. PMID:25565273

  3. Polysaccharide encapsulated bacterial infection in sickle cell anemia: a thirty year epidemiologic experience.

    PubMed

    Wong, W Y; Powars, D R; Chan, L; Hiti, A; Johnson, C; Overturf, G

    1992-03-01

    Annual age-specific incidence rates of Streptococcus pneumoniae or Haemophilus influenzae bacterial septicemia in sickle cell anemia (SS) were determined for the years of 1957 through 1989. Forty-nine patients had 64 episodes of septicemia among a population of 786 SS patients observed for 8,138 person-years. Peak frequency of infection occurred between 1968-1971 and 1975-1981 with a conspicuous absence of episodes in 1972, 1973, 1982-1984, and 1986-1987, thus demonstrating cycles of high and low attack rates. The annual age-specific incidence rate of septicemia varied from 64.5 (1965) to 421.1 (1980) per 1,000 person-years for those under 2 years of age and never exceeded 10.2 per 1,000 in those over 4 years of age. Following the introduction of pneumococcal polyvalent vaccine in 1978, incidence of infection decreased in SS children greater than 2 years of age. No modification of the risk of infection was observed in immunized children less than 2 years of age. During these three decades, there has been a ten-fold increase in the number of SS adults over 20 years of age. The relative risk of chronic sickle complications comparing the survivors of septicemia to the non-infected patients was: subsequent death 1.76, retinopathy 4.06, avascular necrosis 1.95, symptomatic cholelithiasis 1.33, stroke 1.30, and priapism 1.26. These data suggest that prognosis for lifetime severe SS is initially manifested as an increased risk of septicemia during childhood. PMID:1546714

  4. Denitrifying Bacterial Communities Affect Current Production and Nitrous Oxide Accumulation in a Microbial Fuel Cell

    PubMed Central

    Vilar-Sanz, Ariadna; Puig, Sebastià; García-Lledó, Arantzazu; Trias, Rosalia; Balaguer, M. Dolors; Colprim, Jesús; Bañeras, Lluís

    2013-01-01

    The biocathodic reduction of nitrate in Microbial Fuel Cells (MFCs) is an alternative to remove nitrogen in low carbon to nitrogen wastewater and relies entirely on microbial activity. In this paper the community composition of denitrifiers in the cathode of a MFC is analysed in relation to added electron acceptors (nitrate and nitrite) and organic matter in the cathode. Nitrate reducers and nitrite reducers were highly affected by the operational conditions and displayed high diversity. The number of retrieved species-level Operational Taxonomic Units (OTUs) for narG, napA, nirS and nirK genes was 11, 10, 31 and 22, respectively. In contrast, nitrous oxide reducers remained virtually unchanged at all conditions. About 90% of the retrieved nosZ sequences grouped in a single OTU with a high similarity with Oligotropha carboxidovorans nosZ gene. nirS-containing denitrifiers were dominant at all conditions and accounted for a significant amount of the total bacterial density. Current production decreased from 15.0 A·m−3 NCC (Net Cathodic Compartment), when nitrate was used as an electron acceptor, to 14.1 A·m−3 NCC in the case of nitrite. Contrarily, nitrous oxide (N2O) accumulation in the MFC was higher when nitrite was used as the main electron acceptor and accounted for 70% of gaseous nitrogen. Relative abundance of nitrite to nitrous oxide reducers, calculated as (qnirS+qnirK)/qnosZ, correlated positively with N2O emissions. Collectively, data indicate that bacteria catalysing the initial denitrification steps in a MFC are highly influenced by main electron acceptors and have a major influence on current production and N2O accumulation. PMID:23717427

  5. Denitrifying bacterial communities affect current production and nitrous oxide accumulation in a microbial fuel cell.

    PubMed

    Vilar-Sanz, Ariadna; Puig, Sebastià; García-Lledó, Arantzazu; Trias, Rosalia; Balaguer, M Dolors; Colprim, Jesús; Bañeras, Lluís

    2013-01-01

    The biocathodic reduction of nitrate in Microbial Fuel Cells (MFCs) is an alternative to remove nitrogen in low carbon to nitrogen wastewater and relies entirely on microbial activity. In this paper the community composition of denitrifiers in the cathode of a MFC is analysed in relation to added electron acceptors (nitrate and nitrite) and organic matter in the cathode. Nitrate reducers and nitrite reducers were highly affected by the operational conditions and displayed high diversity. The number of retrieved species-level Operational Taxonomic Units (OTUs) for narG, napA, nirS and nirK genes was 11, 10, 31 and 22, respectively. In contrast, nitrous oxide reducers remained virtually unchanged at all conditions. About 90% of the retrieved nosZ sequences grouped in a single OTU with a high similarity with Oligotropha carboxidovorans nosZ gene. nirS-containing denitrifiers were dominant at all conditions and accounted for a significant amount of the total bacterial density. Current production decreased from 15.0 A · m(-3) NCC (Net Cathodic Compartment), when nitrate was used as an electron acceptor, to 14.1 A · m(-3) NCC in the case of nitrite. Contrarily, nitrous oxide (N2O) accumulation in the MFC was higher when nitrite was used as the main electron acceptor and accounted for 70% of gaseous nitrogen. Relative abundance of nitrite to nitrous oxide reducers, calculated as (qnirS+qnirK)/qnosZ, correlated positively with N2O emissions. Collectively, data indicate that bacteria catalysing the initial denitrification steps in a MFC are highly influenced by main electron acceptors and have a major influence on current production and N2O accumulation. PMID:23717427

  6. Bacterial Adhesion of Streptococcus suis to Host Cells and Its Inhibition by Carbohydrate Ligands

    PubMed Central

    Kouki, Annika; Pieters, Roland J.; Nilsson, Ulf J.; Loimaranta, Vuokko; Finne, Jukka; Haataja, Sauli

    2013-01-01

    Streptococcus suis is a Gram-positive bacterium, which causes sepsis and meningitis in pigs and humans. This review examines the role of known S. suis virulence factors in adhesion and S. suis carbohydrate-based adhesion mechanisms, as well as the inhibition of S. suis adhesion by anti-adhesion compounds in in vitro assays. Carbohydrate-binding specificities of S. suis have been identified, and these studies have shown that many strains recognize Galα1-4Gal-containing oligosaccharides present in host glycolipids. In the era of increasing antibiotic resistance, new means to treat infections are needed. Since microbial adhesion to carbohydrates is important to establish disease, compounds blocking adhesion could be an alternative to antibiotics. The use of oligosaccharides as drugs is generally hampered by their relatively low affinity (micromolar) to compete with multivalent binding to host receptors. However, screening of a library of chemically modified Galα1-4Gal derivatives has identified compounds that inhibit S. suis adhesion in nanomolar range. Also, design of multivalent Galα1-4Gal-containing dendrimers has resulted in a significant increase of the inhibitory potency of the disaccharide. The S. suis adhesin binding to Galα1-4Gal-oligosaccharides, Streptococcal adhesin P (SadP), was recently identified. It has a Galα1-4Gal-binding N-terminal domain and a C-terminal LPNTG-motif for cell wall anchoring. The carbohydrate-binding domain has no homology to E. coli P fimbrial adhesin, which suggests that these Gram-positive and Gram-negative bacterial adhesins recognizing the same receptor have evolved by convergent evolution. SadP adhesin may represent a promising target for the design of anti-adhesion ligands for the prevention and treatment of S. suis infections. PMID:24833053

  7. The effects of non-metabolizing bacterial cells on the precipitation of U, Pb and Ca phosphates

    NASA Astrophysics Data System (ADS)

    Dunham-Cheatham, Sarrah; Rui, Xue; Bunker, Bruce; Menguy, Nicolas; Hellmann, Roland; Fein, Jeremy

