Science.gov

Sample records for cells express markers

  1. Expression of Stem Cell Markers in the Human Fetal Kidney

    PubMed Central

    Metsuyanim, Sally; Harari-Steinberg, Orit; Buzhor, Ella; Omer, Dorit; Pode-Shakked, Naomi; Ben-Hur, Herzl; Halperin, Reuvit; Schneider, David; Dekel, Benjamin

    2009-01-01

    In the human fetal kidney (HFK) self-renewing stem cells residing in the metanephric mesenchyme (MM)/blastema are induced to form all cell types of the nephron till 34th week of gestation. Definition of useful markers is crucial for the identification of HFK stem cells. Because wilms' tumor, a pediatric renal cancer, initiates from retention of renal stem cells, we hypothesized that surface antigens previously up-regulated in microarrays of both HFK and blastema-enriched stem-like wilms' tumor xenografts (NCAM, ACVRIIB, DLK1/PREF, GPR39, FZD7, FZD2, NTRK2) are likely to be relevant markers. Comprehensive profiling of these putative and of additional stem cell markers (CD34, CD133, c-Kit, CD90, CD105, CD24) in mid-gestation HFK was performed using immunostaining and FACS in conjunction with EpCAM, an epithelial surface marker that is absent from the MM and increases along nephron differentiation and hence can be separated into negative, dim or bright fractions. No marker was specifically localized to the MM. Nevertheless, FZD7 and NTRK2 were preferentially localized to the MM and emerging tubules (<10% of HFK cells) and were mostly present within the EpCAMneg and EpCAMdim fractions, indicating putative stem/progenitor markers. In contrast, single markers such as CD24 and CD133 as well as double-positive CD24+CD133+ cells comprise >50% of HFK cells and predominantly co-express EpCAMbright, indicating they are mostly markers of differentiation. Furthermore, localization of NCAM exclusively in the MM and in its nephron progenitor derivatives but also in stroma and the expression pattern of significantly elevated renal stem/progenitor genes Six2, Wt1, Cited1, and Sall1 in NCAM+EpCAM- and to a lesser extent in NCAM+EpCAM+ fractions confirmed regional identity of cells and assisted us in pinpointing the presence of subpopulations that are putative MM-derived progenitor cells (NCAM+EpCAM+FZD7+), MM stem cells (NCAM+EpCAM-FZD7+) or both (NCAM+FZD7+). These results and

  2. Stem Cell-Associated Marker Expression in Canine Hair Follicles.

    PubMed

    Gerhards, Nora M; Sayar, Beyza S; Origgi, Francesco C; Galichet, Arnaud; Müller, Eliane J; Welle, Monika M; Wiener, Dominique J

    2016-03-01

    Functional hair follicle (HF) stem cells (SCs) are crucial to maintain the constant recurring growth of hair. In mice and humans, SC subpopulations with different biomarker expression profiles have been identified in discrete anatomic compartments of the HF. The rare studies investigating canine HF SCs have shown similarities in biomarker expression profiles to that of mouse and human SCs. The aim of our study was to broaden the current repertoire of SC-associated markers and their expression patterns in the dog. We combined analyses on the expression levels of CD34, K15, Sox9, CD200, Nestin, LGR5 and LGR6 in canine skin using RT-qPCR, the corresponding proteins in dog skin lysates, and their expression patterns in canine HFs using immunohistochemistry. Using validated antibodies, we were able to define the location of CD34, Sox9, Keratin15, LGR5 and Nestin in canine HFs and confirm that all tested biomarkers are expressed in canine skin. Our results show similarities between the expression profile of canine, human and mouse HF SC markers. This repertoire of biomarkers will allow us to conduct functional studies and investigate alterations in the canine SC compartment of different diseases, like alopecia or skin cancer with the possibility to extend relevant findings to human patients. PMID:26739040

  3. Expression of squamous cell carcinoma markers and adenocarcinoma markers in primary pulmonary neuroendocrine carcinomas.

    PubMed

    Masai, Kyohei; Tsuta, Koji; Kawago, Mitsumasa; Tatsumori, Takahiro; Kinno, Tomoaki; Taniyama, Tomoko; Yoshida, Akihiko; Asamura, Hisao; Tsuda, Hitoshi

    2013-07-01

    Recent clinical trials have revealed that accurate histologic typing of non-small cell lung cancer is essential. Until now, squamous cell carcinoma (SQC) and adenocarcinoma (ADC) markers have not been thoroughly analyzed for pulmonary neuroendocrine carcinomas (NECs). We analyzed the expression of 8 markers [p63, cytokeratin (CK) 5/6, SOX2, CK7, desmocollin 3, thyroid transcription factor-1 (8G7G3/1 and SPT24), and napsin A] in 224 NECs. SOX2 (76.2%) had the greatest expression for NECs. CK5/6 (1.4%), desmocollin 3 (0.5%), and napsin A (0%) were expressed less or not at all in NECs. Although our investigated markers have been reported useful for differentiating between SQC and ADC, some of them were also present in a portion of pulmonary NECs. In our study, CK5/6 and desmocollin 3 were highly specific markers for SQC, and napsin A was highly specific for ADC. These markers are recommended for diagnosis of poorly differentiated non-small cell lung cancer. PMID:23060301

  4. Embryonic Corneal Schwann Cells Express Some Schwann Cell Marker mRNAs, but No Mature Schwann Cell Marker Proteins

    PubMed Central

    Conrad, Abigail H.; Albrecht, Michael; Pettit-Scott, Maya; Conrad, Gary W.

    2009-01-01

    Purpose Embryonic chick nerves encircle the cornea in pericorneal tissue until embryonic day (E)9, then penetrate the anterior corneal stroma, invade the epithelium, and branch over the corneal surface through E20. Adult corneal nerves, cut during transplantation or LASIK, never fully regenerate. Schwann cells (SCs) protect nerve fibers and augment nerve repair. This study evaluates SC differentiation in embryonic chick corneas. Methods Fertile chicken eggs were incubated from E0 at 38°C, 45% humidity. Dissected permeabilized corneas plus pericorneal tissue were immunostained for SC marker proteins. Other corneas were paraffin embedded, sectioned, and processed by in situ hybridization for corneal-, nerve-related, and SC marker gene expression. E9 to E20 corneas, dissected from pericorneal tissue, were assessed by real-time PCR (QPCR) for mRNA expression. Results QPCR revealed unchanging low to moderate SLIT2/ROBO and NTN/UNC5 family, BACE1, and CADM3/CADM4 expressions, but high NEO1 expression. EGR2 and POU3F1 expressions never surpassed PAX3 expression. ITGNA6/IT-GNB4 expressions increased 20-fold; ITGNB1 expression was high. SC marker S100 and MBP expressions increased; MAG, GFAP, and SCMP expressions were very low. Antibodies against the MPZ, MAG, S100, and SCMP proteins immunostained along pericorneal nerves, but not along corneal nerves. In the cornea, SLIT2 and SOX10 mRNAs were expressed in anterior stroma and epithelium, whereas PAX3, S100, MBP, and MPZL1 mRNAs were expressed only in corneal epithelium. Conclusions Embryonic chick corneas contain SCs, as defined by SOX10 and PAX3 transcription, which remain immature, at least in part because of stromal transcriptional and epithelial translational regulation of some SC marker gene expression. PMID:19387082

  5. The expression of marker for endometrial stem cell and fibrosis was increased in intrauterine adhesious

    PubMed Central

    Hu, Jianguo; Zeng, Biao; Jiang, Xingwei; Hu, lina; Meng, Ying; Zhu, Yi; Mao, Min

    2015-01-01

    Objectives: The objective of the present study was to evaluate whether fibrotic markers and endometrial stem cell markers were abnormal expressed in endometrium of intrauterine adhesions and a female mouse model for intrauterine adhesions. Methods: We revaluated endometrial fibrosis using Masson’s stain. We detected the expression of endometrium stem cell markers (CD146 and CD140b) and fibrosis markers (TGF-Beta, CTGF, collagen protein I and collagen protein III) in endometrial tissue with intrauterine adhesions using real-time PCR and S-P (Streptavidin-Peroxidase) immunohistochemistry. We create a female mouse model for intrauterine adhesions using mechanical injury, and then revalue the expression of endometrial stem cell markers and fibrosis markers in endometrial tissue of mouse model for intrauterine adhesions. Results: The ratio of the area with endometrial fibrosis to total endometrial area in intrauterine adhesious significantly increased compared with the normal endometrial tissue (P < 0.05); The expression levels of fibrotic markers and endometrial stem cell markers were higher in the endometrial tissue with intrauterine adhesious compared to normal endometrial tissue (P < 0.05). The animal experiments showed that the ratio of the area with endometrial fibrosis to total endometrial area significantly increased compared with the control group (P < 0.05); The expression levels of fibrotic markers and endometrial stem cell markers were higher in the endometrial tissue compared to the control group (P < 0.05). Conclusion: Aberrant activation of fibrosis may be involved in the pathology of intrauterine adhesious. PMID:25973037

  6. Gene expression profiles of hepatic cell-type specific marker genes in progression of liver fibrosis

    PubMed Central

    Takahara, Yoshiyuki; Takahashi, Mitsuo; Wagatsuma, Hiroki; Yokoya, Fumihiko; Zhang, Qing-Wei; Yamaguchi, Mutsuyo; Aburatani, Hiroyuki; Kawada, Norifumi

    2006-01-01

    AIM: To determine the gene expression profile data for the whole liver during development of dimethylni-trosamine (DMN)-induced hepatic fibrosis. METHODS: Marker genes were identified for different types of hepatic cells, including hepatic stellate cells (HSCs), Kupffer cells (including other inflammatory cells), and hepatocytes, using independent temporal DNA microarray data obtained from isolated hepatic cells. RESULTS: The cell-type analysis of gene expression gave several key results and led to formation of three hypotheses: (1) changes in the expression of HSC-specific marker genes during fibrosis were similar to gene expression data in in vitro cultured HSCs, suggesting a major role of the self-activating characteristics of HSCs in formation of fibrosis; (2) expression of mast cell-specific marker genes reached a peak during liver fibrosis, suggesting a possible role of mast cells in formation of fibrosis; and (3) abnormal expression of hepatocyte-specific marker genes was found across several metabolic pathways during fibrosis, including sulfur-containing amino acid metabolism, fatty acid metabolism, and drug metabolism, suggesting a mechanistic relationship between these abnormalities and symptoms of liver fibrosis. CONCLUSION: Analysis of marker genes for specific hepatic cell types can identify the key aspects of fibrogenesis. Sequential activation of inflammatory cells and the self-supporting properties of HSCs play an important role in development of fibrosis. PMID:17072980

  7. Rat visceral yolk sac cells: viability and expression of cell markers during maternal diabetes

    PubMed Central

    Aires, M.B.; Santos, J.R.A.; Souza, K.S.; Farias, P.S.; Santos, A.C.V.; Fioretto, E.T.; Maria, D.A.

    2015-01-01

    The function of the visceral yolk sac (VYS) is critical for embryo organogenesis until final fetal development in rats, and can be affected by conditions such as diabetes. In view of the importance of diabetes during pregnancy for maternal and neonatal health, the objective of this study was to assess fetal weight, VYS cell markers, and viability in female Wistar rats (200-250 g) with induced diabetes (alloxan, 37 mg/kg) on the 8th gestational day (gd 8). At gd 15, rats from control (n=5) and diabetic (n=5) groups were anesthetized and laparotomized to remove the uterine horns for weighing of fetuses and collecting the VYS. Flow cytometry was used for characterizing VYS cells, and for determining mitochondrial activity, cell proliferation, DNA ploidy, cell cycle phases, and caspase-3 activity. Fetal weight was reduced in the diabetic group. Expression of the cell markers CD34, VEGFR1, CD115, CD117, CD14, CCR2, CD90, CD44, STRO-1, OCT3/4, and Nanog was detected in VYS cells in both groups. In the diabetic group, significantly decreased expression of CD34 (P<0.05), CCR2 (P<0.001), and OCT3/4 (P<0.01), and significantly increased expression of CD90 (P<0.05), CD117 (P<0.01), and CD14 (P<0.05) were observed. VYS cells with inactive mitochondria, activated caspase-3, and low proliferation were present in the rats with diabetes. Severe hyperglycemia caused by maternal diabetes had negative effects on pregnancy, VYS cell viability, and the expression of cell markers. PMID:26176314

  8. Conservation of spermatogonial stem cell marker expression in undifferentiated felid spermatogonia.

    PubMed

    Vansandt, Lindsey M; Livesay, Janelle L; Dickson, Melissa Joy; Li, Lei; Pukazhenthi, Budhan S; Keefer, Carol L

    2016-09-01

    Spermatogonial stem cells (SSCs) are distinct in their ability to self-renew, transmit genetic information, and persist throughout the life of an individual. These characteristics make SSCs a useful tool for addressing diverse challenges such as efficient transgenic production in nonrodent, biomedical animal models, or preservation of the male genome for species in which survival of frozen-thawed sperm is low. A requisite first step to access this technology in felids is the establishment of molecular markers. This study was designed to evaluate, in the domestic cat (Felis catus), the expression both in situ and following enrichment in vitro of six genes (GFRA1, GPR125, ZBTB16, POU5F1, THY1, and UCHL1) that had been previously identified as SSC markers in other species. Antibodies for surface markers glial cell line-derived neurotrophic factor family receptor alpha 1, G protein-coupled receptor 125, and thymus cell antigen 1 could not be validated, whereas Western blot analysis of prepubertal, peripubertal, and adult cat testis confirmed protein expression for the intracellular markers ubiquitin carboxy-terminal hydrolase 1, zinc finger and BTB domain-containing protein 16, and POU domain, class 5, transcription factor 1. Colocalization of the markers by immunohistochemistry revealed that several cells within the subpopulation adjacent to the basement membrane of the seminiferous tubules and identified morphologically as spermatogonia, expressed all three intracellular markers. Studies performed on cheetah (Acinonyx jubatus) and Amur leopard (Panthera pardus orientalis) testis exhibited a conserved expression pattern in protein molecular weights, relative abundance, and localization of positive cells within the testis. The expression of the three intracellular SSC marker proteins in domestic and wild cat testes confirms conservation of these markers in felids. Enrichment of marker transcripts after differential plating was also observed. These markers will

  9. Co-Expression of Cancer Stem Cell Markers Corresponds to a Pro-Tumorigenic Expression Profile in Pancreatic Adenocarcinoma.

    PubMed

    Skoda, Jan; Hermanova, Marketa; Loja, Tomas; Nemec, Pavel; Neradil, Jakub; Karasek, Petr; Veselska, Renata

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies. Its dismal prognosis is often attributed to the presence of cancer stem cells (CSCs) that have been identified in PDAC using various markers. However, the co-expression of all of these markers has not yet been evaluated. Furthermore, studies that compare the expression levels of CSC markers in PDAC tumor samples and in cell lines derived directly from those tumors are lacking. Here, we analyzed the expression of putative CSC markers-CD24, CD44, epithelial cell adhesion molecule (EpCAM), CD133, and nestin-by immunofluorescence, flow cytometry and quantitative PCR in 3 PDAC-derived cell lines and by immunohistochemistry in 3 corresponding tumor samples. We showed high expression of the examined CSC markers among all of the cell lines and tumor samples, with the exception of CD24 and CD44, which were enriched under in vitro conditions compared with tumor tissues. The proportions of cells positive for the remaining markers were comparable to those detected in the corresponding tumors. Co-expression analysis using flow cytometry revealed that CD24+/CD44+/EpCAM+/CD133+ cells represented a significant population of the cells (range, 43 to 72%) among the cell lines. The highest proportion of CD24+/CD44+/EpCAM+/CD133+ cells was detected in the cell line derived from the tumor of a patient with the shortest survival. Using gene expression profiling, we further identified the specific pro-tumorigenic expression profile of this cell line compared with the profiles of the other two cell lines. Together, CD24+/CD44+/EpCAM+/CD133+ cells are present in PDAC cell lines derived from primary tumors, and their increased proportion corresponds with a pro-tumorigenic gene expression profile. PMID:27414409

  10. Hexavalent chromium induces expression of mesenchymal and stem cell markers in renal epithelial cells.

    PubMed

    Li, Wei-Jen; Yang, Cheng-Lin; Chow, Kuan-Chih; Kuo, Ting-Wei

    2016-02-01

    Cr(VI) causes severe kidney damage. The patient's renal function could gradually recover by spontaneous kidney regeneration. The molecular effect of Cr(VI) on recovery of kidney cells, however, has not been clearly elucidated. Here we show that Cr(VI) induces expression of mesenchymal and stem cell markers, cell markers, such as paxillin, vimentin, α-SMA, nanog, and CD133 of HK-2 cells. Moreover, Cr(VI) activates epithelial-to-mesenchymal transition (EMT). By revealing that levels of dihydrodiol dehydrogenase were promptly reduced following Cr(VI) challenge, our data suggested that DDH could be involved in a Cr(VI)-related oxidation to generate massive reactive oxygen species and H2 O2 , and to create intracellular hypoxia, which then increased levels of SUMO-1 activating enzyme subunit 2, and sumoylation of eukaryotic elongation factor-2, to mediate the subsequent molecular and cellular responses, e.g., expression of mesenchymal and stem cell markers. Pretreatment with vitamin C reduced Cr(VI)-related cellular effects. However, no evident effect was observed when vitamin C was added following Cr(VI) challenge. PMID:25620490

  11. Immortalized bovine mammary epithelial cells express stem cell markers and differentiate in vitro.

    PubMed

    Hu, Han; Zheng, Nan; Gao, Haina; Dai, Wenting; Zhang, Yangdong; Li, Songli; Wang, Jiaqi

    2016-08-01

    The bovine mammary epithelial cell is a secretory cell, and its cell number and secretory activity determine milk production. In this study, we immortalized a bovine mammary epithelial cell line by SV40 large T antigen gene using a retrovirus based on Chinese Holstein primary mammary epithelial cells (CMEC) cultured in vitro. An immortalized bovine mammary epithelial cell line surpassed the 50-passage mark and was designated the CMEC-H. The immortalized mammary epithelial cells grew in close contact with each other and exhibited the typical cobblestone morphology characteristic with obvious boundaries. The telomerase expression of CMEC-H has consistently demonstrated the presence of telomerase activity as an immortalized cell line, but the cell line never induced tumor formation in nude mice. CMEC-H expressed epithelial (cytokeratins CK7, CK8, CK18, and CK19), mesenchymal (vimentin), and stem/progenitor (CD44 and p63) cell markers. The induced expression of milk proteins, αS1 -casein, β-casein, κ-casein, and butyrophilin, indicated that CMEC-H maintained the synthesis function of the mammary epithelial cells. The established immortalized bovine mammary epithelial cell line CMEC-H is capable of self-renewal and differentiation and can serve as a valuable reagent for studying the physiological mechanism of the mammary gland. PMID:27189858

  12. Co-Expression of Cancer Stem Cell Markers Corresponds to a Pro-Tumorigenic Expression Profile in Pancreatic Adenocarcinoma

    PubMed Central

    Skoda, Jan; Hermanova, Marketa; Loja, Tomas; Nemec, Pavel; Neradil, Jakub; Karasek, Petr; Veselska, Renata

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies. Its dismal prognosis is often attributed to the presence of cancer stem cells (CSCs) that have been identified in PDAC using various markers. However, the co-expression of all of these markers has not yet been evaluated. Furthermore, studies that compare the expression levels of CSC markers in PDAC tumor samples and in cell lines derived directly from those tumors are lacking. Here, we analyzed the expression of putative CSC markers—CD24, CD44, epithelial cell adhesion molecule (EpCAM), CD133, and nestin—by immunofluorescence, flow cytometry and quantitative PCR in 3 PDAC-derived cell lines and by immunohistochemistry in 3 corresponding tumor samples. We showed high expression of the examined CSC markers among all of the cell lines and tumor samples, with the exception of CD24 and CD44, which were enriched under in vitro conditions compared with tumor tissues. The proportions of cells positive for the remaining markers were comparable to those detected in the corresponding tumors. Co-expression analysis using flow cytometry revealed that CD24+/CD44+/EpCAM+/CD133+ cells represented a significant population of the cells (range, 43 to 72%) among the cell lines. The highest proportion of CD24+/CD44+/EpCAM+/CD133+ cells was detected in the cell line derived from the tumor of a patient with the shortest survival. Using gene expression profiling, we further identified the specific pro-tumorigenic expression profile of this cell line compared with the profiles of the other two cell lines. Together, CD24+/CD44+/EpCAM+/CD133+ cells are present in PDAC cell lines derived from primary tumors, and their increased proportion corresponds with a pro-tumorigenic gene expression profile. PMID:27414409

  13. Cardiomyocyte Marker Expression in Mouse Embryonic Fibroblasts by Cell-Free Cardiomyocyte Extract and Epigenetic Manipulation

    PubMed Central

    Talaei-Khozani, Tahereh; Heidari, Fatemeh; Esmaeilpour, Tahereh; Vojdani, Zahra; Mostafavi-Pour, Zohrah; Rohani, Leili

    2014-01-01

    Background: The regenerative capacity of the mammalian heart is quite limited. Recent reports have focused on reprogramming mesenchymal stem cells into cardiomyocytes. We investigated whether fibroblasts could transdifferentiate into myocardium. Methods: Mouse embryonic fibroblasts were treated with Trichostatin A (TSA) and 5-Aza-2-Deoxycytidine (5-aza-dC). The treated cells were permeabilized with streptolysin O and exposed to the mouse cardiomyocyte extract and cultured for 1, 10, and 21 days. Cardiomyocyte markers were detected by immunohistochemistry. Alkaline phosphatase activity and OCT4 were also detected in cells treated by chromatin-modifying agents. Results: The cells exposed to a combination of 5-aza-dC and TSA and permeabilized in the presence of the cardiomyocyte extract showed morphological changes. The cells were unable to express cardiomyocyte markers after 24 h. Immunocytochemical assays showed a notable degree of myosin heavy chain and α-actinin expressions after 10 days. The expression of the natriuretic factor and troponin T occurred after 21 days in these cells. The cells exposed to chromatin-modifying agents also expressed cardiomyocyte markers; however, the proportion of reprogrammed cells was clearly smaller than that in the cultures exposed to 5-aza-dC , TSA, and extract. Conclusion: It seems that the fibroblasts were able to eliminate the previous epigenetic markers and form new ones according to the factors existing in the extract. Since no beating was observed, at least up to 21 days, the cells may need an appropriate extracellular matrix for their function. PMID:24753644

  14. Keratins 17 and 19 expression as prognostic markers in oral squamous cell carcinoma.

    PubMed

    Coelho, B A; Peterle, G T; Santos, M; Agostini, L P; Maia, L L; Stur, E; Silva, C V M; Mendes, S O; Almança, C C J; Freitas, F V; Borçoi, A R; Archanjo, A B; Mercante, A M C; Nunes, F D; Carvalho, M B; Tajara, E H; Louro, I D; Silva-Conforti, A M A

    2015-01-01

    Five-year survival rates for oral squamous cell carcinoma (OSCC) are 30% and the mortality rate is 50%. Immunohistochemistry panels are used to evaluate proliferation, vascularization, apoptosis, HPV infection, and keratin expression, which are important markers of malignant progression. Keratins are a family of intermediate filaments predominantly expressed in epithelial cells and have an essential role in mechanical support and cytoskeleton formation, which is essential for the structural integrity and stability of the cell. In this study, we analyzed the expressions of keratins 17 and 19 (K17 and K19) by immunohistochemistry in tumoral and non-tumoral tissues from patients with OSCC. The results show that expression of these keratins is higher in tumor tissues compared to non-tumor tissues. Positive K17 expression correlates with lymph node metastasis and multivariate analysis confirmed this relationship, revealing a 6-fold increase in lymph node metastasis when K17 is expressed. We observed a correlation between K17 expression with disease-free survival and disease-specific death in patients who received surgery and radiotherapy. Multivariate analysis revealed that low expression of K17 was an independent marker for early disease relapse and disease-specific death in patients treated with surgery and radiotherapy, with an approximately 4-fold increased risk when compared to high K17 expression. Our results suggest a potential role for K17 and K19 expression profiles as tumor prognostic markers in OSCC patients. PMID:26634475

  15. Phenotypic heterogeneity and aberrant markers expression in T-cell leukemia.

    PubMed

    Babusíková, O; Glasová, M; Koníková, E; Kusenda, J; Cáp, J; Gyárfás, J; Koubek, K

    1998-01-01

    For exact determination of lineage assessment there is a need of surface membrane and intracellular (cytoplasmic and nuclear) immunophenotyping performed by flow cytometry. We evaluated in detail the results of surface and intracellular immunophenotyping of 34 T-ALL cases. The great heterogeneity of T-cell differentiation markers has been observed which did not allow relevant subclassification of T-ALL according to the existing subclassification schemes and the proposed three-stage model of physiological T-cell differentiation. Therefore, a simplified classification based on the CD3 marker expression either on cell membrane or in cytoplasm has been created with allocation of T-ALL into two main phenotypic groups. From 34 in detail examined T-ALL cases a great deal-27 (79%) belonged to an immature phenotype (Stage I) and only 7 (21%) expressed more mature phenotype (Stage II). Simultaneously the presence of atypical/aberrant T-cell phenotypes has been studied. We showed that in T-ALL it was possible to specify some cases with leukemia-associated phenotype with coexistence of atypical markers which are absent in nonleukemic cells. In a majority of cases early B-lineage marker (CD10) and in a smaller proportion of them non-lineage associated marker (CD34) were observed. Myeloid marker CD13 was observed in one case of the immature T-ALL, together with CD10 and CD34. As these atypical markers were present through all differentiation stages of T-ALL we obtained a strong evidence that they might represent an abnormal rather than an immature phenotype. The prognostic significance of T-ALL subtypes and aberrant markers coexpression have been discussed. Simultaneously it was shown that quantitative immunofluorescence could provide an additional important diagnostic marker also in T-ALL cases. PMID:9717523

  16. Cardiomyocyte marker expression in a human lymphocyte cell line using mouse cardiomyocyte extract.

    PubMed

    Vojdani, Zahra; Tavakolinejad, Sima; Talaei-Khozani, Tahereh; Esmaeilpour, Tahereh; Rasooli, Manuchehr

    2011-03-01

    Cell transplantation shows potential for the treatment of cardiac diseases. Embryonic stem cells, cord blood and mesenchymal stem cells have been suggested as sources for transplantation therapy. Because of some technical limitations with the use of stem cells, transdifferentiation of fully differentiated cells is a potentially useful alternative. We investigated whether human peripheral blood cells could transdifferentiate into cardiomyocyte. Transdifferentiation was induced in a human B lymphocyte cell line (Raji). Cardiomyocyte extract was prepared from adult mouse cardiomyocytes. The cells were treated with 5-aza-2-deoxycytidine and trichostatin A, permeabilized with streptolysin O, and exposed to the mouse cardiomyocyte extract. They were cultured for 10 days, 3 weeks and 4 weeks. Cardiomyocyte markers were detected with immunohistochemistry and flow cytometry. Immunocytochemistry revealed that some cells expressed myosin heavy chain, α-actinin and cardiac troponin T after 3 and 4 weeks. Flow cytometry confirmed these data. In cells exposed to trichostatin A and 5-aza-2-deoxycytidine and permeabilized in the presence of the cardiomyocyte extract, troponin T expression was seen in 3.53% of the cells and 3.11% of them expressed α-actinin. After exposure to the cardiomyocyte extract, some permeabilized cells adhered to the plate loosely; however, the morphology did not change significantly, and they continued to show a rounded shape after 4 weeks. Our treated lymphocytes expressed cardiomyocyte markers. Our results suggest that lymphocytes may be useful in future research as a source of cells for reprogramming procedures. PMID:21547694

  17. Commensal bacteria drive endogenous transformation and tumour stem cell marker expression through a bystander effect

    PubMed Central

    Wang, Xingmin; Yang, Yonghong; Huycke, Mark M

    2015-01-01

    Objective Commensal bacteria and innate immunity play a major role in the development of colorectal cancer (CRC). We propose that selected commensals polarise colon macrophages to produce endogenous mutagens that initiate chromosomal instability (CIN), lead to expression of progenitor and tumour stem cell markers, and drive CRC through a bystander effect. Design Primary murine colon epithelial cells were repetitively exposed to Enterococcus faecalis-infected macrophages, or purified trans-4-hydroxy-2-nonenal (4-HNE)—an endogenous mutagen and spindle poison produced by macrophages. CIN, gene expression, growth as allografts in immunodeficient mice were examined for clones and expression of markers confirmed using interleukin (IL) 10 knockout mice colonised by E. faecalis. Results Primary colon epithelial cells exposed to polarised macrophages or 4-hydroxy-2-nonenal developed CIN and were transformed after 10 weekly treatments. In immunodeficient mice, 8 of 25 transformed clones grew as poorly differentiated carcinomas with 3 tumours invading skin and/or muscle. All tumours stained for cytokeratins confirming their epithelial cell origin. Gene expression profiling of clones showed alterations in 3 to 7 cancer driver genes per clone. Clones also strongly expressed stem/progenitor cell markers Ly6A and Ly6E. Although not differentially expressed in clones, murine allografts positively stained for the tumour stem cell marker doublecortin-like kinase 1. Doublecortin-like kinase 1 and Ly6A/E were expressed by epithelial cells in colon biopsies for areas of inflamed and dysplastic tissue from E. faecalis-colonised IL-10 knockout mice. Conclusions These results validate a novel mechanism for CRC that involves endogenous CIN and cellular transformation arising through a microbiome-driven bystander effect. PMID:24906974

  18. Selective Differentiation into Hematopoietic and Cardiac Cells from Pluripotent Stem Cells Based on the Expression of Cell Surface Markers.

    PubMed

    Okada, Atsumasa; Tashiro, Katsuhisa; Yamaguchi, Tomoko; Kawabata, Kenji

    2016-01-01

    Flk1-expressing (+) mesodermal cells are useful source for the generation of hematopoietic cells and cardiomyocytes from pluripotent stem cells (PSCs). However, they have been reported as a heterogenous population that includes hematopoietic and cardiac progenitors. Therefore, to provide a method for a highly efficient production of hematopoietic cells and cardiomyocytes, cell surface markers are often used for separating these progenitors in Flk1(+) cells. Our recent study has shown that the expression of coxsackievirus and adenovirus receptor (CAR), a tight junction component molecule, could divide mouse and human PSC- and mouse embryo-derived Flk1(+) cells into Flk1(+)CAR(-) and Flk1(+)CAR(+) cells. Flk1(+)CAR(-) and Flk1(+)CAR(+) cells efficiently differentiated into hematopoietic cells and cardiomyocytes, respectively. These results indicate that CAR is a novel cell surface marker for separating PSC-derived Flk1(+) mesodermal cells into hematopoietic and cardiac progenitors. We herein describe a differentiation method from PSCs into hematopoietic cells and cardiomyocytes based on CAR expression. PMID:26138986

  19. Immunohistochemical Expression and Clinical Significance of Suggested Stem Cell Markers in Hepatocellular Carcinoma

    PubMed Central

    Sung, Jong Jin; Noh, Sang Jae; Bae, Jun Sang; Park, Ho Sung; Jang, Kyu Yun; Chung, Myoung Ja; Moon, Woo Sung

    2016-01-01

    Background: Increasing evidence has shown that tumor initiation and growth are nourished by a small subpopulation of cancer stem cells (CSCs) within the tumor mass. CSCs are posited to be responsible for tumor maintenance, growth, distant metastasis, and relapse after curative operation. We examined the expression of CSC markers in paraffin-embedded tissue sections of hepatocellular carcinoma (HCC) and correlated the results with clinicopathologic characteristics. Methods: Immunohistochemical staining for the markers believed to be expressed in the CSCs, including epithelial cell adhesion molecule (EpCAM), keratin 19 (K19), CD133, and CD56, was performed in 82 HCC specimens. Results: EpCAM expression was observed in 56% of the HCCs (46/82) and K19 in 6% (5/82). EpCAM expression in HCC significantly correlated with elevated α-fetoprotein level, microvessel invasion of tumor cells, and high histologic grade. In addition, EpCAM expression significantly correlated with K19 expression. The overall survival and relapsefree survival rates in patients with EpCAM-expressing HCC were relatively lower than those in patients with EpCAM-negative HCC. All but two of the 82 HCCs were negative for CD133 and CD56, respectively. Conclusions: Our results suggest that HCCs expressing EpCAM are associated with unfavorable prognostic factors and have a more aggressive clinical course than those not expressing EpCAM. Further, the expression of either CD133 or CD56 in paraffin-embedded HCC tissues appears to be rare. PMID:26581206

  20. Effect of age on expression of spermatogonial markers in bovine testis and isolated cells.

    PubMed

    Giassetti, Mariana Ianello; Goissis, Marcelo Demarchi; Moreira, Pedro Vale; de Barros, Flavia Regina Oliveira; Assumpção, Mayra Elena Ortiz D'Ávila; Visintin, José Antônio

    2016-07-01

    Spermatogonial stem cells (SSC) are the most undifferentiated germ cell present in adult male testes and, it is responsible to maintain the spermatogenesis. Age has a negative effect over stem cell, but the aging effect on SSC is not elucidated for bovine. The present study aim to evaluate the effect of age on the expression of undifferentiated spermatogonial markers in testis and in enriched testicular cells from prepubertal calves and adult bulls. In this matter, testicular parenchyma from calves (3-5 months) (n=5) and bulls with 3 years of age (n=5) were minced and, isolated cells were obtained after two enzymatic digestions. Differential platting was performed for two hours onto BSA coated dish. Cell viability was assessed by Trypan Blue solution exclusion method and testicular cells enriched for SSC was evaluated by expression of specific molecular markers by qRT-PCR (POU5F1, GDNF, CXCR4, UCHL1, ST3GAL, SELP, ICAM1 and ITGA6) and flow cytometry (GFRA1, CXCR4 and ITGA6). CXCR4 and UCHL1 expression was evaluated in fixated testes by immunohistochemistry. We observed that age just affected the expression of selective genes [SELP (Fold Change=5.61; p=0.0023) and UCHL1 (Fold Change=4.98; p=0.0127)]. By flow cytometry, age affected only the proportion of ITGA6+ cells (P<0.001), which was higher in prepubertal calves when compared to adult bulls. In situ, we observed an effect of age on the number of UCHL1+ (p=0.0006) and CXCR4+ (p=0.0139) cells per seminiferous tubule. At conclusion, age affects gene expression and the population of cells expressing specific spermatogonial markers in the bovine testis. PMID:27180120

  1. Association Between Expression of Cancer Stem Cell Markers and Poor Differentiation of Hepatocellular Carcinoma

    PubMed Central

    Liu, Rui; Shen, Yuan; Nan, Kejun; Mi, Baibing; Wu, Tao; Guo, Jinyue; Li, Miaojing; Lv, Yi; Guo, Hui

    2015-01-01

    Abstract The role of cancer stem cell (CSC) markers in differentiation of hepatocellular carcinoma (HCC) remains uncertain. We conducted a meta-analysis to first investigate the association between expression of CSC markers (CD133, CD90, CD44, and EpCAM) and poor differentiation of HCC, and second, to determine if these CSC markers can be classified as biomarkers for patient classification and HCC differentiated therapy. The relevant literature was searched using PubMed, EMBASE, Elsevier, and Chinese Biological Medicine databases for association between CSC markers and HCC from January 1, 2000 to June 30, 2014. Data were synthesized using random-effect or fixed-effect models. The effect sizes were estimated by measuring odds ratios (OR) with 95% confidence interval (CI). The meta-analysis included 27 studies consisting of 2897 patients with HCC. The positive expression of CSC markers was associated with poor differentiation (OR = 2.37, 95% CI = 2.03–2.77, P < 0.00001). Similarly, the positive expression of CSC markers was only associated with HCC tissues compared with noncancerous liver tissues (OR = 9.26, 95% CI = 3.10–27.65, P < 0.0001). CD90 has a specificity of 91.9% for HCC and a sensitivity of 48.22% in predicting poor differentiation. The positive expression of CSC markers is associated with poor differentiation and aggressive phenotype of patients with HCC. The CD90 marker might be a promising target for patient with HCC classification and differentiation therapy. PMID:26252310

  2. Expression of pluripotency markers in Arbas Cashmere goat hair follicle stem cells.

    PubMed

    He, Nimantana; Dong, Zhenguo; Zhu, Bing; Nuo, Mingtu; Bou, Shorgan; Liu, Dongjun

    2016-08-01

    In our previous work, we found that the Inner Mongolia Arbas Cashmere goat hair follicle stem cells (gHFSCs) can be successfully differentiated into adipocyte, chondrocyte, and osteocyte lineages. In this study, we further examined the expression of the pluripotency and stemness markers Oct4, Nanog, Sox2, AKP, and TERT in gHFSCs by immunocytochemistry, flow cytometry, real-time PCR, and Western blot. Immunofluorescent staining showed that the gHFSCs were positive for all five markers. Fluorescence-activated cell sorting (FACS) further analyzed the positive expression of Oct4, Nanog, and Sox2 in the gHFSCs. Compared with Arbas Cashmere goat adipose-derived stem cells (gADSCs) at the mRNA expression level, Oct4 was relatively highly expressed in gHFSCs, 41.36 times of the gADSCs, and Nanog was 5.61, AKP was 2.74, and TERT was 2.10 times, respectively (p < 0.01). Western blot indicated that all markers are expressed at the protein level in the gHFSCs. When compared with gADSCs, using α-tubulin as a reference protein, gray intensity analysis showed that the expression of Oct4, Nanog, AKP, and TERT were, respectively, 5.94, 10.78, 1.33, and 1.39 times of gADSCs. Additionally, mRNA and protein expression of Sox2 were detected in the gHFSCs but not in the gADSCs. The protein expression pattern of these markers was consistent with the mRNA results. PMID:27364919

  3. Tracking neuronal marker expression inside living differentiating cells using molecular beacons

    PubMed Central

    Ilieva, Mirolyuba; Della Vedova, Paolo; Hansen, Ole; Dufva, Martin

    2013-01-01

    Monitoring gene expression is an important tool for elucidating mechanisms of cellular function. In order to monitor gene expression during nerve cell development, molecular beacon (MB) probes targeting markers representing different stages of neuronal differentiation were designed and synthesized as 2'-O-methyl RNA backbone oligonucleotides. MBs were transfected into human mesencephalic cells (LUHMES) using streptolysin-O-based membrane permeabilization. Mathematical modeling, simulations and experiments indicated that MB concentration was equal to the MB in the transfection medium after 10 min transfection. The cells will then each contain about 60,000 MBs. Gene expression was detected at different time points using fluorescence microscopy. Nestin and NeuN mRNA were expressed in approximately 35% of the LUHMES cells grown in growth medium, and in 80–90% of cells after differentiation. MAP2 and tyrosine hydroxylase mRNAs were expressed 2 and 3 days post induction of differentiation, respectively. Oct 4 was not detected with MB in these cells and signal was not increased over time suggesting that MB are generally stable inside the cells. The gene expression changes measured using MBs were confirmed using qRT-PCR. These results suggest that MBs are simple to use sensors inside living cell, and particularly useful for studying dynamic gene expression in heterogeneous cell populations. PMID:24431988

  4. Tracking neuronal marker expression inside living differentiating cells using molecular beacons.

    PubMed

    Ilieva, Mirolyuba; Della Vedova, Paolo; Hansen, Ole; Dufva, Martin

    2013-12-19

    Monitoring gene expression is an important tool for elucidating mechanisms of cellular function. In order to monitor gene expression during nerve cell development, molecular beacon (MB) probes targeting markers representing different stages of neuronal differentiation were designed and synthesized as 2'-O-methyl RNA backbone oligonucleotides. MBs were transfected into human mesencephalic cells (LUHMES) using streptolysin-O-based membrane permeabilization. Mathematical modeling, simulations and experiments indicated that MB concentration was equal to the MB in the transfection medium after 10 min transfection. The cells will then each contain about 60,000 MBs. Gene expression was detected at different time points using fluorescence microscopy. Nestin and NeuN mRNA were expressed in approximately 35% of the LUHMES cells grown in growth medium, and in 80-90% of cells after differentiation. MAP2 and tyrosine hydroxylase mRNAs were expressed 2 and 3 days post induction of differentiation, respectively. Oct 4 was not detected with MB in these cells and signal was not increased over time suggesting that MB are generally stable inside the cells. The gene expression changes measured using MBs were confirmed using qRT-PCR. These results suggest that MBs are simple to use sensors inside living cell, and particularly useful for studying dynamic gene expression in heterogeneous cell populations. PMID:24431988

  5. Ex vivo expanded SSEA-4+ human limbal stromal cells are multipotent and do not express other embryonic stem cell markers

    PubMed Central

    Hussin, Noor Hamidah; Othman, Ainoon; Umapathy, Thiageswari; Baharuddin, Puteri; Jamal, Rahman; Zakaria, Zubaidah

    2012-01-01

    Purpose The presence of multipotent human limbal stromal cells resembling mesenchymal stromal cells (MSC) provides new insights to the characteristic of these cells and its therapeutic potential. However, little is known about the expression of stage-specific embryonic antigen 4 (SSEA-4) and the embryonic stem cell (ESC)-like properties of these cells. We studied the expression of SSEA-4 surface protein and the various ESC and MSC markers in the ex vivo cultured limbal stromal cells. The phenotypes and multipotent differentiation potential of these cells were also evaluated. Methods Limbal stromal cells were derived from corneoscleral rims. The SSEA-4+ and SSEA-4- limbal stromal cells were sorted by fluorescence-activated cells sorting (FACS). Isolated cells were expanded and reanalyzed for their expression of SSEA-4. Expression of MSC and ESC markers on these cells were also analyzed by FACS. In addition, expression of limbal epithelial and corneal stromal proteins such as ATP-binding cassette sub-family G member 2 (ABCG2), tumour protein p63 (p63), paired box 6 (Pax6), cytokeratin 3 (AE5), cytokeratin 10, and keratocan sulfate were evaluated either by immunofluorecence staining or reverse transcription polymerase chain reaction. Appropriate induction medium was used to differentiate these cells into adipocytes, osteocytes, and chondrocytes. Results Expanded limbal stromal cells expressed the majority of mesenchymal markers. These cells were negative for ABCG2, p63, Pax6, AE-5, and keratocan sulfate. After passaged, a subpopulation of these cells showed low expression of SSEA-4 but were negative for other important ESC surface markers such as Tra-1–60, Tra-1–81, and transcription factors like octamer-binding transcription factor 4 (Oct4), SRY(sex determining region Y)-box 2 (Sox2), and Nanog. Early passaged cells when induced were able to differentiate into adipocytes, osteocytes and chondrocytes. Conclusions The expanded limbal stromal cells showed features

  6. Expression of cancer stem cell markers and their correlation with pathogenesis in vascular tumors

    PubMed Central

    Lan, Jiaojiao; Huang, Bing; Liu, Ruixue; Ju, Xinxin; Zhou, Yang; Jiang, Jinfang; Liang, Weihua; Shen, Yaoyuan; Li, Feng; Pang, Lijuan

    2015-01-01

    Objective: Vascular tumor, which belongs to a kind of complicated lesion in soft tissue tumor, is derived from mesenchymal tissue. Although many studies have been focused on the pathogenesis of vascular tumors in human, the specific mechanism of the vascular tumors was currently unclear. Previous studies have reported an association of cancer stem cells with the development of tumor in many solid tumors. Thus the purpose of this study was to explore whether different expression level of cancer stem cell markers including CD29, CD44, CD133, nestin and ALDH1 in vascular tumor may help to elucidate the possible pathogenesis of vascular tumor. In present study, tissues of 9 cases of hemangioma, 22 cases of hemangiosarcoma, 3 cases of Kaposi’s sarcoma, and 5 cases of hemangioendothelioma were immunostained for CD29, CD44, CD133, nestin and ALDH1. Of the 39 vascular tumor cases included in the current study, CD29, CD133 and nestin were positive in most vascular tumor cases. Although CD44 and ALDH1 were observed in vascular tumor cases, the percentage of cells staining for the two markers was less than 2% in all cases of vascular tumor. Capillary hemangiomas exhibited significantly higher expression rate of CD29 and nestin compared with malignant vascular tumors and hemangioendotheliomas (P<0.05, Fisher’s exact test), while CD44, CD133 and ALDH1 exhibited no statistically significant difference between these two groups. Pearson correlation analysis exhibited that CD29 expression and nestin expression in vascular tumor were no statistically significant relationship (C=0.288, P=0.063>0.05). Our findings confirmed that the five cancer stem cells markers, including CD29, CD44, CD133, nestin and ALDH1, exhibited different expression levels in vascular tumors and demonstrated that immonhistochemical analysis for cancer stem cells markers may provide useful information for studying the pathogenesis of vascular tumors. PMID:26722452

  7. Expression of stem cell markers nanog and PSCA in gastric cancer and its significance

    PubMed Central

    ZHAO, XUANZHONG; WANG, FENG; HOU, MINGXING

    2016-01-01

    The present study aimed to determine the expression of stem cell markers Nanog compared with PSCA in gastric cancer tissues and adjacent normal tissues, and to investigate the association between tumor stem cells and initiation, progression, metastasis, and prognosis of gastric cancer. One hundred chemotherapy- and radiotherapy-naive patients with pathologically confirmed gastric cancer were enrolled from the General Surgery Department and Surgical Oncology Department of the Affiliated Hospital of Inner Mongolia Medical University (Hohhot, P.R. China), between October 2011 and June 2013. Surgically resected specimens of cancer tissues and adjacent normal tissues (>5 cm from the boundary of cancerous component) were collected. The mRNA expression levels of Nanog and PSCA in those tissues was determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The correlation between the expression of stem cell markers Nanog and PSCA in gastric cancer tissues and clinicopathological factors was analyzed. The qPCR results demonstrated that the relative expression of Nanog was increased in gastric cancer tissues compared with in the adjacent tissues (P<0.05); and relative expression of PSCA was reduced in gastric cancer tissues compared with adjacent tissues (P<0.05). The expression of Nanog and PSCA in gastric cancer tissues was associated with tumor differentiation. The expression of Nanog was increased in poorly-differentiated and undifferentiated tumors compared with moderately- and well-differentiated tumors (P<0.05). The expression of PSCA was reduced in poorly differentiated and undifferentiated tumors compared with moderately- and well-differentiated tumors (P<0.05). However, the expression of Nanog and PSCA was not associated with age, gender, tumor size, TNM stage, depth of invasion, or lymph node metastasis. Therefore, Nanog and PSCA may have potential as molecular markers to reflect the differentiation status of gastric cancer. PMID

  8. Association of expression levels of pluripotency/stem cell markers with the differentiation outcome of Wharton's jelly mesenchymal stem cells into insulin producing cells.

    PubMed

    Kassem, Dina H; Kamal, Mohamed M; El-Kholy, Abd El-Latif G; El-Mesallamy, Hala O

    2016-08-01

    Recently, there has been much attention towards generation of insulin producing cells (IPCs) from stem cells, especially from Wharton's jelly mesenchymal stem cells (WJ-MSCs). However, generation of mature IPCs remains a challenge. Assessment of generation of IPCs was usually done by examining β-cell markers, however, assessment of pluripotency/stem cell markers drew less attention. Therefore, the purpose of this study was to investigate the levels of pluripotency/stem cell markers during differentiation of WJ-MSCs into IPCs and the association of these levels with differentiation outcomes. WJ-MSCs were isolated, characterized then induced to differentiate into IPCs using three different protocols namely A, B and C. Differentiated IPCs were assessed by the expression of pluripotency/stem cell markers, together with β-cell markers using qRT-PCR, and functionally by measuring glucose stimulated insulin secretion. Differentiated cells from protocol A showed lowest expression of pluripotency/stem cell markers and relatively best GSIS. However, protocol B showed concomitant expression of pluripotency/stem cell and β-cell markers with relatively less insulin secretion as compared to protocol A. Protocol C failed to generate glucose-responsive IPCs. In conclusion, sustained expression of pluripotency/stem cell markers could be associated with the incomplete differentiation of WJ-MSCs into IPCs. A novel finding for which further investigations are warranted. PMID:27265786

  9. Changes in expression of differentiation markers between normal ovarian cells and derived tumors.

    PubMed Central

    Van Niekerk, C. C.; Ramaekers, F. C.; Hanselaar, A. G.; Aldeweireldt, J.; Poels, L. G.

    1993-01-01

    The marker profile of 18 samples of normal human ovarian tissues and 138 samples of their derived tumors was established using 51 monoclonal antibodies directed against intermediate filaments, ovarian carcinoma-specific antigens, general tumor-associated antigens and MHC-I/II antigens. Our data show that vimentin and keratins 7, 8, 18, and 19 were found in both epithelial and some nonepithelial ovarian tumors. Several tumor samples contained additional keratins 4, 10, 13, and 14, as well as desmin. BW 495/36 and to a lesser extent HMFG-2 were usually found in all ovarian tumors that contained simple epithelial keratins, except the absence of HMFG-2 in gonadal tumors as well as in dysgerminomas. In contrast to the keratin antibodies, these two panepithelial antibodies were negative in normal mesothelial cells and granulosa cells of the ovarian follicles. In general, the marker TAG-72 appeared useful for its discrimination between positively stained mucinous adenomas, the ovarian carcinomas as well as germ cell tumors, and the negatively stained gonadal tumors, serous adenomas, and cystomas. OV632 appeared useful in the distinction between negatively stained serous adenomas and positively stained serous carcinomas. In contrast, the monoclonal antibodies OC 125, OV-TL 3, OV-TL 16, and MOv 18 can be considered as pan-ovarian carcinoma markers, however without the discriminative capability as seen for OV632. These ovarian carcinoma-associated antigens were hardly found expressed in gonadal and germ cell tumors, except in the group of endodermal sinus tumors. HLA-I was found to be expressed in almost all nucleated cells, although loss of HLA-I expression was seen in areas of tumor cells. HLA-DR was negative in normal ovarian tissue, but heterogeneous expression was noticed in most of the epithelial tumors. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7678716

  10. The mycotoxin deoxynivalenol inhibits the cell surface expression of activation markers in human macrophages.

    PubMed

    Waché, Yann J; Hbabi-Haddioui, Laila; Guzylack-Piriou, Laurence; Belkhelfa, Haouaria; Roques, Christine; Oswald, Isabelle P

    2009-08-21

    Deoxynivalenol (DON) is the most prevalent trichothecene mycotoxin in crops in Europe and North America. It exhibits several toxic effects including impaired growth and immune dysregulation. Macrophages play pivotal role in the host defense; upon activation, they express several specific cell surface receptors that are important in adhesion and cell signaling. Several studies have demonstrated that DON can affect macrophages, however, very few data are available concerning the effect of DON on human macrophages, and the effect on macrophage cell surface receptors is unknown. In the present study, human blood monocytes, differentiated in vitro into macrophages, were activated with IFN-gamma, in the presence or absence of low concentrations of DON. The expression of CD11c, CD13, CD14, CD18, CD33, CD35, CD54, CD119 and HLA-DP/DQ/DR was analyzed by flow cytometry. As expected, macrophage activation by IFN-gamma upregulated the expression of CD54, CD14, CD119 and HLA-DP/DQ/DR. Incubation with DON decrease the cell surface expression of these activation markers in a dose-dependent manner. When cells were treated with 5muM DON, the mean fluorescence intensity measured for the expression of these receptors was the same as that observed in non-activated macrophages. This inhibitory effect of DON was only observed when the mycotoxin was applied before the activation signal. Taken together, our results suggest that low concentration of DON alter macrophage activation as measured by the expression of cell surface markers. This may have implications for human health when consuming DON contaminated feed. PMID:19549553

  11. Adipose derived mesenchymal stem cells express keratinocyte lineage markers in a co-culture model.

    PubMed

    Irfan-Maqsood, M; Matin, M M; Heirani-Tabasi, A; Bahrami, M; Naderi-Meshkin, H; Mirahmadi, M; Hassanzadeh, H; Sanjar Moussavi, N; Raza-Shah, H; Raeesolmohaddeseen, M; Bidkhori, H; Bahrami, A R

    2016-01-01

    Cutaneous wound healing is a complex type of biological event involving proliferation, differentiation, reprograming, trans/de-differentiation, recruitment, migration, and apoptosis of a number of cells (keratinocytes, fibroblasts, endothelial cells, nerve cells and stem cells) to regenerate a multi-layered tissue that is damaged by either internal or external factors. The exact regeneration mechanism of damaged skin is still unknown but the epithelial and other kinds of stem cells located in skin play crucial roles in the healing process. In this work, a co-culture model composed of adipose derived mesenchymal stem cells and keratinocytes was developed to understand the cellular differentiation behaviour in wound healing. Human mesenchymal stem cells were isolated from waste lipoaspirates. Keratinocytes were isolated from neonatal rats skin as well from human adult skin. Both types of cells were cultured and their culturing behaviour was observed microscopically under regular intervals of time. The identity of both cells was confirmed by flow cytometry and qRT-PCR. Cells were co-cultured under the proposed co-culturing model and the model was observed for 7, 14 and 21 days. The cellular behaviour was studied based on change in morphology, colonization, stratification, migration and expression of molecular markers. Expression of molecular markers was studied at transcriptional level and change in cellular morphology and migration capabilities was observed under the invert microscope regularly. Successfully isolated and characterized mesenchymal stem cells were found to express keratinocyte lineage markers i.e. K5, K10, K14, K18, K19 and Involucrin when co-cultured with keratinocytes after 14 and 21 days. Their expression was found to increase by increasing the time span of cell culturing. The keratinocyte colonies started to disappear after 10 days of culturing which might be due to stratification process initiated by possibly transdifferentiated stem cells. It can

  12. Differential Expression of Stem Cell Markers in Ocular Surface Squamous Neoplasia.

    PubMed

    Mishra, Dilip Kumar; Veena, Uppala; Kaliki, Swathi; Kethiri, Abhinav Reddy; Sangwan, Virender S; Ali, Mohammed Hasnat; Naik, Milind N; Singh, Vivek

    2016-01-01

    Ocular Surface Squamous Neoplasm (OSSN) is the neoplasia arising from the conjunctiva, cornea and limbus. OSSN ranges from mild, moderate, severe dysplasia, carcinoma in situ (CIS) to squamous cell carcinoma (SCC). Recent findings on cancer stem cells theory indicate that population of stem-like cell as in neoplasia determines its heterogeneity and complexity leading to varying tumor development of metastatic behavior and recurrence. Cancer stem cell markers are not much explored in the cases of OSSN. In the present study, we aim to evaluate the expression of stem cells using stem cell markers mainly p63, ABCG2, c-KIT (CD117) and CD44 in OSSN tissue, which could have prognostic significance. The present study tries for the first time to explore expression of these stem markers in the cases of OSSN. These cases are subdivided into two groups. One group comprises of carcinoma in situ (n = 6) and the second group comprises of invasive carcinoma (n = 6). The mean age at presentation was 52 years; with 53 years for CIS group and 52 years for SCC group. From each group section from the paraffin block were taken for the IHC staining of p63, c-Kit, ABCG2 and CD44. Our experiments show high expression of P63 and CD44 in the cases of CIN and SCC. Both CIS and SCC displayed positive staining with p63, with more than 80% cells staining positive. However minimal expression of c-kit in both CIN and SCC. But surprisingly we got high expression of ABCG2 in cases of carcinoma in situ as compared to that of invasive squamous cell carcinoma. More than 50% of cells showed CD44 positivity in both CIS and SCC groups. Our results show for the first time that these four stem cells especially the limbal epithelium stem cells play a vital role in the genesis of OSSN but we need to explore more cases before establishing its clinical and biological significance. PMID:27584160

  13. Inhibition of Fatty Acid Synthase Decreases Expression of Stemness Markers in Glioma Stem Cells

    PubMed Central

    Yasumoto, Yuki; Miyazaki, Hirofumi; Vaidyan, Linda Koshy; Kagawa, Yoshiteru; Ebrahimi, Majid; Yamamoto, Yui; Ogata, Masaki; Katsuyama, Yu; Sadahiro, Hirokazu; Suzuki, Michiyasu; Owada, Yuji

    2016-01-01

    Cellular metabolic changes, especially to lipid metabolism, have recently been recognized as a hallmark of various cancer cells. However, little is known about the significance of cellular lipid metabolism in the regulation of biological activity of glioma stem cells (GSCs). In this study, we examined the expression and role of fatty acid synthase (FASN), a key lipogenic enzyme, in GSCs. In the de novo lipid synthesis assay, GSCs exhibited higher lipogenesis than differentiated non-GSCs. Western blot and immunocytochemical analyses revealed that FASN is strongly expressed in multiple lines of patient-derived GSCs (G144 and Y10), but its expression was markedly reduced upon differentiation. When GSCs were treated with 20 μM cerulenin, a pharmacological inhibitor of FASN, their proliferation and migration were significantly suppressed and de novo lipogenesis decreased. Furthermore, following cerulenin treatment, expression of the GSC markers nestin, Sox2 and fatty acid binding protein (FABP7), markers of GCSs, decreased while that of glial fibrillary acidic protein (GFAP) expression increased. Taken together, our results indicate that FASN plays a pivotal role in the maintenance of GSC stemness, and FASN-mediated de novo lipid biosynthesis is closely associated with tumor growth and invasion in glioblastoma. PMID:26808816

  14. ABCG2 regulates self-renewal and stem cell marker expression but not tumorigenicity or radiation resistance of glioma cells

    PubMed Central

    Wee, Boyoung; Pietras, Alexander; Ozawa, Tatsuya; Bazzoli, Elena; Podlaha, Ondrej; Antczak, Christophe; Westermark, Bengt; Nelander, Sven; Uhrbom, Lene; Forsberg-Nilsson, Karin; Djaballah, Hakim; Michor, Franziska; Holland, Eric C.

    2016-01-01

    Glioma cells with stem cell traits are thought to be responsible for tumor maintenance and therapeutic failure. Such cells can be enriched based on their inherent drug efflux capability mediated by the ABC transporter ABCG2 using the side population assay, and their characteristics include increased self-renewal, high stem cell marker expression and high tumorigenic capacity in vivo. Here, we show that ABCG2 can actively drive expression of stem cell markers and self-renewal in glioma cells. Stem cell markers and self-renewal was enriched in cells with high ABCG2 activity, and could be specifically inhibited by pharmacological and genetic ABCG2 inhibition. Importantly, despite regulating these key characteristics of stem-like tumor cells, ABCG2 activity did not affect radiation resistance or tumorigenicity in vivo. ABCG2 effects were Notch-independent and mediated by diverse mechanisms including the transcription factor Mef. Our data demonstrate that characteristics of tumor stem cells are separable, and highlight ABCG2 as a potential driver of glioma stemness. PMID:27456282

  15. Meninges harbor cells expressing neural precursor markers during development and adulthood

    PubMed Central

    Bifari, Francesco; Berton, Valeria; Pino, Annachiara; Kusalo, Marijana; Malpeli, Giorgio; Di Chio, Marzia; Bersan, Emanuela; Amato, Eliana; Scarpa, Aldo; Krampera, Mauro; Fumagalli, Guido; Decimo, Ilaria

    2015-01-01

    Brain and skull developments are tightly synchronized, allowing the cranial bones to dynamically adapt to the brain shape. At the brain-skull interface, meninges produce the trophic signals necessary for normal corticogenesis and bone development. Meninges harbor different cell populations, including cells forming the endosteum of the cranial vault. Recently, we and other groups have described the presence in meninges of a cell population endowed with neural differentiation potential in vitro and, after transplantation, in vivo. However, whether meninges may be a niche for neural progenitor cells during embryonic development and in adulthood remains to be determined. In this work we provide the first description of the distribution of neural precursor markers in rat meninges during development up to adulthood. We conclude that meninges share common properties with the classical neural stem cell niche, as they: (i) are a highly proliferating tissue; (ii) host cells expressing neural precursor markers such as nestin, vimentin, Sox2 and doublecortin; and (iii) are enriched in extracellular matrix components (e.g., fractones) known to bind and concentrate growth factors. This study underlines the importance of meninges as a potential niche for endogenous precursor cells during development and in adulthood. PMID:26483637

  16. Radiation Dose-effects on Cell Cycle, Apoptosis, and Marker Expression of Ataxia Telangiectasia-Heterozygous Human Breast Epithelial Cells

    NASA Technical Reports Server (NTRS)

    Cruz, A.; Bors, K.; Jansen, H.; Richmond, R.

    2003-01-01

    Ataxia-telangiectasia (A-T) is a radiation-sensitive genetic condition. AT-heterozygous human mammary epithelial cells (HMEC) were irradiated using a Cs137 source in order to compare cell cycle, apoptosis, and marker expression responses across 3 radiation doses. No differences in cell cycle and apoptosis were found with any of the radiation doses used (30, 60, and 90 rads) compared with the unirradiated control (0 rad). At the same doses, however, differences were found in marker expression, such as keratin 18 (kl8), keratin 14 (k14), insulin-like growth factor I receptor (IGF-IR), and connexin 43 (cx43). This may indicate that radiation sensitivity in the heterozygous state may be initiated through signal transduction responses.

  17. Expression of surface markers on the blood cells during the delayed asthmatic response to allergen challenge

    PubMed Central

    2014-01-01

    Patients with bronchial asthma develop various types of asthmatic response to bronchial challenge with allergen, such as immediate/early asthmatic response (IAR), late asthmatic response (LAR) or delayed asthmatic response (DYAR), because of different immunologic mechanisms. The DYAR, occurring between 24 and 56 hours after the bronchial allergen challenge (p < 0.01), differs from IAR and LAR in clinical as well as immunologic features. This study investigates the expression of CD molecules (markers) on the surface of particular cell populations in the peripheral blood and their changes during the DYAR. In 17 patients developing the DYAR (p < 0.01), the bronchial challenge with allergen was repeated 2–6 weeks later. The repeated DYAR (p < 0.001) was combined with recording of CD molecule expression on various types of blood cells by means of flow cytometry up to 72 hours after the challenge. The results were expressed in percent of the mean relative fluorescence intensity. The DYAR was accompanied by (a) increased expression of CD11b, CD11b/18, CD16,CD32, CD35, CD62E, CD62L, CD64, and CD66b on neutrophils; CD203C on basophils; CD25 and CD62L on eosinophils; CD14, CD16, CD64, and CD86 on monocytes; CD3, CD4, CD8, CD11a, CD18, and CD69 on lymphocytes; CD16, CD56, CD57, and CD94 on natural killer (NK) cells; and CD31, CD41, CD61, CD62P, and CD63 on thrombocytes and (b) decreased expression of CD18 and CD62L on eosinophils, CD15 on neutrophils, and CD40 on lymphocytes. These results suggest involvement of cell-mediated hypersensitivity mechanism, on participation of Th1- lymphocytes, neutrophils, monocytes, NK cells, and thrombocytes in the DYAR. PMID:24988283

  18. Differential expression of CXCR4 and CXCR7 with various stem cell markers in paired human primary and recurrent glioblastomas.

    PubMed

    Flüh, Charlotte; Hattermann, Kirsten; Mehdorn, H Maximilian; Synowitz, Michael; Held-Feindt, Janka

    2016-04-01

    The chemokine CXCL12 (also termed SDF-1, stromal cell-derived factor-1) and its receptors CXCR4 and CXCR7 are known to play a pivotal role in tumor progression including glioblastomas (GBM). Previous investigations focused on the expression and functional roles of CXCR4 and CXCR7 in different GBM cell subpopulations, but comparative analysis in matched primary versus recurrent GBM samples are still lacking. Thus, here we investigated the expression of CXCR4 and CXCR7 on mRNA and protein level using matched primary and recurrent GBM pairs. Additionally, as GBM CXCR4-positive stem-like cells are supposed to give rise to recurrence, we compared the expression of both receptors in primary and recurrent GBM cells expressing either neural (MUSASHI-1) or embryonic stem cell markers (KLF-4, OCT-4, SOX-2, NANOG). We were able to show that both CXCR4 and CXCR7 were expressed at considerable mRNA and protein levels. CXCR7 was downregulated in relapse cases, and different groups regarding CXCR4/CXCR7 expression differences between primary and recurrent samples could be distinguished. A co-expression of both receptors was rare. In line with this, CXCR4 was co-expressed with all investigated neural and embryonic stem cell markers in both primary and recurrent tissues, whereas CXCR7 was mostly found on stem cell marker-negative cells, but was co-expressed with KLF-4 on a distinct GBM cell subpopulation. These results point to an individual role of CXCR4 and CXCR7 in stem cell marker-positive GBM cells in glioma progression and underline the opportunity to develop new therapeutic tools for GBM intervention. PMID:26821357

  19. T-cell subpopulations express a different pattern of dopaminergic markers in intra- and extra-thymic compartments.

    PubMed

    Mignini, F; Sabbatini, M; Capacchietti, M; Amantini, C; Bianchi, E; Artico, M; Tammaro, A

    2013-01-01

    An involvement of dopamine in regulation of the immune function has been assessed and dopaminergic system has been found widely represented in thymus. Nevertheless detail on the characterization of dopaminergic system in assisting thymocytes development and lymphocytes mature physiology are still lacking. The present study was designed to characterize dopamine plasma membrane transporter (DAT), vesicular dopamine transporters (VMAT)-1 and -2, and dopamine D1-like and D2-like receptors in rat thymocytes, splenocytes and peripheral blood mononuclear cells. Western blot and RT-PCR analyses, performed on these cells, showed an expression of dopamine transporters and receptors during thymocyte development (when of CD4 and CD8 markers are differently expressed). Furthermore FACS analysis, indicates that DAT and dopamine D1-like receptors are expressed at high levels in thymocytes, splenocytes, and peripheral lymphocytes. The percentage of CD4+ CD8+ (double-positive) thymocytes expressing dopaminergic markers was significantly higher compared to the percentage of double-negative ones. The percentage of CD8+ single positive cells expressing dopaminergic markers was significantly higher than that of CD4+ cells. The results suggest that the dopaminergic system plays a role in the thymus microenvironment during T-cell development. The more pronounced expression of dopaminergic markers in CD8+ subsets suggests that dopamine plays a role in development of cytotoxic T-cells. Our findings indicate dopaminergic system to have a role during the maturation and selection of lymphocytes, and support its involvement in the active phases of immune response. PMID:23830396

  20. Relationship of CD86 surface marker expression and cytotoxicity on dendritic cells exposed to chemical allergen

    SciTech Connect

    Hulette, Ben C.; Ryan, Cindy A.; Gildea, Lucy A.; Gerberick, G. Frank . E-mail: gerberick.gf@pg.com

    2005-12-01

    Human peripheral blood-derived dendritic cells (DC) respond to a variety of chemical allergens by up-regulating expression of the co-stimulatory molecule CD86. It has been postulated that this measure might provide the basis for an in vitro alternative approach for the identification of skin sensitizing chemicals. We recently reported that DC, exposed in culture to the highest non-cytotoxic concentrations of various chemical allergens, displayed marginal up-regulation of membrane CD86 expression; the interpretation being that such changes were insufficiently sensitive for the purposes of hazard identification. For the work presented here, immature DC were derived from human monocytes and treated with the chemical allergens 2,4-dinitrobenzenesulfonic acid (DNBS), nickel sulfate (NiSO{sub 4}), p-phenylenediamine (PPD), Bandrowski's base (BB), hydroquinone (HQ) and propyl gallate (PG) for 48 h at concentrations which induced both no to slight to moderate cytotoxicity. For comparison, DC were treated with the irritants sodium dodecyl sulfate (SDS), benzoic acid (BA), and benzalkonium chloride (BZC) at concentrations resulting in comparable levels of cytotoxicity. CD86 expression, as measured by flow cytometry, was consistently up-regulated (ranging from 162 to 386% control) on DC treated with concentrations of chemical allergens that induced approximately 10-15% cytotoxicity. The irritants BA and BZC did not induce up-regulation of CD86 expression when tested at concentrations that induced similar levels of cytotoxicity. SDS, however, up-regulated CD86 expression to 125-138% of control in 2/4 preparations when tested at concentrations which induced similar toxicity. Our results confirm that chemical allergens up-regulate CD86 expression on blood-derived DC and illustrate further that up-regulation of CD86 surface marker expression is more robust when DC are treated with concentrations of chemical allergen that induce slight to moderate cytotoxicity.

  1. Cloning and Expression of CD19, a Human B-Cell Marker in NIH-3T3 Cell Line

    PubMed Central

    Abbasi-Kenarsari, Hajar; Shafaghat, Farzaneh; Baradaran, Behzad; Movassaghpour, Ali Akbar; Shanehbandi, Dariush; Kazemi, Tohid

    2015-01-01

    Background CD19 is a pan B cell marker that is recognized as an attractive target for antibody-based therapy of B-cell disorders including autoimmune disease and hematological malignancies. The object of this study was to stably express the human CD19 antigen in the murine NIH-3T3 cell line aimed to be used as an immunogen in our future study. Methods Total RNA was extracted from Raji cells in which high expression of CD19 was confirmed by flow cytometry. Synthesized cDNA was used for CD19 gene amplification by conventional PCR method using Pfu DNA polymerase. PCR product was ligated to pGEM-T Easy vector and ligation mixture was transformed to DH5α competent bacteria. After blue/white selection, one positive white colony was subjected to plasmid extraction and direct sequencing. Then, CD19 cDNA was sub-cloned into pCMV6-Neo expression vector by double digestion using KpnI and HindIII enzymes. NIH-3T3 mouse fibroblast cell line was subsequently transfected by the construct using Jet-PEI transfection reagent. After 48 hours, surface expression of CD19 was confirmed by flow cytometry and stably transfected cells were selected by G418 antibiotic. Results Amplification of CD19 cDNA gave rise to 1701 bp amplicon confirmed by alignment to reference sequence in NCBI database. Flow cytometric analysis showed successful transient and stable expression of CD19 on NIH-3T3 cells (29 and 93%, respectively). Conclusion Stable cell surface expression of human CD19 antigen in a murine NIH-3T3 cell line may develop a proper immunogene which raises specific anti-CD19 antibody production in the mice immunized sera. PMID:25926951

  2. Analysis of marker expression in porcine cell lines derived from blastocysts produced in vitro and in vivo.

    PubMed

    Vackova, Irena; Novakova, Zora; Krylov, Vladimir; Okada, Konosuke; Kott, Tomas; Fulka, Helena; Motlik, Jan

    2011-10-01

    The present study was designed to extensively characterize cell lines derived from porcine blastocysts by several methodical approaches, including morphological observation, cytogenetic analysis, estimation of alkaline phosphatase activity and detection of specific marker expression at the mRNA/protein level. A comparison was made between the properties of cell lines isolated from in vivo- and in vitro-obtained blastocysts. Our results showed that 57.1% of the in vivo-obtained blastocysts attached to the feeder layer and that 33.3% of them started to grow in a monolayer. The percentage of attached in vitro-produced blastocysts was lower (24.6%), and only 6.9% of them started to grow. Outgrowths from the in vitro-produced blastocysts formed mainly trophectoderm or epithelial-like monolayer, whereas the in vivo-obtained blastocysts formed heterogeneous outgrowths that also contained cells with embryonic stem (ES)-like morphology. Detailed analyses showed that the primary outgrowths with ES-like morphology expressed the pluripotency markers OCT-4 and NANOG and revealed intensive alkaline phosphatase staining, while they did not express markers of differentiation. The majority of passaged cells, including those with ES-like morphology, lacked OCT-4 protein and revealed expression of specific differentiation markers (cytokeratin 18, lamins A/C, transferrin, α-fetoprotein and GATA-4), although they still expressed NANOG and exhibited weak alkaline phosphatase activity. Moreover, these cells spontaneously differentiated into neural, fibroblast or epithelial-like cells, even in the presence of leukaemia inhibitory factor. Our results show that complex analysis of markers of pluripotency as well as differentiation markers is necessary for proper interpretation of data in porcine embryonic stem cell studies. PMID:21685711

  3. Myrtucommulone-A treatment decreases pluripotency- and multipotency-associated marker expression in bladder cancer cell line HTB-9.

    PubMed

    Iskender, Banu; Izgi, Kenan; Karaca, Halit; Canatan, Halit

    2015-10-01

    Cancer and stem cells exhibit similar features, including self-renewal, differentiation and immortality. The expression of stem-cell-related genes in cancer cells is demonstrated to be potentially correlated with cancer cell behaviour, affecting both drug response and tumor recurrence. There is an emerging body of evidence that subpopulations of tumors carry a distinct molecular sign and are selectively resistant to chemotherapy. Therefore, it is important to find novel therapeutic agents that could suppress the stem-like features of cancer cells while inhibiting their proliferation. Myrtucommulone-A (MC-A) is an active compound of a nonprenylated acylphloroglucinol isolated from the leaves of myrtle. Here we have investigated the potential of MC-A in inhibiting the expression of self-renewal regulatory factors and cancer stem cell markers in a bladder cancer cell line HTB-9. We used RT-PCR, immunocytochemistry, flow cytometry and western blotting to examine the expression of pluripotency- and multipotency-associated markers with or without treatment with MC-A. Treatment with MC-A not only decreased cancer cell viability and proliferation but also resulted in a decrease in the expression of pluripotency- and multipotency-associated markers such as NANOG, OCT-4, SOX-2, SSEA-4, TRA-1-60, CD90, CD73 and CD44. MC-A treatment was also observed to decrease the sphere-forming ability of HTB-9 cells. In summary, this study provides valuable information on the presence of stem-cell marker expression in HTB-9 cells and our results imply that MC-A could be utilized to target cancer cells with stem-like characteristics. PMID:26054707

  4. Lymphangiogenesis and expression of specific molecules as lymphatic endothelial cell markers.

    PubMed

    Kato, Seiji; Shimoda, Hiroshi; Ji, Rui-Cheng; Miura, Masahiro

    2006-06-01

    In recent years, several functional molecules specifically expressed and localized in lymphatic endothelial cells, such as 5'-nucleotidase, lymphatic vessel endothelial receptor-1, vascular endothelial growth factor receptor-3, podoplanin and Prox-1, have been identified. The discovery of the lymphatic endothelial cell markers facilitated detailed analysis of the nature and structural organization of the lymphatic vessels and their growth (lymphangiogenesis). As a result, over the past few years, advances have been made in understanding the cellular and molecular aspects of physiological lymphangiogenesis and tumor-induced lymphangiogenesis. The biology of lymphangiogenesis, particularly the mechanism of its regulation, is very important in understanding the formation of the lymphatic system as a biological regulation system transporting tissue fluid and wandering cells, including lymphocytes, and disease involving lymphangiogenesis. The understanding of the molecular mechanism of lymphangiogenesis and the elucidation of the development of normal and pathological tissues are expected to lead to the development of therapy for intractable diseases, such as malignant tumors and lymphedema. PMID:16800291

  5. Immortalization of bone marrow-derived porcine mesenchymal stem cells and their differentiation into cells expressing cardiac phenotypic markers.

