These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Mutant quantity and quality in mammalian cells (A{sub L}) exposed to cesium-137 gamma radiation: Effect of caffeine  

SciTech Connect

We examined the effect of caffeine (1,3,7-trimethylxanthine) on the quantity and quality of mutations in cultured mammalian A{sub L} human-hamster hybrid cells exposed to {sup 137}Cs {gamma} radiation. At a dose (1.5 mg/ml for 16 h) that reduced the plating efficiency (PE) by 20%, caffeine was not itself a significant mutagen, but it increased by approximately twofold the slope of the dose-response curve for induction of S1{sup {minus}} mutants by {sup 137}Cs {gamma} radiation. Molecular analysis of 235 S1{sup {minus}} mutants using a series of DNA probes mapped to the human chromosome 11 in the A{sub L} hybrid cells revealed that 73 to 85% of the mutations in unexposed cells and in cells treated with caffeine alone, {sup 137}Cs {gamma} rays alone or {sup 137}Cs {gamma} rays plus caffeine were large deletions involving millions of base pairs of DNA. Most of these deletions were contiguous with the region of the MIC1 gene at 11p13 that encodes the S1 cell surface antigen. In other mutants that had suffered multiple marker loss, the deletions were intermittent along chromosome 11. These {open_quotes}complex{close_quotes} mutations were rare for {sup 137}Cs {gamma} irradiation (1/63 = 1.5%) but relatively prevalent (23-50%) for other exposure conditions. Thus caffeine appears to alter both the quantity and quality of mutations induced by {sup 137}Cs {gamma} irradiation. 62 refs., 3 figs., 3 tabs.

McGuinness, S.M.; Shibuya, M.L.; Ueno, A.M. [Colorado State Univ., Fort Collins, CO (United States)] [and others

1995-06-01

2

Gamma radiation field intensity meter  

DOEpatents

A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

Thacker, L.H.

1994-08-16

3

Gamma radiation field intensity meter  

DOEpatents

A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

Thacker, L.H.

1995-10-17

4

Indoleamine 2,3-dioxygenase mediates immune-independent human tumor cell resistance to olaparib, gamma radiation, and cisplatin  

PubMed Central

Indoleamine 2,3-dioxygenase-1 (IDO) is an immunosuppressive molecule expressed by most human tumors. IDO levels correlate with poor prognosis in cancer patients and IDO inhibitors are under investigation to enhance endogenous anticancer immunosurveillance. Little is known of immune-independent functions of IDO relevant to cancer therapy. We show, for the first time, that IDO mediates human tumor cell resistance to a PARP inhibitor (olaparib), gamma radiation, cisplatin, and combined treatment with olaparib and radiation, in the absence of immune cells. Antisense-mediated reduction of IDO, alone and (in a synthetic lethal approach) in combination with antisense to the DNA repair protein BRCA2 sensitizes human lung cancer cells to olaparib and cisplatin. Antisense reduction of IDO decreased NAD+ in human tumor cells. NAD+ is essential for PARP activity and these data suggest that IDO mediates treatment resistance independent of immunity and at least partially due to a previously unrecognized role for IDO in DNA repair. Furthermore, IDO levels correlated with accumulation of tumor cells in G1 and depletion of cells in G2/M of the cell cycle, suggesting that IDO effects on cell cycle may also modulate sensitivity to radiation and chemotherapeutic agents. IDO is a potentially valuable therapeutic target in cancer treatment, independent of immune function and in combination with other therapies. PMID:24784564

Vareki, Saman Maleki; Rytelewski, Mateusz; Figueredo, Rene; Chen, Di; Ferguson, Peter J.; Vincent, Mark; Min, Weiping; Zheng, Xiufen; Koropatnick, James

2014-01-01

5

Effect of compound K, a metabolite of ginseng saponin, combined with gamma-ray radiation in human lung cancer cells in vitro and in vivo.  

PubMed

Pretreatment of NCI-H460 human lung cancer cells with compound K produced by intestinal bacteria enhances gamma-ray radiation-induced cell death. Increases in apoptosis induced by combined treatment are made apparent in the observation of nuclear fragmentation, loss of mitochondrial membrane potential (Deltapsi), and activation of caspase 3. Apoptosis induced by compound K and gamma-ray radiation is associated with reactive oxygen species (ROS) generation. Furthermore, compound K, in combination with gamma-ray radiation, has an enhanced effect in the regression of NCI-H460 tumor xenografts of nude mice. These results suggest that compound K has possible application for cancer therapy when used in combination with gamma-ray radiation. PMID:19526988

Chae, Sungwook; Kang, Kyoung Ah; Chang, Weon Young; Kim, Min Jung; Lee, Su Jae; Lee, Yun Sil; Kim, Hee Sun; Kim, Dong Hyun; Hyun, Jin Won

2009-07-01

6

Cultured mouse SR-1 cells exposed to low dose of gamma-rays become less susceptible to the induction of mutagenesis by radiation as well as bleomycin.  

PubMed

The effect of pre-exposure of cultured mouse SR-1 cells to a low dose of gamma-rays on the induction of mutations at the hprt locus by subsequent high dose radiation or bleomycin was studied. When cells were pre-exposed to 0.01 Gy gamma-rays, the induction of mutations by a 3 Gy gamma-ray dose given 18 or 24 h later was significantly reduced as compared with those which did not receive the low dose pre-exposure. When cells were challenged with 5 or 10 micrograms/ml bleomycin for 12 h, which can produce double-strand breaks in DNA, instead of 3 Gy gamma-rays, a similar mutagenetic adaptive response was observed. We conclude that this resistance to radiation- or bleomycin-induced mutation is attributed to the induction of a DNA double-strand break repair mechanism. PMID:7681929

Zhou, P K; Liu, X Y; Sun, W Z; Zhang, Y P; Wei, K

1993-03-01

7

Gamma radiation from radio pulsars  

NASA Technical Reports Server (NTRS)

The probable magnetospheric location and source of the gamma ray emission from some young radiopulsars is discussed. The suggested evolution of this emission as a function of pulsar period gives a diminished gamma-ray luminosity for a more rapidly spinning pre-Crab pulsar. A greatly enhanced one, similar to that of unidentified Cos B sources, is predicted for a slightly slower post-Vela pulsar, followed by a relatively rapid quenching of the gamma-ray luminosity at still longer periods. Possible anomalous exo-magnetospheric pulsed MeV and TeV-PeV radiation from the Crab pulsar is considered.

Ruderman, Malvin

1990-01-01

8

The Regularities of Mutagenic Action of gamma-Radiation on Vegetative Bacillus subtilis Cells with Different Repair Genotype  

E-print Network

The regularities of induction of his^-\\to his^+ mutations in vegetative Bacillus subtilis cells with different repair capacity after gamma-irradiation have been studied. The wild type cells, polA1, recE4, recA, recP, add5, recH were used in experiments. It was shown that radiation-induced mutagenesis is determined by a repair genotype of cells. The blocking of different reparation genes is reflected on mutagenesis ratio by the various ways. A frequency of induction mutations in polA strain is higher than in wild type cells and it is characterized by the linearly-quadratic dose curve. The different rec^- strains that belong to various epistatic groups reveal an unequal mutation induction. The add5 and recP strains are characterized by the high-level induction mutations in contrast with the wild type cells. The mutagenesis in recE and recH strains, on the contrary, sharply reduces. The different influence of rec genes inhering to various epistatic groups on mutagenesis in Bacillus subtilis cells probably reflec...

Boreyko, A V; Krasavin, E A

2000-01-01

9

Inhibition of vascular cell growth by X-ray irradiation: comparison with gamma radiation and mechanism of action  

Microsoft Academic Search

Purpose: Catheter-based delivery of gamma and beta radiation effectively inhibits restenosis. Major disadvantages of these radioisotopes include continuous emission; excessive depth of penetration, creating safety hazards (gamma); and inadequate penetration, limiting effectiveness (beta). Low-voltage X-rays have a distinct potential advantage, because the source is active only when current is applied, and depth of penetration is voltage dependent. This study was

Neal A Scott; Ian R Crocker; QiQin Yin M. S; Dan Sorescu; Josiah N Wilcox; Kathy K Griendling

2001-01-01

10

Antagonistic effects of black tea against gamma radiation-induced oxidative damage to normal lymphocytes in comparison with cancerous K562 cells.  

PubMed

The potential of naturally occurring antioxidants to reduce the cellular oxidative damage induced by ionizing radiation has been studied for more than a decade for their pharmacological application during cancer treatment. It is already known that radioprotective efficacy of phytochemicals might influence various end points of radiation damage. Flavonoids are well-known natural radioprotectors, and their biological effects depend upon their chemical structure. In the present study, radioprotective effect of black tea rich in flavonoids was evaluated against gamma radiation-induced oxidative damage on normal lymphocytes and compared with erythroleukemic K562 cells. Pre-treatment with black tea extract (BTE) significantly reduced radiation-induced loss of cell viability, generation of reactive oxygen species, mitochondrial dysfunction, activation of caspase-3 and apoptosis in normal lymphocytes compared to K562 cells. BTE also regulates the activity of endogenous antioxidant enzymes. The changes in the mRNA expression of bax, bcl2, p53 and Nrf2 were also followed to evaluate regulation of radiation-induced apoptosis by BTE. These findings suggest that black tea may have the potential of a natural radioprotective agent which can be used as adjunct with radiation during cancer treatment. PMID:24981250

Ghosh, Debjani; Dey, Subrata Kumar; Saha, Chabita

2014-11-01

11

Induction of macrophage antitumor activity by gamma radiation  

SciTech Connect

The authors have developed a model system for examination of macrophage-mediated tumor cells lysis, using the murine macrophage tumor cell line RAW 264.7. These cells, like normal macrophages, exhibit a strict requirement for interaction with both interferon-..gamma.. (IFN-..gamma.., the priming signal) and bacterial lipopolysaccharide (LPS, the triggering signal) in the development of tumor cytolytic activity. In this system, the priming effects of IFN-..gamma.. decay rapidly following withdrawal of this mediator and the cells become unresponsive to LPS. They have recently observed that gamma radiation of the RAW 264.7 cells results in development of a primed state which is stable and responsive to LPS triggering for a least 48 hours. Irradiation-induced development of the primed phenotype is not solely the result of cytostatic effects as LPS treatment alone results in marked decreases in /sup 3/H-TdR incorporation in the absence of cytolytic potential. In addition to delivering the priming signal for tumor cytotoxicity, irradiation of this cell line results in changes in cell morphology that are typical of activation. Finally, treatment with irradiation results in increased cell surface expression of MHC-encoded Class I antigens; however, Class II antigen expression is not induced. Thus, the effects of gamma radiation on this cell line are strikingly similar to those resulting from incubation with IFN-..gamma...

Lambert, L.; Paulnock, D.M.

1986-03-05

12

Apparatus and method for detecting gamma radiation  

DOEpatents

A high efficiency radiation detector is disclosed for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data. 4 figures.

Sigg, R.A.

1994-12-13

13

Apparatus and method for detecting gamma radiation  

DOEpatents

A high efficiency radiation detector for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data.

Sigg, Raymond A. (Martinez, GA)

1994-01-01

14

Gamma -radiations connected to atmospheric precipitations  

NASA Astrophysics Data System (ADS)

Since 2008 we are monitoring the gamma -radiation in surface layer of atmosphere with scin-tillation gamma -spectrometers. Instruments consist of a crystal NaI (Tl), a photomultiplier and a pulse amplifier. The data are transmitted to a computer with a special card with the 4096 channel pulse-amplitude analyzer. The gamma-ray monitoring is presently carried out at two high-latitude points: Apatity (N 65.57, E 33.39) and Barentsburg, Spitsbergen(N 78.06, E 14.22). The detectors in Apatity and Barentsburg are covered from sides and bottom by metallic screen for shielding them from environmental radiations from a building and ground. Together with gamma-spectrometer in Apatity a precipitation measuring device (PMD) was installed, which allows us to estimate presence and intensity of precipitations. Information about precipitations in Barentsburg was taken from the local meteorological observatory. The observations have shown that sporadic increases of gamma -radiation registered by spectrome-ters are almost always accompanied by intensive precipitations (rain, snowfall). The measured spectrum of gamma -radiation was rather smooth and did not show peaks in a range from 1 up to 200 KeV. Two basic hypotheses of an origin of high-energy photons during precipitations are discussed. The first is probable connection with atmospheric radionuclides, which are at-tached to aerosols and are taken out from the atmosphere by precipitations (rain and snow). Against this hypothesis speaks lack of peaks on gamma-ray spectrum. The gamma-spectrum from radionuclides usually has characteristic and expressed spectral lines. The second probable cause is x-ray radiation arising at deceleration in air of free electrons, accelerated in an electric field between clouds and ground. All cases of precipitations are accompanied by dense cloudi-ness and strengthening of an atmospheric electric field. The arguments for this mechanism are resulted.

Vashenyuk, Eduard; Balabin, Yury; Gvozdevsky, Boris; Germanenko, Alexey

15

Proposal of utilization of nuclear spent fuels for gamma cells  

Microsoft Academic Search

Large amounts of nuclear spent fuel are generated in nuclear power plants every year and stored in fuel storage facilities for 20–30 years until reprocessing. However, the spent fuel still has residual energies, such as high-temperature heat energy and high-intensity gamma radioactivity. We have examined the characteristics of solar cells exposed to gamma radiation for the development of gamma cells

N. Horiuchi; N. Iijima; S. Hayashi; I. Yoda

2005-01-01

16

Radiofungicidal effects of external gamma radiation and antibody-targeted beta and alpha radiation on Cryptococcus neoformans.  

PubMed

We evaluated the clonogenic survival, membrane permeability, metabolic activity (XTT reduction), and apoptosis (FLICA binding) of Cryptococcus neoformans cells subjected to gamma rays from an external source, and beta and alpha particles delivered to fungal cells by capsule-specific antibody. We found that gamma, beta, and alpha radiation affected cells through different pathways. PMID:18378712

Bryan, Ruth A; Huang, Xianchun; Morgenstern, Alfred; Bruchertseifer, Frank; Casadevall, Arturo; Dadachova, Ekaterina

2008-06-01

17

Radiofungicidal Effects of External Gamma Radiation and Antibody-Targeted Beta and Alpha Radiation on Cryptococcus neoformans?  

PubMed Central

We evaluated the clonogenic survival, membrane permeability, metabolic activity (XTT reduction), and apoptosis (FLICA binding) of Cryptococcus neoformans cells subjected to gamma rays from an external source, and beta and alpha particles delivered to fungal cells by capsule-specific antibody. We found that gamma, beta, and alpha radiation affected cells through different pathways. PMID:18378712

Bryan, Ruth A.; Huang, Xianchun; Morgenstern, Alfred; Bruchertseifer, Frank; Casadevall, Arturo; Dadachova, Ekaterina

2008-01-01

18

Effect of Brazilian propolis (AF-08) on genotoxicity, cytotoxicity and clonogenic death of Chinese hamster ovary (CHO-K1) cells irradiated with (60)Co gamma-radiation.  

PubMed

The present study was conducted in order to evaluate the effect of Brazilian propolis (AF-08; 5, 10, 15, 30, 50, 100, and 200?g/mL) in protecting CHO-K1 cells against genotoxic and cytotoxic damage and clonogenic death induced by (60)Co gamma-radiation (1.0, 2.0, 4.0, and 6.0Gy). For this purpose, three interlinked endpoints were analyzed: induction of DNA damage by use of the micronucleus (MN) test (genotoxic damage), cell viability by means of the MTS assay, and differential staining (cytotoxic damage) and clonogenic death via the colony-formation test (cytotoxic damage). The MN test revealed that propolis alone (5-100?g/mL) was not genotoxic up to 100?g/mL and that 30?g/mL of propolis reduced the radiation-induced DNA damage (?56% reduction, p<0.05), exhibiting a radio-protective effect on irradiated CHO-K1 cells. On the other hand, analysis of cytotoxicity showed that a concentration of 50?g/mL presented a significant proliferative effect (p<0.001) when associated with radiation, decreasing the percentage of necrotic cells (p<0.01). No mediated cytotoxic effect was found, but the concentration of 200?g/mL was toxic when analyzed at 24 and 48h via the differential staining technique, but not at 72h after irradiation, analyzed with the MTS assay. Differential staining also showed that necrosis was the main death modality in irradiated cells and that apoptosis was induced only at the toxic concentration of propolis (200?g/mL). Concerning the clonogenic capacity, a concentration of 50?g/mL also exhibited a significant stimulating effect on cell proliferation (p<0.001), in agreement with the data from differential staining. Taken together, these data suggest that the use of propolis AF-08 for the prevention of the adverse effects of ionizing radiation is promising. Nevertheless, additional investigations are necessary for a better understanding of potential applications of propolis to improve human health. PMID:24525380

Santos, Geyza Spigoti; Tsutsumi, Shigetoshi; Vieira, Daniel Perez; Bartolini, Paolo; Okazaki, Kayo

2014-03-01

19

Composition and apparatus for detecting gamma radiation  

DOEpatents

A gamma radiation detector and a radioluminiscent composition for use therein. The detector includes a radioluminscent composition that emits light in a characteristic wavelength region when exposed to gamma radiation, and means for detecting said radiation. The composition contains a scintillant such as anglesite (PbSO.sub.4) or cerussite (PbCO.sub.3) incorporated into an inert, porous glass matrix via a sol-gel process. Particles of radiation-sensitive scintillant are added to, a sol solution. The mixture is polymerized to form a gel, then dried under conditions that preserve the structural integrity and radiation sensitivity of the scintillant. The final product is a composition containing the uniformly-dispersed scintillant in an inert, optically transparent and highly porous matrix. The composition is chemically inert and substantially impervious to environmental conditions including changes in temperature, air pressure, and so forth. It can be fabricated in cylinders, blocks with holes therethrough for flow of fluid, sheets, surface coatings, pellets or other convenient shapes.

Hofstetter, Kenneth J. (Aiken, SC)

1994-01-01

20

30 CFR 57.5047 - Gamma radiation surveys.  

Code of Federal Regulations, 2011 CFR

...2011-07-01 2011-07-01 false Gamma radiation surveys. 57.5047 Section 57...METAL AND NONMETAL MINES Air Quality, Radiation, Physical Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5047...

2011-07-01

21

30 CFR 57.5047 - Gamma radiation surveys.  

...2014-07-01 2014-07-01 false Gamma radiation surveys. 57.5047 Section 57...METAL AND NONMETAL MINES Air Quality, Radiation, Physical Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5047...

2014-07-01

22

30 CFR 57.5047 - Gamma radiation surveys.  

Code of Federal Regulations, 2013 CFR

...2013-07-01 2013-07-01 false Gamma radiation surveys. 57.5047 Section 57...METAL AND NONMETAL MINES Air Quality, Radiation, Physical Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5047...

2013-07-01

23

30 CFR 57.5047 - Gamma radiation surveys.  

Code of Federal Regulations, 2010 CFR

...2010-07-01 2010-07-01 false Gamma radiation surveys. 57.5047 Section 57...METAL AND NONMETAL MINES Air Quality, Radiation, Physical Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5047...

2010-07-01

24

30 CFR 57.5047 - Gamma radiation surveys.  

Code of Federal Regulations, 2012 CFR

...2012-07-01 2012-07-01 false Gamma radiation surveys. 57.5047 Section 57...METAL AND NONMETAL MINES Air Quality, Radiation, Physical Agents, and Diesel Particulate Matter Radiation-Underground Only § 57.5047...

2012-07-01

25

Radiation effects on silver and zinc battery electrodes. I. Interim report, April-July 1965. [. gamma. radiation  

Microsoft Academic Search

During the initial characterization of silver-zinc cell electrodes, and the study of effects of gamma radiation on them, excessive growth of dendrites from the zinc electrode occurred. Therefore, cadmium electrodes were substituted for zinc in this phase of the work. A silver electrode which had a capacity of 0.8 Ah lost 54 mg of material after a gamma dosage of

G. R. Argue; H. L. Recht; W. A. McCollum

1965-01-01

26

Variations of gamma radiation spectra during precipitations  

NASA Astrophysics Data System (ADS)

In the present paper results of prolonging studies of variations of a natural gamma (X-ray) radiation during precipitations registered at cosmic ray station in Apatity are presented. To the present time in the complex installation realizing monitoring of the near ground radiation, the detector is added on the basis of a scintillation crystal by size Ø150×100 mm. The special procedure of working out of the differential energy spectra obtained on the basis of this detector is designed. Due to this it is found, that increases are produced by an additional flux of radiation with the non-regular descending energy spectrum superimposed on a background radiation, having a power law energy spectrum. The clear upper energy limit of the additional radiation, accompanying with precipitations, is observed. It is 1.8-2.0 MeV. Any spectral lines, which could be produced by radionuclides, are not revealed in all researched gamut. It is concluded that these fluxes are produced by energetic charged particles during their passage through the atmosphere, i.e. Bremsstrahlung generation process. Based on the energy balance, the minimum field strength, which can cause a secondary increase, was performed.

Balabin, Yu V.; Germanenko, A. V.; Gvozdevsky, B. B.; Vashenyuk, E. V.

2013-02-01

27

Differentially Expressed Genes Associated with Low-Dose Gamma Radiation  

NASA Astrophysics Data System (ADS)

We have studied low dose radiation induced gene expression alterations in a primary human fibroblast cell line using Agilent's whole human genome microarray. Cells were irradiated with 60Co ?-rays (0; 0.1; 0.5 Gy) and 2 hours later total cellular RNA was isolated. We observed differential regulation of approximately 300-500 genes represented on the microarray. Of these, 126 were differentially expressed at both doses, among them significant elevation of GDF-15 and KITLG was confirmed by qRT-PCR. Based on the transcriptional studies we selected GDF-15 to assess its role in radiation response, since GDF-15 is one of the p53 gene targets and is believed to participate in mediating p53 activities. First we confirmed gamma-radiation induced dose-dependent changes in GDF-15 expression by qRT-PCR. Next we determined the effect of GDF-15 silencing on radiosensitivity. Four GDF-15 targeting shRNA expressing lentiviral vectors were transfected into immortalized human fibroblast cells. We obtained efficient GDF-15 silencing in one of the four constructs. RNA interference inhibited GDF-15 gene expression and enhanced the radiosensitivity of the cells. Our studies proved that GDF-15 plays an essential role in radiation response and may serve as a promising target in radiation therapy.

Hegyesi, Hargita; Sándor, Nikolett; Schilling, Boglárka; Kis, Enik?; Lumniczky, Katalin; Sáfrány, Géza

28

Solar cell radiation handbook  

NASA Technical Reports Server (NTRS)

A method is presented for predicting the degradation of a solar array in a space radiation environment. Solar cell technology which emphasizes the cell parameters that degrade in a radiation environment, is discussed along with the experimental techniques used in the evaluation of radiation effects. Other topics discussed include: theoretical aspects of radiation damage, methods for developing relative damage coefficients, nature of the space radiation environment, method of calculating equivalent fluence from electron and proton energy spectrums and relative damage coefficients, and comparison of flight data with estimated degradation.

Carter, J. R., Jr.; Tada, H. Y.

1973-01-01

29

Repair effects of exogenous SOD on Bacillus subtilis against gamma radiation exposure.  

PubMed

Superoxide dismutase (SOD) is an enzyme that removes free radicals from cells in many organisms. In order to further characterize these repair effects and their mechanism when subjected to radiation, Bacillus subtilis cells were exposed to gamma radiation and the cell survival rate, intracellular SOD activity, and DNA double-strand breakage were investigated. Vegetative cells of B. subtilis were irradiated by (60)Co gamma radiation at varying doses and subsequently exposed to varying levels of exogenous SOD. Standard plate-count, xanthine oxidase, and pulsed-field gel electrophoresis (PFGE) methods were employed to investigate the repair effects. The results showed that the exogenous SOD could significantly improve cell survival rate and intracellular SOD activity after gamma radiation. The cell survival rate was elevated 30-87 times above levels observed in control samples. Adding exogenous SOD into gamma irradiated cells may dramatically increase intracellular SOD activity (p < 0.01), while percentage of DNA release (PR) values may decrease significantly when cells are treated with SOD. The repair effects were observed to vary with the gamma radiation dose and SOD concentration. These findings suggest that exogenous SOD may have the ability to repair vegetative B. subtilis cell damage after irradiated by gamma radiation. DNA strand scission may also be prevented by addition of SOD. This research contributes to better understanding of protection from the effects of free radicals and their mechanisms, an ongoing process in many organisms that involves the cellular response to gamma radiation, which occurs naturally in soil and water, as well as in unusual cases of high-dosage exposure. PMID:24096311

Chen, Xiaoming; Zhang, E; Fang, Liu; Zhang, Jianguo; Zhu, Jie; He, Wei; Luo, Xuegang

2013-12-01

30

Gamma radiation effects on nestling Tree Swallows  

SciTech Connect

The sensitivity of Tree Swallows (Tachycineta bicolor) to the stress of ionizing radiation was investigated with growth analysis. Freshly hatched nestlings were temporarily removed from nests, taken to the laboratory and acutely exposed to 0.9, 2.7, or 4.5 Gy gamma radiation. Some of the unirradiated control nestlings were also taken to the laboratory whereas others were left in the nests. Growth of all the nestlings was measured daily and analyzed by fitting growth models. There was no detectable radiation-induced mortality up to fledgling, approx. = 20 d after irradiation. Radiation exposure did not affect the basic growth pattern; the logistic growth model was most suitable for body mass and foot length, and the von Bertalanffy model for primary-feather length, irrespective of treatment. Parameter values from these models indicated pronounced growth depression in the 2.7-Gy and 4.5-Gy groups, particularly for body mass. Radiation also affected the timing of development. The growth depression of the 2.7-Gy group was similar to that caused by hatching asynchrony in unirradiated nestlings. The 4.5-Cy nestlings grew as well as unexposed nestlings that died from natural causes. Chronic irradiation at approx. = 1.0 Cy/d caused more severe growth effects than acute exposure to 4.5 Gy and may have caused permanent stunting. Growth analysis is a potent tool for assessing man-made environmental stresses. Observed body-mass statistics and model parameters seem to be most sensitive to environmental stresses, but coefficients of variation are not necessarily correlated with sensitivity. 34 references, 2 figures, 4 tables.

Zach, R.; Mayoh, K.R.

1984-10-01

31

Immobilization of stationary phases onto chromatographic supports by gamma radiation  

Microsoft Academic Search

Cobalt-60 gamma radiation has been found to be an effective means of immobilizing stationary phases onto gas and liquid chromatographic supports. The ability of a phase to crosslink was determined to be highly dependent on its chemical structure. Gamma radiation was employed to immobilize Se-30, a methylsilicone, and 216 PS onto Chromosorb WHP for packed column chromatography. The resultant columns

Lyons

1987-01-01

32

Orchid flowers tolerance to gamma-radiation  

NASA Astrophysics Data System (ADS)

Cut flowers are fresh goods that may be treated with fumigants such as methyl bromide to meet the needs of the quarantine requirements of importing countries. Irradiation is a non-chemical alternative to substitute the methyl bromide treatment of fresh products. In this research, different cut orchids were irradiated to examine their tolerance to gamma-rays. A 200 Gy dose did inhibit the Dendrobium palenopsis buds from opening, but did not cause visible damage to opened flowers. Doses of 800 and 1000 Gy were damaging because they provoked the flowers to drop from the stem. Cattleya irradiated with 750 Gy did not show any damage, and were therefore eligible for the radiation treatment. Cymbidium tolerated up to 300 Gy and above this dose dropped prematurely. On the other hand, Oncydium did not tolerate doses above 150 Gy.

Kikuchi, Olivia Kimiko

2000-03-01

33

Solar cell radiation handbook  

NASA Technical Reports Server (NTRS)

The handbook to predict the degradation of solar cell electrical performance in any given space radiation environment is presented. Solar cell theory, cell manufacturing and how they are modeled mathematically are described. The interaction of energetic charged particles radiation with solar cells is discussed and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence are presented.

Tada, H. Y.; Carter, J. R., Jr.; Anspaugh, B. E.; Downing, R. G.

1982-01-01

34

Pulsar and diffuse contributions to the observed galactic gamma radiation  

NASA Technical Reports Server (NTRS)

With the acquisition of satellite data on the energy spectrum of galactic gamma-radiation, it is clear that such radiation has a multicomponent nature. A calculation of the pulsar gamma ray emission spectrum is used together with a statistical analysis of recent data on 328 known pulsars to make a new determination of the pulsar contribution to galactic gamma ray emission. The contributions from diffuse interstellar cosmic ray induced production mechanisms to the total emission are then reexamined. It is concluded that pulsars may account for a significant fraction of galactic gamma ray emission.

Harding, A. K.; Stecker, F. W.

1980-01-01

35

A Device for Search of Gamma-Radiation Intensive Sources at the Radiation Accident Condition  

SciTech Connect

The procedure designed for measuring angular distributions of gamma radiation and for search of gamma radiation intensive sources is described. It is based on application of the original multidetector device ShD-1, for measuring an angular distribution in a complete solid angle (4 pi). The calibration results and data on the angular distributions of intensity of gamma radiation at the roof of Chornobyl NPP ''Shelter'' are presented.

Batiy, Valeriy; Klyuchnykov, A; Kochnev, N; Rudko, Vladimir; shcherbin, vladimir; Yegorov, V; Schmieman, Eric A.

2005-08-08

36

Gamma-radiation in non-Markovian Fermi systems  

E-print Network

The gamma-quanta emission is considered within the framework of the non--Markovian kinetic theory. It is shown that the memory effects have a strong influence on the spectral distribution of gamma-quanta in the case of long-time relaxation regime. It is shown that the gamma-radiation can be used as a probe for both the time-reversible hindrance force and the dissipative friction caused by the memory integral.

V. M. Kolomietz; S. V. Radionov; B. V. Reznychenko

2013-12-10

37

External dose estimates for future Bikini Atoll inhabitants. [Gamma Radiation  

Microsoft Academic Search

To evaluate the potential radiation doses that may be received by the returning Bikinians, we surveyed the residual radioactivity on Bikini and Eneu Islands in June of 1975. An integral part of the survey included measurements of gamma-ray exposure rates which are used to estimate external gamma-ray doses. The survey showed that on Bikini Island the rates are highly variable:

P. H. Gudiksen; T. R. Crites; W. L. Robison

1976-01-01

38

Radiation effect on PMMA POF under gamma-ray irradiation  

Microsoft Academic Search

An irradiation test was performed for polymethylmethacrylate plastic optical fibers under gamma-ray irradiation in order to use the fiber in low-level radiation environments. Under gamma-ray irradiation at a high dose rate, only a large radiation-induced transmission loss at wavelengths less than 700 nm was observed. Under irradiation at a low dose rate, the loss was small and other two characteristic

K. Toh; S. Nagata; B. Tsuchiya; T. Shikama

2007-01-01

39

RADIATION SENSITIVITY & PROCESSING OF DNA DAMAGE FOLLOWING LOW DOSES OF GAMMA-RAY ALPHA PARTICLES & HZE IRRADIATION OF NORMAL DSB REPAIR DEFICIENT CELLS  

SciTech Connect

Non-homologous end joining (NHEJ) predominates in the repair of DNA double strand breaks (DSB) over homologous recombination (HR). NHEJ occurs throughout the cell cycle whereas HR occurs in late S/G2 due to the requirement of a sister chromatid (Rothkamm et al, Mol Cell Biol 23 5706-15 [2003]). To date evidence obtained with DSB repair deficient cells using pulsed-field gel electrophoresis has revealed the major pathway throughout all phases of the cell cycle for processing high dose induced DSBs is NHEJ (Wang et al, Oncogene 20 2212-24 (2001); Pluth et al, Cancer Res. 61 2649-55 [2001]). These findings however were obtained at high doses when on average >> 20-30 DSBs are formed per cell. The contribution of the repair pathways (NHEJ and HR) induced in response to DNA damage during the various phases of the cell cycle may depend upon the dose (the level of initial DSBs) especially since low levels of DSBs are induced at low dose. To date, low dose studies using NHEJ and HR deficient mutants have not been carried out to address this important question with radiations of different quality. The work presented here leads us to suggest that HR plays a relatively minor role in the repair of radiation-induced prompt DSBs. SSBs lead to the induction of DSBs which are associated specifically with S-phase cells consistent with the idea that they are formed at stalled replication forks in which HR plays a major role in repair. That DNA-PKcs is in some way involved in the repair of the precursors to replication-induced DSB remains an open question. Persistent non-DSB oxidative damage also leads to an increase in RAD51 positive DSBs. Both simple and complex non-DSB DNA damage may therefore contribute to indirect DSBs induced by ionising radiation at replication forks.

O'Neil, Peter

2009-05-15

40

Correction of natural gamma radiation logs for the effects of gamma ray emission from and attenuation by the borehole fluid  

SciTech Connect

Disclosed are a method and a system for natural gamma radiation well logging in which the radiation detected in five energy windows is converted into a log of thorium, uranium and potassium (Th,U,K) which is corrected for the presence of gamma radiation emitting materials (e.g., potassium) and strong gamma radiation attenuators (e.g., barite and/or hematite) in the borehole fluid.

Ellis, D. V.

1985-09-17

41

Nano-Sensitization under gamma rays and fast ion radiation  

NASA Astrophysics Data System (ADS)

The use of heavy compounds to enhance radiation induced damage is a promising approach to improve the therapeutic index of radiotherapy. In order to quantify and control the effects of these radiosensitizers, it is of fundamental interest to describe the elementary processes which take place at the molecular level. Using DNA as a probe, we present a comparison of the damage induced in the presence of platinum compounds exposed to different types of ionizing radiation. We present the results obtained with gamma rays (Linear Energy Transfer (LET) = 0.2 keV.?m-1), fast helium ions He2+ (LET = 2.3 keV.?m-1) and fast carbon ions C6+ (LET = 13 keV.?m-1 and LET = 110 keV.?m-1). The efficiency of two different sensitizers was measured: platinum based molecules (the chloroterpyridine platinum - PtTC) and platinum nanoparticles (PtNP). These experiments show that the two sensitizers are efficiently amplifying molecular damage under photon or ion irradiation. Experiments with a radical scavenger confirmed that these damages are mediated by free radicals for more than 90%. More interestingly, the induction of complex damage, the most lethal for the cells, is amplified by a factor of 1.5 on average if platinum (PtTC and PtNP) is present. As already known, the induction of complex damages increases also with the radiation LET. So, finally, the most significant enhancement of complex damage is observed when ion radiation is combined with platinum induced sensitization.

Porcel, E.; Li, S.; Usami, N.; Remita, H.; Furusawa, Y.; Kobayashi, K.; Le Sech, C.; Lacombe, S.

2012-07-01

42

Effect of gamma radiation on honey quality control  

NASA Astrophysics Data System (ADS)

Honey is one of the most complex substances produced by bees, mainly from the nectar of flowers. Gamma radiation is a technique that can be used to decrease the number of microbiological problems associated with food and increase the shelf life of certain products. The objective of this study was to verify the effect of gamma radiation with source of cobalto-60 (10 kGy) on some parameters used in honey quality control. Seven samples of pure honey were obtained from local markets in Sao Paulo, Brazil, in 2007. The methods used are in accordance with Brazilian Regulations. The physicochemical parameters analyzed were: moisture, HMF, free acidity, pH, sugars and ash. The results showed that gamma radiation, in the dose mentioned above, did not cause significant physicochemical alterations.

Bera, A.; Almeida-Muradian, L. B.; Sabato, S. F.

2009-07-01

43

Radiation effects on membranes - 1. Cellular permeability and cell survival  

SciTech Connect

The effect of various doses of ..gamma.. radiation (5-60 krad) on the membrane permeability and cell survival of Candida albicans, a pathogenic yeast, was investigated. A reduction in the cell survival and in the accumulation of amino acids (proline, glycine, lysine, and glutamic acid) was observed following irradiation. The rate of oxygen uptake, which is often associated with transport, was also reduced. There was no damage to available sulfhydryl groups following the exposure of cells to various doses of ..gamma.. radiation. The membrane lipid composition of C. albicans cells can be altered by growing them in alkanes of varying chain lengths. The effects of such altered lipid composition on radiosensitivity was examined. It was observed that C. albicans cells with altered lipid content acquire resistance to ..gamma.. radiation.

Khare, S.; Jayakumar, A.; Trivedi, A.; Kesavan, P.C.; Prasad, R.

1982-05-01

44

Annual effective dose from environmental gamma radiation in Bushehr city  

PubMed Central

Background Present study was an attempt to measure outdoor and indoor gamma dose rates in Bushehr city to determine corresponding annual effective dose and, to assess effect of active nuclear power plant located in Bushehr city on background radiation level of this city. Methods All measurements were performed by G.M (Geiger Muller) detector (X5C plus) calibrated in Iran Atomic Energy Agency. In order to avoid effects of ground on outdoor and indoor measurements, G.M detector was placed one meter higher than ground level. Also, during the outdoor measurements, G.M detector was used at least six meters away from the walls of any building nearby to avoid unwanted effects of the materials used in the buildings on measurements. Results Average gamma dose rates of outdoor and indoor measurements were determined as 51.8?±?8.8 nSv/h and 60.2?±?7.2 nSv/h, respectively. Annual effective dose due to background gamma radiation was calculated as 0.36 mSv which was lower than average global level. Conclusions The average annual effective dose from background gamma radiation in Bushehr city was less than global level. Comparison of the results of present study, as follow up, with previous attempt performed in 2004 to determine effective dose of environmental gamma radiation in Bushehr province revealed that, during eight years, nuclear power plant located in this city has not significantly increased level of annual effective dose of Bushehr city. PMID:24393421

2014-01-01

45

Effects of Gamma Irradiation on Silicon Carbide Semiconductor Radiation Detectors  

Microsoft Academic Search

Silicon carbide (SiC) semiconductor radiation detectors are being developed for alpha-particle, X- and gamma-ray, and fast-neutron energy spectrometry. SiC detectors have been operated at temperatures up to 306degC and have also been found to be highly resistant to the radiation effects of fast-neutron and charged-particle bombardments. In the present work, the alpha-particle response of a SiC detector based on a

Frank H. Ruddy; John G. Siedel

2006-01-01

46

Gamma Radiation from PSR B1055-52  

NASA Technical Reports Server (NTRS)

The telescopes on the Compton Gamma Ray Observatory (CGRO) have observed PSR B1055-52 a number of times between 1991 and 1998. From these data, a more detailed picture of the gamma radiation from this source has been developed, showing several characteristics which distinguish this pulsar: the light curve is complex; there is no detectable unpulsed emission; the energy spectrum is flat, with no evidence of a sharp high-energy cutoff up to greater than 4 GeV. Comparisons of the gamma-ray data with observations at longer wavelengths show that no two of the known gamma-ray pulsars have quite the same characteristics; this diversity makes interpretation in terms of theoretical models difficult.

Thompson, D. J.; Bailes, M.; Bertsch, D. L.; Cordes, J.; DAmico, N.; Esposito, J. A.; Finley, J.; Hartman, R. C.; Hermsen, W.; Kanbach, G.; Kaspi, V. M.; Kniffen, D. A.; Kuiper, L.; Lin, Y. C.; Lyne, A.; Manchester, R.; Matz, S. M.; Mayer-Hasselwander, H. A.; Michelson, P. F.; Nolan, P. L.

1999-01-01

47

Gamma Radiation from PSR B1055-52  

NASA Technical Reports Server (NTRS)

The telescopes on the Compton Gamma Ray Observatory (CCRO) have observed PSR B1055-52 a number of times between 1991 and 1998. From these data, a more detailed picture of the gamma radiation from this source has been developed, showing several characteristics which distinguish this pulsar: the light curve is complex; there is no detectable unpulsed emission; the energy spectrum is flat, with no evidence of a sharp high-energy cutoff up to greater than 4 GeV. Comparisons of the gamma-ray data with observations at longer wavelengths show that no two of the known gamma-ray pulsars have quite the same characteristics; this diversity makes interpretation in terms of theoretical models difficult.

Thompson, D. J.; Bailes, M.; Bertsch, D. L.; Cordes, J.; DAmico, N. D.; Esposito, J. A.; Finley, J.; Hartman, R. C.; Hermsen, W.; Kanbach, G.; Kaspi, V. M.; Kniffen, D. A.; Kuiper, L.; Lin, Y. C.; Lyne, A.; Manchester, R.; Matz, S. M.; Mayer-Hasselwander, H. A.; Michelson, P. F.; Nolan, P. L.

1998-01-01

48

Gamma radiation from radon daughters in the atmosphere  

Microsoft Academic Search

The gamma ray flux and ionization from the decay products of :::Rn in the atmosphere and the cor- responding photon energy and angular distributions as a function of height above the air-ground inter- face have been calculated for several vertical mPb and :XBi concentration profiles. These physical properties are compared with the corresponding radiation field resulting from sources in the

Harold L. Beck

1974-01-01

49

Immobilization of stationary phases onto chromatographic supports by gamma radiation  

SciTech Connect

Cobalt-60 gamma radiation has been found to be an effective means of immobilizing stationary phases onto gas and liquid chromatographic supports. The ability of a phase to crosslink was determined to be highly dependent on its chemical structure. Gamma radiation was employed to immobilize Se-30, a methylsilicone, and 216 PS onto Chromosorb WHP for packed column chromatography. The resultant columns exhibited increased thermal stability and a high degree of efficiency. Several blended phases containing varying ratios of Se-30:216 PS were also immobilized onto chromatographic packings. This work was further extended to the immobilization of Se-30 and 216 PS onto fused silica capillaries via gamma radiation. Columns exhibited excellent efficiency and improved thermal stability. An investigation into the role of immobilization of polymeric phases for HPLC was undertaken. Results indicate that gamma radiation can immobilzied polyoctadecylsiloxane and polyoctylsiloxane onto silica surfaces. ESCA and elemental analyses were performed to gain a better understanding of the surface and bulk content of immobilized HPLC packings.

Lyons, E.A.

1987-01-01

50

Radiation effect on silicon transistors in mixed neutrons-gamma environment  

NASA Astrophysics Data System (ADS)

The effects of gamma and neutron irradiations on two different types of transistors, Junction Field Effect Transistor (JFET) and Bipolar Junction Transistor (BJT), were investigated. Irradiation was performed using a Syrian research reactor (RR) (Miniature Neutron Source Reactor (MNSR)) and a gamma source (Co-60 cell). For RR irradiation, MCNP code was used to calculate the absorbed dose received by the transistors. The experimental results showed an overall decrease in the gain factors of the transistors after irradiation, and the JFETs were more resistant to the effects of radiation than BJTs. The effect of RR irradiation was also greater than that of gamma source for the same dose, which could be because neutrons could cause more damage than gamma irradiation.

Assaf, J.; Shweikani, R.; Ghazi, N.

2014-10-01

51

Parametric gamma-radiation at the anomalous passage conditions  

NASA Astrophysics Data System (ADS)

Dynamical diffraction theory of the parametric gamma-radiation (PGR) from relativistic electrons in a thick crystal with Mössbauer nuclei is considered. A detailed analysis of the influence of suppression of photoabsorption for the radiated ?-quanta at an ideal single crystal is presented taking into account both nuclear resonance and electron scattering of the photons. The obtained results allow one to choose the optimal conditions for the observation of the ?-quanta anomalous passage at the Laue case. It is shown that the radiation intensity is drastically increased at such conditions.

Ahmadi, Abbas; Feranchuk, Ilya

2014-10-01

52

Development of a neutron/. gamma. ray radiation monitor  

SciTech Connect

Personnel radiation monitoring is essential to the operation of any nuclear facility and work in this area continues to strive for an accurate determination of personnel dose. In particular recent attention has been focused upon the need to improve the accuracy of neutron dosimetry, mainly because of their high Relative Biological Effectiveness. In this work the feasibility of using the NE-213 liquid scintillation detector as an efficient neutron/..gamma.. ray radiation monitor is demonstrated. Derivative method spectrum unfolding used in MATXUF for on-line analysis of fast neutron spectra has also been applied to real time ..gamma.. spectrum unfolding (MATXUF2), making possible simultaneous on-line monitoring of both fast neutrons and gammas. To eliminate the negative fluxes in the unfolded ..gamma.. spectra created by the photopeak-Compton edge combination in the plateau portion of the knee response, correcting equations using a linearized approximation to the electron recoil spectrum has been developed and incorporated in the MATXUF2 unfolding code. A neutron/..gamma.. ray discriminator based on the method of Adams and White but using two Analog-To-Digital Converters (ADC's) similar to the design of Morris et al has also been designed and its performance evaluated by using it in combination with MATXUF and MATXUF2 to unfold neutron and ..gamma.. ray spectra for some standard sources and filters. Finally suggestions are given for the incorporation of the software and hardware into a single unit micro processor-based instrument for real time neutron/..gamma.. ray dose and/or spectral measurements.

Korsah, K.J.

1983-01-01

53

Gamma radiation resistant Fabry-Perot fiber optic sensors  

NASA Astrophysics Data System (ADS)

The Nuclear Regulatory Commission (NRC) in 1998 completed a study of emerging technologies that could be applicable to measurement systems in nuclear power plants [H. M. Hashemian [et al.], "Advanced Instrumentation and Maintenance Technologies for Nuclear Power Plants," NUREG/CR-5501 (1998)]. This study concluded that advanced fiber optic sensing technology is an emerging technology that should be investigated. It also indicated that there had been very little research related to performance evaluation of fiber optic sensors in nuclear plant harsh environments, although substantial research has been performed on nuclear radiation effects on optical fibers in the last two decades. A type of Fabry-Perot fiber optic temperature sensor, which is manufactured by Fiso Technologies in Canada, is qualified to be a candidate for potential applications in nuclear radiation environment due to its unique signal processing technique and its resistance to power loss. The gamma irradiation effects on this type of sensors are investigated in this article. Two sensors were irradiated in a gamma irradiation field and one of them was irradiated up to a total gamma dose of 133 Mrad. The sensor on-line performance was monitored during each gamma irradiation test. Furthermore, the sensor static and dynamic performance before and after each irradiation test were evaluated according to the Standard ISA-dS67.06.01 ("Performance Monitoring for Nuclear Safety-Related Instrument Channels in Nuclear Power Plants", Standard ISA-dS67.06.01, Draft 7, Instrument Society of America, 1999). Although several abnormal phenomena were observed, analysis shows that gamma irradiation is not accredited to the abnormal behavior, which implies that this type of sensor is suitable to a gamma irradiation environment with a high gamma dose.

Liu, Hanying; Miller, Don W.; Talnagi, Joseph

2002-08-01

54

Gamma Radiation Induces Micronucleated Reticulocytes in 3-D Bone Marrow Bioreactors in Vitro  

PubMed Central

Radiation injury to the bone marrow is potentially lethal due to the potent DNA-damaging effects on cells of the hematopoietic system, including bone marrow stem cell, progenitor, and the precursor cell populations. Investigation of radiation genotoxic effects on bone marrow progenitor/precursor cells has been challenged by the lack of optimal in vitro surrogate organ culture systems, and the overall difficulty to sustain lineage-specific proliferation and differentiation of hematopoiesis in vitro. We report the investigation of radiation genotoxic effects in bone marrow cultures of C57Bl/6 mice established in 3-D bioreactors, which sustain long-term bone marrow cultures. For these studies, genotoxicity is measured by the induction of micronucleated reticulocytes (MN-RET). The kinetics and dose-response relationship of MN-RET induction in response to gamma-radiation of bioreactor-maintained bone marrow cultures are presented. Our data showed that 3-D long-term bone marrow cultures had sustained erythropoiesis capable of generating reticulocytes up to 8 weeks. The peak time-interval of viable cell output and percentage of reticulocytes increased steadily and reached the initial peak between the 14th to 21st days after inoculations. This was followed by a rebound or staying relatively constant until week 8. The percentage of MN-RET reached the maximum between 24 and 32 hours post 1 Gy gamma-ray. There was a near linear MN-RET induction by gamma radiation from 0 Gy to 1.0 Gy, followed by an attenuated increase to 1.5 – 2.0 Gy. The MN-RET response showed a downtrend beyond 2 Gy. Our data suggest that bone marrow culture in the 3-D bioreactor may be a useful organ culture system for the investigation of radiation genotoxic effect in vitro. PMID:19786117

Sun, Hongliang; Dertinger, Stephen D.; Hyrien, Ollivier; David Wu, J. H.; Chen, Yuhchyau

2009-01-01

55

Gamma radiation survey of the LDEF spacecraft  

NASA Technical Reports Server (NTRS)

The retrieval of the Long Duration Exposure Facility (LDEF) spacecraft after nearly 6 years in orbit offered a unique opportunity to study the long term buildup of induced radioactivity in the variety of materials on board. The first complete gamma ray survey was conducted of a large spacecraft on LDEF shortly after its return to Earth. A surprising observation was the large Be-7 activity which was seen primarily on the leading edge of the satellite, implying that it was picked up by LDEF in orbit. This is the first known evidence for accretion of a radioactive isotope onto an orbiting spacecraft. Other isotopes seen during the survey, the strongest being Na-22 and Mn-54, are all attributed to activation of spacecraft components in orbit. Be-7 is a spallation product of cosmic rays on nitrogen and oxygen in the upper atmosphere. However, the observed density is much greater than expected due to cosmic ray production in situ. This implies transport of Be-7 from much lower altitudes up to the LDEF orbit.

Phillips, G. W.; King, S. E.; August, R. A.; Ritter, J. C.; Cutchin, J. H.; Haskins, P. S.; Mckisson, J. E.; Ely, D. W.; Weisenberger, A. G.; Piercey, R. B.

1991-01-01

56

Optical Sensors for Monitoring Gamma and Neutron Radiation  

NASA Technical Reports Server (NTRS)

For safety and efficiency, nuclear reactors must be carefully monitored to provide feedback that enables the fission rate to be held at a constant target level via adjustments in the position of neutron-absorbing rods and moderating coolant flow rates. For automated reactor control, the monitoring system should provide calibrated analog or digital output. The sensors must survive and produce reliable output with minimal drift for at least one to two years, for replacement only during refueling. Small sensor size is preferred to enable more sensors to be placed in the core for more detailed characterization of the local fission rate and fuel consumption, since local deviations from the norm tend to amplify themselves. Currently, reactors are monitored by local power range meters (LPRMs) based on the neutron flux or gamma thermometers based on the gamma flux. LPRMs tend to be bulky, while gamma thermometers are subject to unwanted drift. Both electronic reactor sensors are plagued by electrical noise induced by ionizing radiation near the reactor core. A fiber optic sensor system was developed that is capable of tracking thermal neutron fluence and gamma flux in order to monitor nuclear reactor fission rates. The system provides near-real-time feedback from small- profile probes that are not sensitive to electromagnetic noise. The key novel feature is the practical design of fiber optic radiation sensors. The use of an actinoid element to monitor neutron flux in fiber optic EFPI (extrinsic Fabry-Perot interferometric) sensors is a new use of material. The materials and structure used in the sensor construction can be adjusted to result in a sensor that is sensitive to just thermal, gamma, or neutron stimulus, or any combination of the three. The tested design showed low sensitivity to thermal and gamma stimuli and high sensitivity to neutrons, with a fast response time.

Boyd, Clark D.

2011-01-01

57

Radiation resistance testing of high-density polyethylene. [Gamma rays  

SciTech Connect

Mechanical tests following gamma inrradiation and creep tests during irradiation have been conducted on high-density polyethylene (HDPE) to assess the adequacy of this material for use in high-integrity containers (HICs). These tests were motivated by experience in nuclear power plants in which polyethylene electrical insulation detoriorated more rapidly than expected due to radiation-induced oxidation. This suggested that HDPE HICs used for radwaste disposal might degrade more rapidly than would be expected in the absence of the radiation field. Two types of HDPE, a highly cross-linked rotationally molded material and a non-cross-linked blow molded material, were used in these tests. Gamma-ray irradiations were performed at several dose rates in environments of air, Barnwell and Hanford backfill soils, and ion-exchange resins. The results of tensile and bend testing on these materials following irradiation will be presented along with preliminary results on creep during irradiation.

Dougherty, D.R.; Adams, J.W.

1983-01-01

58

Gamma radiation from the Crab and Vela pulsars  

NASA Technical Reports Server (NTRS)

The young pulsars in Crab and Vela were observed as very efficient emitters of high energy gamma radiation. While their radiation in the radio, optical, and x ray range was always known to differ considerably, the gamma ray emission on a superficial level appears quite similar: lightcurves with two narrow peaks, separated by 141 deg (Crab) and 153 deg (Vela) and photon energies in excess of 1 GeV with spectra that can be described by a power-law for Crab and a broken power-law for Vela. The detailed observations of these sources with the COS-B instrument, extending over nearly seven years, have revealed significant differences in the characteristics of the pulsars in the gamma-ray domain. Secular changes in the temporal (Crab) and spectral (Vela) properties above 50 MeV were found. These tantalizing signatures of the pulsar emission processes must now be explored in more detail and over a larger spectral range with the GRO (Gamma Ray Observatory) instruments in order to gain a deeper understanding of the physics of young neutron stars.

Kanbach, Gottfried

1990-01-01

59

The Gamma-ray galactic diffuse radiation and Cerenkov telescopes  

SciTech Connect

By using the PYTHIA version of the Lund Monte Carlo program, we study the photon yield of proton-proton collisions in the energy range between 10 GeV and 1 TeV. The resulting photon spectrum turns out to scale roughly with incident energy. Then, by folding the energy spectrum of cosmic-ray protons with the distribution of HI and CO, the Galactic diffuse emission of {gamma}-rays above 100 GeV is mapped. Prospects for observing that diffuse radiation with atmospheric Cerenkov telescopes are discussed. Present instruments are able to detect the {gamma}-ray glow of the Galactic center. The latter will be mapped by the next generation of telescopes if their energy threshold is decreased. However, a detailed survey of the Galactic ridge will be a real challenge, even in the long term. The MILAGRO project seems more appropriate. Finally, we investigate the {gamma}-ray emission from weakly interacting massive particles clustering at the Galactic center. It has been speculated that those species are a major component of the halo dark matter. We show that their {gamma}-ray signal is swamped in the Galactic diffuse radiation and cannot be observed at TeV energies. {copyright} {ital 1995 The American Astronomical Society.}

Chardonnet, P. [Theoretical Physics Group ENSLAPP, BP110, F-74941 Annecy-le-Vieux Cedex (France)] [Theoretical Physics Group ENSLAPP, BP110, F-74941 Annecy-le-Vieux Cedex (France); [Universite de Savoie, BP1104, 73011 Chambery Cedex (France); Salati, P. [Theoretical Physics Group ENSLAPP, BP110, F-74941 Annecy-le-Vieux Cedex (France)] [Theoretical Physics Group ENSLAPP, BP110, F-74941 Annecy-le-Vieux Cedex (France); [Universite de Savoie, BP1104, 73011 Chambery Cedex (France); [Institut Universitaire de France; Silk, J. [545 Campbell Hall, Astronomy Department, University of California at Berkeley, Berkeley, California 94720 (United States)] [545 Campbell Hall, Astronomy Department, University of California at Berkeley, Berkeley, California 94720 (United States); Grenier, I. [Departement dAstrophysique, Centre dEtudes Nucleaires de Saclay, F-91191 Gif-sur-Yvette Cedex (France)] [Departement dAstrophysique, Centre dEtudes Nucleaires de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Smoot, G. [Building 50, Room 205, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States)] [Building 50, Room 205, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States)

1995-12-01

60

Gamma radiation induced micronuclei and erythrocyte cellular abnormalities in the fish Catla catla.  