    2011-05-01

    In this study, we test the potential for passive cell wall biomineralization by determining the effects of non-metabolizing bacteria on the precipitation of uranyl, lead, and calcium phosphates from a range of over-saturated conditions. Experiments were performed using Gram-positive Bacillus subtilis and Gram-negative Shewanella oneidensis MR-1. After equilibration, the aqueous phases were sampled and the remaining metal and P concentrations were analyzed using inductively coupled plasma-optical emission spectroscopy (ICP-OES); the solid phases were collected and analyzed using X-ray diffractometry (XRD), transmission electron microscopy (TEM), and X-ray absorption spectroscopy (XAS). At the lower degrees of over-saturation studied, bacterial cells exerted no discernable effect on the mode of precipitation of the metal phosphates, with homogeneous precipitation occurring exclusively. However, at higher saturation states in the U system, we observed heterogeneous mineralization and extensive nucleation of hydrogen uranyl phosphate (HUP) mineralization throughout the fabric of the bacterial cell walls. This mineral nucleation effect was observed in both B. subtilis and S. oneidensis cells. In both cases, the biogenic mineral precipitates formed under the higher saturation state conditions were significantly smaller than those that formed in the abiotic controls. The cell wall nucleation effects that occurred in some of the U systems were not observed under any of the saturation state conditions studied in the Pb or Ca systems. The presence of B. subtilis significantly decreased the extent of precipitation in the U system, but had little effect in the Pb and Ca systems. At least part of this effect is due to higher solubility of the nanoscale HUP precipitate relative to macroscopic HUP. This study documents several effects of non-metabolizing bacterial cells on the nature and extent of metal phosphate precipitation. Each of these effects likely contributes to higher

  8. Conjugated gold nanoparticles as a tool for probing the bacterial cell envelope: The case of Shewanella oneidensis MR-1.

    PubMed

    Jahnke, Justin P; Cornejo, Jose A; Sumner, James J; Schuler, Andrew J; Atanassov, Plamen; Ista, Linnea K

    2016-03-01

    The bacterial cell envelope forms the interface between the interior of the cell and the outer world and is, thus, the means of communication with the environment. In particular, the outer cell surface mediates the adhesion of bacteria to the surface, the first step in biofilm formation. While a number of ligand-based interactions are known for the attachment process in commensal organisms and, as a result, opportunistic pathogens, the process of nonspecific attachment is thought to be mediated by colloidal, physiochemical, interactions. It is becoming clear, however, that colloidal models ignore the heterogeneity of the bacterial surface, and that the so-called nonspecific attachment may be mediated by specific regions of the cell surface, whether or not the relevant interaction is ligand-mediate. The authors introduce surface functionalized gold nanoparticles to probe the surface chemistry of Shewanella oneidensis MR-1 as it relates to surface attachment to ω-substituted alkanethiolates self-assembled monolayers (SAMs). A linear relationship between the attachment of S. oneidensis to SAM modified planar substrates and the number of similarly modified nanoparticles attached to the bacterial surfaces was demonstrated. In addition, the authors demonstrate that carboxylic acid-terminated nanoparticles attach preferentially to the subpolar region of the S. oneidensis and obliteration of that binding preference corresponds in loss of attachment to carboxylic acid terminated SAMs. Moreover, this region corresponds to suspected functional regions of the S. oneidensis surface. Because this method can be employed over large numbers of cells, this method is expected to be generally applicable for understanding cell surface organization across populations. PMID:26746161

  9. Actin pedestal formation by enterohemorrhagic Escherichia coli enhances bacterial host cell attachment and concomitant type III translocation.

    PubMed

    Battle, Scott E; Brady, Michael J; Vanaja, Sivapriya Kailasan; Leong, John M; Hecht, Gail A

    2014-09-01

    Attachment of enterohemorrhagic Escherichia coli (EHEC) to intestinal epithelial cells is critical for colonization and is associated with localized actin assembly beneath bound bacteria. The formation of these actin "pedestals" is dependent on the translocation of effectors into mammalian cells via a type III secretion system (T3SS). Tir, an effector required for pedestal formation, localizes in the host cell plasma membrane and promotes attachment of bacteria to mammalian cells by binding to the EHEC outer surface protein Intimin. Actin pedestal formation has been shown to foster intestinal colonization by EHEC in some animal models, but the mechanisms responsible for this remain undefined. Investigation of the role of Tir-mediated actin assembly promoting host cell binding is complicated by other, potentially redundant EHEC-encoded binding pathways, so we utilized cell binding assays that specifically detect binding mediated by Tir-Intimin interaction. We also assessed the role of Tir-mediated actin assembly in two-step assays that temporally segregated initial translocation of Tir from subsequent Tir-Intimin interaction, thereby permitting the distinction of effects on translocation from effects on cell attachment. In these experimental systems, we compromised Tir-mediated actin assembly by chemically inhibiting actin assembly or by infecting mammalian cells with EHEC mutants that translocate Tir but are specifically defective in Tir-mediated pedestal formation. We found that an inability of Tir to promote actin assembly resulted in a significant and striking decrease in bacterial binding mediated by Tir and Intimin. Bacterial mutants defective for pedestal formation translocated type III effectors to mammalian cells with reduced efficiency, but the decrease in translocation could be entirely accounted for by the decrease in host cell attachment. PMID:24958711

  10. Histamine induces Toll-like receptor 2 and 4 expression in endothelial cells and enhances sensitivity to Gram-positive and Gram-negative bacterial cell wall components

    PubMed Central

    Talreja, Jaya; Kabir, Mohammad H; Filla, Michael B; Stechschulte, Daniel J; Dileepan, Kottarappat N

    2004-01-01

    Histamine is a major inflammatory molecule released from the mast cell, and is known to activate endothelial cells. However, its ability to modulate endothelial responses to bacterial products has not been evaluated. In this study we determined the ability of histamine to modulate inflammatory responses of endothelial cells to Gram-negative and Gram-positive bacterial cell wall components and assessed the role of Toll-like receptors (TLR) 2 and 4 in the co-operation between histamine and bacterial pathogens. Human umbilical vein endothelial cells (HUVEC) were incubated with lipopolysaccharide (LPS), lipoteichoic acid (LTA), or peptidoglycan (PGN) in the presence or absence of histamine, and the expression and release of interleukin-6 (IL-6), and NF-κB translocation were determined. The effect of histamine on the expression of mRNA and proteins for TLR2 and TLR4 was also evaluated. Incubation of HUVEC with LPS, LTA and PGN resulted in marked enhancement of IL-6 mRNA expression and IL-6 secretion. Histamine alone markedly enhanced IL-6 mRNA expression in HUVEC, but it did not stimulate proportional IL-6 release. When HUVEC were incubated with LPS, LTA, or PGN in the presence of histamine marked amplification of both IL-6 production and mRNA expression was noted. HUVEC constitutively expressed TLR2 and TLR4 mRNA and proteins, and these were further enhanced by histamine. The expression of mRNAs encoding MD-2 and MyD88, the accessory molecules associated with TLR signalling, were unchanged by histamine treatment. These results demonstrate that histamine up-regulates the expression of TLR2 and TLR4 and amplifies endothelial cell inflammatory responses to Gram-negative and Gram-positive bacterial components. PMID:15379983

  11. Bacterial growth state distinguished by single-cell protein profiling: Does chlorination kill coliforms in municipal effluent?

    SciTech Connect

    Rockabrand, D.; Austin, T.; Kaiser, R.; Blum, P.

    1999-09-01

    Municipal effluent is the largest reservoir of human enteric bacteria. Its public health significance, however, depends upon the physiological status of the wastewater bacterial community. A novel immunofluorescence assay was developed and used to examine the bacterial growth state during wastewater disinfection. Quantitative levels of three highly conserved cytosolic proteins (DnaK, Dps, and Fis) were determined by using enterobacterium-specific antibody fluorochrome-coupled probes. Enterobacterial Fis homologs were abundant in growing cells and nearly undetectable in stationary-phase cells. In contrast, enterobacterial Dps homologs were abundant in stationary-phase cells but virtually undetectable in growing cells. The range of variation in the abundance of both proteins was at least 100-fold as determined by Western blotting and immunofluorescence analysis. Enterobacterial DnaK homologs were nearly invariant with growth state, enabling their use as permeabilization controls. The cellular growth states of individual enterobacteria in wastewater samples were determined by measurement of Fis, Dps, and DnaK abundance (protein profiling). Intermediate levels of Fis and Dps were evident and occurred in response to physiological transitions. The results indicate that chlorination failed to kill coliforms but rather elicited nutrient starvation and a reversible nonculturable state. These studies suggest that the current standard procedures for wastewater analysis which rely on detection of culturable cells likely underestimate fecal coliform content.