    PubMed

    Moscoso, Isabel; Rodriguez-Barbosa, Jose-Ignacio; Barallobre-Barreiro, Javier; Anon, Patricia; Domenech, Nieves

    2012-08-01

    Mesenchymal stem cells (MSCs) may be among the first stem cell types to be utilized in the clinic for cell therapy, because of their ease of isolation and extensive differentiation potential. Using a porcine model, we have established several cell lines from MSCs to facilitate in vitro and in vivo studies of their potential use for cellular therapy. Bone marrow-derived primary MSCs were immortalized using the pRNS-1 plasmid. We obtained four stable immortalized cell lines that exhibited higher proliferative capacities than the parental cells. All four cell lines displayed a common phenotype similar to that of primary mesenchymal cells, characterized by constitutively high expressions of CD90, CD29, CD44, SLA I and CD46, while CD172a, CD106 and CD56 were less expressed. Remarkably, treatment with 5-azacytidine-stimulated porcine MSCs lines to differentiate into cells that were positive for cardiac phenotypic markers, such as α-actin, connexin-43, sarcomeric actin, serca-2 and, to a lesser extent, desmin and troponin-T. These porcine MSC lines will be valuable biological tools for developing strategies for ex vivo expansion and differentiation of MSCs into a specific lineage. PMID:22162515

  6. Differential Regulation of Gene Expression of Alveolar Epithelial Cell Markers in Human Lung Adenocarcinoma-Derived A549 Clones

    PubMed Central

    Kondo, Hiroshi; Miyoshi, Keiko; Sakiyama, Shoji; Tangoku, Akira; Noma, Takafumi

    2015-01-01

    Stem cell therapy appears to be promising for restoring damaged or irreparable lung tissue. However, establishing a simple and reproducible protocol for preparing lung progenitor populations is difficult because the molecular basis for alveolar epithelial cell differentiation is not fully understood. We investigated an in vitro system to analyze the regulatory mechanisms of alveolus-specific gene expression using a human alveolar epithelial type II (ATII) cell line, A549. After cloning A549 subpopulations, each clone was classified into five groups according to cell morphology and marker gene expression. Two clones (B7 and H12) were further analyzed. Under serum-free culture conditions, surfactant protein C (SPC), an ATII marker, was upregulated in both H12 and B7. Aquaporin 5 (AQP5), an ATI marker, was upregulated in H12 and significantly induced in B7. When the RAS/MAPK pathway was inhibited, SPC and thyroid transcription factor-1 (TTF-1) expression levels were enhanced. After treatment with dexamethasone (DEX), 8-bromoadenosine 3′5′-cyclic monophosphate (8-Br-cAMP), 3-isobutyl-1-methylxanthine (IBMX), and keratinocyte growth factor (KGF), surfactant protein B and TTF-1 expression levels were enhanced. We found that A549-derived clones have plasticity in gene expression of alveolar epithelial differentiation markers and could be useful in studying ATII maintenance and differentiation. PMID:26167183

  7. Quantification of cells expressing markers of proliferation and apoptosis in chronic tonsilitis.

    PubMed

    Avramović, V; Petrović, V; Jović, M; Vlahović, P

    2015-10-01

    During chronic tonsillitis, the relationship between proliferation and apoptosis of lymphocytes in tonsillar follicles can be disturbed, which gives rise to attenuation of tonsil immunocompetence and diminishing its contribution in systemic immunity. In this study, we have quantified the cells expressing the markers of proliferation and apoptosis in the follicles of the palatine tonsil. Six tonsils from patients aged 10-29 years with hypertrophic tonsillitis and five tonsils from patients aged 18-22 years with recurrent tonsillitis were studied. The sections of paraffin blocks of tonsillar tissue were stained by the immunohistochemical LSAB/HRP method with the utilisation of antibodies for: Ki-67 antigen-cell marker of proliferation; Bcl-2 and survivin anti-apoptotic factors and Fas/CD95, caspase-3 and Bax pro-apoptotic factors. The size of lymphoid follicles, i.e. mean follicle area and number of lymphoid follicle immunopositive cells per mm2 of a slice area, i.e. numerical areal density were determined by the quantitative image analysis. The localisation of Ki-67, Bcl-2, survivin, Fas/CD95, caspase-3 and Bax- immunopositive cells inside the palatine tonsil was similar in both types of tonsillitis. The number of Ki-67 immunopositive cells was significantly (p < 0.01) larger in the tonsils with hypertrophic tonsillitis (14681.4 ± 1460.5) in comparison to those with recurrent tonsillitis (12491.4 ± 2321.6), although the number of survivin and caspase-3 immunopositive cells was significantly (p < 0.05) larger in recurrent tonsillitis (survivin, 406.9 ± 98.4; caspase-3, 350.4 ± 119.4) when compared to those with hypertrophic tonsillitis (survivin, 117.4 ± 14.5; caspase-3, 210 ± 24). Our results show that the rate of the proliferation and apoptosis of follicular lymphocytes is different in various types of tonsillitis. This suggests that the immunological potential of the palatine tonsil varies in patients with hypertrophic and recurrent tonsillitis, which in

  8. CD45+/CD133+ positive cells expanded from umbilical cord blood expressing PDX-1 and markers of pluripotency.

    PubMed

    Pessina, Augusto; Bonomi, Arianna; Sisto, Francesca; Baglio, Carolina; Cavicchini, Loredana; Ciusani, Emilio; Coccé, Valentina; Gribaldo, Laura

    2010-08-01

    UCB (human umbilical cord blood) contains cells able to differentiate into non-haematopoietic cell lineages. It also contains cells similar to primitive ESCs (embryonic stem cells) that can differentiate into pancreatic-like cells. However, few data have been reported regarding the possibility of expanding these cells or the differential gene expression occurring in vitro. In this study, we expanded formerly frozen UCB cells by treatment with SCF (stem cell factor) and GM-CSF (granulocyte-macrophage colony stimulating factor) in the presence of VPA (valproic acid). Gene expression profiles for beta cell differentiation and pluripotency (embryo stem cell phenotype) were analysed by RT-PCR and immunocytochemistry. The results show a dramatic expansion (>150-fold) of haematopoietic progenitors (CD45+/CD133+) which also expressed embryo markers of pluripotency (nanog, kfl-4, sox-2, oct-3/4 and c-myc), nestin, and pancreatic markers such as pax-4, ngn-3, pdx-1 and syt-1 (that is regulated by pdx-1 and provides the cells with a Ca++ regulation mechanism essential for insulin exocytosis). Our results show that UCB cells can be expanded to produce large numbers of cells of haematopoietic lineage that naturally (without the need of retroviral vectors or transposons) express a gene pattern compatible with endocrine pancreatic precursors and markers of pluripotency. Further investigations are necessary to clarify, first, whether in this context, the embryogenes expressed are functional or not, and secondly, since these cells are safer than cells transfected with retroviral vectors or transposons, whether they would represent a potential tool for clinical application. PMID:20397976

  9. Molecular characterization and expression pattern of a germ cell marker gene dnd in gibel carp (Carassius gibelio).

    PubMed

    Li, Shi-Zhu; Liu, Wei; Li, Zhi; Wang, Yang; Zhou, Li; Yi, Mei-Sheng; Gui, Jian-Fang

    2016-10-10

    As a germ cell marker gene, Dead end (dnd) has been identified and characterized in many vertebrates. Recently, we created a complete germ cell-depleted gonad model by the dnd-specific morpholino-mediated knockdown approach, and revealed sex-biased gene expression alteration through utilizing unisexual gynogenetic superiority in polyploid gibel carp. However, dnd and its expression pattern are still unclear in the gibel carp. In this study, we further analyzed molecular characterization of gibel carp dnd and its dynamic expression pattern during gametogenesis and embryogenesis. Similar to other homologs in vertebrates, gibel carp dnd contains a conserved RRM motif and five other motifs, and is highly evolutionary conserved in genomic organization and neighborhood gene synteny. RT-PCR and Western blot analyses showed its gonad-specific expression intensively in testis and ovary. Section in situ hybridization (SISH) and immunofluorescence localization revealed its dynamic expression pattern specific to oogenic cells and spermatogenetic cells during oogenesis and spermatogenesis. Moreover, its temporal and spatial distribution specific to PGCs were also demonstrated by RT-PCR and whole mount in situ hybridization (WISH) during embryogenesis. Therefore, gibel carp Dnd is a conserved germ cell marker during gametogenesis, and its maternal transcript is also a useful marker for tracing PGC specification and migration. PMID:27418526

  10. Expressions of Senescence-Associated β-Galactosidase and Senescence Marker Protein-30 are Associated with Lens Epithelial Cell Apoptosis

    PubMed Central

    Zhou, Dan; Yin, Dan; Xiao, Fang; Hao, Jie

    2015-01-01

    Background To investigate associations of senescence marker protein-30 and senescence-associated β-galactosidase expression with lens epithelial cells apoptosis among Chinese age-related cataract patients. Material/Methods A total of 145 age-related cataract patients (69 cases with nuclear cataract in 91 eyes and 76 cases of cortical cataract with 102 eyes) were enrolled in our study. An annular tear of the central part of anterior lens capsules was performed for each patient. Immunohistochemical staining and real-time PCR were used to detect the protein and mRNA expression levels, and TUNEL was used to assess lens epithelial cells apoptosis. Comparisons of protein expression levels and lens epithelial cells apoptosis were made between the 2 groups. Results The results showed a higher protein expression level of senescence marker protein-30 in surrounding parts of the anterior lens capsule compared with the central part of the anterior lens capsule; however, the positive rate of senescence-associated β-galactosidase was remarkably higher in the central part than in the surrounding part. Compared with cortical cataract patients, nuclear cataract patients had elevated senescence marker protein-30 protein and mRNA expression levels, but had a decreased positive rate of senescence-associated β-galactosidase. TUNEL results showed that the lens epithelial cell apoptosis rate was higher in the central part of the anterior lens capsule than in the surrounding part in both groups. Within either central or surrounding area of anterior lens capsule, cortical cataract patients exhibited a significantly higher lens epithelial cell apoptosis rate in contrast with nuclear cataract patients. Conclusions Our study results suggest that senescence marker protein-30 and senescence-associated β-galactosidase expressions in both nuclear cataract and cortical cataract patients were associated with lens epithelial cells apoptosis. PMID:26619319

  11. Gene expression markers in circulating tumor cells may predict bone metastasis and response to hormonal treatment in breast cancer

    PubMed Central

    WANG, HAIYING; MOLINA, JULIAN; JIANG, JOHN; FERBER, MATTHEW; PRUTHI, SANDHYA; JATKOE, TIMOTHY; DERECHO, CARLO; RAJPUROHIT, YASHODA; ZHENG, JIAN; WANG, YIXIN

    2013-01-01

    Circulating tumor cells (CTCs) have recently attracted attention due to their potential as prognostic and predictive markers for the clinical management of metastatic breast cancer patients. The isolation of CTCs from patients may enable the molecular characterization of these cells, which may help establish a minimally invasive assay for the prediction of metastasis and further optimization of treatment. Molecular markers of proven clinical value may therefore be useful in predicting disease aggressiveness and response to treatment. In our earlier study, we identified a gene signature in breast cancer that appears to be significantly associated with bone metastasis. Among the genes that constitute this signature, trefoil factor 1 (TFF1) was identified as the most differentially expressed gene associated with bone metastasis. In this study, we investigated 25 candidate gene markers in the CTCs of metastatic breast cancer patients with different metastatic sites. The panel of the 25 markers was investigated in 80 baseline samples (first blood draw of CTCs) and 30 follow-up samples. In addition, 40 healthy blood donors (HBDs) were analyzed as controls. The assay was performed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) with RNA extracted from CTCs captured by the CellSearch system. Our study indicated that 12 of the genes were uniquely expressed in CTCs and 10 were highly expressed in the CTCs obtained from patients compared to those obtained from HBDs. Among these genes, the expression of keratin 19 was highly correlated with the CTC count. The TFF1 expression in CTCs was a strong predictor of bone metastasis and the patients with a high expression of estrogen receptor β in CTCs exhibited a better response to hormonal treatment. Molecular characterization of these genes in CTCs may provide a better understanding of the mechanism underlying tumor metastasis and identify gene markers in CTCs for predicting disease progression and

  12. Gene expression markers in circulating tumor cells may predict bone metastasis and response to hormonal treatment in breast cancer.

    PubMed

    Wang, Haiying; Molina, Julian; Jiang, John; Ferber, Matthew; Pruthi, Sandhya; Jatkoe, Timothy; Derecho, Carlo; Rajpurohit, Yashoda; Zheng, Jian; Wang, Yixin

    2013-11-01

    Circulating tumor cells (CTCs) have recently attracted attention due to their potential as prognostic and predictive markers for the clinical management of metastatic breast cancer patients. The isolation of CTCs from patients may enable the molecular characterization of these cells, which may help establish a minimally invasive assay for the prediction of metastasis and further optimization of treatment. Molecular markers of proven clinical value may therefore be useful in predicting disease aggressiveness and response to treatment. In our earlier study, we identified a gene signature in breast cancer that appears to be significantly associated with bone metastasis. Among the genes that constitute this signature, trefoil factor 1 (TFF1) was identified as the most differentially expressed gene associated with bone metastasis. In this study, we investigated 25 candidate gene markers in the CTCs of metastatic breast cancer patients with different metastatic sites. The panel of the 25 markers was investigated in 80 baseline samples (first blood draw of CTCs) and 30 follow-up samples. In addition, 40 healthy blood donors (HBDs) were analyzed as controls. The assay was performed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) with RNA extracted from CTCs captured by the CellSearch system. Our study indicated that 12 of the genes were uniquely expressed in CTCs and 10 were highly expressed in the CTCs obtained from patients compared to those obtained from HBDs. Among these genes, the expression of keratin 19 was highly correlated with the CTC count. The TFF1 expression in CTCs was a strong predictor of bone metastasis and the patients with a high expression of estrogen receptor β in CTCs exhibited a better response to hormonal treatment. Molecular characterization of these genes in CTCs may provide a better understanding of the mechanism underlying tumor metastasis and identify gene markers in CTCs for predicting disease progression and

  13. Cells Expressing Early Cardiac Markers Reside in the Bone Marrow and Are Mobilized Into the Peripheral Blood After Myocardial Infarction

    PubMed Central

    Kucia, Magda; Dawn, Buddhadeb; Hunt, Greg; Guo, Yiru; Wysoczynski, Marcin; Majka, Marcin; Ratajczak, Janina; Rezzoug, Francine; Ildstad, Suzanne T.; Bolli, Roberto; Ratajczak, Mariusz Z.

    2013-01-01

    The concept that bone marrow (BM)– derived cells participate in cardiac regeneration remains highly controversial and the identity of the specific cell type(s) involved remains unknown. In this study, we report that the postnatal BM contains a mobile pool of cells that express early cardiac lineage markers (Nkx2.5/Csx, GATA-4, and MEF2C). These cells are present in significant amounts in BM harvested from young mice but their abundance decreases with age; in addition, the responsiveness of these cells to gradients of motomorphogens SDF-1, HGF, and LIF changes with age. FACS analysis, combined with analysis of early cardiac markers at the mRNA and protein levels, revealed that cells expressing these markers reside in the nonadherent, nonhematopoietic CXCR4+/Sca-1+/lin−/CD45− mononuclear cell (MNC) fraction in mice and in the CXCR4+/CD34+/AC133+/CD45− BMMNC fraction in humans. These cells are mobilized into the peripheral blood after myocardial infarction and chemoattracted to the infarcted myocardium in an SDF-1-CXCR4 −, HGF-c-Met−, and LIF-LIF-R− dependent manner. To our knowledge, this is the first demonstration that the postnatal BM harbors a nonhematopoietic population of cells that express markers for cardiac differentiation. We propose that these potential cardiac progenitors may account for the myocardial regenerative effects of BM. The present findings provide a novel paradigm that could reconcile current controversies and a rationale for investigating the use of BM-derived cardiac progenitors for myocardial regeneration. PMID:15550692

  14. Expression and Prognostic Significance of a Panel of Tissue Hypoxia Markers in Head-and-Neck Squamous Cell Carcinomas

    SciTech Connect

    Le, Quynh-Thu Kong, Christina; Lavori, Phillip W.; O'Byrne, Ken; Erler, Janine T.; Huang Xin; Chen Yijun; Cao Hongbin; Tibshirani, Robert; Denko, Nic; Giaccia, Amato J.; Koong, Albert C.

    2007-09-01

    Purpose: To investigate the expression pattern of hypoxia-induced proteins identified as being involved in malignant progression of head-and-neck squamous cell carcinoma (HNSCC) and to determine their relationship to tumor pO{sub 2} and prognosis. Methods and Materials: We performed immunohistochemical staining of hypoxia-induced proteins (carbonic anhydrase IX [CA IX], BNIP3L, connective tissue growth factor, osteopontin, ephrin A1, hypoxia inducible gene-2, dihydrofolate reductase, galectin-1, I{kappa}B kinase {beta}, and lysyl oxidase) on tumor tissue arrays of 101 HNSCC patients with pretreatment pO{sub 2} measurements. Analysis of variance and Fisher's exact tests were used to evaluate the relationship between marker expression, tumor pO{sub 2}, and CA IX staining. Cox proportional hazard model and log-rank tests were used to determine the relationship between markers and prognosis. Results: Osteopontin expression correlated with tumor pO{sub 2} (Eppendorf measurements) (p = 0.04). However, there was a strong correlation between lysyl oxidase, ephrin A1, and galectin-1 and CA IX staining. These markers also predicted for cancer-specific survival and overall survival on univariate analysis. A hypoxia score of 0-5 was assigned to each patient, on the basis of the presence of strong staining for these markers, whereby a higher score signifies increased marker expression. On multivariate analysis, increasing hypoxia score was an independent prognostic factor for cancer-specific survival (p = 0.015) and was borderline significant for overall survival (p = 0.057) when adjusted for other independent predictors of outcomes (hemoglobin and age). Conclusions: We identified a panel of hypoxia-related tissue markers that correlates with treatment outcomes in HNSCC. Validation of these markers will be needed to determine their utility in identifying patients for hypoxia-targeted therapy.

  15. A population of human brain cells expressing phenotypic markers of more than one lineage can be induced in vitro to differentiate into mesenchymal cells

    SciTech Connect

    Rieske, Piotr; Augelli, Brian J.; Stawski, Robert; Gaughan, John; Azizi, S. Ausim; Krynska, Barbara

    2009-02-01

    Proliferating astrocytic cells from germinal, as well as mature areas of brain parenchyma, have the characteristics of neural stem/progenitor cells and are capable of generating both neurons and glia. We previously reported that primary fetal human brain cells, designated as Normal Human Astrocytes (NHA), expressed, in addition to GFAP, Vimentin and Nestin, low levels of {beta}III-Tubulin, an early neuronal marker, and differentiated into neurons and astrocytes in vitro. Here, we showed that primary NHA cells co-express low levels of mesenchymal markers Fibronectin and Collagen-1 in culture. These cells transitioned into mesenchymal-like cells when cultured in adherent conditions in serum containing media. The mesenchymal-like derivatives of these cells were characterized based on their morphological changes, high expression of Vimentin and extracellular matrix (ECM) proteins, Collagen-1 and Fibronectin, and decline of neural markers. When incubated in osteogenic and adipogenic induction media, the mesenchymal-like cells differentiated into osteoblasts and adipocytes. Furthermore, NHA cells express markers of neural crest cells, SOX-10 and p75. These data support the idea of ectoderm-derived mesenchymal lineages. These findings suggest that a population of primitive fetal brain cells with neural/neural crest/mesenchymal phenotype, resembles the remarkable phenotypic plasticity of neural crest cells, and differentiates into adipocytes and osteocytes under the influence of environmental factors.

  16. Characterization and Expression of Senescence Marker in Prolonged Passages of Rat Bone Marrow-Derived Mesenchymal Stem Cells

    PubMed Central

    Ridzuan, Noridzzaida; Al Abbar, Akram; Yip, Wai Kien; Maqbool, Maryam

    2016-01-01

    The present study is aimed at optimizing the in vitro culture protocol for generation of rat bone marrow- (BM-) derived mesenchymal stem cells (MSCs) and characterizing the culture-mediated cellular senescence. The initial phase of generation and characterization was conducted using the adherent cells from Sprague Dawley (SD) rat's BM via morphological analysis, growth kinetics, colony forming unit capacity, immunophenotyping, and mesodermal lineage differentiation. Mesenchymal stem cells were successfully generated and characterized as delineated by the expressions of CD90.1, CD44H, CD29, and CD71 and lack of CD11b/c and CD45 markers. Upon induction, rBM-MSCs differentiated into osteocytes and adipocytes and expressed osteocytes and adipocytes genes. However, a decline in cell growth was observed at passage 4 onwards and it was further deciphered through apoptosis, cell cycle, and senescence assays. Despite the enhanced cell viability at later passages (P4-5), the expression of senescence marker, β-galactosidase, was significantly increased at passage 5. Furthermore, the cell cycle analysis has confirmed the in vitro culture-mediated cellular senescence where cells were arrested at the G0/G1 phase of cell cycle. Although the currently optimized protocols had successfully yielded rBM-MSCs, the culture-mediated cellular senescence limits the growth of rBM-MSCs and its potential use in rat-based MSC research. PMID:27579045

  17. Characterization and Expression of Senescence Marker in Prolonged Passages of Rat Bone Marrow-Derived Mesenchymal Stem Cells.

    PubMed

    Ridzuan, Noridzzaida; Al Abbar, Akram; Yip, Wai Kien; Maqbool, Maryam; Ramasamy, Rajesh

    2016-01-01

    The present study is aimed at optimizing the in vitro culture protocol for generation of rat bone marrow- (BM-) derived mesenchymal stem cells (MSCs) and characterizing the culture-mediated cellular senescence. The initial phase of generation and characterization was conducted using the adherent cells from Sprague Dawley (SD) rat's BM via morphological analysis, growth kinetics, colony forming unit capacity, immunophenotyping, and mesodermal lineage differentiation. Mesenchymal stem cells were successfully generated and characterized as delineated by the expressions of CD90.1, CD44H, CD29, and CD71 and lack of CD11b/c and CD45 markers. Upon induction, rBM-MSCs differentiated into osteocytes and adipocytes and expressed osteocytes and adipocytes genes. However, a decline in cell growth was observed at passage 4 onwards and it was further deciphered through apoptosis, cell cycle, and senescence assays. Despite the enhanced cell viability at later passages (P4-5), the expression of senescence marker, β-galactosidase, was significantly increased at passage 5. Furthermore, the cell cycle analysis has confirmed the in vitro culture-mediated cellular senescence where cells were arrested at the G0/G1 phase of cell cycle. Although the currently optimized protocols had successfully yielded rBM-MSCs, the culture-mediated cellular senescence limits the growth of rBM-MSCs and its potential use in rat-based MSC research. PMID:27579045

  18. Human Mesenchymal Stem Cells Retain Multilineage Differentiation Capacity Including Neural Marker Expression after Extended In Vitro Expansion

    PubMed Central

    Okolicsanyi, Rachel K.; Camilleri, Emily T.; Oikari, Lotta E; Yu, Chieh; Cool, Simon M.; van Wijnen, Andre J.; Griffiths, Lyn R.; Haupt, Larisa M.

    2015-01-01

    The suitability of human mesenchymal stem cells (hMSCs) in regenerative medicine relies on retention of their proliferative expansion potential in conjunction with the ability to differentiate toward multiple lineages. Successful utilisation of these cells in clinical applications linked to tissue regeneration requires consideration of biomarker expression, time in culture and donor age, as well as their ability to differentiate towards mesenchymal (bone, cartilage, fat) or non-mesenchymal (e.g., neural) lineages. To identify potential therapeutic suitability we examined hMSCs after extended expansion including morphological changes, potency (stemness) and multilineage potential. Commercially available hMSC populations were expanded in vitro for > 20 passages, equating to > 60 days and > 50 population doublings. Distinct growth phases (A-C) were observed during serial passaging and cells were characterised for stemness and lineage markers at representative stages (Phase A: P+5, approximately 13 days in culture; Phase B: P+7, approximately 20 days in culture; and Phase C: P+13, approximately 43 days in culture). Cell surface markers, stem cell markers and lineage-specific markers were characterised by FACS, ICC and Q-PCR revealing MSCs maintained their multilineage potential, including neural lineages throughout expansion. Co-expression of multiple lineage markers along with continued CD45 expression in MSCs did not affect completion of osteogenic and adipogenic specification or the formation of neurospheres. Improved standardised isolation and characterisation of MSCs may facilitate the identification of biomarkers to improve therapeutic efficacy to ensure increased reproducibility and routine production of MSCs for therapeutic applications including neural repair. PMID:26356539

  19. IGF2 expression is a marker for paraganglionic/SIF cell differentiation in neuroblastoma.

    PubMed Central

    Hedborg, F.; Ohlsson, R.; Sandstedt, B.; Grimelius, L.; Hoehner, J. C.; Pählman, S.

    1995-01-01

    Neuroblastoma is a childhood tumor of the sympathetic nervous system. Observations in the Beckwith-Wiedemann syndrome suggest that sympathetic embryonal cells with an abundant expression of the insulin-like growth factor 2 gene (IGF2) may be involved in the genesis of low-malignant infant neuroblastomas. We have therefore compared the cell type-specific IGF2 expression of the human sympathetic nervous system during early development with that of neuroblastoma. An abundant expression in normal sympathetic tissue was specific to extra-adrenal chromaffin cells, ie, paraganglia and small intensely fluorescent (SIF) cells, whereas sympathetic neuronal cells were IGF2-negative. A subpopulation of neuroblastomas expressed IGF2, which correlated with an early age at diagnosis, an extra-adrenal tumor origin, and severe hemodynamic signs of catecholamine secretion. Histologically IGF2-expressing tumors displayed a lobular growth pattern, and expression was restricted to the most mature and least proliferative cells. Typically, these cells were morphologically and histochemically similar to paraganglia/SIF cells and formed distinct ring-like zones in the center of the lobules around a core of apoptosis-like tumor cells. The similarities found between IGF2-expressing neuroblastoma cells and paraganglia/SIF cells in terms of histological features, anatomical origin, and age-dependent growth suggest a paraganglionic/SIF cell lineage of most infant tumors and also of extra-adrenal tumors diagnosed after infancy. Furthermore, since paraganglia/SIF cells undergo postnatal involution, the same cellular mechanism may be responsible for spontaneous regression in infant neuroblastoma. Images Figure 2 Figure 3 p839-a Figure 4 PMID:7717451

  20. Strain magnitude-dependent calcific marker expression in valvular and vascular cells.

    PubMed

    Ferdous, Zannatul; Jo, Hanjoong; Nerem, Robert M

    2013-01-01

    Aortic valve disease and atherosclerosis tend to coexist in most patients with cardiovascular disease; however, the causes and mechanisms of disease development in heart valves are still not clearly understood. To understand the contributions of the magnitude of cyclic strain (5% hypotension, 10% physiological, and 15% hypertension) in calcification, we used a model system of tissue-engineered collagen gels containing human aortic smooth muscle cells and human aortic valvular interstitial cells, both isolated from noncalcific heart transplant tissue. The compacted collagen gels were cultured in osteogenic media for 3 weeks in a custom-designed bioreactor and all assessments were performed at the end of the culture period. The major finding of this study is that bone morphogenic protein (BMP)-2 and BMP-4 and transforming growth factor-β1 mRNA expression significantly changed in response to the magnitude of applied strain in valvular cells, while the lowest expression was observed for the representative physiological strain. On the other hand, mRNA expression in vascular cells did not vary in response to the magnitude of strain. Regarding BMP-2 and BMP-4 protein expression determined by immunostaining, trends were similar to mRNA expression in vascular and valvular cells, where only valvular cells showed a varied protein expression depending on the magnitude of the strain applied. Our results suggest that cellular differences exist between vascular and valvular cells in their response to altered levels of cyclic strain during calcification. PMID:23548742

  1. Epstein-Barr virus (EBV) induces expression of B-cell activation markers on in vitro infection of EBV-negative B-lymphoma cells.

    PubMed Central

    Calender, A; Billaud, M; Aubry, J P; Banchereau, J; Vuillaume, M; Lenoir, G M

    1987-01-01

    A set of B-cell activation markers, including the EBV/C3d receptor [complement receptor type 2 (CR2) (CD21)], the 45-kDa lymphoblastoid cell-associated (Blast-2) antigen (CD23), and the B-cell restricted activation (Bac-1) antigen (which was recently identified as a potential B-cell growth factor receptor) can be turned on by infecting lymphoma cells that are genome negative for Epstein-Barr virus (EBV) with the B95-8 immortalizing strain of the virus. The nonimmortalizing EBV variant, strain P3HR-1, which possesses a deletion within the BamHI WYH region of the genome containing the coding sequence for the EBV-determined nuclear antigen 2, does not induce expression of these markers. Other lymphoblastoid cell-associated antigen markers can be activated by infection with either immortalizing or nonimmortalizing viruses. These results suggest that the immortalizing potential of EBV is correlated with its ability to induce expression of B-cell activation markers, which are suspected to play a major role in the physiological pathway leading to lymphoid cell proliferation. The viral genomic region deleted in the nonimmortalizing strain of EBV seems to be required for activation of some of these markers. Human lymphoma cell lines, such as those used in this study, can thus help identify the specific EBV genes involved in lymphoid B-cell proliferation and the mechanism of action of these genes. PMID:2825176

  2. Stromal cells in phyllodes tumors of the breast are enriched for EZH2 and stem cell marker expression.

    PubMed

    Zhang, Yanhong; Liss, Adam L; Chung, Eugene; Pierce, Lori J; Kleer, Celina G

    2016-07-01

    Phyllodes tumors (PTs) of the breast are fibroepithelial neoplasms with stromal hypercellularity, which is the basis for their classification as benign, borderline, and malignant. The histologic diagnosis of PTs is often difficult, and the pathological features may not always predict clinical behavior. The pathobiology of PT remains poorly understood. Enhancer of Zeste 2 (EZH2) epigenetically regulates cell-type identity, cellular differentiation, and breast cancer stem cells. EZH2 exerts oncogenic functions in breast cancer and is associated with metastasis. We hypothesized that in PTs, EZH2 and the stem cell marker ALDH1 may be expressed in stromal cells and may be associated with their degree of differentiation. Forty PTs were histologically characterized at our institution following the World Health Organization criteria. We investigated the expression of EZH2 and ALDH1 by immunohistochemistry and recorded as percentage of positive epithelial and stromal cells. EZH2 was positive when over 10 % of cells exhibited nuclear staining; ALDH1 was positive when over 5 % of cells had cytoplasmic staining. Of the 40 PTs, 24 (60 %) were histologically benign, 8 (20 %) borderline, and 8 (20 %) malignant. Stromal EZH2 was significantly associated with the diagnosis of malignant PT, as it was detected in 1 of 24 (4 %) benign, 3 of 8 (37.5 %) borderline, and 5 of 8 (62.5 %) malignant tumors. Stromal EZH2 was significantly associated with stromal overgrowth (p = 0.01), atypia (p = 0.01), hypercellularity (p = 0.01), and mitoses (p = 0.02), all features of malignant PT. Stromal EZH2 and ALDH1 were significantly associated with grade of PT (p = 0.01 and p < 0.05 respectively). In conclusion, EZH2 and ALDH1 expression in the stroma of PT may mark malignant progression and may be helpful to distinguish histologically benign from borderline and malignant tumors in challenging cases. Our study also suggests that PTs contain mesenchymal stem cells, shedding light

  3. Epidermal Cells Expressing Putative Cell Markers in Nonglabrous Skin Existing in Direct Proximity with the Distal End of the Arrector Pili Muscle

    PubMed Central

    Rufaut, N. W.; Jones, L.; Sinclair, R.

    2016-01-01

    Inconsistent with the view that epidermal stem cells reside randomly spread along the basal layer of the epidermal rete ridges, we found that epidermal cells expressing stem cell markers in nonglabrous skin exist in direct connection with the distal end of the arrector pili muscle. The epidermal cells that express stem cell markers consist of a subpopulation of basal keratinocytes located in a niche at the lowermost portion of the rete ridges at the distal arrector pili muscle attachment site. Keratinocytes in the epidermal stem cell niche express K15, MCSP, and α6 integrin. α5 integrin marks the distal end of the APM colocalized with basal keratinocytes expressing stem cell markers located in a well-protected and nourished environment at the lowermost point of the epidermis; these cells are hypothesized to participate directly in epidermal renewal and homeostasis and also indirectly in wound healing through communication with the hair follicle bulge epithelial stem cell population through the APM. Our findings, plus a reevaluation of the literature, support the hierarchical model of interfollicular epidermal stem cell units of Fitzpatrick. This new view provides insights into epidermal control and the possible involvement of epidermal stem cells in nonmelanoma skin carcinogenesis. PMID:27375744

  4. Expression of Putative Stem Cell Marker, Hepatocyte Nuclear Factor 4 Alpha, in Mammary Gland of Water Buffalo.

    PubMed

    Choudhary, Ratan K; Choudhary, Shanti; Kaur, Harmanjot; Pathak, Devendra

    2016-01-01

    Buffaloes account for more than 56% of total milk production in India. Cyclic remodeling of mammary glands of human, mice, cow, sheep, and goat is determined by mammary stem cells. It is logical to assume that buffalo mammary gland will have mammary stem/progenitor cells. Thus far, no report exists on identification of buffalo mammary stem cells. Hepatocyte nuclear factor 4 alpha (HNF4A) is a candidate marker for hepatic progenitor cells and has recently been suggested as a marker of bovine mammary stem/progenitor cells. We hypothesized that ( 1 ) HNF4A identifies putative buffalo mammary stem/progenitor cells and ( 2 ) the number of HNF4A-positive cells increases during mastitis. Sixteen buffalo mammary samples were collected from a local slaughterhouse. Hematoxylin and eosin staining were performed on 5-micron thick sections and on the basis of gross examination and histomorphology of the mammary glands, physiological stages of the animals were estimated as non-lactating (n = 4), mastitis (n = 9), and prepubertal (n = 3). In total, 24048 cells were counted (5-10 microscopic fields/animal; n = 16 animals) of which, 40% cells were mammary epithelial cells (MEC) and 60% cells were the stromal cells. The percentage of MEC in non-lactating animals was higher compared to mastitic animals (47.3% vs. 37.3%), which was likely due to loss of MEC in mastitis. HNF4A staining was observed in nuclei of MEC of ducts, alveoli, and stromal cells. Basal location and low frequency of HNF4A-positive MEC (ranges from 0.4-4.5%) were consistent with stem cell characteristics. Preliminary study showed coexpression of HNF4A with MSI1 (a mammary stem cell marker in sheep), suggesting HNF4A was likely to be a putative mammary stem/progenitor cell marker in buffalo. HNF4A-positive MEC (basal and luminal; light and dark stained) tended to be higher in non-lactating than the mastitic animals (8.73 ± 1.71% vs. 4.29 ± 1.19%; P = 0.07). The first hypothesis that HNF4A identify

  5. Constitutive expression of the embryonic stem cell marker OCT4 in bovine somatic donor cells influences blastocysts rate and quality after nucleus transfer.

    PubMed

    Rodríguez-Alvarez, Lleretny; Manriquez, Jose; Velasquez, Alejandra; Castro, Fidel Ovidio

    2013-10-01

    Nuclear transfer (NT) is associated with epigenetic reprogramming of donor cells. Expression of certain genes in these cells might facilitate their expression in the NT embryo. This research was aimed to investigate the effect of constitutive expression of OCT4 in bovine somatic cells used for NT on the developmental potential of derived cloned embryos as well as in the expression of pluripotency markers in the Day-7 resulting embryos. Cloned blastocysts were generated from five cell lines that expressed OCT4. Pools of blastocysts were screened to detect OCT4, SOX2, and NANOG by qPCR. In vitro-fertilized time-matched blastocysts were used as controls. The development potential was assessed on the basis of blastocysts rate; grading and total cell counts at Day 7. OCT4 expression in the cell lines positively correlates with blastocysts rate (r = 0.92; p = 0.02), number of grade I blastocysts (r = 0.96; p = 0.01), and total cell number (r = 0.98; p = 0.002). The high expression of OCT4 in the cell line did not improve the final outcome of cloning. Somatic expression of OCT4 lead to increased expression of OCT4 and SOX2 in cloned grade I blastocysts; however, there was a bigger variability in OCT4 and SOX2 (p = 0.03; p = 0.02) expression in the embryos generated from cells expressing highest levels of OCT4. Probably the higher variability in OCT4 expression in cloned embryos is due to incorrect reprogramming and incapability of the oocyte to correct for higher OCT4 levels. For that reason, we concluded that OCT4 expression in somatic cells is not a good prognosis marker for selecting cell lines. PMID:23846396

  6. Genetic expression of adipose derived stem cell and smooth muscle cell markers to monitor differentiation potential following low intensity laser irradiation

    NASA Astrophysics Data System (ADS)

    Abrahamse, Heidi

    2014-02-01

    Mesenchymal stem cells (MSCs) have the capacity to differentiate into a variety of cell types that could potentially be used in tissue engineering and regenerative medicine. Low intensity laser irradiation (LILI) has been shown to induce a significant increase in cell viability and proliferation. Growth factors such as retinoic acid (RA) and transforming growth factor β1 (TGF-β1) play important roles in the differentiation of cells. The aim of this study was to investigate whether LILI in combination with growth factors could induce the differentiation of adipose derived stem cells (ADSCs) cocultured with smooth muscle cells (SMCs). The study used primary and continuous ADSC cell lines and a SMC line (SKUT-1) as control. Cells were co-cultured directly at a ratio of 1:1 using established methods, with and without growth factors and then exposed to LILI at 5 J/cm2 using a 636 nm diode laser. The cellular morphology, viability and proliferation of the co-cultures were assessed over a period of one week. The study also monitored the expression of cell specific markers over the same period of time. Genetic expression of the markers for both adipose derived stem cells (β1 Integrin and Thymidine 1) and smooth muscle cells (Heavy Myosin Chain) was monitored using flow cytometry. Cell viability and proliferation increased significantly in the co-cultured groups that were exposed to laser alone, as well as in combination with growth factors. Furthermore, there was a significant decrease in the expression of stem cell markers in the ADSCs over time. The results indicate that LILI in combination with growth factors not only increases the viability and proliferation of co-cultured cells but also decreases the expression of ADSC stem cell markers. This could indicate the possible differentiation of ADSCs into SMCs.

  7. Endosialin expression in soft tissue sarcoma as a potential marker of undifferentiated mesenchymal cells

    PubMed Central

    Thway, Khin; Robertson, David; Jones, Robin L; Selfe, Joanna; Shipley, Janet; Fisher, Cyril; Isacke, Clare M

    2016-01-01

    Background: Soft tissue sarcomas are a group of neoplasms with differentiation towards mesenchymal tissue, many of which are aggressive and chemotherapy resistant. Histology and immunoprofiles often overlap with neoplasms of other lineages, and establishing an accurate histopathological diagnosis is crucial for correct management, and therapeutic stratification. The endosialin cell surface glycoprotein is predominantly expressed by stromal fibroblasts and pericytes in epithelial neoplasms; however, tumour cell expression has been reported in small series of sarcomas. Methods: We assessed endosialin expression by immunohistochemistry in a large set of 514 human soft tissue sarcomas. Results: Tumour cell endosialin expression was seen in 89% of undifferentiated pleomorphic sarcomas (104/117), 77% adult fibrosarcomas/spindle cell sarcomas (20/26), 62% synovial sarcomas (37/60), 51% leiomyosarcomas (94/185) and 31% rhabdomyosarcomas (39/126). Conclusions: Endosialin immunohistochemistry has potential to distinguish undifferentiated and poorly differentiated sarcomas from other poorly differentiated, non-mesenchymal neoplasms. A Phase II trial randomising patients with advanced sarcomas to receive chemotherapy with/without an endosialin therapeutic antibody has recently completed enrolment. Endosialin expression could be used to select patients for such clinical trials. Based on our results, patients with undifferentiated pleomorphic sarcoma may be particularly suitable for such a therapeutic approach. PMID:27434038

  8. Differential regulation of osteogenic marker gene expression by Wnt-3a in embryonic mesenchymal multipotential progenitor cells.

    PubMed

    Derfoul, Assia; Carlberg, Alyssa L; Tuan, Rocky S; Hall, David J

    2004-06-01

    The Wnt family of secreted glycoproteins plays an integral role in embryonic development and differentiation. To explore the role of Wnt's in one aspect of differentiation, namely osteogenesis, we employed a retroviral gene transfer approach to express Wnt-3a in the multipotent murine embryonic mesenchymal cell line C3H10T1/2. We found that expression of Wnt-3a in these cells had a significant, positive effect on cell growth in serum-containing medium, in that the cells grew to very high densities compared to the control cells. Additionally, apoptosis was markedly inhibited by Wnt-3a. However, when the cells were grown in serum-deficient medium, the Wnt-3a-expressing cells arrested efficiently in G1 phase, indicating that serum growth factors were needed in addition to Wnt-3a for enhanced proliferation. Wnt-3a-expressing cells exhibited high levels of alkaline phosphatase gene expression and enzymatic activity, but did not show any matrix mineralization. Unexpectedly, basal expression of bone sialoprotein, osteocalcin, and osteopontin were markedly inhibited by Wnt-3a, as were other known target genes of Wnt-3a, such as Brachyury, FGF-10, and Cdx1. When Wnt-3a-expressing cells were treated with osteogenic supplements in the presence of BMP-2, alkaline phosphatase gene expression and activity were further elevated. Additionally, BMP-2 was able to reverse the inhibitory effect of Wnt-3a on osteocalcin and osteopontin gene expression. These results indicate that while Wnt-3a represses basal expression of some osteogenic genes, this repression can be partially reversed by BMP-2. Finally, the enhanced gene expression of alkaline phosphatase induced by Wnt-3a could be effectively suppressed by the combined action of dexamethasone and 1,25-dihydroxyvitamin D(3). These data show for the first time that Wnt-3a has an unusual effect on multipotential embryonic cells, in that it enhances cellular proliferation and expression of alkaline phosphatase, while it represses most

  9. Cancer stem cell marker-expressing cell-rich spheroid fabrication from PANC-1 cells using alginate microcapsules with spherical cavities templated by gelatin microparticles.

    PubMed

    Sakai, Shinji; Inamoto, Kazuya; Ashida, Tomoaki; Takamura, Ryo; Taya, Masahito

    2015-01-01

    Cancer stem-like cells (CSCs) are rare subpopulations of cancer cells. The development of three-dimensional tissues abundant in CSCs is important to both the understanding and establishment of novel therapeutics targeting them. Here, we describe the fabrication of multicellular tumor spheroids (MTSs) abundant in CSCs by employing alginate microcapsules with spherical cavities templated by cell-enclosing gelatin microparticles. Encapsulated human pancreatic cancer cell line PANC-1 cells grew for 14 days until they filled the cavities. The percentage of cells expressing reported CSC markers CD24, CD44, and epithelial-specific antigen (ESA), increased during this growth period. The percentage at 24 days of incubation, 22%, was 1.6 times higher than that of MTSs formed on a nonadherent surface in the same period of incubation. The MTSs in microcapsules could be cryopreserved in liquid nitrogen using a conventional method. No significant difference in the content of CSC marker-expressing cells was detected at 3 days of incubation when thawed after cryopreservation for 2 weeks, compared with cells incubated without prior cryopreservation. PMID:26013961

  10. Homeobox gene expression profile indicates HOXA5 as a candidate prognostic marker in oral squamous cell carcinoma

    PubMed Central

    RODINI, CAMILA OLIVEIRA; XAVIER, FLÁVIA CALÓ AQUINO; PAIVA, KATIÚCIA BATISTA SILVA; DE SOUZA SETÚBAL DESTRO, MARIA FERNANDA; MOYSES, RAQUEL AJUB; MICHALUARTE, PEDRO; CARVALHO, MARCOS BRASILINO; FUKUYAMA, ERICA ERINA; TAJARA, ELOIZA HELENA; OKAMOTO, OSWALDO KEITH; NUNES, FABIO DAUMAS

    2012-01-01

    The search for molecular markers to improve diagnosis, individualize treatment and predict behavior of tumors has been the focus of several studies. This study aimed to analyze homeobox gene expression profile in oral squamous cell carcinoma (OSCC) as well as to investigate whether some of these genes are relevant molecular markers of prognosis and/or tumor aggressiveness. Homeobox gene expression levels were assessed by microarrays and qRT-PCR in OSCC tissues and adjacent non-cancerous matched tissues (margin), as well as in OSCC cell lines. Analysis of microarray data revealed the expression of 147 homeobox genes, including one set of six at least 2-fold up-regulated, and another set of 34 at least 2-fold down-regulated homeobox genes in OSCC. After qRT-PCR assays, the three most up-regulated homeobox genes (HOXA5, HOXD10 and HOXD11) revealed higher and statistically significant expression levels in OSCC samples when compared to margins. Patients presenting lower expression of HOXA5 had poorer prognosis compared to those with higher expression (P=0.03). Additionally, the status of HOXA5, HOXD10 and HOXD11 expression levels in OSCC cell lines also showed a significant up-regulation when compared to normal oral keratinocytes. Results confirm the presence of three significantly upregulated (>4-fold) homeobox genes (HOXA5, HOXD10 and HOXD11) in OSCC that may play a significant role in the pathogenesis of these tumors. Moreover, since lower levels of HOXA5 predict poor prognosis, this gene may be a novel candidate for development of therapeutic strategies in OSCC. PMID:22227861

  11. Homeobox gene expression profile indicates HOXA5 as a candidate prognostic marker in oral squamous cell carcinoma.

    PubMed

    Rodini, Camila Oliveira; Xavier, Flávia Caló Aquino; Paiva, Katiúcia Batista Silva; De Souza Setúbal Destro, Maria Fernanda; Moyses, Raquel Ajub; Michaluarte, Pedro; Carvalho, Marcos Brasilino; Fukuyama, Erica Erina; Tajara, Eloiza Helena; Okamoto, Oswaldo Keith; Nunes, Fabio Daumas

    2012-04-01

    The search for molecular markers to improve diagnosis, individualize treatment and predict behavior of tumors has been the focus of several studies. This study aimed to analyze homeobox gene expression profile in oral squamous cell carcinoma (OSCC) as well as to investigate whether some of these genes are relevant molecular markers of prognosis and/or tumor aggressiveness. Homeobox gene expression levels were assessed by microarrays and qRT-PCR in OSCC tissues and adjacent non-cancerous matched tissues (margin), as well as in OSCC cell lines. Analysis of microarray data revealed the expression of 147 homeobox genes, including one set of six at least 2-fold up-regulated, and another set of 34 at least 2-fold down-regulated homeobox genes in OSCC. After qRT-PCR assays, the three most up-regulated homeobox genes (HOXA5, HOXD10 and HOXD11) revealed higher and statistically significant expression levels in OSCC samples when compared to margins. Patients presenting lower expression of HOXA5 had poorer prognosis compared to those with higher expression (P=0.03). Additionally, the status of HOXA5, HOXD10 and HOXD11 expression levels in OSCC cell lines also showed a significant up-regulation when compared to normal oral keratinocytes. Results confirm the presence of three significantly upregulated (>4-fold) homeobox genes (HOXA5, HOXD10 and HOXD11) in OSCC that may play a significant role in the pathogenesis of these tumors. Moreover, since lower levels of HOXA5 predict poor prognosis, this gene may be a novel candidate for development of therapeutic strategies in OSCC. PMID:22227861

  12. The Early Activation Marker CD69 Regulates the Expression of Chemokines and CD4 T Cell Accumulation in Intestine

    PubMed Central

    Radulovic, Katarina; Rossini, Valerio; Manta, Calin; Holzmann, Karlheinz; Kestler, Hans A.; Niess, Jan Hendrik

    2013-01-01

    Migration of naïve and activated lymphocytes is regulated by the expression of various molecules such as chemokine receptors and ligands. CD69, the early activation marker of C-type lectin domain family, is also shown to regulate the lymphocyte migration by affecting their egress from the thymus and secondary lymphoid organs. Here, we aimed to investigate the role of CD69 in accumulation of CD4 T cells in intestine using murine models of inflammatory bowel disease. We found that genetic deletion of CD69 in mice increases the expression of the chemokines CCL-1, CXCL-10 and CCL-19 in CD4+ T cells and/or CD4− cells. Efficient in vitro migration of CD69-deficient CD4 T cells toward the chemokine stimuli was the result of increased expression and/or affinity of chemokine receptors. In vivo CD69−/− CD4 T cells accumulate in the intestine in higher numbers than B6 CD4 T cells as observed in competitive homing assay, dextran sodium sulphate (DSS)-induced colitis and antigen-specific transfer colitis. In DSS colitis CD69−/− CD4 T cell accumulation in colonic lamina propria (cLP) was associated with increased expression of CCL-1, CXCL-10 and CCL-19 genes. Furthermore, treatment of DSS-administrated CD69−/− mice with the mixture of CCL-1, CXCL-10 and CCL-19 neutralizing Abs significantly decreased the histopathological signs of colitis. Transfer of OT-II×CD69−/− CD45RBhigh CD4 T cells into RAG−/− hosts induced CD4 T cell accumulation in cLP. This study showed CD69 as negative regulator of inflammatory responses in intestine as it decreases the expression of chemotactic receptors and ligands and reduces the accumulation of CD4 T cells in cLP during colitis. PMID:23776480

  13. Hepatic cancer stem cell marker granulin-epithelin precursor and β-catenin expression associate with recurrence in hepatocellular carcinoma

    PubMed Central

    Cheung, Phyllis F.Y.; Cheung, Tan To; Yip, Chi Wai; Ng, Linda W.C.; Fung, Sze Wai; Lo, Chung Mau; Fan, Sheung Tat; Cheung, Siu Tim

    2016-01-01

    Granulin-epithelin precursor (GEP) has been demonstrated to confer enhanced cancer stem-like cell properties in hepatocellular carcinoma (HCC) cell line models in our previous studies. Here, we aimed to examine the GEP-expressing cells in relation to the stem cell related molecules and stem-like cell properties in the prospective HCC clinical cohort. GEP protein levels were significantly higher in HCCs than the paralleled non-tumor liver tissues, and associated with venous infiltration. GEPhigh cells isolated from clinical HCC samples exhibited higher levels of stem cell marker CD133, pluripotency-associated signaling molecules β-catenin, Oct4, SOX2, Nanog, and chemodrug transporter ABCB5. In addition, GEPhigh cells possessed preferential ability to form colonies and spheroids, and enhanced in vivo tumor-initiating ability while their xenografts were able to be serially subpassaged into secondary mouse recipients. Expression levels of GEP and pluripotency-associated genes were further examined in the retrospective HCC cohort and demonstrated significant correlation of GEP with β-catenin. Notably, HCC patients with high GEP and β-catenin levels demonstrated poor recurrence-free survival. In summary, GEP-positive HCC cells directly isolated from clinical specimens showed β-catenin elevation and cancer stem-like cell properties. PMID:26942873

  14. Changes of neural markers expression during late neurogenic differentiation of human adipose-derived stem cells

    PubMed Central

    Razavi, Shahnaz; Khosravizadeh, Zahra; Bahramian, Hamid; Kazemi, Mohammad

    2015-01-01

    Background: Different studies have been done to obtain sufficient number of neural cells for treatment of neurodegenerative diseases, spinal cord, and traumatic brain injury because neural stem cells are limited in central nerves system. Recently, several studies have shown that adipose-derived stem cells (ADSCs) are the appropriate source of multipotent stem cells. Furthermore, these cells are found in large quantities. The aim of this study was an assessment of proliferation and potential of neurogenic differentiation of ADSCs with passing time. Materials and Methods: Neurosphere formation was used for neural induction in isolated human ADSCs (hADSCs). The rate of proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and potential of neural differentiation of induced hADSCs was evaluated by immunocytochemical and real-time reverse transcription polymerase chain reaction analysis after 10 and 14 days post-induction. Results: The rate of proliferation of induced hADSCs increased after 14 days while the expression of nestin, glial fibrillary acidic protein, and microtubule-associated protein 2 was decreased with passing time during neurogenic differentiation. Conclusion: These findings showed that the proliferation of induced cells increased with passing time, but in early neurogenic differentiation of hADSCs, neural expression was higher than late of differentiation. Thus, using of induced cells in early differentiation may be suggested for in vivo application. PMID:26605238

  15. HIF-1alpha Expression Profile in Intratumoral and Peritumoral Inflammatory Cells as a Prognostic Marker for Squamous Cell Carcinoma of the Oral Cavity

    PubMed Central

    Mendes, Suzanny Oliveira; dos Santos, Marcelo; Peterle, Gabriela Tonini; Maia, Lucas de Lima; Stur, Elaine; Agostini, Lidiane Pignaton; de Carvalho, Marcos Brasilino; Tajara, Eloiza Helena; Louro, Iúri Drumond; Trivilin, Leonardo Oliveira; da Silva-Conforti, Adriana Madeira Álvares

    2014-01-01

    The HIF-1 transcriptional complex is responsible for controlling transcription of over 100 genes involved in cell hypoxia response. HIF-1alpha subunit is stabilized in hypoxia conditions, creating the HIF-1 nuclear transcription factor. In inflammatory cells, high HIF-1alpha expression induces lymphocytic immunosuppression, decreasing tumoral antigen recognition, which promotes tumor growth. The present work investigated the relationship between HIF-1alpha expression in lymphocytes populating the intratumoral and peritumoral region of 56 patients with oral cancer. Our data indicates a prognostic value for this expression. High HIF-1alpha expression in peritumoral inflammatory cells is significantly related to worse patient outcome, whereas high expression in the intratumoral lymphoid cells correlates with a better prognosis. A risk profile indicating the chance of disease relapse and death was designed based on HIF-1alpha expression in tumoral inflammatory cells, defining low, intermediate and high risks. This risk profile was able to determine that high HIF-1alpha expression in peritumoral cells correlates with worse prognosis, independently of intratumoral expression. Low HIF-1alpha in tumor margins and high expression in the tumor was considered a low risk profile, showing no cases of disease relapse and disease related death. Intermediate risk was associated with low expression in tumor and tumor margins. Our results suggest that HIF-1alpha expression in tumor and peritumoral inflammatory cells may play an important role as prognostic tumor marker. PMID:24416312

  16. Mesenchymal Stem Cells Derived from Human Exocrine Pancreas Spontaneously Express Pancreas Progenitor-Cell Markers in a Cell-Passage-Dependent Manner

    PubMed Central

    Lee, Song; Lee, Chanmi; Oh, Jooyun

    2016-01-01

    Mesenchymal stem cells (MSCs) derived from bone marrow, adipose tissue, and most connective tissues have been recognized as promising sources for cell-based therapies. MSCs have also been detected in human pancreatic tissue, including endocrine and exocrine cells. These adult human pancreas-derived MSCs have generated a great deal of interest owing to their potential use in the differentiation of insulin-producing cells for diabetes treatment. In the present study, we isolated MSCs from the adult human exocrine pancreas to determine whether isolated MSCs have the potential to differentiate into pancreatic endocrine cells and, therefore, whether they can be used in stem cell-based therapies. Pancreatic tissue was digested by collagenase and an enriched exocrine-cell fraction was obtained by density-gradient separation. Crude exocrine cells were methodically cultured in suspension and then in adherent culture. We expanded the human pancreatic exocrine-derived MSCs (hpMSCs) by cell passaging in culture and confirmed by flow cytometry that >90% expressed human classic surface markers of MSCs. Interestingly, these cells expressed pancreatic transcription factors, such as Pdx1, Ngn3, and MafA, similar to pancreatic progenitor cells. These results indicated that hpMSCs can be used for the differentiation of pancreatic endocrine cells and may be used in type 1 diabetes treatment.

  17. p27Kip1 expression as a prognostic marker for squamous cell carcinoma of the head and neck

    PubMed Central

    DE ALMEIDA, MIGUEL REIS; PÉREZ-SAYÁNS, MARIO; SUÁREZ-PEÑARANDA, JOSÉ MANUEL; SOMOZA-MARTÍN, JOSÉ MANUEL; GARCÍA-GARCÍA, ABEL

    2015-01-01

    Regulation of the cell cycle is essential for carcinogenesis. The cell cycle is controlled by cyclin-dependent kinases (CDKs), which are upregulated by cyclins and downregulated by CDK inhibitors (CDKIs). Decreased p27Kip1 expression has been associated with survival rate, tumor size, histological differentiation and the presence of lymph node metastasis in patients with various types of cancer. The aim of the current study is to provide a literature review on the association between p27Kip1 expression and the clinical and pathological aspects of head and neck squamous cell carcinoma (HNSCC), and the expression of other CDKIs of the Cip/Kip family and cyclins. Throughout the literature, different methodologies were used to determine the immunohistochemical expression of p27Kip1; thus, results concerning p27Kip1 expression in HNSCC vary widely. However, it has now been confirmed that p27Kip1 is underexpressed in SCC cells. p27 may be a promising marker for determining the prognosis of HNSCC, despite the marked variability of the results obtained. An association between p27 expression and survival rate, time to recurrence and tumor stage has been observed. Based on the information currently available, it is premature to recommend the analysis of p27Kip1 expression in guiding HNSCC treatment planning. However, although relatively unstudied, the correlation between p27Kip1 expression and other tumor suppressor genes may turn out to be important in determining the prognosis of HNSCC. Further prospective studies utilizing standardized laboratory methodologies and statistics that facilitate meta-analyses are required to confirm this proposal. PMID:26722226

  18. Inhibition of hypoxia inducible factor-1α downregulates the expression of epithelial to mesenchymal transition early marker proteins without undermining cell survival in hypoxic lens epithelial cells

    PubMed Central

    Neelam, Sudha; Brooks, Morgan M.

    2015-01-01

    Purpose The purpose of this study was to identify potential therapeutic strategies to slow down or prevent the expression of early-onset epithelial to mesenchymal transition (EMT) marker proteins (fibronectin and alpha smooth muscle actin, α-SMA) without sacrificing the synthesis and accumulation of the prosurvival protein vascular endothelial growth factor (VEGF) in cultured virally transformed human lens epithelial (HLE) cells. Methods HLE-B3 cells, maintained in a continuous hypoxic environment (1% oxygen), were treated with SB216763, a specific inhibitor of glycogen synthase kinase-3β (GSK-3β) catalytic activity. Western blot analysis was employed to detect the cytoplasmic and nuclear levels of β-catenin, as well as the total lysate content of fibronectin and α-SMA. Enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of VEGF in cell culture medium. A hypoxia-inducible factor-1α (HIF-1α) translation inhibitor and an HIF-2α translation inhibitor were independently employed to evaluate the effect of hypoxia inducible factor inhibition on EMT marker protein and VEGF expression. XAV932 was used to assess the suppression of nuclear β-catenin and its downstream effect on EMT marker proteins and VEGF expression. Results SB216763-treated HLE-B3 cells caused marked inhibition of GSK-3β activity prompting a significant increase in the translocation of cytoplasmic β-catenin to the nucleus. The enhancement of nuclear β-catenin looked as if it positively correlated with a significant increase in the basal expression of VEGF as well as increased expression of fibronectin and α-SMA. In conjunction with SB216763, coadministration of an HIF-1α translation inhibitor, but not an HIF-2α translation inhibitor, markedly suppressed the expression of fibronectin and α-SMA without affecting VEGF levels. Treatment with XAV932 significantly reduced the level of nuclear β-catenin, but the levels of neither the EMT marker proteins nor VEGF were changed

  19. Expression of Cell Competition Markers at the Interface between p53 Signature and Normal Epithelium in the Human Fallopian Tube

    PubMed Central

    Kito, Masahiko; Maeda, Daichi; Kudo-Asabe, Yukitsugu; Sato, Naoki; Shih, Ie-Ming; Wang, Tian-Li; Tanaka, Masamitsu; Terada, Yukihiro; Goto, Akiteru

    2016-01-01

    There is a growing body of evidence regarding cell competition between normal and mutant mammalian cells, which suggest that it may play a defensive role in the early phase of carcinogenesis. In vitro study in the past has shown that overexpression of vimentin in normal epithelial cells at the contact surface with transformed cells is essential for the cell competition involved in epithelial defense against cancer. In this study, we attempted to examine cell competition in human tissue in vivo by investigating surgically resected human fallopian tubes that contain p53 signatures and serous tubal intraepithelial lesions (STILs), a linear expansion of p53-immunopositive/TP53 mutant tubal epithelial cells that are considered as precursors of pelvic high grade serous carcinoma. Immunofluorescence double staining for p53 and the cell competition marker vimentin was performed in 21 sections of human fallopian tube tissue containing 17 p53 signatures and 4 STILs. The intensities of vimentin expression at the interface between p53-positive cells at the end of the p53 signature/STIL and adjacent p53-negative normal tubal epithelial cells were compared with the background tubal epithelium. As a result, the average vimentin intensity at the interfaces relative to the background intensity was 1.076 (95% CI, 0.9412 – 1.211 for p53 signature and 0.9790 (95% CI, 0.7206 – 1.237) for STIL. Thus, it can be concluded that overexpression of the cell competition marker vimentin are not observed in human tissue with TP53 alterations. PMID:27258067

  20. Vitamin C stimulates human gingival stem cell proliferation and expression of pluripotent markers.

    PubMed

    Van Pham, Phuc; Tran, Nga Yen; Phan, Nhan Lu-Chinh; Vu, Ngoc Bich; Phan, Ngoc Kim

    2016-02-01

    Gingival stem cells (GSCs) are a novel source of mesenchymal stem cells (MSCs) that are easily accessed from the oral cavity. GSCs were considered valuable autograft MSCs with particular characteristics. However, the limitation in the number of available GSCs remains an obstacle. Therefore, this study aimed to stimulate GSC proliferation by ascorbic acid (AA) and determined the effects of AA on GSC pluripotent potential-related gene expression. GSCs were isolated from gum tissue by explant culture and continuously subcultured before analysis of stemness and effects of AA on pluripotent-related gene expression. GSCs cultured with various concentrations of AA showed increased proliferation in a dose-dependent manner. AA-treated GSCs showed significantly higher expression of SSEA-3, Sox-2, Oct-3/4, Nanog, and TRA-1-60 compared with control cells. More importantly, GSCs also maintained their stemness with MSC phenotypes and failed to cause tumors in nude athymic mice. Our results show that AA is a suitable factor to stimulate GSC proliferation. PMID:26487430

  1. B lymphocytes and B-cell activating factor promote collagen and profibrotic markers expression by dermal fibroblasts in systemic sclerosis

    PubMed Central

    2013-01-01

    Introduction B lymphocytes might play a pathogenic role in dermal fibrosis in systemic sclerosis (SSc). B-cell activating factor (BAFF), a key cytokine for B-cell activation, is increased in the serum and the skin of patients with SSc. However, the ability of B cells directly to stimulate dermal fibroblasts and the role of BAFF are not fully understood. We therefore investigated the involvement of B cells and BAFF in the expression of collagen and profibrotic markers by dermal fibroblasts. Methods Cocultures of blood B cells from healthy blood donors and normal or SSc dermal fibroblasts stimulated with anti-IgM and BAFF were performed. Alpha-SMA, TIMP1, MMP9, COL1A1, COL1A2, and COL3A1 mRNA expression were determined by quantitative RT-PCR. Soluble collagen, BAFF, IL-6, IL-1β, TGF-β1, and CCL2 protein secretion were assessed. Results Coculture of blood B cells and dermal fibroblasts isolated from SSc patients induced IL-6, TGF-β1, CCL2, and collagen secretion, as well as Alpha-SMA, TIMP1, and MMP9 expression in dermal fibroblasts. Transwell assays demonstrated that this induction was dependent on cell-cell contact. Addition of anti-IgM and BAFF to the coculture increased IL-6, CCL2, TGF-β1, and collagen secretion. B cell- and BAFF-induced collagen secretion was highly reduced by anti-TGF-β1 antibodies. Conclusions Our results showed for the first time a direct role of B cells on the production of collagen by dermal fibroblasts, which is further enhanced by BAFF. Thus, these results demonstrate a new pathogenic role of B cells and BAFF in fibrosis and systemic sclerosis. PMID:24289101

  2. Co-expression of autophagic markers following photodynamic therapy in SW620 human colon adenocarcinoma cells.

    PubMed

    Ziółkowska, Barbara; Woźniak, Marta; Ziółkowski, Piotr

    2016-09-01

    Photodynamic therapy (PDT) is a minimally invasive cancer treatment. It involves the combination of a photosensitizer and light of a specific wavelength to generate singlet oxygen and other reactive oxygen species that lead to tumor cell death. Autophagy is one of the pathways that tumor cells undergo during photodamage and it is common in photodynamic therapy. The aim of this study was to examine the effect of in vitro PDT on the expression of autophagy‑related proteins, autophagy related 7 (Atg7), light chain 3 (LC3) and Beclin‑1. Human SW620 colon carcinoma cells were treated with 5-aminolevulinic acid (ALA)‑based PDT at a dose of 3 mM. The irradiation was performed using 4.5 J/cm2 total light and a fluence rate of 60 mW/cm2. Autophagy was evaluated by immunocytochemistry using specific antibodies to Atg7, Beclin‑1 and LC3. The evaluation was repeated at several time points (0, 4, 8 and 24 h) following irradiation. The induction of autophagy was observed directly following the 5‑ALA‑mediated PDT procedure with the strongest expression of autophagy-related proteins at 4 and 8 h after irradiation as demonstrated using immunocytochemistry. It was characterized by significantly increased expression of Beclin‑1, Atg7 and LC3. To the best of our knowledge this is the first study to analyze Beclin‑1, Atg7 and LC3 expression in a PDT‑related experiment. This study enhances the understanding of the role of autophagy in PDT, which may contribute to better and more effective tumor responses to this therapy. PMID:27485939

  3. Co-expression of autophagic markers following photodynamic therapy in SW620 human colon adenocarcinoma cells

    PubMed Central

    Ziółkowska, Barbara; Woźniak, Marta; Ziółkowski, Piotr

    2016-01-01

    Photodynamic therapy (PDT) is a minimally invasive cancer treatment. It involves the combination of a photosensitizer and light of a specific wavelength to generate singlet oxygen and other reactive oxygen species that lead to tumor cell death. Autophagy is one of the pathways that tumor cells undergo during photodamage and it is common in photodynamic therapy. The aim of this study was to examine the effect of in vitro PDT on the expression of autophagy-related proteins, autophagy related 7 (Atg7), light chain 3 (LC3) and Beclin-1. Human SW620 colon carcinoma cells were treated with 5-aminolevulinic acid (ALA)-based PDT at a dose of 3 mM. The irradiation was performed using 4.5 J/cm2 total light and a fluence rate of 60 mW/cm2. Autophagy was evaluated by immunocytochemistry using specific antibodies to Atg7, Beclin-1 and LC3. The evaluation was repeated at several time points (0, 4, 8 and 24 h) following irradiation. The induction of autophagy was observed directly following the 5-ALA-mediated PDT procedure with the strongest expression of autophagy-related proteins at 4 and 8 h after irradiation as demonstrated using immunocytochemistry. It was characterized by significantly increased expression of Beclin-1, Atg7 and LC3. To the best of our knowledge this is the first study to analyze Beclin-1, Atg7 and LC3 expression in a PDT-related experiment. This study enhances the understanding of the role of autophagy in PDT, which may contribute to better and more effective tumor responses to this therapy. PMID:27485939

  4. Expression of Carcinoembryonic Cell Adhesion Molecule 6 and Alveolar Epithelial Cell Markers in Lungs of Human Infants with Chronic Lung Disease.

    PubMed

    Gonzales, Linda W; Gonzalez, Robert; Barrette, Anne Marie; Wang, Ping; Dobbs, Leland; Ballard, Philip L

    2015-12-01

    The membrane protein carcinoembryonic antigen cell adhesion molecule (CEACAM6) is expressed in the epithelium of various tissues, participating in innate immune defense, cell proliferation and differentiation, with overexpression in gastrointestinal tract, pancreatic and lung tumors. It is developmentally and hormonally regulated in fetal human lung, with an apparent increased production in preterm infants with respiratory failure. To further examine the expression and cell localization of CEACAM6, we performed immunohistochemical and biochemical studies in lung specimens from infants with and without chronic lung disease. CEACAM6 protein and mRNA were increased ~4-fold in lungs from infants with chronic lung disease as compared with controls. By immunostaining, CEACAM6 expression was markedly increased in the lung parenchyma of infants and children with a variety of chronic lung disorders, localizing to hyperplastic epithelial cells with a ~7-fold elevated proliferative rate by PCNA staining. Some of these cells also co-expressed membrane markers of both type I and type II cells, which is not observed in normal postnatal lung, suggesting they are transitional epithelial cells. We suggest that CEACAM6 is both a marker of lung epithelial progenitor cells and a contributor to the proliferative response after injury due to its anti-apoptotic and cell adhesive properties. PMID:26374831

  5. Proliferation and mRNA expression of absorptive villous cell markers and mineral transporters in prolactin-exposed IEC-6 intestinal crypt cells.

    PubMed

    Teerapornpuntakit, Jarinthorn; Wongdee, Kannikar; Thongbunchoo, Jirawan; Krishnamra, Nateetip; Charoenphandhu, Narattaphol

    2012-06-01

    During pregnancy and lactation, prolactin (PRL) enhances intestinal absorption of calcium and other minerals for fetal development and milk production. Although an enhanced absorptive efficiency is believed to mainly result from the upregulation of mineral transporters in the absorptive villous cells, some other possibilities, such as PRL-enhanced crypt cell proliferation and differentiation to increase the absorptive area, have never been ruled out. Here, we investigated cell proliferation and mRNA expression of mineral absorption-related genes in the PRL-exposed IEC-6 crypt cells. As expected, the cell proliferation was not altered by PRL. Inasmuch as the mRNA expressions of villous cell markers, including dipeptidylpeptidase-4, lactase and glucose transporter-5, were not increased, PRL was not likely to enhance crypt cell differentiation into the absorptive villous cells. In contrast to the previous findings in villous cells, PRL was found to downregulate the expression of calbindin-D(9k), claudin-3 and occludin in IEC-6 crypt cells, while having no effect on transient receptor potential vanilloid family channels-5/6, plasma membrane Ca(2+)-ATPase (PMCA)-1b and Na(+)/Ca(2+) exchanger-1 expression. In conclusion, IEC-6 crypt cells did not respond to PRL by increasing proliferation or differentiation into villous cells. The present results thus supported the previous hypothesis that PRL enhanced mineral absorption predominantly by increasing transporter expression and activity in the absorptive villous cells. PMID:22281785

  6. Intensive Immunofluorescence Staining Methods for Low Expression Protein: Detection of Intestinal Stem Cell Marker LGR5

    PubMed Central

    Yamazaki, Masaki; Kato, Atsuhiko; Zaitsu, Yoko; Watanabe, Takeshi; Iimori, Makoto; Funahashi, Shinichi; Kitao, Hiroyuki; Saeki, Hiroshi; Oki, Eiji; Suzuki, Masami

    2015-01-01

    Leucine-rich repeat-containing G-protein coupled receptor 5, or LGR5, is a molecule that recognizes stem cells in multiple organs and also in colon cancer. Previously, we have developed monoclonal antibodies specific to LGR5 protein that can be used for immunofluorescence staining, but because a very low level of LGR5 protein is expressed, the visualization technique needed to be enhanced. To develop procedures to detect LGR5 protein in various specimens by immunofluorescence staining, we evaluated the Alexa-labeled streptavidin biotin (LSAB), the Qdot, and the tyramide methods. The detection sensitivity was highest in the tyramide method followed by the Qdot method, whereas subcellular localization of the protein was most clear in the Qdot method, because the Qdot method gave a high S/N ratio that could show a low background. Thus, the tyramide method is superior to the Q-dot method for intensifying the signal of a low expression protein, and the Qdot method is superior to the tyramide method for identifying the subcellular localization of the target protein. The results of the present study will be helpful in providing more insight into the pathophysiological roles of LGR5-positive cancer stem cells and in developing therapeutic approaches for targeting cancer stem cells. PMID:26633908

  7. A population of serumdeprivation-induced bone marrow stem cells (SD-BMSC) expresses marker typical for embryonic and neural stem cells

    SciTech Connect

    Sauerzweig, Steven Munsch, Thomas; Lessmann, Volkmar; Reymann, Klaus G.; Braun, Holger

    2009-01-01

    The bone marrow represents an easy accessible source of adult stem cells suitable for various cell based therapies. Several studies in recent years suggested the existence of pluripotent stem cells within bone marrow stem cells (BMSC) expressing marker proteins of both embryonic and tissue committed stem cells. These subpopulations were referred to as MAPC, MIAMI and VSEL-cells. Here we describe SD-BMSC (serumdeprivation-induced BMSC) which are induced as a distinct subpopulation after complete serumdeprivation. SD-BMSC are generated from small-sized nestin-positive BMSC (S-BMSC) organized as round-shaped cells in the top layer of BMSC-cultures. The generation of SD-BMSC is caused by a selective proliferation of S-BMSC and accompanied by changes in both morphology and gene expression. SD-BMSC up-regulate not only markers typical for neural stem cells like nestin and GFAP, but also proteins characteristic for embryonic cells like Oct4 and SOX2. We hypothesize, that SD-BMSC like MAPC, MIAMI and VSEL-cells represent derivatives from a single pluripotent stem cell fraction within BMSC exhibiting characteristics of embryonic and tissue committed stem cells. The complete removal of serum might offer a simple way to specifically enrich this fraction of pluripotent embryonic like stem cells in BMSC cultures.

  8. Hic-5 Regulates Actin Cytoskeletal Reorganization and Expression of Fibrogenic Markers and Myocilin in Trabecular Meshwork Cells

    PubMed Central

    Pattabiraman, Padmanabhan Paranji; Rao, Ponugoti Vasantha

    2015-01-01

    Purpose To explore the role of inducible focal adhesion (FA) protein Hic-5 in actin cytoskeletal reorganization, FA formation, fibrogenic activity, and expression of myocilin in trabecular meshwork (TM) cells. Methods Using primary cultures of human TM (HTM) cells, the effects of various external factors on Hic-5 protein levels, as well as the effects of recombinant Hic-5 and Hic-5 small interfering RNA (siRNA) on actin cytoskeleton, FAs, myocilin, α-smooth muscle actin (αSMA), and collagen-1 were determined by immunofluorescence and immunoblot analyses. Results Hic-5 distributes discretely to the FAs in HTM cells and throughout the TM and Schlemm's canal of the human aqueous humor (AH) outflow pathway. Transforming growth factor-β2 (TGF-β2), endothelin-1, lysophosphatidic acid, hydrogen peroxide, and RhoA significantly increased Hic-5 protein levels in HTM cells in association with reorganization of actin cytoskeleton and FAs. While recombinant Hic-5 induced actin stress fibers, FAs, αv integrin redistribution to the FAs, increased levels of αSMA, collagen-1, and myocilin, Hic-5 siRNA suppressed most of these responses in HTM cells. Hic-5 siRNA also suppressed TGF-β2-induced fibrogenic activity and dexamethasone-induced myocilin expression in HTM cells. Conclusions Taken together, these results reveal that Hic-5, whose levels were increased by various external factors implicated in elevated intraocular pressure, induces actin cytoskeletal reorganization, FAs, expression of fibrogenic markers, and myocilin in HTM cells. These characteristics of Hic-5 in TM cells indicate its importance in regulation of AH outflow through the TM in both normal and glaucomatous eyes. PMID:26313302

  9. Breast cancer cells expressing stem cell markers CD44+ CD24lo are eliminated by Numb-1 peptide-activated T cells

    PubMed Central

    Mine, Takashi; Matsueda, Satoko; Li, Yufeng; Tokumitsu, Hiroshi; Gao, Hui; Danes, Cristopher; Wong, Kwong-Kwok; Wang, Xinhui; Ferrone, Soldano; Ioannides, Constantin G.

    2009-01-01

    Cancer stem cells (CSC) are resistant to chemoand radiotherapy. To eliminate cells with phenotypic markers of CSC-like we characterized: (1) expression of CD44, CD24, CD133 and MIC-A/B (NKG2 receptors) in breast (MCF7) and ovarian (SK-OV-3) cells resistant to gemcitabine (GEM), paclitaxel (PTX) and 5-Xuorouracil (5-FU) and (2) their elimination by Numb- and Notch-peptide activated CTL. The number of cells in all populations with the luminal CSC phenotype [epithelial specific antigen+ (ESA) CD44hi CD24lo, CD44hi CD133+, and CD133+ CD24lo] increased in drug-resistant MCF7 and SK-OV-3 cells. Similarly, the number of cells with expressed MIC-A/B increased 4 times in drug-resistant tumor cells compared with drug-sensitive cells. GEMRes MCF7 cells had lower levels of the Notch-1-extracellular domain (NECD) and Notch trans-membrane intracellular domain (TMIC) than GEMSens MCF7. The levels of Numb, and Numb-L-[P]-Ser265 were similar in GEMRes and GEMSens MCF7 cells. Only the levels of Numb-L (long)-Ser295 decreased slightly. This finding suggests that Notch-1 cleavage to TMIC is inhibited in GEMRes MCF7 cells. PBMC activated by natural immunogenic peptides Notch-1 (2112−2120) and Numb-1 (87−95) eliminated NICDpositive, CD24hi CD24lo MCF7 cells. It is likely that the immunogenic Numb-1 peptide in MCF7 cells originated from Numb, [P]-lated by an unknown kinase, because staurosporine but not wortmannin and MAPK-inhibitors decreased peptide presentation. Numb and Notch are antagonistic proteins which degrade each other to stop and activate cell proliferation, respectively. Their peptides are presented alternatively. Targeting both antagonistic proteins should be useful to prevent metastases in patients whose tumors are resistant to conventional treatments. PMID:19048252

  10. Growth factors, their receptor expression and markers for proliferation of endothelial and neoplastic cells in human osteosarcoma.

    PubMed

    Bianchi, E; Artico, M; Di Cristofano, C; Leopizzi, M; Taurone, S; Pucci, M; Gobbi, P; Mignini, F; Petrozza, V; Pindinello, I; Conconi, M T; Della Rocca, C

    2013-01-01

    Osteosarcoma is the most common primary malignant tumour of the bone. Although new therapies continue to be reported, osteosarcoma-related morbidity and mortality remain high. Modern medicine has greatly increased knowledge of the physiopathology of this neoplasm. Novel targets for drug development may be identified through an understanding of the normal molecular processes that are deeply modified in pathological conditions. The aim of the present study is to investigate, by immunohistochemistry, the localisation of different growth factors and of the proliferative marker Ki-67 in order to determine whether these factors are involved in the transformation of osteogenic cells and in the development of human osteosarcoma. We observed a general positivity for NGF - TrKA - NT3 - TrKC - VEGF in the cytoplasm of neoplastic cells and a strong expression for NT4 in the nuclear compartment. TGF-beta was strongly expressed in the extracellular matrix and vascular endothelium. BDNF and TrKB showed a strong immunolabeling in the extracellular matrix. Ki-67/MIB-1 was moderately expressed in the nucleus of neoplastic cells. We believe that these growth factors may be considered potential therapeutic targets in the treatment of osteosarcoma, although proof of this hypothesis requires further investigation. PMID:24067459

  11. Bone Marrow Stromal Cell Transdifferentiation into Oligodendrocyte-Like Cells Using Triiodothyronine as a Inducer with Expression of Platelet-Derived Growth Factor α as a Maturity Marker

    PubMed Central

    Abbaszadeh, Hojjat-Allah; Tiraihi, Taki; Delshad, Ali Reza; Saghedi Zadeh, Majid; Taheri, Taher

    2013-01-01

    Background: The present study investigated the functional maturity of oligodendrocyte derived from rat bone marrow stromal cells (BMSC). Methods: The BMSC were isolated from female Sprague-Dawley rats and evaluated for different markers, such as fibronectin, CD106, CD90, Oct-4 and CD45. Transdifferentiation of OLC from BMSC was obtained by exposing the BMSC to DMSO and 1 µM all-trans-retinoic acid during the pre-induction stage and then induced by heregulin (HRG), platelet-derived growth factor AA (PDGFR-α), fibroblast growth factor and T3. The neuroprogenitor cells (NPC) were evaluated for nestin, neurofilament 68, neurofilament 160 and glial fibrillary acidic protein gene expression using immunocytochemistry. The OLC were assessed by immunocytochemistry for O4, oligo2, O1 and MBP marker and gene expression of PDGFR-α was examined by RT-PCR. Results: Our results showed that the fibronectin, CD106, CD90, CD45 and Oct-4 were expressed after the fourth passage. Also, the yield of OLC differentiation was about 71% when using the O1, O4 and oligo2 markers. Likewise, the expression of PDGFR-α in pre-oligodendrocytes was noticed, while MBP expression was detected in oligodendrocyte after 6 days of the induction. Conclusion: The conclusion of the study showed that BMSC can be induced to transdifferentiate into mature OLC. PMID:23567847

  12. Expression of cell cycle markers is predictive of the response to primary systemic therapy of locally advanced breast cancer.

    PubMed

    Tőkés, Tímea; Tőkés, Anna-Mária; Szentmártoni, Gyöngyvér; Kiszner, Gergő; Madaras, Lilla; Kulka, Janina; Krenács, Tibor; Dank, Magdolna

    2016-06-01

    We aimed to analyze to what extent expression of four cell cycle regulation markers-minichromosome maintenance protein (MCM2), Ki-67, cyclin A, and phosphohistone-H3 (PHH3)-predict response to primary systemic therapy in terms of pathological complete remission (pCR). In search of an accurate and reproducible scoring method, we compared computer-assisted (CA) and routine visual assessment (VA) of immunoreactivity. We included 57 patients with breast cancer in the study. The cell cycle markers were detected using immunohistochemistry on pre-therapy core biopsy samples. Parallel CA (validated by manual labeling) and standard VA were performed and compared for diagnostic agreement and predictive value for pCR. CA and VA results were dichotomized based on receiver operating characteristic analysis defined optimal cut-off values. "High" was defined by staining scores above the optimal cut-off, while "low" had staining scores below the optimal cut-off. The CA method resulted in significantly lower values for Ki-67 and MCM2 compared to VA (mean difference, -3.939 and -4.323). Diagnostic agreement was highest for cyclin A and PHH3 (-0.586 and -0.666, respectively). Regardless of the method (CA/VA) used, all tested markers were predictive of pCR. Optimal cut-off-based dichotomization improved diagnostic agreement between the CA and VA methods for every marker, in particular for MCM2 (κ = 1, p < 0.000). Cyclin A displayed excellent agreement (κ = 0.925; p < 0.000), while Ki-67 and PHH3 showed good agreement (κ = 0.789, p < 0.000 and κ = 0.794, p < 0.000, respectively). We found all cell cycle markers (Ki-67, MCM2, cyclin A, and PHH3) predictive of pCR. Diagnostic agreement between CA and VA was better at lower staining scores but improved after optimal cut-off-based dichotomization. PMID:27026269

  13. Impact of stem cell marker expression on recurrence of TACE-treated hepatocellular carcinoma post liver transplantation

    PubMed Central

    2012-01-01

    Abstract Background Liver transplantation is the most effective therapy for cirrhosis-associated hepatocellular carcinoma (HCC) but its utility is limited by post-transplant tumor recurrence. Use of the Milan, size-based criteria, has reduced recurrence rate to less than 10% but many patients remain ineligible. Reduction of tumor size with local therapies has been used to “downstage” patients to allow them to qualify for transplantation, but the optimal criteria to predict tumor recurrence in these latter patients has not been established. The existence of a progenitor cell population, sometimes called cancer stem cells (CSCs), has been proposed to be one mechanism accounting for the chemotherapy resistance and recurrence of hepatocellular carcinoma. The aim of this study was to determine if transcatheter arterial chemoemolization (TACE) treated tumors have increased CSC marker expression and whether these markers could be used to predict tumor recurrence. Methods Formalin fixed specimens were obtained from 39 HCC liver explants (23 with no treatment and 16 after TACE). Immunohistochemical staining was performed for EpCAM, CD44, CD90, and CD133. Staining for each marker was scored 0–3 by evaluating the number and intensity of positive tumor cells in 5 hpf of tumor in each specimen. Results TACE treated tumors displayed greater necrosis and fibrosis than non-TACE treated samples but there were no differences in morphology between the viable tumor cells of both groups. In TACE treated specimens, the staining of both EpCAM and CD133 was greater than in non-TACE specimens but CD44 and CD90 were the same. In the TACE group, the presence of high EpCAM staining was associated with tumor recurrence. Four of ten EpCAM high patients recurred while 0 of 6 EpCAM low patients recurred (P = 0.040). None of the other markers predicted recurrence. Conclusion High pre-transplant EpCAM staining predicted HCC recurrence. This suggests that the abundance of tumor cells with

  14. Cytoskeletal proteins and stem cell markers gene expression in human bone marrow mesenchymal stromal cells after different periods of simulated microgravity

    NASA Astrophysics Data System (ADS)

    Gershovich, P. M.; Gershovich, J. G.; Zhambalova, A. P.; Romanov, Yu. A.; Buravkova, L. B.