PubMed

Ionizing radiation induced DNA damage in fishes is a scarcely studied topic and very few studies are available in fishes exposed to ionizing radiation using the erythrocyte micronucleus assay under laboratory conditions. Since radionuclides released accidentally or during a nuclear disaster can contaminate inland water bodies, biomonitoring methods are required for assessing the impacts of high and low levels of radiation that may ultimately result in ionizing radiation exposure to both humans and non-human biota. Fresh water fish, Catla catla were subjected to protracted (0.002 Gy/min) and acute (3.2 Gy/min) gamma radiation to a total dose of 5 Gy. Peripheral blood samples were collected at different intervals (days 3, 6, 12, 18, 30, 45, 90, 135, 202) and analyzed by the erythrocyte micronucleus assay. Nuclear anomalies observed were micronuclei (MN), deformed nuclei (DN), nuclear bud (NBu), nuclear bridge (NBr), vacuolated nucleus (VN), binucleated cell (BNC), apoptotic cells (AC) while cytoplasmic abnormalities detected were vacuolated cytoplasm (VC), anisochromasia (AN), echinocytes (EC) and enucleus (EN). Both exposures caused a statistically significant increase in nuclear and cytoplasmic abnormalities that correlated with micronucleus and other nuclear anomalies. However, the extent of damage is higher after an acute exposure lasting for a longer period leading to apoptosis. Nuclear and cytoplasmic abnormalities are the resultants of gamma radiation induced genotoxicity and cytotoxicity. PMID:22771702

Anbumani, S; Mohankumar, Mary N

2012-10-15

61

Radiation resistance testing of high-density polyethylene. [Gamma rays  

Microsoft Academic Search

Mechanical tests following gamma inrradiation and creep tests during irradiation have been conducted on high-density polyethylene (HDPE) to assess the adequacy of this material for use in high-integrity containers (HICs). These tests were motivated by experience in nuclear power plants in which polyethylene electrical insulation detoriorated more rapidly than expected due to radiation-induced oxidation. This suggested that HDPE HICs used

D. R. Dougherty; J. W. Adams

1983-01-01

62

Annihilation radiation in cosmic gamma-ray bursts  

NASA Astrophysics Data System (ADS)

The emission features observed in the energy spectra of cosmic gasmma-ray bursts imply the existence of two radiation components of comparable intensity. The softer component is similar to the continua of featureless bursts. The fast decrease in the intensity of this radiation with increasing photon energy is apparently due to the neutron star's magnetosphere being opague to hard photons because of the formation of electron-positron pairs in single-photon (gamma, B) and two-photon (gamma, gamma) processes. The hard component originates from the annihilation of electron-positron pairs, its spectrum representing a broad line with an extended power-law wing. Such a shape of the spectrum is apparently due to either thermal broadening in a source with a spatially inhomogeneous and rapidly time-varying plasma temperature, or nonthermal energy distribution of particles in their motion along the magnetic field lines. It is assumed that the sources of these components are spatially separated, the annihilation radiation escaping from the polar regions of a strongly magnetized neutron star in a collimated beam without appreciable attenuation.

Golenetskii, S. V.; Mazets, E. P.; Aptekar, R. L.; Gurian, Iu. A.; Ilinskii, V. N.

1986-07-01

63

IFN-{gamma}+ CD8+ T Lymphocytes: Possible Link Between Immune and Radiation Responses in Tumor-Relevant Hypoxia  

SciTech Connect

Activated T lymphocytes are known to kill tumor cells by triggering cytolytic mechanisms; however, their ability to enhance radiation responses remains unclear. This study examined the radiosensitizing potential of mouse CD8+ T cells, obtained by T-cell-tailored expansion and immunomagnetic purification. Activated CD8+ T cells displayed an interferon (IFN)-{gamma}+ phenotype and enhanced by 1.8-fold the radiosensitivity of EMT-6 tumor cells in 1% oxygen, which modeled tumor-relevant hypoxia. Radiosensitization was counteracted by neutralizing IFN-{gamma} or by blocking the inducible isoform of nitric oxide synthase, thus delineating the immune-tumor cell interaction through the IFN-{gamma} secretion pathway. Reverse transcriptase-polymerase chain reaction, enzyme-linked immunosorbent assay, and fluorescence-activated cell sorter data in agreement detected downregulation of the IFN-{gamma} gene by hypoxia, which caused IFN-{gamma} deficiency next to radioresistance. Therefore, immune and radiation responses are likely to be allied in the hypoxic tumor microenvironment, and CD8+ T cells may bridge immunostimulatory and radiosensitizing strategies.

De Ridder, Mark [Radiotherapie, Oncologisch Centrum, UZ Brussel, Brussels (Belgium); Cancer Research Unit, Vrije Universiteit Brussel, Brussels (Belgium)], E-mail: mark.deridder@uzbrussel.be; Jiang Heng; Esch, Gretel van; Law, Kalun; Monsaert, Christinne [Cancer Research Unit, Vrije Universiteit Brussel, Brussels (Belgium); Berge, Dirk L. van den; Verellen, Dirk; Verovski, Valeri N. [Radiotherapie, Oncologisch Centrum, UZ Brussel, Brussels (Belgium); Storme, Guy A. [Radiotherapie, Oncologisch Centrum, UZ Brussel, Brussels (Belgium); Cancer Research Unit, Vrije Universiteit Brussel, Brussels (Belgium)

2008-07-01

64

On the omnipresent background gamma radiation of the continuous spectrum  

NASA Astrophysics Data System (ADS)

The background spectrum of a germanium detector, shielded from the radiations arriving from the lower and open for the radiations arriving from the upper hemisphere, is studied by means of absorption measurements, both in a ground level and in an underground laboratory. The low-energy continuous portion of this background spectrum that peaks at around 100 keV, which is its most intense component, is found to be of very similar shape at the two locations. It is established that it is mostly due to the radiations of the real continuous spectrum, which is quite similar to the instrumental one. The intensity of this radiation is in our cases estimated to about 8000 photons/(m2s·2?·srad) in the ground level laboratory, and to about 5000 photons/(m2s·2?·srad) in the underground laboratory, at the depth of 25 m.w.e. Simulations by GEANT4 and CORSIKA demonstrate that this radiation is predominantly of terrestrial origin, due to environmental gamma radiations scattered off the materials that surround the detector (the "skyshine radiation"), and to a far less extent to cosmic rays of degraded energy.

Banjanac, R.; Maleti?, D.; Jokovi?, D.; Veselinovi?, N.; Dragi?, A.; Udovi?i?, V.; Ani?in, I.

2014-05-01

65

The origin of the diffuse background gamma-radiation  

NASA Technical Reports Server (NTRS)

Recent observations have now provided evidence for diffuse background gamma radiation extending to energies beyond 100 MeV. There is some evidence of isotropy and implied cosmological origin. Significant features in the spectrum of this background radiation have been observed which provide evidence for its origin in nuclear processes in the early stages of the big-band cosmology and tie in these processes with galaxy fromation theory. A crucial test of the theory may lie in future observations of the background radiation in the 100 MeV to 100 GeV energy range which may be made with large orbiting spark-chamber satellite detectors. A discussion of the theoretical interpretations of present data, their connection with baryon symmetric cosmology and galaxy formation theory, and the need for future observations are given.

Stecker, F. W.; Puget, J. L.

1974-01-01

66

Current trends in gamma radiation detection for radiological emergency response  

NASA Astrophysics Data System (ADS)

Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of inter-disciplinary research and development has taken place-techniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportation-the so-called second line of defense.

Mukhopadhyay, Sanjoy; Guss, Paul; Maurer, Richard

2011-09-01

67

Current Trends in Gamma Radiation Detection for Radiological Emergency Response  

SciTech Connect

Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of interdisciplinary research and development has taken place–techniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportation–the so-called second line of defense.

Mukhopadhyay, S., Guss, P., Maurer, R.

2011-09-01

68

Mechanisms of radiation-induced neoplastic cell transformation  

SciTech Connect

Studies with cultured mammalian cells demonstrated clearly that radiation can transform cells directly and can enhance the cell transformation by oncogenic DNA viruses. In general, high-LET heavy-ion radiation can be more effective than X and gamma rays in inducing neoplastic cell transformation. Various experimental results indicate that radiation-induced DNA damage, most likely double-strand breaks, is important for both the initiation of cell transformation and for the enhancement of viral transformation. Some of the transformation and enhancement lesions can be repaired properly in the cell, and the amount of irrepairable lesions produced by a given dose depends on the quality of radiation. An inhibition of repair processes with chemical agents can increase the transformation frequency of cells exposed to radiation and/or oncogenic viruses, suggesting that repair mechanisms may play an important role in the radiation transformation. The progression of radiation-transformed cells appears to be a long and complicated process that can be modulated by some nonmutagenic chemical agents, e.g., DMSO. Normal cells can inhibit the expression of transforming properties of tumorigenic cells through an as yet unknown mechanism. The progression and expression of transformation may involve some epigenetic changes in the irradiated cells. 38 references, 15 figures, 1 table.

Yang, T.C.H.; Tobias, C.A.

1984-04-01

69

EFFECTS OF GAMMA RADIATION ON ELECTROCHEMICAL PROPERTIES OF IONIC LIQUIDS  

SciTech Connect

The electrochemical properties of ionic liquids (ILs) make them attractive for possible replacement of inorganic salts in high temperature molten salt electrochemical processing of nuclear fuel. To be a feasible replacement solvent, ILs need to be stable in moderate and high doses of radiation without adverse chemical and physical effects. Here, we exposed seven different ILs to a 1.2 MGy dose of gamma radiation to investigate their physical and chemical properties as they related to radiological stability. The azolium-based ILs experienced the greatest change in appearance, but these ILs were chemically more stable to gamma radiation than some of the other classes of ILs tested, due to the presence of aromatic electrons in the azolium ring. All the ILs exhibited a decrease in their conductivity and electrochemical window (at least 1.1 V), both of which could affect the utility of ILs in electrochemical processing. The concentration of the irradiation decomposition products was less than 3 mole %, with no impurities detectable using NMR techniques.

Visser, A; Nicholas Bridges, N; Thad Adams, T; John Mickalonis, J; Mark02 Williamson, M

2009-04-21

70

SAS 2 observations of the earth albedo gamma radiation above 35 MeV  

NASA Technical Reports Server (NTRS)

The earth albedo gamma radiation above 35 MeV in the equatorial region is investigated using observations from the second Small Astronomy Satellite. The zenith angle distribution of the gamma radiation has a peak toward the horizon which is about an order of magnitude more intense than the radiation coming from the nadir, and nearly two orders of magnitude more intense than the gamma radiation from most parts of the sky. The gamma radiation originating from the western horizon is a factor of four more intense than the radiation from the eastern horizon and a factor of three more intense than that from the northern and southern directions. This reflects the geomagnetic effects on the incident cosmic rays whose interactions produce the albedo gamma rays. The variation of the upcoming gamma ray intensity with vertical cutoff rigidity is consistent with the empirical relationship found by Gur'yan et al. (1979).

Thompson, D. J.; Simpson, G. A.; Ozel, M. E.

1981-01-01

71

Spectral measurements of direct and scattered gamma radiation at a boiling-water reactor site  

Microsoft Academic Search

Quantitative surveys of direct and scattered gamma radiation emitted from the steam-power conversion systems of a boiling-water reactor and other on-site radiation sources were made using a directionally shielded HPGe gamma spectrometry system. The purpose of this study was to obtain data on the relative contributions and energy distributions of direct and scattered gamma radiation in the site environs. The

R. C. Block; I. L. Preiss; R. M. Ryan; G. J. Vargo

1990-01-01

72

Inhaled /sup 239/PuO/sub 2/ and/or total-body gamma radiation: Early mortality and morbidity in rats and dogs  

SciTech Connect

Rats and beagle dogs were given doses of /sup 60/Co gamma radiation and/or body burdens of /sup 239/PuO/sub 2/ within lethal ranges in an experiment to determine and compare morbidity and mortality responses of both species within 1 year after exposure. Radiation-induced morbidity was assessed by measuring changes in body weights, hematologic parameters, and pulmonary-function parameters. Gamma radiation caused transient morbidity, reflected by immediately depressed blood cell concentrations and by long-term loss of body weight and diminished pulmonary function in animals of both species that survived the acute gamma radiation syndrome. Inhaled plutonium caused a loss of body weight and diminished pulmonary function in both species, but its only effect on blood cell concentrations was lymphocytopenia in dogs. Combined gamma irradiation and plutonium lung burdens were synergistic, in that animals receiving both radiation insults had higher morbidity and mortality rates than would be predicted based on the effect of either kind of radiation alone. Plutonium lung burdens enhanced the effect of gamma radiation in rats within the first 30 days of exposure, and gamma radiation enhanced the long-term effect of plutonium lung burdens in both species. Rats were less sensitive to both kinds of radiation, whether administered alone or in combination. 71 refs., 105 figs., 48 tabs.

Filipy, R.E.; Decker, J.R.; Lai, Y.L.; Lauhala, K.E.; Buschbom, R.L.; Hiastala, M.P.; McGee, D.R.; Park, J.F.; Kuffel, E.G.; Ragan, H.A.; Cannon, W.C.; Yaniv, S.S.; Scott, B.R.

1988-08-01

73

Carnosine mitigates apoptosis and protects testicular seminiferous tubules from gamma-radiation-induced injury in mice.  

PubMed

This study investigated the radioprotective effects of a naturally occurring dipeptide, carnosine, on testicular damage. Carnosine was administered (10, 50 and 100 mg kg(-1) body weight) to male mice via intraperitoneal injection for 4 days prior to gamma irradiation (2 Gy). Apoptosis with the TUNEL assay and histopathological parameters were evaluated 12-h and 14-day post-irradiation. Pre-treatment with carnosine before irradiation significantly reduced the frequency of TUNEL-positive cells induced by radiation treatment at all doses by reduction factors of 1.8, 2.47 and 2.23 for carnosine at 10, 50 and 100 mg kg(-1) bw, respectively, unlike that observed in the radiation alone group. Exposure to ionising radiation decreased sperm count and reduced the height and diameter of seminiferous epithelial tubules. Pre-treatment with all doses of carnosine significantly augmented seminiferous epithelial height and tubule diameter and also increased the number of germinal cells in comparison to the group treated with radiation only. These results indicate that carnosine prevents testicular dysfunction induced by gamma-irradiation via an anti-apoptotic effect; this restoration of proper testicular function ultimately leads to the recovery of spermatogenesis. PMID:24215656

Haeri, S A; Rajabi, H; Fazelipour, S; Hosseinimehr, S J

2014-11-01

74

Minimal Size of Cell Assemblies Coordinated by Gamma Oscillations  

E-print Network

In networks of excitatory and inhibitory neurons with mutual synaptic coupling, specific drive to sub-ensembles of cells often leads to gamma-frequency (25–100 Hz) oscillations. When the number of driven cells is too small, ...

Börgers, Christoph

75

Radiomodifying and anticlastogenic effect of Zingerone on Swiss albino mice exposed to whole body gamma radiation.  

PubMed

The radioprotective effect and antigenotoxic potential of phenolic alkanone, Zingerone (ZO) were investigated in Swiss albino mice exposed to gamma radiation. To study the optimum dose for radiation protection, mice were administered with ZO (10-100mg/kgb.wt.), once daily for five consecutive days. One hour after the last administration of ZO on the fifth day, animals were whole body exposed to 10 Gy gamma radiations. The radioprotective potential was assessed using animal survival at an optimal ZO dose of 20mg/kgb.wt., administered prior to 7-11 Gy. Further, the radioprotective potential of ZO was also analyzed by haemopoietic stem cell survival (CFU) assay, mouse bone marrow micronucleus test and histological observations of intestinal and bone marrow damage. Effect of ZO pretreatment on radiation-induced changes in glutathione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT) and lipid peroxidation (LPx) levels was also analyzed. ZO treatment resulted increase in the LD(50/30) by 1.8 Gy (dose reduction factor = 1.2). The number of spleen colonies after whole body irradiation of mice (4.5 or 7.5 Gy) was increased when ZO was administered 1h prior to irradiation. The histological observations indicated a decline in the villus height and crypt number with an increase in goblet and dead cell population in the irradiated group, which was normalized by pretreatment with ZO. A significant (p < 0.001) reduction in micronucleated polychromatic, normochromatic erythrocytes, increased PCE/NCE ratio, increase in the GSH, GST, SOD, CAT and decreased LPx levels were observed in ZO pretreated group when compared to the irradiated animals. Our findings demonstrate the potential of ZO in mitigating radiation-induced mortality and cytogenetic damage, which may be attributed to inhibition radiation-induced decline in the endogenous antioxidant levels and scavenging of radiation-induced free radicals. PMID:19463966

Rao, B Nageshwar; Rao, B S Satish; Aithal, B Kiran; Kumar, M R Sunil

2009-01-01

76

\\Gamma\\Gamma \\Gamma\\Gamma  

E-print Network

\\Gamma\\Gamma @@@ @@@ ### ### ### ### \\Gamma\\Gamma\\Gamma \\Gamma\\Gamma\\Gamma @@@ @@@ ### ### ### ### \\Gamma\\Gamma\\Gamma \\Gamma\\Gamma\\Gamma yyy yyy \\Gamma\\Gamma@@####\\Gamma\\Gamma@@####\\Gamma\\Gamma@@####\\Gamma\\Gamma@@####\\Gamma\\Gamma@@####\\Gamma\\Gamma\\Gamma @@@ @@@ ### ### ### ### \\Gamma\\Gamma\\Gamma \\Gamma\\Gamma\\Gamma @@@ @@@ ### ### ### ### \\Gamma\\Gamma\\Gamma \\Gamma\\Gamma\\Gamma yyy

Laske, Gabi

77

dl-. cap alpha. -tocopheryl succinate enhances the effect of. gamma. -irradiation on neuroblastoma cells in culture  

SciTech Connect

The effect of dl-..cap alpha..-tocopheryl (vitamin E) succinate in modifying the radiation response of mouse neuroblastoma (NBP/sub 2/) and mouse fibroblast (L-cells) cells in culture was studied on the criterion of growth inhibition (due to cell death and inhibition of cell division). Results show that vitamin E succinate markedly enhanced the effect of /sub 60/CO-..gamma..-irradiation on NB cells, but it did not significantly modify the effect of irradiation on mouse fibroblasts. Sodium succinate plus ethanol (0.25% final concentration) did not modify the radiation response of NB cells or fibroblasts. Butylated hydroxyanisole, a lipid soluble antioxidant, also enhanced the effect of irradiation on NB cells, indicating that the effect of vitamin E in modifying the radiation response may be mediated, in part, by antioxidation mechanisms.

Sarri, A.; Prasad, K.N.

1984-01-01

78

Gamma radiation consequences on desert locust Schistocerca gregaria (Forsk.) digestive system.  

PubMed

Schistocera gregaria (Forsk.) (Orthoptera, Acrididae) remains a major insect pest in Africa, more particularly in the Sahelian zone. Present control methods are only partially efficient. In a previous study, we tested the potentiality of a sterile insect technique (SIT). Males of S. gregaria appeared to be much radiosensitive as already a dose of 3 Gy limited their survival. Gamma-radiations are known to damages the epithelial tissue of midgut, which affects the alimentation in insects. In this work, we show how digestive system of S. gregaria males is affected when submitted to a dose of 4 gamma rays. Nutrition is affected as males stop feeding soon after irradiation and progressively lose weight. Histological analyses on the midgut showed important epithelium damages. The regenerative cells by which the epithelial cells are replaced were damaged on the first days following irradiation. Consequently, regenerative cells are unable to divide and replace the normal loss of midgut cell. After nine days, the entire midgut epithelium was destroyed and only longitudinal muscles layer remained intact. This indicates that low radiation doses should be used if SIT will be applied. PMID:21539264

Dushimirimana, S; Muratori, F; Damiens, D; Hance, T

2010-01-01

79

Combined effects of gamma-radiation and ethylene oxide in human diploid fibroblasts.  

PubMed

Human diploid VH-10 fibroblasts were pre-exposed to gamma-rays and then treated with ethylene oxide (EtO). In the reverse experiment, the cells were pretreated with EtO and then exposed to gamma-rays. Two different dose rates of gamma-rays were used: a low dose rate (LDR, 0.66 Gy/min) and a high dose rate (HDR, 10 Gy/min). Cell killing, mutagenicity and DNA double-strand breakage were studied in both types of experiment. The induction of mutations in the HPRT locus was studied by selection in medium containing 6-thioguanine. DNA double-strand breakage, measured as fraction of activity released (FAR), was investigated using pulsed field gel electrophoresis. Concerning mutagenesis, it was found that pre-exposure of the cells to gamma-radiation (1 Gy) followed by treatment with EtO (2.5 mMh) led to an additive co-interaction, irrespective of dose rate. On the other hand, the reverse experimental procedure (pretreatment with EtO followed by gamma-ray exposure) resulted in an antagonistic effect, which was most pronounced when the HDR was applied. In the latter case, the resultant mutant frequency was two times lower than the sum of the mutant frequencies after the individual treatments. However, the effect of the combined treatment on FAR was different: FAR increased with both combinations of agents used compared with the separate and hypothetically expected effects. Moreover, the HDR exposure led to an additional increase in FAR compared with the LDR one. PMID:10719032

Kolman, A; Chovanec, M

2000-03-01

80

Relative biological effectiveness of tritiated water to gamma radiation for germ line mutations  

SciTech Connect

The relative biological effectiveness was determined using sex-linked recessive lethals induced in Drosophila spermatozoa as the biological effect. The sex-linked recessive lethal test, a measure of mutations induced in germ cells and transmitted through successive generations, yields a linear dose-response curve in the range used in these experiments. A dose-response curve was determined from three exposures to tritiated water and three exposures to /sup 60/Co gamma radiation. The ratio of the slopes of these two response curves is 2.7 +/- 0.3, yielding a relative biological effectiveness that suggests the tritium beta particle is 2.7 times more effective per unit of energy absorbed in inducing gene mutations transmitted to successive generations than /sup 60/Co gamma radiation. The increase in relative biological effectiveness with higher linear energy transfer for tritium beta radiation strongly suggests that single-strand breaks are repaired by a nearly error-free repair mechanism. Ion tracks with a high density of ions (high linear energy transfer) are more efficient than tracks with a low ion density (low linear energy transfer) in inducing transmissible mutations, suggesting interaction among products of ionization. Since most transmitted mutations induced by ionizing radiation result from strand breakage, interaction probably occurs at this level with double-strand breaks being repaired by an error-prone mechanism yielding transmissible mutations.

Byrne, B.J.; Lee, W.R.

1989-03-01

81

Inhibition of endothelial cell proliferation by gamma-interferon  

PubMed Central

Endothelial cell growth factor (ECGF) is a potent polypeptide mitogen for endothelial cells and fibroblasts. The mitogenic effects of ECGF are inhibited by the lymphokine gamma-interferon (gamma-IFN) in a dose- dependent manner. Gamma-IFN also induces a unique change in endothelial cell morphology which is maximally expressed in the presence of ECGF. The antiproliferative and phenotypic modulatory effects of gamma-IFN on endothelial cells are reversible. Inhibition of ECGF-induced endothelial cell proliferation by gamma-IFN is accompanied by a concentration- and time-dependent decrease in binding of 125I-ECGF to the endothelial cell surface. Scatchard analyses of the binding data in the presence and absence of gamma-IFN demonstrate a decrease in the number of ECGF-binding sites rather than a decrease in ligand affinity for the receptor. Cross-linking experiments with disuccinimidyl suberate demonstrate a decrease in the 170,000 Mr cross-linked receptor- ligand complex. These data suggest that gamma-IFN inhibits endothelial cell proliferation by a mechanism which involves growth factor receptor modulation. PMID:3102503

1987-01-01

82

Modeling Gamma-Radiation from Thunderclouds and Lightning  

NASA Astrophysics Data System (ADS)

Terrestrial gamma-ray flashes are sub-millisecond bursts of energetic radiation originating from thunderclouds in the earth's atmosphere [e.g., Fishman et al., Science, 264, 1313, 1994; Dwyer et al., Space Sci. Rev., 10.1007/s11214-012-9894-0, 2012]. Recent analysis of TGF observations and lightning radio emission indicates that the production of TGFs is normally associated with the initial lightning leader development inside thunderclouds [e.g., Shao et al., J. Geophys. Res., 115, A00E30, 2010; Lu et al., Geophys. Res. Lett., 37, L11806, 2010; Cummer et al., Geophys. Res. Lett., 38, L14810, 2011]. In addition to relatively short TGFs, thunderclouds and lightning can also make minute long gamma-ray glows according to ground-based [e.g., Chilingarian et al., Phys. Rev. D, 82, 043009, 2010] and airborne measurements [e.g., Smith et al., J. Geophys. Res., 116, D20124, 2011]. A viable theory for explaining the gamma-ray production by thunderclouds and lightning is the relativistic feedback discharge mechanism introduced by Dwyer [Geophys. Res. Lett., 30, 2055, 2003]. A comprehensive modeling study of TGFs based on this theory was recently reported in [Dwyer, J. Geophys. Res., 117, A02308, 2012], where many observed TGF aspects were successfully reproduced. In this talk, we report simulation results from a new TGF modeling code developed at Florida Tech that implements the same model as the work of Dwyer [2012]. The code is built on a streamer code that has been used for studying streamer discharges in sprites, lightning and laboratory experiments [e.g., Liu and Pasko, J. Geophys. Res., 109, A04301, 2004]. Components for modeling the transport of runaway electrons and positrons, the feedback process, the gamma-ray production, and the lightning leader propagation have been added. The new code can fully model transport of low energy electrons and ions, ionization, attachment, and recombination. Several simulation cases are reported, showing how single and multiple pulsed TGFs can be produced. Finally, we compare the present work with the gamma-ray observations and the modeling study by Dwyer [2012].

Liu, N.; Dwyer, J. R.

2012-12-01

83

Radiation-Induced Carcinogenesis: Mechanistically Based Differences between Gamma-Rays and Neutrons, and  

E-print Network

Radiation-Induced Carcinogenesis: Mechanistically Based Differences between Gamma-Rays and Neutrons: Mechanistically Based Differences between Gamma-Rays and Neutrons, and Interactions with DMBA. PLoS ONE 6(12): e dose/dose rate. Sparsely ionizing radiation (e.g. c-rays) generally produces linear or upwardly curving

Brenner, David Jonathan

84

Mortality of Mallards Exposed to Gamma Radiation Author(s): Richard L. Abraham  

E-print Network

for one-year-old mallards(Anas platyrhynchos)of 650 R for x-radiation and 630 R for 60-Co, Gamma radiation) mallard ducks (Anas platyrhynchos).Birds were exposed to whole- body gamma irradiationfrom a cesium-137)levels of 485 R, 715 R, and 894 R have been determined for green- winged teal (Anas crecca),blue-winged teal

Minnesota, University of

85

Effect of acute gamma radiation on some physiological features of lichens  

Microsoft Academic Search

The influence of acute gamma radiation on four physiological characteristics of lichens was investigated. Membrane permeability in irradiated thalli of Cladonia arbuscula, Cetraria islandica and Hypogymnia physodes increased considerably compared to controls. The nitrogen content in Peltigera aphthosa appeared to be stable to acute gamma radiation. Up to 1000 Gy there was no essential decrease in respiration intensity in H.

M. G. Nifontova; A. P. Ravinskaya; I. A. Shapiro

1995-01-01

86

Search for Charmonium States Decaying to J/\\psi\\gamma \\gamma $ Using Initial-State Radiation Events  

SciTech Connect

We study the processes e{sup +}e{sup -} {yields} (J/{psi}{gamma}{gamma}){gamma} and e{sup +}e{sup -} {yields} (J/{psi}{pi}{sup -}{pi}{sup +}){gamma} where the hard photon radiated from an initial e{sup +}e{sup -} collision with center-of-mass (CM) energy near 10.58 GeV is detected. In the final state J/{psi}{gamma}{gamma} we consider J/{psi}{pi}{sup 0}, J/{psi}{eta}, {chi}{sub c1}{gamma}, and {chi}c{sub 2}{gamma} candidates. The invariant mass of the hadronic final state defines the effective e{sup +}e{sup -} CM energy in each event, so these data can be compared with direct e{sup +}e{sup -} measurements. We report 90% CL upper limits for the integrated cross section times branching fractions of the J/{psi}{gamma}{gamma} channels in the Y (4260) mass region.

Aubert, B.; Barate, R.; Bona, M.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; Grauges, E.; /Barcelona U., ECM; Palano,; /Bari U. /INFN, Bari; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; /Beijing, Inst. High Energy Phys.; Eigen, G.; Ofte, I.; Stugu, B.; /Bergen U.; Abrams, G.S.; /LBL,

2006-11-30

87

Gamma radiation influence on technological characteristics of wheat flour  

NASA Astrophysics Data System (ADS)

This study aimed at determining the influence of gamma radiation on technological characteristics of wheat (Triticum sativum) flour and physical properties of pan breads made with this flour. The bread formulation included wheat flour, water, milk, salt, sugar, yeast and butter. The ?-amylase activity of wheat flour irradiated with 1, 3 and 9 kGy in a Gammacell 220 (AECL), one day, five days and one month after irradiation was evaluated. Deformation force, height and weight of breads prepared with the irradiated flour were also determined. The enzymatic activity increased—reduction of falling number time—as radiation dose increased, their values being 397 s (0 kGy), 388 s (1 kGy), 343 s (3 kGy) and 293 s (9 kGy) respectively, remaining almost constant over the period of one month. Pan breads prepared with irradiated wheat flour showed increased weight. Texture analysis showed that bread made of irradiated flour presented an increase in maximum deformation force. The results indicate that wheat flour ionizing radiation processing may confer increased enzymatic activity on bread making and depending on the irradiation dose, an increase in weight, height and deformation force parameters of pan breads made of it.

Teixeira, Christian A. H. M.; Inamura, Patricia Y.; Uehara, Vanessa B.; Mastro, Nelida L. d.

2012-08-01

88

Preparation of polyester\\/gypsum\\/composite using gamma radiation, and its radiation stability  

Microsoft Academic Search

Composites based on pure gypsum and polyester–styrene resin have been prepared using various doses of gamma radiation. Some physical properties of the prepared composites and the influence of irradiation dose on it have been studied as: compression strength, hardness, thermal decomposition temperature in nitrogen or oxygen, and the change in weight in aqueous solutions with different pH values.The glass transition

Zaki Ajji

2005-01-01

89

Studies in feed spoilage: prevention of spoilage in ground corn by gamma radiation  

E-print Network

STUDIES IN FEED SPOILAGE: PREVENTION OF SPOILAGE IN GROUND CORN BY GAMMA RAD ATION A Thesis By Billy Dean Nebb Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in Partial fulfillment of the requirements... Free Fatty Acids 15 Mold Counts- 15 Sterility Tests- 16 RESULTS AND DISCUSSION Use of Gamma Radiation to Prevent Spoilage During Storage-- 18 Doses of Gamma Radiation Required to Inactivate Molds in Corn Containing 15. 5 and 22. 0 Percent Moi...

Webb, Billy Dean

2012-06-07

90

Radiation-induced adaptive response in fish cell lines.  

PubMed

There is considerable interest at present in low-dose radiation effects in non-human species. In this study gamma radiation-induced adaptive response, a low-dose radiation effect, was examined in three fish cell lines, (CHSE-214 (Chinook salmon), RTG-2 (rainbow trout) and ZEB-2J (zebrafish)). Cell survival after exposure to direct radiation with or without a 0.1 Gy priming dose, was determined using the colony forming assay for each cell line. Additionally, the occurrence of a bystander effect was examined by measuring the effect of irradiated cell culture medium from the fish cell lines on unexposed reporter cells. A non-linear dose response was observed for all cell lines. ZEB-2J cells were very sensitive to low doses and a hyper-radiosensitive (HRS) response was observed for doses <0.5 Gy. A typical protective adaptive response was not detected in any of the three fish cell lines tested. Rather, it was found that pre-exposure of these cells to 0.1 Gy radiation sensitized the cells to subsequent high doses. In CHSE-214 cells, increased sensitivity to subsequent high doses of radiation was observed when the priming and challenge doses were separated by 4 h; however, this sensitizing effect was no longer present when the interval between doses was greater than 8 h. Additionally, a "protective" bystander response was observed in these cell lines; exposure to irradiated medium from fish cells caused increased cloning efficiency in unirradiated reporter cells. The data confirm previous conclusions for mammalian cells that the adaptive response and bystander effect are inversely correlated and contrary to expectations probably have different underlying mechanisms. PMID:18054128

Ryan, Lorna A; Seymour, Colin B; O'Neill-Mehlenbacher, Alicia; Mothersill, Carmel E

2008-04-01

91

Radiation-induced edema after Gamma Knife treatment for meningiomas.  

PubMed

A retrospective study was performed to analyze some parameters in a consecutive series of 35 Gamma Knife treatments in 34 patients with benign meningiomas. The minimum dose to the tumors was never less than 12 Gy. The follow-up period was from 1 to 3 years. A semiquantitative method of tumor volume assessment was used to measure the tumor response to treatment. The presence and clinical significance of postradiation edema were noted. Even in this short follow-up period, 11 of the 35 tumors were reduced in volume. No tumors increased in size. Edema developed preferentially in nonbasal tumors, especially those around the midline and sagittal sinus. In all but one case where radiation-induced edema was observed was the margin tumor dose 18 Gy or more. It is suggested that doses of 18 Gy or more should probably be avoided in the Gamma Knife treatment of meningiomas and that the greatest care should be taken in selecting non-skull base tumors for this form of treatment. PMID:9032853

Ganz, J C; Schröttner, O; Pendl, G

1996-01-01

92

Evaluation of the effects of paederus beetle extract and gamma irradiation on HeLa cells  

PubMed Central

Objective(s): Cervical cancer is a malignancy that is the second most common cause of death from cancer in women throughout the world. Paederus beetle (Paederus fuscipes) extract (PBE), contains bioactive compounds such as pederine which has cytotoxic properties and blocks DNA and protein synthesis at very low concentrations. In this investigation we tried to determine the effects co-treatment with PBE and gamma irradiation on HeLa cells. Materials and Methods: The viability of the cells was measured by two methods: MTT and Colony assay. Results: We found that supplementing gamma irradiation therapy with PBE does not increase cell death and it might even interfere with its cytotoxicty at the concentrations below 0.1 ng/ml and the viability for irradiation vs irradiation + PBE was 37%: 60%. Conclusion: This finding might be due to radioprotective effects of the very low doses of PBE against gamma radiation. PMID:24904724

Samani, Fariba; Monfared, Ali Shabestani; Zabihi, Ebrahim; Khafri, Soraya; Karimi, Maesoumeh; Akhavan Niaki, Haleh

2014-01-01

93

Cytoskeletal and functional changes in bioreactor assembled thyroid tissue organoids exposed to gamma radiation  

NASA Technical Reports Server (NTRS)

Fischer rat thyroid cells were grown under low-shear stress in a bioreactor to a stage of organization composed of integrated follicles resembling small thyroid glands prior to exposure to 3 Gray-gamma radiation. Bioreactor tissues and controls (both irradiated and non-irradiated) were harvested at 24, 48, 96 and 144 hours post-exposure. Tissue samples were fixed and fluorescently labeled for actin and microtubules. Tissues were assessed for changes in cytoskeletal components induced by radiation and quantified by laser scanning cytometry. ELISA's were used to quantify transforming growth factor-beta and thyroxin released from cells to the culture supernatant. Tissue architecture was disrupted by exposure to radiation with the structural organization of actin and loss of follicular content the most obviously affected. With time post-irradiation the actin appeared disordered and the levels of fluorescence associated with filamentous-actin and microtubules cycled in the tissue analogs, but not in the flask-grown cultures. Active transforming growth factor-beta was higher in supernatants from the irradiated bioreactor tissue. Thyroxin release paralleled cell survival in the bioreactors and control cultures. Thus, the engineered tissue responses to radiation differed from those of conventional tissue culture making it a potentially better mimic of the in vivo situation.

Green, Lora M.; Patel, Zarana; Murray, Deborah K.; Rightnar, Steven; Burell, Cheryl G.; Gridley, Daila S.; Nelson, Gregory A.

2002-01-01

94

Consequences of Lethal-Whole-Body Gamma Radiation and Possible Ameliorative Role of Melatonin  

PubMed Central

Gamma radiation induces the generation of free radicals, leading to serious cellular damages in biological systems. Radioprotectors act as prophylactic agents that are administered to shield normal cells and tissues from the deleterious effects of radiation. Melatonin synergistically acts as an immune-stimulator and antioxidant. We investigated the possible radioprotective role of melatonin (100?mg/kg i.p.) against lethal-whole-body radiation- (10?Gy) induced sickness, body weight loss, and mortality in rats. Results of the present study suggest that exposure to lethal-whole-body radiation incurred mortality, body weight loss, and apoptosis and it also depleted the immunity and the antioxidant status of the rats. Our results show that melatonin pretreatment provides protection against radiation induced mortality, oxidative stress, and immune-suppression. The melatonin pretreated irradiated rats showed less change in body weight as compared to radiation only group. On the other hand, melatonin appeared to have another radioprotective role, suggesting that melatonin may reduce apoptosis through a caspase-3-mediated pathway by blocking caspase-3 activity.

Mihandoost, Ehsan; Shirazi, Alireza; Mahdavi, Seied Rabie; Aliasgharzadeh, Akbar

2014-01-01

95

Radiation sensitivity of Merkel cell carcinoma cell lines  

SciTech Connect

Merkel cell carcinoma (MCC), being a small cell carcinoma, would be expected to be sensitive to radiation. Clinical analysis of patients at our center, especially those with macroscopic disease, would suggest the response is quite variable. We have recently established a number of MCC cell lines from patients prior to radiotherapy, and for the first time are in a position to determine their sensitivity under controlled conditions. Some of the MCC lines grew as suspension cultures and could not be single cell cloned; therefore, it was not possible to use clonogenic survival for all cell lines. A tetrazolium based (MTT) assay was used for these lines, to estimate cell growth after {gamma} irradiation. Control experiments were conducted on lymphoblastoid cell lines (LCL) and the adherent MCC line, MCC13, to demonstrate that the two assays were comparable under the conditions used. We have examined cell lines from MCC, small cell lung cancer (SCLC), malignant melanomas, Epstein Barr virus (EBV) transformed lymphocytes (LCL), and skin fibroblasts for their sensitivity to {gamma} irradiation using both clonogenic cell survival and MTT assays. The results show that the tumor cell lines have a range of sensitivities, with melanoma being more resistant (surviving fraction at 2 Gy (SF2) 0.57 and 0.56) than the small cell carcinoma lines, MCC (SF2 range 0.21-0.45, mean SF2 0.30, n = 8) and SCLC (SF2 0.31). Fibroblasts were the most sensitive (SF2 0.13-0.20, mean 0.16, n = 5). The MTT assay, when compared to clonogenic assay for the MCC13 adherent line and the LCL, gave comparable results under the conditions used. Both assays gave a range of SF2 values for the MCC cell lines, suggesting that these cancers would give a heterogeneous response in vivo. The results with the two derivative clones of MCC14 (SF2 for MCC14/1 0.38, MCC14/2 0.45) would further suggest that some of them may develop resistance during clonogenic evolution. 25 refs., 3 figs., 1 tab.

Leonard, J.H.; Ramsay, J.R.; Birrell, G.W. [Queensland Institute of Medical Research (Australia)] [and others] [Queensland Institute of Medical Research (Australia); and others

1995-07-30

96

Cell death is induced by ciglitazone, a peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonist, independently of PPAR{gamma} in human glioma cells  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Greater than 30 {mu}M ciglitazone induces cell death in glioma cells. Black-Right-Pointing-Pointer Cell death by ciglitazone is independent of PPAR{gamma} in glioma cells. Black-Right-Pointing-Pointer CGZ induces cell death by the loss of MMP via decreased Akt. -- Abstract: Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) regulates multiple signaling pathways, and its agonists induce apoptosis in various cancer cells. However, their role in cell death is unclear. In this study, the relationship between ciglitazone (CGZ) and PPAR{gamma} in CGZ-induced cell death was examined. At concentrations of greater than 30 {mu}M, CGZ, a synthetic PPAR{gamma} agonist, activated caspase-3 and induced apoptosis in T98G cells. Treatment of T98G cells with less than 30 {mu}M CGZ effectively induced cell death after pretreatment with 30 {mu}M of the PPAR{gamma} antagonist GW9662, although GW9662 alone did not induce cell death. This cell death was also observed when cells were co-treated with CGZ and GW9662, but was not observed when cells were treated with CGZ prior to GW9662. In cells in which PPAR{gamma} was down-regulated cells by siRNA, lower concentrations of CGZ (<30 {mu}M) were sufficient to induce cell death, although higher concentrations of CGZ ( Greater-Than-Or-Slanted-Equal-To 30 {mu}M) were required to induce cell death in control T98G cells, indicating that CGZ effectively induces cell death in T98G cells independently of PPAR{gamma}. Treatment with GW9662 followed by CGZ resulted in a down-regulation of Akt activity and the loss of mitochondrial membrane potential (MMP), which was accompanied by a decrease in Bcl-2 expression and an increase in Bid cleavage. These data suggest that CGZ is capable of inducing apoptotic cell death independently of PPAR{gamma} in glioma cells, by down-regulating Akt activity and inducing MMP collapse.

Lee, Myoung Woo; Kim, Dae Seong; Kim, Hye Ryung; Kim, Hye Jin; Yang, Jin Mo; Ryu, Somi; Noh, Yoo Hun; Lee, Soo Hyun; Son, Meong Hi; Jung, Hye Lim; Yoo, Keon Hee [Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)] [Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Koo, Hong Hoe, E-mail: hhkoo@skku.edu [Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Sung, Ki Woong, E-mail: kwsped@skku.edu [Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

2012-01-06

97

JITTER RADIATION MODEL OF THE CRAB GAMMA-RAY FLARES  

SciTech Connect

The gamma-ray flares of the Crab nebula detected by the Fermi and AGILE satellites challenge our understanding of the physics of pulsars and their nebulae. The central problem is that the peak energy of the flares exceeds the maximum energy E {sub c} determined by synchrotron radiation loss. However, when turbulent magnetic fields exist with scales {lambda}{sub B} smaller than 2{pi}mc {sup 2}/eB, jitter radiation can emit photons with energies higher than E {sub c}. The scale required for the Crab flares is about two orders of magnitude less than the wavelength of the striped wind. We discuss a model in which the flares are triggered by plunging the high-density blobs into the termination shock. The observed hard spectral shape may be explained by the jitter mechanism. We make three observational predictions: first, the polarization degree will become lower in flares; second, no counterpart will be seen in TeV-PeV range; and third, the flare spectrum will not be harder than {nu}F {sub {nu}}{proportional_to}{nu}{sup 1}.

Teraki, Yuto; Takahara, Fumio, E-mail: teraki@vega.ess.sci.osaka-u.ac.jp [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043 (Japan)] [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043 (Japan)

2013-02-15

98

Use of a solar panel as a directionally sensitive large-area radiation monitor for direct and scattered x-rays and gamma-rays.  

PubMed

The characteristics of a 25.4 X 91 cm solar cell panel used as an x-ray and gamma-ray radiation monitor are presented. Applications for monitoring the primary x-ray beam are described at different values of operating currents and voltages as well as for directional dependence of scattered radiation. Other applications in gamma-ray radiography are also given. The detector showed linear response to both x-ray and gamma-ray exposures. The equipment is rigid, easy to use, relatively inexpensive and requires no power supply or any complex electronic equipment. PMID:2828276

Abdul-Majid, S

1987-01-01

99

Search for the Radiative Penguin Decays B+ -> rho+ gamma, B0 -> rho0 gamma, and B0 -> omega gamma  

E-print Network

A search for the decays B --> rho(770) gamma and B0 --> omega(782)gamma is performed on a sample of 211 million Y(4S)->BBbar events collected by the BABAR detector at the PEP-II asymmetric-energy e+e- storage ring. No evidence for the decays is seen. We set the following limits on the individual branching fractions BF(B --> rho+ gamma) rho0 gamma) omega gamma) (rho/omega) gamma]<1.2 x 10^-6 and constrain V_td/V_ts< 0.19 at the 90% C.L.

Aubert, B; Boutigny, D; Couderc, F; Gaillard, J M; Hicheur, A; Karyotakis, Yu; Lees, J P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, Michael T; Shelkov, V G; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Steinke, M; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Wilson, F F; Çuhadar-Dönszelmann, T; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Thiessen, D; Khan, A; Kyberd, P; Teodorescu, L; Blinov, A E; Blinov, V E; Druzhinin, V P; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M A; Mommsen, R K; Röthel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Foulkes, S D; Gary, J W; Shen, B C; Wang, K; Del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Eisner, A M; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S M; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Smith, J G; Zhang, J; Zhang, L; Chen, A; Harton, J L; Soffer, A; Toki, W H; Wilson, R J; Zeng, Q L; Altenburg, D; Brandt, T; Brose, J; Dickopp, M; Feltresi, E; Hauke, A; Lacker, H M; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Petzold, A; Schubert, J; Schubert, Klaus R; Schwierz, R; Spaan, B; Sundermann, J E; Bernard, D; Bonneaud, G R; Brochard, F; Grenier, P; Schrenk, S; Thiebaux, C; Vasileiadis, G; Verderi, M; Bard, D J; Clark, P J; Lavin, D; Muheim, F; Playfer, S; Xie, Y; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Won, E; Dubitzky, R S; Langenegger, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Gaillard, J R; Morton, G W; Nash, J A; Nikolich, M B; Taylor, G P; Charles, M J; Grenier, G J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Yi, J; Biasini, M; Covarelli, R; Pioppi, M; Davier, M; Giroux, X; Grosdidier, G; Höcker, A; Laplace, S; Le Diberder, F R; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Chavez, C A; Coleman, J P; Forster, I J; Fry, J R; Gabathuler, Erwin; Gamet, R; Hutchcroft, D E; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Harrison, P F; Mohanty, G B; Cowan, G; Flack, R L; Flächer, H U; Green, M G; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hart, P A; Hodgkinson, M C; Lafferty, G D; Lyon, A J; Williams, J C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Stängle, H; Willocq, S; Cowan, R; Sciolla, G; Sekula, S J; Taylor, F; Yamamoto, R K; Mangeol, D J J; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L M; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Zhao, H W; Brunet, S; Côté, D; Taras, P; Nicholson, H; Cavallo, N; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Wilden, L; Jessop, C P; LoSecco, J M; Allmendinger, T; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonian, R; Wong, Q K; Brau, J E; Frey, R; Igonkina, O; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C

2004-01-01

100

Airborne gamma-radiation survey of the Jabel Ishmas Quadrangle, Kingdom of Saudi Arabia  

USGS Publications Warehouse

An airborne gamma-radiation survey system, which includes digital recording and automatic data processing procedures developed by the U. S. Geological Survey Saudi Arabian Project, is used to collect spectral gamma-radiation data as an aid to regional geologic mapping of pediment areas on the Arabian Shield. The areal extent of rock units can generally be distinguished by the intensity of their radiation pattern. Rocks of ultramafic composition have low radiation response, whereas more felsic rocks reflect higher radiation response. Interpretations based on radiometric data enable the geologist to gain some understanding about the geologic setting of an area before he begins field mapping.

Flanigan, Vincent J.

1975-01-01

101

Sensitometry of the response of a new radiochromic film dosimeter to gamma radiation and electron beams  

Microsoft Academic Search

A new radiation-sensitive imaging material, called GafChromic™ Dosimetry Media, offers advances in high-dose radiation dosimetry and high-resolution radiography for gamma radiation and electrons. The potential uses in radiation processing, radiation sterilization of medical devices, population control of insects by irradiation, food irradiation, blood irradiation for organ-transplant immuno-suppression, clinical radiography, and industrial radiography have led to the present sensitometric study over

W. L. McLaughlin; Chen Yun-Dong; C. G. Soares; A. Miller; G. van Dyk; D. F. Lewis

1991-01-01

102

GaAs Solar Cell Radiation Handbook  

NASA Technical Reports Server (NTRS)

History of GaAs solar cell development is provided. Photovoltaic equations are described along with instrumentation techniques for measuring solar cells. Radiation effects in solar cells, electrical performance, and spacecraft flight data for solar cells are discussed. The space radiation environment and solar array degradation calculations are addressed.

Anspaugh, B. E.

1996-01-01

103

Pair Production and Radiation Effects in Clouds Illuminated by Gamma Ray Sources  

E-print Network

Many classes of gamma-ray sources, such as gamma-ray bursts, blazars, Seyfert galaxies, and galactic black hole sources are surrounded by large amounts of gas and dust. X-rays and gamma-rays that traverse this material will be attenuated by Compton scattering and photoelectric absorption. One signature of an intervening scattering cloud is radiation-hardening by electrons that have been scattered and heated by the incident radiation, as illustrated by a Monte Carlo calculation. Compton scattering provides backscattered photons that will attenuate subsequent gamma rays through \\gamma\\gamma pair-production processes. We calculate the pair efficiency for a cloud illuminated by gamma-ray burst radiation. An analytic calculation of the flux of X-rays and gamma rays Thomson scattered by an intervening cloud is presented. Illuminated clouds near GRBs will form relativistic plasmas containing large numbers of electron-positron pairs that can be detected within ~1-2 days of the explosion before expanding and dissipating. Localized regions of pair annihilation radiation in the Galaxy could reveal gamma-ray sources embedded in dense clouds, or sites of past GRB explosions.

C. D. Dermer; M. Boettcher; E. P. Liang

2001-07-12

104

Latexin sensitizes leukemogenic cells to gamma-irradiation-induced cell-cycle arrest and cell death through Rps3 pathway.  

PubMed

Leukemia is a leading cause of cancer death. Recently, the latexin (Lxn) gene was identified as a potential tumor suppressor in several types of solid tumors and lymphoma, and Lxn expression was found to be absent or downregulated in leukemic cells. Whether Lxn functions as a tumor suppressor in leukemia and what molecular and cellular mechanisms are involved are unknown. In this study, the myeloid leukemogenic FDC-P1 cell line was used as a model system and Lxn was ectopically expressed in these cells. Using the protein pull-down assay and mass spectrometry, ribosomal protein subunit 3 (Rps3) was identified as a novel Lxn binding protein. Ectopic expression of Lxn inhibited FDC-P1 growth in vitro. More surprisingly, Lxn enhanced gamma irradiation-induced DNA damages and induced cell-cycle arrest and massive necrosis, leading to depletion of FDC-P1 cells. Mechanistically, Lxn inhibited the nuclear translocation of Rps3 upon radiation, resulting in abnormal mitotic spindle formation and chromosome instability. Rps3 knockdown increased the radiation sensitivity of FDC-P1, confirming that the mechanism of action of Lxn is mediated by Rps3 pathway. Moreover, Lxn enhanced the cytotoxicity of chemotherapeutic agent, VP-16, on FDC-P1 cells. Our study suggests that Lxn itself not only suppresses leukemic cell growth but also potentiates the cytotoxic effect of radio- and chemotherapy on cancer cells. Lxn could be a novel molecular target that improves the efficacy of anti-cancer therapy. PMID:25341047

You, Y; Wen, R; Pathak, R; Li, A; Li, W; St Clair, D; Hauer-Jensen, M; Zhou, D; Liang, Y

2014-01-01

105

Latexin sensitizes leukemogenic cells to gamma-irradiation-induced cell-cycle arrest and cell death through Rps3 pathway  

PubMed Central

Leukemia is a leading cause of cancer death. Recently, the latexin (Lxn) gene was identified as a potential tumor suppressor in several types of solid tumors and lymphoma, and Lxn expression was found to be absent or downregulated in leukemic cells. Whether Lxn functions as a tumor suppressor in leukemia and what molecular and cellular mechanisms are involved are unknown. In this study, the myeloid leukemogenic FDC-P1 cell line was used as a model system and Lxn was ectopically expressed in these cells. Using the protein pull-down assay and mass spectrometry, ribosomal protein subunit 3 (Rps3) was identified as a novel Lxn binding protein. Ectopic expression of Lxn inhibited FDC-P1 growth in vitro. More surprisingly, Lxn enhanced gamma irradiation-induced DNA damages and induced cell-cycle arrest and massive necrosis, leading to depletion of FDC-P1 cells. Mechanistically, Lxn inhibited the nuclear translocation of Rps3 upon radiation, resulting in abnormal mitotic spindle formation and chromosome instability. Rps3 knockdown increased the radiation sensitivity of FDC-P1, confirming that the mechanism of action of Lxn is mediated by Rps3 pathway. Moreover, Lxn enhanced the cytotoxicity of chemotherapeutic agent, VP-16, on FDC-P1 cells. Our study suggests that Lxn itself not only suppresses leukemic cell growth but also potentiates the cytotoxic effect of radio- and chemotherapy on cancer cells. Lxn could be a novel molecular target that improves the efficacy of anti-cancer therapy. PMID:25341047

You, Y; Wen, R; Pathak, R; Li, A; Li, W; St Clair, D; Hauer-Jensen, M; Zhou, D; Liang, Y

2014-01-01

106

Effect of gamma radiation on Aspergillus flavus and Aspergillus ochraceus ultrastructure and mycotoxin production  

NASA Astrophysics Data System (ADS)

The aim of this work was to study the effect of gamma radiation (2 kGy) on Aspergillus flavus and Aspergillus ochraceus ultrastructure. Moreover, the influence on aflatoxin B 1 and ochratoxin A production was also observed. Irradiated A. flavus strain showed a dull orangish colony while control strain showed the typical green color. Minor differences were observed on stipes, metulae and conidia size between control and irradiated A. flavus and A. ochraceus strains. Irradiated fungi showed ultrastructural changes on cell wall, plasmalema and cytoplasm levels. The levels of mycotoxins produced by irradiated strains were two times greater than those produced by control strains. Successive transferences of irradiated strains on malt extract agar allowed the fungus to recuperate morphological characteristics. Although minor changes in the fungal morphology were observed, ultrastructural changes at cell wall level and the increase of mycotoxin production ability were observed. Inappropriate storage of irradiated food and feed would allow the development of potentially more toxicogenic fungal propagules.

Ribeiro, J.; Cavaglieri, L.; Vital, H.; Cristofolini, A.; Merkis, C.; Astoreca, A.; Orlando, J.; Carú, M.; Dalcero, A.; Rosa, C. A. R.

2011-05-01

107

Disinfection of the bee hive's American foulbrood by gamma radiation from Cobalt-60  

NASA Astrophysics Data System (ADS)

Gamma radiation from Cobalt-60 was used to sterilize honeybee combs contaminated by Bacilluslarvae. The determination of the radiosensibility (D 10) was done on cultured cells in Brain Heart Infusion broth and was found to be determined at 125 Gy. The D 10 of isolated spores from contaminated combs was then determined at 0,518 kGy and the D 10 of spores irradiated in their own original environment was found at 2,05 kGy. These treated combs were then sent back in the beehives. The bees cleaned the combs thouroughly and started the storage of honey in some cells. Eggs were also layed in others. Forty five days later, there were still no sign of re-appearance of the American Foulbrood disease.

Gosselin, P.; Charbonneau, R.