  12. Deciphering the Metabolism of Undecaprenyl-Phosphate: The Bacterial Cell-Wall Unit Carrier at the Membrane Frontier

    PubMed Central

    Manat, Guillaume; Roure, Sophie; Auger, Rodolphe; Bouhss, Ahmed; Barreteau, Hélène; Mengin-Lecreulx, Dominique

    2014-01-01

    During the biogenesis of bacterial cell-wall polysaccharides, such as peptidoglycan, cytoplasmic synthesized precursors should be trafficked across the plasma membrane. This essential process requires a dedicated lipid, undecaprenyl-phosphate that is used as a glycan lipid carrier. The sugar is linked to the lipid carrier at the inner face of the membrane and is translocated toward the periplasm, where the glycan moiety is transferred to the growing polymer. Undecaprenyl-phosphate originates from the dephosphorylation of its precursor undecaprenyl-diphosphate, with itself generated by de novo synthesis or by recycling after the final glycan transfer. Undecaprenyl-diphosphate is de novo synthesized by the cytosolic cis-prenyltransferase undecaprenyl-diphosphate synthase, which has been structurally and mechanistically characterized in great detail highlighting the condensation process. In contrast, the next step toward the formation of the lipid carrier, the dephosphorylation step, which has been overlooked for many years, has only started revealing surprising features. In contrast to the previous step, two unrelated families of integral membrane proteins exhibit undecaprenyl-diphosphate phosphatase activity: BacA and members of the phosphatidic acid phosphatase type 2 super-family, raising the question of the significance of this multiplicity. Moreover, these enzymes establish an unexpected link between the synthesis of bacterial cell-wall polymers and other biological processes. In the present review, the current knowledge in the field of the bacterial lipid carrier, its mechanism of action, biogenesis, recycling, regulation, and future perspective works are presented. PMID:24799078

  13. Regulatory T cells promote a protective Th17-associated immune response to intestinal bacterial infection with C. rodentium.

    PubMed

    Wang, Z; Friedrich, C; Hagemann, S C; Korte, W H; Goharani, N; Cording, S; Eberl, G; Sparwasser, T; Lochner, M

    2014-11-01

    Intestinal infection with the mouse pathogen Citrobacter rodentium induces a strong local Th17 response in the colon. Although this inflammatory immune response helps to clear the pathogen, it also induces inflammation-associated pathology in the gut and thus, has to be tightly controlled. In this project, we therefore studied the impact of Foxp3(+) regulatory T cells (Treg) on the infectious and inflammatory processes elicited by the bacterial pathogen C. rodentium. Surprisingly, we found that depletion of Treg by diphtheria toxin in the Foxp3(DTR) (DEREG) mouse model resulted in impaired bacterial clearance in the colon, exacerbated body weight loss, and increased systemic dissemination of bacteria. Consistent with the enhanced susceptibility to infection, we found that the colonic Th17-associated T-cell response was impaired in Treg-depleted mice, suggesting that the presence of Treg is crucial for the establishment of a functional Th17 response after the infection in the gut. As a consequence of the impaired Th17 response, we also observed less inflammation-associated pathology in the colons of Treg-depleted mice. Interestingly, anti-interleukin (IL)-2 treatment of infected Treg-depleted mice restored Th17 induction, indicating that Treg support the induction of a protective Th17 response during intestinal bacterial infection by consumption of local IL-2. PMID:24646939

  14. Differentiation of whole bacterial cells based on high-throughput microarray chip printing and infrared microspectroscopic readout.

    PubMed

    Al-Khaldi, Sufian F; Mossoba, Magdi M; Burke, Tara L; Fry, Frederick S

    2009-10-01

    Using robotic automation, a microarray printing protocol for whole bacterial cells was developed for subsequent label-free and nondestructive infrared microspectroscopic detection. Using this contact microspotting system, 24 microorganisms were printed on zinc selenide slides; these were 6 species of Listeria, 10 species of Vibrio, 2 strains of Photobacterium damselae, Yersinia enterocolitica 289, Bacillus cereus ATCC 14529, Staphylococcus aureus, ATCC 19075 (serotype 104 B), Shigella sonnei 20143, Klebsiella pneumoniae KP73, Enterobacter cloacae, Citrobacter freundii 200, and Escherichia coli. Microarrays consisting of separate spots of bacterial deposits gave consistent and reproducible infrared spectra, which were differentiated by unsupervised pattern recognition algorithms. Two multivariate analysis algorithms, principal component analysis and hierarchical cluster analysis, successfully separated most, but not all, the bacteria investigated down to the species level. PMID:19630511

  15. Vimentin in Bacterial Infections

    PubMed Central

    Mak, Tim N.; Brüggemann, Holger

    2016-01-01

    Despite well-studied bacterial strategies to target actin to subvert the host cell cytoskeleton, thus promoting bacterial survival, replication, and dissemination, relatively little is known about the bacterial interaction with other components of the host cell cytoskeleton, including intermediate filaments (IFs). IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria-vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial virulence factors that target vimentin to subvert its function in order to change the host cell fate in the course of a bacterial infection. PMID:27096872

  16. Vimentin in Bacterial Infections.

    PubMed

    Mak, Tim N; Brüggemann, Holger

    2016-01-01

    Despite well-studied bacterial strategies to target actin to subvert the host cell cytoskeleton, thus promoting bacterial survival, replication, and dissemination, relatively little is known about the bacterial interaction with other components of the host cell cytoskeleton, including intermediate filaments (IFs). IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria-vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial virulence factors that target vimentin to subvert its function in order to change the host cell fate in the course of a bacterial infection. PMID:27096872

  17. SpyAD, a Moonlighting Protein of Group A Streptococcus Contributing to Bacterial Division and Host Cell Adhesion

    PubMed Central

    Gallotta, Marilena; Gancitano, Giovanni; Pietrocola, Giampiero; Mora, Marirosa; Pezzicoli, Alfredo; Tuscano, Giovanna; Chiarot, Emiliano; Nardi-Dei, Vincenzo; Taddei, Anna Rita; Rindi, Simonetta; Speziale, Pietro; Soriani, Marco; Bensi, Giuliano

    2014-01-01

    Group A streptococcus (GAS) is a human pathogen causing a wide repertoire of mild and severe diseases for which no vaccine is yet available. We recently reported the identification of three protein antigens that in combination conferred wide protection against GAS infection in mice. Here we focused our attention on the characterization of one of these three antigens, Spy0269, a highly conserved, surface-exposed, and immunogenic protein of unknown function. Deletion of the spy0269 gene in a GAS M1 isolate resulted in very long bacterial chains, which is indicative of an impaired capacity of the knockout mutant to properly divide. Confocal microscopy and immunoprecipitation experiments demonstrated that the protein was mainly localized at the cell septum and could interact in vitro with the cell division protein FtsZ, leading us to hypothesize that Spy0269 is a member of the GAS divisome machinery. Predicted structural domains and sequence homologies with known streptococcal adhesins suggested that this antigen could also play a role in mediating GAS interaction with host cells. This hypothesis was confirmed by showing that recombinant Spy0269 could bind to mammalian epithelial cells in vitro and that Lactococcus lactis expressing Spy0269 on its cell surface could adhere to mammalian cells in vitro and to mice nasal mucosa in vivo. On the basis of these data, we believe that Spy0269 is involved both in bacterial cell division and in adhesion to host cells and we propose to rename this multifunctional moonlighting protein as SpyAD (Streptococcus pyogenes Adhesion and Division protein). PMID:24778116

  18. Enteric bacterial invasion of intestinal epithelial cells in vitro is dramatically enhanced using a vertical diffusion chamber model.