    2012-01-01

    Mesenchymal stem (stromal) cells (MSCs) are present in a variety of tissues during prenatal and postnatal human development. In adult organism, they are prevalent in bone marrow and supposed to be involved in space-flight induced osteopenia. We studied expression of various genes in human bone marrow MSCs after different terms of simulated microgravity (SMG) provided by Random Positioning Machine. Simulated microgravity induced transient changes in expression level of genes associated with actin cytoskeleton, especially after 48 h of SMG. However, after 120 h exposure in SMG partial restoration of gene expression levels (relative to the control) was found. Similar results were obtained with bmMSCs subjected to 24 h readaptation in static state after 24 h in SMG. Analysis of 84 genes related to identification, growth and differentiation of stem cells revealed that expression of nine genes was changed slightly after 48 h in SMG. More pronounced changes in gene expression of "stem cells markers" were observed after 120 h of simulated microgravity. Among 84 investigated genes, 30 were up-regulated and 24 were down-regulated. Finally, MSCs osteogenesis induced by long-term (10-20 days) simulation of microgravity was accompanied by down-regulation of gene expression of the main osteogenic differentiation markers ( ALPL, OMD) and master transcription osteogenic factor of MSCs ( Runx2). Thus, our study demonstrated that changes in expression level of some genes associated with actin cytoskeleton and stem cell markers are supposed to be one of the mechanisms, which contribute to precursor's cellular adaptation to the microgravity conditions. These results can clarify genomic mechanisms through which SMG reduces osteogenic differentiation of bmMSCs.

  15. Cellular Expression of Cyclooxygenase, Aromatase, Adipokines, Inflammation and Cell Proliferation Markers in Breast Cancer Specimen

    PubMed Central

    Basu, Samar; Combe, Kristell; Kwiatkowski, Fabrice; Caldefie-Chézet, Florence; Penault-Llorca, Frédérique; Bignon, Yves-Jean; Vasson, Marie-Paule

    2015-01-01

    Current evidences suggest that expression of Ki67, cyclooxygenase (COX), aromatase, adipokines, prostaglandins, free radicals, β-catenin and α-SMA might be involved in breast cancer pathogenesis. The main objective of this study was to compare expression/localization of these potential compounds in breast cancer tissues with tissues collected adjacent to the tumor using immunohistochemistry and correlated with clinical pathology. The breast cancer specimens were collected from 30 women aged between 49 and 89 years who underwent breast surgery following cancer diagnosis. Expression levels of molecules by different stainings were graded as a score on a scale based upon staining intensity and proportion of positive cells/area or individually. AdipoR1, adiponectin, Ob-R, leptin, COX-1, COX-2, aromatase, PGF2α, F2-isoprostanes and α-SMA were localised on higher levels in the breast tissues adjacent to the tumor compared to tumor specimens when considering either score or staining area whereas COX-2 and AdipoR2 were found to be higher considering staining intensity and Ki67 on score level in the tumor tissue. There was no significant difference observed on β-catenin either on score nor on staining area and intensity between tissues adjacent to the tumor and tumor tissues. A positive correlation was found between COX-1 and COX-2 in the tumor tissues. In conclusion, these suggest that Ki67, COXs, aromatase, prostaglandin, free radicals, adipokines, β-catenin and α-SMA are involved in breast cancer. These further focus the need of examination of tissues adjacent to tumor, tumor itself and compare them with normal or benign breast tissues for a better understanding of breast cancer pathology and future evaluation of therapeutic benefit. PMID:26431176

  16. Expression Pattern of Pluripotent Markers in Different Embryonic Developmental Stages of Buffalo (Bubalus bubalis) Embryos and Putative Embryonic Stem Cells Generated by Parthenogenetic Activation

    PubMed Central

    Singh, Karn P.; Kaushik, Ramakant; Garg, Veena; Sharma, Ruchi; George, Aman; Singh, Manoj K.; Manik, Radhey S.; Palta, Prabhat; Singla, Suresh K.

    2012-01-01

    Abstract In this study, we describe the production of buffalo parthenogenetic blastocysts and subsequent isolation of parthenogenetic embryonic stem cell (PGESC)-like cells. PGESC colonies exhibited dome-shaped morphology and were clearly distinguishable from the feeder layer cells. Different stages of development of parthenogenetic embryos and derived embryonic stem cell (ESC)-like cells expressed key ESC-specific markers, including OCT-4, NANOG, SOX-2, FOXD3, REX-1, STAT-3, TELOMERASE, NUCLEOSTEMIN, and cMYC. Immunofluorescence-based studies revealed that the PGESCs were positive for surface-based pluripotent markers, viz., SSEA-3, SSEA-4, TRA 1-80, TRA 1-60, CD-9, and CD-90 and exhibited high alkaline phosphatase (ALP) activity. PGEC cell-like cells formed embryoid body (EB)-like structures in hanging drop cultures and when cultured for extended period of time spontaneously differentiated into derivatives of three embryonic germ layers as confirmed by RT-PCR for ectodermal (CYTOKERATIN8, NF-68), mesodermal (MSX1, BMP-4, ASA), and endodermal markers (AFP, HNF-4, GATA-4). Differentiation of PGESCs toward the neuronal lineage was successfully directed by supplementation of serum-containing media with retinoic acid. Our results indicate that the isolated ESC-like cells from parthenogenetic blastocyst hold properties of ESCs and express markers of pluripotency. The pluripotency markers were also expressed by early cleavage-stage of buffalo embryos. PMID:23194456

  17. The effect of cellular isolation and cryopreservation on the expression of markers identifying subsets of regulatory T cells

    PubMed Central

    Zhang, Weiying; Nilles, Tricia L.; Johnson, Jacquett R.; Margolick, Joseph B.

    2016-01-01

    Background The role of CD4+ regulatory T cells (Tregs) and their subsets during HIV infection is controversial. Cryopreserved peripheral blood mononuclear cells (PBMC) are an important source for assessing number and function of Tregs. However, it is unknown if PBMC isolation and cryopreservation affect the expression of CD120b and CD39, markers that identify specific subsets of Tregs. Methods HIV-uninfected (HIV−) and -infected (HIV+) men were randomly selected from the Multicenter AIDS Cohort Study (MACS). Percentages of CD120b+ and CD39+ Tregs measured by flow cytometry in whole blood and in corresponding fresh and cryopreserved PBMC were compared. Results Percentages of CD120b+ Tregs were significantly lower in a) fresh PBMC relative to whole blood, and b) freshly thawed frozen PBMC relative to fresh PBMC when the recovery of viable cryopreserved cells was low. When present, low expression of CD120b in frozen PBMC was reversible by 4 hours of in vitro culture. In contrast, expression of CD39 on Tregs was not affected by isolation and/or cryopreservation of PBMC, or by relative recovery of cryopreserved PBMC. These findings were unaffected by the HIV status of the donor. Conclusion The data suggest that percentages of CD120b+ Tregs and CD39+ Tregs can be validly measured in either whole blood or PBMC (fresh and frozen) in HIV− and HIV+ men. However, for measurement of CD120b+ Tregs one type of sample should be used consistently within a given study, and thawed frozen cells may require in vitro culture if recovery of viable cells is low. PMID:26855370

  18. Effect on ligament marker expression by direct-contact co-culture of mesenchymal stem cells and anterior cruciate ligament cells.

    PubMed

    Canseco, Jose A; Kojima, Koji; Penvose, Ashley R; Ross, Jason D; Obokata, Haruko; Gomoll, Andreas H; Vacanti, Charles A

    2012-12-01

    Ligament and tendon repair is an important topic in orthopedic tissue engineering; however, the cell source for tissue regeneration has been a controversial issue. Until now, scientists have been split between the use of primary ligament fibroblasts or marrow-derived mesenchymal stem cells (MSCs). The objective of this study was to show that a co-culture of anterior cruciate ligament (ACL) cells and MSCs has a beneficial effect on ligament regeneration that is not observed when utilizing either cell source independently. Autologous ACL cells (ACLcs) and MSCs were isolated from Yorkshire pigs, expanded in vitro, and cultured in multiwell plates in varying %ACLcs/%MSCs ratios (100/0, 75/25, 50/50, 25/75, and 0/100) for 2 and 4 weeks. Quantitative mRNA expression analysis and immunofluorescent staining for ligament markers Collagen type I (Collagen-I), Collagen type III (Collagen-III), and Tenascin-C were performed. We show that Collagen-I and Tenascin-C expression is significantly enhanced over time in 50/50 co-cultures of ACLcs and MSCs (p≤0.03), but not in other groups. In addition, Collagen-III expression was significantly greater in MSC-only cultures (p≤0.03), but the Collagen-I-to-Collagen-III ratio in 50% co-culture was closest to native ligament levels. Finally, Tenascin-C expression at 4 weeks was significantly higher (p≤0.02) in ACLcs and 50% co-culture groups compared to all others. Immunofluorescent staining results support our mRNA expression data. Overall, 50/50 co-cultures had the highest Collagen-I and Tenascin-C expression, and the highest Collagen-I-to-Collagen-III ratio. Thus, we conclude that using a 50% co-culture of ACLcs and MSCs, instead of either cell population alone, may better maintain or even enhance ligament marker expression and improve healing. PMID:22780864

  19. Prognostic value of cancer stem cell marker CD133 expression in esophageal carcinoma: A meta-analysis

    PubMed Central

    SUI, YUN-PENG; JIAN, XUE-PING; MA, LI; XU, GUI-ZHEN; LIAO, HUAI-WEI; LIU, YAN-PING; WEN, HUI-CAI

    2016-01-01

    CD133 has been identified as a putative neoplastic stem cell marker in esophageal carcinoma. However, the prognostic value of CD133 overexpression in patients with esophageal carcinoma remains controversial. A meta-analysis of previous studies was performed, in order to assess the association of CD133 overexpression with the clinicopathological characteristics of esophageal carcinoma patients. A total of 7 studies, including 538 patients, were subjected to the final analysis. Our results indicated that a positive CD133 expression was significantly associated with lymph node metastasis [odds ratio (OR)=3.09, 95% confidence interval (CI): 1.93–4.95; P<0.00001], clinical stage (OR=4.26, 95% CI: 1.55–11.73; P=0.005) and histopathological grade (OR=2.40, 95% CI: 1.16–4.94; P=0.02). There was no statistically significant association of CD133 with depth of invasion (OR=1.89, 95% CI: 0.42–8.43; P=0.41). Based on the results of this study, we concluded that CD133 is an efficient prognostic factor in esophageal carcinoma. Higher CD133 expression is significantly associated with lymph node metastasis, clinical stage and histopathological grade. PMID:26870362

  20. Morphology, cell viability, karyotype, expression of surface markers and plasticity of three human primary cell line cultures before and after the cryostorage in LN2 and GN2.

    PubMed

    Del Pino, Alberto; Ligero, Gertrudis; López, María B; Navarro, Héctor; Carrillo, Jose A; Pantoll, Siobhan C; Díaz de la Guardia, Rafael

    2015-02-01

    Primary cell line cultures from human skin biopsies, adipose tissue and tumor tissue are valuable samples for research and therapy. In this regard, their derivation, culture, storage, transport and thawing are important steps to be studied. Towards this end, we wanted to establish the derivation, and identify the culture characteristics and the loss of viability of three human primary cell line cultures (human adult dermal fibroblasts (hADFs), human adult mesenchymal stem cells (hMSCs), and primary culture of tumor cells from lung adenocarcinoma (PCTCLA)). Compared to fresh hADFs, hMSCs and PCTCLA, thawed cells stored in a cryogenic Dewar tanks with liquid nitrogen (LN2), displayed 98.20% ± 0.99, 95.40% ± 1.41 and 93.31% ± 3.83 of cell viability, respectively. Thawed cells stored in a Dry Vapor Shipper container with gas phase (GN2), for 20 days, in addition displayed 4.61% ± 2.78, 3.70% ± 4.09 and 9.13% ± 3.51 of average loss of cells viability, respectively, showing strong correlation between the loss of viability in hADFs and the number of post-freezing days in the Dry Vapor Shipper. No significant changes in morphological characteristics or in the expression of surface markers (being hADFs, hMSCs and PCTCLA characterized by positive markers CD73+; CD90+; CD105+; and negative markers CD14-; CD20-; CD34-; and CD45-; n=2) were found. Chromosome abnormalities in the karyotype were not found. In addition, under the right conditions hMSCs were differentiated into adipogenic, osteogenic and chondrogenic lineages in vitro. In this paper, we have shown the characteristics of three human primary cell line cultures when they are stored in LN2 and GN2. PMID:25445570

  1. Multi-lineage differentiation of human umbilical cord Wharton's Jelly Mesenchymal Stromal Cells mediates changes in the expression profile of stemness markers.

    PubMed

    Ali, Hamad; Al-Yatama, Majda K; Abu-Farha, Mohamed; Behbehani, Kazem; Al Madhoun, Ashraf

    2015-01-01

    Wharton's Jelly- derived Mesenchymal stem cells (WJ-MSCs) have gained interest as an alternative source of stem cells for regenerative medicine because of their potential for self-renewal, differentiation and unique immunomodulatory properties. Although many studies have characterized various WJ-MSCs biologically, the expression profiles of the commonly used stemness markers have not yet been addressed. In this study, WJ-MSCs were isolated and characterized for stemness and surface markers expression. Flow cytometry, immunofluorescence and qRT-PCR analysis revealed predominant expression of CD29, CD44, CD73, CD90, CD105 and CD166 in WJ-MSCs, while the hematopoietic and endothelial markers were absent. Differential expression of CD 29, CD90, CD105 and CD166 following adipogenic, osteogenic and chondrogenic induction was observed. Furthermore, our results demonstrated a reduction in CD44 and CD73 expressions in response to the tri-lineage differentiation induction, suggesting that they can be used as reliable stemness markers, since their expression was associated with undifferentiated WJ-MSCs only. PMID:25848763

  2. Multi-Lineage Differentiation of Human Umbilical Cord Wharton’s Jelly Mesenchymal Stromal Cells Mediates Changes in the Expression Profile of Stemness Markers

    PubMed Central

    Ali, Hamad; Al-Yatama, Majda K.; Abu-Farha, Mohamed; Behbehani, Kazem; Al Madhoun, Ashraf

    2015-01-01

    Wharton’s Jelly- derived Mesenchymal stem cells (WJ-MSCs) have gained interest as an alternative source of stem cells for regenerative medicine because of their potential for self-renewal, differentiation and unique immunomodulatory properties. Although many studies have characterized various WJ-MSCs biologically, the expression profiles of the commonly used stemness markers have not yet been addressed. In this study, WJ-MSCs were isolated and characterized for stemness and surface markers expression. Flow cytometry, immunofluorescence and qRT-PCR analysis revealed predominant expression of CD29, CD44, CD73, CD90, CD105 and CD166 in WJ-MSCs, while the hematopoietic and endothelial markers were absent. Differential expression of CD 29, CD90, CD105 and CD166 following adipogenic, osteogenic and chondrogenic induction was observed. Furthermore, our results demonstrated a reduction in CD44 and CD73 expressions in response to the tri-lineage differentiation induction, suggesting that they can be used as reliable stemness markers, since their expression was associated with undifferentiated WJ-MSCs only. PMID:25848763

  3. Modulating Effect of Enicostemma littorale on the Expression Pattern of Apoptotic, Cell Proliferative, Inflammatory and Angiogenic Markers During 7, 12-Dimethylbenz (a) Anthracene Induced Hamster Buccal Pouch Carcinogenesis

    PubMed Central

    Manoharan, Shanmugam; Rajasekaran, Duraisamy; Prabhakar, Murugaraj Manoj; Karthikeyan, Sekar; Manimaran, Asokan

    2015-01-01

    Enicostemma littorale leaves are traditionally used for the treatment of several diseases, including inflammation and cancer. This study has taken effort to explore the antitumor initiating potential of E. littorale leaves (ElELet) by analyzing the expression pattern of apoptotic (p53, Bcl-2 and Bcl-2 associated X-protein), cell-proliferative (cyclin D1 and proliferating cell nuclear antigen), angiogenic (vascular endothelial growth factor), invasive (matrix metalloproteinase-2 and 9), and inflammatory (NF-κB and cyclooxygenase-2) markers during 7, 12-dimethylbenz (a) anthracene (DMBA) induced hamster buccal pouch carcinogenesis. Oral tumors were induced in the buccal pouches of hamsters using the potent site and organ specific carcinogen, DMBA. DMBA application 3 times a week for 14 weeks resulted in tumor formation in the buccal pouches. Hundred percent tumor formations with dysregulation in the expression pattern of apoptotic, cell proliferative, inflammatory, angiogenic, and invasive markers were observed in the buccal pouches of hamsters treated with DMBA alone. ElELet at a dose of 250 mg/kg body weight orally to DMBA treated hamsters significantly prevented the tumor formation as well as corrected the abnormalities in the expression pattern of above mentioned molecular markers. ElELet thus modulated the expression pattern of all the above mentioned molecular markers in favor of the suppression of cell proliferation occurring in DMBA induced hamster buccal pouch carcinogenesis. PMID:26862274

  4. Modulating Effect of Enicostemma littorale on the Expression Pattern of Apoptotic, Cell Proliferative, Inflammatory and Angiogenic Markers During 7, 12-Dimethylbenz (a) Anthracene Induced Hamster Buccal Pouch Carcinogenesis.

    PubMed

    Manoharan, Shanmugam; Rajasekaran, Duraisamy; Prabhakar, Murugaraj Manoj; Karthikeyan, Sekar; Manimaran, Asokan

    2015-01-01

    Enicostemma littorale leaves are traditionally used for the treatment of several diseases, including inflammation and cancer. This study has taken effort to explore the antitumor initiating potential of E. littorale leaves (ElELet) by analyzing the expression pattern of apoptotic (p53, Bcl-2 and Bcl-2 associated X-protein), cell-proliferative (cyclin D1 and proliferating cell nuclear antigen), angiogenic (vascular endothelial growth factor), invasive (matrix metalloproteinase-2 and 9), and inflammatory (NF-κB and cyclooxygenase-2) markers during 7, 12-dimethylbenz (a) anthracene (DMBA) induced hamster buccal pouch carcinogenesis. Oral tumors were induced in the buccal pouches of hamsters using the potent site and organ specific carcinogen, DMBA. DMBA application 3 times a week for 14 weeks resulted in tumor formation in the buccal pouches. Hundred percent tumor formations with dysregulation in the expression pattern of apoptotic, cell proliferative, inflammatory, angiogenic, and invasive markers were observed in the buccal pouches of hamsters treated with DMBA alone. ElELet at a dose of 250 mg/kg body weight orally to DMBA treated hamsters significantly prevented the tumor formation as well as corrected the abnormalities in the expression pattern of above mentioned molecular markers. ElELet thus modulated the expression pattern of all the above mentioned molecular markers in favor of the suppression of cell proliferation occurring in DMBA induced hamster buccal pouch carcinogenesis. PMID:26862274

  5. Tumor endothelial marker 5 expression in endothelial cells during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of cell proliferation

    SciTech Connect

    Vallon, Mario; Rohde, Franziska; Janssen, Klaus-Peter; Essler, Markus

    2010-02-01

    Tumor endothelial marker (TEM) 5 is an adhesion G-protein-coupled receptor upregulated in endothelial cells during tumor and physiologic angiogenesis. So far, the mechanisms leading to upregulation of TEM5 and its function during angiogenesis have not been identified. Here, we report that TEM5 expression in endothelial cells is induced during capillary-like network formation on Matrigel, during capillary morphogenesis in a three-dimensional collagen I matrix, and upon confluence on a two-dimensional matrix. TEM5 expression was not induced by a variety of soluble angiogenic factors, including VEGF and bFGF, in subconfluent endothelial cells. TEM5 upregulation was blocked by toxin B from Clostridium difficile, an inhibitor of the small GTPases Rho, Rac, and Cdc42. The Rho inhibitor C3 transferase from Clostridium botulinum did not affect TEM5 expression, whereas the Rac inhibitor NSC23766 suppressed TEM5 upregulation. An excess of the soluble TEM5 extracellular domain or an inhibitory monoclonal TEM5 antibody blocked contact inhibition of endothelial cell proliferation resulting in multilayered islands within the endothelial monolayer and increased vessel density during capillary formation. Based on our results we conclude that TEM5 expression during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of proliferation in endothelial cells.

  6. CD34 cells from patients with trisomy 8 myelodysplastic syndrome (MDS) express early apoptotic markers but avoid programmed cell death by up-regulation of antiapoptotic proteins

    PubMed Central

    Pfannes, Loretta; Chen, Gubin; Shah, Simant; Solomou, Elena E.; Barrett, John; Young, Neal S.

    2007-01-01

    CD34 cells from patients with trisomy 8 myelodysplastic syndrome (MDS) are distinguished from other MDS cells and from normal hematopoietic cells by their pronounced expression of apoptotic markers. Paradoxically, trisomy 8 clones can persist in patients with bone marrow failure and expand following immunosuppression. We previously demonstrated up-regulation of c-myc and CD1 by microarray analysis. Here, we confirmed these findings by real-time polymerase chain reaction (PCR), demonstrated up-regulation of survivin, c-myc, and CD1 protein expression, and documented comparable colony formation by annexin+ trisomy 8− CD34+ and annexin− CD34 cells. There were low levels of DNA degradation in annexin+ trisomy 8 CD34 cells, which were comparable with annexin− CD34 cells. Trisomy 8 cells were resistant to apoptosis induced by gamma irradiation. Knock-down of survivin by siRNA resulted in preferential loss of trisomy 8 cells. These results suggest that trisomy 8 cells undergo incomplete apoptosis and are nonetheless capable of colony formation and growth. PMID:17090657

  7. Expression of novel, putative stem cell markers in prepubertal and lactating mammary glands of bovine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mammary stem cells (MaSC) are essential for growth and maintenance of the mammary epithelium. Two main phases of mammary growth include ductal elongation prior to puberty and lobulo-alveolar growth and development during pregnancy. Some studies have utilized morphological characteristics and retenti...

  8. Smooth Muscle-Like Cells Generated from Human Mesenchymal Stromal Cells Display Marker Gene Expression and Electrophysiological Competence Comparable to Bladder Smooth Muscle Cells

    PubMed Central

    Brun, Juliane; Lutz, Katrin A.; Neumayer, Katharina M. H.; Klein, Gerd; Seeger, Tanja; Uynuk-Ool, Tatiana; Wörgötter, Katharina; Schmid, Sandra; Kraushaar, Udo; Guenther, Elke; Rolauffs, Bernd; Aicher, Wilhelm K.; Hart, Melanie L.

    2015-01-01

    The use of mesenchymal stromal cells (MSCs) differentiated toward a smooth muscle cell (SMC) phenotype may provide an alternative for investigators interested in regenerating urinary tract organs such as the bladder where autologous smooth muscle cells cannot be used or are unavailable. In this study we measured the effects of good manufacturing practice (GMP)-compliant expansion followed by myogenic differentiation of human MSCs on the expression of a range of contractile (from early to late) myogenic markers in relation to the electrophysiological parameters to assess the functional role of the differentiated MSCs and found that differentiation of MSCs associated with electrophysiological competence comparable to bladder SMCs. Within 1–2 weeks of myogenic differentiation, differentiating MSCs significantly expressed alpha smooth muscle actin (αSMA; ACTA2), transgelin (TAGLN), calponin (CNN1), and smooth muscle myosin heavy chain (SM-MHC; MYH11) according to qRT-PCR and/or immunofluorescence and Western blot. Voltage-gated Na+ current levels also increased within the same time period following myogenic differentiation. In contrast to undifferentiated MSCs, differentiated MSCs and bladder SMCs exhibited elevated cytosolic Ca2+ transients in response to K+-induced depolarization and contracted in response to K+ indicating functional maturation of differentiated MSCs. Depolarization was suppressed by Cd2+, an inhibitor of voltage-gated Ca2+-channels. The expression of Na+-channels was pharmacologically identified as the Nav1.4 subtype, while the K+ and Ca2+ ion channels were identified by gene expression of KCNMA1, CACNA1C and CACNA1H which encode for the large conductance Ca2+-activated K+ channel BKCa channels, Cav1.2 L-type Ca2+ channels and Cav3.2 T-type Ca2+ channels, respectively. This protocol may be used to differentiate adult MSCs into smooth muscle-like cells with an intermediate-to-late SMC contractile phenotype exhibiting voltage-gated ion channel

  9. Smooth Muscle-Like Cells Generated from Human Mesenchymal Stromal Cells Display Marker Gene Expression and Electrophysiological Competence Comparable to Bladder Smooth Muscle Cells.

    PubMed

    Brun, Juliane; Lutz, Katrin A; Neumayer, Katharina M H; Klein, Gerd; Seeger, Tanja; Uynuk-Ool, Tatiana; Wörgötter, Katharina; Schmid, Sandra; Kraushaar, Udo; Guenther, Elke; Rolauffs, Bernd; Aicher, Wilhelm K; Hart, Melanie L

    2015-01-01

    The use of mesenchymal stromal cells (MSCs) differentiated toward a smooth muscle cell (SMC) phenotype may provide an alternative for investigators interested in regenerating urinary tract organs such as the bladder where autologous smooth muscle cells cannot be used or are unavailable. In this study we measured the effects of good manufacturing practice (GMP)-compliant expansion followed by myogenic differentiation of human MSCs on the expression of a range of contractile (from early to late) myogenic markers in relation to the electrophysiological parameters to assess the functional role of the differentiated MSCs and found that differentiation of MSCs associated with electrophysiological competence comparable to bladder SMCs. Within 1-2 weeks of myogenic differentiation, differentiating MSCs significantly expressed alpha smooth muscle actin (αSMA; ACTA2), transgelin (TAGLN), calponin (CNN1), and smooth muscle myosin heavy chain (SM-MHC; MYH11) according to qRT-PCR and/or immunofluorescence and Western blot. Voltage-gated Na+ current levels also increased within the same time period following myogenic differentiation. In contrast to undifferentiated MSCs, differentiated MSCs and bladder SMCs exhibited elevated cytosolic Ca2+ transients in response to K+-induced depolarization and contracted in response to K+ indicating functional maturation of differentiated MSCs. Depolarization was suppressed by Cd2+, an inhibitor of voltage-gated Ca2+-channels. The expression of Na+-channels was pharmacologically identified as the Nav1.4 subtype, while the K+ and Ca2+ ion channels were identified by gene expression of KCNMA1, CACNA1C and CACNA1H which encode for the large conductance Ca2+-activated K+ channel BKCa channels, Cav1.2 L-type Ca2+ channels and Cav3.2 T-type Ca2+ channels, respectively. This protocol may be used to differentiate adult MSCs into smooth muscle-like cells with an intermediate-to-late SMC contractile phenotype exhibiting voltage-gated ion channel

  10. Expression of Cell-Surface Marker ABCB5 Causes Characteristic Modifications of Glucose, Amino Acid and Phospholipid Metabolism in the G3361 Melanoma-Initiating Cell Line.

    PubMed

    Lutz, Norbert W; Banerjee, Pallavi; Wilson, Brian J; Ma, Jie; Cozzone, Patrick J; Frank, Markus H

    2016-01-01

    We present a pilot study aimed at determining the effects of expression of ATP-binding cassette member B5 (ABCB5), a previously described marker for melanoma-initiating cells, on cellular metabolism. Metabolic profiles for two groups of human G3361 melanoma cells were compared, i.e. wildtype melanoma cells with intact ABCB5 expression (ABCB5-WT) and corresponding melanoma cell variants with inhibited ABCB5 expression, through shRNA-mediated gene knockdown (ABCB5-KD). A comprehensive metabolomic analysis was performed by using proton and phosphorus NMR spectroscopy of cell extracts to examine water-soluble metabolites and lipids. Parametric and non-parametric statistical analysis of absolute and relative metabolite levels yielded significant differences for compounds involved in glucose, amino acid and phospholipid (PL) metabolism. By contrast, energy metabolism was virtually unaffected by ABCB5 expression. The sum of water-soluble metabolites per total protein was 17% higher in ABCB5-WT vs. ABCB5-KD G3361 variants, but no difference was found for the sum of PLs. Enhanced abundance was particularly pronounced for lactate (+ 23%) and alanine (+ 26%), suggesting an increase in glycolysis and potentially glutaminolysis. Increases in PL degradation products, glycerophosphocholine and glycerophosphoethanolamine (+ 85 and 123%, respectively), and redistributions within the PL pool suggested enhanced membrane PL turnover as a consequence of ABCB5 expression. The possibility of glycolysis modulation by an ABCB5-dependent IL1β-mediated mechanism was supported by functional studies employing monoclonal antibody (mAb)-dependent ABCB5 protein inhibition in wildtype G3361 melanoma cells. Our metabolomic results suggest that the underlying biochemical pathways may offer targets for melanoma therapy, potentially in combination with other treatment forms. PMID:27560924

  11. Expression of Cell-Surface Marker ABCB5 Causes Characteristic Modifications of Glucose, Amino Acid and Phospholipid Metabolism in the G3361 Melanoma-Initiating Cell Line

    PubMed Central

    Lutz, Norbert W.; Banerjee, Pallavi; Wilson, Brian J.; Ma, Jie; Cozzone, Patrick J.; Frank, Markus H.

    2016-01-01

    We present a pilot study aimed at determining the effects of expression of ATP-binding cassette member B5 (ABCB5), a previously described marker for melanoma-initiating cells, on cellular metabolism. Metabolic profiles for two groups of human G3361 melanoma cells were compared, i.e. wildtype melanoma cells with intact ABCB5 expression (ABCB5-WT) and corresponding melanoma cell variants with inhibited ABCB5 expression, through shRNA-mediated gene knockdown (ABCB5-KD). A comprehensive metabolomic analysis was performed by using proton and phosphorus NMR spectroscopy of cell extracts to examine water-soluble metabolites and lipids. Parametric and non-parametric statistical analysis of absolute and relative metabolite levels yielded significant differences for compounds involved in glucose, amino acid and phospholipid (PL) metabolism. By contrast, energy metabolism was virtually unaffected by ABCB5 expression. The sum of water-soluble metabolites per total protein was 17% higher in ABCB5-WT vs. ABCB5-KD G3361 variants, but no difference was found for the sum of PLs. Enhanced abundance was particularly pronounced for lactate (+ 23%) and alanine (+ 26%), suggesting an increase in glycolysis and potentially glutaminolysis. Increases in PL degradation products, glycerophosphocholine and glycerophosphoethanolamine (+ 85 and 123%, respectively), and redistributions within the PL pool suggested enhanced membrane PL turnover as a consequence of ABCB5 expression. The possibility of glycolysis modulation by an ABCB5-dependent IL1β-mediated mechanism was supported by functional studies employing monoclonal antibody (mAb)-dependent ABCB5 protein inhibition in wildtype G3361 melanoma cells. Our metabolomic results suggest that the underlying biochemical pathways may offer targets for melanoma therapy, potentially in combination with other treatment forms. PMID:27560924

  12. Gene expression profiling of single circulating tumor cells in ovarian cancer - Establishment of a multi-marker gene panel.

    PubMed

    Blassl, Christina; Kuhlmann, Jan Dominik; Webers, Alessandra; Wimberger, Pauline; Fehm, Tanja; Neubauer, Hans

    2016-08-01

    The presence of circulating tumor cells (CTCs) in the blood of ovarian cancer patients was shown to correlate with decreased overall survival, whereby CTCs with epithelial-mesenchymal-transition (EMT) or stem-like traits are supposed to be involved in metastatic progression and recurrence. Thus, investigating the transcriptional profiles of CTCs might help to identify therapy resistant tumor cells and to overcome treatment failure. For this purpose, we established a multi-marker panel for the molecular characterization of single CTCs, detecting epithelial (EpCAM, Muc-1, CK5/7), EMT (N-cadherin, Vimentin, Snai1/2, CD117, CD146, CD49f) and stem cell (CD44, ALDH1A1, Nanog, SOX2, Notch1/4, Oct4, Lin28) associated transcripts. First primer specificity and PCR-performance of the multiplex-RT-PCRs were successfully validated on genomic DNA and cDNA isolated from OvCar3 cells. The assay sensitivity of the epithelial panel was evaluated by adding defined numbers of tumor cells into the blood of healthy donors and performing a subsequent immunomagnetic tumor cell enrichment (AdnaTest OvarianCancerSelect), resulting in a 100% concordance for the epithelial markers EpCAM and Muc-1 to the AdnaTest OvarianCancerDetect. Additionally, by processing blood from ovarian cancer patients, high assay sensitivity could be verified. In blood of healthy donors no signals for epithelial markers were detected, for EMT and stem cell markers, however, signals were obtained mainly originating from leukocytes which calls for single cell analysis. To that aim by using the ovarian cancer cell line OvCar3, we successfully established a workflow enabling the characterization of single CTCs. It consists of a density gradient-dependent enrichment for nucleated cells, a depletion of CD45-positive cells of hematopoietic origin followed by immunofluorescent labeling of CTCs by EpCAM and Muc-1. Single CTCs are then isolated by micromanipulation and processed for panel gene expression profiling. Finally

  13. Comparative analysis of lymphocyte activation marker expression and cytokine secretion profile in stimulated human peripheral blood mononuclear cell cultures: an in vitro model to monitor cellular immune function.

    PubMed

    Reddy, Manjula; Eirikis, Edward; Davis, Cuc; Davis, Hugh M; Prabhakar, Uma

    2004-10-01

    Activation of lymphocytes is a complex, yet finely regulated cascade of events that results in the expression of cytokine receptors, production and secretion of cytokines and expression of several cell surface molecules that eventually lead to divergent immune responses. Assessing the qualitative and quantitative nature of lymphocyte function following immunotherapy provides valuable information about the immune responses mediated by a therapeutic agent. To facilitate evaluation of the immunomodulatory activity of therapeutic agents, we have established a platform of in vitro immunoassays with normal human peripheral blood mononuclear cells (PBMCs) treated with several polyclonal activators that are known to exhibit different modes of action. We evaluated the kinetics of cell surface marker expression and cytokine release from PBMCs stimulated in parallel with various activating agents over a time course. These stimulating agents induced early (CD69 and CD71) and late (CD25 and HLA-DR) activation markers to varying antigen densities, indicated different cytokine profiles, and showed differential inhibition with dexamethasone (DEX), an inhibitor of early signaling events. Based on the association or correlation of the kinetics of activation marker expression and secreted cytokines, the results of our study indicate the appropriate time points for the simultaneous measurement of both these activation products. This study defines the kinetics for both measures of T cell activation and provides a comprehensive review with various polyclonal activators that can serve as a reference for monitoring lymphocyte function in clinical study samples. PMID:15541283

  14. Clinical evaluation of microRNA-145 expression in renal cell carcinoma: a promising molecular marker for discriminating and staging the clear cell histological subtype.

    PubMed

    Papadopoulos, Emmanuel I; Petraki, Constantina; Gregorakis, Alkiviadis; Fragoulis, Emmanuel G; Scorilas, Andreas

    2016-06-01

    The vast majority of malignancies detected in renal parenchyma are diagnosed as renal cell carcinoma (RCC), whose subtype discrimination and determination of prognosis may contribute to the selection of the adequate therapy. Recently, a new class of small non-coding RNAs, known as microRNAs, has proven to be among the most promising biomarkers for providing this information. Herein, we sought to add up to this knowledge by evaluating the expression levels of microRNA-145 (miR-145) in RCC. For that purpose, total RNA from 58 cancerous and 44 adjacent non-cancerous renal tissues was firstly extracted and then polyadenylated and reverse transcribed to cDNA. MiR-145 levels were finally analyzed by developing and applying a highly sensitive real-time PCR protocol, while their clinical significance was determined via comprehensive statistical analysis. Our data showed that miR-145 was significantly downregulated in cancerous samples and could discriminate between clear cell and non-clear cell subtypes. Moreover, miR-145 expression was found to be correlated with primary tumor staging of cancerous samples, something also noticed in the clear cell RCC subset, in which miR-145 levels were negatively correlated with tumor size as well. Overall, these results indicate that miR-145 might constitute a promising molecular marker for RCC classification and staging. PMID:26866880

  15. Increased mRNA expression of peripheral glial cell markers in bipolar disorder: The effect of long-term lithium treatment.

    PubMed

    Ferensztajn-Rochowiak, Ewa; Tarnowski, Maciej; Samochowiec, Jerzy; Michalak, Michal; Ratajczak, Mariusz Z; Rybakowski, Janusz K

    2016-09-01

    Neuroinflammation, with microglial activation as an important element, plays a role in the pathogenesis of bipolar disorder (BD). Also, in mood disorders, pathological changes have been demonstrated in macroglial cells, such as astrocyctes and oligodendrocytes. Postmortem brain studies of BD patients to assess glial cells, such as astrocytes and oligodendrocytes and their markers such as glial fibrillary acidic protein (GFAP), Olig1 and Olig2, produced controversial results. On the other hand, investigation of these markers in the peripheral blood of such patients has not been performed so far. In this study, we examined the mRNA levels of GFAP, Olig1 and Olig2, in the peripheral blood of three groups: 15 BD subjects with a duration of illness at least 10 years (mean 20±9 years) but never treated with lithium, 15 subjects with BD treated continuously with lithium for 8-40 years (mean 16±8 years), and 15 control subjects. The groups were age-and sex-matched. Expression of mRNA markers was measured by real-time quantitative reverse transcription PCR (RQ-PCR). We observed increased mRNA levels of the Olig1 and Olig 2 glial markers studied in the BD patients not taking lithium, compared with the control subjects and increased mRNA level of GFAP, compared with lithium-treated patients. In the lithium-treated BD patients GFAP and Olig1 expression was at similar levels to that in the control group. However, Olig 2 expression was even higher than in the BD patients not taking lithium. The possible mechanisms concerning the higher expression of peripheral mRNA markers in BD patients may involve ongoing inflammatory process, compensatory mechanisms and regenerative responses. The beneficial effect of lithium may be related to its anti-inflammatory properties. PMID:27474686

  16. Expression of Lymphatic Markers in the Adult Rat Spinal Cord

    PubMed Central

    Kaser-Eichberger, Alexandra; Schroedl, Falk; Bieler, Lara; Trost, Andrea; Bogner, Barbara; Runge, Christian; Tempfer, Herbert; Zaunmair, Pia; Kreutzer, Christina; Traweger, Andreas; Reitsamer, Herbert A.; Couillard-Despres, Sebastien

    2016-01-01

    Under physiological conditions, lymphatic vessels are thought to be absent from the central nervous system (CNS), although they are widely distributed within the rest of the body. Recent work in the eye, i.e., another organ regarded as alymphatic, revealed numerous cells expressing lymphatic markers. As the latter can be involved in the response to pathological conditions, we addressed the presence of cells expressing lymphatic markers within the spinal cord by immunohistochemistry. Spinal cord of young adult Fisher rats was scrutinized for the co-expression of the lymphatic markers PROX1 and LYVE-1 with the cell type markers Iba1, CD68, PGP9.5, OLIG2. Rat skin served as positive control for the lymphatic markers. PROX1-immunoreactivity was detected in many nuclei throughout the spinal cord white and gray matter. These nuclei showed no association with LYVE-1. Expression of LYVE-1 could only be detected in cells at the spinal cord surface and in cells closely associated with blood vessels. These cells were found to co-express Iba1, a macrophage and microglia marker. Further, double labeling experiments using CD68, another marker found in microglia and macrophages, also displayed co-localization in the Iba1+ cells located at the spinal cord surface and those apposed to blood vessels. On the other hand, PROX1-expressing cells found in the parenchyma were lacking Iba1 or PGP9.5, but a significant fraction of those cells showed co-expression of the oligodendrocyte lineage marker OLIG2. Intriguingly, following spinal cord injury, LYVE-1-expressing cells assembled and reorganized into putative pre-vessel structures. As expected, the rat skin used as positive controls revealed classical lymphatic vessels, displaying PROX1+ nuclei surrounded by LYVE-1-immunoreactivity. Classical lymphatics were not detected in adult rat spinal cord. Nevertheless, numerous cells expressing either LYVE-1 or PROX1 were identified. Based on their localization and overlapping expression with

  17. Expression pattern of clinically relevant markers in paediatric germ cell- and sex-cord stromal tumours is similar to adult testicular tumours.

    PubMed

    Mosbech, Christiane Hammershaimb; Svingen, Terje; Nielsen, John Erik; Toft, Birgitte Groenkaer; Rechnitzer, Catherine; Petersen, Bodil Laub; Rajpert-De Meyts, Ewa; Hoei-Hansen, Christina Engel

    2014-11-01

    Paediatric germ cell tumours (GCTs) are rare and account for less than 3 % of childhood cancers. Like adult GCTs, they probably originate from primordial germ cells, but the pattern of histopathological types is different, and they occur predominantly in extragonadal sites along the body midline. Because they are rare, histology of paediatric GCTs is poorly documented, and it remains unclear to what extent they differ from adult GCTs. We have analysed 35 paediatric germ cell tumours and 5 gonadal sex-cord stromal tumours from prepubertal patients aged 0-15 years, to gain further knowledge, elaborate on clinical-pathological associations and better understand their developmental divergence. The tumours were screened for expression of stemness-related factors (OCT4, AP-2γ, SOX2), classical yolk sac tumours (YSTs; AFP, SALL4), GCTs (HCG, PLAP, PDPN/D2-40), as well as markers for sex-cord stromal tumour (PDPN, GATA4). All YSTs expressed AFP and SALL4, with GATA4 present in 13/14. The majority of teratomas expressed SOX2 and PDPN, whereas SALL4 was found in 8/13 immature teratomas. Adult seminoma markers AP-2γ, OCT4, SALL4 and PDPN were all expressed in dysgerminoma. We further report a previously unrecognised pathogenetic relationship between AFP and SALL4 in YST in that different populations of YST cells express either SALL4 or AFP, which suggests variable differentiation status. We also show that AP-2γ is expressed in the granulosa layer of ovarian follicles and weakly expressed in immature but not in mature granulosa cell tumours. Our findings indicate that the expression pattern of these antigens is similar between paediatric and adult GCTs, even though they develop along different developmental trajectories. PMID:25074678

  18. Calcitonin receptors as markers for osteoclastic differentiation: correlation between generation of bone-resorptive cells and cells that express calcitonin receptors in mouse bone marrow cultures.

    PubMed

    Hattersley, G; Chambers, T J

    1989-09-01

    The osteoclast is the cell that resorbs bone. It is known to derive from hemopoietic precursors, but analysis of lineage and regulation of differentiation has been hampered by lack of a specific marker that enables identification of cells of osteoclastic phenotype. Previously used markers, such as multinuclearity, that are specific for osteoclasts in bone become less specific in culture. Uniquely among bone and bone marrow cells, osteoclasts possess abundant calcitonin (CT) receptors. We therefore tested the correlation between the generation of bone-resorptive function and the formation of CT receptor-positive cells from hemopoietic tissue in vitro. Without 1,25-dihydroxy-vitamin D3 [1,25-(OH)2D3], a hormone that induces osteoclastic differentiation in vitro, bone marrow cultures showed very little bone resorption, and only small numbers of CT receptor-positive cells developed. When 1,25-(OH)2D3 was added to the cultures, CT receptor-positive cells developed within 1 day and reached a peak after 7 days. Bone resorption commenced within 2 days of hormone addition. There was a strong parallelism between the cumulative number of CT receptor-positive cells and the extent of bone resorption. The capacity of cultures to generate bone-resorptive activity and CT receptor-positive cells declined progressively when 1,25-(OH)2D3 was added to hemopoietic tissue after a 7- to 21-day hormone-free incubation period. The number of CT receptor-positive cells in these cultures correlated strongly (r = 0.96) with bone resorption. The behavior of these cultures suggests that 1,25-(OH)2D3 acts to induce terminal differentiation of osteoclast precursors present in the cultures, and that precursor cell numbers decreased with increasing time in vitro. All of the CT receptor-positive cells in control cultures and all of those seen shortly after 1,25-(OH)2D3 addition were mononuclear, despite considerable bone resorption; the majority of CT receptor-positive cells remained mononuclear

  19. Cell Surface Markers in HTLV-1 Pathogenesis

    PubMed Central

    Kress, Andrea K.; Grassmann, Ralph; Fleckenstein, Bernhard

    2011-01-01

    The phenotype of HTLV-1-transformed CD4+ T lymphocytes largely depends on defined viral effector molecules such as the viral oncoprotein Tax. In this review, we exemplify the expression pattern of characteristic lineage markers, costimulatory receptors and ligands of the tumor necrosis factor superfamily, cytokine receptors, and adhesion molecules on HTLV-1-transformed cells. These molecules may provide survival signals for the transformed cells. Expression of characteristic surface markers might therefore contribute to persistence of HTLV-1-transformed lymphocytes and to the development of HTLV-1-associated disease. PMID:21994790

  20. Expression of cancer stem markers could be influenced by silencing of p16 gene in HeLa cervical carcinoma cells.

    PubMed

    Wu, H; Zhang, J; Shi, H

    2016-01-01

    Effect of the tumor suppression gene p16 on the biological characteristics of HeLa cervical carcinoma cells was explored. The expression of p16 protein was increased in HeLa tumor sphere cells, and no significant difference in tumor spheres from the first to the fourth passages. Compared with those of parental HeLa cells, the proportion of CD44+/CD24- and ABCG2+ cells increased significantly in tumor spheres. However after the cells were silenced by the p16-sh289 vector, expression of P16 protein and the cell number of CD44+/CD24- and ABCG2+ decreased. Moreover, HeLa cells with p16 gene silencing showed decreased abilities of sphere formation and matrigel invasion. More HeLa cells with p16 gene silence were needed for tumor formation in nude mice. Tumor size and weight in mouse model established with p16 gene silenced HeLa cells were less than those with HeLa parental cell model. The present results indicate that silencing of the p16 gene inhibits expression of cancer stem cell markers and tumorigenic ability of HeLa cells. PMID:27172749

  1. Aberrant markers expression in T- and B-lymphoid and myeloid leukemia cells of different differentiation stages.

    PubMed

    Babusíková, O; Koníková, E; Kusenda, J; Koubek, K

    1999-01-01

    The aim of the study was to ascertain if in T acute lymphoblastic leukemia (T-ALL), B acute lymphoblastic leukemia (B-ALL) and acute myeloid leukemia (AML) of different differentiation stages the coexistence of aberrant markers correlate with the degree of leukemic blasts maturation. We evaluated the results of surface and intracellular markers in 42 T-ALL, 86 B-ALL and 71 AML cases. A large panel of monoclonal antibodies (MoAbs) against T-cell, B-cell, myeloid cell and non-lineage specific structures has been used. Patients had dual-color flow cytometric immunophenotyping performed by FACStar flow cytometer. The correct immunological diagnosis of followed new cases before any treatment has been performed and simultaneously the presence of atypical/aberrant phenotypes has been studied and correlated with leukemia cells differentiation stage. A great deal of T-ALL and AML, in opposite to B-ALL cases, revealed a high proportion of atypical phenotypes (55, 75 and 36%, respectively), which are absent in nonleukemic cells. We found out that these atypical phenotypes were present in T-ALL, AML (not clearly in B-ALL) through all differentiation stages and so we obtained an evidence that they might represent an abnormal/atypical rather than an immature phenotype, as it was postulated till now by several authors. PMID:10665842

  2. Characterization of Np95 expression in mouse brain from embryo to adult: A novel marker for proliferating neural stem/precursor cells

    PubMed Central

    Murao, Naoya; Matsuda, Taito; Noguchi, Hirofumi; Koseki, Haruhiko; Namihira, Masakazu; Nakashima, Kinichi

    2014-01-01

    Nuclear protein 95 KDa (Np95, also known as UHRF1 or ICBP90) plays an important role in maintaining DNA methylation of newly synthesized DNA strands by recruiting DNA methyltransferase 1 (DNMT1) during cell division. In addition, Np95 participates in chromatin remodeling by interacting with histone modification enzymes such as histone deacetylases. However, its expression pattern and function in the brain have not been analyzed extensively. We here investigated the expression pattern of Np95 in the mouse brain, from developmental to adult stages. In the fetal brain, Np95 is abundantly expressed at the midgestational stage, when a large number of neural stem/precursor cells (NS/PCs) exist. Interestingly, Np95 is expressed specifically in NS/PCs but not in differentiated cells such as neurons or glial cells. Furthermore, we demonstrate that Np95 is preferentially expressed in type 2a cells, which are highly proliferative NS/PCs in the dentate gyrus of the adult hippocampus. Moreover, the number of Np95-expressing cells increases in response to kainic acid administration or to voluntary running, which are known to enhance the proliferation of adult NS/PCs. These results suggest that Np95 participates in the process of proliferation and differentiation of NS/PCs, and that it should be a useful novel marker for proliferating NS/PCs, facilitating the analysis of the complex behavior of NS/PCs in the brain.

  3. Differential Expression of Conserved Germ Line Markers and Delayed Segregation of Male and Female Primordial Germ Cells in a Hermaphrodite, the Leech Helobdella

    PubMed Central

    Cho, Sung-Jin; Vallès, Yvonne; Weisblat, David A.

    2014-01-01

    In sexually reproducing animals, primordial germ cells (PGCs) are often set aside early in embryogenesis, a strategy that minimizes the risk of genomic damage associated with replication and mitosis during the cell cycle. Here, we have used germ line markers (piwi, vasa, and nanos) and microinjected cell lineage tracers to show that PGC specification in the leech genus Helobdella follows a different scenario: in this hermaphrodite, the male and female PGCs segregate from somatic lineages only after more than 20 rounds of zygotic mitosis; the male and female PGCs share the same (mesodermal) cell lineage for 19 rounds of zygotic mitosis. Moreover, while all three markers are expressed in both male and female reproductive tissues of the adult, they are expressed differentially between the male and female PGCs of the developing embryo: piwi and vasa are expressed preferentially in female PGCs at a time when nanos is expressed preferentially in male PGCs. A priori, the delayed segregation of male and female PGCs from somatic tissues and from one another increases the probability of mutations affecting both male and female PGCs of a given individual. We speculate that this suite of features, combined with a capacity for self-fertilization, may contribute to the dramatically rearranged genome of Helobdella robusta relative to other animals. PMID:24217283

  4. Gene Expression Profiling Supports the Neural Crest Origin of Adult Rodent Carotid Body Stem Cells and Identifies CD10 as a Marker for Mesectoderm-Committed Progenitors.

    PubMed

    Navarro-Guerrero, Elena; Platero-Luengo, Aida; Linares-Clemente, Pedro; Cases, Ildefonso; López-Barneo, José; Pardal, Ricardo

    2016-06-01

    Neural stem cells (NSCs) are promising tools for understanding nervous system plasticity and repair, but their use is hampered by the lack of markers suitable for their prospective isolation and characterization. The carotid body (CB) contains a population of peripheral NSCs, which support organ growth during acclimatization to hypoxia. We have set up CB neurosphere (NS) cultures enriched in differentiated neuronal (glomus) cells versus undifferentiated progenitors to investigate molecular hallmarks of cell classes within the CB stem cell (CBSC) niche. Microarray gene expression analysis in NS is compatible with CBSCs being neural crest derived-multipotent progenitor cells able to sustain CB growth upon exposure to hypoxia. Moreover, we have identified CD10 as a marker suitable for isolation of a population of CB mesectoderm-committed progenitor cells. CD10 + cells are resting in normoxia, and during hypoxia they are activated to proliferate and to eventually complete maturation into mesectodermal cells, thus participating in the angiogenesis necessary for CB growth. Our results shed light into the molecular and cellular mechanisms involved in CBSC fate choice, favoring a potential use of these cells for cell therapy. Stem Cells 2016;34:1637-1650. PMID:26866353

  5. Brain Region–Specific Alterations in the Gene Expression of Cytokines, Immune Cell Markers and Cholinergic System Components during Peripheral Endotoxin–Induced Inflammation

    PubMed Central

    Silverman, Harold A; Dancho, Meghan; Regnier-Golanov, Angelique; Nasim, Mansoor; Ochani, Mahendar; Olofsson, Peder S; Ahmed, Mohamed; Miller, Edmund J; Chavan, Sangeeta S; Golanov, Eugene; Metz, Christine N; Tracey, Kevin J; Pavlov, Valentin A

    2014-01-01

    Inflammatory conditions characterized by excessive peripheral immune responses are associated with diverse alterations in brain function, and brain-derived neural pathways regulate peripheral inflammation. Important aspects of this bidirectional peripheral immune–brain communication, including the impact of peripheral inflammation on brain region–specific cytokine responses, and brain cholinergic signaling (which plays a role in controlling peripheral cytokine levels), remain unclear. To provide insight, we studied gene expression of cytokines, immune cell markers and brain cholinergic system components in the cortex, cerebellum, brainstem, hippocampus, hypothalamus, striatum and thalamus in mice after an intraperitoneal lipopolysaccharide injection. Endotoxemia was accompanied by elevated serum levels of interleukin (IL)-1β, IL-6 and other cytokines and brain region–specific increases in Il1b (the highest increase, relative to basal level, was in cortex; the lowest increase was in cerebellum) and Il6 (highest increase in cerebellum; lowest increase in striatum) mRNA expression. Gene expression of brain Gfap (astrocyte marker) was also differentially increased. However, Iba1 (microglia marker) mRNA expression was decreased in the cortex, hippocampus and other brain regions in parallel with morphological changes, indicating microglia activation. Brain choline acetyltransferase (Chat ) mRNA expression was decreased in the striatum, acetylcholinesterase (Ache) mRNA expression was decreased in the cortex and increased in the hippocampus, and M1 muscarinic acetylcholine receptor (Chrm1) mRNA expression was decreased in the cortex and the brainstem. These results reveal a previously unrecognized regional specificity in brain immunoregulatory and cholinergic system gene expression in the context of peripheral inflammation and are of interest for designing future antiinflammatory approaches. PMID:25299421

  6. Downregulation of lncRNA-MALAT1 Affects Proliferation and the Expression of Stemness Markers in Glioma Stem Cell Line SHG139S.

    PubMed

    Han, Yong; Zhou, Liang; Wu, Tingfeng; Huang, Yulun; Cheng, Zhe; Li, Xuetao; Sun, Ting; Zhou, Youxin; Du, Ziwei

    2016-10-01

    Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is among the most abundant and highly conserved lncRNAs, which has been detected in a wide variety of human tumors, including gastric cancer, gallbladder cancer, and so on. Previous research has showed that MALAT1 can activate LTBP3 gene in mesenchymal stem cells. However, the specific roles of MALAT1 in glioma stem cells (GSCs) remain unclear. In this study, we aimed to identify the effects of MALAT1 on proliferation and the expression of stemness markers on glioma stem cell line SHG139S. Our results showed that downregulation of MALAT1 suppressed the expression of Sox2 and Nestin which are related to stemness, while downregulation of MALAT1 promoted the proliferation in SHG139S. Further research on the underlying mechanism showed that the effects of MALAT1 downregulation on SHG139S were through regulating ERK/MAPk signaling activity. And we also found that downregulation of MALAT1 could activate ERK/MAPK signaling and promoted proliferation in SHG139 cells. These findings show that MALAT1 plays an important role in regulating the expression of stemness markers and proliferation of SHG139S, and provide a new research direction to target the progression of GSCs. PMID:26649728

  7. Up-regulation of BMP2/4 signaling increases both osteoblast-specific marker expression and bone marrow adipogenesis in Gja1Jrt/+ stromal cell cultures

    PubMed Central

    Zappitelli, Tanya; Chen, Frieda; Aubin, Jane E.

    2015-01-01

    Gja1Jrt/+ mice carry a mutation in one allele of the gap junction protein α1 gene (Gja1), resulting in a G60S connexin 43 (Cx43) mutant protein that is dominant negative for Cx43 protein production of <50% of wild-type (WT) levels and significantly reduced gap junction formation and function in osteoblasts and other Cx43-expressing cells. Previously we reported that Gja1Jrt/+ mice exhibited early-onset osteopenia caused by activation of osteoclasts secondary to activation of osteoblast lineage cells, which expressed increased RANKL and produced an abnormal resorption-stimulating bone matrix high in BSP content. Gja1Jrt/+ mice also displayed early and progressive bone marrow atrophy, with a significant increase in bone marrow adiposity versus WT littermates but no increase in adipose tissues elsewhere in the body. BMP2/4 production and signaling were increased in Gja1Jrt/+ trabecular bone and osteogenic stromal cell cultures, which contributed to the up-regulated expression of osteoblast-specific markers (e.g., Bsp and Ocn) in Gja1Jrt/+ osteoblasts and increased Pparg2 expression in bone marrow–derived adipoprogenitors in vitro. The elevated levels of BMP2/4 signaling in G60S Cx43-containing cells resulted at least in part from elevated levels of cAMP. We conclude that up-regulation of BMP2/4 signaling in trabecular bone and/or stromal cells increases osteoblast-specific marker expression in hyperactive Gja1Jrt/+ osteoblasts and may also increase bone marrow adipogenesis by up-regulation of Pparg2 in the Cx43-deficient Gja1Jrt/+ mouse model. PMID:25568340

  8. Ep-CAM expression in squamous cell carcinoma of the esophagus: a potential therapeutic target and prognostic marker

    PubMed Central

    Stoecklein, Nikolas H; Siegmund, Annika; Scheunemann, Peter; Luebke, Andreas M; Erbersdobler, Andreas; Verde, Pablo E; Eisenberger, Claus F; Peiper, Matthias; Rehders, Alexander; Esch, Jan Schulte am; Knoefel, Wolfram Trudo; Hosch, Stefan B

    2006-01-01

    Background To evaluate the expression and test the clinical significance of the epithelial cellular adhesion molecule (Ep-CAM) in esophageal squamous cell carcinoma (SCC) to check the suitability of esophageal SCC patients for Ep-CAM directed targeted therapies. Methods The Ep-CAM expression was immunohistochemically investigated in 70 primary esophageal SCCs using the monoclonal antibody Ber-EP4. For the interpretation of the staining results, we used a standardized scoring system ranging from 0 to 3+. The survival analysis was calculated from 53 patients without distant metastasis, with R0 resection and at least 2 months of clinical follow-up. Results Ep-CAM neo-expression was observed in 79% of the tumors with three expression levels, 1+ (26%), 2+ (11%) and 3+ (41%). Heterogeneous expression was observed at all expression levels. Interestingly, tumors with 3+ Ep-CAM expression conferred a significantly decreased median relapse-free survival period (log rank, p = 0.0001) and median overall survival (log rank, p = 0.0003). Multivariate survival analysis disclosed Ep-CAM 3+ expression as independent prognostic factor. Conclusion Our results suggest Ep-CAM as an attractive molecule for targeted therapy in esophageal SCC. Considering the discontenting results of the current adjuvant concepts for esophageal SCC patients, Ep-CAM might provide a promising target for an adjuvant immunotherapeutic intervention. PMID:16796747

  9. CD105 expression on CD34-negative spindle-shaped stromal cells of primary tumor is an unfavorable prognostic marker in early breast cancer patients.

    PubMed

    Martinez, Leandro Marcelo; Labovsky, Vivian; Calcagno, María de Luján; Davies, Kevin Mauro; Garcia Rivello, Hernán; Rivello, Hernán Garcia; Bianchi, Maria Silvia; Wernicke, Alejandra; Vallone, Valeria Beatriz Fernández; Fernández Vallone, Valeria Beatriz; Chasseing, Norma Alejandra

    2015-01-01

    Several studies have confirmed that the breast tumor microenvironment drives cancer progression and metastatic development. The aim of our research was to investigate the prognostic significance of the breast tumor microenvironment in untreated early breast cancer patients. Therefore, we analyzed the association of the expression of α-SMA, FSP, CD105 and CD146 in CD34-negative spindle-shaped stromal cells, not associated with the vasculature, in primary breast tumors with classical prognostic marker levels, metastatic recurrence, local relapse, disease-free survival, metastasis-free survival and the overall survival of patients. In the same way, we evaluated the association of the amount of intra-tumor stroma, fibroblasts, collagen deposition, lymphocytic infiltration and myxoid changes in these samples with the clinical-pathological data previously described. This study is the first to demonstrate the high CD105 expression in this stromal cell type as a possible independent marker of unfavorable prognosis in early breast cancer patients. Our study suggests that this new finding can be useful prognostic marker in the clinical-pathological routine. PMID:25803686

  10. The pan-B cell marker CD22 is expressed on gastrointestinal eosinophils and negatively regulates tissue eosinophilia.

    PubMed

    Wen, Ting; Mingler, Melissa K; Blanchard, Carine; Wahl, Benjamin; Pabst, Oliver; Rothenberg, Marc E

    2012-02-01

    CD22 is currently recognized as a B cell-specific Siglec and has been exploited therapeutically with humanized anti-CD22 mAb having been used against B cell leukemia. In this study, tissue-specific eosinophil mRNA microarray analysis identified that CD22 transcript levels of murine gastrointestinal (GI) eosinophils are 10-fold higher than those of lung eosinophils. To confirm the mRNA data at the protein level, we developed a FACS-based protocol designed to phenotype live GI eosinophils isolated from the murine lamina propria. Indeed, we found that jejunum eosinophils expressed remarkably high levels of surface CD22, similar to levels found in B cells across multiple mouse strains. In contrast, CD22 was undetectable on eosinophils from the colon, blood, thymus, spleen, uterus, peritoneal cavity, and allergen-challenged lung. Eosinophils isolated from newborn mice did not express CD22 but subsequently upregulated CD22 expression to adult levels within the first 10 d after birth. The GI lamina propria from CD22 gene-targeted mice harbored more eosinophils than wild type control mice, whereas the GI eosinophil turnover rate was unaltered in the absence of CD22. Our findings identify a novel expression pattern and tissue eosinophilia-regulating function for the "B cell-specific" inhibitory molecule CD22 on GI eosinophils. PMID:22190185

  11. Expression of SALL4 and SF-1 in gonadoblastoma: useful markers in the identification of the invasive germ cell component.

    PubMed

    Bai, Shuting; Wei, Shi; Ziober, Amy; Yao, Yuan; Bing, Zhanyong

    2013-07-01

    Gonadoblastoma is a rare gonadal neoplasm composed of primordial germ cells and sex cord-stromal cells and usually occurs in patients with dysgenetic gonads. When patients with gonadoblastoma develop an invasive germ cell tumor, the invasive germ cell component can take the form of dysgerminoma/seminoma, embryonal carcinoma, or yolk sac tumor. In this study, we performed immunohistochemical analysis for SALL4 and steroidogenic factor-1 (SF-1) on 4 cases of gonadoblastoma to examine the expression patterns of these proteins. All of the patients were phenotypically female. One patient had Swyer syndrome, the rest had Turner syndrome. The primordial germ cell component was histologically similar to cells in dysgerminoma/seminoma in these 4 cases. Two patients showed the invasive component-dysgerminoma. As expected, SALL4 stained the germ cells and SF-1 stained the sex cord-stromal cells. There was a clear distinction between the staining patterns of these 2 cell populations. This study demonstrates the utility of SALL4 and SF-1 in determining whether or not there is an invasion in the primordial germ cell component. PMID:23722510

  12. A Study on the Mechanism of Low-Expressed Cancer Stem Cell Marker Lgr5 in Inhibition of the Proliferation and Invasion of Colorectal Carcinoma.

    PubMed

    Jia, Houjun; Xiang, Lin; Wang, Ziwei; Zhou, Qipeng

    2015-11-01

    The present study intends to explore the influence of Lgr5 as a marker of tumor stem cells after siRNA interference on the proliferation and invasion of colorectal carcinoma (CRC) and its mechanism. The tissue samples were taken for biopsy from 32 cases of patients and 32 cases of normal subjects by colonoscopy. Real-time quantitative PCR was used to detect the differential expression of Lgr5. After siRNA interference of Lgr5 in CRC cell line CT-26 cells, RT-PCR method was used to detect the mRNA expression level of Lgr5 after interference of CT-26 cells. CCK8 method was used to observe the influence of Lgr5 interference on the proliferation, colony formation, and invasion of CT-26 cells. RT-PCR and Western blot were used to detect the E-cadherin mRNA and protein levels in CT-26 cells. Lgr5 expression level in CRC tissue was significantly higher than that in the corresponding para-carcinoma tissue and the control group, and the differences were statistically significant (P < 0.05). Lgr5 mRNA expression level in tissue with lymph node metastasis was significantly higher than that in the tissue without lymph node metastasis, and the difference was statistically significant (P < 0.05). Compared with the control group, CT-26 cell proliferation, colony formation, and migration capability after Lgr5 siRNA transfection were all significantly reduced, and the differences were statistically significant (P < 0.05). CT-26 cells after Lgr5 interference were found with significantly reduced E-cadherin mRNA and protein levels. Lgr5 facilitates the cell proliferation, colony formation, and migration of colorectal carcinoma, which may be closely related to the expression level of E-cadherin. PMID:27352328

  13. Caco-2 cells infected with rotavirus release extracellular vesicles that express markers of apoptotic bodies and exosomes.

    PubMed

    Bautista, Diana; Rodríguez, Luz-Stella; Franco, Manuel A; Angel, Juana; Barreto, Alfonso

    2015-07-01

    Previously, we showed that infecting human intestinal epithelial cells (Caco-2) with rotavirus (RV) increases the release of extracellular vesicles (EVs) with an immunomodulatory function that, upon concentration at 100,000×g, present buoyant densities on a sucrose gradient of between 1.10 to 1.18 g/ml (characteristic of exosomes) and higher than 1.24 g/ml (proposed for apoptotic bodies). The effect of cellular death induced by RV on the composition of these EV is unknown. Here, we evaluated exosome (CD63, Hsc70, and AChE) and apoptotic body (histone H3) markers in EVs isolated by differential centrifugation (4000×g, 10,000×g, and 100,000×g) or filtration/ultracentrifugation (100,000×g) protocols. When we infected cells in the presence of caspase inhibitors, Hsc70 and AChE diminished in EVs obtained at 100,000×g, but not in EVs obtained at 4000×g or 10,000×g. In addition, caspase inhibitors decreased CD63 and AChE in vesicles with low and high buoyant densities. Without caspase inhibitors, RV infection increased exosome markers in all of the EVs obtained by differential centrifugation. However, CD63 preferentially localized in the 100,000×g fraction and H3 only increased in EVs concentrated at 100,000×g and with high buoyant densities on a sucrose gradient. Thus, RV infection increases the release of EVs that, upon concentration at 100,000×g, are composed by exosomes and apoptotic bodies, which can partially be separated using sucrose gradients. PMID:25975376

  14. Somatostatin receptor expression in small cell lung cancer as a prognostic marker and a target for peptide receptor radionuclide therapy

    PubMed Central

    Lapa, Constantin; Hänscheid, Heribert; Wild, Vanessa; Pelzer, Theo; Schirbel, Andreas; Werner, Rudolf A.; Droll, Sabine; Herrmann, Ken; Buck, Andreas K.; Lückerath, Katharina

    2016-01-01

    Despite initial responsiveness to both chemotherapy and radiotherapy, small cell lung cancer (SCLC) commonly relapses within months. Although neuroendocrine characteristics may be difficult to demonstrate in individual cases, a relevant expression of somatostatin receptors (SSTR) on the cell surface has been described. We aimed to evaluate the prognostic value of SSTR-expression in advanced SCLC. We further examined pre-requisites for successful peptide receptor radionuclide therapy (PRRT). 21 patients with extensive stage SCLC were enrolled. All patients underwent positron emission tomography/computed tomography (PET/CT) with 68Ga-DOTATATE to select patients for SSTR-directed therapy. PET scans were visually and semi-quantitatively assessed and compared to SSTR2a and SSTR5 expression in biopsy samples. Peak standardized uptake values (SUVpeak) of tumors as well as tumor-to-liver ratios were correlated to progression-free (PFS) and overall survival (OS). In 4/21 patients all SCLC lesions were PET-positive. 6/21 subjects were rated “intermediate” with the majority of lesions positive, the remaining 11/21 patients were PET-negative. PET-positivity correlated well with histologic SSTR2a, but not with SSTR5 expression. Neither PET-positivity nor SUVpeak were predictors of PFS or OS. In 4 patients with intensive SSTR2a-receptor expression, PRRT was performed with one partial response and one stable disease, respectively. SSTR-expression as detected by 68Ga-DOTATATE-PET and/or histology is not predictive of PFS or OS in patients with advanced SCLC. However, in patients exhibiting sufficient tracer uptake, PRRT might be a treatment option given its low toxicity and the absence of effective alternatives. PMID:26936994

  15. The CD markers of camel (Camelus dromedarius) milk cells during mastitis: the LPAM-1 expression is an indication of possible mucosal nature of the cellular trafficking.

    PubMed

    Al-Ashqar, Roqaya A; Al-Mohammad Salem, Khadim M; Al Herz, Abdul Kareem M; Al-Haroon, Amal I; Alluwaimi, Ahmed M

    2015-04-01

    Studying the cellular populations of the camel mammary glands through the expression pattern of the CD markers and adhesion molecules is a mean to define whether the cellular trafficking pathway is peripheral or mucosal nature. Camel milk cells from 8 Gram-positive and 5 Gram-negative infected camels were examined with flow cytometry using cross-reacting antibodies like, anti-CD4(+), CD8(+), WC+1(+)γδ, CD62L, CD11a(+)/CD18, LPAM-1, CXCR2. The overall results indicated high flow cytometry output of most of the CD makers. The statistical analysis of the mean percentage of the expressed CD markers has shown that CD62L, CXCR-2, LPAM-1, CD11a/CD18, CD8(+), IL-6R and CD20(+) were expressed in significant differences in either type of the infection. The LPAM-1 expression has provided further support to the notion that the lymphocyte trafficking is of the mucosal nature. The mucosal origin of cellular trafficking has important implications on the vaccine design and therapeutical approaches to mastitis. PMID:25666226

  16. NK-/T-cell lymphoma resembling hydroa vacciniforme with positive CD4 marker expression: a diagnostic difficulty.

    PubMed

    Zhang, Guiying; Bai, Harrison X; Yang, Li; Ma, Michael H; Su, Yuwen; Luo, Yangyang; Wen, Haiquan; Lu, Qianjin; Xiao, Rong

    2013-02-01

    A 35-year-old Chinese woman presented with a 2.5-year history of facial swelling in the left lower quadrant and a 10-month history of relapsing red papules and vesicles in the perioral area resembling hydroa vacciniforme. Histologically, a tissue biopsy showed a dense infiltration of medium-sized atypical lymphocytic cells expressing CD4 and CD56. A diagnosis of cutaneous NK-/T-cell lymphoma was made. The patient was treated with alpha-interferon, valaciclovir hydrochloride, and low-dose prednisone for 2 months. Her skin lesions and lymphoadenopathy resolved initially, but she succumbed to the disease shortly after starting chemotherapy treatment 11 months later. To our knowledge, this is the first case of CD4CD56 NK-/T-cell lymphoma with clinical features resembling hydroa vacciniforme. PMID:22885552

  17. Human Immunoglobulin (Ig)M+IgD+ Peripheral Blood B Cells Expressing the CD27 Cell Surface Antigen Carry Somatically Mutated Variable Region Genes: CD27 as a General Marker for Somatically Mutated (Memory) B Cells

    PubMed Central

    Klein, Ulf; Rajewsky, Klaus; Küppers, Ralf

    1998-01-01

    Immunoglobulin (Ig)M+IgD+ B cells are generally assumed to represent antigen-inexperienced, naive B cells expressing variable (V) region genes without somatic mutations. We report here that human IgM+IgD+ peripheral blood (PB) B cells expressing the CD27 cell surface antigen carry mutated V genes, in contrast to CD27-negative IgM+IgD+ B cells. IgM+IgD+CD27+ B cells resemble class-switched and IgM-only memory cells in terms of cell phenotype, and comprise ∼15% of PB B lymphocytes in healthy adults. Moreover, a very small population (<1% of PB B cells) of highly mutated IgD-only B cells was detected, which likely represent the PB counterpart of IgD-only tonsillar germinal center and plasma cells. Overall, the B cell pool in the PB of adults consists of ∼40% mutated memory B cells and 60% unmutated, naive IgD+CD27− B cells (including CD5+ B cells). In the somatically mutated B cells, VH region genes carry a two- to threefold higher load of somatic mutation than rearranged Vκ genes. This might be due to an intrinsically lower mutation rate in κ light chain genes compared with heavy chain genes and/or result from κ light chain gene rearrangements in GC B cells. A common feature of the somatically mutated B cell subsets is the expression of the CD27 cell surface antigen which therefore may represent a general marker for memory B cells in humans. PMID:9802980

  18. Preferential integration of a transfected marker gene into spontaneously expressed fragile sites of a breast cancer cell line.

    PubMed

    Matzner, Isabel; Savelyeva, Larissa; Schwab, Manfred

    2003-01-28

    Common fragile sites are non-randomly distributed unstable chromosomal regions thought to be hot spots for recombination. They appear as gaps, breaks and triradial figures when cells are cultured under conditions that inhibit replication or repair of DNA. The removal of replication-inhibitory challenges is followed by repair activation to restore the DNA damage at the fragile site. The breast cancer cell line MDA-MB-436 has a spontaneous and non-random expression pattern of fragile sites that appear to be related to the complex pattern of chromosomal rearrangements. The high frequency of which fragile sites are spontaneously activated should make MDA-MB-436 cells a powerful tool to study in greater detail the DNA sequences of a multiplicity of fragile sites. Here, we have explored if the DNA at spontaneously activated fragile sites in MDA-MB-436 cells can be genetically tagged by the repair-mediated insertion of an exogenously supplied drug resistance gene. The cells were transfected with pSV2Neo, stably transfected clones were selected with neomycin, and the sites of pSV2Neo integration were determined by fluorescent in situ hybridization. Eighty-eight of 100 isolated clones had a non-random distribution of a total of 112 pSV2Neo integrations. Of these, 95 integrations (85%) coincide with the position at which non-random gaps and breaks appear in the MDA-MB-436 cells. Forty-nine (44%) of the 112 integrations appeared to be at position of known fragile sites, 46 (41%) were at the non-random chromosomal sites not previously described as "true" fragile sites. It is possible, however, that these non-random instabilities signal of genomic regions equivalent to fragile sites, that either have not previously been detected due to low level expression or that are activated in a tissue- or cell-type-specific manner. Collectively, our results show a preferential integration of exogenous DNA into fragile sites and other non-random regions of high genomic instability in MDA

  19. Glucocorticoids Alter CRTC-CREB Signaling in Muscle Cells: Impact on PGC-1α Expression and Atrophy Markers

    PubMed Central

    Rahnert, Jill A.; Zheng, Bin; Hudson, Matthew B.; Woodworth-Hobbs, Myra E.; Price, S. Russ

    2016-01-01

    Muscle wasting associated with chronic diseases has been linked to decreased expression of PGC-1α and overexpression of PGC-1α counters muscle loss. CREB, in conjunction with the CREB-regulated transcription coactivator (CRTC2), is a positive modulator of PGC-1α transcription. We previously reported that PGC-1α expression is decreased in skeletal muscle of diabetic rats despite a high level of CREB phosphorylation (i.e., activation), suggesting that CRTC2-CREB signaling may be dysregulated. In this study, the relationship between CREB/CRTC signaling and PGC-1α expression was examined in L6 myotubes treated with dexamethasone (Dex, 48h) to induce atrophy. Dex decreased PGC-1α mRNA and protein as well as the levels of CRTC1 and CRTC2 in the nucleus. Dex also altered the nuclear levels of two known regulators of CRTC2 localization; the amount of calcinuerin catalytic A subunit (CnA) was decreased whereas SIK was increased. To assess PGC-1α transcription, muscle cells were transfected with a PGC-1α luciferase reporter plasmid (PGC-1α-Luc). Dex suppressed PGC-1α luciferase activity while both isobutylmethylxanthine (IBMX) and over-expression of CRTC1 or CRTC2 increased PGC-1α-Luc activity. Mutation of the CRE binding site from PGC-1α-Luc reporter attenuated the responses to both IBMX and the CRTC proteins. Consistent with the reporter gene results, overexpression of CRTC2 produced an increase in CRTC2 in the nucleus and in PGC-1α mRNA and PGC-1α protein. Overexpression of CRTC2 was not sufficient to prevent the decrease in PGC-1α mRNA or protein by Dex. In summary, these data suggest that attenuated CREB/CRTC signaling contributes to the decrease in PGC-1α expression during atrophy. PMID:27404111

  20. Redox-Sensitive Regulation of Myocardin-Related Transcription Factor (MRTF-A) Phosphorylation via Palladin in Vascular Smooth Muscle Cell Differentiation Marker Gene Expression.

    PubMed

    Lee, Minyoung; San Martín, Alejandra; Valdivia, Alejandra; Martin-Garrido, Abel; Griendling, Kathy K

    2016-01-01

    Vascular smooth muscle cells (VSMCs) undergo a phenotypic switch from a differentiated to synthetic phenotype in cardiovascular diseases such as atherosclerosis and restenosis. Our previous studies indicate that transforming growth factor-β (TGF-β) helps to maintain the differentiated phenotype by regulating expression of pro-differentiation genes such as smooth muscle α-actin (SMA) and Calponin (CNN) through reactive oxygen species (ROS) derived from NADPH oxidase 4 (Nox4) in VSMCs. In this study, we investigated the relationship between Nox4 and myocardin-related transcription factor-A (MRTF-A), a transcription factor known to be important in expression of smooth muscle marker genes. Previous work has shown that MRTF-A interacts with the actin-binding protein, palladin, although how this interaction affects MRTF-A function is unclear, as is the role of phosphorylation in MRTF-A activity. We found that Rho kinase (ROCK)-mediated phosphorylation of MRTF-A is a key event in the regulation of SMA and CNN in VSMCs and that this phosphorylation depends upon Nox4-mediated palladin expression. Knockdown of Nox4 using siRNA decreases TGF-β -induced palladin expression and MRTF-A phosphorylation, suggesting redox-sensitive regulation of this signaling pathway. Knockdown of palladin also decreases MRTF-A phosphorylation. These data suggest that Nox4-dependent palladin expression and ROCK regulate phosphorylation of MRTF-A, a critical factor in the regulation of SRF responsive gene expression. PMID:27088725

  1. Redox-Sensitive Regulation of Myocardin-Related Transcription Factor (MRTF-A) Phosphorylation via Palladin in Vascular Smooth Muscle Cell Differentiation Marker Gene Expression

    PubMed Central

    Lee, Minyoung; San Martín, Alejandra; Valdivia, Alejandra; Martin-Garrido, Abel; Griendling, Kathy K.