108

Effects of Dietary Iron and Gamma Radiation on the Rat Retina  

NASA Technical Reports Server (NTRS)

A health risk of concern for NASA relates to radiation exposure and its synergistic effects with other space environmental factors, includi ng nutritional status of the crew. Astronauts consume almost three times the recommended daily allowance of iron due to the use of fortifie d foods aboard the International Space Station, with iron intake occa sionally exceeding six times the recommended values. Recently, NASA has become concerned with visual changes associated with spaceflight, a nd research is being conducted to elucidate the etiology of eye structure alterations in the spaceflight environment. Terrestrially, iron o verload is also associated with certain optic neuropathies. In additi on, due to its role in Fenton reactions, iron can potentiate oxidative stress, which is a recognized cause of cataract formation. As part o f a study investigating the combined effects of radiation exposure an d iron overload on multiple physiological systems, we focused on defining the effects of both treatments on eye biology. In this study, 12- week-old Sprague-Dawley rats were assigned to one of four experimental groups: normal iron/no radiation (Control/Sham), high iron/no radiat ion (Fe/Sham), normal iron/gamma radiation (3 Gy cumulative dose, fra ctionated at 0.375 Gy/d every other day for 16 d) (Control/Rad), and high iron/gamma radiation (Fe/Rad). Oxidative stress-induced DNA damag e, measured as concentration of the marker 8-hydroxy-2'-deoxyguanosine (8OHdG) in eye retinal tissue by enzyme-immunoanalysis did not show significant changes among treatments. However, there was an overall i ncrease in 8OHdG immunostaining density in retina sections due to radiation exposure (P = 0.05). Increased dietary iron and radiation expos ure had an interactive effect (P = 0.02) on 8OHdG immunostaining of t he retinal ganglion cell layer with iron diet increasing the signal in the group not exposed to radiation (P = 0.05). qPCR gene expression profiling of relevant target genes indicated upregulation of ferritin light chain (P = 0.09) as a result of dietary iron but no change in e xpression of the gene for ferritin heavy chain. Immunolocalization of light chain and heavy chain of the iron storage protein ferritin showed the expected distribution in the choroid, photoreceptor layer, inn er nuclear layer and in the inner plexiform layer that corresponded t o the synaptic terminals of bipolar cells. Evidence of stress and damage in the retina was also suggested by a decrease in expression of th e survival marker Bcl2 (P = 0.01) and the protective proteins clusterin (P = 0.04) and heat shock factor 1 (Hsf1, P < 0.001), as a result o f increased dietary iron. The effect of increased iron on expression of the antioxidant enzyme heme oxygenase 1 (Hmox1) had a significant interaction with the effect of radiation (P < 0.001). In summary, the results of this study indicate that both gamma radiation exposure and a moderate increase in dietary iron can contribute to deleterious cha nges in retinal health and physiology.

Morgan, Jennifer; Marshall, Grace; Theriot, Corey A.; Chacon, Natalia; Zwart, Sara; Zanello, Susana B.

2012-01-01

109

Hydrogel membranes of PVAl/ clay by gamma radiation  

NASA Astrophysics Data System (ADS)

In the last decades several studies concerning the new methods for drug delivery system have been investigated. A new field known as "smart therapy" involves devices and drug delivery systems to detect, identify and treat the site affected by the disease, not interfering with the biological system. Cutaneous Leishmaniasis is an endemic disease that is characterized by the development of single or multiple localized lesions on exposed areas of skin and one coetaneous treatment could be a potential solution. The aim of this study was to obtain polymeric hydrogel matrices of poly(vinylalcohol)(PVAl) and chitosan with inorganic nanoparticles, which can release a drug according to the need of the treatment of injury caused by leishmania on the skin. The hydrogels matrices were obtained with PVAl/ chitosan and PVAl/ chitosan 0.5; 1.0 and 1.5% laponite RD clay, crosslinked by ionizing gamma radiation with dose of 25 kGy. The techniques used for characterization were swelling, gel fraction, Fourier transform infrared spectroscopy (FTIR) and thermogravimetry (TGA). After synthesis, the samples were immersed in distilled water and weighed in periods of time until 60 h for the swelling determination. The obtained results have indicated that the swelling of the membranes increases with clay concentration, in consequence of ionic groups present in the clay.

de Oliveira, M. J. A.; Parra, D. F.; Amato, V. S.; Lugão, A. B.

2013-03-01

110

APPLICATION OF JITTER RADIATION: GAMMA-RAY BURST PROMPT POLARIZATION  

SciTech Connect

A high degree of polarization of gamma-ray burst (GRB) prompt emission has been confirmed in recent years. In this paper, we apply jitter radiation to study the polarization feature of GRB prompt emission. In our framework, relativistic electrons are accelerated by turbulent acceleration. Random and small-scale magnetic fields are generated by turbulence. We further determine that the polarization property of GRB prompt emission is governed by the configuration of the random and small-scale magnetic fields. A two-dimensional compressed slab, which contains a stochastic magnetic field, is applied in our model. If the jitter condition is satisfied, the electron deflection angle in the magnetic field is very small and the electron trajectory can be treated as a straight line. A high degree of polarization can be achieved when the angle between the line of sight and the slab plane is small. Moreover, micro-emitters with mini-jet structures are considered to be within a bulk GRB jet. The jet 'off-axis' effect is intensely sensitive to the observed polarization degree. We discuss the depolarization effect on GRB prompt emission and afterglow. We also speculate that the rapid variability of GRB prompt polarization may be correlated with the stochastic variability of the turbulent dynamo or the magnetic reconnection of plasmas.

Mao, Jirong [Astrophysical Big Bang Lab, RIKEN, Saitama 351-0198 (Japan); Wang, Jiancheng, E-mail: jirong.mao@riken.jp [Yunnan Observatory, Chinese Academy of Sciences, 650011 Kunming, Yunnan Province (China)

2013-10-10

111

Development of an alpha/beta/gamma detector for radiation monitoring  

NASA Astrophysics Data System (ADS)

For radiation monitoring at the site of nuclear power plant accidents such as Fukushima Daiichi, radiation detectors not only for gamma photons but also for alpha and beta particles are needed because some nuclear fission products emit beta particles and gamma photons and some nuclear fuels contain plutonium that emits alpha particles. We developed a radiation detector that can simultaneously monitor alpha and beta particles and gamma photons for radiation monitoring. The detector consists of three-layered scintillators optically coupled to each other and coupled to a photomultiplier tube. The first layer, which is made of a thin plastic scintillator (decay time: 2.4 ns), detects alpha particles. The second layer, which is made of a thin Gd2SiO5 (GSO) scintillator with 1.5 mol.% Ce (decay time: 35 ns), detects beta particles. The third layer made of a thin GSO scintillator with 0.4 mol.% Ce (decay time: 70 ns) detects gamma photons. By using pulse shape discrimination, the count rates of these layers can be separated. With individual irradiation of alpha and beta particles and gamma photons, the count rate of the first layer represented the alpha particles, the second layer represented the beta particles, and the third layer represented the gamma photons. Even with simultaneous irradiation of the alpha and beta particles and the gamma photons, these three types of radiation can be individually monitored using correction for the gamma detection efficiency of the second and third layers. Our developed alpha, beta, and gamma detector is simple and will be useful for radiation monitoring, especially at nuclear power plant accident sites or other applications where the simultaneous measurements of alpha and beta particles and gamma photons are required.

Yamamoto, Seiichi; Hatazawa, Jun

2011-11-01

112

Development of an alpha/beta/gamma detector for radiation monitoring  

SciTech Connect

For radiation monitoring at the site of nuclear power plant accidents such as Fukushima Daiichi, radiation detectors not only for gamma photons but also for alpha and beta particles are needed because some nuclear fission products emit beta particles and gamma photons and some nuclear fuels contain plutonium that emits alpha particles. We developed a radiation detector that can simultaneously monitor alpha and beta particles and gamma photons for radiation monitoring. The detector consists of three-layered scintillators optically coupled to each other and coupled to a photomultiplier tube. The first layer, which is made of a thin plastic scintillator (decay time: 2.4 ns), detects alpha particles. The second layer, which is made of a thin Gd{sub 2}SiO{sub 5} (GSO) scintillator with 1.5 mol.% Ce (decay time: 35 ns), detects beta particles. The third layer made of a thin GSO scintillator with 0.4 mol.% Ce (decay time: 70 ns) detects gamma photons. By using pulse shape discrimination, the count rates of these layers can be separated. With individual irradiation of alpha and beta particles and gamma photons, the count rate of the first layer represented the alpha particles, the second layer represented the beta particles, and the third layer represented the gamma photons. Even with simultaneous irradiation of the alpha and beta particles and the gamma photons, these three types of radiation can be individually monitored using correction for the gamma detection efficiency of the second and third layers. Our developed alpha, beta, and gamma detector is simple and will be useful for radiation monitoring, especially at nuclear power plant accident sites or other applications where the simultaneous measurements of alpha and beta particles and gamma photons are required.

Yamamoto, Seiichi [Kobe City College of Technology, 8-3, Gakuen-Higashi-machi, Nishi-ku, Kobe, 651-2194 (Japan); Hatazawa, Jun [Osaka University of Graduate School of Medicine, 2-2, Yamadaoka, Suita-shi, Osaka, 565-0871 (Japan)

2011-11-15

113

A gamma-ray testing technique for spacecraft. [considering cosmic radiation effects  

NASA Technical Reports Server (NTRS)

The simulated cosmic radiation effect on a spacecraft structure is evaluated by gamma ray testing in relation to structural thickness. A drawing of the test set-up is provided and measurement errors are discussed.

Gribov, B. S.; Repin, N. N.; Sakovich, V. A.; Sakharov, V. M.

1977-01-01

114

Branching fractions and CP-violating asymmetries in radiative B decays to eta K gamma  

E-print Network

We present measurements of the CP-violation parameters S and C for the radiative decay B0-->etaKS0gamma; for B-->etaKgamma we also measure the branching fractions and for B+-->etaK+gamma the time-integrated charge asymmetry ...

Zhao, M.

115

Standoff Performance of HPGe Detectors in Identification of Gamma-Ray Radiation Sources  

Microsoft Academic Search

The detection and identification of radiation sources at distances in the range of 15 meters or more is becoming increasingly important for illicit materials interdiction and the location of lost or orphan sources. In most locations, there is a considerable gamma-ray flux from natural background (NORM) and cosmic- induced nuclides. This gamma-ray flux varies with time, weather conditions, location, and

Ronald M. Keyser; Timothy R. Twomey; Sam Hitch

116

Preferential usage of the Fc receptor gamma chain in the T cell antigen receptor complex by gamma/delta T cells localized in epithelia  

PubMed Central

zeta and eta chains of the T cell antigen receptor (TCR) complex and the gamma chain of Fc receptors (FcR gamma) constitute a family of proteins important for the expression of, and signal transduction through, these receptors in hematopoietic cells. In zeta-deficient mice, TCR expression was reduced in most T cells. By contrast, CD8 alpha alpha + TCR-gamma/delta + intestinal intraepithelial lymphocytes in these mice expressed a normal level of TCR. Biochemical analysis of the TCR complex in these cells from zeta-deficient as well as normal mice revealed the predominant usage of FcR gamma. Furthermore, gamma/delta + T cells in epithelia of the skin and female reproductive organs from zeta-deficient mice also showed relatively high TCR expression, indicating the usage of FcR gamma. These observations demonstrate the preferential usage of FcR gamma by gamma/delta + T cells localized in epithelia of normal mice. PMID:8270881

1994-01-01

117

Extending the response of the sum coincidence spectrometer to multiple gamma radiation cascades  

E-print Network

EXTENDING THE RESPONSE OF THE SUM COINCIDENCE SPECTROMETEP TO MULTIPLE GAMMA RADIATION CASCADES A Thesis By VICTOR DEAN HELTON Submitted to the Graduate College of the Texas AEcM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August, l964, Major Subject: Physics EXTENDING THE RESPONSE OF THE SUM COINCIDENCE SPECTROMETER TO MULTIPLE GAMMA RADIATION CASCADES A Thesis By VICTOR DEAN HELTON Approved as to style and content by: i / C airman...

Helton, Victor Dean

2012-06-07

118

Isolation of cell cycle-dependent gamma ray-sensitive Chinese hamster ovary cell  

Microsoft Academic Search

A technique for the isolation of gamma ray-sensitive Chinese hamster ovary (CHO) cell mutants is described, which uses nylon cloth replica plating and photography with dark-field illumination to directly monitor colonies for growth after gamma irradiation. Two gamma raysensitive mutants were isolated using this method. One of these cells (XR-1) had a two-slope survival curve: an initial steep slope and

Thomas D. Stamato; Ronald Weinstein; Amato Giaccia; Laurie Mackenzie

1983-01-01

119

Roles of ionizing radiation in cell transformation  

SciTech Connect

Earlier the authors described a repair misrepair model (RMR-I) which is applicable for radiations of low LET, e.g., x rays and gamma rays. RMR-II was described later. Here is introduced a mathematical modification of the RMR model, RMR-III, which is intended to describe lethal effects caused by heavily ionizing tracks. 31 references, 4 figures.

Tobias, C.A.; Albright, N.W.; Yang, T.C.

1983-07-01

120

Intestinal endocrine cells in radiation enteritis  

SciTech Connect

In this study, the intestinal endocrine cells were investigated in 13 surgical specimens affected by radiation enteritis. Endocrine cells were studied by means of Grimelius' silver staining and immunostaining for chromogranin, a general marker of endocrine cells. Positively stained cells were quantified by counting their number per unit length of muscularis mucosa. Results in radiation enteritis were compared with matched control specimens by using Student's t test. Chromogranin immunostaining showed a statistically significant increase of endocrine cells in radiation enteritis specimens compared with controls both in small and large intestine (ileum, 67.5 +/- 23.5 cells per unit length of muscularis mucosa in radiation enteritis versus 17.0 +/- 6.1 in controls; colon, 40.9 +/- 13.7 cells per unit length of muscularis mucosa in radiation enteritis versus 9.5 +/- 4.1 in controls--p less than 0.005 in both instances). Increase of endocrine cells was demonstrated also by Grimelius' staining; however, without reaching statistical significance. It is not clear whether or not the increase of endocrine cells in radiation enteritis reported in this study is caused by a hyperplastic response or by a sparing phenomenon. We should consider that increased endocrine cells, when abnormally secreting their products, may be involved in some of the clinical features of radiation enteropathy. In addition, as intestinal endocrine cells produce trophic substances to the intestine, their increase could be responsible for the raised risk of developing carcinoma of the intestine in long standing radiation enteritis.

Pietroletti, R.; Blaauwgeers, J.L.; Taat, C.W.; Simi, M.; Brummelkamp, W.H.; Becker, A.E. (Academic Medical Centre, Amsterdam (Netherlands))

1989-08-01

121

Heterogenization of precious metal catalysts and enzymes by radiation-induced graft copolymerization. [Gamma or ultraviolet radiation  

Microsoft Academic Search

The feasibility of using radiation graft copolymerization for the preparation of supports suitable for the heterogenization of catalysts was examined. To bind metal complexes, radiation graft copolymers of p-styryldiphenylphosphine with a number of trunk polymers were produced. Similarly enzyme immobilization was successful on chemically modified p-nitrostyrene copolymers. Conditions for ..gamma.. and\\/or UV radiation grafting of styrene, p-styryldiphenylphosphine, vinyldiphenylphosphine and p-nitrostyrene

Levot

1983-01-01

122

RBE (relative biological effectiveness) of tritium beta radiation to gamma radiation and x-rays analyzed by both molecular and genetic methods  

SciTech Connect

The relative biological effectiveness (RBE) of tritium beta radiation to /sup 60/Co gamma radiation was determined using sex-linked recessive lethals (SLRL) induced in Drosophila melanogaster spermatozoa as the biological effect. The SLRL test, a measure of mutations induced in germ cells transmitted through successive generations, yields a linear dose-response curve in the range used in these experiments. From these ratios of the slopes of the /sup 3/H beta and the /sup 60/ Co gamma radiation linear dose response curves, an RBE of 2.7 is observed. When sources of error are considered, this observation suggests that the tritium beta particle is 2.7 /plus minus/ 0.3 times more effective per unit of energy absorbed in inducing gene mutations transmitted to successive generation than /sup 60/Co gamma radiation. Ion tracks with a high density of ions (high LET) are more efficient than tracks with a low ion density (low LET) in inducing transmissible mutations, suggesting interaction among products of ionization. Molecular analysis of x-ray induced mutations shows that most mutations are deletions ranging from a few base pairs as determined from sequence data to multi locus deletions as determined from complementation tests and Southern blots. 14 refs., 1 fig.

Lee, W.R.

1988-01-01

123

Mutation measurement in mammalian cells. IV: Comparison of gamma-ray and chemical mutagenesis.  

PubMed

The interaction of chemical mutagens with mammalian cells is much more complex than that of gamma-irradiation because of the different ways in which chemical agents react with cell and medium components. Nevertheless, the system previously described for analysis of mutagenesis by gamma-radiation appears applicable to chemical mutagenesis. The approach involves measurement of cell survival, use of caffeine to inhibit repair, analysis of mitotic index changes, and quantitation of microscopically visible structural changes in mitotic chromosomes. The behavior of a variety of chemical mutagens and nonmutagens in this system is described and compared with that of gamma-irradiation. The procedure is simple and the results reasonably quantitative though less so than those of gamma-irradiation. The procedure can be used for environmental monitoring, analysis of mutational events, and individual and epidemiological testing. Mutational events should be classified as primary or secondary depending on whether they represent initial genomic insult, or genomic changes resulting from primary mutation followed by structural changes due to metabolic actions. While caffeine has multiple effects on the mammalian genome, when used under the conditions specified here it appears to act principally as an inhibitor of mutation repair, and so affords a measure of the role of repair in the action of different mutagens on cells in the G2 phase of the life cycle. PMID:9776977

Puck, T T; Johnson, R; Webb, P; Yohrling, G

1998-01-01

124

Shelf life of ground beef patties treated by gamma radiation.  

PubMed

The effects of irradiation on microbial populations in ground beef patties vacuum package and irradiated frozen at target doses of 0.0, 1.0, 3.0, 5.0, and 7.0 kGy were determined. Irradiated samples were stored at 4 or -18 degrees C for 42 days, and mesophilic aerobic plate counts (APCs) were periodically determined. Fresh ground beef (initial APC of 10(2) CFU/g) treated with 3.0, 5.0, and 7.0 kGy was acceptable (< 10(7) CFU/g) for 42 days at 4 degrees C. The 1.0 kGy-treated beef samples were acceptable microbiologically (< 10(7) CFU/g) after 42 days but developed an unacceptable off-odor after 21 days. Shelf life diminished in fresh ground beef patties with an initial APC of 10(4) CFU/g. Only beef patties treated with 7.0 kGy were found to be acceptable at 42 days. Beef patties treated at 1.0 and 3.0 kGy reached spoilage APC levels (> 10(7) CFU/g) by day 14 and 21, respectively, whereas patties treated at 5.0 kGy did not spoil until 42 days. The nonirradiated control samples for both batches of ground beef spoiled within 7 days. Microbial counts in ground beef patties stored at -18 degrees C did not change over the 42-day period. Shelf life of ground beef patties stored at 4 degrees C may be extended with gamma radiation, especially at 5.0 and 7.0 kGy. Initial microbial load in ground beef samples was an important shelf life factor. PMID:9798162

Roberts, W T; Weese, J O

1998-10-01

125

Effects of gamma radiation on raspberries: safety and quality issues.  

PubMed

There is an ever-increasing global demand from consumers for high-quality foods with major emphasis placed on quality and safety attributes. One of the main demands that consumers display is for minimally processed, high-nutrition/low-energy natural foods with no or minimal chemical preservatives. The nutritional value of raspberry fruit is widely recognized. In particular, red raspberries are known to demonstrate a strong antioxidant capacity that might prove beneficial to human health by preventing free radical-induced oxidative stress. However, food products that are consumed raw, are increasingly being recognized as important vehicles for transmission of human pathogens. Food irradiation is one of the few technologies that address both food quality and safety by virtue of its ability to control spoilage and foodborne pathogenic microorganisms without significantly affecting sensory or other organoleptic attributes of the food. Food irradiation is well established as a physical, nonthermal treatment (cold pasteurization) that processes foods at or nearly at ambient temperature in the final packaging, reducing the possibility of cross contamination until the food is actually used by the consumer. The aim of this study was to evaluate effects of gamma radiation on raspberries in order to assess consequences of irradiation. Freshly packed raspberries (Rubus idaeus L.) were irradiated in a (60)Co source at several doses (0.5, 1, or 1.5 kGy). Bioburden, total phenolic content, antioxidant activity, physicochemical properties such as texture, color, pH, soluble solids content, and acidity, and sensorial parameters were assessed before and after irradiation and during storage time up to 14 d at 4°C. Characterization of raspberries microbiota showed an average bioburden value of 10(4) colony-forming units (CFU)/g and a diverse microbial population predominantly composed of two morphological types (gram-negative, oxidase-negative rods, 35%, and filamentous fungi, 41%). The inactivation studies on the raspberries mesophilic population indicated a one log reduction of microbial load (95% inactivation efficiency for 1.5 kGy), in the surviving population mainly constituted by filamentous fungi (79-98%). The total phenolic content of raspberries indicated an increase with radiation doses and a decrease with storage time. The same trend was found for raspberries' antioxidant capacity with storage time. Regarding raspberries physicochemical properties, irradiation induced a significant decrease in firmness compared with nonirradiated fruit. However, nonirradiated and irradiated fruit presented similar physicochemical and sensory properties during storage time. Further studies are needed to elucidate the benefits of irradiation as a raspberries treatment process. PMID:23514071

Verde, S Cabo; Trigo, M J; Sousa, M B; Ferreira, A; Ramos, A C; Nunes, I; Junqueira, C; Melo, R; Santos, P M P; Botelho, M L

2013-01-01

126

Pair Production and Radiation Effects in Clouds Illuminated by Gamma Ray Sources  

E-print Network

Many classes of gamma-ray sources, such as gamma-ray bursts, blazars, Seyfert galaxies, and galactic black hole sources are surrounded by large amounts of gas and dust. X-rays and gamma-rays that traverse this material will be attenuated by Compton scattering and photoelectric absorption. One signature of an intervening scattering cloud is radiation-hardening by electrons that have been scattered and heated by the incident radiation, as illustrated by a Monte Carlo calculation. Compton scattering provides backscattered photons that will attenuate subsequent gamma rays through \\gamma\\gamma pair-production processes. We calculate the pair efficiency for a cloud illuminated by gamma-ray burst radiation. An analytic calculation of the flux of X-rays and gamma rays Thomson scattered by an intervening cloud is presented. Illuminated clouds near GRBs will form relativistic plasmas containing large numbers of electron-positron pairs that can be detected within ~1-2 days of the explosion before expanding and dissipati...

Dermer, C D; Liang, E P

2000-01-01

127

Study of a number of biochemical indices of the blood and tissue of dogs after prolonged gamma-radiation  

NASA Technical Reports Server (NTRS)

The glucose content in blood and the lipid content in serum and tissues of dogs exposed to chronic radiation for 3 and 5 years were studied. In tissues of these animals, the concentration of soluble DNA and DNA contained in DNP was studied in the spleen, lymph node (deep cervical node) and bone marrow of thigh bones. Results indicate that chronic gamma irradiation significantly changes concentrations of glucose in the blood, and that of several lipids in serum and tissues. A reduction in the concentration of DNP in tested organs reflects changes in the relative number of cells with various nuclear cytoplasmic ratios; most pronounced changes in biochemical indices occur in dogs exposed to chronic gamma radiation in doses of 125 rad per year.

Alers, I.; Alersova, E.; Praslichka, T.; Mishurova, E.; Sedlakova, A.; Malatova, Z.; Akhunov, A. A.; Markelov, B. A.

1974-01-01

128

Isodose mapping of terrestrial gamma radiation dose rate of Selangor state, Kuala Lumpur and Putrajaya, Malaysia.  

PubMed

A terrestrial gamma radiation survey for the state of Selangor, Kuala Lumpur and Putrajaya was conducted to obtain baseline data for environmental radiological health practices. Based on soil type, geological background and information from airborne survey maps, 95 survey points statistically representing the study area were determined. The measured doses varied according to geological background and soil types. They ranged from 17 nGy h(-1) to 500 nGy h(-1). The mean terrestrial gamma dose rate in air above the ground was 182 ± 81 nGy h(-1). This is two times higher than the average dose rate of terrestrial gamma radiation in Malaysia which is 92 nGy h(-1) (UNSCEAR 2000). An isodose map was produced to represent exposure rate from natural sources of terrestrial gamma radiation. PMID:24787672

Sanusi, M S M; Ramli, A T; Gabdo, H T; Garba, N N; Heryanshah, A; Wagiran, H; Said, M N

2014-09-01

129

Evaluation of the Combined Effects of Gamma Radiation and High Dietary Iron on Peripheral Leukocyte Distribution and Function  

NASA Technical Reports Server (NTRS)

NASA is concerned with the health risks to astronauts, particularly those risks related to radiation exposure. Both radiation and increased iron stores can independently increase oxidative damage, resulting in protein, lipid and DNA oxidation. Oxidative stress increases the risk of many health problems including cancer, cataracts, and heart disease. This study, a subset of a larger interdisciplinary investigation of the combined effect of iron overload on sensitivity to radiation injury, monitored immune parameters in the peripheral blood of rats subjected to gamma radiation, high dietary iron or both. Specific immune measures consisted of (A) peripheral leukocyte distribution; (B) plasma cytokine levels; (C) cytokine production profiles following whole blood stimulation of either T cells or monocytes.

Crucian, Brian E.; Morgan, Jennifer L. L.; Quiriarte, Heather A.; Sams, Clarence F.; Smith, Scott M.; Zwart, Sara R.

2011-01-01

130

Comptonization of diffuse ambient radiation by a relativistic jet: The source of gamma rays from blazars?  

NASA Technical Reports Server (NTRS)

Recent Energy Gamma Ray Experiment Telescope (EGRET) observations of blazars have revealed strong, variable gamma-ray fluxes with no signatures of gamma-ray absorption by pair production. This radiation probably originates from the inner parts of relativistic jets which are aimed nearly toward us. On sub-parsec scales, the jet will be pervaded by radiation from the broad-line region, as well as by photons from the central continuum source (some of which will be scattered by thermal plasma). In a frame moving with the relativistic outflow, the energy of this ambient radiation would be enhanced. This radiation would be Comptonized by both cold and relativistic electrons in the jet, yielding (in the observer's frame) a collimated beam of X-rays and gamma rays. On the assumption that this process dominates self-Comptonization of synchrotron radiation, we develop a self-consistent model for variable gamma-ray emission, involving a single population of relativistic electrons accelerated by a disturbance in the jet. The spectral break between the X-ray and gamma-ray band, observed in 3C 279 and deduced for other blazars, results from inefficient radiative cooling of lower energy electrons. The existence of such a break strongly favors a model involving Comptonization of an external radiation field over a synchrotron self-Compton model. We derive constraints on such model parameters as the location and speed of the source, its dimensions and internal physical parameters, the maximum photon energies produced in the source, and the density and distribution of ambient radiation. Finally, we discuss how observations might discriminate between our model and alternative ones invoking Comptonization of ambient radiation.

Sikora, Marek; Begelman, Mitchell C.; Rees, Martin J.

1994-01-01

131

Reliability studies on Si PIN photodiodes under Co-60 gamma radiation  

SciTech Connect

Silicon PIN photodiodes were fabricated with 250 nm SiO{sub 2} antireflective coating (ARC). The changes in the electrical characteristics, capacitance-voltage characteristics and spectral response after gamma irradiation are systematically studied to estimate the radiation tolerance up to 10 Mrad. The different characteristics studied in this investigation demonstrate that Si PIN photodiodes are suitable for high radiation environment.

Prabhakara Rao, Y. P. [Integrated Circuits Division, Bharat Electronics Limited, Bangalore, Karnataka-560013 (India) and Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore, Karnataka-570006 (India); Praveen, K. C.; Gnana Prakash, A. P. [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore, Karnataka-570006 (India); Rani, Y. Rejeena [Integrated Circuits Division, Bharat Electronics Limited, Bangalore, Karnataka-560013 (India)

2013-02-05

132

Gamma Ray Bursts from Interaction of Relativistic Flows with Radiation Fields  

E-print Network

Relativistic flows resulting from sudden explosive events upscatter ambient interstellar photons of local radiation fields. For Lorentz factor $ > 100$ and dense optical - UV radiation fields the emergent signal is a typical gamma ray burst. Presumably the explosions occur in dense globular clusters or in galactic nuclei, at cosmological distances.

Amotz Shemi

1994-04-20

133

THE CALCULATION OF THE GAMMA SHIELDING PROTECTION IN EXPANDING RADIATION FIELDS  

Microsoft Academic Search

The usual, purely exponential calculation of shield thicknesses for ; gamma radiators supplies minimum values which in many cases cannot provide the ; desired protection, since the influence of secondary radiation causcd by single ; or multiple Compton processes is not taken into consideration in the exponential ; calculation. By applying the dose build-up factor B, which can be represented

Plesch

1958-01-01

134

Extragalactic gamma Radiation: Use of Galaxy Counts as a Galactic Tracer.  

National Technical Information Service (NTIS)

A derivation of the extragalactic diffuse gamma radiation with energies above 35 MeV was carried out using galaxy counts as a tracer of galactic matter. The extragalactic radiation has a differential photon number spectrum which may be expressed as a powe...

D. J. Thompson, C. E. Fichtel

1982-01-01

135

Formation of radiation defects in bismuth and antimony chalcogenide solid solutions under small doses of gamma radiation  

NASA Astrophysics Data System (ADS)

The paper presents an experimental investigation of the effects of small doses of reactor gamma-rays (simulating cosmic gamma rays) on solid solutions of n-type Ni2Te(2.4)Se(0.6) doped with ZnCl2, and p-type Sb(1.48)Bi(0.52)Te3 doped with Te and Pb. A model for the formation of radiation defects is proposed which is based on the impact-ionization interaction of gamma rays with the crystal lattice.

Gorelik, S. S.; Okhotin, A. S.; Sklokin, F. N.

136

Flash polymerization of silicone oils using gamma radiation for conserving waterlogged wood  

E-print Network

radiation doses induced polymerization in the oil to such an extent the cells swelled and became extremely distorted. However, for the same fully bulked samples, small radiation doses produced little to moderate polymerization of the oil in the wood cells...

Gidden, Richmond Paul

2012-06-07

137

DNA damage in hair root cells as a biomarker for gamma ray exposure.  

PubMed

The purpose of the present research is to examine whether human hair root cells can be used for dose assessment after in vitro exposure to ionizing radiation. Hair root samples plucked from random head regions were collected from 5 healthy human subjects. Some of these hair samples were used as control and some were irradiated with 0.5-5Gy of gamma ray using a Cs-137 gamma irradiator at a dose rate of 0.14Gy/s. DNA damage (single-strand breaks) was determined in hair root cells of these samples using the comet assay technique. The comet assay parameters, tail length (TL) and tail moment (TM), showed a significant increase (p<.05) in single-strand DNA breaks in hair roots cells of the exposed samples compared to control. A linear dose-effect relationship was observed when tail moment or tail length was plotted against the log of the radiation dose. This research suggests a possible use of human hair root cell DNA damage as a biomarker especially for low dose radiation. PMID:23811168

Tepe Çam, Semra; Seyhan, Nesrin

2013-08-30

138

Mold and aflatoxin reduction by gamma radiation of packed hot peppers and their evolution during storage.  

PubMed

The effect of gamma radiation on moisture content, total mold counts, Aspergillus counts, and aflatoxins of three hot pepper hybrids (Sky Red, Maha, and Wonder King) was investigated. Whole dried peppers packed in polyethylene bags were gamma irradiated at 0 (control), 2, 4, and 6 kGy and stored at 25°C for 90 days. Gamma radiation proved to be effective in reducing total mold and Aspergillus counts in a dose-dependent relationship. Total mold counts in irradiated peppers immediately after treatments were significantly lowered compared with those in nonirradiated samples, achieving 90 and 99% reduction at 2- and 4-kGy doses, respectively. Aspergillus counts were significantly reduced, by 93 and 97%, immediately after irradiation at doses of 2 and 4 kGy, respectively. A radiation dose of 6 kGy completely eliminated the population of total molds and Aspergillus fungi. The evolution of total molds in control and irradiated samples indicated no further fungal proliferation during 3 months of storage at 25°C. Aflatoxin levels were slightly affected by radiation doses of 2 and 4 kGy and showed a nonsignificant reduction of 6% at the highest radiation dose of 6 kGy. The distinct effectiveness of gamma radiation in molds and aflatoxins can be explained by the target theory of food irradiation, which states that the likelihood of a microorganism or a molecule being inactivated by gamma rays increases as its size increases. PMID:22856582

Iqbal, Qumer; Amjad, Muhammad; Asi, Muhammad Rafique; Ariño, Agustin

2012-08-01

139

Mutagenesis and repair by low doses of alpha radiation in mammalian cells.  

PubMed

Low doses of alpha radiation in basements have been causally implicated in lung cancer. Previous studies have concentrated on high dose effects, for which no significant repair was found. In the present study, the methodology for measuring mutation by quantitating mitotic breaks and gaps was found to be applicable to G2-phase Chinese hamster ovary cells irradiated with 10-50 cGy of alpha radiation. The mutation yield in such cells closely resembles that of gamma irradiation. Caffeine, which inhibits repair, produces the same straight line increase of alpha and gamma mutation yields plotted against the dose. In the absence of caffeine, the repair of alpha radiation lesions is almost twice as great as for gamma radiation. Mitotic index changes substantiate these interpretations. It is proposed that the higher ion density associated with alpha radiation may result in fewer lesions being missed by the repair processes. The quantitation of chromosomal lesions for G2 cells exposed to low doses of alpha radiation, gamma radiation, or chemical mutagens in the presence and absence of caffeine is a rapid and reproducible methodology. Protection from mutational disease in a fashion similar to the use of sanitation for infectious disease appears practical. PMID:12198179

Puck, Theodore T; Johnson, Robert; Webb, Patricia; Cui, Helen; Valdez, Joseph G; Crissman, Harry

2002-09-17

140

Distribution of terrestrial gamma radiation dose rate in the eastern coastal area of Odisha, India.  

PubMed

Terrestrial gamma radiation is one of the important radiation exposures on the earth's surface that results from the three primordial radionuclides (226)Ra, (232)Th and (40)K. The elemental concentration of these elements in the earth's crust could result in the anomalous variation of the terrestrial gamma radiation in the environment. The geology of the local area plays an important role in distribution of these radioactive elements. Environmental terrestrial gamma radiation dose rates were measured around the eastern coastal area of Odisha with the objective of establishing baseline data on the background radiation level. The values of the terrestrial gamma radiation dose rate vary significantly at different locations in the study area. The values of the terrestrial gamma dose rate ranged from 77 to 1651 nGy h(-1), with an average of 230 nGy h(-1). During the measurement of the terrestrial gamma dose rate, sand and soil samples were also collected for the assessment of natural radionuclides. The activities of (226)Ra, (232)Th and (40)K from these samples were measured using a gamma-ray spectrometry with a NaI(Tl) detector. Activity concentrations of (226)Ra, (232)Th and (40)K ranged from 15.6 to 69 Bq kg(-1) with an average of 46.7 Bq kg(-1), from 28.9 to 973 Bq kg(-1) with an average of 250 Bq kg(-1) and from 139 to 952 Bq kg(-1) with an average of 429, respectively. The detailed significance of these studies has been discussed from the radiation protection point of view. PMID:22874894

Gusain, G S; Rautela, B S; Sahoo, S K; Ishikawa, T; Prasad, G; Omori, Y; Sorimachi, A; Tokonami, S; Ramola, R C

2012-11-01

141

Investigation of {gamma} radiation from {sup 178}Hf in the respective (n, n Prime {gamma}) reaction  

SciTech Connect

The spectra and angular distributions of gamma rays were measured in the reaction {sup 178}Hf(n, n Prime {gamma}) induced by a beam of fast reactor neutrons. Data onmultipole mixtures in gamma transitions and a lot of new information about gamma transitions of energy 1.5 to 3.0 MeV were obtained. A comparison of these results with information known from the respective (n, {gamma}) reaction made it possible to refine the schemes of deexcitation of {sup 178}Hf levels at energies above 1.5 MeV, to determine more precisely features of these levels, and to introduce new levels and rotation bands at excitation energies of about 2MeV.

Govor, L. I.; Demidov, A. M.; Kurkin, V. A., E-mail: kurkin@polyn.kiae.su; Mikhailov, I. V. [National Research Center Kurchatov Institute (Russian Federation)

2012-12-15

142

Mutation inhibition by beta-estradiol after low doses of gamma-irradiation of mammalian cells.  

PubMed

The methodology previously described for measuring mutagenesis has been applied to the study of mutation prevention in immortalized G2 phase human lymphocytes exposed to 25 and 50 cGy of gamma-radiation. Caffeine prevents repair of mutations. Two times 10(-4) M beta-estradiol applied for 2.5 h markedly decreases induced mutations and affects male and female cells similarly. Quantitative measurement of mutagenesis in cells of different individuals and the effect of various agents on mutation yield should be important in prevention of cancer and other mutational disease. PMID:11225056

Puck, T T; Johnson, R; Webb, P

1999-03-01

143

Snowpack snow water equivalent measurement using the attenuation of cosmic gamma radiation  

SciTech Connect

Incoming, background cosmic radiation constantly fluxes through the earth`s atmosphere. The high energy gamma portion of this radiation penetrates many terrestrial objects, including the winter snowpack. The attenuation of this radiation is exponentially related to the mass of the medium through which it penetrates. For the past three winters, a device measuring cosmic gamma radiation--and its attenuation through snow--has been installed at the Central Sierra Snow Laboratory, near Donner Pass, California. This gamma sensor, measuring energy levels between 5 and 15 MeV, has proved to be an accurate, reliable, non-invasive, non-mechanical instrument with which to measure the total snow water equivalent of a snowpack. This paper analyzes three winters` worth of data and discusses the physics and practical application of the sensor for the collection of snow water equivalent data from a remote location.

Osterhuber, R. [Univ. of California, Soda Springs, CA (United States). Central Sierra Snow Lab.; Fehrke, F. [California Dept. of Water Resources, Sacramento, CA (United States); Condreva, K. [Sandia National Labs., Livermore, CA (United States)

1998-05-01

144

Galactic plane gamma radiation. [SAS-2 and COS-b observations  

NASA Technical Reports Server (NTRS)

Analysis of the complete data from SAS-2 accentuates the fact that the distribution of galactic gamma radiation has several similarities to that of other large-scale tracers of galactic structure. The gamma radiation shows no statistically significant variation with direction, and the spectrum seen along the plane is the same as that derived for the galactic component of the gamma radiation at high latitude. This uniformity of the energy spectrum, the smooth decrease in intensity as a function of galactic latitude, and the absence of any galactic gamma ray sources at high latitudes argue in favor of a diffuse origin for most of the galactic gamma radiation, rather than a collection of localized sources. All the localized sources identified in the SAS 2 data are associated with known compact objects on the basis of observed periodicities, except gamma195+5 Excluding those SAS 2 sources observed by COS-B and two other excesses (CG 312-1 and CG333+0) visible in the SAS 2 data associated with tangential directions of spiral arms, thera are eight remaining new sources in the COS-B catalog.

Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Fichtel, C. E.; Ogelman, H. B.; Tuner, T.; Ozel, M. E.

1978-01-01

145

Radiation chemistry of salt-mine brines and hydrates. [Gamma radiation  

SciTech Connect

Certain aspects of the radiation chemistry of NaCl-saturated MgCl/sub 2/ solutions and MgCl/sub 2/ hydrates at temperatures in the range of 30 to 180/sup 0/C were investigated through experiments. A principal objective was to establish the values for the yields of H/sub 2/ (G(H/sub 2/)) and accompanying oxidants in the gamma-ray radiolysis of concentrated brines that might occur in waste repositories in salt. We concluded that G(H/sub 2/) from gamma-irradiated brine solution into a simultaneously irradiated, deaerated atmosphere above the solution is between 0.48 and 0.49 over most of the range 30 to 143/sup 0/C. The yield is probably somewhat lower at the lower end of this range, averaging 0.44 at 30 to 45/sup 0/C. Changes in the relative amounts of MgCl/sub 2/ and NaCl in the NaCl-saturated solutions have negligible effects on the yield. The yield of O/sub 2/ into the same atmosphere averages 0.13, independent of the temperature and brine composition, showing that only about 50% of the radiolytic oxidant that was formed along with the H/sub 2/ was present as O/sub 2/. We did not identify the species that compose the remainder of the oxidant. We concluded that the yield of H/sub 2/ from a gamma-irradiated brine solution into a simultaneously irradiated atmosphere containing 5 to 8% air in He may be greater than the yield in deaerated systems by amounts ranging from 0% for temperatures of 73 to 85/sup 0/C, to about 30 and 40% for temperatures in the ranges 100 to 143/sup 0/C and 30 to 45/sup 0/C, respectively. We did not establish the mechanism whereby the air affected the yields of H/sub 2/ and O/sub 2/. The values found in this work for G(H/sub 2/) in deaerated systems are in approximate agreement with the value of 0.44 for the gamma-irradiation yield of H/sub 2/ in pure H/sub 2/O at room temperature. They are also in agreement with the values predicted by extrapolation from the findings of previous researchers for the value for G(H/sub 2/) in 2 M NaCl solutions at room temperature.

Jenks, G.H.; Walton, J.R.; Bronstein, H.R.; Baes, C.F. Jr.

1981-07-01

146

X-ray and gamma-ray radiation from the switched-off radiopulsars  

Microsoft Academic Search

Pulsars which cease generating electron-positron avalanches feature magnetic dipole radiation that is transformed at the 'light radius' into hard radiation. The X-ray and gamma rays are produced in a plasma caused by ionization of interstellar neutral hydrogen. The dipole radiation pushes away interstellar material once the positron-electron avalanche ejection has stopped. However, interstellar neutral hydrogen is captured by the pulsar

A. I. Tsygan

1983-01-01

147

In situ measurement of refractive index changes induced by gamma radiation in germanosilicate fibers  

Microsoft Academic Search

We propose a technique to measure in situ the refractive index changes induced by ionizing radiation in single-mode optical fibers. This change can be derived from the channel drift appearing in narrow channel wavelength-division-multiplexing couplers exposed to gamma radiation. We measured a radiation-induced refractive index change of about 5 10-6\\/kGy[H2O] at low doses and 5 10-7\\/kGy[H2O] at higher doses. No

A. Fernandez Fernandez; B. Brichard; F. Berghmans

2003-01-01

148

Extract of Xylopia aethiopica (Annonaceae) protects against gamma-radiation induced testicular damage in Wistar rats.  

PubMed

Ionizing radiation is an important environmental risk factor and, a major therapeutic agent for cancer treatment. This study was designed to evaluate the protective effect of extract of Xylopia aethiopica (XA) on gamma-radiation-induced testicular damage in rats. Vitamin C (VC) served as the reference antioxidant during the study. The study consists of 4 groups of 11 rats each. Group I received corn oil (vehicle), groups II and IV were pretreated with XA (250 mg/kg) and VC (250mg/kg) for 6 weeks before and 8 weeks after exposure to gamma-radiation; group III was exposed to a single dose of gamma-radiation (5 Gy). Biochemical analysis revealed that gamma-irradiation caused a significant increase (p < .05) in serum and testicular lipid peroxidation (LPO) levels by 217% and 221%, respectively. Irradiated rats had markedly decreased testicular catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST), and reduced glutathione (GSH) levels. Irradiation resulted in 59% and 40% decreases in spermatozoa motility and live/dead sperm count, respectively, and a 161% increase in total sperm abnormalities. Histologically, testes of the irradiated rats showed extensive degenerative changes in the seminiferous tubules and defoliation of spermatocytes. Supplementation of XA and VC reversed the adverse effects of gamma-radiation on biochemical and histological indices of the rats. These findings demonstrated that Xylopia aethiopica has a protective effect by inhibiting oxidative damage in testes of irradiated rats. PMID:21305847

Adaramoye, Oluwatosin Adekunle; Adedara, Isaac Adegboyega; Popoola, Bosede; Farombi, Ebenezer Olatunde

2010-01-01

149

Response of thyroid follicular cells to gamma irradiation compared to proton irradiation. I. Initial characterization of DNA damage, micronucleus formation, apoptosis, cell survival, and cell cycle phase redistribution  

NASA Technical Reports Server (NTRS)

The RBE of protons has been assumed to be equivalent to that of photons. The objective of this study was to determine whether radiation-induced DNA and chromosome damage, apoptosis, cell killing and cell cycling in organized epithelial cells was influenced by radiation quality. Thyroid-stimulating hormone-dependent Fischer rat thyroid cells, established as follicles, were exposed to gamma rays or proton beams delivered acutely over a range of physical doses. Gamma-irradiated cells were able to repair DNA damage relatively rapidly so that by 1 h postirradiation they had approximately 20% fewer exposed 3' ends than their counterparts that had been irradiated with proton beams. The persistence of free ends of DNA in the samples irradiated with the proton beam implies that either more initial breaks or a quantitatively different type of damage had occurred. These results were further supported by an increased frequency of chromosomal damage as measured by the presence of micronuclei. Proton-beam irradiation induced micronuclei at a rate of 2.4% per gray, which at 12 Gy translated to 40% more micronuclei than in comparable gamma-irradiated cultures. The higher rate of micronucleus formation and the presence of larger micronuclei in proton-irradiated cells was further evidence that a qualitatively more severe class of damage had been induced than was induced by gamma rays. Differences in the type of damage produced were detected in the apoptosis assay, wherein a significant lag in the induction of apoptosis occurred after gamma irradiation that did not occur with protons. The more immediate expression of apoptotic cells in the cultures irradiated with the proton beam suggests that the damage inflicted was more severe. Alternatively, the cell cycle checkpoint mechanisms required for recovery from such damage might not have been invoked. Differences based on radiation quality were also evident in the alpha components of cell survival curves (0.05 Gy(-1) for gamma rays, 0.12 Gy(-1) for protons), which suggests that the higher level of survival of gamma-irradiated cells could be attributed to the persistence of nonlethally irradiated thyrocytes and/or the capacity to repair damage more effectively than cells exposed to equal physical doses of protons. The final assessment in this study was radiation-induced cell cycle phase redistribution. Gamma rays and protons produced a similar dose-dependent redistribution toward a predominantly G(2)-phase population. From our cumulative results, it seems likely that a majority of the proton-irradiated cells would not continue to divide. In conclusion, these findings suggest that there are quantitative and qualitative differences in the biological effects of proton beams and gamma rays. These differences could be due to structured energy deposition from the tracks of primary protons and the associated high-LET secondary particles produced in the targets. The results suggest that a simple dose-equivalent approach to dosimetry may be inadequate to compare the biological responses of cells to photons and protons.

Green, L. M.; Murray, D. K.; Bant, A. M.; Kazarians, G.; Moyers, M. F.; Nelson, G. A.; Tran, D. T.

2001-01-01

150

GaAs Solar Cell Radiation Handbook  

NASA Technical Reports Server (NTRS)

The handbook discusses the history of GaAs solar cell development, presents equations useful for working with GaAs solar cells, describes commonly used instrumentation techniques for assessing radiation effects in solar cells and fundamental processes occurring in solar cells exposed to ionizing radiation, and explains why radiation decreases the electrical performance of solar cells. Three basic elements required to perform solar array degradation calculations: degradation data for GaAs solar cells after irradiation with 1 MeV electrons at normal incidence; relative damage coefficients for omnidirectional electron and proton exposure; and the definition of the space radiation environment for the orbit of interest, are developed and used to perform a solar array degradation calculation.

Anspaugh, B. E.

1996-01-01

151

Slow elimination of phosphorylated histone {gamma}-H2AX from DNA of terminally differentiated mouse heart cells in situ  

SciTech Connect

Phosphorylation of replacement histone H2AX occurs in megabase chromatin domains around double-strand DNA breaks (DSBs) and this modification (called {gamma}-H2AX) may serve as a useful marker of genome damage and repair in terminally differentiated cells. Here using immunohistochemistry we studied kinetics of {gamma}-H2AX formation and elimination in the X-irradiated mouse heart and renal epithelial tissues in situ. Unirradiated tissues have 3-5% {gamma}-H2AX-positive cells and in tissues fixed 1 h after X-irradiation {gamma}-H2AX-positive nuclei are induced in a dose-dependent manner approaching 20-30% after 3 Gy of IR. Analysis of mouse tissues at different times after 3 Gy of IR showed that maximal induction of {gamma}-H2AX in heart is observed 20 min after IR and then is decreased slowly with about half remaining 23 h later. In renal epithelium maximum of the {gamma}-H2AX-positive cells is observed 40 min after IR and then decreases to control values in 23 h. This indicates that there are significant variations between non-proliferating mammalian tissues in the initial H2AX phosphorylation rate as well as in the rate of {gamma}-H2AX elimination after X-irradiation, which should be taken into account in the analysis of radiation responses.

Gavrilov, Boris [Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg (Russian Federation); Vezhenkova, Irina [Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg (Russian Federation); Firsanov, Denis [Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg (Russian Federation); Solovjeva, Liudmila [Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg (Russian Federation); Svetlova, Maria [Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg (Russian Federation); Mikhailov, Vyacheslav [Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg (Russian Federation); Tomilin, Nikolai [Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg (Russian Federation)]. E-mail: nvtom@hotmail.com

2006-09-08

152

LETHAL EFFECTS OF GAMMA RADIATION OF NEUROSPORA CONIDIA  

Microsoft Academic Search

Buffered aqueous solutions of AET showed marked sensitivity to ionizing ; radiation. Two methods of determining the concentration of sulfhydryl groups ; were used with comparable results. The destruction of sulfhydryl groups is ; directly dependent on radiation dose. The high yield suggests that a chain-type ; reaction may account for the radiation sensitivity. I deoxygenated samples, the ; radtation

Gafford

1957-01-01

153

Peroxisome proliferator-activated receptor gamma overexpression suppresses proliferation of human colon cancer cells  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer We examined the correlation between PPAR{gamma} expression and cell proliferation. Black-Right-Pointing-Pointer PPAR{gamma} overexpression reduces cell viability. Black-Right-Pointing-Pointer We show the synergistic effect of cell growth inhibition by a PPAR{gamma} agonist. -- Abstract: Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) plays an important role in the differentiation of intestinal cells and tissues. Our previous reports indicate that PPAR{gamma} is expressed at considerable levels in human colon cancer cells. This suggests that PPAR{gamma} expression may be an important factor for cell growth regulation in colon cancer. In this study, we investigated PPAR{gamma} expression in 4 human colon cancer cell lines, HT-29, LOVO, DLD-1, and Caco-2. Real-time polymerase chain reaction (PCR) and Western blot analysis revealed that the relative levels of PPAR{gamma} mRNA and protein in these cells were in the order HT-29 > LOVO > Caco-2 > DLD-1. We also found that PPAR{gamma} overexpression promoted cell growth inhibition in PPAR{gamma} lower-expressing cell lines (Caco-2 and DLD-1), but not in higher-expressing cells (HT-29 and LOVO). We observed a correlation between the level of PPAR{gamma} expression and the cells' sensitivity for proliferation.

Tsukahara, Tamotsu, E-mail: ttamotsu@shinshu-u.ac.jp [Department of Integrative Physiology and Bio-System Control, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan)] [Department of Integrative Physiology and Bio-System Control, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Haniu, Hisao [Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan)] [Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan)

2012-08-03

154

Repair of radiation damage in mammalian cells  

SciTech Connect

The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis.

Setlow, R.B.

1981-01-01

155

HEALTH HAZARDS FROM FISSION PRODUCTS AND FALLOUT. II. GAMMA RADIATION FROM NUCLEAR WEAPONS FALLOUT  

Microsoft Academic Search

Methods of estimating the gamma radiation from fallout and fission ; products are discussed. (Gamma spectra and 0.1 Mev energy intervals for 101 ; fissions were calculated for the following times after fission: 1. 2. 5. and 10 ; hours; years. Fifty energy groups of width 1.300 to 1.399 Mev were used, ; covering the range 0.0 to 5.0 Mev.

Bjornerstedt

1960-01-01

156

Small scale local gamma ray features. [galactic radiation spectra  

NASA Technical Reports Server (NTRS)

In order to draw implications from nearby gamma-ray emission, the different ways that can be used to obtain an estimate of the amount of matter on each line of sight are investigated. It is shown that, within present uncertainties, the cosmic ray intensity inside molecular clouds within 1 kpc from the sun is the same as the cosmic ray intensity measured at the sun. In the last part, what can be learned from a comparison of far infrared and gamma-ray data is discussed.

Puget, J. L.; Ryter, C.; Serra, G.

1977-01-01

157

Gamma radiation induced degradation in PE-PP block copolymer  

SciTech Connect

In the present investigation, effect of gamma irradiation on the PP-PE block copolymer has been studied. The polymer has been subjected to gamma irradiation from 100 to 500 Mrad dosages. Characterization of the polymer using XRD and FTIR was done both before irradiation and after irradiation in each step. Effect of irradiation on the electrical properties of the material has also been studied. FTIR study shows that the sample loses C - C stretching mode of vibration but gains C=C stretching mode of vibration after irradiation. Present investigation clearly indicates that though the electrical conductivity increases in the material, it undergoes degradation and shows brittleness due to irradiation.

Ravi, H. R.; Sreepad, H. R.; Ahmed, Khaleel; Govindaiah, T. N. [P.G. Department of Physics, Government College (Autonomous), Mandya - 571401, Karnataka State (India)

2012-06-05

158

Asymmetrical SRAM Cells For Radiation Tests  

NASA Technical Reports Server (NTRS)

Features of circuits altered to increase or decrease sensitivity to radiation. State-space analysis used to analyze single-event-upset behavior of memory cell. When voltage on node a is set at one of indicated initial values Vao and then released, voltages on nodes a and b then follow indicated trajectory to final logic "one" or logic "zero" state. Ability to do this important for design of radiation-detecting integrated circuits (deliberately made more sensitive to ionizing radiation) and "radiation-hardened" integrated circuits - those intended to be relatively invulnerable to intense radiation.

Buehler, Martin G.

1989-01-01

159

SAS-2 observations of the high energy gamma radiation from the Vela region  

NASA Technical Reports Server (NTRS)

Data from a scan of the galactic plane by the SAS-B high energy gamma ray experiment in the region 250 deg smaller than 12 smaller than 290 deg show a statistically significant excess over the general radiation from the galactic plane for gamma radiation of energy larger than 100 MeV. If the enhanced gamma radiation results from interactions of cosmic rays with galactic matter, as the energy spectrum suggests, it seems reasonable to associate the enhancement with large scale galactic features, such as spiral arm segments in that direction, or with the region surrounding the Vela supernova remnant with which PSR 0833-45 is associated. If the excess is attributed to cosmic rays released from the supernova interacting with the interstellar matter in that region, than on the order of 3 x 10 to the 50th power ergs would have been released by that supernova in the form of cosmic rays.

Thompson, D. J.; Bignami, G. F.; Fichtel, C. E.; Kniffen, D. A.

1974-01-01

160

Unraveling low-level gamma radiation--responsive changes in expression of early and late genes in leaves of rice seedlings at litate Village, Fukushima.  