    PubMed

    Naz, Neveda; Mills, Dominic C; Wren, Brendan W; Dorrell, Nick

    2013-01-01

    The interactions of bacterial pathogens with host cells have been investigated extensively using in vitro cell culture methods. However as such cell culture assays are performed under aerobic conditions, these in vitro models may not accurately represent the in vivo environment in which the host-pathogen interactions take place. We have developed an in vitro model of infection that permits the coculture of bacteria and host cells under different medium and gas conditions. The Vertical Diffusion Chamber (VDC) model mimics the conditions in the human intestine where bacteria will be under conditions of very low oxygen whilst tissue will be supplied with oxygen from the blood stream. Placing polarized intestinal epithelial cell (IEC) monolayers grown in Snapwell inserts into a VDC creates separate apical and basolateral compartments. The basolateral compartment is filled with cell culture medium, sealed and perfused with oxygen whilst the apical compartment is filled with broth, kept open and incubated under microaerobic conditions. Both Caco-2 and T84 IECs can be maintained in the VDC under these conditions without any apparent detrimental effects on cell survival or monolayer integrity. Coculturing experiments performed with different C. jejuni wild-type strains and different IEC lines in the VDC model with microaerobic conditions in the apical compartment reproducibly result in an increase in the number of interacting (almost 10-fold) and intracellular (almost 100-fold) bacteria compared to aerobic culture conditions. The environment created in the VDC model more closely mimics the environment encountered by C. jejuni in the human intestine and highlights the importance of performing in vitro infection assays under conditions that more closely mimic the in vivo reality. We propose that use of the VDC model will allow new interpretations of the interactions between bacterial pathogens and host cells. PMID:24192850

  19. Crystal structure of bacterial cell-surface alginate-binding protein with an M75 peptidase motif

    SciTech Connect

    Maruyama, Yukie; Ochiai, Akihito; Mikami, Bunzo; Hashimoto, Wataru; Murata, Kousaku

    2011-02-18

    Research highlights: {yields} Bacterial alginate-binding Algp7 is similar to component EfeO of Fe{sup 2+} transporter. {yields} We determined the crystal structure of Algp7 with a metal-binding motif. {yields} Algp7 consists of two helical bundles formed through duplication of a single bundle. {yields} A deep cleft involved in alginate binding locates around the metal-binding site. {yields} Algp7 may function as a Fe{sup 2+}-chelated alginate-binding protein. -- Abstract: A gram-negative Sphingomonas sp. A1 directly incorporates alginate polysaccharide into the cytoplasm via the cell-surface pit and ABC transporter. A cell-surface alginate-binding protein, Algp7, functions as a concentrator of the polysaccharide in the pit. Based on the primary structure and genetic organization in the bacterial genome, Algp7 was found to be homologous to an M75 peptidase motif-containing EfeO, a component of a ferrous ion transporter. Despite the presence of an M75 peptidase motif with high similarity, the Algp7 protein purified from recombinant Escherichia coli cells was inert on insulin B chain and N-benzoyl-Phe-Val-Arg-p-nitroanilide, both of which are substrates for a typical M75 peptidase, imelysin, from Pseudomonas aeruginosa. The X-ray crystallographic structure of Algp7 was determined at 2.10 A resolution by single-wavelength anomalous diffraction. Although a metal-binding motif, HxxE, conserved in zinc ion-dependent M75 peptidases is also found in Algp7, the crystal structure of Algp7 contains no metal even at the motif. The protein consists of two structurally similar up-and-down helical bundles as the basic scaffold. A deep cleft between the bundles is sufficiently large to accommodate macromolecules such as alginate polysaccharide. This is the first structural report on a bacterial cell-surface alginate-binding protein with an M75 peptidase motif.

  20. High speed classification of individual bacterial cells using a model-based light scatter system and multivariate statistics

    NASA Astrophysics Data System (ADS)

    Venkatapathi, Murugesan; Rajwa, Bartek; Ragheb, Kathy; Banada, Padmapriya P.; Lary, Todd; Robinson, J. Paul; Hirleman, E. Daniel

    2008-02-01

    We describe a model-based instrument design combined with a statistical classification approach for the development and realization of high speed cell classification systems based on light scatter. In our work, angular light scatter from cells of four bacterial species of interest, Bacillus subtilis, Escherichia coli, Listeria innocua, and Enterococcus faecalis, was modeled using the discrete dipole approximation. We then optimized a scattering detector array design subject to some hardware constraints, configured the instrument, and gathered experimental data from the relevant bacterial cells. Using these models and experiments, it is shown that optimization using a nominal bacteria model (i.e., using a representative size and refractive index) is insufficient for classification of most bacteria in realistic applications. Hence the computational predictions were constituted in the form of scattering-data-vector distributions that accounted for expected variability in the physical properties between individual bacteria within the four species. After the detectors were optimized using the numerical results, they were used to measure scatter from both the known control samples and unknown bacterial cells. A multivariate statistical method based on a support vector machine (SVM) was used to classify the bacteria species based on light scatter signatures. In our final instrument, we realized correct classification of B. subtilis in the presence of E. coli,L. innocua, and E. faecalis using SVM at 99.1%, 99.6%, and 98.5%, respectively, in the optimal detector array configuration. For comparison, the corresponding values for another set of angles were only 69.9%, 71.7%, and 70.2% using SVM, and more importantly, this improved performance is consistent with classification predictions.

  1. Implementation of a Permeable Membrane Insert-based Infection System to Study the Effects of Secreted Bacterial Toxins on Mammalian Host Cells.

    PubMed

    Flaherty, Rebecca A; Lee, Shaun W

    2016-01-01

    Many bacterial pathogens secrete potent toxins to aid in the destruction of host tissue, to initiate signaling changes in host cells or to manipulate immune system responses during the course of infection. Though methods have been developed to successfully purify and produce many of these important virulence factors, there are still many bacterial toxins whose unique structure or extensive post-translational modifications make them difficult to purify and study in in vitro systems. Furthermore, even when pure toxin can be obtained, there are many challenges associated with studying the specific effects of a toxin under relevant physiological conditions. Most in vitro cell culture models designed to assess the effects of secreted bacterial toxins on host cells involve incubating host cells with a one-time dose of toxin. Such methods poorly approximate what host cells actually experience during an infection, where toxin is continually produced by bacterial cells and allowed to accumulate gradually during the course of infection. This protocol describes the design of a permeable membrane insert-based bacterial infection system to study the effects of Streptolysin S, a potent toxin produced by Group A Streptococcus, on human epithelial keratinocytes. This system more closely mimics the natural physiological environment during an infection than methods where pure toxin or bacterial supernatants are directly applied to host cells. Importantly, this method also eliminates the bias of host responses that are due to direct contact between the bacteria and host cells. This system has been utilized to effectively assess the effects of Streptolysin S (SLS) on host membrane integrity, cellular viability, and cellular signaling responses. This technique can be readily applied to the study of other secreted virulence factors on a variety of mammalian host cell types to investigate the specific role of a secreted bacterial factor during the course of infection. PMID:27585035

  2. Efficient Gene Editing in Pluripotent Stem Cells by Bacterial Injection of Transcription Activator-Like Effector Nuclease Proteins

    PubMed Central

    Jia, Jingyue; Bai, Fang; Jin, Yongxin; Santostefano, Katherine E.; Ha, Un-Hwan; Wu, Donghai

    2015-01-01

    The type III secretion system (T3SS) of Pseudomonas aeruginosa is a powerful tool for direct protein delivery into mammalian cells and has successfully been used to deliver various exogenous proteins into mammalian cells. In the present study, transcription activator-like effector nuclease (TALEN) proteins have been efficiently delivered using the P. aeruginosa T3SS into mouse embryonic stem cells (mESCs), human ESCs (hESCs), and human induced pluripotent stem cells (hiPSCs) for genome editing. This bacterial delivery system offers an alternative method of TALEN delivery that is highly efficient in cleavage of the chromosomal target and presumably safer by avoiding plasmid DNA introduction. We combined the method of bacterial T3SS-mediated TALEN protein injection and transfection of an oligonucleotide template to effectively generate precise genetic modifications in the stem cells. Initially, we efficiently edited a single-base in the gfp gene of a mESC line to silence green fluorescent protein (GFP) production. The resulting GFP-negative mESC was cloned from a single cell and subsequently mutated back to a GFP-positive mESC line. Using the same approach, the gfp gene was also effectively knocked out in hESCs. In addition, a defined single-base edition was effectively introduced into the X-chromosome-linked HPRT1 gene in hiPSCs, generating an in vitro model of Lesch-Nyhan syndrome. T3SS-mediated TALEN protein delivery provides a highly efficient alternative for introducing precise gene editing within pluripotent stem cells for the purpose of disease genotype-phenotype relationship studies and cellular replacement therapies. Significance The present study describes a novel and powerful tool for the delivery of the genome editing enzyme transcription activator-like effector nuclease (TALEN) directly into pluripotent stem cells (PSCs), achieving desired base changes on the genomes of PSCs with high efficiency. This novel approach uses bacteria as a protein delivery

  3. Lipopolysaccharide clearance, bacterial clearance, and systemic inflammatory responses are regulated by cell type-specific functions of TLR4 during sepsis.