    2016-01-01

    Vascular smooth muscle cells (VSMCs) undergo a phenotypic switch from a differentiated to synthetic phenotype in cardiovascular diseases such as atherosclerosis and restenosis. Our previous studies indicate that transforming growth factor-β (TGF-β) helps to maintain the differentiated phenotype by regulating expression of pro-differentiation genes such as smooth muscle α-actin (SMA) and Calponin (CNN) through reactive oxygen species (ROS) derived from NADPH oxidase 4 (Nox4) in VSMCs. In this study, we investigated the relationship between Nox4 and myocardin-related transcription factor-A (MRTF-A), a transcription factor known to be important in expression of smooth muscle marker genes. Previous work has shown that MRTF-A interacts with the actin-binding protein, palladin, although how this interaction affects MRTF-A function is unclear, as is the role of phosphorylation in MRTF-A activity. We found that Rho kinase (ROCK)-mediated phosphorylation of MRTF-A is a key event in the regulation of SMA and CNN in VSMCs and that this phosphorylation depends upon Nox4-mediated palladin expression. Knockdown of Nox4 using siRNA decreases TGF-β -induced palladin expression and MRTF-A phosphorylation, suggesting redox-sensitive regulation of this signaling pathway. Knockdown of palladin also decreases MRTF-A phosphorylation. These data suggest that Nox4-dependent palladin expression and ROCK regulate phosphorylation of MRTF-A, a critical factor in the regulation of SRF responsive gene expression. PMID:27088725

  2. Transcriptional expression levels of cell stress marker genes in the Pacific oyster Crassostrea gigas exposed to acute thermal stress

    PubMed Central

    Farcy, Émilie; Voiseux, Claire; Lebel, Jean-Marc

    2008-01-01

    During the annual cycle, oysters are exposed to seasonal slow changes in temperature, but during emersion at low tide on sunny summer days, their internal temperature may rise rapidly, resulting in acute heat stress. We experimentally exposed oysters to a 1-h acute thermal stress and investigated the transcriptional expression level of some genes involved in cell stress defence mechanisms, including chaperone proteins (heat shock proteins Hsp70, Hsp72 and Hsp90 (HSP)), regulation of oxidative stress (Cu-Zn superoxide dismutase, metallothionein (MT)), cell detoxification (glutathione S-transferase sigma, cytochrome P450 and multidrug resistance (MDR1)) and regulation of the cell cycle (p53). Gene mRNA levels were quantified by reverse transcription-quantitative polymerase chain reaction and expressed as their ratio to actin mRNA, used as a reference. Of the nine genes studied, HSP, MT and MDR1 mRNA levels increased in response to thermal stress. We compared the responses of oysters exposed to acute heat shock in summer and winter and observed differences in terms of magnitude and kinetics. A larger increase was observed in September, with recovery within 48 h, whereas in March, the increase was smaller and lasted more than 2 days. The results were also compared with data obtained from the natural environment. Though the functional molecule is the protein and information at the mRNA level only has limitations, the potential use of mRNAs coding for cell stress defence proteins as early sensitive biomarkers is discussed. PMID:19002605

  3. Effects of space flight on surface marker expression

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, G.

    1999-01-01

    Space flight has been shown to affect expression of several cell surface markers. These markers play important roles in regulation of immune responses, including CD4 and CD8. The studies have involved flight of experimental animals and humans followed by analysis of tissue samples (blood in humans, rats and monkeys, spleen, thymus, lymph nodes and bone marrow in rodents). The degree and direction of the changes induced by space flight have been determined by the conditions of the flight. Also, there may be compartmentalization of the response of surface markers to space flight, with differences in the response of cells isolated from blood and local immune tissue. The same type of compartmentalization was also observed with cell adhesion molecules (integrins). In this case, the expression of integrins from lymph node cells differed from that of splenocytes isolated from rats immediately after space flight. Cell culture studies have indicated that there may be an inhibition in conversion of a precursor cell line to cells exhibiting mature macrophage characteristics after space flight, however, these experiments were limited as a result of technical difficulties. In general, it is clear that space flight results in alterations of cell surface markers. The biological significance of these changes remains to be established.

  4. Connective tissue cells expressing fibro/adipogenic progenitor markers increase under chronic damage: relevance in fibroblast-myofibroblast differentiation and skeletal muscle fibrosis.

    PubMed

    Contreras, Osvaldo; Rebolledo, Daniela L; Oyarzún, Juan Esteban; Olguín, Hugo C; Brandan, Enrique

    2016-06-01

    Fibrosis occurs in skeletal muscle under various pathophysiological conditions such as Duchenne muscular dystrophy (DMD), a devastating disease characterized by fiber degeneration that results in progressive loss of muscle mass, weakness and increased extracellular matrix (ECM) accumulation. Fibrosis is also observed after skeletal muscle denervation and repeated cycles of damage followed by regeneration. The ECM is synthesized largely by fibroblasts in the muscle connective tissue under normal conditions. Myofibroblasts, cells that express α-smooth muscle actin (α-SMA), play a role in many tissues affected by fibrosis. In skeletal muscle, fibro/adipogenic progenitors (FAPs) that express cell-surface platelet-derived growth factor receptor-α (PDGFR-α) and the transcription factor Tcf4 seem to be responsible for connective tissue synthesis and are good candidates for the origin of myofibroblasts. We show that cells positive for Tcf4 and PDGFR-α are expressed in skeletal muscle under normal conditions and are increased in various skeletal muscles of mdx mice, a murine model for DMD, wild type muscle after sciatic denervation and muscle subjected to chronic damage. These cells co-label with the myofibroblast marker α-SMA in dystrophic muscle but not in normal tissue. The Tcf4-positive cells lie near macrophages mainly concentrated in dystrophic necrotic-regenerating foci. The close proximity of Tcf4-positive cells to inflammatory cells and their previously described role in muscle regeneration might reflect an active interaction between these cell types and growth factors, possibly resulting in a muscular regenerative or fibrotic condition. PMID:26742767

  5. Blood Viscosity and the Expression of Inflammatory and Adhesion Markers in Homozygous Sickle Cell Disease Subjects with Chronic Leg Ulcers

    PubMed Central

    Bowers, Andre S.; Reid, Harvey L.; Greenidge, Andre; Landis, Clive; Reid, Marvin

    2013-01-01

    Objective To determine differences in TNF-α, IL-1β, IL-10, sICAM-1 concentrations, leg hypoxia and whole blood viscosity (WBV) at shear rates of 46 sec-1 and 230 sec-1 in persons with homozygous S sickle cell disease (SCD) with and without chronic leg ulceration and in AA genotype controls. Design & Methods: fifty-five age-matched participants were recruited into the study: 31 SS subjects without leg ulcers (SSn), 24 SS subjects with leg ulcers (SSu) and 18 AA controls. Haematological indices were measured using an AC.Tron Coulter Counter. Quantification of inflammatory, anti-inflammatory and adhesion molecules was performed by ELISA. Measurement of whole blood viscosity was done using a Wells Brookfield cone-plate viscometer. Quantification of microvascular tissue oxygenation was done by Visible Lightguide spectrophotometry. Results TNF-α and whole blood viscosity at 46 sec-1 and 230 sec-1 (1.75, 2.02 vs. 0.83, 1.26, p<0.05) were significantly greater in sickle cell disease subjects than in controls. There were no differences in plasma concentration of sICAM-1, IL-1β and IL-10 between SCD subjects and controls. IL-1β (median, IQR: 0.96, 1.7 vs. 0, 0.87; p<0.01) and sICAM-1 (226.5, 156.48 vs. 107.63, 121.5, p<0.005) were significantly greater in SSu group compared with SSn. However there were no differences in TNF-α (2, 3.98 vs. 0, 2.66) and IL-10 (13.34, 5.95 vs. 11.92, 2.99) concentrations between SSu and SSn. WBV in the SSu group at 46 sec-1 and at 230 Sec 1 were 1.9 (95%CI; 1.2, 3.1) and 2.3 (1.2, 4.4) times greater than in the SSn group. There were no differences in the degree of tissue hypoxia as determined by lightguide spectrophotometry. Conclusion Inflammatory, adhesion markers and WBV may be associated with leg ulceration in sickle cell disease by way of inflammation-mediated vasoocclusion/vasoconstriction. Impaired skin oxygenation does not appear to be associated with chronic ulcers in these subjects with sickle cell disease. PMID:23922670

  6. CFL1 expression levels as a prognostic and drug resistance marker in non-small-cell lung cancer

    PubMed Central

    Alves Castro, Mauro Antônio; Dal-Pizzol, Felipe; Zdanov, Stéphanie; Soares, Márcio; Müller, Carolina Beatriz; Lopes, Fernanda Martins; Zanotto-Filho, Alfeu; Fernandes, Marilda da Cruz; Fonseca Moreira, José Cláudio; Shacter, Emily; Klamt, Fábio

    2010-01-01

    BACKGROUND Non-small-cell lung cancer (NSCLC) is the major determinant of overall cancer mortality worldwide. Despite progress in molecular research current treatments offer limited benefits. Since NSCLC generates early metastasis and this behavior requires great cell motility, herein we assessed the potential value of CFL1 gene (main member of the invasion/metastasis pathway) as a prognostic and predictive NSCLC biomarker. METHODS Meta-data analysis of tumor tissue microarray was applied to examine expression of CFL1 in archival lung cancer samples from 111 patients and investigated its clinicopathologic significance. The robustness of our finding was validated using another independent data set. Finally, we assayed in vitro the role of CFL1 levels in tumor invasiveness and drug resistance using six human NSCLC cell lines with different basal degree of CFL1 gene expression. RESULTS CFL1 levels in biopsies discriminate between good and bad prognosis within early tumor stage (IA, IB and IIA/B), where high CFL1 levels are correlated with lower overall survival rate (P<0.0001). Biomarker performance was further analyzed by immunohistochemistry, hazard ratio (P<0.001) and receiver-operating characteristic (ROC) curve (area=0.787; P<0.001). High CFL1 mRNA levels and protein content are positive correlated with cellular invasiveness (determined by Matrigel Invasion Chamber System) and resistance (two-fold increase in drug GI50 value) against a list of 22 alkylating agents. Hierarchical clustering analysis of CFL1 gene network had the same robustness to stratified NSCLC patients. CONCLUSIONS Our study indicates that CFL1 gene and its functional gene network can be used as prognostic biomarker for NSCLC and could also guide chemotherapeutic interventions. PMID:20564088

  7. Prognostic investigations of B7-H1 and B7-H4 expression levels as independent predictor markers of renal cell carcinoma.

    PubMed

    Safaei, Hamid Reza; Rostamzadeh, Ayoob; Rahmani, Omid; Mohammadi, Mohsen; Ghaderi, Omar; Yahaghi, Hamid; Ahmadi, Koroosh

    2016-06-01

    In order to evaluate the correlation of B7-H4 and B7-H1 with renal cell carcinoma (RCC), we analyzed B7-H1 and B7-H4 expressions and their clinical significance by immunohistochemical method. Our result indicated that B7-H4-positive staining was detected in 58.13 % of RCC tissues (25 tissues tumors), and there were 18 tissues of patients without detectable B7-H4. Furthermore, 21 cases (48.83 %) were B7-H1-positive. Positive tumor expressions of B7-H4 and B7-H1 were markedly related to advanced TNM stage (P = 0.001; P = 0.014), high grade (P = 0.001; P = 002), and larger tumor size (P = 0.002; P = 024) in RCC tissues than patients with B7-H4-negative and B7-H1-negative in RCC tissues. The patients with B7-H1 and B7-H4-positive expressions were found to be markedly correlated with the overall survival of the patients (P < 0.05) and tended to have an increased risk of death when compared with negative expression groups. Univariate analysis showed that B7-H4 and B7-H1 expressions, TNM stage, high grade, and tumor size were significantly related to the prognosis of RCC. Furthermore, multivariate analysis showed that B7-H4 and B7-H1 expressions decreased overall survival. The adjusted HR for B7-H1 was 2.83 (95 % CI 1.210-2.971; P = 0.031) and also was 2.918 (95 % CI 1.243-3.102; P = 0.006) for B7-H4 that showed these markers were independent prognostic factors in RCC patients. The expressions of B7-H1 and B7-H4 in RCC patients indicate that these markers may be as a predictor of tumor development and death risk. Further investigations can be helpful to confirm B7-H1 and B7-H4 roles as an independent predictor of clinical RCC outcome. PMID:26687644

  8. Prediction of preservative sensitization potential using surface marker CD86 and/or CD54 expression on human cell line, THP-1.

    PubMed

    Sakaguchi, Hitoshi; Miyazawa, Masaaki; Yoshida, Yukiko; Ito, Yuichi; Suzuki, Hiroyuki

    2007-02-01

    Preservatives are important components in many products, but have a history of purported allergy. Several assays [e.g., guinea pig maximization test (GPMT), local lymph node assay (LLNA)] are used to evaluate allergy potential of preservatives. We recently developed the human Cell Line Activation Test (h-CLAT), an in vitro skin sensitization test using human THP-1 cells. This test evaluates the augmentation of CD86 and CD54 expression, which are key events in the sensitization process, as an indicator of allergy following treatment with test chemical. Earlier, we found that a sub-toxic concentration was needed for the up-regulation of surface marker expression. In this study, we further evaluate the capability of h-CLAT to predict allergy potential using eight preservatives. Cytotoxicity was determined using propidium iodide with flow cytometry analysis and five doses that produce a 95, 85, 75, 65, and 50% cell viability were selected. If a material did not have any cytotoxicity at the highest technical dose (HTD), five doses are set using serial 1.3 dilutions of the HTD. The test materials used were six known allergic preservatives (e.g., methylchloroisothiazolinone/methylisothiazolinone, formaldehyde), and two non-allergic preservatives (methylparaben and 4-hydroxybenzoic acid). All allergic preservatives augmented CD86 and/or CD54 expression, indicating h-CLAT correctly identified the allergens. No augmentation was observed with the non-allergic preservatives; also correctly identified by h-CLAT. In addition, we report two threshold concentrations that may be used to categorize skin sensitization potency like the LLNA estimated concentration that yield a three-fold stimulation (EC3) value. These corresponding values are the estimated concentration which gives a relative fluorescence intensity (RFI) = 150 for CD86 and an RFI = 200 for CD54. These data suggest that h-CLAT, using THP-1 cells, may be able to predict the allergy potential of preservatives and

  9. Ras protein expression as a marker for breast cancer

    PubMed Central

    CALAF, GLORIA M.; ABARCA-QUINONES, JORGE

    2016-01-01

    Breast cancer, the most common neoplasm in women of all ages, is the leading cause of cancer-related mortality in women worldwide. Markers to help to predict the risk of progression and ultimately provide non-surgical treatment options would be of great benefit. At present, there are no available molecular markers to predict the risk of carcinoma in situ progression to invasive cancer; therefore, all women diagnosed with this type of malignancy must undergo surgery. Breast cancer is a heterogeneous complex disease, and different patients respond differently to different treatments. In breast cancer, analysis using immunohistochemical markers remains an essential component of routine pathological examinations, and plays an import role in the management of the disease by providing diagnostic and prognostic strategies. The aim of the present study was to identify a marker that can be used as a prognostic tool for breast cancer. For this purpose, we firstly used an established breast cancer model. MCF-10F, a spontaneously immortalized breast epithelial cell line was transformed by exposure to estrogen and radiation. MCF-10F cells were exposed to low doses of high linear energy transfer (LET) α particles (150 keV/μm) of radiation, and subsequently cultured in the presence of 17β-estradiol. Three cell lines were used: i) MCF-10F cells as a control; ii) Alpha5 cells, a malignant and tumorigenic cell line; and iii) Tumor2 cells derived from Alpha5 cells injected into nude mice. Secondly, we also used normal, benign and malignant breast specimens obtained from biopsies. The results revealed that the MCF-10F cells were negative for c-Ha-Ras protein expression; however, the Alpha5 and Tumor2 cell lines were positive for c-Ha-Ras protein expression. The malignant breast samples were also strongly positive for c-Ha-Ras expression. The findings of our study indicate that c-Ha-Ras protein expression may be used as a marker to predict the progression of breast cancer; this

  10. Merkel polyomavirus-specific T cells fluctuate with Merkel cell carcinoma burden and express therapeutically targetable PD-1 and Tim-3 exhaustion markers

    PubMed Central

    Afanasiev, Olga K.; Yelistratova, Lola; Miller, Natalie; Nagase, Kotaro; Paulson, Kelly; Iyer, Jayasri; Ibrani, Dafina; Koelle, David M.; Nghiem, Paul

    2013-01-01

    Purpose The persistent expression of Merkel cell polyomavirus (MCPyV) oncoproteins in Merkel cell carcinoma (MCC) provides a unique opportunity to characterize immune evasion mechanisms in human cancer. We isolated MCPyV-specific T cells and determined their frequency and functional status. Experimental Design Multi-parameter flow cytometry panels and HLA/peptide tetramers were used to identify and characterize T cells from tumors (n=7) and blood (n=18) of MCC patients and control subjects (n=10). PD-1 ligand (PD-L1) and CD8 expression within tumors were determined using mRNA profiling (n=35) and immunohistochemistry (n=13). Results MCPyV-specific CD8 T cells were detected directly ex vivo from the blood of 7 of 11 (64%) patients with MCPyV-positive tumors. In contrast, 0 of 10 control subjects had detectable levels of these cells in their blood (p<0.01). MCPyV-specific T cells in serial blood specimens increased with MCC disease progression and decreased with effective therapy. MCPyV-specific CD8 T cells and MCC-infiltrating lymphocytes expressed higher levels of therapeutically targetable PD-1 and Tim-3 inhibitory receptors compared to T cells specific to other human viruses (p<0.01). PD-L1 was present in 9 of 13 (69%) MCCs and its expression was correlated with CD8 lymphocyte infiltration. Conclusions MCC-targeting T cells expand with tumor burden and express high levels of immune checkpoint receptors PD-1 and Tim-3. Reversal of these inhibitory pathways is therefore a promising therapeutic approach for this virus-driven cancer. PMID:23922299

  11. Regulator of G-Protein Signaling-5 Is a Marker of Hepatic Stellate Cells and Expression Mediates Response to Liver Injury

    PubMed Central

    Bahrami, Arya J.; Gunaje, Jagadambika J.; Hayes, Brian J.; Riehle, Kimberly J.; Kenerson, Heidi L.; Yeung, Raymond S.; Stempien-Otero, April S.; Campbell, Jean S.; Mahoney, William M.

    2014-01-01

    Liver fibrosis is mediated by hepatic stellate cells (HSCs), which respond to a variety of cytokine and growth factors to moderate the response to injury and create extracellular matrix at the site of injury. G-protein coupled receptor (GPCR)-mediated signaling, via endothelin-1 (ET-1) and angiotensin II (AngII), increases HSC contraction, migration and fibrogenesis. Regulator of G-protein signaling-5 (RGS5), an inhibitor of vasoactive GPCR agonists, functions to control GPCR-mediated contraction and hypertrophy in pericytes and smooth muscle cells (SMCs). Therefore we hypothesized that RGS5 controls GPCR signaling in activated HSCs in the context of liver injury. In this study, we localize RGS5 to the HSCs and demonstrate that Rgs5 expression is regulated during carbon tetrachloride (CCl4)-induced acute and chronic liver injury in Rgs5LacZ/LacZ reporter mice. Furthermore, CCl4 treated RGS5-null mice develop increased hepatocyte damage and fibrosis in response to CCl4 and have increased expression of markers of HSC activation. Knockdown of Rgs5 enhances ET-1-mediated signaling in HSCs in vitro. Taken together, we demonstrate that RGS5 is a critical regulator of GPCR signaling in HSCs and regulates HSC activation and fibrogenesis in liver injury. PMID:25290689

  12. Epithelial and organ-related marker expression in pituitary adenomas.

    PubMed

    Cykowski, Matthew D; Takei, Hidehiro; Baskin, David S; Rivera, Andreana L; Powell, Suzanne Z

    2016-08-01

    The histologic expression of epithelial and organ-related immunohistochemical markers in primary sellar region tumors has received little attention to date. This lack of empirical data may lead to mistaken assumptions in the evaluation of sellar region neoplasms. To address this issue, the frequency and specificity of epithelial (cytokeratin 7(CK7), CK20) and organ-related differentiation markers (gross cystic disease fluid protein-15 (GCDFP-15), thyroid transcription factor-1 (TTF-1), Napsin A, paired box 8 (PAX-8), hepatocyte paraffin 1 (HepPar1) and estrogen receptor (ER)) were studied in 40 patients with adenomas comprising five hormonal sub-types. Non-parametric statistical procedures were used to examine associations between marker expression and tumor sub-type. CK7 and CK20 immunoreactivity were seen in 48% and 8% of tumors, respectively, although never in a diffuse pattern. CK20 expression was nearly exclusive to corticotrophs, whereas CK7 frequently highlighted cells with dendritic-type morphology. The specificity of organ-related differentiation markers was 100% (monoclonal Napsin A, GCDFP-15 and TTF-1), 97% (HepPar1 and PAX-8), 90% (polyclonal Napsin A) and 72% (ER); no tumors demonstrated significant co-expression of these organ-related markers with either CK7 or CK20. The first major conclusion of this study is that CK7 staining in adenoma is more frequent than has been previously than has been previously described. CK7 immunoreactive cells often displayed a dendritic-type morphology, including within large macroadenomas, which raises the question as to whether these represent tumor cells with folliculo-stellate cell-type differentiation, as these also have dendritic cell-type morphology and express CK7 in non-neoplastic glands. The second major conclusion, which confirms earlier findings, is that CK20 staining is a very infrequent immunohistochemical finding in adenomas that is virtually limited to corticotrophs and thus is helpful in diagnostic

  13. Data defining markers of human neural stem cell lineage potential

    PubMed Central

    Oikari, Lotta E.; Okolicsanyi, Rachel K.; Griffiths, Lyn R.; Haupt, Larisa M.

    2016-01-01

    Neural stem cells (NSCs) and neural progenitor cells (NPCs) are self-renewing and multipotent cells, however, NPCs are considered to be more lineage-restricted with a reduced self-renewing capacity. We present data comparing the expression of 21 markers encompassing pluripotency, self-renewal (NSC) as well as neuronal and glial (astrocyte and oligodendrocyte) lineage specification and 28 extracellular proteoglycan (PG) genes and their regulatory enzymes between embryonic stem cell (ESC)-derived human NSCs (hNSC H9 cells, Thermo Fisher) and human cortex-derived normal human NPCs (nhNPCs, Lonza). The data demonstrates expression differences of multiple lineage and proteoglycan-associated genes between hNSC H9 cells and nhNPCs. Data interpretation of markers and proteoglycans defining NSC and neural cell lineage characterisation can be found in “Cell surface heparan sulfate proteoglycans as novel markers of human neural stem cell fate determination” (Oikari et al. 2015) [1]. PMID:26958640

  14. Data defining markers of human neural stem cell lineage potential.

    PubMed

    Oikari, Lotta E; Okolicsanyi, Rachel K; Griffiths, Lyn R; Haupt, Larisa M

    2016-06-01

    Neural stem cells (NSCs) and neural progenitor cells (NPCs) are self-renewing and multipotent cells, however, NPCs are considered to be more lineage-restricted with a reduced self-renewing capacity. We present data comparing the expression of 21 markers encompassing pluripotency, self-renewal (NSC) as well as neuronal and glial (astrocyte and oligodendrocyte) lineage specification and 28 extracellular proteoglycan (PG) genes and their regulatory enzymes between embryonic stem cell (ESC)-derived human NSCs (hNSC H9 cells, Thermo Fisher) and human cortex-derived normal human NPCs (nhNPCs, Lonza). The data demonstrates expression differences of multiple lineage and proteoglycan-associated genes between hNSC H9 cells and nhNPCs. Data interpretation of markers and proteoglycans defining NSC and neural cell lineage characterisation can be found in "Cell surface heparan sulfate proteoglycans as novel markers of human neural stem cell fate determination" (Oikari et al. 2015) [1]. PMID:26958640

  15. Preparation of Proper Immunogen by Cloning and Stable Expression of cDNA coding for Human Hematopoietic Stem Cell Marker CD34 in NIH-3T3 Mouse Fibroblast Cell Line

    PubMed Central

    Shafaghat, Farzaneh; Abbasi-Kenarsari, Hajar; Majidi, Jafar; Movassaghpour, Ali Akbar; Shanehbandi, Dariush; Kazemi, Tohid

    2015-01-01

    Purpose: Transmembrane CD34 glycoprotein is the most important marker for identification, isolation and enumeration of hematopoietic stem cells (HSCs). We aimed in this study to clone the cDNA coding for human CD34 from KG1a cell line and stably express in mouse fibroblast cell line NIH-3T3. Such artificial cell line could be useful as proper immunogen for production of mouse monoclonal antibodies. Methods: CD34 cDNA was cloned from KG1a cell line after total RNA extraction and cDNA synthesis. Pfu DNA polymerase-amplified specific band was ligated to pGEMT-easy TA-cloning vector and sub-cloned in pCMV6-Neo expression vector. After transfection of NIH-3T3 cells using 3 μg of recombinant construct and 6 μl of JetPEI transfection reagent, stable expression was obtained by selection of cells by G418 antibiotic and confirmed by surface flow cytometry. Results: 1158 bp specific band was aligned completely to reference sequence in NCBI database corresponding to long isoform of human CD34. Transient and stable expression of human CD34 on transfected NIH-3T3 mouse fibroblast cells was achieved (25% and 95%, respectively) as shown by flow cytometry. Conclusion: Cloning and stable expression of human CD34 cDNA was successfully performed and validated by standard flow cytometric analysis. Due to murine origin of NIH-3T3 cell line, CD34-expressing NIH-3T3 cells could be useful as immunogen in production of diagnostic monoclonal antibodies against human CD34. This approach could bypass the need for purification of recombinant proteins produced in eukaryotic expression systems. PMID:25789221

  16. Effects of the EVCAM chemical validation library on differentiation using marker gene expression in lmouse embryonic stem cells

    EPA Science Inventory

    The adherent cell differentiation and cytotoxicity (ACDC) assay was used to profile the effects of the ECVAM EST validation chemical library (19 compounds) on J1 mouse embryonic stem cells (mESC). PCR-based TaqMan Low Density Arrays (TLDA) provided a high-content assessment of al...

  17. Cell-surface markers for colon adenoma and adenocarcinoma

    PubMed Central

    Sewda, Kamini; Coppola, Domenico; Enkemann, Steven; Yue, Binglin; Kim, Jongphil; Lopez, Alexis S.; Wojtkowiak, Jonathan W.; Stark, Valerie E.; Morse, Brian; Shibata, David; Vignesh, Shivakumar; Morse, David L.

    2016-01-01

    Early detection of colorectal cancer (CRC) is crucial for effective treatment. Among CRC screening techniques, optical colonoscopy is widely considered the gold standard. However, it is a costly and invasive procedure with a low rate of compliance. Our long-term goal is to develop molecular imaging agents for the non-invasive detection of CRC by molecular imaging-based colonoscopy using CT, MRI or fluorescence. To achieve this, cell surface targets must be identified and validated. Here, we report the discovery of cell-surface markers that distinguish CRC from surrounding tissues that could be used as molecular imaging targets. Profiling of mRNA expression microarray data from patient tissues including adenoma, adenocarcinoma, and normal gastrointestinal tissues was used to identify potential CRC specific cell-surface markers. Of the identified markers, six were selected for further validation (CLDN1, GPR56, GRM8, LY6G6D/F, SLCO1B3 and TLR4). Protein expression was confirmed by immunohistochemistry of patient tissues. Except for SLCO1B3, diffuse and low expression was observed for each marker in normal colon tissues. The three markers with the greatest protein overexpression were CLDN1, LY6G6D/F and TLR4, where at least one of these markers was overexpressed in 97% of the CRC samples. GPR56, LY6G6D/F and SLCO1B3 protein expression was significantly correlated with the proximal tumor location and with expression of mismatch repair genes. Marker expression was further validated in CRC cell lines. Hence, three cell-surface markers were discovered that distinguish CRC from surrounding normal tissues. These markers can be used to develop imaging or therapeutic agents targeted to the luminal surface of CRC. PMID:26894861

  18. Potential role of nuclear PD-L1 expression in cell-surface vimentin positive circulating tumor cells as a prognostic marker in cancer patients

    PubMed Central

    Satelli, Arun; Batth, Izhar Singh; Brownlee, Zachary; Rojas, Christina; Meng, Qing H.; Kopetz, Scott; Li, Shulin

    2016-01-01

    Although circulating tumor cells (CTCs) have potential as diagnostic biomarkers for cancer, determining their prognostic role in cancer patients undergoing treatment is a challenge. We evaluated the prognostic value of programmed death-ligand 1 (PD-L1) expression in CTCs in colorectal and prostate cancer patients undergoing treatment. Peripheral blood samples were collected from 62 metastatic colorectal cancer patients and 30 metastatic prostate cancer patients. CTCs were isolated from the samples using magnetic separation with the cell-surface vimentin(CSV)-specific 84-1 monoclonal antibody that detects epithelial-mesenchymal transitioned (EMT) CTCs. CTCs were enumerated and analyzed for PD-L1 expression using confocal microscopy. PD-L1 expression was detectable in CTCs and was localized in the membrane and/or cytoplasm and nucleus. CTC detection alone was not associated with poor progression-free or overall survival in colorectal cancer or prostate cancer patients, but nuclear PD-L1 (nPD-L1) expression in these patients was significantly associated with short survival durations. These results demonstrated that nPD-L1 has potential as a clinically relevant prognostic biomarker for colorectal and prostate cancer. Our data thus suggested that use of CTC-based models of cancer for risk assessment can improve the standard cancer staging criteria and supported the incorporation of nPD-L1 expression detection in CTCs detection in such models. PMID:27363678

  19. Potential role of nuclear PD-L1 expression in cell-surface vimentin positive circulating tumor cells as a prognostic marker in cancer patients.

    PubMed

    Satelli, Arun; Batth, Izhar Singh; Brownlee, Zachary; Rojas, Christina; Meng, Qing H; Kopetz, Scott; Li, Shulin

    2016-01-01

    Although circulating tumor cells (CTCs) have potential as diagnostic biomarkers for cancer, determining their prognostic role in cancer patients undergoing treatment is a challenge. We evaluated the prognostic value of programmed death-ligand 1 (PD-L1) expression in CTCs in colorectal and prostate cancer patients undergoing treatment. Peripheral blood samples were collected from 62 metastatic colorectal cancer patients and 30 metastatic prostate cancer patients. CTCs were isolated from the samples using magnetic separation with the cell-surface vimentin(CSV)-specific 84-1 monoclonal antibody that detects epithelial-mesenchymal transitioned (EMT) CTCs. CTCs were enumerated and analyzed for PD-L1 expression using confocal microscopy. PD-L1 expression was detectable in CTCs and was localized in the membrane and/or cytoplasm and nucleus. CTC detection alone was not associated with poor progression-free or overall survival in colorectal cancer or prostate cancer patients, but nuclear PD-L1 (nPD-L1) expression in these patients was significantly associated with short survival durations. These results demonstrated that nPD-L1 has potential as a clinically relevant prognostic biomarker for colorectal and prostate cancer. Our data thus suggested that use of CTC-based models of cancer for risk assessment can improve the standard cancer staging criteria and supported the incorporation of nPD-L1 expression detection in CTCs detection in such models. PMID:27363678

  20. Tumour endothelial marker-1 is expressed in canine Haemangiopericytomas.

    PubMed

    Fujii, Y; Tsuchiya, T; Morita, R; Kimura, M; Suzuki, K; Machida, N; Mitsumori, K; Shibutani, M

    2013-01-01

    The aim of this study was to characterize immunohistochemically 18 cases of canine haemangiopericytoma (CHP) using two new candidate markers for pericytes, tumour endothelial marker (TEM)-1 and new glue (NG)-2, as well as the conventional mesenchymal cellular markers, vimentin, α-smooth muscle actin (α-SMA), desmin and von Willebrand factor (vWF). Because pericytes may have the same origin as endothelial or smooth muscle cells or the same differentiation potential as myofibroblasts, 17 cases of leiomyosarcoma (LMS), 20 cases of haemangiosarcoma (HS) and three cases of myofibroblastic sarcoma (MFS) were also examined. Expression of TEM-1 by >10% of the neoplastic population was observed in 94.4% (17/18) of haemangiopericytomas, 23.5% (4/17) of LMSs, 30.0% (6/20) of HSs and 66.7% (2/3) of MFSs. NG-2 expression by >10% of the neoplastic population was observed in 16.7% (3/18) of haemangiopericytomas, 52.9% (9/17) of LMSs, 0% (0/20) of HSs and 33.3% (1/3) of MFSs. Vimentin was expressed by all of tumours. In haemangiopericytoma, the incidence of positive immunoreactivity in >10% of the neoplastic population was 5.6% (1/18) for both α-SMA and desmin and 0% (0/18) for vWF. Considering the phenotypic features of cells expressing TEM-1, CHPs are thought to originate from immature vascular mural cells sharing their phenotype with myofibroblasts. NG-2 expression may be a phenotype of smooth muscle cells rather than pericytes in dogs. PMID:23489680

  1. Gene expression of markers of osteogenic differentiation of human mesenchymal cells on collagen I-modified microrough titanium surfaces.

    PubMed

    Morra, M; Cassinelli, C; Cascardo, G; Bollati, D; Baena, R Rodriguez Y

    2011-02-01

    Microrough, doubly acid etched titanium surfaces (Ti) were further modified by amination and covalent coupling of fibrillar collagen type I (ColTi). Human Mesenchymal Cells (HMC) adhesion and growth, and relevant osteogenic differentiation in nonosteogenic (basal) medium were evaluated by fluorescence microscopy, scanning electron microscopy, and RT-PCR for a three-week period. Results show strongly enhanced HMC adhesion and cell density at short experimental time on ColTi, together with complete spreading of the cell body over the microrough surface topography. RT-PCR analysis of several genes involved in osteogenesis indicate, since the first week of culturing, significant progression of HMC on ColTi along the osteogenic pathway. These results indicate that the adopted process of surface immobilization of collagen, mandatory to impart collagenase resistance in implant sites, does not impair biospecific interactions between HMC and collagen. Thus, it is possible to upgrade properties arising from the control of Ti surfaces topography by surface-chemistry driven enhanced recruitment of precursor osteogenic cells and pro-osteogenic stimula. PMID:21171164

  2. Differential Expression of Prognostic Proteomic Markers in Primary Tumour, Venous Tumour Thrombus and Metastatic Renal Cell Cancer Tissue and Correlation with Patient Outcome

    PubMed Central

    Laird, Alexander; O’Mahony, Fiach C.; Nanda, Jyoti; Riddick, Antony C. P.; O’Donnell, Marie; Harrison, David J.; Stewart, Grant D.

    2013-01-01

    Renal cell carcinoma (RCC) is the most deadly of urological malignancies. Metastatic disease affects one third of patients at diagnosis with a further third developing metastatic disease after extirpative surgery. Heterogeneity in the clinical course ensures predicting metastasis is notoriously difficult, despite the routine use of prognostic clinico-pathological parameters in risk stratification. With greater understanding of pathways involved in disease pathogenesis, a number of biomarkers have been shown to have prognostic significance, including Ki67, p53, vascular endothelial growth factor receptor 1 (VEGFR1) and ligand D (VEGFD), SNAIL and SLUG. Previous pathway analysis has been from study of the primary tumour, with little attention to the metastatic tumours which are the focus of targeted molecular therapies. As such, in this study a tissue microarray from 177 patients with primary renal tumour, renal vein tumour thrombus and/or RCC metastasis has been created and used with Automated Quantitative Analysis (AQUA) of immunofluorescence to study the prognostic significance of these markers in locally advanced and metastatic disease. Furthermore, this has allowed assessment of differential protein expression between the primary tumours, renal vein tumour thrombi and metastases. The results demonstrate that clinico-pathological parameters remain the most significant predictors of cancer specific survival; however, high VEGFR1 or VEGFD can predict poor cancer specific survival on univariate analysis for locally advanced and metastatic disease. There was significantly greater expression of Ki67, p53, VEGFR1, SLUG and SNAIL in the metastases compared with the primary tumours and renal vein tumour thrombi. With the exception of p53, these differences in protein expression have not been shown previously in RCC. This confirms the importance of proliferation, angiogenesis and epithelial to mesenchymal transition in the pathogenesis and metastasis of RCC. Importantly

  3. The Neuropeptide Y Y1 Receptor: A Diagnostic Marker? Expression in MCF-7 Breast Cancer Cells Is Down-Regulated by Antiestrogens In Vitro and in Xenografts

    PubMed Central

    Memminger, Martin; Keller, Max; Lopuch, Miroslaw; Pop, Nathalie; Bernhardt, Günther; von Angerer, Erwin; Buschauer, Armin

    2012-01-01

    The neuropeptide Y (NPY) Y1 receptor (Y1R) has been suggested as a tumor marker for in vivo imaging and as a therapeutic target. In view of the assumed link between estrogen receptor (ER) and Y1R in mammary carcinoma and with respect to the development of new diagnostic tools, we investigated the Y1R protein expression in human MCF-7 cell variants differing in ER content and sensitivity against antiestrogens. ER and Y1R expression were quantified by radioligand binding using [3H]-17β-estradiol and the Y1R selective antagonist [3H]-UR-MK114, respectively. The latter was used for cellular binding studies and for autoradiography of MCF-7 xenografts. The fluorescent ligands Cy5-pNPY (universal Y1R, Y2R and Y5R agonist) and UR-MK22 (selective Y1R antagonist), as well as the selective antagonists BIBP3226 (Y1R), BIIE0246 (Y2R) and CGP71683 (Y5R) were used to identify the NPY receptor subtype(s) by confocal microscopy. Y1R functionality was determined by mobilization of intracellular Ca2+. Sensitivity of MCF-7 cells against antiestrogen 4-hydroxytamoxifen correlated directly with the ER content. The exclusive expression of Y1Rs was confirmed by confocal microscopy. The Y1R protein was up-regulated (100%) by 17β-estradiol (EC50 20 pM) and the predominant role of ERα was demonstrated by using the ERα-selective agonist “propylpyrazole triol”. 17β-Estradiol-induced over-expression of functional Y1R protein was reverted by the antiestrogen fulvestrant (IC50 5 nM) in vitro. Furthermore, tamoxifen treatment of nude mice resulted in an almost total loss of Y1Rs in MCF-7 xenografts. In conclusion, the value of the Y1R as a target for therapy and imaging in breast cancer patients may be compromised due to Y1R down-regulation induced by hormonal (antiestrogen) treatment. PMID:23236424

  4. The expansion of adult stem/progenitor cells and their marker expression fluctuations are linked with pituitary plastic adaptation during gestation and lactancy.

    PubMed

    Vaca, Alicia Maldré; Guido, Carolina Beatriz; Sosa, Liliana Del Valle; Nicola, Juan Pablo; Mukdsi, Jorge; Petiti, Juan Pablo; Torres, Alicia Ines

    2016-08-01

    Extensive evidence has revealed variations in the number of hormone-producing cells in the pituitary gland, which occur under physiological conditions such as gestation and lactancy. It has been proposed that new hormone-producing cells differentiate from stem cells. However, exactly how and when this takes place is not clear. In this work, we used immunoelectron microscopy to identify adult pituitary stem/progenitor cells (SC/P) localized in the marginal zone (MZ), and additionally, we detected GFRa2-, Sox2-, and Sox9-positive cells in the adenoparenchyma (AP) by fluorescence microscopy. Then, we evaluated fluctuations of SC/P mRNA and protein level markers in MZ and AP during gestation and lactancy. An upregulation in stemness markers was shown at term of gestation (AT) in MZ, whereas there were more progenitor cell markers in the middle of gestation and active lactancy. Concerning committed cell markers, we detected a rise in AP at beginning of lactancy (d1L). We performed a BrdU uptake analysis in MZ and AP cells. The highest level of BrdU uptake was observed in MZ AT cells, whereas in AP this was detected in d1L, followed by a decrease in both the MZ and AP. Finally, we detected double immunostaining for BrdU-GFRa2 in MZ AT cells and BrdU-Sox9 in the AP d1L cells. Taken together, we hypothesize that the expansion of the SC/P niche took place mainly in MZ from pituitary rats in AT and d1L. These results suggest that the SC niche actively participates in pituitary plasticity during these reproductive states, contributing to the origin of hormone cell populations. PMID:27302752

  5. [Cancer stem cell markers and their prognostic value].

    PubMed

    Puchinskaya, M V

    2016-01-01

    Based on an analysis of a large number of sources of literature, the paper gives general information on the markers for cancer stem cells (CSCs), which allow the detection of this rare cell subpopulation, on the possibilities of estimating their immunohistochemical or immunofluorescent expression in tumors, and on the prognostic and predictive values of these molecules. For their detection, investigators generally use definite molecules, the so-called markers of CSCs, among which there are CD44, CD133, CD24, aldehyde dehydrogenase, and others. The expression of these molecules in the tumor tissue obtained from patients affects survival rates and permits the prediction of a response to therapy. A better insight into the immunophenotype of CSCs, the role of CSC markers in retaining the special properties of this call population, and the clinical significance of the expression of CSC markers will be able to elaborate new approaches to therapy for malignancies. PMID:27340717

  6. Effect of insoluble fibre on intestinal morphology and mRNA expression pattern of inflammatory, cell cycle and growth marker genes in a piglet model.

    PubMed

    Schedle, Karl; Pfaffl, Michael W; Plitzner, Christian; Meyer, Heinrich H D; Windisch, Wilhelm

    2008-12-01

    The effects of insoluble dietary fibre differing in lignin content on intestinal morphology and mRNA expression was tested in an animal model of 48 weaned piglets. Engaged fibre sources were wheat bran (rich in cellulose and hemicellulose) and pollen from Chinese Masson pine (Pinus massoniana) (rich in lignin), respectively. The fibre sources were added to a basal diet as follows: no addition (control), 3.0% wheat bran, 1.27% pine pollen, and 2.55% pine pollen. The 12 animals of each feeding group were fed four experimental diets ad libitum for 37 days and were then slaughtered for retrieving tissue samples from stomach, jejunum, ileum, colon and mesenterial lymph nodes. Both fibre sources increased villus height of mucosa in jejunum (+10% on average) and ileum (+16% on average). Results of mRNA expression rates of inflammatory, cell cycle and growth marker genes (NFkappaB, TNFalpha, TGFbeta, Caspase3, CDK4, IGF1) were specific to fibre source and tissue: wheat bran induced an up-regulation of NFkappaB in stomach and jejunum, as well as TNFalpha and TGFbeta, and Caspase3 in jejunum. Pine pollen induced down regulation of NFkappaB, TNFalpha, TGFbeta, Caspase3, CDK4 and IGF1 in the colon as well as up-regulation of NFkappaB and TGFbeta in mesenterial lymph nodes. Finally, an overall data comparison based on a hierarchical cluster analysis showed a close relation between gene regulation in different gut sections and organs, as well as between small intestine morphology and zootechnical performance. PMID:19143227

  7. Marker-specific sorting of rare cells using dielectrophoresis

    PubMed Central

    Hu, Xiaoyuan; Bessette, Paul H.; Qian, Jiangrong; Meinhart, Carl D.; Daugherty, Patrick S.; Soh, Hyongsok T.

    2005-01-01

    Current techniques in high-speed cell sorting are limited by the inherent coupling among three competing parameters of performance: throughput, purity, and rare cell recovery. Microfluidics provides an alternate strategy to decouple these parameters through the use of arrayed devices that operate in parallel. To efficiently isolate rare cells from complex mixtures, an electrokinetic sorting methodology was developed that exploits dielectrophoresis (DEP) in microfluidic channels. In this approach, the dielectrophoretic amplitude response of rare target cells is modulated by labeling cells with particles that differ in polarization response. Cell mixtures were interrogated in the DEP-activated cell sorter in a continuous-flow manner, wherein the electric fields were engineered to achieve efficient separation between the dielectrophoretically labeled and unlabeled cells. To demonstrate the efficiency of marker-specific cell separation, DEP-activated cell sorting (DACS) was applied for affinity-based enrichment of rare bacteria expressing a specific surface marker from an excess of nontarget bacteria that do not express this marker. Rare target cells were enriched by >200-fold in a single round of sorting at a single-channel throughput of 10,000 cells per second. DACS offers the potential for automated, surface marker-specific cell sorting in a disposable format that is capable of simultaneously achieving high throughput, purity, and rare cell recovery. PMID:16236724

  8. mgm 1, the earliest sex-specific germline marker in Drosophila, reflects expression of the gene esg in male stem cells.

    PubMed

    Streit, Adrian; Bernasconi, Luca; Sergeev, Pavel; Cruz, Alex; Steinmann-Zwicky, Monica

    2002-01-01

    The pathway that controls sex in Drosophila has been well characterized. The elements of this genetic hierarchy act cell-autonomously in somatic cells. We have previously shown that the sex of germ cells is determined by a different mechanism and that somatic and autonomously acting elements interact to control the choice between spermatogenesis and oogenesis. A target for both types of signals is the enhancer-trap mgm1, which monitors male-specific gene expression in germ cells. Here we report that mgm1 reflects the expression of escargot (esg), a member of the snail gene family, which are transcription factors with zink finger motifs. Genes of this family partially redundantly control a number of processes involving cell fate choices. The regulation of gene expression in germ cells by sex-specific esg enhancers is already seen in embryos. Therefore, autonomous and non-autonomous sex-specific factors that participate in germline sex determination are already present at this early stage. esg is expressed in the male gonad, both in somatic cells and in germline stem cells. We show that esg expression in the male germline is not required for proper sex determination and spermatogenesis, as functional sperm is differentiated by mutant germ cells in wild type hosts. However, somatic esg expression is required for the maintenance of male germline stem cells. PMID:11902678

  9. Elevated S100A9 expression in tumor stroma functions as an early recurrence marker for early-stage oral cancer patients through increased tumor cell invasion, angiogenesis, macrophage recruitment and interleukin-6 production

    PubMed Central

    Fang, Wei-Yu; Chen, Yi-Wen; Hsiao, Jenn-Ren; Liu, Chiang-Shin; Kuo, Yi-Zih; Wang, Yi-Ching; Chang, Kung-Chao; Tsai, Sen-Tien; Chang, Mei-Zhu; Lin, Siao-Han; Wu, Li-Wha

    2015-01-01

    S100A9 is a calcium-binding protein with two EF-hands and frequently deregulated in several cancer types, however, with no clear role in oral cancer. In this report, the expression of S100A9 in cancer and adjacent tissues from 79 early-stage oral cancer patients was detected by immunohistochemical staining. Although S100A9 protein was present in both tumor and stromal cells, only the early-stage oral cancer patients with high stromal expression had reduced recurrence-free survival. High stromal S100A9 expression was also significantly associated with non-well differentiation and recurrence. In addition to increasing cell migration and invasion, ectopic S100A9 expression in tumor cells promoted xenograft tumorigenesis as well as the dominant expression of myeloid cell markers and pro-inflammatory IL-6. The expression of S100A9 in one stromal component, monocytes, stimulated the aggressiveness of co-cultured oral cancer cells. We also detected the elevation of serum S100A9 levels in early-stage oral cancer patients of a separate cohort of 73 oral cancer patients. The release of S100A9 protein into extracellular milieu enhanced tumor cell invasion, transendothelial monocyte migration and angiogenic activity. S100A9-mediated release of IL-6 requires the crosstalk of tumor cells with monocytes through the activation of NF-κB and STAT-3. Early-stage oral cancer patients with both high S100A9 expression and high CD68+ immune infiltrates in stroma had shortest recurrence-free survival, suggesting the use of both S100A9 and CD68 as poor prognostic markers for oral cancer. Together, both intracellular and extracellular S100A9 exerts a tumor-promoting action through the activation of oral cancer cells and their associated stroma in oral carcinogenesis. PMID:26315114

  10. Plasticity of Blood- and Lymphatic Endothelial Cells and Marker Identification

    PubMed Central

    Keuschnigg, Johannes; Karinen, Sirkku; Auvinen, Kaisa; Irjala, Heikki; Mpindi, John-Patrick; Kallioniemi, Olli; Hautaniemi, Sampsa; Jalkanen, Sirpa; Salmi, Marko

    2013-01-01

    The distinction between lymphatic and blood vessels is biologically fundamental. Here we wanted to rigorously analyze the universal applicability of vascular markers and characteristics of the two widely used vascular model systems human microvascular endothelial cell line-1 (HMEC-1) and telomerase-immortalized microvascular endothelial cell line (TIME). Therefore we studied the protein expression and functional properties of the endothelial cell lines HMEC-1 and TIME by flow cytometry and in vitro flow assays. We then performed microarray analyses of the gene expression in these two cell lines and compared them to primary endothelial cells. Using bioinformatics we then defined 39 new, more universal, endothelial-type specific markers from 47 primary endothelial microarray datasets and validated them using immunohistochemistry with normal and pathological tissues. We surprisingly found that both HMEC-1 and TIME are hybrid blood- and lymphatic cells. In addition, we discovered great discrepancies in the previous identifications of blood- and lymphatic endothelium-specific genes. Hence we identified and validated new, universally applicable vascular markers. Summarizing, the hybrid blood-lymphatic endothelial phenotype of HMEC-1 and TIME is indicative of plasticity in the gene expression of immortalized endothelial cell lines. Moreover, we identified new, stable, vessel-type specific markers for blood- and lymphatic endothelium, useful for basic research and clinical diagnostics. PMID:24058540

  11. A Novel Population of Cells Expressing Both Hematopoietic and Mesenchymal Markers Is Present in the Normal Adult Bone Marrow and Is Augmented in a Murine Model of Marrow Fibrosis

    PubMed Central

    Ohishi, Masanobu; Ono, Wanida; Ono, Noriaki; Khatri, Richa; Marzia, Marilena; Baker, Emma K.; Root, Sierra H.; Wilson, Tremika Le-Shan; Iwamoto, Yukihide; Kronenberg, Henry M.; Aguila, Hector L.; Purton, Louise E.; Schipani, Ernestina

    2012-01-01

    Bone marrow (BM) fibrosis is a feature of severe hyperparathyroidism. Consistent with this observation, mice expressing constitutively active parathyroid hormone (PTH)/PTH-related peptide receptors (PPR) in osteoblasts (PPR*Tg) display BM fibrosis. To obtain insight into the nature of BM fibrosis in such a model, a double-mutant mouse expressing constitutively active PPR and green fluorescent protein (GFP) under the control of the type I collagen promoter (PPR*Tg/GFP) was generated. Confocal microscopy and flow cytometry revealed the presence of a cell population expressing GFP (GFP+) that was also positive for the hematopoietic marker CD45 in the BM of both PPR*Tg/GFP and control animals. This cell population was expanded in PPR*Tg/GFP. The existence of cells expressing both type I collagen and CD45 in the adult BM was confirmed by IHC and fluorescence-activated cell sorting. An analysis of total RNA extracted from sorted GFP+CD45+ cells showed that these cells produced type I collagen and PTH/PTH-related peptide receptor and receptor activator for NF-κB mRNAs, further supporting their features of being both mesenchymal and hematopoietic lineages. Similar cells, known as fibrocytes, are also present in pathological fibroses. Our findings, thus, indicate that the BM is a permissive microenvironment for the differentiation of fibrocyte-like cells and raise the possibility that these cells could contribute to the pathogenesis of BM fibrosis. PMID:22155108

  12. Pancreatic cancer stem cell markers and exosomes - the incentive push.

    PubMed

    Heiler, Sarah; Wang, Zhe; Zöller, Margot

    2016-07-14

    Pancreatic cancer (PaCa) has the highest death rate and incidence is increasing. Poor prognosis is due to late diagnosis and early metastatic spread, which is ascribed to a minor population of so called cancer stem cells (CSC) within the mass of the primary tumor. CSC are defined by biological features, which they share with adult stem cells like longevity, rare cell division, the capacity for self renewal, differentiation, drug resistance and the requirement for a niche. CSC can also be identified by sets of markers, which for pancreatic CSC (Pa-CSC) include CD44v6, c-Met, Tspan8, alpha6beta4, CXCR4, CD133, EpCAM and claudin7. The functional relevance of CSC markers is still disputed. We hypothesize that Pa-CSC markers play a decisive role in tumor progression. This is fostered by the location in glycolipid-enriched membrane domains, which function as signaling platform and support connectivity of the individual Pa-CSC markers. Outside-in signaling supports apoptosis resistance, stem cell gene expression and tumor suppressor gene repression as well as miRNA transcription and silencing. Pa-CSC markers also contribute to motility and invasiveness. By ligand binding host cells are triggered towards creating a milieu supporting Pa-CSC maintenance. Furthermore, CSC markers contribute to the generation, loading and delivery of exosomes, whereby CSC gain the capacity for a cell-cell contact independent crosstalk with the host and neighboring non-CSC. This allows Pa-CSC exosomes (TEX) to reprogram neighboring non-CSC towards epithelial mesenchymal transition and to stimulate host cells towards preparing a niche for metastasizing tumor cells. Finally, TEX communicate with the matrix to support tumor cell motility, invasion and homing. We will discuss the possibility that CSC markers are the initial trigger for these processes and what is the special contribution of CSC-TEX. PMID:27468191

  13. Pancreatic cancer stem cell markers and exosomes - the incentive push

    PubMed Central

    Heiler, Sarah; Wang, Zhe; Zöller, Margot

    2016-01-01

    Pancreatic cancer (PaCa) has the highest death rate and incidence is increasing. Poor prognosis is due to late diagnosis and early metastatic spread, which is ascribed to a minor population of so called cancer stem cells (CSC) within the mass of the primary tumor. CSC are defined by biological features, which they share with adult stem cells like longevity, rare cell division, the capacity for self renewal, differentiation, drug resistance and the requirement for a niche. CSC can also be identified by sets of markers, which for pancreatic CSC (Pa-CSC) include CD44v6, c-Met, Tspan8, alpha6beta4, CXCR4, CD133, EpCAM and claudin7. The functional relevance of CSC markers is still disputed. We hypothesize that Pa-CSC markers play a decisive role in tumor progression. This is fostered by the location in glycolipid-enriched membrane domains, which function as signaling platform and support connectivity of the individual Pa-CSC markers. Outside-in signaling supports apoptosis resistance, stem cell gene expression and tumor suppressor gene repression as well as miRNA transcription and silencing. Pa-CSC markers also contribute to motility and invasiveness. By ligand binding host cells are triggered towards creating a milieu supporting Pa-CSC maintenance. Furthermore, CSC markers contribute to the generation, loading and delivery of exosomes, whereby CSC gain the capacity for a cell-cell contact independent crosstalk with the host and neighboring non-CSC. This allows Pa-CSC exosomes (TEX) to reprogram neighboring non-CSC towards epithelial mesenchymal transition and to stimulate host cells towards preparing a niche for metastasizing tumor cells. Finally, TEX communicate with the matrix to support tumor cell motility, invasion and homing. We will discuss the possibility that CSC markers are the initial trigger for these processes and what is the special contribution of CSC-TEX. PMID:27468191

  14. Reviewing and Updating the Major Molecular Markers for Stem Cells

    PubMed Central

    Calloni, Raquel; Cordero, Elvira Alicia Aparicio; Henriques, João Antonio Pêgas

    2013-01-01

    Stem cells (SC) are able to self-renew and to differentiate into many types of committed cells, making SCs interesting for cellular therapy. However, the pool of SCs in vivo and in vitro consists of a mix of cells at several stages of differentiation, making it difficult to obtain a homogeneous population of SCs for research. Therefore, it is important to isolate and characterize unambiguous molecular markers that can be applied to SCs. Here, we review classical and new candidate molecular markers that have been established to show a molecular profile for human embryonic stem cells (hESCs), mesenchymal stem cells (MSCs), and hematopoietic stem cells (HSCs). The commonly cited markers for embryonic ESCs are Nanog, Oct-4, Sox-2, Rex-1, Dnmt3b, Lin-28, Tdgf1, FoxD3, Tert, Utf-1, Gal, Cx43, Gdf3, Gtcm1, Terf1, Terf2, Lefty A, and Lefty B. MSCs are primarily identified by the expression of CD13, CD29, CD44, CD49e, CD54, CD71, CD73, CD90, CD105, CD106, CD166, and HLA-ABC and lack CD14, CD31, CD34, CD45, CD62E, CD62L, CD62P, and HLA-DR expression. HSCs are mainly isolated based on the expression of CD34, but the combination of this marker with CD133 and CD90, together with a lack of CD38 and other lineage markers, provides the most homogeneous pool of SCs. Here, we present new and alternative markers for SCs, along with microRNA profiles, for these cells. PMID:23336433

  15. Transcriptional Profiling of Bipotential Embryonic Liver Cells to Identify Liver Progenitor Cell Surface Markers

    PubMed Central

    Ochsner, Scott A.; Strick-Marchand, Hélène; Qiu, Qiong; Venable, Susan; Dean, Adam; Wilde, Margaret; Weiss, Mary C.; Darlington, Gretchen J.

    2010-01-01

    The ability to purify to homogeneity a population of hepatic progenitor cells from adult liver is critical for their characterization prior to any therapeutic application. As a step in this direction, we have used a bipotential liver cell line from 14 days postcoitum mouse embryonic liver to compile a list of cell surface markers expressed specifically by liver progenitor cells. These cells, known as bipotential mouse embryonic liver (BMEL) cells, proliferate in an undifferentiated state and are capable of differentiating into hepatocyte-like and cholangiocyte-like cells in vitro. Upon transplantation, BMEL cells are capable of differentiating into hepatocytes and cholangiocytes in vivo. Microarray and Gene Ontology (GO) analysis of gene expression in the 9A1 and 14B3 BMEL cell lines grown under proliferating and differentiating conditions was used to identify cell surface markers preferentially expressed in the bipotential undifferentiated state. This analysis revealed that proliferating BMEL cells express many genes involved in cell cycle regulation, whereas differentiation of BMEL cells by cell aggregation causes a switch in gene expression to functions characteristic of mature hepatocytes. In addition, microarray data and protein analysis indicated that the Notch signaling pathway could be involved in maintaining BMEL cells in an undifferentiated stem cell state. Using GO annotation, a list of cell surface markers preferentially expressed on undifferentiated BMEL cells was generated. One marker, Cd24a, is specifically expressed on progenitor oval cells in livers of diethyl 1,4-dihydro-2,4,6-trimethyl-3,5-pyridinedicarboxylate-treated animals. We therefore consider Cd24a expression a candidate molecule for purification of hepatic progenitor cells. PMID:17641245

  16. Statistical classification of multivariate flow cytometry data analyzed by manual gating: stem, progenitor, and epithelial marker expression in nonsmall cell lung cancer and normal lung.

    PubMed

    Normolle, Daniel P; Donnenberg, Vera S; Donnenberg, Albert D

    2013-01-01

    The use of supervised classification to extract markers from primary flow cytometry data is an emerging field that has made significant progress, spurred by the growing complexity of multidimensional flow cytometry. Whether the markers are extracted without supervision or by conventional gate and region methods, the number of candidate variables identified is typically larger than the number of specimens (p > n) and many variables are highly intercorrelated. Thus, comparison across groups or treatments to determine which markers are significant is challenging. Here, we utilized a data set in which 86 variables were created by conventional manual analysis of individual listmode data files, and compared the application of five multivariate classification methods to discern subtle differences between the stem/progenitor content of 35 nonsmall cell lung cancer and adjacent normal lung specimens. The methods compared include elastic-net, lasso, random forest, diagonal linear discriminant analysis, and best single variable (best-1). We described a broadly applicable methodology consisting of: 1) variable transformation and standardization; 2) visualization and assessment of correlation between variables; 3) selection of significant variables and modeling; and 4) characterization of the quality and stability of the model. The analysis yielded both validating results (tumors are aneuploid and have higher light scatter properties than normal lung), as well as leads that require followup: Cytokeratin+ CD133+ progenitors are present in normal lung but reduced in lung cancer; diploid (or pseudo-diploid) CD117+CD44+ cells are more prevalent in tumor. We anticipate that the methods described here will be broadly applicable to a variety of multidimensional cytometry problems. PMID:23239514

  17. Suppression and restoration of primordial germ cell marker gene expression in channel catfish, Ictalurus punctatus, using knockdown constructs regulated by copper transport protein gene promoters: Potential for reversible transgenic sterilization.

    PubMed

    Su, Baofeng; Shang, Mei; Grewe, Peter M; Patil, Jawahar G; Peatman, Eric; Perera, Dayan A; Cheng, Qi; Li, Chao; Weng, Chia-Chen; Li, Ping; Liu, Zhanjiang; Dunham, Rex A

    2015-12-01

    Complementary DNA overexpression and short hairpin RNA interference approaches were evaluated for decreasing expression of primordial germ cell (PGC) marker genes and thereby sterilizing channel catfish, Ictalurus punctatus, by delivering knockdown constructs driven by a constitutive promoter from yeast and a copper transport protein gene into fish embryos by electroporation. Two PGC marker genes, nanos and dead end, were the target knockdown genes, and their expressions, along with that of an off-target gene, vasa, were evaluated temporally using real-time polymerase chain reaction. Copper sulfate was evaluated as a repressor compound. Some of the constructs knocked down PGC marker gene expression, and some of the constructs were partially repressed by application of 0.1-ppm copper sulfate. When the rate of sexual maturity was compared for three-year-old broodfish that had been exposed to the sterilizing constructs during embryologic development and controls that had not been exposed, several treatments had reduced sexual maturity for the exposed fish. Of two promoter systems evaluated, the one which had been designed to be less sensitive to copper generally was more effective at achieving sterilization and more responsive to repression. Knockdown constructs based on 3' nanos short hairpin RNA interference appeared to result in the best repression and restoration of normal sexual maturity. We conclude that these copper-based systems exhibited good potential for repressible transgenic sterilization. Optimization of this system could allow environmentally safe application of transgenic technology and might be applicable to other applications for aquatic organisms. PMID:26341409

  18. c-Met Expression Is a Marker of Poor Prognosis in Patients With Locally Advanced Head and Neck Squamous Cell Carcinoma Treated With Chemoradiation

    SciTech Connect

    Baschnagel, Andrew M.; Williams, Lindsay; Hanna, Alaa; Chen, Peter Y.; Krauss, Daniel J.; Pruetz, Barbara L.; Akervall, Jan; Wilson, George D.

    2014-03-01

    Purpose: To examine the prognostic significance of c-Met expression in relation to p16 and epidermal growth factor receptor (EGFR) in patients with locally advanced head and neck squamous cell carcinoma (HNSCC) treated with definitive concurrent chemoradiation. Methods and Materials: Archival tissue from 107 HNSCC patients treated with chemoradiation was retrieved, and a tissue microarray was assembled. Immunohistochemical staining of c-Met, p16, and EGFR was performed. c-Met expression was correlated with p16, EGFR, clinical characteristics, and clinical endpoints including locoregional control (LRC), distant metastasis (DM), disease-free survival (DFS), and overall survival (OS). Results: Fifty-one percent of patients were positive for p16, and 53% were positive for EGFR. Both p16-negative (P≤.001) and EGFR-positive (P=.019) status predicted for worse DFS. Ninety-three percent of patients stained positive for c-Met. Patients were divided into low (0, 1, or 2+ intensity) or high (3+ intensity) c-Met expression. On univariate analysis, high c-Met expression predicted for worse LRC (hazard ratio [HR] 2.27; 95% CI, 1.08-4.77; P=.031), DM (HR 4.41; 95% CI, 1.56-12.45; P=.005), DFS (HR 3.00; 95% CI, 1.68-5.38; P<.001), and OS (HR 4.35; 95% CI, 2.13-8.88; P<.001). On multivariate analysis, after adjustment for site, T stage, smoking history, and EGFR status, only high c-Met expression (P=.011) and negative p16 status (P=.003) predicted for worse DFS. High c-Met expression was predictive of worse DFS in both EGFR-positive (P=.032) and -negative (P=.008) patients. In the p16-negative patients, those with high c-Met expression had worse DFS (P=.036) than did those with low c-Met expression. c-Met expression was not associated with any outcome in the p16-positive patients. Conclusions: c-Met is expressed in the majority of locally advanced HNSCC cases, and high c-Met expression predicts for worse clinical outcomes. High c-Met expression predicted for worse DFS in p16

  19. Identification of cancer stem cell markers in human malignant mesothelioma cells

    SciTech Connect

    Ghani, Farhana Ishrat; Yamazaki, Hiroto; Iwata, Satoshi; Okamoto, Toshihiro; Aoe, Keisuke; Okabe, Kazunori; Mimura, Yusuke; Fujimoto, Nobukazu; Kishimoto, Takumi; Yamada, Taketo; Xu, C. Wilson; Morimoto, Chikao

    2011-01-14

    Research highlights: {yields} We performed serial transplantation of surgical samples and established new cell lines of malignant mesothelioma. {yields} SP cell and expressions of CD9/CD24/CD26 were often observed in mesothelioma cell lines. {yields} SP and CD24{sup +} cells proliferated by asymmetric cell division-like manner. CD9{sup +} and CD24{sup +} cells have higher potential to generate spheroid colony. {yields} The marker-positive cells have clear tendency to generate larger tumors in mice. -- Abstract: Malignant mesothelioma (MM) is an aggressive and therapy-resistant neoplasm arising from the pleural mesothelial cells and usually associated with long-term asbestos exposure. Recent studies suggest that tumors contain cancer stem cells (CSCs) and their stem cell characteristics are thought to confer therapy-resistance. However, whether MM cell has any stem cell characteristics is not known. To understand the molecular basis of MM, we first performed serial transplantation of surgical samples into NOD/SCID mice and established new cell lines. Next, we performed marker analysis of the MM cell lines and found that many of them contain SP cells and expressed several putative CSC markers such as CD9, CD24, and CD26. Interestingly, expression of CD26 closely correlated with that of CD24 in some cases. Sorting and culture assay revealed that SP and CD24{sup +} cells proliferated by asymmetric cell division-like manner. In addition, CD9{sup +} and CD24{sup +} cells have higher potential to generate spheroid colony than negative cells in the stem cell medium. Moreover, these marker-positive cells have clear tendency to generate larger tumors in mouse transplantation assay. Taken together, our data suggest that SP, CD9, CD24, and CD26 are CSC markers of MM and could be used as novel therapeutic targets.

  20. Cell surface markers on epithelial-Burkitt hybrid cells superinfected with Epstein-Barr virus.

    PubMed

    Glaser, R; Lenoir, G; Ferrone, S; Pellegrino, M A; de-Thé, G

    1977-07-01

    Attempts were made to superinfect two epithelial-Burkitt hybrid cell lines, designated D98/HR-1 and D98/Raji, with Epstein-Barr virus (EBV) and to investigate the expression of some cell surfacr markers including histocompatibility antigens, and the presence of B-cell markers, such as receptors for the third complement component and for monkey red blood cells. Successful superinfection of D98/HR-1 cells with EBV was made evident by the expression of early antigen and, to a lesser extent, virus capsid antigen. Only a rare D98/Raji cell was found to be positive for early antigen. The histocompatibility antigens of the parental cell lines D98, HR-1, and Raji were expressed on the surfaces of the hybrid cells. Receptors for third complement components b and d were not detected on the hybrid cells or on the D98P OR HR-1 cell lines; they were found, however, on the Raji cells, indicating that EBV receptors and complement receptors can be separated. The significance of the infection of the hybrid cells with EBV and the expression of cell surface markers is described. PMID:193641

  1. Detection of cytoplasmic and surface membrane markers in cells of some human hematopoietic cell lines.

    PubMed

    Koníková, E; Babusíková, O; Kusenda, J; Glasová, M

    1992-01-01

    The cells of some human leukemia-lymphoma T cell lines (JURKAT, MOLT4), B cell lines (DAUDI, U-266) and of myeloid U-937 cell line were characterized for their surface membrane and cytoplasmic marker profiles. The usefulness of some fixation and permeabilization methods of cell membrane for detection of cytoplasmic markers by flow cytometry was studied. The methods of cell fixation in suspension were found to be more sensitive than the methods of cell fixation in smears. With the very short buffered formaldehyde-acetone (BFA) fixation used in this study an optimal penetration of the monoclonal antibodies (MoAbs) through the plasma membrane and specific binding to the appropriate structures were achieved. CD22 antigen was detected in cytoplasm but not on membrane of DAUDI cells. In another B cell line, U-266, CD22 antigen was present both in cell membrane and cytoplasm. The marker corresponding to anti-CD19 MoAb was detected in cytoplasm but was absent on membrane of U-266 cells. Furthermore, the antigen estimated by anti-CD3 MoAb could be detected intracellularly in cells of both T cell lines tested, while it was absent on cell membrane of these cells. The phenotypic study of U-937 cells showed that the majority of cells expressed myeloid associated antigens. In our study the CD14 marker detected on cell surface membrane of U-937 cells was missing in their cytoplasm. The surface antigens remained intact after BFA fixation enabling a simultaneous detection of membrane and cytoplasmic markers in double immunofluorescence studies. Through this combination of markers minor cell populations could be detected. Human hematopoietic cell lines could serve as a reliable model system for a rapid and quantitative immunodiagnosis. PMID:1491722

  2. Comparison of Mesenchymal Stem Cell Markers in Multiple Human Adult Stem Cells

    PubMed Central

    Maleki, Masoud; Ghanbarvand, Farideh; Reza Behvarz, Mohammad; Ejtemaei, Mehri; Ghadirkhomi, Elham

    2014-01-01

    Objectives: Mesenchymal stem cells (MSCs) are adult stem cells which identified by adherence to plastic, expression of cell surface markers including CD44, CD90, CD105, CD106, CD166, and Stro-1, lack of the expression of hematopoietic markers, no immunogenic effect and replacement of damaged tissues. These properties led to development of progressive methods to isolation and characterization of MSCs from various sources for therapeutic applications in regenerative medicine. Methods: We isolated MSC-like cells from testis biopsies, ovary, hair follicle and umbilical cord Wharton’s jelly and investigated the expression of specific cell surface antigens using flow cytometry in order to verify stemness properties of these cells. Results: All four cell types adhered to plastic culture flask a few days after primary culture. All our cells positively expressed common MSC- specific cell surface markers. Moreover, our results revealed the expression of CD19and CD45 antigens in these cells. Conclusion: According to our results, high expression of CD44 in spermatogonial stem cells (SSCs), hair follicle stem cells (HFSCs),granulosa cells (GCs)and Wharton’s jelly- MSCs (WJ-MSCs)may help them to maintain stemness properties. Furthermore, we suggest that CD105+SSCs, HFSCs and WJ-MSCs revealed the osteogenic potential of these cells. Moreover, high expression of CD90 in SSCs and HFSCs may associate to higher growth and differentiation potential of these cells. Further, the presence of CD19 on SSCs and GCs may help them to efficiency in response to trans-membrane signals. Thus, these four types of MSCs may be useful in clinical applications and cell therapy. PMID:25473449

  3. Soft-focused extracorporeal shock waves increase the expression of tendon-specific markers and the release of anti-inflammatory cytokines in an adherent culture model of primary human tendon cells.

    PubMed

    de Girolamo, Laura; Stanco, Deborah; Galliera, Emanuela; Viganò, Marco; Lovati, Arianna Barbara; Marazzi, Monica Gioia; Romeo, Pietro; Sansone, Valerio

    2014-06-01

    Focused extracorporeal shock waves have been found to upregulate the expression of collagen and to initiate cell proliferation in healthy tenocytes and to positively affect the metabolism of tendons, promoting the healing process. Recently, soft-focused extracorporeal shock waves have also been found to have a significant effect on tissue regeneration. However, very few in vitro reports have dealt with the application of this type of shock wave to cells, and in particular, no previous studies have investigated the response of tendon cells to this impulse. We devised an original model to investigate the in vitro effects of soft-focused shock waves on a heterogeneous population of human resident tendon cells in adherent monolayer culture. Our results indicate that soft-focused extracorporeal shock wave treatment (0.17 mJ/mm(2)) is able to induce positive modulation of cell viability, proliferation and tendon-specific marker expression, as well as release of anti-inflammatory cytokines. This could prefigure a new rationale for routine employment of soft-focused shock waves to treat the failed healing status that distinguishes tendinopathies. PMID:24631378

  4. Peroxiredoxin-2 expression is increased in β-thalassemic mouse red cells but is displaced from the membrane as a marker of oxidative stress

    PubMed Central

    Matte, Alessandro; Low, Philip S.; Turrini, Franco; Bertoldi, Mariarita; Campanella, Maria Estela; Spano, Daniela; Pantaleo, Antonella; Siciliano, Angela; De Franceschi, Lucia

    2012-01-01

    Peroxiredoxin 2 (Prx2), the third most abundant cytoplasmic protein in red blood cells (RBCs), is involved in the defense against oxidative stress. Although much is known about Prx2 in healthy RBCs, its role in pathological RBCs remains largely unexplored. Here, we show that the expression and net content of Prx2 are markedly increased in RBCs from two mouse models of β-thalassemia (β-thal; Hbbth/th and Hbbth3/+ strains). We also demonstrate that the increased expression of Prx2 correlates with the severity of the disease and that the amount of Prx2 bound to the membrane is markedly reduced in β-thal mouse RBCs. To explore the impact of oxidative stress on Prx2 membrane association, we examined Prx2 dimerization and membrane translocation in murine RBCs exposed to various oxidants (phenylhydrazine, PHZ; diamide; H2O2). PHZ-treated RBCs, which mimic the membrane damage in β-thal RBCs, exhibited a kinetic correlation among Prx2 membrane displacement, intracellular methemoglobin levels, and hemichrome membrane association, suggesting the possible masking of Prx2 docking sites by membrane-bound hemichromes, providing a possible mechanism for the accumulation of oxidized/dimerized Prx2 in the cytoplasm and the increased membrane damage in β-thal RBCs. Thus, reduced access of Prx2 to the membrane in β-thal RBCs represents a new factor that could contribute to the oxidative damage characterizing the pathology. PMID:20488244

  5. Red wine polyphenolics reduce the expression of inflammation markers in human colon-derived CCD-18Co myofibroblast cells: potential role of microRNA-126.

    PubMed

    Angel-Morales, Gabriela; Noratto, Giuliana; Mertens-Talcott, Susanne

    2012-07-01

    Chronic intestinal inflammation is an established risk factor for colon cancer. Polyphenolic compounds from fruit and vegetables have been shown to have anti-inflammatory properties in several cell lines and tissues. However, their anti-inflammatory mechanisms, involving microRNAs in the regulation of inflammation, have not been extensively investigated. The goal of this research was to assess the chemopreventive potential of polyphenolics extracted from red wine made with Lenoir grapes (Vitis aestivalis hybrid) in human colon-derived CCD-18Co myofibroblasts cells, and to assess the potential involvement of microRNA-126 (miR-126) in the underlying mechanisms. The results show that the polyphenolic red wine extract (WE) decreased mRNA expression of lipopolysaccharide (LPS)-induced inflammatory mediators NF-kB, ICAM-1, VCAM-1, and PECAM-1 by 1.95-, 1.98-, 1.52-, and 1.84-fold respectively, in a dose dependent manner (0-100 μg of gallic acid equivalent (GAE) mL(-1)) down to 0.80-, 0.79-, 0.66-, and 0.68-fold in DMSO-treated control cells not challenged with LPS, respectively. Correspondingly, miR-126, which has a target region within the 3'-UTR of VCAM-1 mRNA, was increased 2.79-fold by the WE at 100 μg GAE mL(-1). The potential role of miR-126 was confirmed by transfecting cells with a specific miR-126-antagomir, as-miR-126. Transfection with as-miR-126 down-regulated miR-126 to 0.71-fold in the control cells and up-regulated mRNA levels of NF-kB, ICAM-1, VCAM-1, and PECAM-1 to 1.80-, 1.49-, 2.30-, and 1.95-fold of controls, respectively. WE at 100 μg GAE mL(-1) partially reversed the effects of the as-miR-126 to 1.02-, 1.01-, 1.04-, and 1.05-fold, for mRNA levels of NF-kB, ICAM-1, VCAM-1, and PECAM-1 respectively. This indicates the potential role of miR-126 in the anti-inflammatory properties of polyphenolics from red wine in CCD-18Co myofibroblasts cells. PMID:22572890

  6. Identification of novel markers for mouse CD4 T follicular helper cells

    PubMed Central

    Iyer, Smita S.; Latner, Donald R.; Zilliox, Michael J.; McCausland, Megan; Akondy, Rama S.; MacMaster-Penaloza, Pablo; Hale, J. Scott; Ye, Lilin; Mohammed, Ata-Ur-Rasheed; Amara, Rama R.; Ahmed, Rafi

    2013-01-01

    SUMMARY CD4 T-follicular helper cells (TFH) are central for generation of long-term B cell immunity. A defining phenotypic attribute of TFH cells is expression of the chemokine receptor CXCR5, and TFH cells are typically identified by co-expression of CXCR5 together with other markers such as programmed death (PD)-1. Herein we report high-level expression of the nutrient transporter, folate receptor (FR)4 on TFH cells in acute viral infection. Distinct from the expression profile of conventional TFH markers, FR4 was highly expressed by naive CD4 T cells, was down regulated after activation and subsequently re-expressed on TFH cells. Furthermore, FR4 was maintained, albeit at lower levels, on memory TFH cells. Comparative gene expression profiling of FR4hi, versus FR4lo antigen-specific CD4 effector T cells revealed a molecular signature consistent with TFH and TH1 subsets, respectively. Interestingly, genes involved in the purine metabolic pathway, including the ecto-enzyme CD73, were enriched in TFH cells compared to TH1 cells, and phenotypic analysis confirmed expression of CD73 on TFH cells. As there is now considerable interest in developing vaccines that will induce optimal TFH cell responses, the identification of two novel cell surface markers should be useful in characterization and identification of TFH cells following vaccination and infection. PMID:24030473

  7. Ultrasensitive detection of DNA and protein markers in cancer cells

    PubMed Central

    Smolina, Irina V.; Broude, Natalia E.

    2015-01-01

    Cancer cells differ from normal cells in various parameters, and these differences are caused by genomic mutations and consequential altered gene expression. The genetic and functional heterogeneity of tumor cells is a major challenge in cancer research, detection, and effective treatment. As such, the use of diagnostic methods is important to reveal this heterogeneity at the single-cell level. Droplet microfluidic devices are effective tools that provide exceptional sensitivity for analyzing single cells and molecules. In this review, we highlight two novel methods that employ droplet microfluidics for ultra-sensitive detection of nucleic acids and protein markers in cancer cells. We also discuss the future practical applications of these methods. PMID:26487959

  8. Buthionine sulfoximine, an inhibitor of glutathione biosynthesis, induces expression of soluble epoxide hydrolase and markers of cellular hypertrophy in a rat cardiomyoblast cell line: roles of the NF-κB and MAPK signaling pathways.