PubMed

In the summer of 2012, 1 year after the nuclear accident in March 2011 at the Fukushima Daiichi nuclear power plant, we examined the effects of gamma radiation on rice at a highly contaminated field of Iitate village in Fukushima, Japan. We investigated the morphological and molecular changes on healthy rice seedlings exposed to continuous low-dose gamma radiation up to 4 µSv h(-1), about 80 times higher than natural background level. After exposure to gamma rays, expression profiles of selected genes involved in DNA replication/repair, oxidative stress, photosynthesis, and defense/stress functions were examined by RT-PCR, which revealed their differential expression in leaves in a time-dependent manner over 3 days (6, 12, 24, 48, and 72 h). For example, OsPCNA mRNA rapidly increased at 6, 12, and 24 h, suggesting that rice cells responded to radiation stress by activating a gene involved in DNA repair mechanisms. At 72 h, genes related to the phenylpropanoid pathway (OsPAL2) and cell death (OsPR1oa) were strongly induced, indicating activation of defense/stress responses. We next profiled the transcriptome using a customized rice whole-genome 4×44K DNA microarray at early (6h) and late (72 h) time periods. Low-level gamma radiation differentially regulated rice leaf gene expression (induced 4481 and suppressed 3740 at 6 h and induced 2291 and suppressed 1474 genes at 72 h) by at least 2-fold. Using the highly upregulated and downregulated gene list, MapMan bioinformatics tool generated diagrams of early and late pathways operating in cells responding to gamma ray exposure. An inventory of a large number of gamma radiation-responsive genes provides new information on novel regulatory processes in rice. PMID:25124817

Hayashi, Gohei; Shibato, Junko; Imanaka, Tetsuji; Cho, Kyoungwon; Kubo, Akihiro; Kikuchi, Shoshi; Satoh, Kouji; Kimura, Shinzo; Ozawa, Shoji; Fukutani, Satoshi; Endo, Satoru; Ichikawa, Katsuki; Agrawal, Ganesh Kumar; Shioda, Seiji; Fukumoto, Manabu; Rakwal, Randeep

2014-01-01

161

Gadolinium-doped water cerenkov-based neutron and high energy gamma-ray detector and radiation portal monitoring system  

DOEpatents

A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.

Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel

2013-02-12

162

[Gamma scattering in condensed matter with high intensity Moessbauer radiation  

SciTech Connect

This report discusses: quasielastic scattering studies on glycerol; gamma-ray scattering from alkali halides; lattice dynamics in metals; Moessbauer neutron scattering, x-ray diffraction, and macroscopic studies of high {Tc} superconductors containing tungsten; NiAl scattering studies; and atomic interference factors and nuclear Casimir effect.

Not Available

1992-06-01

163

(Gamma scattering in condensed matter with high intensity Moessbauer radiation)  

SciTech Connect

This report discusses: quasielastic scattering studies on glycerol; gamma-ray scattering from alkali halides; lattice dynamics in metals; Moessbauer neutron scattering, x-ray diffraction, and macroscopic studies of high {Tc} superconductors containing tungsten; NiAl scattering studies; and atomic interference factors and nuclear Casimir effect.

Not Available

1992-01-01

164

The double radiative $\\bar{B}\\to X_s\\gamma \\gamma$ decay at $O(\\alpha_{s})$ in QCD  

E-print Network

In these proceedings, we briefly review the individual interference contribution of the electromagnetic dipole operator $\\mathcal{O}_{7}$ to the double differential decay width $d\\Gamma_{77}/(ds_1\\, ds_2)$ for the process $\\bar{B} \\to X_s \\gamma \\gamma$ at $O(\\alpha_s)$ in QCD, which is based on our previous work. We define two kinematical variables $s_1$ and $s_2$ as $s_i=(p_b - q_i)^2/m_b^2$, where $p_b$, $q_1$, $q_2$ are the momenta of b-quark and two photons. While the (renormalized) virtual corrections are worked out exactly for a certain range of $s_1$ and $s_2$, we retained in the gluon bremsstrahlung process only the leading power w.r.t. the (normalized) hadronic mass $s_3=(p_b-q_1-q_2)^2/m_b^2$ in the underlying triple differential decay width $d\\Gamma_{77}/(ds_1 ds_2 ds_3)$. We found that the double differential decay width, based on this approximation, is free of infrared- and collinear singularities when summing up the virtual- and real-radiation corrections, while this was not the case when keepi...

Kokulu, Ahmet

2014-01-01

165

Enrichment of magnetic alignment stimulated by {gamma}-radiation in core-shell type nanoparticle Mn-Zn ferrite  

SciTech Connect

Core shell type nanoparticle Mn{sub x}Zn{sub 1-x}Fe{sub 2}O{sub 4} systems with x=0.55, 0.65 and 0.75 were prepared using autocombustion method. The systems were characterized using tools like XRD and IR for structure confirmation. Magnetic parameter measurements like Saturation magnetization and coercivity were obtained from hysteresis loop which exhibited a symmetry shift due to core shell nature of the nanoparticles. Nanoparticles of particle size between 21.2nm to 25.7nm were found to show 20 percent shrinkage after being radiated by the {gamma}-radiation. This is due to variation in the cation distribution which also affects the cell volume of the cubic cell. Lattice constant reduction observed is reflected in the magnetic properties of the samples. A considerable hike in the saturation magnetization of the samples was observed due to enrichment of magnetic alignment in the magnetic core of the particles. Samples under investigation were irradiated with gamma radiation from Co{sup 60} source for different time intervals.

Naik, P. P.; Tangsali, R. B. [Department of Physics, Goa University, Taleigao Plateau, Goa-403206 (India); Sonaye, B.; Sugur, S. [Goa Medical College, Bambolim, Goa (India)

2013-02-05

166

Interferon-. gamma. receptor in human monocytes is different from the one in nonhematopoietic cells  

SciTech Connect

The receptor for interferon-..gamma.. (IFN-..gamma..) on peripheral blood monocytes was characterized and was compared with that of human WISH cells. /sup 125/I-IFN-..gamma.. was specifically bound to both cells; however, different binding characteristics were obtained. In the case of monocytes, Scatchard analysis gave an upward concave dependency curve, indicating either multiple binding sites or a negative cooperativity among the binding sites. In contrast, a linear Scatchard plot was obtained for the binding in WISH cells. Competition studies gave even more striking differences. Acid-treated IFN-..gamma.. (95% inactivated) effectively competed with /sup 125/I-IFN-..gamma.. for binding to the receptor on WISH cells, but not on monocytes. The significance of these differences was evaluated by analyzing the various biological activities of IFN-..gamma.. in these two cell types. IFN-..gamma.. was found to induce an antiviral state in WISH cells, but not in monocytes. Acid-treated IFN-..gamma.. was found to be almost as active as IFN-..gamma.. itself in inducing HLA-DR in WISH cells, but was almost completely inactive as an HLA-DR inducer in monocytes. It is proposed that these variations in biological activity stem from the presence of different receptors for IFN-..gamma.. in monocytes and in WISH cells. Moreover it is suggested that the immunoregulatory functions of IFN-..gamma.. in monocytes are related to the presence of a distinct IFN-..gamma.. receptor in these cells.

Orchansky, P.; Rubinstein, M.; Fischer, D.G.

1986-01-01

167

The myth of cell phone radiation  

E-print Network

We discuss the purported link between cell phone radiation and cancer. We show that it is inconsistent with the photoelectric effect, and that epidemiological studies of any link have no scientific basis.

Natarajan, Vasant

2012-01-01

168

The myth of cell phone radiation  

E-print Network

We discuss the purported link between cell-phone radiation and cancer. We show that it is inconsistent with the photoelectric effect, and that epidemiological studies of any link have no scientific basis.

Vasant Natarajan

2012-11-22

169

Gamma radiation and photospheric white-light flare continuum  

NASA Technical Reports Server (NTRS)

It is noted that recent gamma-ray observations of solar flares have provided a better means for estimating the heating of the solar atmosphere by energetic protons. This type of heating has been suggested as the explanation of the continuum emission of the white-light flare. The effects on the photosphere of high-energy particles capable of producing the intense gamma-ray emission observed in the flare of July 11, 1978, are analyzed. A simple energy-balance argument is used, and hydrogen ionization is taken into account. It is found that energy deposition increases with height for the inferred proton spectra and is not strongly dependent upon the assumed angle of incidence. At the top of the photosphere, the computed energy inputs fall in the range 10-100 ergs/cu cm-s.

Hudson, H. S.; Dwivedi, B. N.

1982-01-01

170

Effect of cross-linkage by gamma radiation in heavy doses to low wear polyethylene in total hip prostheses  

Microsoft Academic Search

Wear, frictional torque and creep deformity of UHMWPE sockets crosslinked by gamma radiation of 100, 500 and 1000 Mrad in combination with 28 mm alumina heads, were measured using a hip simulator (under constant load 250 kgf with lubrication of saline solution). Hardness and hydrophilic increased and creep deformity decreased as a result of gamma radiation. The initial wear (decrement

H. Oonishi; H. Ishimaru; A. Kato

1996-01-01

171

Seabuckthron (Hippophae rhamnoides L.) leaf extract ameliorates the gamma radiation mediated DNA damage and hepatic alterations.  

PubMed

In vitro assessment showed that H. rhamnoides (HrLE) extract possessed free radical scavenging activities and can protect gamma (gamma) radiation induced supercoiled DNA damage. For in vivo study, Swiss albino mice were administered with HrLE (30 mg/kg body weight) for 15 consecutive days before exposing them to a single dose of 5 Gy of beta radiation. HrLE significantly prevented the radiation induced genomic DNA damage indicated as a significant reduction in the comet parameters. The lipid peroxidation, liver function enzymes, expression of phosphorylated NFkappaB (p65) and IkappaBalpha increased whereas the endogenous antioxidants diminished upon radiation exposure compared to control. Pretreatment of HrLE extract ameliorated these changes. Based on the present results it can be concluded that H. rhamnoides possess a potential preventive element in planned and accidental nuclear exposures. PMID:25345244

Khan, Amitava; Manna, Krishnendu; Chinchubose; Das, Dipesh Kr; Sinha, Mahuya; Kesh, Swaraj Bandhu; Das, Ujjal; Dey, Rakhi Sharma; Banerji, Asoke; Dey, Sanjit

2014-10-01

172

Sources of Cosmic Rays and Galactic Diffuse Gamma Radiation  

E-print Network

The diffuse galactic gamma-ray spectrum measured by the EGRET experiment \\citep{Hunter:1997} are interpreted within a scenario in which cosmic rays (CRs) are injected by three different kind of sources, (i) supernovae (SN) which explode into the interstellar medium (ISM), (ii) Red Supergiants (RSG), and (iii) Wolf-Rayet stars (WR), where the two latter explode into their pre-SN winds (Biermann et al. 2001; Sina et al. 2001).

Sabrina Casanova; Peter L. Biermann; Ralph Engel; Athina Meli; Ralf Ulrich

2004-03-29

173

Gamma radiation dosimetry in mega rad range using sugar solution  

Microsoft Academic Search

The formation of Malonaldehyde under gamma irradiation of solid sucrose and aqueous sucrose, fructose and arabinose solutions has been studied in the Mega rad range. Malonaldehyde (MA) concentration was estimated spectrophotometrically after complexing with 2-Thio-barbituric acid. The effect of free radical scavengers (KI and N2O) on the yield of Ma was investigated. Of the systems studied a 5% aqueous sucrose

R. Venkataramani; Sudershan K. Mehta; S. D. Soman

1976-01-01

174

Radioactivity of building materials and the gamma radiation in dwellings.  

PubMed

Measurements of the radioactivity in some common building materials in Norway are reported, together with calculations of the gamma-ray exposure from walls of different materials. Model rooms are used in calculations of the mean exposure inside concrete, brick and light-weight expanded clay aggregate buildings. These calculations give very good agreement with previous experimental results. The radiological implications of using building materials with high concentrations of radioactivity are also discussed. PMID:515178

Stranden, E

1979-09-01

175

Poly (DADMAC) encapsulation in PES microcapsules utilizing gamma radiation  

NASA Astrophysics Data System (ADS)

In this communication, a method for encapsulation of a polymeric resin using radiation technology is reported. The quaternary ammonium resin, polydiallyldimethylammonium chloride (PDADMAC) was incorporated in the core of a preformed hollow polyethersulfone microcapsule, using radiation technology, for the extraction of anions from aqueous solutions. The idea was to introduce the monomer into the porous microcapsules and initiate polymerization by radiation to trap the polymer formed inside the capsule. The resultant capsule was able to take up and exchange some anions (F -, Cl -, Br -, NO 32- and SO 42-) at relatively low concentrations.

Francis, Sanju; Varshney, Lalit; Tirumalesh, Keesari; Sabharwal, Sunil

2009-01-01

176

Determination of ¹N gamma radiation fields at BWR nuclear power stations  

Microsoft Academic Search

Measurements of environmental gamma radiation fields produced by ¹N in components above the floor in the turbine buildings of two large BWR power plants were carried out in April 1975, using pressurized argon ionization chambers and NaI(Tl) and Ge(Li) spectrometers. Both turbine buildings are heavily side-shielded, so that the bulk of the radiation outside the buildings is skyshine. The shapes

W. M. Lowder; P. D. Raft; G. deP Burke

1976-01-01

177

Very high energy gamma-ray absorption via localized diffuse radiation fields  

NASA Astrophysics Data System (ADS)

When Very High Energy (VHE) gamma-rays (E>100 GeV) transverse low energy photon fields, the production of electron-positron pairs leads to the attenuation of the intrinsic gamma-ray flux. This phenomena is well know for VHE radiation from extragalactic sources, like e.g. blazars, interacting with the cosmic infrared background. In this contribution the absorption of VHE gamma-rays due to the interaction with localized low energy radiation fields, e.g. the Milky Way diffuse radiation field, cluster radiation fields and radiation fields in voids and filaments is discussed. While the photon field densities of these inhomogeneous radiation fields can be several orders of magnitude higher compared to the homogeneous background, the distances are in general shorter leading to an overall smaller effect. On the other hand, the detection of such an attenuation could be used to study the IR emission on different scales, measure the distance of galactic sources, or investigate particle physics phenomena beyond the standard model. It is investigated how forthcoming imaging air Cherenkov telescopes, like CTA, and wide angle Cherenkov arrays, like HiSCORE, with their improved sensitivities up to several hundred TeV will measure this absorption feature.

Maurer, Andreas; Becerra-Gonzalez, Josefa; Raue, Martin; Horns, Dieter

2012-12-01

178

Persistence of gamma-H2AX and 53BP1 foci in proliferating and nonproliferating human mammary epithelial cells after exposure to gamma-rays or iron ions  

SciTech Connect

To investigate {gamma}-H2AX (phosphorylated histone H2AX) and 53BP1 (tumour protein 53 binding protein No. 1) foci formation and removal in proliferating and non-proliferating human mammary epithelial cells (HMEC) after exposure to sparsely and densely ionizing radiation under different cell culture conditions. HMEC cells were grown either as monolayers (2D) or in extracellular matrix to allow the formation of acinar structures in vitro (3D). Foci numbers were quantified by image analysis at various time points after exposure. Our results reveal that in non-proliferating cells under 2D and 3D cell culture conditions, iron-ion induced {gamma}-H2AX foci were still present at 72 h after exposure, although 53BP1 foci returned to control levels at 48 h. In contrast in proliferating HMEC, both {gamma}-H2AX and 53BP1 foci decreased to control levels during the 24-48 h time interval after irradiation under 2D conditions. Foci numbers decreased faster after {gamma}-ray irradiation and returned to control levels by 12 h regardless of marker, cell proliferation status, and cell culture condition. Conclusions: The disappearance of radiation induced {gamma}-H2AX and 53BP1 foci in HMEC have different dynamics that depend on radiation quality and proliferation status. Notably, the general patterns do not depend on the cell culture condition (2D versus 3D). We speculate that the persistent {gamma}-H2AX foci in iron-ion irradiated non-proliferating cells could be due to limited availability of double strand break (DSB) repair pathways in G0/G1-phase, or that repair of complex DSB requires replication or chromatin remodeling.

Groesser, Torsten; Chang, Hang; Fontenay, Gerald; Chen, James; Costes, Sylvain V.; Barcellos-Hoff, Mary Helen; Parvin, Bahram; Rydberg, Bjorn

2010-12-22

179

Orbital Observatory GLAST - New Step in the Study of Cosmic Gamma Radiation: Mission Overview  

NASA Technical Reports Server (NTRS)

This viewgraph presentation is a overview of the Gamma-ray Large Area Space Telescope (GLAST), now named Fermi Space Telescope. The new telescope is scheduled for launch in the middle of 2008. It contains the high energy gamma-ray telescope LAT (Large Area Telescope) and the GMB (GLAST Burst Monitor). The science objectives of GLAST cover almost every area of high energy astrophysics, including Active Galactic Nuclei (AGN), including Extragalactic background light (EBL), Gamma-ray bursts (GRB), Pulsars, Diffuse gamma-radiation, EGRET unidentified sources, Solar physics, Origin of Cosmic Rays and, Dark Matter and New Physics. Also included in this overview is a discussion of the preparation to the analysis of the science data.

Moiseev, Alexander

2008-01-01

180

The production and composition of rat sebum is unaffected by 3 Gy gamma radiation  

PubMed Central

Purpose The aim of this work was to use metabolomics to evaluate sebum as a source of biomarkers for gamma-radiation exposure in the rat, and potentially in man. Proof of concept of radiation metabolomics was previously demonstrated in both mouse and rat urine, from the radiation dose- and time-dependent excretion of a set of urinary biomarkers. Materials and methods Rats were gamma-irradiated (3 Gy) or sham irradiated and groups of rats were euthanised at 1 h or 24 h post-irradiation. Sebum was collected by multiple washings of the carcasses with acetone. Nonpolar lipids were extracted, methylated, separated and quantitated using gas chromatography-mass spectrometry (GCMS). Metabolomic analysis of the GCMS data was performed using both orthogonal projection to latent structures-discriminant analysis and random forests machine learning algorithm. Results Irradiation did not alter sebum production. A total of 35 lipids were identified in rat sebum, 29 fatty acids, five fatty aldehydes, and cholesterol. Metabolomics showed that three fatty acids, palmitic, 2-hydroxypalmitic, and stearic acids were potential biomarkers. Sebaceous palmitic acid was marginally statistically significantly elevated (7.5–8.4%) at 24 h post-irradiation. Conclusions Rat sebaceous gland appears refractory to 3 Gy gamma-irradiation. Unfortunately, collection of sebum shortly after gamma-irradiation is unlikely to form the basis of high-throughput non-invasive radiation biodosimetry in man. PMID:21158499

Lanz, Christian; Ledermann, Monika; Slavik, Josef; Idle, Jeffrey R.

2013-01-01

181

MICRONUCLEI IN BINUCLEATED LYMPHOCYTES OF MICE FOLLOWING EXPOSURE TO GAMMA RADIATION  

EPA Science Inventory

Experiments were designed to investigate the induction of micronuclei (MN) in mouse peripheral blood lymphocytes (PBLs) after in vitro or in vivo exposure to 60Co gamma radiation. or the in vitro experiments, 4 ml of blood from male C57BL/6J mice were either irradiated in 6 ml Fa...

182

Effect of Gamma and UV Radiation on Properties of EPDM\\/GTR\\/HDPE Blends  

Microsoft Academic Search

Ethylene propylene dine monomer (EPDM) was blended with both ground tire rubber (GTR) and high-density polyethylene (HDPE) prepared at different ratios and then exposed to gamma and ultraviolet radiations. The mechanical, physical, and thermal properties were investigated with respect to the kind of irradiation and blend compositions. A scanning electron microscope was also used to examine the morphology of the

M. M. Abou Zeid; S. T. Rabie; A. A. Nada; A. M. Khalil; R. H. Hilal

2008-01-01

183

Luffa fibers and gamma radiation as improvement tools of polymer Gonzalo Martnez-Barrera a,  

E-print Network

, silica fume, silica sand; the last one the most used due to size distribution, ranging from 0.6 to 4.0 mmLuffa fibers and gamma radiation as improvement tools of polymer concrete Gonzalo Martínez-5017, USA h i g h l i g h t s Polymer concrete with silicious sand, unsaturated polyester resin and luffa

North Texas, University of

184

An Analysis of a Spreader Bar Crane Mounted Gamma-Ray Radiation Detection System  

E-print Network

. This is inadequate to protect our country. This research involved the building of a gamma-ray radiation detection system used for cargo scanning. The system was mounted on a spreader bar crane (SBC) at the Port of Tacoma (PoT) and the applicability and capabilities...

Grypp, Matthew D

2013-04-08

185

Response of shortgrass plains vegetation to gamma radiation. I. Chronic irradiation  

Microsoft Academic Search

Native shortgrass plains vegetation was exposed to chronic gamma ; radiation with exposure rates varying from 0.01 to 650 R\\/hr starting in April ; 1969. The dominant species in the plant community was Bouteloua gracilis (blue ; grama). Density and frequency were recorded and these data were converted into ; community indices of coefficient of community (CC) and diversity (D).

L. Jr. Fraley; F. W. Whicker

1973-01-01

186

Gamma radiation effects on physical properties of parchment documents: Assessment of Dmax  

NASA Astrophysics Data System (ADS)

Parchments are important documents that give testimony for History; therefore these materials should be respected and preserved. Considering incremental biodeterioration problems that have to be faced daily, the Archive of the University of Coimbra (AUC) is involved in different scientific projects in order to evaluate and determine new methods for document decontamination and preservation. The aim of this study was to evaluate gamma radiation effects on the colour and texture of the AUC parchment documents. The assessment of these effects was used to estimate the maximum gamma radiation dose (Dmax) that could guarantee parchment documents' decontamination treatment, without significant alteration of their physical properties. Parchment samples were exposed to gamma radiation doses ranging from 10 to 30 kGy. The texture and colour of samples were assessed before and after the irradiation procedure, using a texture analyser and an electronic colorimeter. Hardness and springiness were determined based on texture spectra. Lightness (L*), Chroma (C), greenness vs. redness (a*) and yellowness vs. blueness (b*) values were obtained from colorimetric measures. Results indicate no significant effects of gamma radiation on the texture and colour of parchment for the studied doses.

Nunes, Inês; Mesquita, Nuno; Cabo Verde, Sandra; João Trigo, Maria; Ferreira, Armando; Manuela Carolino, Maria; Portugal, António; Luísa Botelho, Maria

2012-12-01

187

Radiation Enhances Regulatory T Cell Representation  

PubMed Central

PURPOSE Immunotherapy (IT) could be a useful adjunct to standard cytotoxic therapies such as radiation in patients with micrometastatic disease although successful integration of IT into treatment protocols will require further understanding of how standard therapies affect the generation of anti-tumor immune responses. This study was undertaken to evaluate the impact of radiation therapy on immunosuppressive T regulatory (Treg) cells. MATERIALS and METHODS Tregs were identified as a CD4+CD25hiFoxp3+ lymphocyte subset and their fate followed in a murine TRAMP-C1 model of prostate cancer in mice with and without radiation therapy. RESULTS CD4+CD25hiFoxp3+ Treg cells increased in immune organs following local leg or whole body radiation. A large part, but not all, of this increase following leg-only irradiation could be ascribed to radiation scatter and Tregs being intrinsically more radiation resistant than other lymphocyte subpopulations resulting in their selection. Their functional activity on a per cell basis was not affected by radiation exposure. Similar findings were made with mice receiving local RT to murine prostate tumors growing in the leg. The importance of the Treg population in the response to RT was shown by systemic elimination of Tregs, which greatly enhanced radiation-induced tumor regression. CONCLUSIONS We conclude that Tregs are more resistant to radiation than other lymphocytes resulting in their preferential increase. Treg cells may form an important homeostatic mechanism for tissues injured by radiation, and in a tumor context may assist in immune evasion during therapy. Targeting this population may allow enhancement of radiotherapeutic benefit through immune modulation. PMID:21093169

Kachikwu, Evelyn L.; Iwamoto, Keisuke S.; Liao, Yu-Pei; DeMarco, John J.; Agazaryan, Nzhde; Economou, James S.; McBride, William H.; Schaue, Dorthe

2010-01-01

188

Naturally induced secondary radiation in interplanetary space: Preliminary analyses for gamma radiation and radioisotope production from thermal neutron activation  

NASA Astrophysics Data System (ADS)

Thermal neutron activation analyses were carried out for various space systems components to determine gamma radiation dose rates and food radiation contamination levels. The space systems components selected were those for which previous radiation studies existed. These include manned space vehicle radiation shielding, liquid hydrogen propellant tanks for a Mars mission, and a food supply used as space vehicle radiation shielding. The computational method used is based on the fast neutron distribution generated by the BRYNTRN and HZETRN transport codes for Galactic Cosmic Rays (GCR) at solar minimum conditions and intense solar flares in space systems components. The gamma dose rates for soft tissue are calculated for water and aluminum space vehicle slab shields considering volumetric source self-attenuation and exponential buildup factors. In the case of the lunar habitat with regolith shielding, a completely exposed spherical habitat was assumed for mathematical convenience and conservative calculations. Activation analysis of the food supply used as radiation shielding is presented for four selected nutrients: potassium, calcium, sodium, and phosphorus. Radioactive isotopes that could represent a health hazard if ingested are identified and their concentrations are identified. For nutrients soluble in water, it was found that all induced radioactivity was below the accepted maximum permissible concentrations.

Plaza-Rosado, Heriberto

1991-09-01

189

Naturally induced secondary radiation in interplanetary space: Preliminary analyses for gamma radiation and radioisotope production from thermal neutron activation  

NASA Technical Reports Server (NTRS)

Thermal neutron activation analyses were carried out for various space systems components to determine gamma radiation dose rates and food radiation contamination levels. The space systems components selected were those for which previous radiation studies existed. These include manned space vehicle radiation shielding, liquid hydrogen propellant tanks for a Mars mission, and a food supply used as space vehicle radiation shielding. The computational method used is based on the fast neutron distribution generated by the BRYNTRN and HZETRN transport codes for Galactic Cosmic Rays (GCR) at solar minimum conditions and intense solar flares in space systems components. The gamma dose rates for soft tissue are calculated for water and aluminum space vehicle slab shields considering volumetric source self-attenuation and exponential buildup factors. In the case of the lunar habitat with regolith shielding, a completely exposed spherical habitat was assumed for mathematical convenience and conservative calculations. Activation analysis of the food supply used as radiation shielding is presented for four selected nutrients: potassium, calcium, sodium, and phosphorus. Radioactive isotopes that could represent a health hazard if ingested are identified and their concentrations are identified. For nutrients soluble in water, it was found that all induced radioactivity was below the accepted maximum permissible concentrations.

Plaza-Rosado, Heriberto

1991-01-01

190

Radiation measurement above the lunar surface by Kaguya gamma-ray spectrometer  

NASA Astrophysics Data System (ADS)

The lunar surface is filled with various ionizing radiations such as high energy galactic particles, albedo particles and secondary radiations of neutrons, gamma rays and other elementary particles. A high-resolution Kaguya Gamma-Ray Spectrometer (KGRS) was carried on the Japan’s lunar explorer SELENE (Kaguya), the largest lunar orbiter since the Apollo missions. The KGRS instrument employed, for the first time in lunar exploration, a high-purity Ge crystal to increase the identification capability of elemental gamma-ray lines. The Ge detector is surrounded by BGO and plastic counters as for anticoincidence shields. The KGRS measured gamma rays in the energy range from 200 keV to 13 MeV with high precision to determine the chemical composition of the lunar surface. It provided data on the abundance of major elements over the entire lunar surface. In addition to the gamma-ray observation by the KGRS, it successfully measured the global distribution of fast neutrons. In the energy spectra of gamma-rays observed by the KGRS, several saw-tooth- peaks of Ge are included, which are formed by the collision interaction of lunar fast neutrons with Ge atoms in the Ge crystal. With these saw-tooth-peaks analysis, global distribution of neutrons emitted from the lunara surface was successfully created, which was compared with the previous results obtained by Lunar Prospector neutron maps. Another anticoincidence counter, the plastic counter with 5 mm thickness, was used to veto radiation events mostly generated by charged particles. A single photomultiplier serves to count scintillation light from the plastic scintillation counter. The global map of counting rates observed by the plastic counter was also created, implying that the radiation counting rate implies the geological distribution, in spite that the plastic counter mostly measures high energy charged particles and energetic neutrons. These results are presented and discussed.

Hasebe, Nobuyuki; Nagaoka, Hiroshi; Kusano, Hiroki; Hareyama, Matoko; Ideguchi, Yusuke; Shimizu, Sota; Shibamura, Eido

191

Quantitative study of cell death and mitotic inhibition in. gamma. -irradiated imaginal wing discs of Drosophila melanogaster  

SciTech Connect

A dose of 2500 R of ..gamma.. rays was shown by cell counting to kill about 30% of the cells in developing wing discs of Drosophila within 4 h after irradiation. Histologically detectable cell death continues for at least 44 h after it first appears, indicating a delayed effect on some cells. The radiation also inhibits mitosis; this effect is evident 1 h after irradiation and is maximal at 4 h. Mitosis resumes 8 h after irradiation, and by 24 h, sufficient cell division is taking place to offset the continuous cell death seen, and the discs register a net gain in cell number. It is concluded that irradiation affects imaginal disc cells by damaging the nuclei, and that the damage is manifest in cell death when the cells attempt to divide.

James, A.A.; Bryant, P.J.

1981-09-01

192

Zinc- or cadmium-pre-induced metallothionein protects human central nervous system cells and astrocytes from radiation-induced apoptosis.  

PubMed

We have shown the protection of human central nervous system (CNS) cultures by zinc (Zn) or cadmium (Cd)-pre-induced metallothionein (MT) synthesis from radiation-induced cytotoxicity (lactate dehydrogenase (LDH) release and neuronal dendritic injury). The present study is to further define the types of cell death induced by different dose levels of radiation and investigate the effect of MT induction (by Zn or Cd) on radiation-induced apoptosis in primary human CNS and astrocyte cultures. Apoptosis was detected by fragmented DNA electrophoresis, TUNEL technique, and propidium iodide staining. Expression of MT protein was examined by immunofluorescent staining. Results showed that exposure of primary human CNS cultures to 15 and 30 Gy gamma-radiation predominantly induced apoptotic cell death, while exposure to 60 Gy gamma-radiation predominantly induced necrotic cell death. Normal primary human CNS cultures showed weak MT staining, while primary human CNS cultures exposed to Zn or Cd showed intense MT staining. The induced apoptotic cell death by exposure to 30 Gy gamma-radiation increased to a maximum level at 12 and 24 h, and was reduced significantly by Zn or Cd pre-induced MT. Using primary human astrocytes, the induction of MT protein by Zn or Cd was further confirmed. The enhanced MT expression also afforded a significant protection from 30 Gy gamma-ray-induced apoptosis in the primary human astrocytes. These results suggest that MT protected human CNS cells from apoptosis following ionizing radiation, probably through its antioxidant property. PMID:14687759

Cai, Lu; Iskander, Sammy; Cherian, M George; Hammond, Robert R

2004-02-01

193

Radiation-quality dependent cellular response in mutation induction in normal human cells.  

PubMed

We studied cellular responses in normal human fibroblasts induced with low-dose (rate) or low-fluence irradiations of different radiation types, such as gamma rays, neutrons and high linear energy transfer (LET) heavy ions. The cells were pretreated with low-dose (rate) or low-fluence irradiations (approximately 1 mGy/7-8 h) of 137Cs gamma rays, 241Am-Be neutrons, helium, carbon and iron ions before irradiations with an X-ray challenging dose (1.5 Gy). Helium (LET = 2.3 keV/microm), carbon (LET = 13.3 keV/microm) and iron (LET = 200 keV/microm) ions were produced by the Heavy Ion Medical Accelerator in Chiba (HIMAC), Japan. No difference in cell-killing effect, measured by a colony forming assay, was observed among the pretreatment with different radiation types. In mutation induction, which was detected in the hypoxanthine-guanine phosphoribosyltransferase (hprt) locus to measure 6-thioguanine resistant clones, there was no difference in mutation frequency induced by the X-ray challenging dose between unpretreated and gamma-ray pretreated cells. In the case of the pretreatment of heavy ions, X-ray-induced mutation was around 1.8 times higher in helium-ion pretreated and 4.0 times higher in carbon-ion pretreated cells than in unpretreated cells (X-ray challenging dose alone). However, the mutation frequency in cells pretreated with iron ions was the same level as either unpretreated or gamma-ray pretreated cells. In contrast, it was reduced at 0.15 times in cells pretreated with neutrons when compared to unpretreated cells. The results show that cellular responses caused by the influence of hprt mutation induced in cells pretreated with low-dose-rate or low-fluence irradiations of different radiation types were radiation-quality dependent manner. PMID:19680011

Suzuki, Masao; Tsuruoka, Chizuru; Uchihori, Yukio; Kitamura, Hisashi; Liu, Cui Hua

2009-09-01

194

Breast cancer stem cells and radiation  

NASA Astrophysics Data System (ADS)

The present studies explore the response of breast cancer stem cells (BCSC's) to radiation and the implications for clinical cancer treatment. Current cancer therapy eliminates bulky tumor mass but may fail to eradicate a critical tumor initiating cell population termed "cancer stem cells". These cells are potentially responsible for tumor formation, metastasis, and recurrence. Recently cancer stem cells have been prospectively identified in various malignancies, including breast cancer. The breast cancer stem cell has been identified by the surface markers CD44+/CD24 -(low). In vitro mammosphere cultures allow for the enrichment of the cancer stem cell population and were utilized in order to study differential characteristics of BCSC's. Initial studies found that BCSC's display increased radiation resistance as compared to other non-stem tumor cells. This resistance was accompanied by decreased H2AX phosphorylation, decreased reactive oxygen species formation, and increased phosphorylation of the checkpoint protein Chk1. These studies suggest differential DNA damage and repair within the BCSC population. Studies then examined the consequences of fractionated radiation on the BCSC population and found a two-fold increase in BCSC's following 5 x 3Gy. This observation begins to tie cancer stem cell self-renewal to the clinical stem cell phenomenon of accelerated repopulation. Accelerated repopulation is observed when treatment gaps increase between sequential fractions of radiotherapy and may be due to cancer stem cell symmetric self-renewal. The balance between asymmetric and symmetric stem cell division is vital for proper maintenance; deregulation is likely linked to cancer initiation and progression. The developmental Notch-1 pathway was found to regulate BCSC division. Over-expressing the constitutively active Notch-1-ICD in MCF7 cells produced an increase in the BCSC population. Additionally, radiation was observed to increase the expression of the Notch-1 ligand, Jagged-1, and this was complemented by radiation induced Notch-1 activation. Studies also linked hypoxia and BCSC renewal through Epo signaling. Treatment with rhEpo induced an increase in BCSC's, which again was due to rhEpo induced Jagged-1 expression and subsequent Notch-1 activation. This thesis suggests that radiation and rhEpo induce Jagged-1 expression in non-stem cells, which then induce Notch-1 activation in adjacent stem cells, and results in symmetric cancer stem cell self-renewal.

Phillips, Tiffany Marie

195

Combined Effects of Gamma Radiation and High Dietary Iron on Peripheral Leukocyte Distribution and Function  

NASA Technical Reports Server (NTRS)

Both radiation and increased iron stores can independently increase oxidative damage, resulting in protein, lipid and DNA oxidation. Oxidative stress increases the risk of many health problems including cancer, cataracts, and heart disease. This study, a subset of a larger interdisciplinary investigation of the combined effect of iron overload on sensitivity to radiation injury, monitored immune parameters in the peripheral blood of rats subjected to gamma radiation, high dietary iron or both. Specific immune measures consisted of: (1) peripheral leukocyte distribution, (2) plasma cytokine levels and (3) cytokine production profiles following whole blood mitogenic stimulation

Crucian, Brian E.; Morgan, Jennifer L. L.; Quiriarte, Heather A.; Sams, Clarence F.; Smith, Scott M.; Zwart, Sara R.

2012-01-01

196

Response of oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae), eggs to gamma radiation  

NASA Astrophysics Data System (ADS)

As insects increase in radiotolerance as they develop and usually several developmental stages of the pest may be present in the fresh shipped commodity, it is important to know the radiation susceptibility of the stages of the target insect before the establishment of ionizing radiation quarantine treatments. This study was performed to determine the radiotolerance of eggs of the oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae), to gamma radiation. This species is considered as one of the most serious worldwide pests for temperate fruits, especially peaches. Eggs (12 h old) were exposed to 0 (control), 25, 35, 50, 75, 100, 125 and 150 Gy of gamma radiation. Surviving larvae were allowed to feed on an artificial diet. Three days after irradiation, it was verified that larvae's cephalic capsules were significantly affected by gamma radiation, and the estimated mean LD 90 and LD 99 were 66.3 Gy and 125.8 Gy, respectively. Oriental fruit moth eggs revealed to be quite radiosensitive and very low doses as 50 Gy were sufficient to disrupt G. molesta embryogenesis. At 25 Gy, only male adults originated from the surviving larvae and, after mating with untreated fertile females, shown to be sterile.

Silva, W. D.; Arthur, V.; Mastrangelo, T.

2010-10-01

197

Development of a Neutron\\/gamma Ray Radiation Monitor  

Microsoft Academic Search

Personnel radiation monitoring is essential to the operation of any nuclear facility and work in this area continues to strive for an accurate determination of personnel dose. In particular recent attention has been focused upon the need to improve the accuracy of neutron dosimetry, mainly because of their high Relative Biological Effectiveness. In this work the feasibility of using the

Kofi John Korsah

1983-01-01

198

Recent results on the effect of gamma radiation on the durability and microstructure of DWPF glass  

SciTech Connect

The effect of gamma radiation on the durability and microstructure of a simulated nuclear waste glass from the Savannah River Site has been carefully investigated. Three large pieces of glass were irradiated with a Co-60 source to three doses up to a maximum dose of 3.1 {times} 10{sup 10} rad. Internal samples of the large pieces of irradiated and unirradiated glass were leached in deionized water to investigate durability changes and were examined by transmission electron microscopy (TEM) to investigate microstructure changes. Leach tests were performed in triplicate at 90{degree}C with crushed glass samples in deionized water. A statistical analysis of the results indicated to the 95% confidence level that the radiation did not affect the glass durability. Careful examination by TEM indicated no effect of gamma radiation on the microstructure of the glass although severe damage could be induced by the electron beam from the microscope. 19 refs., 2 figs., 3 tabs.

Bibler, N.E.; Tosten, M.H.; Beam, D.C.

1989-12-31

199

Recent results on the effect of gamma radiation on the durability and microstructure of DWPF glass  

SciTech Connect

The effect of gamma radiation on the durability and microstructure of a simulated nuclear waste glass from the Savannah River Site has been carefully investigated. Three large pieces of glass were irradiated with a Co-60 source to three doses up to a maximum dose of 3.1 {times} 10{sup 10} rad. Internal samples of the large pieces of irradiated and unirradiated glass were leached in deionized water to investigate durability changes and were examined by transmission electron microscopy (TEM) to investigate microstructure changes. Leach tests were performed in triplicate at 90{degree}C with crushed glass samples in deionized water. A statistical analysis of the results indicated to the 95% confidence level that the radiation did not affect the glass durability. Careful examination by TEM indicated no effect of gamma radiation on the microstructure of the glass although severe damage could be induced by the electron beam from the microscope. 19 refs., 2 figs., 3 tabs.

Bibler, N.E.; Tosten, M.H.; Beam, D.C.

1989-01-01

200

Prompt gamma radiation from fission fragments due to the Strutinsky-Denisov polarisation  

NASA Astrophysics Data System (ADS)

The hard electric dipole radiation from fission fragments of 235U by thermal neutrons is predicted. The radiation arises due to the Strutinsky-Denisov-induced polarisation mechanism. The probability of the radiation is at the level of 0.0025 per fission, which is in agreement with experiment. The angular distribution exhibits left-right asymmetry with respect to the plane perpendicular to the neutron polarisation axis. That means that the emission of gamma quanta at the given angle depends on the neutron polarisation. The asymmetry is at the level of 10-3. This effect is similar to that observed earlier for gamma quanta in binary and alphas in ternary fission. The study of this effect will give information about dissipation of the collective energy of the surface vibration in fragments with large amplitude, and gives a picture of the process of snapping back the nuclear surface.

Karpeshin, F. F.

2010-08-01

201

Radiation Damage Workshop report. [solar cells  

NASA Technical Reports Server (NTRS)

The starting material, cell design/geometry, and cell processing/fabrication for silicon and gallium arsenide solar cells are addressed with reference to radiation damage. In general, it is concluded that diagnostic sensitivities and material purities are basic to making significant gains in end-of-life performance and thermal annealability. Further, GaAs material characterization is so sketchy that a well defined program to evaluate such material for solar cell application is needed to maximize GaAs cell technology benefits.

Rahilly, W. P.

1980-01-01

202

A practical method for measuring angular distribution of radiation from multiple gamma sources  

SciTech Connect

Radiation survey data are a necessary prerequisite for planning D and D activities at a nuclear facility. For an individual room with a small number of high level radiation sources whose locations are known a priori, the survey process, shielding calculations, and work planning process are straightforward. However, when the space is large and complex, or when an accident has left process equipment and the space in disarray, gathering survey data while minimizing dose to the surveyor may require specialized equipment and analytical methods. The Object Shelter (OS) that encloses the destroyed Unit 4 at the Chernobyl Nuclear Power Plant (ChNPP) contains many intensive radiation sources such as fuel containing material (solidified melted fuel, fragment spent fuel, and fragmented fresh fuel), destroyed/contaminated piping and mechanical equipment, and contaminated dust and debris from accident recovery. These high intensity radiation sources are scattered throughout the facility in unknown configurations, so it is essential to know the angular distribution of gamma radiation in order to plan work and to design shielding. As previously reported, a prototype tool for measuring angular distribution of gamma radiation was developed, constructed and tested at ChNPP OS. The prototype device, designated ShD-1, consisted primarily of a lead (Pb) sphere containing recessed thermoluminescent detectors (TLDs). ShD-1 was successfully used to collect radiation survey data for planning the largest construction project yet performed at ChNPP OS, the stabilization project. From this application we gained insight into some limitations of the prototype design and report here advancements in the design. The multidetector device for measurement of angular distributions of intensity of gamma - radiation is described. Results of tests of experimental model of device are presented and prospects of use of such device are shown. (authors)

Batiy, V.; Pravdivyj, O.; Stoyanov, O. [Institute for Safety Problems of Nuclear Power Plants, National Academy of Sciences of Ukraine (Ukraine); Kochnev, N.; Selukova, V. [National Science Center -Kharkiv Institute of Physics and Technology (Ukraine); Schmieman, E. [Battelle Memorial Institute (United States)

2007-07-01

203

Evaluation of fungal burden and aflatoxin presence in packed medicinal plants treated by gamma radiation.  

PubMed

This study was developed to evaluate the fungal burden, toxigenic molds, and mycotoxin contamination and to verify the effects of gamma radiation in four kinds of medicinal plants stored before and after 30 days of irradiation treatment. Eighty samples of medicinal plants (Peumus boldus, Camellia sinensis, Maytenus ilicifolia, and Cassia angustifolia) purchased from drugstores, wholesale, and open-air markets in São Paulo city, Brazil, were analyzed. The samples were treated using a (60)Co gamma ray source (Gammacell) with doses of 5 and 10 kGy. Nonirradiated samples were used as controls of fungal isolates. For enumeration of fungi on medicinal plants, serial dilutions of the samples were plated in duplicate onto dichloran 18% glycerol agar. The control samples revealed a high burden of molds, including toxigenic fungi. The process of gamma radiation was effective in reducing the number of CFU per gram in all irradiated samples of medicinal plants after 30 days of storage, using a dose of 10 kGy and maintaining samples in a protective package. No aflatoxins were detected. Gamma radiation treatment can be used as an effective method for preventing fungal deterioration of medicinal plants subject to long-term storage. PMID:20501045

Aquino, Simone; Gonçalez, Edlayne; Rossi, Maria Helena; Nogueira, Juliana Hellmeister de Campos; Reis, Tatiana Alves Dos; Corrêa, Benedito

2010-05-01

204

Using Gamma-Radiation for Drug Releasing from MWNT Vehicle  

NASA Astrophysics Data System (ADS)

A drug delivery system via multi-walled carbon nanotube (MWNT) vehicle was synthesized in aqueous solution. MWNTs were first noncovalently functionalized with chitosan oligomers (CS) with a molecule weight of 4000-6000, making MWNTs water-soluble, and then a cancer ancillary drug tea polyphenols (TP) was conjugated mainly via the hydrogen bond between CS and TP molecules, making MWNTs efficient vehicle for drug delivering. The release of drug molecules can be realized by pH variation and ?-radiation, leading to new methods for controlling drug release from carbon nanotubes carrier. Due to the high penetrability of ?-rays, ?-radiation shows up new opportunities in controlled drug release, possibly facilitating the future cancer treatment in vivo.

Li, Jun; Sun, Hao; Dai, Yao-Dong

2010-03-01

205

Field-deployable gamma-radiation detectors for DHS use  

Microsoft Academic Search

Recently, the Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial off-the-shelf and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable

Sanjoy Mukhopadhyay

2007-01-01

206

SCATTERED GAMMA RADIATION MEASUREMENTS FROM A LANTHANUM140 CONTAMINATED FIELD  

Microsoft Academic Search

A 90 deg sector of a circle of approximately 500-foot radius was ; contaminated with-a La¹⁴° aqueous solution to an approximate level of 0.65 ; millicuries per square foot as a means of simulating an area approaching an ; infinite contaminated field. Radiation measurements were made in an open hole ; with a PDR-27A radiac instrument to determine the percentage

C. L. Schlemm; A. A. Jr. Anthony

1959-01-01

207

Effects of gamma radiation on Serratia marcescens; a comparison of effects of two different exposure rates  

E-print Network

EFFECTS OF GAMMA RADIATION ON SL'RNATIA MARCESCENS A COMPARISON OF EFFECTS OF TWO DIFFERENT EXPOSURE RATES A Thesis by CHRISTY ANNETTE MOORE Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirements...) Christy A. Moore, B, S, Northwestern State College Directed by: Dr. . R. D. Neff The survival curves of gamma-irradiated pigmenting and non- pigmcnting stzains of 'srz'rztia. mancssosns were determiz. ed using exposure rates of 175R/minute and 23, 520...

Moore, Christy Annette

2012-06-07

208

Isolation of cell cycle-dependent gamma ray-sensitive Chinese hamster ovary cell  

SciTech Connect

A technique for the isolation of gamma ray-sensitive Chinese hamster ovary (CHO) cell mutants is described, which uses nylon cloth replica plating and photography with dark-field illumination to directly monitor colonies for growth after gamma irradiation. Two gamma ray-sensitive mutants were isolated using this method. One of these cells (XR-1) had a two-slope survival curve: an initial steep slope and then a flattening of the curve at about 10% survival. Subsequently, it was found that this cell is sensitive to gamma irradiation in G1, early S, and late G2 phases of the cell cycle, whereas in the resistant phase (late S phase) its survival approaches that of the parental cells. The D37 in the sensitive G1 period is approximately 30 rads, compared with 300 rads of the parental cell. This mutant cell is also sensitive to killing by the DNA breaking agent, bleomycin, but is relatively insensitive to UV light and ethyl methane sulfonate, suggesting that the defect is specific for agents that produce DNA strand breakage.

Stamato, T.D.; Weinstein, R.; Giaccia, A.; Mackenzie, L.

1983-03-01

209

Atypical radiation response of SCID cells  

NASA Astrophysics Data System (ADS)

Murine SCID (severe combined immune deficiency) cells are well known for their defect in DNA double-strand break repair and in variable(diversity)joining [V(D)J] recombination due to a mutation in a catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). As a consequence, scid cells are hypersensitive to ionizing radiation. The present study showed that asynchronous populations of scid cells were about two-fold more sensitive than Balb/c with respect to cell killing and the defect in scid cells was corrected by complementation with human chromosome 8. Analysis of the survival of synchronized populations as a function of the cell cycle revealed that while scid cells were hypersensitive in all cell cycle phases compared to wild-type cells, this hypersensitivity is even more pronounced in G1 phase. The hypersensitivity reduced as the cells progressed into S phase suggested that homologous recombination repair plays a role. The results imply that there are at least two pathways for the repair of DSB DNA, consistent with a model previously proposed by others. The scid cells were also more sensitive to UVC light (254 nm) killing as compared to wild type cells by clonogenic survival. Using a host cell reactivation (HCR) assay to study the nucleotide excision repair (NER) which is the major repair pathway for UV-photoproducts, the results showed that NER in scid cells was not as efficient as CB- 17. This suggests that DNA-PK is involved in NER as well as non-homologous end-joining (NHEJ) DSB repair which is responsible for ionizing radiation sensitivity in scid cells. Repair in scid cells was not totally absent as shown by low dose rate sparing of cell killing after exposure to 137Cs ?-rays at dose rate of 0.6 cGy/h, 1.36 cGy/h, 6 cGy/h as compared to high dose rate at 171 cGy/min, although this phenomenon could be explained partly by proliferation. However, for radiation induced transformation, no significant dose rate effect was seen. A plot of transformation versus survival revealed that the transformation induction was inversely proportional to radiation dose rate. Lower dose rates were more effective in inducing transformation in scid cells. This finding could lead to the influence of cancer risk estimation in an irradiated population consisting of a subpopulation(s) with genetic disorders predisposing those individuals to cancer.

Chawapun, Nisa

210

Comparative uptake of alpha- and gamma-tocopherol by human endothelial cells.  

PubMed

The intake of gamma-tocopherol by North Americans is generally higher than that of alpha-tocopherol. However, the levels of alpha-tocopherol in human blood have consistently been shown to be higher than those of gamma-tocopherol suggesting differential cellular retention of the two tocopherol forms. We sought to resolve this question by studying tocopherol metabolism by human endothelial cells in culture. The time- and dose-dependent uptake of gamma-tocopherol by endothelial cells was similar to that of alpha-tocopherol. To determine the comparative uptake between alpha- and gamma-tocopherol, we adopted two approaches in which cells were enriched with either increasing concentrations of an equimolar mixture of alpha- and gamma-tocopherol; or cells were enriched with a fixed concentration of tocopherols in which the alpha to gamma ratio was varied. Our results indicated that there was a preferential uptake of gamma-tocopherol by the cells. When cells were enriched with either alpha- or gamma-tocopherol and the disappearance of individual tocopherols was monitored over time, gamma-tocopherol exhibited a faster rate of disappearance. The faster turnover of gamma-tocopherol can explain the discrepancy between high intake and low retention of gamma-tocopherol in man. PMID:1608301

Tran, K; Chan, A C

1992-01-01

211

Accumulation of Mn(II) in Deinococcus radiodurans Facilitates Gamma-Radiation Resistance  

SciTech Connect

Deinococcus radiodurans is extremely resistant to ionizing radiation. How this bacterium can grow under chronic gamma-radiation (50 Gy/hour) or recover from acute doses greater than 10 kGy is unknown. We show that D. radiodurans accumulates very high intracellular manganese and low iron levels compared to radiation sensitive bacteria, and resistance exhibits a concentration-dependent response to Mn(II). Among the most radiation-resistant bacterial groups reported, Deinococcus, Enterococcus, Lactobacillus and cyanobacteria spp. accumulate Mn(II). In contrast, Shewanella oneidensis and Pseudomonas putida have high Fe but low intracellular Mn concentrations and are very sensitive. We propose that Mn(II) accumulation facilitates recovery from radiation injury.

Daly, Michael J.; Gaidamakova, E; Matrosova, V; Vasilenko, A; Zhai, M; Venkateswaran, Amudhan; Hess, M; Omelchenko, M V.; Kostandarithes, Heather M.; Makarova, S; Wackett, L. P.; Fredrickson, Jim K.; Ghosal, D

2004-11-05

212

High linear-energy-transfer radiation can overcome radioresistance of glioma stem-like cells to low linear-energy-transfer radiation.  

PubMed

Ionizing radiation is applied as the standard treatment for glioblastoma multiforme (GBM). However, radiotherapy remains merely palliative, not curative, because of the existence of glioma stem cells (GSCs), which are regarded as highly radioresistant to low linear-energy-transfer (LET) photons. Here we analyzed whether or not high-LET particles can overcome the radioresistance of GSCs. Glioma stem-like cells (GSLCs) were induced from the GBM cell line A172 in stem cell culture medium. The phenotypes of GSLCs and wild-type cells were confirmed using stem cell markers. These cells were irradiated with (60)Co gamma rays or reactor neutron beams. Under neutron-beam irradiation, high-LET proton particles can be produced through elastic scattering or nitrogen capture reaction. Radiosensitivity was assessed by a colony-forming assay, and the DNA double-strand breaks (DSBs) were assessed by a histone gamma-H2AX focus detection assay. In stem cell culture medium, GSLCs could form neurosphere-like cells and express neural stem cell markers (Sox2 and Musashi) abundantly in comparison with their parental cells. GSLCs were significantly more radioresistant to gamma rays than their parental cells, but neutron beams overcame this resistance. There were significantly fewer gamma-H2AX foci in the A172 GSLCs 24 h after irradiation with gamma rays than in their parental cultured cells, while there was no apparent difference following neutron-beam irradiation. High-LET radiation can overcome the radioresistance of GSLCs by producing unrepairable DNA DSBs. High-LET radiation therapy might have the potential to overcome GBM's resistance to X-rays in a clinical setting. PMID:23955054

Hirota, Yuki; Masunaga, Shin-Ichiro; Kondo, Natsuko; Kawabata, Shinji; Hirakawa, Hirokazu; Yajima, Hirohiko; Fujimori, Akira; Ono, Koji; Kuroiwa, Toshihiko; Miyatake, Shin-Ichi

2014-01-01

213

Modulation of macrophage function by gamma-irradiation. Acquisition of the primed cell intermediate stage of the macrophage tumoricidal activation pathway  

SciTech Connect

Macrophage activation for tumor cell killing is a multistep pathway in which responsive macrophages interact sequentially with priming and triggering stimuli in the acquisition of full tumoricidal activity. Although this synergistic response of normal macrophages to sequential incubation with activation signals has been well established, characterization of the intermediate stages in this pathway has been difficult, due in large measure to the instability of the intermediate cell phenotypes. We have developed a model system for examination of macrophage-mediated tumor cell lysis, with the use of the murine macrophage tumor cell line RAW 264.7. These cells, like normal macrophages, exhibit a strict requirement for interaction with both interferon-gamma (IFN-gamma, the priming signal) and bacterial lipopolysaccharide (LPS, the triggering signal) in the development of tumor cytolytic activity. In this system, the priming effects of IFN-gamma decay rapidly after withdrawal of this mediator and the cells become unresponsive to LPS triggering. We have recently observed that gamma-irradiation of the RAW 264.7 cells also results in development of a primed activation state for tumor cell killing. The effects of gamma-radiation on the RAW 264.7 cell line are strikingly similar to those resulting from incubation with IFN-gamma, with the exception that the irradiation-induced primed cell intermediate is stable and responsive to LPS triggering for at least 24 hr. Treatment with gamma-radiation also results in increased cell surface expression of major histocompatibility complex-encoded class I antigens; however, class II antigen expression is not induced.

Lambert, L.E.; Paulnock, D.M.