    PubMed

    Deng, Meihong; Scott, Melanie J; Loughran, Patricia; Gibson, Gregory; Sodhi, Chhinder; Watkins, Simon; Hackam, David; Billiar, Timothy R

    2013-05-15

    The morbidity associated with bacterial sepsis is the result of host immune responses to pathogens, which are dependent on pathogen recognition by pattern recognition receptors, such as TLR4. TLR4 is expressed on a range of cell types, yet the mechanisms by which cell-specific functions of TLR4 lead to an integrated sepsis response are poorly understood. To address this, we generated mice in which TLR4 was specifically deleted from myeloid cells (LysMTLR4KO) or hepatocytes (HCTLR4KO) and then determined survival, bacterial counts, host inflammatory responses, and organ injury in a model of cecal ligation and puncture (CLP), with or without antibiotics. LysM-TLR4 was required for phagocytosis and efficient bacterial clearance in the absence of antibiotics. Survival, the magnitude of the systemic and local inflammatory responses, and liver damage were associated with bacterial levels. HCTLR4 was required for efficient LPS clearance from the circulation, and deletion of HCTLR4 was associated with enhanced macrophage phagocytosis, lower bacterial levels, and improved survival in CLP without antibiotics. Antibiotic administration during CLP revealed an important role for hepatocyte LPS clearance in limiting sepsis-induced inflammation and organ injury. Our work defines cell type-selective roles for TLR4 in coordinating complex immune responses to bacterial sepsis and suggests that future strategies for modulating microbial molecule recognition should account for varying roles of pattern recognition receptors in multiple cell populations. PMID:23562812

  4. Natural Killer Cells and Helicobacter pylori Infection: Bacterial Antigens and Interleukin-12 Act Synergistically To Induce Gamma Interferon Production

    PubMed Central

    Yun, Cheol H.; Lundgren, Anna; Azem, Josef; Sjöling, Åsa; Holmgren, Jan; Svennerholm, Ann-Mari; Lundin, B. Samuel

    2005-01-01

    Helicobacter pylori is known to induce a local immune response, which is characterized by activation of lymphocytes and the production of IFN-γ in the stomach mucosa. Since not only T cells, but also natural killer (NK) cells, are potent producers of gamma interferon (IFN-γ), we investigated whether NK cells play a role in the immune response to H. pylori infection. Our results showed that NK cells were present in both the gastric and duodenal mucosae but that H. pylori infection did not affect the infiltration of NK cells into the gastrointestinal area. Furthermore, we could show that NK cells could be activated directly by H. pylori antigens, as H. pylori bacteria, as well as lysate from H. pylori, induced the secretion of IFN-γ by NK cells. NK cells were also activated without direct contact when separated from the bacteria by an epithelial cell layer, indicating that the activation of NK cells by H. pylori can also occur in vivo, in the infected stomach mucosa. Moreover, the production of IFN-γ by NK cells was greatly enhanced when a small amount of interleukin-12 (IL-12) was added, and this synergistic effect was associated with increased expression of the IL-12 receptor β2. It was further evident that bacterial lysate alone was sufficient to induce the activation of cytotoxicity-related molecules. In conclusion, we demonstrated that NK cells are present in the gastroduodenal mucosa of humans and that NK cells produce high levels of IFN-γ when stimulated with a combination of H. pylori antigen and IL-12. We propose that NK cells play an active role in the local immune response to H. pylori infection. PMID:15731046

  5. Gene expression regulation in retinal pigment epithelial cells induced by viral RNA and viral/bacterial DNA

    PubMed Central

    Brosig, Anton; Kuhrt, Heidrun; Wiedemann, Peter; Kohen, Leon; Bringmann, Andreas

    2015-01-01

    Purpose The pathogenesis of age-related macular degeneration (AMD) is associated with systemic and local inflammation. Various studies suggested that viral or bacterial infection may aggravate retinal inflammation in the aged retina. We compared the effects of synthetic viral RNA (poly(I:C)) and viral/bacterial DNA (CpG-ODN) on the expression of genes known to be involved in the development of AMD in retinal pigment epithelial (RPE) cells. Methods Cultured human RPE cells were stimulated with poly(I:C; 500 µg/ml) or CpG-ODN (500 nM). Alterations in gene expression and protein secretion were determined with real-time RT–PCR and ELISA, respectively. Phosphorylation of signal transduction molecules was revealed by western blotting. Results Poly(I:C) induced gene expression of the pattern recognition receptor TLR3, transcription factors (HIF-1α, p65/NF-κB), the angiogenic factor bFGF, inflammatory factors (IL-1β, IL-6, TNFα, MCP-1, MIP-2), and complement factors (C5, C9, CFB). Poly(I:C) also induced phosphorylation of ERK1/2 and p38 MAPK proteins, and the secretion of bFGF and TNFα from the cells. CpG-ODN induced moderate gene expression of transcription factors (p65/NF-κB, NFAT5) and complement factors (C5, C9), while it had no effect on the expression of various TLR, angiogenic factor, and inflammatory factor genes. The activities of various signal transduction pathways and transcription factors were differentially involved in mediating the poly(I:C)-induced transcriptional activation of distinct genes. Conclusions The widespread effects of viral RNA, and the restricted effects of viral/bacterial DNA, on the gene expression pattern of RPE cells may suggest that viral RNA rather than viral/bacterial DNA induces physiologic alterations of RPE cells, which may aggravate inflammation in the aged retina. The data also suggest that selective inhibition of distinct signal transduction pathways or individual transcription factors may not be effective to inhibit

  6. Efficient Gene Editing in Pluripotent Stem Cells by Bacterial Injection of Transcription Activator-Like Effector Nuclease Proteins.

    PubMed

    Jia, Jingyue; Bai, Fang; Jin, Yongxin; Santostefano, Katherine E; Ha, Un-Hwan; Wu, Donghai; Wu, Weihui; Terada, Naohiro; Jin, Shouguang

    2015-08-01

    The type III secretion system (T3SS) of Pseudomonas aeruginosa is a powerful tool for direct protein delivery into mammalian cells and has successfully been used to deliver various exogenous proteins into mammalian cells. In the present study, transcription activator-like effector nuclease (TALEN) proteins have been efficiently delivered using the P. aeruginosa T3SS into mouse embryonic stem cells (mESCs), human ESCs (hESCs), and human induced pluripotent stem cells (hiPSCs) for genome editing. This bacterial delivery system offers an alternative method of TALEN delivery that is highly efficient in cleavage of the chromosomal target and presumably safer by avoiding plasmid DNA introduction. We combined the method of bacterial T3SS-mediated TALEN protein injection and transfection of an oligonucleotide template to effectively generate precise genetic modifications in the stem cells. Initially, we efficiently edited a single-base in the gfp gene of a mESC line to silence green fluorescent protein (GFP) production. The resulting GFP-negative mESC was cloned from a single cell and subsequently mutated back to a GFP-positive mESC line. Using the same approach, the gfp gene was also effectively knocked out in hESCs. In addition, a defined single-base edition was effectively introduced into the X-chromosome-linked HPRT1 gene in hiPSCs, generating an in vitro model of Lesch-Nyhan syndrome. T3SS-mediated TALEN protein delivery provides a highly efficient alternative for introducing precise gene editing within pluripotent stem cells for the purpose of disease genotype-phenotype relationship studies and cellular replacement therapies. PMID:26062981