    PubMed

    Abdelhamid, Ghada; El-Kadi, Ayman O S

    2015-05-01

    Evidence suggests that upregulation of soluble epoxide hydrolase (sEH) is associated with the development of myocardial infarction, dilated cardiomyopathy, cardiac hypertrophy, and heart failure. However, the upregulation mechanism is still unknown. In this study, we treated H9C2 cells with buthionine sulfoximine (BSO) to explore whether oxidative stress upregulates sEH gene expression and to identify the molecular and cellular mechanisms behind this upregulatory response. Real-time PCR and Western blot analyses were used to measure mRNA and protein expression, respectively. We demonstrated that BSO significantly upregulated sEH at mRNA levels in a concentration- and time-dependent manner, leading to a significant increase in the cellular hypertrophic markers, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). Furthermore, BSO significantly increased the cytosolic phosphorylated IκB-α and translocation of NF-κB p50 subunits, as measured by Western blot analysis. This level of translocation was paralleled by an increase in the DNA-binding activity of NF-κB P50 subunits. Moreover, our results demonstrated that pretreatment with the NF-κB inhibitor PDTC significantly inhibited BSO-mediated induction of sEH and cellular hypertrophic marker gene expression in a dose-dependent manner. Additionally, mitogen-activated protein kinases (MAPKs) were transiently phosphorylated by BSO treatment. To understand further the role of MAPKs pathway in BSO-mediated induction of sEH mRNA, we examined the role of extracellular signal-regulated kinase (ERK), c-JunN-terminal kinase (JNK), and p38 MAPK. Indeed, treatment with the MEK/ERK signal transduction inhibitor, PD98059, partially blocked the activation of IκB-α and translocation of NF-κB p50 subunits induced by BSO. Moreover, pretreatment with MEK/ERK signal transduction inhibitors, PD98059 and U0126, significantly inhibited BSO-mediated induction of sEH and cellular hypertrophic marker gene expression

  9. CD271 as a marker to identify mesenchymal stem cells from diverse sources before culture

    PubMed Central

    Álvarez-Viejo, María; Menéndez-Menéndez, Yolanda; Otero-Hernández, Jesús

    2015-01-01

    Mesenchymal stem cells, due to their characteristics are ideal candidates for cellular therapy. Currently, in culture these cells are defined by their adherence to plastic, specific surface antigen expression and multipotent differentiation potential. However, the in vivo identification of mesenchymal stem cells, before culture, is not so well established. Pre-culture identification markers would ensure higher purity than that obtained with selection based on adherence to plastic. Up until now, CD271 has been described as the most specific marker for the characterization and purification of human bone marrow mesenchymal stem cells. This marker has been shown to be specifically expressed by these cells. Thus, CD271 has been proposed as a versatile marker to selectively isolated and expand multipotent mesenchymal stem cells with both immunosuppressive and lymphohematopoietic engraftment-promoting properties. This review focuses on this marker, specifically on identification of mesenchymal stem cells from different tissues. Literature revision suggests that CD271 should not be defined as a universal marker to identify mesenchymal stem cells before culture from different sources. In the case of bone marrow or adipose tissue, CD271 could be considered a quite suitable marker; however this marker seems to be inadequate for the isolation of mesenchymal stem cells from other tissues such as umbilical cord blood or wharton’s jelly among others. PMID:25815130

  10. CD271 as a marker to identify mesenchymal stem cells from diverse sources before culture.

    PubMed

    Álvarez-Viejo, María; Menéndez-Menéndez, Yolanda; Otero-Hernández, Jesús

    2015-03-26

    Mesenchymal stem cells, due to their characteristics are ideal candidates for cellular therapy. Currently, in culture these cells are defined by their adherence to plastic, specific surface antigen expression and multipotent differentiation potential. However, the in vivo identification of mesenchymal stem cells, before culture, is not so well established. Pre-culture identification markers would ensure higher purity than that obtained with selection based on adherence to plastic. Up until now, CD271 has been described as the most specific marker for the characterization and purification of human bone marrow mesenchymal stem cells. This marker has been shown to be specifically expressed by these cells. Thus, CD271 has been proposed as a versatile marker to selectively isolated and expand multipotent mesenchymal stem cells with both immunosuppressive and lymphohematopoietic engraftment-promoting properties. This review focuses on this marker, specifically on identification of mesenchymal stem cells from different tissues. Literature revision suggests that CD271 should not be defined as a universal marker to identify mesenchymal stem cells before culture from different sources. In the case of bone marrow or adipose tissue, CD271 could be considered a quite suitable marker; however this marker seems to be inadequate for the isolation of mesenchymal stem cells from other tissues such as umbilical cord blood or wharton's jelly among others. PMID:25815130

  11. ICAM1 Is a Potential Cancer Stem Cell Marker of Esophageal Squamous Cell Carcinoma

    PubMed Central

    Tsai, Sheng-Ta; Wang, Po-Jen; Liou, Nia-Jhen; Lin, Pei-Shan; Chen, Chung-Hsuan; Chang, Wei-Chao

    2015-01-01

    Esophageal squamous cell carcinoma (ESCC) accounts for about 90% of esophageal cancer diagnosed in Asian countries, with its incidence on the rise. Cancer stem cell (CSC; also known as tumor-initiating cells, TIC) is inherently resistant to cytotoxic chemotherapy and radiation and associates with poor prognosis and therapy failure. Targeting therapy against cancer stem cell has emerged as a potential therapeutic approach to develop effective regimens. However, the suitable CSC marker of ESCC for identification and targeting is still limited. In this study, we screened the novel CSC membrane protein markers using two distinct stemness characteristics of cancer cell lines by a comparative approach. After the validation of RT-PCR, qPCR and western blot analyses, intercellular adhesion molecule 1 (ICAM1) was identified as a potential CSC marker of ESCC. ICAM1 promotes cancer cell migration, invasion as well as increasing mesenchymal marker expression and attenuating epithelial marker expression. In addition, ICAM1 contributes to CSC properties, including sphere formation, drug resistance, and tumorigenesis in mouse xenotransplantation model. Based on the analysis of ICAM1-regulated proteins, we speculated that ICAM1 regulates CSC properties partly through an ICAM1-PTTG1IP-p53-DNMT1 pathway. Moreover, we observed that ICAM1 and CD44 could have a compensation effect on maintaining the stemness characteristics of ESCC, suggesting that the combination of multi-targeting therapies should be under serious consideration to acquire a more potent therapeutic effect on CSC of ESCC. PMID:26571024

  12. CD271 is an imperfect marker for melanoma initiating cells

    PubMed Central

    Cheli, Yann; Bonnazi, Vanessa F.; Jacquel, Arnaud; Allegra, Maryline; Donatis, Gian Marco De; Bahadoran, Philippe; Bertolotto, Corine; Ballotti, Robert

    2014-01-01

    Understanding the molecular and cellular processes underlying melanoma plasticity and heterogeneity is of paramount importance to improve the efficiency of current treatment and to overcome resistance to chemotherapy drugs. The notion of plasticity and heterogeneity implies the existence of melanoma cell populations with different phenotypic and tumorigenic properties. Using melanoma cell lines and melanoma cells freshly isolated from patient biopsies, we investigated the relationship between ABCB5+, CD271+ and low-MITF, expressing populations that were reported to display melanoma initiating cell properties. Here, we showed that ABCB5+ and CD271+ populations poorly overlap. However, we found that the CD271+ population is enriched in low-MITF cells and expresses a higher level of stemness genes, such as OCT4, NANOG and NES. These features could explain the increased tumorigenicity of the CD271+ cells. The rapid conversion of CD271+ to CD271− cells in vitro demonstrates the plasticity ability of melanoma cells. Finally, we observed that the transient slow-growing population contains only CD271+ cells that are highly tumorigenic. However, the fast growing/CD271+ population exhibits a poor tumorigenic ability. Taking together, our data show that CD271 is an imperfect marker for melanoma initiating cells, but may be useful to identify melanoma cells with an increased stemness and tumorigenic potential. PMID:25105565

  13. Aberrant Expression of the Cell Polarity Regulator aPKCλ/ι is Associated With Disease Progression in Cervical Intraepithelial Neoplasia (CIN): A Possible Marker for Predicting CIN Prognosis.

    PubMed

    Mizushima, Taichi; Asai-Sato, Mikiko; Akimoto, Kazunori; Nagashima, Yoji; Taguri, Masataka; Sasaki, Kazunori; Nakaya, Masa-aki; Asano, Ryoko; Tokinaga, Aya; Kiyono, Tohru; Hirahara, Fumiki; Ohno, Shigeo; Miyagi, Etsuko

    2016-03-01

    Atypical protein kinase C λ/ι (aPKCλ/ι) is a regulator of epithelial cellular polarity. It is also overexpressed in several cancers and functions in cell proliferation and invasion. Therefore, we hypothesized that aPKCλ/ι may be involved in development and progression of cervical intraepithelial neoplasia (CIN), the precancerous disease of cervical cancer induced by human papillomavirus. To do this, we investigated the relationship between aPKCλ/ι expression and CIN. aPKCλ/ι expression level and subcellular localization were assessed in 192 CIN biopsy samples and 13 normal epithelial samples using immunohistochemistry. aPKCλ/ι overexpression (normal epithelium, 7.7%; CIN1, 41.7%; CIN2/3, 76.4%) and aPKCλ/ι nuclear localization (normal epithelium, 0.0%; CIN1, 36.9%; CIN2/3, 78.7%) were higher in CIN samples than normal samples (P<0.05), suggesting that CIN grade is related to aPKCλ/ι overexpression and nuclear localization. Then, 140 CIN cases were retrospectively analyzed for 4-yr cumulative disease progression and regression rates using the Cox proportional hazards model. CIN1 cases with aPKCλ/ι overexpression or aPKCλ/ι nuclear localization had a higher progression rate than CIN1 cases with normal aPKCλ/ι expression levels or cytoplasmic localization (62.5% vs. 9.7% and 63.1% vs. 9.4%, respectively; P<0.001). Multivariate analysis indicated that human papillomavirus types 16 and 18, aPKCλ/ι overexpression (hazard ratio=4.26; 95% confidence interval, 1.50-12.1; P=0.007), and aPKCλ/ι nuclear localization (hazard ratio=3.59; 95% confidence interval, 1.24-10.4; P=0.019) were independent risk factors for CIN1 progression. In conclusion, aPKCλ/ι could be useful for the therapeutic management of patients with CIN, particularly those with non-human papillomavirus 16/18 types. PMID:26535980

  14. [Cordyceps sinensis enhances lymphocyte proliferation and CD markers expression in simulated microgravity environment].

    PubMed

    Hao, Tong; Li, Jun-Jie; Du, Zhi-Yan; Duan, Cui-Mi; Wang, Yan-Meng; Wang, Chang-Yong; Song, Jing-Ping; Wang, Lin-Jie; Li, Ying-Hui; Wang, Yan

    2012-10-01

    This study was aimed to explore the effect of cordyceps sinensis enhancing lymphocyte proliferation and surface CD marker expression in simulated microgravity environment. The splenic lymphocytes were separated from mice and cultured in the rotary cell culture system simulated microgravity environment. The cells were treated with different concentration of cordyceps sinensis solution (0, 6.25, 12.5, 25 and 50 µg/ml) for 24, 48 and 72 h respectively, then the cells were harvested, and analyzed for cell proliferation and the expression of cell surface markers (CD4 and CD8). The results showed that under simulated microgravity environment, the lymphocyte proliferation was inhibited. When the concentration of cordyceps sinensis was 25 or 50 µg/ml, the lymphocyte proliferation, CD4 and CD8 expressions all increased, but 50 µg/ml cordyceps sinensis could inhibit the proliferation ability with the time prolonging. It is concluded that the suitable concentration of cordyceps sinensis displayed the ability to enhance the lymphocyte proliferation and CD marker expression in simulated microgravity environment. These results may be valuable for screening drugs which can be potentially against immunosuppression under simulated microgravity. PMID:23114150

  15. Functional characteristics of neonatal rat β cells with distinct markers.

    PubMed

    Martens, G A; Motté, E; Kramer, G; Stangé, G; Gaarn, L W; Hellemans, K; Nielsen, J H; Aerts, J M; Ling, Z; Pipeleers, D

    2014-02-01

    Neonatal β cells are considered developmentally immature and hence less glucose responsive. To study the acquisition of mature glucose responsiveness, we compared glucose-regulated redox state, insulin synthesis, and secretion of β cells purified from neonatal or 10-week-old rats with their transcriptomes and proteomes measured by oligonucleotide and LC-MS/MS profiling. Lower glucose responsiveness of neonatal β cells was explained by two distinct properties: higher activity at low glucose and lower activity at high glucose. Basal hyperactivity was associated with higher NAD(P)H, a higher fraction of neonatal β cells actively incorporating (3)H-tyrosine, and persistently increased insulin secretion below 5 mM glucose. Neonatal β cells lacked the steep glucose-responsive NAD(P)H rise between 5 and 10 mM glucose characteristic for adult β cells and accumulated less NAD(P)H at high glucose. They had twofold lower expression of malate/aspartate-NADH shuttle and most glycolytic enzymes. Genome-wide profiling situated neonatal β cells at a developmental crossroad: they showed advanced endocrine differentiation when specifically analyzed for their mRNA/protein level of classical neuroendocrine markers. On the other hand, discrete neonatal β cell subpopulations still expressed mRNAs/proteins typical for developing/proliferating tissues. One example, delta-like 1 homolog (DLK1) was used to investigate whether neonatal β cells with basal hyperactivity corresponded to a more immature subset with high DLK1, but no association was found. In conclusion, the current study supports the importance of glycolytic NADH-shuttling in stimulus function coupling, presents basal hyperactivity as novel property of neonatal β cells, and provides potential markers to recognize intercellular developmental differences in the endocrine pancreas. PMID:24049066

  16. Standard melanoma-associated markers do not identify the MM127 metastatic melanoma cell line

    PubMed Central

    Haridas, Parvathi; McGovern, Jacqui A.; Kashyap, Abhishek S.; McElwain, D. L. Sean; Simpson, Matthew J.

    2016-01-01

    Reliable identification of different melanoma cell lines is important for many aspects of melanoma research. Common markers used to identify melanoma cell lines include: S100; HMB-45; and Melan-A. We explore the expression of these three markers in four different melanoma cell lines: WM35; WM793; SK-MEL-28; and MM127. The expression of these markers is examined at both the mRNA and protein level. Our results show that the metastatic cell line, MM127, cannot be detected using any of the commonly used melanoma-associated markers. This implies that it would be very difficult to identify this particular cell line in a heterogeneous sample, and as a result this cell line should be used with care. PMID:27087056

  17. Standard melanoma-associated markers do not identify the MM127 metastatic melanoma cell line.

    PubMed

    Haridas, Parvathi; McGovern, Jacqui A; Kashyap, Abhishek S; McElwain, D L Sean; Simpson, Matthew J

    2016-01-01

    Reliable identification of different melanoma cell lines is important for many aspects of melanoma research. Common markers used to identify melanoma cell lines include: S100; HMB-45; and Melan-A. We explore the expression of these three markers in four different melanoma cell lines: WM35; WM793; SK-MEL-28; and MM127. The expression of these markers is examined at both the mRNA and protein level. Our results show that the metastatic cell line, MM127, cannot be detected using any of the commonly used melanoma-associated markers. This implies that it would be very difficult to identify this particular cell line in a heterogeneous sample, and as a result this cell line should be used with care. PMID:27087056

  18. A new insight into cancer stem cell markers: Could local and circulating cancer stem cell markers correlate in colorectal cancer?

    PubMed

    Mirzaei, Alireza; Tavoosidana, Gholamreza; Rad, Afshin Abdi; Rezaei, Farhad; Tavakoli-Yaraki, Masoumeh; Kadijani, Azade Amini; Khalili, Ehsan; Madjd, Zahra

    2016-02-01

    Cancer stem cell (CSC) markers could serve as potential prognostic procedure. This study is aimed to investigate the local expression of doublecortin-like kinase 1 (DCLK1) and Lgr5 in colorectal cancer tissues (CRC) at both protein and messenger RNA (mRNA) level, followed by providing a comparison of the local and circulating expression pattern of these markers, based on our present and previous study. The mRNA expression level of DCLK1 and Lgr5 was evaluated using comparative real-time PCR method applying 58 fresh tumor tissues and their correspondent normal margins. Immunohistochemistry was applied to analyze the protein expression level of DCLK1 and Lgr5 in paraffin-embedded CRC tissues. The correlation of DCLK1 and Lgr5 expression pattern with clinicopathological characteristics was assessed. A higher mRNA expression level of DCLK1 (3.28-fold change, p < 0.001) and Lgr5 (2.29-fold change, p < 0.001) was observed in CRC fresh tissues compared to the normal adjacent margins, and the expression level was higher in patients with higher grade and stages of disease and patients who underwent neoadjuvant chemoradiotherapy (CRT). The protein expression level of DCLK1 and Lgr5 was also increased significantly in tumor tissues compared to normal colon tissues which were positively correlated to tumor stage and grade and neoadjuvant CRT. Taken together, the results of protein analysis were in accordance with mRNA assessment. The local expression pattern of DCLK1 and Lgr5 was also in accordance with their expression level in circulation. However, some minor inconsistencies were observed which may be attributed to several factors including the possible effect of CRT on CSC reprogramming. PMID:26383518

  19. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    PubMed

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments. PMID:27026484

  20. Immunohistochemical detection of dendritic cell markers in cattle.

    PubMed

    Romero-Palomo, F; Risalde, M A; Molina, V; Sánchez-Cordón, P J; Pedrera, M; Gómez-Villamandos, J C

    2013-11-01

    Dendritic cells (DCs) are "professional" antigen-presenting cells with a critical role in the regulation of innate and adaptive immune responses and thus have been considered of great interest in the study of a variety of infectious diseases. The objective of this investigation was to characterize the in vivo distribution of DCs in bovine tissues by using potential DC markers to establish a basis for the study of DCs in diseased tissues. Markers evaluated included MHCII, CD208, CD1b, CD205, CNA.42, and S100 protein, the latter 2 being expressed by follicular dendritic cells whose origin and role are different from the rest of hematopoietic DCs. Paraffin wax-embedded tissues from 6 healthy Friesian calves were subjected to the avidin-biotin-peroxidase method, and the most appropriate fixatives, dilutions, and antigen retrieval pretreatments were studied for each of the primary antibodies. The most significant results included the localization of CD208-positive cells not only in the T zone of lymphoid organs but also within lymphoid follicles; CD1b-positive cells were mainly found in thymus and interfollicular areas of some lymph nodes; cells stained with anti-CD205 antibody were scarce, and their location was mainly in nonlymphoid tissues; and CNA.42- and S100 protein-positive cells localized in primary lymphoid follicles and light zones of germinal centers, although showing differences in the staining pattern. Furthermore, MHCII was established as one of the most sensitive markers for any DC of hematopoietic origin. These results increase our understanding of DC immunolabeling and will help in future DC studies of both healthy and diseased tissues. PMID:23528943

  1. TGM2 A Cell Surface Marker in Esophageal Adenocarcinomas

    PubMed Central

    Leicht, Deborah T.; Kausar, Tasneem; Wang, Zhuwen; Ferrer-Torres, Daysha; Wang, Thomas D.; Thomas, Dafydd G.; Lin, Jules; Chang, Andrew C.; Lin, Lin; Beer, David G.

    2014-01-01

    Introduction Esophageal adenocarcinomas (EAC) are aggressive cancers that are increasing in incidence and associated with a poor prognosis. The identification of highly expressed genes in EAC relative to metaplastic Barrett’s esophagus (BE) may provide new targets for novel early cancer detection strategies using endoscopically administered, fluorescently labeled peptides. Methods Gene expression analysis of BE and EACs were used to identify the cell surface marker transglutaminase 2 (TGM2) as overexpressed in cancer. The expression of two major isoforms of TGM2 was determined by qRT-polymerase chain reaction in an independent cohort of 128 EACs. Protein expression was confirmed by tissue microarrays and immunoblot analysis of EAC cell lines. TGM2 DNA copy number was assessed using single nucleotide polymorphism microarrays and confirmed by qPCR. TGM2 expression in neoadjuvantly treated EACs and following small interfering RNA-mediated knockdown in cisplatin-treated EAC cells was used to determine its possible role in chemoresistance. Results TGM2 is overexpressed in 15 EACs relative to 26 BE samples. Overexpression of both TGM2 isoforms was confirmed in 128 EACs and associated with higher tumor stage, poor differentiation, and increased inflammatory and desmoplastic response. Tissue microarrays and immunohistochemistry confirmed elevated TGM2 protein expression in EAC. Single nucleotide polymorphism and qPCR analysis revealed increased TGM2 gene copy number as one mechanism underlying elevated TGM2 expression. TGM2 was highly expressed in resistant EAC after patient treatment with neoadjuvant chemotherapy/radiation suggesting a role for TGM2 in chemoresistance. Conclusion TGM2 may be a useful cell surface biomarker for early detection of EAC. PMID:24828664

  2. Expression and localization of aging markers in lacrimal gland of chronic graft-versus-host disease

    NASA Astrophysics Data System (ADS)

    Kawai, Masataka; Ogawa, Yoko; Shimmura, Shigeto; Ohta, Shigeki; Suzuki, Takanori; Kawamura, Naoshi; Kuwana, Masataka; Kawakami, Yutaka; Tsubota, Kazuo

    2013-08-01

    Aging is commonly defined as the accumulation of diverse deleterious changes in cells and tissues with advancing age. To investigate whether aging changes are involved in the lacrimal glands of chronic graft-versus-host disease (cGVHD) model mice, we obtained the specimens from cGVHD model mice, untreated aged and young mice, and examined by histopathology, and immunoblotting. Oxidative stress markers, 8-OHdG, 4-HNE, and hexonoyl lesion (HEL), and other aging markers, p16 and p38, were used to assess the samples. The infiltrating mononuclear cells and endothelia of capillaries in the cGVHD and aged mice expressed the oxidative stress markers and other aging markers, but not in the young mice. Histological changes and the expression of aging markers in the samples from cGVHD mice exhibited similar features to those in aging mice. These results suggest that changes that typically appear with advanced age occur earlier in the lives of mice with lacrimal gland cGVHD.

  3. Melanoma Cancer Stem Cells: Markers and Functions

    PubMed Central

    Parmiani, Giorgio

    2016-01-01

    The discovery of cancer stem cells (CSCs) in human solid tumors has allowed a better understanding of the biology and neoplastic transformation of normal melanocytes, and the possible mechanisms by which melanoma cells acquire tumorigenicity. In this review I summarize the literature findings on the potential biomarkers of melanoma CSCs, their presence in the melanoma cell populations, the interaction with the immune system (with both T and NK cells) and the role of melanoma CSCs in the clinics. Given the extraordinary progress in the therapy of melanoma caused by immune checkpoint antibodies blockade, I discuss how these antibodies can work by the activation of melanoma infiltrating T cells specifically recognizing neo-antigens expressed even by melanoma CSCs. This is the mechanism that can induce a regression of the metastatic melanomas. PMID:26978405

  4. Cell Surface Markers in Colorectal Cancer Prognosis

    PubMed Central

    Belov, Larissa; Zhou, Jerry; Christopherson, Richard I.

    2011-01-01

    The classification of colorectal cancers (CRC) is currently based largely on histologically determined tumour characteristics, such as differentiation status and tumour stage, i.e., depth of tumour invasion, involvement of regional lymph nodes and the occurrence of metastatic spread to other organs. These are the conventional prognostic factors for patient survival and often determine the requirement for adjuvant therapy after surgical resection of the primary tumour. However, patients with the same CRC stage can have very different disease-related outcomes. For some, surgical removal of early-stage tumours leads to full recovery, while for others, disease recurrence and metastasis may occur regardless of adjuvant therapy. It is therefore important to understand the molecular processes that lead to disease progression and metastasis and to find more reliable prognostic markers and novel targets for therapy. This review focuses on cell surface proteins that correlate with tumour progression, metastasis and patient outcome, and discusses some of the challenges in finding prognostic protein markers in CRC. PMID:21339979

  5. Expression Marker-Based Strategy to Improve Beef Quality

    PubMed Central

    Cassar-Malek, Isabelle; Picard, Brigitte

    2016-01-01

    For beef cattle research, a main objective is to control concomitantly the development of muscles and the qualities of beef cuts. Beef quality is a complex phenotype that is only detectable after slaughter and is highly variable. The beef industry is in need of tools to estimate beef quality of live cattle or online in abattoirs, with specific attention towards sensory attributes (tenderness, juiciness, flavour, and colour). Identification of relevant genetic and genomic markers is ongoing, especially for tenderness—a top priority quality attribute. In this paper, we describe the steps of an expression marker-based strategy to improve beef sensory quality, from the discovery of biomarkers that identify consistent beef and the biological functions governing beef tenderness to the integration of the knowledge into detection tests for desirable animals. These tools should soon be available for the management of sensory quality in the beef production chain for meeting market's demands and assuring good quality standards. PMID:27066527

  6. Histopathological findings, phenotyping of inflammatory cells, and expression of markers of nitritative injury in joint tissue samples from calves after vaccination and intraarticular challenge with Mycoplasma bovis strain 1067

    PubMed Central

    2014-01-01

    Background The pathogenesis of caseonecrotic lesions developing in lungs and joints of calves infected with Mycoplasma bovis is not clear and attempts to prevent M. bovis-induced disease by vaccines have been largely unsuccessful. In this investigation, joint samples from 4 calves, i.e. 2 vaccinated and 2 non-vaccinated, of a vaccination experiment with intraarticular challenge were examined. The aim was to characterize the histopathological findings, the phenotypes of inflammatory cells, the expression of class II major histocompatibility complex (MHC class II) molecules, and the expression of markers for nitritative stress, i.e. inducible nitric oxide synthase (iNOS) and nitrotyrosine (NT), in synovial membrane samples from these calves. Furthermore, the samples were examined for M. bovis antigens including variable surface protein (Vsp) antigens and M. bovis organisms by cultivation techniques. Results The inoculated joints of all 4 calves had caseonecrotic and inflammatory lesions. Necrotic foci were demarcated by phagocytic cells, i.e. macrophages and neutrophilic granulocytes, and by T and B lymphocytes. The presence of M. bovis antigens in necrotic tissue lesions was associated with expression of iNOS and NT by macrophages. Only single macrophages demarcating the necrotic foci were positive for MHC class II. Microbiological results revealed that M. bovis had spread to approximately 27% of the non-inoculated joints. Differences in extent or severity between the lesions in samples from vaccinated and non-vaccinated animals were not seen. Conclusions The results suggest that nitritative injury, as in pneumonic lung tissue of M. bovis-infected calves, is involved in the development of caseonecrotic joint lesions. Only single macrophages were positive for MHC class II indicating down-regulation of antigen-presenting mechanisms possibly caused by local production of iNOS and NO by infiltrating macrophages. PMID:25162202

  7. Suprabasin as a novel tumor endothelial cell marker.

    PubMed

    Alam, Mohammad T; Nagao-Kitamoto, Hiroko; Ohga, Noritaka; Akiyama, Kosuke; Maishi, Nako; Kawamoto, Taisuke; Shinohara, Nobuo; Taketomi, Akinobu; Shindoh, Masanobu; Hida, Yasuhiro; Hida, Kyoko

    2014-12-01

    Recent studies have reported that stromal cells contribute to tumor progression. We previously demonstrated that tumor endothelial cells (TEC) characteristics were different from those of normal endothelial cells (NEC). Furthermore, we performed gene profile analysis in TEC and NEC, revealing that suprabasin (SBSN) was upregulated in TEC compared with NEC. However, its role in TEC is still unknown. Here we showed that SBSN expression was higher in isolated human and mouse TEC than in NEC. SBSN knockdown inhibited the migration and tube formation ability of TEC. We also showed that the AKT pathway was a downstream factor of SBSN. These findings suggest that SBSN is involved in the angiogenic potential of TEC and may be a novel TEC marker. PMID:25283635

  8. Nucleus pulposus phenotypic markers to determine stem cell differentiation: fact or fiction?

    PubMed Central

    Thorpe, Abbey A.; Binch, Abbie L.A.; Creemers, Laura B.; Sammon, Christopher; Le Maitre, Christine L.

    2016-01-01

    Progress in mesenchymal stem cell (MSC) based therapies for nucleus pulposus (NP) regeneration are hampered by a lack of understanding and consensus of the normal NP cell phenotype. Despite the recent consensus paper on NP markers, there is still a need to further validate proposed markers. This study aimed to determine whether an NP phenotypic profile could be identified within a large population of mature NP samples. qRT-PCR was conducted to assess mRNA expression of 13 genes within human non-degenerate articular chondrocytes (AC) (n=10) and NP cells extracted from patients across a spectrum of histological degeneration grades (n=71). qRT-PCR results were used to select NP marker candidates for protein expression analysis. Differential expression at mRNA between AC and non-degenerate NP cells was only observed for Paired Box Protein 1 (PAX1) and Forkhead box F1 (FOXF1). In contrast no other previously suggested markers displayed differential expression between non-degenerate NP and AC at mRNA level. PAX1 and FOXF1 protein expression was significantly higher in the NP compared to annulus fibrosus (AF), cartilaginous endplate (CEP) and AC. In contrast Laminin-5 (LAM-332), Keratin-19 (KRT-19) and Hypoxia Inducible Factor 1 alpha (HIF1α) showed no differential expression in NP cells compared with AC cells. A marker which exclusively differentiates NP cells from AF and AC cells remains to be identified, raising the question: is the NP a heterogeneous population of cells? Or does the natural biological variation during IVD development, degeneration state and even the life cycle of cells make finding one definitive marker impossible? PMID:26735178

  9. Effect of HPV on tumor expression levels of the most commonly used markers in HNSCC.

    PubMed

    Polanska, Hana; Heger, Zbynek; Gumulec, Jaromir; Raudenska, Martina; Svobodova, Marketa; Balvan, Jan; Fojtu, Michaela; Binkova, Hana; Horakova, Zuzana; Kostrica, Rom; Adam, Vojtech; Kizek, Rene; Masarik, Michal

    2016-06-01

    Approximately 90 % of head and neck cancers are squamous cell carcinomas (HNSCC), and the overall 5-year survival rate is not higher than 50 %. There is much evidence that human papillomavirus (HPV) infection may influence the expression of commonly studied HNSCC markers. Our study was focused on the possible HPV-specificity of molecular markers that could be key players in important steps of cancerogenesis (MKI67, EGF, EGFR, BCL-2, BAX, FOS, JUN, TP53, MT1A, MT2A, VEGFA, FLT1, MMP2, MMP9, and POU5F). qRT-PCR analysis of these selected genes was performed on 74 biopsy samples of tumors from patients with histologically verified HNSCC (22 HPV-, 52 HPV+). Kaplan-Meier analysis was done to determine the relevance of these selected markers for HNSCC prognosis. In conclusion, our study confirms the impact of HPV infection on commonly studied HNSCC markers MT2A, MMP9, FLT1, VEGFA, and POU5F that were more highly expressed in HPV-negative HNSCC patients and also shows the relevance of studied markers in HPV-positive and HPV-negative HNSCC patients. PMID:26666815

  10. Study of Pluripotency Markers in Zebrafish Embryos and Transient Embryonic Stem Cell Cultures

    PubMed Central

    Robles, Vanesa; Martí, Mercé

    2011-01-01

    Abstract Targeted genomic manipulation using embryonic stem (ES) cells has not yet been achieved in zebrafish, although methods for zebrafish ES cell culture has been described in literature. The knowledge of pluripotency markers in this species is almost nonexistent and this is a very limiting factor in the definition of the ideal culture conditions for ES cells. Here, we studied the expression of several genes associated with pluripotency in zebrafish embryonic cells versus differentiated cells and the expression of some of these genes is recorded throughout embryonic development. Some of the commonly accepted pluripotency markers are also tested in embryonic cells, transient embryonic cell cultures, and differentiated cells. Our results support the hypothesis that stage-specific embryonic antigen 1 (SSEA1) is a marker that precedes the expression of pluripotency genes in a zebrafish embryonic cell colony, in the same way that SOX2 precedes nestin expression in those colonies that have already started differentiation toward neurons. We consider this study a step forward in the knowledge of zebrafish pluripotency markers and, therefore, an important tool for the monitoring of zebrafish embryonic cell cultures. PMID:21563922

  11. Stro-1/CD44 as putative human myometrial and fibroid stem cell markers

    PubMed Central

    Mas, Aymara; Nair, Sangeeta; Laknaur, Archana; Simón, Carlos; Diamond, Michael P.; Al-Hendy, Ayman

    2015-01-01

    Objective To identify and characterize myometrial/fibroid stem cells by specific stem cell markers in human myometrium, and to better understand the stem cell contribution in the development of uterine fibroids. Design Prospective experimental human and animal study. Setting University research laboratory. Patients Women undergoing hysterectomy for treatment of symptomatic uterine fibroids. Animals Female NOD/SCID/IL-2Rγnull mice. Interventions Identification and isolation of stem cells from human fibroids (F) and adjacent myometrium (MyoF) tissues using Stro-1/CD44 specific surface markers. Main Outcome Measures Flow cytometry, semi- quantitative polymerase chain reaction, clonogenicity assays, cell culture, molecular analysis, immunocyto- histochemistry, in vitro differentiation, and xenotransplantation assays. Results Using Stro-1/CD44 surface markers, we were able to isolate stem cells from MyoF and F tissues. The undifferentiated status of isolated cells was confirmed by the expression of ABCG2 transporter, as well as additional stem cell markers OCT4, NANOG and GDB3, and the low expression of steroid receptors ERα and PR-A/PR-B. Mesodermal cell origin was established by the presence of typical mesenchymal markers (CD90, CD105, and CD73) and absence of hematopoietic stem cell markers (CD34, CD45), and confirmed by the ability of these cells to differentiate in vitro into adipocytes, osteocytes and chondrocytes. Finally, their functional capability to form fibroid-like lesions was established in xenotransplantation mouse model. The injected cells labeled with superparamagnetic iron oxide (SPIO) were tracked by both magnetic resonance imaging (MRI) and fluorescence imaging, thus demonstrating the regenerative potential of putative fibroid stem cells in vivo. Conclusion We have demonstrated that Stro-1/CD44 can be used as specific surface markers to enrich a subpopulation of myometrial/fibroids cells, exhibiting key features of stem/progenitor cells. These

  12. Developmental Markers Expressed in Neocortical Layers Are Differentially Exhibited in Olfactory Cortex

    PubMed Central

    Brunjes, Peter C.; Osterberg, Stephen K.

    2015-01-01

    Neurons in the cerebral cortex stratify on the basis of their time of origin, axonal terminations and the molecular identities assigned during early development. Olfactory cortices share many feature with the neocortex, including clear lamination and similar cell types. The present study demonstrates that the markers differentially expressed in the projection neurons of the cerebral cortex are also found in olfactory areas. Three of the four regions examined (pars principalis of the anterior olfactory nucleus: AONpP, anterior and posterior piriform cortices: APC, PPC, and the olfactory tubercle) expressed transcription factors found in deep or superficial neurons in the developing neocortex, though large differences were found between areas. For example, while the AONpP, APC and PPC all broadly expressed the deep cortical marker CTIP2, NOR1 (NR4a3) levels were higher in AONpP and DAARP-32 was more prevalent in the APC and PPC. Similar findings were encountered for superficial cortical markers: all three regions broadly expressed CUX1, but CART was only observed in the APC and PPC. Furthermore, regional variations were observed even within single structures (e.g., NOR1 was found primarily in in the dorsal region of AONpP and CART expression was observed in a discrete band in the middle of layer 2 of both the APC and PPC). Experiments using the mitotic marker EDU verified that the olfactory cortices and neocortex share similar patterns of neuronal production: olfactory cells that express markers found in the deep neocortex are produced earlier than those that express superficial makers. Projection neurons were filled by retrograde tracers injected into the olfactory bulb to see if olfactory neurons with deep and superficial markers had different axonal targets. Unlike the cerebral cortex, no specificity was observed: neurons with each of the transcription factors examined were found to be labelled. Together the results indicate that olfactory cortices are complex

  13. Pepsin-pancreatin protein hydrolysates from extruded amaranth inhibit markers of atherosclerosis in LPS-induced THP-1 macrophages-like human cells by reducing expression of proteins in LOX-1 signaling pathway

    PubMed Central

    2014-01-01

    Background Atherosclerosis is considered a progressive disease that affects arteries that bring blood to the heart, to the brain and to the lower end. It derives from endothelial dysfunction and inflammation, which play an important role in the thrombotic complications of atherosclerosis. Cardiovascular disease is the leading cause of death around the world and one factor that can contribute to its progression and prevention is diet. Our previous study found that amaranth hydrolysates inhibited LPS-induced inflammation in human and mouse macrophages by preventing activation of NF-κB signaling. Furthermore, extrusion improved the anti-inflammatory effect of amaranth protein hydrolysates in both cell lines, probably attributed to the production of bioactive peptides during processing. Therefore, the objective of this study was to compare the anti-atherosclerotic potential of pepsin-pancreatin hydrolysates from unprocessed and extruded amaranth in THP-1 lipopolysaccharide-induced human macrophages and suggest the mechanism of action. Results Unprocessed amaranth hydrolysate (UAH) and extruded amaranth hydrolysate (EAH) showed a significant reduction in the expression of interleukin-4 (IL-4) (69% and 100%, respectively), interleukin-6 (IL-6) (64% and 52%, respectively), interleukin-22 (IL-22) (55% and 70%, respectively). Likewise, UAH and EAH showed a reduction in the expression of monocyte-chemo attractant protein-1 (MCP-1) (35% and 42%, respectively), transferrin receptor-1 (TfR-1) (48% and 61%, respectively), granulocyte-macrophage colony-stimulating factor (GM-CSF) (59% and 63%, respectively), and tumor necrosis factor-α (TNF-α) (60% and 63%, respectively). Also, EAH reduced the expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) (27%), intracellular adhesion molecule-1 (ICAM-1) (28%) and matrix metalloproteinase-9 (MMP-9) (19%), important molecular markers in the atherosclerosis pathway. EAH, led to a reduction of 58, 52 and 79% for

  14. CD133 Is Not Suitable Marker for Isolating Melanoma Stem Cells from D10 Cell Line

    PubMed Central

    Rajabi Fomeshi, Motahareh; Ebrahimi, Marzieh; Mowla, Seyed Javad; Firouzi, Javad; Khosravani, Pardis

    2016-01-01

    Objective Cutaneous melanoma is the most hazardous malignancy of skin cancer with a high mortality rate. It has been reported that cancer stem cells (CSCs) are responsible for malignancy in most of cancers including melanoma. The aim of this study is to compare two common methods for melanoma stem cell enriching; isolating based on the CD133 cell surface marker and spheroid cell culture. Materials and Methods In this experimental study, melanoma stem cells were enriched by fluorescence activated cell sorting (FACS) based on the CD133 protein expression and spheroid culture of D10 melanoma cell line,. To determine stemness features, the mRNA expression analysis of ABCG2, c-MYC, NESTIN, OCT4-A and -B genes as well as colony and spheroid formation assays were utilized in unsorted CD133+, CD133- and spheroid cells. Significant differences of the two experimental groups were compared using student’s t tests and a two-tailed value of P<0.05 was statistically considered as a significant threshold. Results Our results demonstrated that spheroid cells had more colony and spheroid forming ability, rather than CD133+ cells and the other groups. Moreover, melanospheres expressed higher mRNA expression level of ABCG2, c-MYC, NESTIN and OCT4-A com- pared to other groups (P<0.05). Conclusion Although CD133+ derived melanoma cells represented stemness fea- tures, our findings demonstrated that spheroid culture could be more effective meth- od to enrich melanoma stem cells. PMID:27054115

  15. Immunohistochemical Markers of Neural Progenitor Cells in the Early Embryonic Human Cerebral Cortex

    PubMed Central

    Vinci, L.; Ravarino, A.; Fanos, V.; Naccarato, A.G.; Senes, G.; Gerosa, C.; Bevilacqua, G.; Faa, G.; Ambu, R.

    2016-01-01

    The development of the human central nervous system represents a delicate moment of embryogenesis. The purpose of this study was to analyze the expression of multiple immunohistochemical markers in the stem/progenitor cells in the human cerebral cortex during the early phases of development. To this end, samples from cerebral cortex were obtained from 4 human embryos of 11 weeks of gestation. Each sample was formalin-fixed, paraffin embedded and immunostained with several markers including GFAP, WT1, Nestin, Vimentin, CD117, S100B, Sox2, PAX2, PAX5, Tβ4, Neurofilament, CD44, CD133, Synaptophysin and Cyclin D1. Our study shows the ability of the different immunohistochemical markers to evidence different zones of the developing human cerebral cortex, allowing the identification of the multiple stages of differentiation of neuronal and glial precursors. Three important markers of radial glial cells are evidenced in this early gestational age: Vimentin, Nestin and WT1. Sox2 was expressed by the stem/progenitor cells of the ventricular zone, whereas the postmitotic neurons of the cortical plate were immunostained by PAX2 and NSE. Future studies are needed to test other important stem/progenitor cells markers and to better analyze differences in the immunohistochemical expression of these markers during gestation. PMID:26972711

  16. Mesenchymal progenitor cell markers in human articular cartilage: normal distribution and changes in osteoarthritis

    PubMed Central

    Grogan, Shawn P; Miyaki, Shigeru; Asahara, Hiroshi; D'Lima, Darryl D; Lotz, Martin K

    2009-01-01

    Introduction Recent findings suggest that articular cartilage contains mesenchymal progenitor cells. The aim of this study was to examine the distribution of stem cell markers (Notch-1, Stro-1 and VCAM-1) and of molecules that modulate progenitor differentiation (Notch-1 and Sox9) in normal adult human articular cartilage and in osteoarthritis (OA) cartilage. Methods Expression of the markers was analyzed by immunohistochemistry (IHC) and flow cytometry. Hoechst 33342 dye was used to identify and sort the cartilage side population (SP). Multilineage differentiation assays including chondrogenesis, osteogenesis and adipogenesis were performed on SP and non-SP (NSP) cells. Results A surprisingly high number (>45%) of cells were positive for Notch-1, Stro-1 and VCAM-1 throughout normal cartilage. Expression of these markers was higher in the superficial zone (SZ) of normal cartilage as compared to the middle zone (MZ) and deep zone (DZ). Non-fibrillated OA cartilage SZ showed reduced Notch-1 and Sox9 staining frequency, while Notch-1, Stro-1 and VCAM-1 positive cells were increased in the MZ. Most cells in OA clusters were positive for each molecule tested. The frequency of SP cells in cartilage was 0.14 ± 0.05% and no difference was found between normal and OA. SP cells displayed chondrogenic and osteogenic but not adipogenic differentiation potential. Conclusions These results show a surprisingly high number of cells that express putative progenitor cell markers in human cartilage. In contrast, the percentage of SP cells is much lower and within the range of expected stem cell frequency. Thus, markers such as Notch-1, Stro-1 or VCAM-1 may not be useful to identify progenitors in cartilage. Instead, their increased expression in OA cartilage implicates involvement in the abnormal cell activation and differentiation process characteristic of OA. PMID:19500336

  17. Anti-Mullerian hormone (AMH) concentration in follicular fluid and mRNA expression of AMH receptor type II and LH receptor in granulosa cells as predictive markers of good buffalo (Bubalus bubalis) donors.

    PubMed

    Liang, Aixin; Salzano, Angela; D'Esposito, Maurizio; Comin, Antonella; Montillo, Marta; Yang, Liguo; Campanile, Giuseppe; Gasparrini, Bianca

    2016-09-01

    High individual variability in follicular recruitment and hence in the number of embryos produced is a major factor limiting the application of reproductive technologies in buffalo. Therefore, the identification of reliable markers to select embryo donors is critical to enroll buffaloes in embryo production programs. Better understanding of factors involved in follicular growth is also necessary to improve the response to superovulation in this species. The aim of this work was thus to determine the anti-Mullerian hormone (AMH) concentration in follicular fluid (FF) recovered from different size follicles and evaluate the mRNA expression profiles of development-related (AMHR2, CYP19A1, FSHR, and LHR) and apoptosis-related genes (TP53INP1 and CASP3) in the corresponding granulosa cells (GCs) in buffalo. Another objective was to evaluate whether the AMH concentration in FF and gene expression of GCs is associated with the antral follicular count. Ovaries were collected at the slaughterhouse, and all follicles were counted and classified as small (3-5 mm), medium (5-8 mm), and large (>8 mm). Follicular fluid was recovered for AMH determination, and the mRNA expression of AMHR2, FSHR, LHR, CYP19A1, TP53INP1, and CASP3 was analyzed in GCs. The AMH concentration in FF decreased (P < 0.01) at increasing follicular diameter. The mRNA expression of AMHR2 and FSHR was higher (P < 0.05) in small follicles, whereas that of LHR and CYP19A1 was higher (P < 0.05) in large follicles. The intrafollicular AMH concentration was positively correlated with the antral follicular count (r = 0.31; P < 0.05). Interestingly, good donors (≥12 follicles) had a higher (P < 0.05) concentration of AMH and AMHR2 levels in small follicles and higher (P < 0.05) LHR levels in large follicles than bad donors (<12 follicles). These results suggest a potential use of AMH to select buffalo donors to enroll in embryo production programs, laying the basis for further investigations

  18. ERBB3 Positively Correlates with Intestinal Stem Cell Markers but Marks a Distinct Non Proliferative Cell Population in Colorectal Cancer

    PubMed Central

    Jardé, Thierry; Kass, Lisa; Staples, Margaret; Lescesen, Helen; Carne, Peter; Oliva, Karen; McMurrick, Paul J.; Abud, Helen E.

    2015-01-01

    Several studies have suggested ERBB3/HER3 may be a useful prognostic marker for colorectal cancer. Tumours with an intestinal stem cell signature have also been shown to be more aggressive. Here, we investigate whether ERBB3 is associated with intestinal stem cell markers in colorectal cancer and if cancer stem cells within tumours are marked by expression of ERBB3. Expression of ERBB3 and intestinal stem cell markers (LGR5, EPHB2, CD44s and CD44v6) was assessed by qRT-PCR in primary colorectal tumours (stages 0 to IV) and matched normal tissues from 53 patients. The localisation of ERBB3, EPHB2 and KI-67 within tumours was investigated using co-immunofluorescence. Expression of ERBB3 and intestinal stem cell markers were significantly elevated in adenomas and colorectal tumours compared to normal tissue. Positive correlations were found between ERBB3 and intestinal stem cell markers. However, co-immunofluorescence analysis showed that ERBB3 and EPHB2 marked specific cell populations that were mutually exclusive within tumours with distinct proliferative potentials, the majority of ERBB3+ve cells being non-proliferative. This pattern resembles cellular organisation within normal colonic epithelium where EPHB2 labelled proliferative cells reside at the crypt base and ERBB3+ve cells mark differentiated cells at the top of crypts. Our results show that ERBB3 and intestinal stem cell markers correlate in colorectal cancers. ERBB3 localises to differentiated cell populations within tumours that are non-proliferative and distinct from cancer stem cells. These data support the concept that tumours contain discrete stem, proliferative and differentiation compartments similar to that present in normal crypts. PMID:26367378

  19. ERBB3 Positively Correlates with Intestinal Stem Cell Markers but Marks a Distinct Non Proliferative Cell Population in Colorectal Cancer.

    PubMed

    Jardé, Thierry; Kass, Lisa; Staples, Margaret; Lescesen, Helen; Carne, Peter; Oliva, Karen; McMurrick, Paul J; Abud, Helen E

    2015-01-01

    Several studies have suggested ERBB3/HER3 may be a useful prognostic marker for colorectal cancer. Tumours with an intestinal stem cell signature have also been shown to be more aggressive. Here, we investigate whether ERBB3 is associated with intestinal stem cell markers in colorectal cancer and if cancer stem cells within tumours are marked by expression of ERBB3. Expression of ERBB3 and intestinal stem cell markers (LGR5, EPHB2, CD44s and CD44v6) was assessed by qRT-PCR in primary colorectal tumours (stages 0 to IV) and matched normal tissues from 53 patients. The localisation of ERBB3, EPHB2 and KI-67 within tumours was investigated using co-immunofluorescence. Expression of ERBB3 and intestinal stem cell markers were significantly elevated in adenomas and colorectal tumours compared to normal tissue. Positive correlations were found between ERBB3 and intestinal stem cell markers. However, co-immunofluorescence analysis showed that ERBB3 and EPHB2 marked specific cell populations that were mutually exclusive within tumours with distinct proliferative potentials, the majority of ERBB3+ve cells being non-proliferative. This pattern resembles cellular organisation within normal colonic epithelium where EPHB2 labelled proliferative cells reside at the crypt base and ERBB3+ve cells mark differentiated cells at the top of crypts. Our results show that ERBB3 and intestinal stem cell markers correlate in colorectal cancers. ERBB3 localises to differentiated cell populations within tumours that are non-proliferative and distinct from cancer stem cells. These data support the concept that tumours contain discrete stem, proliferative and differentiation compartments similar to that present in normal crypts. PMID:26367378

  20. Myoglobin expression in prostate cancer is correlated to androgen receptor expression and markers of tumor hypoxia.

    PubMed

    Meller, Sebastian; Bicker, Anne; Montani, Matteo; Ikenberg, Kristian; Rostamzadeh, Babak; Sailer, Verena; Wild, Peter; Dietrich, Dimo; Uhl, Barbara; Sulser, Tullio; Moch, Holger; Gorr, Thomas A; Stephan, Carsten; Jung, Klaus; Hankeln, Thomas; Kristiansen, Glen

    2014-10-01

    Recent studies identified unexpected expression and transcriptional complexity of the hemoprotein myoglobin (MB) in human breast cancer but its role in prostate cancer is still unclear. Expression of MB was immunohistochemically analyzed in three independent cohorts of radical prostatectomy specimens (n = 409, n = 625, and n = 237). MB expression data were correlated with clinicopathological parameters and molecular parameters of androgen and hypoxia signaling. Expression levels of novel tumor-associated MB transcript variants and the VEGF gene as a hypoxia marker were analyzed using qRT-PCR. Fifty-three percent of the prostate cancer cases were MB positive and significantly correlated with androgen receptor (AR) expression (p < 0.001). The positive correlation with CAIX (p < 0.001) and FASN (p = 0.008) as well as the paralleled increased expression of the tumor-associated MB transcript variants and VEGF suggest that hypoxia participates in MB expression regulation. Analogous to breast cancer, MB expression in prostate cancer is associated with steroid hormone signaling and markers of hypoxia. Further studies must elucidate the novel functional roles of MB in human carcinomas, which probably extend beyond its classic intramuscular function in oxygen storage. PMID:25172328

  1. Mesenchymal markers on human adipose stem/progenitor cells

    PubMed Central

    Zimmerlin, Ludovic; Donnenberg, Vera S.; Rubin, J. Peter; Donnenberg, Albert D.

    2014-01-01

    The stromal-vascular fraction (SVF) of adipose tissue is a rich source of multipotent stem cells. We and others have described 3 major populations of stem/progenitor cells in this fraction, all closely associated with small blood vessels: endothelial progenitor cells (EPC, CD45−/CD31+/CD34+), pericytes (CD45−/CD31−/CD146+) and supra-adventitial adipose stromal cells (SA-ASC, CD45−/CD31−/CD146−/CD34+). EPC are luminal, pericytes are adventitial and SA-ASC surround the vessel like a sheath. The multipotency of the pericytes and SA-ASC compartments is strikingly similar to that of CD45−/CD34−/CD73+/CD105+/CD90+ bone marrow-derived mesenchymal stem cells (BM-MSC). Here we determine the extent to which this mesenchymal expression pattern is expressed on the 3 adipose stem/progenitor populations. Eight independent adipose tissue samples were analyzed in a single tube (CD105-FITC/CD73-PE/CD146-PETXR/CD14-PECY5/CD33-PECY5/CD235A-PECY5/CD31-PECY7/CD90-APC/CD34-A700/CD45-APCCY7/DAPI). Adipose EPC were highly proliferative with 14.3±2.8% (mean ± SEM) having >2N DNA. About half (53.1±7.6%) coexpressed CD73 and CD105, and 71.9±7.4% expressed CD90. Pericytes were less proliferative (8.2±3.4% >2N DNA) with a smaller proportion (29.6±6.9% CD73+/CD105+, 60.5±10.2% CD90+) expressing mesenchymal associated markers. However, the CD34+ subset of CD146+ pericytes, were both highly proliferative (15.1±3.6% with >2N DNA) and of uniform mesenchymal phenotype (93.3±3.7% CD73+/CD105+, 97.8±0.7% CD90+), suggesting transit amplifying progenitor cells. SA-ASC were the least proliferative (3.7 ± 0.8%>2N DNA) but were also highly mesenchymal in phenotype (94.4±3.2% CD73+/CD105+, 95.5±1.2% CD90+). These data imply a progenitor/progeny relationship between pericytes and SA-ASC, the most mesenchymal of SVF cells. Despite phenotypic and functional similarities to BM-MSC, SA-ASC are distinguished by CD34 expression. PMID:23184564

  2. Cytoplasmic and surface membrane phenotypic markers in cells of B cell chronic lymphocytic leukemia.

    PubMed

    Koníková, E; Babusíková, O; Mesárosová, A; Kusenda, J; Glasová, M

    1994-01-01

    Peripheral blood cells of twenty-six patients with B cell chronic lymphocytic leukemia (B-CLL) were characterized for their surface membrane and cytoplasmic marker profiles using flow cytometry and fluorescence microscopy. According to surface membrane marker analysis three distinct immunophenotypic subgroups of B-CLL were identified: group I (SIg+, MR+, CD5+, B Ag+, T Ag-; 19 cases), group II (SIg+, MR+, CD5+, B Ag+, TAg+; 3 cases), group III (SIg-, MR+, CD5+, B Ag+, T Ag-; 4 cases). Cells from all patients were positive for the CD19 antigen and at least one of other B cell antigens. Cells from all patients expressed also CD5 and HLA-DR antigens and formed mouse rosettes (MR). Great heterogeneity was found in the membrane and cytoplasmic marking by anti-CD22 MoAb. In four of 23 patients tested, CD22 antigen was expressed in the cytoplasm of CLL cells while it was absent on surface membrane of these cells. This finding was discussed from the point of certain cell heterogeneity in the followed B-CLL cases. Cytoplasmic immunoglobulin (CyIg) detection showed to be very important especially in group III of followed B-CLL cases with undetectable surface immunoglobulins (SIg). Cytoplasmic antigens and immunoglobulin determinations are useful in phenotyping every B-CLL patient, as well as in the immunological study of different maturation stages of B lymphocytes. PMID:8208317

  3. A Quantitative Perspective on Surface Marker Selection for the Isolation of Functional Tumor Cells

    PubMed Central

    Cahall, Calvin F; Lilly, Jacob L; Hirschowitz, Edward A; Berron, Brad J

    2015-01-01

    Much effort has gone into developing fluid biopsies of patient peripheral blood for the monitoring of metastatic cancers. One common approach is to isolate and analyze tumor cells in the peripheral blood. Widespread clinical implementation of this approach has been hindered by the current choice of targeting epithelial markers known to be highly variable in primary tumor sites. Here, we review current antigen-based tumor cell isolation strategies and offer biological context for commonly studied cancer surface markers. Expression levels of the most common markers are quantitated for three breast cancer and two non-small cell lung cancer (NSCLC) lineage models. These levels are contrasted with that present on healthy peripheral blood mononuclear cells (PBMC) for comparison to expected background levels in a fluid biopsy setting. A key feature of this work is establishing a metric of markers per square micrometer. This describes an average marker density on the cell membrane surface, which is a critical metric for emerging isolation strategies. These results serve to extend expression of key tumor markers in a sensitive and dynamic manner beyond traditional positive/negative immunohistochemical staining to guide future fluid biopsy targeting strategies. PMID:26309407

  4. A Quantitative Perspective on Surface Marker Selection for the Isolation of Functional Tumor Cells.

    PubMed

    Cahall, Calvin F; Lilly, Jacob L; Hirschowitz, Edward A; Berron, Brad J

    2015-01-01

    Much effort has gone into developing fluid biopsies of patient peripheral blood for the monitoring of metastatic cancers. One common approach is to isolate and analyze tumor cells in the peripheral blood. Widespread clinical implementation of this approach has been hindered by the current choice of targeting epithelial markers known to be highly variable in primary tumor sites. Here, we review current antigen-based tumor cell isolation strategies and offer biological context for commonly studied cancer surface markers. Expression levels of the most common markers are quantitated for three breast cancer and two non-small cell lung cancer (NSCLC) lineage models. These levels are contrasted with that present on healthy peripheral blood mononuclear cells (PBMC) for comparison to expected background levels in a fluid biopsy setting. A key feature of this work is establishing a metric of markers per square micrometer. This describes an average marker density on the cell membrane surface, which is a critical metric for emerging isolation strategies. These results serve to extend expression of key tumor markers in a sensitive and dynamic manner beyond traditional positive/negative immunohistochemical staining to guide future fluid biopsy targeting strategies. PMID:26309407

  5. Rapid and efficient transfer of the T cell aging marker CD57 from glioblastoma stem cells to CAR T cells

    PubMed Central

    Zhu, Xuekai; Niedermann, Gabriele

    2015-01-01

    Adoptive transfer of T cells expressing chimeric antigen receptors (CARs) holds great promise for cancer treatment. We recently developed CAR T cells targeting the prototypic cancer stem cell marker AC133 and showed that these CAR T cells killed AC133+ glioblastoma stem cells (GBM-SCs) in vitro and inhibited the growth of brain tumors initiated from GBM-SCs in xenograft mouse models in vivo. Upon coincubation with GBM-SCs, we observed strong upregulation of the T cell aging marker CD57, but other phenotypical or functional changes usually associated with terminal T cell differentiation could not immediately be detected. Here, we provide evidence suggesting that CD57 is rapidly and efficiently transferred from CD57+ GBM-SCs to preactivated T cells and that the transfer is greatly enhanced by specific CAR/ligand interaction. After separation from CD57+ tumor cells, CD57 epitope expression on T cells decreased only slowly over several days. We conclude that CD57 transfer from tumor cells to T cells may occur in patients with CD57+ tumors and that it may have to be considered in the interpretation of phenotyping results for tumor-infiltrating lymphocytes and perhaps also in the characterization of tumor-specific T cells from tumor or lymph node homogenates or peripheral blood mononuclear cells. PMID:26097880

  6. MicroRNA-194 is a Marker for Good Prognosis in Clear Cell Renal Cell Carcinoma.

    PubMed

    Nofech-Mozes, Roy; Khella, Heba W Z; Scorilas, Andreas; Youssef, Leza; Krylov, Sergey N; Lianidou, Evi; Sidiropoulos, Konstantinos G; Gabril, Manal; Evans, Andrew; Yousef, George M

    2016-04-01

    Clear cell renal cell carcinoma (ccRCC) is the most prevalent adult kidney cancer. Prognostic markers are needed to guide patient management toward aggressive versus more conservative approaches, especially for small tumors ≤4 cm. miR-194 was reported to be downregulated in several cancers and is involved in epithelial to mesenchymal transition. We evaluated miR-194 as a prognostic marker in ccRCC. In a cohort of 234 patients with primary ccRCC, we correlated miR-194 expression level with multiple clinicopathological features including disease-free and overall survival, tumor size, clinical stage, and histological grade. Our results shows a stepwise decrease in miR-194 expression from normal kidney to primary ccRCC (P = 0.0032) and a subsequent decrease from primary to metastatic lesions. Additionally, patients with higher miR-194 expression has significantly longer disease-free survival (P = 0.041) and overall survival (P = 0.031) compared to those with lower expression. In multivariate analysis, miR-194-positive tumors retain significance in disease-free survival and overall survival, suggesting miR-194 is an independent marker for good prognosis in ccRCC. Moreover, miR-194 is a marker for good prognosis for patients with small renal masses (P = 0.014). These findings were validated on an independent data set from The Cancer Genome Atlas. We also compared miR-194 expression between RCC subtypes. ccRCC had the highest levels, whereas chromophobe RCC and oncocytoma had comparable lower levels. Target prediction coupled with pathway analysis show that miR-194 is predicted to target key molecules and pathways involved in RCC progression. miR-194 represents a prognostic biomarker in ccRCC. PMID:26860079

  7. Combinations of differentiation markers distinguish subpopulations of alveolar epithelial cells in adult lung.

    PubMed

    Liebler, Janice M; Marconett, Crystal N; Juul, Nicholas; Wang, Hongjun; Liu, Yixin; Flodby, Per; Laird-Offringa, Ite A; Minoo, Parviz; Zhou, Beiyun

    2016-01-15

    Distal lung epithelium is maintained by proliferation of alveolar type II (AT2) cells and, for some daughter AT2 cells, transdifferentiation into alveolar type I (AT1) cells. We investigated if subpopulations of alveolar epithelial cells (AEC) exist that represent various stages in transdifferentiation from AT2 to AT1 cell phenotypes in normal adult lung and if they can be identified using combinations of cell-specific markers. Immunofluorescence microscopy showed that, in distal rat and mouse lungs, ∼ 20-30% of NKX2.1(+) (or thyroid transcription factor 1(+)) cells did not colocalize with pro-surfactant protein C (pro-SP-C), a highly specific AT2 cell marker. In distal rat lung, NKX2.1(+) cells coexpressed either pro-SP-C or the AT1 cell marker homeodomain only protein x (HOPX). Not all HOPX(+) cells colocalize with the AT1 cell marker aquaporin 5 (AQP5), and some AQP5(+) cells were NKX2.1(+). HOPX was expressed earlier than AQP5 during transdifferentiation in rat AEC primary culture, with robust expression of both by day 7. We speculate that NKX2.1 and pro-SP-C colocalize in AT2 cells, NKX2.1 and HOPX or AQP5 colocalize in intermediate or transitional cells, and HOPX and AQP5 are expressed without NKX2.1 in AT1 cells. These findings suggest marked heterogeneity among cells previously identified as exclusively AT1 or AT2 cells, implying the presence of subpopulations of intermediate or transitional AEC in normal adult lung. PMID:26545903

  8. Cell-Surface MMP-9 Protein Is a Novel Functional Marker to Identify and Separate Proangiogenic Cells from Early Endothelial Progenitor Cells Derived from CD133(+) Cells.

    PubMed

    Kanayasu-Toyoda, Toshie; Tanaka, Takeshi; Kikuchi, Yutaka; Uchida, Eriko; Matsuyama, Akifumi; Yamaguchi, Teruhide

    2016-05-01

    To develop cell therapies for ischemic diseases, endothelial progenitor cells (EPCs) have been expected to play a pivotal role in vascular regeneration. It is desirable to use a molecular marker that is related to the function of the cells. Here, a quantitative polymerase chain reaction array revealed that early EPCs derived from CD133(+) cells exhibited significant expression of MMP-9. Some populations of early EPCs expressed MMP-9 on the cell surface and others did not. We also attempted to separate the proangiogenic fraction from early EPCs derived from CD133(+) cells using a functional cell surface marker, and we then analyzed the MMP-9(+) and MMP-9(-) cell fractions. The MMP-9(+) cells not only revealed higher invasion ability but also produced a high amount of IL-8. Moreover, the stimulative effect of MMP-9(+) cells on angiogenesis in vitro and in vivo was prohibited by anti-IL-8 antibody. These data indicate that MMP-9 is one of the useful cell surface markers for the separation of angiogenic cells. Our treatment of early EPCs with hyaluronidase caused not only a downregulation of cell-surface MMP-9 but also a decrease in invasion ability, indicating that membrane-bound MMP-9, which is one of the useful markers for early EPCs, plays an important role in angiogenesis. Stem Cells 2016;34:1251-1262. PMID:26824798

  9. Characterization of p75 neurotrophin receptor expression in human dental pulp stem cells.

    PubMed

    Pan, Wenru; Kremer, Karlea L; Kaidonis, Xenia; Ludlow, Victoria E; Rogers, Mary-Louise; Xie, Jianling; Proud, Christopher G; Koblar, Simon A

    2016-10-01

    Human adult dental pulp stem cells (DPSC) are a heterogeneous stem cell population, which are able to differentiate down neural, chondrocyte, osteocyte and adipocyte lineages. We studied the expression pattern of p75 neurotrophin receptors (p75NTR), a marker of neural stem cells, within human DPSC populations from eight donors. p75NTR are expressed at low levels (<10%) in DPSC. Importantly, p75(+) DPSC represent higher expression levels of SOX1 (neural precursor cell marker), SOX2 (cell pluripotency marker) and nestin (neural stem cell marker) in comparison to p75(-) DPSC. Our results suggest that p75(+) hDPSC may denote a subpopulation with greater neurogenic potential. PMID:27469433

  10. Expression of Molecular Differentiation Markers Does Not Correlate with Histological Differentiation Grade in Intrahepatic Cholangiocarcinoma

    PubMed Central

    Demarez, Céline; Hubert, Catherine; Sempoux, Christine; Lemaigre, Frédéric P.

    2016-01-01

    The differentiation status of tumor cells, defined by histomorphological criteria, is a prognostic factor for survival of patients affected with intrahepatic cholangiocarcinoma (ICC). To strengthen the value of morphological differentiation criteria, we wished to correlate histopathological differentiation grade with expression of molecular biliary differentiation markers and of microRNAs previously shown to be dysregulated in ICC. We analysed a series of tumors that were histologically classified as well, moderately or poorly differentiated, and investigated the expression of cytokeratin 7, 19 and 903 (CK7, CK19, CK903), SRY-related HMG box transcription factors 4 and 9 (SOX4, SOX9), osteopontin (OPN), Hepatocyte Nuclear Factor-1 beta (HNF1β), Yes-associated protein (YAP), Epithelial cell adhesion molecule (EPCAM), Mucin 1 (MUC1) and N-cadherin (NCAD) by qRT-PCR and immunostaining, and of miR-31, miR-135b, miR-132, miR-200c, miR-221 and miR-222. Unexpectedly, except for subcellular location of SOX9 and OPN, no correlation was found between the expression levels of these molecular markers and histopathological differentiation grade. Therefore, our data point toward necessary caution when investigating the evolution and prognosis of ICC on the basis of cell differentiation criteria. PMID:27280413

  11. EMX2 Is a Predictive Marker for Adjuvant Chemotherapy in Lung Squamous Cell Carcinomas

    PubMed Central

    Zhang, Yi; Tolani, Bhairavi; Mo, Minli; Zhang, Hua; Zheng, Qingfeng; Yang, Yue; Cheng, Runfen; Jin, Joy Q.; Luh, Thomas W.; Yang, Cathryn; Tseng, Hsin-Hui K.; Giroux-Leprieur, Etienne; Woodard, Gavitt A.; Hao, Xishan; Wang, Changli; Jablons, David M.; He, Biao

    2015-01-01

    Background Squamous cell carcinomas (SCC) account for approximately 30% of non-small cell lung cancer (NSCLC). Current staging methods do not adequately predict outcome for this disease. EMX2 is a homeo-domain containing transcription factor known to regulate a key developmental pathway. This study assessed the significance of EMX2 as a prognostic and predictive marker for resectable lung SCC. Methods Two independent cohorts of patients with lung SCC undergoing surgical resection were studied. EMX2 protein expression was examined by immunohistochemistry, Western blot, or immunofluorescence. EMX2 expression levels in tissue specimens were scored and correlated with patient outcomes. Chemo-sensitivity of lung SCC cell lines stably transfected with EMX2 shRNAs to cisplatin, carboplatin, and docetaxel was examined in vitro. Results EMX2 expression was down-regulated in lung SCC tissue samples compared to their matched adjacent normal tissues. Positive EMX2 expression was significantly associated with improved overall survival in stage I lung SCC patients, and in stage II/IIIA lung SCC patients receiving adjuvant chemotherapy. EMX2 expression was also associated with expression of EMT markers in both lung SCC cell lines and tissue samples. Knock-down of EMX2 expression in lung SCC cells promoted chemo-resistance and cell migration. Conclusions EMX2 expression is down-regulated in lung SCC and its down-regulation is associated with chemo-resistance in lung SCC cells, possibly through regulation of Epithelial-to-Mesenchymal Transition (EMT). EMX2 may serve as a novel prognostic marker for stage I lung SCC patients and a prediction marker for stage II/IIIA lung SCC patients receiving adjuvant chemotherapy. PMID:26132438

  12. ESAM is a novel human hematopoietic stem cell marker associated with a subset of human leukemias.

    PubMed

    Ishibashi, Tomohiko; Yokota, Takafumi; Tanaka, Hirokazu; Ichii, Michiko; Sudo, Takao; Satoh, Yusuke; Doi, Yukiko; Ueda, Tomoaki; Tanimura, Akira; Hamanaka, Yuri; Ezoe, Sachiko; Shibayama, Hirohiko; Oritani, Kenji; Kanakura, Yuzuru

    2016-04-01

    Reliable markers are essential to increase our understanding of the biological features of human hematopoietic stem cells and to facilitate the application of hematopoietic stem cells in the field of transplantation and regenerative medicine. We previously identified endothelial cell-selective adhesion molecule (ESAM) as a novel functional marker of hematopoietic stem cells in mice. Here, we found that ESAM can also be used to purify human hematopoietic stem cells from all the currently available sources (adult bone marrow, mobilized peripheral blood, and cord blood). Multipotent colony-forming units and long-term hematopoietic-reconstituting cells in immunodeficient mice were found exclusively in the ESAM(High) fraction of CD34(+)CD38(-) cells. The CD34(+)CD38(-) fraction of cord blood and collagenase-treated bone marrow contained cells exhibiting extremely high expression of ESAM; these cells are likely to be related to the endothelial lineage. Leukemia cell lines of erythroid and megakaryocyte origin, but not those of myeloid or lymphoid descent, were ESAM positive. However, high ESAM expression was observed in some primary acute myeloid leukemia cells. Furthermore, KG-1a myeloid leukemia cells switched from ESAM negative to ESAM positive with repeated leukemia reconstitution in vivo. Thus, ESAM is a useful marker for studying both human hematopoietic stem cells and leukemia cells. PMID:26774386

  13. Phenotypic profile of expanded NK cells in chronic lymphoproliferative disorders: a surrogate marker for NK-cell clonality

    PubMed Central

    Bárcena, Paloma; Jara-Acevedo, María; Tabernero, María Dolores; López, Antonio; Sánchez, María Luz; García-Montero, Andrés C.; Muñoz-García, Noemí; Vidriales, María Belén; Paiva, Artur; Lecrevisse, Quentin; Lima, Margarida; Langerak, Anton W.; Böttcher, Sebastian; van Dongen, Jacques J.M.

    2015-01-01

    Currently, the lack of a universal and specific marker of clonality hampers the diagnosis and classification of chronic expansions of natural killer (NK) cells. Here we investigated the utility of flow cytometric detection of aberrant/altered NK-cell phenotypes as a surrogate marker for clonality, in the diagnostic work-up of chronic lymphoproliferative disorders of NK cells (CLPD-NK). For this purpose, a large panel of markers was evaluated by multiparametric flow cytometry on peripheral blood (PB) CD56low NK cells from 60 patients, including 23 subjects with predefined clonal (n = 9) and polyclonal (n = 14) CD56low NK-cell expansions, and 37 with CLPD-NK of undetermined clonality; also, PB samples from 10 healthy adults were included. Clonality was established using the human androgen receptor (HUMARA) assay. Clonal NK cells were found to show decreased expression of CD7, CD11b and CD38, and higher CD2, CD94 and HLADR levels vs. normal NK cells, together with a restricted repertoire of expression of the CD158a, CD158b and CD161 killer-associated receptors. In turn, NK cells from both clonal and polyclonal CLPD-NK showed similar/overlapping phenotypic profiles, except for high and more homogeneous expression of CD94 and HLADR, which was restricted to clonal CLPD-NK. We conclude that the CD94hi/HLADR+ phenotypic profile proved to be a useful surrogate marker for NK-cell clonality. PMID:26556869

  14. The prognostic value of immunohistochemical markers for oral tongue squamous cell carcinoma.

    PubMed

    Hwa, Jeong Seok; Kwon, Oh Jin; Park, Jung Je; Woo, Seung Hoon; Kim, Jin Pyeong; Ko, Gyung Hyuck; Seo, Ji Hyun; Kim, Rock Bum

    2015-10-01

    The objective of the study was to examine the prognostic value of hypoxia-inducible factor-1α (HIF-1α), carbonic anhydrase-IX (CA-IX), cyclooxygenase-2 (COX-2), Ki-67, and erythropoietin receptor in patients with oral tongue squamous cell carcinoma. Immunohistochemical analysis of marker expression was performed on tissue samples from 25 patients with tongue squamous cell carcinoma. The Kaplan-Meier method, univariate and multivariate analyses, and the Cox proportional hazards model were used to examine associations between patient and tumor characteristics, and the immunohistochemical results and disease-specific survival. There was no association between the expression of the five markers and disease-specific survival, and there was no statistically significant difference in the hazards ratio according to postoperative radiotherapy. There was no correlation between marker expression and prognosis. There was no association between marker expression and radioresistance or disease-specific survival. Therefore, HIF-1α, CA-IX, COX-2, Ki-67, and erythropoietin receptor are not suitable prognostic markers for tongue squamous cell carcinoma. PMID:25169079

  15. Protein markers and differentiation in culture for Schlemm's canal endothelial cells.

    PubMed

    Perkumas, K M; Stamer, W D

    2012-03-01

    The two cell types that populate the human conventional outflow pathway, Schlemm's canal (SC) and trabecular meshwork (TM) regulate intraocular pressure. In culture, SC and TM cells have been useful tools toward understanding their respective roles in conventional outflow homeostasis. Unfortunately, currently available protein markers that distinguish SC from TM cells are limited, motivating the present study. Antibodies that specifically recognize different vascular endothelial markers were used to probe lysates from mature cell monolayers subjected to SDS-PAGE followed by western blot analyses. Results show that SC and TM cells both expressed many of the endothelial candidate proteins investigated, such as Robo1/4, Tie2/TEK, VEGF-R1/R2, VCAM-1, eNOS and neuropilin-1. In contrast, all SC cell strains tested (n=11) expressed two proteins, fibulin-2 and vascular endothelial (VE) cadherin, not expressed by TM cells. To examine changes in VE-cadherin expression and cell-cell junction formation, indicated by transendothelial electrical resistance (TEER), SC cells were seeded onto filters at confluence and growth factors were withdrawn. Culturing cells in media containing adult bovine serum rather than fetal bovine serum resulted in a 75% mean increase in TEER and 67% corresponding average increase in VE-cadherin expression (p<0.05). While both TM and SC cells form monolayers, are contact inhibited, share some endothelial responsibilities and several endothelial protein markers, SC cells uniquely express at least two proteins which likely reflect a distinction in cellular responsibilities in vivo. One of these responsibilities, maintenance of the blood-aqueous barrier, can be modeled in culture upon withdrawal of growth factors from SC cell monolayers. PMID:22210126

  16. Vitamin D receptor expression is linked to potential markers of human thyroid papillary carcinoma.

    PubMed

    Izkhakov, Elena; Somjen, Dalia; Sharon, Orli; Knoll, Esther; Aizic, Asaf; Fliss, Dan M; Limor, Rona; Stern, Naftali

    2016-05-01

    Genes regulated cell-cell and cell-matrix adhesion and degradation of the extracellular matrix (ECM) have been screened as potential markers of malignant thyroid nodules. The mRNA expression levels of two of them, the ECM protein-1 (ECM1) and the type II transmembrane serine protease-4 (TMPRSS4), were shown to be an independent predictor of an existing thyroid carcinoma. The vitamin D receptor (VDR) is expressed in epithelial cells of the normal thyroid gland, as well as in malignant dividing cells, which respond to the active metabolite of vitamin D by decreased proliferative activity in vitro. We evaluated the relationship between mRNA gene expressions of TMPRSS4, ECM1 and VDR in 21 papillary thyroid carcinoma samples and compared it to 21 normal thyroid tissues from the same patients. Gene expression was considered as up- or down-regulated if it varied by more or less than 2-fold in the cancer tissue relative to the normal thyroid tissue (Ca/N) from the same patient. We found an overall significant adjusted correlation between the mRNA expression ratio (ExR) of VDR and that of ECM1 in Ca/N thyroid tissue (R=0.648, P<0.001). There was a high ExR of VDR between Ca/N thyroid tissue from the same patient (3.06±2.9), which also exhibited a high Ca/N ExR of ECM1 and/or of TMPRSS4 (>2, P=0.05).The finding that increased VDR expression in human thyroid cancer cells is often linked to increased ECM1 and/or TPMRSS4 expression warrants further investigation into the potential role of vitamin D analogs in thyroid carcinoma. PMID:26907966

  17. Development of a Cell Marker ELISA for the Detection of Goose T Cell Surface CD8α Molecules.

    PubMed

    Cheng, Beibei; Zhang, Wei; Chen, Shun; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Sun, Kunfeng; Yang, Qiao; Wu, Ying; Chen, Xiaoyue; Cheng, Anchun

    2016-06-01

    CD8 molecule is a key marker on T cell surface and is connected with the antigen recognition and activation of T lymphocytes. In order to provide a detection method for quantifying goose CD8α expression, this study raised the protein and antibody for goose CD8α and developed a feasible cell marker enzyme-linked immunoabsorbent assay (ELISA) method. Recombinant protein of the extracellular region gene of goCD8α was expressed in prokaryotic expression system, and specific polyclonal antibodies for goCD8α were raised and purified, which was further confirmed by Western-blot, immunofluorescence assay (IFA), and immunohistochemistry (IHC). A cell marker ELISA was established and optimized to detect the change of goCD8α expression between goose parvovirus (GPV)-infected and mock-infected goose peripheral blood mononuclear cells (PBMCs), which is consistent with our previously results of real-time quantitative PCR (qPCR). Cell marker ELISA can provide a new method to detect goCD8α in protein level and in a sensitive, specific, and simple way. This may provide a convenient and novel method for the detection of goCD8α expression. PMID:26879976

  18. The embryonic stem cell factor UTF1 serves as a reliable diagnostic marker for germinomas.

    PubMed

    Pantazis, Georgios; Harter, Patrick N; Capper, David; Kohlhof, Patricia; Mittelbronn, Michel; Schittenhelm, Jens

    2014-04-01

    The transcription factor OCT4 is an established diagnostic marker for central nervous system (CNS) germinoma. However, no data are available to date concerning the expression of its downstream target undifferentiated embryonic cell transcription factor 1 (UTF1) in CNS germ cell tumours. We examined 21 CNS germinomas and two mixed CNS germ cell tumours for UTF1 and the post-transcriptional regulator LIN28 immunohistochemical expression. We compared the profile to established diagnostic germinoma markers and to the expression in six testicular and four metastatic germ cell tumours as well as 150 CNS tumours of various backgrounds. We found UTF1 expression in 23 of 23 and LIN28 in 20 of 23 CNS germ cell tumours. The established germinoma markers cKIT (23/23), OCT4 (21/23) and placental alkaline phosphatase (PLAP) (19/21) were also frequently expressed in our cohort. In terms of signal intensity and frequency, UTF1 showed similar results as cKIT but staining was superior to OCT4, PLAP and LIN28. OCT4 was absent in all CNS metastases and haemangioblastomas, while UTF1 was weakly observed in two metastases.With a sensitivity of 100% and a specificity of 97% in the detection of CNS germinomas, UTF1 serves as a new reliable alternative in the diagnostic setting of CNS germ cell tumours. PMID:24614704

  19. Expression of Molecular Markers of Angiogenesis, Lymphangiogenesis, and Proliferation Depending on the Stage of Skin Melanoma.

    PubMed

    Bgatova, N P; Lomakin, A I; Fursov, S A; Kachesov, I V; Chepko, S A; Isakova, N B; Borodin, Yu I; Voytsitsky, V E; Konenkov, V I

    2016-08-01

    The expression of molecular markers characterizing activity of the tumor process and metastases (proliferation marker Ki-67, angiogenesis marker CD34, and lymphangiogenesis markers podoplanin and LYVE-1) was assessed by immunohictochemical method in the primary tumor specimens collected during surgery for cutaneous melanoma (40 patients). Proliferative activity of the tumor tissue and volume density of peritumoral blood and lymph vessels increased with increasing tumor malignancy, which could indicate the risk of metastases. PMID:27590758

  20. Flow cytometric detection of some activation and proliferation markers in human hematopoietic cell lines.

    PubMed

    Glasová, M; Koníková, E; Kusenda, J; Babusíková, O

    1996-01-01

    Simultaneous surface marker/DNA, cytoplasmic/DNA or nuclear/DNA staining was used to study proliferation of hematopoietic cell lines (MOLT4, BJAB, P3HR1). Different fixation/permeabilization methods (paraformaldehyde with metanol or Tween 20 or saponin, buffered formaldehyde-acetone) were used providing optimal results of the double stainings. There was a significant increase of S phase and proliferation index (PI) of CD71+ and Ki67+ MOLT4 cells in comparison with their negative counterparts. This indicates their close connection with proliferation. Unlike that, the correlation between the expression of CD38 and S phase or PI was not significant either in MOLT4 or in P3HRI cells. For cytoplasmic markers CD3 (in MOLT4 cells) and CD22 (in BJAB cells) statistically significant (cCD3) and not significant (cCD22) correlation was demonstrated between their expression and S phase or PI. Molecular equivalents of soluble fluorescein values for CD71 were always higher than for CD38. The density of these cell surface markers in addition to the percentage of their expression is of considerable significance for their evaluation as activation or proliferation markers. PMID:8996562

  1. Expression of Early Activation Marker CD69 on Peripheral Blood Lymphocytes from Pregnant Women after First Trimester Alloimmunization.