1987-10-15

214

Revisit the radiative decays of J/{psi} and {psi}{sup '}{yields}{gamma}{eta}{sub c}({gamma}{eta}{sub c}{sup '})  

SciTech Connect

With the new measurements of J/{psi} and {psi}{sup '}{yields}{gamma}{eta}{sub c}({gamma}{eta}{sub c}{sup '}) from the CLEO and BES-III collaboration, we reinvestigate the intermediate meson loop (IML) contributions to these radiative decays in association with the quark model M1 transitions in an effective Lagrangian approach. It shows that the ''unquenched'' effects due to the intermediate hadron loops can be better quantified by the new data for J/{psi}{yields}{gamma}{eta}{sub c}. Although the IML contributions are relatively small in J/{psi}{yields}{gamma}{eta}{sub c}, they play a crucial role in {psi}{sup '}{yields}{gamma}{eta}{sub c}({gamma}{eta}{sub c}{sup '}). A prediction for the IML contributions to {psi}(3770){yields}{gamma}{eta}{sub c}({gamma}{eta}{sub c}{sup '}) is made. Such unquenched effects allow us to reach a coherent description of those three radiative transitions, and gain some insights into the underlying dynamics.

Li Gang [Department of Physics, Qufu Normal University, Qufu, 273165 (China); Zhao Qiang [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, Beijing 100049 (China)

2011-10-01

215

The TP53 dependence of radiation-induced chromosome instability in human lymphoblastoid cells  

NASA Technical Reports Server (NTRS)

The dose and TP53 dependence for the induction of chromosome instability were examined in cells of three human lymphoblastoid cell lines derived from WIL2 cells: TK6, a TP53-normal cell line, NH32, a TP53-knockout created from TK6, and WTK1, a WIL2-derived cell line that spontaneously developed a TP53 mutation. Cells of each cell line were exposed to (137)Cs gamma rays, and then surviving clones were isolated and expanded in culture for approximately 35 generations before the frequency and characteristics of the instability were analyzed. The presence of dicentric chromosomes, formed by end-to-end fusions, served as a marker of chromosomal instability. Unexposed TK6 cells had low levels of chromosomal instability (0.002 +/- 0.001 dicentrics/cell). Exposure of TK6 cells to doses as low as 5 cGy gamma rays increased chromosome instability levels nearly 10-fold to 0.019 +/- 0.008 dicentrics/cell. There was no further increase in instability levels beyond 5 cGy. In contrast to TK6 cells, unexposed cultures of WTK1 and NH32 cells had much higher levels of chromosome instability of 0.034 +/- 0.007 and 0.041 +/- 0.009, respectively, but showed little if any effect of radiation on levels of chromosome instability. The results suggest that radiation exposure alters the normal TP53-dependent cell cycle checkpoint controls that recognize alterations in telomere structure and activate apoptosis.

Schwartz, Jeffrey L.; Jordan, Robert; Evans, Helen H.; Lenarczyk, Marek; Liber, Howard

2003-01-01

216

Foods for a Mission to Mars: Investigations of Low-Dose Gamma Radiation Effects  

NASA Technical Reports Server (NTRS)

Food must be safe, nutritious, and acceptable throughout a long duration mission to maintain the health, well-being, and productivity of the astronauts. In addition to a developing a stable pre-packaged food supply, research is required to better understand the ability to convert edible biomass into safe, nutritious, and acceptable food products in a closed system with many restrictions (mass, volume, power, crew time, etc.). An understanding of how storage conditions encountered in a long-term space mission, such as elevated radiation, will impact food quality is also needed. The focus of this project was to contribute to the development of the highest quality food system possible for the duration of a mission, considering shelf-stable extended shelf-life foods, bulk ingredients, and crops to be grown in space. The impacts of space-relevant radiation doses on food, bulk ingredient, and select candidate crop quality and antioxidant capacity were determined. Interestingly, increasing gamma-radiation doses (0 to 1000 Gy) did not always increase dose-related effects in foods. Intermediate radiation doses (10 to 800Gy) often had significantly larger impact on the stability of bulk ingredient oils than higher (1000Gy) radiation doses. Overall, most food, ingredient, and crop systems investigated showed no significant differences between control samples and those treated with 3 Gy of gamma radiation (the upper limit estimated for a mission to Mars). However, this does not mean that all foods will be stable for 3-5 years, nor does it mean that foods are stable to space radiation comprising more than gamma rays.

Gandolph, J.; Shand, A.; Stoklosa, A.; Ma, A.; Weiss, I.; Alexander, D.; Perchonok, M.; Mauer, L. J.

2007-01-01

217

Measurements of longitudinal gamma ray distribution using a multichannel fiber-optic Cerenkov radiation sensor  

NASA Astrophysics Data System (ADS)

Cerenkov radiation occurs when charged particles are moving faster than the speed of light in a transparent dielectric medium. In optical fibers, Cerenkov radiation can also be generated due to the fiber’s dielectric components. Accordingly, the radiation-induced light signals can be obtained using the optical fibers without any scintillating material. In this study, we fabricated a multichannel, fiber-optic Cerenkov radiation sensor (FOCRS) system using silica optical fibers (SOFs), plastic optical fibers (POFs), an optical spectrometer, multi-anode photomultiplier tubes (MA-PMTs) and a scanning system to measure the light intensities of Cerenkov radiation induced by gamma rays. To evaluate the fading effects in optical fibers, the spectra of Cerenkov radiation generated in the SOFs and POFs were measured based on the irradiation time by using an optical spectrometer. In addition, we measured the longitudinal distribution of gamma rays emitted from the cylindrical type Co-60 source by using MA-PMTs. The result was also compared with the distribution of the electron flux calculated by using the Monte Carlo N-particle transport code (MCNPX).

Shin, S. H.; Jeon, D.; Kim, J. S.; Jang, J. S.; Jang, K. W.; Yoo, W. J.; Moon, J. H.; Park, B. G.; Kim, S.; Lee, B.

2014-11-01

218

Level Density and Radiative Strength Functions of Dipole gamma-Transitions in 163Dy  

E-print Network

Using our early experimental data on the cascade gamma-transitions from the 162Dy(n,2gamma) reaction, we determined dependence of the cascade intensity on the energy of their intermediate levels, and then - level density and radiatibe strength functions which allow precise reproduction of the experimental two-step cascade intensities and total gamma-width. Level density in this nucleus (like in other earlier studied even-odd nuclei) in the interval 1 to 3 MeV is considerably less than that predicted by Fermi-gas model. Enhancement of the radiative strength functions, caused by strong correlations of parameters, most probably, relates with the change in ratio between the quasi-particle and collective component of the wave functions of the cascade intermediate levels in the region of most strong change in their density.

V. A. Khitrov; Li Chol; A. M. Sukhovoj

2005-08-08

219

Gamma radiation effects on phenolics, antioxidants activity and in vitro digestion of pistachio ( Pistachia vera) hull  

NASA Astrophysics Data System (ADS)

The effect of gamma radiation (10, 20, 30, 40, 50 and 60 kGy) on tannin, total phenolics, antioxidants activity and in vitro digestion of pistachio hulls has been investigated in this study. The possibility of using the radial diffusion method based on software measurement of the rings area has also been investigated in this study. The software based method in radial diffusion method showed a higher r2 (0.995) value when compared to the traditional method. Irradiation reduced the tannin content ( P<0.01) and activity of antioxidants ( P<0.05) of pistachio hull extracts but increased the total phenolic content ( P<0.05). There was no effect of gamma irradiation on the in vitro digestion of the pistachio hull. Irradiation decreased the digestion rate of the pistachio hull at the dose of 40 kGy when compared to the control. This study showed that gamma irradiation decreased tannin and antioxidants activity of pistachio hull.

Behgar, M.; Ghasemi, S.; Naserian, A.; Borzoie, A.; Fatollahi, H.

2011-09-01

220

Radiation effects on cell membranes  

Microsoft Academic Search

Summary The recent developments in the field of membrane biology of eukaryotic cells result in revival of relevant radiobiological studies. The spatial relations and chemical nature of membrane components provide rather sensitive targets. Experimental data are presented concerning the effects of relatively low doses of X-irradiation and low concentration of tritiated water (HTO) on variou receptor function - concanavalin A,

G. J. Köteles

1982-01-01

221

Multiple Defects of Immune Cell Function in Mice with Disrupted Interferon-gamma Genes  

Microsoft Academic Search

Interferon-gamma (IFN-gamma) is a pleiotrophic cytokine with immunomodulatory effects on a variety of immune cells. Mice with a targeted disruption of the IFN-gamma gene were generated. These mice developed normally and were healthy in the absence of pathogens. However, mice deficient in IFN-gamma had impaired production of macrophage antimicrobial products and reduced expression of macrophage major histocompatibility complex class II

Dyana K. Dalton; Sharon Pitts-Meek; Satish Keshav; Irene S. Figari; Allan Bradley; Timothy A. Stewart

1993-01-01

222

Cell death (apoptosis) in mouse intestine after continuous irradiation with gamma rays and with beta rays from tritiated water  

SciTech Connect

Apoptosis is a pattern of cell death involving nuclear pycnosis, cytoplasmic condensation, and karyorrhexis. Apoptosis induced by continuous irradiation with gamma rays (externally given by a 137Cs source) or with beta rays (from tritiated water injected ip) was quantified in the crypts of two portions of mouse bowel, the small intestine and descending colon. The time-course change in the incidence of apoptosis after each type of radiation could be explained on the basis of the innate circadian rhythm of the cells susceptible to apoptotic death and of the excretion of tritiated water (HTO) from the body. For 6-h continuous gamma irradiation at various dose rates (0.6-480 mGy/h) and for 6 h after injection of HTO of various radioactivities (0.15-150 GBq per kg body wt), the relationships between dose and incidence of apoptosis were obtained. Survival curves were then constructed from the curves for dose vs incidence of apoptosis. For the calculation of the absorbed dose from HTO, the water content both of the mouse body and of the cells was assumed to be 70%. One megabecquerel of HTO per mouse (i.e., 40 MBq/kg body wt) gave a dose rate of 0.131 mGy/h. The mean lethal doses (D0) were calculated for gamma rays and HTO, and relative biological effectiveness values of HTO relative to gamma rays were obtained. The D0 values for continuous irradiation with gamma rays were 210 mGy for small intestine and 380 mGy for descending colon, and the respective values for HTO were 130 and 280 mGy, indicating the high radiosensitivity of target cells for apoptotic death. The relative biological effectiveness of HTO relative to 137Cs gamma rays for cell killing in both the small intestine and the descending colon in the mouse was 1.4-2.1.

Ijiri, K.

1989-04-01

223

Radiation-induced bystander effects in the Atlantic salmon (salmo salar L.) following mixed exposure to copper and aluminum combined with low-dose gamma radiation.  

PubMed

Very little is known about the combined effects of low doses of heavy metals and radiation. However, such "multiple stressor" exposure is the reality in the environment. In the work reported in this paper, fish were exposed to cobalt 60 gamma irradiation with or without copper or aluminum in the water. Doses of radiation ranged from 4 to 75 mGy delivered over 48 or 6 h. Copper doses ranged from 10 to 80 ?g/L for the same time period. The aluminum dose was 250 ?g/L. Gills and skin were removed from the fish after exposure and explanted in tissue culture flasks for investigation of bystander effects of the exposures using a stress signal reporter assay, which has been demonstrated to be a sensitive indicator of homeostatic perturbations in cells. The results show complex synergistic interactions of radiation and copper. Gills on the whole produce more toxic bystander signals than skin, but the additivity scores show highly variable results which depend on dose and time of exposure. The impacts of low doses of copper and low doses of radiation are greater than additive, medium levels of copper alone have a similar level of effect of bystander signal toxicity to the low dose. The addition of radiation stress, however, produces clear protective effects in the reporters treated with skin-derived medium. Gill-derived medium from the same fish did not show protective effects. Radiation exposure in the presence of 80 ?g/L led to highly variable results, which due to animal variation were not significantly different from the effect of copper alone. The results are stressor type, stressor concentration and time dependent. Clearly co-exposure to radiation and heavy metals does not always lead to simple additive effects. PMID:24352529

Mothersill, Carmel; Smith, Richard W; Heier, Lene Sørlie; Teien, Hans-Christian; Lind, Ole Christian; Land, Ole Christian; Seymour, Colin B; Oughton, Deborah; Salbu, Brit

2014-03-01

224

Heterogenization of precious metal catalysts and enzymes by radiation-induced graft copolymerization. [Gamma or ultraviolet radiation  

SciTech Connect

The feasibility of using radiation graft copolymerization for the preparation of supports suitable for the heterogenization of catalysts was examined. To bind metal complexes, radiation graft copolymers of p-styryldiphenylphosphine with a number of trunk polymers were produced. Similarly enzyme immobilization was successful on chemically modified p-nitrostyrene copolymers. Conditions for ..gamma.. and/or UV radiation grafting of styrene, p-styryldiphenylphosphine, vinyldiphenylphosphine and p-nitrostyrene to a number of trunk polymers were established. New techniques to chemically modify styrene copolymers and to analyze the resultant catalysts were adapted from traditional methods. Procedures to assess the catalytic activity of the heterogenized catalysts were also developed from techniques used in conventional catalytic research.

Levot, R.G.

1983-01-01

225

Resistance of a cultured fish cell line (CAF-MM1) to. gamma. irradiation  

SciTech Connect

Fish are generally more resistant to whole-body ionizing radiation than mammals. To study the radiosensitivity of fish in vitro, CAF-MM1 cells derived from the fin of the goldfish, Carassius auratus, were used. The survival parameters of CAF-MM1 obtained after ..gamma.. irradiation at 26/sup 0/C were 325 rad for D/sub o/, 975 rad for Dq, and 15 for n. No mammalian cell line with such a low sensitivity in the presence of O/sub 2/ has been reported. It was found that the large initial shoulder of the survival curve was paralleled by substantial repair of sublethal damage as evidenced by split-dose experiments. This low sensitivity to ..gamma.. irradiation did not change upon the administration of caffeine or postirradiation illumination, although these treatments were effective after uv irradiation. The decrease in the mitotic index in CAF-MM1 occurred immediately after irradiation, and it recovered within a very short time. This indicated that the duration of G2 arrest was shorter than that observed in mammalian cells. The data also suggest that the resistance of fish to whole-body irradiation is attributable to resistance at the cellular level.

Mitani, H.; Etoh, H.; Egami, N.

1982-02-01

226

M-BAND Study of Radiation-Induced Chromosome Aberrations in Human Epithelial Cells: Radiation Quality and Dose Rate Effects  

NASA Technical Reports Server (NTRS)

The advantage of the multicolor banding in situ hybridization (mBAND) technique is its ability to identify both inter- (translocation to unpainted chromosomes) and intra- (inversions and deletions within a single painted chromosome) chromosome aberrations simultaneously. To study the detailed rearrangement of low- and high-LET radiation induced chromosome aberrations in human epithelial cells (CH184B5F5/M10) in vitro, we performed a series of experiments with Cs-137 gamma rays of both low and high dose rates, neutrons of low dose rate and 600 MeV/u Fe ions of high dose rate, with chromosome 3 painted with multi-binding colors. We also compared the chromosome aberrations in both 2- and 3-dimensional cell cultures. Results of these experiments revealed the highest chromosome aberration frequencies after low dose rate neutron exposures. However, detailed analysis of the radiation induced inversions revealed that all three radiation types induced a low incidence of simple inversions. Most of the inversions in gamma-ray irradiated samples were accompanied by other types of intra-chromosomal aberrations but few inversions were accompanied by inter-chromosomal aberrations. In contrast, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both inter- and intrachromosomal exchanges. The location of the breaks involved in chromosome exchanges was analyzed along the painted chromosome. The breakpoint distribution was found to be randomly localized on chromosome 3 after neutron or Fe ion exposure, whereas non-random distribution with clustering breakpoints was observed after -ray exposure. Our comparison of chromosome aberration yields between 2- and 3-dimensional cell cultures indicated a significant difference for gamma exposures, but not for Fe ion exposures. These experimental results indicated that the track structure of the radiation and the cellular/chromosome structure can both affect radiation-induced chromosome aberrations.

Hada, Megumi; Cucinotta, Francis; Wu, Honglu

2009-01-01

227

Gamma-ray detectors for intelligent, hand-held radiation monitors  

SciTech Connect

Small radiation detectors based on HgI/sub 2/, bismuth germanate (BGO), plastic, or NaI(Tl) detector materials were evaluated for use in small, lighweight radiation monitors. The two denser materials, HgI/sub 2/ and BGO, had poor resolution at low-energy and thus performed less well than NaI(Tl) in detecting low-energy gamma rays from bare, enriched uranium. The plastic scintillator, a Compton recoil detector, also performed less well at low gamma-ray energy. Two small NaI(Tl) detectors were suitable for detecting bare uranium and sheilded plutonium. One became part of a new lightweight hand-held monitor and the other found uses as a pole-mounted detector for monitoring hard-to-reach locations.

Fehlau, P.E.

1983-01-01

228

Development and characterization of starch nanoparticles by gamma radiation: potential application as starch matrix filler.  

PubMed

Gamma radiation arises as an advantageous alternative to obtain starch nanoparticles given its low cost, simple methodology and scalability. Starch nanoparticles (SNP) with sizes around 20 and 30 nm were obtained applying a dose of 20 kGy from cassava (CNP-?) and waxy maize (WNP-?) starch, respectively. They showed the same thermal degradation behavior and their maximum mass loss zone was similar to those nanoparticles obtained from acid hydrolysis (WNP-h). Additionally, CNP-? and WNP-? were used as nanofillers in a cassava matrix. Increments of 102% in storage modulus were obtained with the addition of only 2.5 wt.% of WNP-?, showing that gamma radiation is a successful methodology to obtain SNP able to be used as starch reinforcement. PMID:23769521

Lamanna, Melisa; Morales, Noé J; García, Nancy Lis; Goyanes, Silvia

2013-08-14

229

Operation of Bidirectional Switches (DIAC) and Silicon Controlled Rectifiers (SCR) in Gamma-Radiation Environment  

SciTech Connect

Gamma-irradiation effects on the electrical parameters of the Diode AC switch (DIAC; PHI37 500) and Silicon Controlled Rectifier (SCR; 2N4444) devices have been studied in detail, where gamma-dose up to 137 x 106 rad was found to cause a serious permanent damage on their electrical characteristics. A pronounced increase in the break-over voltage (from 31.5 to 35 V), holding-current (from 13 to 53 mA) and holding voltage (from 22 to 32 V) of the DIAC is noticed. Besides, a severe decrease in the dynamic break-over voltage range (from 10 to 2.5 V) and negative resistance (from -750 to -168 ohm) is also observed. Exposing the SCRs to gamma-radiation causes their turn-on voltage and forward voltage drop values to increase from 0.8 to 2.8 V and from 1.4 to 4.5 V, respectively. Additionally, the holding current increases to 18 mA although its initial value is 3.5 mA. For the two devices, the linear dependence and high sensitivity of their electrical parameters to gamma-dose suggest the application of such devices in the field of radiation dosimetry.

Swidan, A.M.; El-Ghanam, S.M. [Women's College for Art, Science and Education, Ain- Shams University, Helioplis, Cairo (Egypt); Soliman, F.A.S. [Nuclear Materials Authority, P.O. Box 2404, Horrya-11361, Heliopolis, Cairo (Egypt)

2005-03-17

230

[Carcinogenic effects of combined exposure to 241Am and gamma-radiation].  

PubMed

In experiments on Wistar rats a study was made of the carcinogenic effects of the combined exposure to 241Am administered intraperitoneally (6.7 to 229.4 kBq/kg body weight) and external gamma-radiation (137Cs, 175 cGy). The occurrence of osteosarcoma, leucosis, skin and mammary tumors increased in the exposed animals. The combined irradiation produced an additive carcinogenic effect. PMID:6390502

Filippova, L G; Buldakov, L A; Nifatov, A P

1984-01-01

231

Interaction of water vapor with gamma-radiation-induced defects in proton conductive polymers  

Microsoft Academic Search

The correlation between protonic conduction and the amount of radiation-induced defects in gamma-ray-irradiated perfluorosulfonic acid (PFSA) polymers (Aciplex-SF-1004®) has been investigated using a direct-current resistance method, transmission spectroscopy for the ultraviolet (UV) and visible (Vis) wavelength ranges and Fourier transform infrared (FTIR) spectroscopy with the attenuated total refraction (ATR) technique. The proton conductivity of the polymers, which are irradiated with

B. Tsuchiya; Y. Konishi; S. Nagata; T. Shikama

2009-01-01

232

Immobilization of Urease on (HEMA\\/IA) Hydrogel Prepared by Gamma Radiation  

Microsoft Academic Search

In the present study, the copolymeric hydrogels based on 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) were synthesized by gamma radiation induced radical polymerization, in order to examine the potential use of these hydrogels in immobilization of Citrullus vulgaris urease. Gelation and Swelling properties of PHEMA and copolymeric P (HEMA\\/IA) hydrogels with different IA contents (96.5\\/3.5, 94.4\\/5.6 and 92.5\\/7.5 mol)

Soha M. Hamdy; Samia El-Sigeny; Manal F. Abou Taleb

2008-01-01

233

Evidence for successful acceptance of irradiated free gingival allografts in dogs. [Gamma radiation  

Microsoft Academic Search

Free graft samples were excised and frozen to -55°C. Subsequently the grafts were exposed to 2.5 x 10⁶ rads of ⁶°Co ..gamma..-radiation. The irradiated allogeneic grafts were later reconstituted and surgically transferred to four recipient subjects. Three autogenous nonirradiated grafts were also placed as controls. The animals were killed so as to furnish healing data at 0, 3, 7, 10,

H. S. Rubenstein; M. P. Ruben; C. Levy; S. Peiser

1975-01-01

234

Method for detecting water equivalent of snow using secondary cosmic gamma radiation  

DOEpatents

Water equivalent of accumulated snow determination by measurement of secondary background cosmic radiation attenuation by the snowpack. By measuring the attenuation of 3-10 MeV secondary gamma radiation it is possible to determine the water equivalent of snowpack. The apparatus is designed to operate remotely to determine the water equivalent of snow in areas which are difficult or hazardous to access during winter, accumulate the data as a function of time and transmit, by means of an associated telemetry system, the accumulated data back to a central data collection point for analysis. The electronic circuitry is designed so that a battery pack can be used to supply power. 4 figs.

Condreva, K.J.

1997-01-14

235

Method for detecting water equivalent of snow using secondary cosmic gamma radiation  

DOEpatents

Water equivalent of accumulated snow determination by measurement of secondary background cosmic radiation attenuation by the snowpack. By measuring the attentuation of 3-10 MeV secondary gamma radiation it is possible to determine the water equivalent of snowpack. The apparatus is designed to operate remotely to determine the water equivalent of snow in areas which are difficult or hazardous to access during winter, accumulate the data as a function of time and transmit, by means of an associated telemetry system, the accumulated data back to a central data collection point for analysis. The electronic circuitry is designed so that a battery pack can be used to supply power.

Condreva, Kenneth J. (1420 Fifth St., Livermore, Alameda County, CA 94550)

1997-01-01

236

Comparison of radiation sensitivity for three cell lines as measured by the cloning assay and the micro-nucleus test.  

PubMed

The correlation between cell killing and the induction of micro-nuclei was studied for three cell lines after treatment with gamma radiation to investigate whether the frequency of micro-nucleated cells can be used to determine the radiation sensitivity of a cell type. R1 rat rhabdomyosarcoma cells showed a higher sensitivity for the induction of proliferative death than RUC rat ureter carcinoma cells and V79 Chinese hamster cells which had a similar radiation sensitivity. The frequencies of micro-nucleated cells were measured at 48 hours after the treatment. It was determined by time-lapse cinematography that almost all the cells in the treated cultures had divided at that time. Our results indicate that for these cell lines the correlation between the effectiveness for cell killing and the induction of micro-nuclei was the same, within the experimental errors. PMID:2260014

Stap, J; Aten, J A

1990-11-01

237

Branching Fractions and CP-Violating Asymmetries in Radiative B Decays to eta K gamma  

SciTech Connect

The authors present measurements of the CP-violation parameters S and C for the radiative decay B{sup 0} {yields} {eta}K{sub S}{sup 0}{gamma}; for B {yields} {eta}K{gamma} they also measure the branching fractions and for B{sup +} {yields} {eta}K{sup +}{gamma} the time-integrated charge asymmetry {Alpha}{sub ch}. The data, collected with the BABAR detector at the Stanford Linear Accelerator Center, represent 465 x 10{sup 6} B{bar B} pairs produced in e{sup +}e{sup -} annihilation. The results are S = -0.18{sub -0.46}{sup +0.49} {+-} 0.12, C = -0.32{sub -0.39}{sup +0.40} {+-} 0.07, {Beta}(B{sup 0} {yields} {eta}K{sup 0}{gamma}) = (7.1{sub -2.0}{sup +2.1} {+-} 0.4) x 10{sup -6}, {Beta}(B{sup +} {yields} {eta}K{sup +}{gamma}) = (7.7 {+-} 1.0 {+-} 0.4) x 10{sup -6}, and {Alpha}{sub ch} = (-9.0{sub -9.8}{sup +10.4} {+-} 1.4) x 10{sup -2}. The first error quoted is statistical and the second systematic.

Aubert, B.

2008-05-14

238

Celestial diffuse gamma radiation above 30 MeV observed by SAS-2  

NASA Technical Reports Server (NTRS)

The Small Astronomy Satellite (SAS)-2, launched on November 15, 1972, carried into orbit a 32-deck magnetic-core digitized spark chamber gamma ray telescope to study celestial gamma radiation in the energy range above 30 MeV. In the study of several regions with b sub 2 15 deg, a finite, diffuse flux of gamma rays with a steep energy spectrum in the energy region from 35 to 200 MeV is observed. Representing the energy spectrum by a power law of the form dJ/dE = AE to - alpha power over this energy range, alpha is found along with the integral flux above 100 MeV. Combining this result with existing low energy gamma ray data yields an energy spectrum which is not a simple power law in energy, as in the X-ray region, but which demonstrates first an increase and then a decrease in slope, consistent within uncertainties with that predicted by cosmological theories, including the continuous production of high energy gamma rays primarily from neutral pi mesons throughout the history of the universe.

Fichtel, C. E.; Kniffen, D. A.; Hartman, R. C.

1973-01-01

239

Comparison of proton microbeam and gamma irradiation for the radiation hardness testing of silicon PIN diodes  

NASA Astrophysics Data System (ADS)

Simple and cost-effective solutions using Si PIN diodes as detectors are presently utilized in various radiation-related applications in which excessive exposure to radiation degrades their charge transport properties. One of the conventional methods for the radiation hardness testing of such devices is time-consuming irradiation with electron beam or gamma-ray irradiation facilities, high-energy proton accelerators, or with neutrons from research reactors. Recently, for the purpose of radiation hardness testing, a much faster nuclear microprobe based approach utilizing proton irradiation has been developed. To compare the two different irradiation techniques, silicon PIN diodes have been irradiated with a Co-60 gamma radiation source and with a 6 MeV proton microbeam. The signal degradation in the silicon PIN diodes for both irradiation conditions has been probed by the IBIC (ion beam induced charge) technique, which can precisely monitor changes in charge collection efficiency. The results presented are reviewed on the basis of displacement damage calculations and NIEL (non-ionizing energy loss) concept.

Jakši?, M.; Grilj, V.; Skukan, N.; Majer, M.; Jung, H. K.; Kim, J. Y.; Lee, N. H.

2013-09-01

240

Diffuse gamma radiation. [intensity, energy spectrum and spatial distribution from SAS 2 observations  

NASA Technical Reports Server (NTRS)

Results are reported for an investigation of the intensity, energy spectrum, and spatial distribution of the diffuse gamma radiation detected by SAS 2 away from the galactic plane in the energy range above 35 MeV. The gamma-ray data are compared with relevant data obtained at other wavelengths, including 21-cm emission, radio continuum radiation, and the limited UV and radio information on local molecular hydrogen. It is found that there are two quite distinct components to the diffuse radiation, one of which shows a good correlation with the galactic matter distribution and continuum radiation, while the other has a much steeper energy spectrum and appears to be isotropic at least on a coarse scale. The galactic component is interpreted in terms of its implications for both local and more distant regions of the Galaxy. The apparently isotropic radiation is discussed partly with regard to the constraints placed on possible models by the steep energy spectrum, the observed intensity, and an upper limit on the anisotropy.

Fichtel, C. E.; Simpson, G. A.; Thompson, D. J.

1978-01-01

241

Free radical scavenging alleviates the biomechanical impairment of gamma radiation sterilized bone tissue.  

PubMed

Terminal sterilization of bone allografts by gamma radiation is often essential prior to their clinical use to minimize the risk of infection and disease transmission. While gamma radiation has efficacy superior to other sterilization methods it also impairs the material properties of bone allografts, which may result in premature clinical failure of the allograft. The mechanisms by which gamma radiation sterilization damages bone tissue are not well known although there is evidence that the damage is induced via free radical attack on the collagen. In the light of the existing literature, it was hypothesized that gamma radiation induced biochemical damage to bone's collagen that can be reduced by scavenging for the free radicals generated during the ionizing radiation. It was also hypothesized that this lessening of the extent of biochemical degradation of collagen will be accompanied by alleviation in the extent of biomechanical impairment secondary to gamma radiation sterilization. Standardized tensile test specimens machined from human femoral cortical bone and specimens were assigned to four treatment groups: control, scavenger treated-control, irradiated and scavenger treated-irradiated. Thiourea was selected as the free radical scavenger and it was applied in aqueous form at the concentration of 1.5 M. Monotonic and cyclic mechanical tests were conducted to evaluate the mechanical performance of the treatment groups and the biochemical integrity of collagen molecules were assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native mechanical properties of bone tissue did not change by thiourea treatment only. The effect of thiourea treatment on mechanical properties of irradiated specimens were such that the post-yield energy, the fracture energy and the fatigue life of thiourea treated-irradiated treatment group were 1.9-fold, 3.3-fold and 4.7-fold greater than those of the irradiated treatment group, respectively. However, the mechanical function of thiourea treated and irradiated specimens was not to the level of unirradiated controls. The damage occurred through the cleavage of the collagen backbone as revealed by SDS PAGE analysis. Irradiated specimens did not exhibit a noteworthy amount of intact alpha-chains whereas those irradiated in the presence of thiourea demonstrated intact alpha-chains. Results demonstrated that free radical damage is an important pathway of damage, caused by cleaving the collagen backbone. Blocking the activity of free radicals using the scavenger thiourea reduces the extent of damage to collagen, helping to maintain the mechanical strength of sterilized tissue. Therefore, free radical scavenger thiourea has the potential to improve the functional life-time of the allograft component following transplantation. PMID:16022998

Akkus, Ozan; Belaney, Ryan M; Das, Prasenjit

2005-07-01

242

The comparative effects of gamma radiation and in situ alpha particles on five strong-base anion exchange resins  

SciTech Connect

The effects of external gamma radiation and in situ alpha particles were measured on a recently available, macroporous, strong-base polyvinylpyridine resin and on four strong-base polystyrene anion exchange resins. Each resin was irradiated in 7 M nitric acid to 1--10 megaGray of gamma radiation from external {sup 60}Co, or to 5--14 megaGray of alpha particles from sorbed {sup 238}Pu. Each irradiated resin was measured for changes in dry weight, wet volume, weak-base and strong-base chloride exchange capacities, and exchange capacities for Pu(4) from nitric acid. Alpha-induced resin damage was significantly less than that caused by an equivalent dose of gamma radiation. The polyvinylpyridine resin offers the greatest resistance to damage from gamma radiation and from alpha particles. 5 refs., 1 figs. 5 tabs.

Marsh, S.F.

1991-01-01

243

SAS-2 observations of the galactic gamma radiation from the Vela region  

NASA Technical Reports Server (NTRS)

Data from a scan of the galactic plane by the SAS-2 high energy gamma ray experiment in the region 250 deg l2 290 deg show a statistically-significant excess over the general radiation from the galactic plane for gamma radiation of energy 100 MeV in the region 260 deg l2 270 deg and -7.5 deg b2 0 deg. If the enhanced gamma radiation results from interactions of cosmic rays with galactic matter, as the energy spectrum suggests, it seems reasonable to associate the enhancement with large scale galactic features, such as spiral arm segments in that direction, or with the region surrounding the Vela supernova remnant, with which PSR 0833-45 is associated. If the excess is attributed to cosmic rays released from this supernova interacting with the interstellar matter in that region, then on the order of 3.10 to the 50th power ergs would be released by that supernova in the form of cosmic rays.

Thompson, D. J.; Bignami, G. F.; Fichtel, C. E.; Kniffen, D. A.

1974-01-01

244

Methyl viologen radical reactions with several oxidizing agents. [Gamma Radiation  

SciTech Connect

The rates of oxidation of the methyl viologen radical by peroxodisulfate and hydrogen peroxide has been investigated. The methyl viologen free radical was produced by pulse radiolysis. The reaction of the peroxodisulfate radical with the methyl viologen radical was first order in both species, and the reaction rate constant is reported. A el-radiation study revealed a chain decomposition of the peroxodisulfate radical involving the methyl viologen radical when methanol, ethanol, or 2-propanol was present. Loss of the methyl viologen radical was then no longer observed to be a simple first-order reaction. The reaction of hydrogen peroxide with the methyl viologen radical was very slow in the presence of 1 M methanol. A much faster reaction in the absence of methanol was interpreted to be a reaction of the methyl viologen radical with the peroxy radicals. Hydrogen peroxide, in contrast to the chain decomposition of peroxodisulfate radicals, does not participate in a chain reaction involving the methyl viologen radical and methanol. Rate constants for the reaction of methyl viologen radical with dichromate radical, iodate radical, and ferricyanide radical are reported.

Levey, G.; Ebbesen, T.W.

1983-01-01

245

Radiation tests of SEP solar cells  

NASA Technical Reports Server (NTRS)

Solar cells specially designed for Solar Electric Propulsion (SEP) were tested with radiation fluences up to 10 to the 12th power protons having energies of 1.5, 1.0, and 0.5 MeV, and with fluences up to 10 to the 16th power electrons having 1.0 MeV energy. Spectrolab cells having a back-surface field were also irradiated with the same particles and fluences. Cell performances are described by curves in which normalized and absolute values of maximum power, maximum-power voltage, short-circuit current, and open-circuit voltage are plotted as a function of fluence.

Oman, H.

1977-01-01

246

Radiation induced genomic instability in bystander cells  

NASA Astrophysics Data System (ADS)

There is considerable evidence that exposure to ionizing radiation may induce a heritable genomic instability that leads to a persisting increased frequency of genetic and functional changes in the non-irradiated progeny of a wide variety of irradiated cells Genomic instability is measured as delayed expressions in chromosomal alterations micronucleus formation gene mutations and decreased plating efficiency During the last decade numerous studies have shown that radiation could induce bystander effect in non-irradiated neighboring cells similar endpoints have also been used in genomic instability studies Both genomic instability and the bystander effect are phenomena that result in a paradigm shift in our understanding of radiation biology In the past it seemed reasonable to assume that the production of single- and double-strand DNA breaks are due to direct energy deposition of energy by a charged particle to the nucleus It turns out that biology is not quite that simple Using the Columbia University charged particle microbeam and the highly sensitive human hamster hybrid AL cell mutagenic assay we irradiated 10 of the cells with a lethal dose of 30 alpha particles through the nucleus After overnight incubation the remaining viable bystander cells were replated in dishes for colony formation Clonal isolates were expanded and cultured for 6 consecutive weeks to assess plating efficiency and mutation frequency Preliminary results indicated that there was no significant decrease in plating efficiency among the bystander colonies when compared with

Zhou, H.; Gu, S.; Randers-Pehrson, G.; Hei, T.

247

Gamma radiation induced damage effects in the transmission of barium fluoride and cesium fluoride fast crystal scintillators  

Microsoft Academic Search

Radiation damage effects in the optical transmission of bulk material due to 60Co gamma irradiations were measured in samples of barium fluoride (BaF2) and cesium fluoride (CsF). While confirming the exceptional radiation resistance of barium fluoride in the visible and ultraviolet regions of the transmission spectrum, at least up to a gamma dose of a few times 107 rad, the

Stan Majewski; Margaret Kathleen Bentley

1987-01-01

248

Induced ICER I{gamma} down-regulates cyclin A expression and cell proliferation in insulin-producing {beta} cells  

SciTech Connect

We have previously found that cyclin A expression is markedly reduced in pancreatic {beta}-cells by cell-specific overexpression of repressor inducible cyclic AMP early repressor (ICER I{gamma}) in transgenic mice. Here we further examined regulatory effects of ICER I{gamma} on cyclin A gene expression using Min6 cells, an insulin-producing cell line. The cyclin A promoter luciferase assay showed that ICER I{gamma} directly repressed cyclin A gene transcription. In addition, upon ICER I{gamma} overexpression, cyclin A mRNA levels markedly decreased, thereby confirming an inhibitory effect of ICER I{gamma} on cyclin A expression. Suppression of cyclin A results in inhibition of BrdU incorporation. Under normal culture conditions endogenous cyclin A is abundant in these cells, whereas ICER is hardly detectable. However, serum starvation of Min6 cells induces ICER I{gamma} expression with a concomitant very low expression level of cyclin A. Cyclin A protein is not expressed unless the cells are in active DNA replication. These results indicate a potentially important anti-proliferative effect of ICER I{gamma} in pancreatic {beta} cells. Since ICER I{gamma} is greatly increased in diabetes as well as in FFA- or high glucose-treated islets, this effect may in part exacerbate diabetes by limiting {beta}-cell proliferation.

Inada, Akari [Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215 (United States); Weir, Gordon C. [Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215 (United States); Bonner-Weir, Susan [Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215 (United States)]. E-mail: susan.bonner-weir@joslin.harvard.edu

2005-04-15

249

Spectral measurements of direct and scattered gamma radiation at a boiling-water reactor site  

NASA Astrophysics Data System (ADS)

Quantitative surveys of direct and scattered gamma radiation emitted from the steam-power conversion systems of a boiling-water reactor and other on-site radiation sources were made using a directionally shielded HPGe gamma spectrometry system. The purpose of this study was to obtain data on the relative contributions and energy distributions of direct and scattered gamma radiation in the site environs. The principal radionuclide of concern in this study is 16N produced by the 16O(n,p) 16N reaction in the reactor coolant. Due to changes in facility operation resulting from the implementation of hydrogen water chemistry (HWC), the amount of 16N transported from the reactor to the main steam system under full power operation is excepted to increase by a factor of 1.2 to 5.0. This increase in the 16N source term in the nuclear steam must be considered in the design of new facilities to be constructed on site as well as the evaluation of existing facilities with repect to ALARA (As Low As Reasonably Achievable) dose limits in unrestricted areas. This study consisted of base-line measurements taken under normal BWR chemistry conditions in October, 1987 and a corresponding set taken under HWC conditions in July, 1988. Ground-level and elevated measurements, corresponding to second-story building height, were obtained. The primary conclusion of this study is that direct radiation from the steam-power conversion system is the predominant source of radiation in the site environs of this reactor and that air scattering (i.e. skyshine) does not appear to be significant.

Block, R. C.; Preiss, I. L.; Ryan, R. M.; Vargo, G. J.

1990-12-01

250

Mechanisms of linear energy transfer-dependent radiation resistance in myeloid leukemia cells  

NASA Astrophysics Data System (ADS)

Ionizing radiations (IRs) of high linear energy transfer (LET), such as alpha particles, produce fundamentally different forms of DNA damage in cells than conventional low LET radiation, such as gamma rays. Alpha particle therapies have recently emerged as important potential treatments of cancer, particularly for relatively easily-accessible malignancies of the hematopoietic system. Therefore, we created stable radioresistant myeloid leukemia HL60 cell clones derived after irradiation from either gamma rays (RG) or alpha particles (RA) in order to understand whether resistance to high LET (IR) was possible and the potential differences in radioresistance that could arise from radiations of different LET. Repeated irradiations yielded radioresistant HL60 clones and, regardless of derivation, displayed similar levels of resistance to IR of either type of radiation. The resistant phenotype in each type of radioresistant clone was driven by similar, multifactorial changes that included significant reductions in apoptosis, a decreased late G2/M checkpoint accumulation that was indicative of increased genomic instability, as well as more robust repair of specific types of DNA lesions that included DNA double-strand breaks (DSBs). The relative changes in resistance to alpha particles, however, were substantially lower than the increase in resistance to gamma rays. The data suggest that these processes were interdependent, as inhibition of homology directed repair in the resistant clones sensitized them to gamma IR to a larger extent than naive HL60 cells. Finally, we identified the downregulation of iron regulatory protein 1 (IRP1) in gamma-resistant cells but not in alpha-resistant cells. Short-hairpin RNA-mediated reductions in expression of IRP1 in radiation-naive HL60 cells led to significant radioresistance to gamma rays, but not alpha particles. The IRP1-mediated radioresistance was associated with changes in iron-mediated oxidative stress that led to significant reductions in IR-induced apoptosis and faster DNA repair, and appeared to be specific to cytotoxic agents dependent on oxidative-type stress. The data suggest that many similarities exist between radioresistant cells derived from fundamentally different types of IR, but that there are also LET-specific changes in cellular adaptation to repeated IR exposure. The data also underscore the potent cytotoxicity of alpha particles and warrant their continued investigation as cancer therapies.

Haro, Kurtis John

251

Caffeine sensitization of cultured mammalian cells and human lymphocytes irradiated with gamma rays and fast neutrons: a study of relative biological effectiveness in relation to cellular repair  

SciTech Connect

The sensitizing effects of caffeine were studied in baby hamster kidney (BHK-21) cells and human lymphocytes following irradiation with gamma rays and fast neutrons. Caffeine sensitization occurred only when log-phase BHK cells and mitogen-stimulated lymphocytes were exposed to the two radiations. Noncycling (confluent) cells of BHK resulted in a shouldered survival curve following gamma irradiation while a biphasic curve was obtained with the log-phase cells. Survival in the case of lymphocytes was estimated by measurement of (TH)thymidine uptake. The relative biological effectiveness (RBE) of fast neutrons was found to be greater at survival levels corresponding to the resistant portions of the survival curves (shoulder or resistant tail). In both cell types, no reduction in RBE was observed when caffeine was present, because caffeine affected both gamma and neutron survival by the same proportion.

Hannan, M.A.; Gibson, D.P.

1985-10-01

252

Enhancement of Cell Mediated Immunity Through Non-Specific Immunostimulation with Liposome Encapsulated Gamma-Interferon.  

National Technical Information Service (NTIS)

The ability of liposome-encapsulated gamma interferon (LIP-gamma IFN) to stimulate mouse cell-mediated immunity was assessed both in vivo and in vitro. The enhancement of the cell-mediated immune response was demonstrated in vitro by a chemiluminescent as...

J. P. Wong, B. Kournikakis, E. G. Saravolac, L. C. Gorton

1994-01-01

253

Characteristics of the adaptive response in cultured salmon cells exposed to ionizing radiation.  

PubMed

The aim of this study was to investigate the influence of "priming" doses of ionizing irradiation on salmon cell survival in vitro prior to being challenged with subsequent higher doses. A radiation-induced adaptive response (AR) was examined in the Chinook salmon embryo cell line (CHSE-214). Cells were initially irradiated with a range of priming (conditioning) doses of (60)Co gamma (gamma) rays (0.25-0.75 Gy), followed by a challenge dose of 7.50 Gy at intervals of 24, 48, and 72 hr. The AR was assessed using a colony-forming assay. Cell survival was determined by counting the number of colonies (viable clones) after 40 days of culture. This study revealed that cells that received a priming dose of 0.50 Gy before delivering the higher challenge dose became more radiation resistant with an increase in cell survival of 29% over cells receiving the challenge dose alone. The cells showed maximum resistance to ionizing radiation when the priming dose was given 72 hr prior to the higher challenge dose. This study is one of the first to demonstrate an AR using an in vitro piscine system, and is generally consistent with other studies of both in vitro and in vivo systems across the taxa. PMID:18095328

Kilemade, Michael; Lemon, Jennifer; Boreham, Douglas

2008-04-01

254

RADIATION CHEMISTRY OF CARBOHYDRATES. PART IV. THE EFFECT OF GAMMA RADIATION ON AQUEOUS SOLUTION OF SUCROSE  

Microsoft Academic Search

Yield-dose curves obtained from isotope dilution and paper ; chromatographic methods reveal that glucose and fructose are primary products of ; gamma -irradiation of aqueous sucrose solutions, together with smaller amounts of ; glucosone and gluconic acid. Glucuronic acid, 2-oxogluconic acid, arabinose, and ; two- and three-carbon aldehydic fragments arise in secondary processes. In the ; final stages carbon dioxide

G. O. Phillips; G. J. Moody

1960-01-01

255

Gallium arsenide solar cell radiation damage study  

NASA Technical Reports Server (NTRS)

A thorough analysis has been made of electron- and proton- damaged GaAs solar cells suitable for use in space. It is found that, although some electrical parametric data and spectral response data are quite similar, the type of damage due to the two types of radiation is different. An I-V analysis model shows that electrons damage the bulk of the cell and its currents relatively more, while protons damage the junction of the cell and its voltages more. It is suggested that multiple defects due to protons in a strong field region such as a p/n junction cause the greater degradation in cell voltage, whereas the individual point defects in the quasi-neutral minority-carrier-diffusion regions due to electrons cause the greater degradation in cell current and spectral response.

Maurer, R. H.; Herbert, G. A.; Kinnison, J. D.; Meulenberg, A.

1989-01-01

256

Modulation of radiation-induced apoptosis and G{sub 2}/M block in murine T-lymphoma cells  

SciTech Connect

Radiation-induced apoptosis in lymphocyte-derived cell lines is characterized by endonucleolytic cleavage of cellular DNA within hours after radiation exposure. We have studied this phenomenon qualitatively (DNA gel electrophoresis) and quantitatively (diphenylamine reagent assay) in murine EL4 T-lymphoma cells exposed to {sup 137}Cs {gamma} irradiation. Fragmentation was discernible within 18-24 h after exposure. It increased with time and dose and reached a plateau after 8 Gy of {gamma} radiation. We studied the effect of several pharmacological agents on the radiation-induced G{sub 2}/M block and DNA fragmentation. The agents which reduced the radiation-induced G{sub 2}/M-phase arrest (caffeine, theobromine, theophylline and 2-aminopurine) enhanced the degree of DNA fragmentation at 24 h. In contrast, the agents which sustained the radiation-induced G{sub 2}/M-phase arrest (TPA, DBcAMP, IBMX and 3-aminobenzamide) inhibited the DNA fragmentation at 24 h. These studies on EL4 lymphoma cells are consistent with the hypothesis that cells with radiation-induced genetic damage are eliminated by apoptosis subsequent to a G{sub 2}/M block. Furthermore, it may be possible to modulate the process of radiation-induced apoptosis in lymphoma cells with pharmacological agents that modify the radiation-induced G{sub 2}/M block, and to use this effect in the treatment of patients with malignant disease. 59 refs., 7 figs.

Palayoor, S.T.; Macklis, R.M.; Bump, E.A.; Coleman, C.N. [Harvard Medical School, Boston, MA (United States)

1995-03-01

257

Size effects on gamma radiation response of magnetic properties of barium hexaferrite powders  

NASA Astrophysics Data System (ADS)

Little is currently known about the effects of gamma-ray irradiation on oxide magnet materials. In particular, the effect of particle size on radiation susceptibility was investigated. Two commercial powders of BaFe12O19 were thoroughly characterized, then exposed to 1 MGy of gamma radiation from a 60Co source. AC susceptibility and DC magnetometry and Mössbauer spectroscopy were performed after irradiation and compared to pre-irradiated measurements. DC magnetization and AC susceptibility decreased for both samples with the relative change of DC magnetization being larger for the micrometer-sized particles and the relative change of the AC susceptibility being larger for the nanometer-sized particles. Mössbauer spectroscopy indicated a decrease in both the hyperfine fields and in their distribution for each Fe site, particularly in the larger particle sample. Decreases in susceptibility are believed to be due to radiation-induced amorphization at the particle surfaces as well as amorphization and nucleation of new crystallites at internal crystallite boundaries, resulting in overall reduction in the particle magnetic moment. This radiation damage mechanism is different than that seen in previous studies of neutron and heavy ion irradiation of BaFe12O19.

McCloy, John; Kukkadapu, Ravi; Crum, Jarrod; Johnson, Brad; Droubay, Tim

2011-12-01

258

Molecular mechanisms of radiation-induced genomic instability in human cells  

SciTech Connect

The overall strategy was to create a series of isogenic human cell lines that differ in key elements of cell cycle checkpoint, apoptosis, or DNA repair in response to radiation-induced damage. The goal then was to quantify the fractions of cells within a population that exhibit reduced telomere lengths and relate this to the genetic background of the cell, as well as to the response to ionizing radiation. Association between telomere length and degree of genomic instability in the population is being examined for seven closely related cell lines, that vary in p53 status, bcl-2 status, or ability to repair double strand breaks. Experiments utilize gamma rays at doses of 0, 10, and 200 cGy. During this time period the effort concentrated on generating data with two cell lines. Approximately one-third of the required clones were isolated, and analyses for mutagenesis and chromosome aberrations were undertaken.

Liber, Howard L.

2003-02-13

259

Effect of Grating Fabrication on Radiation Sensitivity of Fiber Bragg Gratings in Gamma Radiation Field  

Microsoft Academic Search

The influence of grating fabrication on radiation sensitivity of the FBGs has been investigated experimentally. The FBGs were fabricated in different process and concen- trations. Pre-irradiation and -loading were applied to change the radiation sensitivity of the FBGs. The FBGs were fabricated in photosensitive fiber and coupling single mode fiber with a concentration in a range from 0.33 to 23

Song Lin; Ningfang Song; Jing Jin; Xueqin Wang; Gongliu Yang

2011-01-01

260

Solar cell radiation handbook. Addendum 1: 1982-1988  

SciTech Connect

The Solar Cell Radiation Handbook (JPL Publication 82-69) is updated. In order to maintain currency of solar cell radiation data, recent solar cell designs have been acquired, irradiated with 1 MeV electrons, and measured. The results of these radiation experiments are reported.

Anspaugh, B.E.

1989-02-01

261

Gravitational Radiations from the Precession Central Engine in Gamma-Ray Bursts  

NASA Astrophysics Data System (ADS)

The ultra-relativistic precessing jet in gamma-ray bursts (GRBs) may be responsible for the complex structure in GRBs' light curves. In this work, we study the gravitational radiations of jet precession induced by neutrino-dominated accretion disks around black holes. In our model, the jet and the inner part of the disk may precess along with the black hole, which is driven by the outer part of the disk. Gravitational radiations are therefore expected to be significant from this precession system. Based our numerical results, we find that it is possible for DECIGO and BBO to detect such gravitational radiations regardless of GRBs' black hole masses, particularly for GRBs in the Local Group.

Sun, Mou-Yuan; Liu, Tong; Gu, Wei-Min; Lu, Ju-Fu

262

Studies on production of fructo-oligosaccharides (FOS) by gamma radiation processing of microbial levan.  

PubMed

Microbial levan, a natural polymer of fructose, was produced and purified by alcohol precipitation from culture supernatants of Bacillus megaterium type 1 grown in an optimized liquid sucrose medium. GPC analysis showed that the yield of the major fraction of levan having molecular weight ~5000 D increased with increase in sucrose concentration in the broth. Levan subjected to (60)Co-gamma radiation as well as acid hydrolysis was investigated by rheometry, UV-visible spectrophotometry and gel permeation chromatography (GPC) techniques. Unlike most of the polysaccharides, levan powder exhibited good radiation degradation stability up to 150 kGy. Gamma irradiation of 10% levan aqueous solution at 250 kGy yielded 63.0% fructo-oligosaccharide (FOS) with an average molecular weight of 1250 D. Acid hydrolysis of levan using 0.5 N HCl for 60 min treatment time gave rise to the desired FOS with lower yield (23.1%) as compared to that obtained in gamma radiolysis process. PMID:23688493

Jalan, N; Varshney, Lalit; Misra, Nilanjal; Paul, Jhimli; Mitra, D; Rairakhwada, D D; Bhathena, Z; Kumar, Virendra

2013-07-01

263

Galactic Center Gamma Ray Excess in a Radiative Neutrino Mass Model  

E-print Network

The Fermi gamma ray space telescope data have pointed towards an excess of gamma rays with a peak around $1-3$ GeV in the region surrounding the galactic center. This anomalous excess can be described well by a dark matter candidate having mass in the range $31-40$ GeV annihilating into $b\\bar{b}$ pairs with a cross section of $\\langle \\sigma v \\rangle \\simeq (1.4-2.0) \\times 10^{-26} \\; \\text{cm}^3/\\text{s}$. In this work we explore the possibility of having such a dark matter candidate within the framework of a radiative neutrino mass model. The model is a simple extension of the standard model by an additional $U(1)_X$ gauge symmetry where the standard model neutrino masses arise both at tree level as well as radiatively by the anomaly free addition of one singlet fermion $N_R$ and two triplet fermions $\\Sigma_{1R}, \\Sigma_{2R}$ with suitable Higgs scalars. The spontaneous gauge symmetry breaking is achieved in such a way which results in a residual $Z_2$ symmetry and hence providing a stable cold dark matter candidate. We show that the singlet fermionic dark matter candidate in our model can give rise to the galactic center gamma ray excess while satisfying the constraints on relic density, direct detection scattering as well as collider constraints at the same time. We also discuss the compatibility of such a light fermion singlet dark matter with light neutrino mass.

Debasish Borah; Arnab Dasgupta

2014-09-04

264

Effect of gamma radiation on growth and survival of common seed-borne fungi in India  

NASA Astrophysics Data System (ADS)

The present work describes radiation-induced effects of major seeds like Oryza sativa Cv-2233, Oryza sativa Cv-Shankar, Cicer arietinum Cv-local and seed-borne fungi like Alternaria sp., Aspergillus sp., Trichoderma sp. and Curvularia sp. 60Co gamma source at 25 °C emitting gamma ray at 1173 and 1332 keV energy was used for irradiation. Dose of gamma irradiation up to 3 kGy (0.12 kGy/h) was applied for exposing the seed and fungal spores. Significant depletion of the fungal population was noted with irradiation at 1-2 kGy, whereas germinating potential of the treated grain did not alter significantly. However, significant differential radiation response in delayed seed germination, colony formation of the fungal spores and their depletion of growth were noticed in a dose-dependent manner. The depletion of the fungal viability (germination) was noted within the irradiation dose range of 1-2 kGy for Alternaria sp. and Aspergillus sp., while 0.5-1 kGy for Trichoderma sp. and Curvularia sp. However, complete inhibition of all the selected fungi was observed above 2.5 kGy.

Maity, J. P.; Chakraborty, A.; Chanda, S.; Santra, S. C.

2008-07-01

265

Dysregulation of IRP1-Mediated Iron Metabolism Causes Gamma Ray-specific Radioresistance in Leukemia Cells  

PubMed Central

Iron is required for nearly all organisms, playing important roles in oxygen transport and many enzymatic reactions. Excess iron, however, can be cytotoxic. Emerging evidence suggests that radioresistance can be achieved in lower organisms by the protection of proteins, but not DNA, immediately following ionizing radiation (IR) exposure, allowing for improved DNA repair. One potential mechanism for protein protection is controlling and limiting the amount of free iron in cells, as has been demonstrated in the extremophile Deinococcus Radiodurans, reducing the potential for oxidative damage to proteins during exposure to IR. We found that iron regulatory protein 1 (IRP1) expression was markedly reduced in human myeloid leukemia HL60 cells resistant to low linear energy transfer (LET) gamma rays, but not to high LET alpha particles. Stable knockdown of IRP1 by short-hairpin RNA (shRNA) interference in radiosensitive parental cells led to radioresistance to low LET IR, reduced intracellular Fenton chemistry, reduced protein oxidation, and more rapid DNA double-strand break (DSB) repair. The mechanism of radioresistance appeared to be related to attenuated free radical-mediated cell death. Control of intracellular iron by IRPs may be a novel radioresistance mechanism in mammalian cells. PMID:23155415

Haro, Kurtis J.; Sheth, Aneesh; Scheinberg, David A.