  7. A bacterial regulatory RNA attenuates virulence, spread and human host cell phagocytosis

    PubMed Central

    Le Pabic, Hélène; Germain-Amiot, Noëlla; Bordeau, Valérie; Felden, Brice

    2015-01-01

    Staphylococcus aureus pathogenesis is directed by regulatory proteins and RNAs. We report the case of an RNA attenuating virulence and host uptake, possibly to sustain commensalism. A S. aureus sRNA, SprC (srn_3610), reduced virulence and bacterial loads in a mouse infection model. S. aureus deleted for sprC became more virulent and increased bacterial dissemination in colonized animals. Conversely, inducing SprC expression lowered virulence and the bacterial load. Without sprC, S. aureus phagocytosis by monocytes and macrophages was higher, whereas bacteria were internalized at lower yields when SprC expression was stimulated. Without sprC, higher internalization led to a greater number of extracellular bacteria, facilitating colonization. SprC expression decreased after phagocytosis, concurring with the facilitated growth of bacteria lacking the sRNA in the presence of an oxidant. The major staphylococcal autolysin facilitates S. aureus uptake by human phagocytes. ATL proved to be negatively regulated by SprC. The SprC domains involved in pairing with atl mRNA were analyzed. The addition of ATL reduced phagocytosis of bacteria lacking sprC with no effects on wild-type bacterial uptake, implying that SprC influences phagocytosis, at least in part, by controlling ATL. Since the control of SprC on ATL was modest, other factors must contribute to atl regulation. PMID:26240382

  8. Tunicamycins: translocase-I inhibitors that target bacterial cell wall and mammalian N-glycoproteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tunicamycins, streptovirudins, and corynetoxins are natural products that target the biosynthesis of bacterial peptidoglycan and eukaryotic N-glycoproteins. The mechanism of action is known, with the tunicamycin-Mg**2+ complex established as a transition state analog for hexosamine-1-phosphate:pren...

  9. Biointerface by Cell Growth on Graphene Oxide Doped Bacterial Cellulose/Poly(3,4-ethylenedioxythiophene) Nanofibers.

    PubMed

    Chen, Chuntao; Zhang, Ting; Zhang, Qi; Chen, Xiao; Zhu, Chunlin; Xu, Yunhua; Yang, Jiazhi; Liu, Jian; Sun, Dongping

    2016-04-27

    Highly biocompatible advanced materials with excellent electroactivity are increasingly meaningful to biointerfaces and the development of biomedicine. Herein, bacterial cellulose/poly(3,4-ethylene dioxythiophene)/graphene oxide (BC/PEDOT/GO) composite nanofibers were synthesized through the in situ interfacial polymerization of PEDOT with the doping of GO. The abundant free carboxyl and hydroxy groups offer the BC/PEDOT/GO film active functional groups for surface modification. We demonstrate the use of this composite nanofiber for the electrical stimulation of PC12 neural cells as this resultant nanofiber scaffold could closely mimic the structure of the native extracellular matrix (ECM) with a promoting cell orientation and differentiation after electrical stimulation of PC12 cells. It is expected that this biocompatible BC/PEDOT/GO material will find potential applications in biological and regenerative medicine. PMID:27054801

  10. Microencapsulation for the Therapeutic Delivery of Drugs, Live Mammalian and Bacterial Cells, and Other Biopharmaceutics: Current Status and Future Directions

    PubMed Central

    Tomaro-Duchesneau, Catherine; Saha, Shyamali; Malhotra, Meenakshi; Kahouli, Imen; Prakash, Satya

    2013-01-01

    Microencapsulation is a technology that has shown significant promise in biotherapeutics, and other applications. It has been proven useful in the immobilization of drugs, live mammalian and bacterial cells and other cells, and other biopharmaceutics molecules, as it can provide material structuration, protection of the enclosed product, and controlled release of the encapsulated contents, all of which can ensure efficient and safe therapeutic effects. This paper is a comprehensive review of microencapsulation and its latest developments in the field. It provides a comprehensive overview of the technology and primary goals of microencapsulation and discusses various processes and techniques involved in microencapsulation including physical, chemical, physicochemical, and other methods involved. It also summarizes the state-of-the-art successes of microencapsulation, specifically with regard to the encapsulation of microorganisms, mammalian cells, drugs, and other biopharmaceutics in various diseases. The limitations and future directions of microencapsulation technologies are also discussed. PMID:26555963

  11. Identification of a Supramolecular Functional Architecture of Streptococcus mutans Adhesin P1 on the Bacterial Cell Surface*

    PubMed Central

    Heim, Kyle P.; Sullan, Ruby May A.; Crowley, Paula J.; El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Tang, Wenxing; Besingi, Richard; Dufrene, Yves F.; Brady, L. Jeannine

    2015-01-01

    P1 (antigen I/II) is a sucrose-independent adhesin of Streptococcus mutans whose functional architecture on the cell surface is not fully understood. S. mutans cells subjected to mechanical extraction were significantly diminished in adherence to immobilized salivary agglutinin but remained immunoreactive and were readily aggregated by fluid-phase salivary agglutinin. Bacterial adherence was restored by incubation of postextracted cells with P1 fragments that contain each of the two known adhesive domains. In contrast to untreated cells, glutaraldehyde-treated bacteria gained reactivity with anti-C-terminal monoclonal antibodies (mAbs), whereas epitopes recognized by mAbs against other portions of the molecule were masked. Surface plasmon resonance experiments demonstrated the ability of apical and C-terminal fragments of P1 to interact. Binding of several different anti-P1 mAbs to unfixed cells triggered release of a C-terminal fragment from the bacterial surface, suggesting a novel mechanism of action of certain adherence-inhibiting antibodies. We also used atomic force microscopy-based single molecule force spectroscopy with tips bearing various mAbs to elucidate the spatial organization and orientation of P1 on living bacteria. The similar rupture lengths detected using mAbs against the head and C-terminal regions, which are widely separated in the tertiary structure, suggest a higher order architecture in which these domains are in close proximity on the cell surface. Taken together, our results suggest a supramolecular organization in which additional P1 polypeptides, including the C-terminal segment originally identified as antigen II, associate with covalently attached P1 to form the functional adhesive layer. PMID:25666624

  12. Campylobacter jejuni Outer Membrane Vesicles Play an Important Role in Bacterial Interactions with Human Intestinal Epithelial Cells

    PubMed Central

    Elmi, Abdi; Watson, Eleanor; Sandu, Pamela; Gundogdu, Ozan; Mills, Dominic C.; Inglis, Neil F.; Manson, Erin; Imrie, Lisa; Bajaj-Elliott, Mona; Wren, Brendan W.; Smith, David G. E.

    2012-01-01

    Campylobacter jejuni is the most prevalent cause of food-borne gastroenteritis in the developed world; however, the molecular basis of pathogenesis is unclear. Secretion of virulence factors is a key mechanism by which enteric bacterial pathogens interact with host cells to enhance survival and/or damage the host. However, C. jejuni lacks the virulence-associated secretion systems possessed by other enteric pathogens. Many bacterial pathogens utilize outer membrane vesicles (OMVs) for delivery of virulence factors into host cells. In the absence of prototypical virulence-associated secretion systems, OMVs could be an important alternative for the coordinated delivery of C. jejuni proteins into host cells. Proteomic analysis of C. jejuni 11168H OMVs identified 151 proteins, including periplasmic and outer membrane-associated proteins, but also many determinants known to be important in survival and pathogenesis, including the cytolethal distending toxin (CDT). C. jejuni OMVs contained 16 N-linked glycoproteins, indicating a delivery mechanism by which these periplasm-located yet immunogenic glycoproteins can interact with host cells. C. jejuni OMVs possess cytotoxic activity and induce a host immune response from T84 intestinal epithelial cells (IECs), which was not reduced by OMV pretreatment with proteinase K or polymyxin B prior to coincubation with IECs. Pretreatment of IECs with methyl-beta-cyclodextrin partially blocks OMV-induced host immune responses, indicating a role for lipid rafts in host cell plasma membranes during interactions with C. jejuni OMVs. OMVs isolated from a C. jejuni 11168H cdtA mutant induced interleukin-8 (IL-8) to the same extent as did wild-type OMVs, suggesting OMV induction of IL-8 is independent of CDT. PMID:22966047

  13. Characterization of a synthetic bacterial self-destruction device for programmed cell death and for recombinant proteins release