    PubMed

    Krechetova, L V; Vtorushina, V V; Nikolaeva, M A; Golubeva, E L; Van'ko, L V; Saribegova, V A; Tetruashvili, N K

    2016-08-01

    We studied the expression of an early activation marker CD69 in peripheral blood lymphocytes of pregnant women with a history of recurrent pregnancy loss after immunization with paternal lymphocytes. Spontaneous and phytohemagglutinin-stimulated expression of CD69 on the surface of T cells and NK cells isolated from the peripheral blood was analyzed. On gestation week 5-6, the number of T cells expressing CD69 spontaneously and after stimulation was significantly higher in women with miscarriage than in woman with prolonged pregnancy. However, the number of cells with CD56(+) phenotype expressing CD69 did not differ in these groups. No differences were found in the number of cells of all subpopulations expressing CD69 after stimulation on gestation week 12 in woman with full-term current pregnancy and in woman with physiological pregnancy. PMID:27591871

  2. A Novel Strategy for Enrichment and Isolation of Osteoprogenitor Cells from Induced Pluripotent Stem Cells Based on Surface Marker Combination

    PubMed Central

    Ochiai-Shino, Hiromi; Kato, Hiroshi; Sawada, Takashi; Onodera, Shoko; Saito, Akiko; Takato, Tsuyoshi; Shibahara, Takahiko; Muramatsu, Takashi; Azuma, Toshifumi

    2014-01-01

    In this study, we developed a new method to stimulate osteogenic differentiation in tissue-nonspecific alkaline phosphatase (TNAP)-positive cells liberated from human induced pluripotent stem cells (hiPSCs)-derived embryoid bodies (EBs) with 14 days long TGF-β/IGF-1/FGF-2 treatment. TNAP is a marker protein of osteolineage cells. We analyzed and isolated TNAP-positive and E-cadherin-negative nonepithelial cells by fluorescence-activated cell sorting. Treating the cells with a combination of transforming growth factor (TGF)-β, insulin-like growth factor (IGF)-1, and fibroblast growth factor (FGF)-2 for 14 days greatly enhanced TNAP expression and maximized expression frequency up to 77.3%. The isolated cells expressed high levels of osterix, which is an exclusive osteogenic marker. Culturing these TNAP-positive cells in osteoblast differentiation medium (OBM) led to the expression of runt-related transcription factor 2, type I collagen, bone sialoprotein, and osteocalcin (OCN). These cells responded to treatment with activated vitamin D3 by upregulating OCN. Furthermore, in OBM they were capable of generating many mineralized nodules with strong expression of receptor activator of NF-kappaB ligand and sclerostin (SOST). Real-time RT-PCR showed a significant increase in the expression of osteocyte marker genes, including SOST, neuropeptide Y, and reelin. Scanning electron microscopy showed dendritic morphology. Examination of semi-thin toluidine blue-stained sections showed many interconnected dendrites. Thus, TNAP-positive cells cultured in OBM may eventually become terminally differentiated osteocyte-like cells. In conclusion, treating hiPSCs-derived cells with a combination of TGF-β, IGF-1, and FGF-2 generated TNAP-positive cells at high frequency. These TNAP-positive cells had a high osteogenic potential and could terminally differentiate into osteocyte-like cells. The method described here may reveal new pathways of osteogenesis and provide a novel tool for

  3. HLA Class II Antigen Expression in Colorectal Carcinoma Tumors as a Favorable Prognostic Marker12

    PubMed Central

    Sconocchia, Giuseppe; Eppenberger-Castori, Serenella; Zlobec, Inti; Karamitopoulou, Eva; Arriga, Roberto; Coppola, Andrea; Caratelli, Sara; Spagnoli, Giulio Cesare; Lauro, Davide; Lugli, Alessandro; Han, Junyi; Iezzi, Giandomenica; Ferrone, Cristina; Ferlosio, Amedeo; Tornillo, Luigi; Droeser, Raoul; Rossi, Piero; Attanasio, Antonio; Ferrone, Soldano; Terracciano, Luigi

    2014-01-01

    The goal of this study was to determine the frequency of HLA class II antigen expression in colorectal carcinoma (CRC) tumors, its association with the clinical course of the disease, and the underlying mechanism(s). Two tissue microarrays constructed with 220 and 778 CRC tumors were stained with HLA-DR, DQ, and DP antigen-specific monoclonal antibody LGII-612.14, using the immunoperoxidase staining technique. The immunohistochemical staining results were correlated with the clinical course of the disease. The functional role of HLA class II antigens expressed on CRC cells was analyzed by investigating their in vitro interactions with immune cells. HLA class II antigens were expressed in about 25% of the 220 and 21% of the 778 tumors analyzed with an overall frequency of 23%. HLA class II antigens were detected in 19% of colorectal adenomas. Importantly, the percentage of stained cells and the staining intensity were significantly lower than those detected in CRC tumors. However, HLA class II antigen staining was weakly detected only in 5.4% of 37 normal mucosa tissues. HLA class II antigen expression was associated with a favorable clinical course of the disease. In vitro stimulation with interferon gamma (IFNγ) induced HLA class II antigen expression on two of the four CRC cell lines tested. HLA class II antigen expression on CRC cells triggered interleukin-1β (IL-1β) production by resting monocytes. HLA class II antigen expression in CRC tumors is a favorable prognostic marker. This association may reflect stimulation of IL-1β production by monocytes. PMID:24563618

  4. GFP as a marker for transient gene transfer and expression in Mycoplasma hyorhinis.

    PubMed

    Ishag, Hassan Z A; Liu, Maojun; Yang, Ruosong; Xiong, Qiyan; Feng, Zhixin; Shao, Guoqing

    2016-01-01

    Mycoplasma hyorhinis (M. hyorhinis) is an opportunistic pathogen of pigs and has been shown to transform cell cultures, which has increased the interest of researchers. The green florescence proteins (GFP) gene of Aquorea victoria, proved to be a vital marker to identify transformed cells in mixed populations. Use of GFP to observe gene transfer and expression in M. hyorhinis (strain HUB-1) has not been described. We have constructed a pMD18-O/MHRgfp plasmid containing the p97 gene promoter, origin of replication, tetracycline resistance marker and GFP gene controlled by the p97 gene promoter. The plasmid transformed into M. hyorhinis with a frequency of ~4 × 10(-3) cfu/µg plasmid DNA and could be detected by PCR amplification of the GFP gene from the total DNA of the transformant mycoplasmas. Analysis of a single clone grown on KM2-Agar containing tetracycline, showed a green fluorescence color. Conclusively, this report suggests the usefulness of GFP to monitor transient gene transfer and expression in M. hyorhinis, eventually minimizing screening procedures for gene transfer and expression. PMID:27386255

  5. SMARCA4 (BRG1) loss of expression is a useful marker for the diagnosis of ovarian small cell carcinoma of the hypercalcemic type (ovarian rhabdoid tumor): a comprehensive analysis of 116 rare gynecologic tumors, 9 soft tissue tumors, and 9 melanomas.

    PubMed

    Karanian-Philippe, Marie; Velasco, Valérie; Longy, Michel; Floquet, Anne; Arnould, Laurent; Coindre, Jean-Michel; Le Naoures-Méar, Cécile; Averous, Gerlinde; Guyon, Frédéric; MacGrogan, Gaëtan; Croce, Sabrina

    2015-09-01

    Ovarian small cell carcinoma of the hypercalcemic type (SCCOHT)/ovarian rhabdoid tumor is a rare and highly malignant tumor that typically occurs in young women. Up until now the diagnosis has been made on the basis of morphology without any specific immunohistochemical (IHC) markers. However, several authors have shown recently that SCCOHTs are characterized by inactivation of the SMARCA4 gene (encoding the BRG1 protein) resulting in a loss of BRG1 protein expression in IHC. We evaluated BRG1 and INI1 expression in 12 SCCOHTs and in a series of 122 tumors that could mimic SCCOHT morphologically: 9 juvenile granulosa cell tumors, 47 adult granulosa cell tumors, 33 high-grade ovarian serous carcinomas, 9 desmoplastic round cell tumors, 13 Ewing sarcomas (5 from the pelvis and 8 from soft tissues), 1 round cell sarcoma associated with CIC-DUX4 translocation from soft tissue (thigh), 1 case of high-grade endometrial stromal sarcoma of the ovary, and 9 melanomas. Forty-four adult granulosa cell tumors were interpretable by IHC. All 12 SCCOHTs were devoid of BRG1 expression and expressed INI1. All other interpretable 119 tumors showed BRG1 nuclear positivity, with variable staining proportions, ranging from 10% to 100% of positive cells (mean: 77%, median: 80%), variable intensities (weak: 5%, moderate: 37%, strong: 58%), and distributions: diffuse in 82 cases (70%) and heterogenous in 36 cases (30%). BRG1 positivity was heterogenous in desmoplastic round cell tumors and adult granulosa cell tumors. Overall, BRG1 is a useful diagnostic marker in SCCOHT, showing the absence of expression in SCCOHT. Nevertheless, the possible heterogeneity and the variable intensity of this staining warrant caution in the interpretation of BRG1 staining in biopsy specimens. PMID:26135561

  6. Increased nuclear ?-catenin expression in oral potentially malignant lesions: A marker of epithelial dysplasia

    PubMed Central

    Rojas-Alcayaga, Gonzalo; Maturana, Andrea; Aitken, Juan-Pablo; Rojas, Carolina; Ortega, Ana-Verónica

    2015-01-01

    Background Deregulation of ?-catenin is associated with malignant transformation; however, its relationship with potentially malignant and malignant oral processes is not fully understood. The aim of this study was to determine and compare the nuclear ?-catenin expression in oral dysplasia and oral squamous cell carcinoma (OSCC). Material and Methods Cross sectional study. Immunodetection of ?-catenin was performed on 72 samples, with the following distribution: 21 mild dysplasia, 12 moderate dysplasia, severe dysplasia 3, 36 OSCC including 19 well differentiated, 15 moderately differentiated and 2 poorly differentiated. Through microscopic observation the number of positive cells per 1000 epithelial cells was counted. For the statistical analysis, the Kruskal Wallis test was used. Results Nuclear expression of ?-catenin was observed in all samples with severe and moderate dysplasia, with a median of 267.5, in comparison to mild dysplasia whose median was 103.75. Only 10 samples (27.7%) with OSCC showed nuclear expression, with statistically significant differences between groups (p < 0.05). Conclusions Our results are consistent with most of the reports which show increased presence of ?-catenin in severe and moderate dysplasia compared to mild dysplasia; however the expression of nuclear ?-catenin decreased after starting the invasive neoplastic process. This suggests a role for this protein in the progression of dysplasia and early malignant transformation to OSCC. Immunodetection of ?-catenin could be a possible immune marker in the detection of oral dysplasia. Key words:Oral squamous cell carcinoma (OSCC), ?-catenin, oral dysplasia. PMID:26241451

  7. Marker expression, behaviors, and responses vary in different lines of conditionally immortalized cultured podocytes

    PubMed Central

    Chittiprol, Seetharamaiah; Chen, Phylip; Petrovic-Djergovic, Danica; Eichler, Tad

    2011-01-01

    The state-of-the-art cultured podocyte is conditionally immortalized by expression of a temperature-sensitive mutant of the SV40 large-T antigen. These cultures proliferate at 33°C and differentiate at 37°C into arborized cells that more closely resemble in vivo podocytes. However, the degree of resemblance remains controversial. In this study, several parameters were measured in podocyte cell lines derived from mouse (JR, KE), human (MS), and rat (HK). In all lines, the quantities of NEPH1 and podocin proteins and NEPH1 and SYNPO mRNAs were comparable to glomeruli, while synaptopodin and nephrin proteins and NPHS1 and NPHS2 mRNAs were <5% of glomerular levels. Expression of Wilms' tumor-1 (WT1) mRNA in mouse lines was comparable to glomeruli, but rat and human lines expressed little WT1. Undifferentiated human and mouse lines had similar proliferation rates that decreased after differentiation, while the rate in rat cells remained constant. The motility of different lines varied as measured by both general motility and wound-healing assays. The toxicity of puromycin aminonucleoside was MS ∼ JR >> KE, and of doxorubicin was JR ∼ KE > MS, while HK cells were almost unaffected. Process formation was largely a result of contractile action after formation of lamellipodia. These findings demonstrate dramatic differences in marker expression, response to toxins, and motility between lines of podocytes from different species and even between similarly-derived mouse lines. PMID:21632959

  8. Cancer stem cell markers in pediatric sarcomas: Sox2 is associated with tumorigenicity in immunodeficient mice.

    PubMed

    Skoda, Jan; Nunukova, Alena; Loja, Tomas; Zambo, Iva; Neradil, Jakub; Mudry, Peter; Zitterbart, Karel; Hermanova, Marketa; Hampl, Ales; Sterba, Jaroslav; Veselska, Renata

    2016-07-01

    The three most frequent pediatric sarcomas, i.e., Ewing's sarcoma, osteosarcoma, and rhabdomyosarcoma, were examined in this study: three cell lines derived from three primary tumor samples were analyzed from each of these tumor types. Detailed comparative analysis of the expression of three putative cancer stem cell markers related to sarcomas-ABCG2, CD133, and nestin-was performed on both primary tumor tissues and corresponding cell lines. The obtained results showed that the frequency of ABCG2-positive and CD133-positive cells was predominantly increased in the respective cell lines but that the high levels of nestin expression were reduced in both osteosarcomas and rhabdomyosarcomas under in vitro conditions. These findings suggest the selection advantage of cells expressing ABCG2 or CD133, but the functional tests in NOD/SCID gamma mice did not confirm the tumorigenic potential of cells harboring this phenotype. Subsequent analysis of the expression of common stem cell markers revealed an evident relationship between the expression of the transcription factor Sox2 and the tumorigenicity of the cell lines in immunodeficient mice: the Sox2 levels were highest in the two cell lines that were demonstrated as tumorigenic. Furthermore, Sox2-positive cells were found in the respective primary tumors and all xenograft tumors showed apparent accumulation of these cells. All of these findings support our conclusion that regardless of the expression of ABCG2, CD133 and nestin, only cells displaying increased Sox2 expression are directly involved in tumor initiation and growth; therefore, these cells fit the definition of the cancer stem cell phenotype. PMID:26790443

  9. Upregulation of pluripotency markers in adipose tissue-derived stem cells by miR-302 and leukemia inhibitory factor.

    PubMed

    Taha, Masoumeh Fakhr; Javeri, Arash; Rohban, Sara; Mowla, Seyed Javad

    2014-01-01

    The expression pattern of pluripotency markers in adipose tissue-derived stem cells (ADSCs) is a subject of controversy. Moreover, there is no data about the signaling molecules that regulate these markers in ADSCs. In the present study, we studied the roles of leukemia inhibitory factor (LIF) and miR-302 in this regard. Freshly isolated mouse ADSCs expressed hematopoietic, mesenchymal, and pluripotency markers. One day after plating, ADSCs expressed OCT4 and Sox2 proteins. After three passages, the expression of hematopoietic and pluripotency markers decreased, while the expression of mesenchymal stem cell markers exhibited a striking rise. Both supplementation of culture media with LIF and transfection of the ADSCs with miR-302 family upregulated the expression levels of OCT4, Nanog, and Sox2 mRNAs. These findings showed that mouse adipose tissue contains a population of cells with molecular resemblance to embryonic stem cells, and LIF and miR-302 family positively affect the expression of pluripotency markers. PMID:25147827

  10. Co-expression of TTF-1 and neuroendocrine markers in the human fetal lung and pulmonary neuroendocrine tumors.

    PubMed

    Miskovic, Josip; Brekalo, Zdrinko; Vukojevic, Katarina; Miskovic, Helena Radic; Kraljevic, Daniela; Todorovic, Jelena; Soljic, Violeta

    2015-01-01

    The expression pattern of thyroid transcription factor 1 (TTF-1) and neuroendocrine markers, neuron cell adhesion molecule (NCAM; CD56), chromogranin A (CgA) and synaptophysin (Syp), of different lung cell lineages was histologically analyzed in 15 normal human fetal lungs and 12 neuroendocrine tumors (NETs) using immunohistochemical methods. During pseudoglandular phase strong nuclear TTF-1 staining was detected in the columnar nonciliated epithelial cells, while NCAM, CgA and Syp had a moderate expression in the proximal airways and mild expression in the distal airways. Neuroendocrine cells (NECs) in proximal lung airway were co-localizing TTF-1 and other neuroendocrine markers while neuroendocrine bodies (NEBs) exhibit only staining with NCAM and Syp. In the canalicular phase TTF-1 nuclear staining was expressed only in several epithelial cells in proximal airways, while budding airways epithelium showed strong TTF-1 expression. Expression of NCAM, CgA and Syp in this phase equals the one in pseudoglandular phase. NEBs cells were co-localizing TTF-1 and NCAM in proximal airways and few NECs in distal airway were co-localizing TTF-1 and Syp. TTF-1 staining in the saccular phase was limited to subsets of epithelial cells in the proximal airways with stronger positivity in the distal airways. NCAM expression is moderate only in proximal airways, while Syp and CgA show mild expression in proximal and distal airways. NECs were co-localizing TTF-1 and NCAM in proximal lung airway. With regard to NECs, all small cell lung cancer (SCLC) cells had strong TTF-1, NCAM, Syp and CgA positivity and TTF-1 co-localized with other neuroendocrine markers. All pulmonary typical carcinoids were TTF-1 negative, while pulmonary atypical carcinoids were focal positive for TTF-1 and some neoplastic cells co-localized TTF-1 with neuroendocrine markers. Our results indicate that TTF-1 expression in NECs suggests a possible role in their normal development and differentiation. Our

  11. Spermatogonial stem cells specific marker identification in channel catfish, Ictalurus punctatus and blue catfish, I. furcatus.

    PubMed

    Shang, Mei; Su, Baofeng; Lipke, Elizabeth A; Perera, Dayan A; Li, Chao; Qin, Zhenkui; Li, Yun; Dunn, David A; Cek, Sehriban; Peatman, Eric; Dunham, Rex A

    2015-12-01

    Testicular germ cells of channel catfish, Ictalurus punctatus, and blue catfish, I. furcatus were separated into four layers with Percoll density gradient centrifugation, containing different cell types (40% in the first layer were spermatogonial stem cells, SSCs). Expression of seventeen genes was analyzed for cells from different layers by real-time quantitative PCR. Pfkfb4, Urod, Plzf, Integrin6, IntegrinV, Thy1 and Cdh1 genes showed the same expression change pattern in both channel and blue catfish as these genes were down-regulated in the spermatocytes and even more so in spermatids. Plzf and Integrin6 had especially high expression in SSCs and can be used as SSCs specific markers. Sox2 gene was up-regulated in spermatocytes and even more highly up-regulated in spermatids, which indicated it could be a spermatid marker. In contrast to channel catfish, Id4, Smad5 and Prdm14 gene expressions were strongly down-regulated in spermatocyte cells, but up-regulated in spermatid cells in blue catfish. Smad5 gene was down-regulated in spermatocytes, but up-regulated in both spermatogonia and spermatids, allowing identification as a marker for spermatocytes in blue catfish. Oct4, Id4, Gfrα2, Pum2 and Prdm14 genes showed different expression patterns in the testicular germ cells of channel and blue catfish. This may be a partial explanation to the differing responses of channel catfish and blue catfish to induced spawning technologies. The SSCs specific markers can be used for further SSCs labeling, which can increase the SSCs sorting efficiency and be applied in various studies involving SSCs and other germ cells. PMID:26251285

  12. Identification of Meflin as a Potential Marker for Mesenchymal Stromal Cells

    PubMed Central

    Maeda, Keiko; Enomoto, Atsushi; Hara, Akitoshi; Asai, Naoya; Kobayashi, Takeshi; Horinouchi, Asuka; Maruyama, Shoichi; Ishikawa, Yuichi; Nishiyama, Takahiro; Kiyoi, Hitoshi; Kato, Takuya; Ando, Kenju; Weng, Liang; Mii, Shinji; Asai, Masato; Mizutani, Yasuyuki; Watanabe, Osamu; Hirooka, Yoshiki; Goto, Hidemi; Takahashi, Masahide

    2016-01-01

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) in culture are derived from BM stromal cells or skeletal stem cells. Whereas MSCs have been exploited in clinical medicine, the identification of MSC-specific markers has been limited. Here, we report that a cell surface and secreted protein, Meflin, is expressed in cultured MSCs, fibroblasts and pericytes, but not other types of cells including epithelial, endothelial and smooth muscle cells. In vivo, Meflin is expressed by immature osteoblasts and chondroblasts. In addition, Meflin is found on stromal cells distributed throughout the BM, and on pericytes and perivascular cells in multiple organs. Meflin maintains the undifferentiated state of cultured MSCs and is downregulated upon their differentiation, consistent with the observation that Meflin-deficient mice exhibit increased number of osteoblasts and accelerated bone development. In the bone and BM, Meflin is more highly expressed in primitive stromal cells that express platelet-derived growth factor receptor α and Sca-1 than the Sca-1-negative adipo-osteogenic progenitors, which create a niche for hematopoiesis. Those results are consistent with a decrease in the number of clonogenic colony-forming unit-fibroblasts within the BM of Meflin-deficient mice. These preliminary data suggest that Meflin is a potential marker for cultured MSCs and their source cells in vivo. PMID:26924503

  13. Identification of Meflin as a Potential Marker for Mesenchymal Stromal Cells.

    PubMed

    Maeda, Keiko; Enomoto, Atsushi; Hara, Akitoshi; Asai, Naoya; Kobayashi, Takeshi; Horinouchi, Asuka; Maruyama, Shoichi; Ishikawa, Yuichi; Nishiyama, Takahiro; Kiyoi, Hitoshi; Kato, Takuya; Ando, Kenju; Weng, Liang; Mii, Shinji; Asai, Masato; Mizutani, Yasuyuki; Watanabe, Osamu; Hirooka, Yoshiki; Goto, Hidemi; Takahashi, Masahide

    2016-01-01

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) in culture are derived from BM stromal cells or skeletal stem cells. Whereas MSCs have been exploited in clinical medicine, the identification of MSC-specific markers has been limited. Here, we report that a cell surface and secreted protein, Meflin, is expressed in cultured MSCs, fibroblasts and pericytes, but not other types of cells including epithelial, endothelial and smooth muscle cells. In vivo, Meflin is expressed by immature osteoblasts and chondroblasts. In addition, Meflin is found on stromal cells distributed throughout the BM, and on pericytes and perivascular cells in multiple organs. Meflin maintains the undifferentiated state of cultured MSCs and is downregulated upon their differentiation, consistent with the observation that Meflin-deficient mice exhibit increased number of osteoblasts and accelerated bone development. In the bone and BM, Meflin is more highly expressed in primitive stromal cells that express platelet-derived growth factor receptor α and Sca-1 than the Sca-1-negative adipo-osteogenic progenitors, which create a niche for hematopoiesis. Those results are consistent with a decrease in the number of clonogenic colony-forming unit-fibroblasts within the BM of Meflin-deficient mice. These preliminary data suggest that Meflin is a potential marker for cultured MSCs and their source cells in vivo. PMID:26924503

  14. Clinically proven markers of metastasis predict metastatic spread of human melanoma cells engrafted in scid mice

    PubMed Central

    Thies, A; Mauer, S; Fodstad, O; Schumacher, U

    2007-01-01

    Metastasis formation is a complex process and as such can only be modelled in vivo. As markers indicating metastatic spread in syngenic mouse models differ significantly from those in man, this study aimed to develop a human melanoma xenograft mouse model that reflects the clinical situation. Six human melanoma cell lines (LOX, MV3, FEMX-1, G361, MeWo and UISO-Mel6) were xenografted into severe combined immunodeficient mice and tumour growth, metastatic behaviour and number of lung metastases were assessed. Tumours and metastases were analysed for HPA binding and expression of CEACAM-1 and L1, all markers indicative of metastasis in clinical studies. Development of primary tumour nodules ranged from 3 weeks (MV3) to 3 months (MeWo). Whereas G361 and FEMX-1 rarely formed lung metastases, MeWo, MV3 and LOX were moderately and UISO-Mel6 was highly metastatic. Similar to clinical studies, HPA, CEACAM1 and L1 indicated metastatic spread in the xenograft melanoma model, but were not all simultaneously expressed in all cell lines. Considering the strongest expression of one marker combined with an absent or low expression of the other two markers, we conclude that LOX is the cell line of choice for analyses of the functional role of HPA-binding glycoconjugates, UISO-Mel6 is ideally suited to study CEACAM1 function in melanoma spread and L1 function can best be modelled using MeWo. PMID:17262079

  15. Leptin receptor expression and Gln223Arg polymorphism as prognostic markers in oral and oropharyngeal cancer.

    PubMed

    Rodrigues, P R S; Maia, L L; Santos, M; Peterle, G T; Alves, L U; Takamori, J T; Souza, R P; Barbosa, W M; Mercante, A M C; Nunes, F D; Carvalho, M B; Tajara, E H; Louro, I D; Silva-Conforti, A M A

    2015-01-01

    The leptin gene product is released into the blood stream, passes through the blood-brain barrier, and finds the leptin receptor (LEPR) in the central nervous system. This hormone regulates food intake, hematopoiesis, inflammation, immunity, differentiation, and cell proliferation. The LEPR Gln223Arg polymorphism has been reported to alter receptor function and expression, both of which have been related with prognostics in several tumor types. Furthermore, several studies have shown a relationship between the Gln223Arg polymorphism and tumor development, and its role in oral and oropharyngeal squamous cell carcinoma is now well understood. In this study, 315 DNA samples were used for LEPR Gln223Arg genotyping and 87 primary oral and oropharyngeal squamous cell carcinomas were used for immunohistochemical expression analysis, such that a relationship between these and tumor development and prognosis could be established. Homozygous LEPR Arg223 was found to be associated with a 2-fold reduction in oral and oropharyngeal cancer risk. In contrast, the presence of the Arg223 allele in tumors was associated with worse disease-free and disease-specific survival. Low LEPR expression was found to be an independent risk factor, increasing the risk for lymph node metastasis 4-fold. In conclusion, the Gln223Arg polymorphism and LEPR expression might be valuable markers for oral and oropharyngeal cancer, suggesting that LEPR might serve as a potential target for future therapies. PMID:26634459

  16. DDX4 (DEAD box polypeptide 4) colocalizes with cancer stem cell marker CD133 in ovarian cancers

    SciTech Connect

    Kim, Ki Hyung; Kang, Yun-Jeong; Jo, Jin-Ok; Ock, Mee Sun; Moon, Soo Hyun; Suh, Dong Soo; Yoon, Man Soo; Park, Eun-Sil; Jeong, Namkung; Eo, Wan-Kyu; Kim, Heung Yeol; Cha, Hee-Jae

    2014-05-02

    Highlights: • Germ cell marker DDX4 was significantly increased in ovarian cancer. • Ovarian cancer stem cell marker CD133 was significantly increased in ovarian cancer. • DDX4 and CD133 were mostly colocalized in various types of ovarian cancer tissues. • CD133 positive ovarian cancer cells also express DDX4 whereas CD133-negative cells did not possess DDX4. • Germ cell marker DDX4 has the potential of ovarian cancer stem cell marker. - Abstract: DDX4 (DEAD box polypeptide 4), characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD), is an RNA helicase which is implicated in various cellular processes involving the alteration of RNA secondary structure, such as translation initiation, nuclear and mitochondrial splicing, and ribosome and spliceosome assembly. DDX4 is known to be a germ cell-specific protein and is used as a sorting marker of germline stem cells for the production of oocytes. A recent report about DDX4 in ovarian cancer showed that DDX4 is overexpressed in epithelial ovarian cancer and disrupts a DNA damage-induced G2 checkpoint. We investigated the relationship between DDX4 and ovarian cancer stem cells by analyzing the expression patterns of DDX4 and the cancer stem cell marker CD133 in ovarian cancers via tissue microarray. Both DDX4 and CD133 were significantly increased in ovarian cancer compared to benign tumors, and showed similar patterns of expression. In addition, DDX4 and CD133 were mostly colocalized in various types of ovarian cancer tissues. Furthermore, almost all CD133 positive ovarian cancer cells also express DDX4 whereas CD133-negative cells did not possess DDX4, suggesting a strong possibility that DDX4 plays an important role in cancer stem cells, and/or can be used as an ovarian cancer stem cell marker.

  17. Identification of Specific Cell-Surface Markers of Adipose-Derived Stem Cells from Subcutaneous and Visceral Fat Depots

    PubMed Central

    Ong, Wee Kiat; Tan, Chuen Seng; Chan, Kai Li; Goesantoso, Grace Gandi; Chan, Xin Hui Derryn; Chan, Edmund; Yin, Jocelyn; Yeo, Chia Rou; Khoo, Chin Meng; So, Jimmy Bok Yan; Shabbir, Asim; Toh, Sue-Anne; Han, Weiping; Sugii, Shigeki

    2014-01-01

    Summary Adipose-derived stem/stromal cells (ASCs) from the anatomically distinct subcutaneous and visceral depots of white adipose tissue (WAT) differ in their inherent properties. However, little is known about the molecular identity and definitive markers of ASCs from these depots. In this study, ASCs from subcutaneous fat (SC-ASCs) and visceral fat (VS-ASCs) of omental region were isolated and studied. High-content image screening of over 240 cell-surface markers identified several potential depot-specific markers of ASCs. Subsequent studies revealed consistent predominant expression of CD10 in SC-ASCs and CD200 in VS-ASCs across 12 human subjects and in mice. CD10-high-expressing cells sorted from SC-ASCs differentiated better than their CD10-low-expressing counterparts, whereas CD200-low VS-ASCs differentiated better than CD200-high VS-ASCs. The expression of CD10 and CD200 is thus depot-dependent and associates with adipogenic capacities. These markers will offer a valuable tool for tracking and screening of depot-specific stem cell populations. PMID:24527391

  18. Markers

    ERIC Educational Resources Information Center

    Healthy Schools Network, Inc., 2011

    2011-01-01

    Dry erase whiteboards come with toxic dry erase markers and toxic cleaning products. Dry erase markers labeled "nontoxic" are not free of toxic chemicals and can cause health problems. Children are especially vulnerable to environmental health hazards; moreover, schools commonly have problems with indoor air pollution, as they are more densely…

  19. Marker-free cell discrimination by holographic optical tweezers

    NASA Astrophysics Data System (ADS)

    Schaal, F.; Warber, M.; Zwick, S.; van der Kuip, H.; Haist, T.; Osten, W.

    2009-06-01

    We introduce a method for marker-free cell discrimination based on optical tweezers. Cancerous, non-cancerous, and drug-treated cells could be distinguished by measuring the trapping forces using holographic optical tweezers. We present trapping force measurements on different cell lines: normal pre-B lymphocyte cells (BaF3; "normal cells"), their Bcr-Abl transformed counterparts (BaF3-p185; "cancer cells") as a model for chronic myeloid leukaemia (CML) and Imatinib treated BaF3-p185 cells. The results are compared with reference measurements obtained by a commercial flow cytometry system.

  20. CD38 is a putative functional marker for side population cells in human nasopharyngeal carcinoma cell lines.

    PubMed

    Zheng, Danwei; Liao, Shan; Zhu, Guangchao; Luo, Gengqiu; Xiao, Songshu; He, Junyu; Pei, Zhen; Li, Guiyuan; Zhou, Yanhong

    2016-03-01

    Cancer stem cells (CSCs) are thought to be responsible for cancer progression and therapeutic resistance but identification of this subpopulation requires selective markers. Fortunately, side population (SP) cells analysis brings a novel method to CSCs study. In this study, we identified SP cells, which are demonstrated rich in CSCs, in four nasopharyngeal carcinoma (NPC) cell lines. We investigated SP cells from HK-1 NPC cell line and showed CSCs characteristics in this subpopulation. SP cells displayed greater proliferation and invasion and expressed high levels of CSCs markers than NSP cells. Furthermore, our microRNA microarray analysis of SP versus NSP cells revealed that CD38-related miRNAs were down-regulated in SP cell, but the mRNA and protein level of CD38 were highly expressed in SP cells. We further searched for molecules interacting with CD38 and identified ZAP70, which was also well expressed in SP cells at both mRNA and protein levels. Our results uncover a CD38 pathway that may regulate the proliferation and migration of SP cells from HK-1 NPC cell line. PMID:25630761

  1. PDGFRβ Is a Novel Marker of Stromal Activation in Oral Squamous Cell Carcinomas

    PubMed Central

    Han, Rong; Haines, Paul; Gallagher, George; Noonan, Vikki; Kukuruzinska, Maria; Monti, Stefano; Trojanowska, Maria

    2016-01-01

    Carcinoma associated fibroblasts (CAFs) form the main constituents of tumor stroma and play an important role in tumor growth and invasion. The presence of CAFs is a strong predictor of poor prognosis of head and neck squamous cell carcinoma. Despite significant progress in determining the role of CAFs in tumor progression, the mechanisms contributing to their activation remain poorly characterized, in part due to fibroblast heterogeneity and the scarcity of reliable fibroblast surface markers. To search for such markers in oral squamous cell carcinoma (OSCC), we applied a novel approach that uses RNA-sequencing data derived from the cancer genome atlas (TCGA). Specifically, our strategy allowed for an unbiased identification of genes whose expression was closely associated with a set of bona fide stroma-specific transcripts, namely the interstitial collagens COL1A1, COL1A2, and COL3A1. Among the top hits were genes involved in cellular matrix remodeling and tumor invasion and migration, including platelet-derived growth factor receptor beta (PDGFRβ), which was found to be the highest-ranking receptor protein genome-wide. Similar analyses performed on ten additional TCGA cancer datasets revealed that other tumor types shared CAF markers with OSCC, including PDGFRβ, which was found to significantly correlate with the reference collagen expression in ten of the 11 cancer types tested. Subsequent immunostaining of OSCC specimens demonstrated that PDGFRβ was abundantly expressed in stromal fibroblasts of all tested cases (12/12), while it was absent in tumor cells, with greater specificity than other known markers such as alpha smooth muscle actin or podoplanin (3/11). Overall, this study identified PDGFRβ as a novel marker of stromal activation in OSCC, and further characterized a list of promising candidate CAF markers that may be relevant to other carcinomas. Our novel approach provides for a fast and accurate method to identify CAF markers without the need for

  2. PDGFRβ Is a Novel Marker of Stromal Activation in Oral Squamous Cell Carcinomas.

    PubMed

    Kartha, Vinay K; Stawski, Lukasz; Han, Rong; Haines, Paul; Gallagher, George; Noonan, Vikki; Kukuruzinska, Maria; Monti, Stefano; Trojanowska, Maria

    2016-01-01

    Carcinoma associated fibroblasts (CAFs) form the main constituents of tumor stroma and play an important role in tumor growth and invasion. The presence of CAFs is a strong predictor of poor prognosis of head and neck squamous cell carcinoma. Despite significant progress in determining the role of CAFs in tumor progression, the mechanisms contributing to their activation remain poorly characterized, in part due to fibroblast heterogeneity and the scarcity of reliable fibroblast surface markers. To search for such markers in oral squamous cell carcinoma (OSCC), we applied a novel approach that uses RNA-sequencing data derived from the cancer genome atlas (TCGA). Specifically, our strategy allowed for an unbiased identification of genes whose expression was closely associated with a set of bona fide stroma-specific transcripts, namely the interstitial collagens COL1A1, COL1A2, and COL3A1. Among the top hits were genes involved in cellular matrix remodeling and tumor invasion and migration, including platelet-derived growth factor receptor beta (PDGFRβ), which was found to be the highest-ranking receptor protein genome-wide. Similar analyses performed on ten additional TCGA cancer datasets revealed that other tumor types shared CAF markers with OSCC, including PDGFRβ, which was found to significantly correlate with the reference collagen expression in ten of the 11 cancer types tested. Subsequent immunostaining of OSCC specimens demonstrated that PDGFRβ was abundantly expressed in stromal fibroblasts of all tested cases (12/12), while it was absent in tumor cells, with greater specificity than other known markers such as alpha smooth muscle actin or podoplanin (3/11). Overall, this study identified PDGFRβ as a novel marker of stromal activation in OSCC, and further characterized a list of promising candidate CAF markers that may be relevant to other carcinomas. Our novel approach provides for a fast and accurate method to identify CAF markers without the need for

  3. The cancer marker neutrophil gelatinase-associated lipocalin is highly expressed in human endometrial hyperplasia.

    PubMed

    Liao, Chi-Jr; Huang, Yen Hua; Au, Heng-Kien; Wang, Le-Ming; Chu, Sin-Tak

    2012-02-01

    Recently, endometrial hyperplasia was identified as presenting a higher risk for progressing to endometrial carcinoma more readily than adenomyosis. The Lcn-2 gene encodes neutrophil gelatinase-associated lipocalin (NGAL), which promotes cell proliferation and serves as a cancer marker in some cancers. In our current study, we investigated the relationship between the expression of NGAL and that of pathogenic cytokines and cancer-related genes including cyclooxygenase-2 (COX-2), E-cadherin, β-catenin, and vimentin in patients with endometrial disorders. NGAL expression was examined by Western blotting, immunohistochemistry, and reverse-transcription polymerase chain reaction (RT-PCR) in hyperplasia and adenomyosis biopsy samples. Immunohistochemistry demonstrated the occurrence of NGAL in glandular epithelial cells but not in the stromal cells of hyperplasia biopsy samples. NGAL protein and mRNA expression were significantly greater in endometrial hyperplasia than in endometrial adenomyosis. Although our data showed no difference in pathogenic cytokines between patients with endometrial hyperplasia and endometrial adenomyosis, we observed high expression levels of COX-2, β-catenin, vimentin, and E-cadherin in patients with endometrial hyperplasia. NGAL mRNA expression correlated positively with COX-2 and E-cadherin mRNA expression (r = 0.41 and r = 0.57, respectively), but correlated negatively with vimentin and β-catenin mRNA expression (r = -0.42 and r = -0.61, respectively). Our data suggest that NGAL is up-regulated in patients with endometrial hyperplasia to prevent the transition from hyperplasia to carcinoma. PMID:21573795

  4. Identification of Predictive Gene Markers for Multipotent Stromal Cell Proliferation.

    PubMed

    Bellayr, Ian H; Marklein, Ross A; Lo Surdo, Jessica L; Bauer, Steven R; Puri, Raj K

    2016-06-01

    Multipotent stromal cells (MSCs) are known for their distinctive ability to differentiate into different cell lineages, such as adipocytes, chondrocytes, and osteocytes. They can be isolated from numerous tissue sources, including bone marrow, adipose tissue, skeletal muscle, and others. Because of their differentiation potential and secretion of growth factors, MSCs are believed to have an inherent quality of regeneration and immune suppression. Cellular expansion is necessary to obtain sufficient numbers for use; however, MSCs exhibit a reduced capacity for proliferation and differentiation after several rounds of passaging. In this study, gene markers of MSC proliferation were identified and evaluated for their ability to predict proliferative quality. Microarray data of human bone marrow-derived MSCs were correlated with two proliferation assays. A collection of 24 genes were observed to significantly correlate with both proliferation assays (|r| >0.70) for eight MSC lines at multiple passages. These 24 identified genes were then confirmed using an additional set of MSCs from eight new donors using reverse transcription quantitative polymerase chain reaction (RT-qPCR). The proliferative potential of the second set of MSCs was measured for each donor/passage for confluency fraction, fraction of EdU+ cells, and population doubling time. The second set of MSCs exhibited a greater proliferative potential at passage 4 in comparison to passage 8, which was distinguishable by 15 genes; however, only seven of the genes (BIRC5, CCNA2, CDC20, CDK1, PBK, PLK1, and SPC25) demonstrated significant correlation with MSC proliferation regardless of passage. Our analyses revealed that correlation between gene expression and proliferation was consistently reduced with the inclusion of non-MSC cell lines; therefore, this set of seven genes may be more strongly associated with MSC proliferative quality. Our results pave the way to determine the quality of an MSC population for a

  5. CD39 Expression Identifies Terminally Exhausted CD8+ T Cells

    PubMed Central

    Adland, Emily; Yates, Kathleen; Pauken, Kristen E.; Cosgrove, Cormac; Ledderose, Carola; Junger, Wolfgang G.; Robson, Simon C.; Wherry, E. John; Alter, Galit; Goulder, Philip J. R.; Klenerman, Paul; Sharpe, Arlene H.; Lauer, Georg M.; Haining, W. Nicholas

    2015-01-01

    Exhausted T cells express multiple co-inhibitory molecules that impair their function and limit immunity to chronic viral infection. Defining novel markers of exhaustion is important both for identifying and potentially reversing T cell exhaustion. Herein, we show that the ectonucleotidse CD39 is a marker of exhausted CD8+ T cells. CD8+ T cells specific for HCV or HIV express high levels of CD39, but those specific for EBV and CMV do not. CD39 expressed by CD8+ T cells in chronic infection is enzymatically active, co-expressed with PD-1, marks cells with a transcriptional signature of T cell exhaustion and correlates with viral load in HIV and HCV. In the mouse model of chronic Lymphocytic Choriomeningitis Virus infection, virus-specific CD8+ T cells contain a population of CD39high CD8+ T cells that is absent in functional memory cells elicited by acute infection. This CD39high CD8+ T cell population is enriched for cells with the phenotypic and functional profile of terminal exhaustion. These findings provide a new marker of T cell exhaustion, and implicate the purinergic pathway in the regulation of T cell exhaustion. PMID:26485519

  6. Sleep deprivation affects inflammatory marker expression in adipose tissue

    PubMed Central

    2010-01-01

    Sleep deprivation has been shown to increase inflammatory markers in rat sera and peripheral blood mononuclear cells. Inflammation is a condition associated with pathologies such as obesity, cancer, and cardiovascular diseases. We investigated changes in the pro and anti-inflammatory cytokines and adipokines in different depots of white adipose tissue in rats. We also assessed lipid profiles and serum levels of corticosterone, leptin, and adiponectin after 96 hours of sleep deprivation. Methods The study consisted of two groups: a control (C) group and a paradoxical sleep deprivation by 96 h (PSD) group. Ten rats were randomly assigned to either the control group (C) or the PSD. Mesenteric (MEAT) and retroperitoneal (RPAT) adipose tissue, liver and serum were collected following completion of the PSD protocol. Levels of interleukin (IL)-6, interleukin (IL)-10 and tumour necrosis factor (TNF)-α were analysed in MEAT and RPAT, and leptin, adiponectin, glucose, corticosterone and lipid profile levels were analysed in serum. Results IL-6 levels were elevated in RPAT but remained unchanged in MEAT after PSD. IL-10 protein concentration was not altered in either depot, and TNF-α levels decreased in MEAT. Glucose, triglycerides (TG), VLDL and leptin decreased in serum after 96 hours of PSD; adiponectin was not altered and corticosterone was increased. Conclusion PSD decreased fat mass and may modulate the cytokine content in different depots of adipose tissue. The inflammatory response was diminished in both depots of adipose tissue, with increased IL-6 levels in RPAT and decreased TNF-α protein concentrations in MEAT and increased levels of corticosterone in serum. PMID:21034496

  7. A large scale screen for neural stem cell markers in Xenopus retina.

    PubMed

    Parain, Karine; Mazurier, Nicolas; Bronchain, Odile; Borday, Caroline; Cabochette, Pauline; Chesneau, Albert; Colozza, Gabriele; El Yakoubi, Warif; Hamdache, Johanna; Locker, Morgane; Gilchrist, Michael J; Pollet, Nicolas; Perron, Muriel

    2012-04-01

    Neural stem cell research suffers from a lack of molecular markers to specifically assess stem or progenitor cell properties. The organization of the Xenopus ciliary marginal zone (CMZ) in the retina allows the spatial distinction of these two cell types: stem cells are confined to the most peripheral region, while progenitors are more central. Despite this clear advantage, very few genes specifically expressed in retinal stem cells have been discovered so far in this model. To gain insight into the molecular signature of these cells, we performed a large-scale expression screen in the Xenopus CMZ, establishing it as a model system for stem cell gene profiling. Eighteen genes expressed specifically in the CMZ stem cell compartment were retrieved and are discussed here. These encode various types of proteins, including factors associated with proliferation, mitotic spindle organization, DNA/RNA processing, and cell adhesion. In addition, the publication of this work in a special issue on Xenopus prompted us to give a more general illustration of the value of large-scale screens in this model species. Thus, beyond neural stem cell specific genes, we give a broader highlight of our screen outcome, describing in particular other retinal cell markers that we found. Finally, we present how these can all be easily retrieved through a novel module we developed in the web-based annotation tool XenMARK, and illustrate the potential of this powerful searchable database in the context of the retina. PMID:22275214

  8. High expression of arachidonate 15-lipoxygenase and proinflammatory markers in human ischemic heart tissue

    SciTech Connect

    Magnusson, Lisa U.; Lundqvist, Annika; Asp, Julia; Synnergren, Jane; Johansson, Cecilia Thalen; Palmqvist, Lars; Jeppsson, Anders; Hulten, Lillemor Mattsson

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We found a 17-fold upregulation of ALOX15 in the ischemic heart. Black-Right-Pointing-Pointer Incubation of human muscle cells in hypoxia showed a 22-fold upregulation of ALOX15. Black-Right-Pointing-Pointer We observed increased levels of proinflammatory markers in ischemic heart tissue. Black-Right-Pointing-Pointer Suggesting a link between ischemia and inflammation in ischemic heart biopsies. -- Abstract: A common feature of the ischemic heart and atherosclerotic plaques is the presence of hypoxia (insufficient levels of oxygen in the tissue). Hypoxia has pronounced effects on almost every aspect of cell physiology, and the nuclear transcription factor hypoxia inducible factor-1{alpha} (HIF-1{alpha}) regulates adaptive responses to low concentrations of oxygen in mammalian cells. In our recent work, we observed that hypoxia increases the proinflammatory enzyme arachidonate 15-lipoxygenase (ALOX15B) in human carotid plaques. ALOX15 has recently been shown to be present in the human myocardium, but the effect of ischemia on its expression has not been investigated. Here we test the hypothesis that ischemia of the heart leads to increased expression of ALOX15, and found an almost 2-fold increase in HIF-1{alpha} mRNA expression and a 17-fold upregulation of ALOX15 mRNA expression in the ischemic heart biopsies from patients undergoing coronary bypass surgery compared with non ischemic heart tissue. To investigate the effect of low oxygen concentration on ALOX15 we incubated human vascular muscle cells in hypoxia and showed that expression of ALOX15 increased 22-fold compared with cells incubated in normoxic conditions. We also observed increased mRNA levels of proinflammatory markers in ischemic heart tissue compared with non-ischemic controls. In summary, we demonstrate increased ALOX15 in human ischemic heart biopsies. Furthermore we demonstrate that hypoxia increases ALOX15 in human muscle cells. Our results yield

  9. Highly informative marker sets consisting of genes with low individual degree of differential expression

    PubMed Central

    Galatenko, V. V.; Shkurnikov, M. Yu.; Samatov, T. R.; Galatenko, A. V.; Mityakina, I. A.; Kaprin, A. D.; Schumacher, U.; Tonevitsky, A. G.

    2015-01-01

    Genes with significant differential expression are traditionally used to reveal the genetic background underlying phenotypic differences between cancer cells. We hypothesized that informative marker sets can be obtained by combining genes with a relatively low degree of individual differential expression. We developed a method for construction of highly informative gene combinations aimed at the maximization of the cumulative informative power and identified sets of 2–5 genes efficiently predicting recurrence for ER-positive breast cancer patients. The gene combinations constructed on the basis of microarray data were successfully applied to data acquired by RNA-seq. The developed method provides the basis for the generation of highly efficient prognostic and predictive gene signatures for cancer and other diseases. The identified gene sets can potentially reveal novel essential segments of gene interaction networks and pathways implied in cancer progression. PMID:26446398

  10. Identification of Stage-Specific Surface Markers in Early B Cell Development Provides Novel Tools for Identification of Progenitor Populations.

    PubMed

    Jensen, Christina T; Lang, Stefan; Somasundaram, Rajesh; Soneji, Shamit; Sigvardsson, Mikael

    2016-09-01

    Whereas the characterization of B lymphoid progenitors has been facilitated by the identification of lineage- and stage-specific surface markers, the continued identification of differentially expressed proteins increases our capacity to explore normal and malignant B cell development. To identify novel surface markers with stage-specific expression patterns, we explored the reactivity of CD19(+) B cell progenitor cells to Abs targeted to 176 surface proteins. Markers with stage-specific expression were identified using a transgenic reporter gene system subdividing the B cell progenitors into four surface IgM(-) stages. This approach affirmed the utility of known stage-specific markers, as well as identifying additional proteins that selectively marked defined stages of B cell development. Among the stage-specific markers were the cell adhesion proteins CD49E, CD11A, and CD54 that are highly expressed selectively on the most immature progenitors. This work identifies a set of novel stage-specific surface markers that can be used as a complement to the classical staining protocols to explore B lymphocyte development. PMID:27456481

  11. Discovery of molecular markers to discriminate corneal endothelial cells in the human body.

    PubMed

    Yoshihara, Masahito; Ohmiya, Hiroko; Hara, Susumu; Kawasaki, Satoshi; Hayashizaki, Yoshihide; Itoh, Masayoshi; Kawaji, Hideya; Tsujikawa, Motokazu; Nishida, Kohji

    2015-01-01

    The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs) on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant number of CECs results in corneal edema called bullous keratopathy which can lead to severe visual loss. Corneal transplantation is the most effective method to treat corneal endothelial dysfunction, where it suffers from donor shortage. Therefore, regeneration of CECs from other cell types attracts increasing interests, and specific markers of CECs are crucial to identify actual CECs. However, the currently used markers are far from satisfactory because of their non-specific expression in other cell types. Here, we explored molecular markers to discriminate CECs from other cell types in the human body by integrating the published RNA-seq data of CECs and the FANTOM5 atlas representing diverse range of cell types based on expression patterns. We identified five genes, CLRN1, MRGPRX3, HTR1D, GRIP1 and ZP4 as novel markers of CECs, and the specificities of these genes were successfully confirmed by independent experiments at both the RNA and protein levels. Notably none of them have been documented in the context of CEC function. These markers could be useful for the purification of actual CECs, and also available for the evaluation of the products derived from other cell types. Our results demonstrate an effective approach to identify molecular markers for CECs and open the door for the regeneration of CECs in vitro. PMID:25807145

  12. Discovery of Molecular Markers to Discriminate Corneal Endothelial Cells in the Human Body

    PubMed Central

    Yoshihara, Masahito; Ohmiya, Hiroko; Hara, Susumu; Kawasaki, Satoshi; Hayashizaki, Yoshihide; Itoh, Masayoshi; Kawaji, Hideya; Tsujikawa, Motokazu; Nishida, Kohji

    2015-01-01

    The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs) on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant number of CECs results in corneal edema called bullous keratopathy which can lead to severe visual loss. Corneal transplantation is the most effective method to treat corneal endothelial dysfunction, where it suffers from donor shortage. Therefore, regeneration of CECs from other cell types attracts increasing interests, and specific markers of CECs are crucial to identify actual CECs. However, the currently used markers are far from satisfactory because of their non-specific expression in other cell types. Here, we explored molecular markers to discriminate CECs from other cell types in the human body by integrating the published RNA-seq data of CECs and the FANTOM5 atlas representing diverse range of cell types based on expression patterns. We identified five genes, CLRN1, MRGPRX3, HTR1D, GRIP1 and ZP4 as novel markers of CECs, and the specificities of these genes were successfully confirmed by independent experiments at both the RNA and protein levels. Notably none of them have been documented in the context of CEC function. These markers could be useful for the purification of actual CECs, and also available for the evaluation of the products derived from other cell types. Our results demonstrate an effective approach to identify molecular markers for CECs and open the door for the regeneration of CECs in vitro. PMID:25807145

  13. A novel cell permeable DNA replication and repair marker

    PubMed Central

    Herce, Henry D; Rajan, Malini; Lättig-Tünnemann, Gisela; Fillies, Marion; Cardoso, M Cristina

    2014-01-01

    Proliferating Cell Nuclear Antigen (PCNA) is a key protein in DNA replication and repair. The dynamics of replication and repair in live cells is usually studied introducing translational fusions of PCNA. To obviate the need for transfection and bypass the problem of difficult to transfect and/or short lived cells, we have now developed a cell permeable replication and/or repair marker. The design of this marker has three essential molecular components: (1) an optimized artificial PCNA binding peptide; (2) a cell-penetrating peptide, derived from the HIV-1 Trans Activator of Transcription (TAT); (3) an in vivo cleavable linker, linking the two peptides. The resulting construct was taken up by human, hamster and mouse cells within minutes of addition to the media. Inside the cells, the cargo separated from the vector peptide and bound PCNA effectively. Both replication and repair sites could be directly labeled in live cells making it the first in vivo cell permeable peptide marker for these two fundamental cellular processes. Concurrently, we also introduced a quick peptide based PCNA staining method as an alternative to PCNA antibodies for immunofluorescence applications. In summary, we present here a versatile tool to instantaneously label repair and replication processes in fixed and live cells. PMID:25484186

  14. A novel cell permeable DNA replication and repair marker.

    PubMed

    Herce, Henry D; Rajan, Malini; Lättig-Tünnemann, Gisela; Fillies, Marion; Cardoso, M Cristina

    2014-01-01

    Proliferating Cell Nuclear Antigen (PCNA) is a key protein in DNA replication and repair. The dynamics of replication and repair in live cells is usually studied introducing translational fusions of PCNA. To obviate the need for transfection and bypass the problem of difficult to transfect and/or short lived cells, we have now developed a cell permeable replication and/or repair marker. The design of this marker has three essential molecular components: (1) an optimized artificial PCNA binding peptide; (2) a cell-penetrating peptide, derived from the HIV-1 Trans Activator of Transcription (TAT); (3) an in vivo cleavable linker, linking the two peptides. The resulting construct was taken up by human, hamster and mouse cells within minutes of addition to the media. Inside the cells, the cargo separated from the vector peptide and bound PCNA effectively. Both replication and repair sites could be directly labeled in live cells making it the first in vivo cell permeable peptide marker for these two fundamental cellular processes. Concurrently, we also introduced a quick peptide based PCNA staining method as an alternative to PCNA antibodies for immunofluorescence applications. In summary, we present here a versatile tool to instantaneously label repair and replication processes in fixed and live cells. PMID:25484186

  15. Lysophosphatidic Acid Receptor Is a Functional Marker of Adult Hippocampal Precursor Cells

    PubMed Central

    Walker, Tara L.; Overall, Rupert W.; Vogler, Steffen; Sykes, Alex M.; Ruhwald, Susann; Lasse, Daniela; Ichwan, Muhammad; Fabel, Klaus; Kempermann, Gerd

    2016-01-01

    Summary Here, we show that the lysophosphatidic acid receptor 1 (LPA1) is expressed by a defined population of type 1 stem cells and type 2a precursor cells in the adult mouse dentate gyrus. LPA1, in contrast to Nestin, also marks the quiescent stem cell population. Combining LPA1-GFP with EGFR and prominin-1 expression, we have enabled the prospective separation of both proliferative and non-proliferative precursor cell populations. Transcriptional profiling of the isolated proliferative precursor cells suggested immune mechanisms and cytokine signaling as molecular regulators of adult hippocampal precursor cell proliferation. In addition to LPA1 being a marker of this important stem cell population, we also show that the corresponding ligand LPA is directly involved in the regulation of adult hippocampal precursor cell proliferation and neurogenesis, an effect that can be attributed to LPA signaling via the AKT and MAPK pathways. PMID:27050949

  16. Tob1 is expressed in developing and adult gonads and is associated with the P-body marker, Dcp2.

    PubMed

    Shapouri, Farnaz; Saeidi, Shaghayegh; de Iongh, Robb U; Casagranda, Franca; Western, Patrick S; McLaughlin, Eileen A; Sutherland, Jessie M; Hime, Gary R; Familari, Mary

    2016-05-01

    Tob1 is a member of the BTG/TOB family of proteins with established antiproliferative function. In Danio rerio and Xenopus laevis, the Tob1 gene is expressed from the one-cell stage through to early gastrula stages, followed in later development by discrete expression in many tissues including the notochord and somites. In both mouse and human, Tob1 is expressed in many adult tissues including the testis and ovary; however, the specific cell types are unknown. We examine Tob1 gene expression in mouse in developing germ cells and in sorted male germ cells (gonocytes, spermatogonia, pachytene spermatocytes and round spermatids) by reverse transcription and droplet digital polymerase chain reaction (RT-ddPCR) and in adult ovary and testis by immunofluorescence with anti-Tob1 protein staining. By RT-ddPCR, Tob1 expression was low in developing male germ cells but was highly expressed in round spermatids. In developing female germ cells undergoing entry into meiosis, it increased 10-fold. Tob1 was also highly expressed in round spermatids and in oocytes in all stages of folliculogenesis. Notably, a marker for P-bodies, Dcp-2, was also highly expressed in round spermatids and all oocyte stages examined. The cytoplasmic presence of Tob1 protein in round spermatids and oocytes and the association of Tob1 protein with Dcp2 in both cell types suggest that Tob1 protein plays a role in post-transcriptional mechanisms. PMID:26662055

  17. Glucocorticoid-Induced Tumour Necrosis Factor Receptor-Related Protein: A Key Marker of Functional Regulatory T Cells

    PubMed Central

    Ronchetti, Simona; Ricci, Erika; Petrillo, Maria Grazia; Cari, Luigi; Migliorati, Graziella; Nocentini, Giuseppe; Riccardi, Carlo

    2015-01-01

    Glucocorticoid-induced tumour necrosis factor receptor-related protein (GITR, TNFRSF18, and CD357) is expressed at high levels in activated T cells and regulatory T cells (Tregs). In this review, we present data from mouse and human studies suggesting that GITR is a crucial player in the differentiation of thymic Tregs (tTregs), and expansion of both tTregs and peripheral Tregs (pTregs). The role of GITR in Treg expansion is confirmed by the association of GITR expression with markers of memory T cells. In this context, it is not surprising that GITR appears to be a marker of active Tregs, as suggested by the association of GITR expression with other markers of Treg activation or cytokines with suppressive activity (e.g., IL-10 and TGF-β), the presence of GITR+ cells in tissues where Tregs are active (e.g., solid tumours), or functional studies on Tregs. Furthermore, some Treg subsets including Tr1 cells express either low or no classical Treg markers (e.g., FoxP3 and CD25) and do express GITR. Therefore, when evaluating changes in the number of Tregs in human diseases, GITR expression must be evaluated. Moreover, GITR should be considered as a marker for isolating Tregs. PMID:25961057

  18. Ebf2 is a selective marker of brown and beige adipogenic precursor cells

    PubMed Central

    Wang, Wenshan; Kissig, Megan; Rajakumari, Sona; Huang, Li; Lim, Hee-woong; Won, Kyoung-Jae; Seale, Patrick

    2014-01-01

    Brown adipocytes and muscle and dorsal dermis descend from precursor cells in the dermomyotome, but the factors that regulate commitment to the brown adipose lineage are unknown. Here, we prospectively isolated and determined the molecular profile of embryonic brown preadipose cells. Brown adipogenic precursor activity in embryos was confined to platelet-derived growth factor α+, myogenic factor 5Cre-lineage–marked cells. RNA-sequence analysis identified early B-cell factor 2 (Ebf2) as one of the most selectively expressed genes in this cell fraction. Importantly, Ebf2-expressing cells purified from Ebf2GFP embryos or brown fat tissue did not express myoblast or dermal cell markers and uniformly differentiated into brown adipocytes. Interestingly, Ebf2-expressing cells from white fat tissue in adult animals differentiated into brown-like (or beige) adipocytes. Loss of Ebf2 in brown preadipose cells reduced the expression levels of brown preadipose-signature genes, whereas ectopic Ebf2 expression in myoblasts activated brown preadipose-specific genes. Altogether, these results indicate that Ebf2 specifically marks and regulates the molecular profile of brown preadipose cells. PMID:25197048

  19. Identification of immunohistochemical markers for distinguishing lung adenocarcinoma from squamous cell carcinoma

    PubMed Central

    Zhan, Cheng; Yan, Li; Wang, Lin; Sun, Yang; Wang, Xingxing; Lin, Zongwu; Zhang, Yongxing; Wang, Qun

    2015-01-01

    Background Immunohistochemical staining has been widely used in distinguishing lung adenocarcinoma (LUAD) from lung squamous cell carcinoma (LUSC), which is of vital importance for the diagnosis and treatment of lung cancer. Due to the lack of a comprehensive analysis of different lung cancer subtypes, there may still be undiscovered markers with higher diagnostic accuracy. Methods Herein first, we systematically analyzed high-throughput data obtained from The Cancer Genome Atlas (TCGA) database. Combining differently expressed gene screening and receiver operating characteristic (ROC) curve analysis, we attempted to identify the genes which might be suitable as immunohistochemical markers in distinguishing LUAD from LUSC. Then we detected the expression of six of these genes (MLPH, TMC5, SFTA3, DSG3, DSC3 and CALML3) in lung cancer sections using immunohistochemical staining. Results A number of genes were identified as candidate immunohistochemical markers with high sensitivity and specificity in distinguishing LUAD from LUSC. Then the staining results confirmed the potentials of the six genes (MLPH, TMC5, SFTA3, DSG3, DSC3 and CALML3) in distinguishing LUAD from LUSC, and their sensitivity and specificity were not less than many commonly used markers. Conclusions The results revealed that the six genes (MLPH, TMC5, SFTA3, DSG3, DSC3 and CALML3) might be suitable markers in distinguishing LUAD from LUSC, and also validated the feasibility of our methods for identification of candidate markers from high-throughput data. PMID:26380766

  20. ROTS: reproducible RNA-seq biomarker detector—prognostic markers for clear cell renal cell cancer

    PubMed Central

    Seyednasrollah, Fatemeh; Rantanen, Krista; Jaakkola, Panu; Elo, Laura L.

    2016-01-01

    Recent comprehensive assessments of RNA-seq technology support its utility in quantifying gene expression in various samples. The next step of rigorously quantifying differences between sample groups, however, still lacks well-defined best practices. Although a number of advanced statistical methods have been developed, several studies demonstrate that their performance depends strongly on the data under analysis, which compromises practical utility in real biomedical studies. As a solution, we propose to use a data-adaptive procedure that selects an optimal statistic capable of maximizing reproducibility of detections. After demonstrating its improved sensitivity and specificity in a controlled spike-in study, the utility of the procedure is confirmed in a real biomedical study by identifying prognostic markers for clear cell renal cell carcinoma (ccRCC). In addition to identifying several genes previously associated with ccRCC prognosis, several potential new biomarkers among genes regulating cell growth, metabolism and solute transport were detected. PMID:26264667

  1. ROTS: reproducible RNA-seq biomarker detector-prognostic markers for clear cell renal cell cancer.

    PubMed

    Seyednasrollah, Fatemeh; Rantanen, Krista; Jaakkola, Panu; Elo, Laura L

    2016-01-01

    Recent comprehensive assessments of RNA-seq technology support its utility in quantifying gene expression in various samples. The next step of rigorously quantifying differences between sample groups, however, still lacks well-defined best practices. Although a number of advanced statistical methods have been developed, several studies demonstrate that their performance depends strongly on the data under analysis, which compromises practical utility in real biomedical studies. As a solution, we propose to use a data-adaptive procedure that selects an optimal statistic capable of maximizing reproducibility of detections. After demonstrating its improved sensitivity and specificity in a controlled spike-in study, the utility of the procedure is confirmed in a real biomedical study by identifying prognostic markers for clear cell renal cell carcinoma (ccRCC). In addition to identifying several genes previously associated with ccRCC prognosis, several potential new biomarkers among genes regulating cell growth, metabolism and solute transport were detected. PMID:26264667

  2. Characterization of chicken dendritic cell markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal and Natural Resources Institute, ARS-USDA, Beltsville, MD, USA. New mouse monoclonal antibodies which detect CD80 and CD83 were developed to characterize chicken dendritic cells (DCs). The characteristics of these molecules have been studied in human, swine, ovine, feline, and canine but not ...

  3. The Drosophila melanogaster cinnabar gene is a cell autonomous genetic marker in Aedes aegypti (Diptera: Culicidae).

    PubMed

    Sethuraman, Nagaraja; O'Brochta, David A

    2005-07-01

    The cinnabar gene of Drosophila melanogaster (Meigen) encodes for kynurenine hydroxylase, an enzyme involved in ommochrome biosynthesis. This gene is commonly included as a visible genetic marker in gene vectors used to create transgenic Aedes aegypti (L.) that are homozygous for the khw allele, the mosquito homolog of cinnabar. Unexpectedly, the phenotype of cells expressing kynurenine hydroxylase in transgenic Ae. aegypti is cell autonomous as demonstrated by the recovery of insects heterozygous for the kynurenine hydroxylase transgene with mosaic eye color patterns. In addition, a transgenic gynandromorph was recovered in which one-half of the insect was expressing the kynurenine hydroxylase transgene, including one eye with red pigmentation, whereas the other half of the insect was homozygous khw and included a white eye. The cell autonomous behavior of cinnabar in transgenic Ae. aegypti is unexpected and increases the utility of this genetic marker. PMID:16119567

  4. Time-course changes in the expression levels of miR-122, -155, and -21 as markers of liver cell damage, inflammation, and regeneration in acetaminophen-induced liver injury in rats

    PubMed Central

    Park, Hyun-Kyu; Jo, Woori; Choi, Hyun-Ji; Jang, Sungwoong; Ryu, Jae-Eun; Lee, Hyo-Ju; Lee, Hyojin; Kim, Hyejin; Yu, Eun-Sil

    2016-01-01

    Drug-induced liver injury (DILI) is a significant threat to patient health and a major concern during drug development. Recently, multiple circulating microRNAs (miRNAs) have been reported to be potential biomarkers for DILI. To adapt and validate miRNAs for clinical use, we investigated the time-course changes in miR-122 expression levels in an acetaminophen-induced liver injury model in rats. In addition, miR-155 and miR-21 were evaluated as makers of inflammation and regeneration, respectively, to characterize liver status. Our results revealed that miR-122 is an early and sensitive biomarker of hepatocellular injury at a stage when alanine transaminase, aspartate transaminase, and total bilirubin were not detectable. However, no significant differences in the expression levels of other miRNAs (miR-155 and -21) were observed between treatment and vehicle groups. Collectively, these time-course changes in the expression levels of miRNAs may be useful as markers for clinical decision-making, in the diagnosis and treatment of DILI. PMID:27051339

  5. Identification of novel molecular markers through transcriptomic analysis in human fetal and adult corneal endothelial cells.

    PubMed

    Chen, Yinyin; Huang, Kevin; Nakatsu, Martin N; Xue, Zhigang; Deng, Sophie X; Fan, Guoping

    2013-04-01

    The corneal endothelium is composed of a monolayer of corneal endothelial cells (CECs), which is essential for maintaining corneal transparency. To better characterize CECs in different developmental stages, we profiled mRNA transcriptomes in human fetal and adult corneal endothelium with the goal to identify novel molecular markers in these cells. By comparing CECs with 12 other tissue types, we identified 245 and 284 signature genes that are highly expressed in fetal and adult CECs, respectively. Functionally, these genes are enriched in pathways characteristic of CECs, including inorganic anion transmembrane transporter, extracellular matrix structural constituent and cyclin-dependent protein kinase inhibitor activity. Importantly, several of these genes are disease target genes in hereditary corneal dystrophies, consistent with their functional significance in CEC physiology. We also identified stage-specific markers associated with CEC development, such as specific members in the transforming growth factor beta and Wnt signaling pathways only expressed in fetal, but not in adult CECs. Lastly, by the immunohistochemistry of ocular tissues, we demonstrated the unique protein localization for Wnt5a, S100A4, S100A6 and IER3, the four novel markers for fetal and adult CECs. The identification of a new panel of stage-specific markers for CECs would be very useful for characterizing CECs derived from stem cells or ex vivo expansion for cell replacement therapy. PMID:23257286

  6. ABCG2 is a potential marker of tumor-initiating cells in breast cancer.

    PubMed

    Sicchieri, Renata Danielle; da Silveira, Willian Abraham; Mandarano, Larissa Raquel Mouro; de Oliveira, Tatiane Mendes Gonçalves; Carrara, Hélio Humberto Angotti; Muglia, Valdair Francisco; de Andrade, Jurandyr Moreira; Tiezzi, Daniel Guimarães

    2015-12-01

    The existence of tumor-initiating cells (TICs) within solid tumors has been hypothesized to explain tumor heterogeneity and resistance to cancer therapy. In breast cancer, the expression of CD44 and CD24 and the activity of aldehyde dehydrogenase 1 (ALDH1) can be used to selectively isolate a cell population enriched in TICs. However, the ideal marker to identify TICs has not been established. The aim of this study was to evaluate the expression of novel potential markers for TIC in breast carcinoma. We prospectively analyzed the expression of CD44, CD24, ABCG2, and CXCR4, and the activity of ALDH1 by using flow cytometry in 48 invasive ductal carcinomas from locally advanced and metastatic breast cancer patients who were administered primary chemotherapy. A mammosphere assay was employed in 30 samples. The relationship among flow cytometric analyses, ABCG2 gene expression, and clinical and pathological responses to therapy was analyzed. The GSE32646 database was analyzed in silico to identify genes associated with tumors with low and high ABCG2 expression. We observed that the presence of ABCG2(+) cells within the primary tumor was the only marker to predict the formation of mammospheres in vitro (R (2) = 0.15, p = 0.029). Quantitative polymerase chain reaction (qPCR) revealed a positive correlation between ABCG2 expression and the presence of ABCG2(+) cells within the primary tumor. The expression of ABCG2 was predictive of the response to neoadjuvant chemotherapy in our experiments and in the GSE32646 dataset (p = 0.04 and p = 0.002, respectively). The in silico analysis demonstrated that ABCG2(Up) breast cancer samples have a slower cell cycle and a higher expression of membrane proteins but a greater potential for chromosomal instability, metastasis, immune evasion, and resistance to hypoxia. Such genetic characteristics are compatible with highly aggressive and resistant tumors. Our results support the hypothesis that the presence of ABCG2

  7. Chondrocyte Culture in Three Dimensional Alginate Sulfate Hydrogels Promotes Proliferation While Maintaining Expression of Chondrogenic Markers

    PubMed Central

    Mhanna, Rami; Kashyap, Aditya; Palazzolo, Gemma; Vallmajo-Martin, Queralt; Becher, Jana; Möller, Stephanie; Schnabelrauch, Matthias

    2014-01-01

    The loss of expression of chondrogenic markers during monolayer expansion remains a stumbling block for cell-based treatment of cartilage lesions. Here, we introduce sulfated alginate hydrogels as a cartilage biomimetic biomaterial that induces cell proliferation while maintaining the chondrogenic phenotype of encapsulated chondrocytes. Hydroxyl groups of alginate were converted to sulfates by incubation with sulfur trioxide–pyridine complex (SO3/pyridine), yielding a sulfated material cross-linkable with calcium chloride. Passage 3 bovine chondrocytes were encapsulated in alginate and alginate sulfate hydrogels for up to 35 days. Cell proliferation was five-fold higher in alginate sulfate compared with alginate (p=0.038). Blocking beta1 integrins in chondrocytes within alginate sulfate hydrogels significantly inhibited proliferation (p=0.002). Sulfated alginate increased the RhoA activity of chondrocytes compared with unmodified alginate, an increase that was blocked by β1 blocking antibodies (p=0.017). Expression and synthesis of type II collagen, type I collagen, and proteoglycan was not significantly affected by the encapsulation material evidenced by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry. Alginate sulfate constructs showed an opaque appearance in culture, whereas the unmodified alginate samples remained translucent. In conclusion, alginate sulfate provides a three dimensional microenvironment that promotes both chondrocyte proliferation and maintenance of the chondrogenic phenotype and represents an important advance for chondrocyte-based cartilage repair therapies providing a material in which cell expansion can be done in situ. PMID:24320935

  8. Isopropanolic Cimicifuga racemosa is favorable on bone markers but neutral on an osteoblastic cell line.

    PubMed

    García-Pérez, Miguel Angel; Pineda, Begoña; Hermenegildo, Carlos; Tarín, Juan J; Cano, Antonio

    2009-04-01

    Postmenopausal women treated with an isopropanolic extract of Cimicifuga racemosa underwent a decrease in the urinary concentration of N-telopeptides, a marker of bone resorption, and an increase in alkaline phosphatase, a marker of bone formation, at the third month of therapy. Serum from treated women did not modify the activity of alkaline phosphatase or the expression of three genes, runt-related transcription factor-2 (Runx-2), alkaline phosphatase, and osteocalcin, when added to the MC3T3-E1 osteoblastic cell line. PMID:18555220

  9. PIM kinases are progression markers and emerging therapeutic targets in diffuse large B-cell lymphoma

    PubMed Central

    Brault, L; Menter, T; Obermann, E C; Knapp, S; Thommen, S; Schwaller, J; Tzankov, A

    2012-01-01

    Background: PIM serine/threonine kinases are often highly expressed in haematological malignancies. We have shown that PIM inhibitors reduced the survival and migration of leukaemic cells. Here, we investigated PIM kinases in diffuse large B-cell lymphoma (DLBCL) biopsy samples and DLBCL cell lines. Methods: Immunohistochemical staining for PIM kinases and CXCR4 was performed on tissue microarrays from a cohort of 101 DLBCL cases, and the effects of PIM inhibitors on the survival and migration of DLBCL cell lines were determined. Results: PIM1 expression significantly correlated with the activation of signal transducer and activator of transcription (STAT) 3 and 5, P-glycoprotein expression, CXCR4-S339 phosphorylation, and cell proliferation. Whereas most cases exhibited cytoplasmic or cytoplasmic and nuclear PIM1 and PIM2 expression, 12 cases (10 of the non-germinal centre DLBCL type) expressed PIM1 predominately in the nucleus. Interestingly, nuclear expression of PIM1 significantly correlated with disease stage. Exposure of DLBCL cell lines to PIM inhibitors modestly impaired cellular proliferation and CXCR4-mediated migration. Conclusion: This work demonstrates that PIM expression in DLBCL is associated with activation of the JAK/STAT signalling pathway and with the proliferative activity. The correlation of nuclear PIM1 expression with disease stage and the modest response to small-molecule inhibitors suggests that PIM kinases are progression markers rather than primary therapeutic targets in DLBCL. PMID:22722314

  10. Gene markers of cellular aging in human multipotent stromal cells in culture

    PubMed Central

    2014-01-01

    Introduction Human multipotent stromal cells (MSCs) isolated from bone marrow or other tissue sources have great potential to treat a wide range of injuries and disorders in the field of regenerative medicine and tissue engineering. In particular, MSCs have inherent characteristics to suppress the immune system and are being studied in clinical studies to prevent graft-versus-host disease. MSCs can be expanded in vitro and have potential for differentiation into multiple cell lineages. However, the impact of cell passaging on gene expression and function of the cells has not been determined. Methods Commercially available human MSCs derived from bone marrow from six different donors, grown under identical culture conditions and harvested at cell passages 3, 5, and 7, were analyzed with gene-expression profiling by using microarray technology. Results The phenotype of these cells did not change as reported previously; however, a statistical analysis revealed a set of 78 significant genes that were distinguishable in expression between passages 3 and 7. None of these significant genes corresponded to the markers established by the International Society for Cellular Therapy (ISCT) for MSC identification. When the significant gene lists were analyzed through pathway analysis, these genes were involved in the top-scoring networks of cellular growth and proliferation and cellular development. A meta-analysis of the literature for significant genes revealed that the MSCs seem to be undergoing differentiation into a senescent cell type when cultured extensively. Consistent with the differences in gene expression at passage 3 and 7, MSCs exhibited a significantly greater potential for cell division at passage 3 in comparison to passage 7. Conclusions Our results identified specific gene markers that distinguish aging MSCs grown in cell culture. Confirmatory studies are needed to correlate these molecular markers with biologic attributes that may facilitate the development

  11. Activating Transcription Factor 3 Expression as a Marker of Response to the Histone Deacetylase Inhibitor Pracinostat.

    PubMed

    Sooraj, Dhanya; Xu, Dakang; Cain, Jason E; Gold, Daniel P; Williams, Bryan R G

    2016-07-01

    Improved treatment strategies are required for bladder cancer due to frequent recurrence of low-grade tumors and poor survival rate from high-grade tumors with current therapies. Histone deacetylase inhibitors (HDACi), approved as single agents for specific lymphomas, have shown promising preclinical results in solid tumors but could benefit from identification of biomarkers for response. Loss of activating transcription factor 3 (ATF3) expression is a feature of bladder tumor progression and correlates with poor survival. We investigated the utility of measuring ATF3 expression as a marker of response to the HDACi pracinostat in bladder cancer models. Pracinostat treatment of bladder cancer cell lines reactivated the expression of ATF3, correlating with significant alteration in proliferative, migratory, and anchorage-dependent growth capacities. Pracinostat also induced growth arrest at the G0-G1 cell-cycle phase, coincident with the activation of tumor suppressor genes. In mouse xenograft bladder cancer models, pracinostat treatment significantly reduced tumor volumes compared with controls, accompanied by reexpression of ATF3 in nonproliferating cells from early to late stage of therapy and in parallel induced antiangiogenesis and apoptosis. Importantly, cells in which ATF3 expression was depleted were less sensitive to pracinostat treatment in vitro, exhibiting significantly higher proliferative and migratory properties. In vivo, control xenograft tumors were significantly more responsive to treatment than ATF3 knockdown xenografts. Thus, reactivation of ATF3 is an important factor in determining sensitivity to pracinostat treatment, both in vitro and in vivo, and could serve as a potential biomarker of response and provide a rationale for therapeutic utility in HDACi-mediated treatments for bladder cancer. Mol Cancer Ther; 15(7); 1726-39. ©2016 AACR. PMID:27196751

  12. Transient expression in Nicotiana benthamiana fluorescent marker lines provides enhanced definition of protein localization, movement and interactions in planta.

    PubMed

    Martin, Kathleen; Kopperud, Kristin; Chakrabarty, Romit; Banerjee, Rituparna; Brooks, Robert; Goodin, Michael M

    2009-07-01

    Here, we report on the construction of a novel series of Gateway-compatible plant transformation vectors containing genes encoding autofluorescent proteins, including Cerulean, Dendra2, DRONPA, TagRFP and Venus, for the expression of protein fusions in plant cells. To assist users in the selection of vectors, we have determined the relative in planta photostability and brightness of nine autofluorescent proteins (AFPs), and have compared the use of DRONPA and Dendra2 in photoactivation and photoconversion experiments. Additionally, we have generated transgenic Nicotiana benthamiana lines that express fluorescent protein markers targeted to nuclei, endoplasmic reticulum or actin filaments. We show that conducting bimolecular fluorescence complementation assays in plants that constitutively express cyan fluorescent protein fused to histone 2B provides enhanced data quality and content over assays conducted without the benefit of a subcellular marker. In addition to testing protein interactions, we demonstrate that our transgenic lines that express red fluorescent protein markers offer exceptional support in experiments aimed at defining nuclear or endomembrane localization. Taken together, the new combination of pSITE-BiFC and pSITEII vectors for studying intracellular protein interaction, localization and movement, in conjunction with our transgenic marker lines, constitute powerful tools for the plant biology community. PMID:19309457

  13. Characterization of Nestin, a Selective Marker for Bone Marrow Derived Mesenchymal Stem Cells

    PubMed Central

    Xie, Liang; Zeng, Xin; Hu, Jing; Chen, Qianming

    2015-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into multiple cell lineages and contributing to tissue repair and regeneration. Characterization of the physiological function of MSCs has been largely hampered by lack of unique markers. Nestin, originally found in neuroepithelial stem cells, is an intermediate filament protein expressed in the early stages of development. Increasing studies have shown a particular association between Nestin and MSCs. Nestin could characterize a subset of bone marrow perivascular MSCs which contributed to bone development and closely contacted with hematopoietic stem cells (HSCs). Nestin expressing (Nes+) MSCs also play a role in the progression of various diseases. However, Nes+ cells were reported to participate in angiogenesis as MSCs or endothelial progenitor cells (EPCs) in several tissues and be a heterogeneous population comprising mesenchymal cells and endothelial cells in the developing bone marrow. In this review article, we will summarize the progress of the research on Nestin, particularly the function of Nes+ cells in bone marrow, and discuss the feasibility of using Nestin as a specific marker for MSCs. PMID:26236348

  14. INSL5 may be a unique marker of colorectal endocrine cells and neuroendocrine tumors

    SciTech Connect

    Mashima, Hirosato; Ohno, Hideki; Yamada, Yumi; Sakai, Toshitaka; Ohnishi, Hirohide

    2013-03-22

    Highlights: ► INSL5 is expressed in enteroendocrine cells along the colorectum. ► INSL5 is expressed increasingly from proximal colon to rectum. ► INSL5 co-localizes rarely with chromogranin A. ► All rectal neuroendocrine tumors examined expressed INSL5. -- Abstract: Insulin-like peptide 5 (INSL5) is a member of the insulin superfamily, and is a potent agonist for RXFP4. We have shown that INSL5 is expressed in enteroendocrine cells (EECs) along the colorectum with a gradient increase toward the rectum. RXFP4 is ubiquitously expressed along the digestive tract. INSL5-positive EECs have little immunoreactivity to chromogranin A (CgA) and might be a unique marker of colorectal EECs. CgA-positive EECs were distributed normally along the colorectum in INSL5 null mice, suggesting that INSL5 is not required for the development of CgA-positive EECs. Exogenous INSL5 did not affect the proliferation of human colon cancer cell lines, and chemically-induced colitis in INSL5 null mice did not show any significant changes in inflammation or mucosal healing compared to wild-type mice. In contrast, all of the rectal neuroendocrine tumors examined co-expressed INSL5 and RXFP4. INSL5 may be a unique marker of colorectal EECs, and INSL5–RXFP4 signaling might play a role in an autocrine/paracrine fashion in the colorectal epithelium and rectal neuroendocrine tumors.