2012-01-01

266

Possible using of gamma ray measurements for monitoring and prediction of radiation hazard  

NASA Astrophysics Data System (ADS)

On the basis of data on flare energetic particle generation and propagation in the Heliosphere we calculate the space-time-energy distribution of these particles in the Heliosphere in the periods of great events. On the basis of observation data and investigations of cosmic ray nonlinear processes in the Heliosphere we determine the space-time distribution of solar wind matter. Then we calculate the generation of gamma-rays by decay of neutral pions generated in nuclear interactions of flare energetic particles with solar wind matter and determine the expected space-time distribution of gamma-ray emissivity. Then we calculate the expected time variation of the angle distribution and energy spectrum of gamma ray fluxes generated by interaction of flare energetic particles with solar wind matter for observations on the Earth's orbit from satellites, rockets and balloons or from space-probes on different distances from the Sun. We show that these measurements by gamma ray telescopes directed in few degrees from the Sun will give important information on flare energetic particle energy spectrum in source and information on propagation parameters in the interplanetary space in vicinities of the Sun. On the basis of this information can be made exact forecast of expected radiation hazards.

Dorman, Lev I.

2001-08-01

267

DNA microarray analyses reveal a post-irradiation differential time-dependent gene expression profile in yeast cells exposed to X-rays and {gamma}-rays  

SciTech Connect

Ionizing radiation (IR) is the most enigmatic of genotoxic stress inducers in our environment that has been around from the eons of time. IR is generally considered harmful, and has been the subject of numerous studies, mostly looking at the DNA damaging effects in cells and the repair mechanisms therein. Moreover, few studies have focused on large-scale identification of cellular responses to IR, and to this end, we describe here an initial study on the transcriptional responses of the unicellular genome model, yeast (Saccharomyces cerevisiae strain S288C), by cDNA microarray. The effect of two different IR, X-rays, and gamma ({gamma})-rays, was investigated by irradiating the yeast cells cultured in YPD medium with 50 Gy doses of X- and {gamma}-rays, followed by resuspension of the cells in YPD for time-course experiments. The samples were collected for microarray analysis at 20, 40, and 80 min after irradiation. Microarray analysis revealed a time-course transcriptional profile of changed gene expressions. Up-regulated genes belonged to the functional categories mainly related to cell cycle and DNA processing, cell rescue defense and virulence, protein and cell fate, and metabolism (X- and {gamma}-rays). Similarly, for X- and {gamma}-rays, the down-regulated genes belonged to mostly transcription and protein synthesis, cell cycle and DNA processing, control of cellular organization, cell fate, and C-compound and carbohydrate metabolism categories, respectively. This study provides for the first time a snapshot of the genome-wide mRNA expression profiles in X- and {gamma}-ray post-irradiated yeast cells and comparatively interprets/discusses the changed gene functional categories as effects of these two radiations vis-a-vis their energy levels.

Kimura, Shinzo [Laboratory of Environmental Biology, Department of Preventive Medicine, Hokkaido University School of Medicine, Sapporo 060-8638 (Japan); Ishidou, Emi [Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST) WEST, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Kurita, Sakiko [Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST) WEST, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Suzuki, Yoshiteru [Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST) WEST, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Shibato, Junko [Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST) WEST, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Rakwal, Randeep [Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST) WEST, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan)]. E-mail: rakwal-68@aist.go.jp; Iwahashi, Hitoshi [Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST) WEST, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan)

2006-07-21

268

Antioxidative and radioprotective potential of rutin and quercetin in Swiss albino mice exposed to gamma radiation  

PubMed Central

The radioprotective potential of bioflavonoid, rutin (RUT) and quercetin (QRT) was investigated in Swiss albino mice exposed to gamma radiation. The radioprotective potential of RUT and QRT was assessed in pre-treatment group of mice followed on radiation-induced changes in glutathione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), and lipid peroxidation (LPO) levels were also analyzed. Elevation in the GSH, GST, SOD, CAT, and decreased LPO levels were observed in RUT and QRT pretreated group when compared to the irradiated animals. Furthermore, it was observed that RUT and QRT treatment was found to inhibit various free radicals generated in vitro, viz., 2,2-diphenyl-1-picrylhydrazyl(DPPH), O2, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS)+, and OH in a concentration-dependent manner. This study clearly demonstrates the free radical scavenging action of RUT and QRT, indicating that it may have its potential as a radioprotective agent. Furthermore, the presence of a phenolic group in RUT and QRT is known to contribute to scavenging the radiation-induced free radicals and inhibition of oxidative stress. Present findings demonstrate the potential of RUT and QRT in mitigating radiation-induced oxidative stress, which may be attributed to the inhibition of radiation-induced decline in the endogenous antioxidant levels and scavenging of radiation-induced free radicals. PMID:23776312

Patil, Shrikant L.; Mallaiah, Somashekarappa Hiriyur; Patil, Rajashekar K.

2013-01-01

269

Dynamical dipole gamma radiation in heavy-ion collisions on the basis of a quantum molecular dynamics model  

SciTech Connect

Dynamical dipole gamma-ray emission in heavy-ion collisions is explored in the framework of the quantum molecular dynamics model. The studies are focused on systems of {sup 40}Ca bombarding {sup 48}Ca and its isotopes at different incident energies and impact parameters. Yields of gamma rays are calculated and the centroid energy and dynamical dipole emission width of the gamma spectra are extracted to investigate the properties of gamma emission. In addition, sensitivities of dynamical dipole gamma-ray emission to the isospin and the symmetry energy coefficient of the equation of state are studied. The results show that detailed study of dynamical dipole gamma radiation can provide information on the equation of state and the symmetry energy around the normal nuclear density.

Wu, H. L. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100080 (China); Tian, W. D.; Ma, Y. G.; Cai, X. Z.; Chen, J. G.; Fang, D. Q.; Guo, W.; Wang, H. W. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800 (China)

2010-04-15

270

Gamma-H2AX as a biomarker of DNA damage induced by ionizing radiation in targeted and bystander human artificial skin models and peripheral blood lymphocytes  

NASA Astrophysics Data System (ADS)

Ionizing radiation (IR) exposure is inevitable. In addition to exposure from cosmic rays, the sun and radioactive substances, modern society has created new sources of radiation exposure such as space and high altitude journeys, X-ray diagnostics, radiological treatments and the increasing threat of radiobiological terrorism. For these reasons, a reliable, reproducible and sensitive assessment of dose and time exposure to IR is essential. We developed a minimally invasive diagnostic test for IR exposure based on detection of a phosphorylated variant of histone H2AX (gamma-H2AX), which occurs specifically at sites of DNA double-strand breaks (DSBs). The phosphorylation of thousands of H2AX molecules forms a gamma-H2AX focus in the chromatin flanking the DSB site that can be detected in situ. We analyzed gamma- H2AX focus formation in both directly irradiated cells as well as in un-irradiated "bystanders" in close contact with irradiated cells. In order to insure minimal invasiveness, we examined commercially available artificial skin models as a surrogate for human skin biopsies as well as peripheral blood lymphocytes. In human skin models, cells in a thin plane were microbeamirradiated and gamma-H2AX formation was measured both in irradiated and in distal bystander cells over time. In irradiated cells DSB formation reached a maximum at 15-30 minutes post- IR and then declined within several hours; all cells were affected. In marked contrast, the incidence of DSBs in bystander cells reached a maximum by 12-48 hours post-irradiation, gradually decreasing over the 7 day time course. At the maxima, 40-60% of bystander cells were affected. Similarly, we analyzed blood samples exposed to IR ex vivo at doses ranging from 0.02 to 3 Gy. The amount of DNA damage was linear in respect to radiation dose and independent of the age or sex of the blood donor. The method is highly reproducible and highly sensitive. In directly irradiated cells, the number of gamma-H2AX foci peaked 30 min after irradiation and then declined at a relatively steady pace as the cell repaired the DNA damage. Radiation effects were still detectable after 48 hrs for doses greater than 1 Gy and remained linear to initial dose. Activated bystander lymphocytes cultured with media from irradiated lymphocytes exhibited a two-fold increased damage response as seen by gamma- H2AX formation. The effect reached a maximum 3 hrs post-exposure and was retained for over 24 hrs. Thus, detection of gamma-H2AX formation to determine DNA damage in a minimally invasive skin test and a non-invasive blood test could be useful and promising tools to analyze direct and indirect effects of radiation exposure.

Redon, Christophe; Dickey, Jennifer; Bonner, William; Sedelnikova, Olga

271

Thermoluminescence behavior of KClXBr1-X: In mixed crystals exposed to gamma radiation  

NASA Astrophysics Data System (ADS)

In-doped KClXBr1-X (X=1, 0.75, 0.5, 0.25 and 0) mixed crystal has been grown by the Czochralski method. The segregation coefficient of In was studied by the inductively coupled plasma atomic emission spectrometry (ICP-OES). The crystal structure has been determined using X-ray diffraction (XRD) analysis. The thermoluminescence (TL) characterization of KClXBr1-X mixed crystals, exposed to gamma radiation has been performed. The results show the introduction of the dopants ions induced changes in the TL glow curve structure. The TL results suggest that doped KClXBr1-X mixed crystal has good potential active dosimeter applications for gamma ray irradiation.

Rezaee Ebrahim Saraee, Kh.; Hosseini, S. A.; Faripour, H.; Faiez, M. R.; Abdi, M. R.; Soltani, N.; Aghay Khareiky, A.

2014-09-01

272

Pipe corrosion and deposit study using neutron- and gamma- radiation sources  

NASA Astrophysics Data System (ADS)

The problems of corrosion and deposit are crucial issues in the pipelines of the chemical, nuclear and petrochemical industries. Radiography (neutron, gamma, X-ray) has long been used as a technique for pipe inspection and corrosion monitoring. The 10 MW Budapest research reactor site is a source of various energy neutron (thermal and epithermal) and gamma radiation. The detector system was a Peltier-cooled LLL CCD camera controlled by a PC with Image ProLite software and imaging plate equipment with a BAS 2500 scanner that used AIDA software. The objects inspected were corroded tubes and various kinds of test specimens with a large wall thickness (25 mm) inside and outside steps. In the evaluation part we used tomographic algorithms. A software simulation study was made as well. Fan-beam projections were computed of the given software phantoms and a new discrete tomography method was used to reconstruct the unknown objects from these projections.

Balaskó, Márton; Sváb, Erzsébet; Kuba, Attila; Kiss, Zoltán; Rodek, Lajos; Nagy, Antal

2005-04-01

273

Induction of transpositions of MGE Dm412 by {gamma}-radiation in an isogenic line of Drosophila melanogaster  

SciTech Connect

In an isogenic line of Drosophila, transpositions of mobile genetic elements (MGE) Dm412 were induced by {gamma}-radiation at doses of 300, 800, and 1300 R. The rates of induced transpositions were (for each dose, respectively) 3.9 x 10{sup {minus}3}, 1.0 x 10{sup {minus}2}, and 1.87 x 10{sup {minus}2} events per occupied site per haploid genome of the isogenic line per generation. Thus, the transposition rate increased linearly with the radiation dose. The specific rate of {gamma}-radiation-induced transpositions was (1.3 {+-} 0.6) x 10{sup {minus}5} per occupied site per haploid genome of the isogenic line per Roentgen per generation. {gamma}-Radiation-induced hot transposition sites and haplotypes, very similar to those induced by heat shock, were found. It was suggested that the mechanism of induction by {gamma}-radiation involves the heat shock system. Thus, it is more similar to the mechanism of temperature induction than to the direct mutational effect of {gamma}-radiation. Estimates of induced transposition rates per genome for each dose were calculated as 1.1, 3.0, and 5.6 events, respectively, per genome per generation. This level probably corresponds to the subthreshold level of genomes near the {open_quotes}catastrophic border of transpositional losses.{close_quotes} 21 refs., 1 fig., 4 tabs.

Zabanov, S.A. [Institute of Cytology and Genetics, Novosibirsk (Russian Federation); Vasil`eva, L.A.; Ratner, V.A. [Institute of Cytology and Genetics, Novosibirsk (Russian Federation)]|[Novosibirsk State Univ. (Russian Federation)

1995-06-01

274

Proteomic analysis of global changes in protein expression during exposure of gamma radiation in Bacillus sp. HKG 112 isolated from saline soil.  

PubMed

A Gram-positive bacterium was isolated from the saline soils of Jangpura (U.P.), India, and showed high-level of radiation-resistant property and survived upto 12.5 kGy dose of gamma radiation. The 16S rDNA sequence of this strain was examined, identified as Bacillus sp. strain HKG 112, and was submitted to the NCBI GenBank (Accession No. GQ925432). The mechanism of radiation resistance and gene level expression were examined by proteomic analysis of whole-cell extract. Two proteins, 38 kDa and 86.5 kDa excised from SDS-PAGE, which showed more significant changes after radiation exposure, were identified by MALDI-TOF as being flagellin and S-layer protein, respectively. Twenty selected 2-DE protein spots from the crude extracts of Bacillus sp. HKG 112, excised from 2- DE, were identified by liquid chromatography mass spectrometry (LC-MS) out of which 16 spots showed significant changes after radiation exposure and might be responsible for the radiation resistance property. Our results suggest that the different responses of some genes under radiation for the expression of radiation-dependent proteins could contribute to a physiological advantage and would be a significant initial step towards a full-system understanding of the radiation stress protection mechanisms of bacteria in different environments. PMID:21715963

Gupta, Anil Kumar; Pathak, Rajiv; Singh, Bharat; Gautam, Hemlata; Kumar, Ram; Kumar, Raj; Arora, Rajesh; Gautam, Hemant

2011-06-01

275

A human esophageal epithelial cell model for study of radiation induced cancer and DNA repair  

NASA Astrophysics Data System (ADS)

For cancer risk assessment in astronauts and for countermeasure development, it is essential to understand the molecular mechanisms of radiation carcinogenesis and how these mechanisms are influenced by exposure to the types of radiation found in space. We are developing an in vitro model system for the study of radiation-induced initiation and progression of esophageal carcinoma. Development of squamous cell carcinoma of the esophagus is associated with radiation exposure, as revealed by the significant enhanced in incidence rates for this type of cancer in the survivors of the atomic bomb detonations in Japan. It is also associated with poor nutritional status and micronutrient deficiencies, which are also important issues for long duration spaceflight. The possible synergies between nutritional issues and radiation exposure are unknown. Here we present the results of preliminary characterization of both normal and hTERT-immortalized esophageal epithelial cells grown in 2-dimensional culture. We analyzed DNA repair capacity by measuring the kinetics of formation and loss of gamma-H2AX foci following radiation exposure. Additionally, we analyzed induction of chromosomal aberrations using 3-color fluorescence in situ hybridization (FISH). Data were generated using both low LET (gamma rays) and high LET ions (1000 MeV/nucleon iron.

Huff, Janice; Patel, Zarana; Hada, Megumi; Cucinotta, Francis A.

276

Spirosoma radiotolerans sp. nov., a gamma-radiation-resistant bacterium isolated from gamma ray-irradiated soil.  

PubMed

A Gram-negative, short-rod-shaped bacterial strain with gliding motility, designated as DG5A(T), was isolated from a rice field soil in South Korea. Phylogenic analysis using 16S rRNA gene sequence of the new isolate showed that strain DG5A(T) belong to the genus Spirosoma in the family Spirosomaceae, and the highest sequence similarities were 95.5 % with Spirosoma linguale DSM 74(T), 93.4 % with Spirosoma rigui WPCB118(T), 92.8 % with Spirosoma luteum SPM-10(T), 92.7 % with Spirosoma spitsbergense SPM-9(T), and 91.9 % with Spirosoma panaciterrae Gsoil 1519(T). Strain DG5A(T) revealed resistance to gamma and UV radiation. Chemotaxonomic data showed that the most abundant fatty acids were summed feature C(16:1) ?7c/C(16:1) ?6c (36.90 %), C(16:1) ?5c (29.55 %), and iso-C(15:0) (14.78 %), and the major polar lipid was phosphatidylethanolamine (PE). The DNA G+C content of strain DG5A(T) was 49.1 mol%. Together, the phenotypic, phylogenetic, and chemotaxonomic data supported that strain DG5A(T) presents a novel species of the genus Spirosoma, for which the name Spirosoma radiotolerans sp. nov., is proposed. The type strain is DG5A(T) (=KCTC 32455(T) = JCM19447(T)). PMID:24748440

Lee, Jae-Jin; Srinivasan, Sathiyaraj; Lim, Sangyong; Joe, Minho; Im, Seonghun; Bae, So Il; Park, Kyoung Ryun; Han, Ji-Hee; Park, Se-Hee; Joo, Bo-Min; Park, Sol-Ji; Kim, Myung Kyum

2014-09-01

277

Space solar cells: High efficiency and radiation damage  

NASA Technical Reports Server (NTRS)

The progress and status of efforts to increase the end-of-life efficiency of solar cells for space use is assessed. High efficiency silicon solar cells, silicon solar cell radiation damage, GaAs solar cell performance and radiation damage and 30 percent devices are discussed.

Brandhorst, H., Jr.; Bernatowicz, D. T.

1980-01-01

278

S179D prolactin diminishes the effects of UV light on epidermal gamma delta T cells  

PubMed Central

Epidermal gamma delta T cells (?? T) and Langerhans cells (LC) are immune cells altered by exposure to ultraviolet radiation (UVB), a powerful stressor resulting in immune suppression. Prolactin (PRL) has been characterized as an immunomodulator, particularly during stress. In this study, we have asked whether separate administration of the two major forms of prolactin, unmodified and phosphorylated, to groups of 15 mice (3 experiments, each with 5 mice per treatment group) affected the number and morphology of these epidermal immune cells under control conditions, and following UV irradiation. Under control conditions, both PRLs reduced the number of ?? T, but a molecular mimic of phosphorylated PRL (S179D PRL) was more effective, resulting in a 30% reduction. In the irradiated group, however, S179D PRL was protective against a UV-induced reduction in ?? T number and change in morphology (halved the reduction and normalized the morphology). In addition, S179D PRL, but not unmodified (U-PRL), maintained a normal LC: ?? T ratio and sustained the dendritic morphology of LC after UV exposure. These findings suggest that S179D PRL may have an overall protective effect, countering UV-induced cellular alterations in the epidermis. PMID:17945411

Guzman, Esther A.; Langowski, John L.; De Guzman, Ariel; Konrad Muller, H.; Walker, Ameae M.; Owen, Laurie B.

2008-01-01

279

Gamma  

NSDL National Science Digital Library

The Geometric Algorithms for Modeling, Motion, and Animation (GAMMA) research group is part of the Department of Computer Science at the University of North Carolina. Some of the topics of research include haptics, "robot motion planning," collision detection, and "real-time interaction with virtual environments." There are several projects that are described in detail for each of the main areas of investigation. Many recent papers are offered that describe the progress and findings of the group's research. Additionally, there is a large collection of videos demonstrating computer animation, simulation, and interactive applications. Some software can also be downloaded for the GAMMA Web site; however, access to a few of the titles must first be approved by the system administrator.

2007-07-28

280

Protection against radiation-induced oxidative stress in cultured human epithelial cells by treatment with antioxidant agents  

SciTech Connect

Purpose: To evaluate the protective effects of antioxidant agents against space radiation-induced oxidative stress in cultured human epithelial cells. Methods and Materials: The effects of selected concentrations of N-acetylcysteine, ascorbic acid, sodium ascorbate, co-enzyme Q10, {alpha}-lipoic acid, L-selenomethionine, and vitamin E succinate on radiation-induced oxidative stress were evaluated in MCF10 human breast epithelial cells exposed to radiation with X-rays, {gamma}-rays, protons, or high mass, high atomic number, and high energy particles using a dichlorofluorescein assay. Results: The results demonstrated that these antioxidants are effective in protecting against radiation-induced oxidative stress and complete or nearly complete protection was achieved by treating the cells with a combination of these agents before and during the radiation exposure. Conclusion: The combination of antioxidants evaluated in this study is likely be a promising countermeasure for protection against space radiation-induced adverse biologic effects.

Wan, X. Steven [Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA (United States); Ware, Jeffrey H. [Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA (United States); Zhou, Zhaozong [Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA (United States); Donahue, Jeremiah J. [Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA (United States); Guan, Jun [Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA (United States); Kennedy, Ann R. [Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA (United States)]. E-mail: akennedy@mail.med.upenn.edu

2006-04-01

281

High efficiency, radiation-hard solar cells  

SciTech Connect

The direct gap of the In{sub 1-x}Ga{sub x}N alloy system extends continuously from InN (0.7 eV, in the near IR) to GaN (3.4 eV, in the mid-ultraviolet). This opens the intriguing possibility of using this single ternary alloy system in single or multi-junction (MJ) solar cells of the type used for space-based surveillance satellites. To evaluate the suitability of In{sub 1-x}Ga{sub x}N as a material for space applications, high quality thin films were grown with molecular beam epitaxy and extensive damage testing with electron, proton, and alpha particle radiation was performed. Using the room temperature photoluminescence intensity as a indirect measure of minority carrier lifetime, it is shown that In{sub 1-x}Ga{sub x}N retains its optoelectronic properties at radiation damage doses at least 2 orders of magnitude higher than the damage thresholds of the materials (GaAs and GaInP) currently used in high efficiency MJ cells. This indicates that the In{sub 1-x}Ga{sub x}N is well-suited for the future development of ultra radiation-hard optoelectronics. Critical issues affecting development of solar cells using this material system were addressed. The presence of an electron-rich surface layer in InN and In{sub 1-x}Ga{sub x}N (0 < x < 0.63) was investigated; it was shown that this is a less significant effect at large x. Evidence of p-type activity below the surface in Mg-doped InN was obtained; this is a significant step toward achieving photovoltaic action and, ultimately, a solar cell using this material.

Ager III, J.W.; Walukiewicz, W.

2004-10-22

282

Evaluation of The Combined Effects of Hyperthermia, Cobalt-60 Gamma Rays and IUdR on Cultured Glioblastoma Spheroid Cells and Dosimetry Using TLD-100  

PubMed Central

Objective In radiation treatment, the irradiation which is effective enough to control the tumors far exceeds normal-tissues tolerance. Thus to avoid such unfavourable outcomes, some methods sensitizing the tumor cells to radiation are used. Iododeoxyuridine (IUdR) is a halogenated thymidine analogue that known to be effective as a radiosensitizer in human cancer therapy. Improving the potential efficacy of radiation therapy after combining to hyperthermia depends on the magnitude of the differential sensitization of the hyperthermic effects or on the differential cytotoxicity of the radiation effects on the tumor cells. In this study, we evaluated the combined effects of IUdR, hyperthermia and gamma rays of 60Co on human glioblastoma spheroids culture. Materials and Methods In this experimental study,the cultured spheroids with 100µm diameter were treated by 1 µM IUdR, 43°C hyperthermia for an hour and 2 Gy gamma rays, respectively. The DNA damages induced in cells were compared using alkaline comet assay method, and dosimetry was then performed by TLD-100. Comet scores were calculated as mean ± standard error of mean (SEM) using one-way ANOVA. Results Comparison of DNA damages induced by IUdR and hyperthermia + gamma treatment showed 2.67- and 1.92-fold enhancement, respectively, as compared to the damages induced by radiation alone or radiation combined IUdR. Dosimetry results showed the accurate dose delivered to cells. Conclusion Analysis of the comet tail moments of spheroids showed that the radiation treatments combined with hyperthermia and IUdR caused significant radiosensitization when compared to related results of irradiation alone or of irradiation with IUdR. These results suggest a potential clinical advantage of combining radiation with hyperthermia and indicate effectiveness of hyperthermia treatment in inducing cytotoxicity of tumor cells. PMID:25383332

Neshasteh-Riz, Ali; Rahdani, Rozhin; Mostaar, Ahmad

2014-01-01

283

Gamma spectroscopic measurements using the PID350 pixelated CdTe radiation detector  

E-print Network

Spectroscopic measurements are presented using the PID350 pixelated gamma radiation detectors. A high-speed data acquisition system has been developed in order to reduce the data loss during the data reading in case of a high flux of photons. A data analysis framework has been developed in order to improve the resolution of the acquired energy spectra, using specific calibration parameters for each PID350's pixel. Three PID350 detectors have been used to construct a stacked prototype system and spectroscopic measurements have been performed in order to test the ability of the prototype to localize radioactive sources.

K. Karafasoulis; K. Zachariadou; S. Seferlis; I. Papadakis; D. Loukas; C. Lambropoulos; C. Potiriadis

2010-11-15

284

QCD Corrections to the Radiative Decay B -> X_s gamma  

E-print Network

In this short review, the calculation of the next-to-next-to-leading order QCD corrections to the inclusive radiative decay B -> X_s gamma is described. I summarize the salient features of the calculational framework adopted, discuss the results obtained in the last few years, and indicate the technical tools that made the NNLO calculations possible. I conclude by comparing the current NNLO theoretical estimate for the branching ratio with the experimental measurement and by briefly discussing the size and origin of the residual theoretical uncertainty.

Andrea Ferroglia

2008-11-29

285

The use of gamma radiation for the elimination of Salmonella from frozen meat  

PubMed Central

The use of a gamma radiation process for the elimination of Salmonella from frozen meat is considered with particular reference to the treatment of boned-out horsemeat and kangaroo meat imported into the UK and intended for use as pet meat. Examination of dose/survival curves produced for several serotypes of Salmonella in frozen meat shows that a radiation dose of 0·6 Mrad. will reduce a population by at least a factor of 105. The influence on the radiation resistance of salmonellas of such factors as preirradiation growth in the meat and temperature during irradiation have been examined and considered. It is also demonstrated with both preinoculated and naturally contaminated meat that postirradiation storage in the frozen state does not lead to the revival of irradiated salmonellas. The properties of Salmonella survivors deliberately produced in meat using conditions of irradiation designed to simulate a commercial process are studied after six recycling treatments through the process. There were no important changes in characteristics normally used for identification of Salmonella but radiation resistance was lowered. Survivors grown in situ in meat after irradiation showed an abnormally long lag phase, and removal of competitive microflora in meat by the radiation treatment can influence the growth of salmonellas. PMID:4914090

Ley, F. J.; Kennedy, T. S.; Kawashima, K.; Roberts, Diane; Hobbs, Betty C.

1970-01-01

286

Effect of Meteorological Phenomena in Measures of Background Radiation X and Gamma Rays in São José dos Campos, SP, Brazil  

NASA Astrophysics Data System (ADS)

The objective of this work was to perform a study on the influence of meteorological phenomena on the background radiation X and gamma rays in São José dos Campos, SP, Brazil on the last three years. For this, we performed the monitoring of the integrated radiations and also of the main meteorological parameters (rainfall, relative humidity, temperature and pressure) daily without interruptions and time resolution of one minute. Measurements of X and gamma radiation in the range of energies from 30 keV to 10 MeV, were carried out using a scintillator crystal of sodium iodide activated with Tallium [NaI(Tl)] coupled to a photomultiplier, with energy resolution of 15%. Rainfall, atmospheric pressure, temperature, and relative humidity were recorded using sensors coupled to a five-channel specific data logger. By correlating the data from the measurements of intensity of X and gamma radiations with the meteorological parameters, it was found that atmospheric precipitation with or without electric discharges phenomenon that was affected more in the spectrum of background radiation profile. Some of the reasons why these changes occur in the background profile are due the presence of environmental radon gas that is drawn to the surface during the occurrences of local rainfall. During dry periods, the spectra of X and gamma radiations showed a daily cycle (24 hour). In relation to relative humidity, temperature and pressure, it was found that these parameters had negligible influence on the profile changes of the background radiation in São José dos Campos, SP, Brazil.

Gomes, Marcelo; Spjeldvik, Walther; Gusev, Anatoly; Alves, Mauro; Martin, Inacio; Pinto, Marcos; Ferro, Marco A.; Concei, Flavio

287

Interferon gamma and T cells inhibit osteogenesis induced by allogeneic mesenchymal stromal cells  

PubMed Central

The mesenchymal stromal cells (MSCs) are reported to be immunoprivileged and osteogenic. We hypothesized that the use of allogeneic MSCs for bone repair was possible if they displayed an ability to induce similar osteogenesis in syngeneic as well as in allogeneic hosts. To test this hypothesis we used a cloned bone marrow derived cell, termed D1, isolated from Balb/c mice. The D1 cells were subcutaneously injected in syngeneic Balb/c, allogeneic immunocompetent B6, allogeneic T-cell deficient NCr nude and allogeneic B6 Pfp ?/? Rag2 ?/? mice that lacks matured T-cells and B-cells as well as NK cell cytolytic functions. D1 cells formed ectopic bones only in syngeneic or allogeneic immunocompromised hosts but not in allogeneic B6 hosts. The lack of T-cells alone in allogeneic NCr mice was sufficient to promote osteogenesis in allogeneic environment. We observed a significantly higher number of T-cells, B-cells, macrophages and significantly higher expression of interferon gamma (IFN-?) in B6 allogeneic implants as compared to the syngeneic implants. These factors correlated with severe inhibition of expression of alkaline phosphatase, osteocalcin and runx2 genes in the implants from B6 mice. Our data suggests that strategies to inhibit T-cells and IFN-? functions will be useful for bone repair mediated by allogeneic MSCs. PMID:22886855

Dighe, Abhijit S.; Yang, Scott; Madhu, Vedavathi; Balian, Gary; Cui, Quanjun

2012-01-01

288

Results of calculations of external gamma-radiation exposure rates from fallout and the related radionuclide compositions. Operations Nougat through Bowline, 1962-1968  

SciTech Connect

Data are presented on calculated gamma radiation exposure rates and ground deposition of related radionuclides resulting from Events that deposited detectable radioactivity outside the Nevada Test Site complex.

Hicks, H.G.

1981-07-01

289

Results of calculations of external gamma-radiation exposure rates from fallout and the related radionuclide compositions. Operations Nougat through Bowline, 1962-1968  

Microsoft Academic Search

Data are presented on calculated gamma radiation exposure rates and ground deposition of related radionuclides resulting from Events that deposited detectable radioactivity outside the Nevada Test Site complex.

Hicks

1981-01-01

290

Death of a classified worker probably caused by overexposure to gamma radiation.  

PubMed Central

This paper describes the case of an industrial radiographer who was seriously overexposed to gamma radiation. The exact circumstances of this exposure were not established but it was concluded that he was repeatedly irradiated probably to a total average whole body dose of at least 10 Gy over several years. Also, a much larger dose to a hand required its partial amputation. He developed myelodysplasia, which progressed to acute myeloid leukaemia from which he died. Karyotypic examination of the leukaemic blasts showed changes very similar to those associated with secondary leukaemia that may develop after radio or chemotherapy. The paper describes his medical case history, the investigation of his workplace, and the attempts to estimate his radiation dose by chromosomal analysis of blood lymphocytes and electron spin resonance of dental enamel and bone. Images Figure 1 Figure 2 PMID:8000499

Lloyd, D C; Edwards, A A; Fitzsimons, E J; Evans, C D; Railton, R; Jeffrey, P; Williams, T G; White, A D; Ikeya, M; Sumitomo, H

1994-01-01

291

Radiative $\\Omega_{Q}^{*}\\rightarrow\\Omega_{Q}\\gamma$ and $\\Xi_{Q}^{*}\\rightarrow\\Xi^{\\prime}_{Q}\\gamma$ transitions in light cone QCD  

E-print Network

We calculate the magnetic dipole and electric quadrupole moments associated with the radiative $\\Omega_{Q}^{*}\\rightarrow\\Omega_{Q}\\gamma$ and $\\Xi_{Q}^{*}\\rightarrow\\Xi^{\\prime}_{Q}\\gamma$ transitions with $Q=b$ or $c$ in the framework of light cone QCD sum rules. It is found that the corresponding quadrupole moments are negligibly small while the magnetic dipole moments are considerably large. A comparison of the results on the considered multipole moments as well as corresponding decay widths with the predictions of the vector dominance model is performed.

Aliev, T M; Sundu, H

2014-01-01

292

Analysis of Chromosomal Aberrations after Low and High Dose Rate Gamma Irradiation in ATM or NBS Suppressed Human Fibroblast Cells  

NASA Technical Reports Server (NTRS)

A detailed understanding of the biological effects of heavy nuclei is needed for space radiation protection and for cancer therapy. High-LET radiation produces more complex DNA lesions that may be non-repairable or that may require additional processing steps compared to endogenous DSBs, increasing the possibility of misrepair. Interplay between radiation sensitivity, dose, and radiation quality has not been studied extensively. Previously we studied chromosome aberrations induced by low- and high- LET radiation in several cell lines deficient in ATM (ataxia telangactasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. We found that the yields of both simple and complex chromosomal aberrations were significantly increased in the DSB repair defective cells compared to normal cells. The increased aberrations observed for the ATM and NBS defective lines was due to a significantly larger quadratic dose-response term compared to normal fibroblasts for both simple and complex aberrations, while the linear dose-response term was significantly higher in NBS cells only for simple exchanges. These results point to the importance of the functions of ATM and NBS in chromatin modifications that function to facilitate correct DSB repair and minimize aberration formation. To further understand the sensitivity differences that were observed in ATM and NBS deficient cells, in this study, chromosomal aberration analysis was performed in normal lung fibroblast cells treated with KU-55933, a specific ATM kinase inhibitor, or Mirin, an MRN complex inhibitor involved in activation of ATM. We are also testing siRNA knockdown of these proteins. Normal and ATM or NBS suppressed cells were irradiated with gamma-rays and chromosomes were collected with a premature chromosome condensation (PCC) technique at the first mitosis post-irradiation. Chromosomes were analyzed using a multicolor fluorescence in-situ hybridization (mFISH) chromosome painting method. Preliminary analysis showed that chromosomal exchanges were increased in the cells treated with the specific ATM inhibitor. Possible cytogenetic signatures of acute and low dose-rate gamma irradiation in ATM or Nibrin deficient and suppressed cells will be discussed.

Hada, M.; Huff, J. L.; Patel, Z.; Pluth, J. M.; George, K. A.; Cucinotta, F. A.

2009-01-01

293

Radiation-induced oxidative degradation of poly(vinyl chloride). [Gamma radiation  

SciTech Connect

Gas evolution and oxygen consumption in the ..gamma..-irradiation of PVC were studied. The gas evolution and the oxidative degradation are retarded by the presence of plasticizers and stabilizers. The G(HCl) and G(H/sub 2/) are 8 and 0.24 for the irradiation of pure PVC under vacuum and 0.02 and 0.14 for that of plasticized PVC, respectively. Gas evolution increases in the presence of oxygen, specially for the pure PVC. The G(-O/sub 2/) values for the pure and plasticized PVC are 30 and 12, respectively. The dependence of gas evolution and oxygen consumption on the oxygen pressure is more pronounced for the plasticized PVC than pure PVC because the oxygen diffusion is controlled.

Hegazy, E.S.A.; Seguchi, T.; Machi, S.

1981-09-01

294

Break Point Distribution on Chromosome 3 of Human Epithelial Cells exposed to Gamma Rays, Neutrons and Fe Ions  

NASA Technical Reports Server (NTRS)

Most of the reported studies of break point distribution on the damaged chromosomes from radiation exposure were carried out with the G-banding technique or determined based on the relative length of the broken chromosomal fragments. However, these techniques lack the accuracy in comparison with the later developed multicolor banding in situ hybridization (mBAND) technique that is generally used for analysis of intrachromosomal aberrations such as inversions. Using mBAND, we studied chromosome aberrations in human epithelial cells exposed in vitro to both low or high dose rate gamma rays in Houston, low dose rate secondary neutrons at Los Alamos National Laboratory and high dose rate 600 MeV/u Fe ions at NASA Space Radiation Laboratory. Detailed analysis of the inversion type revealed that all of the three radiation types induced a low incidence of simple inversions. Half of the inversions observed after neutron or Fe ion exposure, and the majority of inversions in gamma-irradiated samples were accompanied by other types of intrachromosomal aberrations. In addition, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both inter- and intrachromosome exchanges. We further compared the distribution of break point on chromosome 3 for the three radiation types. The break points were found to be randomly distributed on chromosome 3 after neutrons or Fe ions exposure, whereas non-random distribution with clustering break points was observed for gamma-rays. The break point distribution may serve as a potential fingerprint of high-LET radiation exposure.

Hada, M.; Saganti, P. B.; Gersey, B.; Wilkins, R.; Cucinotta, F. A.; Wu, H.

2007-01-01

295

Radiation quality and mutagenesis in human lymphoblastoid cells.  

PubMed

An interesting problem associated with studying the effects of low doses of high atomic number and energy (HZE) particles, as found in space, is that not all cells will necessarily be similarly traversed during exposure, a scenario that greatly complicates the measurement of end points that require time to develop, gene-locus mutation being a perfect example. The standard protocol for measuring mutations at the heterozygous thymidine kinase locus in human lymphoblastoid cells involves waiting three days after treatment for newly induced mutants to fully express, at which time cells are then plated in the presence of the selective agent, and mutants are counted three weeks later. This approach is acceptable as long as all cells are uniformly affected, as is the case with low-linear energy transfer (LET) ionizing radiation. However, for HZE particles some fraction of cells may not be traversed or perhaps would receive fewer than the average number of "hits", and they would continue to grow at or closer to the normal rate, thus outpacing cells that received more damage. As a result, at three days post-treatment, more heavily damaged cells will have been "diluted" by the less damaged ones, and thus the measured mutant frequency (MF) will underestimate actual mutant frequency. We therefore developed a modified approach for measuring mutation that eliminates this problem and demonstrates that the mutagenicity of 1 GeV/n Fe ions are underestimated by a factor of two when using the standard MF protocol. Furthermore, we determined the mutagenic effects of a variety of heavy ions, all of which induced mutations in a linear fashion. We found that the maximal yield of mutations (i.e., highest relative biological efficiency) was about 7.5 times higher at an LET of 70 keV/? (400 MeV/n Si) than for gamma rays. Nontargeted mutagenicity after treatment with ionizing radiation was also investigated. For each particular ion/energy examined and in agreement with many previous studies, there was no clear evidence of a dose response for bystander mutagenesis, i.e., the MF plateaued. Interestingly, the magnitudes of the bystander MFs induced by different ion/energy combinations did vary, with bystander MFs ranging from 0.8 to 2.2× higher than the background. Furthermore, the nontargeted MFs appeared to reflect a mirror image of that for direct mutagenesis. PMID:25184374

Liber, Howard L; Idate, Rupa; Warner, Christy; Bailey, Susan M

2014-10-01

296

Search for Radiative Penguin Decays B+-->rho+gamma, B0-->rho0gamma, and B0-->omegagamma  

Microsoft Academic Search

A search for the decays B-->rho(770)gamma and B0-->omega(782)gamma is performed on a sample of 211×106 Upsilon(4S)-->BB¯ events collected by the BABAR detector at the SLAC PEP-II asymmetric-energy e+e- storage ring. No evidence for the decays is seen. We set the following limits on the individual branching fractions: B(B+-->rho+gamma)<1.8×10-6, B(B0-->rho0gamma)<0.4×10-6, and B(B0-->omegagamma)<1.0×10-6 at the 90% confidence level. We use the quark

B. Aubert; R. Barate; D. Boutigny; F. Couderc; J.-M. Gaillard; A. Hicheur; Y. Karyotakis; J. P. Lees; V. Tisserand; A. Zghiche; A. Palano; A. Pompili; J. C. Chen; N. D. Qi; G. Rong; P. Wang; Y. S. Zhu; G. Eigen; I. Ofte; B. Stugu; G. S. Abrams; A. W. Borgland; A. B. Breon; D. N. Brown; J. Button-Shafer; R. N. Cahn; E. Charles; C. T. Day; M. S. Gill; A. V. Gritsan; Y. Groysman; R. G. Jacobsen; R. W. Kadel; J. Kadyk; L. T. Kerth; Yu. G. Kolomensky; G. Kukartsev; G. Lynch; L. M. Mir; P. J. Oddone; T. J. Orimoto; M. Pripstein; N. A. Roe; M. T. Ronan; V. G. Shelkov; W. A. Wenzel; M. Barrett; K. E. Ford; T. J. Harrison; A. J. Hart; C. M. Hawkes; S. E. Morgan; A. T. Watson; M. Fritsch; K. Goetzen; T. Held; H. Koch; B. Lewandowski; M. Pelizaeus; M. Steinke; J. T. Boyd; N. Chevalier; W. N. Cottingham; M. P. Kelly; T. E. Latham; F. F. Wilson; T. Cuhadar-Donszelmann; C. Hearty; N. S. Knecht; T. S. Mattison; J. A. McKenna; D. Thiessen; A. Khan; P. Kyberd; L. Teodorescu; A. E. Blinov; V. E. Blinov; V. P. Druzhinin; V. B. Golubev; V. N. Ivanchenko; E. A. Kravchenko; A. P. Onuchin; S. I. Serednyakov; Yu. I. Skovpen; E. P. Solodov; A. N. Yushkov; D. Best; M. Bruinsma; M. Chao; I. Eschrich; D. Kirkby; A. J. Lankford; M. Mandelkern; R. K. Mommsen; W. Roethel; D. P. Stoker; C. Buchanan; B. L. Hartfiel; S. D. Foulkes; J. W. Gary; B. C. Shen; K. Wang; D. del Re; H. K. Hadavand; E. J. Hill; D. B. Macfarlane; H. P. Paar; Sh. Rahatlou; V. Sharma; J. W. Berryhill; C. Campagnari; B. Dahmes; O. Long; A. Lu; M. A. Mazur; J. D. Richman; W. Verkerke; T. W. Beck; A. M. Eisner; C. A. Heusch; J. Kroseberg; W. S. Lockman; G. Nesom; T. Schalk; B. A. Schumm; A. Seiden; P. Spradlin; D. C. Williams; M. G. Wilson; J. Albert; E. Chen; G. P. Dubois-Felsmann; A. Dvoretskii; D. G. Hitlin; I. Narsky; T. Piatenko; F. C. Porter; A. Ryd; A. Samuel; S. Yang; S. Jayatilleke; G. Mancinelli; B. T. Meadows; M. D. Sokoloff; T. Abe; F. Blanc; P. Bloom; S. Chen; W. T. Ford; U. Nauenberg; A. Olivas; P. Rankin; J. G. Smith; J. Zhang; L. Zhang; A. Chen; J. L. Harton; A. Soffer; W. H. Toki; R. J. Wilson; Q. L. Zeng; D. Altenburg; T. Brandt; J. Brose; M. Dickopp; E. Feltresi; A. Hauke; H. M. Lacker; R. Müller-Pfefferkorn; R. Nogowski; S. Otto; A. Petzold; J. Schubert; K. R. Schubert; R. Schwierz; B. Spaan; J. E. Sundermann; D. Bernard; G. R. Bonneaud; F. Brochard; P. Grenier; S. Schrenk; Ch. Thiebaux; G. Vasileiadis; M. Verderi; D. J. Bard; P. J. Clark; D. Lavin; F. Muheim; S. Playfer; Y. Xie; M. Andreotti; V. Azzolini; D. Bettoni; C. Bozzi; R. Calabrese; G. Cibinetto; E. Luppi; M. Negrini; L. Piemontese; A. Sarti; E. Treadwell; F. Anulli; R. Baldini-Ferroli; A. Calcaterra; R. de Sangro; G. Finocchiaro; P. Patteri; I. M. Peruzzi; M. Piccolo; A. Zallo; A. Buzzo; R. Capra; R. Contri; G. Crosetti; M. Lo Vetere; M. Macri; M. R. Monge; S. Passaggio; C. Patrignani; E. Robutti; A. Santroni; S. Tosi; S. Bailey; G. Brandenburg; K. S. Chaisanguanthum; M. Morii; E. Won; R. S. Dubitzky; U. Langenegger; W. Bhimji; D. A. Bowerman; P. D. Dauncey; U. Egede; J. R. Gaillard; G. W. Morton; J. A. Nash; M. B. Nikolich; G. P. Taylor; M. J. Charles; G. J. Grenier; U. Mallik; J. Cochran; H. B. Crawley; J. Lamsa; W. T. Meyer; S. Prell; E. I. Rosenberg; A. E. Rubin; J. Yi; M. Biasini; R. Covarelli; M. Pioppi; M. Davier; X. Giroux; G. Grosdidier; A. Höcker; S. Laplace; F. Le Diberder; V. Lepeltier; A. M. Lutz; T. C. Petersen; S. Plaszczynski; M. H. Schune; L. Tantot; G. Wormser; C. H. Cheng; D. J. Lange; M. C. Simani; D. M. Wright; A. J. Bevan; C. A. Chavez; J. P. Coleman; I. J. Forster; J. R. Fry; E. Gabathuler; R. Gamet; D. E. Hutchcroft; R. J. Parry; D. J. Payne; R. J. Sloane; C. Touramanis; J. J. Back; C. M. Cormack; P. F. Harrison; F. Di Lodovico; G. B. Mohanty; C. L. Brown; G. Cowan; R. L. Flack; H. U. Flaecher; M. G. Green; P. D. Jackson; T. R. McMahon; S. Ricciardi; F. Salvatore; M. A. Winter; C. L. Davis; J. Allison; N. R. Barlow; R. J. Barlow; P. A. Hart; M. C. Hodgkinson; G. D. Lafferty; A. J. Lyon; J. C. Williams; A. Farbin; W. D. Hulsbergen; A. Jawahery; D. Kovalskyi; C. K. Lae; V. Lillard; D. A. Roberts; G. Blaylock; C. Dallapiccola; K. T. Flood; S. S. Hertzbach; R. Kofler; V. B. Koptchev; T. B. Moore; S. Saremi; H. Staengle; S. Willocq; R. Cowan; G. Sciolla; S. J. Sekula; F. Taylor; R. K. Yamamoto; D. J. Mangeol; P. M. Patel; S. H. Robertson; A. Lazzaro; V. Lombardo; F. Palombo; J. M. Bauer; L. Cremaldi; V. Eschenburg; R. Godang; R. Kroeger; J. Reidy; D. A. Sanders; D. J. Summers; H. W. Zhao; S. Brunet; D. Côté; P. Taras; H. Nicholson; N. Cavallo; F. Fabozzi; C. Gatto; L. Lista; D. Monorchio; P. Paolucci; D. Piccolo; C. Sciacca; M. Baak; H. Bulten; G. Raven; H. L. Snoek; L. Wilden; C. P. Jessop; J. M. Losecco; T. Allmendinger; K. K. Gan; K. Honscheid; D. Hufnagel; H. Kagan; R. Kass; T. Pulliam; A. M. Rahimi

2005-01-01

297

Response of thyroid follicular cells to gamma irradiation compared to proton irradiation: II. The role of connexin 32  

NASA Technical Reports Server (NTRS)

The objective of this study was to determine whether connexin 32-type gap junctions contribute to the "contact effect" in follicular thyrocytes and whether the response is influenced by radiation quality. Our previous studies demonstrated that early-passage follicular cultures of Fischer rat thyroid cells express functional connexin 32 gap junctions, with later-passage cultures expressing a truncated nonfunctional form of the protein. This model allowed us to assess the role of connexin 32 in radiation responsiveness without relying solely on chemical manipulation of gap junctions. The survival curves generated after gamma irradiation revealed that early-passage follicular cultures had significantly lower values of alpha (0.04 Gy(-1)) than later-passage cultures (0.11 Gy(-1)) (P < 0.0001, n = 12). As an additional way to determine whether connexin 32 was contributing to the difference in survival, cultures were treated with heptanol, resulting in higher alpha values, with early-passage cultures (0.10 Gy(-1)) nearly equivalent to untreated late-passage cultures (0.11 Gy(-1)) (P > 0.1, n = 9). This strongly suggests that the presence of functional connexin 32-type gap junctions was contributing to radiation resistance in gamma-irradiated thyroid follicles. Survival curves from proton-irradiated cultures had alpha values that were not significantly different whether cells expressed functional connexin 32 (0.10 Gy(-1)), did not express connexin 32 (0.09 Gy(-1)), or were down-regulated (early-passage plus heptanol, 0.09 Gy(-1); late-passage plus heptanol, 0.12 Gy(-1)) (P > 0.1, n = 19). Thus, for proton irradiation, the presence of connexin 32-type gap junctional channels did not influence their radiosensitivity. Collectively, the data support the following conclusions. (1) The lower alpha values from the gamma-ray survival curves of the early-passage cultures suggest greater repair efficiency and/or enhanced resistance to radiation-induced damage, coincident with the expression of connexin 32-type gap junctions. (2) The increased sensitivity of FRTL-5 cells to proton irradiation was independent of their ability to communicate through connexin 32 gap junctions. (3) The fact that the beta components of the survival curves from both gamma rays and proton beams were similar (average 0.022 +/- 0.008 Gy(-2), P > 0.1, n = 39) suggests that at higher doses the loss of viability occurs at a relatively constant rate and is independent of radiation quality and the presence of functional gap junctions.

Green, L. M.; Tran, D. T.; Murray, D. K.; Rightnar, S. S.; Todd, S.; Nelson, G. A.

2002-01-01

298

Single-source gamma radiation procedures for improved calibration and measurements in porous media  

SciTech Connect

When dual-energy gamma radiation systems are employed for measurements in porous media, count rates from both sources are often used to compute parameter values. However, for several applications, the count rates of just one source are insufficient. These applications include the determination of volumetric liquid content values in two-liquid systems and salt concentration values in water-saturated porous media. Single-energy gamma radiation procedures for three applications are described in this paper. Through an error analysis, single-source procedures are shown to reduce the probable error in the determinations considerably. Example calculations and simple column experiments were conducted for each application to compare the performance of the new single-source and standard dual-source methods. In all cases, the single-source methods provided more reliable data than the traditional dual-source methods. In addition, a single-source calibration procedure is proposed to determine incident count rates indirectly. This procedure, which requires packing under saturated conditions, can be used in all single- and dual-source applications and yields accurate porosity and dry bulk density values.

Oostrom, M. [Pacific Northwest National Lab., Richland, WA (United States). Environmental Technology Div.] [Pacific Northwest National Lab., Richland, WA (United States). Environmental Technology Div.; Hofstee, C.; Dane, H. [Auburn Univ., AL (United States). Dept. of Agronomy and Soils] [Auburn Univ., AL (United States). Dept. of Agronomy and Soils; Lenhard, R.J. [Sultan Oaboos Univ. (Oman). Dept. of Soil and Water] [Sultan Oaboos Univ. (Oman). Dept. of Soil and Water

1998-08-01

299

Galactic Center Gamma Ray Excess in a Radiative Neutrino Mass Model  

E-print Network

The Fermi gamma ray space telescope data have pointed towards an excess of gamma rays with a peak around $1-3$ GeV in the region surrounding the galactic center. This anomalous excess can be described well by a dark matter candidate having mass in the range $31-40$ GeV annihilating into $b\\bar{b}$ pairs with a cross section of $\\langle \\sigma v \\rangle \\simeq (1.4-2.0) \\times 10^{-26} \\; \\text{cm}^3/\\text{s}$. In this work we explore the possibility of having such a dark matter candidate within the framework of a radiative neutrino mass model. The model is a simple extension of the standard model by an additional $U(1)_X$ gauge symmetry where the standard model neutrino masses arise both at tree level as well as radiatively by the anomaly free addition of one singlet fermion $N_R$ and two triplet fermions $\\Sigma_{1R}, \\Sigma_{2R}$ with suitable Higgs scalars. The spontaneous gauge symmetry breaking is achieved in such a way which results in a residual $Z_2$ symmetry and hence providing a stable cold dark mat...

Borah, Debasish

2014-01-01

300

Radiation degradation of polystyrene\\/poly(methyl methacrylate) blends. [Gamma radiation  

Microsoft Academic Search

Although copolymers of styrene(PS) and methyl methylacrylate(PMMA) showed slightly higher flexural strengths than the homopolymers, blends showed markedly lower strengths, the decrease being greatest at ca 50% styrene. There was a decrease in modulus, but an increase in the elongation to break attributable to the two-phase morphology. The effect of various radiation doses on flexural strength is demonstrated. The decreases

R. W. Garrett; J. H. ODonnell; P. J. Pomery; E. C. Shum

1979-01-01

301

Potentially lethal damage repair in drug arrested g2-phase cells after radiation exposure.  

PubMed

Potentially lethal damage (PLD) repair has been defined as that property conferring the ability of cells to recover from DNA damage depending on the postirradiation environment. Using a novel cyclin dependent kinase 1 inhibitor RO-3306 to arrest cells in the G2 phase of the cell cycle, examined PLD repair in G2 in cultured Chinese hamster ovary (CHO) cells. Several CHO-derived DNA repair mutant cell lines were used in this study to elucidate the mechanism of DNA double-strand break repair and to examine PLD repair during the G2 phase of the cell cycle. While arrested in G2 phase, wild-type CHO cells displayed significant PLD repair and improved cell survival compared with cells released immediately from G2 after irradiation. Both the radiation-induced chromosomal aberrations and the delayed entry into mitosis were also reduced by G2-holding PLD recovery. The PLD repair observed in G2 was observed in nonhomologous end-joining (NHEJ) mutant cell lines but absent in homologous recombination mutant cell lines. From the survival curves, G2-NHEJ mutant cell lines were found to be very sensitive to gamma-ray exposure when compared to G2/homologous recombination mutant cell lines. Our findings suggest that after exposure to ionizing radiation during G2, NHEJ is responsible for the majority of non-PLD repair, and conversely, that the homologous recombination is responsible for PLD repair in G2. PMID:25251700

Maeda, Junko; Bell, Justin J; Genet, Stefan C; Fujii, Yoshihiro; Genet, Matthew D; Brents, Colleen A; Genik, Paula C; Kato, Takamitsu A

2014-10-01

302

Gamma radiation roused lattice contraction effects investigated by Mössbauer spectroscopy in nanoparticle Mn-Zn ferrite  

NASA Astrophysics Data System (ADS)

Nanopowders of MnxZn1-xFe2O4 with x=0.4, 0.5 and 0.6 were synthesized using a combustion synthesis method. X-ray diffraction (XRD) patterns obtained on samples confirmed formation of monophasic cubic phase material. Lattice parameters and X-ray densities were obtained from rietvield refinement of the XRD patterns. All samples were radiated with gamma radiation with a dose of 200 Gy obtained from 60Co source. Structural and physical parameters, such as lattice constant, X-ray density and particle size, determined for as prepared samples (SA) and gamma irradiated samples (SR), showed extraordinary variations in their values. Saturation magnetizations (MS), remnant magnetization (MR) and coercive field (HC) for both sets of samples illustrated an enhancement in their values for SR samples. Investigations were carried out using Mössbauer spectroscopy to divulge structural and magnetic information of all samples. Room temperature Mössbauer spectra were fitted with five magnetic sextets and a symmetric paramagnetic doublet for the data obtained on samples except for x=0.4, SA sample. The presence of well defined doublets in the spectra of SA and SR samples is attributes of superparamagnetism, indicating the reduction in A-B superexchange interaction due to dilution of sub-lattice by Zn ions. Cation distribution at A site and B site, estimated from Mössbauer data exhibited amazing alterations which were highly stable. The variations in physical, structural and magnetic properties observed are attributed to change of Fe2+/Fe3+ and Mn+2/Mn+3 ratios in gamma-irradiated samples.