    PubMed Central

    2011-01-01

    Background Bacterial cell lysis is a widely studied mechanism that can be achieved through the intracellular expression of phage native lytic proteins. This mechanism can be exploited for programmed cell death and for gentle cell disruption to release recombinant proteins when in vivo secretion is not feasible. Several genetic parts for cell lysis have been developed and their quantitative characterization is an essential step to enable the engineering of synthetic lytic systems with predictable behavior. Results Here, a BioBrick™ lysis device present in the Registry of Standard Biological Parts has been quantitatively characterized. Its activity has been measured in E. coli by assembling the device under the control of a well characterized N-3-oxohexanoyl-L-homoserine lactone (HSL) -inducible promoter and the transfer function, lysis dynamics, protein release capability and genotypic and phenotypic stability of the device have been evaluated. Finally, its modularity was tested by assembling the device to a different inducible promoter, which can be triggered by heat induction. Conclusions The studied device is suitable for recombinant protein release as 96% of the total amount of the intracellular proteins was successfully released into the medium. Furthermore, it has been shown that the device can be assembled to different input devices to trigger cell lysis in response to a user-defined signal. For this reason, this lysis device can be a useful tool for the rational design and construction of complex synthetic biological systems composed by biological parts with known and well characterized function. Conversely, the onset of mutants makes this device unsuitable for the programmed cell death of a bacterial population. PMID:21645422

  14. Use of bacterial and firefly luciferases as reporter genes in DEAE-dextran-mediated transfection of mammalian cells.

    PubMed

    Pazzagli, M; Devine, J H; Peterson, D O; Baldwin, T O

    1992-08-01

    The aim of this study was to compare three different luciferase genes by placing them in a single reporter vector and expressing them in the same mammalian cell type. The luciferase genes investigated were the luc genes from the fireflies Photinus pyralis (PP) and Luciola mingrelica (LM) and the lux AB5 gene, a translational fusion of the two subunits of the bacterial luciferase from Vibrio harveyi (VH). The chloramphenicol acetyltransferase (CAT) gene was also included in this study for comparison. The performances of the assay methods of the corresponding enzymes were evaluated using reference materials and the results of the expressed enzymes following transfection were calculated using calibration curves. All of the bioluminescent assays possess high reproducibility both within and between the batches (less than 15%). The comparison of the assay methods shows that firefly luciferases have the highest detection sensitivity (0.05 and 0.08 amol for PP and LM, respectively) whereas the VH bacterial luciferase has 5 amol and CAT 100 amol. On the other hand, the transfection of the various plasmids shows that the content of the expressed enzyme within the cells is much higher for CAT than for the other luciferase genes. VH luciferase is expressed at very low levels in mammalian cells due to the relatively high temperature of growing of the mammalian cells that seems to impair the correct folding of the active enzyme. PP and LM luciferases are both expressed at picomolar level but usually 10 to 70 times less in content with respect to CAT within the transfected cells. On the basis of these results the overall improvement in sensitivity related to the use of firefly luciferases as reporter genes in mammalian cells is about 30 to 50 times with respect to that of CAT. PMID:1443530

  15. Pectin and Xyloglucan Influence the Attachment of Salmonella enterica and Listeria monocytogenes to Bacterial Cellulose-Derived Plant Cell Wall Models

    PubMed Central

    Tan, Michelle S. F.; Rahman, Sadequr

    2015-01-01

    Minimally processed fresh produce has been implicated as a major source of foodborne microbial pathogens globally. These pathogens must attach to the produce in order to be transmitted. Cut surfaces of produce that expose cell walls are particularly vulnerable. Little is known about the roles that different structural components (cellulose, pectin, and xyloglucan) of plant cell walls play in the attachment of foodborne bacterial pathogens. Using bacterial cellulose-derived plant cell wall models, we showed that the presence of pectin alone or xyloglucan alone affected the attachment of three Salmonella enterica strains (Salmonella enterica subsp. enterica serovar Enteritidis ATCC 13076, Salmonella enterica subsp. enterica serovar Typhimurium ATCC 14028, and Salmonella enterica subsp. indica M4) and Listeria monocytogenes ATCC 7644. In addition, we showed that this effect was modulated in the presence of both polysaccharides. Assays using pairwise combinations of S. Typhimurium ATCC 14028 and L. monocytogenes ATCC 7644 showed that bacterial attachment to all plant cell wall models was dependent on the characteristics of the individual bacterial strains and was not directly proportional to the initial concentration of the bacterial inoculum. This work showed that bacterial attachment was not determined directly by the plant cell wall model or bacterial physicochemical properties. We suggest that attachment of the Salmonella strains may be influenced by the effects of these polysaccharides on physical and structural properties of the plant cell wall model. Our findings improve the understanding of how Salmonella enterica and Listeria monocytogenes attach to plant cell walls, which may facilitate the development of better ways to prevent the attachment of these pathogens to such surfaces. PMID:26567310

  16. Procalcitonin Identifies Cell Injury, Not Bacterial Infection, in Acute Liver Failure

    PubMed Central

    Attar, Nahid; Sanders, Corron

    2015-01-01

    Background Because acute liver failure (ALF) patients share many clinical features with severe sepsis and septic shock, identifying bacterial infection clinically in ALF patients is challenging. Procalcitonin (PCT) has proven to be a useful marker in detecting bacterial infection. We sought to determine whether PCT discriminated between presence and absence of infection in patients with ALF. Method Retrospective analysis of data and samples of 115 ALF patients from the United States Acute Liver Failure Study Group randomly selected from 1863 patients were classified for disease severity and ALF etiology. Twenty uninfected chronic liver disease (CLD) subjects served as controls. Results Procalcitonin concentrations in most samples were elevated, with median values for all ALF groups near or above a 2.0 ng/mL cut-off that generally indicates severe sepsis. While PCT concentrations increased somewhat with apparent liver injury severity, there were no differences in PCT levels between the pre-defined severity groups–non-SIRS and SIRS groups with no documented infections and Severe Sepsis and Septic Shock groups with documented infections, (p = 0.169). PCT values from CLD patients differed from all ALF groups (median CLD PCT value 0.104 ng/mL, (p ≤0.001)). Subjects with acetaminophen (APAP) toxicity, many without evidence of infection, demonstrated median PCT >2.0 ng/mL, regardless of SIRS features, while some culture positive subjects had PCT values <2.0 ng/mL. Summary/Conclusions While PCT appears to be a robust assay for detecting bacterial infection in the general population, there was poor discrimination between ALF patients with or without bacterial infection presumably because of the massive inflammation observed. Severe hepatocyte necrosis with inflammation results in elevated PCT levels, rendering this biomarker unreliable in the ALF setting. PMID:26393924

  17. Bacterial Activity in the Rhizosphere Analyzed at the Single-Cell Level by Monitoring Ribosome Contents and Synthesis Rates

    PubMed Central

    Ramos, Cayo; Mølbak, Lars; Molin, Søren

    2000-01-01

    The growth activity of Pseudomonas putida cells colonizing the rhizosphere of barley seedlings was estimated at the single-cell level by monitoring ribosomal contents and synthesis rates. Ribosomal synthesis was monitored by using a system comprising a fusion of the ribosomal Escherichia coli rrnBP1 promoter to a gene encoding an unstable variant of the green fluorescent protein (Gfp). Gfp expression in a P. putida strain carrying this system inserted into the chromosome was strongly dependent on the growth phase and growth rate of the strain, and cells growing exponentially at rates of ≥0.17 h−1 emitted growth rate-dependent green fluorescence detectable at the single-cell level. The single-cell ribosomal contents were very heterogeneous, as determined by quantitative hybridization with fluorescently labeled rRNA probes in P. putida cells extracted from the rhizosphere of 1-day-old barley seedlings grown under sterile conditions. After this, cells extracted from the root system had ribosomal contents similar to those found in starved cells. There was a significant decrease in the ribosomal content of P. putida cells when bacteria were introduced into nonsterile bulk or rhizosphere soil, and the Gfp monitoring system was not induced in cells extracted from either of the two soil systems. The monitoring system used permitted nondestructive in situ detection of fast-growing bacterial microcolonies on the sloughing root sheath cells of 1- and 2-day-old barley seedlings grown under sterile conditions, which demonstrated that it may be possible to use the unstable Gfp marker for studies of transient gene expression in plant-microbe systems. PMID:10653754

  18. Temporal and spatial trigger of post-exponential virulence-associated regulatory cascades by Legionella pneumophila after bacterial escape into the host cell cytosol.