  15. Senescence marker protein 30 (SMP30)/regucalcin (RGN) expression decreases with aging, acute liver injuries and tumors in zebrafish

    SciTech Connect

    Fujisawa, Koichi; Terai, Shuji; Hirose, Yoshikazu; Takami, Taro; Yamamoto, Naoki; Sakaida, Isao

    2011-10-22

    Highlights: {yields} Zebrafish SMP30/RGN mRNA expression decreases with aging. {yields} Decreased expression was observed in liver tumors as compared to the surrounding area. {yields} SMP30/RGN is important for liver proliferation and tumorigenesis. -- Abstract: Senescence marker protein 30 (SMP30)/regucalcin (RGN) is known to be related to aging, hepatocyte proliferation and tumorigenesis. However, expression and function of non-mammalian SMP30/RGN is poorly understood. We found that zebrafish SMP30/RGN mRNA expression decreases with aging, partial hepatectomy and thioacetamide-induced acute liver injury. SMP30/RGN expression was also greatly decreased in a zebrafish liver cell line. In addition, we induced liver tumors in adult zebrafish by administering diethylnitrosamine. Decreased expression was observed in foci, hepatocellular carcinomas, cholangiocellular carcinomas and mixed tumors as compared to the surrounding area. We thus showed the importance of SMP30/RGN in liver proliferation and tumorigenesis.

  16. Differential expression and function of CD27 in chronic lymphocytic leukemia cells expressing ZAP-70.

    PubMed

    Lafarge, Sandrine T; Hou, Sen; Pauls, Samantha D; Johnston, James B; Gibson, Spencer B; Marshall, Aaron J

    2015-07-01

    Chronic lymphocytic leukemia is a malignancy driven by abberant B cell signaling and survival. Leukemic B cells accumulate in the peripheral blood and the lymphoid organs where contact with stromal cells and T cells provide critical survival signals. Clinical severity of CLL is associated with several prognostic markers including expression of the kinase ZAP-70. ZAP-70 expression enhances signaling via the B cell antigen receptor and is associated with increased cell adhesion and migration capacity. Here we report that ZAP-70-positive CLL patients display significantly higher expression of the TNF superfamily receptor and memory marker CD27 than do ZAP-70 negative patients. CD27 expression by CLL was acutely elevated upon BCR cross-linking, or upon ectopic expression of ZAP-70. CD27 expression correlated with functional capacity to adhere to stromal cells and antibody blockade of CD27 impaired CLL binding to stroma. These results provide the first evidence for differential expression of CD27 among CLL prognostic groups, suggest a role for ZAP-70 dependent signaling in CD27 induction and implicate CD27 in cell-cell interactions with the lymphoid tissue microenvironment. PMID:26002513

  17. CD271 is a functional and targetable marker of tumor-initiating cells in head and neck squamous cell carcinoma

    PubMed Central

    Murillo-Sauca, Oihana; Chung, Man Ki; Shin, June Ho; Karamboulas, Christina; Kwok, Shirley; Jung, Young Ho; Oakley, Richard; Tysome, James R.; Farnebo, Lovisa O.; Kaplan, Michael J.; Sirjani, Davud; Divi, Vasu; Holsinger, F. Christopher; Tomeh, Chafeek; Nichols, Anthony; Le, Quynh T.; Colevas, A. A. Dimitrios; Kong, Christina S.; Uppaluri, Ravindra; Lewis, James S.; Ailles, Laurie E.; Sunwoo, John B.

    2014-01-01

    Tumor-initiating cells (TICs) in squamous cell carcinoma of the head and neck (SCCHN) are best characterized by their surface expression of CD44. Although there is great interest in identifying strategies to target this population, no marker of these cells has been found to be functionally active. Here, we examined the expression of the purported marker of normal human oral epithelial stem cells, CD271. We show that CD271 expression is restricted to a subset of the CD44+ cells. Using xenograft assays, we show that the CD44+CD271+ subpopulation contains the most tumorigenic cells. Loss of CD271 function results in a block in the G2-M phase of the cell cycle and a profound negative impact on the capacity of these cells to initiate tumor formation in vivo. Incubation with recombinant NGF results in enhanced phosphorylation of Erk, providing additional evidence that CD271 is functionally active. Finally, incubation of SCCHN cells with antibody to CD271 results in decreased Erk phosphorylation and decreased tumor formation in vivo. Thus, our data are the first to demonstrate that CD271 more specifically identifies the TIC subpopulation within the CD44+ compartment in SCCHN and that this receptor is a functionally active and targetable molecule. PMID:25149537

  18. A multi-gene transcriptional profiling approach to the discovery of cell signature markers

    PubMed Central

    Wada, Youichiro; Li, Dan; Merley, Anne; Zukauskas, Andrew; Aird, William C.; Dvorak, Harold F.

    2010-01-01

    A profile of transcript abundances from multiple genes constitutes a molecular signature if the expression pattern is unique to one cell type. Here we measure mRNA copy numbers per cell by normalizing per million copies of 18S rRNA and identify 6 genes (TIE1, KDR, CDH5, TIE2, EFNA1 and MYO5C) out of 79 genes tested as excellent molecular signature markers for endothelial cells (ECs) in vitro. The selected genes are uniformly expressed in ECs of 4 different origins but weakly or not expressed in 4 non-EC cell lines. A multi-gene transcriptional profile of these 6 genes clearly distinguishes ECs from non-ECs in vitro. We conclude that (i) a profile of mRNA copy numbers per cell from a well-chosen multi-gene panel can act as a sensitive and accurate cell type signature marker, and (ii) the method described here can be applied to in vivo cell fingerprinting and molecular diagnosis. PMID:20972619

  19. A multi-gene transcriptional profiling approach to the discovery of cell signature markers.

    PubMed

    Wada, Youichiro; Li, Dan; Merley, Anne; Zukauskas, Andrew; Aird, William C; Dvorak, Harold F; Shih, Shou-Ching

    2011-01-01

    A profile of transcript abundances from multiple genes constitutes a molecular signature if the expression pattern is unique to one cell type. Here we measure mRNA copy numbers per cell by normalizing per million copies of 18S rRNA and identify 6 genes (TIE1, KDR, CDH5, TIE2, EFNA1 and MYO5C) out of 79 genes tested as excellent molecular signature markers for endothelial cells (ECs) in vitro. The selected genes are uniformly expressed in ECs of 4 different origins but weakly or not expressed in 4 non-EC cell lines. A multi-gene transcriptional profile of these 6 genes clearly distinguishes ECs from non-ECs in vitro. We conclude that (i) a profile of mRNA copy numbers per cell from a well-chosen multi-gene panel can act as a sensitive and accurate cell type signature marker, and (ii) the method described here can be applied to in vivo cell fingerprinting and molecular diagnosis. PMID:20972619

  20. Liver cancer stem cell markers: Progression and therapeutic implications.

    PubMed

    Sun, Jing-Hui; Luo, Qing; Liu, Ling-Ling; Song, Guan-Bin

    2016-04-01

    Cancer stem cells (CSCs) are a small subpopulation in cancer, have been proposed to be cancer-initiating cells, and have been shown to be responsible for chemotherapy resistance and cancer recurrence. The identification of CSC subpopulations inside a tumor presents a new understanding of cancer development because it implies that tumors can only be eradicated by targeting CSCs. Although advances in liver cancer detection and treatment have increased the possibility of curing the disease at early stages, unfortunately, most patients will relapse and succumb to their disease. Strategies aimed at efficiently targeting liver CSCs are becoming important for monitoring the progress of liver cancer therapy and for evaluating new therapeutic approaches. Herein, we provide a critical discussion of biological markers described in the literature regarding liver cancer stem cells and the potential of these markers to serve as therapeutic targets. PMID:27053846

  1. Liver cancer stem cell markers: Progression and therapeutic implications

    PubMed Central

    Sun, Jing-Hui; Luo, Qing; Liu, Ling-Ling; Song, Guan-Bin

    2016-01-01

    Cancer stem cells (CSCs) are a small subpopulation in cancer, have been proposed to be cancer-initiating cells, and have been shown to be responsible for chemotherapy resistance and cancer recurrence. The identification of CSC subpopulations inside a tumor presents a new understanding of cancer development because it implies that tumors can only be eradicated by targeting CSCs. Although advances in liver cancer detection and treatment have increased the possibility of curing the disease at early stages, unfortunately, most patients will relapse and succumb to their disease. Strategies aimed at efficiently targeting liver CSCs are becoming important for monitoring the progress of liver cancer therapy and for evaluating new therapeutic approaches. Herein, we provide a critical discussion of biological markers described in the literature regarding liver cancer stem cells and the potential of these markers to serve as therapeutic targets. PMID:27053846

  2. Histone acetylation at the single-cell level: a marker of memory CD8+ T cell differentiation and functionality.

    PubMed

    Dispirito, Joanna R; Shen, Hao

    2010-05-01

    Following stimulation, memory T (T(M)) cells rapidly express many effector functions, a hallmark feature that allows them to provide protective immunity. Recent studies suggest that genes involved in this rapid recall response may maintain an open chromatin structure in resting T(M) cells via epigenetic modifications. However, these studies have mostly focused on a few loci, and the techniques used required a large number of cells. We have developed a flow cytometric assay measuring histone modifications in individual murine T cells in combination with lineage-specific markers. In this study, we show that the per-cell level of a marker of open chromatin, diacetylated histone H3 (diAcH3), increases as naive CD8(+) T cells develop into T(M) cells, demonstrating a novel correlation between the differentiation state of a CD8(+) T cell and its abundance of a specific histone modification. Furthermore, our results show that T(M) cells defective in rapid recall ability have less diAcH3 than their fully functional counterparts, indicating that the diAcH3 level of individual T(M) cells is a useful marker for assessing their functionality. PMID:20308634

  3. Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients

    PubMed Central

    Aktas, Bahriye; Tewes, Mitra; Fehm, Tanja; Hauch, Siegfried; Kimmig, Rainer; Kasimir-Bauer, Sabine

    2009-01-01

    Introduction The persistence of circulating tumor cells (CTC) in breast cancer patients might be associated with stem cell like tumor cells which have been suggested to be the active source of metastatic spread in primary tumors. Furthermore, these cells also may undergo phenotypic changes, known as epithelial-mesenchymal transition (EMT), which allows them to travel to the site of metastasis formation without getting affected by conventional treatment. Here we evaluated 226 blood samples of 39 metastatic breast cancer patients during a follow-up of palliative chemo-, antibody – or hormonal therapy for the expression of the stem cell marker ALDH1 and markers for EMT and correlated these findings with the presence of CTC and response to therapy. Methods 2 × 5 ml blood was analyzed for CTC with the AdnaTest BreastCancer (AdnaGen AG) for the detection of EpCAM, MUC-1 and HER2 transcripts. The recovered c-DNA was additionally multiplex tested for three EMT markers [Twist1, Akt2, PI3Kα] and separately for the tumor stem-cell markers ALDH1. The identification of EMT markers was considered positive if at least one marker was detected in the sample. Results 97% of 30 healthy donor samples investigated were negative for EMT and 95% for ALDH1 transcripts. CTC were detected in 69/226 (31%) cancer samples. In the CTC (+) group, 62% were positive for at least one of the EMT markers and 69% for ALDH1, respectively. In the CTC (-) group the percentages were 7% and 14%, respectively. In non-responders, EMT and ALDH1 expression was found in 62% and 44% of patients, in responders the rates were 10% and 5%, respectively. Conclusions Our data indicate that a major proportion of CTC of metastatic breast cancer patients shows EMT and tumor stem cell characteristics. Further studies are needed to prove whether these markers might serve as an indicator for therapy resistant tumor cell populations and, therefore, an inferior prognosis. PMID:19589136

  4. Comparative Analysis of Cartilage Marker Gene Expression Patterns during Axolotl and Xenopus Limb Regeneration.

    PubMed

    Mitogawa, Kazumasa; Makanae, Aki; Satoh, Ayano; Satoh, Akira

    2015-01-01

    Axolotls (Ambystoma mexicanum) can completely regenerate lost limbs, whereas Xenopus laevis frogs cannot. During limb regeneration, a blastema is first formed at the amputation plane. It is thought that this regeneration blastema forms a limb by mechanisms similar to those of a developing embryonic limb bud. Furthermore, Xenopus laevis frogs can form a blastema after amputation; however, the blastema results in a terminal cone-shaped cartilaginous structure called a "spike." The causes of this patterning defect in Xenopus frog limb regeneration were explored. We hypothesized that differences in chondrogenesis may underlie the patterning defect. Thus, we focused on chondrogenesis. Chondrogenesis marker genes, type I and type II collagen, were compared in regenerative and nonregenerative environments. There were marked differences between axolotls and Xenopus in the expression pattern of these chondrogenesis-associated genes. The relative deficit in the chondrogenic capacity of Xenopus blastema cells may account for the absence of total limb regenerative capacity. PMID:26186213

  5. Napsin A is a specific marker for ovarian clear cell adenocarcinoma.

    PubMed

    Yamashita, Yoriko; Nagasaka, Tetsuro; Naiki-Ito, Aya; Sato, Shinya; Suzuki, Shugo; Toyokuni, Shinya; Ito, Masafumi; Takahashi, Satoru

    2015-01-01

    Ovarian clear cell adenocarcinoma has a relatively poor prognosis among the ovarian cancer subtypes because of its high chemoresistance. Differential diagnosis of clear cell adenocarcinoma from other ovarian surface epithelial tumors is important for its treatment. Napsin A is a known diagnostic marker for lung adenocarcinoma, and expression of napsin A is reported in a certain portion of thyroid and renal carcinomas. However, napsin A expression in ovarian surface epithelial tumors has not previously been examined. In this study, immunohistochemical analysis revealed that in 71 of 86 ovarian clear cell adenocarcinoma patients (83%) and all of the 13 patients with ovarian clear cell adenofibroma, positive napsin A staining was evident. No expression was observed in 30 serous adenocarcinomas, 11 serous adenomas or borderline tumors, 19 endometrioid adenocarcinomas, 22 mucinous adenomas or borderline tumors, 10 mucinous adenocarcinomas, or 3 yolk sac tumors of the ovary. Furthermore, expression of napsin A was not observed in the normal surface epithelium of the ovary, epithelia of the fallopian tubes, squamous epithelium, endocervical epithelium, or the endometrium of the uterus. Therefore, we propose that napsin A is another sensitive and specific marker for distinguishing ovarian clear cell tumors (especially adenocarcinomas) from other ovarian tumors. PMID:24721826

  6. STAT3 is a key transcriptional regulator of cancer stem cell marker CD133 in HCC

    PubMed Central

    Ghoshal, Sarani; Fuchs, Bryan C.

    2016-01-01

    Cancer stem cell (CSC) marker CD133 was found to be upregulated in many cancers including hepatocellular carcinoma (HCC). However, the molecular mechanism of CD133 regulation in the liver tumor microenvironment has remained elusive. In this study Won and colleagues report that interleukin-6 (IL-6) mediated signal transducer and activator of transcription factor 3 (STAT3) signaling and hypoxia enhance the expression of CD133 and promote the progression of HCC. PMID:27275460

  7. Markers of stemness in equine mesenchymal stem cells: a plea for uniformity.

    PubMed

    De Schauwer, Catharina; Meyer, Evelyne; Van de Walle, Gerlinde R; Van Soom, Ann

    2011-05-01

    Mesenchymal stromal cells (MSC) are a very promising subpopulation of adult stem cells for cell-based regenerative therapies in veterinary medicine. Despite major progress in the knowledge on adult stem cells during recent years, a proper identification of MSC remains a challenge. In human medicine, the Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy (ISCT) recently proposed three criteria to define MSC. Firstly, cells must be plastic-adherent when maintained under standard culture conditions. Secondly, MSC must express CD73, CD90 and CD105, and lack expression of CD34, CD45, CD14 or CD11b, CD79α or CD19 and MHC class II antigens. Thirdly, MSC must be able to differentiate into osteoblasts, adipocytes and chondroblasts in vitro. Successful isolation and differentiation of equine MSC from different sources such as bone marrow, fat tissue, umbilical cord blood, Wharton's Jelly or peripheral blood has been widely reported. However, their unequivocal immunophenotyping is hampered by the lack of a single specific marker and the limited availability of monoclonal anti-horse antibodies, which are two major factors complicating successful research on equine MSC. Detection of gene expression on mRNA level is hereby a valuable alternative, although the need still exists to test several antibody clones in search for cross-reactivity. To date, commercial antibodies recognizing equine epitopes are only available for CD13, CD44 and MHC-II. Moreover, as the expression of certain adult stem cell markers may differ between species, it is mandatory to define a set of CD markers which can be uniformly applied for the identification of equine MSC. PMID:21196039

  8. Expression of immunohistochemical markers in patients with AIDS-related lymphoma.

    PubMed

    Barreto, Luciana; Azambuja, Denize; Morais, José Carlos de

    2012-01-01

    AIDS-related lymphomas (ARL) present high biological heterogeneity. For better characterization of this type of lymphoma, the objectives of the present study were to evaluate the expression of immunohistochemical markers of cell differentiation (CD10, Bcl-6, MUM-1) and determine cell origin profile according to Hans' classification of diffuse large B-cell lymphoma in AIDS patients. This study included 72 consecutive patients with ARL diagnosed at the University Hospital, Universidade Federal do Rio de Janeiro (UFRJ) and at the Brazilian Instituto Nacional de Câncer (INCA) from 2000 to 2006. The morphologic distribution of the lymphomas was the following: 61% were diffuse large B-cell lymphomas (DLBCLs), 15% were Burkitt's lymphomas, 13% were plasmablastic lymphomas, 10% were high-grade lymphomas and 1% was follicular lymphoma. The positivity for each immunohistochemical marker in DLBCLs, Burkitt's lymphoma and plasmablastic lymphoma was respectively: CD20, 84%, 100%, and 0; CD10, 55%, 100%, and 0; Bcl-6, 45%, 80%, and 0; MUM-1, 41%, 20%, and 88%. A higher positivity of CD20 (84% x 56%, p = 0.01) was found in DLBCL compared to non-DLBCL; in Burkitt's lymphomas a higher positivity of CD10 (100% x 49%, p = 0.04) and Bcl-6 (80% x 39%, p = 0.035) were found compared to non-Burkitt's lymphomas. Germinal center (GC) profile was detected in 60% of DLBCLs. Our study suggests particular findings in ARL, as the most frequent phenotype was GC, different from HIV-negative patients. PMID:22358360

  9. Myofibroblasts are distinguished from activated skin fibroblasts by the expression of AOC3 and other associated markers.

    PubMed

    Hsia, Lin-Ting; Ashley, Neil; Ouaret, Djamila; Wang, Lai Mun; Wilding, Jennifer; Bodmer, Walter F

    2016-04-12

    Pericryptal myofibroblasts in the colon and rectum play an important role in regulating the normal colorectal stem cell niche and facilitating tumor progression. Myofibroblasts previously have been distinguished from normal fibroblasts mostly by the expression of α smooth muscle actin (αSMA). We now have identified AOC3 (amine oxidase, copper containing 3), a surface monoamine oxidase, as a new marker of myofibroblasts by showing that it is the target protein of the myofibroblast-reacting mAb PR2D3. The normal and tumor tissue distribution and the cell line reactivity of AOC3 match that expected for myofibroblasts. We have shown that the surface expression of AOC3 is sensitive to digestion by trypsin and collagenase and that anti-AOC3 antibodies can be used for FACS sorting of myofibroblasts obtained by nonenzymatic procedures. Whole-genome microarray mRNA-expression profiles of myofibroblasts and skin fibroblasts revealed four additional genes that are significantly differentially expressed in these two cell types: NKX2-3 and LRRC17 in myofibroblasts and SHOX2 and TBX5 in skin fibroblasts. TGFβ substantially down-regulated AOC3 expression in myofibroblasts but in skin fibroblasts it dramatically increased the expression of αSMA. A knockdown of NKX2-3 in myofibroblasts caused a decrease of myofibroblast-related gene expression and increased expression of the fibroblast-associated gene SHOX2, suggesting that NKX2-3 is a key mediator for maintaining myofibroblast characteristics. Our results show that colorectal myofibroblasts, as defined by the expression of AOC3, NKX2-3, and other markers, are a distinctly different cell type from TGFβ-activated fibroblasts. PMID:27036009

  10. A biophysical marker of severity in sickle cell disease

    PubMed Central

    Wood, David K.; Soriano, Alicia; Mahadevan, L.; Higgins, John M.; Bhatia, Sangeeta N.

    2013-01-01

    The search for predictive biomarkers of disease has largely focused on molecular indicators; however, mechanical and biophysical markers, which can integrate multiple pathways across length scales, may provide a more global picture of the underlying pathophysiology. Sickle cell disease, the first disease to have its molecular origins decoded, affects millions of people worldwide and has been studied intensively at the molecular, cellular, tissue and organismal level for a century since its initial description. However, there are still few, if any, markers that allow us to characterize the severity of this disease. Because the complications of sickle cell disease are largely due to vaso-occlusive events, we hypothesized that a physical metric characterizing the vaso-occlusive process could serve as a marker of disease severity. Here we use a simple microfluidic device to characterize the dynamics of jamming in physiologically relevant conditions, using the rate of change of the resistance to flow following a sudden deoxygenation event. Our studies show that this single biophysical parameter could be used to distinguish between patients with divergent clinical outcomes, unlike existing laboratory tests. Our assay provides a biophysical marker of disease severity that could be used to guide timing of clinical interventions, to monitor the progression of the disease, and to measure the efficacy of drug response, transfusion, and novel small molecules in an in vitro setting. PMID:22378926

  11. SSEA-4 is a marker of human deciduous periodontal ligament stem cells.

    PubMed

    Fukushima, H; Kawanabe, N; Murata, S; Ishihara, Y; Yanagita, T; Balam, T A; Yamashiro, T

    2012-10-01

    Although human deciduous teeth are an ideal source of adult stem cells, no method for identifying deciduous periodontal ligament (D-PDL) stem cells has so far been developed. In the present study, we investigated whether stage-specific embryonic antigen (SSEA)-4 is a marker that could be used to isolate D-PDL stem cells. The isolated D-PDL cells met the minimum criteria for mesenchymal stem cells (MSCs): They showed plastic adherence, specific-surface antigen expression, and multipotent differentiation potential. SSEA-4+ D-PDL cells were detected in vitro and in vivo. A flow cytometric analysis demonstrated that 22.7% of the D-PDL cells were positive for SSEA-4. SSEA-4+ clonal D-PDL cells displayed multilineage differentiation potential: They were able to differentiate into adipocytes, osteoblasts, and chondrocytes in vitro. A clonal assay demonstrated that 61.5% of the SSEA-4+ D-PDL cells had adipogenic, osteogenic, and chondrogenic potential. Our present study demonstrated that SSEA-4+ D-PDL cells are a subset of multipotent stem cells. Hence, SSEA-4 is a specific marker that can be used to identify D-PDL stem cells. PMID:22895512

  12. Transcriptome comparisons identify new cell markers for theca interna and granulosa cells from small and large antral ovarian follicles.

    PubMed

    Hatzirodos, Nicholas; Hummitzsch, Katja; Irving-Rodgers, Helen F; Rodgers, Raymond J

    2015-01-01

    In studies using isolated ovarian granulosa and thecal cells it is important to assess the degree of cross contamination. Marker genes commonly used for granulosa cells include FSHR, CYP19A1 and AMH while CYP17A1 and INSL3 are used for thecal cells. To increase the number of marker genes available we compared expression microarray data from isolated theca interna with that from granulosa cells of bovine small (n = 10 for both theca and granulosa cells; 3-5 mm) and large (n = 4 for both theca and granulosa cells, > 9 mm) antral follicles. Validation was conducted by qRT-PCR analyses. Known markers such as CYP19A1, FSHR and NR5A2 and another 11 genes (LOC404103, MGARP, GLDC, CHST8, CSN2, GPX3, SLC35G1, CA8, CLGN, FAM78A, SLC16A3) were common to the lists of the 50 most up regulated genes in granulosa cells from both follicle sizes. The expression in theca interna was more consistent than in granulosa cells between the two follicle sizes. Many genes up regulated in theca interna were common to both sizes of follicles (MGP, DCN, ASPN, ALDH1A1, COL1A2, FN1, COL3A1, OGN, APOD, COL5A2, IGF2, NID1, LHFP, ACTA2, DUSP12, ACTG2, SPARCL1, FILIP1L, EGFLAM, ADAMDEC1, HPGD, COL12A1, FBLN5, RAMP2, COL15A1, PLK2, COL6A3, LOXL1, RARRES1, FLI1, LAMA2). Many of these were stromal extracellular matrix genes. MGARP, GLDC, CHST8, GPX3 were identified as new potential markers for granulosa cells, while FBLN5, OGN, RAMP2 were significantly elevated in the theca interna. PMID:25775029

  13. Transcriptome Comparisons Identify New Cell Markers for Theca Interna and Granulosa Cells from Small and Large Antral Ovarian Follicles

    PubMed Central

    Hatzirodos, Nicholas; Hummitzsch, Katja; Irving-Rodgers, Helen F.; Rodgers, Raymond J.

    2015-01-01

    In studies using isolated ovarian granulosa and thecal cells it is important to assess the degree of cross contamination. Marker genes commonly used for granulosa cells include FSHR, CYP19A1 and AMH while CYP17A1 and INSL3 are used for thecal cells. To increase the number of marker genes available we compared expression microarray data from isolated theca interna with that from granulosa cells of bovine small (n = 10 for both theca and granulosa cells; 3-5 mm) and large (n = 4 for both theca and granulosa cells, > 9 mm) antral follicles. Validation was conducted by qRT-PCR analyses. Known markers such as CYP19A1, FSHR and NR5A2 and another 11 genes (LOC404103, MGARP, GLDC, CHST8, CSN2, GPX3, SLC35G1, CA8, CLGN, FAM78A, SLC16A3) were common to the lists of the 50 most up regulated genes in granulosa cells from both follicle sizes. The expression in theca interna was more consistent than in granulosa cells between the two follicle sizes. Many genes up regulated in theca interna were common to both sizes of follicles (MGP, DCN, ASPN, ALDH1A1, COL1A2, FN1, COL3A1, OGN, APOD, COL5A2, IGF2, NID1, LHFP, ACTA2, DUSP12, ACTG2, SPARCL1, FILIP1L, EGFLAM, ADAMDEC1, HPGD, COL12A1, FBLN5, RAMP2, COL15A1, PLK2, COL6A3, LOXL1, RARRES1, FLI1, LAMA2). Many of these were stromal extracellular matrix genes. MGARP, GLDC, CHST8, GPX3 were identified as new potential markers for granulosa cells, while FBLN5, OGN, RAMP2 were significantly elevated in the theca interna. PMID:25775029

  14. ABCG2 Is a Selectable Marker for Enhanced Multilineage Differentiation Potential in Periodontal Ligament Stem Cells

    PubMed Central

    Szepesi, Áron; Matula, Zsolt; Szigeti, Anna; Várady, György; Szabó, Gyula; Uher, Ferenc; Sarkadi, Balázs

    2015-01-01

    Periodontal ligament stem cells (PDLSCs) provide an important source for tissue regeneration and may become especially useful in the formation of osteogenic seeds. PDLSCs can be cultured, expanded, and differentiated in vitro; thus, they may be applied in the long-term treatment of the defects in the dental regions. Here we studied numerous potential markers allowing the selection of human PDLSCs with a maximum differentiation potential. We followed the expression of the ATP-binding cassette subfamily G member 2 (ABCG2) membrane transporter protein and isolated ABCG2-expressing cells by using a monoclonal antibody, recognizing the transporter at the cell surface in intact cells. The expression of the ABCG2 protein, corresponding to the so-called side-population phenotype in various tissue-derived stem cells, was found to be a useful marker for the selection of PDLSCs with enhanced osteogenic, chondrogenic, and adipogenic differentiation. These findings may have important applications in achieving efficient dental tissue regeneration by using stem cells from extracted teeth. PMID:25101689

  15. The use of lectins as markers for differentiated secretory cells in planarians.

    PubMed

    Zayas, Ricardo M; Cebrià, Francesc; Guo, Tingxia; Feng, Junjie; Newmark, Phillip A

    2010-11-01

    Freshwater planarians have reemerged as excellent models to investigate mechanisms underlying regeneration. The introduction of molecular tools has facilitated the study of planarians, but cell- and tissue-specific markers are still needed to examine differentiation of most cell types. Here we report the utility of fluorescent lectin-conjugates to label tissues in the planarian Schmidtea mediterranea. We show that 16 lectin-conjugates stain planarian cells or tissues; 13 primarily label the secretory cells, their cytoplasmic projections, and terminal pores. Thus, we examined regeneration of the secretory system using lectin markers and functionally characterized two genes expressed in the secretory cells: marginal adhesive gland-1 (mag-1) and Smed-reticulocalbin1 (Smed-rcn1). RNAi knockdown of these genes caused a dramatic reduction of secretory cell lectin staining, suggesting a role for mag-1 and Smed-rcn1 in secretory cell differentiation. Our results provide new insights into planarian secretory system regeneration and add new markers for labeling several planarian tissues. PMID:20865784

  16. Site-specific population dynamics and variable olfactory marker protein expression in the postnatal canine olfactory epithelium

    PubMed Central

    Bock, Patricia; Rohn, Karl; Beineke, Andreas; Baumgärtner, Wolfgang; Wewetzer, Konstantin

    2009-01-01

    The main olfactory epithelium is a pseudostratified columnar epithelium that displays neurogenesis over the course of a lifetime. New olfactory neurons arise basally and are transferred to the middle third of the epithelium during maturation. It is generally believed that this pattern is present throughout the olfactory area. In the present study, we show that the postnatal canine olfactory epithelium is composed of two distinct types of epithelium, designated A and B, which not only differ in olfactory neuron morphology, marker expression and basal cell proliferation but also display a patchy distribution and preferential localization within the nasal cavity. Type A epithelium, abundant in the caudal part of the olfactory area, contains well-differentiated olfactory neurons positive for olfactory marker protein but low numbers of immature neurons and proliferating basal cells, as visualized by TrkB/Human Natural Killer-1 (HNK-1) glyco-epitope and Ki-67 immunostaining, respectively. In contrast, type B epithelium is mainly found in the rostral part and contains smaller and elongated neurons that display increased levels of TrkB/Human Natural Killer-1 (HNK-1) glyco-epitope immunoreactivity and a higher number of Ki-67-positive basal cells but lower and variable levels of olfactory marker protein. The vomeronasal organ displays a uniform distribution of molecular markers and proliferating basal cells. The observation that olfactory marker protein in type A and B epithelium is preferentially localized to the nucleus and cytoplasm, respectively, implies correlation between subcellular localization and olfactory neuron maturation and may indicate distinct functional roles of olfactory marker protein. Whether the site-specific population dynamics in the postnatal canine olfactory epithelium revealed in the present study are modulated by physiological parameters, such as airflow, has to be clarified in future studies. PMID:19788548

  17. Prognostic Value of Cancer Stem Cells Markers in Triple-Negative Breast Cancer

    PubMed Central

    Collina, Francesca; Di Bonito, Maurizio; Li Bergolis, Valeria; De Laurentiis, Michelino; Vitagliano, Carlo; Cerrone, Margherita; Nuzzo, Francesco; Cantile, Monica; Botti, Gerardo

    2015-01-01

    Triple-negative breast cancer (TNBC) has a significant clinical relevance of being associated with a shorter median time to relapse and death and does not respond to endocrine therapy or other available targeted agents. Increased aggressiveness of this tumor, as well as resistance to standard drug therapies, may be associated with the presence of stem cell populations within the tumor. Several stemness markers have been described for the various histological subtypes of breast cancer, such as CD44, CD24, CD133, ALDH1, and ABCG2. The role of these markers in breast cancer is not clear yet and above all there are conflicting opinions about their real prognostic value. To investigate the role of CSCs markers in TNBC cancerogenesis and tumor progression, we selected 160 TNBCs samples on which we detected protein expression of CD44, CD24, CD133, ALDH1, and ABCG2 by immunohistochemistry. Our results highlighted a real prognostic role only for CD44 in TNBCs. All other CSCs markers do not appear to be related to the survival of TNBC patients. In conclusion, despite the fact that the presence of the cancer stem cells in the tumor provides important information on its potential aggressiveness, today their detection by immunohistochemistry is not sufficient to confirm their role in carcinogenesis, because specific markers probably are not yet identified. PMID:26504780

  18. Novel Implant Coating Agent Promotes Gene Expression of Osteogenic Markers in Rats during Early Osseointegration

    PubMed Central

    Bougas, Kostas; Jimbo, Ryo; Xue, Ying; Mustafa, Kamal; Wennerberg, Ann

    2012-01-01

    The aim of this study was to evaluate the early bone response around laminin-1-coated titanium implants. Forty-five rats distributed in three equally sized groups were provided with one control (turned) and one test (laminin-1-coated) implant and were sacrificed after 3, 7, and 21 days. Real-time reverse-transcriptase polymerase chain reaction was performed for osteoblast markers (alkaline phosphatase, runt-related transcription factor 2, osteocalcin, type I collagen, and bone morphogenic protein 2), osteoclast markers (cathepsin K and tartrate-resistant acid phosphatase), inflammation markers (tumor necrosis factor α, interleukin 1β and interleukin 10), and integrin β1. Bone implant contact (BIC) and bone area (BA) were assessed and compared to the gene expression. After 3 days, the expression of bone markers was higher for the control group. After 7 days, the expression of integrin β1 and osteogenic markers was enhanced for the test group, while cathepsin K and inflammation markers were down-regulated. No significant differences in BIC or BA were detected between test and control at any time point. As a conclusion, implant coating with laminin-1 altered gene expression in the bone-implant interface. However, traditional evaluation methods, as histomorphometry, were not adequately sensitive to detect such changes due to the short follow-up time. PMID:23193408

  19. LRRN4 and UPK3B Are Markers of Primary Mesothelial Cells

    PubMed Central

    Kanamori-Katayama, Mutsumi; Kaiho, Ai; Ishizu, Yuri; Okamura-Oho, Yuko; Hino, Okio; Abe, Masaaki; Kishimoto, Takumi; Sekihara, Hisahiko; Nakamura, Yukio; Suzuki, Harukazu; Forrest, Alistair R. R.; Hayashizaki, Yoshihide

    2011-01-01

    Background Mesothelioma is a highly malignant tumor that is primarily caused by occupational or environmental exposure to asbestos fibers. Despite worldwide restrictions on asbestos usage, further cases are expected as diagnosis is typically 20–40 years after exposure. Once diagnosed there is a very poor prognosis with a median survival rate of 9 months. Considering this the development of early pre clinical diagnostic markers may help improve clinical outcomes. Methodology Microarray expression arrays on mesothelium and other tissues dissected from mice were used to identify candidate mesothelial lineage markers. Candidates were further tested by qRTPCR and in-situ hybridization across a mouse tissue panel. Two candidate biomarkers with the potential for secretion, uroplakin 3B (UPK3B), and leucine rich repeat neuronal 4 (LRRN4) and one commercialized mesothelioma marker, mesothelin (MSLN) were then chosen for validation across a panel of normal human primary cells, 16 established mesothelioma cell lines, 10 lung cancer lines, and a further set of 8 unrelated cancer cell lines. Conclusions Within the primary cell panel, LRRN4 was only detected in primary mesothelial cells, but MSLN and UPK3B were also detected in other cell types. MSLN was detected in bronchial epithelial cells and alveolar epithelial cells and UPK3B was detected in retinal pigment epithelial cells and urothelial cells. Testing the cell line panel, MSLN was detected in 15 of the 16 mesothelioma cells lines, whereas LRRN4 was only detected in 8 and UPK3B in 6. Interestingly MSLN levels appear to be upregulated in the mesothelioma lines compared to the primary mesothelial cells, while LRRN4 and UPK3B, are either lost or down-regulated. Despite the higher fraction of mesothelioma lines positive for MSLN, it was also detected at high levels in 2 lung cancer lines and 3 other unrelated cancer lines derived from papillotubular adenocarcinoma, signet ring carcinoma and transitional cell carcinoma. PMID

  20. Prion Protein and Stage Specific Embryo Antigen 1 as Selection Markers to Enrich the Fraction of Murine Embryonic Stem Cell-Derived Cardiomyocytes

    PubMed Central

    Ikeda, Nobuhito; Nakayama, Yuji; Nakazawa, Natsumi; Yoshida, Akio; Ninomiya, Haruaki; Shirayoshi, Yasuaki

    2016-01-01

    Background The prion protein (PrP) might be useful as a tool to collect cardiac progenitor cells derived from embryonic stem (ES) cells. It is also possible that PrP+ cells include undifferentiated cells with a capacity to develop into tumors. Methods PrP+ cells isolated from embryoid bodies (EB) formed by mouse AB1 ES cells were examined using RT–PCR analysis and clonogeneic cell assay. To assess their potential to differentiate into cardiomyocytes, Nkx2.5GFP/+ (hcgp7) cells, another ES cell line that carries the GFP reporter gene in the Nkx2.5 loci, were used. Results PrP+ cells isolated from EB of day 7 and 14 did not express pluripotency markers, but expressed cardiac cell markers, while PrP+ cells isolated from EB of day 21 expressed pluripotency markers. Cultured PrP+ cells isolated from EB of day 21 expressed pluripotency markers to form colonies, whereas those isolated from EB of day 7 and 14 did not. To exclude proliferating cells from PrP+ cells, stage specific embryo antigen 1 (SSEA1) was employed as a second marker. PrP+/SSEA1– cells did not proliferate and expressed cardiac cell markers, while PrP+/SSEA1+ did proliferate. Conclusion PrP+ cells isolated from EB included undifferentiated cells in day 21. PrP+/SSEA1– cells included cardiomyoctes, suggesting PrP and SSEA1 may be useful as markers to enrich the fraction of cardiomyocytes. PMID:27493483

  1. Identification of stem-like cells and clinical significance of candidate stem cell markers in gastric cancer

    PubMed Central

    Wang, Xiaofeng; Huang, Mingzhu; Gan, Lu; Wu, Zhenhua; Zhang, Jiejun; Wang, Hongqiang; Cheng, Yufan; Li, Jin; Guo, Weijian

    2016-01-01

    The existence of gastric cancer stem cells (CSCs) has not been definitively proven and specific cell surface markers for identifying gastric CSCs have largely not been identified. Our research aimed to isolate potential gastric CSCs and clarify their clinical significance, while defining markers for GCSC identification and verification. Here, we report that spheroid cells possess stem cell-like properties, and overexpress certain stem cell markers. CD133 or CD44-positive cells also exhibit properties of CSCs. The expression of Oct4, Sox2, Gli1, CD44, CD133, p-AKT, and p-ERK was significantly higher in metastatic lesions compared to that in primary lesions. Elevated expression of some of these proteins was correlated with a more aggressive phenotype and poorer prognosis, including Oct4, Sox2, Gli1, CD44, and p-ERK. Multivariate Cox proportional hazards model analysis showed that only CD44 is an independent factor. Knockdown of CD44 down-regulated the stem cell-like properties, which was accompanied by the down-regulation of p-ERK and Oct4. Oct4 overexpression could reverse the decreased CSCs properties induced by CD44 knockdown. Taken together, our research revealed that spheroid cell culture, and CD133 or CD44-labeled FACS methods can be used to isolate gastric CSCs. Some CSC markers have clinical significance in predicting the prognosis. CD44 is an independent prognostic factor and maintains the properties of CSCs in CD44-p-ERK-Oct4 positive feedback loop. PMID:26769843

  2. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells

    PubMed Central

    Dubois, Nicole C; Craft, April M; Sharma, Parveen; Elliott, David A; Stanley, Edouard G; Elefanty, Andrew G; Gramolini, Anthony; Keller, Gordon

    2013-01-01

    To identify cell-surface markers specific to human cardiomyocytes, we screened cardiovascular cell populations derived from human embryonic stem cells (hESCs) against a panel of 370 known CD antibodies. This screen identified the signal-regulatory protein alpha (SIRPA) as a marker expressed specifically on cardiomyocytes derived from hESCs and human induced pluripotent stem cells (hiPSCs), and PECAM, THY1, PDGFRB and ITGA1 as markers of the nonmyocyte population. Cell sorting with an antibody against SIRPA allowed for the enrichment of cardiac precursors and cardiomyocytes from hESC/hiPSC differentiation cultures, yielding populations of up to 98% cardiac troponin T-positive cells. When plated in culture, SIRPA-positive cells were contracting and could be maintained over extended periods of time. These findings provide a simple method for isolating populations of cardiomyocytes from human pluripotent stem cell cultures, and thereby establish a readily adaptable technology for generating large numbers of enriched cardiomyocytes for therapeutic applications. PMID:22020386

  3. Transcriptional repression of cancer stem cell marker CD133 by tumor suppressor p53.

    PubMed

    Park, E K; Lee, J C; Park, J W; Bang, S Y; Yi, S A; Kim, B K; Park, J H; Kwon, S H; You, J S; Nam, S W; Cho, E J; Han, J W

    2015-01-01

    Novel therapeutic strategies are needed to overcome cancer recurrence, metastasis, and resistance to chemo- and radiotherapy. Cancer stem cells (CSCs) are major contributors to the malignant transformation of cells due to their capacity for self-renewal. Although various CSC markers have been identified in several types of tumors, they are primarily used as cancer-prediction markers and for the isolation of CSC populations. CD133, one of the best-characterized CSC markers in distinct solid tumor types, was shown to be correlated with CSC tumor-initiating capacity; however, the regulation of CD133 expression and its function in cancer are poorly understood. Here, we show that CD133 expression is negatively regulated by direct binding of the p53 tumor suppressor protein to a noncanonical p53-binding sequence in the CD133 promoter. Binding of p53 recruits Histone Deacetylase 1 (HDAC1) to the CD133 promoter and subsequently suppresses CD133 expression by reducing histone H3 acetylation. Furthermore, CD133 depletion suppresses tumor cell proliferation, colony formation, and the expression of core stemness transcription factors including NANOG, octamer-binding transcription factor 4 (OCT4), SOX2, and c-MYC. Critically, the anti-proliferative effects of p53 are antagonized by rescue of CD133 expression in a p53 overexpressing cell line, indicating that the tumor suppressive activity of p53 might be mediated by CD133 suppression. Taken together, our results suggest that p53-mediated transcriptional regulation of CD133 is a key underlying mechanism for controlling the growth and tumor-initiating capacity of CSCs and provide a novel perspective on targeting CSCs for cancer therapy. PMID:26539911

  4. PRAME expression in head and neck cancer correlates with markers of poor prognosis and might help in selecting candidates for retinoid chemoprevention in pre-malignant lesions

    PubMed Central

    Szczepanski, Miroslaw J.; DeLeo, Albert B.; Łuczak, Michał; Molinska-Glura, Marta; Misiak, Jan; Szarzynska, Bronislawa; Dworacki, Grzegorz; Zagor, Mariola; Rozwadowska, Natalia; Kurpisz, Maciej; Krzeski, Antoni; Kruk-Zagajewska, Aleksandra; Kopec, Tomasz; Banaszewski, Jacek; Whiteside, Theresa L.

    2012-01-01

    Objectives PRAME (Preferentially Expressed Antigen in Melanoma) is a tumor-associated antigen recognized by immunocytes, and it induces cytotoxic T cell-mediated responses in melanoma. PRAME expression in tumors interferes with retinoic acid receptor (RAR) signaling thus promoting tumor progression. Here, we study PRAME expression in head and neck squamous cell carcinoma (HNSCC) to determine its potential clinical significance. Materials and Methods PRAME expression in HNSCC was evaluated by immunohistochemistry in tissue microarrays of primary tumors (n=53), metastatic lymph nodes (n=8) and normal oral mucosa (n=11). Biopsies of dysplastic oral lesions (n=12) were also examined. PRAME expression levels in tissues were correlated with markers of poor prognosis in HNSCC. PRAME mRNA in HNSCC cell lines and in normal immortalized human keratinocytes (HaCaT cell line) was measured by qRT-PCR, and the protein expression by flow cytometry and western blots. Results PRAME was expressed in HNSCC cell lines and HNSCC lesions. PRAME expression in dysplastic mucosa was variable. No or only weak expression was found in normal cells or tissues. PRAME expression levels significantly correlated with the tumor grade, size, nodal involvement and the clinical status of HNSCC patients. Conclusions Elevated PRAME expression associates with clinicopathologic markers of poor outcome in HNSCC and might identify potential candidates with pre-cancerous lesions for chemoprevention with retinoids. PMID:22944049

  5. 293 cells express both epithelial as well as mesenchymal cell adhesion molecules

    PubMed Central

    INADA, MASAKAZU; IZAWA, GENYA; KOBAYASHI, WAKAKO; OZAWA, MASAYUKI

    2016-01-01

    The 293 cell line, used extensively in various types of studies due to the ease with which these cells can be transfected, was thought to be derived by the transformation of primary cultures of human embryonic kidney cells with sheared adenovirus type 5 DNA. Although the 293 cells were assumed to originate from epithelial cells, the exact origin of these cells remains unknown. Previous attempts to characterize these cells combined immunostaining, immunoblot analysis and microarray analysis to demonstrate that 293 cells express neurofilament subunits, α-internexin, and several other proteins typically found in neurons. These findings raised the possibility that the 293 cell line may have originated from human neuronal lineage cells. Contrary to this suggestion, in this study, we found that the 293 cells expressed N-cadherin and vimentin, which are marker proteins expressed in mesenchymal cells. Furthermore, the 293 cells also expressed E-cadherin, cytokeratins 5/8 and desmoglein 2, which are epithelial cell markers. When the cells, primarily cultured from the kidneys of Clawn miniature swine and passaged 10–15 generations [termed porcine kidney epithelial (PKE) cells] were examined, they were found to be positive for the expression of both mesenchymal and epithelial markers. Thus, transformation by adenovirus was not necessary for the cells to express N-cadherin. Occludin and zonula occludens (ZO)-1, two components of tight junctions in epithelial and endothelial cells, were detected in the 293 and the PKE cells. Thus, the findings of the present study demonstrate that 293 cells retain several characteristics of epithelial cells. PMID:27121032

  6. Diagnostic markers for germ cell neoplasms: from placental-like alkaline phosphatase to micro-RNAs.

    PubMed

    Rajpert-De Meyts, Ewa; Nielsen, John E; Skakkebaek, Niels E; Almstrup, Kristian

    2015-01-01

    This concise review summarises tissue and serum markers useful for differential diagnosis of germ cell tumours (GCT), with focus on the most common testicular GCT (TGCT). GCT are characterised by phenotypic heterogeneity due to largely retained embryonic pluripotency and aberrant somatic differentiation. TGCT that occur in young men are divided into two main types, seminoma and nonseminoma, both derived from a pre-invasive germ cell neoplasia in situ (GCNIS), which originates from transformed foetal gonocytes. In severely dysgenetic gonads, a GCNIS-resembling lesion is called gonadoblastoma. GCT occur rarely in young children (infantile GCT) in whom the pathogenesis is different (no GCNIS/gonadoblastoma stage) but the histopathological features are similar to the adult GCT. The rare spermatocytic tumour of older men is derived from post-pubertal spermatogonia that clonally expand due to gain-of function mutations in survival-promoting genes (e.g. FGFR3, HRAS), thus this tumour has a different expression profile than GCNIS-derived TGCT. Clinically most informative immunohistochemical markers for GCT, except teratoma, are genes expressed in primordial germ cells/gonocytes and embryonic pluripotency-related factors, such as placental-like alkaline phosphatase (PLAP), OCT4 (POU5F1), NANOG, AP-2γ (TFAP2C) and LIN28, which are not expressed in normal adult germ cells. Some of these markers can also be used for immunocytochemistry to detect GCNIS or incipient tumours in semen samples. Gene expression in GCT is regulated in part by DNA and histone modifications, and the epigenetic profile of these tumours is characterised by genome-wide demethylation, except nonseminomas. In addition, a recently discovered mechanism of post-genomic gene expression regulation involves small non-coding RNAs, predominantly micro-RNA (miR). Testicular GCT display micro-RNA profiles similar to embryonic stem cells. Targeted miRNA-based blood tests for miR-371-3 and miR-367 clusters are

  7. Design of a Specific Colonic Mucus Marker Using a Human Commensal Bacterium Cell Surface Domain*

    PubMed Central

    Coïc, Yves-Marie; Baleux, Francoise; Poyraz, Ömer; Thibeaux, Roman; Labruyere, Elisabeth; Chretien, Fabrice; Sobhani, Iradj; Lazure, Thierry; Wyplosz, Benjamin; Schneider, Gunter; Mulard, Laurence; Sansonetti, Philippe J.; Marteyn, Benoit S.

    2012-01-01

    Imaging living cells and organs requires innovative, specific, efficient, and well tolerated fluorescent markers targeting cellular components. Such tools will allow proceeding to the dynamic analysis of cells and the adaptation of tissues to environmental cues. In this study, we have identified and synthesized a novel non-toxic fluorescent marker allowing a specific fluorescent staining of the human colonic mucus. Our strategy to identify a molecule able to specifically bind to the human colonic mucus was on the basis of the mucus adhesion properties of commensal bacteria. We identified and characterized the mucus-binding property of a 70-amino acid domain (MUB70) expressed on the surface of Lactobacillus strains. The chemical synthesis of MUB70 was achieved using the human commensal bacterium Lactobacillus reuteri AF120104 protein as a template. The synthesized Cy5-conjugated MUB70 marker specifically stained the colonic mucus on fixed human, rabbit, and guinea pig tissues. Interestingly, murine tissue was not stained, suggesting significant differences in the composition of the murine colonic mucus. In addition, this marker stained the mucus of living cultured human colonic cells (HT29-MTX) and human colonic tissue explants. Using a biotinylated derivative of MUB70, we demonstrated that this peptide binds specifically to Muc2, the most abundant secreted mucin, through its glycosylated moieties. Hence, Cy5-MUB70 is a novel and specific fluorescent marker for mammalian colonic mucus. It may be used for live imaging analysis but also, as demonstrated in this study, as a marker for the diagnosis and the prognosis of colonic mucinous carcinomas. PMID:22427651

  8. Design of a specific colonic mucus marker using a human commensal bacterium cell surface domain.

    PubMed

    Coïc, Yves-Marie; Baleux, Francoise; Poyraz, Ömer; Thibeaux, Roman; Labruyere, Elisabeth; Chretien, Fabrice; Sobhani, Iradj; Lazure, Thierry; Wyplosz, Benjamin; Schneider, Gunter; Mulard, Laurence; Sansonetti, Philippe J; Marteyn, Benoit S

    2012-05-01

    Imaging living cells and organs requires innovative, specific, efficient, and well tolerated fluorescent markers targeting cellular components. Such tools will allow proceeding to the dynamic analysis of cells and the adaptation of tissues to environmental cues. In this study, we have identified and synthesized a novel non-toxic fluorescent marker allowing a specific fluorescent staining of the human colonic mucus. Our strategy to identify a molecule able to specifically bind to the human colonic mucus was on the basis of the mucus adhesion properties of commensal bacteria. We identified and characterized the mucus-binding property of a 70-amino acid domain (MUB(70)) expressed on the surface of Lactobacillus strains. The chemical synthesis of MUB(70) was achieved using the human commensal bacterium Lactobacillus reuteri AF120104 protein as a template. The synthesized Cy5-conjugated MUB(70) marker specifically stained the colonic mucus on fixed human, rabbit, and guinea pig tissues. Interestingly, murine tissue was not stained, suggesting significant differences in the composition of the murine colonic mucus. In addition, this marker stained the mucus of living cultured human colonic cells (HT29-MTX) and human colonic tissue explants. Using a biotinylated derivative of MUB(70), we demonstrated that this peptide binds specifically to Muc2, the most abundant secreted mucin, through its glycosylated moieties. Hence, Cy5-MUB(70) is a novel and specific fluorescent marker for mammalian colonic mucus. It may be used for live imaging analysis but also, as demonstrated in this study, as a marker for the diagnosis and the prognosis of colonic mucinous carcinomas. PMID:22427651

  9. Early Appearance of Nonvisual and Circadian Markers in the Developing Inner Retinal Cells of Chicken

    PubMed Central

    Díaz, Nicolás M.; Morera, Luis P.; Verra, Daniela M.; Contin, María A.; Guido, Mario E.

    2014-01-01

    The retina is a key component of the vertebrate circadian system; it is responsible for detecting and transmitting the environmental illumination conditions (day/night cycles) to the brain that synchronize the circadian clock located in the suprachiasmatic nucleus (SCN). For this, retinal ganglion cells (RGCs) project to the SCN and other nonvisual areas. In the chicken, intrinsically photosensitive RGCs (ipRGCs) expressing the photopigment melanopsin (Opn4) transmit photic information and regulate diverse nonvisual tasks. In nonmammalian vertebrates, two genes encode Opn4: the Xenopus (Opn4x) and the mammalian (Opn4m) orthologs. RGCs express both Opn4 genes but are not the only inner retinal cells expressing Opn4x: horizontal cells (HCs) also do so. Here, we further characterize primary cultures of both populations of inner retinal cells (RGCs and HCs) expressing Opn4x. The expression of this nonvisual photopigment, as well as that for different circadian markers such as the clock genes Bmal1, Clock, Per2, and Cry1, and the key melatonin synthesizing enzyme, arylalkylamine N-acetyltransferase (AA-NAT), appears very early in development in both cell populations. The results clearly suggest that nonvisual Opn4 photoreceptors and endogenous clocks converge all together in these inner retinal cells at early developmental stages. PMID:24977155

  10. Acetylcholinesterase: an enzymatic marker of human red blood cell aging.

    PubMed

    Prall, Y G; Gambhir, K K; Ampy, F R

    1998-01-01

    The purpose of this investigation was to determine whether acetylcholinesterase (AChE) can be used as a marker of cell aging in human red blood cells (RBCs). This study used consented subjects; both males and females in an age range of 21-42 years. The blood samples (8-9 mL) were drawn in tubes containing sodium heparin or EDTA as anticoagulants. To avoid contamination with other cells, (lymphocytes, monocytes and reticulocytes), RBCs were purified (PRBC) by Hypaque-Ficoll gradient technique. The PRBCs were subfractionated into young (y) (1.08-1.09), mid (m) (1.09-1.11) and old (o) (1.11-1.12) percoll density (g/mL) fractions using a discontinuous percoll gradient. The mean +/- 1 SD AChE per gram hemoglobin (U/g Hgb) activities in whole blood (WB) purified human red blood cells (PRBCs), young human red blood cells (y-RBCs), mid age human red blood cells (m-RBCs) and old human red blood cells (o-RBCs) were 27.4 +/- 2.98, 26.0 +/- 2.33, 25.5 +/- 1.64, 20.3 +/- 3.84, 14.6 +/- 3.42 in males and 26.3 +/- 4.44, 24.8 /- 4.83, 26.4 +/- 4.59, 24.0 +/- 5.50 and 12.4 +/- 7.09 in females respectively. Although there was variation in the data, the results indicated that old human red blood cells showed significantly (p<.05) lower AChE activity compared to young human red blood cells of both sexes. These preliminary but novel observations suggest that AChE can be an excellent enzymatic marker for RBC aging in man. PMID:9698047

  11. BLV-infected lymphocytes exhibit two patterns of expression as determined by Ig and CD5 markers.

    PubMed

    Meirom, R; Brenner, J; Trainin, Z

    1993-03-01

    Lymphocytes were defined by their cell surface markers, Ig and CD5 in three groups of cows naturally infected with bovine leucosis virus (BLV). Lymphocytes were enumerated and groups were designated BLV seropositive with persistent lymphocytosis (BLV + PL +), BLV seropositive without persistent lymphocytosis (BLV + PL-) and BLV negative. The competence of peripheral blood mononuclear cells (PBMC) from the tested cows to express these two markers was determined by the double staining immunofluorescence procedure. Cows which developed persistent lymphocytosis (PL) as a result of BLV infection consequently underwent massive proliferation of B lymphocytes which express both Ig and CD5 antigens. In contrast, cows which were defined as BLV positive and PL negative showed a remarkable decrease of CD5 + Ig-, CD5- Ig+ and CD5+ Ig+ cells and also in the total number of lymphocytes. We suggest that BLV infection affects bovine lymphocytes through two different pathways of expression which might be related to the genetic properties of the target cells. PMID:7682745

  12. Putative markers for the detection of breast carcinoma cells in blood.

    PubMed Central

    Eltahir, E. M.; Mallinson, D. S.; Birnie, G. D.; Hagan, C.; George, W. D.; Purushotham, A. D.

    1998-01-01

    The aim of this study was to investigate certain genes for their suitability as molecular markers for detection of breast carcinoma cells using the reverse transcriptase-polymerase chain reaction (RT-PCR). RNA was prepared from MCF-7 breast carcinoma cells and peripheral blood leucocytes of healthy female volunteers. This RNA was screened for mRNA of MUC1, cytokeratin 19 (CK19) and CD44 (exons 8-11) by RT-PCR and the results validated by Southern blots. Variable degrees of expression of MUC1 and CD44 (exons 8-11) were detected in normal peripheral blood, rendering these genes non-specific for epithelial cells and therefore unsuitable for use as markers to detect breast carcinoma cells. Although CK19 mRNA was apparently specific, it was deemed unsuitable for use as a marker of breast cancer cells in light of its limited sensitivity. Furthermore, an attempt at using nested primers to increase sensitivity resulted in CK19 mRNA being detected after two amplification rounds in blood from healthy volunteers. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9579823

  13. Intratumoral expression of cyclooxygenase-2 (COX-2) is a negative prognostic marker for patients with cutaneous melanoma.

    PubMed

    Kuźbicki, Łukasz; Lange, Dariusz; Stanek-Widera, Agata; Chwirot, Barbara W

    2016-10-01

    Because of the well-known heterogeneity of melanomas, prognosis of the disease is often difficult to assess even for lesions classified in similar stages. The aim of this study was to assess the usefulness of COX-2 as a melanoma prognostic marker and to establish an optimum algorithm for analysis of COX-2 expression levels in lesions of interest. Expression of COX-2 was detected immunohistochemically in standard sections of formalin-fixed paraffin-embedded tissue samples of 85 primary melanomas, 36 lymph node metastases, and five skin metastases including 39 cases of paired primary and metastatic lesions obtained from the same patient. Enhanced expression of COX-2 in primary melanomas is an indicator of poorer prognosis. A significant correlation was found between high expression of COX-2 in primary lesions and shorter survival. The enhancement of COX-2 expression is also positively correlated with other prognostic factors such as tumor thickness and infiltration level, ulceration, high mitotic index, more invasive histologic type, vertical growth phase, and lymph node metastasis. On the whole, the results suggest that intratumoral expression of COX-2 is a strong negative prognostic marker for patients with melanoma. Moreover, our work shows that a simple and objective immunohistochemical scoring algorithm involving the determination of only a percentage fraction of positively stained cells is sufficient to obtain the prognostic information. PMID:27391144

  14. Alpha-adaptin, a marker for endocytosis, is expressed in complex patterns during Drosophila development.

    PubMed Central

    Dornan, S; Jackson, A P; Gay, N J

    1997-01-01

    A Drosophila cDNA encoding a structural homologue of the mammalian coated vesicle component alpha-adaptin (AP2 adaptor complex) has been cloned and sequenced. The mammalian and invertebrate sequences are highly conserved, especially within the amino terminal region, a domain that mediates interactions with other components within the AP2 complex and with specific receptors tails. Mammalian alpha-adaptins are encoded by two genes; however, Drosophila alpha-adaptin has a single gene locus, within polytene bands 21C2-C3 on the left arm of the chromosome 2, closely adjacent to the paired homeobox gene aristaless. There seem to be at least two Drosophila alpha-adaptin transcripts expressed, plausibly by alternative splicing. One of the transcripts is more abundant during early embryogenesis and may be of maternal origin. We have studied the distribution of the alpha-adaptin protein throughout embryogenesis and at the neuromuscular junction of the third instar larva. During cellularization of the blastoderm embryo, the protein is seen between and ahead of the elongating nuclei, and then redistributes to the cell surface during gastrulation. These observations suggest a role for endocytosis in cellularization and are consistent with the finding that dynamin (the shibire gene product), another component of the endocytic mechanism, is required for cellularization. At later stages of embryogenesis, alpha-adaptin is expressed in complex and dynamic patterns. It is strongly induced in elements of the central and peripheral nervous system (e.g., in neuroblasts, the presumptive stomatogastric nervous system, and the lateral chordotonal sense organs), in the Garland cells, the adult midgut precursors, the antenno-maxillary complex, the endoderm, the fat bodies, and the visceral mesoderm. In the larva, alpha-adaptin is localized at the plasma membrane in the synaptic boutons of the neuromuscular junctions. The cells expressing high levels of alpha-adaptin are known or expected to

  15. Alpha-adaptin, a marker for endocytosis, is expressed in complex patterns during Drosophila development.

    PubMed

    Dornan, S; Jackson, A P; Gay, N J

    1997-08-01

    A Drosophila cDNA encoding a structural homologue of the mammalian coated vesicle component alpha-adaptin (AP2 adaptor complex) has been cloned and sequenced. The mammalian and invertebrate sequences are highly conserved, especially within the amino terminal region, a domain that mediates interactions with other components within the AP2 complex and with specific receptors tails. Mammalian alpha-adaptins are encoded by two genes; however, Drosophila alpha-adaptin has a single gene locus, within polytene bands 21C2-C3 on the left arm of the chromosome 2, closely adjacent to the paired homeobox gene aristaless. There seem to be at least two Drosophila alpha-adaptin transcripts expressed, plausibly by alternative splicing. One of the transcripts is more abundant during early embryogenesis and may be of maternal origin. We have studied the distribution of the alpha-adaptin protein throughout embryogenesis and at the neuromuscular junction of the third instar larva. During cellularization of the blastoderm embryo, the protein is seen between and ahead of the elongating nuclei, and then redistributes to the cell surface during gastrulation. These observations suggest a role for endocytosis in cellularization and are consistent with the finding that dynamin (the shibire gene product), another component of the endocytic mechanism, is required for cellularization. At later stages of embryogenesis, alpha-adaptin is expressed in complex and dynamic patterns. It is strongly induced in elements of the central and peripheral nervous system (e.g., in neuroblasts, the presumptive stomatogastric nervous system, and the lateral chordotonal sense organs), in the Garland cells, the adult midgut precursors, the antenno-maxillary complex, the endoderm, the fat bodies, and the visceral mesoderm. In the larva, alpha-adaptin is localized at the plasma membrane in the synaptic boutons of the neuromuscular junctions. The cells expressing high levels of alpha-adaptin are known or expected to

  16. Sorting single satellite cells from individual myofibers reveals heterogeneity in cell-surface markers and myogenic capacity.

    PubMed

    Chapman, Matthew R; Balakrishnan, Karthik R; Li, Ju; Conboy, Michael J; Huang, Haiyan; Mohanty, Swomitra K; Jabart, Eric; Hack, James; Conboy, Irina M; Sohn, Lydia L

    2013-04-01

    Traditional cell-screening techniques such as FACS and MACS are better suited for large numbers of cells isolated from bulk tissue and cannot easily screen stem or progenitor cells from minute populations found in their physiological niches. Furthermore, these techniques rely upon irreversible antibody binding, potentially altering cell properties, including gene expression and regenerative capacity. To address these challenges, we have developed a novel, label-free stem-cell analysis and sorting platform capable of quantifying cell-surface marker expression of single functional organ stem cells directly isolated from their micro-anatomical niche. Using our unique platform, we have discovered a remarkable heterogeneity in both the regenerative capacity and expression of CXCR4, β1-integrin, Sca-1, M-cadherin, Syndecan-4, and Notch-1 in freshly isolated muscle stem (satellite) cells residing on different, single myofibers and have identified a small population of Sca-1(+)/Myf5(+) myogenic satellite cells. Our results demonstrate the utility of our single-cell platform for uncovering and functionally characterizing stem-cell heterogeneity in the organ microniche. PMID:23407661

  17. Abnormal bone mineral density and bone turnover marker expression profiles in patients with primary spontaneous pneumothorax

    PubMed Central

    Yu, Lixin; Hou, Shengcai; Hu, Bin; Zhao, Liqiang; Miao, Jinbai; Wang, Yang; Li, Tong; Zhang, Zhenkui; You, Bin; Pang, Baosen; Liang, Yufang; Zhao, Yi; Hao, Wei

    2016-01-01

    Background To examine the bone mineral density (BMD) and the role of bone biomarkers, including bone formation marker procollagen type I aminoterminal propeptide (PINP) and N-terminal midmolecule fragment osteocalcin (N-MID), bone resorption marker b-C-telopeptides of type I collagen (b-CTX) and tartrate-resistant acid phosphatase 5b (TRACP5b) in the pathogenesis of PSP. Methods Eighty-three consecutive primary spontaneous pneumothorax (PSP) patients (PSP group) and 87 healthy individuals (control group) were enrolled in this study. General data, including gender, age, height, weight, and body mass index (BMI), were recorded. Dual-energy X-ray absorptiometry, electrochemiluminescence immunoassay (ECLIA), and ELISA were used to evaluate bone mineral density and expression levels of bone metabolism markers, including PINP, b-CTX, TRACP5b, N-MID, and 25-hydroxyvitamin D (25-OH VD). Results Mean height was significantly greater in the PSP group compared with the control group, whereas weight and BMI were lower. Patients in the PSP group had significantly lower average bone mineral density, which mainly manifested as osteopenia (11/12, 91.7%); however, only one patient (8.3%) developed osteoporosis. Serum overexpression of PINP, b-CTX, TRACP5b, and N-MID were found in PSP patients. Expression of 25-OH VD was low in PSP patients. Bone resorption markers showed positive linear relationships with bone formation markers in all participants; whereas only TRACP5b expression negatively correlated with 25-OH VD. Expression levels of all bone turnover markers negatively correlated with BMI. Regression analysis identified risk factors of PSP as age, height, weight, and TRACP5b and 25-OH VD expression levels; whereas gender and PINP, b-CTX, and N-MID expression levels were not significantly associated with the onset of PSP. Conclusions It had lower bone mineral density in PSP patients. Bone formation marker PINP, N-MID and bone resorption marker b-CTX, TRACP5b were upregulated in

  18. Differential Expression of Complement Markers in Normal and AMD Transmitochondrial Cybrids

    PubMed Central

    Nashine, Sonali; Chwa, Marilyn; Kazemian, Mina; Thaker, Kunal; Lu, Stephanie; Nesburn, Anthony; Kuppermann, Baruch D.; Kenney, M. Cristina

    2016-01-01

    Purpose Variations in mitochondrial DNA (mtDNA) and abnormalities in the complement pathways have been implicated in the pathogenesis of age-related macular degeneration (AMD). This study was designed to determine the effects of mtDNA from AMD subjects on the complement pathway. Methods Transmitochondrial cybrids were prepared by fusing platelets from AMD and age-matched Normal subjects with Rho0 (lacking mtDNA) human ARPE-19 cells. Quantitative PCR and Western blotting were performed to examine gene and protein expression profiles, respectively, of complement markers in these cybrids. Bioenergetic profiles of Normal and AMD cybrids were examined using the Seahorse XF24 flux analyzer. Results Significant decreases in the gene and protein expression of complement inhibitors, along with significantly higher levels of complement activators, were found in AMD cybrids compared to Older-Normal cybrids. Seahorse flux data demonstrated that the bioenergetic profiles for Older-Normal and Older-AMD cybrid samples were similar to each other but were lower compared to Young-Normal cybrid samples. Conclusion In summary, since all cybrids had identical nuclei and differed only in mtDNA content, the observed changes in components of complement pathways can be attributed to mtDNA variations in the AMD subjects, suggesting that mitochondrial genome and retrograde signaling play critical roles in this disease. Furthermore, the similar bioenergetic profiles of AMD and Older-Normal cybrids indicate that the signaling between mitochondria and nuclei are probably not via a respiratory pathway. PMID:27486856

  19. A reference genetic linkage map of apomictic Hieracium species based on expressed markers derived from developing ovule transcripts

    PubMed Central

    Shirasawa, Kenta; Hand, Melanie L.; Henderson, Steven T.; Okada, Takashi; Johnson, Susan D.; Taylor, Jennifer M.; Spriggs, Andrew; Siddons, Hayley; Hirakawa, Hideki; Isobe, Sachiko; Tabata, Satoshi; Koltunow, Anna M. G.

    2015-01-01

    Background and Aims Apomixis in plants generates clonal progeny with a maternal genotype through asexual seed formation. Hieracium subgenus Pilosella (Asteraceae) contains polyploid, highly heterozygous apomictic and sexual species. Within apomictic Hieracium, dominant genetic loci independently regulate the qualitative developmental components of apomixis. In H. praealtum, LOSS OF APOMEIOSIS (LOA) enables formation of embryo sacs without meiosis and LOSS OF PARTHENOGENESIS (LOP) enables fertilization-independent seed formation. A locus required for fertilization-independent endosperm formation (AutE) has been identified in H. piloselloides. Additional quantitative loci appear to influence the penetrance of the qualitative loci, although the controlling genes remain unknown. This study aimed to develop the first genetic linkage maps for sexual and apomictic Hieracium species using simple sequence repeat (SSR) markers derived from expressed transcripts within the developing ovaries. Methods RNA from microdissected Hieracium ovule cell types and ovaries was sequenced and SSRs were identified. Two different F1 mapping populations were created to overcome difficulties associated with genome complexity and asexual reproduction. SSR markers were analysed within each mapping population to generate draft linkage maps for apomictic and sexual Hieracium species. Key Results A collection of 14 684 Hieracium expressed SSR markers were developed and linkage maps were constructed for Hieracium species using a subset of the SSR markers. Both the LOA and LOP loci were successfully assigned to linkage groups; however, AutE could not be mapped using the current populations. Comparisons with lettuce (Lactuca sativa) revealed partial macrosynteny between the two Asteraceae species. Conclusions A collection of SSR markers and draft linkage maps were developed for two apomictic and one sexual Hieracium species. These maps will support cloning of controlling genes at LOA and LOP loci

  20. Epithelial-mesenchymal transition in patients of pulmonary adenocarcinoma: correlation with cancer stem cell markers and prognosis.

    PubMed

    Sung, Woo Jung; Park, Ki-Sung; Kwak, Sang Gyu; Hyun, Dae-Sung; Jang, Jae Seok; Park, Kwan-Kyu

    2015-01-01

    Adenocarcinoma is the most common histologic type of non-small cell lung carcinomas. The existence of lung cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) in human tissue is controversy. The aim of this study is to investigate the expression and clinical significance of CSCs and EMT markers and evaluate the correlation between the two in lung adenocarcinoma. A total of 97 cases comprise the tissue microarray from surgical resection for primary lung adenocarcinoma. Immunohistochemistry for ALDH1 and CD44 as CSC markers and E-cadherin, vimentin, fibronectin, SMA as EMT markers was performed. High ALDH1A1 expression was statistically associated with female gender (P=0.001), smoker (P=0.012), and high pT stages (P=0.046). High CD44 expression was statistically associated with female gender (P=0.008), non-smoker (P=0.000), and no pleural invasion (P=0.039). High expression of ALDH1 was associated with good overall survival (P=0.021). High expression of CD44 was correlated with both good overall survival (P=0.024) and disease-free survival (P=0.000). Vimentin expression was associated with pT stage (P=0.001) and pleural invasion (P=0.028). E-cadherin, fibronectin and SMA were not associated with clinicopathologic correlation and all EMT markers were not correlated with survival of lung adenocarcinoma. CSC markers expression was not related to EMT. Our results showed that the expression of CSCs was associated with a good prognosis in lung adenocarcinoma. The prognostic significance of EMT markers was skeptical in this study. There is a need for more research about CSC, EMT, and the relation between these two in human lung adenocarcinoma. PMID:26464642

  1. Radiation Response of Cancer Stem-Like Cells From Established Human Cell Lines After Sorting for Surface Markers

    SciTech Connect

    Al-Assar, Osama; Muschel, Ruth J.; Mantoni, Tine S.; McKenna, W. Gillies; Brunner, Thomas B.

    2009-11-15

    Purpose: A subpopulation of cancer stem-like cells (CSLC) is hypothesized to exist in different cancer cell lines and to mediate radioresistance in solid tumors. Methods and Materials: Cells were stained for CSLC markers and sorted (fluorescence-activated cell sorter/magnetic beads) to compare foci and radiosensitivity of phosphorylated histone H2AX at Ser 139 (gamma-H2AX) in sorted vs. unsorted populations in eight cell lines from different organs. CSLC properties were examined using anchorage-independent growth and levels of activated Notch1. Validation consisted of testing tumorigenicity and postirradiation enrichment of CSLC in xenograft tumors. Results: The quantity of CSLC was generally in good agreement with primary tumors. CSLC from MDA-MB-231 (breast) and Panc-1 and PSN-1 (both pancreatic) cells had fewer residual gamma-H2AX foci than unsorted cells, pointing to radioresistance of CSLC. However, only MDA-MB-231 CSLC were more radioresistant than unsorted cells. Furthermore, MDA-MB-231 CSLC showed enhanced anchorage-independent growth and overexpression of activated Notch1 protein. The expression of cancer stem cell surface markers in the MDA-MB-231 xenograft model was increased after exposure to fractionated radiation. In contrast to PSN-1 cells, a growth advantage for MDA-MB-231 CSLC xenograft tumors was found compared to tumors arising from unsorted cells. Conclusions: CSLC subpopulations showed no general radioresistant phenotype, despite the quantities of CSLC subpopulations shown to correspond relatively well in other reports. Likewise, CSLC characteristics were found in some but not all of the tested cell lines. The reported problems in testing for CSLC in cell lines may be overcome by additional techniques, beyond sorting for markers.

  2. CD133 and CD44 are universally overexpressed in GIST and do not represent cancer stem cell markers

    PubMed Central

    Chen, Junwei; Guo, Tianhua; Zhang, Lei; Qin, Li-Xuan; Singer, Samuel; Maki, Robert G.; Taguchi, Takahiro; DeMatteo, Ronald; Besmer, Peter; Antonescu, Cristina R

    2012-01-01

    Although imatinib mesylate has been a major breakthrough in the treatment of advanced GIST, complete responses are rare and most patients eventually develop resistance to the drug. Thus the possibility of an imatinib-insensitive cell subpopulation within GIST tumors, harboring stem cell characteristics, may be responsible for the clinical failures. However, the existence of a cancer stem cell component in GIST has not been yet established. The present study was aimed to determine whether expression of commonly used stem cell markers in other malignancies, i.e. CD133 and CD44, might identify cells with characteristics of cancer stem/progenitor cells in human GIST. CD133 and CD44 expression in GIST explants was analyzed by flow cytometry, immunofluorescence, and gene expression. Their transcription levels were correlated with clinical and molecular factors in a large, well-annotated cohort of GIST patients. FACS sorted GIST cells based on CD133 and CD44 expression were isolated and used to assess phenotypic characteristics, ability to maintain their surface expression, sensitivity to imatinib, and expression signature. The enrichment in CD133/CD44 cells in the side population (SP) assay was also investigated. CD133 expression was consistently found in GIST. CD133− cells formed more colonies, were more invasive in a matrigel assay, and showed enrichment in the SP cells, compared to CD133+ cells. CD133 expression was also detected in the two imatinib-sensitive GIST cell lines, while was absent in the imatinib-resistant lines. Our results show that CD133 and CD44 are universally expressed in GIST, and may represent a lineage rather than a cancer stem cell marker. PMID:22076958

  3. Upregulation of circulating cancer stem cell marker, DCLK1 but not Lgr5, in chemoradiotherapy-treated colorectal cancer patients.

    PubMed

    Mirzaei, Alireza; Tavoosidana, Gholamreza; Modarressi, Mohammad Hossein; Rad, Afshin Abdi; Fazeli, Mohammad Sadegh; Shirkoohi, Reza; Tavakoli-Yaraki, Masoumeh; Madjd, Zahra

    2015-06-01

    Cancer stem cell (CSC) markers have attracted considerable attention in tumor diagnostic, prognostic, and therapeutic implications. Detection of cancer stem cells in circulating blood using cancer stem cell markers has received remarkable attention recently. In this study, we aimed to investigate the messenger RNA (mRNA) expression level of Lgr5 and DCLK1 as most proposed colorectal CSC markers in blood circulation also determine the subsequent association to patients' clinical and pathological findings. Peripheral blood mononuclear cells (PBMCs) of 58 patients with colorectal cancer at stage I-IV with 33 out of 58 patients undergoing preoperative chemoradiotherapy (CRT), as well as 58 healthy controls have been isolated and the extracted RNAs were analyzed using real-time PCR. The mRNA expression pattern of CSC markers of patients and controls was compared using ΔΔCt method. The expression level of Lgr5 was significantly higher in colorectal cancer (CRC) patients comparing to healthy group (4.8-fold change, p < 0.001). Also there was a significant increase in expression level of Lgr5 in patients at stages III and IV comparing to stages I and II (p = 0.031) and higher grades (p = 0.039) of CRC. The expression of DCLK1 was also elevated in patients significantly (2.7-fold change, p < 0.001) and the related expression was increased by increasing disease stage (p = 0.025). Combination of DCLK1 and Lgr5 markers was analyzed by logistic regression and proved to be a slightly better marker compared to each marker alone. Interestingly the DCLK1 expression level was significantly higher in patients undergoing preoperative CRT (p = 0.041); however, no association to neoadjuvant CRT was observed for Lgr5. Considering the over-expression of DCLK1 and Lgr5 in circulating blood of CRC patients comparing to controls, our results might emphasize on the presence of CSCs in blood of these patients which might be attributed to their clinical and

  4. An infectious recombinant foot-and-mouth disease virus expressing a fluorescent marker protein

    PubMed Central

    Juleff, Nicholas; Moffat, Katy; Berryman, Stephen; Christie, John M.; Charleston, Bryan; Jackson, Terry

    2013-01-01

    Foot-and-mouth disease virus (FMDV) is one of the most extensively studied animal pathogens because it remains a major threat to livestock economies worldwide. However, the dynamics of FMDV infection are still poorly understood. The application of reverse genetics provides the opportunity to generate molecular tools to further dissect the FMDV life cycle. Here, we have used reverse genetics to determine the capsid packaging limitations for a selected insertion site in the FMDV genome. We show that exogenous RNA up to a defined length can be stably introduced into the FMDV genome, whereas larger insertions are excised by recombination events. This led us to construct a recombinant FMDV expressing the fluorescent marker protein, termed iLOV. Characterization of infectious iLOV-FMDV showed the virus has a plaque morphology and rate of growth similar to the parental virus. In addition, we show that cells infected with iLOV-FMDV are easily differentiated by flow cytometry using the inherent fluorescence of iLOV and that cells infected with iLOV-FMDV can be monitored in real-time with fluorescence microscopy. iLOV-FMDV therefore offers a unique tool to characterize FMDV infection in vitro, and its applications for in vivo studies are discussed. PMID:23559477

  5. Stage and region dependent expression of a radial glial marker in commissural fibers in kindled mice.

    PubMed

    Tanaka, Shinji; Miyamoto, Osamu; Janjua, Najma A; Miyazaki, Tetsuji; Takahashi, Fumio; Konishi, Ryoji; Itano, Toshifumi

    2005-01-01

    Amygdala kindling is regarded as a model of temporal lobe epilepsy in humans because of many points of similarity. In amygdala kindling, bilateralization of epileptic seizures follows from the accumulation of stimulation and commissural fibers may play a role in this process. However, new progenies of cells following amygdala kindling have not been reported and the precise nature of how bilateralization occurs is not clear. In the present study, we aim to clarify the emergence of radial glia during the progress of amygdala kindling in mouse brain. For this purpose, immunohistochemical staining for 3CB2, which is a specific marker of radial glia, was employed. Immunoreactivity for 3CB2 was observed in the forceps minor, radiation of trunk and forceps major regions at Clonus 3 and more strongly at Clonus 5. In the forceps major, the cingulate gyrus showed immunopositive staining at Clonus 3, but the corpus callosum and alveus hippocampi showed staining only at Clonus 5. In the fimbria hippocampus, the anterior commissure posterior showed staining at Clonus 5. However, the anterior commissure anterior was not stained at the stage progressed to Clonus 5. These findings indicate stage and region dependent expression of progenitor cells in commissural fibers and suggest that these changes may accompany the formation of new circuits in seizure progression during amygdala kindling. PMID:16202564

  6. Evaluation of different fixation-permeabilization methods for simultaneous detection of surface, cytoplasmic markers and DNA analysis by flow cytometry in some human hematopoietic cell lines.