Naik, P. P.; Tangsali, R. B.; Meena, S. S.; Bhatt, Pramod; Sonaye, B.; Sugur, S.

2014-09-01

303

Binding and cross-linking of recombinant mouse interferon-. gamma. to receptors in mouse leukemic L1210 cells; interferon-. gamma. internalization and receptor down-regulation  

SciTech Connect

Recombinant E. coli-derived murine IFN-..gamma.. (Mu-rIFN-..gamma..; 5 x 10/sup 7/ U/mg) was radiolabeled with /sup 125/I by the chloramine-T method without loss of its antiviral activity. The /sup 125/I-Mu-rIFN-..gamma.. showed specific binding to L1210 cells. Scatchard analysis indicates about 4000 binding sites per cell and an apparent Kd of 5 x 10/sup -10/ M. Binding of /sup 125/I-Mu-rIFn-..gamma.. to cells inhibited by both natural (glycosylated) and rIFN-..gamma.., but not by IFN-..gamma../..beta... Receptor-bound /sup 125/I-Mu-rIFN-..gamma.. was rapidly internalized when incubation temperature was raised from 4/sup 0/C to 37/sup 0/C. On internalization, almost no IFN-..gamma.. degradation was observed during 16 hr incubation. /sup 125/I-Mu-rIFN-..gamma.. binding capacity decreased in cells preincubated with low doses of unlabeled Mu-rIFN-..gamma.., but not with IFN-..cap alpha../..beta... This receptor down-regulation was dose-dependent: 90% reduction of /sup 125/I-Mu-rIFN-..gamma.. binding was observed after preincubation with 100 U/ml. After removal of IFN-..gamma.. from the culture medium, the binding capacity increased with time. However, reappearance of receptor was completely blocked by cycloheximide or tunicamycin, suggesting that re-expression of receptors is not due to recycling but to the synthesis of new receptors, and that the receptor is probably a glycoprotein. Cross-linking of /sup 125/I-Mu-rIFN-..gamma.. to surface L1210 cell proteins by using bifunctional agents yielded a predominant complex of m.w. 110,000 +/- 5000. Thus, assuming a bimolecular complex, the m.w. of the receptor or receptor subunit would be close to 95,000 +/- 5000.

Wietzerbin, J.; Gaudelet, C.; Aguet, M.; Falcoff, E.

1986-04-01

304

SOLIDIFICATION TESTING FOR A HIGH ACTIVITY WASTESTREAM FROM THE SAVANNAH RIVER SITE USING GROUT AND GAMMA RADIATION SHEILDING MATERIALS - 10017  

SciTech Connect

The U.S. Department of Energy (DOE) tasked MSE Technology Applications, Inc. (MSE) with evaluating grouts that include gamma radiation shielding materials to solidify surrogates of liquid aqueous radioactive wastes from across the DOE Complex. The Savannah River Site (SRS) identified a High Activity Waste (HAW) that will be treated and solidified at the Waste Solidification Building (WSB) for surrogate grout testing. The HAW, which is produced at the Mixed Oxide Fuel Fabrication Facility (MFFF), is an acidic aqueous wastestream generated by the alkaline treatment process and the aqueous purification process. The HAW surrogate was solidified using Portland cement with and without the inclusion of different gamma radiation shielding materials to determine the shielding material that is the most effective to attenuate gamma radiation for this application.

Burns, H.

2009-11-10

305

Synergistic effects in the short-term preservation of hides with antiseptics and gamma radiation  

NASA Astrophysics Data System (ADS)

The normal time lapse between the skinning and tanning processes of green hides necessitates the need for a short-term preservation technique to be employed. The most common method of bringing about such preservation is the coarse salting of the flesh side of hides. More recently the antiseptic treatment of hides was introduced to overcome the serious environmental pollution brought about by the salting process. The antiseptic treatment, however, must also be carefully controlled to avoid upsetting the biological breakdown processes in effluent plants. The gamma sterilization of such hides presents a non-polluting alternative to these methods. As the nature of this product demands excessively high radiation doses to be effective, which negatively influences the economics of the process and the physical properties of the resultant leather, a combination process employing radiation and antiseptics was investigated. It was observed that the radiation dose could be lowered from 50 kGy to 8 kGy in combination with certain antiseptics, whilst the required antiseptic concentration could be substantially lowered in the presence of radiation. The resultant leather was of an excellent quality whilst minimizing the environmental pollution problem.

Du Plessis, TA; Russell, AE; Stevens, RCB; Galloway, AC

306

Radiation track structure is not only important in determining the response of traversed cells but also non-traversed cells.  

NASA Astrophysics Data System (ADS)

The spatial distribution of energy deposition on the scale of DNA, cells and tissue for both low and high-LET radiation is important in determining the subsequent biological response in DNA, cells and ultimately people. In irradiated cells, the biological response has been shown to be critically dependant on the clustering of damage to DNA on the nanometre scale, with high-LET radiation not only producing a higher frequency of complex DNA damage but also typically producing damage sites of greater complexity than those produced by low-LET radiation. The differences in the energy distribution on the micron/cellular scale are also important with regards to chromosome aberration formation. The traversal of a cell by a high-LET track typically produces a non-homogeneous dose distribution through a cell nucleus and correlated DNA double-strand breaks along the path, resulting in an increased probability of complex chromosomal rearrangements (3 or more breaks in 2 or more chromosomes). In addition, in recent years it has become increasing clear that cells do not act in isolation, but the ultimate response of a cell or tissue is dependent on intercellular signalling. This becomes increasingly important at the low doses, or low dose rates, associated with typical human exposures. In order to help characterise the underlying mechanism of intercellular signalling, and how they are perturbed following exposure to ionising radiation, a previously well-defined model system of intercellular induction of apoptosis (IIA) was used, where neighbouring normal cells selectively eliminate transformed cells through cytokine (TGF-beta) and ROS/RNS signalling. The rate of apoptosis in unirradiated transformed cells was found to be enhanced even after extremely low doses of both low-LET (2 mGy gamma-rays) and high-LET (0.3 mGy alpha-particles) with the enhancement independent of dose and radiation quality at medium to high doses. The level of stimulation was found to be also dependent on the fraction of cells irradiated, cell type, levels of TGF-beta, distance between cell populations and oxygen concentration. The study shows that the stimulation of intercellular signalling by radiation required both sufficient energy deposition within irradiated cells and fraction of cells irradiated, with the response dependent on radiation quality only at low doses or when a small fraction of cells are irradiated. These results will be discussed in terms of their potential implications to risks associated with typical human exposures.

Hill, Mark

2012-07-01

307

Occult expression of CD32 (Fc gamma RII) in normal human peripheral blood mononuclear cells.  

PubMed Central

Three main classes of Fc gamma receptor (Fc gamma R) have been described on the surface of normal human peripheral blood peripheral blood mononuclear cells. These receptors are thought to play an important role in many immune mechanisms. Following interaction with ligand, i.e. IgG in the form of an immune complex, receptor cross-linking occurs and some isoforms of Fc gamma R become internalized and will recycle back to the cell surface. This mechanism may be important in signal transduction pathways. In this study we have shown that a particular type of Fc gamma R (CD32), which is normally expressed on the surface of B cells, can be detected by flow-cytometry within the cytoplasm of up to 90% of normal human peripheral blood lymphocytes. The function of this 'occult' CD32 is not known but may represent an internal receptor pool that is up-regulated following cell activation. Images Figure 1 PMID:8567016

Sandilands, G P; McLaren, A P; Howie, D; MacSween, R N

1995-01-01

308

Molecular markers of ionizing radiation-induced gene mutations in mammalian cells.  

PubMed

We have isolated independent Chinese hamster ovary (CHO) cell mutants at the hypoxanthine guanine phosphoribosyltransferase (hprt) locus from untreated, 60Co gamma-ray-exposed, and 212Bi alpha-exposed cells and identified the molecular changes underlying the mutation determined by multiplex polymerase chain reaction (PCR)-based exon deletion analysis. Both the parental CHO-K1 cells and the X-ray-sensitive mutant xrs-5 cells were studied. The radiosensitive xrs-5 cells are defective in DNA double-strand break rejoining ability and in V(D)J recombination, which can be complemented by Ku protein. Of the 71 spontaneous CHO-K1 hprt mutants analyzed, 78% showed no change in exon number or size, 20% showed loss of one to eight exons (partial deletion), and 3% showed loss of all nine hprt exons (total deletion). Exposure of CHO-K1 cells to 6 Gy of gamma rays, which reduced survival levels to 10%, produced a high deletion spectrum with 45% of the 20 mutants analyzed showing a loss of one to eight exons and 30% showing total deletion. Exposure to an equitoxic dose of alpha radiation from 212Bi, a 220Rn daughter, resulted in a spectrum similar to the gamma-ray spectrum in that 75% of the 49 mutants analyzed were deletions. To alpha radiation, however, tended to produce larger intragenic deletions than gamma radiation. Of the 92 spontaneous xrs-5 mutants analyzed for deletions, 43% showed a loss of one to eight exons and 14% showed total deletion. This suggests that, in certain regions of the hprt gene, base alterations can be converted into large deletions and alteration in the Ku protein complex can influence this type of mutational process. Exposure to alpha radiation (10% survival) to xrs-5 cells resulted in a deletion spectrum similar to that seen in CHO-K1 cells. Of the 49 mutants analyzed, 43% showed on change in exon number or size, 16% showed a loss of one to eight exons, and 41% showed total deletion. While the defect in xrs-5 cells has a profound effect on spontaneous mutant spectra, this defect does not appear to affect alpha-induced mutation spectra. PMID:8781403

Hsie, A W; Porter, R C; Xu, Z; Yu, Y; Sun, J; Meltz, M L; Schwartz, J L

1996-05-01

309

Radiation-initiated emulsion copolymerization of styrene and carboxylic acid monomers. [Gamma radiation  

SciTech Connect

The emulsion copolymerization of styrene and carboxylic acid monomers such as acrylic, methacrylic, and itaconic acids (AAc, MAAc, IAc) was studied by using /sup 60/Co ..gamma..-rays as initiator and sodium dodecylsulfate as emulsifier. The polymerization behavior of these acid monomers was followed by simultaneous conductometric and potentiometric titrations for a latex sample taken in polymerization. The polymerization rate of these acid monomers increases in the following order of hydrophobicity: IAc < AAc < MAAc; this suggests that their polymerization sites are mainly the surface and/or subsurface regions of latex particles. The copolymerization rate of styrene and acid monomer increases with an increase in the acid monomer content for AAc and MAAc, whereas for IAc the rate decreases. The particle sizes determined by the stopped-flow method reveal that this variation of copolymerization rate cannot be explained by the number of growing particles and should be attributed to another factor; for instance, the transfer rate of styrene molecules from oil droplets to growing particles.

Egusa, S.; Makuuchi, K.

1982-03-01

310

Investigating chromosome damage and gammaH2AX response in human lymphocytes and lymphocyte subsets as potential biomarkers of radiation sensitivity  

NASA Astrophysics Data System (ADS)

This thesis examines in vitro irradiated blood samples from prostate cancer patients exhibiting late normal tissue damage after receiving radiotherapy, for lymphocyte response. Chromosomal aberrations, translocations and proliferation rate are measured, as well as gammaH2AX response in lymphocytes and lymphocyte subsets. The goal of this thesis is to determine whether the lymphocyte response to in vitro radiation could be used as a marker for radiosensitivity. Patients were selected from a randomized clinical trial evaluating the optimal timing of Dose Escalated Radiation and short course Androgen Deprivation Therapy. Of 438 patients, 3% developed Grade 3 late radiation proctitis and were considered to be radiosensitive. Blood was drawn from 10 of these patients along with 20 matched samples from patients with grade 0 proctitis. The samples were irradiated and were analyzed for dicentric chromosomes, excess fragments and proliferation rates (at 6 Gy), translocations, stable and unstable damage (at 4 Gy), and dose response (up to 10 Gy), along with time response after 2 Gy (0 -- 24 h). Chromosome aberrations, excess fragments per cell, translocations per cell and proliferation rates were analyzed by brightfield and fluorescent microscopy, while the gammaH2AX response in lymphocytes and lymphocyte subsets was analyzed by flow cytometry. Both groups were statistically similar for all endpoints at 0 Gy. At 6 Gy, there were statistically significant differences between the radiosensitive and control cohorts for three endpoints; the mean number of dicentric chromosomes per cell, the mean number of excess fragments per cell and the proportion of cells in second metaphase. At 4 Gy, there were statistically significant differences between the two cohorts for three endpoints; the mean number of translocations per cell, the mean number of dicentric chromosomes per cell and the mean number of deletions per cell. There were no significant differences between the gammaH2AX responses of the groups for either the dose or time course as measured with flow cytometry. Six cytogenetic endpoints, measuring chromosomal aberrations, demonstrated a strong correlation with radiosensitivity and should be studied further as markers of radiation response. These results will contribute to the search for an indicator for identifying radiosensitive patients and for tailoring radiotherapy treatments.

Beaton, Lindsay A.

311

Selective activation of gamma/delta + T cell clones by single anti-CD2 antibodies  

PubMed Central

The CD2 antigen is the target for an "alternative" T cell activation pathway. Numerous studies have demonstrated that pairs of monoclonal antibodies (mAbs) directed toward two different epitopes are required for activation of T cell receptor (TCR)-alpha/beta + T cells via CD2. We have now explored the activation of human TCR-gamma/delta + T cell clones by a panel of anti-CD2 mAbs directed against the sheep erythrocyte-binding (T11.1) epitope of CD2. Seven of seven gamma/delta + clones expressing different molecular forms of the TCR-gamma/delta responded to stimulation by a single anti-CD2 mAb (OKT11, 9E8, BW0110, M-T910) with IL-2 secretion and/or proliferation. Immobilization of anti-CD2 mAbs in microculture plates was essential for activation of gamma/delta + clones, which occurred in the absence of feeder cells. In addition to interleukin 2 (IL-2) production and proliferation, anti-CD2 mAbs also triggered cytotoxic effector activity in gamma/delta + clones as measured against FcR+ P815 target cells. In contrast to gamma/delta + clones (but in line with established data), none of five CD4+ or CD8+ TCR-alpha/beta + clones were activated by any of the tested individual anti-CD2 mAbs. Taken together, our results reveal a striking difference between cloned gamma/delta + and alpha/beta + T cells in that gamma/delta + T cells are selectively activated by a single anti-CD2 (T11.1) mAb, without need for the simultaneous signal of a second anti- CD2 mAb directed against another (T11.2 or T11.3) CD2 epitope. PMID:1703204

1991-01-01

312

A Human Espophageal Epithelial Cell Model for Study of Radiation Induced Cancer and DNA Damage Repair  

NASA Technical Reports Server (NTRS)

For cancer risk assessment in astronauts and for countermeasure development, it is essential to understand the molecular mechanisms of radiation carcinogenesis and how these mechanisms are influenced by exposure to the types of radiation found in space. We are developing an in vitro model system for the study of radiation-induced initiation and progression of esophageal carcinoma, a type of cancer found to have a significant enhancement in incidence in the survivors of the atomic bomb detonations in Japan. Here we present the results of our preliminary characterization of both normal and hTERT immortalized esophageal epithelial cells grown in 2-dimensional culture. We analyzed DNA repair capacity by measuring the kinetics of formation and loss of - H2AX foci following radiation exposure. Additionally, we analyzed induction of chromosomal aberrations using 3-color fluorescence in situ hybridization (FISH). Data were generated using both low LET (gamma rays) and high LET ions (1000 MeV/nucleon iron).

Huff, Janice L.; Patel, Zarana S.; Hada, Megumi; Cucinotta, Francis A.

2008-01-01

313

Search for radiative penguin decays B(+)-->rho(+)gamma, B(0)-->rho(0)gamma, and B(0)-->omegagamma.  

PubMed

A search for the decays B-->rho(770)gamma and B0-->omega(782)gamma is performed on a sample of 211 x 10(6) Upsilon(4S)-->BB events collected by the BABAR detector at the SLAC PEP-II asymmetric-energy e(+)e(-) storage ring. No evidence for the decays is seen. We set the following limits on the individual branching fractions: B(B+-->rho(+)gamma)<1.8 x 10(-6), B(B0-->rho(0)gamma)<0.4 x 10(-6), and B(B0-->omegagamma)<1.0 x 10(-6) at the 90% confidence level. We use the quark model to limit the combined branching fraction B [B-->(rho/omega)gamma]<1.2 x 10(-6), from which we determine a constraint on the ratio of Cabibbo-Kobayashi-Maskawa matrix elements |V(td)|/|V(ts)|. PMID:15698065

Aubert, B; Barate, R; Boutigny, D; Couderc, F; Gaillard, J-M; Hicheur, A; Karyotakis, Y; Lees, J P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Shelkov, V G; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Steinke, M; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Wilson, F F; Cuhadar-Donszelmann, T; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Thiessen, D; Khan, A; Kyberd, P; Teodorescu, L; Blinov, A E; Blinov, V E; Druzhinin, V P; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Foulkes, S D; Gary, J W; Shen, B C; Wang, K; Del Re, D; Hadavand, H K; Hill, E J; Macfarlane, D B; Paar, H P; Rahatlou, Sh; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Eisner, A M; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Smith, J G; Zhang, J; Zhang, L; Chen, A; Harton, J L; Soffer, A; Toki, W H; Wilson, R J; Zeng, Q L; Altenburg, D; Brandt, T; Brose, J; Dickopp, M; Feltresi, E; Hauke, A; Lacker, H M; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Petzold, A; Schubert, J; Schubert, K R; Schwierz, R; Spaan, B; Sundermann, J E; Bernard, D; Bonneaud, G R; Brochard, F; Grenier, P; Schrenk, S; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Bard, D J; Clark, P J; Lavin, D; Muheim, F; Playfer, S; Xie, Y; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Vetere, M Lo; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Won, E; Dubitzky, R S; Langenegger, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Gaillard, J R; Morton, G W; Nash, J A; Nikolich, M B; Taylor, G P; Charles, M J; Grenier, G J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Yi, J; Biasini, M; Covarelli, R; Pioppi, M; Davier, M; Giroux, X; Grosdidier, G; Höcker, A; Laplace, S; Diberder, F Le; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Chavez, C A; Coleman, J P; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Cormack, C M; Harrison, P F; Lodovico, F Di; Mohanty, G B; Brown, C L; Cowan, G; Flack, R L; Flaecher, H U; Green, M G; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hart, P A; Hodgkinson, M C; Lafferty, G D; Lyon, A J; Williams, J C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Sciolla, G; Sekula, S J; Taylor, F; Yamamoto, R K; Mangeol, D J J; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Nicholson, H; Cavallo, N; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Wilden, L; Jessop, C P; Losecco, J M; Allmendinger, T; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Brau, J; Frey, R; Igonkina, O; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M

2005-01-14

314

Effects of gamma radiation on the dielectric and electro-optical properties of a polymer-dispersed liquid crystal  

NASA Astrophysics Data System (ADS)

We have investigated the effects of electric field and gamma radiation on the permittivity of a liquid crystal (E8), polymer-matrix (C135) and their composite polymer-dispersed liquid crystal (PDLC). The permittivity data are analyzed in terms of the Debye model, which provides insight into the effects of radiation-induced charges on the relaxation time constants. The effect of gamma-ray dose on the electro-optical response of the PDLC is studied by modeling PDLC as a composite material consisting of either isolated or interconnected liquid-crystal droplets embedded in a polymer matrix.

Sharma, Suresh C.; Ramsey, Robert A.

2010-01-01

315

Terrestrial gamma radiation dose rates (TGRD) from surface soil in Negeri Sembilan, Malaysia  

NASA Astrophysics Data System (ADS)

Baseline data on background radiation levels allows for future assessment of possible changes in natural radionuclide concentrations, either as a result of geological processes or radioactive contamination. We have measured terrestrial gamma radiation dose-rates (TGRD) from surface soils throughout accessible areas in the Peninsular Malaysia state of Negeri Sembilan (NS). Dose rate measurements were carried out using a NaI (TI) scintillation survey meter, encompassing 1708 locations, covering about 73% of the 6645 km2 of the land area in NS. This has allowed development of a TGRD contour map, plotted using WinSurf software. The range of measured TGRD was from 71±3 nGy/h up to 1000±11 nGy/h. The greatest measured TGRD was obtained in an area covered by soil types originating from igneous rock of granitic formations, while the least value of TGRD was observed in an area covered by limestone composed of calcite mineral, mostly found near river and coastal areas. Mean values of TGRD across the seven districts of NS ranged from 244±7 nGy/h to 458±13 nGy/h, the global mean being 330±8 nGy/h compared to a mean value of 92 nGy/h and 59 nGy/h for Malaysia and the world, respectively. The average annual dose from such terrestrial gamma radiation dose-rates to an individual residing in NS, assuming a tropical rural setting, is estimated to be 0.96 mSv per year.

Norbani, Nor Eliana; Abdullah Salim, Nazaratul Ashifa; Saat, Ahmad; Hamzah, Zaini; Ramli, Ahmad Termizi; Wan Idris, Wan Mohd Rizlan; Jaafar, Mohd Zuli; Bradley, David A.; Abdul Rahman, Ahmad Taufek

2014-11-01

316

High energy gamma ray astronomy  

NASA Technical Reports Server (NTRS)

The SAS-2 gamma ray experiment and its detection of celestial gamma rays are described. Data also cover intensity of high energy gamma rays, gamma ray distribution, gamma ray origin, and diffuse radiation.

Fichtel, C. E.

1974-01-01

317

[Impact of cell phone radiation on male reproduction].  

PubMed

With the popularized use cell phones, more and more concern has been aroused over the effects of their radiation on human health, particularly on male reproduction. Cell phone radiation may cause structural and functional injuries of the testis, alteration of semen parameters, reduction of epididymal sperm concentration and decline of male fertility. This article presents an overview on the impact of cell phone radiation on male reproduction. PMID:21218649

Kang, Ning; Shang, Xue-Jun; Huang, Yu-Feng

2010-11-01

318

Hepatocyte growth factor protects endothelial cells against gamma ray irradiation-induced damage  

PubMed Central

Aim: To investigate the effect of HGF on proliferation, apoptosis and migratory ability of human vascular endothelial cells against gamma ray irradiation. Methods: ECV304 cells derived from adult human umbilical vein endothelial cells (HUVEC) were irradiated with a single gamma ray dose of 20 Gy. Immunocytochemistry and Western blot analysis were used to detect c-Met protein expression and HGF/c-Met signal pathway. In the HGF-treated groups, ECV304 cells were incubated with HGF (20 or 40 ng/mL) 3 h prior to irradiation. At 48 h post-irradiation, the proliferation of ECV304 cells was measured by MTT assay, the apoptosis was assessed by flow cytometry, and the migratory ability of ECV304 cells was measured by transwell chamber assay. Results: c-Met protein is expressed in ECV304 cells and can be activated by HGF. Gamma ray irradiation inhibits proliferation and migration of ECV304 cells in a dose-dependent manner. HGF significantly promoted the proliferation of ECV304 cells, and flow cytometry revealed that HGF can inhibit apoptosis of ECV304 cells. Transwell chamber assay also showed that HGF increases migration activity of endothelial cells. Conclusion: HGF may afford protection to vascular endothelial cells against gamma ray irradiation-induced damage. PMID:19749787

Hu, Shun-ying; Duan, Hai-feng; Li, Qing-fang; Yang, Yue-feng; Chen, Jin-long; Wang, Li-sheng; Wang, Hua

2009-01-01

319

Elimination of radiation-induced {gamma}-H2AX foci in mammalian nucleus can occur by histone exchange  

SciTech Connect

Double-strand breaks in mammalian DNA lead to rapid phosphorylation of C-terminal serines in histone H2AX ({gamma}-H2AX) and formation of large nuclear {gamma}-H2AX foci. After DNA repair these foci disappear, but molecular mechanism of elimination of {gamma}-H2AX foci remains unclear. H2AX protein can be phosphorylated and dephosphorylated in vitro in the absence of chromatin. Here, we compared global exchange of GFP-H2AX with kinetics of formation and elimination of radiation-induced {gamma}-H2AX foci. Maximal number of {gamma}-H2AX foci is observed one hour after irradiation, when {approx}20% of GFP-H2AX is exchanged suggesting that formation of the foci mostly occurs by in situ H2AX phosphorylation. However, slow elimination of {gamma}-H2AX foci is weakly affected by an inhibitor of protein phosphatases calyculin A which is known as an agent suppressing dephosphorylation of {gamma}-H2AX. This indicates that elimination of {gamma}-H2AX foci may be independent of dephosphorylation of H2AX which can occur after its removal from the foci by exchange.

Svetlova, Maria [Institute of Cytology RAS, 194064 St. Petersburg (Russian Federation); Solovjeva, Liudmila [Institute of Cytology RAS, 194064 St. Petersburg (Russian Federation); Nishi, Kayoko [Department of Biochemistry and Molecular Medicine, University of California Medical School, Davis, CA 95616 (United States); Nazarov, Igor [Department of Biochemistry and Molecular Medicine, University of California Medical School, Davis, CA 95616 (United States); Siino, Joseph [Department of Microbiology, University of California, Davis, CA 95616 (United States); Tomilin, Nikolai [Institute of Cytology RAS, 194064 St. Petersburg (Russian Federation)]. E-mail: nvtom@mail.ru

2007-06-29

320

Heat shock protein Hsp60-reactive gamma delta cells: a large, diversified T-lymphocyte subset with highly focused specificity.  

PubMed

Previously, we detected a subset of gamma delta T cells in the newborn mouse thymus that responded to the mycobacterial heat shock protein Hsp60, as well as with what seemed to be a self-antigen. All of these cells expressed V gamma 1, most often in association with V delta 6+. It was not clear, however, whether similar, mature gamma delta cells with Hsp60 reactivity are common outside of the thymus, or rather, whether they are largely eliminated during development. From the data presented here, we estimate that gamma delta cells responding to Hsp60 comprise 10-20% of normal splenic and lymph node gamma delta T cells. Such cells, derived from adult spleen, always express a V gamma 1-J gamma 4-C gamma 4 gamma chain, although not all cells with this gamma chain show Hsp60 reactivity. Many of these V gamma 1+ cells also express V delta 6-J delta 1-C delta, though fewer than in V gamma 1+ cells from the newborn thymus. Extensive diversity is evident in both the gamma and delta chain junctional amino acids of the receptors of these cells, indicating that they may largely develop in the thymus of older animals or undergo peripheral expansion. Finally, we found that all such cells responding to both a putative self-antigen and to mycobacterial Hsp60 respond to a 17-amino acid synthetic peptide representing amino acids 180-196 of the Mycobacterium leprae Hsp60 sequence. This report demonstrates that a large subset of Hsp60-reactive peripheral lymphoid gamma delta T cells preexists in normal adult mice, all members of which respond to a single segment of this common heat shock protein. PMID:1584768

O'Brien, R L; Fu, Y X; Cranfill, R; Dallas, A; Ellis, C; Reardon, C; Lang, J; Carding, S R; Kubo, R; Born, W

1992-05-15

321

Heat shock protein Hsp60-reactive gamma delta cells: a large, diversified T-lymphocyte subset with highly focused specificity.  

PubMed Central

Previously, we detected a subset of gamma delta T cells in the newborn mouse thymus that responded to the mycobacterial heat shock protein Hsp60, as well as with what seemed to be a self-antigen. All of these cells expressed V gamma 1, most often in association with V delta 6+. It was not clear, however, whether similar, mature gamma delta cells with Hsp60 reactivity are common outside of the thymus, or rather, whether they are largely eliminated during development. From the data presented here, we estimate that gamma delta cells responding to Hsp60 comprise 10-20% of normal splenic and lymph node gamma delta T cells. Such cells, derived from adult spleen, always express a V gamma 1-J gamma 4-C gamma 4 gamma chain, although not all cells with this gamma chain show Hsp60 reactivity. Many of these V gamma 1+ cells also express V delta 6-J delta 1-C delta, though fewer than in V gamma 1+ cells from the newborn thymus. Extensive diversity is evident in both the gamma and delta chain junctional amino acids of the receptors of these cells, indicating that they may largely develop in the thymus of older animals or undergo peripheral expansion. Finally, we found that all such cells responding to both a putative self-antigen and to mycobacterial Hsp60 respond to a 17-amino acid synthetic peptide representing amino acids 180-196 of the Mycobacterium leprae Hsp60 sequence. This report demonstrates that a large subset of Hsp60-reactive peripheral lymphoid gamma delta T cells preexists in normal adult mice, all members of which respond to a single segment of this common heat shock protein. PMID:1584768

O'Brien, R L; Fu, Y X; Cranfill, R; Dallas, A; Ellis, C; Reardon, C; Lang, J; Carding, S R; Kubo, R; Born, W

1992-01-01

322

Analysis of cytogenetic effects of the secondary radiation resulting from 70 GeV protons of chinese hamster cells  

NASA Astrophysics Data System (ADS)

The cell culture of a Chinese hamster was irradiated on a Serpuchov proton synchrotron at a dose of 0.5-4 Gy and a dose rate of 1 Gy/min and by gamma-irradiation at dose 1-5 Gy and dose rate 1.2-1.4 Gy/min. The effect of radiation on the cell culture was judged from chromosomal aberrations in G2-stage of cell cycle and micronuclear test. The relative biological efficience of the secondary radiation was approximately 3. Modifying effect of caffeine on the cells irradiated by secondary radiation of synchrotron was not observed. In the presence of caffeine the effect of ?-irradiation practically is increased up to the level observed upon secondary irradiation. This suggests that secondary radiation inhibits the repair of the cytogenetic damage.

Akhmadieva, A. Kh.; Aptikaeva, G. Ph.; Livanova, I. A.; Antipov, A. V.; Akoev, I. G.; Ganassi, E. E.

323

Mechanism of Action for Anti-radiation Vaccine in Reducing the Biological Impact of High-dose Gamma Irradiation  

NASA Technical Reports Server (NTRS)

Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then collected and circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naive animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. Initial analysis of the biochemical characteristics indicated that the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which the mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

2007-01-01

324

Chromosomal Aberrations in DNA Repair Defective Cell Lines: Comparisons of Dose Rate and Radiation Quality  

NASA Technical Reports Server (NTRS)

Chromosome aberration yields were assessed in DNA double-strand break repair (DSB) deficient cells after acute doses of gamma-rays or high-LET iron nuclei, or low dose-rate (0.018 Gy/hr) gamma-rays. We studied several cell lines including fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase, DNA-PK activity. Chromosomes were analyzed using the fluorescence in-situ hybridization (FISH) chromosome painting method in cells at the first division post-irradiation and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma radiation induced higher yields of both simple and complex exchanges in the DSB repair defective cells than in the normal cells. The quadratic dose-response terms for both chromosome exchange types were significantly higher for the ATM and NBS defective lines than for normal fibroblasts. However, the linear dose-response term was significantly higher only for simple exchanges in the NBS cells. Large increases in the quadratic dose response terms indicate the important roles of ATM and NBS in chromatin modifications that facilitate correct DSB repair and minimize aberration formation. Differences in the response of AT and NBS deficient cells at lower doses suggests important questions about the applicability of observations of radiation sensitivity at high dose to low dose exposures. For all iron nuclei irradiated cells, regression models preferred purely linear and quadratic dose responses for simple and complex exchanges, respectively. All the DNA repair defective cell lines had lower Relative biological effectiveness (RBE) values than normal cells, the lowest being for the DNA-PK-deficient cells, which was near unity. To further investigate the sensitivity differences for low and low high doses, we performed chronic low dose-rate irradiation, and have begun studies with ATM and Nibrin inhibitors and siRNA knockout of these proteins. Results support the conclusion that for the endpoint of simple chromosomal aberrations (translocation or dicentrics), the increased radiation sensitivity of AT cells found at high doses (>1 Gy) does not carry over to low doses or doserates, while NBS cells show increased sensitivity for both high and low dose exposures.

George, K. A.; Hada, M.; Patel, Z.; Huff, J.; Pluth, J. M.; Cucinotta, F. A.

2009-01-01

325

Radiation tolerance of low resistivity, high voltage silicon solar cells  

NASA Technical Reports Server (NTRS)

The radiation tolerance of the following three low resistivity, high voltage silicon solar cells was investigated: (1) the COMSAT MSD (multi-step diffused) cell, (2) the MinMIS cell, and (3) the MIND cell. A description of these solar cells is given along with drawings of their configurations. The diffusion length damage coefficients for the cells were calculated and presented. Solar cell spectral response was also discussed. Cells of the MinMIS type were judged to be unsuitable for use in the space radiation environment.

Weizer, V. G.; Weinberg, I.; Swartz, C. K.

1984-01-01

326

Ethanol effects in a rat hepatoma cell line: induction of gamma-glutamyltransferase.  

PubMed

The clone C2 derived from a rat hepatoma cell line was used to investigate the mechanism of the induction of gamma-glutamyltransferase by ethanol. gamma-glutamyltransferase activity was detected in the C2 cell (1.4 mU per mg protein), and its kinetic properties were similar to normal rat liver gamma-glutamyltransferase. Ethanol provoked a dose- and time-dependent increase in gamma-glutamyltransferase activity, the maximum (2- to 3-fold) occurring 48 hr after the addition of ethanol (180 mM). In contrast, the activity of five other enzymes tested were not markedly modified by ethanol. Propanol was more potent than ethanol in inducing gamma-glutamyltransferase (5-fold stimulation), whereas methanol had no effect. The release of the enzyme in the medium was increased by ethanol and propanol. Several observations argue in favor of an increase in the biosynthesis of gamma-glutamyltransferase after ethanol addition: (i) ethanol increased the maximal velocity of the enzyme and did not modify the affinity for its substrates. It did not alter gamma-glutamyltransferase subcellular distribution; (ii) ethanol had no immediate effect when added directly to the assay mixture; (iii) the lag period and the time course of the increase in gamma-glutamyltransferase activity were those expected for an induction process; (iv) the increase in gamma-glutamyltransferase activity was prevented by cycloheximide and actinomycin D suggesting that ethanol acted at the transcriptional level. The effect of ethanol was not mimicked by acetaldehyde. In conclusion, we have demonstrated that ethanol increases the biosynthesis of gamma-glutamyltransferase in a rat hepatoma cell line which provides a new in vitro system. PMID:6132864

Barouki, R; Chobert, M N; Finidori, J; Aggerbeck, M; Nalpas, B; Hanoune, J

1983-01-01

327

Reduction in T gamma delta cell numbers and alteration in subset distribution in systemic lupus erythematosus.  

PubMed Central

We have studied the distribution of T gamma delta cells in the peripheral blood of 35 patients with systemic lupus erythematosus (SLE) and 36 age-matched controls. The monoclonal antibodies A13, BB3 and Ti gamma A, which are specific for the V delta 1, V delta 2 and V delta 9 gene products respectively, were used to define T gamma delta cell subsets. A significantly lower frequency of T gamma delta cells was found in peripheral blood lymphocytes of SLE patients compared with normal subjects (3.2% versus 5.9%). There was a marked reduction in the V delta 2+ subset of T gamma delta cells, which resulted in a reversal of the ratio of V delta 2+/V delta 1+ cells from 4.34 to 0.56. No correlation was found with either clinical or laboratory measures of disease activity. These results suggest that the observed changed in T gamma delta subset distribution are related to the SLE itself, and not secondary to changes in disease activity. PMID:1834377

Lunardi, C; Marguerie, C; Bowness, P; Walport, M J; So, A K

1991-01-01

328

Induction of ceruloplasmin synthesis by IFN-gamma in human monocytic cells  

NASA Technical Reports Server (NTRS)

Ceruloplasmin is a 132-kDa glycoprotein abundant in human plasma. It has multiple in vitro activities, including copper transport, lipid pro- and antioxidant activity, and oxidation of ferrous ion and aromatic amines; however, its physiologic role is uncertain. Although ceruloplasmin is synthesized primarily by the liver in adult humans, production by cells of monocytic origin has been reported. We here show that IFN-gamma is a potent inducer of ceruloplasmin synthesis by monocytic cells. Activation of human monoblastic leukemia U937 cells with IFN-gamma increased the production of ceruloplasmin by at least 20-fold. The identity of the protein was confirmed by plasmin fingerprinting. IFN-gamma also increased ceruloplasmin mRNA. Induction followed a 2- to 4-h lag and was partially blocked by cycloheximide, indicating a requirement for newly synthesized factors. Ceruloplasmin induction in monocytic cells was agonist specific, as IL-1, IL-4, IL-6, IFN-alpha, IFN-beta, TNF-alpha, and LPS were completely ineffective. The induction was also cell type specific, as IFN-gamma did not induce ceruloplasmin synthesis in endothelial or smooth muscle cells. In contrast, IFN-gamma was stimulatory in other monocytic cells, including THP-1 cells and human peripheral blood monocytes, and also in HepG2 cells. Ceruloplasmin secreted by IFN-gamma-stimulated U937 cells had ferroxidase activity and was, in fact, the only secreted protein with this activity. Monocytic cell-derived ceruloplasmin may contribute to defense responses via its ferroxidase activity, which may drive iron homeostasis in a direction unfavorable to invasive organisms.

Mazumder, B.; Mukhopadhyay, C. K.; Prok, A.; Cathcart, M. K.; Fox, P. L.

1997-01-01

329

Radiative Decays X(3872) -> psi(2S)+gamma and psi(4040) -> X(3872)+gamma in Effective Field Theory  

E-print Network

Heavy hadron chiral perturbation theory (HHchiPT) and XEFT are applied to the decays X(3872) -> psi(2S) + gamma and psi(4040) -> X(3872) + gamma under the assumption that the X(3872) is a molecular bound state of neutral charm mesons. In these decays the emitted photon energies are 181 MeV and 165 MeV, respectively, so HHchiPT can be used to calculate the underlying D^0 bar{D}^{0*}+ bar{D}^0 D^{0*} -> psi(2S) + gamma or psi(4040) -> (D^0 bar{D}^{0*}+ bar{D}^0 D^{0*}) + gamma transition. These amplitudes are matched onto XEFT to obtain decay rates. The decays receive contributions from both long distance and short distance processes. We study the polarization of the psi(2S) in the decay X(3872) -> psi(2S) + gamma and the angular distribution of X(3872) in the decay psi(4040) -> X(3872) + gamma and find they can be used to differentiate between different decay mechanisms as well as discriminate between 2^{-+} and 1^{++} quantum number assignments of the X(3872).

Thomas Mehen; Roxanne Springer

2011-01-26

330

Development of human epithelial cell systems for radiation risk assessment  

NASA Technical Reports Server (NTRS)

The most important health effect of space radiation for astronauts is cancer induction. For radiation risk assessment, an understanding of carcinogenic effect of heavy ions in human cells is most essential. In our laboratory, we have successfully developed a human mammary epithelial cell system for studying the neoplastic transformation in vitro. Growth variants were obtained from heavy ion irradiated immortal mammary cell line. These cloned growth variants can grow in regular tissue culture media and maintain anchorage dependent growth and density inhibition property. Upon further irradiation with high-Linear Energy Transfer (LET) radiation, transformed foci were found. Experimental results from these studies suggest that multiexposure of radiation is required to induce neoplastic tranformation of human epithelial cells. This multihits requirement may be due to high genomic stability of human cells. These growth variants can be useful model systems for space flight experiments to determine the carcinogenic effect of space radiation in human epithelial cells.

Yang, C. H.; Craise, L. M.

1994-01-01

331

Determination of Carbamate and Organophosphorus Pesticides in Vegetable Samples and the Efficiency of Gamma-Radiation in Their Removal  

PubMed Central

In the present study, the residual pesticide levels were determined in eggplants (Solanum melongena) (n = 16), purchased from four different markets in Dhaka, Bangladesh. The carbamate and organophosphorus pesticide residual levels were determined by high performance liquid chromatography (HPLC), and the efficiency of gamma radiation on pesticide removal in three different types of vegetables was also studied. Many (50%) of the samples contained pesticides, and three samples had residual levels above the maximum residue levels determined by the World Health Organisation. Three carbamates (carbaryl, carbofuran, and pirimicarb) and six organophosphates (phenthoate, diazinon, parathion, dimethoate, phosphamidon, and pirimiphos-methyl) were detected in eggplant samples; the highest carbofuran level detected was 1.86?mg/kg, while phenthoate was detected at 0.311?mg/kg. Gamma radiation decreased pesticide levels proportionately with increasing radiation doses. Diazinon, chlorpyrifos, and phosphamidon were reduced by 40–48%, 35–43%, and 30–45%, respectively, when a radiation strength of 0.5?kGy was utilized. However, when the radiation dose was increased to 1.0?kGy, the levels of the pesticides were reduced to 85–90%, 80–91%, and 90–95%, respectively. In summary, our study revealed that pesticide residues are present at high amounts in vegetable samples and that gamma radiation at 1.0?kGy can remove 80–95% of some pesticides. PMID:24711991

Chowdhury, Muhammed Alamgir Zaman; Jahan, Iffat; Karim, Nurul; Alam, Mohammad Khorshed; Rahman, Mohammad Abdur; Moniruzzaman, Mohammed; Gan, Siew Hua; Fakhruddin, Abu Naieum Muhammad

2014-01-01

332

Influence of gamma radiation on the elimination of the toxic effect of cystamine  

NASA Technical Reports Server (NTRS)

The time of half-elimination (T sub 50) of the toxic effects of cystamine is compared in irradiated and nonirradiated mice. The residual dose of cystamine three hours following administration of the preparation based on the change in the protector LD50 was calculated. With prophylactic use of cystamine, gamma irradiation at a dose of 850 r led to an increase in sub 50 from 1.8 (1.6 - 2.0) hours in intact mice to 2.3 (2.0 2.6) hours in irradiated animals. Three hours after preparation was used, the residual dose of cystamine was 44.2% in the irradiated mice and 24.5% of the original value in the nonirradiated animals. It is suggested that lengthening the elimination time of the toxic effect of cystamine under the influence of radiation is due to the decrease in the protector metabolism intensity under these conditions.

Vasin, M. V.; Davydov, B. I.; Antipov, V. V.; Saksonov, P. P.

1973-01-01

333

Determination of changes induced by gamma radiation in nectar of kiwi fruit ( Actinidia deliciosa)  

NASA Astrophysics Data System (ADS)

The kiwi ( Actinidia deliciosa; Actinidaceae) is an exotic fruit to Brazil, introduced from southeastern China. The kiwi fruit presents a high nutritional value, rich mainly in vitamin C and fibers, calcium, iron and phosphorus, which give it an excellent nutritional value. Its quality attributes and flavor has lead to acceptance in consuming markets, mainly among children. The objective of this work was to formulate a non-alcoholic sweetened drink based on kiwi fruits, to submit the drink to gamma radiation using increasing doses: 0 (control), 0.5, 1.0 and 2.0 kGy, and to evaluate changes in physical and chemical quality attributes. We found that no significant difference was observed between treatments relative to the control. So we could conclude that for the doses tested significant alterations in the physiochemical characteristics of the kiwi nectar were introduced.

Harder, M. N. C.; De Toledo, T. C. F.; Ferreira, A. C. P.; Arthur, V.

2009-07-01

334

The high energy gamma-ray background and the interstellar radiation field  

NASA Astrophysics Data System (ADS)

This thesis provides an independent estimate of the high latitude (! b! > 20°) contribution to the E > 30 MeV gamma-ray background from Galactic nucleon-nucleon, electron bremsstrahlung and inverse Compton processes. In particular, the inverse Compton contribution has been estimated for different cosmic ray electron distributions and after factoring in the anisotropy in the interstellar radiation field and the anisotropic Klein-Nishina scattering cross section. A model for the interstellar radiation field from 0.1 ?m to 1000 ?m is also presented to fit the intensities observed by recent satellite experiments, especially the DIRBE and FIRAS instruments on COBE. I find that the emission from the inverse Compton process when the anisotropy in the radiation field is included can be higher by up to 50% when compared to estimates that adopt an isotropic radiation field. Simulated inverse Compton maps with a cosmic ray electron distribution represented by a ``pill box'' extending up to a distance of 5 kpc above the Galactic plane provide better fits to the EGRET intensity maps suggesting that the cosmic ray halo may be larger than previously thought. With this distribution, I find that the net contribution from the IC process to the gamma-ray background can be as high as 20% at high Galactic latitudes. Fitting for the Galactic components of gamma-ray emission confirms the existence of an isotropic component with an intensity that can be represented by the form 27.7 × E(MeV)-2.16 photons m-2 s-1 sr -1 MeV-1, in excellent agreement with previous estimates. The spectrum of the isotropic component further argues strongly in favor of unresolved gamma-ray blazars being the source of this emission. Introduction of an anisotropic component improves the quality of the fits. However, this component, which could potentially arise from the dark matter in the Galactic halo, is not well characterized by a single power law which might be associated with any single dark matter candidate. It has an intensity of about a third of the isotropic background above E > 100 MeV-1, at the level of 3 × 10-2 photons m-2 s-1 sr-1 . The best fit power law spectrum to this component has a photon index of -1.7. Based on the intensity and spectrum of the anisotropic component I derive upper limits of 109Msolar for the mass of cold, baryonic gas within the solar circle and a primordial black hole number density limit of 7 × 107 pc -3 which is more than an order of magnitude smaller than previous limits. If the spectrum of the anisotropic component is indeed confirmed to have an index of -1.7, it appears more likely that the signal arises in unresolved Galactic sources such as pulsars.

Chary, Ranga-Ram

335

Effect of gamma — radiation on vicine and convicine in broad beans ( Vicia faba L. )  

NASA Astrophysics Data System (ADS)

Broad bean ( Vicia faba L. ) is considered to be a good source of protein. The presence of vicine and convicine and their role as a causative agents of favism limited their use. The effect of gamma radiation from 60Co source was tested on solutions of a mixture of vicine and convicine. Analysis was carried out using spectrophotometric method. Reduction of 92% in vicine and convicine was observed when a dose of 10.0 kGy was used. The reduction was very much lower when powdered dry beans was irradiated. Research in progress in order to attain a higher destructive effect. Further chemical and biological studies are also required to follow up this effect.

Jaddou, H.

336

Shelf life extension of sugarcane juice using preservatives and gamma radiation processing.  

PubMed

Preserving raw sugarcane juice is a challenging problem. Sugarcane juice turns brown soon after its extraction and gets spoiled due to fermentation within hours. A combination of gamma radiation (5 kGy) with permitted preservatives and low temperature storage (10 °C) could preserve raw sugarcane juice for more than a month. The preservatives used were citric acid (0.3%), sodium benzoate (0.015%), potassium sorbate (0.025%), and sucrose (10%). The treatment helped in extending the shelf life to 15 d at ambient temperature (26 ± 2 °C) and 35 d at 10 °C. The microbial load was found to be below detectable limit within this period. The biochemicals like phenolics and flavonoids were not found to be affected by addition of these preservatives. The antioxidant activities including free radical scavenging activity, nitrite scavenging activity, and reducing power were also not significantly affected. The sensory evaluation scores showed that the juice with this combination treatment was highly acceptable. PMID:22417599

Mishra, Bibhuti B; Gautam, Satyendra; Sharma, Arun

2011-10-01

337

Composition, temperature and radiation induced changes in gamma irradiated AAAMPS copolymer  

NASA Astrophysics Data System (ADS)

Effect of composition, temperature and radiation dose in gamma irradiated acrylamide-2-acrylamido-2-methyl propane sulphonic acid (AA) copolymer has been investigated by electron spin resonance (ESR) and fourier transform infrared (FTIR) techniques. ESR spectra of gamma irradiated AA copolymer have been recorded under different conditions. The observed ESR spectra are analysed by computer simulation techniques, to separate the constituent component spectra. Magnetic parameters employed to simulate the component spectra enabled the identification of corresponding free radicals. The AA copolymer with low acrylamide content composed of macroradicals of the type -CH2-CH-CH2- and methyl radicals (CH3) whereas the copolymer with high acryl amide content possess methyl radicals and radicals of the type -CH2-C(CONH2)-CH2-/CH3-C-CH3. Reasons for the variation in the formation of free radicals have been explained. The observed changes in ESR spectra of irradiated AA copolymer at higher temperatures are thought to be due to the recombination of free radicals. Formation of free radicals found to be enhanced with the increase in dose of irradiation. FTIR spectra of pure and irradiated copolymers have also confirmed the previous results.

Rao, B. S.; Indira, S.; Sridhar, V.; Punnaiah, G.; Babu, B. S.; Subbakrishna, C.

2005-06-01

338

Gamma-radiation-induced degradation of actively pumped single-mode ytterbium-doped optical fibers  

NASA Astrophysics Data System (ADS)

The integration of optical components into the digital processing units of satellite subsystems has the potential to remove interconnect bottlenecks inherent to the volume, mass, complexity, reliability and crosstalk issues of copper-based interconnects. Assuming on-board high-bandwidth communications will utilize passive optical fibers as a communication channel, this work investigates the impact of gamma irradiation from a Co-60 source on both passive optical fibers and ytterbium-doped single-mode fibers operated as amplifiers for a 1060-nm light source. Standard optical patch cables were evaluated along with active Yb-doped double-clad fibers. Varied exposure times and signal transmission wavelengths were used to investigate the degradation of the fibers exposed to total doses above 100 krad (Si). The effect on the amplified signal gain was studied for the Yb-doped fibers. The increased attenuation in the fibers across a broad wavelength range in response to multiple levels of gamma radiation exposure along with the effect that the increased attenuation has on the actively pumped Yb-doped fiber amplifier performance, is discussed.

Singleton, B.; Petrosky, J.; Pochet, M.; Usechak, N. G.; Francis, S. A.

2014-03-01

339

FY06 Annual Report: Amorphous Semiconductors for Gamma Radiation Detection (ASGRAD)  

SciTech Connect

We describe progress in the development of new materials for portable, room-temperature, gamma-radiation detection at Pacific Northwest National Laboratory at the Hanford Site in Washington State. High Z, high resistivity, amorphous semiconductors are being designed for use as solid-state detectors at near ambient temperatures; principles of operation are analogous to single-crystal semiconducting detectors. Amorphous semiconductors have both advantages and disadvantages compared to single crystals, and this project is developing methods to mitigate technical problems and design optimized material for gamma detection. Several issues involved in the fabrication of amorphous semiconductors are described, including reaction thermodynamics and kinetics, the development of pyrolytic coating, and the synthesis of ingots. The characterization of amorphous semiconductors is described, including sectioning and polishing protocols, optical microscopy, X-ray diffraction, scanning electron microscopy, optical spectroscopy, particle-induced X-ram emission, Rutherford backscattering, and electrical testing. Then collaboration with the University of Illinois at Urbana-Champaign is discussed in the areas of Hall-effect measurements and current voltage data. Finally, we discuss the strategy for continuing the program.

Johnson, Bradley R.; Riley, Brian J.; Crum, Jarrod V.; Sundaram, S. K.; Henager, Charles H.; Zhang, Yanwen; Shutthanandan, V.

2007-01-01

340

Effect of radiation on solid paracetamol: ESR identification and dosimetric features of gamma-irradiated paracetamol  

NASA Astrophysics Data System (ADS)

In the present work, electron spin resonance (ESR) identification of gamma-irradiated paracetamol and its potential use as a normal and/or accidental dosimetric material were investigated in the dose range of 2.5-25 kGy. Both unirradiated paracetamol and mechanically ground vermidon samples exhibited a weak single resonance line at g = 2.0049 +/- 0.0006 and had Delta H-pp = 0.6 +/- 0.02 mT. Gamma irradiation produced an increase in signal intensity with a small hyperfine splitting in both paracetamol and vermidon and many weak resonance lines on both sides of a central line in the case of vermidon. Dose-response curves associated with central line of paracetamol and vermidon were found to follow polynomial and linear function, respectively. Simulation calculations based on the room temperature ESR intensity data of the paracetamol sample irradiated at 10 kGy were performed to determine the structure and spectral parameters of the radiation-induced radical species involved in the formation of the experimental ESR spectrum of paracetamol.

Polat, M.; Korkmaz, M.

2006-01-01

341

Measurement of outdoor terrestrial gamma radiation in the Sultanate of Oman.  

PubMed

The terrestrial gamma radiation level was determined throughout the Sultanate of Oman over a 3-y period. The dose rate at 1 m above the ground was measured at 512 locations using a compensated Geiger-Miller detector. The activity concentration of soil/rock samples, collected from 112 locations, was determined by gamma spectrometry. Dose rates calculated from the activity concentrations compared well with the measured values corrected for the cosmic ray contribution. Some of the highest terrestrial dose rates, up to 110 nGy h(-1), were measured in shales (Wadi Bani Awf, Saih Hatat, and the Huqf) and exposed basement granites (Jebal Jalan and the Mirbat peninsula). Two small hot spots were found where the maximum dose rate was 1,024 nGy h(-1). The average dose rate in the main population area of the Batinah is 38.5 nGy h(-1) (0.29 mSv y(-1)) and Muscat 44.9 nGy h(-1) (0.34 mSv y(-1)). The mean population weighted dose rate is 39.8 nGy h(-1) (0.30 mSv y(-1)). Most of Oman's surface rock is limestone, which is low in concentrations of radionuclides from the uranium and thorium series. Hence, the average dose rate is well below the world average of 0.45 mSv y(-1). PMID:12046760

Goddard, C C

2002-06-01

342

Radiation-induced glioblastoma signaling cascade regulates viability, apoptosis and differentiation of neural stem cells (NSC).  

PubMed

Ionizing radiation alone or in combination with chemotherapy is the main treatment modality for brain tumors including glioblastoma. Adult neurons and astrocytes demonstrate substantial radioresistance; in contrast, human neural stem cells (NSC) are highly sensitive to radiation via induction of apoptosis. Irradiation of tumor cells has the potential risk of affecting the viability and function of NSC. In this study, we have evaluated the effects of irradiated glioblastoma cells on viability, proliferation and differentiation potential of non-irradiated (bystander) NSC through radiation-induced signaling cascades. Using media transfer experiments, we demonstrated significant effects of the U87MG glioblastoma secretome after gamma-irradiation on apoptosis in non-irradiated NSC. Addition of anti-TRAIL antibody to the transferred media partially suppressed apoptosis in NSC. Furthermore, we observed a dramatic increase in the production and secretion of IL8, TGF?1 and IL6 by irradiated glioblastoma cells, which could promote glioblastoma cell survival and modify the effects of death factors in bystander NSC. While differentiation of NSC into neurons and astrocytes occurred efficiently with the corresponding differentiation media, pretreatment of NSC for 8 h with medium from irradiated glioblastoma cells selectively suppressed the differentiation of NSC into neurons, but not into astrocytes. Exogenous IL8 and TGF?1 increased NSC/NPC survival, but also suppressed neuronal differentiation. On the other hand, IL6 was known to positively affect survival and differentiation of astrocyte progenitors. We established a U87MG neurosphere culture that was substantially enriched by SOX2(+) and CD133(+) glioma stem-like cells (GSC). Gamma-irradiation up-regulated apoptotic death in GSC via the FasL/Fas pathway. Media transfer experiments from irradiated GSC to non-targeted NSC again demonstrated induction of apoptosis and suppression of neuronal differentiation of NSC. In summary, intercellular communication between glioblastoma cells and bystander NSC/NPC could be involved in the amplification of cancer pathology in the brain. PMID:25273222

Ivanov, Vladimir N; Hei, Tom K

2014-12-01

343

Level Density and Radiative Strength functions of Dipole gamma-Transitions in Ba-139 and Dy-165  

E-print Network

Level density and radiative strength functions which allow precise reproduction of the two-step cascade intensity, gamma width of compound state and cascade population of levels up to excitation energy of about 3.5 MeV were determined using experimental data on the (n,2gamma) reaction. Level density in these nuclei (like in other even-odd nuclei studied earlier) in wide excitation energy interval is considerably less than that predicted by Fermi-gas model. Enhancement of the radiative strength functions, caused by strong correlations between cascade gamma-decay parameters, most probably, relates with the change in ratio between the quasi-particle and collective components of the wave functions of the cascade intermediate levels in the region of most strong change in their density.