    PubMed

    Molmeret, Maëlle; Jones, Snake; Santic, Marina; Habyarimana, Fabien; Esteban, Maria Teresa Garcia; Kwaik, Yousef Abu

    2010-03-01

    During late stages of infection and prior to lysis of the infected macrophages or amoeba, the Legionella pneumophila-containing phagosome becomes disrupted, followed by bacterial escape into the host cell cytosol, where the last few rounds of bacterial proliferation occur prior to lysis of the plasma membrane. This coincides with growth transition into the post-exponential (PE) phase, which is controlled by regulatory cascades including RpoS and the LetA/S two-component regulator. Whether the temporal expression of flagella by the regulatory cascades at the PE phase is exhibited within the phagosome or after bacterial escape into the host cell cytosol is not known. We have utilized fluorescence microscopy-based phagosome integrity assay to differentiate between vacuolar and cytosolic bacteria/or bacteria within disrupted phagosomes. Our data show that during late stages of infection, expression of FlaA is triggered after bacterial escape into the macrophage cytosol and the peak of FlaA expression is delayed for few hours after cytosolic residence of the bacteria. Importantly, bacterial escape into the host cell cytosol is independent of flagella, RpoS and the two-component regulator LetA/S, which are all triggered by L. pneumophila upon growth transition into the PE phase. Disruption of the phagosome and bacterial escape into the cytosol of macrophages is independent of the bacterial pore-forming activity, and occurs prior to the induction of apoptosis during late stages of infection. We conclude that the temporal and spatial engagement of virulence-associated regulatory cascades by L. pneumophila at the PE phase is temporally and spatially triggered after phagosomal escape and bacterial residence in the host cell cytosol. PMID:19958381

  19. Temporal and spatial trigger of post-exponential virulence-associated regulatory cascades by Legionella pneumophila after bacterial escape into the host cell cytosol

    PubMed Central

    Molmeret, Maëlle; Jones, Snake; Santic, Marina; Habyarimana, Fabien; Esteban, Maria Teresa Garcia; Kwaik, Yousef Abu

    2009-01-01

    Summary During late stages of infection and prior to lysis of the infected macrophages or amoeba, the Legionella pneumophila-containing phagosome becomes disrupted, followed by bacterial escape into the host cell cytosol, where the last few rounds of bacterial proliferation occur prior to lysis of the plasma membrane. This coincides with growth transition into the post-exponential (PE) phase, which is controlled by regulatory cascades including RpoS and the LetA/S two component regulator. Whether the temporal expression of flagella by the regulatory cascades at the PE phase is exhibited within the phagosome or after bacterial escape into the host cell cytosol is not known. We have utilized fluorescence microscopy-based phagosome integrity assay to differentiate between vacuolar and cytosolic bacteria/ or bacteria within disrupted phagosomes. Our data show that during late stages of infection, expression of FlaA is triggered after bacterial escape into the macrophage cytosol and the peak of FlaA expression is delayed for few hours after cytosolic residence of the bacteria. Importantly, bacterial escape into the host cell cytosol is independent of flagella, RpoS, and the two component regulator LetA/S, which are all triggered by L. pneumophila upon growth transition into the PE phase. Disruption of the phagosome and bacterial escape into the cytosol of macrophages is independent of the bacterial pore-forming activity, and occurs prior to the induction of apoptosis during late stages of infection. We conclude that the temporal and spatial engagement of virulence-associated regulatory cascades by L. pneumophila at the PE phase is temporally and spatially triggered after phagosomal escape and bacterial residence in the host cell cytosol. PMID:19958381

  20. Standoff detection of explosives and buried landmines using fluorescent bacterial sensor cells.

    PubMed

    Kabessa, Yossef; Eyal, Ori; Bar-On, Ofer; Korouma, Victor; Yagur-Kroll, Sharon; Belkin, Shimshon; Agranat, Aharon J

    2016-05-15

    A standoff detection scheme for buried landmines and concealed explosive charges is presented. The detection procedure consists of the following: Live bacterial sensor strains, genetically engineered to produce a dose-dependent amount of green fluorescent protein (GFP) in the presence of explosives' vapors, are encapsulated and spread on the suspected area. The fluorescence produced by the bacteria in response to traces of the explosive material in their microenvironment is remotely detected by a phase-locked optoelectronic sampling system. This scheme enables fast direct access to a large minefield area, while obviating the need to endanger personnel and equipment. Moreover, the employment of phase locking detection efficiently isolates the bacterial sensors' fluorescent output from the background optical signals. This facilitates the application of bacterial sensors in an outdoor environment, where control of background illumination is not possible. Using this system, we demonstrate standoff detection of 2,4-DNT both in aqueous solution and when buried in soil, by sensor bacteria either in liquid culture or agar-immobilized, respectively, at a distance of 50 m in a realistic optically noisy environment. PMID:26774094

  1. In vivo activation of the intracrine vitamin D pathway in innate immune cells and mammary tissue during a bacterial infection.

    PubMed

    Nelson, Corwin D; Reinhardt, Timothy A; Beitz, Donald C; Lippolis, John D

    2010-01-01

    Numerous in vitro studies have shown that toll-like receptor signaling induces 25-hydroxyvitamin D(3) 1α-hydroxylase (1α-OHase; CYP27B1) expression in macrophages from various species. 1α-OHase is the primary enzyme that converts 25-hydroxyvitamin D(3) to 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)). Subsequently, synthesis of 1,25(OH)(2)D(3) by 1α-OHase in macrophages has been shown to modulate innate immune responses of macrophages. Despite the numerous in vitro studies that have shown 1α-OHase expression is induced in macrophages, however, evidence that 1α-OHase expression is induced by pathogens in vivo is limited. The objective of this study was to evaluate 1α-OHase gene expression in macrophages and mammary tissue during an in vivo bacterial infection with Streptococcus uberis. In tissue and secreted cells from the infected mammary glands, 1α-OHase gene expression was significantly increased compared to expression in tissue and cells from the healthy mammary tissue. Separation of the cells by FACS9 revealed that 1α-OHase was predominantly expressed in the CD14(+) cells isolated from the infected mammary tissue. The 24-hydroxylase gene, a gene that is highly upregulated by 1,25(OH)(2)D(3), was significantly more expressed in tissue and cells from the infected mammary tissue than from the healthy uninfected mammary tissue thus indicating significant local 1,25(OH)(2)D(3) production at the infection site. In conclusion, this study provides the first in vivo evidence that 1α-OHase expression is upregulated in macrophages in response to bacterial infection and that 1α-OHase at the site of infection provides 1,25(OH)(2)D(3) for local regulation of vitamin D responsive genes. PMID:21124742

  2. Cell-penetrating peptides mediated protein cross-membrane delivery and its use in bacterial vector vaccine.

    PubMed

    Ma, Jimei; Xu, Jinmei; Guan, Lingyu; Hu, Tianjian; Liu, Qin; Xiao, Jingfan; Zhang, Yuanxing

    2014-07-01

    It is an attractive strategy to develop a recombinant bacterial vector vaccine by expressing exogenous protective antigen to induce the immune response, and the main concern is how to enhance the cellular internalization of antigen produced by bacterial vector. Cell-penetrating peptides (CPPs) are short cationic/amphipathic peptides which facilitate cellular uptake of various molecular cargoes and therefore have great potentials in vector vaccine design. In this work, eleven different CPPs were fused to the C-terminus of EGFP respectively, and the resultant EGFP-CPP fusion proteins were expressed and purified to assay their cross-membrane transport in macrophage J774 A.1 cells. Among the tested CPPs, TAT showed an excellent capability to deliver the cargo protein EGFP into cytoplasm. In order to establish an efficient antigen delivery system in Escherichia coli, the EGFP-TAT synthesis circuit was combined with an in vivo inducible lysis circuit PviuA-E in E. coli to form an integrated antigen delivery system, the resultant E. coli was proved to be able to lyse upon the induction of a mimic in vivo signal and thus release intracellular EGFP-TAT intensively, which were assumed to undergo a more efficient intracellular delivery by CPP to evoke protective immune responses. Based on the established antigen delivery system, the protective antigen gene flgD from an invasive intracellular fish pathogen Edwardsiella tarda EIB202, was applied to establish an E. coli recombinant vector vaccine. This E. coli vector vaccine presented superior immune protection (RPS = 63%) under the challenge with E. tarda EIB202, sugges