    PubMed

    Glasová, M; Koníková, E; Kusenda, J; Babusíková, O

    1995-01-01

    Different fixation/permeabilization methods were investigated for their convenience for simultaneous detection of membrane marker/DNA staining or cytoplasmic marker/DNA by flow cytometry. Nine different methods were employed. The expression of membrane marker CD20 and cytoplasmic marker CD22 on BJAB and DAUDI cells and cytoplasmic CD3 on MOLT4 cells were measured. Optimal methods were those that combine paraformaldehyde and saponin (for membrane CD20/DNA staining and cytoplasmic CD3/DNA staining) or buffered formaldehyde-acetone (for membrane CD20/DNA staining and for cytoplasmic CD22/DNA staining). Special interest was focused on proliferation marker CD71 and nuclear antigen Ki67. We investigated CD71 in MOLT4 cells and Ki67 in MOLT4, DAUDI and BJAB cells. Both of these markers are closely associated with proliferation rate. The optimal method for detection of Ki67/DNA staining combines paraformaldehyde with Tween 20. PMID:8592577

  7. Transcriptional expression profile of cultured human embryonic stem cells in vitro and in vivo.

    PubMed

    Keil, Marlen; Siegert, Antje; Eckert, Klaus; Gerlach, Jörg; Haider, Wolfram; Fichtner, Iduna

    2012-03-01

    The aims of this study were to analyze the spontaneous differentiation of human embryonic stem cells in vitro and in vivo and to investigate the influence of in vitro partial differentiation on in vivo teratoma formation in immunodeficient mice. Standardized methods are needed for long-term cultivation of undifferentiated stem cells and the multilineage cells that spontaneously differentiate from them. Accordingly, SA002 human embryonic stem cells were cultured on irradiated mouse embryonic fibroblasts cells, on irradiated human foreskin fibroblasts, or were cultured feeder-free using matrigel. Expression of marker protein transcripts was analyzed in undifferentiated and differentiated stem cells using real-time PCR, and both types of stem cells were transplanted subcutaneously into immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice to test for teratoma formation. Teratoma histology and expression profiles were subsequently characterized. Cells cultured using different conditions and morphologically undifferentiated cells had comparable marker expression profiles, showing high expression levels of markers for pluripotency and low-to-moderate expression levels of germ layer markers. Cells showing spontaneous differentiation that were cultured in feeder-free conditions in the absence of basic fibroblast growth factor demonstrated slight upregulation of sex determining region Y-box 17, connexin 32, and albumin expression at early time points, as well as expression of octamer-binding transcription factor 4, proteoglycan epitopes on podocalyxin (Trafalgar), and alkaline phosphatase. At later time points, expression of hepatocyte nuclear factor-3-beta, and hepatocyte nuclear factor-4-alpha and alpha fetoprotein was upregulated, whereas beta-3-tubulin, chemokine receptor, nestin, sex-determining region Y-box 17, and connexin 32 were downregulated. Expression of pluripotency markers remained high, and hematopoetic markers were not expressed. SA002 cells that showed

  8. Cyclin D1 amplification and expression in human breast carcinoma: correlation with histological prognostic markers and oestrogen receptor expression

    PubMed Central

    Worsley, S D; Jennings, B A; Khalil, K H; Mole, M; Girling, A C

    1996-01-01

    Aims—To study the amplification of the Cyclin D1 gene (CCND1) in human breast carcinoma; to relate this to Cyclin D1 protein expression; to relate these parameters to recognised pathological prognostic factors, including oestrogen receptor (ER) status. Methods—DNA extracted from frozen sections of breast tumours (n = 36) was used for Southern blotting. Probes for CCND1, c-myc and the immunoglobulin heavy chain locus (IgH) were hybridised to tumour DNA. Immunocytochemical expression of Cyclin D1 protein and ER was studied in paraffin wax sections from the same tumours. Results—Amplification of CCND1 was observed in 11% (four of 36) of tumours studied. Over expression of Cyclin D1 protein was observed in 73% (30/41) of tumours. There was no correlation between recognised histological prognostic markers and either gene amplification or expression. However, a weak association was seen between Cyclin D1 expression and ER status. Conclusions—A disparity exists between locus amplification and over expression of Cyclin D1, suggesting the existence of another mechanism for raised protein expression. No significant correlation was detected between either Cyclin D1 amplification or over expression and established prognostic markers. Images PMID:16696045

  9. A blackberry (Rubus L.) expressed sequence tag library for the development of simple sequence repeat markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A blackberry (Rubus L.) expressed sequence tag (EST) library was produced for developing simple sequence repeat (SSR) markers from the tetraploid blackberry cultivar, Merton Thornless, the source of the thornless trait in commercial cultivars. RNA was extracted from young expanding leaves and used f...

  10. Seventy microsatellite markers from Persea americana Miller (avocado) expressed sequence tags

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Expressed sequence tags (ESTs) for Persea americana Mill. were investigated to expand upon the number of informative microsatellite markers available for avocado. Seventy informative loci were discovered using twenty-four P. americana var. americana Mill. accessions. The number of alleles detected r...

  11. Expression Pattern of Neuronal Markers in PB-MSCs Treated by Growth Factors Noggin, bFGF and EGF

    PubMed Central

    Fazeli, Zahra; Ghaderian, Sayyed Mohammad Hossein; Rajabibazl, Masoumeh; Salami, Siamak; Vazifeh Shiran, Nader; Omrani, Mir Davood

    2015-01-01

    Mesenchymal stem cells (MSCs) have the ability to differentiate into neuronal like cells under appropriate culture condition. In this study, we investigated whether MSCs derived from human peripheral blood (PB-MSCs) can differentiate into neuronal like cells by synergic effect of the growth factors EGF, bFGF and Noggin. For this purpose, the expression of five neuronal markers (Nestin, β III tubulin, NFM, MAP2 and NSE) were evaluated in treated PB-MSCs by SYBR Green Real time PCR. The expression analysis showed a higher expression of β-tubulin and NFM in treated BP-MSCs compared with untreated PB-MSCs as a control group. The expression of Nestin was also diminished in PB-MSCs treated with Noggin. This study suggested that the treatment of PB- MSCs with Noggin alongside with bFGF and EGF might differentiate these cells into neuronal lineage cells. The obtained results could be further developed for useful applications in regenerative medicine. PMID:27014645

  12. SATB2 is expressed in Merkel cell carcinoma.

    PubMed

    Fukuhara, Mari; Agnarsdóttir, Margrét; Edqvist, Per-Henrik; Coter, Anna; Ponten, Fredrik

    2016-08-01

    Merkel cell carcinoma (MCC) is a rare aggressive skin cancer with neuroendocrine differentiation. With immunohistochemistry, the tumor cells stain for both neuroendocrine (i.e., synaptophysin and chromogranin A) and epithelial markers. The epithelial marker cytokeratin 20 (CK20) stains positive with immunohistochemistry in a vast majority of MCCs. The expression of the special AT-rich sequence-binding protein (SATB2) was analyzed in MCC (n = 20) together with other forms of skin cancer and neuroendocrine tumors (n = 51) using immunohistochemistry. The results were compared to the expression of CK20, synaptophysin, and chromogranin A. The majority of the MCCs stained positive for synaptophysin and chromogranin A (95 vs 80 % respectively), and 75 % of the MCCs showed cytoplasmic positivity for CK20 and nuclear positivity for SATB2, with two discordant cases lacking expression of one of these markers. We conclude that immunohistochemistry for SATB2 can be used as an additional marker with similar sensitivity and specificity as CK20 for the diagnosis of Merkel cell carcinoma, suggesting a clinical utility in difficult cases where MCC is suspected. PMID:27262585

  13. TOX expression in cutaneous B-cell lymphomas.

    PubMed

    Schrader, Anne M R; Jansen, Patty M; Willemze, Rein

    2016-08-01

    Thymocyte selection-associated high-mobility group box (TOX) is aberrantly expressed in cutaneous T-cell lymphomas. In a recent study, TOX expression was noted unexpectedly in the follicle center (germinal center) B-cells of reactive lymph nodes and tonsils, used as external controls. To evaluate whether TOX is also expressed by cutaneous B-cell lymphomas, TOX immunohistochemistry was performed on skin biopsies of 44 patients with primary and secondary cutaneous B-cell proliferations. TOX was expressed not only in the reactive follicle center cells of lymph nodes, tonsils, cutaneous lymphoid hyperplasia, and primary cutaneous marginal zone lymphomas, but also by the neoplastic follicle center cells of 16/17 patients with primary cutaneous follicle center lymphoma (PCFCL) and 7/7 patients with cutaneous manifestations of systemic follicular lymphoma (FL). Notably, TOX showed a very similar expression pattern as BCL6, a marker of germinal center B-cells. In 4/10 patients with a BCL6(+) primary cutaneous diffuse large B-cell lymphoma, leg type (PCDLBCL,LT) and in 2/2 patients with a secondary cutaneous BCL6(+) diffuse large B-cell lymphoma (DLBCL), TOX was expressed by more than 50 % of the neoplastic B-cells. In contrast, in 3/3 BCL6(-) PCDLBCL,LT, TOX was completely negative or weakly expressed by a minor proportion of the neoplastic B-cells. In conclusion, TOX is expressed not only by neoplastic T-cells, but also by both reactive and neoplastic follicle center (germinal center) B-cells and a proportion of BCL6(+) PCDLBCL,LT and secondary cutaneous BCL6(+) DLBCL. The functional significance of TOX expression in reactive and neoplastic B-cells remains to be elucidated. PMID:27180090

  14. Oct4 is a reliable marker of liver tumor propagating cells in hepatocellular carcinoma.

    PubMed

    Wu, Guang; Wilson, George; Zhou, Gang; Hebbard, Lionel; George, Jacob; Qiao, Liang

    2015-10-01

    Hepatocellular carcinoma (HCC) is the 6th most common cancer worldwide and the 2nd most common cause of cancer related mortality. The poor prognosis is largely due to the difficulty in early diagnoses and eradication of stem-like cells within HCC, which are termed liver tumor propagating cells (LTPCs). These LTPCs are involved in all stages of tumorigenesis including tumor initiation, progression, and treatment failure. The greatest challenge in understanding these LTPCs is finding effective ways in isolating and characterizing these cells with current methods showing large inter-tumor variability in isolating these cells. Oct4 is a stem cell gene associated with LTPCs and has been shown to be involved in regulating a range of functions in HCC cells associated with LTPC features. In this study we determined the efficacy and reliability in utilizing Oct4 to isolate and characterize LTPCs. We have shown that Oct4 is ubiquitously expressed in all HCC tumors tested whereas other traditional LTPC markers had high intratumor variability in their expression. We then utilized a human Oct4 promoter driving an enhanced green fluorescent protein (EGFP) reporter which showed that Oct4+ cells had all the classic features of LTPCs including increased sphere formation in vitro, tumor forming potential in immunocompromised mice, expression of stemness associated genes, and resistance to Sorafenib which is the major drug used to treat advanced HCC. Based on our findings we have identified Oct4 as a reliable marker of LTPCs and discovered a novel way to isolate and characterize LTPCs. PMID:26562475

  15. Cell-Surface Protein Profiling Identifies Distinctive Markers of Progenitor Cells in Human Skeletal Muscle.

    PubMed

    Uezumi, Akiyoshi; Nakatani, Masashi; Ikemoto-Uezumi, Madoka; Yamamoto, Naoki; Morita, Mitsuhiro; Yamaguchi, Asami; Yamada, Harumoto; Kasai, Takehiro; Masuda, Satoru; Narita, Asako; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi; Fukada, So-Ichiro; Nishino, Ichizo; Tsuchida, Kunihiro

    2016-08-01

    Skeletal muscle contains two distinct stem/progenitor populations. One is the satellite cell, which acts as a muscle stem cell, and the other is the mesenchymal progenitor, which contributes to muscle pathogeneses such as fat infiltration and fibrosis. Detailed and accurate characterization of these progenitors in humans remains elusive. Here, we performed comprehensive cell-surface protein profiling of the two progenitor populations residing in human skeletal muscle and identified three previously unrecognized markers: CD82 and CD318 for satellite cells and CD201 for mesenchymal progenitors. These markers distinguish myogenic and mesenchymal progenitors, and enable efficient isolation of the two types of progenitors. Functional study revealed that CD82 ensures expansion and preservation of myogenic progenitors by suppressing excessive differentiation, and CD201 signaling favors adipogenesis of mesenchymal progenitors. Thus, cell-surface proteins identified here are not only useful markers but also functionally important molecules, and provide valuable insight into human muscle biology and diseases. PMID:27509136

  16. Transmembrane adaptor molecules: a new category of lymphoid-cell markers.

    PubMed

    Tedoldi, Sara; Paterson, Jennifer C; Hansmann, Martin-Leo; Natkunam, Yasodha; Rüdiger, Thomas; Angelisova, Pavla; Du, Ming Q; Roberton, Helen; Roncador, Giovanna; Sanchez, Lydia; Pozzobon, Michela; Masir, Noraidah; Barry, Richard; Pileri, Stefano; Mason, David Y; Marafioti, Teresa; Horejsí, Václav

    2006-01-01

    Transmembrane adaptor proteins (of which 7 have been identified so far) are involved in receptor signaling in immune cells. They have only a short extracellular region, with most of the molecule comprising a substantial intracytoplasmic region carrying multiple tyrosine residues that can be phosphorylated by Src- or Syk-family kinases. In this paper, we report an immunohistologic study of 6 of these molecules in normal and neoplastic human tissue sections and show that they are restricted to subpopulations of lymphoid cells, being present in either T cells (LAT, LIME, and TRIM), B cells (NTAL), or subsets of both cell types (PAG and SIT). Their expression in neoplastic lymphoid cells broadly reflects that of normal lymphoid tissue, including the positivity of plasma cells and myeloma/plasmacytoma for LIME, NTAL, PAG, and SIT. However, this study also revealed some reactions that may be of diagnostic/prognostic value. For example, lymphocytic lymphoma and mantle-cell lymphoma showed similar profiles but differed clearly from follicle-center lymphoma, whereas PAG tended to be selectively expressed in germinal center-derived subsets of diffuse large B-cell lymphoma. These molecules represent a potentially important addition to the panel of immunophenotypic markers detectable in routine biopsies that can be used in hematopathologic studies. PMID:16160011

  17. FolR1: a novel cell surface marker for isolating midbrain dopamine neural progenitors and nascent dopamine neurons.

    PubMed

    Gennet, Nicole; Tamburini, Claudia; Nan, Xinsheng; Li, Meng

    2016-01-01

    Cell type-specific surface markers offer a powerful tool for purifying defined cell types for restorative therapies and drug screenings. Midbrain dopaminergic neurons (mesDA) are the nerve cells preferentially lost in the brains of Parkinson's disease patients. Clinical trials of transplantation of fetal neural precursors suggest that cell therapy may offer a cure for this devastating neurological disease. Many lines of preclinical studies demonstrate that neural progenitors committed to dopaminergic fate survive and integrate better than postmitotic DA neurons. We show that the folate-receptor 1 (FolR1), a GPI-anchored cell surface molecule, specifically marks mesDA neural progenitors and immature mesDA neurons. FolR1 expression superimposes with Lmx1a, a bona-fide mesDA lineage marker, during the active phase of mesDA neurogenesis from E9.5 to E14.5 during mouse development, as well as in ESC-derived mesDA lineage. FolR1(+) neural progenitors can be isolated by FACS or magnetic sorting (MAC) which give rise to dopamine neurons expressing TH and Pitx3, whilst FolR1 negative cells generate non-dopaminergic neurons and glia cells. This study identifies FolR1 as a new cell surface marker selectively expressed in mesDA progenitors in vivo and in vitro and that can be used to enrich in vitro differentiated TH neurons. PMID:27580818

  18. FolR1: a novel cell surface marker for isolating midbrain dopamine neural progenitors and nascent dopamine neurons

    PubMed Central

    Gennet, Nicole; Tamburini, Claudia; Nan, Xinsheng; Li, Meng

    2016-01-01

    Cell type-specific surface markers offer a powerful tool for purifying defined cell types for restorative therapies and drug screenings. Midbrain dopaminergic neurons (mesDA) are the nerve cells preferentially lost in the brains of Parkinson’s disease patients. Clinical trials of transplantation of fetal neural precursors suggest that cell therapy may offer a cure for this devastating neurological disease. Many lines of preclinical studies demonstrate that neural progenitors committed to dopaminergic fate survive and integrate better than postmitotic DA neurons. We show that the folate-receptor 1 (FolR1), a GPI-anchored cell surface molecule, specifically marks mesDA neural progenitors and immature mesDA neurons. FolR1 expression superimposes with Lmx1a, a bona-fide mesDA lineage marker, during the active phase of mesDA neurogenesis from E9.5 to E14.5 during mouse development, as well as in ESC-derived mesDA lineage. FolR1+ neural progenitors can be isolated by FACS or magnetic sorting (MAC) which give rise to dopamine neurons expressing TH and Pitx3, whilst FolR1 negative cells generate non-dopaminergic neurons and glia cells. This study identifies FolR1 as a new cell surface marker selectively expressed in mesDA progenitors in vivo and in vitro and that can be used to enrich in vitro differentiated TH neurons. PMID:27580818

  19. Novel Molecular Tumor Cell Markers in Regional Lymph Nodes and Blood Samples from Patients Undergoing Surgery for Non-Small Cell Lung Cancer

    PubMed Central

    Nordgård, Oddmund; Singh, Gurpartap; Solberg, Steinar; Jørgensen, Lars; Halvorsen, Ann Rita; Smaaland, Rune; Brustugun, Odd Terje; Helland, Åslaug

    2013-01-01

    Introduction Recent evidence suggests that microscopic lymph node metastases and circulating tumor cells may have clinical importance in lung cancer. The purpose of this study was to identify new molecular markers for tumor cells in regional lymph nodes (LNs) and peripheral blood (PB) from patients with non-small cell lung cancer (NSCLC). Methods Candidate markers were selected based on digital transcript profiling and previous literature. KRT19, CEACAM5, EPCAM, DSG3, SFTPA, SFTPC and SFTPB mRNA levels were initially validated by real-time reverse transcription PCR-based quantification in 16 NSCLC tumors and 22 LNs and 12 PB samples from individuals without known cancer. Five of the candidate markers were selected for secondary validation by quantification in parallel tumor biopsies, regional LNs and PB samples from 55 patients undergoing surgery for NSCLC. LN and PB marker status were compared to clinicopathological patient data. Results All selected markers except DSG3 were present at high levels in the primary tumors and at very low or non-detectable levels in normal LNs and PB in the first round of validation, indicating a potential for detecting tumor cells in NSCLC patients. The expression profiles of KRT19, CEACAM5, DSG3, SFTPA and SFTPC mRNA were confirmed in the larger group during the secondary validation. Using the highest normal LN level of each marker as threshold, 39 (71%) of the 55 patients had elevated levels of at least one marker in regional LNs. Similarly, 26 (47%) patients had elevated levels of at least one marker in PB. A significantly higher number of patients with adenocarcinomas had positive LN status for these markers, compared with other histological types (P = 0.004). Conclusions Several promising molecular tumor cell markers in regional LNs and PB were identified, including the new SFTPA and SFTPC mRNAs. Clinical follow-up in a larger cohort is needed to elucidate their prognostic value. PMID:23671585

  20. Characterization of Regulatory T-Cell Markers in CD4+ T Cells of the Upper Airway Mucosa

    PubMed Central

    Ballke, Christina; Gran, Einar; Baekkevold, Espen S.; Jahnsen, Frode L.

    2016-01-01

    CD4+ T regulatory cells (Tregs) comprise a heterogeneous population of cells the regulate immune responses and prevent autoimmunity. Most reports on human Tregs are derived from studies of peripheral blood, although Tregs mainly exert their functions in the periphery. Here we performed a detailed analysis of Tregs in the human upper airway mucosa under non-inflammatory conditions, and found that 10% of all CD4+ T cells expressed the transcription factor FOXP3 and the memory marker CD45RO, as well as high levels of CTLA-4. The majority of FOXP3+CD4+ T cells co-expressed the transcription factor Helios and produced very little cytokines, compatible with being thymus-derived Tregs. FOXP3+Helios-CD4+ T cells were more heterogeneous. A mean of 24% produced the immunomodulatory cytokine IL-10, whereas a large fraction also produced IL-2, IFN-μ or IL-17. A significant population (6%) of FOXP3-negative T cells also produced IL-10, usually in combination with IFN-μ. Together, we found that CD4+ T cells in the upper airways differed functionally from their counterparts in peripheral blood, including higher expression of IL-10. Moreover, our findings suggest that several subsets of CD4+ T cells with functionally distinct regulatory properties reside in the upper airway mucosa which should be taken into account when targeting Tregs for therapy. PMID:26866695

  1. Surgically resected human tumors reveal the biological significance of the gastric cancer stem cell markers CD44 and CD26

    PubMed Central

    NISHIKAWA, SHIMPEI; KONNO, MASAMITSU; HAMABE, ATSUSHI; HASEGAWA, SHINICHIRO; KANO, YOSHIHIRO; FUKUSUMI, TAKAHITO; SATOH, TAROH; TAKIGUCHI, SHUJI; MORI, MASAKI; DOKI, YUICHIRO; ISHII, HIDESHI

    2015-01-01

    Cancer tissue is maintained by relatively small populations of cancer stem cells (CSCs), which are involved in chemotherapy resistance, recurrence and metastasis. As tumor tissues are comprised of various cells, studies of human clinical samples are important for the characterization of CSCs. In the present study, an expression profiling study was performed in which an anti-cell surface marker antibody-based array platform, a flow cytometry-based cell separation technique and a tumorigenicity analysis in immunodeficient animals were utilized. These approaches revealed that the markers cluster of differentiation (CD)44 and CD26 facilitated the fractionation of surgically resected human gastric cancer (GC) cells into the following subset populations with distinct tumorigenic potentials: Highly tumorigenic CD26+CD44+ cells (6/6 mice formed tumors), moderately tumorigenic CD26+CD44− cells (5/6 mice formed tumors), and weakly or non-tumorigenic CD26−CD44− cells (2/6 mice formed tumors). Furthermore, exposure to 5-fluorouracil significantly increased the proportion of CD26+ cells in vitro. The present study demonstrated that the combined expression of CD26 and CD44 presents a potential marker of human GC stem cells. PMID:26137071

  2. The Calpain Inhibitor MDL28170 Induces the Expression of Apoptotic Markers in Leishmania amazonensis Promastigotes

    PubMed Central

    Marinho, Fernanda A.; Gonçalves, Keyla C. S.; Oliveira, Simone S. C.; Gonçalves, Diego S.; Matteoli, Filipe P.; Seabra, Sergio H.; Oliveira, Ana Carolina S.; Bellio, Maria; Oliveira, Selma S.; Souto-Padrón, Thaïs; d'Avila-Levy, Claudia M.; Santos, André L. S.; Branquinha, Marta H.

    2014-01-01

    Background Human cutaneous leishmaniasis is caused by distinct species, including Leishmania amazonensis. Treatment of cutaneous leishmaniasis is far from satisfactory due to increases in drug resistance and relapses, and toxicity of compounds to the host. As a consequence for this situation, the development of new leishmanicidal drugs and the search of new targets in the parasite biology are important goals. Methodology/Principal Findings In this study, we investigated the mechanism of death pathway induced by the calpain inhibitor MDL28170 on Leishmania amazonensis promastigote forms. The combined use of different techniques was applied to contemplate this goal. MDL28170 treatment with IC50 (15 µM) and two times the IC50 doses induced loss of parasite viability, as verified by resazurin assay, as well as depolarization of the mitochondrial membrane, which was quantified by JC-1 staining. Scanning and transmission electron microscopic images revealed drastic alterations on the parasite morphology, some of them resembling apoptotic-like death, including cell shrinking, surface membrane blebs and altered chromatin condensation pattern. The lipid rearrangement of the plasma membrane was detected by Annexin-V labeling. The inhibitor also induced a significant increase in the proportion of cells in the sub-G0/G1 phase, as quantified by propidium iodide staining, as well as genomic DNA fragmentation, detected by TUNEL assay. In cells treated with MDL28170 at two times the IC50 dose, it was also possible to observe an oligonucleossomal DNA fragmentation by agarose gel electrophoresis. Conclusions/Significance The data presented in the current study suggest that MDL28170 induces apoptotic marker expression in promastigotes of L. amazonensis. Altogether, the results described in the present work not only provide a rationale for further exploration of the mechanism of action of calpain inhibitors against trypanosomatids, but may also widen the investigation of the

  3. Expression of fibrocyte markers by keloid fibroblasts: an insight into fibrosis during burn wound healing - a preliminary study

    PubMed Central

    Mathangi Ramakrishnan, K.; Meenakshi Janakiraman, M.; Babu, M.

    2012-01-01

    Summary In extensive burns it becomes difficult for fibroblasts to migrate from the periphery of the healthy tissue and colonize the injured area. Even under such circumstances healing takes place, and this is attributed to the differentiation of circulating fibrocytes which enter the wound site. This normal cell type is identified in keloid fibroblasts: it expresses fibrocyte markers and secretes extra cellular matrix proteins. In-vitro collagen contraction assay reveals that fibrocytes contract collagen gels with an efficacy similar to normal fibroblasts. The contribution of fibrocytes to the formation of keloid fibroblasts in post-burn healing is discussed. PMID:23467263

  4. Nuclear size as a cell-kinetic marker for osteoblast differentiation

    NASA Technical Reports Server (NTRS)

    Roberts, W. E.; Mozsary, P. G.; Klingler, E.

    1982-01-01

    A nuclear morphometric assay for preosteoblasts is introduced as a cell-kinetic technique, applicable to routine histological preparations of mineralized tissue. Because this method is a morphological marker for osteoblast precursor cell differentiation, it provides a new dimension for determining the mechanism of osteoblast histogenesis. Osteoblast precursors of the periodontal ligament are a mixed population of progenitors, kinetically separable into two distinct groups according to nuclear size. Preosteoblasts, the immediate proliferating precursors of osteoblasts, have large nuclei (greater than 170 micrometers3) and are derived from relatively undifferentiated fibroblastlike cells, which have smaller nuclei (less than 80 micrometers3). Increase in nuclear volume, during G1 phase of the cell cycle, is apparently a morphological manifestation of change in genomic expression. This key event in preosteoblast differentiation is related to mechanical stress/strain and may be an important rate-limiting step in osteoblast histogenesis.

  5. ERG is a novel and reliable marker for endothelial cells in central nervous system tumors.

    PubMed

    Haber, Matthew A; Iranmahboob, Amir; Thomas, Cheddhi; Liu, Mengling; Najjar, Amanda; Zagzag, David

    2015-01-01

    ETS-related gene (ERG) is a transcription factor that has been linked to angiogenesis. Very little research has been done to assess ERG expression in central nervous system (CNS) tumors. We evaluated 57 CNS tumors, including glioblastomas (GBMs) and hemangioblastomas (HBs), as well as two arteriovenous malformations and four samples of normal brain tissue with immunohistochemistry using a specific ERG rabbit monoclonal antibody. In addition, immunostains for CD31, CD34, and α-smooth muscle actin (α-SMA) were performed on all samples. CD31 demonstrated variable and sometimes weak immunoreactivity for endothelial cells. Furthermore, in 1 case of a GBM, CD34 stained not only endothelial cells, but also tumor cells. In contrast, we observed that ERG was only expressed in the nuclei of endothelial cells, for example, in the hyperplastic vascular complexes that comprise the glomeruloid microvascular proliferation seen in GBMs. Conversely, α-SMA immunoreactivity was identified in the abluminal cells of these hyperplastic vessels. Quantitative evaluation with automated methodology and custom Matlab 2008b software was used to calculate percent staining of ERG in each case. We observed significantly higher quantitative expression of ERG in HBs than in other CNS tumors. Our results show that ERG is a novel, reliable, and specific marker for endothelial cells within CNS tumors that can be used to better study the process of neovascularization. PMID:25881913

  6. ERG is a novel and reliable marker for endothelial cells in central nervous system tumors

    PubMed Central

    Haber, Matthew A.; Iranmahboob, Amir; Thomas, Cheddhi; Liu, Mengling; Najjar, Amanda; Zagzag, David

    2015-01-01

    ETS-related gene (ERG) is a transcription factor that has been linked to angiogenesis. Very little research has been done to assess ERG expression in central nervous system (CNS) tumors. We evaluated 57 CNS tumors, including glioblastomas (GBMs) and hemangioblastomas (HBs), as well as two arteriovenous malformations and four samples of normal brain tissue with immunohistochemistry using a specific ERG rabbit monoclonal antibody. In addition, immunostains for CD31, CD34, and α-smooth muscle actin (α-SMA) were performed on all samples. CD31 demonstrated variable and sometimes weak immunoreactivity for endothelial cells. Furthermore, in 1 case of a GBM, CD34 stained not only endothelial cells, but also tumor cells. In contrast, we observed that ERG was only expressed in the nuclei of endothelial cells, for example, in the hyperplastic vascular complexes that comprise the glomeruloid microvascular proliferation seen in GBMs. Conversely, α-SMA immunoreactivity was identified in the abluminal cells of these hyperplastic vessels. Quantitative evaluation with automated methodology and custom Matlab 2008b software was used to calculate percent staining of ERG in each case. We observed significantly higher quantitative expression of ERG in HBs than in other CNS tumors. Our results show that ERG is a novel, reliable, and specific marker for endothelial cells within CNS tumors that can be used to better study the process of neovascularization. PMID:25881913

  7. Alterations of T-cell surface markers in older women with persistent human papillomavirus infection

    PubMed Central

    Rodríguez, Ana Cecilia; García-Piñeres, Alfonso J; Hildesheim, Allan; Herrero, Rolando; Trivett, Matthew; Williams, Marcus; Atmella, Ivannia; Ramírez, Margarita; Villegas, Maricela; Schiffman, Mark; Burk, Robert; Freer, Enrique; Bonilla, José; Bratti, Concepción; Pinto, Ligia A

    2012-01-01

    We previously reported decreased lymphocyte proliferative responses among older women with persistent human papillomavirus (HPV) infection. To characterize the phenotype of peripheral lymphocytes associated with persistent HPV infection, we evaluated the expression of different cell surface markers in peripheral blood mononuclear cells (PBMCs) from a case-control study within a 10,049-woman population-based cohort study in Guanacaste, Costa Rica. Women in the cohort aged 46 to 74 and with HPV results at their 5th year anniversary visit were considered, and all women (n=87) with persistent HPV infections, all women (n=196) with transient HPV infections and a random sample of HPV DNA-negative women (n=261) frequency-matched to cases on age were selected for this study. A median of 3 years after the case-control matching visit, cervical cells were collected for liquid-based cytology and repeat HPV DNA genotyping. Blood was obtained from which PBMCs were extracted and cryopreserved for immunological phenotyping via flow cytometry. Significant increases in risk of HPV persistence were observed for three marker subsets indicative of immune cell activation/differentiation. Relative risk estimates were 5.4 (95%CI=2.2–13.3) for CD69+CD4+, 2.6 (95%CI=1.2–5.9) for HLADR+CD3+CD4+ and 2.3 (95%CI=1.1–4.7) for CD45RO+CD27−CD8+. A significant decrease in HPV persistence was observed for a subset marker indicative of an immature, undifferentiated memory state CD45RO+CD27+CD4+ (OR=0.36; 95%CI = 0.17–0.76). Adjustment for these markers only partially explained the previously reported association between decreased lymphoproliferative responses and persistent HPV infection. Whether phenotypic alterations observed predispose to HPV persistence or result from it should be the focus of future studies. PMID:20473864

  8. Human Lyb-2 homolog CD72 is a marker for progenitor B-cell leukemias.

    PubMed

    Schwarting, R; Castello, R; Moldenhauer, G; Pezzutto, A; von Hoegen, I; Ludwig, W D; Parnes, J R; Dörken, B

    1992-11-01

    S-HCL 2 is the prototype antibody of the recently defined CD72 cluster (human Lyb-2). Under nonreducing conditions, S-HCL 2 monoclonal antibody (mAb) precipitates a glycoprotein of 80-86 kDa. Under reducing conditions, a dimer of 43 and 39 kDa, with core proteins of 40 and 36 kDa, is precipitated. CD72 expression in normal and malignant tissues is different from expression of all other previously described human B-cell antigens. In peripheral blood and bone marrow, the antigen appears to be present on all B lymphocytes, with the exception of plasma cells. In tissue, immunohistochemical staining revealed positivity for all known B-cell compartments; however, pulpa macrophages of the spleen and von Kupffer cells exhibited distinct positivity for CD72 also. Among 83 malignant non-Hodgkin's lymphomas examined by immunohistochemistry (alkaline phosphatase anti-alkaline phosphatase technique), all 54 B-cell lymphomas, including precursor B-cell lymphomas, Burkitt's lymphomas, germinal center lymphomas, chronic lymphocytic leukemias, and hairy cell leukemias, were CD72 positive, but no T-cell lymphomas were. Flow cytometry study of more than 80 mainly acute leukemias (52 B-cell leukemias) showed reactivity with S-HCL 2 mAb over the full range of B-cell differentiation. In particular, very early B cells in cytoplasmic Ig (cIg)-negative, CD19-positive pre-pre-B-cell leukemias and hybrid leukemias (mixed myeloid and B-cell type) were consistently positive for CD72 on the cell surface. Therefore, CD72 may become an important marker for progenitor B-cell leukemias. PMID:1384316

  9. Microenvironmental interactions and expression of molecular markers associated with epithelial-to-mesenchymal transition in colorectal carcinoma

    PubMed Central

    Lee, Sun-Jae; Yang, Chun-Seok; Kim, Dae-Dong; Kang, Yu-Na; Kwak, Sang Gyu; Park, Jae-Bok; Cho, Chang-Ho; Park, Kwan-Kyu

    2015-01-01

    The tumor microenvironment is known to play a critical role in tumor progression, invasion and metastasis. The epithelial-to-mesenchymal transition (EMT) is understood as a process of tumor invasion and metastasis. Therefore, we investigated the relation between the EMT and the microenvironment of colorectal carcinoma (CRC). The histological features and expression of EMT markers in tumor cells and surrounded stromal cells were obtained from the surgically resected tissues of 39 patients using microscopic review and immunohistochemistry. The loss of expression of E-cadherin was more prominent in the invasive front of tumor than the surface, where α-smooth muscle actin-positive carcinoma-associated fibroblasts (CAFs) are accumulated. The signaling molecules of the Wnt and TGF-β1-Smad pathway were expressed more frequently in the tumor cells and/or CAFs of the invasive margin than those of the tumor surface. The expressions of related transcription factors, such as SNAIL and ZEB1, were increased in the tumor cells and CAFs. The process of EMT may be activated in the tumor margin of CRC under the control of CAFs. Related signaling molecules and transcription factors might be induced by paracrine effects of the surrounding CAFs. PMID:26823743

  10. Expression of TIA-1 and TIA-2 in T cell malignancies and T cell lymphocytosis.

    PubMed Central

    Matutes, E; Coelho, E; Aguado, M J; Morilla, R; Crawford, A; Owusu-Ankomah, K; Catovsky, D

    1996-01-01

    OBJECTIVE: To investigate the reactivity with TIA-1 and TIA-2, two monoclonal antibodies that recognise, respectively, granular structures in T lymphocytes and the T cell receptor chain in cells from a variety of T cell disorders. METHODS: Cytoplasmic staining with TIA-1 and TIA-2 was carried out by the immunoalkaline phosphatase anti-alkaline phosphatase technique in 67 cases with a T cell disorder: 31 large granular lymphocyte (LGL) leukaemia, nine T-prolymphocytic leukaemia (T-PLL), five Sezary syndrome, four peripheral T cell lymphoma (PTCL), 13 T cell lymphocytosis, and five T-acute lymphoblastic leukaemia (T-ALL). All had over 75% abnormal T cells which were CD2+, CD3+, CD5+, CD7+, and negative with B cell markers. RESULTS: TIA-1 was positive in 77% cases of LGL leukaemia and half of the PTCL and T-ALL, whereas it was negative in all Sezary syndrome and most T-PLL (8/9) and reactive T-lymphocytosis (10/13). In LGL leukaemia, TIA-1 was positive irrespective of the membrane phenotype, whether CD8+, CD4- or CD4+, CD8-, and was more often positive in cases where cells were CD16+, CD56+, or CD57+. TIA-2 was positive in 60% of cases encompassing all diagnostic types of T cell disorder. There was no correlation between TIA-2 expression and that of other T cell markers, activation antigens, and natural killer markers. CONCLUSIONS: The pattern of TIA-1 expression in T cell malignancies may help in the differential diagnosis among LGL leukaemia (high expression), T cell lymphocytosis and other T cell diseases (low expression). As TIA-2 is expressed in over 95% mature T lymphocytes and thymic cells, its assessment may be useful to demonstrate aberrant phenotypes which can be exploited for detecting minimal residual disease. Images PMID:8655683

  11. BSND and ATP6V1G3: Novel Immunohistochemical Markers for Chromophobe Renal Cell Carcinoma

    PubMed Central

    Shinmura, Kazuya; Igarashi, Hisaki; Kato, Hisami; Koda, Kenji; Ogawa, Hiroshi; Takahashi, Seishiro; Otsuki, Yoshiro; Yoneda, Tatsuaki; Kawanishi, Yuichi; Funai, Kazuhito; Takayama, Tatsuya; Ozono, Seiichiro; Sugimura, Haruhiko

    2015-01-01

    Abstract Differentiating between chromophobe renal cell carcinoma (RCC) and other RCC subtypes can be problematic using routine light microscopy. This study aimed to identify novel immunohistochemical markers useful for a differential diagnosis between chromophobe RCC and other RCC subtypes. We selected 3 genes (including BSND and ATP6V1G3) that showed specific transcriptional expression in chromophobe RCC using expression data (n = 783) from The Cancer Genome Atlas (TCGA) database. A subsequent immunohistochemical examination of 186 RCCs obtained in our patient series resulted in a strong diffuse positivity of BSND and ATP6V1G3 proteins (both of which are involved in the regulation of membrane transport) in all the chromophobe RCC specimens (23/23 cases, 100%) but not in the clear cell RCC specimens (0/153 cases, 0%) or the papillary RCC specimens (0/10 cases, 0%). BSND and ATP6V1G3 protein expressions were also detected in renal oncocytoma (13/14 cases, 92.9%) and in the distal nephron, including the collecting duct, in the normal kidney. A computational analysis of TCGA data suggested that DNA methylation was involved in the differential expression pattern of both genes among RCC subtypes. Finally, an immunohistochemical analysis showed lung carcinomas were negative (0/85 cases, 0%) for the expression of both proteins. These results suggest that BSND and ATP6V1G3 are excellent novel immunohistochemical markers for differentiating between chromophobe RCC and other subtypes of RCC, including clear cell and papillary RCCs.

  12. BSND and ATP6V1G3: Novel Immunohistochemical Markers for Chromophobe Renal Cell Carcinoma.

    PubMed

    Shinmura, Kazuya; Igarashi, Hisaki; Kato, Hisami; Koda, Kenji; Ogawa, Hiroshi; Takahashi, Seishiro; Otsuki, Yoshiro; Yoneda, Tatsuaki; Kawanishi, Yuichi; Funai, Kazuhito; Takayama, Tatsuya; Ozono, Seiichiro; Sugimura, Haruhiko

    2015-06-01

    Differentiating between chromophobe renal cell carcinoma (RCC) and other RCC subtypes can be problematic using routine light microscopy. This study aimed to identify novel immunohistochemical markers useful for a differential diagnosis between chromophobe RCC and other RCC subtypes. We selected 3 genes (including BSND and ATP6V1G3) that showed specific transcriptional expression in chromophobe RCC using expression data (n = 783) from The Cancer Genome Atlas (TCGA) database. A subsequent immunohistochemical examination of 186 RCCs obtained in our patient series resulted in a strong diffuse positivity of BSND and ATP6V1G3 proteins (both of which are involved in the regulation of membrane transport) in all the chromophobe RCC specimens (23/23 cases, 100%) but not in the clear cell RCC specimens (0/153 cases, 0%) or the papillary RCC specimens (0/10 cases, 0%). BSND and ATP6V1G3 protein expressions were also detected in renal oncocytoma (13/14 cases, 92.9%) and in the distal nephron, including the collecting duct, in the normal kidney. A computational analysis of TCGA data suggested that DNA methylation was involved in the differential expression pattern of both genes among RCC subtypes. Finally, an immunohistochemical analysis showed lung carcinomas were negative (0/85 cases, 0%) for the expression of both proteins. These results suggest that BSND and ATP6V1G3 are excellent novel immunohistochemical markers for differentiating between chromophobe RCC and other subtypes of RCC, including clear cell and papillary RCCs. PMID:26091477

  13. Identification and characterization of 2 testicular germ cell markers, Glut3 and CyclinA2.

    PubMed

    Howitt, Brooke E; Brooks, James D; Jones, Sunita; Higgins, John P T

    2013-10-01

    Testicular germ cell tumors (TGCT) are the most common type of testicular tumor and encompass different histologic types that greatly influence treatment and prognosis. Immunohistochemical studies may be required for accurate classification, particularly when these tumors present at extragonadal sites, and to aid in distinguishing histologic types. Traditional markers for identifying and distinguishing TGCT include PLAP, CD117, AFP, and CD30. More recently, the addition of OCT3/4 and SALL4 has increased sensitivity for immunohistochemical detection of germ cell tumors. We examined gene expression data from a previously published microarray study that compared normal testis mRNA expression to various TGCT. We also performed a search of the literature to identify less well-characterized markers. Glut3 and cyclinA2 showed promise as TGCT markers. Therefore, we evaluated expression of glut3 and cyclinA2 by immunohistochemistry using tissue microarrays (TMAs). Of 66 seminomas included in the TMA, 64 (97%) showed positive nuclear staining for cyclinA2 and 58 (88%) were strongly positive. Strong positive staining for cyclinA2 was also seen in the spermatocytic seminoma. All 20 of the embryonal carcinomas stained positively with cyclinA2, and 19 (95%) displayed strong nuclear staining for cyclinA2. Twenty of the 20 embryonal carcinomas stained for glut3 in a strong membranous pattern. Of 8 yolk sac tumors, 100% stained with glut3. We also evaluated glut3 and cyclinA2 staining on a general TMA containing 486 samples representing 156 different tumors. CyclinA2 stained a number of other tumor types, but the majority of these were weak or focal staining. Glut3 was rarely positive in other tumors; interestingly, most of these were of ovarian origin. We conclude that glut3 is a sensitive (96%) and specific (92%) marker for embryonal carcinomas and yolk sac tumors. Although cyclinA2 is a sensitive marker of seminomas and embryonal carcinomas (98%), its specificity is lower if

  14. FGFR4 Profile as a Prognostic Marker in Squamous Cell Carcinoma of the Mouth and Oropharynx

    PubMed Central

    Dutra, Roberta Lelis; de Carvalho, Marcos Brasilino; dos Santos, Marcelo; Mercante, Ana Maria da Cunha; Gazito, Diana; de Cicco, Rafael; Group, GENCAPO; Tajara, Eloiza Helena; Louro, Iúri Drumond; da Silva, Adriana Madeira Álvares

    2012-01-01

    Background Fibroblast growth factor receptor 4 (FGFR4) is a member of a receptor tyrosine kinase family of enzymes involved in cell cycle control and proliferation. A common single nucleotide polymorphism (SNP) Gly388Arg variant has been associated with increased tumor cell motility and progression of breast cancer, head and neck cancer and soft tissue sarcomas. The present study evaluated the prognostic significance of FGFR4 in oral and oropharynx carcinomas, finding an association of FGFR4 expression and Gly388Arg genotype with tumor onset and prognosis. Patients and Methods DNA from peripheral blood of 122 patients with oral and oropharyngeal squamous cell carcinomas was used to determine FGFR4 genotype by PCR-RFLP. Protein expression was assessed by immunohistochemistry (IHC) on paraffin-embedded tissue microarrays. Results Presence of allele Arg388 was associated with lymphatic embolization and with disease related premature death. In addition, FGFR4 low expression was related with lymph node positivity and premature relapse of disease, as well as disease related death. Conclusion Our results propose FGFR4 profile, measured by the Gly388Arg genotype and expression, as a novel marker of prognosis in squamous cell carcinoma of the mouth and oropharynx. PMID:23226373

  15. Expression of stemness markers in mouse parthenogenetic-diploid blastocysts is influenced by slight variation of activation protocol adopted.

    PubMed

    Bianchi, Enrica; Geremia, Raffaele; Sette, Claudio

    2010-07-01

    The importance of obtaining stem cells through alternative methods has increased progressively in the recent years due to the potential role that embryonic stem (ES) cells play in the field of regenerative medicine. In this regard, generation of parthenogenetic blastocysts allows the production of ethic-free ES cells without the need to manipulate normal embryos. Our work was aimed at clarifying whether variations in the method adopted to generate diploid parthenogenetic blastocysts could determine differences in the quality of blastocysts produced. In vitro development of mouse oocytes activated with three protocols, using Sr2+ and cytochalasin for different time, was compared with that of in vivo fertilized embryos. We have evaluated the efficiency of blastocyst formation and analysed the expression pattern of the stemness markers OCT4, CDX2, and NANOG. Our results indicate that the yield of diploid parthenogenotes and the segregation of the stemness marker OCT4 in the developing blastocyst are influenced by the parthenogenetic protocol adopted. Particularly, even if all methods tested allowed the production of blastocysts in vitro, the correct segregation of OCT4 occurred only in blastocysts developed from oocytes concomitantly treated for 4 h with Sr2+ and cytochalasin D. Our results indicate that the protocol employed to develop parthenogenetic blastocysts in vitro affects the quality of cells in the inner cell mass. PMID:20376706

  16. Actin marker lines in grapevine reveal a gatekeeper function of guard cells.

    PubMed

    Guan, Xin; Buchholz, Günther; Nick, Peter

    2014-08-15

    Resistance to abiotic and biotic stress is a central topic for sustainable agriculture, especially in grapevine, one of the field crops with the highest economic output per acreage. As early cellular factors for plant defense, actin microfilaments (AF) are of high relevance. We therefore generated a transgenic actin marker line for grapevine by expressing a fusion protein between green fluorescent protein and the second actin-binding domain of Arabidopsis (Arabidopsis thaliana) fimbrin, AtFIM1. Based on this first cytoskeletal-marker line in grapevine, the response of AFs to phytopathogenic microorganisms could be followed in vivo. Upon inoculation with fluorescently labeled strains of phytopathogenic bacteria, actin responses were confined to the guard cells. In contrast, upon contact with zoospores of Plasmopara viticola, not only the guard cells, but also epidermal pavement cells, where no zoospores had attached responded with the formation of a perinuclear actin basket. Our data support the hypothesis that guard cells act as pacemakers of defense, dominating the responses of the remaining epidermal cells. PMID:24973589

  17. Markers of Pluripotency in Human Amniotic Epithelial Cells and Their Differentiation to Progenitor of Cortical Neurons

    PubMed Central

    García-Castro, Irma Lydia; García-López, Guadalupe; Ávila-González, Daniela; Flores-Herrera, Héctor; Molina-Hernández, Anayansi; Portillo, Wendy; Ramón-Gallegos, Eva; Díaz, Néstor Fabián

    2015-01-01

    Human pluripotent stem cells (hPSC) have promise for regenerative medicine due to their auto-renovation and differentiation capacities. Nevertheless, there are several ethical and methodological issues about these cells that have not been resolved. Human amniotic epithelial cells (hAEC) have been proposed as source of pluripotent stem cells. Several groups have studied hAEC but have reported inconsistencies about their pluripotency properties. The aim of the present study was the in vitro characterization of hAEC collected from a Mexican population in order to identify transcription factors involved in the pluripotency circuitry and to determine their epigenetic state. Finally, we evaluated if these cells differentiate to cortical progenitors. We analyzed qualitatively and quantitatively the expression of the transcription factors of pluripotency (OCT4, SOX2, NANOG, KLF4 and REX1) by RT-PCR and RT-qPCR in hAEC. Also, we determined the presence of OCT4, SOX2, NANOG, SSEA3, SSEA4, TRA-1-60, E-cadherin, KLF4, TFE3 as well as the proliferation and epigenetic state by immunocytochemistry of the cells. Finally, hAEC were differentiated towards cortical progenitors using a protocol of two stages. Here we show that hAEC, obtained from a Mexican population and cultured in vitro (P0-P3), maintained the expression of several markers strongly involved in pluripotency maintenance (OCT4, SOX2, NANOG, TFE3, KLF4, SSEA3, SSEA4, TRA-1-60 and E-cadherin). Finally, when hAEC were treated with growth factors and small molecules, they expressed markers characteristic of cortical progenitors (TBR2, OTX2, NeuN and β-III-tubulin). Our results demonstrated that hAEC express naïve pluripotent markers (KLF4, REX1 and TFE3) as well as the cortical neuron phenotype after differentiation. This highlights the need for further investigation of hAEC as a possible source of hPSC. PMID:26720151

  18. PPARy and GLUT-4 expression as developmental regulators/markers for preadipocyte differentiation into an adipocyte

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this document, we have integrated knowledge about two major cellular markers found in cells of the adipocyte lineage. The first factor is PPARy, which has been identified as an important adipogenic regulator. PPARy plays an important role in converting adipofibroblasts, fibroblasts or preadipocyt...

  19. Expression of cartilage-specific markers in calcified and non-calcified atherosclerotic lesions.

    PubMed

    Aigner, Thomas; Neureiter, Daniel; Câmpean, Valentina; Soder, Stephan; Amann, Kerstin

    2008-01-01

    Recently, molecular mechanisms resembling endochondral ossification were suggested to be important for atherosclerotic vessel calcification. The aim of this study was to investigate in a series of human atherosclerotic (non-diabetic) lesions of the crural arteries the distribution and expression of classical marker genes of the endochondral ossification pathway. Immunostaining for marker proteins S-100 protein and collagen types II and X were performed on atherosclerotic lesions of different grades (according to Stary). Quantitative real-time PCR for human COL1A1, COL2A1, COL10A1, SOX9, and BMP-2 was applied on RNA isolated from atherosclerotic arteries. In most samples, no expression of collagen type II and S-100 protein was found. Exceptionally, S-100 protein and type II collagen expression was observed very focally within advanced atherosclerotic plaques. Type X collagen was not detected in any of the lesions investigated. Overall, in our study we found no evidence that chondrogenic differentiation pathways are generally active in atherosclerotic plaque formation. In particular type X collagen, one important molecule in cartilage calcification, was not expressed in any of the investigated specimens. Occasionally, however, chondrocytic differentiation markers occur within atherosclerotic lesions. This most likely represents a metaplastic event associated, but not causative for atherosclerotic vessel degeneration and calcification. PMID:17335825

  20. Single-cell differences in matrix gene expression do not predict matrix deposition

    PubMed Central

    Cote, Allison J.; McLeod, Claire M.; Farrell, Megan J.; McClanahan, Patrick D.; Dunagin, Margaret C.; Raj, Arjun; Mauck, Robert L.

    2016-01-01

    Mesenchymal stem cells (MSCs) display substantial cell-to-cell heterogeneity, complicating their use in regenerative medicine. However, conventional bulk assays mask this variability. Here we show that both chondrocytes and chondrogenically induced MSCs exhibit substantial mRNA expression heterogeneity. Single-molecule RNA FISH to measure mRNA expression of differentiation markers in single cells reveals that sister cell pairs have high levels of mRNA variability, suggesting that marker expression is not heritable. Surprisingly, this variability does not correlate with cell-to-cell differences in cartilage-like matrix production. Transcriptome-wide analysis suggests that no combination of markers can predict functional potential. De-differentiating chondrocytes also show a disconnect between mRNA expression of the cartilage marker aggrecan and cartilage-like matrix accumulation. Altogether, these quantitative analyses suggest that sorting subpopulations based on these markers would only marginally enrich the progenitor population for ‘superior' MSCs. Our results suggest that instantaneous mRNA abundance of canonical markers is tenuously linked to the chondrogenic phenotype at the single-cell level. PMID:26936319

  1. CD73 as a novel marker for poor prognosis of oral squamous cell carcinoma

    PubMed Central

    REN, ZHEN-HU; YUAN, YONG-XIANG; JI, TONG; ZHANG, CHEN-PING

    2016-01-01

    Ecto-5′-nucleotidase [cluster of differentiation (CD)73] has important functions in several types of cancer, however, its expression in squamous cell carcinoma (SCC) remains unknown. The present study was designed to investigate CD73 expression in SCC. CD73 expression was assessed by immunohistochemistry in 113 patients with oral SCC (OSCC). The association between CD73 expression and clinicopathological features, overall survival (OS) and disease-free survival (DFS) times of patients were statistically analyzed. CD73 expression was detected in 58.4% (66/113) of OSCC patients, with the immunostaining predominantly localized in the cytomembrane and a little in the cytoplasm. Statistical analysis revealed that CD73 expression was more frequently detected in patients with larger tumors (P=0.021). The overexpression of CD73 was significantly associated with clinical stage (P=0.047). Furthermore, immunohistochemical staining showed that overexpression of CD73 was inversely correlated with DFS (P=0.002) and OS (P=0.002) times. Multivariate Cox regression analysis revealed that CD73 expression was an independent prognostic factor for poor DFS (P=0.018) and OS (P=0.021). The current study is the first to evaluate the clinical significance and prognostic value of CD73 in patients with OSCC. The findings suggest that CD73 is a potential prognostic marker for OSCC. PMID:27347180

  2. Oxidative Stress Markers Induced by Hyperosmolarity in Primary Human Corneal Epithelial Cells

    PubMed Central

    Deng, Ruzhi; Hua, Xia; Li, Jin; Chi, Wei; Zhang, Zongduan; Lu, Fan; Zhang, Lili; Pflugfelder, Stephen C.; Li, De-Quan

    2015-01-01

    Oxidative stress has been known to be involved in pathogenesis of dry eye disease. However, few studies have comprehensively investigated the relationship between hyperosmolarity and oxidative damage in human ocular surface. This study was to explore whether and how hyperosmolarity induces oxidative stress markers in primary human corneal epithelial cells (HCECs). Primary HCECs were established from donor limbal explants. The hyperosmolarity model was made in HCECs cultured in isosmolar (312 mOsM) or hyperosmotic (350, 400, 450 mOsM) media. Production of reactive oxygen species (ROS), oxidative damage markers, oxygenases and anti-oxidative enzymes were analyzed by DCFDA kit, RT-qPCR, immunofluorescent and immunohistochemical staining and Western blotting. Compared to isosmolar medium, ROS production significantly increased at time- and osmolarity-dependent manner in HCECs exposed to media with increasing osmolarities (350–450 mOsM). Hyperosmolarity significantly induced oxidative damage markers in cell membrane with increased toxic products of lipid peroxidation, 4–hydroxynonenal (4-HNE) and malondialdehyde (MDA), and in nuclear and mitochondria DNA with increased aconitase-2 and 8-OHdG. Hyperosmotic stress also increased the mRNA expression and protein production of heme oxygenase-1 (HMOX1) and cyclooxygenase-2 (COX2), but reduced the levels of antioxidant enzymes, superoxide dismutase-1 (SOD1), and glutathione peroxidase-1 (GPX1). In conclusion, our comprehensive findings demonstrate that hyperosmolarity induces oxidative stress in HCECs by stimulating ROS production and disrupting the balance of oxygenases and antioxidant enzymes, which in turn cause cell damage with increased oxidative markers in membrane lipid peroxidation and mitochondrial DNA damage. PMID:26024535

  3. Can MMP-9 be a Prognosticator Marker for Oral Squamous Cell Carcinoma?

    PubMed Central

    Basu, Shiva Kumar; Kumar, Manish

    2016-01-01

    Introduction Invasion and metastasis of malignant tumours severely endanger the life of cancer patients. Squamous cell carcinoma is one of the commonly found malignancies in the oral cavity and its survival rate has not improved from past few decades. Since an important risk factor for oral squamous cell carcinoma is the presence of epithelial dysplasia, it is necessary to check the presence of a prognosticator marker in both of them. As matrix metalloproteinase’s (MMP’s) are involved in degradation of type IV collagen, which are one of the important components of extracellular matrix components which play a relevant role in several steps of tumour progression such as invasion and metastasis. We have studied MMP-9 expression to evaluate its prognostic potential in oral cancers as well as oral epithelial dysplasia along with tissues of normal oral epithelium. Materials and Methods The expression was examined using immunohistochemistry procedure with MMP-9 in 100 samples including cases of epithelium from normal oral mucosa, oral dysplastic lesions and oral squamous cell carcinoma. One set of formalin fixed, paraffin embedded sections of the three categories were stained by haematoxylin and eosin. The sections were then evaluated under microscope. Data was examined for statistical significance using SPSS 13.0 by Mann-Whitney Test and Kruskal-Wallis Test. Results With MMP-9 gain of expression was noted from Control group to oral squamous cell carcinoma. Cytoplasmic staining was seen with MMP-9. Statistically highly significant differences were seen between oral epithelial dysplasia and oral squamous cell carcinoma and statistically significant differences were found between the control group and the oral squamous cell carcinoma group. Conclusion This study suggested that oral squamous cell carcinoma shows higher MMP-9 expression as compared to oral epithelial dysplasia followed by epithelium from normal oral mucosa. However, no correlation was found among the

  4. Tolerance Associated Gene Expression following Allogeneic Hematopoietic Cell Transplantation

    PubMed Central

    Pidala, Joseph; Bloom, Gregory C.; Eschrich, Steven; Sarwal, Minnie; Enkemann, Steve; Betts, Brian C.; Beato, Francisca; Yoder, Sean; Anasetti, Claudio

    2015-01-01

    Biologic markers of immune tolerance may facilitate tailoring of immune suppression duration after allogeneic hematopoietic cell transplantation (HCT). In a cross-sectional study, peripheral blood samples were obtained from tolerant (n = 15, median 38.5 months post-HCT) and non-tolerant (n = 17, median 39.5 post-HCT) HCT recipients and healthy control subjects (n = 10) for analysis of immune cell subsets and differential gene expression. There were no significant differences in immune subsets across groups. We identified 281 probe sets unique to the tolerant (TOL) group and 122 for non-tolerant (non-TOL). These were enriched for process networks including NK cell cytotoxicity, antigen presentation, lymphocyte proliferation, and cell cycle and apoptosis. Differential gene expression was enriched for CD56, CD66, and CD14 human lineage-specific gene expression. Differential expression of 20 probe sets between groups was sufficient to develop a classifier with > 90% accuracy, correctly classifying 14/15 TOL cases and 15/17 non-TOL cases. These data suggest that differential gene expression can be utilized to accurately classify tolerant patients following HCT. Prospective investigation of immune tolerance biologic markers is warranted. PMID:25774806

  5. Establishment of novel in vitro mouse chief cell and SPEM cultures identifies MAL2 as a marker of metaplasia in the stomach

    PubMed Central

    Weis, Victoria G.; Petersen, Christine P.; Mills, Jason C.; Tuma, Pamela L.; Whitehead, Robert H.

    2014-01-01

    Oxyntic atrophy in the stomach leads to chief cell transdifferentiation into spasmolytic polypeptide expressing metaplasia (SPEM). Investigations of preneoplastic metaplasias in the stomach are limited by the sole reliance on in vivo mouse models, owing to the lack of in vitro models for distinct normal mucosal lineages and metaplasias. Utilizing the Immortomouse, in vitro cell models of chief cells and SPEM were developed to study the characteristics of normal chief cells and metaplasia. Chief cells and SPEM cells isolated from Immortomice were cultured and characterized at both the permissive (33°C) and the nonpermissive temperature (39°C). Clones were selected on the basis of their transcriptional expression of specific stomach lineage markers (named ImChief and ImSPEM) and protein expression and growth were analyzed. The transcriptional expression profiles of ImChief and ImSPEM cells were compared further by using gene microarrays. ImChief cells transcriptionally express most chief cell markers and contain pepsinogen C and RAB3D-immunostaining vesicles. ImSPEM cells express the SPEM markers TFF2 and HE4 and constitutively secrete HE4. Whereas ImChief cells cease proliferation at the nonpermissive temperature, ImSPEM cells continue to proliferate at 39°C. Gene expression profiling of ImChief and ImSPEM revealed myelin and lymphocyte protein 2 (MAL2) as a novel marker of SPEM lineages. Our results indicate that the expression and proliferation profiles of the novel ImChief and ImSPEM cell lines resemble in vivo chief and SPEM cell lineages. These cell culture lines provide the first in vitro systems for studying the molecular mechanisms of the metaplastic transition in the stomach. PMID:25190476

  6. Establishment of a proteome profile and identification of molecular markers for mouse spermatogonial stem cells

    PubMed Central

    Zhou, Quan; Guo, Yueshuai; Zheng, Bo; Shao, Binbin; Jiang, Min; Wang, Gaigai; Zhou, Tao; Wang, Lei; Zhou, Zuomin; Guo, Xuejiang; Huang, Xiaoyan

    2015-01-01

    Spermatogonial stem cells (SSCs) are undifferentiated cells that are required to maintain spermatogenesis throughout the reproductive life of mammals. Although SSC transplantation and culture provide a powerful tool to identify the mechanisms regulating SSC function, the precise signalling mechanisms governing SSC self-renewal and specific surface markers for purifying SSCs remain to be clearly determined. In the present study, we established a steady SSC culture according to the method described by Shinohara's lab. Fertile progeny was produced after transplantation of cultured SSCs into infertile mouse testis, and the red fluorescence exhibited by the culture cell membranes was stably and continuously transmitted to the offspring. Next, via advanced mass spectrometry and an optimized proteomics platform, we constructed the proteome profile, with 682 proteins expressed in SSCs. Furthermore bioinformatics analysis showed that the list contained several known molecules that are regulated in SSCs. Several nucleoproteins and membrane proteins were chosen for further exploration using immunofluorescence and RT-PCR. The results showed that SALL1, EZH2, and RCOR2 are possibly involved in the self-renewal mechanism of SSCs. Furthermore, the results of tissue-specific expression analysis showed that Gpat2 and Pld6 were uniquely and highly expressed in mouse testes and cultured SSCs. The cellular localization of PLD6 was further explored and the results showed it was primarily expressed in the spermatogonial membrane of mouse testes and cultured SSCs. The proteins identified in this study form the basis for further exploring the molecular mechanism of self-renewal in SSCs and for identifying specific surface markers of SSCs. PMID:25352495

  7. A novel transgenic marker for migrating limb muscle precursors and for vascular smooth muscle cells.

    PubMed

    Tidhar, A; Reichenstein, M; Cohen, D; Faerman, A; Copeland, N G; Gilbert, D J; Jenkins, N A; Shani, M

    2001-01-01

    A unique pattern of LacZ expression was found in a transgenic mouse line, likely due to regulatory elements at the site of integration. Two new genes flanking the transgene were identified. At early stages of development, the transgene is transiently expressed in ventro-lateral demomyotomal cells migrating from the somites into the limb buds. At late developmental stages and in the adult, lacZ staining marks vascular smooth muscle cells throughout the vascular bed, with the exception of the major elastic arteries, and in pericytes. No expression was detected in skeletal and smooth muscles. Different patterns of expression in vascular smooth muscles was observed at distinct levels of the vascular tree, in arteries as well as in veins. Vessel injury, resulting in stimulation of smooth muscle cells proliferation and migration, is associated with transgene down-regulation. After the formation of neointima thickening, it is reactivated. This transgenic insertion may therefore be used as a useful marker to identify novel physiological cues or genetic elements involved in the regulation of the vascular smooth muscle phenotype(s). It may also provide an experimental tool for studying vasculature and the involvement of pericytes in regulating microvascular homeostasis. PMID:11146508

  8. Pluripotency markers are differentially induced by MEK inhibition in thyroid and melanoma BRAFV600E cell lines

    PubMed Central

    Dorris, Emma R.; Blackshields, Gordon; Sommerville, Gary; Alhashemi, Mohsen; Dias, Andrew; McEneaney, Victoria; Smyth, Paul; O'Leary, John J.; Sheils, Orla

    2016-01-01

    ABSTRACT Oncogenic mutations in BRAF are common in melanoma and thyroid carcinoma and drive constitutive activation of the MAPK pathway. Molecularly targeted therapies of this pathway improves survival compared to chemotherapy; however, responses tend to be short-lived as resistance invariably occursCell line models of melanoma and thyroid carcinoma, +/− BRAFV600E activating mutation, were treated with the MEK inhibitor PD0325901. Treated and naive samples were assayed for expression of key members of the MAPK pathway. Global microRNA expression profiling of naive and resistant cells was performed via next generation sequencingand indicated pluripotency pathways in resistance. Parental cell lines were progressed to holoclones to confirm the miRNA stemness profileMembers of the MIR302/373/374/520 family of embryonic stem cell specific cell cycle regulating (ESCC) microRNAs were identified as differentially expressed between resistant BRAFV600E melanoma and thyroid cell lines. Upregulated expression of gene and protein stemness markers, upregulated expression of MAPK pathway genes and downregulation of the ESCC MIR302 cluster in BRAFV600E melanoma indicated an increased stem-like phenotype in resistant BRAFV600E melanoma. Conversely, downregulated expression of gene and protein stemness markers, downregulated expression of MAPK pathway genes, upregulation of the ESCC MIR520 cluster, reeexpression of cell surface receptors, and induced differentiation-associated morphology in resistant BRAFV600E indicate a differentiated phenotype associated with MEK inhibitor resistance in BRAFV600E thyroid cellsThe differential patterns of resistance observed between BRAFV600E melanoma and thyroid cell lines may reflect tissue type or de novo differentiation, but could have significant impact on the response of primary and metastatic cells to MEK inhibitor treatment. This study provides a basis for the investigation of the cellular differentiation/self-renewal access and its role

  9. Expression of Wilms tumor gene in high risk neuroblastoma: complementary marker to tyrosine hydroxylase for detection of minimal residual disease

    PubMed Central

    Chou, Pauline M.; Olszewski, Marie; Rademaker, Alfred W.; Khan, Sana

    2015-01-01

    Background Neuroblastoma (NB) is an enigmatic tumor that often presents with metastatic disease at diagnosis and it is this aggressive propensity which places it among the deadliest pediatric tumors despite intensive multimodal therapy including hematopoietic stem cell transplantation (HSCT). We have previously demonstrated that Wilms tumor 1 gene (WT1) is a surrogate marker of proliferation in leukemia. To determine the potential association between WT1 and a known marker of NB, tyrosine hydroxylase (TH) in this high risk group of patients. Methods A total of 141 random samples from 34 patients were obtained, at diagnosis (n=27), during therapy (n=95), in clinical remission (n=13), and at the time of relapse (n=6). Quantitative RT-PCR was used for the evaluation of the level of gene expression using specific primers. Results Although similar gene expressions were demonstrated in both controls when evaluating both genes, significant difference was found at each clinical time point. Furthermore, when comparing patient samples from diagnosis to clinical remission and diagnosis to clinical relapse, individual gene expression varied. WT1 demonstrated significance (P=0.0002) and insignificance (P=0.06) whereas TH remained non-significant (P=0.2, P=0.09) respectively. Conclusions WT1 gene is indicative of cellular proliferation in NB and for this reason it can be adjuvant to TH for the detection minimal residual disease (MRD). PMID:26835379

  10. Up-Regulation of Oligodendrocyte Lineage Markers in the Cerebellum of Autistic Patients: Evidence from Network Analysis of Gene Expression.

    PubMed

    Zeidán-Chuliá, Fares; de Oliveira, Ben-Hur Neves; Casanova, Manuel F; Casanova, Emily L; Noda, Mami; Salmina, Alla B; Verkhratsky, Alexei

    2016-08-01

    Autism is a neurodevelopmental disorder manifested by impaired social interaction, deficits in communication skills, restricted interests, and repetitive behaviors. In neurodevelopmental, neurodegenerative, and psychiatric disorders, glial cells undergo morphological, biochemical, and functional rearrangements, which are critical for neuronal development, neurotransmission, and synaptic connectivity. Cerebellar function is not limited to motor coordination but also contributes to cognition and may be affected in autism. Oligodendrocytes and specifically oligodendroglial precursors are highly susceptible to oxidative stress and excitotoxic insult. In the present study, we searched for evidence for developmental oligodendropathy in the context of autism by performing a network analysis of gene expression of cerebellar tissue. We created an in silico network model (OLIGO) showing the landscape of interactions between oligodendrocyte markers and demonstrated that more than 50 % (16 out of 30) of the genes within this model displayed significant changes of expression (corrected p value <0.05) in the cerebellum of autistic patients. In particular, we found up-regulation of OLIG2-, MBP-, OLIG1-, and MAG-specific oligodendrocyte markers. We postulate that aberrant expression of oligodendrocyte-specific genes, potentially related to changes in oligodendrogenesis, may contribute to abnormal cerebellar development, impaired myelination, and anomalous synaptic connectivity in autism spectrum disorders (ASD). PMID:26189831

  11. Stem cells and germ cells: microRNA and gene expression signatures.

    PubMed

    Dyce, Paul William; Toms, Derek; Li, Julang

    2010-04-01

    The study of primordial germ cell development in vivo is hampered by their low numbers and inaccessibility. Recent research has shown the ability of embryonic and adult stem cells to differentiate into primordial germ cells and more mature gametes and this generation of germ cells in vitro may be an attractive model for their study. One of the biggest challenges facing in vitro differentiation of stem cells into primordial germ cells is the lack of markers to clearly distinguish the two. As both cell types originate early in embryonic development they share many pluripotent markers such as OCT4, VASA, FRAGILIS, and NANOG. Genome wide microarray profiling has been used to identify transcriptome patterns unique to primordial germ cells. A more thorough analysis of the temporal and quantitative expression of a panel of genes may be more robust in distinguishing these two cell populations. MicroRNAs, short RNA molecules that have been shown to regulate translation through interactions with mRNA transcripts, have also recently come under investigation for the role they may play in pluripotency. Attempts to elucidate key microRNAs responsible for both stem cell and primordial germ cell characteristics have recently been undertaken. Unique microRNAs, either individually or as global profiles, may also help to distinguish differentiated primordial germ cells from stem cells in vitro. This review will examine gene expression and microRNA signatures in stem cells and germ cells as ways to distinguish these closely related cell types. PMID:20183803

  12. Origin of Ameloblastoma From Basal Cells of the Oral Epithelium- Establishing the Relation Using Neuroectodermal Markers

    PubMed Central

    Suneela, S; Narayan, T V; Shreedhar, Balasundari; Mohanty, Leeky; Shenoy, Sadhana; Swaminathan, Uma

    2014-01-01

    Background and Objectives: Basal cell layer of the oral epithelium has been rightfully regarded as a potential source of odontogenic tumours and cysts, but, without substantial evidence. Also, whether the basal cell layer retains within it, some properties of ectomesenchyme, which was imbibed during the early embryogenesis and hence its neuroectodermal relation, is not known. Here, an attempt is made to establish the hidden neuroectodermal potential of the oral epithelium, especially the basal layer, by observing the expression of known neuroectodermal markers, NSE (Neuron Specific Enolase), Synaptophysin and CD99. The expression of the same markers has also been studied in Ameloblastoma, connecting it with oral epithelium, in turn establishing basal cell layer as a potential source of Ameloblastoma. Materials and Methods: Sections of formalin fixed, paraffin embedded tissue samples of 20 cases of Ameloblastoma and 10 cases of Normal Retromolar mucosa, were stained immunohistochemically with NSE, Synaptophysin, CD99 and also with CK-19 and evaluated for positive expression. Results: Positive reaction was obtained in all the cases of Ameloblastoma and NRM (Normal Retromolar mucosa) with NSE, all the cases of Ameloblastoma and eight cases of NRM with Synaptophysin and in six cases of Ameloblastoma and NRM with CD99. The staining was diffuse and more marked in case of NSE than Synaptophysin and CD99. CK19 staining done to assure that the tissue antigenicity was maintained was positive in all the samples. Interpretation and Conclusion: A strong relationship between the neuroectoderm, Ameloblastoma and the basal layer of the oral epithelium is established by the study. It favours the hypothesis that the basal cell layer of oral mucosa may be the sought out culprit in most cases of the Ameloblastomas, especially those occurring in the non-tooth bearing area. This would call for the need to incorporate additional therapy in the form of mucosal striping along with the

  13. The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina

    PubMed Central

    Rodriguez, Allen R.; de Sevilla Müller, Luis Pérez; Brecha, Nicholas C.

    2014-01-01

    There are few neurochemical markers that reliably identify retinal ganglion cells (RGCs), which are a heterogeneous population of cells that integrate and transmit the visual signal from the retina to the central visual nuclei. We have developed and characterized a new set of affinity purified guinea pig and rabbit antibodies against RNA-binding protein with multiple splicing (RBPMS). On Western blots these antibodies recognize a single band at ~24 kDa, corresponding to RBPMS, and they strongly label RGC and displaced RGC (dRGC) somata in mouse, rat, guinea pig, rabbit and monkey retina. RBPMS immunoreactive cells and RGCs identified by other techniques have a similar range of somal diameters and areas. The density of RBPMS cells in mouse and rat retina is comparable to earlier semi-quantitative estimates of RGCs. RBPMS is mainly expressed in medium and large DAPI-, DRAQ5-, NeuroTrace- and NeuN-stained cells in the ganglion cell layer (GCL), and RBPMS is not expressed in syntaxin (HPC-1) immunoreactive cells in the inner nuclear layer (INL) and GCL, consistent with their identity as RGCs, and not displaced amacrine cells. In mouse and rat retina, most RBPMS cells are lost following optic nerve crush or transection at three weeks, and all Brn3a, SMI-32 and melanopsin immunoreactive RGCs also express RBPMS immunoreactivity. RBPMS immunoreactivity is localized to CFP-fluorescent RGCs in the B6.Cg-Tg(Thy1-CFP)23Jrs/J mouse line. These findings show that antibodies against RBPMS are robust reagents that exclusively identify RGCs and dRGCs in multiple mammalian species, and they will be especially useful for quantification of RGCs. PMID:24318667

  14. Marker profile for the evaluation of human umbilical artery smooth muscle cell quality obtained by different isolation and culture methods.

    PubMed

    Mazza, G; Roßmanith, E; Lang-Olip, I; Pfeiffer, D

    2016-08-01

    Even though umbilical cord arteries are a common source of vascular smooth muscle cells, the lack of reliable marker profiles have not facilitated the isolation of human umbilical artery smooth muscle cells (HUASMC). For accurate characterization of HUASMC and cells in their environment, the expression of smooth muscle and mesenchymal markers was analyzed in umbilical cord tissue sections. The resulting marker profile was then used to evaluate the quality of HUASMC isolation and culture methods. HUASMC and perivascular-Wharton's jelly stromal cells (pv-WJSC) showed positive staining for α-smooth muscle actin (α-SMA), smooth muscle myosin heavy chain (SM-MHC), desmin, vimentin and CD90. Anti-CD10 stained only pv-WJSC. Consequently, HUASMC could be characterized as α-SMA+ , SM-MHC+ , CD10- cells, which are additionally negative for endothelial markers (CD31 and CD34). Enzymatic isolation provided primary HUASMC batches with 90-99 % purity, yet, under standard culture conditions, contaminant CD10+ cells rapidly constituted more than 80 % of the total cell population. Contamination was mainly due to the poor adhesion of HUASMC to cell culture plates, regardless of the different protein coatings (fibronectin, collagen I or gelatin). HUASMC showed strong attachment and long-term viability only in 3D matrices. The explant isolation method achieved cultures with only 13-40 % purity with considerable contamination by CD10+ cells. CD10+ cells showed spindle-like morphology and up-regulated expression of α-SMA and SM-MHC upon culture in smooth muscle differentiation medium. Considering the high contamination risk of HUASMC cultures by CD10+ neighboring cells and their phenotypic similarities, precise characterization is mandatory to avoid misleading results. PMID:25535117

  15. Expression of Heat Shock Protein 70 Gene and Its Correlation with Inflammatory Markers in Essential Hypertension

    PubMed Central

    Srivastava, Kamna; Narang, Rajiv; Bhatia, Jagriti; Saluja, Daman

    2016-01-01

    Objectives Hypertension is characterized by systemic high blood pressure and is the most common and important risk factor for the development of cardiovascular diseases. Studies have shown that the circulating levels of certain inflammatory markers such as tumor necrosis factor-alpha (TNF-alpha), interlukin-6 (IL-6), c-reactive protein (CRP), and tumor suppressor protein-53 (p53) are upregulated and are independently associated with essential hypertension. However, mechanism of increase in the levels of HSP70 protein is not clear. No such studies are reported in the blood circulation of patients with essential hypertension. In the present study, we investigated the expression of circulating HSP70 at mRNA and protein levels and its relationship with other inflammatory markers in patients with essential hypertension. Materials and Methods We recruited 132 patients with essential hypertension and 132 normal controls from similar socio-economic-geographical background. The expression of HSP70 at mRNA levels was determined by Real Time PCR and at protein levels by indirect Elisa and Western Blot techniques. Results We found a significantly higher expression of HSP70 gene expression (approximately 6.45 fold, P < 0.0001) in hypertensive patients as compared to healthy controls. A significant difference (P < 0.0001) in the protein expression of HSP70 was also observed in plasma of patients as compared to that of controls. Conclusion Higher expression of HSP70 is positively correlated with inflammatory markers in patients with essential hypertension and this correlation could play an important role in essential hypertension. PMID:26989902

  16. Profile of expression of certain markers of apoptosis in chronic hepatitis C and hepatitis B patients in an Egyptian population.

    PubMed

    El-Bendary, Mahmoud; Hawas, Samia; El-Hammady, Dina; Al-Hadidy, Al-Hadidy Mohammed; Eldegla, Heba

    2016-09-01

    Increased peripheral blood mononuclear cell (PBMC) apoptosis during viral hepatitis has been suggested to cause impaired regulation of the immune response a