V. A. Khitrov; A. M. Sukhovoj; Pham Dinh Khang; Vuong Huu Tan; Nguyen Xuan Hai

2005-08-05

344

Patient doses in {gamma}-intracoronary radiotherapy: The Radiation Burden Assessment Study  

SciTech Connect

Purpose: To determine accurately the radiation burden of both patients and staff from intracoronary radiotherapy (IRT) with {sup 192}Ir and to investigate the importance of IRT in the patient dose compared with interventional X-rays. Methods and materials: The Radiation Burden Assessment Study (RABAS) population consisted of 9 patients undergoing {gamma}-IRT after percutaneous transluminal coronary angioplasty and 14 patients undergoing percutaneous transluminal coronary angioplasty only as the control group. For each patient, the dose to the organs and tissues from the internal and external exposure was determined in detail by Monte Carlo N-particle simulations. Patient skin dose measurements with thermoluminescence dosimeters served as verification. Staff dosimetry was performed with electronic dosimeters, thermoluminescence dosimeters, and double film badge dosimetry. Results: With respect to the patient dose from IRT, the critical organs are the thymus (58 mGy), lungs (31 mGy), and esophagus (27 mGy). The mean effective dose from IRT was 8 mSv. The effective dose values from interventional X-rays showed a broad range (2-28 mSv), with mean values of 8 mSv for the IRT patients and 13 mSv for the control group. The mean dose received by the radiotherapist from IRT was 4 {mu}Sv/treatment. The doses to the other staff members were completely negligible. Conclusion: Our results have shown that the patient and personnel doses in {gamma}-IRT remain at an acceptable level. The patient dose from IRT was within the variations in dose from the accompanying interventional X-rays.

Thierens, Hubert [Department of Medical Physics and Radiation Protection, Ghent University, Ghent (Belgium)]. E-mail: hubert.thierens@Ughent.be; Reynaert, Nick [Department of Medical Physics and Radiation Protection, Ghent University, Ghent (Belgium); Bacher, Klaus [Department of Medical Physics and Radiation Protection, Ghent University, Ghent (Belgium); Eijkeren, Marc van [Department of Radiotherapy, Ghent University Hospital, Ghent (Belgium); Taeymans, Yves [Department of Cardiology, Ghent University Hospital, Ghent (Belgium)

2004-10-01

345

Hymenobacter swuensis sp. nov., a gamma-radiation-resistant bacteria isolated from mountain soil.  

PubMed

Gram stain-negative and non-motile bacteria, designated as DY53(T) and DY43, were isolated from mountain soil in South Korea prior exposure with 5 kGy gamma radiation. Phylogenetic analysis based on 16S rRNA gene sequence revealed that the strains belonged to the family Cytophagaceae in the class Cytophagia. 16S rRNA gene sequence similarity of strains DY53(T) and DY43 was 100 %. The highest degrees of sequence similarities of strains DY53(T) and DY43 were found with Hymenobacter perfusus A1-12(T) (98.8 %), Hymenobacter rigui WPCB131(T) (98.5 %), H. yonginensis HMD1010(T) (97.9 %), H. xinjiangensis X2-1g(T) (96.6 %), and H. gelipurpurascens Txg1(T) (96.5 %). The DNA G+C content of the novel strains DY53(T) and DY43 were 59.5 mol%. Chemotaxonomic data revealed that strains possessed major fatty acids such as C??:? iso, C??:? anteiso, C??:? ?5c, summed feature 3 (16:1 ?7c/?6c), summed feature 4 (17:1 anteiso B/iso I) and C??:? iso, and major polar lipid was phosphatidylethanolamine. The novel strains showed resistance to gamma radiation, with a D10 value (i.e., the dose required to reduce the bacterial population by tenfold) in excess of 5 kGy. Based on these data, strains DY53(T) and DY43 should be classified as representing a novel species, for which the name Hymenobacter swuensis sp. nov. is proposed, with the type strain DY53(T) (=KCTC 32018(T) = JCM 18582(T)) and DY43 (=KCTC 32010). PMID:24132326

Lee, Jae-Jin; Srinivasan, Sathiyaraj; Lim, Sangyong; Joe, Minho; Lee, Sang Hee; Kwon, Shin Ae; Kwon, Yoon Jung; Lee, Jin; Choi, Jin Ju; Lee, Hye Min; Auh, Young Kyung; Kim, Myung Kyum

2014-03-01

346

CYTOGENETIC COMPARISON OF THE RESPONSES OF MOUSE AND HUMAN PERIPHERAL BLOOD LYMPHOCYTES TO 60CO GAMMA RADIATION (JOURNAL VERSION)  

EPA Science Inventory

Experiments were conducted to compare the chromosome damaging effects of (60)Co gamma radiation on mouse and human peripheral blood lymphocytes (PBLs). Either whole blood or isolated and pelleted mononuclear leucocytes (MNLs) were irradiated with a (60)Co unit to yield exposures ...

347

The effect of oxygen impurities on radiation hardness of FZ silicon detectors for HEP after neutron, proton and gamma irradiation  

Microsoft Academic Search

The radiation hardness for fast neutrons, high energy protons and 60Co gamma rays of planar detectors processed from highly oxygenated silicon detectors obtained by using high temperature (1200°C), long time (> 200 hours) oxidation technology, are compared with standard silicon detectors. For fast neutron irradiation it is found that there is no advantage of using highly oxygenated silicon FZ detectors

B. Dezillie; Z. Li; V. Eremin; W. Chen; L. J. Zhao

2000-01-01

348

Radiation Response of Cancer Stem-Like Cells From Established Human Cell Lines After Sorting for Surface Markers  

SciTech Connect

Purpose: A subpopulation of cancer stem-like cells (CSLC) is hypothesized to exist in different cancer cell lines and to mediate radioresistance in solid tumors. Methods and Materials: Cells were stained for CSLC markers and sorted (fluorescence-activated cell sorter/magnetic beads) to compare foci and radiosensitivity of phosphorylated histone H2AX at Ser 139 (gamma-H2AX) in sorted vs. unsorted populations in eight cell lines from different organs. CSLC properties were examined using anchorage-independent growth and levels of activated Notch1. Validation consisted of testing tumorigenicity and postirradiation enrichment of CSLC in xenograft tumors. Results: The quantity of CSLC was generally in good agreement with primary tumors. CSLC from MDA-MB-231 (breast) and Panc-1 and PSN-1 (both pancreatic) cells had fewer residual gamma-H2AX foci than unsorted cells, pointing to radioresistance of CSLC. However, only MDA-MB-231 CSLC were more radioresistant than unsorted cells. Furthermore, MDA-MB-231 CSLC showed enhanced anchorage-independent growth and overexpression of activated Notch1 protein. The expression of cancer stem cell surface markers in the MDA-MB-231 xenograft model was increased after exposure to fractionated radiation. In contrast to PSN-1 cells, a growth advantage for MDA-MB-231 CSLC xenograft tumors was found compared to tumors arising from unsorted cells. Conclusions: CSLC subpopulations showed no general radioresistant phenotype, despite the quantities of CSLC subpopulations shown to correspond relatively well in other reports. Likewise, CSLC characteristics were found in some but not all of the tested cell lines. The reported problems in testing for CSLC in cell lines may be overcome by additional techniques, beyond sorting for markers.

Al-Assar, Osama; Muschel, Ruth J.; Mantoni, Tine S.; McKenna, W. Gillies [CR-UK, MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, Churchill Hospital, Oxford OX3 7LJ (United Kingdom); Brunner, Thomas B., E-mail: thomas.brunner@rob.ox.ac.u [CR-UK, MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, Churchill Hospital, Oxford OX3 7LJ (United Kingdom)

2009-11-15

349

The soft gamma repeaters as very strongly magnetized neutron stars - I. Radiative mechanism for outbursts  

NASA Astrophysics Data System (ADS)

A radiative model for the soft gamma repeaters and the energetic 1979 March 5 burst is presented. We identify the sources of these bursts with neutron stars the external magnetic fields of which are much stronger than those of ordinary pulsars. Several independent arguments point to a neutron star with B_dipole~5x10^14 G as the source of the March 5 event. A very strong field can (i) spin down the star to an 8-s period in the ~10^4-yr age of the surrounding supernova remnant N49; (ii) provide enough energy for the March 5 event; (iii) undergo a large-scale interchange instability the growth time of which is comparable to the ~0.2-s width of the initial hard transient phase of the March 5 event; (iv) confine the energy that was radiated in the soft tail of that burst; (v) reduce the Compton scattering cross-section sufficiently to generate a radiative flux that is ~10^4 times the (non-magnetic) Eddington flux; (vi) decay significantly in ~10^4-10^5 yr, as is required to explain the activity of soft gamma repeater sources on this time-scale; and (vii) power the quiescent X-ray emission L_X~7x10^35 erg s^-1 observed by Einstein and ROSAT as it diffuses the stellar interior. We propose that the 1979 March 5 event was triggered by a large-scale reconnection/interchange instability of the stellar magnetic field, and the soft repeat bursts by cracking of the crust. The hard initial spike of the March 5 event is identified with an expanding pair fireball, and the soft tail of that burst, together with the short, soft repeat bursts, with a pair plasma trapped in the stellar magnetosphere. We construct a detailed radiative model that describes the cooling of such a plasma. The opacity is dominated by the electron-baryon contaminant in a cold surface layer, and the plasma releases energy as the edge of the pair-dominated region propagates inward, in a cooling wave. The rate at which the plasma volume contracts is limited either by the rate of advection of heat toward the stellar surface (where the field is strongest and the scattering opacity weakest), or by ablation of ions and electrons from the stellar surface. The effective temperature of the surface radiation depends only on the surface magnetic field strength in the regime where the radiative flux is limited by ablation from the neutron star surface (which is the regime of interest in the March 5 event), and otherwise is weakly dependent on the plasma energy density. We argue that the deposition of equivalent energy in a much weaker magnetic field (characteristic of ordinary pulsars) necessarily generates a very high scattering depth which chokes off the radiative flow on the observed ~0.1-s time-scale of soft gamma repeater bursts. Indeed, we suggest that the same basic magnetospheric emission mechanism operates at lower field strengths (B~10^12 G) in Type II X-ray bursts, which have much lower luminosities than soft gamma repeater bursts. Important magnetic radiative effects include the suppression of Compton scattering in the extraordinary polarization mode, and stimulated photon splitting. We derive the Boltzmann equations for the photon occupation number which describe simulated photon splitting, as well as photon merging. We show that the net splitting rate vanishes in thermal equilibrium. Radiative diffusion occurs primarily in the E-mode, although rapid scattering of the O-mode ensures convergence of the photon distribution function to a Bose-Einstein form. This allows us to write down diffusion equations for the photon energy flux and number flux as linear superpositions of gradients in the temperature and chemical potential. The transition from a Planck to a Bose-Einstein spectrum occurs at T~10 keV. Photon splitting at higher temperatures can impede free-streaming of photons across the magnetic field lines, but splitting of high-energy photons is impeded by the inverse process of photon merging. We demonstrate that only a small fraction of the pair bubble energy can be conducted into the crust during the lifetime of the burst. We discuss the radiative ablation of m

Thompson, Christopher; Duncan, Robert C.

1995-07-01

350

Molecular cloning of a gene selectively induced by gamma interferon from human macrophage cell line U937  

SciTech Connect

A cDNA clone encoding a gamma interferon (IFN-/gamma/)-inducible mRNA in human cells of the macrophage lineage was isolated and characterized. The corresponding gene, /gamma/.1, was selectively induced by IFN-/gamma/, responding a hundredfold better to IFN-/gamma/ than to IFN-/alpha/. The induction was rapid and transient, with maximal mRN accumulation at about 3 h and decline to the basal level after 48 h. Transcriptional activation could be detected as early as 5 min after IFN-/gamma/ stimulation and accounted entirely for the mRNA accumulation. The induction of /gamma/.1 by IFN-/gamma/ was cell-type restricted, being seen only in macrophages and endothelial cells. In addition, phorbol ester-induced differentiation of promyelocytic HL-60 cells and promonocytic THP-1 cells rendered the /gamma/.1 gene inducible by IFN-/gamma/. The 1.0-kilobsase /gamma/.1 cDNA sequence encoded a small predicted polypeptide of 38 amino acids and had a conserved sequence associated with rapidly turning over mRNAs. In vitro transmission of the /gamma/.1 transcript yielded a 4,000-dalton polypeptide.

Fan, X.; Bloom, B.R.; Stark, G.R.

1989-05-01

351

Gelam honey attenuated radiation-induced cell death in human diploid fibroblasts by promoting cell cycle progression and inhibiting apoptosis  

PubMed Central

Background The interaction between ionizing radiation and substances in cells will induce the production of free radicals. These free radicals inflict damage to important biomolecules such as chromosomes, proteins and lipids which consequently trigger the expression of genes which are involved in protecting the cells or repair the oxidative damages. Honey has been known for its antioxidant properties and was used in medical and cosmetic products. Currently, research on honey is ongoing and diversifying. The aim of this study was to elucidate the role of Gelam honey as a radioprotector in human diploid fibroblast (HDFs) which were exposed to gamma-rays by determining the expression of genes and proteins involved in cell cycle regulation and cell death. Methods Six groups of HDFs were studied viz. untreated control, irradiated HDFs, Gelam honey-treated HDFs and HDF treated with Gelam honey pre-, during- and post-irradiation. HDFs were treated with 6 mg/ml of sterilized Gelam honey (w/v) for 24 h and exposed to 1 Gray (Gy) of gamma-rays at the dose rate of 0.25 Gy/min. Results Our findings showed that, gamma-irradiation at 1 Gy up-regulated ATM, p53, p16ink4a and cyclin D1 genes and subsequently initiated cell cycle arrest at G0/G1 phase and induced apoptosis (p?cell cycle profile showed that cells progressed to S phase with less percentage of cells in G0/G1 phase with Gelam honey treatment while apoptosis was inhibited. Conclusion Gelam honey acts a radioprotector against gamma-irradiation by attenuating radiation-induced cell death. PMID:24655584

2014-01-01

352

Cells of the J774 macrophage cell line are primed for antibody-dependent cell-mediated cytotoxicity following exposure to. gamma. -irradiation  

SciTech Connect

Activation of macrophages (M phi) for host defense against tumor cells follows a sequence of priming events followed by an initiating stimulus that results in production and release of cytotoxic molecules that mediate target cell killing. The authors have developed a model to study specific macrophage cytotoxicity in vitro utilizing a cultured murine M phi cell line, J774. Specific cytotoxicity of cultured human gastrointestinal tumor cells is achieved in the presence of murine IgG2a monoclonal antibody (mAb) 17-1-A. The ability of these cells to mediate antibody-dependent cell-mediated cytotoxicity (ADCC) is greatly enhanced following gamma-irradiation. ADCC can be demonstrated at mAb 17-1-A concentrations greater than or equal to 1 microgram/ml and effector/target cell ratios greater than or equal to 2. Exposure to doses greater than or equal to 10 Gy of gamma-irradiation increases ADCC threefold. Varying the duration from J774 M phi exposure to {gamma}-irradiation until addition of antibody-coated target cells showed that the primed state for ADCC is stable for at least 8 days but approximately 24 hr is required for complete development of the primed state. mAb-dependent target cell death begins 8 hr after addition of mAb and labeled target cells to primed effector cells and is complete by 24 hr. Incubation of unirradiated J774 M phi effector cells with recombinant murine interferon-{gamma} (rmIFN-{gamma}) also results in enhanced ADCC, but the extent of target cell killing achieved is less than that following priming by {gamma}-irradiation. Concomitant priming of {gamma}-irradiated J774 M phi with rmIFN-{gamma} increases the extent of ADCC. Further study of irradiated J774 cells may elucidate the molecular pathways utilized by M phi for achieving and maintaining the primed state for ADCC.

Duerst, R.; Werberig, K. (University of Rochester Medical Center, New York (USA))

1991-09-01

353

Activation of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) induces cell death through MAPK-dependent mechanism in osteoblastic cells  

SciTech Connect

The present study was undertaken to determine the role of the mitogen-activated protein kinase (MAPK) subfamilies in cell death induced by PPAR{gamma} agonists in osteoblastic cells. Ciglitazone and troglitazone, PPAR{gamma} agonists, resulted in a concentration- and time-dependent cell death, which was largely attributed to apoptosis. But a PPAR{alpha} agonist ciprofibrate did not affect the cell death. Ciglitazone caused reactive oxygen species (ROS) generation and ciglitazone-induced cell death was prevented by antioxidants, suggesting an important role of ROS generation in the ciglitazone-induced cell death. ROS generation and cell death induced by ciglitazone were inhibited by the PPAR{gamma} antagonist GW9662. Ciglitazone treatment caused activation of extracellular signal-regulated kinase (ERK) and p38. Activation of ERK was dependent on epidermal growth factor receptor (EGFR) and that of p38 was independent. Ciglitazone-induced cell death was significantly prevented by PD98059, an inhibitor of ERK upstream kinase MEK1/2, and SB203580, a p38 inhibitor. Ciglitazone treatment increased Bax expression and caused a loss of mitochondrial membrane potential, and its effect was prevented by N-acetylcysteine, PD98059, and SB203580. Ciglitazone induced caspase activation, which was prevented by PD98059 and SB203580. The general caspase inhibitor z-DEVD-FMK and the specific inhibitor of caspases-3 DEVD-CHO exerted the protective effect against the ciglitazone-induced cell death. The EGFR inhibitors AG1478 and suramin protected against the ciglitazone-induced cell death. Taken together, these findings suggest that the MAPK signaling pathways play an active role in mediating the ciglitazone-induced cell death of osteoblasts and function upstream of a mitochondria-dependent mechanism. These data may provide a novel insight into potential therapeutic strategies for treatment of osteoporosis.

Kim, Sung Hun [Department of Orthopedic Surgery, College of Medicine, Pusan National University, Pusan, 602-739 (Korea, Republic of); Yoo, Chong Il [Department of Orthopedic Surgery, College of Medicine, Pusan National University, Pusan, 602-739 (Korea, Republic of); Medical Research Institute, College of Medicine, Pusan National University, Pusan, 602-739 (Korea, Republic of); Kim, Hui Taek [Department of Orthopedic Surgery, College of Medicine, Pusan National University, Pusan, 602-739 (Korea, Republic of); Medical Research Institute, College of Medicine, Pusan National University, Pusan, 602-739 (Korea, Republic of); Park, Ji Yeon [Department of Physiology, College of Medicine, Pusan National University, Pusan, 602-739 (Korea, Republic of); Kwon, Chae Hwa [Department of Physiology, College of Medicine, Pusan National University, Pusan, 602-739 (Korea, Republic of); Keun Kim, Yong [Department of Physiology, College of Medicine, Pusan National University, Pusan, 602-739 (Korea, Republic of) and Medical Research Institute, College of Medicine, Pusan National University, Pusan, 602-739 (Korea, Republic of) and MRC for Ischemic Tissue Regeneration, College of Medicine, Pusan National University, Pusan, 602-739 (Korea, Republic of)]. E-mail: kim430@pusan.ac.kr

2006-09-01

354

Recombinant human interferon-. gamma. inhibits formation of human osteoclast-like cells  

SciTech Connect

Interferon-..gamma.. (IFN-..gamma..) inhibits osteoclastic bone resorption in vitro, but the mechanism responsible for this inhibition is unknown. The authors have used a long-term human marrow culture system that forms multinucleated cells (MNC) with osteoclast characteristics to test the effect of recombinant human IFN-..gamma.. on MNC formation. The addition of 1,25-dihydroxyvitamin D/sub 3/ (1,25D/sub 3/) at 10/sup -8/ M to these cultures significantly increased both MNC formation and the number of nuclei per MNC. IFN-..gamma.. at 100 U/ml strongly inhibited both of these effects of 1,25D/sub 3/ in this system. IFN-..gamma.. significantly inhibited MNC formation at very low concentrations (4 U/ml), with 10 U/ml inhibiting 1,25D/sub 3/-stimulated MNC formation by 50%. In contrast, 100 U/ml of IFN-..gamma.. were required to inhibit the growth of granulocyte-macrophage colony-forming cells, the probable progenitor for MNC, by 50%. Treatment of cultures with IFN-..gamma.. for only the first or last week of culture significantly inhibited MNC formation stimulated by 1,25/sub 3/. Autoradiographic studies with (/sup 3/H)thymidine showed that IFN-..gamma.. did not inhibit proliferation of precursors for MNC. Additionally, IFN-..gamma.. inhibited MNC formation stimulated by parathyroid hormone or interleukin 1. These results suggest that IFN-..gamma.. inhibits bone resorption in part by inhibiting osteoclast formation.

Takahashi, N.; Mundy, G.R.; Roodman, G.D.

1986-12-01

355

Determination of environmental radiation flux and organ doses using in-situ gamma spectroscopy  

NASA Astrophysics Data System (ADS)

Contamination of buildings represent a unique problem during Decontamination and Decommissioning (D&D) of nuclear facilities. It is necessary to determine the long-lived radionuclides and their respective specific activities in building materials before the right D&D decision can be made. At the same time, radiation risk of workers or potential occupants in the facility must be assessed as part of the D&D process. The goal of this project was to develop a methodology of obtaining gamma radiation flux and organ doses from in-situ gamma spectroscopy. Algorithms were developed to simulate the response functions of the HPGe detector and to convert the spectra into photon fluences. A Monte Carlo code, MCNP4C, was used to simulate HPGe detector response and to develop the conversion algorithm. The simulated spectra obtained for an HPGe detector were converted to flux using the algorithm for various different geometries. The response functions of the detector are presented in this document for the gamma energies from 60 keV to 2.2 MeV. Published fluence-to-dose conversion coefficients were used to calculate organ doses and effective dose equivalent. We then tested the theory at a 100-MeV linear electron accelerator at Rensselaer Polytechnic Institute (RPI). Samples of the activated concrete walls and floor in the target room of the Linac facility as well as some steel samples were taken to quantify the specific activities of the structures. The results show that the most important long-lived radionuclides include 22 Na, 46Sc, 54 Mn, 57Co, 60 Co, 65Zn, 152 Eu and 154Eu, depending on the location and composition of the material. The specific activities at the Linac facility range from 1.15E-01 to 765.31 muCi/Kg. The annual effective dose equivalent was assessed to be 2.44 mSv y-1 (0.244 rem y-1 ), which is about 5% of the Annual EDE limits to workers.

Al-Ghamdi, Abdulrahman S.

356

Measurement of Inclusive Radiative B -Meson Decay B -> X_s gamma  

SciTech Connect

Radiative decays of the B meson, B {yields} X{sub s}{gamma}, proceed via virtual flavor changing neutral current processes that are sensitive to contributions from high mass scales, either within the Standard Model of electroweak interactions or beyond. In the Standard Model, these transitions are sensitive to the weak interactions of the top quark, and relatively robust predictions of the inclusive decay rate exist. Significant deviation from these predictions could be interpreted as indications for processes not included in the minimal Standard Model, like interactions of charged Higgs or SUSY particles. The analysis of the inclusive photon spectrum from B {yields} X{sub s}{gamma} decays is rather challenging due to high backgrounds from photons emitted in the decay of mesons in B decays as well as e{sup +}e{sup -} annihilation to low mass quark and lepton pairs. Based on 88.5 million B{bar B} events collected by the BABAR detector, the photon spectrum above 1.9 GeV is presented. By comparison of the first and second moments of the photon spectrum with QCD predictions (calculated in the kinetic scheme), QCD parameters describing the bound state of the b quark in the B meson are extracted: m{sub b} = (4.45 {+-} 0.16) GeV/c{sup 2}; {mu}{sub {pi}}{sup 2} = (0.65 {+-} 0.29) GeV{sup 2}. These parameters are useful input to non-perturbative QCD corrections to the semileptonic B decay rate and the determination of the CKM parameter |V{sub ub}|. Based on these parameters and heavy quark expansion, the full branching fraction is obtained as: {Beta}(B {yields} X{sub s}{gamma}){sup E{sub {gamma}}>1.6 GeV} = (4.05 {+-} 0.32(stat) {+-} 0.38(syst) {+-} 0.29(model)) x 10{sup -4}. This result is in good agreement with previous measurements, the statistical and systematic errors are comparable. It is also in good agreement with the theoretical Standard Model predictions, and thus within the present errors there is no indication of any interactions not accounted for in the Standard Model. This finding implies strong constraints on physics beyond the Standard Model.

Ozcan, V.E.; /SLAC /Stanford U., Appl. Phys. Dept.

2006-01-06

357

Space radiation environmental testing on POSS coated solar cell coverglass  

Microsoft Academic Search

Light weight, flexible, radiation hardened solar cells coatings are of interest for applications on satellite power generation owing to the potential advantages in terms of having higher specific power (lightweight), lower specific volume (flexible), and higher end-of-life power (superior radiation resistance), as compared to current state-of-the-art Ce-doped micro sheet solar cell coverglass. The space radiation environment causes gradual optical performance

Simon H. Liu; Jennifer E. Granata; Michael J. Meshishnek; Martin R. Ciofalo; Edward J. Simburger

2008-01-01

358

Radiation damage and repair in cells and cell components. Part 2. Physical radiations and biological significance. Final report  

SciTech Connect

The report comprises a teaching text, encompassing all physical radiations likely to be of biological interest, and the relevant biological effects and their significance. Topics include human radiobiology, delayed effects, radiation absorption in organisms, aqueous radiation chemistry, cell radiobiology, mutagenesis, and photobiology. (ACR)

Fluke, D.J.

1984-08-01

359

Study of radiation effects on mammalian cells in vitro  

NASA Technical Reports Server (NTRS)

Radiation effect on single cells and cell populations of Chinese hamster lung tissue is studied in vitro. The rate and position as the cell progresses through the generation cycle shows division delay, changes in some biochemical processes in the cell, chromosomal changes, colony size changes, and loss of reproductive capacity.

Sinclair, W. K.

1968-01-01

360

Drug and radiation resistance in spheroids: cell contact and kinetics  

Microsoft Academic Search

Cells from multicellular spheroids are often more resistant than monolayers to drugs and radiation. While explanations for resistance can be based on differences in cell cycle distribution, inability of the drug to penetrate the spheroid, or the presence of hypoxic cells, these mechanisms do not adequately explain resistance to all agents. Small spheroids (containing about 25–50 cells) exposed to ionizing

Peggy L. Olive; Ralph E. Durand

1994-01-01

361

Phenotypic and functional analysis of positive selection in the gamma/delta T cell lineage  

PubMed Central

Recent evidence suggests that T cells expressing gamma/delta antigen receptors (T cell receptor [TCR]) are subject to positive selection during development. We have shown that T cells expressing a class I major histocompatibility complex (MHC)-specific gamma/delta TCR transgene (tg) are not positively selected in class I MHC-deficient, beta 2-microglobulin (beta 2m) gene knockout mice (tg+ beta 2m-). In this report, we examine phenotypic and functional parameters of gamma/delta positive selection in this transgenic model system. TCR- gamma/delta tg+ thymocytes of mature surface phenotype (heat stable antigen-, CD5hi) were found in beta 2m+ but not in beta 2m- mice. Moreover, subsets of tg+ thymocytes with the phenotype of activated T cells (interleukin [IL]2R+, CD44hi, or Mel-14lo) were also present only in the beta 2m+ mice. Cyclosporine A, which blocks positive selection of TCR-alpha/beta T cells, also inhibited gamma/delta tg+ T cell development. These results support the idea that positive selection of TCR-gamma/delta requires active TCR-mediated signal transduction. Whereas tg+ beta 2m+ thymocytes produced IL-2 and proliferated when stimulated by alloantigen, TCR engagement of tg+ beta 2m- thymocytes by antigen induced IL-2R expression but was uncoupled from the signal transduction pathway leading to IL-2 production and autocrine proliferation. Overall, these results demonstrate significant parallels between gamma/delta and alpha/beta lineage development, and suggest a general role for TCR signaling in thymic maturation. PMID:8459203

1993-01-01

362

Space radiation effects on plant and mammalian cells  

NASA Astrophysics Data System (ADS)

The study of the effects of ionizing radiation on organisms is related to different research aims. The current review emphasizes the studies on the effects of different doses of sparsely and densely ionizing radiation on living organisms, with the final purpose of highlighting specific and common effects of space radiation in mammals and plants. This topic is extremely relevant in the context of radiation protection from space environment. The response of different organisms to ionizing radiation depends on the radiation quality/dose and/or the intrinsic characteristics of the living system. Macromolecules, in particular DNA, are the critical targets of radiation, even if there is a strong difference between damages encountered by plant and mammalian cells. The differences in structure and metabolism between the two cell types are responsible for the higher resistance of the plant cell compared with its animal counterpart. In this review, we report some recent findings from studies performed in Space or on Earth, simulating space-like levels of radiation with ground-based facilities, to understand the effect of ionizing radiation on mammalian and plant cells. In particular, our attention is focused on genetic alterations and repair mechanisms in mammalian cells and on structures and mechanisms conferring radioresistance to plant cells.

Arena, C.; De Micco, V.; Macaeva, E.; Quintens, R.

2014-11-01

363

Tumor Cell Response to Synchrotron Microbeam Radiation Therapy Differs Markedly From Cells in Normal Tissues  

SciTech Connect

Purpose: High-dose synchrotron microbeam radiation therapy (MRT) can be effective at destroying tumors in animal models while causing very little damage to normal tissues. The aim of this study was to investigate the cellular processes behind this observation of potential clinical importance. Methods and Materials: MRT was performed using a lattice of 25 {mu}m-wide, planar, polychromatic, kilovoltage X-ray microbeams, with 200-{mu}m peak separation. Inoculated EMT-6.5 tumor and normal mouse skin tissues were harvested at defined intervals post-MRT. Immunohistochemical detection of {gamma}-H2AX allowed precise localization of irradiated cells, which were also assessed for proliferation and apoptosis. Results: MRT significantly reduced tumor cell proliferation by 24 h post-irradiation (p = 0.002). An unexpected finding was that within 24 h of MRT, peak and valley irradiated zones were indistinguishable in tumors because of extensive cell migration between the zones. This was not seen in MRT-treated normal skin, which appeared to undergo a coordinated repair response. MRT elicited an increase in median survival times of EMT-6.5 and 67NR tumor-inoculated mice similar to that achieved with conventional radiotherapy, while causing markedly less normal tissue damage. Conclusions: This study provides evidence of a differential response at a cellular level between normal and tumor tissues after synchrotron MRT.

Crosbie, Jeffrey C. [School of Physics, Monash University, Clayton, Victoria (Australia); Monash Centre for Synchrotron Science, Monash University, Clayton, Victoria (Australia); Centre for Women's Health Research, Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria (Australia); William Buckland Radiotherapy Centre, Alfred Hospital, Melbourne (Australia); Anderson, Robin L. [PeterMacCallum Cancer Centre, Melbourne (Australia); Department of Pathology, University of Melbourne (Australia); Rothkamm, Kai [Health Protection Agency, Radiation Protection Division, Oxfordshire (United Kingdom); Restall, Christina M. [PeterMacCallum Cancer Centre, Melbourne (Australia); Cann, Leonie [Centre for Women's Health Research, Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria (Australia); Ruwanpura, Saleela [Monash Institute of Medical Research, Monash University, Clayton, Victoria (Australia); Meachem, Sarah [Prince Henry's Institute of Medical Research, Clayton, Victoria (Australia); Yagi, Naoto [Research and Utilisation Division, JASRI, SPring-8, Mikazuki-cho, Sayo-gun, Hyogo (Japan); Svalbe, Imants [School of Physics, Monash University, Clayton, Victoria (Australia); Lewis, Robert A. [School of Physics, Monash University, Clayton, Victoria (Australia); Monash Centre for Synchrotron Science, Monash University, Clayton, Victoria (Australia); Williams, Bryan R.G. [Monash Institute of Medical Research, Monash University, Clayton, Victoria (Australia); Rogers, Peter A.W., E-mail: Peter.Rogers@med.monash.edu.a [Centre for Women's Health Research, Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria (Australia)

2010-07-01

364

Influence of shielding certain parts of the body on the course of radiation sickness in dogs with total gamma irradiation  

NASA Technical Reports Server (NTRS)

In an experiment on dogs which were subjected to total gamma irradiation at lethal doses, the influence of shielding the head and the anterior part of the stomach on the clinical course and outcome of radiation sickness was studied. The experiment results supported the basic data obtained in experiments on small laboratory animals and showed the high effectiveness of shielding a part of the body in dogs. In protecting various masses of tissue with shieldings that provided equal attenuation of the radiation and with an equal dose of radiation, shielding of parts of the anterior portion of the stomach was much more effective than shielding the head.

Razgovorov, B. L.; Konnova, N. I.

1973-01-01

365

Influence of pharmacochemical substances on the reactivity of the organism to the combined action of gamma radiation and transverse overloads  

NASA Technical Reports Server (NTRS)

Under the combined exposure of mice to gamma radiation from Co-60 in doses of 350 and 700 r and transverse overloads (10 units, 30 minutes), the effectiveness of cystamine and AET in amounts of 75 mg/kg each was studied. The effect of overloads 24 hours prior to irradiation reduces the radiation damage of hemopoietic organs. In mice that were subjected to the action of overloads 24 hours after irradiation, there was an insignificant increase in the radiation damage to the spleen and marrow and an increase in the destructive changes in the peripheral nervous system. Cystamine combined with AET has an antiradiation protective effects.

Gaydamakin, N. A.; Kulkin, S. G.; Davydov, B. I.; Shashkov, V. S.

1973-01-01

366

A Cell-Permeable Phospholipase C[gamma]1-Binding Peptide Transduces Neurons and Impairs Long-Term Spatial Memory  

ERIC Educational Resources Information Center

Growth factor-mediated signaling has emerged as an essential component of memory formation. In this study, we used a phospholipase C gamma 1 (PLC[gamma]1) binding, cell-penetrating peptide to sequester PLC[gamma]1 away from its target, the phosphotyrosine residues within the activated growth factor receptor. Peptides appear to transduce neurons…

Blum, Sonja; Dash, Pramod K.

2004-01-01

367

Interferon gamma and interleukin 4 secreting cells in the gastric antrum in Helicobacter pylori positive and negative gastritis  

Microsoft Academic Search

Little is known of the function of the T cells in the inflammatory infiltrate in Helicobacter pylori associated gastritis. This study thus measured T cell in vivo activation by enumerating the frequency of interferon gamma (IFN gamma) and interleukin 4 (IL 4) secreting cells isolated from the gastric antral mucosa in patients with or without gastritis and in H pylori

R Karttunen; T Karttunen; H P Ekre; T T MacDonald

1995-01-01

368

Chagas' disease is attenuated in mice lacking gamma delta T cells.  

PubMed Central

The role of gamma delta T cells in the immunopathology of Chagas' disease is evaluated by monitoring the course of Trypanosoma cruzi infection in mice lacking gamma delta T cells after disruption of the T-cell receptor C delta locus. Levels of parasitemia, states of lymphocyte activation, and levels of lymphokine production as well as tissue pathology are compared in delta knockout mice and their littermates in acute and chronic phases of infection. Although the levels of circulating parasites do not significantly differ in the two groups, mortality scores and numbers of inflammatory lesions of skeletal and cardiac muscles are lower in gamma delta T cell-deficient m ice than in littermate controls. Furthermore, polyclonal lymphocyte activation, as measured by proliferative activities and numbers of B- and T-cell blasts in the spleen, are reduced in deficient mice in the acute and chronic phases of infection. Levels of gamma interferon mRNA obtained from total spleen cells, known to be a critical lymphokine in resistance to T. cruzi infection, are significantly higher in uninfected gamma delta T cell-deficient mice than in control animals and slightly above levels for littermates in the course of acute infection. Interestingly, however, in chronic phases, the levels of this lymphokine are not statistically different between the two groups of mice. These results indicate that gamma delta T cells do not play a crucial role in parasite clearance during the acute phase of the disease but contribute to the mechanisms leading to tissue damage and pathology. PMID:8557342

Santos Lima, E C; Minoprio, P

1996-01-01

369

High doses of gamma radiation suppress allergic effect induced by food lectin  

NASA Astrophysics Data System (ADS)

One of the most promising areas for the development of functional foods lies in the development of effective methods to reduce or eliminate food allergenicity, but few reports have summarized information concerning the progress made with food irradiation. In this study, we investigated the relationship between allergenicity and molecular structure of a food allergen after gamma irradiation and evaluate the profile of the allergic response to irradiated allergens. Cramoll, a lectin isolated from a bean and used as a food allergen, was irradiated and the possible structural changes were accompanied by spectrofluorimetry, circular dichroism and microcalorimetry. Subsequently, sensitized animals subjected to intragastric administration of non-irradiated and irradiated Cramoll were treated for 7 days. Then, body weight, leukocytes, cytokine profiles and histological parameters were also determined. Cramoll showed complete inhibition of intrinsic activity after high radiation doses. Changes in fluorescence and CD spectra with a simultaneous collapse of the tertiary structure followed by a pronounced decrease of native secondary structure were observed after irradiation. After oral challenge, sensitized mice demonstrate an association between Cramoll intake, body weight loss, eosinophilia, lymphocytic infiltrate in the gut and Eotaxin secretion. Irradiation significantly reduces, according to the dose, the effects observed by non-irradiated food allergens. We confirm that high-dose radiation may render protein food allergens innocuous by irreversibly compromising their molecular structure.

Vaz, Antônio F. M.; Souza, Marthyna P.; Vieira, Leucio D.; Aguiar, Jaciana S.; Silva, Teresinha G.; Medeiros, Paloma L.; Melo, Ana M. M. A.; Silva-Lucca, Rosemeire A.; Santana, Lucimeire A.; Oliva, Maria L. V.; Perez, Katia R.; Cuccovia, Iolanda M.; Coelho, Luana C. B. B.; Correia, Maria T. S.

2013-04-01

370

High total dose gamma radiation assessment of commercially available SiGe heterojunction bipolar transistors  

NASA Astrophysics Data System (ADS)

Maintenance tasks of the future International Experimental Thermonuclear fusion Reactor (ITER) will require communication links between the remotely operated equipment in the reactor vessel and the control room, some of which need to be radiation tolerant up to MGy dose levels. As a key element of opto-electronic transceivers, we therefore assessed the DC behavior of a commercial-off-the-shelf (COTS) SiGe heterojunction bipolar transistor (HBT) under gamma radiation up to 15 MGy, with dose rates from 160 Gy/h to 27 kGy/h. Our in-situ measurements of the forward DC current gain (hfe) present a limited loss of about 30 % for a base current of 100 ?A, with a dependence on the biasing conditions and a thermally activated recovery. These first ever reported results up to MGy levels allow us to design circuit-hardened driving electronics for both photonic transmitters and receivers, enabling high bandwidth communications applied in a fusion reactor environment.

Van Uffelen, Marco; Geboers, Sam; Leroux, Paul; Berghmans, Francis

2005-09-01

371

Chronic exposure to gamma radiation of wild populations of meadow voles (Microtus pennsylvanicus).  

PubMed

Free-ranging, wild meadow voles (Microtus pennsylvanicus) were exposed to gamma radiation from a (137)Cs irradiator in a series of experiments conducted on six 1-ha meadows within a mixed deciduous forest in Manitoba, Canada. Over a period of 1-1.5 years in each of three experiments, vole populations were monitored with capture-mark-release techniques at nominal exposure rates of 200x, 9000x and 40,000x background. No effects on population or individual characteristics were detected up to the highest exposure rate (81 mGy/d). At this level, third generation voles were monitored up to a lifetime dose of about 5.7 Gy, at a measured dose rate of 44 mGy/d. Smaller numbers of overwintered animals survived and reproduced normally at doses up to 10 Gy. These results are discussed in terms of low-LET, external chronic radiation effects on rodents in the laboratory and the field, relative to current views on appropriate benchmarks for the protection of biota. PMID:15193792

Mihok, Steve

2004-01-01

372

Serine 171, a conserved residue in the gamma-aminobutyric acid type A (GABAA) receptor gamma2 subunit, mediates subunit interaction and cell surface localization.  

PubMed

Serine 171 in the GABA(A) receptor gamma2 subunit is highly conserved in the ligand-gated ion channel superfamily. In this paper, we report that mutating serine 171 within gamma2 to glycine or cysteine prevents the interaction of gamma2 with alpha2 and beta1 when these subunits are co-expressed in human embryo kidney 293 cells, resulting in intracellular retention of gamma2. Structure analysis based on a three-dimensional homology model of gamma2 (Ernst, M., Brauchart, D., Boresch, S., and Sieghart, W. (2003) Neuroscience 119, 933-943) reveals that serine 171 may play a critical role in the formation and stabilization of an exposed turn structure that is part of the subunit interaction site. Mutation of serine 171 in the gamma2 subunit could therefore result in alteration of the structure of the subunit interaction site, preventing correct subunit assembly. PMID:14736867

Jin, Pei; Walther, Dirk; Zhang, Juan; Rowe-Teeter, Courtney; Fu, Glenn K

2004-04-01

373

Multiple cutaneous squamous cell carcinomas in a patient with interferon gamma receptor 2 (IFN gamma R2) deficiency.  

PubMed

Disseminated squamous cell carcinoma (SCC) of the skin is exceedingly rare in children. SCC occurs after immunodeficiency from immunosuppression in organ transplant recipients or patients with HIV infection or leukaemia, but has not been reported in primary immunodeficiencies other than epidermodysplasia verruciformis. Interferon gamma receptor 2 (IFN gamma R2) deficiency is an exceedingly rare primary immunodeficiency, conferring almost selective predisposition to mycobacterial diseases. A disseminated, cutaneous SCC is described that occurred in a patient homozygous for a novel frameshift deletion at positions 949 and 950 (949delTG) in the IFNGR2 gene. The patient first presented at 1 year of age with disseminated Mycobacterium avium infection, with later infections of atypical mycobacteria (Mycobacterium fortuitum and Mycobacterium porcium). At 17 years of age, the patient developed multifocal SCC lesions on the face and both hands. Histopathological examination revealed well differentiated SCC. Despite local tumour excision, multiple lesions occurred and a large SCC on the right arm required amputation. The patient died at 20 years of age of disseminated SCC. Inherited disorders of IFN gamma mediated immunity may predispose patients to SCC. PMID:20587411

Toyoda, Hidemi; Ido, Masaru; Nakanishi, Kyoichi; Nakano, Takashi; Kamiya, Hitoshi; Matsumine, Akihiko; Uchida, Atsumasa; Mizutani, Hitoshi; de Beaucoudrey, Ludovic; Vogt, Guillaume; Boisson-Dupuis, Stéphanie; Bustamante, Jacinta; Casanova, Jean-Laurent; Komada, Yoshihiro

2010-09-01

374

Identification of the novel lesion 8,5'-cyclo-2'-deoxyguanosine in DNA isolated from. gamma. -irradiated human cells  

SciTech Connect

The authors used capillary gas chromatography (GC)-mass spectrometry (MS) to detect damage in DNA from ..gamma..-irradiated viable cells. Epstein-Barr virus-transformed peripheral blood B-lymphocytes (lines GM 130 and RB 4580) were ..gamma..-irradiated at 0/sup 0/C at 1 to 10 krad (8.2 krad/min). The cells were immediately lysed with sodium dodecyl sulfate and incubated with proteinase K. The DNA was isolated by phenol-chloroform extractions, ethanol precipitations, and RNase A digestion. The DNA was hydrolyzed to 2'-deoxyribonucleosides with a mixture of DNase I, venom and spleen exonucleases, and alkaline phosphatase. The hydrolysate was dried, trimethylsilylated, and analyzed by GC-MS with selected-ion monitoring. Chromatographic retention time and mass spectrum were determined for a trimethylsilylated sample of authentic 8,5'-cyclo-2'-deoxyguanosine (8,5'-cyclo-dGuo). DNA from ..gamma..-irradiated cells gave the characteristic ions of this compound with proper relative intensities. Formation of 8,5'-cyclo-dGuo was dose-dependent. It was detectable in ca. 0.05 mg of DNA from cells irradiated at doses as low as 1 krad. The (5'R)- and the (5'S)-epimer of 8,5'-cyclo-dGuo were observed in a ratio of 1 to 3. The formation of 8,5'-cyclo-dGuo is believed to involve hydrogen atom abstraction from the carbon-5' of 2'-deoxyribose by radiation-generated OH radicals followed by intramolecular cyclization between carbon-5' and carbon-8 and subsequent oxidation of the resulting nitrogen-7 radical.

Dizdaroglu, M.; Dirksen, M.L.; Simic, M.G.; Robbins, J.H.

1986-05-01

375

Degradation in Thermal Properties and Morphology of Polyetheretherketone-Alumina Composites Exposed to Gamma Radiation  

NASA Astrophysics Data System (ADS)

Sheets of polyetheretherketone (PEEK) and PEEK-alumina composites with micron-sized alumina powder with 5, 10, 15, 20, and 25% by weight were fabricated, irradiated with gamma rays up to 10 MGy and the degradation in their thermal properties and morphology were evaluated. The radicals generated during irradiation get stabilized by chain scission and crosslinking. Chain scission is predominant on the surface and crosslinking is predominant in the bulk of the samples. Owing to radiation damage, the glass transition temperature, T g increased for pure PEEK from 136 to 140.5 °C, whereas the shift in T g for the composites decreased with increase in alumina content and for PEEK-25% alumina, the change in T g was insignificant, as alumina acts as an excitation energy sink and reduces the crosslinking density, which in turn decreased the shift in T g towards higher temperature. Similarly, the melting temperature, T m and enthalpy of melting, ? H m of PEEK and PEEK-alumina composites decreased on account of radiation owing to the restriction of chain mobility and disordering of structures caused by crosslinks. The decrease in T m and ? H m was more pronounced in pure PEEK and the extent of decrease in T m and ? H m was less for composites. SEM images revealed the formation of micro-cracks and micro-pores in PEEK due to radiation. The SEM image of irradiated PEEK-alumina (25%) composite showed negligible micro-cracks and micro-pores, because of the reinforcing effect of high alumina content in the PEEK matrix which helps in reducing the degradation in the properties of the polymer. Though alumina reduces the degradation of the polymer matrix during irradiation, an optimum level of ceramic fillers only have to be loaded to the polymer to avoid the reduction in toughness.

Lawrence, Falix; Mishra, Satyabrata; Mallika, C.; Kamachi Mudali, U.; Natarajan, R.; Ponraju, D.; Seshadri, S. K.; Sampath Kumar, T. S.

2012-07-01

376

Gamma radiation induces growth retardation, impaired egg production, and oxidative stress in the marine copepod Paracyclopina nana.  

PubMed

Accidental nuclear radioisotope release into the ocean from nuclear power plants is of concern due to ecological and health risks. In this study, we used the marine copepod Paracyclopina nana to examine the effects of radioisotopes on marine organisms upon gamma radiation, and to measure the effects on growth and fecundity, which affect population and community structure. Upon gamma radiation, mortality (LD50 - 96 h=172 Gy) in P. nana was significantly increased in a dose-dependent manner in ovigerous P. nana females. For developmental impairment of gamma-irradiated nauplii, we observed growth retardation; in over 30 Gy-irradiated groups, offspring did not grow to adults. Particularly, over 50 Gy-irradiated ovigerous P. nana females did not have normal bilateral egg sacs, and their offspring did not develop normally to adulthood. Additionally, at over 30 Gy, we found dose-dependent increases in oxidative levels with elevated antioxidant enzyme activities and DNA repair activities. These findings indicate that gamma radiation can induce oxidative stress and DNA damage with growth retardation and impaired reproduction. PMID:24632311

Won, Eun-Ji; Lee, Jae-Seong

2014-05-01

377

Monte-Carlo Simulations of Radiation-Induced Activation in a Fast-Neutron and Gamma- Based Cargo Inspection System  

E-print Network

An air cargo inspection system combining two nuclear reaction based techniques, namely Fast-Neutron Resonance Radiography and Dual-Discrete-Energy Gamma Radiography is currently being developed. This system is expected to allow detection of standard and improvised explosives as well as special nuclear materials. An important aspect for the applicability of nuclear techniques in an airport inspection facility is the inventory and lifetimes of radioactive isotopes produced by the neutron and gamma radiation inside the cargo, as well as the dose delivered by these isotopes to people in contact with the cargo during and following the interrogation procedure. Using MCNPX and CINDER90 we have calculated the activation levels for several typical inspection scenarios. One example is the activation of various metal samples embedded in a cotton-filled container. To validate the simulation results, a benchmark experiment was performed, in which metal samples were activated by fast-neutrons in a water-filled glass jar. The induced activity was determined by analyzing the gamma spectra. Based on the calculated radioactive inventory in the container, the dose levels due to the induced gamma radiation were calculated at several distances from the container and in relevant time windows after the irradiation, in order to evaluate the radiation exposure of the cargo handling staff, air crew and passengers during flight. The possibility of remanent long-lived radioactive inventory after cargo is delivered to the client is also of concern and was evaluated.

B. Bromberger; D. Bar; M. Brandis; V. Dangendorf; M. B. Goldberg; F. Kaufmann; I. Mor; R. Nolte; M. Schmiedel; K. Tittelmeier; D. Vartsky; H. Wershofen

2012-01-04

378

Primary cutaneous B-cell lymphoma with abundant reactive gamma/delta T-cells within the skin lesion and peripheral blood  

PubMed Central

T-cell/histiocyte-rich diffuse large B-cell lymphoma is characterized by abundant reactive T-cell and histiocyte infiltration within nodal diffuse large B-cell lymphoma, and only limited cases of primary cutaneous T-cell-rich B-cell lymphoma have been documented. These reactive T-cells usually show a T-helper phenotype. Gamma/delta T-cell is a functionally distinct T-cell lineage, which constitutes on average 5% of all T-cells in the peripheral blood. Herein, we report the first documented case of primary cutaneous malignant B-cell lymphoma with abundant reactive gamma/delta+ T-cells within the skin lesion and peripheral blood. An 80-year-old Japanese male presented with a gradually enlarged knee nodule. Histopathological study revealed diffuse infiltration of lymphoid cells in the dermis and subcutis. Proliferation of large-sized atypical lymphoid cells was observed among medium-sized lymphocytes with convoluted nuclei. Immunohistochemically, these large-sized atypical lymphocytes were CD20+, and relatively many gamma/delta+ cell infiltration was also noted. Flowcytometric analysis revealed deviation of lambda+ cells (lambda/kappa 58) and increase of CD3+ gamma/delta+ cells (6%). Peripheral blood had CD3+ gamma/delta+ cells (28.8%). Rearrangement of immunoglobulin heavy chain, but not of T-cell receptor beta and gamma chains, was observed. Accordingly, an ultimate diagnosis of cutaneous B-cell lymphoma with abundant reactive gamma/delta+ cells was made. Recent studies have shown reactive gamma/delta+ T-cell infiltration and/or elevation in the peripheral blood in patients with various types of carcinoma, and that they play a role in the pathogenesis of some carcinomas. Therefore, additional analysis is needed to clarify the role of reactive gamma/delta+ T-cells in malignant lymphoma. PMID:24696737

Ishida, Mitsuaki; Iwai, Muneo; Yoshida, Keiko; Kagotani, Akiko; Okabe, Hidetoshi

2014-01-01

379

Studies on High Energy Radiation Mechanisms and Gamma-Ray Burst Prompt Emissions  

NASA Astrophysics Data System (ADS)

Gamma-Ray Bursts (GRBs) are the most violent high-energy explosion in the universe. They are randomly happened, pulse-like phenomena with short durations. Since its discovery in 1960's by Vela satellite, GRBs have become a hot topic for astrophysical research. In 1997 the BeppoSAX satellite discovered afterglows of GRBs, and then helped to measure GRB redshifts. Thus it was found that GRBs are the events occurred at cosmological distances. Now it is widely accepted that the long bursts with durations longer than 2 s are from the collapsing massive stars, while the short bursts with durations less than 2 s are results of the merging compact binaries. By studying GRBs, the physical processes in ultrarelativistic and very high energy conditions can be investigated, and the researches on other fields, including constraining the cosmological models, can also get helped. The goal of this thesis is to present some discussions on possible radiation mechanisms and prompt light curves of GRBs. Since radiation mechanisms and prompt emissions are related to GRB central engines directly, studying these topics can help us to get a better understanding of some properties of the central engine. In Chapter 1, we review the discovery and observations of GRBs, presenting major achievements from major GRB-monitoring satellites including Compton Gamma-ray Observatory, BeppoSAX satellite, Swift satellite, as well as the latest Fermi Gamma-ray Space Telescope. The multi-wavelength properties of prompt emission as well as afterglows of GRBs are also summarized in Chapter 1. In Chapter 2 the current GRB standard model is presented. According to standard model, a fireball is ejected by the central engine. The internal shock is produced by collisions between various shells with different velocities inside the fireball. The directional kinetic energy of the fireball is then converted to internal energy, and finally the non-thermal radiation (the prompt emission) is produced by internal shocks. And the interaction between the fireball and the outer medium gives rise to external forward and reverse shocks, producing the observed afterglow. In the framework of standard model, we introduce the properties of the fireball, the evolution of shocks, some possible radiation mechanisms, as well as some post-standard effects. Also we present a brief introduction of central engines. And since the internal shock model for prompt emission has some problems hard to be solved, we also introduce some possible alternatives, including the electromagnetic model, the turbulent model, as well as the Internal-Collision-induced Magnetic Reconnection and Turbulence (ICMART) model. In Chapter 3, we present the spectrum of synchro-curvature self-Compton (SCSC) radiation of relativistic electrons with a power-law distribution of Lorentz factors. Synchro-curvature radiation from relativistic electrons moving around curved magnetic field lines and its self-Compton radiation are possible radiation mechanisms in the GRB enviroment. We find that the resulting SCSC spectrum is significantly different from that of either synchrotron self-Compton or curvature self-Compton radiation if both the curvature radius of the magnetic field and the cyclotron radius of the electrons are within some proper ranges. The effects of electrons' cooling and drifting, the low-energy self absorption in seed spectra, and the Klein-Nishina cutoff are also discussed, in order to get an accurate picture. We take GRBs as our example environment for discussions. The results would be considered as a universal approach of the self-Compton emission of relativistic electrons moving in curved magnetic fields, and thus could be applied to many astrophysical phenomena, including active galactic nuclei (AGNs), pulsars, as well as GRBs. In Chapter 4, we simulate the prompt emission light curves of GRBs within the framework of the ICMART model. This model is applied to GRBs with a moderately-high magnetization parameter ? in the emission region. We show that this model can produce highly variable light curves with bo

Zhang, B.

2014-07-01

380

UCLA study finds radiation treatment transforms breast cancer cells into cancer stem cells  

Cancer.gov

Breast cancer stem cells are thought to be the sole source of tumor recurrence and are known to be resistant to radiation therapy and don't respond well to chemotherapy. Now, researchers with the UCLA Department of Radiation Oncology at UCLA's Jonsson Comprehensive Cancer Center report for the first time that radiation treatment – despite killing half of all tumor cells during every treatment – transforms other cancer cells into treatment-resistant breast cancer stem cells.